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Preface

We are pleased to present the proceedings of INDOCRYPT 2015, held during
December 6–9, 2015, in Bangalore, India. This was the 16th edition of the INDO-
CRYPT series organized under the aegis of the Cryptology Research Society of India
(CRSI).

The INDOCRYPT series of conferences began in 2000 under the leadership of Prof.
Bimal Roy of Indian Statistical Institute.

The submissions for INDOCRYPT 2015 were due on July 20, 2015. We received
60 submissions from which, after a careful review and discussion process, 19 were
selected for the conference proceedings.

The review process was conducted in two stages: In the first stage, most papers were
reviewed by at least three committee members. In the second phase, which lasted for
about two weeks, online discussion took place in order to decide on the acceptance
of the submissions.

During the review process the Program Committee was helped by a team of 65
external reviewers.

We would like to thank the Program Committee members and the external reviewers
for sharing their expertise and giving every paper a fair assessment. The review process
was done with EasyChair, which greatly simplified the process.

We were delighted that Itai Dinur, Sanjam Garg, Seny Kamara, Alon Rosen, and
Palash Sarkar agreed to deliver invited talks on several interesting topics of relevance to
INDOCRYPT.

We were also pleased to have Yevgeniy Dodis and Manoj Prabhakaran deliver two
tutorials as part of the conference.

We thank the General Chairs Satya Lokam and Sanjay Burman as well as the teams
DRDO and the National Mathematics Initiative at the Indian Institute of Science,
Bangalore, for their hard work and taking care of all the local organization matters for
the conference. We are especially grateful to our sponsors for their generous support
of the conference.

We acknowledge Springer for their active cooperation and timely production of the
proceedings. Finally we thank all the authors who submitted papers to the INDO-
CRYPT 2015, and all the attendees. We hope you enjoy the proceedings of this year’s
INDOCRYPT conference.

December 2015 Alex Biryukov
Vipul Goyal
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Abstracts of Invited Talks



On Randomness, Codes and Extractors
in Cryptography

Yevgeniy Dodis1

Department of Computer Science, New York University, USA
dodis@cs.nyu.edu

Abstract. We survey several recent advances in information-theoretic cryp-
tography, such as cryptography with imperfect randomness, randomness
extractors, leftover hash lemma and non-malleable extractors/codes.



Secure Multi-Party Computation: A Tutorial

Manoj M. Prabhakaran

University of Illinois at Urbana-Champaign, USA

Abstract. Secure Multi-Party Computation (MPC) is a central problem in
modern cryptography, that allows mutually distrusting parties to collaborate
with each other on computational tasks, without compromising their private data
(beyond what the output of the computation reveals). In this tutorial we shall
cover some of the basic concepts behind MPC, informed by recent develop-
ments in the field.

The first half of the tutorial will introduce the concept of MPC and briefly
present some of the classic constructions, including Yao’s Garbled Circuits, the
GMW protocol and the BGW protocol. We shall then see some blackbox
transformations that can be applied to simpler protocols, to achieve higher
security or efficiency goals.

The second half of the tutorial will deal with fundamental issues in the
theory of MPC. These include definitions of security, classification of MPC
tasks according to their cryptographic complexity (including characterization of
tasks as possible or impossible to carry out), and questions regarding the
communication complexity of MPC.



Encrypted Search:
Theory, Practice and Cryptanalysis

Seny Kamara

Microsoft Research

Abstract. Encrypted search is one of the most potentially impactful topics in
cryptography research. Secure and practical encrypted search could funda-
mentally change how we store and process data, allowing us to design cloud
services, databases and storage systems that are both end-to-end encrypted and
usable. Research in encrypted search is now 15 years old and is more active and
relevant than ever due to the emergence of cloud computing and to consumer,
enterprise and government concerns over data privacy.

In this talk I will go over the evolution of encrypted search from its
inception until now. I will describe the theoretical and practical advances that
pushed the field forward and will discuss where research is headed. I will also
survey the latest and most exciting directions including the design of inference
attacks and the expansion of encrypted search techniques to handle graph and
relational databases. Finally, I will highlight some of the most important theo-
retical and practical open problems in the area.



On the Cryptographic Hardness
of Finding a Nash Equilibrium

Alon Rosen

School of Computer Science
IDC Herzliya, Israel

alon.rosen@idc.ac.il

Abstract. The notion of Nash equilibrium (NE) is fundamental to game theory.
While a mixed Nash equilibrium is guaranteed to exist in any game, there is no
known polynomial-time algorithm for finding one. The tractability of the
problem has received much attention in the past decade, in large part due to its
theoretical and philosophical significance.

Prominent evidence for the hardness of finding a NE emerges from a line of
works, originating in Papadimitriou and ultimately showing that the problem is
complete for the complexity class PPAD. The class PPAD contains several
other search problems that are not known to be tractable, such as finding a fixed
point of the kind guaranteed by Brouwer’s Theorem. Akin to the phenomenon
of NP-completeness, this could be interpreted as evidence to computational
difficulty. However, unlike in the case of NP, currently known problems in
PPAD appear to be of fairly restricted nature, and carry similar flavor to one
another.

In this talk I will show that finding a Nash equilibrium of a game is hard,
assuming the existence of indistinguishability obfuscation and one-way func-
tions with sub-exponential hardness. We do so by showing how these crypto-
graphic primitives give rise to a hard computational problem that lies in PPAD.
Previous proposals for basing PPAD-hardness on program obfuscation con-
sidered a strong “virtual black-box” notion that is subject to severe limitations
and is unlikely to be realizable for the programs in question. In contrast, for
indistinguishability obfuscation no such limitations are known, and recently,
several candidate constructions of indistinguishability obfuscation were sug-
gested.

Our result provides further evidence of the intractability of finding a Nash
equilibrium, one that is extrinsic to the evidence presented so far.

The talk is based on joint work with Nir Bitansky (MIT) and Omer Paneth
(BU). It was presented in FOCS’15.



New Advances in Program Obfuscation

Sanjam Garg

University of California, Berkeley
sanjamg@berkeley.edu

Abstract. Recent proposals for plausible candidate constructions of obfuscation
have radically transformed what we imagined to be possible in cryptography.
For over a decade cryptographers had been very skeptical about the existence of
such objects. In this talk, I will first provide a very brief introduction to these
results and some of their interesting consequences. Next I will present our recent
progress towards basing obfuscation on weaker computational assumptions, and
the challenges that remain.



The Power of Linear Algebra: Breaking Block
Ciphers Using Linearization

Itai Dinur

Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Abstract. Linearization transforms a system of non-linear equations into a linear
system using various operations such as replacing complex expressions with
new variables. Despite its simplicity, linearization is a versatile and very power
tool in cryptanalysis. In this talk, I will review attacks on recent block cipher
proposals and emphasize the various roles that linearization plays in these
attacks. The talk will consist of three parts, each part analyzing a different block
cipher construction and demonstrating how to use lineararization to enhance a
different cryptanalytic attack.

In the first part of the talk, I will analyze the security of the block cipher
Zorro (presented by Gérard et al. at CHES 2013) using a tool that exploits
linearization in order to enhance differential and linear cryptanalysis. The tool
gives rise to devastating and practical attacks on Zorro, but also allows to repair
it and prove the immunity of the fixed block cipher to these attacks.

The second part of the talk will focus on the LowMC family of block
ciphers that was presented at EUROCRYPT 2015 by Albrecht et al. I will
analyze the resistance of LowMC against the classical interpolation attack (due
to Jakobsen and Knudsen) which uses linearization in order to recover the secret
key in a meet-in-the-middle approach. While the LowMC instances proposed at
EUROCRYPT 2015 seem to resist the original interpolation attack, I will show
how to optimize it using new ideas in order to break their claimed security.

Finally, I will discuss the ASASA block cipher construction that was pro-
posed by Biryukov et al. at ASIACRYPT 2014. A very recent attack on ASASA
(presented by Minaud et al. at ASIACRYPT 2015) uses linearization in a novel
way in order to recover the key by exploiting a high order differential distin-
guisher. Although the original attack applies to a subset of ASASA instances, I
will show that it can be extended to all instances of this construction.



On the Appropriateness of (Normal)
Approximations in Statistical Analysis

of Attacks on Symmetric Ciphers

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute

203, B.T.Road, 700108 Kolkata, India
palash@isical.ac.in

Abstract. Statistical analysis of attacks on symmetric ciphers often require
assuming that a test statistic follows the normal distribution. Typically such an
assumption holds in an asymptotic sense. In contrast, we consider concrete
versions of some important normal approximations that have been made in the
literature. To do this, we use the Berry-Esséen theorem to derive explicit bounds
on the approximation errors. Analysing these error bounds in several cryptan-
alytic contexts throws up several surprising results. One important implication is
that this puts in doubt the applicability of the order statistics based approach for
analysing key recovery attacks on block ciphers. This approach has been earlier
used to obtain several results on the data complexities of (multiple) linear and
differential cryptanalysis. The non-applicability of the order statistics based
approach puts a question mark on the validity of data complexities obtained
using this approach. Fortunately, it is possible to recover all of these results by
utilising the hypothesis testing framework.

For analysing multiple linear and differential attacks, previous works had
used the χ2 and the log-likelihood ratio (LLR) based test statistics and had
approximated their distributions using the normal distribution. The hypothesis
testing framework that we consider also uses these statistics and their normal
approximations. Detailed consideration of the error in such normal approxi-
mations, however, shows that there are serious implications for the applicability
of these results.

A general message that we would like to convey is that all cryptanalytic
attacks should properly derive and interpret the error bound for any normal (or
other) approximation that is made. This will show that an attack is meaningful in
a concrete setting rather than in an asymptotic sense.

The talk will be based on joint work with Subhabrata Samajder.
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Compact Attribute-Based Encryption
and Signcryption for General Circuits

from Multilinear Maps

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay(B)

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. In this paper, we start by presenting a key-policy attribute-
based encryption ABE supporting general polynomial-size circuit real-
izable decryption policies and featuring compactness in the sense that
our ABE construction exhibits short ciphertexts and shorter decryption
keys compared to existing similar works. We then design a key-policy
attribute-based signcryption ABSC scheme which enjoys several interest-
ing properties that were never achievable before. It supports signing and
decryption policies representable as arbitrary polynomial-size circuits.
Besides, it generates short ciphertext. Our constructions employ mul-
tilinear map and achieve selective security in the standard model under
standard complexity assumptions. More interestingly, our key-policy con-
structions can be converted to the corresponding ciphertext-policy vari-
ants achieving short ciphertext by utilizing the technique of universal
circuits.

Keywords: ABE · ABSC · Polynomial-size circuits · Multilinear map

1 Introduction

ABE: The recent advancements in online social networks and cloud technol-
ogy have triggered an emerging trend among individuals and organizations to
outsource potentially sensitive private data to external servers. This necessi-
tates enforcing sophisticated access control while sharing the outsourced data
with other individuals or organizations. Attribute-based encryption (ABE) offers
a natural solution to the above scenario by enabling fine-grained management
of decryption rights to encrypted data.

In 2013, the independent breakthrough works due to Garg et al. [7] and
Gorbunov et al. [9] on ABE systems were able to realize decryption policies rep-
resentable as polynomial-size circuits with arbitrary fan-out, following which a
series of distinguished works have contributed in making ABE for general cir-
cuits more practical in terms of both efficiency and security [1,2,8]. Besides
tackling the issue of complex access control, ABE for general polynomial-size

c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 3–24, 2015.
DOI: 10.1007/978-3-319-26617-6 1



4 P. Datta et al.

circuit realizable decryption policies has found countless applications in cryp-
tography, most notably for publicly verifiable two message delegation scheme
with a preprocessing phase, succinct one-query functional encryption, reuse gar-
bled circuits, token-based obfuscation, and homomorphic encryption for Turing
machines.

ABSC: Attribute-based signcryption (ABSC) is a logical mixture of attribute-
based encryption (ABE) and attribute-based signature (ABS) into an unified cost-
effective primitive. ABS aims to allow signers to preserve their anonymity while
signing digital documents. ABSC resolves the issue of managing sophisticated
authentication and decryption rights simultaneously in large distributed net-
works with better efficiency compared to a sequential implementation of ABE
and ABS. For instance, in cloud-based data sharing systems, storing sensitive
information securely to the cloud may not be sufficient. The data owner should
also be able to prove its genuineness at the cloud as well as to the data recipients
to avoid illegal data storage by the cloud server.

A desirable property of an ABSC scheme is public verifiability meaning that
any party can verify the authenticity of a ciphertext even without the knowledge
of the signcrypted message or a valid decryption key. This feature is especially
appealing in real-life applications such as filtering out the spams in secure email
systems. Here, a spam filter can check whether a signcrypted email is generated
from a source with claimed credentials or not before sending to inbox, without
knowing the original message. If an email does not satisfy the public verifiability
mechanism, it can be treated as spam and can be sent to the spam folder.

Designing efficient ABSC schemes for highly expressive signing and decryp-
tion policies is a challenging task and have received considerable attention to the
recent research community [5,11–13]. In all the aforementioned ABSC schemes
the classes of admissible signing and decryption policies have been restricted to
circuits of fan-out one.

Our Contribution: In this paper, we propose two attribute-based crypto-
graphic constructions:

– A key-policy ABE scheme supporting arbitrary polynomial-size circuits with
short ciphertext and shorter decryption keys compared to existing similar
works under standard complexity assumption.

– The first key-policy ABSC scheme for general polynomial-size circuits achiev-
ing public verifiability and featuring compact ciphertext as well.

More precisely, similar to [1,2,7–9], our ABE construction permits circuits
of arbitrary polynomial-size and unbounded fan-out with bounded depth and
input sizes that are fixed at the setup. We develop our ABE scheme in current
multilinear map setting [3,4,6] with multilinearity level n + l + 1, where n and l
denote respectively the input length and depth of the decryption policy circuits.
To realize short ciphertext, we adopt the technique of [10] in developing a full
domain hash from multilinear map. The structure of our decryption keys is
similar to that of [2,7] except that the key components corresponding to the
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input wires of the decryption policy circuits are suitably modified and are smaller
than all previous multilinear map-based constructions [1,2,7,8].

We prove selective security of our ABE construction against chosen plaintext
attack (CPA) under the Multilinear Decisional Diffie-Hellman assumption. This
is a standard complexity assumption and one can securely instantiate schemes
based on this assumption using the recent multilinear map candidate [4].

The second and more significant contribution of this paper is an ABSC scheme
of the key-policy category. This scheme also supports signing and decryption poli-
cies realizable by polynomial-size circuits of arbitrary fan-out having bounded
depths and input lengths. This scheme is developed by augmenting our ABE
construction with an attribute-based authentication functionality. We utilize a
multilinear map of multilinearity level n+n′ + l+1, where n, n′, and l represent
respectively the input length of decryption policy circuits, input size of signing
policy circuits, and depth of both types of circuits.

Our ABSC construction is proven selectively message confidential against
chosen-plaintext attack (CPA) and selectively ciphertext unforgeability against
chosen message attack (CMA) under the Multilinear Decisional Diffie-Hellman
and Multilinear Computational Diffie-Hellman assumption respectively. The
number of group elements comprising our ABSC ciphertext is also constant –
3 to be exact.

Finally, an interesting aspect of our work is that using the technique of uni-
versal circuits, as in [1,7], both of our constructions can be utilized to realize
their corresponding ciphertext-policy variants for arbitrary bounded-size circuits
featuring short ciphertext as well.

2 Preliminaries

2.1 Circuit Notation

We adopt the same notations for circuits as in [7]. As pointed out in [7], with-
out loss of generality we can consider only those circuits which are monotone,
where gates are either OR or AND having fan-in two, and layered. Our cir-
cuits will have a single output gate. A circuit will be represented as a six-tuple
f = (n, q, l,A,B,GateType). Here, n and q respectively denote the length of
the input and the number of gates, while l represents the depth of the cir-
cuit. We designate the set of input wires as Input = {1, . . . , n}, the set of
gates as Gates = {n + 1, . . . , n + q}, the total set of wires in the circuit as
W = Input ∪ Gates = {1, . . . , n + q}, and the wire n + q to be the output
wire. Let A,B : Gates → W\{n + q} be functions where for all w ∈ Gates,
A(w) and B(w) respectively identify w’s first and second incoming wires. Finally,
GateType : Gates → {AND,OR} defines a functions that identifies a gate as either
an AND or an OR gate. We follow the convention that w > B(w) > A(w) for
any w ∈ Gates.

We also define a function depth : W → {1, . . . , l} such that if w ∈ Inputs,
depth(w) = 1, and in general depth(w) of wire w is equal to one plus the length
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of the shortest path from w to an input wire. Since our circuit is layered, we
have, for all w ∈ Gates, if depth(w) = j then depth(A(w)) = depth(B(w)) = j−1.

We will abuse notation and let f(x) be the evaluation of the circuit f on
input x ∈ {0, 1}n, and fw(x) be the value of wire w of the circuit f on input x.

2.2 The Notion of ABE for General Circuits

� Syntax of ABE for Circuits: Consider a circuit family Fn,l that consists of
all circuits f with input length n and depth l characterizing decryption rights.
A key-policy attribute-based encryption (ABE) scheme for circuits in Fn,l with
message space M consists of the following algorithms:

ABE.Setup(1λ, n, l): The trusted key generation center takes as input a security
parameter 1λ, the length n of Boolean inputs to decryption policy circuits,
and the allowed depth l of the decryption policy circuits. It publishes the
public parameters PP, while keeps the master secret key MK to itself.

ABE.KeyGen(PP,MK, f): On input the public parameters PP, the master secret
key MK, and the description of a decryption policy circuit f ∈ Fn,l from a
decrypter, the key generation center provides a decryption key SK

(DEC)
f to

the decrypter.
ABE.Encrypt(PP, x,M): Taking as input the public parameters PP, an encryp-

tion input string x ∈ {0, 1}n, and a message M ∈ M, the encrypter prepares
a ciphertext CTx.

ABE.Decrypt(PP,CTx,SK
(DEC)
f ): A decrypter takes as input the public parame-

ters PP, a ciphertext CTx encrypted for x, and its decryption key SK
(DEC)
f

corresponding to circuit f ∈ Fn,l. It succeeds to output the message M ∈ M,
if f(x) = 1; otherwise, it outputs the distinguished symbol ⊥.

� Security Definition: The selective security notion of ABE for circuits against
chosen plaintext attack (CPA) is defined in terms of the following game between
a probabilistic adversary A and a probabilistic challenger B:

Init: A commits to a challenge encryption input string x∗ ∈ {0, 1}n that would
be used by B to create the challenge ciphertext.

Setup: B performs ABE.Setup(1λ, n, l) to obtain PP,MK, and hands PP to A.

Query Phase 1: A may adaptively make any polynomial number of decryption
key queries for circuit description f ∈ Fn,l of its choice subject to the restriction
that f(x∗) = 0. B returns the corresponding decryption keys SK

(DEC)
f to A by

executing ABE.KeyGen(PP,MK, f).

Challenge: A submits two equal length messages M∗
0 ,M∗

1 ∈ M. Then B flips a
random coin b ∈ {0, 1}, and computes the challenge ciphertext CT∗ by running
ABE.Encrypt(PP, x,Mb). The challenge ciphertext CT∗ is given to A.
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Query Phase 2: A may continue adaptively to make decryption key queries as
in Query Phase 1 with the same restriction as above.

Guess: A eventually outputs a guess b′ for b and wins the game if b′ = b.

Definition 1. An ABE scheme for circuits is defined to be selectively secure
against CPA if the advantage of any probabilistic polynomial-time (PPT) adver-
saries A in the above game, AdvABE,s-IND-CPA

A (λ) = |Pr[b′ = b] − 1/2|, is at most
negligible.

2.3 The Notion of ABSC for General Circuits

� Syntax of ABSC for Circuits: Consider a circuit family F
(DEC)
n,l consisting

of all circuits f with input length n and depth l expressing decryption access
structures along with a circuit class F

(SIG)
n′,l containing all circuits g of input

length n′ and depth l characterizing signing rights. A key-policy attribute-based
signcryption (ABSC) scheme for circuits in F

(DEC)
n,l and F

(SIG)
n′,l with message space

M consists of the following algorithms:

ABSC.Setup(1λ, n, n′, l): The trusted key generation center takes as input a secu-
rity parameter 1λ, the length n of Boolean inputs to decryption policy cir-
cuits, the length n′ of Boolean inputs to signing policy circuits, and the
common allowed depth l of both types of circuits. It publishes the public
parameters PP and keeps the master secret key MK to itself.

ABSC.SKeyGen(PP,MK, g): On input the public parameters PP, the master
secret key MK, and the description of a signing policy circuit g ∈ F

(SIG)
n′,l

from a signcrypter, the key generation center provides a signing key SK(SIG)
g

to the signcrypter.
ABSC.DKeyGen(PP,MK, f): Taking as input the public parameters PP, the mas-

ter secret key MK, and the description a decryption policy circuit f ∈ F
(DEC)
n,l

from a decrypter, the key generation center hands a decryption key SK
(DEC)
f

to the decrypter.
ABSC.Signcrypt(PP,SK(SIG)

g , x, y,M): A signcrypter takes as input the public
parameters PP, its signing key SK(SIG)

g corresponding to some circuit g ∈
F

(SIG)
n′,l , an encryption input string x ∈ {0, 1}n describing a set of legitimate

decrypter, a signature input string y ∈ {0, 1}n′
such that g(y) = 1, and a

message M ∈ M. It outputs a ciphertext CTx,y.
ABSC.Unsigncrypt(PP,CTx,y,SK

(DEC)
f ): A decrypter takes as input the public

parameters PP, a ciphertext CTx,y signcrypted with x, y, and its decryption
key SK

(DEC)
f corresponding to circuit f ∈ F

(DEC)
n,l . It succeeds to output the

message M ∈ M provided the ciphertext is valid, if f(x) = 1; otherwise, it
outputs ⊥ indicating that either the ciphertext is invalid or the ciphertext
cannot be decrypted.
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� Security Definitions: An ABSC scheme for circuits has two security require-
ments, namely, (I) message confidentiality and (II) ciphertext unforgeability
which are described below:

(I) Message Confidentiality: This security notion is defined on indistinguisha-
bility of ciphertexts under chosen plaintext attack (CPA) in the selective encryp-
tion input string model through an analogous game as in case of ABE. The details
is omitted here due to page restriction.
(II) Ciphertext Unforgeability: This notion of security is defined on existen-
tial unforgeability under adaptive chosen message attack (CMA) in the selective
signature input string model through the following game between a probabilistic
adversary A and a probabilistic challenger B.

Init: A declares a signature input string y∗ ∈ {0, 1}n′
to B that will be used to

forge a signcryption.

Setup: B runs ABSC.Setup(1λ, n, n′, l) to obtain PP,MK and hands PP to A.

Query Phase: A may adaptively make a polynomial number of queries of the
following types to B and B provides the answer to them.

� Signing key query: Upon receiving a signing key query from A corresponding
to a signing policy circuit g ∈ F

(SIG)
n′,l subject to the constraint that g(y∗) = 0,

B returns the SK(SIG)
g to A by executing ABSC.SKeyGen(PP,MK, g).

� Decryption key query: When A queries a decryption key for a decryption policy
circuit f ∈ F

(DEC)
n,l , B gives SK

(DEC)
f to A by performing ABSC.DKeyGen(PP,

MK, f).
� Signcryption query: A queries a signcryption of a message M for a signature

input string y(�= y∗) ∈ {0, 1}n′
along with an encryption input string x ∈

{0, 1}n. B samples a signing policy circuit g ∈ F
(SIG)
n′,l such that g(y) = 1 and

returns the ciphertext CTx,y to A by performing ABSC.Signcrypt(PP,SK(SIG)
g ,

x, y,M), where SK(SIG)
g is got from ABSC.SKeyGen(PP,MK, g) by B.

� Unsigncryption query: In response to a unsigncryption query from A for a
ciphertext CTx,y under the decryption policy circuit f ∈ F

(DEC)
n,l , B obtains

the decryption key SK
(DEC)
f by running ABSC.DkeyGen(PP,MK, f) and sends

output of ABSC.Unsigncrypt(PP, CTx,y, SK
(DEC)
f ) to A.

Forgery: A eventually outputs a forgery CT∗ for some message M∗ with
the signature input string y∗ and an encryption input string x∗. A wins
the game if the ciphertext CT∗ is valid, i.e., M∗(�= ⊥) is the output of
ABSC.Unsigncrypt(PP,CT∗, SK(DEC)

f∗ ) for any f∗ ∈ F
(DEC)
n,l satisfying f∗(x∗) = 1,

and CT∗ is not obtained from any signcryption query to B.

Definition 2. An ABSC scheme for circuits is defined to be selectively ciphertext
unforgeable against CMA if the advantage of any PPT adversaries A in the above
game, AdvABSC,s-UF-CMA

A (λ) = Pr[A wins], is at most negligible.
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2.4 Multilinear Maps and Complexity Assumption

A (leveled) multilinear map [3,4,6] consists of the following two algorithms:

(i) G(1λ, k): It takes as input a security parameter 1λ and a positive integer k
indicating the number of allowed pairing operations. It outputs a sequence
of groups

#»

G = (G1, . . . ,Gk) each of large prime order p > 2λ together with
the canonical generators gi of Gi. We call G1 the source group, Gk the target
group, and G2, . . . ,Gk−1 intermediate groups.

(ii) ei,j(g, h) (for i, j ∈ {1, . . . , k} with i + j ≤ k): On input two elements g ∈
Gi and h ∈ Gj with i + j ≤ k, it outputs an element of Gi+j such that
ei,j(ga

i , gb
j) = gab

i+j for a, b ∈ Zp. We often omit the subscripts and just
write e. We can also generalize e to multiple inputs as e(h(1), . . . , h(t)) =
e(h(1), e(h(2), . . . , h(t))).

We refer ga
i as a level-i encoding of a ∈ Zp. The scalar a itself is referred to

as a level-0 encoding of a. Then the map e combines a level-i encoding of an
element a ∈ Zp and a level-j encoding of another element b ∈ Zp, and produces
level-(i + j) encoding of the product ab.

Assumption 1 (k-Multilinear Decisional Diffie-Hellman: k-MDDH [6]).
The k- Multilinear Decisional Diffie-Hellman (k-MDDH) assumption states that
it is intractable for any PPT algorithm B to guess b ∈ {0, 1} given �b = (

#»

G, g1, S,
C1, . . . , Ck, Tb) generated by Gk-MDDH

b
(1λ), where Gk-MDDH

b
(1λ) works as follows:

– Run G(1λ, k) to generate
#»

G = (G1, . . . ,Gk) with g1, . . . , gk of order p.
– Pick random s, c1, . . . , ck ∈ Zp and compute S = gs

1, C1 = gc1
1 , . . . , Ck = gck

1 .

– Set T0 = g
s
∏k

j=1 cj

k while T1 = some random element in Gk.
– Return �b = (

#»

G, g1, S, C1, . . . , Ck, Tb).

Assumption 2 (k-Multilinear Computational Diffie-Hellman: k-MCDH
[10]). The k-multilinear computational Diffie-Hellman (k-MCDH) assumption

states that it is intractable for any PPT algorithm B to output T = g
∏k

i=1 ci

k−1 given
� = (

#»

G, g1, C1, . . . , Ck) generated by Gk-MCDH(1λ), where Gk-MCDH(1λ) performs
the following:

– Run G(1λ, k) to generate
#»

G = (G1, . . . ,Gk) with g1, . . . , gk of order p.
– Pick random c1, . . . , ck ∈ Zp and compute C1 = gc1

1 , . . . , Ck = gck
1 .

– Return � = (
#»

G, g1, C1, . . . , Ck).

3 Our ABE Scheme

The Construction

ABE.Setup(1λ, n, l): The trusted key generation center takes as input a security
parameter 1λ, the length of Boolean inputs n to the decryption policy cir-
cuits, and the allowed depth l of decryption policy circuits. It proceeds as
follows:
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1. It runs G(1λ, k = n+ l+1) to produce group sequence
#»

G = (G1, . . . ,Gk)
of prime order p > 2λ with canonical generators g1, . . . , gk.

2. It selects random α ∈ Zp together with random
(a1,0, a1,1), . . . , (an,0, an,1) ∈ Z

2
p, and computes

H = gα
l+1, Ai,β = g

ai,β

1 for i = 1, . . . , n; β ∈ {0, 1}.

3. It publishes the public parameters PP consisting of the group sequence
description along with H and {Ai,β}i=1,...,n; β∈{0,1}. The master secret
key MK = gα

l is kept to itself.
ABE.KeyGen(PP,MK, f): The key generation center takes as input the pub-

lic parameters PP, the master secret key MK, and the description f =
(n, q, l,A,B,GateType) of a decryption policy circuit from a decrypter. Our
circuit has n + q wires {1, . . . , n + q} where {1, . . . , n} are n input wires,
{n + 1, . . . , n + q} are q gates (OR or AND gates), and the wire n + q desig-
nated as the output wire. It performs the following steps:
1. It chooses random r1, . . . , rn+q ∈ Zp where we think of randomness rw as

being associated with wire w ∈ {1, . . . , n + q}. It produces the “header”
component

K = gα
l g

−rn+q

l = g
α−rn+q

l ,

where gα
l is obtained from MK.

2. Next, it generates key components for every wire w. The structure of the
key component depends upon the category of w, i.e., whether w is an
Input wire, an OR gate, or an AND gate. We describe how it generates
the key components in each case.
• Input wire: If w ∈ {1, . . . , n} then it corresponds to the w-th input. It
computes the key component Kw = e(Aw,1, g1)rw = g

rwaw,1
2 .

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and j =
depth(w). It picks random bw, dw ∈ Zp and creates the key component

Kw =
(
Kw,1 = gbw

1 ,Kw,2 = gdw
1 ,Kw,3 = g

rw−bwrA(w)
j ,Kw,4 = g

rw−dwrB(w)
j

)
.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and j = depth(w).
It selects random bw, dw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gbw

1 ,Kw,2 = gdw
1 ,Kw,3 = g

rw−bwrA(w)−dwrB(w)
j

)
.

3. It provides the decryption key SK
(DEC)
f = (f,K, {Kw}w∈{1,...,n+q}) to the

decrypter.
ABE.Encrypt(PP, x,M): Taking as input the public parameters PP, an encryp-

tion input string x = x1 . . . xn ∈ {0, 1}n, and a message M ∈ Gk, the
encrypter forms the ciphertext as follows:
1. It picks random s ∈ Zp and computes

CM = e(h,A1,x1 , . . . , An,xn
)sM = g

αs
∏n

i=1 ai,xi

n+l+1 M = g
αsδ(x)
k M,

where we define δ(x) =
∏n

i=1 ai,xi
for the ease of exposition. It also com-

putes C = gs
1.
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2. It outputs the ciphertext CTx = (x,CM , C).
ABE.Decrypt(PP,CTx,SK

(DEC)
f ): A decrypter, on input the public parame-

ters PP, a ciphertext CTx = (x,CM , C) encrypted for encryption input
string x = x1 . . . xn ∈ {0, 1}n, and its decryption key SK

(DEC)
f =

(f,K, {Kw}w∈{1,...,n+q}) corresponding to its decryption policy circuit f =
(n, q, l,A,B,GateType), outputs ⊥, if f(x) = 0; otherwise, (i.e., if f(x) = 1)
proceeds as follows:
1. First, there is a header computation, where it computes

D = e(A1,x1 , . . . , An,xn
) = gδ(x)

n

followed by Ê = e(K,D,C) = g
(α−rn+q)sδ(x)
k

by extracting {Ai,xi
}i=1,...,n from PP.

2. Next, it evaluates the circuit from the bottom up. For every wire w with
corresponding depth(w) = j, if fw(x) = 0, nothing needs to be computed
for that wire, otherwise (if fw(x) = 1), it attempts to compute Ew =
g

rwsδ(x)
n+j+1 as described below. The decrypter proceeds iteratively starting

with computing E1 and moves forward in order to finally compute En+q.
Note that computing these values in order ensures that the computation
on a wire w with depth(w) = j − 1 that evaluates to 1 will be defined
before computing for a wire w with depth(w) = j. The computation
procedure varies with the category of the wire, i.e., whether the wire is
an Input wire, an OR gate, or an AND gate.
• Input wire: If w ∈ {1, . . . , n} then it corresponds to the w-th input.
Suppose that xw = fw(x) = 1. The decrypter extracts {Ai,xi

}i,...,n from
PP and computes

Ew = e(Kw, A1,x1 , . . . , Aw−1,xw−1 , Aw+1,xw+1 , . . . , An,xn
, C) = g

rwsδ(x)
n+2 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and
j = depth(w). Assume that fw(x) = 1. Then either fA(w)(x) = 1 or
fB(w)(x) = 1. If fA(w)(x) = 1, i.e., the first input of gate w evaluates to
1, then the decrypter computes

Ew = e(EA(w),Kw,1)e(Kw,3,D,C) = g
rwsδ(x)
n+j+1 .

Note that EA(w) is already computed at this stage in the bottom-up
circuit evaluation as depth(A(w)) = j − 1.
Alternatively, if fA(w)(x) = 0 but fB(w)(x) = 1, then it computes

Ew = e(EB(w),Kw,2)e(Kw,4,D,C) = g
rwsδ(x)
n+j+1 .

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and
j = depth(w). Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1.
The decrypter computes

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3,D,C) = g
rwsδ(x)
n+j+1 .
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In this process, the decrypter ultimately computes En+q = g
rn+qsδ(x)
k , as

f(x) = fn+q(x) = 1.
3. Finally, the decrypter computes E = ÊEn+q = g

αsδ(x)
k and retrieves the

message by the computation CME−1 = g
αsδ(x)
k M(gαsδ(x)

k )−1 = M .

Security Analysis

Theorem 1 (Security of ABE). The proposed ABE scheme supporting decryp-
tion policies expressable as arbitrary circuits of depth l and input length n
achieves selective CPA-security as per the security model of Sect. 2.2 under the
k-MDDH assumption where k = n + l + 1.

Proof. Suppose that there is a PPT adversary A that breaks with non-negligible
advantage the selective CPA security of the proposed ABE scheme supporting
decryption policies representable as arbitrary circuits of depth l and input length
n. We construct a PPT algorithm B that attempts to solve an instance of the
k-MDDH problem, where k = n + l + 1, using A as a sub-routine. B is given
an instance of the k-MDDH problem �b = (

#»

G, g1, S, C1, . . . , Ck, Tb) such that
S = gs

1, C1 = gc1
1 , . . . , Ck = gck

1 . B plays the role of the challenger in the selective
CPA-security game of Sect. 2.2 and interacts with A as follows:

Init: A declares the challenge encryption input string x∗ = x∗
1 . . . x∗

n ∈ {0, 1}n

to B.

Setup: B chooses random z1, . . . , zn ∈ Zp and sets ai,β = ci implicitly, if β = x∗
i ,

while ai,β = zi, if β �= x∗
i , for i = 1, . . . , n; β ∈ {0, 1}. This corresponds to setting

Ai,β = Ci = gci
1 , if β = x∗

i , while Ai,β = gzi
1 , if β �= x∗

i , for i = 1, . . . , n; β ∈
{0, 1}. Observe that the values Ai,β are distributed identically as in the real
scheme. In addition B picks random ξ ∈ Zp and implicitly sets α = ξ+

∏l+1
h=1 cn+h.

For enhancing readability we define γ(u, v) =
∏v

h=u ch for positive integers u and
v. Then, B’s view point of α is α = ξ + γ(n + 1, n + l + 1). B computes H =
e(Cn+1, . . . , Cn+l+1)g

ξ
l+1 = gα

l+1. B hands the public parameters PP consisting
of the group sequence description together with H, {Ai,β}i=1,...,n; β∈{0,1} to A.

Query Phase 1 and Query Phase 2: Both the key query phases are executed
in the same manner by B. So, we describe them once here. A queries a decryption
key for a circuit f = (n, q, l,A,B,GateType) to B subject to the restriction that
f(x∗) = 0. As in [7], we will think of the proof as having some invariant property
on the depth of the wire we are looking at. Consider a wire w with depth(w) = j
and B’s view point (symbolically) of rw. If fw(x∗) = 0, then B will implicitly view
rw as the term γ(n+1, n+j+1) plus some additional known randomization term.
On the other hand, if fw(x∗) = 1 then B will view rw as 0 plus some additional
known randomization term. Keeping this property intact for simulating the keys
up the circuit, B will ultimately view rn+q as γ(n + 1, n + l + 1) plus some
additional known randomization term since fn+q(x∗) = f(x∗) = 0. As will be
demonstrated shortly, this would allow B to simulate the header component K
by cancelation.
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The bottom up simulation of the key component for each wire w by B varies
depending on whether w is an Input wire, an OR gate, or an AND gate.

• Input wire: Consider w ∈ {1, . . . , n}, i.e., an input wire.
– If x∗

w = 1, then B picks random rw ∈ Zp (as is done honestly) and sets
the key component

Kw = e(Cw, g1)rw = g
rwaw,1
2 .

– Otherwise, if x∗
w = 0, then B implicitly lets rw = γ(n + 1, n + 2) + ηw,

where ηw ∈ Zp is randomly selected by B, and sets the key component

Kw = (e(Cn+1, Cn+2)g
ηw

2 )zw = g
rwaw,1
2 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j =
depth(w).

– If fw(x∗) = 1, then fA(w)(x∗) = 1 or fB(w)(x∗) = 1. B chooses random
bw, dw, rw ∈ Zp as in the real scheme, and forms the key component as

Kw =
(
Kw,1 = gbw

1 ,Kw,2 = gdw
1 ,Kw,3 = g

rw−bwrA(w)
j ,Kw,4 = g

rw−dwrB(w)
j

)
.

Observe that, due to the bottom up simulation, rA(w) and rB(w) are already
selected or implicitly set by B according as the corresponding gates, i.e.,
A(w) and B(w), evaluate to 1 or 0 upon input x∗. Note that even if
A(w) or B(w) gate evaluates to 0 upon input x∗, B can still simulate
its corresponding component, i.e., Kw,3 or Kw,4 in Kw using multilinear
map. For instance, fA(w)(x∗) = 0 implies rA(w) has been implicitly set as
γ(n + 1, n + j) + ηA(w) by B, as depth(A(w)) = j − 1 for the reason that
our circuit is layered. Thus, in this case B can create Kw,3 as Kw,3 =
e(Cn+1, . . . , Cn+j)−bwgrw

j = g
rw−bwrA(w)
j .

– On the other hand, if fw(x∗) = 0, then fA(w)(x∗) = fB(w)(x∗) = 0. B
picks random ψw, φw, ηw ∈ Zp, implicitly sets bw = cn+j+1 + ψw, dw =
cn+j+1 +φw, and rw = γ(n+1, n+ j +1)+ηw, and creates the decryption
key component Kw = (Kw,1,Kw,2,Kw,3,Kw,4) where

Kw,1 = Cn+j+1g
ψw

1 = gbw
1 ,Kw,2 = Cn+j+1g

φw

1 = gdw
1 ,

Kw,3 = e(Cn+j+1, gj−1)−ηA(w)e(Cn+1, . . . , Cn+j)−ψwg
ηw−ψwηA(w)
j

= g
ηw−cn+j+1ηA(w)−ψw(γ(n+1,n+j)+ηA(w))

j = g
rw−bwrA(w)
j ,

Kw,4 = e(Cn+j+1, gj−1)−ηB(w)e(Cn+1, . . . , Cn+j)−φwg
ηw−φwηB(w)
j

= g
ηw−cn+j+1ηB(w)−φw(γ(n+1,n+j)+ηB(w))

j = g
rw−dwrB(w)
j .

Note that according to our bottom up simulation, rA(w) has been implicitly
set as rA(w) = γ(n+1, n+j)+ηA(w) by B and similarly for rB(w). Therefore,

rw − bwrA(w)

= (γ(n + 1, n + j + 1) + ηw) − (cn+j+1 + ψw)(γ(n + 1, n + j) + ηA(w))
= ηw − cn+j+1ηA(w) − ψw(γ(n + 1, n + j) + ηA(w))
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which enables B to simulate Kw,3 and analogously Kw,4 in this case.

• AND gate: Consider wire w ∈ Gates with GateType(w) = AND and j =
depth(w).

– If fw(x∗) = 1, then fA(w)(x∗) = fB(w)(x∗) = 1. B selects random
bw, dw, rw ∈ Zp and forms the key component as

Kw =
(
Kw,1 = gbw

1 ,Kw,2 = gdw
1 ,Kw,3 = g

rw−bwrA(w)−dwrB(w)
j

)
.

Notice that since fA(w)(x∗) = fB(w)(x∗) = 1, rA(w) and rB(w) are random
values which have already been chosen by B in the course of simulation.

– Alternatively, if fw(x∗) = 0, then fA(w)(x∗) = 0 or fB(w)(x∗) = 0. If
fA(w)(x∗) = 0, then B selects random ψw, φw, ηw ∈ Zp, implicitly lets
bw = cn+j+1 + ψw, dw = φw, and rw = γ(n + 1, n + j + 1) + ηw, and forms
the decryption key component as Kw = (Kw,1,Kw,2,Kw,3) where

Kw,1 = Cn+j+1g
ψw

1 = gbw
1 ,Kw,2 = gφw

1 = gdw
1 ,

Kw,3 = e(Cn+j+1, gj−1)−ηA(w)e(Cn+1, . . . , Cn+j)−ψwg
ηw−ψwηA(w)−φwrB(w)
j

= g
ηw−cn+j+1ηA(w)−ψw(γ(n+1,n+j)+ηA(w))−φwrB(w)
j = g

rw−bwrA(w)−dwrB(w)
j .

Observe that B can form Kw,3 due to a similar cancelation as explained
in case of OR gates since, the A(w) gate being evaluated to 0, rA(w) =
γ(n + 1, n + j) + ηA(w) has already been implicitly set by B. Moreover,
g

rB(w)
j is always computable by B from the available information regard-

less of whether fB(w)(x∗) = 1, in which case rB(w) is a random value
chosen by B itself, or fB(w)(x∗) = 0, for which rB(w) has been implicitly
set to be rB(w) = γ(cn+1, cn+j) + ηB(w) by B and, hence, B can com-
pute e(Cn+1, . . . , Cn+j)g

ηB(w)
j = g

rB(w)
j . The case where fB(w)(x∗) = 0 and

fA(w)(x∗) = 1 is performed in a symmetric manner, with the roles of bw

and dw reversed.

Since f(x∗) = fn+q(x∗) = 0, rn+q at the output gate is implicitly set as γ(n +
1, n+l+1)+ηn+q by B. This allows B to perform a final cancelation in computing
the “header” component of the key as K = g

ξ−ηn+q

l = g
α−rn+q

l . B provides the
decryption key SK

(DEC)
f = (f,K, {Kw}w∈{1,...,n+q}) to A.

Challenge: A submits two challenge messages M∗
0 ,M∗

1 ∈ Gk to B. B flips a
random coin b ∈ {0, 1}, implicitly views s as the randomness used in generating
the challenge ciphertext, and sets challenge ciphertext

CT∗ = (x∗, C∗
M = Tbe(S,C1, . . . , Cn, gξ

l )M∗
b = Tbg

ξsγ(1,n)
k M∗

b , C∗ = S),

and gives it to A.

Guess: B eventually receives back the guess b′ ∈ {0, 1} from A. If b = b′, B
outputs b

′
= 1; otherwise, it outputs b

′
= 0.

Note that if b = 0, the challenge ciphertext CT∗ is properly generated by B,
while if b = 1 the challenge ciphertext is random. Hence the theorem. �	
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Table 1. Communication and storage comparison

ABE Security Complexity assumptions k |PP| |CTx| |SK(DEC)
f |

[7] selective MDDH l + 1 n + 1 n + 2 2n + 4q + 1

[2] selective MDHE l + 1 n + 1 3 n + n2 + 4q + 1

[8] adaptive 3 new non-standard assumptions n + 2q + 2 2n + 4q + 3 4q + 3 4q + 2

[1] adaptive SD1, SD2, EMDDH1,EMDDH2 3l n + 4 n + 4 2n + 4q + 3

Ours selective MDDH n + l + 1 2n + 1 2 n + 4q + 1

Here, MDDH,MDHE, SD1, SD2, EMDDH1, EMDDH2 stand respectively for the Multilinear Deci-

sional Diffie-Hellman [7], Multilinear Diffie-Hellman Exponent [2], two variants of Multilinear

Subgroup Decision [1], and the two versions of the Expanded Multilinear Decisional Diffie-

Hellman assumptions [1].

In this table, k denotes the maximum multilinearity level of the underlying multilinear maps, n, q,

and l represent respectively the input length, number of gates, and depth of the decryption policy

circuits, while |PP|, |CTx|, and |SK(DEC)
f | stand respectively for the number of group elements

comprising PP,CTx, and SK
(DEC)
f .

Table 2. Comparison of multilinear operation count

ABE ABE.Setup ABE.KeyGen ABE.Encrypt ABE.Decrypt

[7] n + 2 3n + 4q + 1 n + 2 2n + 3q + 1

[2] n + 2 n2 + 2n + 4q + 1 3 2n + 3q + 1

Ours 2n + 2 2n + 4q + 1 3 n + 3q + 3

In this table, n and q denote respectively the input size and number
of gates in the decryption policy circuits.

Efficiency

Table 1 compares the communication and storage requirements of our proposed
ABE scheme with previously known multilinear map-based ABE constructions
supporting general circuits in terms of the number of group elements comprising
the public parameters PP, ciphertext CTx, and decryption key SK

(DEC)
f . As is

clear from the table, the most significant achievement of our construction is that
our ABE ciphertext involves only 2 (constant) group elements which is smaller
than all earlier constructions. Also, our decryption key contains only a single
group element corresponding to each input wire of the decryption policy circuits.
In all existing constructions, number of group elements required for each input
wire of the decryption policy circuits is strictly greater than one.

Regarding computational efficiency, notice that unlike traditional bilinear
map setting, in current multilinear map candidates [3,4,6], exponentiation is also
realized through multilinear operation. Since multilinear operations are costlier
compared to group operations in multilinear groups, we consider the count of
multilinear operations required in each algorithm of ABE scheme as a parameter
for comparing computational cost. Table 2 demonstrates the number of multilin-
ear operations involved in the setup, key generation, encryption and decryption
algorithms of our ABE scheme in comparison to existing multilinear map-based
selectively secure ABE constructions for arbitrary circuits. From the table it
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readily follows that the key generation, encryption, as well as decryption algo-
rithms of our scheme requires the least number of multilinear operations among
all the three schemes.

4 Our ABSC Scheme

The Construction

ABSC.Setup(1λ, n, n′, l): The trusted key generation center takes as input a secu-
rity parameter 1λ, the length n of inputs to decryption policy circuits, the
length n′ of inputs to signing policy circuits, and the common allowed depth
l of both types of circuits. It proceeds as follows:
1. It runs G(1λ, k = n + n′ + l + 1) to produce group sequence

#»

G =
(G1, . . . ,Gk) of prime order p > 2λ with canonical generators g1, . . . , gk.

2. It picks random α1, α2 ∈ Zp along with
random (a1,0, a1,1), . . . , (an,0, an,1), (b1,0, b1,1), . . . , (bn′,0, bn′,1) ∈ Z

2
p, sets

α = α1 + α2, and computes H = gα1
l+1, Ai,β = g

ai,β

1 , Bt,β = g
bt,β

1 for
i = 1, . . . , n; t = 1, . . . , n′; β ∈ {0, 1}.

3. Additionally, it chooses random θ ∈ Zp and computes Θ = gθ
n, Y =

gθα2
n+l+1.

4. It publishes the public parameters PP consisting of the group sequence
description together with {Ai,β}i=1,...,n;β∈{0,1}, {Bt,β}t=1,...,n′; β∈{0,1},H,
Θ, Y , while keeps the master secret key MK = (gα

l , gα2
l ).

ABSC.SKeyGen(PP,MK, g): On input the public parameters PP, the master
secret key MK, and the description g = (n′, q′, l,A,B,GateType) of a sign-
ing policy circuit from a signcrypter, the key generation center forms a
signing key as described below. Recall that the circuit g has n′ + q′ wires
{1, . . . , n′ + q′} with n′ input wires {1, . . . , n′}, q′ gates {n′ + 1, . . . , n′ + q′},
and the wire n′ + q′ designated as the output wire.
1. It chooses random r′

1, . . . , r
′
n′+q′−1 ∈ Zp and sets r′

n′+q′ = α2, where again
we will think of the random value r′

w as being associated with the wire
w.

2. It proceeds to generate the key components for every wire w. Here also
the structure of the key component depends upon the category of the
wire w ∈ {1, . . . , n′ + q′}, i.e., whether w is an Input wire, an OR gate, or
an AND gate. We describe how it generates the key component in each
case.
• Input wire: If w ∈ {1, . . . , n′} then it corresponds to the w-th input. It

computes the key component K′
w = e(Bw,1, g1)r′

w = g
r′

wbw,1
2 .

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and j =
depth(w). It picks random b′

w, d′
w ∈ Zp and creates the key component

K′
w =

(
K ′

w,1 = g
b′

w
1 ,K ′

w,2 = g
d′

w
1 ,K ′

w,3 = g
r′

w−b′
wr′

A(w)
j ,K ′

w,4 = g
r′

w−d′
wr′

B(w)
j

)
.
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• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and j = depth(w).
It selects random b′

w, d′
w ∈ Zp and generates the key component

K′
w =

(
K ′

w,1 = g
b′

w
1 ,K ′

w,2 = g
d′

w
1 ,K ′

w,3 = g
r′

w−b′
wr′

A(w)−d′
wr′

B(w)
j

)
.

Notice that while computing the key component K′
n′+q′ for the output

gate n′ +q′ which has depth l, the required g
r′

n′+q′
l = gα2

l is retrieved from
MK.

3. It gives the signing key SK(SIG)
g = (g, {K′

w}w∈{1,...,n′+q′}) to the sign-
crypter.

ABSC.DKeyGen(PP,MK, f): Taking as input the public parameters PP, the
master secret key MK, and the description f = (n, q, l,A,B,GateType) of
a decryption policy circuit from a decrypter, the key generation center
creates a decryption key SK

(DEC)
f = (f,K, {Kw}w∈{1,...,n+q}) in the same

manner as the ABE.KeyGen(PP,MK, f) algorithm described in Sect. 3 using
{Ai,β}i=1,...,n; β∈{0,1} obtained from PP and gα

l extracted from MK. We omit
the details here. It hands the decryption key SK

(DEC)
f to the decrypter.

ABSC.Signcrypt(PP,SK(SIG)
g , x, y,M): A signcrypter takes as input the pub-

lic parameters PP, its signing key SK(SIG)
g = (g, {K′

w}w∈{1,...,n′+q′}) corre-
sponding to some signing policy circuit g = (n′, q′, l,A,B,GateType), an
encryption input string x = x1 . . . xn ∈ {0, 1}n, a signature input string
y = y1 . . . yn′ ∈ {0, 1}n′

satisfying g(y) = 1, and a message M ∈ Gk. It
prepares the ciphertext as follows:
1. It first evaluates the signing policy circuit from the bottom up. As before,

we define δ(x) =
∏n

i=1 ai,xi
and δ′(y) =

∏n′

t=1 bt,yt
for improving readabil-

ity. It starts by computing

D′ = e(B1,y1 , . . . , Bn′,yn′ ) = g
δ′(y)
n′ ,

where {Bt,yt
}t=1,...,n′ are extracted from PP. For every wire w in g with

corresponding depth(w) = j, if gw(y) = 0 then nothing needs to be com-
puted for that wire; on the other hand, if gw(y) = 1 then it computes
E′

w = g
r′

wδ′(y)
n′+j as described below. The signcrypter proceeds iteratively

starting with computing E′
1 and moves forward in order to ultimately

compute E′
n′+q′ = g

r′
n′+q′δ′(y)

n′+l = g
α2δ′(y)
n′+l . Note that r′

n′+q′ has been set
to α2 by the key generation center. Moreover, observe that computing
the E′

w values in order ensures that the computation on a wire w with
depth(w) = j − 1 that evaluates to 1 will be defined before computing for
a wire w with depth(w) = j. The computation procedure varies with the
category of the wire, i.e., Input wire, OR gate, or AND gate in this case as
well.

• Input wire: If w ∈ {1, . . . , n′} then it corresponds to the w-th input.
Suppose that yw = 1. The signcrypter computes

E′
w = e(K′

w, B1,y1 , . . . , Bw−1,yw−1 , Bw+1,yw+1 , . . . , Bn′,yn′ ) = g
r′

wδ′(y)
n′+1 .
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• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j =
depth(w). Assume that gw(y) = 1. Then either gA(w)(y) = 1 or gB(w)(y) =
1. If gA(w)(y) = 1 then the signcrypter computes

E′
w = e(E′

A(w),K
′
w,1)e(K

′
w,3,D

′) = g
r′

wδ′(y)
n′+j .

Alternatively, if gA(w)(y) = 0 but gB(w)(y) = 1 then it computes

E′
w = e(E′

B(w),K
′
w,2)e(K

′
w,4,D

′) = g
r′

wδ′(y)
n′+j .

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and
j = depth(w). Suppose that gw(y) = 1. Hence gA(w)(y) = gB(w)(y) = 1.
The signcrypter computes

E′
w = e(E′

A(w),K
′
w,1)e(E

′
B(w),K

′
w,2)e(K

′
w,3,D

′) = g
r′

wδ′(y)
n′+j .

2. Next the signcrypter picks random s ∈ Zp and computes

CM =
(
e(H,A1,x1 , . . . , An,xn

,D′)e(E′
n′+q′ , A1,x1 , . . . , An,xn

, g1)
)s

M

= g
αsδ(x)δ′(y)
k M,

C = gs
1, C ′ = e(Θ,E′

n′+q′) = g
θα2δ′(y)
k−1 .

Here, H, Θ, and {Ai,xi
}i=1,...,n are extracted from PP.

3. The signcrypter outputs the ciphertext CTx,y = (x, y, CM , C, C ′).
ABSC.Unsigncrypt(PP,CTx,y,SK

(DEC)
f ): A decrypter takes as input the public

parameters PP, a ciphertext CTx,y = (x, y, CM , C, C ′) signcrypted with
an encryption input string x = x1 . . . xn ∈ {0, 1}n and a signature input
string y = y1 . . . yn′ ∈ {0, 1}n′

, as well as its decryption key SK
(DEC)
f =

(f,K, {Kw}w∈{1,...,n+q}) corresponding to its legitimate decryption circuit
f = (n, q, l,A,B,GateType). It performs the following steps:
1. It first computes D′ = e(B1,y1 , . . . , Bn′,yn′ ) = g

δ′(y)
n′ and checks the valid-

ity of the ciphertext as e(C ′, g1) = e(Y,D′).
Note that if the ciphertext is valid then both sides of the above equal-
ity should evaluate to g

θα2δ′(y)
k . If the above equation is invalid then it

outputs ⊥; otherwise, it proceeds to the next step.
2. If f(x) = 0 then it outputs ⊥; on the other hand, if f(x) = 1 then it

proceeds in the same way as in the case of ABE.Decrypt(PP,CTx,SK
(DEC)
f )

algorithm of Sect. 3 to compute the header Ê = g
(α−rn+q)sδ(x)
n+l+1 followed by

a computation of the circuit from the bottom up ultimately obtaining
En+q = g

rn+qsδ(x)
n+l+1 . In this computation it makes use of C obtained from

CTx,y and {Ai,xi
}i=1,...,n extracted from PP along with its decryption key

components. We omit the details here.
3. Finally, the decrypter retrieves the message by computing

CM

[
e(ÊEn+q, D

′)
]−1

= g
αsδ(x)δ′(y)
k M

[
e(g

(α−rn+q)sδ(x)

n+l+1 g
rn+qsδ(x)

n+l+1 , g
δ′(y)
n′ )

]−1

= M.
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Security Analysis

Theorem 2 (Message Confidentiality of ABSC). The proposed ABSC con-
struction supporting arbitrary decryption policy circuits of input length n and
depth l, as well as, arbitrary signing policy circuits of input length n′ and the
same depth l achieves selective message confidentiality against CPA under the
k-MDDH assumption, where k = n + n′ + l + 1.

The proof of Theorem 2 closely resembles that of Theorem 1 and is omitted due
to page consideration.

Theorem 3 (Ciphertext Unforgeability of ABSC). The proposed ABSC
scheme supporting arbitrary decryption policy circuits of input length n and depth
l, as well as, arbitrary signing policy circuits of input length n′ and depth l
achieves selective ciphertext unforgeability against CMA as per the security model
of Sect. 2.3 under the k-MCDH assumption, where k = n + n′ + l + 1.

Proof. Assume that there is a PPT adversary A that breaks with non-negligible
advantage the selective CMA ciphertext unforgeability of the proposed ABSC
scheme supporting decryption policy circuits of input length n and depth l,
as well as, signing policy circuits of input length n′ and the same depth l.
We construct a PPT algorithm B that attempts to solve an instance of the
k-MCDH problem, where k = n + n′ + l + 1, using A as a sub-routine. B is
given an instance of the k-MCDH problem � = (

#»

G, g1, C1, . . . , Ck) such that
C1 = gc1

1 , . . . , Ck = gck
1 . B plays the role of the challenger in the selective CMA

ciphertext unforgeability game of Sect. 2.3 and interacts with A as follows:

Init: A declares a signature input string y∗ = y∗
1 . . . y∗

n′ ∈ {0, 1}n′
to B that will

be used to forge a signcryption.

Setup: B picks random ai,β ∈ Zp and computes Ai,β = g
ai,β

1 for i = 1, . . . , n; β ∈
{0, 1} as is done in the original scheme. Further B selects random z′

1, . . . , z
′
n′ ∈ Zp

and implicitly sets bt,β = cn+t, if β = y∗
t , and bt,β = z′

t, if β �= y∗
t , for

t = 1, . . . , n′; β ∈ {0, 1}. This corresponds to setting Bt,β = Cn+t, if β = y∗
t ,

while Bt,β = g
z′

t
1 , if β �= y∗

t , for t = 1, . . . , n′; β ∈ {0, 1}. Additionally, B selects
random α ∈ Zp, implicitly lets θ = γ(1, n), α1 = α−γ(n+n′+1, n+n′+l+1), α2 =
γ(n + n′ + 1, n + n′ + l + 1), where γ(u, v) =

∏v
h=u ch for integers u, v, and sets

Θ = e(C1, . . . , Cn) = gθ
n,H = e(Cn+n′+1, . . . , Cn+n′+l+1)−1gα

l+1 = gα1
l+1, Y =

e(C1, . . . , Cn, Cn+n′+1, . . . , Cn+n′+l+1) = gθα2
n+l+1. B hands the public parame-

ters PP consisting of the group sequence description plus {Ai,β}i=1,...,n;β∈{0,1},
{Bt,β}t=1,...,n′; β∈{0,1},H,Θ, Y to A. Note that all the simulated PP components
are identically distributed as in the original scheme.

Query Phase: A issues a series of queries to which B answers as follows:

� Signing key query: A queries a signing key corresponding to a circuit g =
(n′, q′, l,A,B,GateType) subject to the constraint that g(y∗) = 0. B proceeds
to generate the key components from the bottom up the circuit as described
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below. Here also we will think the simulation to have some invariant property
on the depth of the wire we are looking at. Consider a wire w with depth(w) =
j. If gw(y∗) = 0, then B will view r′

w as γ(n + n′ + 1, n + n′ + j + 1) plus
some additional known randomization term, while if gw(y∗) = 1 then B will
view r′

w as 0 plus some additional known randomization term. Keeping this
property intact up the circuit, B will implicitly set r′

n′+q′ = γ(n+n′ +1, n+
n′ + l + 1) = α2 as gn′+q′(y∗) = g(y∗) = 0. We describe how B creates the
signing key components for each wire w organizing the simulation into the
following cases:
• Input wire: Suppose w ∈ {1, . . . , n′}, i.e., an input wire.

– If y∗
w = 1, then B chooses random r′

w ∈ Zp and computes

K′
w = e(Cn+w, g1)r′

w = g
r′

wbw,1
2 .

– If y∗
w = 0, then B picks random η′′

w ∈ Zp, implicitly lets r′
w = γ(n +

n′ + 1, n + n′ + 2) + η′
w, and sets

K′
w =

(
e(Cn+n′+1, Cn+n′+2)g

η′
w

2

)z′
w = g

r′
wbw,1

2 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j =
depth(w).

– If gw(y∗) = 1, then gA(w)(y∗) = 1 or gB(w)(y∗) = 1. B chooses random
b′
w, d′

w, r′
w ∈ Zp as in the real scheme, and creates the key component

as

K′
w =
(
K′

w,1 = g
b′
w

1 , K′
w,2 = g

d′
w

1 , K′
w,3 = g

r′
w−b′

wr′
A(w)

j , K′
w,4 = g

r′
w−d′

wr′
B(w)

j

)
.

Observe that, due to the bottom up simulation, r′
A(w) and r′

B(w) are
already selected or implicitly set by B according as the corresponding
gates, i.e., A(w) and B(w), evaluate to 1 or 0 upon input y∗. Note
that even if A(w) or B(w) gate evaluates to 0 upon input y∗, B can
still simulate its corresponding component, i.e., K ′

w,3 or K ′
w,4 in K′

w

using multilinear map in a similar fashion as in simulating the queried
decryption key components for OR gates in analogous situation in
proof of Theorem 1.

– On the other hand, if gw(y∗) = 0, then gA(w)(y∗) = gB(w)(y∗) = 0.
B chooses random ψ′

w, φ′
w, η′

w ∈ Zp, implicitly lets b′
w = cn+n′+j+1 +

ψ′
w, d′

w = cn+n′+j+1 + φ′
w, and r′

w = γ(n + n′ + 1, n + n′ + j + 1) + η′
w,

and sets K′
w = (K ′

w,1,K
′
w,2,K

′
w,3,K

′
w,4) where

K
′
w,1 = Cn+n′+j+1g

ψ′
w

1 = g
b′
w

1 , K
′
w,2 = Cn+n′+j+1g

φ′
w

1 = g
d′

w
1 ,

K
′
w,3 = e(Cn+n′+j+1, gj−1)

−η′
A(w)e(Cn+n′+1, . . . , Cn+n′+j)

−ψ′
w g

η′
w−ψ′

wη′
A(w)

j

= g
r′

w−b′
wr′

A(w)
j ,

K
′
w,4 = e(Cn+n′+j+1, gj−1)

−η′
B(w)e(Cn+n′+1, . . . , Cn+n′+j)

−φ′
w g

η′
w−φ′

wη′
B(w)

j

= g
r′

w−d′
wr′

B(w)
j .
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Observe that B can form K ′
w,3 and K ′

w,4 due to a cancelation anal-
ogous to the simulation of the decryption key components corre-
sponding to OR gates in similar situation in proof of Theorem 1,
since both the A(w) and B(w) gates being evaluated to 0, r′

A(w) =
γ(n + n′ + 1, n + n′ + j) + η′

A(w) and similarly r′
B(w) have already been

implicitly set by B in course of the bottom up simulation.

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and
j = depth(w).

– If g′
w(y∗) = 1, then gA(w)(y∗) = gB(w)(y∗) = 1. B selects random

b′
w, d′

w, r′
w ∈ Zp and forms the key component as

K′
w =

(
K ′

w,1 = g
b′

w
1 ,K ′

w,2 = g
d′

w
1 ,K ′

w,3 = g
r′

w−b′
wr′

A(w)−d′
wr′

B(w)
j

)
.

Notice that since gA(w)(y∗) = gB(w)(y∗) = 1, r′
A(w) and r′

B(w) are
random values which have already been chosen by B in the course of
the bottom-up simulation.

– Alternatively, if gw(y∗) = 0, then gA(w)(y∗) = 0 or gB(w)(y∗) = 0.
If gA(w)(y∗) = 0, then B picks ψ′

w, φ′
w, η′

w ∈ Zp, implicitly lets b′
w =

cn+n′+j+1 +ψ′
w, d′

w = φ′
w, and r′

w = γ(n+n′ +1, n+n′ + j +1)+ η′
w,

and forms K′
w = (K ′

w,1,K
′
w,2,K

′
w,3) where

K ′
w,1 = Cn+n′+j+1g

ψ′
w

1 = g
b′

w
1 , K ′

w,2 = g
φ′

w
1 = g

d′
w

1 ,

K ′
w,3 = e(Cn+n′+j+1, gj−1)−η′

A(w)e(Cn+n′+1, . . . , Cn+n′+j)−ψ′
w ·

g
η′

w−ψ′
wη′

A(w)−φ′
wr′

B(w)
j = g

r′
w−b′

wr′
A(w)−d′

wr′
B(w)

j .

Note that B can generate K ′
w,3 due to a similar cancelation as in

the simulation of the decryption key components for AND gates in
analogous scenario in the proof of Theorem 1 since, the A(w) gate
being evaluated to 0, B has already set r′

A(w) = γ(n + n′ + 1, n +
n′ + j)+η′

A(w) implicitly during the bottom up simulation. Moreover,

notice that g
r′
B(w)

j is always computable for B regardless of whether

gB(w)(y∗) evaluates to 0 or 1 as g
γ(n+n′+1,n+n′+j)
j is computable using

the multilinear map from the available information for B. The case
where gB(w)(y∗) = 0 and gA(w)(y∗) = 1 is executed in a symmetric
manner with the roles of b′

w and d′
w reversed.

We mention that at the output gate n′ + q′, B will take the additional ran-
domness η′

n′+q′ to be zero while setting r′
n′+q′ . Observe that this would

not prevent the distribution of the simulated signing keys from being
identical to that of the real scheme. B gives the signing key SK(SIG)

g =
(g, {K′

w}w∈{1,...,n′+q′}) to A.
� Decryption key query: Note that B knows α, therefore, B can provide the

decryption key SK
(DEC)
f corresponding to any decryption policy circuit f =

(n, q, l,A,B,GateType) queried by A.
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� Signcryption query: A queries the signcryption of a message M relative to
a signature input string y = y1 . . . yn′(�= y∗) ∈ {0, 1}n′

and an encryption
input string x = x1 . . . xn ∈ {0, 1}n. B chooses random s ∈ Zp and computes

CM = e(gα
l+1, A1,x1 , . . . , An,xn

, B1,y1 , . . . , Bn′,yn′ )sM = g
αsδ(x)δ′(y)
k M,C = gs

1,

where δ(x) =
∏n

i=1 ai,xi
, δ′(y) =

∏n′

t=1 bt,yt
. B also computes C ′ as described

below. Since y �= y∗, there exists some t ∈ {1, . . . , n′} such that yt �= y∗
t and,

hence, Bt,yt
= g

z′
t

1 as per the simulation. B computes

C′ =e(Θ, Cn+n′+1, . . . , Cn+n′+l+1, B1,x1 , . . . , Bt−1,yt−1 , Bt+1,yt+1 , . . . , Bn′,yn′ )
z′

t

=g
θα2δ′(y)
n+n′+l .

B gives the ciphertext CTx,y = (x, y, CM , C, C ′) to A.
� Unsigncryption query: Note that B can create the decryption key SK

(DEC)
f cor-

responding to any decryption policy circuit f . Therefore, when A queries the
unsigncryption of a ciphertext CTx,y under a decryption policy circuit f , B
first computes SK(DEC)

f and then provides the result of ABSC.Unsigncrypt(PP,

CTx,y,SK
(DEC)
f ) to A.

Forgery: A eventually produces a valid forgery CT∗ = (x∗, y∗, C∗
M , C∗, C ′∗)

for some message M∗ with an encryption input string x∗ and the committed
signature input string y∗. Then B solves the k-MCDH problem by outputting
C ′∗.
Note that, since CT∗ is a valid forgery, we have

C ′∗ = g
θα2

∏n′
i′=1 bi′,y

i′
n+n′+l = g

γ(1,n)γ(n+n′+1,n+n′+l+1)γ(n+1,n+n′)
k−1 = g

γ(1,k)
k−1

which is the desired answer of the k-MCDH problem instance given to B. The theo-
rem follows. �	

Efficiency

Regarding communication and storage complexity of the proposed ABSC con-
struction, the number of multilinear group elements comprising the public para-
meters PP, ciphertext CTx,y, decryption key SK

(DEC)
f , and signing key SK(SIG)

g

are respectively 2n + 2n′ + 3, 3, n + 4q + 1, and n′ + 4q′ where we have used a
multilinear map with multilinearity level k = n + n′ + l + 1, n, q being respec-
tively the input length and number of gates of the decryption policy circuits,
n′, q′ being the corresponding values for the signing policy circuits, and l being
the allowed depth of both kinds of circuits. On the other hand, about computa-
tional cost, notice that the count of multilinear operations involved in the setup,
signing key generation, decryption key generation, encryption, and decryption
algorithms of our ABSC scheme are respectively 2n+2n′+3, 2n′+4q′, 2n+4q+1,
n′ +3q′ +6, and n+3q +5. We emphasize that our ABSC construction supports
arbitrary polynomial-size circuits of unbounded fan-out, whereas, all the earlier
constructions could support at most circuits of fan-out one.
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5 Conclusion

In this work, we designed an ABE scheme followed by an ABSC scheme both sup-
porting general circuit realizable access policies. Our constructions were proven
selectively secure under Multilinear Decisional Diffie-Hellman and Multilinear
Computational Diffie-Hellman assumptions. The ciphertext sizes of both our
constructions are very short. Most importantly, our ABSC scheme is the first to
support signing and decryption policies representable as arbitrary polynomial-
size circuits which are highly expressive.
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Abstract. The recent advent of cloud computing and the IoT has made
it imperative to have efficient and secure cryptographic schemes for online
data sharing. Data owners would ideally want to store their data/files
online in an encrypted manner, and delegate decryption rights for some
of these to users with appropriate credentials. An efficient and recently
proposed solution in this regard is to use the concept of aggregation that
allows users to decrypt multiple classes of data using a single key of con-
stant size. In this paper, we propose a secure and dynamic key aggregate
encryption scheme for online data sharing that operates on elliptic curve
subgroups while allowing dynamic revocation of user access rights. We
augment this basic construction to a generalized two-level hierarchical
structure that achieves optimal space and time complexities, and also
efficiently accommodates extension of data classes. Finally, we propose
an extension to the generalized scheme that allows use of efficiently com-
putable bilinear pairings for encryption and decryption operations. Each
scheme is formally proven to be semantically secure. Practical experi-
ments have been conducted to validate all claims made in the paper.

Keywords: Key-aggregate cryptoystem · Online data sharing · Seman-
tic security · Dynamic access rights

1 Introduction

The advent of cloud computing and the Internet of Things (IoT) has led to a
massive rise in the demand for online data storage and data sharing services.
Two very important paradigms that any data sharing service provider must
ensure are privacy and flexibility. Since online data almost always resides in
shared environments (for instance, multiple virtual machines running on the
same physical device), ensuring privacy is a non trivial task. Current technology
for secure data sharing comes in two major flavors - trusting a third party auditor
[1] or using the user’s own key to encrypt her data [2]. Figure 1 describes a
realistic online data sharing set-up. Suppose a data owner stores multiple classes
of encrypted data online with the intention of providing users decryption keys
to one or more such ciphertext classes, based on their respective credentials.
She might also wish to dynamically update the delegated access rights based on
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 25–44, 2015.
DOI: 10.1007/978-3-319-26617-6 2
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Fig. 1. Example of online data sharing

changes to the data/credibility issues. The challenge therefore is to provide her
with a secure and efficient online data sharing scheme that allows updates to
user access rights on the fly.

A näive (and extremely inefficient) solution is to have a different decryption
key for each ciphertext class, and share them accordingly with users via secured
channels. A more efficient proposition is the key-aggregate encryption (KAC)
scheme proposed in [3] that combines the power of individual decryption keys,
for ciphertext classes in a given subset, into a single key for that subset. This key
is specific to the designated subset, meaning that it cannot be used to decrypt
any ciphertext class outside that subset. KAC derives its roots from the seminal
work by Boneh et.al. [4] that allows broadcasting of data (encrypted by the same
public key) among multiple users, each of whom possess their own private keys for
decryption. Both these schemes make use of bilinear mappings on multiplicative
cyclic groups.
Contributions: In this paper, we propose a basic key-aggregate scheme on
additive elliptic subgroups that delegate decryption rights to multiple ciphertext
classes using a single constant sized key. The scheme is dynamic in nature, that is,
it allows the data owner to revoke access rights of users without having to change
the entire set-up, unlike in the existing KAC scheme. We then generalize this
scheme into a two-level construction that allows flexible public key extension
and maintains constant ciphertext size, while avoiding many of the pitfalls of
earlier hierarchical schemes. We provide a formal proof of semantic security
for the generalized scheme. We further extend the generalized scheme to allow
using popular and efficiently implementable elliptic curve pairing schemes. We
compare the time and space requirements of the proposed generalized scheme
under various operating configurations. We also compare the performance of our
proposed scheme, in terms of key size and resource utilization, with that of other
existing schemes in literature.

Organization: The rest of the paper is organized as follows. Section 2 provides
a brief overview of state of the art data sharing schemes. Section 3 introduces the
notion of key aggregate cryptosystem, and provides a description of the complex-
ity assumptions used to prove the semantic security of our proposed schemes.
Our basic dynamic key-aggregate scheme is presented in Sect. 4. We follow up
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with a more generalized two-tiered construction of the scheme for efficient public
key extension in Sect. 5, and prove its semantic security. A further extension for
the generalized scheme that allows using efficiently implementable pairings is
introduced and proved semantically secure in Sect. 6. Experimental results using
Tate pairings based implementations of the extended scheme are presented in
Sect. 7. Finally Sect. 8 concludes the paper.

2 Related Work

In this section we present a brief overview of public and private key cryptographic
schemes in literature for secure online data sharing. While many of them focus
on key aggregation in some form or the other, very few have the ability to provide
constant size keys to decrypt an arbitrary number of encrypted entities. One of
the most popular techniques for access control in online data storage is to use a
pre-defined hierarchy of secret keys [5] in the form of a tree-like structure, where
access to the key corresponding to any node implicitly grants access to all the
keys in the subtree rooted at that node. A major disadvantage of hierarchical
encryption schemes is that granting access to only a selected set of branches
within a given subtree warrants an increase in the number of granted secret keys.
This in turn blows up the size of the key shared. Compact key encryption for
the symmetric key setting has been used in [6] to solve the problem of concisely
transmitting large number of keys in the broadcast scenario. However, symmetric
key sharing via a secured channel is costly and not always practically viable for
many applications on the cloud. Proxy re-encryption is another technique to
achieve fine-grained access control and scalable user revocation in unreliable
clouds [7]. However, proxy re-encryption essentially transfers the responsibility
for secure key storage from the delegatee to the proxy and is susceptible to
collusion attacks. It is also important to ensure that the transformation key
of the proxy is well protected, and every decryption would require a separate
interaction with the proxy, which is inconvenient for applications on the cloud.

The authors of [3] proposes an efficient scheme, namely KAC, that allows
secure and efficient sharing of data on the cloud. The scheme is a public-key
cryptosystem that uses constant size ciphertexts such that efficient delegation of
decryption rights for any set of ciphertexts are possible. When a user demands
for a particular subset of the available classes of data, the data owner computes
an aggregate key which integrates the power of the individual decryption keys
corresponding to each class of data. KAC as proposed in [3] suffers from three
major drawbacks, each of which we address in this paper. First of all, the security
assumption of KAC seems to be the Bilinear Diffie Hellman Exponent (BDHE)
assumption [8]; however no concrete proofs of semantic security are provided
by the authors in [3]. Secondly, with respect to user access rights, KAC is a
static scheme in the sense that once a user is in possession of the aggregate key
corresponding to a subset of files from data owner, the owner cannot dynamically
revoke the permission of the client for accessing one or more updated files. Since
dynamic changes in access rights is extremely common in online data storage, this
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scenario needs to be tackled. Finally, the public key extension of KAC proposed
in [3] is extremely cumbersome and resource consuming since registration of each
new public key-private key pair requires the number of classes to be extended
by the original number of classes.

3 Preliminaries

We begin by formally defining the Key Aggregate Cryptosystem (KAC), and
stating the complexity assumptions used to prove the security of the encryption
schemes proposed in this paper.

3.1 The Key Aggregate Cryptosystem (KAC)

A key aggregate cryptosystem is an ensemble of the following randomized algo-
rithms:

1. Setup(1λ, n): Takes as input the number of ciphertext classes n and the
group order parameter λ. Outputs the public parameter PK. Also computes
a secret parameter t used for encryption which is not made public. It is only
known to data owners with credentials to control client access rights.

2. Keygen(): Outputs the public and master-secret key pair:
(PK = γP,msk = γ).

3. Encrypt(PK, i,m): Takes as input the public key parameter PK, the cipher-
text class i and the message m. Outputs the ciphertext C corresponding to
the message m belonging to class i.

4. Extract(msk = γ,S): Takes as input the master secret key γ and a subset
S ⊂ {1, 2, · · · , n}. Computes the aggregate key KS and the dynamic access
control parameter U . The tuple (KS , U) is transmitted via a secure channel
to users that have access rights to S.

5. Decrypt(KS , U,S, i, C = {c1, c2, c3}): Takes as input the aggregate key KS
corresponding to a subset S ⊂ {1, 2, · · · , n}, the dynamic access parame-
ter U , the ciphertext class i and the ciphertext C. Outputs the decrypted
message m.

3.2 Semantic Security of KAC

We now define the semantic security of a key-aggregate encryption system
against an adversary using the following game between an attack algorithm A
and a challenger B. Both A and B are given n, the total number of ciphertext
classes, as input. The game proceeds through the following stages.

1. Init: Algorithm A begins by outputting a set S ⊂ {1, 2, · · · , n} of receivers
that it wishes to attack. For each ciphertext class i ∈ S, challenger B per-
forms the SetUp-i, Challenge-i and Guess-i steps. Note that the number
of iterations is polynomial in |S|.
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2. SetUp-i: Challenger B generates the public param, public key PK, the access
parameter U , and provides them to A. In addition, B also generates and fur-
nishes A with the aggregate key KS that allows A to decrypt any ciphertext
class j /∈ S.

3. Challenge-i: Challenger B performs an encryption of the secret message mi

belonging to the ith class to obtain the ciphertext C. Next, B picks a random
b ∈ (0, 1). It sets Kb = mi and picks a random K1−b from the set of possible
plaintext messages. It then gives (C,K0,K1) to algorithm A as a challenge.

4. Guess-i: The adversary A outputs a guess b′ of b. If b′ = b, A wins and the
challenger B loses. Otherwise, the game moves on to the next ciphertext class
in S until all ciphertext classes in S are exhausted.

If the adversary A fails to predict correctly for all ciphertext classes in S, only
then A loses the game. Let AdvKACA,n denote the probability that A wins
the game when the challenger is given n as input. We say that a key-aggregate
encryption system is (τ, ε, n) semantically secure if for all τ -time algorithms A
we have that |AdvKACA,n − 1

2 | < ε where ε is a very small quantity. Note
that the adversary A is non-adaptive; it chooses S, and obtains the aggregate
decryption key for all ciphertext classes outside of S, before it even sees the
public parameters param or the public key PK.

3.3 The Complexity Assumptions

We now introduce the complexity assumptions used in this paper. In this section,
we make several references to bilinear non-degenerate mappings on elliptic curve
sub-groups, popularly known in literature as pairings. For a detailed descriptions
on pairings and their properties, refer [9].

The First Complexity Assumption: Our first complexity assumption is
the l-BDHE problem [4] in a bilinear elliptic curve subgroup G, defined as fol-
lows. Given a vector of 2l+1 elements (H,P, αP, α2P, · · · , αlP, αl+2P · · · , α2lP )
∈ G

2l+1 as input, and a bilinear pairing ê′ : G1 × G1 −→ GT output
ê′(P,H)αl+1 ∈ GT . Since αl+1P is not an input, the bilinear pairing is of no real
use in this regard. Using the shorthand Pi = αiP , an algorithm A is said to have
an advantage ε in solving l-BDHE if Pr[A(H,P, P1, P2, · · · , Pl, Pl+2 · · · , P2l) =
ê′(Pl+1,H)] ≥ ε, where the probability is over the random choice of H,P ∈ G,
random choice of α ∈ Zq and random bits used by A. The decisional version of
l-BDHE for elliptic curve subgroups may be analogously defined. Let Y(P,α,l) =
(P1, P2, · · · , Pl, Pl+2 · · · , P2l). An algorithm B that outputs b ∈ {0, 1} has advan-
tage ε in solving decisional l-BDHE in G if |Pr[B(P,H, Y(P,α,l), ê′(Pl+1,H)) = 0]-
Pr[B(P,H, Y(P,α,l), T ) = 0]| ≥ ε, where the probability is over the random choice
of H,P ∈ G, random choice of α ∈ Zq, random choice of T ∈ GT and random bits
used by B. We refer to the left and right probability distributions as L-BDHE
and R-BDHE respectively. Thus, it can be said that the decision (τ, ε, l)-BDHE
assumption for elliptic curves holds in G if no τ -time algorithm has advantage ε
in solving the decisional l-BDHE problem over elliptic curve subgroup G.
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The Second Complexity Assumption: We next define the (l, l)-BDHE
problem over a pair of equi-prime order bilinear elliptic curve subgroups G1

with generator P and G2 with generator Q. Given a vector of 3l + 2 ele-
ments (H,P,Q, αP, α2P, · · · , αlP, αl+2P · · · , α2lP, αQ,α2Q, · · · , αlQ) as input,
where P and αiP ∈ G1 and H,Q,αiQ ∈ G2, along with a bilinear pairing
ê′′ : G1×G2 −→ GT , output ê′(P,H)αl+1 ∈ GT . Since αl+1P is not an input, the
bilinear pairing is of no real use in this regard. Using the shorthand Pi = αiP and
Qi = αiQ, an algorithm A is said to have an advantage ε in solving (l, l)-BDHE if
Pr[A(H,P,Q, P1, P2, · · · , Pl, Pl+2 · · · , P2l, Q1, · · · , Ql) = ê′(Pl+1,H)] ≥ ε where
the probability is over the random choice of P ∈ G1, H,Q ∈ G2, random
choice of α ∈ Zq and random bits used by A. We may also define the decisional
(l, l)-BDHE problem over elliptic curve subgroup pairs as follows. Let Y(P,α,l) =
(P1, P2, · · · , Pl, Pl+2 · · · , P2l) and Y ′

(Q,α,l) = (Q1, Q2, · · · , Ql). Also let H be a
random element in G2. An algorithm B that outputs b ∈ {0, 1} has advantage ε in
solving decisional (l, l)-BDHE if |Pr[B(P,Q,H, Y(P,α,l), Y

′
(Q,α,l), ê

′(Pl+1,H)) =
0]-Pr[B(P,Q,H, Y(P,α,l), Y

′
(Q,α,l), T ) = 0]| ≥ ε, where the probability is over the

random choice of P ∈ G1, H,Q ∈ G2, random choice of α ∈ Zq, random choice
of T ∈ GT and random bits used by B. We refer to the left and right probability
distributions as L′-BDHE and R′-BDHE respectively. Thus, it can be said that
the decision (τ, ε, l, l)-BDHE assumption for elliptic curves holds in (G1,G2) if
no τ -time algorithm has advantage ε in solving the decisional (l, l)-BDHE prob-
lem over elliptic curve subgroups G1 and G2. To the best of our knowledge, the
(l, l)-BDHE problem has not been introduced in literature before.

Proving the Validity of the Second Complexity Assumption: We prove
here that the decision (τ, ε, l, l)-BDHE assumption for elliptic curves holds in
equi-prime order subgroups (G1,G2) if the decision (τ, ε, l)-BDHE assumption for
elliptic curves holds in G1. Let ê′ : G1 ×G1 −→ GT and ê′′ : G1 ×G2 −→ GT be
bilinear pairings. Also, let P and Q are the generators for G1 and G2 respectively.
We first make the following observation.

Observation 1: Since G1 and G2 have the same prime order (say q), there
exists a bijection ϕ : G1 −→ G2 such that ϕ(aP ) = aQ for all a ∈ Zq. Similarly,
since GT also has order q, there also exists a mapping φ : GT −→ GT such that
φ(ê′(H1,H2)) = ê′′(H1, ϕ(H2)) for all H1,H2 ∈ G1.

Let A be a τ -time adversary that has advantage greater than ε in solving
the decision (l, l)-BDHE problem over equi-prime order subgroups (G1,G2). We
build an algorithm B that has advantage at least ε in solving the l-BDHE problem
in G1. Algorithm B takes as input a random l-BDHE challenge (P,H, Y(P,α,l), Z)
where Z is either ê′(Pl+1,H) or a random value in GT . B computes Y ′

Q,α,l by
setting Qi = ϕ(Pi) for i = 1, 2, · · · , l. B also computes H ′ = ϕ(H) ∈ G2

and Z ′ = φ(Z) ∈ Z. Then randomly chooses a bit b ∈ (0, 1) and sets Tb

as Z ′ and T1−b as a random element in GT . The challenge given to A is
((P,Q,H ′, Y(P,α,l), Y

′
Q,α,l), T0, T1). Quite evidently, when Z = ê′(Pl+1,H) (i.e.

the input to B is a l-BDHE tuple), then ((P,Q,H ′, Y(P,α,l), Y
′
Q,α,l), T0, T1) is
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a valid challenge to A. This is because in such a case, Tb = Z ′ = φ(Z) =
φ(ê′(Pl+1,H)) = ê′′(Pl+1,H

′). On the other hand, if Z is a random element in
GT (i.e. the input to B is a random tuple), then T0 and T1 are just random
independent elements of GT .

Now, A outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that
Z = ê′(Pl+1,H)). Otherwise, it outputs 1 (indicating that Z is random in GT ).
A simple analysis reveals that if (P,H, Y(P,α,l), Z) is sampled from R-BDHE,
Pr[B(G,H, Y(P,α,l), Z) = 0] = 1

2 , while if (P,H, Y(P,α,l), Z) is sampled from L-
BDHE, |Pr[B(G,H, Y(P,α,l), Z)] − 1

2 | ≥ ε. So, the probability that B outputs
correctly is at least ε, which in turn implies that B has advantage at least ε in
solving the l-BDHE problem. This concludes the proof.

4 The Proposed Dynamic Key-Aggregate Cryptosystem:
The Basic Case

In this section, we present the design of our proposed dynamic key-aggregate
storage scheme on additive elliptic curve subgroups assuming that there are n
ciphertext classes. Our scheme ensures that the ciphertext and aggregate key
are of constant size, while the public parameter size is linear in the number of
ciphertext classes. Unlike the scheme proposed in [3], the proposed scheme allows
dynamic revocation of user access rights without having to massively change the
system parameters. We also present a proof of security for the proposed scheme.

4.1 The Basic Construction of Dynamic KAC

Let G be an additive cyclic elliptic curve subgroup of prime order q, where
2λ ≤ q ≤ 2λ+1, such that the point P is a generator for G. Also, let GT be a
multiplicative group of order q with identity element 1. We assume that there
exists an efficiently computable bilinear pairing ê′ : G × G −→ GT . We now
present the basic construction of our proposed key-aggregate encryption scheme.

The scheme consists of the following five phases.

1. Setup(1λ, n): Randomly pick α ∈ Zq. Compute Pi = αiP ∈ G for i =
1, · · · , n, n + 2, · · · , 2n. Output the system parameter as
param = (P, P1, · · · , Pn, Pn+2, · · · , P2n). The system also randomly chooses
a secret parameter t ∈ Zq which is not made public. It is only known to data
owners with credentials to control client access rights.

2. Keygen(): Pick γ ∈ Zq, output the public and master-secret key pair: (PK =
γP,msk = γ).

3. Encrypt(PK, i,m): For a message m ∈ GT and an index i ∈ {1, 2, · · · , n},
randomly choose r ∈ Zq and let t′ = t + r ∈ Zq. Then the ciphertext is
computed as
C = (rP, t′(PK + Pi),m.ê′(Pn, t′P1)) = (c1, c2, c3)
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4. Extract(msk = γ,S): For the set S of indices j the aggregate key is
computed as
KS =

∑
j∈S γPn+1−j =

∑
j∈S αn+1−jPK

and the dynamic access control parameter U is computed as tP . Thus the net
aggregate key is (KS , U) which is transmitted via a secure channel to users
that have access rights to S.

5. Decrypt(KS , U,S, i, C = {c1, c2, c3}): If i /∈ S, output ⊥. Oth-
erwise return the message m̂ = c3ê′(KS +

∑
j∈S,j �=i Pn+1−j+i, U +

c1)/(ê′(
∑

j∈S Pn+1−j , c2)).

The proof of correctness of this scheme is presented below.

m̂ = c3
ê′(KS +

∑
j∈S,j �=i Pn+1−j+i, U + c1)

ê′(
∑

j∈S Pn+1−j , c2)

= c3
ê′(
∑

j∈S γPn+1−j , t′P )ê′(
∑

j∈S(Pn+1−j+i) − Pn+1, t′P )

ê′(
∑

j∈S Pn+1−j , t′PK)ê′(
∑

j∈S Pn+1−j , t′Pi))

= c3
ê′(
∑

j∈S Pn+1−j+i, t′P )

ê′(Pn+1, t′P )ê′(
∑

j∈S Pn+1−j+i, t′P ))

= m

4.2 Dynamic Access Control

An important aspect of the proposed scheme is the fact that it allows the data
owner to dynamically update user access permissions. In KAC [3], once the data
owner issues an aggregate key corresponding to a set of ciphertext classes to a
user, revoking the user’s access permissions to the same is not possible without
changing the master secret key. However, changing the master secret key each
time an user’s access privileges to a ciphertext class need to be updated, is a very
expensive option and may not be practically feasible. Our scheme, on the other
hand, offers a solution to this problem by allowing the data owner to dynamically
update user access privileges.

We achieve this by making the parameter U = tP a part of the aggregate key
in our proposed scheme and not a part of the ciphertext. The user must have the
correct value of U in possession to be able to decrypt any encrypted ciphertext
class in the subset S. Now suppose the data owner wishes to alter the access
rights to the subset S. She can simply re-encrypt all ciphertexts in that class
using a different random element t̂ ∈ Zq, and then provide the updated dynamic
access parameter Û = t̂P to only those users who she wishes to delegate access
to. The decrypted value will give the correct message m only if the same t is
used for both encryption and decryption. This is a major difference between
our scheme and the scheme proposed in [3], where the knowledge of the random
parameter was only embedded as part of the ciphertext itself, and could not be
used to control access rights of users. Moreover, since U is of constant size and
needs to be transmitted only when changed (and not for every encryption), there
is no significant degradation in performance.
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4.3 Performance and Efficiency

The decryption time for any subset of ciphertext classes S is essentially dom-
inated by the computation of WS =

∑
j∈S Pn+1−j+i. However, if a user has

already computed
∑

j∈S′ Pn+1−j+i for a subset S′ similar to S, then she can
easily compute the desired value by at most |S − S ′| operations. For similar
subsets S and S′, this value is expected to be fairly small. A suggested in [4],
for subsets of very large size(n − r, r � n), an advantageous approach could
be to pre-compute

∑j=n
j=1 Pn+1−j+i corresponding to i = 1 to n, which would

allow the user to decrypt using only r group operations, and would require only
r elements of param. Similar optimizations would also hold for the encryption
operation where pre-computation of

∑j=n
j=1 Pn+1−j is useful for large subsets.

It is important to note that our proposed scheme fixes the number of cipher-
text classes beforehand, thus limiting the scope for ciphertext class extension.
The only way to increase the number of classes is to change the public key para-
meters, which would therefore require some kind of administrative privileges,
and cannot be done by an user for her own purposes. However, in online data
sharing environments, users may wish to register their own public key-private
key pairs for new ciphertext classes according to their own requirements. Such
an extension to the scheme would make extremely convenient and attractive to
potential users. A proposal made in [3] recommends that the user be allowed
to register new public-private key pairs, at the cost of increasing the number
of ciphertext classes by n each time. This is both impractical and wasteful. In
the next section, we present a two-tier generalization of our scheme that tackles
this issue in a more economical fashion. We avoid a separate proof of semantic
security for the base case presented here, since the proof is a special case of the
proof for the generalized scheme presented in the next section.

5 A Generalized Version of Dynamic KAC

In this section, we focus on building an efficiently extensible version of our pro-
posed scheme that allows an user to economically increase the number of cipher-
text classes while registering a new public key-private key pair. We adopt the idea
presented in [4] to develop a hierarchical structure that has multiple instances
(say n1) of the original scheme running in parallel. Each such instance in turn
provides locally aggregate keys for n2 ciphertext sub-classes. Each ciphertext class
thus now has a double index (i1, i2) where 1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2. This
allows the overall setup to handle n = n1n2 classes. However, it is important to
note that all the instances can use the same public parameters. This interaction
among the instances helps to largely improve performance. We further point
out that while in [4], the generalized construction offers a trade-off between
the public parameter size and the ciphertext size, our generalized scheme actu-
ally reduces the public parameter size without compromising on the size of the
ciphertext. Further, addition of a single new key increases the number of classes
only by n2 and not by n. Setting n2 � n thus achieves significant improvement
in performance over the existing proposal.
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5.1 The Construction of the Generalized KAC

Let n2 be a fixed positive integer. Our proposed n2-generalized key-aggregate
encryption scheme over elliptic curve subgroups is as described below. It may be
noted that the bilinear additive elliptic curve sub-group G and the multiplicative
group GT , as well as the pairing ê′ are the same as in the basic scheme. The
algorithm sets up n1 = 	n/n2
 instances of the basic scheme, each of which
handles n2 ciphertext classes. The original scheme is thus a special case of the
extended scheme with n1 = 1 and n2 = n.

1. Setup(1λ, n2): Randomly pick α ∈ Zq. Compute Pi = αiP ∈ G for i = 1, · · · ,
n2, n2 + 2, · · · , 2n2. Output the system parameter as param =
(P, P1, · · · , Pn2 , Pn2+2, · · · , P2n2). The system randomly chooses a secret
parameter t ∈ Zq which is not made public. It is only known to data owners
with credentials to control client access rights.

2. Keygen(): Pick γ1, γ2, · · · , γn1 ∈ Zq, output the public and master-secret
key pair:
(PK=(pk1, pk2, · · · , pkn1) = (γ1P, γ2P, · · · , γn1P ),msk=(γ1, γ2, · · · , γn1)).

3. Encrypt(pki1 , (i1, i2),m): For a message m ∈ GT and an index (i1, i2) ∈
{1, 2, · · · , n1} × {1, 2, · · · , n2}, randomly choose r ∈ Zq and let t′ = t +
r ∈ Zq. Then compute the ciphertext C=(rP, t′(pki1 + Pi2),m.ê′(Pn2 , t

′P1))
= (c1, c2, c3).

4. Extract(msk = γ,S): For the set S of indices (j1, j2) the aggregate key is
computed as KS = (k1

S , k2
S , · · · , kn1

S ) =
(
∑

(1,j2)∈S γ1Pn2+1−j2 ,
∑

(2,j2)∈S γ2Pn2+1−j2 , · · · ,
∑

(n1,j2)∈S γn1Pn2+1−j2)
and the dynamic access control parameter U is computed as tP . Thus the
net aggregate key is (KS , U) which is transmitted via a secure channel to
users that have access rights to S. Note that kj1

S =
∑

(j1,j2)∈S αn+1−j2pkj1

for j1 = 1, 2, · · · , n1.
5. Decrypt(KS , U,S, (i1, i2), C = {c1, c2, c3}): If (i1, i2) /∈ S, output ⊥. Other-

wise return the message

m̂ = c3
ê′(ki1

S +
∑

(i1,j2)∈S,j2 �=i2
Pn2+1−j2+i2 ,U+c1)

ê′(
∑

(i1,j2)∈S Pn2+1−j2 ,c2)
.

The proof of correctness for the generalized scheme is very similar to that for
the basic scheme.

5.2 Semantic Security of the Generalized KAC

The Reduced Generalized Scheme: We define a reduced version of the gen-
eralized encryption scheme. We note that the ciphertext C = (c1, c2, c3) output
by the Encypt operation essentially embeds the value of m in c3 by multiply-
ing it with ê′(Pn2 , tP1). Consequently, the security of our proposed scheme is
equivalent to that of a reduced generalized key-aggregate encryption scheme
that simply uses the reduced ciphertext (c1, c2), the aggregate key KS and the
dynamic access parameter U to successfully transmit and decrypt the value of
ê′(Pn2 , t

′P1) = ê′(Pn2+1, t
′P ). We prove the semantic security of this reduced
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scheme parameterized with a given number of ciphertext classes n2 for each
instance, which also amounts to proving the semantic security of our original
encryption scheme for the same number of ciphertext classes. Note that the proof
of security is independent of the number of instances n1 that run in parallel.

The Adversarial Model: We make the following assumptions about the adver-
sary A:

1. The adversary has the aggregate key that allows her to access any ciphertext
class other than those in the target subset S, that is, she possesses KS .

2. The adversary has access to the public parameters param and PK, and also
possesses the dynamic access parameter U .

The Security Proof: The security proof presented here uses the first complex-
ity assumption stated in Sect. 3.3 (The First Complexity Assumption). Let G be
a bilinear elliptic curve subgroup of prime order q and GT be a multiplicative
group of order q. Let ê′ : G×G −→ GT be a bilinear non-degenerate pairing. For
any pair of positive integers n2, n

′(n′ > n2) our proposed n2-generalized reduced
key-aggregate encryption scheme over elliptic curve subgroups is (τ, ε, n′) seman-
tically secure if the decision (τ, ε, n2)-BDHE assumption holds in G. We now
prove this statement below.

Proof: Let for a given input n′, A be a τ -time adversary that has advantage
greater than ε for the reduced scheme parameterized with a given n2. We build
an algorithm B that has advantage at least ε in solving the n2-BDHE problem in
G. Algorithm B takes as input a random n2-BDHE challenge (P,H, Y(P,α,n2), Z)
where Z is either ê′(Pn2+1,H) or a random value in GT . Algorithm B proceeds
as follows.

1. Init: Algorithm B runs A and receives the set S of ciphertext classes that A
wishes to be challenged on. For each ciphertext class (i1, i2) ∈ S, B performs
the SetUp-(i1, i2), Challenge-(i1, i2) and Guess-(i1, i2) steps. Note that
the number of iterations is polynomial in |S|.

2. SetUp-(i1, i2): B should generate the public param, public key PK, the
access parameter U , and the aggregate key KS . For the iteration correspond-
ing to ciphertext class (i1, i2), they are generated as follows.

– param is set as (P, YP,α,n2).
– Randomly generate u1, u2, · · · , un1 ∈ Zq. Then, set PK=

(pk1, pk2, · · · , pkn1), with pkj1 = uj1P − Pi2 for j1 = 1, 2, · · · , n1.
– Set KS = (k1

S , k2
S , · · · , kn1

S ), where kj1
S is set as

∑
(j1,j2)/∈S(uj1Pn2+1−j2 −

(Pn2+1−j2+i2)). Then, kj1
S =

∑
(j1,j2)/∈S αn2+1−j2pkj1 ,which is as per the

scheme specification. Note that B knows that (i1, i2) /∈ S, and hence has
all the resources to compute this aggregate key for S.

– U is set as some random element in G.
Note that since P , α, U and the uj1 values are chosen uniformly at random,
the public key has an identical distribution to that in the actual construction.
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3. Challenge-(i1, i2): To generate the challenge for the ciphertext class (i1, i2),
B computes (c1, c2) as (H−U, ui1H). It then randomly chooses a bit b ∈ (0, 1)
and sets Kb as Z and K1−b as a random element in GT . The challenge given
to A is ((c1, c2),K0,K1).
We claim that when Z = ê′(Pn2+1,H) (i.e. the input to B is a n2-BDHE
tuple), then ((c1, c2),K0,K1) is a valid challenge to A. We prove this claim
here. we point out that P is a generator of G and so H = t′P for some t′ ∈ Zq.
Putting H as t′P gives us the following:

– U = tP for some t ∈ Zq

– c1 = H − U = (t′ − t)P = rP for r = t′ − t
– c2 = ui1H = (ui1)t

′P = t′(ui1P ) = t′(ui1P − Pi2 + Pi2) = t′(pki1 + Pi2)
– Kb = Z = ê′(Pn2+1,H) = ê′(Pn2+1, t

′P )
On the other hand, if Z is a random element in GT (i.e. the input to B is a
random tuple), then K0 and K1 are just random independent elements of GT .

4. Guess-(i1, i2): The adversary A outputs a guess b′ of b. If b′ = b, B outputs
0 (indicating that Z = ê′(Pn2+1,H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If after |S| iterations, b′ �= b for each ciphertext class (i1, i2) ∈ S, the algorithm B
outputs 1 (indicating that Z is random in GT ). We now analyze the probability
that B gives a correct output. If (P,H, Y(P,α,n2), Z) is sampled from R-BDHE,
Pr[B(G,H, Y(P,α,n2), Z) = 0] = 1

2 , while if (P,H, Y(P,α,n2), Z) is sampled from
L-BDHE, |Pr[B(G,H, Y(P,α,n2), Z)]− 1

2 | ≥ ε. So, the probability that B outputs
correctly is at least 1 − ( 12 − ε)|S| ≥ 1

2 + ε. Thus B has advantage at least ε in
solving the n2-BDHE problem. This concludes the proof. Note that the instance
of this proof with n1 = 1 and n2 = n serves as the proof of security for the basic
KAC scheme proposed in Sect. 4.

Performance Trade Off with the Basic Scheme: We compare the various
parameter sizes for the proposed original and extended schemes in Table 1. We
note that SetUp and KeyGen are both one-time operations, and for a given
subset S, the Extract operation is also performed once to generate the corre-
sponding aggregate key KS . The most important advantage that the general-
ized scheme provides is the user’s ability to efficiently extend the number of
ciphertext classes. As far as encryption and decryption are concerned, encryp-
tion should ideally take the same time for both schemes, while decryption is
actually expected to be faster for the generalized construction as n2 ≤ n.

5.3 A Flexible Extension Policy

If a user needs to classify her ciphertexts into more that n classes, she can register
for additional key pairs (pkn1+1,mskn1+1), · · · , (pkn1+l,mskn1+l) as per her
requirements. Each new key registration increases the number of classes by n2,
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Table 1. Comparison between the basic and generalized schemes

Item Nature of computation Original scheme Generalized scheme

param(SetUp) One-time O(n) O(n2)

PK(KeyGen) One-time O(1) O(n1)

KS(Extract) One-time O(1) O(n1)

C One per message O(1) O(1)

Encrypt One per message O(1) O(1)

Decrypt One per message O(|S|) O(|S|)

where n2 ≤ n. The idea of under-utilization stems from the fact that registration
of each public-private key pair increases the number of classes by n2. However,
it is not necessary that all the existing classes are utilized at any given point of
time. For instance, a user may at any point of time want to register l new private-
public key pairs, however she will in all probability not use up all ln2 additional
classes of messages that could be encrypted using the newly registered keys. We
stress here is that, unlike in the public key extension scheme proposed in [3]
where the values of n1 and n2 are fixed to 1 and n respectively, our generalized
construction provides a choice of n1 and n2 so that the system administrator
could choose pair of values suited to their requirements.

We propose a metric to quantify the under-utilization of ciphertext classes
for a given configuration of the system. Let us assume that at some instance of
time, there are n1 + l private-public key pairs registered in the system, and ci

classes corresponding to each key are being utilized. We define the utilization
coefficient as 1

1+ξ , where ξ = − 1
n1

∑n1
i=1ci �=0 log( ci

n2
). An efficient scheme tries to

minimize the value of ξ to achieve good utilization of the existing set of classes.
The value is maximum when ci = n2∀i = 1, 2, · · · , n2. Note that ci = 0 implies
that no subclasses under the given key pki are being utilized, which is equivalent
to not registering the key at all.

To stress the importance of the flexible extension policy, we provide a sim-
plified example here. We consider two possible configurations of the extended
scheme. In the first configuration, n1 = 1 and n2 = n, which is essentially iden-
tical to the public key extension scheme proposed in [3]. The other configuration
has n1 > 1 and n2 < n. Now assume that before extension, both schemes uti-
lized c ciphertext classes out of the n possible classes, equally distributed across
all key pairs. Now suppose a situation arises where an user needs to register l
more key pairs, and utilizes z < n2 classes corresponding to each key. In the first
configuration, we have ξ1 = − 1

l+1 (l log( z
n )+log( c

n )), while for the second config-
uration, ξ2 = − 1

l+n1
(l(log( z

n2
)) + n1 log( c

n )). Now for l > ( n1
log n1

− 1) log( z
c ) − 1,

ξ2 < ξ1. Thus for any value of (n1, n2) other than (1, n), there exists a value of
l for which the scheme achieves better utilization coefficient. Since l is expected
to increase in a dynamic scenario, our public key extension scheme eventually
performs better than the scheme suggested in [3].
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Fig. 2. A practical request scenario in the hierarchical setting

5.4 Advantage over Hierarchical Encryption Based Schemes

Although the generalized scheme has a two level hierarchy (with each of the n1

parallely executing instances of the basic scheme representing a node in the top
level and the actual ciphertext classes representing nodes in the lower level), it
avoids the pitfalls of existing hierarchical encryption based schemes [5,10]. In
standard tree based hierarchical systems, granting access to the key correspond-
ing to any node implicitly grants access to all the keys in the subtree rooted at
that node. This means granting access to a selected set of nodes in a given sub-
tree would blow up the key-size to be the same as the number of nodes. This is
avoided in our generalized scheme, since any number of nodes (ciphertext classes)
that belong to the same instance may be aggregated into a single key. Figure 2
summarizes this phenomenon. In the situation depicted, a tree-based hierarchy
system would require 4 decryption keys, while our scheme would require only 2.
In this respect, our scheme has similar advantages to that of [3].

6 Extending the Generalized KAC for Efficient Pairings
on Elliptic Curve Subgroups

The encryption schemes proposed so far use the assumption that the ellip-
tic curve pairing bilinear pairing ê′ : G1 × G1 −→ GT satisfies the property
ê′(P, P ) �= 1, where P is the generator for G1. In this section, we propose an
extension to the generalized n2-scheme that allows using pairings of the form
ê′′ : G1 × G2 −→ GT , where G1 and G2 are two elliptic curve subgroups of
the same prime order. The motivation behind this extension is that many pop-
ular pairing algorithms such as the Tate [11], Eta [12], and Ate [13] pairings
are defined over two distinct elliptic curve subgroups G1 and G2 of the same
order. Many efficient implementations of such pairings on sensor nodes such as
TinyTate [14] have been proposed in literature. This motivates us to modify our
scheme in a manner that allows using such well-known pairings. The modified
encryption scheme described below allows using a pairing ê′′ : G1 × G2 −→ GT

with P generator of G1 and Q generator of G2.

6.1 Construction of the Extended KAC

1. Setup(1λ, n2): Randomly pick α ∈ Zq. Compute Pi = αiP ∈ G1 for
i = 1, · · · , n2, n2 + 2, · · · , 2n2 and Qi = αiQ ∈ G2 for i = 1, · · · , n2.
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Output the system parameter as param = (P, P1, · · · , Pn2 , Pn2+2, · · · , P2n2 ,
Q,Q1, · · · , Qn2). The system also randomly chooses secret parameters t ∈ Zq

which is not made public. It is only transferred through a secure channel to
data owners with credentials to control client access rights.

2. Keygen(): Pick γ1, γ2, · · · , γn1 ∈ Zq, output the public and master-secret
key tuple:
(PK1=(pk1

1, pk1
2, · · · , pk1

n1
) = (γ1P, γ2P, · · · , γn1P ), PK2=

(pk2
1, pk2

2, · · · , pk2
n1

) = (γ1Q, γ2Q, · · · , γn1Q), msk=(γ1, γ2, · · · , γn1)).
3. Encrypt(pki1 , (i1, i2),m): For a message m ∈ GT and an index (i1, i2) ∈

{1, 2, · · · , n1}×{1, 2, · · · , n2}, randomly choose r ∈ Zq and let t′ = t+r ∈ Zq.
Then compute the ciphertext as
C=(rQ, t′(pk2

i1 + Qi2),m.ê′′(Pn2 , t
′Q1)) = (c1, c2, c3).

4. Extract(msk = γ,S): For the set S of indices (j1, j2) the aggregate key is
computed as KS = (k1

S , k2
S , · · · , kn1

S ) =
(
∑

(1,j2)∈S γ1Pn2+1−j2 ,
∑

(2,j2)∈S γ2Pn2+1−j2 , · · · ,
∑

(n1,j2)∈S γn1Pn2+1−j2)
and the dynamic access control parameter U is computed as tQ. Thus the
net aggregate key is (KS , U) which is transmitted via a secure channel to
users that have access rights to S. Note that kj1

S =
∑

(j1,j2)∈S αn+1−j2pk1
j1

for j1 = 1, 2, · · · , n1.
5. Decrypt(KS , U,S, (i1, i2), C = {c1, c2, c3}): If (i1, i2) /∈ S, output ⊥. Other-

wise return the message

m̂ = c3
ê′′(ki1

S +
∑

(i1,j2)∈S,j2 �=i2
Pn2+1−j2+i2 ,U+c1)

ê′′(
∑

(i1,j2)∈S Pn2+1−j2 ,c2)
.

The proof of correctness of this scheme is presented below.

m̂ = c3
ê′′(ki1

S +
∑

(i1,j2)∈S,j2 �=i2
Pn2+1−j2+i2 , U + c1)

ê′′(
∑

(i1,j2)∈S Pn2+1−j2 , c2)

= c3
ê′′(
∑

(i1,j2)∈S γi1Pn2+1−j2 , t′Q)ê′′(
∑

(i1,j2)∈S(Pn2+1−j2+i2 ) − Pn2+1, t′Q)

ê′′(
∑

(i1,j2)∈S Pn2+1−j2 , γi1 (t
′Q))ê′′(

∑
(i1,j2)∈S Pn2+1−j2 , αi2 (t′Q))

= c3
ê′′(
∑

(i1,j2)∈S Pn2+1−j2+i2 , t′Q)

ê′′(Pn2+1, t′Q)ê′′(
∑

(i1,j2)∈S Pn2+1−j2+i2 , t′Q)

= m

6.2 Semantic Security of the Extended KAC

The proof of security uses a reduced version of the extended KAC scheme,
analogous to the reduced scheme used for proving the security of the gener-
alized KAC. The adversarial model is also the assumed to be the same as for
the generalized KAC. The proof uses the (l, l)-BDHE assumption proposed in
Sect. 3.3 (The Second Complexity Assumption). Let G1 and G2 be additive ellip-
tic curve subgroups of prime order q, and GT be a multiplicative group of order
q. Let ê′′ : G1 ×G2 −→ GT be a bilinear non-degenerate pairing. We claim that
for any pair of positive integers n2, n

′(n′ > n2) our proposed extension to the
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n2-generalized reduced key-aggregate encryption scheme over elliptic curve sub-
groups is (τ, ε, n′) semantically secure if the decision (τ, ε, n2, n2)-BDHE assump-
tion holds in (G1,G2). We prove the claim below.

Proof: Let for a given input n′, A be a τ -time adversary that has advantage
greater than ε for the reduced scheme parameterized with a given n2. We build
an algorithm B that has advantage at least ε in solving the (n2, n2)-BDHE
problem in G. Algorithm B takes as input a random (n2, n2)-BDHE challenge
(P,Q,H, Y(P,α,n2),Y ′

Q,α,n2
, Z) where Z is either ê′′(Pn2+1,H) or a random value

in GT . Algorithm B proceeds as follows.

1. Init: Algorithm B runs A and receives the set S of ciphertext classes that A
wishes to be challenged on. For each ciphertext class (i1, i2) ∈ S, B performs
the SetUp-(i1, i2), Challenge-(i1, i2) and Guess-(i1, i2) steps. Note that
the number of iterations is polynomial in |S|.

2. SetUp-(i1, i2): B should generate the public param, public keys PK1, PK2,
the access parameter U , and the aggregate key KS . For the iteration corre-
sponding to ciphertext class (i1, i2), they are generated as follows.

– param is set as (P,Q, YP,α,n2 , Y
′
Q,α,n2

).
– Randomly generate u1, u2, · · · , un1 ∈ Zq. Then, set

PK1=(pk1
1, pk1

2, · · · , pk1
n1

), where pk1
j1 is set as uj1P − Pi2 for j1 =

1, 2, · · · , n1, and set
PK2=(pk2

1, pk2
2, · · · , pk2

n1
), where pk2

j1 is set as uj1Q − Qi2 for j1 =
1, 2, · · · , n1

– KS is set as (k1
S , k2

S , · · · , kn1

S ) where kj1
S

=
∑

(j1,j2)/∈S(uj1Pn2+1−j2 − (Pn2+1−j2+i2)) for j1 = 1, 2, · · · , n1. Note
that this implies kj1

S =
∑

(j1,j2)/∈S αn2+1−j2pk1
j1 , as is supposed to be as

per the scheme specification. Note that B knows that (i1, i2) /∈ S, and
hence has all the resources to compute this aggregate key for S.

– U is set as some random element in G2.
Note that since P , Q, α, U and the uj1 values are chosen uniformly at random,
the public key has an identical distribution to that in the actual construction.

3. Challenge-(i1, i2): To generate the challenge for the ciphertext class (i1, i2),
B computes (c1, c2) as (H−U, ui1H). It then randomly chooses a bit b ∈ (0, 1)
and sets Kb as Z and K1−b as a random element in GT . The challenge given
to A is ((c1, c2),K0,K1).
We claim that when Z = ê′′(Pn2+1,H) (i.e. the input to B is a n2-BDHE
tuple), then ((c1, c2),K0,K1) is a valid challenge to A. We prove this claim
here. we point out that Q is a generator of G2 and so H = t′P for some
t′ ∈ Zq. Putting H as t′Q gives us the following:
– U = tQ for some t ∈ Zq

– c1 = H − U = (t′ − t)Q = rQ where r = t′ − t
– c2 = ui1H = (ui1)t

′Q = t′(ui1Q) = t′(ui1Q − Qi2 + Qi2) = t′(pk2
i1 + Qi2)

– Kb = Z = ê′′(Pn2+1,H) = ê′′(Pn2+1, t
′Q)
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On the other hand, if Z is a random element in GT (i.e. the input to B is
a random tuple), then K0 and K1 are just random independent elements
of GT .

4. Guess-(i1, i2): The adversary A outputs a guess b′ of b. If b′ = b, B outputs
0 (indicating that Z = ê′′(Pn+1,H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If after |S| iterations, b′ �= b for each ciphertext class (i1, i2) ∈ S, the algorithm B
outputs 1 (indicating that Z is random in GT ). We now analyze the probability
that B gives a correct output. If (P,H, Y(P,α,n2), Z) is sampled from R′-BDHE,
Pr[B(G,H, Y(P,α,n2), Z) = 0] = 1

2 , while if (P,H, Y(P,α,n2), Z) is sampled from
L′-BDHE, |Pr[B(G,H, Y(P,α,n2), Z)]− 1

2 | ≥ ε. So, the probability that B outputs
correctly is at least 1 − ( 12 − ε)|S| ≥ 1

2 + ε. Thus B has advantage at least ε in
solving the (n2, n2)-BDHE problem. This concludes the proof.

7 Experimental Results Using Tate Pairings

In this section we present experimental results from our implementations of the
extended generalized scheme using Tate pairings on BN-curves using 256 bit
primes [15]. All our experiments have been carried out on an AMD Opteron
(TM) Processor 6272 × 16 with a clock frequency 1.4 GHz.

7.1 Space and Time Complexities

Table 2 summarizes the space requirements for various parameters of the scheme
for different values of (n1, n2). The results have been averaged over 100 randomly
chosen subsets of the n = 100 ciphertext classes. Table 3 summarizes the time
complexity for various operations of the scheme for different values of (n1, n2).
The results have been averaged over 100 randomly chosen subsets of the n = 100
ciphertext classes. The encryption and decryption operation complexities are
further averaged over 10 message transmissions corresponding to each subset.
We point out that both the overall space and time requirements are minimum
for n1 = n2 = 10 =

√
n, which proves the usefulnesss of the generaalization.

7.2 Comparison with Hierarchy Based Schemes

Next, we compare specifically the key size required for the proposed extended
scheme, for different values of n1 and n2 (again corresponding to n = 100), with
that required for a hierarchical encryption construction [16]. Since our scheme
uses a hierarchy depth of 2, we use the same for the hierarchical construction as
well, with n1 nodes in level 0, and n2 level 1 nodes in the subtree rooted at each
level 0 node. Figure 3 summarizes the findings. Evidently, lower the value of n1,
better the key aggregation, hence lower the ratio.
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Table 2. Space complexities

n1 n2 param (in bytes) PK (in bytes) msk (in bytes) KS (in bytes) U (in bytes) Total (in KB)

1 100 16112 144 40 72 64 16.046875

2 50 8112 240 56 120 64 8.390625

4 25 4112 432 88 216 64 4.796875

5 20 3312 528 104 264 64 4.171875

10 10 1712 1008 184 504 64 3.390625

20 5 912 1968 344 984 64 4.171875

25 4 752 2448 424 1224 64 4.796875

50 2 432 4848 824 2424 64 8.390625

100 1 272 9648 1624 4824 64 16.046875

Table 3. Time complexities

n1 n2 SetUp KeyGen Encrypt Extract Decrypt Total

(in clock cycles) (in clock cycles) (in clock cycles) (in clock cycles) (in clock cycles) (in clock cycles)

1 100 2920000 10000 7932000 47000 16095000 27004100

2 50 1410000 30000 8065000 53000 16110000 25668000

4 25 690000 60000 8130000 81000 16284000 25245000

5 20 590000 70000 8091000 96000 16379000 25226000

10 10 280000 140000 7957000 170000 16049000 25136000

20 5 130000 270000 8070000 320000 16361000 25151000

25 4 120000 350000 8256000 370000 16239000 25836000

50 2 50000 680000 8265000 712000 16398000 26105000

100 1 30000 1360000 8201000 1315000 16142000 27048000
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Fig. 3. Key size ratio - proposed aggregate scheme vs hierarchical scheme

7.3 Utilization Coefficient Comparison

Finally we compare the utilization-coefficient of the extended scheme for various
values of n1 and n2 (corresponding to n = 100) with increase in the number of
registered key pairs l, where each key pair increases the number of classes by
n2. We leave out the configuration n1 = n, n2 = 1 because that always leads to
an utilization coefficient of 1 but is impractical due to huge space requirements.
Figure 4 demonstrates that beyond a certain value of l, the combination (1, n)
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Fig. 4. Utilization coefficient vs newly registered keys

proposed in [3] has a lower utilization coefficient that all other combinations of
(n1, n2) for a given n. This emphasizes the advantage of making the choice of
(n1, n2) flexible.

8 Conclusions and Future Work

In this paper, we have proposed a secure and dynamic key aggregate encryption
scheme for online data sharing. Our scheme allows data owners to delegate users
with access rights to multiple ciphertext classes using a single decryption key
that combines the decrypting power of individual keys corresponding to each
ciphertext class. Unlike existing key aggregate schemes that are static in their
access right delegation policies, our scheme allows data owners to dynamically
revoke one or more users’ access rights without having to change either the public
or the private parameters/keys. The use of bilinear pairings over additive ellip-
tic curve subgroups in our scheme helps achieve massive reductions in key and
ciphertext sizes over existing schemes that use multiplicative groups. We pointed
out that a possible criticism of this scheme is that the number of classes is pre-
defined to some fixed n. To deal with this issue, we next proposed a generalized
two-level construction of the basic scheme that runs n1 instances of the basic
scheme in parallel, with each instance handling key aggregation for n2 cipher-
text classes. This scheme provides two major advantages. First of all, it allows
dynamic extension of ciphertext classes by registering of new public key-private
key pairs without affecting other system parameters. Secondly, it provides a wide
range of choices for n1 and n2 that allows efficient utilization of ciphertext classes
while also achieving optimum space and time complexities. Finally, we extend
the generalized scheme to allow the use of popular and efficiently implementable
bilinear pairings in literature such as Tate Pairings that operate on multiple
elliptic curve subgroups instead of one. Each of the three proposed schemes have
been proven to be semantically secure. Experimental studies have demonstrated
the superiority of our proposed scheme over existing ones in terms of key size
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as well as efficient utilization of ciphertext classes. A possible future work is to
make the proposed schemes secure against chosen ciphertext attacks.
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Abstract. Rainbow signature scheme based on multivariate quadratic
equations is one of alternatives to guarantee secure communications in
the post-quantum world. Its speed is about dozens of times faster than
classical public-key signatures, RSA and ECDSA, while its key size is
much heavier than those of the classical ones. We propose lightweight
variants of Rainbow, Lite-Rainbow-0 and Lite-Rainbow-1, for constrained
devices. By replacing some parts of a public key or a secret key with
small random seeds via a pseudo-random number generator, we reduce
a public key in Lite-Rainbow-1 and a secret key in Lite-Rainbow-0 by fac-
tors 71 % and 99.8 %, respectively, compared to Rainbow. Although our
schemes require additional costs for key recovery processes, they are still
highly competitive in term of performance. We also prove unforgeability
of our scheme with special parameter sets in the random oracle model
under the hardness assumption of the multivariate quadratic polynomial
solving problem. Finally, we propose countermeasures of Rainbow-like
schemes against side channel attacks such as power analysis for their
secure implementations.

Keywords: Multivariate quadratic equations · Key size reduction ·
Pseudo-random number generator · Rainbow

1 Introduction

In 1995, Shor [24] presented a quantum algorithm to solve the Integer Factor-
ization problem (IFP) and the Discrete Logarithm problem (DLP) in polyno-
mial time. As a result, the existence of a sufficiently large quantum computer
would be a real-world threat to break RSA, Diffie-Hellman key exchange, DSA,
and ECDSA, the most widely used public-key cryptography [27]. Thus, there
is an increasing demand in investigating possible alternatives. Such classes of
so-called Post-Quantum Cryptography (PQ-PKC) are lattice-based (NTRU [11]),
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code-based (McEliece [16]), hash-based (Merkle’s hash-tree signature [17]), and
multivariate quadratic equations-based (UOV [12], Rainbow [7]). All of these
systems are believed to resist classical computers and quantum computers.

Table 1. Current MQ-PKCs vs. classical ones at an 80-bit security level.

Scheme Public key Secret key Verify Sign

RSA(1024) 128 B 1024 B 22.4 μs 813.5 μs

ECDSA(160) 40 B 60 B 409.2 μs 357.8 μs

Rainbow(F31, 24, 20, 20) 57 KB 150 KB 17.7 μs 70.6 μs

Multivariate quadratic public-key cryptography (MQ-PKC) are cryptosys-
tems based on the NP-hard problem of solving random systems of quadratic
equations over finite fields, known as the MQ-problem. Since Mastsumoto-Imai
scheme [15], there have been proposed a number of MQ-PKCs. However, nearly
all MQ-encryption schemes and most of the MQ-signature schemes have been
broken due to uncertainty of the Isomorphism of Polynomials problem. There
are only very few exceptions like the signature schemes, Unbalanced Oil and
Vinegar (UOV) [12], and Rainbow [7]. Recently, two of the most important
standardization bodies in the world, NIST [19] and ETSI [8] have started initia-
tives for developing cryptographic standards with long-term security resistant
to quantum algorithms.

Beyond the supposed resistance against quantumcomputers, one ofMQ-PKCs’
advantages is a fast speed, especially for signatures. Chen et al. [5] presented per-
formances of MQ-schemes and classical ones on an Intel Core 2 Quad Q9550 at
2.833 GHz, summarized in Table 1. According to Table 1, Rainbow is 23 times and
5 times faster than ECDSA in verification and signing, respectively. MQ-PKCs
require simplicity of operations (matrices and vectors) and small fields avoid
multiple-precision arithmetic. Classical PKCs need coprocessors in smart cards
with low flexibility for use or optimizations, so operating on units hundreds of bits
long is prohibitively expensive for embedded devices without a co-processor.
Despite these advantages, the biggest problem of MQ-PKCs is a relatively large
key size. Petzoldt et al. [23] proposed CyclicRainbow to reduce a public key size in
Rainbow by up to 62 % using a circulant matrix. However, the use of this circulant
matrix provides a limited randomness of the quadratic parts of a public key. If the
key size is reduced to an adequate level then MQ-PKCs are the most competitive
PKC for constrained devices. Side channel attacks (SCAs) are a serious threat to
constrained small devices. If implementations of cryptographic algorithms on such
a device are careless, attackers can recover secret keys. Recently, Hashimoto et al.
[10] proposed general fault attacks onMQ-PKCs to reduce complexity of key recov-
ery attacks by causing faults on the central map or on ephemeral random values.
It has never been proposed countermeasures of Rainbow-like schemes against other
SCAs such as power analysis. In this paper, we provide solutions to these problems.
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Our Contributions. We construct two lightweight variants of Rainbow, Lite-
Rainbow-0 and Lite-Rainbow-1. Our contributions are as follows:

• Public/Secret Key Size Reduction. We utilize a pseudo-random number
generator (PRNG) to replace some quadratic parts, linear and constant parts
of a public key or a secret key with small random seeds for key size reduction.
To do it, we use “Recover then Sign” and “Recover then Verify” methodologies:
after recovering some parts of the secret key and public key, signing and verifi-
cation are performed. As a result, we reduce a public key in Lite-Rainbow-1 and
a secret key in Lite-Rainbow-0 up to 71 % and 99.9 %, respectively, compared to
Rainbow.

• Provable Security of Lite-Rainbow. Unlike RSA and ECC, security of
MQ-schemes is not related to the MQ-problem only. This causes the difficulty
of their security proofs against unforgeability in formal security model. We
prove unforgeability of our scheme with special parameter sets against adap-
tive chosen-message attacks and direct attacks in the random oracle model
under the hardness assumption of the MQ-problem.

• Countermeasures of Rainbow-Like Schemes Against SCAs and
Implementations. We propose countermeasures of Rainbow-like schemes
against power analysis, SPA and DPA. To randomize signing, we use “Split-
ting technique”which divides a solution of the central map into three parts
to leave one part of them after performing a binary operation. To the best
of our knowledge, this is the first work that deals with these SCAs on them.
We provide a direct comparison of the implementation results for our schemes
and classical ones, unprotected ones and protected ones for secure and optimal
parameters at a 128-bit security level on the same platform.

Organization. The rest of the paper is organized as follows. In Sect. 2, we describe
underlying hard problems of MQ-PKCs and Rainbow signature scheme. In Sect. 3,
we construct lightweight variants of Rainbow, Lite-Rainbow-0 and Lite-Rainbow-1
and provide their security proofs. In Sect. 4, we propose countermeasures of
Rainbow-like schemes against SCAs and implement protected and unprotected
ones. Concluding remarks are given in Sect. 5.

2 Preliminaries

Here, we describe underlying hard problems of MQ-PKCs, and Rainbow [12].

2.1 Underlying Hard Problems

First, we describe the Solving Polynomial System problem and a variant of
Isomorphism of Polynomials problem.

• Solving Polynomial System (SPS) Problem: Given a system P =
(p(1), · · · , p(m)) of m nonlinear polynomial equations defined over a finite
field K with degree of d in variables x1, · · · , xn and y ∈ Km, find values
(x′

1, · · · , x′
n) ∈ Kn such that p(1)(x′

1, · · · , x′
n) = · · · = p(m)(x′

1, · · · , x′
n) = y.
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• IP2S (Isomorphism of Polynomials with 2 Secrets) Problem: Given
nonlinear multivariate systems A and B such that B = T ◦ A ◦ S for linear or
affine maps S and T , find two maps S′ and T ′ such that B = T ′ ◦ A ◦ S′.

The SPS problem is proven to be NP-complete [9]. For efficiency, MQ-PKCs
restrict to quadratic polynomials. The SPS problem with all polynomials
p(1), · · · , p(m) of degree 2 is called the MQ-Problem for multivariate quadratic.
The IP problem was first described by Patarin at Eurocrypt’96 [21], in contrast
to the MQ-problem, there is not much known about the difficulty of the IP
problem.

Definition 1. We say that algorithm has advantage ε(λ) in solving the
MQ-problem over a finite field K if for a sufficiently large λ,

AdvA
K(t) = Pr

[A(K,P(x),y) = s ∈ Kn s.t. P(s) = y
| P(x) ← MQ(K), y ← Km

]
≥ ε(λ),

where MQ(K) is a set of all systems of quadratic equations over K. We say
that the MQ-problem is (t, ε)-hard if no t-time algorithm has advantage at least
ε in solving the MQ-problem.

2.2 Rainbow Signature Scheme

Ding and Schmidt [7] proposed an MQ-signature scheme, Rainbow, based on
Unbalanced Oil and Vinegar (UOV) [12]. A system P = (p(1), · · · , p(m)) of mul-
tivariate quadratic polynomials with m equations and n variables over a finite
field K is defined by

p(k)(x1, · · · , xn) =
n∑

i=1

n∑

j=i

p
(k)
ij xixj +

n∑

i=1

p
(k)
i xi + p

(k)
0 ,

for k = 1, · · · ,m. Let v1, . . . , vu+1 (u ≥ 1) be integers such that 0 < v1 < v2 <
· · · < vu < vu+1 = n. Define sets of integers Vi = {1, · · · , vi} for i = 1, . . . , u and
set oi = vi+1 − vi and Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). Then |Vi| = vi and
|Oi| = oi. For k = v1 + 1, . . . , n, we define multivariate quadratic polynomials in
the n variables x1, . . . , xn by

f (k)(x) =
∑

i∈Ol,j∈Vl

α
(k)
ij xixj +

∑

i,j∈Vl,i≤j

β
(k)
ij xixj +

∑

i∈Vl∪Ol

γ
(k)
i xi + η(k),

where l is the only integer such that k ∈ Ol and x = (x1, · · · , xn). Note that
these are Oil and Vinegar polynomials with xi (i ∈ Vl) being Vinegar variables
and xj (j ∈ Ol) being Oil variables. The map F(x) = (f (v1+1)(x), · · · , f (n)(x))
can be inverted by using Oil-Vinegar method. To hide the structure of F , one
composes it with two invertible affine maps S : Km → Km and T : Kn →
Kn. A public key is given as P = S ◦ F ◦ T : Kn → Km and a secret
key is (S,F , T ) which allows to invert the public key. Rainbow is denoted by
Rainbow(K, v1, o1, · · · , ou). For u = 1, we get the original UOV scheme. We use
Rainbow with two layers, Rainbow(K, v1, o1, o2). Let H : {0, 1}∗ → Km be a
collision-resistant hash function. Here, m = o1 + o2 and n = v1 + o1 + o2.
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� Rainbow

– KeyGen(1λ). For a security parameter λ, a public key is PK = P and a
secret key is SK = (S,F , T ) such that P = S ◦ F ◦ T .

– Sign(SK, m). Given a message m, compute h = h(m) ∈ Km and recursively
compute α = S−1(h), β = F−1(α) and γ = T −1(β). To compute β =
F−1(α), i.e., F(β) = α,

• First choose (s1, . . . , sv1) at random, substitute (s1, . . . , sv1) into o1 poly-
nomials f (k) (v1 + 1 ≤ k ≤ v2 = v1 + o1) and get (sv1+1, . . . , sv2) by
solving a system of o1 linear equations o1 unknowns xv1+1, . . . , xv2 using
the Gaussian Elimination.

• Next, substitute (s1, . . . , sv2) into o2 polynomials f (k) (v2 + 1 ≤ k ≤ n)
and get (sv2+1, . . . , sn) by solving a system of o2 linear equations with
o2 unknowns xv2+1, · · · , xn using the Gaussian Elimination.

• Then β = (s1, · · · , sn).
If one of the linear systems do not have a solution, choose other values of
x1, · · · , xv1 and try again. Then, γ is a signature of m.

– Verify(PK, σ). Given (γ, m), check P(γ) = h(m). If it holds, accept the
signature, otherwise reject it.

3 Lite-Rainbow

Now, we construct Lite-Rainbow-0 and Lite-Rainbow-1 based on Rainbow.

3.1 Properties of Lite-Rainbow Keys

Define three integers D1, D2 and D as:

– D1 := v1·(v1+1)
2 + o1 · v1 be the number of nonzero quadratic terms in the

central polynomials of the first layer.

– D2 := v2·(v2+1)
2 + o2 · v2 be the number of nonzero quadratic terms in the

central polynomials of the second layer.
– D := n·(n+1)

2 be the number of quadratic terms in the public polynomials.

We use a special blockwise ordering of monomials and the lexicographical order-
ing for inside the blocks as in [22]. A public key is P = S ◦ F ◦ T , where F is a
central map and two invertible linear maps T : Kn → Kn and S : Km → Km

given by n × n matrix T = (tij) and m × m matrix S = (sij), respectively.
For simplicity, we use two invertible linear maps S and T instead of invertible
affine maps. This replacement doesn’t affect security of MQ-schemes due to the
following Lemma:

Lemma 1 [26]. The IP2S problem using bijective affine maps S and T is poly-
nomial reducible to the IP2S problem using S ∈ GLm(K) and T ∈ GLn(K),
where GLn(K) is a general linear group of invertible n × n matrices over K.
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We denote Q = F ◦ T and get P = S ◦ Q. Let q
(k)
ij be the coefficients of the

monomial xixj in the k-th component of Q, respectively (1 ≤ k ≤ m). We get
the following equations:

q
(k)
ij =

n∑

r=1

n∑

s=r

αrs
ij · f (k)

rs (1 ≤ k ≤ m), (1)

with

αrs
ij =

{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise.

Due to the special structure of the central map F , we can reduce the number of
terms in Eq. (1) as

q
(k)
ij =

{∑v1
r=1

∑v2
s=r αrs

ij · f
(k)
rs (1 ≤ k ≤ o1)∑v2

r=1

∑n
s=r αrs

ij · f
(k)
rs (o1 + 1 ≤ k ≤ m).

We define a transformation matrix Â which is D × D matrix as

Â =

{
(αrs

ij ) (1 ≤ r ≤ v2, r ≤ s ≤ n for the rows)
(αrs

ij ) (1 ≤ i ≤ j ≤ n for the columns).
(2)

Fig. 1. Layout of the matrices P ′, Q′ and F ′ for Lite-Rainbow-1

We divide the matrix Â into six parts as

⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠. Let A =
(

A11 A12

A21 A22

)

be the matrix consisting of the first D2 rows, columns of Â. We write down
the coefficients of P, Q and F (according to the monomial ordering) into three
matrices P ′, Q′ and F ′ and divide these matrices as in Fig. 1. We define P ,
Q and F to be matrices consisting of the first D2 columns of P ′, Q′ and F ′,
respectively. We also define P ′′ and F ′′ to be the matrices consisting of the first
D columns of P ′ and F ′, respectively. Then we have P ′′ = S · F ′′ · Â.
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Finally, we get the following relations between the three matrices P , Q and F :

P = S · Q, i.e., Q = S̃ · P =
(

S′
11 S′

12

S′
21 S′

22

) (
P11 P12

P21 P22

)
, (3)

where S̃ = S−1, P is m×D2 matrix, S̃ is m×m matrix, S′
11 is o1×o1 submatrix

of S̃ and Q is m × D2 matrix.

Q = F · A =
(

Q11 Q12

Q21 Q22

)
=

(
F11 0
F21 F22

) (
A11 A21

A12 A22

)
, (4)

where F is m×D2 matrix, F11 is o1 ×D1 matrix, A is D2 ×D2 submatrix of Â,
and A11 is D1×D1 submatrix of A. We have the same relations the matrices PL,
QL and FL, where PL, QL and FL are linear parts of P ′, Q′ and F ′, respectively.

PL = S · QL, i.e., QL = S̃ · PL =
(

S′
11 S′

12

S′
21 S′

22

) (
PL11 PL12

PL21 PL22

)
=

(
QL11 QL12

QL21 QL22

)
,

QL = FL · T =
(

QL11 QL12

QL21 QL22

)
=

(
FL11 0
FL21 FL22

)
·
(

T11 T12

T21 T22

)

According to these notations, P ′ = (P,PR, PL, PC) and F ′ = (F, FL, FC) are
representations of P and F , respectively.

3.2 Lite-Rainbow-0

In Lite-Rainbow-0, we use a random seed se′ to get the entire secret key (S,F , T ).
So, unlike Rainbow, it needs to recover the entire secret key for signing. Its key
generation is given in Algorithm 1. Let G : {0, 1}λ → {0, 1}k be a secure PRNG
which outputs a sequence of random numbers, for (k, λ) ∈ (Z+)2.

Algorithm 1. Key Generation for Lite-Rainbow-0.
Input: A security parameter λ, system parameters (K, v1, o1, o2), and a PRNG G
Output: (P, se′)
1: Choose a λ-bit random seed se′ and compute G(se′) = (S̃, F , T̃ ). If neither S̃ nor

T̃ is invertible then choose a new random seed again, where T̃ = T −1.
2: Compute P from P = S ◦ F ◦ T .
3: return (P, se′)

� Lite-Rainbow-0

– KeyGen(1λ). After performing Algorithm 1, set PK = P, and SK = se′.
– Sign(SK, m). Given a message m:

• Secret Key Recovery. Compute G(se′) = (S̃,F , T̃ ) from SK.
• Rainbow Sign. Generate a Rainbow signature σ on m using (S̃,F , T̃ ).

– Verify(PK, σ). Given a signature σ on m and PK = P, check P(σ) = h(m).
If it holds, accept σ, otherwise, reject it.
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3.3 Lite-Rainbow-1

In Lite-Rainbow-1, we use a random seed se to get three blocks P11, P21, P22 for
the quadratic part, PL11, PL21, PL22 for the linear part, and PC for the constant
part which appear in gray parts of the matrix P ′ in Fig. 1. The goal of key
generation in Algorithm 2 is to compute all the coefficients of the central map
F ′ and the remainder P12, PR of P and PL12 of PL. For these, we need the
following condition (*):

– The matrix A is invertible and the D1 × D1 submatrix A11 of A is invertible.
– The o1 × o1 submatrix S′

11 of S̃ is invertible.
– The v2 × v2 submatrix T11 of T is invertible.

Algorithm 2. Key Generation for Lite-Rainbow-1.
Input: A security parameter λ, system parameters (K, v1, o1, o2), a random seed se,
and a PRNG G : {0, 1}λ → {0, 1}k

Output: (P12, PR, PL12), (se1, F, FL, FC)

1: Compute G(se) = (P11, P21, P22, PL11, PL21, PL22, PC) and take P11, P21, P22 from
the designated parts of G(se).

2: Choose a λ-bit random seed se1 and compute G(se1) = (S̃, T̃ ). If neither (S̃, S′
11)

nor (T̃ , T11) is invertible then choose a new random seed again.
3: Compute A using Eq. (2). If neither A nor A11 is invertible then go back to line 2.

4: Compute Q11 and Q21 using

(
Q11

Q21

)
= S̃ ·

(
P11

P21

)
.

5: Compute F11 using F11 = Q11 · (A−1
11 ).

6: Compute Q12 using Q12 = F11 · A12.
7: Compute P12 using P12 = S′−1

11 · (Q12 − S′
12P22).

8: Compute Q22 using Q22 = S′
21P12 + S′

22P22

9: Compute F21 and F22 using (F21||F22) = (Q21||Q22) · (A−1).

10: Compute PR from PR = S · F ·
(

A13

A23

)
.

11: Compute G(se) = (P11, P21, P22, PL11, PL21, PL22, PC) and take PL11, PL21, PL22

from the designated parts of G(se).

12: Compute QL11 and QL21 using

(
QL11

QL21

)
= S̃ ·

(
PL11

PL21

)
.

13: Compute FL11 using FL11 = QL11 · (T −1
11 ).

14: Compute QL12 using QL12 = FL11 · T12.
15: Compute PL12 using PL12 = S′−1

11 · (QL12 − S′
12PL22) and QL22 using QL22 =

S′
21PL12 + S′

22PL22.
16: Compute FL21 and FL22 using (FL21||FL22) = (QL21||QL22) · (T −1).
17: Take PC from the designated parts of g(se).
18: Compute FC from FC = S̃ · PC .
19: return (P12, PR, PL12), (se1, F, FL, FC)
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Proposition 1. Given P∗1 = (P11
P21

), P22, PL∗1 = (PL11
PL21

), PL22 and PC , and two
invertible linear maps (S, T ) such that (S, T,A) satisfies the condition (*), it
is possible to construct an MQ-signature scheme with a public/secret key pair
< P/(S,F , T ) > such that P = S ◦ F ◦ T .

Proof. Under the condition (*), for the quadratic part, Q, P12 and F are uniquely
determined from (3) and (4) given (P∗1, P22). Then we can compute P12. For the
linear part, (PL12, FL) is uniquely determined from (PL∗1, PL22). At last, for the
constant part, FC is uniquely determined from PC . Therefore, an MQ-signature
scheme is determined by a public/secret key pair < P/(S,F , T ) >. �
Remark 1. The part P12 is minimal, i.e., one cannot choose the lager part
generated by a seed in advance, as the size of P12 is uniquely determined by the
size of a submatrix which consists of only zeros in F , i.e., F12 = (0). The seed se
for some parts of a public key is a public information, while se′ for (S̃, T̃ ) must
be kept secret.

In Lite-Rainbow-1, before signing and verification, the recovery processes of
the entire secret key and some parts of public key are required, respectively.

� Lite-Rainbow-1

– KeyGen(1λ). After performing Algorithm 2, set PK = (se, P12, PR, PL12)
and SK = (se1,F = (F, FL, FC)).

– Sign(SK, m). Given a message m:
• Secret Key Recovery. Compute G(se1) = (S̃, T̃ ) from SK.
• Rainbow Sign. Using (S̃,F , T̃ ), generate a Rainbow signature σ on m.

– Verify(SK, σ). Given a signature σ on m and PK,
• Public Key Recovery. compute G(se) = (P11, P21, P22, PL11, PL21,

PL22, PC) from PK to recover the entire public key P.
• Rainbow Verify. Check P(σ) = h(m). If it holds, accept σ, otherwise,

reject it.

3.4 Security Analysis and Proof of Lite-Rainbow

Here, we prove unforgeability of Lite-Rainbow-1 in the random oracle model
(ROM) under the hardness assumption of the MQ-problem. It is believed that
breaking RSA (resp., ECC) is as hard as factoring (resp., the DLP in a group
of points of an elliptic curve). However, security of Rainbow-like schemes is
not related to the MQ-problem only: its security is based on the MQ-problem,
the IP2S problem and MinRank problem. This causes difficulty of their secu-
rity proofs against unforgeability in formal security model. Known attacks of
Rainbow-like schemes can be divided into two classes:

– Direct Attack. Given y ∈ F
m
q , find a solution x ∈ F

n
q of P(x) = y.

– Key Recovery Attack (KRA). Given P = S ◦ F ◦ T , find secret linear
maps S and T .
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The direct attack is related to the MQ-problem, and the latter which contains
rank-based attacks and KRAs using equivalent keys and good keys is related
to the MinRank problem and the IP2S problem. In Lite-Rainbow(K, v1, o1, o2),
security against direct attacks and the KRAs using good keys depends on the
selection of (m, n), while security against the KRAs realted to the rank-based
attacks and the Kipnis-Shamir attack depends on the selection of (v1, o1, o2)
associated to a security parameter λ.

We use a PRNG for the key size reduction and randomness of the quadratic
part for the public key depends on security of the PRNG. Now, we prove unforge-
ability of our scheme with special parameter sets in the ROM. Security notion
for public-key signature scheme is described in Appendix. We deal with a hash
function, H, and a PRNG, G, as random oracles. Theorem 1 guarantees the
security of our scheme against direct attacks.

Theorem 1. If the MQ-problem is (t′, ε′)-hard, Lite-Rainbow-1(K, v1, o1, o2)
is (t, qH , qS , qG , ε)-existential unforgeable against an adaptively chosen message
attack, for any t and ε satisfying

ε ≥ e · (qS + 1) · ε′, t′ ≥ t + qH · cV + qS · cS + cG ,

where e is the base of the natural logarithm, and cS , cV and cG are time for a
signature generation, a signature verification and a G evaluation to recover some
parts of a public key, respectively, provided that the parameter set (K, v1, o1, o2)
is chosen to be resistant to the KRAs.

Proof. See Appendix.
A main difference between Rainbow and Lite-Rainbow-1 is the key generation

method by randomizing some quadratic parts of a public key resulting in key
size reduction. After recovering a secret key and a public key from seeds, the
rest of Lite-Rainbow for signing and verification is the same as Rainbow. Security
analysis of Lite-Rainbow against known attacks except direct attacks is the same
as that of Rainbow. According to [4], security of MQ-scheme against direct
attacks is based on one assumption that appears to be quite reasonable due
to considerable empirical evidence gathered by the community of polynomial
system solving.

Assumption. Solving a random quadratic system with m equations and n vari-
ables is as hard as solving a quadratic system with m equations and n variables
with a completely random quadratic part.

This assumption deals with Gröbner bases techniques and other general tech-
niques for solving the MQ-problem. Since these techniques are general, it is quite
plausible to assume that the complexity is determined mainly by the quadratic
part. Proposition 1 in §3 says that the quadratic part R = (P11, P21, P22)
for a public key P is the largest part we can randomly choose. Thus, secu-
rity of Lite-Rainbow-1 against direct attacks depends on the randomness of this
quadratic part R of P. The complexity of direct attacks is the complexity of the
MQ-Problem determined by that of the HybridF5 algorithm [2] which is cur-
rently the fastest algorithm to solve systems of multivariate nonlinear equations.
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Table 2. Running time (Second) for solving quadratic systems on F28

(v1, o1, o2) (5,4,5) (6,5,5) (7,5,6) (8,6,6) (9,6,7) (10,7,7)

Random system 1.55 11.59 87.35 718.25 5565.15 43187.33

Lite-Rainbow-1 1.55 11.60 87.25 699.36 5411.12 43084.24

We compare experimental results of solving quadratic systems derived from
a public key in Lite-Rainbow-1 with random quadratic systems on F28 using F4
algorithm (the details of F5 algorithm are not publicly known) with MAGMA in
Table 2. We use as a hardware Intel Xeon E5-2687W CPU 3.1 GHz. According
to these results, it makes little difference in complexities for solving two types
of quadratic systems.

4 Secure Implementations of Lite-Rainbow

Now, we propose how to implement our schemes in a secure manner.

4.1 Countermeasures of Rainbow Against Side-Channel Attacks

A side-channel attack (SCA) tries to extract secret information from physi-
cal implementations of cryptographic algorithms on constrained small devices.
Side-channel information obtained during cryptographic operations includes
operation time, power consumption profile, electro-magnetic signal and faulty
output. Since Kocher et al. [13] introduced timing attacks on classical PKCs run-
ning on smart cards, various SCAs and their countermeasures were proposed.
Power analysis (PA) [14] which analyzes the power consumption patterns of
cryptographic devices has two basic forms, simple power analysis (SPA) and
differential power analysis (DPA). SPA observes power signals for executions
of cryptographic operations to distinguish cryptographic primitive operations.
DPA collects a number of power consumption signals and uses some sophisti-
cated statistical tools to obtain some useful information from the data. As a
countermeasure, various randomization techniques including random exponent
blinding and random message blinding were proposed [6,14]. Fault injection is
another very powerful cryptanalytic tool, its basic idea is to induce some faults
inside a device by analyzing faulty outputs to get some meaningful informa-
tion [3]. Here, we mainly concern how to randomize Rainbow to prevent the PA.
Basic operations of Rainbow, multiplications and matrix multiplications in finite
fields, may be vulnerable to various PA methods. Certainly, many PAs to AES
are focusing on the S-box computation which consists of finite field inversions
[18]. Since a finite field inversion can, in turn, be implemented with finite field
multiplications, this implies feasibility of the PA to Rainbow. In [20,25], the
authors proposed DPAs on SHA-1 in an MQ-signature, SFLASH, which was
chosen as one of the final selection of the NESSIE project in 2003. They showed
that if implementation of SHA-1 in SFLASH is careless, one can recover a secret
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key Δ, a random seed used for SHA-1. However, their attack cannot be applied
to Rainbow-like schemes. Hence, to overcome these susceptibilities and get some
robustness to the PA, it needs to randomize Rainbow.

We assume that K ia a binary field, but our method can easily be extended
to a prime field case. Our strategy is that all the operations and intermedi-
ate data are randomized during signing. Rainbow consists of three basic opera-
tions, two matrix multiplications by S−1 and T−1, and a central map inversion.
To randomize the multiplication by S−1 and its input data h (= h(m)) together,
we use the following identity:

S−1 · h = (S−1 ⊕ R)(h ⊕ r) ⊕ (S−1 ⊕ R)r ⊕ R · h,

for a random vector r ∈ Km and a random m × m matrix R. Three quantities,
(S−1 ⊕R)(h⊕ r), (S−1 ⊕R)r and R ·h will subsequently be used in randomizing
the central map inversion. In the matrix multiplication by T−1, its input data
t is already randomized, as it is an output of the central map inversion F−1,
which introduces some randomness by choosing a random vector (t1, · · · , tv1) for
Vinegar variables. Thus, it can be randomized by using

T−1 · t = (T−1 ⊕ R)t ⊕ R · t,

for an n × n random matrix R. Finally, to randomize the central map inver-
sion of Rainbow, we explain how to randomize the UOV central map inversion,
since the Rainbow central map is a two-layer UOV central map [12]. Given
s = (sv+1, · · · , sn) ∈ Ko, the UOV central map inversion is to find a solution
t ∈ Kn with F(t) = s. To do so, we first choose a random vector (t1, · · · , tv)
and try to find a solution (tv+1, · · · , tn) such that f (k)(t1, · · · , tn) = sk for
component functions f (k) of F (k = v + 1, · · · , n). We denote the solution
t = (t1, · · · , tn) as t = F−1

(t1,··· ,tv)
(s) for emphasizing its connection with a ran-

dom vector (t1, · · · , tv). Suppose that, instead of the original input s, three values
s(1), s(2), s(3) with s = s(1) ⊕ s(2) ⊕ s(3) are plugged into the central map inver-
sion. Then we can get t(1), t(2), t(3) such that t(l) = F−1

(t1,··· ,tv)
(s(l)) for l = 1, 2, 3.

Note that we assume that all the solutions t(1), t(2), t(3) have the same random
components t1, · · · , tv. Now, using the following Proposition, we can show that
t = t(1) ⊕ t(2) ⊕ t(3) is a solution for the central map inversion with the input s.

Proposition 2. For s(1), s(2), s(3) with s = s(1) ⊕ s(2) ⊕ s(3) and t(1), t(2), t(3)

with t = t(1) ⊕ t(2) ⊕ t(3), if t(l) = F−1
(t1,··· ,tv)

(s(l)) for l = 1, 2, 3, then the vector
t satisfies F(t) = s.

Proof. Since t(l) = F−1
(t1,··· ,tv)

(s(l)) for l = 1, 2, 3, we can set t(l) = (t1, · · · , tv, t
(l)
v+1,

· · · , t
(l)
n ), for some t

(l)
j ∈ K and j = v + 1, · · · , n. Hence, we have

t = t(1) ⊕ t(2) ⊕ t(3) = (t1, · · · , tv, t
(1)
v+1 ⊕ t

(2)
v+1 ⊕ t

(3)
v+1, · · · , t(1)n ⊕ t(2)n ⊕ t(3)n ).

Now, t(l) = F−1
(t1,··· ,tv)

(s(l)) means that,
∑

i∈V, j∈O

α
(k)
ij tit

(l)
j +

∑

i,j∈V, i≤j

β
(k)
ij titj +

∑

i∈V

γ
(k)
i t

(l)
i +

∑

i∈O

γ
(k)
i ti + η(k) = s

(l)
k ,
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for all k, where s
(l)
k denotes the k-th component of s(l), i.e., s(l) = (s(l)v+1, · · · , s

(l)
n ).

Hence, summing up the equations above for l = 1, 2, 3, we get
∑

i∈V, j∈O

α
(k)
ij ti(t

(1)
j ⊕ t

(2)
j ⊕ t

(3)
j ) +

∑

i,j∈V, i≤j

β
(k)
ij titj+

∑

i∈V

γ
(k)
i (t(1)j ⊕ t

(2)
j ⊕ t

(3)
j ) +

∑

i∈O

γ
(k)
i ti + η(k) = sk.

Thus, t = (t1, · · · , tv, t
(1)
v+1 ⊕ t

(2)
v+1 ⊕ t

(3)
v+1, · · · , t

(1)
n ⊕ t

(2)
n ⊕ t

(3)
n ) is a solution of

F(x) = s, i.e., F(t) = s. 	

Combining all the arguments above, we get Algorithm 3 for randomizing signing
of Rainbow. Its implementation result is given in Table 4.

Algorithm 3. Randomization for Rainbow Signing
Input: a secret key of Rainbow(v1, o1, · · · , ou), (S−1, F , T −1) and h = h(m)
Output: a signature σ on h

(S−1-Computation)
1: Randomly choose an m × m matrix R and r ∈ Km.
2: Compute s(1) = (s

(1)
v1+1, · · · , s

(1)
n ) by s(1) = (S−1 ⊕ R) · (h ⊕ r).

3: Compute s(2) = (s
(2)
v1+1, · · · , s

(2)
n ) by s(2) = (S−1 ⊕ R) · r.

4: Compute s(3) = (s
(3)
v1+1, · · · , s

(3)
n ) by s(3) = R · h.

(Inversion of the Central Map F)
5: Randomly generate a vector (t1, · · · , tv1) ∈ Kv1 .

6: (t
(1)
1 , · · · , t

(1)
v1 ) ← (t1, · · · , tv1);

7: (t
(2)
1 , · · · , t

(2)
v1 ) ← (t1, · · · , tv1);

8: (t
(3)
1 , · · · , t

(3)
v1 ) ← (t1, · · · , tv1);

9: For i = 1 to u do
i). Let Fi = (f (vi+1), · · · , f (vi+1)).

ii). Let t(l) = (t
(l)
1 , · · · , t

(l)
vi , xvi+1, · · · , xvi+1), for l = 1, 2, 3,

iii). For l = 1, 2, 3, solve the linear equation system Fi(t
(l)) = (s

(l)
vi+1, · · · , s

(l)
vi+1) to

get a solution (x
(l)
vi+1, · · · , x

(l)
vi+1) = (t

(l)
vi+1, · · · , t

(l)
vi+1), if any.

If there is no solution, go to the step 5) and repeat the process.

10: t(1) ← (t
(1)
1 , · · · , t

(1)
n ); t(2) ← (t

(2)
1 , · · · , t

(2)
n ); t(3) ← (t

(3)
1 , · · · , t

(3)
n );

13: t ← t(1) ⊕ t(2) ⊕ t(3);
(T −1-Computation)
14: Choose a n × n random matrix R.
15: σ(1) ← (T −1 ⊕ R) · t;
16: σ(2) ← R · t;
17: σ ← σ(1) ⊕ σ(2);
return σ
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Table 3. Key Sizes (KB) of Rainbow and Lite-Rainbow.

Security leval Scheme Public key Secret key

80 Rainbow (F28 ,17,13,13) 25.1 19.1

Lite-Rainbow-0 (F28 ,17,10,16) 25.1 0.009766

Lite-Rainbow-1 (F28 ,17,10,16) 8.38 16.79

128 Rainbow(F28 ,36,21,22) 136.1 102.5

Lite-Rainbow-0 (F28 ,36,12,31) 136.1 0.01563

Lite-Rainbow-1 (F28 ,36,12,31) 39.56 96.54

4.2 Selection of Secure and Optimal Parameters

In Rainbow, to find a good compromise between public and secret key size, (Fq, v1,
o1, o2) = (F28 , 17, 13, 13) for an 80-bit security level and (36, 21, 22) for a 128-bit
security level are chosen. In Lite-Rainbow, secure parameter (m,n, v1, o1, o2) for 80-
bit and 128-bit security level should be selected so that they defend the following
five attacks [23]:

– Direct attack: m ≥ 26,43,
– Rainbow-Band-Separation attack: n ≥ 43,79,
– MinRank attack: v1 ≥ 9,15, HighRank attack: o2 ≥ 10,16,
– UOV attack (the Kipnis-Shamir attack): n − 2o2 ≥ 11,17.

Finally, we can choose secure and optimal parameters with the smallest public
key size for Lite-Rainbow-1 as (F28 , 17, 10, 16) for λ = 80 and (F28 , 36, 12, 31) for
λ = 128. In Table 3, we compare the key sizes of Lite-Rainbow with Rainbow.
Compared to Rainbow, the secret key size in Lite-Rainbow-0 and the public key
size in Lite-Rainbow-1 are reduced by factors 99.8 % and 71 %, respectively.

4.3 Implementations

Now, we evaluate performance of Rainbow, Lite-Rainbow-0,-1, and their pro-
tected ones resistant to PA, and ECDSA, RSA for the same security level on the
same platform. We use Rainbow, ECDSA and RSA based on the open source
code in [1]. Details of RSA and ECDSA in our implementations are as follows:

– RSA-1024 and RSA-3072: 1024-bit and 3072-bit RSA signature with message
recovery, respectively.

– ECDSA-160: ECDSA using the standard SECP160R1 elliptic curve, a curve
modulo the prime 2160 − 231 − 1.

– ECDSA-283: ECDSA using the standard NIST B-283 elliptic curve, a curve
over a field of size 2283.

For consistent results, we use as a hardware Intel Xeon E5-2687W CPU 3.1 GHz.
To speed up performance of CTR-PRNG using AES, we implement our schemes
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Table 4. Implementation results (Cycles) of Rainbow, Lite-Rainbow-0, -1 and protected
ones, and RSA, ECDSA.

λ Signature scheme Sign Verify Protected sign

80 RSA-1024 1,061,719 28,258

ECDSA-160 589,249 620,296

Rainbow (F28 ,17,13,13) 47,152 31,684 154,929

Lite-Rainbow-0 (F28 ,17,10,16) 74,179 32,103 188,806

Lite-Rainbow-1 (F28 ,17,10,16) 48,165 59,178 152,501

128 RSA-3072 12,730,848 105,648

ECDSA-283 1,523,052 2,924,292

Rainbow (F28 ,36,21,22) 162,821 132,419 539,338

Lite-Rainbow-0 (F28 ,36,12,31) 299,753 130,380 628,552

Lite-Rainbow-1 (F28 ,36,12,31) 163,401 270,323 514,609

on CPU supporting Advanced Encryption Standard New Instructions
(AES-NI). We summarize implementation results of our schemes, RSA, and
ECDSA, and unprotected ones and protected ones for optimal parameters in
Table 4. Performance results given in Table 4 are averages of 1,000 measure-
ments for each function using C++ with g++ compiler. Compared to Rainbow,
when the total key size is decreased by 44 %, cost for signing and verification
has increased by 34 % – 45 % in Lite-Rainbow-0 and Lite-Rainbow-1. Nevertheless,
verification in Lite-Rainbow-0 and Lite-Rainbow-1 is about 22 times and 11 times
faster than that in ECDSA, respectively, at the 128-bit security level. Signing
in Lite-Rainbow-0 and Lite-Rainbow-1 is about 42 times and 78 times faster than
that in RSA, respectively.

5 Conclusion

We have proposed lightweight variants of Rainbow, Lite-Rainbow-0 and
Lite-Rainbow-1 for constrained devices. By replacing some parts of a public
key, or a secret key with small random seeds, we reduce the secret key in
Lite-Rainbow-0 and the public key size in Lite-Rainbow-1 by factors about 99.8 %
and 71 %, respectively, compared to Rainbow. We have proved unforgeability
of our scheme with special parameter sets (K, v1, o1, o2) in the ROM under the
hardness assumption of the MQ-problem. We have proposed a randomizing sign-
ing for Rainbow-like schemes resistant to the PA. Finally, we have provided a
direct comparison of implementation results for our schemes, RSA, and ECDSA,
and unprotected one and protected one for optimal parameters on the same plat-
form. Modern microprocessors support an embedded AES accelerator for the
PRNG and hash function, where AES operations are independently executed on
the AES accelerator. We believe that our schemes are leading candidates for these
constrained devices. Future works consist of optimizations for performance and
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investigation for practicability of our signature schemes on constrained devices
such as an 8-bit microcontroller.
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(B21503-1).

Appendix

The most general security notion of a public-key signature (PKS) scheme is exis-
tential unforgeability under an adaptively chosen-message attack (EUF-acma).
Its formal security model is defined as follows:

Unforgeability of Signature Schemes Against EUF-acma. An adversary A’s advan-
tage AdvPKS,A is defined as its probability of success in the following game
between a challenger C and A:

• Setup. The challenger runs Setup algorithm and its resulting system para-
meters are given to A.

• Queries. A issues the following queries:
– Sign Query: Adaptively, A requests a signature on a message mi, C

returns a signature σi.
• Output. Eventually, A outputs σ∗ on a message m∗ and wins the game if (i)
Verify(m∗, σ∗) = 1 and ii) m∗ has never requested to the Sign oracle.

Definition 2. A forger A(t, gH , qS , ε)-breaks a PKS scheme if A runs in time at
most t, A makes at most qH queries to the hash oracle, qS queries to the signing
oracle and AdvPKS,A is at least ε. A PKS scheme is (t, qE , qS , ε)-EUF-acma if no
forger (t, qH , qS , ε)-breaks it in the above game.

Theorem 1. If the MQ-problem is (t′, ε′)-hard, Lite-Rainbow-1(K, v1, o1, o2)
is (t, qH , qS , qG , ε)-existential unforgeable against an adaptively chosen message
attack, for any t and ε satisfying

ε ≥ e · (qS + 1) · ε′, t′ ≥ t + qH · cV + qS · cS + cG ,

where e is the base of the natural logarithm, and cS , cV and cG are time for a
signature generation, a signature verification and a G evaluation to recover some
parts of a public key, respectively, provided that the parameter set (K, v1, o1, o2)
is chosen to be resistant to the KRAs.

Proof. A random instance of the MQ-problem (P, η) is given. Suppose that A
is a forger who breaks Lite-Rainbow-1(K, v1, o1, o2) with the target public key
P. By using A, we will construct an algorithm B which outputs a solution x
∈ Kn such that P(x) = η. Algorithm B performs the following simulation by
interacting with A.

Setup. Algorithm B chooses a random seed se and set PK = (se, P12, PR, PL12)
as a public key, where P12, PR, PL12 are the corresponding parts of P.
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At any time, A can query random oracles, G and H, and Sign oracle. To answer
these queries, B does the following:

H−Queries. To respond to H-queries, B maintains a list of tuples (mi, ci, τi,P(τi))
as explained below. We refer to this list as H-list. When A queries H at a point
mi ∈ {0, 1}∗,

1. If the query already appears on H-list in a tuple (mi, ci, τi, P(τi)) then B
returns H(mi) = P(τi).
2. Otherwise, B picks a random coin ci ∈ {0, 1} with Pr[ci = 0] = 1

qS+1 .

– If ci = 1 then B chooses a random τi ∈ Kn, adds a tuple (mi, ci, τi,P(τi)) to
H-list and returns H(mi) = P(τi).

– If ci = 0 then B adds (mi, ci, ∗, η) to H-list from the instance, and returns
H(mi) = η.

Sign Queries. When A makes a Sign-query on mi, B finds the corresponding
tuple (mi, ci, τi,P(τi)) from H-list.

– If ci = 1 then B responds with τi.
– If ci = 0 then B reports failure and terminates.

To verify a signature, A has to query the random oracle G.

G−Queries. To verify a signature, A must query the oracle G. When A queries
G at a point se ∈ {0, 1}λ, B returns G(se) = (P11, P21, P22, PL11, PL21, PL22, PC),
where P11, P21, P22, PL11, PL21, PL22, PC are the corresponding parts of P.

All responses to Sign queries not aborted are valid. If B doesn’t abort as a result
of A’s Sign query then A’s view in the simulation is identical to its view in the
real attack.

Output. Finally, A produces a signature x∗ on a message m∗. If it is not valid
then B reports failure and terminates. Otherwise, a query on m∗ already appears
on H-list in a tuple (m∗, c∗, τ∗,P(τ∗)): if c∗ = 1 then reports failure and
terminates. Otherwise, c∗ = 0, i.e., (c∗, m∗, *, η), then P(x∗) = η. Finally, B
outputs x∗ is a solution of P.

To show that B solves the given instance with probability at least ε′, we
analyze four events needed for B to succeed:

– E1: B doesn’t abort as a result of A’s Sign query.
– E2: A generates a valid and nontrivial signature forgery σ on mi.
– E3: Event E2 occurs, ci = 0 for the tuple containing mi in the H-list.

Algorithm B succeeds if all of these events happen. The probability Pr[E1 ∧E3]
is decomposed as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 ∧ E1] · Pr[E3|E1 ∧ E2] · (∗).

The probability that B doesn’t abort as a result of A’s Sign query is at least
(1− 1

qS+1 )qS since A makes at most qS queries to the Sign oracle. Thus, Pr[E1] ≥
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(1− 1
qS+1 )qS . If B doesn’t abort as a result of A’s Sign query then A’s view is iden-

tical to its view in the real attack. Hence, Pr[E1 ∧ E2] ≥ ε. Given that events E1,
E2 and E3 happened, B will abort if A generates a forgery with ci = 1. Thus, all
the remaining ci are independent of A’s view. Since A could not have issued a sig-
nature query for the output we know that c is independent of A’s current view and
therefore Pr[c = 0|E1 ∧ E2] = 1

qS+1 . Then we get Pr[E3|E1 ∧ E2] ≥ 1
qS+1 . From

(∗), B produces the correct answer with probability at least

(1 − 1
qS + 1

)qS · ε · 1
qS + 1

≥ 1
e

· ε

(qS + 1)
≥ ε′.

Algorithm B’s running time is the same as A’s running time plus the time
that takes to respond to qH H-queries, and qS Sign-queries. The H- and Sign-
queries require a signature verification and a signature generation, respectively.
We assume that a signature generation, a signature verification and a G evalua-
tion to recover some parts of a public key take time cS , cV and cG , respectively.
Hence, the total running time is at most t′ ≥ t + qH · cV + qS · cS + cG . �
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Abstract. In this paper, we introduce a primitive called lossy projec-
tive hashing. It is unknown before whether smooth projective hashing
(Cramer-Shoup, Eurocrypt’02) can be constructed from dual projec-
tive hashing (Wee, Eurocrypt’12). The lossy projective hashing builds a
bridge between dual projective hashing and smooth projective hashing.
We give instantiations of lossy projective hashing from DDH, DCR, QR
and general subgroup membership assumptions (including 2k-th residue,
p-subgroup and higher residue assumptions). We also show how to con-
struct lossy encryption and fully IND secure deterministic public key
encryption from lossy projective hashing.
– We give a construction of lossy projective hashing via dual projective

hashing. We prove that lossy projective hashing can be converted to
smooth projective hashing via pairwise independent hash functions,
which in turn yields smooth projective hashing from dual projective
hashing.

– We propose a direct construction of lossy encryption via lossy projec-
tive hashing. Our construction is different from that given by Hemenway
et al. (Eurocrypt 2011) via smooth projective hashing. In addition, we
give a fully IND secure deterministic public key encryption via lossy
projective hashing and one round UCE secure hash functions recently
introduced by Bellare et al. (Crypto 2013).

Keywords: Lossy projective hashing · Dual projective hashing ·
Smooth projective hashing · Lossy encryption · Deterministic public key
encryption

1 Introduction

Projective Hashing. Cramer and Shoup introduced smooth projective hash-
ing [11] by generalizing their practical chosen ciphertext secure (CCA) encryption
scheme under DDH assumption [10]. There are many other applications of smooth
projective hashing beyond CCA secure PKE, such as password-based authenti-
cated key exchange [6,20], oblivious transfer [15] and leakage resilient encryption
[24,29]. A smooth projective hashing is a family of hash functions {H(k, x)} where
k is a hashing key and x is an instance from some “hard” language. The projective
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 64–84, 2015.
DOI: 10.1007/978-3-319-26617-6 4
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property requires that for any YES instance x, the hash value H(k, x) be deter-
mined by a projective map α(k) and x. The smoothness property requires that for
any NO instance x, α(k) contain no information of H(k, x). As a result, one can
not guess H(k, x) even knowing α(k) and the NO instance x.

Wee [31] proposed dual projective hashing in order to abstract various con-
structions of lossy trapdoor functions [28]. The dual projective hashing also con-
tains a hash family {H(k, x)} with a hashing key k and a language instance x.
The difference is that, for any NO instance x, instead of the smoothness prop-
erty, it requires invertibility, which means that there is a trapdoor to recover
the hashing key k given the projected key α(k) and the hash value H(k, x). The
dual projective hashing can also be used to construct deterministic public key
encryption (DPKE) schemes.

While the “smoothness” property concerns that the projected key and the
instance tell nothing about the hash value, the “invertibility” property requires
that the projected key and hash value reveal the hashing key via a trapdoor. The
“smoothness” in smooth projective hashing provides security while the “invert-
ibility” in dual projective hashing provides functionality.

It is unknown before whether smooth projective hashing can be constructed
from dual projective hashing. One aim of this paper is to address this issue.

Lossy Encryption. In [27], Peikert et al. defined the dual-mode encryption
with two modes. In the normal mode, the encryption and decryption algorithms
behave as usual, and in the lossy mode, the encryption loses information of the
message. In [3], Bellare et al. defined lossy encryption, extending the definition
of dual-mode encryption in [27] and meaningful/meaningless encryption in [22].
Lossy encryption is useful for achieving selective opening security [3,16].

There are two types of methodology for constructing lossy encryption schemes.
The first one is to embed the instance of the hard language into the randomness,
such that for YES instances, the scheme provides normal functionality, and for NO
instances, the randomness is extended to the message space and statistically cover
the information of the message. The other one is to embed the instance of the hard
language into the message, such that for NO instances, the scheme provides normal
functionality, and for YES instances the message is lost into the randomness space.
Consider QR based lossy encryption in [3,16] for instance in Table 1. Hemenway
et al. [16] gave a general construction of lossy encryption based on smooth projec-
tive hashing which fits into the first methodology. For a smooth projective hashing
with projective map α(k) and hash value H(k, x), the ciphertext is (α(r),H(r, x)+
m) where r is the randomness and m is the message. The language instance x is
embeded into the randomness. For any YES instance x, the projective property
provides the decryption functionality. For any NO instance x, H(r, x) is statisti-
cally close to the uniformdistribution, thus,H(r, x)+m is statistically independent
of the message m.

A natural question is that: whether there exists a general construction of lossy
encryption from some hashing system which fits into the second methodology.
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Table 1. Two methods of lossy encryption based on QR. We emphasize the key portion
in boldface. In the ciphertext column, m is message and r is randomness.

pklossy in lossy mode pk in normal mode Ciphertext

Method 1 [16] −1 ∈ QNR, QR =< g > −1 ∈ QNR, QR∪QNR =< g > (−1)mgr

Method 2 [3] y ∈ QNR, QR =< g > y ∈ QR, QR =< g > ymgr

To sum up, the motivations of this paper are to further clarify the relationship
between the smooth projective hashing and the dual projective hashing and to
give a general construction of lossy encryption from some hashing system.

1.1 Our Contributions

In this paper, we introduce the notion of lossy projective hashing. In lossy pro-
jective hashing, there is also a family of hash functions {H(k, x)} with a hashing
key k and a language instance x. The hashing key contains two components, k1
and k2. The projected key α(k1, k2) exactly loses the information of k2 in both
NO and YES instances. We also require the projective property, that is for any
YES instance x, the hash value is determined by projected key and x. Instead
of full invertibility, we require partial invertibility, which stipulates that there is
a trapdoor, for the hash value H(k1, k2, x) on a NO instance x, allowing us to
efficiently recover k2, the message part of the hashing keys.

There are two conceptual differences between dual projective hashing and
dual projective hashing. The first one is that the dual projective hashing only
requires the projective map to lose some information of the hashing key, while
lossy projective hashing requires losing a specific part of the hashing keys, and
the specific part is corresponding to the message in derived lossy encryption. The
second one is that, on any NO instance, the dual projective hashing concerns
that the projected key and hash value reveal the whole hashing key, while the
lossy projective hashing is interested in that the projected key and hash value
tell only the message part of hashing key which is lost by the projected key.

The difference between lossy projective hashing and smooth projective hash-
ing is more obvious. On any NO instance, the “smoothness” property requires
that the projected key and the hash value tell nothing about the hashing key,
while lossy projective hashing concerns that the projected key and hash value
tell the message part of hashing key.

From and to Other Projective Hashing. Interestingly, the lossy projective
hashing builds a bridge between dual projective hashing and smooth projective
hashing.

We give a construction of lossy projective hashing via dual projective hashing.
Let αd(k1) be the projected key in dual projective hashing with lossiness of l
bits, and h be a pairwise independent hash function with input k1 and output
length l − 2 log(1/ε). The average min-entropy of k1 given αd(k1) is larger than
the output length of h. For any key k2 ∈ {0, 1}l−2 log(1/ε), (αd(k1), h(k1) ⊕ k2) is
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the projected key in lossy projective hashing. (Hd(k1, x), h(k1) ⊕ k2) is the hash
value in the lossy projective hashing. The inversion algorithm of k1, provides the
possibility to recover k2.

We then construct smooth projective hashing via lossy projective hashing and
pairwise independent hash functions. Cramer and Shoup [11] showed the general
construction of smooth projective hashing from universal projective hashing via
pairwise independent hash functions. Here, we need only to prove that lossy
projective hashing has the universal property. This result in turn yields a smooth
projective hashing from dual projective hashing.

Instantiations. We give the instantiations of lossy projective hashing from
DDH, DCR, QR and general subgroup membership (SGA) assumptions (includ-
ing 2k-th residue [14], p-subgroup [25] and higher residue [23] assumptions). The
instantiation based on DDH is implied by the works of [17,18] on lossy encryp-
tion. Hemenway and Ostrovsky [17] proved that both QR and DCR assumptions
imply the extended DDH assumption. We use the result given by Hemenway and
Ostrovsky [17] in the instantiations based on QR and DCR assumptions (Fig. 1).

DPKE Lossy EncLossy TDF

Lossy
P-Hash

Dual
P-Hash

Smooth
P-Hash

SGA

QR, DCRDDHLWE
2k-th, p-
sub, HR

Fully [4]

[28]

[31]
[31]

Fully [16]

[31] [11]

Fig. 1. Contributions of this paper. → Shown in this paper, ��� Shown in previous
papers

Lossy Encryption. We propose a direct construction of lossy encryption via
lossy projective hashing. This generic construction is different from that given in
[16] via smooth projective hashing. The instance of subset membership assump-
tion is the public key. The NO instance is the public key in the normal mode
while the YES instance is the public key in the lossy mode. The key pair (k1, k2)
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play the roles of randomness and message respectively. The ciphertext of m
is (α(r,m),H(r,m, x)). The projective and lossy properties imply that, in the
lossy mode, the ciphertext is statistically independent of the message m. The
functionality of decryption is provided by the partial inversion algorithm.

Fully Secure DPKE. We also give a fully IND secure DPKE in the standard
model via lossy projective hashing and UCE secure hash recently introduced
by Bellare et al. [5]. Bellare et al. [4] gave the first fully IND secure DPKE
by combinating lossy trapdoor function and UCE secure hash. In their scheme,
two rounds of UCE secure hash are required. We prove that lossy projective
hashing + one round UCE secure hash is enough for fully IND secure DPKE.

1.2 Related Works

Previous Lossy Encryptions. It has been mentioned that most previous lossy
encryption schemes [3,16,18,27] fall into the two methodologies. However, there
are two exceptions. One is the RSA-OAEP scheme which is proved to be IND-
CPA secure (in fact it is a lossy encryption) by Kiltz et al. [21] under the Φ-hiding
assumption. The other is Rabin-OAEP which is proved to be a lossy encryption
by Xue et al. [32] under the 2k-Φ/4-hiding assumption.

Fully Secure DPKE from LTDF+UCE. Previously, some standard model
DPKE schemes [7,8,13,30,31] have been proposed. As noted by Bellare et al. in
[4], those schemes only achieved security for block sources. Bellare et al. in [4]
gave the first fully IND secure DPKE in the standard model via the LTDF +
UCE method which employs two rounds of UCE secure hash.

2 Preliminaries

2.1 Notations

If S is a set, we denote by |S| the cardinality of S, and denote by x ← S the
process of sampling x uniformly from S. If A is an algorithm, we denote by
z ← A(x, y, · · · ) the process of running A with input x, y, · · · and outputting z.
For an integer n, we denote by [n] the set of {0, 1, · · · , n − 1}. A function is
negligible if for every c > 0 there exists a λc such that f(λ) < 1/λc for all
λ > λc. If A and B are distributions, A =s B means that the statistical distance
between A and B is negligible.

2.2 Subset Membership Assumption

We first recall the definition of subset membership assumption. (Multiple ver-
sions of this assumption have appeared; we use the version in [31].)

Definition 1 (Subset Membership Assumption [31]). Let PP be public
parameters. Let ΠY and ΠN be a pair of disjoint sets. The subset membership
assumption states that the advantage of any PPT adversary A in distinguishing
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the uniform distribution over ΠY and ΠN is negligible even given PP . For any
PPT adversary A, the advantage function

AdvSMA
A = |Pr[A(PP, x) = 1 : x ← ΠN ] − Pr[A(PP, x) = 1 : x ← ΠY ]|

is negligible.

3 Lossy Projective Hashing

In this section, we give the formal description of lossy projective hashing.

Definition 2 (Lossy Projective Hashing).

Setup. On input the security parameter λ, output the public parameters PP
and the hashing system (H,X = ΠY ∪ ΠN ,K = K1 × K2,Π, α, S). PP
contains the subset membership problem associated with the language x, and
ΠY and ΠN correspond to YES and NO instances. There are a pair of sample
algorithms respectively. SampYes(λ) outputs an uniform random x in ΠY

with corresponding witness w. SampNo(λ) outputs an uniform random x in
ΠN with corresponding trapdoor t. K = K1 × K2 is the key space with two
parts. H : K × X → Π is the hash map. α : K1 × K2 → S is a projective
map of hashing keys.

Lossiness. For any k̃2, k̂2 ∈ K2, the statistical distance between the distributions
{α(K1, k̃2)} and {α(K1, k̂2)} is ε, which is negligible in λ. That is, for any
k̃2, k̂2 ∈ K2,

{α(k1, k̃2)|k1 ← K1} =s {α(k1, k̂2)|k1 ← K1}.

Projective Hashing. For all (x,w) ← SampYes(λ), and all (k1, k2) ∈ K,
α(k1, k2) determines the hash value H(k1, k2, x). Precisely, there exists an effi-
cient algorithm Pub such that for all (k1, k2) ∈ K, and (x,w) ← SampYes(λ),

Pub(α(k1, k2), x, w) = H(k1, k2, x).

Partial Invertibility. For all (x, t) ← SampNo(λ), and all (k1, k2) ∈ K, there
exists an efficient inversion algorithm TdInv such that

TdInv(x, t, α(k1, k2),H(k1, k2, x)) = k2.

4 Dual and Smooth Projective Hashing

In this section, we investigate the relationship among lossy projective hashing,
dual projective hashing, and smooth projective hashing. We construct lossy pro-
jective hashing from dual projective hashing in Sect. 4.1 and reduce smooth
projective hashing to lossy projective hashing in Sect. 4.2, which implies that
smooth projective hashing can be constructed from dual projective hashing.
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4.1 From Dual Projective Hashing

We first recall the definition of dual projective hashing in [31], with which we
construct lossy projective hashing.

Definition 3 (Dual Projective Hashing [31]). Assume that the subset mem-
bership problem is over (ΠY ,ΠN ).

Setup. Let PPd be the public parameters, αd(k) be the projective map of key.
Let Kd be the key space and |Kd| = 2n. (x,w) ← SampYes(λ) and (x, t) ←
SampNo(λ).

Lossiness. For any k ∈ Kd, the image size of αd(k) is at most 2n−l.

Projective Hashing. For all x ∈ ΠY , and all k ∈ Kd, αd(k) determines the
hash value Hd(k, x). Precisely, there exists an efficient algorithm Pubd such
that for all αd(k), (x,w) ← SampYes(λ),

Pubd(αd(k), x, w) = Hd(k, x).

Invertibility. For all (x, t) ← SampNo(λ), and all k ∈ Kd, there exists an
efficient inversion algorithm TdInvd such that

TdInvd(x, t, αd(k),Hd(k, x)) = k.

We now describe the construction of lossy projective hashing via dual projec-
tive hashing by adding another part of hashing key and a pairwise independent
hash function. Assume that (H,X = ΠY ∪ ΠN ,Kd,Π, αd, Sd) is a dual projec-
tive hashing and αd has lossiness of l bits. Let h : Kd → {0, 1}m be the pairwise
independent hash function such that m = l − 2 log(1/ε) where ε is a negligible
function of λ. The lossy projective hashing LPH is constructed as follows.

Setup. PP = (PPd, h). The subset membership problem is given by ΠY ,ΠN .
(x,w) ← SampYes(λ), (x, t) ← SampNo(λ). K = Kd × {0, 1}m and S = Sd ×
{0, 1}m.

Hashing. Given the input (k1, k2) ∈ Kd × {0, 1}m, the projective map α is

α(k) = (αd(k1), h(k1) ⊕ k2).

The hash value is given by

H(k, x) = (Hd(k1, x), h(k1) ⊕ k2).

Projective Hashing. On any YES instance x, the hash value can be computed
from α(k) = (α1, α2) and the witness w by

Pub(α(k), x, w) = (Pubd(α1, x, w), α2).

Partial Inversion. On any NO instance x, given α(k) = (α1, α2) and the trap-
door t, compute temp = TdInvd(x, t, α1,Hd(k1, x)) firstly. Return h(temp)⊕α2.

We need a generalized leftover hash lemma in order to prove the lossy property.
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Lemma 1 (Lemma 2.4 in [12]). Let X,Y be random variables such that the
average min-entropy H̃∞(X|Y ) ≥ l. Let H be a family of universal hash family
to {0, 1}m, where m ≤ l − 2 log(1/ε). It holds that for h ← H and r ← {0, 1}l,

Δ((h, h(X), Y )), (h, r, Y )) ≤ ε.

Theorem 1. Under the assumptions that (H,X = ΠY ∪ ΠN ,Kd,Π, αd, Sd) is
a dual projective hashing, and h : Kd → {0, 1}m is a pairwise independent hash
function, then LPH is a lossy projective hashing.

Proof. The correctness of the Partial Inversion algorithm is trivial. Here, we
prove the lossiness property. By the lossiness property of dual projective hashing,
the average min-entropy H̃∞(Kd|αd(Kd)) ≥ n − (n − l) = l. Since m = l −
2 log(1/ε), according to Lemma 1, (h, h(Kd)⊕ k2, αd(Kd)) is ε-close to (h,Um ∈
{0, 1}m, αd(Kd)). For every k1

2, k
2
2 ∈ {0, 1}m,

Δ((αd(Kd), h, h(K) ⊕ k1
2), (αd(Kd), h, h(K) ⊕ k2

2) ≤ 2ε.

Since the hash value is determined by projected key, the lossiness property holds.
	


4.2 To Smooth Projective Hashing

Cramer and Shoup [11] showed the general construction of smooth projective
hashing from universal projective hashing via pairwise independent hash func-
tions. In order to reduce smooth projective hashing to lossy projective hashing,
we just need to prove that a lossy projective hashing is also a universal projec-
tive hashing. At first, we recall the definition of smooth and universal projective
hashing systems given in [11].

Definition 4 (Smooth projective hashing [11]). Let (Hs,Ks,Xs, L,Π,
αs, Ss) be a hash family where L ⊂ Xs, Hs : Ks × Xs → Π and αs : Ks → Ss.
We say that this is a smooth projective hashing, if the following properties hold:

Projetive. For all k ∈ Ks and all x ∈ L, the action of Hs(k, x) is determined
by αs(k).

Smoothness. The following distributions are statistically indistinguishable:

{x, αs(k),Hs(k, x)} =s {x, αs(k), π},

where k ∈ Ks, x ∈ X \ L, and π ∈ Π are chosen ramdomly.

Definition 5 (Universal projective hashing [11]). Let (Hu,Ku,Xu, L,Π,
αu, Su) be a hash family where L ⊂ Xu, Hu : Ku × Xu → Π and αu : Ku → Su.
We say that the hashing family is a universal projective hashing, if the following
properties hold:

Projetive. For all k ∈ Ku and all x ∈ L, the action of Hu(k, x) is determined
by αu(k).
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ε-universal. Consider the probability defined by choosing k ∈ Ku at random.
For all s ∈ Su, x ∈ Xu \ L, and π ∈ Π, it holds that

Pr[H(k, x) = π|αu(k) = s] ≤ ε.

Theorem 2. Assume that (H,X = ΠY ∪ ΠN ,K = K1 × K2,Π, α, S) is a lossy
projective hashing where K = K1 × K2 = {0, 1}n−l × {0, 1}l, then it is also a
1/2l-universal projective hashing.

Proof. As the projective property is obvious, it is enough to prove that the
lossy projective hashing satisfies the “universal” property. Let (H,X = ΠY ∪
ΠN ,K = K1 × K2,Π, α, S) be a lossy projective hashing where K = K1 ×
K2 = {0, 1}n−l × {0, 1}l. Consider the probability space defined by choosing
(k1, k2) ∈ K at random. Let s ∈ S, x ∈ X \ L, and π ∈ Π. Denote by k∗

2

the output of partial inversion algorithm TdInv(x, t, s, π). It holds that Pr[k2 =
k∗
2 |(H(k1, k2, x) = π ∧ α(k1, k2) = s)] = 1. According to the lossy property,

Pr[k2 = k∗
2 |α(k1, k2) = s] = 1/2l. Then, consider the probability defined by

choosing k1, k2 at random,

Pr[H(k1, k2, x) = π ∧ α(k1, k2) = s]
=Pr[H(k1, k2, x) = π ∧ α(k1, k2)=s]Pr[k2=k∗

2 |(H(k1, k2, x)=π ∧ α(k1, k2)=s)]
=Pr[k2 = k∗

2 ∧ H(k1, k2, x) = π ∧ α(k1, k2) = s]
≤Pr[k2 = k∗

2 ∧ α(k1, k2) = s]
=Pr[k2 = k∗

2 |α(k1, k2) = s]Pr[α(k1, k2) = s]

=1/2lPr[α(k1, k2) = s].

Thus Pr[H(k1, k2, x) = π|α(k1, k2) = s] ≤ 1/2l, and (H,X = ΠY ∪ ΠN ,K =
K1 × K2,Π, α, S) is a 1/2l-universal projective hashing. 	


5 Instantiations

In this section, we present the instantiations of lossy projective hashing based
on decisional Diffie-Hellman (DDH), quadratic residue (QR), decision composite
residuosity (DCR) and general subgroup membership assumptions.

5.1 Instantiation from DDH Assumption

This construction is highly related to the lossy encryption given by Hemenway
and Ostrovsky [18]. Let G be a group of prime order p, and g be the genera-
tor. Firstly, We describe the subset membership problem. Sample s1, s2, · · · , sn,
r0, · · · , rn ∈ Zp. Set v = (gr0 , · · · , grn)T,

U1 =

⎛

⎜
⎜
⎜
⎝

gr0s1 , gr0s2 , · · · , gr0sn

gr1s1 , gr1s2 , · · · , gr1sn

...
. . .

...
grns1 , grns2 , · · · , grnsn

⎞

⎟
⎟
⎟
⎠

, or U2 =

⎛

⎜
⎜
⎜
⎝

gr0s1 , gr0s2 , · · · , gr0sn

gr1s1g, gr1s2 , · · · , gr1sn

...
. . .

...
grns1 , grns2 , · · · , grnsng

⎞

⎟
⎟
⎟
⎠

.
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Note that the (i+1, i)-th entry of U1 is grisi while that of U2 is grisig for 1 ≤ i ≤
n. Then we define the exponentiation rules. For a group G, an element g ∈ G, a
vector −→x = (x1, · · · , xm), let (gr1 , · · · , grm)

−→x = g
∑n

i=1 rixi . For an s × t matrix
U = (uij) over G, and a vector −→x = (x1, · · · , xs), let U

−→x = (
∏s

j=1 u
xj

ji )1≤i≤t.
The lossy projective hashing LPHDDH based on DDH assumption is constructed
as follows.

Setup. PP = (G, g, v). The subset membership problem is given by ΠY =
{U1}, and ΠN = {U2}. Both YES and NO instances are efficiently samplable.
s = (si)1≤l≤n is the witness for a YES instance and the trapdoor for a NO
instance.

Hashing. The input is k = (k1, k2) = (k1, (k21, · · · , k2n)) ∈ Zp × {0, 1}n. The
projective map α is

α(k) = vk = gr0k1+
∑n

i=1 rik2i .

The hash value is given by H(k, U) = Uk = (uk1
1i

∏n+1
j=2 u

k2(j−1)
ji )1≤i≤n.

Projective Hashing. On any YES instance U1, the hash value can be computed
from α(k) and the witness s by

Pub(vk, v, U1, s) =
(
(vk)si

)
1≤i≤n

.

Partial Inversion. Given c0 = vk, C = H(k, U2) = (c1, · · · , cn) and s, we can
recover k2 by computing (gk21 , gk22 , · · · , gk2n) = (c1c−s1

0 , c2c
−s2
0 , · · · , cnc−sn

0 ).

Theorem 3. Under the DDH assumption the scheme LPHDDH is a lossy pro-
jective hashing.

Proof. As shown in [28], the subset membership assumption holds even given
(G, g, v) under the DDH assumption. At first, we have H(k, U1) = Uk

1 =
(g(r0k1+

∑n
j=1 rjk2j)si)1≤j≤n =

(
(vk)si

)
1≤i≤n

, for any YES instance. The Pub

algorithm is correct on any YES instance, thus the projective hashing prop-
erty holds. On NO instances, the correctness of the partial inversion algorithm
is obvious.

Since vk = gr0k1+
∏n

i=1 rik2i , when k1 is randomly chosen from Zp, vk statisti-
cally loses the information of k2. Thus α(k) is independent of k2, and the lossy
property holds. 	


5.2 Instantiation from QR

Let N = PQ, where P,Q are safe primes and P,Q ≡ 3 mod 4. Let QR denote
the subgroup of quadratic residues and JN denote the subgroup with Jacobi
symbol 1. We have that −1 ∈ JN \ QR. Let g and h be the generators of the
group QR. The lossy projective hashing LPHQR based on QR assumption is
constructed as follows.
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Setup. PP = (N, g, h). The subset membership problem is given by

ΠY = {g, h, g1 = ga, h1 = ha : a ← �N

2
�},

ΠN = {g, h, g1 = ga, h1 = (−1)ha : a ← �N

2
�}.

Both YES and NO instances are efficiently samplable. Here, a is the witness for
a YES instance and the trapdoor for a NO instance.

Hashing. Given the input k = (k1, k2) ∈ Z�N
2 � ×{0, 1}, the projective map α is

α(k) = gk1hk2 .

The hash value is given by H(k, (g, h, g1, h1)) = gk1
1 hk2

1 .

Projective Hashing. On any YES instance (g, h, g1, h1), the hash value can
be computed from α(k) and the witness a by

Pub(α(k), (g, h, g1, h1), a) = α(k)a = H(k, (g, h, g1, h1)).

Partial Inversion. On any NO instance (g, h, g1, h1), given α(k) = gk1hk2 and
the trapdoor a, we have that H(k, (g, h, g1, h1)) = (−1)k2α(k)a. The algorithm
returns 0 if H(k, (g, h, g1, h1)) = α(k)a and 1 otherwise.

Theorem 4. Under the QR assumption the scheme LPHQR is a lossy projective
hashing.

Proof. According to [17], the subset membership assumption given above is
implied by the QR assumption. The projective property and the correctness
of partial inversion algorithm are obvious.

When k1 is randomly chosen from Z�N
2 �, gk1hk2 statistically loses the infor-

mation of k2. α(k) is independent of k2, thus the lossy property holds. 	


5.3 Instantiation from DCR

Let N = pq be the product of two large primes of roughly the same size. For
an element ω ∈ Z∗

N2 there exists a unique pair (x, y) ∈ ZN × Z∗
N such that

ω = (1+N)xyN . The DCR assumption states that it is difficult to decide if x = 0
or not. Let g and h be the generator of 2N -th residues. The computations below
are over Z∗

N2 . The lossy projective hashing LPHDCR based on DCR assumption
is constructed as follows.

Setup. PP = (N, g, h). The subset membership problem is given by

ΠY = {g, h, g1 = ga, h1 = ha : a ← �N2

4
�},
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ΠN = {g, h, g1 = ga, h1 = (1 + N)ha : a ← �N2

4
�}.

Both YES and NO instances are efficiently samplable. Here, a is the witness for
a YES instance and the trapdoor for a NO instance.

Hashing. Given the input k = (k1, k2) ∈ Z�N
2 � × ZN , the projective map α is

α(k) = gk1hk2 .

The hash value is given by H(k, (g, h, g1, h1)) = gk1
1 hk2

1 .

Projective Hashing. On any YES instance (g, h, g1, h1), the hash value can
be computed from α(k) and the witness a by

Pub(α(k), (g, h, g1, h1), a) = α(k)a = H(k, (g, h, g1, h1)).

Partial Inversion. On any NO instance (g, h, g1, h1), given α(k) and the trap-
door a, we have that

H(k, (g, h, g1, h1)) = (1 + N)k2α(k)a = (1 + k2N)α(k)a.

Thus, k2 = H(k,(g,h,g1,h1))/α(k)a−1
N .

Theorem 5. Under the DCR assumption the scheme LPHDCR is a lossy pro-
jective hashing.

Proof. According to [17], the subset membership assumption given above is
implied by the DCR assumption. The projective property and the correctness of
partial inversion algorithm are obvious.

When k1 is randomly chosen from Z�N
2 �, gk1hk2 statistically loses the infor-

mation of k2. α(k) is independent of k2, thus the lossy property holds. 	


5.4 Instantiation from Subgroup Membership Assumption

We first recall the definition of subgroup membership assumption (SGA). Then
lossy projective hashing based on SGA is shown.

Gjφsteen [19] gave the definition of subgroup discrete logarithm problem
which is a generalization of Paillier’s [26] partial discrete logarithm problem.

Definition 6 (Subgroup Membership Assumption [19]). Let G be a finite
cyclic group with subgroups H and K. G = H×K. Let g (resp. J) be a generator
of group K (resp. G). The subgroup membership problem SM(G,K) asserts that,
for any PPT distinguisher D, the advantage

AdvSM(G,K)

D = |Pr[D(G,K, x) = 1|x ← K] − Pr[D(G,K, x) = 1|x ← G \ K]|.
is negligible, where the probability is taken over coin tosses of D.
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If ϕ : G → G/K is the canonical epimorphism, then the subgroup discrete
logarithm problem SDL(G,H) is: given a random x ∈ G, compute logϕ(J)(ϕ(x)).
We assume that given a trapdoor t the subgroup discrete logarithm problem is
efficiently solvable. There are some SGAs satisfy the subgroup discrete logarithm
assumption, such as QR, DCR, 2k-th residue [14], p-subgroup [25] and higher
residue [23] assumptions.

Hemenway and Ostrovsky [17] gave the definition of extended DDH assump-
tion. It states that the following two sets are computational indistinguishable,

ΠY = {g, gx, gy, gxy : g is a generator of K, x, y ← Z|G|},

ΠN = {g, gx, gy, gxyh : g (resp.h) is a generator of K (resp.H), x, y ← Z|G|}.

We now give a sketch proof that the SGA implies the extended DDH assump-
tion. The proof is an abstract of Theorem 2 on DCR case in [17]. By the
SGA assumption, it is computationally indistinguishable if we replace gx by
a random element X ∈ G in both ΠY and ΠN . As g ∈ K, gy only contains
the information of y mod |K|. Then, if represent X by X1X2 ∈ HK, Xy =
X

y mod |H|
1 X

y mod |K|
2 , and X

y mod |H|
1 is definitely undetermined even given gy.

Thus, the statistical instance between {g,X, gy,Xy} and {g,X, gy,Xyh} is neg-
ligible. The extended DDH assumption holds if SGA holds.

Under SGA, it is difficult to decide the instance {g1, g2, g3, g4} is randomly
chosen from ΠY or ΠN . The lossy projective hashing LPHSGA is constructed
as follows.

Setup. PP = (N, g1, g2). The subset membership problem is given by ΠY and
ΠN . Both YES and NO instances are efficiently samplable. Here, (y, h) is the
witness for a YES instance and the trapdoor for a NO instance.

Hashing. Given the input k = (k1, k2) ∈ Z|K| × Z|H|, the projective map α is

α(k) = gk1
1 gk2

2 .

The hash value is given by H(k, (g1, g2, g3, g4)) = gk1
3 gk2

4 .

Projective Hashing. On any YES instance (g1, g2, g3, g4), the hash value can
be computed from α(k) and witness y by

Pub(α(k), (g1, g2, g3, g4), (y, h)) = α(k)y.

Partial Inversion. On any NO instance (g1, g2, g3, g4), given α(k) and the
trapdoor (y, h), we have that H(k, (g1, g2, g3, g4)) = hk2α(k)y. Then k2 can be
recovered by the subgroup discrete logarithm algorithm.

Theorem 6. Under the subgroup membership assumption, the scheme LPHSGA

is a lossy projective hashing.

Proof. On any YES instance (g, gx, gy, gxy), α(k)y = gk1+yk2 = H(k, (g, gx, gy,
gxy)), the projective property holds. When k1 is randomly chosen from Z|K|,
gk1hk2 statistically loses the information of k2. α(k) is independent of k2, thus
the lossy property holds. 	
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Remark 1. The instantiations in Sects. 5.2 and 5.3 are concrete examples of this
construction. This construction implies lossy projective hashing based on 2k-th
residue [14], p-subgroup [25] and higher residue [23] assumptions.

6 Lossy Encryption

In this section, we deal with the second motivation of this paper. We first recall
the definition of lossy encryption in [3], then give a generic construction from
lossy projective hashing. This construction fits into the second methodology of
constructing lossy encryption mentioned in the Introduction section.

Definition 7 (Lossy Encryption [3]). A lossy encryption scheme is a tuple
of probability polynomial time (PPT) algorithms (Geninj, Genloss, Enc, Dec).

Geninj: Output injective keys (pk, sk). The private key space is K.
Genloss: Output lossy keys (pkloss,⊥).
Enc: M × R → C. The message space is M. The randomness string space is

R and the ciphertext space is C.
Dec: K × C → M.

These algorithms satisfy the following properties:

– Correctness. For all m ∈ M and r ∈ R, Dec(sk,Enc(pk,m, r)) = m.
– Indistinguishability of the injective key from the lossy key. The injective and

lossy public keys are computationally indistinguishable:

{pk|(pk, sk) ← Geninj} =c {pk|(pk,⊥) ← Genloss}

– Lossiness of encryption with lossy keys. For any lossy public key pkloss, and
any pair of message m0,m1 ∈ M, there is

{Enc(pkloss,m0, r))|r ∈ R} =s {Enc(pkloss,m1, r))|r ∈ R}

Let (H,X = ΠY ∪ΠN ,K = K1 ×K2,Π, α, S) be a lossy projective hashing and
K = {0, 1}n × {0, 1}l. The lossy encryption LE is constructed below:

Geninj: It generates a NO instance (x, t) ← SampNo(λ).

pk = (x, α,H), sk = t.

Genloss: It generates a YES instance (x,w) ← SampY es(λ).

pk = (x, α,H).

Enc: On input a message m ∈ {0, 1}l, it randomly chooses r ∈ {0, 1}n. The
ciphertext is (c1, c2) = (α(r,m),H(r,m, x)).

Dec: On input sk = t, and a ciphertext C = (c1, c2), it computes m using the
partial inversion algorithm TdInv.
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Theorem 7. If (H,X = ΠY ∪ ΠN ,K = K1 × K2,Π, α, S) is a lossy projective
hashing, then the scheme LE above is a lossy encryption scheme.

Proof. We show that the above scheme satisfies the three properties of lossy
encryption.
– Correctness on real keys. By the correctness of partial inversion algorithm, for

all m ∈ {0, 1}l and r ∈ {0, 1}n,

TdInv(x, t, α(r,m),H(r,m, x)) = m.

– Indistinguishability of the injective key from the lossy key. The only difference
between the injective and the lossy keys is the instance sample algorithm. The
indistinguishability between them is guaranteed by the subset membership
assumption. That is

Advinj,loss
I = Pr[I(x ← ΠN , α, H) = 1] − Pr[I(x ← ΠY , α, H) = 1] ≤ AdvSMA

A .

– Lossiness of encryption with lossy keys. Since x is a YES instance, H(r,m, x) is
fully determined by α(r,m). For every m1,m2 ∈ M, Δ(α(R,m1), α(R,m2)) ≤
ε, since α(·, ·) statically loses the information of its second input. Thus

Δ((α(R,m1),H(R,m1, x)), (α(R,m2),H(R,m2, x))) ≤ ε.

	

Remark 2. The derived DDH based lossy encryption is exactly the scheme given
in [18], which is less efficient than the DDH based lossy encryption given
in [3,16].

7 Fully IND Secure DPKE

In this section, we give the construction of a fully IND secure DPKE by combi-
nation of lossy projective hashing system and UCE secure hash functions. Deter-
ministic public key encryption (DPKE) requires that the encryption algorithm,
on input the public key and the message, deterministically return a ciphertext.
There are PRIV formalization [1] and IND formalization [2] for the security of
DPKE schemes. We use the full IND formalization in [4] which captures the
case that the messages are individually unpredictable but may be correlated.
We recall the definition of IND security for DPKE scheme (D.kg,D.Enc,D.Dec)
firstly.

GameINDA
D(λ) :

b ← {0, 1}, (pk, sk) ← D.kg(λ);
(m0 = {mi

0}v
i=1,m1 = {mi

1}v
i=1) ← A1(λ);

For i = 1 to v do
c[i] ← D.Enc(λ, pk,mi

b);
c = {c[i]}1≤i≤v;
b′ ← A2(λ, pk, c);
Return(b′ = b).
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It is required that mi
0 (resp. mi

1) be distinct for 1 ≤ i ≤ v. The guessing proba-
bility is

GuessA = max{Pr[mi
b = m : (m0,m1) ← A1]},

for all b ∈ {0, 1}, 1 ≤ i ≤ v, m ∈ {0, 1}∗. We say that the scheme is IND secure if
AdvIND

DE,A = 2Pr[INDA
D(λ)]−1 is negligible for any PPT adversary A = (A1, A2)

with GuessA being negligible.
Bellare et al. [5] gave the definition of UCE secure hash functions. The UCE

secure hash family is indistinguishable from the random oracle, for some kinds
of source S. A source S, is statistically unpredictable if it is hard to guess the
source’s hash queries even given the leakage for unbounded algorithm. A source
S, is computationally unpredictable if it is hard to guess the source’s hash queries
even given the leakage for a computational bounded algorithm. Brzuska et al.
[9] proved that UCE secure hash functions for computationally unpredictable
source is not achievable if indistinguishable obfuscation is possible. But they
gave some evidence that their result does not work on statistically unpredictable
sources.

Please refer [5] for formal definition of UCE secure hash functions for statis-
tically unpredictable source.

We now give the fully IND secure DPKE from lossy projective hashing and
UCE secure hash functions. Bellare et al. in [4] gave the first fully IND secure
DPKE by combining lossy trapdoor function and UCE secure hash function. In
their scheme, two rounds of UCE secure hash function is required. Here, we prove
that lossy projective hashing + one round UCE secure function is enough for fully
IND secure DPKE. Let (H,ΠY ∪ ΠN ,K,Π, α, S) be a lossy projective hashing.
The key space is {0, 1}s × {0, 1}t. Let Huce be the family of UCE secure hash for
statistically unpredictable source with input length t and output length s.

D.kg: It generates a NO instance (x, τ) ← SampNo(λ). Choose a random h
from Huce.

pk = (x, α,H, h), sk = (τ, h).

D.Enc: On input a message m ∈ {0, 1}t, it computes h(m). The ciphertext is

(c1, c2) = (α(h(m),m),H(h(m),m, x)).

D.Dec: On input sk = (T, h), and a ciphertext C = (c1, c2), it computes m
using the partial inversion algorithm TdInv.

Theorem 8. Let (H,ΠY ∪ ΠN ,K,Π, α, S) be a lossy projective hashing and
Huce be the family of UCE secure hash function with statically unpredictable
source. If there is an IND adversary A, then there is an adversary B for solving
the subset membership assumption or a distinguisher D of UCE secure hash with
respect to a statistically unpredictable source S, such that,

Advind
A ≤ 2AdvSMA

B + 2Advuce
S,D + v2/2s−1,
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Advpred
S,P ≤ v2

2s
+ qv · GuessA(·),

where q bounds the output size of the predictor P .

Proof. The correctness of the decryption algorithm is guaranteed by the correct-
ness of the partial inversion algorithm. In the following, we prove the fully IND
security by describing a sequence of experiments Game 0, Game 1, Game 2,
and Game 3. Let A = (A1, A2) be an adversary attacking the above scheme.
Let Ti, i = 0, 1, 2, 3 denote the event that the Game i returns 1.

Game 0. This game is identical to the original IND game of DPKE. That is, the
SampNo algorithm outputs x and trapdoor τ . The public key and encryption
algorithms are identical to those of the original scheme.

Game 1. The only difference with Game 0 is the instance sample algorithm.
The instance x is chosen by SampY es rather than SampNo. That is, (x,w) ←
SampY es(λ). Then we have

Pr[T0] − Pr[T1] = AdvSMA
B ,

where B is the adversary attacking the underly subset membership problem. On
input a YES or NO instance x, B runs as follows.

B(λ, x) :
h ← Huce, pk ← (x, α,H, h), b ← {0, 1},

(m0 = {mi
0}v

i=1,m1 = {mi
1}v

i=1) ← A1(λ)
For i = 1, to v,

c[i] ← (α(h(mi
b),m

i
b),H(h(mi

b),m
i
b, x)).

c = {c[i]}1≤i≤v.

b′ ← A2(λ, pk, c),
Return(b′ = b).

If x ∈ ΠN , then B is simulating Game 0 for A. Otherwise B is simulating Game 1.

Game 2. The only difference with Game 1 is that the UCE secure hash function
h is replaced by a random oracle RO. Then we have Pr[T1] − Pr[T2] = Advuce

S,D.
Here, S is a statistically unpredictable source interacting with HASH (h in
Game 1, RO in Game 2), and D is the distinguisher of the hash function and
the random oracle. Then we have that

Pr[T1] − Pr[T2] = Advuce
S,D.

What is left is to prove that the source S is statistically unpredictable. The
leakage of S is (b, pk, c). b and pk are independent of the message. According to
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the lossy property, α(RO(mi
b),m

i
b) is statistically independent of the message.

Since the public key is on Y ES instance, H(RO(mi
b),m

i
b, x) is totally determined

by α(RO(mi
b),m

i
b), and contains no information of the message. The ciphertext

is statistically independent of the message. Let P be the statistical predicator,
and q be a polynomial that bounds the size of predictor’s outputs. The chance
that the predicator P guesses the messages is at most qvGuessA.

Source SHASH(λ) :
x ← SampY es(λ);
pk ← (x, α,H, h), b ← {0, 1};
(m0,m1) ← A1(λ);
For i = 1 to v do

r ← HASH(mi
b);

c[i] ← (α(r,mi
b),H(r,mi

b, x));
c = {c[i]}1≤i≤v;
Return (b, pk, c).

Distinguisher D(λ,L, h) :
(b, pk, c) ← L;
b′ ← A2(λ, pk, c);
Return (b′ = b).

Game 3. The only change is that the random oracle does not store a list of
queried instance and returns a fresh random answer for every query. Since the
strings mi

b are distinct, the collision happens only when the random answer are
repeated, which happens with probability at most v2

2s . Then we have

Pr[T2] − Pr[T3] = v2/2s.

Since α(RO(mi
b),m

i
b) is statistically independent of b, what A2 receives is inde-

pendent of the challenge bit b, thus Pr[T3] = 1/2.
By adding up the sequence of results, we have

Advind
A = 2Pr[T0] − 1 ≤ 2AdvSMA

B + 2Advuce
S,D + v2/2s−1.

	


8 Conclusion

In this paper, we introduce the primitive of lossy projective hashing. It is similar
to, but significantly different from, dual projective hashing and smooth projective
hashing. We also provide constructions of lossy projective hashing from DDH,
DCR, QR and general SGA assumption. The lossy projective hashing builds
a bridge between dual projective hashing and smooth projective hashing. It
is applicable to lossy encryption scheme. Finally, we give a fully IND secure
deterministic public key encryption via lossy projective hashing and one round
UCE secure hash functions.
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Abstract. SSL/TLS is one of the most widely deployed cryptographic
protocols on the Internet. It is used to protect the confidentiality and
integrity of transmitted data in various client-server applications. The
currently specified version is TLS 1.2, and its security has been analyzed
extensively in the cryptographic literature. The IETF working group is
actively developing a new version, TLS 1.3, which is designed to address
several flaws inherent to previous versions.

In this paper, we analyze the security of a slightly modified version
of the current TLS 1.3 draft. (We do not encrypt the server’s certifi-
cate.) Our security analysis is performed in the constructive cryptogra-
phy framework. This ensures that the resulting security guarantees are
composable and can readily be used in subsequent protocol steps, such
as password-based user authentication over a TLS-based communication
channel in which only the server is authenticated. Most steps of our
proof hold in the standard model, with the sole exception that the key
derivation function HKDF is used in a way that has a proof only in
the random-oracle model. Beyond the technical results on TLS 1.3, this
work also exemplifies a novel approach towards proving the security of
complex protocols by a modular, step-by-step decomposition, in which
smaller sub-steps are proved in isolation and then the security of the
protocol follows by the composition theorem.

1 Introduction

SSL/TLS is arguably one of the most widely-used cryptographic protocols secur-
ing today’s Internet. It was introduced by Netscape [15] in the context of protect-
ing connections between web browsers and web servers, but nowadays the proto-
col is also used for many other Internet protocols including, e.g., SMTP or IMAP
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(for e-mail transmissions) and LDAP (for accessing directories). Flaws and insecu-
rities in the original design required the protocol to be fixed repeatedly; the current
version is TLS 1.2 [12]. A preliminary version of TLS 1.3, which deviates from prior
versions considerably, is currently under development [13]. In this paper, we ana-
lyze the security of this latest (draft) version of TLS.

1.1 Our Contributions

We prove the security of (a slightly modified version of) the ephemeral
Diffie-Hellman handshake of TLS 1.3 with unilateral authentication, that is, where
only the server has a certificate. We expect that this mode will be used widely in
practice, although recently othermodes based onpre-shared keys orDiffie-Hellman
with a certified group element have been added to the draft.

More precisely, we prove that TLS 1.3 in ephemeral Diffie-Hellman mode1

constructs a unilaterally secure channel, that is, a channel where the client has
the guarantee that it securely communicates with the intended server while the
server has no comparable guarantee. The protocol assumes that an insecure
network and a public-key infrastructure (PKI) are available. Our results for TLS
1.3 are in the standard model, with the sole exception that the key derivation
function HKDF is used in a way for which security has so-far only been proved
in the random-oracle model.2

We stress that our result guarantees composability, both in the sense that
multiple sessions of the protocol can be used concurrently, and in the sense that
the constructed channel can safely be used in applications that assume such a
channel. In particular, adding password-based authentication for the client in
the unilaterally secure channel immediately yields a mutually secure channel.

Our proof follows a modular approach, in which we decompose the protocol
into thinner layers, with easier intermediary proofs. The security guarantee of
the entire protocol then follows by composition. In particular:

– Each individual proof consists of a reduction from only a small number of
assumptions,3 and can be updated individually if the corresponding step of
the protocol is altered.

– If a better proof is found for one of the smaller sub-steps, re-proving only
this sub-step immediately results in an improved security statement of the
complete protocol by virtue of the composition theorem.

Modification of the Protocol. While in the original draft [13] the server sends
its (PKI) certificate encrypted under preliminarily established keys, we analyze
a version of the protocol in which the certificate is sent in clear. Encrypting
the certificate complicates the security analysis: on the one hand, the symmetric
1 Subject to the modification described below.
2 HKDF is used to extract from a Diffie-Hellman group element without a salt. The

only proof of this that we know of relies on random oracles.
3 The ultimate goal in such a modularization is that the proof of each step consist of

only a single reduction, but TLS 1.3 does not allow for this.
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keys are authenticated by the certificate (as the latter authenticates the server’s
key-exchange share); on the other hand, the certificate is protected with the
symmetric keys. Our proof can be modified along the lines of a similar analysis
of IPsec [16], but at the cost of a more complicated formalization.

Limitations of Our Analysis. Our proof does not cover the notion of (perfect)
forward secrecy; the main reason is that no formalization of this property cur-
rently exists in the constructive cryptography framework we work in. Note that
while our definitions do not model the adaptive corruption of parties, they do
guarantee that the keys can be used in arbitrary applications, which traditional
game-based notions model via so-called key-reveal oracle queries.

Our proof only applies to sessions with a fixed TLS 1.3 version and uses an
abstract formulation of a PKI corresponding to the guarantee that (a) a client
knows the identity of the server with which it communicates; and (b) only the
honest server can get a certificate for this identity [22,24]. This means that
some types of attacks are precluded from the model, such as version rollback
(by assuming a fixed version) and Triple Handshake [5] (by assuming that the
server be honest). This implies, in particular, that our results do not require the
collision resistance of the hash function for the security of the key derivation
(but only during the authentication); in other words, the additional security
achieved by including the session hash into the key derivation is neither defined
nor proven. Furthermore, our analysis does not cover session resumption.

Our analysis covers concurrent sessions, at the cost of some complexity in
our intermediary proof steps. Indeed, the specific design of TLS makes many of
these steps cumbersome by requiring us to model multiple sessions explicitly;
this is an effect of TLS breaking natural module boundaries between different
parts of the protocol, by explicitly using protocol data from lower levels (i.e., the
transmitted messages) in higher-level parts of the protocol (hashed transcripts
in the key derivation and the finished messages). Since some of the low-level
data used in these computations, such as the server certificate, are correlated
across multiple sessions of the same server, we cannot use generic composition
to prove them in isolation. In a protocol designed from scratch, one can ensure
that the separation of these sessions comes into full effect at a “lower” protocol
level, simplifying the proofs for the “higher” levels. Indeed, our difficulties in
the analysis encourages constructing protocols that are modular by design and
can be analyzed by combining simple modular steps. We stress that even for
TLS, we make heavy use of the composition theorem, not only to modularize
our analysis, but also to lift the security we obtain for one server and multiple
(anonymous) clients to the more standard multiple clients and servers setting,
and for composition with arbitrary other protocols.

As most cryptographic work on TLS, we focus on the cryptographic aspects
of TLS and many applied concerns are abstracted over. Moreover, as our work
is in the constructive cryptography model, with notation yet unfamiliar to our
audience, we focused in the body of our submission on the beauty (and elegance,
within the limits of TLS’ design characteristics), rather than the weight of our
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contribution. We invite the interested reader to find the technical details in the
full version [17].

1.2 Related Work

On Provable Security. One aspect that is important in modeling and proving
security especially of practical protocols is that of composability, as cryptographic
protocols are rarely designed to be used in isolation. Indeed, a security guarantee
in isolation does not necessarily imply security when a proven protocol is part of a
larger scheme. While one can generally prove the security of a composite scheme
by proving a reduction from breaking any of the component schemes to break-
ing the composite scheme, security frameworks that allow for general/universal
composition result in security definitions that relieve one from explicitly proving
such a reduction for each composite scheme. Such a reduction immediately fol-
lows from the security of the component schemes and the composition theorem.

For instance, suppose that one can prove that a given scheme (e.g. password-
based authentication) achieves mutual authentication, assuming that a unilat-
erally authenticated secure channel already exists. Suppose also that one has
several choices of how to construct this unilaterally secure channel, e.g., by RSA
or DH-based key-exchange, relying on the existence of a PKI and an insecure
network. In this case, the composition theorem implies that one only has to
prove that the two candidate schemes construct the unilaterally secure channel;
the security of the composition with the password-authentication scheme follows
immediately. Frameworks which allow for generic composition are the universal
composability framework (UC) due to Canetti [7], the reactive simulatability
(RSIM) framework of Pfitzmann and Waidner [23], and the constructive cryp-
tography framework (CC) of Maurer and Renner [20,21], which we use in this
work. In particular, one advantage we see in using constructive cryptography
is that it describes the way primitives are used within protocols with given
resources, and makes explicit the guarantees that they provide in an application
context. This provides an indication of how they can be used as part of more
complex protocols.

AuthenticatedKeyExchange. Authenticated key-exchange (AKE) protocols allow
two parties to agree on a session key that can be used to secure their communica-
tion. The “handshake” of the SSL/TLS protocol can be seen as an AKE. Beyond
secure Internet communication, AKE has many other applications, e.g., in card-
based identity and payment protocols. The security of AKE protocols was first
defined by Bellare and Rogaway [4] as the indistinguishability of real session keys
from random keys. However, neither the initial Bellare-Rogaway model, nor its
modifications [2,3,8,10] are inherently composable. One special composition of
AKE protocols with record-layer-type encryption was shown by Brzuska et al. [6];
however, AKE game-based security is not generally composable. Notions of key
exchange in composable frameworkshavebeendefinedbyCanetti andKrawczyk [9]
and by Maurer, Tackmann, and Coretti [22], respectively.
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TLS 1.2 vs. 1.3. As the TLS handshake is at present the most prominent AKE
protocol, the analysis of its versions up to and including TLS 1.2 has been
the subject of numerous papers in the literature. We note, however, that TLS
1.3 has a fundamentally different design from TLS 1.2, which has only been
thoroughly analyzed in one publication so far [14]. While elegant and covering
all modes in which the TLS 1.3 key derivation is done, this approach follows
traditional game-based methods and is neither as modular as ours, nor generally
composable. Several parts of the current protocol draft are adapted from work
by Krawczyk and Wee [19], this includes the new key derivation scheme that we
also describe in Sect. 4 and analyze in [17].

2 Our Approach — Description and Rationale

In constructive cryptography, the (security) guarantees provided to parties in
a specific context are formalized in terms of resources available to the parties.
In our analysis of TLS, resources are typically communication channels or shared
secret keys with certain properties. Cryptographic protocols construct (desired)
resources from assumed resources, and the composition theorem of this frame-
work guarantees that the protocol (using the resources assumed by it) can be
used whenever the constructed resource is required (as an assumed resource) in
future constructions, i.e., several subsequent constructions can be combined into
a single construction.

We model resources as discrete systems that provide one interface to each
honest party, along with a specific interface that formalizes the capabilities of a
potential attacker. Interfaces are labeled, such as C for a client, S for a server, or
E for the attacker. Interfaces can have sub-interfaces (think of them as grouping
related capabilities at the same interface for the sake of modularity); we write
for instance S/sid for the server sub-interface for session sid . Protocols con-
sist of one protocol engine or converter for each honest party. Compared with
“traditional” game-based definitions, the adversary model corresponds to the
capabilities offered via the E-interface at the assumed resource and the honest
parties’ interfaces at the constructed resource. For instance, interaction with an
insecure network resource corresponds to an active attacker that is in full control
of the network (i.e., a chosen-ciphertext attack). The fact that in a constructed
channel the messages to be transmitted can be chosen by the distinguisher then
corresponds to a chosen-plaintext attack. The goal of the game is reflected in
the description of the constructed resource. The advantage of the adversary
in game-based definitions corresponds to the advantage of the distinguisher in
constructive definitions.

Notation. We use a term algebra to describe composite systems, where resources
and converters are symbols, and they are composed via specific operations.
We read a composed expression starting from the right-hand side resource,
extended by systems on the left-hand side. If resource R has an interface A
to which we “connect” a converter α, the resulting system αAR is the composi-
tion of the two systems, such that the converter connects to the A-interface of
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the resource R. For resources R and S, [R,S] denotes the parallel composition
of R and S. If we compose a family of resources (Ri)i∈{1,...,n} in parallel, we also
write this as a product, e.g.

⊗n
i=1 Ri. We introduce special notation for families

of interfaces L and converters αL = (α�)�∈L. To attach each π� to interface � of
a resource R, we write (αL)LR.

Constructions. The construction notion is defined based on the distinguishing
advantage between two resources U and V, which can be seen as a distance mea-
sure on the set of resources.4 A distinguisher is a discrete system that connects
to all the interfaces of a resource and outputs a single bit. The distinguishing
advantage of a distinguisher D on two systems U and V is defined as

ΔD (U,V) := |Pr(DU = 1) − Pr(DV = 1)|. (1)

The two main conditions defining a construction are: (1) availability (often
called correctness), stipulating that the protocol using the assumed resource
behaves as the constructed resource if no attacker is present at the E-interface;
and (2) security, requiring that there exists a simulator, which, if connected
at the E-interface of the constructed resource, achieves that the constructed
resource with the simulator behaves like the protocol with the assumed resource
(w.r.t. the distinguisher). For the availability condition, the “special converter”
⊥ signals the attacker’s absence; this is taken into account explicitly in the
description of the resources. Formally a construction is defined as follows:

Definition 1. Let ε1 and ε2 be two functions mapping each distinguisher D to
a real number in [0, 1]. Let L be the interfaces of protocol participants. A protocol
πL = (π�)�∈L constructs resource S from resource R with distance (ε1, ε2) and
with respect to the simulator σ, denoted

R
πL,σ,(ε1,ε2)

==⇒ S,

if, for all distinguishers D,
⎧
⎨

⎩

ΔD
(
(πL)L⊥ER,⊥ES

)
≤ ε1(D) (availability),

ΔD
(
(πL)LR, σES

)
≤ ε2(D) (security).

Games. Several of our construction steps are proved by reductions to the security
of underlying primitives, which are defined via game-based notions. A game can
be seen as a system that, when connected to an adversary, determines a single
bit W (denoting whether the game is won or lost). The success probability of an
adversary A with respect to a game G is

ΓA(G) := PrAG(W = 1).
4 The distinguishing advantage is in fact a pseudo-metric on the set of resources, that

is, it is symmetric, the triangle inequality holds, and d(x, x) = 0 for all x. However,
it may be that d(x, y) = 0 for x �= y.



(De-)Constructing TLS 1.3 91

Fig. 1. The TLS 1.3 handshake and the key derivation in the case that the ephemeral
and the static handshake secret coincide.

For games that are defined as distinguishing problems (such as IND-CPA secu-
rity for encryption schemes), we use the notation from Eq. (1), that is, if the
game is described by the pair (G0,G1), then we are interested in the advan-
tage ΔA (G0,G1). Both Γ (·)(G) and Δ(·)(G0,G1) define adversarial advan-
tage functions ε(·), such as εcr(A) = ΓA(Gcr) for the collision resistance of a
hash function, εuf-cma(A) = ΓA(Guf-cma) for the unforgeability of a signature,
or εddh(A) = ΔA

(
(gA, gB , gAB), (gA, gB , gC)

)
for the intractability of the DDH

assumption.

3 TLS 1.3 and Unilaterally Secure Channels

The general structure of TLS 1.3 in (EC)DHE mode is depicted in Fig. 1 on the left.
The client hello message includes a 32-byte nonce η; the client key share fixes an
(elliptic curve) group G of order q = |G| (with some generator g), and an element
gu for some u ←$ {1, . . . , q} in that group. The server verifies that the proposed
group is in the list of acceptable groups; if so, it chooses a 32-bit nonce ν (the server
hello message), and sends this, together with its key share gv for v ←$ {1, . . . , q},
its certificate (in the initial draft, encrypted with the handshake keys, but in our
case, without the encryption), and a certificate verify message, namely a signed
session hash, also encrypted in the original draft. As a final message, the server
sends an encryption (with its handshake transfer key htk) of the finished message.
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The finished message is computed by evaluating a PRF keyed with the finished
secret fsk on the session hash. If the signature and finishedmessage verify, the client
finished message is computed analogously and sent to the server, completing the
handshake.

The current version of key derivation in TLS 1.35 uses HKDF6 as a replacement
of the TLS PRF construction that was the backbone of previous versions. This
new key derivation, depicted in Fig. 1 on the right, follows a more stringent cryp-
tographic design and adapts easily to various TLS handshake modes, such as the
an as-yet underspecified zero round-trip time (0-RTT) mode, in which the client
uses a previously-saved configuration to connect to a pre-known server.

Whilewe leave amore technical, detailed description of the key-derivation steps
to Sect. 4, note that we focus in this paper on one particular case of the key deriva-
tion inwhich the client and server calculate only oneDiffie-Hellmanvalue, obtained
from the client and the server ephemeral key shares. The key derivation in the TLS
draft is also prepared for cases in which the two parties compute two Diffie-Hellman
values, one from the client share and the static server share, and another from the
same client share and the ephemeral server share. In the case we consider, those
two values are defined to be identical.

Unilaterally Secure Transmissions. The goal of TLS with server-only authentica-
tion is modeled by the following unilateral channel resource �� ��•n. This resource
is explicitly parametrized by the bound n on the number of sessions in which an
attacker uses a specific client nonce (this parameter appears in the security bound).
Parties input messages of length (at most) equal to TLS’s maximum fragment size.
We denote the set of all plaintexts as PT .

�� ��•n

No attacker present: Behave as a (multi-message) channel for messages in
PT between interfaces C and S/1.
Attacker present:

– Upon the first input (allow, e) with e ∈ [n] at the E-interface (if e was not
used before), provide a secure multiple-use (i.e., keep a buffer of undeliv-
ered messages) channel between C and S/e. In particular:

• On input a message m ∈ PT at the C-interface, output |m| at inter-
face E.

• On input (deliver, client) at the E-interface, deliver the next mes-
sage at S/e.

• On input a message m ∈ PT at the S/e-interface, output |m| at inter-
face E.

• On input (deliver, server) at the E-interface, deliver the next mes-
sage at C.

– After input (conquer, e) with e ∈ [n] at the E-interface (if e was not used
before), forward messages in PT between the S/e- and E/e-interfaces in
both directions.

5 https://tools.ietf.org/id/draft-ietf-tls-tls13-07.txt.
6 http://www.ietf.org/rfc/rfc5869.txt.

https://tools.ietf.org/id/draft-ietf-tls-tls13-07.txt
http://www.ietf.org/rfc/rfc5869.txt
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Intuitively, if no attacker is present, then the resource behaves like a direct
channel between a client C and a server’s S/1 sub-interface. If the attacker is
present, then we have either a secure channel between the client and the server
(first input (allow, e)) or, if the attacker was the one performing the handshake
(input (conquer, e)), a channel between the attacker and the server.

The Assumed Resources. The resources we assume for the TLS protocol are: First,
an insecure network NET (obtained by using the TCP/IP protocol over the Inter-
net), where the attacker can also learn the contents of messages transmitted over
the network, stop them, or inject arbitrary messages of his choice into the network.
Second, a public-key infrastructure (PKI) resource, which we view as specific to
a single server (whose identity we assume the client knows). This PKI resource
allows the server to send one message (its signature verification key) authentically
to all clients, thus capturing the guarantee that only the honest server can register
a public key relative to its own identity, and the clients verify that the certificate
is issued with respect to the expected identity. For simplicity, we consider a model
where the PKI is local to the security statement; aspects of modeling a global PKI
in composable security frameworks are discussed by Canetti el al. [11].

The Security Achieved by TLS 1.3. We show that TLS 1.3 constructs �� ��•n from
PKI and NET by sequential decomposition of the protocol in the main steps (right
to left) shown in Fig. 2. At each step, the resources constructed in previous steps
are used as assumed resources in order to construct a “new” resource, until we
construct the unidirectional channel �� ��•n. We describe these steps in the rest
of this paper.

Our reductions use the pseudorandomness of HMAC, as used internally by
HKDF, the pseudorandomness of HKDF itself when seeded with seed 0, the
unforgeability of signatures, the collision resistance for the hash function, the
intractability of the DDH assumption, and the security of authenticated encryp-
tion. We write εhmac, εkdf , εuf-cma, εcr, εddh, εaead for their advantage functions.

Theorem 2. Let C be a set of clients. The TLS 1.3 protocol constructs, for each
client C ∈ C, one unilaterally secure channel �� ��•n from NET and PKI. Con-
cretely, for the simulator σ and the adversaries A1, . . . ,A11 obtained from D by
explicit reductions derived from those in the modular proof steps,

[NET,PKI]
(tls13c,tls13s),σ,(ε1,ε2)

==⇒
⊗

(I,J)∈P
��� ��•n�

(I,J),

with:

ε1(D) :=
(|C|

2

)
· 2−256 + |C| (εddh(A1) + 2εprf(A2) + 2εkdf(A3) + εhmac(A4))

and

ε2(D) :=
((

n

2

)
+

(|C|
2

))
· 2−256 + εuf-cma(A5) + εcr(A6) + n|C| · εddh(A7)

+ n|C| (2εprf(A8) + 2εkdf(A9) + εhmac(A10)) + 2|C| · εaead(A11).
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This statement holds for all distinguishers D, some injection ρ : C → N ,
and P := {(C,S/ρ(C)) : C ∈ C} ∪ {(E/η, S/η) : η ∈ N \ ρ(C)}.
In the theorem,we construct the parallel composition

⊗
(I,J)∈P��� ��•n�

(I,J) with
interfaces (I, J) taken from the set P. This models that the server can identify
clients only by some value used in the handshake — we chose the random nonce
ρ(C) ∈ N — and that the attacker can also interact with the server using “new”
nonces, picked by none of the clients.

As a corollary and following a result by Tackmann [24], we model the use of
password-based authentication to construct a bilaterally secure channel. We
assume a password distribution with maximum guessing probability ε as an addi-
tional resource Q. Then the constructive corollary we postulate and prove in
Sect. 5 is:

Lemma 3. Sending and checking a password constructs from �� ��•n the chan-
nel •�� ��•, for a distribution Q of passwords as described above. More formally,
there is a simulator σ such that,

[�� ��•n,Q]
pwd,σ,(0,ε)

==⇒ •�� ��•.

4 De-Constructing TLS 1.3

This section acts as a stage-by-stage proof for Theorem 2. Our strategy is to prove
that individual parts of the TLS protocol construct intermediate resources, which
can be used as assumed resources for the next modular construction step. At the
end, we use the composition theorem to show that the entire TLS 1.3 protocol
constructs the �� ��•n channel shown in the previous section.

The structure of our proof follows Fig. 2, read from right to left. We begin by
constructing a unique name resource, by choosing a random client nonce uniformly
at random from the set of 32-byte strings. The unique name resource is then used
to name client sessions on the insecure network NET; thus, from a constructive
point of view, the nonce exchange at the beginning of the TLS protocol constructs
from the resources NET and NAME the network-with-sessions resource SNET.

The subsequent two steps construct the handshake key resource DHKEY from
the assumed PKI resource and the newly-constructed SNET resource. We proceed
as follows: we first use these two resources to construct an authenticated network-
transmission resource � −• (the corresponding TLS step is signing the server’s first
message; its ephemeral share). From this � −• resource, we construct the hand-
shake key resource DHKEY by simply exchanging the client and server shares to
calculate a Diffie-Hellman secret.

The next step is then to use the key derivation described in Fig. 1 to extract
an (almost) uniformly random bit-string key from the Diffie-Hellman secret, and
expand this to obtain all application keys required by the subsequent protocol
steps.
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The final step of the protocol is the actual payload protection, which begins by
exchanging the finished messages computed using derived keys, and subsequently
protecting plaintext messages using authenticated encryption.

Fig. 2. The decomposition of TLS 1.3.

Session Naming. We formalize unique client naming by means of a resource
NAMEρ, parametrized by an injection ρ from the set C of honest clients to the set
N of nonces; this resource returns to each client a unique nonce. NAMEρ can be
constructed from scratch: As a nonce contains 256 bits of randomness for TLS
1.3, choosing a nonce at random yields a unique nonce per client up to a loss of(|C|

2

)
2−256, where |C| is the total number of honest clients.

Naming Network Sessions. The client nonce η helps the server associate a session
with some client C. Honest clients use distinct nonces, obtained from the NAMEρ

resource; however, an attacker can start many sessions with the same nonce (possi-
bly generated by an honest client). Thus, we index sessions by pairs sid = (η, e) ∈
N ×N, where e differentiates sessions with the same η. The server’s nonce ν for that
session is chosen at random and sent to the client; this protocol constructs, from

Fig. 3. The network resource that additionally outputs nonces.
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the resources NAMEρ and the network resource NET, the resource SNET (the full
details and description of the client and server converters, denoted hec and hesn
are left to the full version).

The resource SNET, described in Fig. 3, has interfaces labeled C ∈ C for the
clients, a server interface S with one sub-interface for each pair (η, e), where η ∈ N
is a nonce, not necessarily from an honest client, and e ∈ [n] is a counter indicating
how many sessions are initiated with nonce η, and an attacker’s interface called E.
To simplify further construction steps, we rule out collisions for server nonces in
the SNET resource below, in sessions associated with the same nonce (i.e., sid =
(η, e) and sid ′ = (η, e′)). Since the server nonce has the same structure as the client
nonce, the security loss is analogous.

The following statement holds:

Lemma 4. Let C ⊆ A and let ρ : C → N be an injective mapping. The protocol
(hec, hesn) constructs the resource SNETρ,n from the resources NET and NAMEρ.
In more detail, for the simulator σ in the proof:

[NET,NAMEρ]
(hec,hesn),σ,(0,ε)

==⇒ SNETρ,n,

with ε(D) :=
(
n
2

) · 2−256 for all distinguishers D.

The Shared Key Resource. The next step is to construct the Diffie-Hellman key
DHKEY; we decompose this step into two smaller steps, briefly described below
(we refer to [17] for full details). We represent the DHKEY resource as a particu-
lar parametrization of the generic shared key resource KEYρ,AUX ,n,K detailed in
Fig. 4, with a key space K that is the Diffie-Hellman group G.

Our first step is to construct from thePKI andSNET resources an authenticated
network resource � −•ρ,F,SIG,n,h using the certificate and the signature in the TLS
certificate verify message. This resource allows the server to transmit one message
in each session authentically; this is achieved by signing the message together with
a hash of the handshake messages in order to bind it to the session. The reduction
relies on the unforgeability of the signature scheme and the collision resistance in
the handshake hash.

From � −•ρ,F,SIG,n,h, we then construct, under the DDH assumption in G, the
resource DHKEY. Intuitively, the converters here are simply exchanging the
Diffie-Hellman elements and perform the corresponding computation, where
the transmission of the server’s message relies on the authentication guarantees
of the assumed resource. In particular, the signature computed and forwarded in
the authentication step allows a client to abort an execution if the signature veri-
fication on the handshake hash fails. This is reflected in the second bullet point of
the resource KEYρ,AUX ,n,K.

The composition theorem allows us to combine the two intermediary steps in
the following lemma, where we denote by hsc and hss the compositions of the two
converters (protocol steps) outlined above:

Lemma 5. The protocol (hsc, hss) constructs from the assumed resources PKI and
SNETρ,n the resourceDHKEY, given that: the signature scheme used in certification
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Fig. 4. The shared key resource.

is unforgeable, the hash function is collision resistant, and the DDH assumption
holds. More formally, for the simulator σ and the reductions C1, . . .C4 described
in the proof,

[SNETρ,n,PKIF]
(hsc,hss),σ,(ε1,ε2)

==⇒ DHKEYρ,AUX ,n,

such that for all distinguishers D: ε1(D) := |C| · εddh(DC1), and
ε2(D) := εuf-cma(DC2) + εCR(DC3) + n · |C| · εddh(DC4).

Expanding the Key. The next step is to extract from the Diffie-Hellman secret and
then expand the keys (following the scheme shown in Fig. 1). Finally, the finished
messages used for key confirmation are computed. Interestingly, the only effect of
the finished messages in our case is that the client and server detect mismatching
keys before the first application data is accepted by the protocol. This does not
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exclude, however, that these messages serve a more crucial role in certain hand-
shake modes or for proving specific security properties we do not consider in this
paper.

The key derivation in the newest draft of TLS 1.3 differs considerably from that
of TLS 1.2. From the Diffie-Hellman secret, several sets of session keys are derived
for use in symmetric primitives: the application traffic keys atk for the protection
of the payload data, handshake traffic keys htk used to protect some data packets
in the handshake, the finished secret fsk used for the finished messages, and early-
data keys used in the 0-RTT mode (the latter do not appear in our analysis). All
computations are based on HKDF [18].

The key derivation can be described in several steps corresponding in our analy-
sis to separate, simple construction steps that are composed via the composition
theorem:

1. First, two keys xES and xSS are computed by calling HKDF.extract(0, pmk),
that is, evaluating the HKDF extraction with seed 0 on the Diffie-Hellman key
pmk computed in the key exchange. This step assumes the security of HKDF
as a computational extractor (therefore relying on a statement proven in the
random-oracle model).

2. Using the expansion of HKDF, several keys are computed:
(a) The finished secret fsk ← HKDF.expand(xSS , “finished”, h) for the con-

firmation messages, where h is the hash of the handshake messages,
(b) the “static” master secret value mSS ← HKDF.expand(xSS , “static”, h),
(c) the “ephemeral” value mES ← HKDF.expand(xES , “ephemeral”, h),
(d) the handshake traffic keys htk ← HKDF.expand(xES , “handshake”, h).
This step assumes the security of the HKDF expansion as a pseudo-random
function.

3. Then, compute the master secret key msk ← HKDF.extract(mSS ,mES ) by
using HKDF to extract from mES using the seed mSS . This step relies only on
the fact that the HKDF extraction is a pseudo-random function, as mSS is a
good key — in fact a weak PRF is sufficient as mES is (pseudo) random.

4. Expand the application traffickeys atk by anHKDFexpansion as follows: atk ←
HKDF.expand(msk, “application”, h). This step again relies on the HKDF
expansion being a PRF.

In order to treat the expanded keys as separate resources for each client, we
also incorporate the generation of the finished messages into the construction of
those keys. Those messages are computed by evaluating HMAC with the key fsk
on the session hash h and static labels. This requires that HMAC is a PRF. Since
the expansion is the final step that explicitly relies on values that are consistent
across several sessions (such as the server’s certificate), the constructed expanded-
key resource = =•n can be described in a way that is single-client, as opposed to
the more complicated KEYρ,AUX ,n,K resource. The resource = =•n allows a single
client and server session to compute the same keys and finished messages if the
attacker did not establish that server session himself. Otherwise, the server and
attacker share keys, as depicted in the description of = =•n [17]. We describe the
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resource we want to obtain at key expansion by:
⊗

C∈C�= =•n�
(C,S/ρ(C)), i.e. a

parallel composition of such channels with appropriate interface labels.
The key-expansion steps yield the following constructive statement:

Lemma 6. The protocol (expc13, exps13) constructs the parallel composition of
keys

⊗
(I,J)∈P�= =•ncphs,n�

(I,J) from the secret key resource DHKEY, for P :=
{(C,S/ρ(C)) : C ∈ C} ∪ {(E/η, S/η) : η /∈ ρ(C)}. The construction holds under
the assumptions that HKDF is a KDF with seed 0, and that HKDF expansion and
HMACare PRFs. Inmore detail, for the simulator σ and the reductionsC1, . . . ,C5

described in the proof,

DHKEYρ,AUX ,n
(expc13,exps13),σ,(ε,ε′)

==⇒
⊗

(I,J)∈P
�= =•n�

(I,J)

where, for all distinguishers D, ε′(D) = n · ε(D) and

ε(D) = |C| · (εkdf(DC1) + εprf(DC2) + εkdf(DC3) + εprf(DC4) + εhmac(DC5)
)
.

The Record Layer. The authenticated key resource = =•n constructed in the pre-
vious step yields sets of keys (htk , atk , fsk) and the finished messages. The gap
between the resource= =•n andour goal resource, i.e., theunilaterally-secure chan-
nel �� ��•n, is bridged by a pair of converters essentially exchanging and verifying
the finished messages, then using authenticated encryption to protect messages.
The key property of our constructed resource, �� ��•n, is notably that it allows for
messages to be securely (confidentially and authentically) transmitted, either con-
sistently between the server and the honest client, or between the server and the
adversary (but never between the client and the adversary).

For TLS 1.3 the record-layer protocol is specified based on authenticated
encryption with associated data (AEAD). This mode has been analyzed by
Badertscher et al. [1] in recent work. Their result can be “imported” into our work.
Thus, for the final step of the proof, we rely on the security of AEAD encryption,
which is defined in terms of indistinguishability between two systems Gaead

0 and
Gaead

1 , formally detailed in the full version. In Gaead
0 , encryption and decryption

queries to the scheme are answered by encryption and decryption using the given
nonce and associated data. For Gaead

1 , encryption queries are answered with uni-
formly randomstrings of appropriate length,while decryption queries are answered
either with a corresponding plaintext (if they were output by a previous encryption
query) or by a special invalid symbol otherwise.

Lemma 7. The protocol (aeadc, aeads) constructs from the authenticated key
resource = =•n the unilaterally secure channel �� ��•n, under the assumption that
the underlying AEAD cipher is secure. More formally, for the simulator σ and the
reduction C described in the proof,

= =•n

(aeadc,aeads),σ,(0,ε)

==⇒ �� ��•n,

with ε(D) := 2 · εaead(C) for all distinguishers D.
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Re-constructing TLS. At this point, using the composition theorem completes the
proof of Theorem2. In the full version, we also explain in detail how the composi-
tion of all the converters from the modular-steps yields the TLS protocol.

5 Composition with Password-Based Authentication

In prior work, Maurer et al. [22,24] have discussed means of authenticating a uni-
laterally authenticated key by using password-based authentication. Thus, by
starting from a unilateral key resource (similar to our = =•n resource), one can
use a password — a key with relatively low entropy — shared between a client and
a server to obtain a key for which both client and server have authenticity guar-
antees, and which is sometimes denoted as •= =• (the bullet on the left hand side
indicates that the client is also authenticated). The resources = =•n and •= =• are
different in that in = =•n the attacker at the E-interface can also inject a key to
be shared with the server (no client authentication). For •= =• this is no longer
possible.

We use the same ideas here, but our goal is to construct the fully secure channel
•�� ��• described below from the unilaterally secure bidirectional �� ��•n and a
password.

•�� ��•
No attacker present: Behave as a (multi-message) channel between inter-
faces C and S.
Attacker present: Provide a secure multiple-use (i.e., keep a buffer of unde-
livered messages) channel between C and S. In particular:

– On input a message m ∈ PT at the C-interface, output |m| at interface E.
– On input (deliver, client) at the E-interface, deliver the next message

at S.
– On input a message m ∈ PT at the S-interface, output |m| at interface E.
– On input (deliver, server) at the E-interface, deliver the next message

at C.

The protocol consists of two simple converters: sending the password (client)
and verifying it (server), abbreviated as pwd = (pwd.send, pwd.check). After the
password exchange, the converters simply send and receive messages via the chan-
nel. For simplicity, we assume that the server accepts the same user password only
once; this can be generalized along the lines of [24, Theorem 4.17]. We model a pass-
word distribution with maximum guessing probability ε as an additional resource
Q. The constructive statement we postulate is:

Lemma 3. Sending and checking a password constructs from �� ��•n the chan-
nel •�� ��•, for a distribution Q of passwords as described above. More formally,
there is a simulator σ such that,

[�� ��•n,Q]
pwd,σ,(0,ε)

==⇒ •�� ��•.
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Proof (Sketch). The availability condition follows since the client and the server
obtain the same password. The simulator works as follows:

– the session between the honest client and the server is handled by (essentially)
forwarding the communication between the E-interface of the constructed
resource and the distinguisher,

– for all other sessions, the simulator simply drops all messages provided at its
outside interface.

The only way for the distinguisher to be successful in distinguishing between the
two cases is by guessing the correct password, since otherwise the behavior is the
same in both cases. Since the server accepts a password only once, we can bound
the overall success probability of the distinguisher by ε. 
�
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Abstract. In this paper, we analyze the security of two variants of the
RSA public key cryptosystem where multiple encryption and decryption
exponents are used with a common modulus. For the most well known
variant, CRT-RSA, assume that n encryption and decryption exponents
(el, dpl , dql), where l = 1, · · · , n, are used with a common CRT-RSA
modulus N . By utilizing a Minkowski sum based lattice construction
and combining several modular equations which share a common vari-

able, we prove that one can factor N when dpl , dql < N
2n−3
8n+2 for all

l = 1, · · · , n. We further improve this bound to dpl(or dql) < N
9n−14
24n+8

for all l = 1, · · · , n. Moreover, our experiments do better than previous
works by Jochemsz-May (Crypto 2007) and Herrmann-May (PKC 2010)
when multiple exponents are used. For Takagi’s variant of RSA, assume
that n key pairs (el, dl) for l = 1, · · · , n are available for a common mod-
ulus N = prq where r ≥ 2. By solving several simultaneous modular

univariate linear equations, we show that when dl < N ( r−1
r+1 )

n+1
n

, for all
l = 1, · · · , n, one can factor the common modulus N .

Keywords: RSA · Cryptanalysis · Lattice · Coppersmith’s method

1 Introduction

Since its invention [16], the RSA public key scheme has been widely used due to
its effective encryption and decryption. To obtain high efficiency, some vari-
ants of the original RSA were designed. Wiener [24] proposed an algorithm
to use the Chinese Remainder Theorem in the decryption phase to accelerate
the decryption operation by using smaller exponents dp and dq which satisfy
edp ≡ 1mod (p − 1) and edq ≡ 1mod (q − 1) for a modulus N = pq and an
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 105–123, 2015.
DOI: 10.1007/978-3-319-26617-6 6
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encryption exponent e. This decryption oriented alternative of RSA scheme is
usually called as CRT-RSA. Also for gaining a fast decryption implementation,
Takagi [21] proposed another variant of RSA with moduli of the form N = prq,
where r ≥ 2 is an integer. For Takagi’s variant, the encryption exponent e and
decryption exponent d satisfy ed ≡ 1 (mod pr−1(p − 1)(q − 1)).

In many applications of the RSA scheme and its variants, either d is chosen
to be small or dp and dq are chosen to be small for efficient modular exponen-
tiation in the decryption process. However, since Wiener [24] showed that the
original RSA scheme is insecure when d is small enough, along this direction
many researchers have paid much attention to factoring RSA moduli and its
variants under small decryption exponents.

Small Secret Exponent Attacks on RSA and Its Variants. For the orig-
inal RSA with a modulus N = pq, Wiener [24] proved that when d ≤ N0.25, one
can factor the modulus N in polynomial time by a Continued Fraction Method.
Later, by utilizing a lattice based method, which is usually called Coppersmith’s
technique [5] for finding small roots of a modular equation, Boneh and Durfee
[2] improved the bound to N0.292 under several acceptable assumptions. Then,
Herrmann and May [6] used a linearization technique to simplify the construc-
tion of the lattice involved and obtained the same bound N0.292. Until now,
N0.292 is still the best result for small secret exponent attacks on the original
RSA scheme with full size of e.

For CRT-RSA, Jochemsz and May [10] gave an attack for small dp and dq,
where p and q are balanced and the encryption exponent e is of full size, i.e. about
as large as the modulus N = pq. By solving an integer equation, they can factor
N provided that the small decryption CRT-exponents dp and dq are smaller
than N0.073. Similarly, Herrmann and May [6] used a linearization technique to
obtain the same theoretical bound but better results in experiments.

For Takagi’s variant of RSA with modulus N = prq, May [13] applied Cop-
persmith’s method to prove that one can factor the modulus provided that
d ≤ N ( r−1

r+1 )
2
. By modifying the collection of polynomials in the construction

of the lattice, Lu et al. [12] improved this bound to d ≤ N
r(r−1)
(r+1)2 . Recently, from

a new point of view of utilizing the algebraic property prq = N , Sarkar [17]
improved the bound when r ≤ 5. Especially for the most practical case of r = 2,
the bound has been significantly improved from N0.222 to N0.395. The follow-
ing table lists the existing small decryption exponent attacks on RSA and its
variants Table 1.

Multiple Small Secret Exponents RSA. In order to simplify RSA key man-
agement, one may be tempted to use a single RSA modulus N for several key
pairs (ei, di). Simmons [19] showed that if a massage m is sent to two partici-
pants whose public exponents are relatively prime, then m can easily be recov-
ered. However Simmons’s attack can not factor N . Hence Howgrave-Graham
and Seifert [8] analyzed the case that several available encryption exponents
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Table 1. Overview of existing works on small secret exponent attacks on RSA and its
variants. The conditions in the last column allow to efficiently factor the modulus N .

Author(s) Cryptosystem Bounds

Wiener: 1990 [24] RSA d < N0.25

Boneh and Durfee: 1999 [2] RSA d < N0.292

Jochemsz and May: 2007 [10] CRT-RSA dp, dq < N0.073

Herrmann and May: 2010 [6] CRT-RSA dp, dq < N0.073

May: 2004 [13] Takagi’s variant of RSA N = prq d ≤ N ( r−1
r+1 )2

Lu, Zhang, Peng and Lin: 2014 [12] Takagi’s variant of RSA N = prq d ≤ N
r(r−1)
(r+1)2

Sarkar: 2014 [17] Takagi’s variant of RSA N = p2q d ≤ N0.395

Table 2. Comparison of previous theoretical bounds with respect to the number of
decryption exponents.

n 1 2 5 10 20 ∞
Howgrave-Graham and Seifert’s bound [8] 0.2500 0.3125 0.4677 0.5397 0.6319 1.0000

Sarkar and Maitra’s bound [18] 0.2500 0.4167 0.5833 0.6591 0.7024 0.7500

Aono’s bound [1] 0.2500 0.4643 0.6250 0.6855 0.7172 0.7500

Takayasu and Kunihiro’s bound [23] 0.2929 0.4655 0.6464 0.7460 0.8189 1.0000

(e1, · · · , en) exist for a common modulus N and the corresponding decryption
exponents (d1, · · · , dn) are small. From their result, one can factor N when the
n decryption exponents satisfy that dl < N δ for all l = 1, · · · , n, where

δ <

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2n + 1)2n − (2n + 1)
(

n
n
2

)

(2n − 1)2n + (4n + 2)
(

n
n
2

) , if n is even, and

(2n + 1)2n − 4n
(n−1

n−1
2

)

(2n − 2)2n + 8n
(n−1

n−1
2

) , if n is odd.

In [18], Sarkar and Maitra used the strategy of [9] to solve for small roots of
an integer equation and improved the bound to δ < 3n−1

4n+4 . Aono [1] proposed
a method to solve several simultaneous modular equations which share a com-
mon unknown variable. Aono combined several lattices into one lattice by a
Minkowski sum based lattice construction and obtained that when δ < 9n−5

12n+4 ,
N can be factored. Shortly afterwards, Takayasu and Kunihiro [23] modified
each lattice and collected more helpful polynomials to improve the bound to
1−

√
2

3n+1 . In conclusion, an explicit picture of the comparison of previous work
is illustrated in Table 2.
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Simultaneous Modular Univariate Linear Equations Modulo an
Unknown Divisor. In 2001, Howgrave-Graham first considered the problem
of solving an univariate linear equation modulo an unknown divisor of a known
composite integer,

f(x) = x + a (mod p),

where a is a given integer, and p � Nβ is an unknown factor of the known N .
The size of the root is bounded by |x| < Nδ. Howgrave-Graham proved that one
can solve for the root in polynomial time provided that δ < β2.

The generalization of this problem has been considered by Cohn and
Heninger [4], ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

f(x1) = x1 + a1 (mod p),
f(x2) = x2 + a2 (mod p),
· · ·
f(xn) = xn + an (mod p).

In the above simultaneous modular univariate linear equations, a1, · · · , an are
given integers, and p � Nβ is an unknown factor of N . Based on their result,
one can factor N if

γ1 + · · · + γn

n
< β

n+1
n and β � 1√

logN

where |x1| < Nγ1 , · · · , |xn| < Nγn . Then by considering the sizes of unknown
variables and collecting more helpful polynomials which are selected to construct
the lattice, Takayasu and Kunihiro [22] further improved the bound to

n
√

γ1 · · · γn < β
n+1
n and β � 1√

logN
.

Our Contributions. In this paper, we give an analysis of CRT-RSA and Tak-
agi’s variant of RSA with multiple small decryption exponents, respectively. For
CRT-RSA, (e1, · · · , en) are n encryption exponents and (dp1 , dq1), · · · , (dpn

, dqn)
are the corresponding decryption exponents for a common CRT-RSA modulus
N , where e1, · · · , en are of full size as N . Based on the Minkowski sum based
lattice construction proposed by Aono [1], we combine several modular equations
which share a common variable and obtain that one can factor N when

dpl
, dql < N

2n−3
8n+2

for all l = 1, · · · , n, where n is the number of decryption exponents.
In order to utilize the Minkowski sum based lattice construction to combine

the equations, the equations should share a common variable. Hence, we modified
each of the equations considered in [10], which results in a worse bound when
there is only one pair of encryption and decryption exponents.

However, note that the modular equations

kpl
(p − 1) + 1 ≡ 0 (mod el), for l = 1, · · · , n,
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share a common root p. Then we can directly combine these n equations by a
Minkowski sum based lattice construction, and moreover introduce a new vari-
able q to minimize the determinant of the combined lattice. We can obtain an
improved bound that one can factor N when

dpl
< N

9n−14
24n+8

for all l = 1, · · · , n.
Note that, for combining these equations we modified each of the equations

considered in [10]. When there are n = 2 decryption exponents, our bound is
N0.071 which is less than the bound N0.073 in [10]. Hence, we only improve the
previous bound when there are n ≥ 3 pairs of encryption and decryption expo-
nents for a common CRT-RSA modulus in theory and obtain N0.375 asymp-
totically in n. However, it is nice to see that we successfully factor N when
dpl

< N0.035 with 3 pairs of exponents in practice and the original bounds are
N0.015 in [10] and N0.029 in [6].

An explicit description of these bounds is illustrated in Fig. 1.

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

n

9 n 14

24 n 8

2 n 3

8 n 2

Fig. 1. The recoverable sizes of secret exponents of CRT-RSA. The solid line denotes
the range of dpl and dql with respect to n, the dashed line denotes the range of dpl

with respect to n

For Takagi’s variant of RSA, assume there exist n encryption and decryp-
tion exponents (el, dl), where l = 1, · · · , n with a common modulus N = prq,
which means there exist l simultaneous modular univariate linear equations.
So far, this kind of modular equations is what has been considered in [4,22].
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By an application of their results, we obtain that the modulus can be factored
when dl ≤ N δ for all l = 1, · · · , n, where

δ <
(r − 1

r + 1

)n+1
n

.

The rest of this paper is organized as follows. Section 2 is some preliminary
knowledge on lattices and the CRT-RSA variant. In Sect. 3, we analyze CRT-
RSA with multiple small decryption exponents. Section 4 presents an analysis on
Takagi’s variant RSA with multiple small decryption exponents. Finally, Sect. 5
is the conclusion.

2 Preliminaries

Let w1, w2, · · · , wk be k linearly independent vectors in R
n. A lattice L spanned

by {w1, · · · , wk} is the set of all integer linear combinations, c1w1 + · · · + ckwk,
of w1, · · · , wk, where c1, · · · , ck ∈ Z. The k-dimensional lattice L is a discrete
additive subgroup of Rn. The set of vectors w1, · · · , wk is called a basis of the
lattice L. The lattice bases are not unique, one can obtain another basis by mul-
tiplying any matrix with determinant ±1, it means that any lattice of dimension
larger than 1 has infinitely many bases [15]. Hence, how to find a lattice basis
with good properties has been an important problem.

Lenstra et al. [11] introduced the famous L3 lattice basis reduction algorithm
which can output a relatively short and nearly orthogonal lattice basis in poly-
nomial time. Instead of finding the shortest vectors in a lattice, the algorithm
finds the L3 reduced basis with the following useful properties.

Lemma 1 (L3, [11]). Let L be a lattice of dimension k. Applying the L3 algo-
rithm to L, the outputted reduced basis vectors v1, · · · , vk satisfy that

‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

Coppersmith [5] applied the L3 lattice basis reduction algorithm in order to
find small solutions of integer equations and modular equations. Later, Jochemsz
and May [9] extended this technique and gave general results to find roots of
multivariate polynomials.

For a given polynomial g(x1, · · · , xk) =
∑

(i1,··· ,ik)

ai1,··· ,ikxi1
1 · · · xik

k , we define

the norm of g as

‖g(x1, · · · , xk)‖ =
( ∑

(i1,··· ,ik)

a2
i1,··· ,ik

) 1
2
.

The following lemma due to Howgrave-Graham [7] gives a sufficient condition
under which a modular equation can be converted into an integer equation.



Cryptanalysis of Variants of RSA with Multiple Small Secret Exponents 111

Lemma 2 (Howgrave-Graham, [7]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial with at most w monomials. Suppose that

g(y1, · · · , yk) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yk| ≤ Xk, and

‖g(x1X1, · · · , xkXk)‖ <
pm

√
w

.

Then g(y1, · · · , yk) = 0 holds over the integers.

Supposewehavew(> k) polynomials b1, · · · , bw in the variablesx1, . . . , xk such
that b1(y1, . . . , yk) = · · · = bw(y1, . . . , yk) = 0modpm with |y1| ≤ X1, . . . , |yk| ≤
Xk.Nowweconstruct a latticeLwith the coefficientvectors of b1(x1X1, . . . , xkXk),
. . . , bw(x1X1, . . . , xkXk). After lattice reduction, we get k polynomials
v1(x1, . . . , xk), . . . , vk(x1, . . . , xk) such that

v1(y1, . . . , yk) = · · · = vk(y1, . . . , yk) = 0modpm

which correspond to the first k vectors of the reduced basis. Also by the property
of the L3 algorithm, we have

||v1(x1X1, . . . , xkXk)|| ≤ · · · ≤ ||vk(x1X1, . . . , xkXk)|| ≤ 2
w(w−1)

4(w+1−k) det(L)
1

w+1−k .

Hence by Lemma 2, if

2
w(w−1)

4(w+1−k) det(L)
1

w+1−k <
pm

√
w

,

then we have v1(y1, . . . , yk) = · · · = vk(y1, . . . , kk) = 0. Next we want to find
y1, . . . , yk from v1, . . . , vk.

Once we obtain several polynomial equations over the integers from the L3

lattice basis reduction algorithm, we can solve for the roots over the integers by
calculating the resultants or the Gröbner basis of the polynomials based on the
following heuristic assumption. In practical experiments, the following heuristic
assumption usually holds.

Assumption 1. Our lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
by using techniques like calculation of the resultants or finding a Gröbner basis.

Similarly as other lattice reduction works [1,9,10,23], while we present exper-
imental results in support of our attacks, we also like to point out the theoretical
results are asymptotic, as we neglect constants in certain cases in the calculations
of our attacks.

Minkowski Sum Based Lattice Construction. In [1], Aono proposed a
method to construct a lattice for Coppersmith’s technique for simultaneous
modular equations. In order to make this clear, let us illustrate it by an exam-
ple. There are two modular equations f1 ≡ 0 (mod W1) and f2 ≡ 0 (mod W2).
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Based on Coppersmith’s technique, to solve for the solutions of f1 we first select
some polynomials g1, · · · , gn which share the same solutions modulo Wm

1 . Sim-
ilarly, we construct polynomials g′

1, · · · , g′
n which share same solutions modulo

Wm
2 . It is obvious that any polynomial gig

′
j where 1 ≤ i, j ≤ n has the desired

solutions modulo Wm
1 Wm

2 . Then we arrange these polynomials and construct a
new lattice with polynomials which have the desired solutions modulo Wm

1 Wm
2 .

By an integer linear combination, some of these polynomials which have the same
leading monomial can be written as

∑

i,j

ai,jgig
′
j . To keep the determinant of the

lattice small, the integers ai,j are chosen appropriately. This lattice is called a
combined lattice obtained from the two lattices, one of which is constructed by
the polynomials g1, · · · , gn and another one of which is constructed by the poly-
nomials g′

1, · · · , g′
n. Aono proved that the combined lattice is triangular, if each

lattice has a triangular basis matrix. The above conclusion could be extend to
an arbitrary number of modular equations.

CRT-RSA. Since the RSA public key cryptosystem has been invented [16],
this public key scheme has been widely used due to its succinct and effective
encryption and decryption. Wiener [24] proposed to use the Chinese Remainder
Theorem in the decryption phase. This scheme is usually called CRT-RSA. Based
on the work of Sun and Wu [20], one version of this variant can be described as
follows:

Algorithm 1. Key generation of CRT-RSA
Input:

(n, δ1, δ2), where n, δ1n and δ2n denote the bitlengths of N , dp and dq, respectively.
Output:

CRT-RSA-instance (N, p, q, e, dp, dq).
1: Randomly choose two n

2
-bit primes p = 2p1 + 1 and q = 2q1 + 1 such that

gcd(p1, q1) = 1.
2: Randomly generate (δ1n)-bit integer dp and (δ2n)-bit integer dq such that

gcd(dp, p − 1) = 1 and gcd(dq, q − 1) = 1.
3: Compute d̄ ≡ (dq − dp)(p

−1
1 (mod q1)).

4: Compute d = dp + p1 · d̄.
5: Compute the encryption exponent e satisfying ed ≡ (mod (p − 1)(q − 1)).
6: The RSA modulus is N = pq, the secret key is (dp, dq, p, q) and the public key is

(N, e).

As described in the key generation algorithm of CRT-RSA, the case that
more than one valid encryption and decryption exponents for the same CRT-
RSA modulus N = pq may exist, that is, when we are done with Step 1 for
choosing a pair (p, q), we generate several different dp and dq in the remaining
steps. Next, we analyze the weakness in the case that multiple encryption and
decryption exponents share a common CRT-RSA modulus.
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3 Multiple Encryption and Decryption Exponents Attack
of CRT-RSA

In this section, along the idea of [1,8,18,23] we give the following theorems
when multiple encryption and decryption exponents are used for a common
CRT-RSA modulus. By making a comparison between our results and Jochemsz
and May’s result [10], we improve the bound when there are 3 or more pairs of
encryption and decryption exponents for a common CRT-RSA modulus. And we
also improve the experimental results N0.015 in [10] and N0.029 in [6] to N0.035

with 3 pairs of exponents.

Theorem 1. Let (e1, e2, · · · , en) be n CRT-RSA encryption exponents with a
common modulus N = pq, where n ≥ 3 and e1, e2, · · · , en have roughly the
same bitlength as N . Consider that dpi

, dqi ≤ N δ for i = 1, 2, · · · , n are the
corresponding decryption exponents. Then under Assumption 1, one can factor
N in polynomial time when

δ <
2n − 3
8n + 2

.

Proof. For one pair of keys (el, dpl
, dql), we have

eldpl
− 1 = kpl

(p − 1),
eldql − 1 = kql(q − 1),

where kpl
and kql are some integers.

Moreover, by multiplying these two equations, we have that

e2l dpl
dql − el(dpl

+ dql) + 1 = kpl
kql(N − s),

where s = p + q − 1.
Then (kpl

kql , s, dpl
+ dql) is a solution of

fl(xl, y, zl) = xl(N − y) + elzl − 1 (mod e2l ).

Moreover, consider the n modular polynomials

fl(xl, y, zl) = xl(N − y) + elzl − 1 (mod e2l ), for l = 1, · · · , n. (1)

These polynomials have the common root (x1, · · · , xn, y, z1, · · · , zn) = (kp1kq1 ,
· · · , kpn

kqn , s, dp1 + dq1 , · · · , dpn
+ dqn), and the values of its coefficients can be

roughly bounded as kpl
kql � Xl = N1+2δ, s � Y = N

1
2 and dpl

+ dql � N δ = Z
for l = 1, · · · , n.

In order to solve for the desired solution of the modular equations fl(xl, y, zl) =
0 (mod e2l ), for l = 1, · · · , n, based on Aono’s idea [1], we first selected the following
set of polynomials to solve each single equation,

Sl={xil
l zjl

l fkl

l (xl, y, zl)(e2l )
m−kl |0 ≤ kl ≤ m, 0 ≤ il ≤ m−kl, 0 ≤ jl ≤ m−il−kl},

where l = 1, · · · , n and m is a positive integer.
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Each selection for the corresponding equation in (1) generates a triangular
basis matrix. Likewise, for each l = 1, 2, · · · , n, we can respectively construct
a triangular matrix. Based on the technique of Minkowski sum based lattice
construction, these n lattices corresponding to the n triangular matrices can
be combined as a new lattice L′ and the basis matrix with polynomials which
have the same root as the solutions of the modular equation modulo (e21 · · · e2n)m.
Since each basis matrix is triangular, the combined lattice is also triangular. The
combined basis matrix has diagonal entries

Xi1
1 · · · Xin

n Y kZj1
1 · · · Zjn

n (e21)
m−min(i1,k) · · · (e2n)m−min(in,k),

where

0 ≤ i1, · · · , in ≤ m, 0 ≤ k ≤ i1 + i2 + · · · + in, 0 ≤ j1 ≤ i1, · · · , 0 ≤ jn ≤ in.

Then the determinant of the lattice can be calculated as

det(L′) =
m∏

i1=0

· · ·
m∏

in=0

i1+···+in∏

k=0

m−i1∏

j1=0

· · ·
m−in∏

jn=0

(
Xi1

1 · · ·Xin
n Y kZj1

1 · · ·Zjn
n

(e21)
m−min(i1,k) · · · (e2n)m−min(in,k)

)

= X
Sx1
1 · · ·XSxn

n Y SyZ
Sz1
1 · · ·ZSzn

n (e21)
Se1 · · · (e2n)Sen ,

where

Sx1 + Sx2 + · · · + Sxn
= (

n2

18
+

n

36
)
m2n+2

2n−1
+ o(m2n+2),

Sy = (
n2

36
+

n

72
)
m2n+2

2n−1
+ o(m2n+2),

Sz1 + Sz2 + · · · + Szn
= (

n2

18
− n

72
)
m2n+2

2n−1
+ o(m2n+2),

Se1 + Se2 + · · · + Sen
= (

n2

9
− n

72
)
m2n+2

2n−1
+ o(m2n+2).

On the other hand, the dimension is

dim(L′) =
m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

m−i1∑

j1=0

· · ·
m−in∑

jn=0

1 =
n

6 · 2n−1
m2n+1 + o(m2n+1).

Please refer to the appendix to see the detailed calculations.
From Lemmas 1 and 2, we can obtain integer equations when

det(L′)
1

dim(L′) < (e21 · · · e2n)m. (2)

Neglecting the low order terms of m and putting Xl = N1+2δ, Y = N
1
2 , Zl =

N δ and e2l � N2 into the above inequality (2), the necessary condition can be
written as

(1 + 2δ)(
n2

18
+

n

36
) +

1
2
(
n2

36
+

n

72
) + δ(

n2

18
− n

72
) + 2(

n2

9
+

n

72
) ≤ n2

3
,
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namely,

δ <
2n − 3
8n + 2

.

Then we get 2n + 1 polynomials which share the root (x1, . . . , xn, y, z1, . . . , zn).
Under Assumption 1, we can find x1, . . . , xn, y, z1, . . . , zn from these polynomials.
This concludes the proof of Theorem 1. 
�

Moreover, as well as by using Minkowski sum based lattice construction to
combine the polynomials eldpl

= kpl
(p−1)+1, for l = 1, · · · , n, we also introduce

an additional variable q to reduce the determinant of our lattice and finally
improve our bound of Theorem 1.

More precisely, we firstly construct a lattice which combines the polynomials
fl(xl, y) = xl(y − 1) + 1 (mod el), for l = 1, · · · , n by utilizing Minkowski sum
lattice based construction. Then based on an observation of the monomials which
appear in the lattice, we found that the desired root p of variable y is a factor of
N . Thus, to reduce the determinant of our constructed lattice we can introduce
a new variable z which corresponds to q. Since pq = N , we can replace yz by
N and then by multiplying the inverse of N modulo e1 · · · en. Above all, we can
obtain the following theorem.

Theorem 2. Let (e1, e2, · · · , en) be n CRT-RSA encryption exponents with a
common modulus N = pq, where n ≥ 2 and e1, e2, · · · , en have the roughly same
bitlengths as N . Consider that dpl

, dql for l = 1, 2, · · · , n are the corresponding
decryption exponents. Assumed that dpl

< N δ for l = 1, 2, · · · , n, then under
Assumption 1, one can factor N in polynomial time when

δ <
9n − 14
24n + 8

.

Proof. For each of the key pairs (el, dpl
, dql), we have that

eldpl
= kpl

(p − 1) + 1,

where kpl
is an integer.

Then (kpl
, p) is a solution of

fl(xl, y) = xl(y − 1) + 1 (mod el).

Consider the n modular polynomials

fl(xl, y) = xl(y − 1) + 1 (mod el), for l = 1, · · · , n.

Obviously, these polynomials have the common root (x1, · · · , xn, y) = (kp1 , · · · ,
kpn

, p), and the sizes of its coefficients can be roughly determined as kpl
� Xl =

N
1
2+δ, for l = 1, · · · , n and p � Y = N

1
2 .

In order to solve for the desired solution, similarly we firstly selected the
following set of polynomials to solve each single modular equation,

Sl = {xil
l fkl

l (xl, y)(el)m−kl |0 ≤ kl ≤ m, 0 ≤ il ≤ m − kl},
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where l = 1, · · · , n and m is a positive integer.
Each selection generates a triangular basis matrix. Then, for l = 1, · · · , n we

construct a triangular matrix respectively. We constructed the basis matrix with
polynomials which have the same roots as the solutions of the modular equation
modulo (e1 · · · en)m. By combining these n lattices based on a Minkowski sum
based lattice construction, the matrix corresponding to the combined lattice L′

1

is triangular and has diagonal entries

Xi1
1 · · · Xin

n Y ke
m−min(i1,k)
1 · · · em−min(in,k)

n ,

where
0 ≤ i1, · · · , in ≤ m, 0 ≤ k ≤ i1 + i2 + · · · + in.

Moreover, note that the desired small solution contains the prime factor p,
which is a factor of the modulus N = pq. Then we introduce a new variable z for
another prime factor q, and multiply each polynomial corresponding to each row
vector in the L′

1 by a power zs for some s that will be optimized later. Then, we
replace every occurrence of the monomial yz by N because N = pq. Therefore,
compared to the unchanged polynomials, every monomial xi1

1 · · · xin
n ykzs and k ≥

s with coefficient ai1,··· ,in,k is transformed into a monomial xi1
1 · · · xin

n yk−s with
coefficient ai1,··· ,in,kNs. Similarly, when k < s, the monomial xi1

1 · · · xin
n ykzs with

coefficient ai1,··· ,in,k is transformed into monomial xi1
1 · · · xin

n zs−k with coefficient
ai1,··· ,in,kNk. Let Z = N

1
2 denote the upper bound of the unknown variable z.

To keep the determinant of the lattice as small as possible, we try to elim-
inate the factor of Ns and Nk in the coefficients of the diagonal entries. Since
(N, e1 · · · en) = 1, we only need to multiply the corresponding polynomial with
the inverse of Ns or Nk modulo (e1 · · · en)m.

Then the determinant of the lattice can be calculated as follows,

det(L′
1) = X

Sx1
1 · · ·XSxn

n Y SyZSze
Se1
1 · · · eSen

n ,

where

Sx1 + Sx2 + · · · + Sxn
=

m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

(i1 + · · · in),

Sy =
m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=s

(k − s),

Sz =
m∑

i1=0

· · ·
m∑

in=0

s−1∑

k=0

(s − k),

Se1 + Se2 + · · · + Sen
=

m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

(
nm −

min(i1, k) − · · · − min(in, k)
)
.
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Since the following formulas hold for any 0 ≤ a, b ≤ n,

m∑

i1=0

· · ·
m∑

in=0

iaib =

⎧
⎨

⎩

1
3mn+2 + o(mn+2), (a = b),

1
4mn+2 + o(mn+2), (a �= b),

we have that

Sx1 + Sx2 + · · · + Sxn
= (

n2

4
+

n

12
)mn+2 + o(mn+2),

Sy = (
σ2n2

2
− σn2

2
+

n2

8
+

n

24
)mn+2 + o(mn+2),

Sz = (
σ2n2

2
)mn+2 + o(mn+2),

Se1 + Se2 + · · · + Sen
= (

n2

4
+

n

12
)mn+2 + o(mn+2).

where s = σnm and 0 ≤ σ < 1.
On the other hand, the dimension of the lattice is

dim(L′
1) =

m∑

i1=0

· · ·
m∑

in=0

i1+···+in∑

k=0

1 =
n

2
mn+1 + o(mn+1).

From Lemmas 1 and 2, we can obtain integer equations when

det(L′
1)

1
dim(L′

1) < (e1 · · · en)m. (3)

Neglecting the low order terms of m and putting Xl = N
1
2+δ, Y = N

1
2 , Z = N

1
2

and el � N into the above inequality (3) for l = 1, · · · , n, the necessary condition
can be written as

(
1
2

+ δ)(
n2

4
+

n

12
) +

1
2
(
σ2n2

2
− σn2

2
+

n2

8
+

n

24
) +

1
2
(
σ2n2

2
) + (

n2

4
+

n

12
) ≤ n2

2
.

By optimizing σ = 1
4 , we finally obtain the following bound on δ

δ <
9n − 14
24n + 8

.

Then under Assumption 1, one can factor N in polynomial time. This concludes
the proof of Theorem 2. 
�

The reason that our result improves over previous work in the literature is
based on the following two observations. Firstly, we can combine n polynomials
by utilizing the Minkowski sum lattice based construction. Secondly, from the
knowledge of N = pq, we can optimize the determinant of the lattice by introduc-
ing some factor zs to every polynomials, where z is a new variable corresponding
to q and s is an integer which will be optimized during the calculations.
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Experimental Results. Note that in the calculations of Theorem 2, we assume
that m goes to infinity. Then our result is an asymptotic bound, as we neglect
lower order terms of m. If m and n are fixed, the maximum δ satisfying the
inequality of condition (3) is easily computed. In Table 3, for each fixed m and
n, we list the maximum δ satisfying (3) and the dimension of lattice. The column
limit denotes the asymptotic bound.

Table 3. Theoretical bound and lattice dimension for small δ with fixed m.

n = 2

m 5 6 7 8 9 10 ∞
s 2 3 3 4 4 5 ∞
δ 0.0081 0.0200 0.0244 0.0313 0.0340 0.0385 0.0714

dim(L′) 216 343 512 729 1000 1331 ∞
n = 3

m 2 3 4 5 6 7 ∞
s 1 2 3 4 4 5 ∞
δ 0.0357 0.0746 0.0938 0.1052 0.1127 0.1200 0.1625

dim(L′
1) 108 352 875 1836 3430 5888 ∞

We have implemented the experiment program in Magma 2.11 computer
algebra system [3] on a PC with Intel(R) Core(TM) Duo CPU (2.53 GHz, 1.9 GB
RAM Windows 7) and carried out the L3 algorithm [14]. Experimental results
are provided in Table 4.

Table 4. Experimental results.

N (bits) n theo. of δ expt. of δ parameters of lattice time (in sec.)

1000 3 0.0357 0.0350 m = 2, s = 1, dim(L′
1) = 108 3978.213

In the experiments we successfully factored the common modulus N in prac-
tice,when there are three decryption exponents and all of themare less thanN0.035.
For this given problem which factor N with small decryption exponent, Jochemsz
and May [10] successfully factored N with one small decryption exponent and the
bound is N0.015, later the bound has been improved to N0.029 by utilizing the
unraveled linearization technique introduced by Herrmann and May [6]. In other
words, we improve both the theoretical and the experimental bound by using more
decryption exponents with a common modulus.

Note that in the experiments, we always find many polynomial equations
which share the desired solutions over the integers. Moreover we have another
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equation yz = N . Then by calculating the Gröbner basis of these polynomials,
we can successfully solve for the desired solutions in less than two hours.

In all experiments we have done for verification of our proposed attack, we
indeed successfully collected the roots by using Gröbner basis technique and
there was no experimental result to contradict Assumption 1. On the other
hand, however, it seems very difficult to prove or demonstrate its validity.

4 Multiple Encryption and Decryption Exponents Attack
of Takagi’s Variant RSA

Theorem 3. Let (e1, e2, · · · , en) be n encryption exponents of Takagi’s variant
of RSA with common modulus N = prq. Consider that d1, d2, · · · , dn are the
corresponding decryption exponents. Then under Assumption 1, one can factor
N in polynomial time when

δ <
(r − 1

r + 1

)n+1
n

,

where dl ≤ N δ, for l = 1, · · · , n.

Proof. For one modulus N = prq, there exist n encryption and decryption expo-
nents (el, dl), thus, we have that

e1d1 = k1p
r−1(p − 1)(q − 1) + 1,

e2d2 = k2p
r−1(p − 1)(q − 1) + 1,

· · ·
endn = knpr−1(p − 1)(q − 1) + 1.

Hence, for the unknown (d1, · · · , dn) we have the following modular equations,

f(x1) = e1x1 − 1 (mod pr−1),

f(x2) = e2x2 − 1 (mod pr−1),
· · ·

f(xn) = enxn − 1 (mod pr−1).

As it is shown, (d1, d2, · · · , dn) is a root of simultaneous modular univariate linear
equations modulo an unknown divisor, and the size is bounded as dl ≤ N δ, for
l = 1, · · · , n.

Using the technique of [4,22], it can be shown that if

δ <
(r − 1

r + 1

)n+1
n

,

these simultaneous modular univariate linear equations can be solved under
Assumption 1, which means (d1, · · · , dn) can be recovered. Then one can easily
factor N by calculating the common factor. 
�
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Table 5. Factoring N with multiple decryption exponents.

r log2 N log2 p n = 2 n = 3

theo. expt. dim(L) time (in sec.) theo. expt. dim(L) time (in sec.)

2 1500 500 0.272 0.230 66 2022.834 0.291 0.240 84 1537.078

Experimental Results. We have implemented the experiment program in
Magma 2.11. In all experiments, we successfully solved for desired solutions
(d1, d2, · · · , dn). Similarly, there was no experimental result to contradict
Assumption 1 Table 5.

Notice that, the previous Theorem 3 can be applied for encryption exponents
(e1, · · · , en) of arbitrary sizes. However, if there exist two valid key pairs (e1, d1)
and (e2, d2), where e1 and e2 have roughly the same size as the modulus N or
some larger values as Nα. Assume that d1 � d2 � N δ, then we can give an
analysis as follows.

Given two equations e1d1 = k1p
r−1(p − 1)(q − 1) + 1 and e2d2 = k2p

r−1(p −
1)(q − 1) + 1, we eliminate pr−1(p − 1)(q − 1) and obtain the following equality,

k2(e1d1 − 1) = k1(e2d2 − 1)

which suggests that we look for small solutions of the polynomial

f(x, y) = e2x + y (mod e1). (4)

Since (d2k1, k2−k1) is a root of f(x, y)mod e1. The bound of k1 can be estimated
as Nα+δ−1, hence we define the bounds |d2k1| � X = Nα+2δ−1 and |k2 − k1| �
Y = Nα+δ−1. For this linear modular equation, we can recover (d2k1, k2 − k1)
for sufficiently large N provided that XY < e, or α + 2δ − 1 + α + δ − 1 < α.

Thus, to recover d2k1 and k2 − k1 from this lattice-based method, the size of
the encryption and decryption exponents should satisfy

α + 3δ < 2,

where α + δ > 1.

5 Conclusion

In this paper, we presented some applications of Minkowski sum based lattice
construction and gave analyses of the case that multiple pairs of encryption and
decryption exponents are used with the common CRT-RSA modulus N . We
showed that one can factor N when both dpi

, dqi ≤ N
2l−3
8l+2 or either dpi

or dqi

is less than N
9l−14
24l+8 , for i = 1, 2, · · · , l. Moreover, we also analyzed the situation

when more than one encryption and decryption exponents are used in Takagi’s
variant of RSA with modulus N = prq.
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Appendix

Here we present the detailed calculations of SX1 , SY , SZ1 , Se1 .

Let
∗∑

denotes
m∑

i1=0

· · ·
m∑

in=0

m−i1∑

j1=0

· · ·
m−in∑

jn=0

, for any 0 ≤ a, b ≤ n, we have that

∗∑
iaib =

⎧
⎨

⎩

1
12∗2n−1 ∗ m2n+2 + o(m2n+2), (a = b),

1
18∗2n−1 ∗ m2n+2 + o(m2n+2), (a �= b),

and
∗∑

iajb =

⎧
⎨

⎩

1
24∗2n−1 ∗ m2n+2 + o(m2n+2), (a = b),

1
18∗2n−1 ∗ m2n+2 + o(m2n+2), (a �= b).

Then we obtain that

∗∑ i1+···+in∑

k=0

i1 + · · · + in = (
n2

18
+

n

36
) ∗ m2n+2

2n−1
+ o(m2n+2),

∗∑ i1+···+in∑

k=0

j1 + · · · + jn = (
n2

18
− n

72
) ∗ m2n+2

2n−1
+ o(m2n+2),

∗∑ i1+···+in∑

k=0

k =
∗∑ (i1 + · · · + in)2

2
+

i1 + · · · + in
2

= (
n2

36
+

n

72
) ∗ m2n+2

2n−1
+ o(m2n+2).

Moreover,

∗∑ i1+···+in∑

k=0

min(i1, k) =
∗∑

(
i1∑

k=0

k +
i1+···+in∑

k=i1+1

i1)

=
∗∑

(
i1(i1 + 1)

2
+ i1(i2 + · · · + in))

= (
n

18
− 1

72
) ∗ m2n+2

2n−1
+ o(m2n+2).
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By symmetry, we have

∗∑ i1+···+in∑

k=0

min(i1, k) + · · · + min(in, k) = (
n2

18
− n

72
) ∗ m2n+2

2n−1
+ o(m2n+2).

The dimension of lattice L′ is

dim(L′) =
∗∑ i1+···+in∑

k=0

1 =
n

6 ∗ 2n−1
∗ m2n+1 + o(m2n+1).
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Abstract. Sprout is a lightweight stream cipher proposed by Armknecht
and Mikhalev at FSE 2015. It has a Grain-like structure with two state
Registers of size 40 bits each, which is exactly half the state size of Grain
v1. In spite of this, the cipher does not appear to lose in security against
generic Time-Memory-Data Tradeoff attacks due to the novelty of its
design. In this paper, we first present improved results on Key Recovery
with partial knowledge of the internal state. We show that if 50 of the
80 bits of the internal state are guessed then the remaining bits along
with the secret key can be found in a reasonable time using a SAT solver.
Thereafter, we show that it is possible to perform a distinguishing attack
on the full Sprout stream cipher in the multiple IV setting using around
240 randomly chosen IVs on an average. The attack requires around 248

bits of memory. Thereafter, we will show that for every secret key, there
exist around 230 IVs for which the LFSR used in Sprout enters the all zero
state during the keystream generating phase. Using this observation, we
will first show that it is possible to enumerate Key-IV pairs that produce
keystream bits with period as small as 80. We will then outline a simple
key recovery attack that takes time equivalent to 266.7 encryptions with
negligible memory requirement. This although is not the best attack
reported against this cipher in terms of the time complexity, it is the
best in terms of the memory required to perform the attack.

Keywords: Grain v1 · Sprout · Stream cipher

1 Introduction

Lightweight stream ciphers have become immensely popular in the cryptological
research community, since the advent of the eStream project [1]. The three hard-
ware finalists included in the final portfolio of eStream i.e. Grain v1 [11], Trivium
[5] and MICKEY 2.0 [3], all use bitwise shift registers to generate keystream bits.
After the design of Grain v1 was proposed, two other members Grain-128 [12] and
Grain-128a were added to the Grain family mainly with an objective to provide
a larger security margin and include the functionality of message authentication
respectively. In FSE 2015, Armknecht and Mikhalev proposed the Grain-like
stream cipher Sprout [2] with a startling trend: the size of its internal state
of Sprout was equal to the size of its Key. After the publication of [4], it is
widely accepted that to be secure against generic Time-Memory-Data tradeoff
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 124–139, 2015.
DOI: 10.1007/978-3-319-26617-6 7
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attacks, the internal state of a stream cipher must be atleast twice the size of
the secret key. However the novelty of the Sprout design ensured that the cipher
remained secure against generic TMD tradeoffs. The smaller internal state makes
the cipher particularly attractive for compact lightweight implementations.

1.1 Previous Attacks on Sprout

To the best of our knowledge, four attacks have been reported against Sprout.
We present a summary of these attacks:

– In [9], a related Key-chosen IV distinguisher is reported against Sprout. Let
K,V denote a Key-IV pair and let K ′ denote K with the first bit flipped and
similarly let V ′ denote V with the first bit flipped. Then it is easy to see that
the probability that the first 80n keystream bits produced by K,V and K ′, V ′

are equal is given by 1
8·2n .

– In [13], a fault attack against Sprout is presented. Another attack based on
solving a system of non-linear equations by a SAT solver is also presented.
The authors guess the values of 54 out of the 80 bits of the internal state.
The remaining 106 unknowns, i.e. the remaining 26 internal state bits and
the 80 Key bits are found as follows. The authors use the first 450 keystream
bits produced by the cipher to populate a bank of non-linear equations in the
unknown variables. The resulting system is solved via a SAT solver in around
77 s on average on a system running on a 1.83 GHz processor and 4 GB RAM.
The SAT solver on an average returns 6.6 candidate Keys. Thus the authors
argue that their findings amount to an attack on Sprout in 254 attempts, since
54 bits are initially guessed in this process. However, the authors do not discuss
the computational complexity associated with one attempt at solution by a
SAT solver. If one can perform around 2e Sprout encryptions in 77 s, then in
terms of number of encryptions performed, the attack takes time equivalent
to 6.6 × 254 × 2e encryptions which is more than 280 if e > 23 (which may be
achievable with a good implementation of the cipher), and so it is not certain
that the work in [13] translates to a feasible attack on Sprout.

– In [10], a list merging technique is employed to determine the internal state
and secret key of Sprout that is faster than exhaustive search by 210. The
attack has a memory complexity of 246 bits.

– In [6], a TMD tradeoff attack is outlined using an online time complexity
of 233 encryptions and 770 TB of memory. The paper first observes that it
is easy to deduce the secret key from the knowledge of the internal state
and the keystream. The paper then makes an observation on special states of
Sprout that produce keystream without the involvement of the secret key. A
method to generate and store such states in tables is first outlined. The online
stage consists of inspecting keystream bits, retrieving the corresponding state
from the table, assuming of course that the state in question is a special state,
and then computing the secret key. The process, if repeated a certain number
of times, guarantees that a special state is encountered, from where the correct
secret key is found.
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1.2 Contribution and Organization of the Paper

We summarize the contributions in this paper as follows:

1. In Sect. 2, we present the mathematical description of the Sprout stream
cipher.

2. In Sect. 3, we show that by guessing 50 out of the 80 bits of the internal state,
one can determine the remaining bits of the state and the secret key by using
a SAT solver. This improves the results presented in [13], but due to reasons
mentioned earlier, this does not necessarily amount to cryptanalysis of the
cipher.

3. In Sect. 4, we show that it is possible to find two IVs for every secret key that
generate 80-bit shifted keystream sequences. Making use of this result we
mount a distinguishing attack on Sprout using keystream bits from around
240 randomly chosen IVs, and a memory complexity of around 248 bits. We
also show that the time complexity of this attack can be reduced at the cost
of more memory.

4. Finally in Sect. 5, we observe that for every secret key there exist around 230

IVs that result in the LFSR landing in the all zero state during the keystream
generating phase. Based on this observation, we first show how it is possible
to find Key-IV pairs that generate keystream sequences with period as small
as 80. Thereafter, we mount a simple key recovery attack that requires time
equivalent to 266.7 encryptions and negligible memory.

5. In Sect. 6, we conclude the paper by making some wider observations about
Sprout and some possible solutions towards making it resistant to the afore-
mentioned cryptanalytic advances.

A summary of the results obtained in this paper with respect to the previous
attacks on Sprout is presented in Table 1.

Table 1. Summary of attacks on Sprout

Type of attack Time complexity Memory Reference

Using SAT solver 254 SAT attempts - [13]

-Do- 250 SAT attempts - Sect. 3

Guess and determine 270 encryptions 246 bits [10]

TMD-Tradeoff 233 encryptions 249.6 bits (770 TB) [6]

Distinguisher 240 encryptions 248 bits Sect. 4

Guess and determine 266.7 encryptions Negligible Sect. 5

2 Description of Sprout

The exact structure of Sprout is explained in Fig. 1. It consists of a 40-bit LFSR
and a 40-bit NFSR. Certain bits of both the shift registers are taken as inputs to a
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Fig. 1. Block diagram of Sprout

combining Boolean function, whence the keystream is produced. The keystream
is produced after performing the following steps:

Initialization Phase: The cipher uses an 80 bit Key and a 70 bit IV. The
first 40 most significant bits of the IV is loaded on to the NFSR and the
remaining IV bits are loaded on to the first 30 most significant bits of
the LFSR. The last 10 bits of the LFSR are initialized with the constant
0x3fe, i.e. the string of nine 1′s followed by a 0. Let Lt = [lt, lt+1, . . . , lt+39]
and Nt = [nt, nt+1, . . . , nt+39] be the 40-bit vectors that denote respectively
LFSR and NFSR states at the tth clock interval. During the initialization
phase, the registers are updated as follows.

(a) In the first 320 rounds (i.e. 0 ≤ t ≤ 319) of the initialization phase the
cipher produces the keystream bit zt which is not produced as output.
This is computed as

zt = lt+30 +
∑

i∈A
nt+i + h(Nt, Lt).

where A = {1, 6, 15, 17, 23, 28, 34} and h(Nt, Lt) = nt+4lt+6+lt+8lt+10+
lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38.

(b) The LFSR updates as lt+40 = zt + f(Lt), where

f(Lt) = lt + lt+5 + lt+15 + lt+20 + lt+25 + lt+34.

(c) The NFSR updates as nt+40 = zt +g(Nt)+c4t +k∗
t + lt0, where c4t denotes

the 4th LSB of the modulo 80 up-counter which starts at t = 0, k∗
t is
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the output of the Round Key function defined as:

k∗
t =

{
Kt mod 80, if t < 80,
Kt mod 80 · (lt+4 + lt+21 + lt+37 + nt+9 + nt+20 + nt+29), otherwise.

Here Ki simply denotes the ith bit of the secret key. The non-linear
function g(Nt) is given as:

g(Nt) = nt+0 + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5+

nt+7nt+8 + nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32+

nt+33nt+36nt+37nt+38 + nt+10nt+11nt+12 + nt+27nt+30nt+31.

Keystream Phase: After the initialization phase is completed, the cipher
discontinues the feedback of the keystream bit zt to the update functions
of the NFSR and LFSR and makes it available as the output bit. During
this phase, the LFSR and NFSR update themselves as lt+40 = f(Lt) and
nt+40 = g(Nt) + c4t + k∗

t + lt0 respectively.

3 Key Recovery from Partial Knowledge of State

In [13], results were presented pertaining to the recovery of the secret key with
partial knowledge of the state. The authors claimed that if all the NFSR bits
are known and 14 bits of the LFSR are also known then by using the algebraic
equations resulting from the first 450 keystream bits, the keyspace can be reduced
to a set of 6.6 candidates on average, by solving the equations through a SAT
solver. It was also mentioned that the solver took around 77 s on average to solve
the system. Although this does not necessarily lead to an attack, we show in this
section that it is possible to propose a better algorithm. Before proceeding we
present a brief outline of the algorithm used in [13]:

1. Assume that the entire NFSR state and around m bits of the LFSR are
known just after the completion of the key initialization phase. Let us label
the time index as t = 0 at this instant. The remaining 40 − m bits of the
LFSR and the 80 bits of the secret key are unknown at this point. The
vectors Lt = [lt, lt+1, . . . , lt+39] and Nt = [nt, nt+1, . . . , nt+39]. So initially it
is assumed that N0 is completely known and L0 is known partially.

2. For t = 0 to Nr − 1 do
• Introduce two new unknowns l40+t, n40+t defined as l40+t = f(Lt) and

n40+t = g(Nt) + c4t + k∗
t + lt.

• Form the keystream equation zt = lt+30 +nt+4lt+6 + lt+8lt+10 + lt+32lt+17 +
lt+19lt+23 + nt+4lt+32nt+38 +

∑
i∈A nt+i.

3. After forming the above bank of 3Nr equations, pass them to a SAT solver.

The authors of [13] claimed that for m = 14, Nr = 450, the SAT solver
was able to narrow down the set of candidate secret keys to 6.6 on average in
around 77 s.
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3.1 A Few Observations

The ease with which a SAT solver is able to solve a given bank of equations
depends on the algebraic degree of the equations so formed [14]. It is clear
that the algebraic degree of zt with respect to the unknowns in L0 and the
secret key increases for increasing t. It is also known that, if the key is known,
then the state update during both the keystream phase and the initialization
phase are one-to-one and invertible. Indeed, rewriting the functions f, g as
f(Lt) = lt + f ′(L′

t) and g(Nt) = nt + g′(N ′
t) (here L′

t = [lt+1, lt+2, . . . , lt+39]
and N ′

t = [nt+1, nt+2, . . . , nt+39], then if Lt, Nt denote the state at time t, then
Lt−1 is given as [lt−1, lt, . . . , lt+38] where lt−1 = lt+39 + f ′(L′

t−1), and since L′
t−1

is a subset of Lt, we can see that Lt−1 is completely defined by Lt. Similarly
Nt−1 = [nt−1, nt, . . . , nt+38] where

nt−1 = nt+39 + lt−1 + k∗
t−1 + c4t−1 + g′(N ′

t−1).

Here too since N ′
t−1 ⊂ Nt, the previous state Nt−1 is completely defined by

Lt, Nt. Keeping this in mind, we formulate the following strategy for key recovery
from the partial knowledge of state.

1. We assume that at t = 320, all the bits of N320 and the first m bits of L320

are known. Thereafter, we do the following:
2. For t = 0 to 319 do

• Introduce two new unknowns l360+t, n360+t defined as l360+t = f(Lt+320)
and n360+t = g(Nt+320) + c4t+320 + k∗

t+320 + lt+320.

• Form the keystream equation

zt+320 = lt+350 +
∑

i∈A
nt+320+i + h(Nt+320, Lt+320).

3. We now take help of the keystream generated before t = 320
4. For t = 320 to 1 do

• Introduce two new unknowns lt−1, nt−1 defined as lt−1 = lt+39 + f ′(L′
t−1)

and nt−1 = nt+39 + lt−1 + k∗
t−1 + c4t−1 + g′(N ′

t−1).• Form the keystream equation

zt−1 = lt+29 +
∑

i∈A
nt−1+i + h(Nt−1, Lt−1).

5. After preparing this bank of 320 ∗ 3 ∗ 2 = 1920 equations, we forward it to a
SAT Solver.

Since the algebraic degrees of z320+t and z320−t are expected to be the same
with respect to the unknowns in L320 and the secret key, we achieve the dual
purpose of populating our bank of equations with more entries and at the same
time control the algebraic degree of the equations to some extent. We performed
the experiments with Cryptominisat 2.9.5 [15] solver installed with the SAGE
5.7 [16] computer algebra system on a computer with a 2.1 GHz CPU and 16
GB memory. For m = 10, (after guessing 50 bits of the internal state), we were
able to find the remaining bits of the state and the correct secret key in around
31 s on average.
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4 A Distinguishing Attack

Before we get into details of the distinguisher, let us revisit a few facts about
Sprout. We have already shown that if the secret key is known, then the state
updates in both the keystream and initialization phases are one-to-one and effi-
ciently invertible. Before proceeding, we give a formal algorithmic description of
the state update inversion routines in the keystream and initialization phases,
as per the observations in Sect. 3.1. We denote the algorithms by KS−1and
Init−1respectively.

Input: Lt, Nt: The LFSR, NFSR
state at time t;

Output: Lt−1, Nt−1: The LFSR,
NFSR state at time
t − 1;

lt−1 ← lt+39 + f ′(L′
t−1);

nt−1 ← nt+39 + lt−1 + k∗
t−1 +

c4t−1 + g′(N ′
t−1);

Lt−1 ← [lt−1, lt, lt+1, . . . , lt+38];

Nt−1 ←
[nt−1, nt, nt+1, . . . , nt+38];

Return Lt−1, Nt−1

Algorithm 1. Algorithm KS−1

Input: Lt, Nt: The LFSR, NFSR
state at time t;

Output: Lt−1, Nt−1: The LFSR,
NFSR state at time
t − 1;

zt−1 ← lt+29 +
∑

i∈A nt−1+i +
h(Nt−1, Lt−1);

lt−1 ← lt+39 + f ′(L′
t−1) + zt−1;

nt−1 ← nt+39 + lt−1 + k∗
t−1 +

c4t−1 + g′(N ′
t−1) + zt−1;

Lt−1 ← [lt−1, lt, lt+1, . . . , lt+38];

Nt−1 ← [nt−1, nt, nt+1, . . . , nt+38];

Return Lt−1, Nt−1

Algorithm 2. Algorithm Init−1

We will use the above subroutines to generate Key-IV pairs that generate
80-bit shifted keystream sequences. To do that we follow the following steps:

1. Fix the secret key K to some constant in {0, 1}80
2. Fix Success ← 0
3. Do the following till Success =1

• Select S = [s0, s1, . . . , s79]
R←− {0, 1}80 randomly.

• Assign N0 ←− [s0, s1, . . . , s39], L0 ←− [s40, s41, . . . , s79]
• Run Init−1over N0, L0 for 320 rounds and store the result as

U = [u0, u1, . . . , u79].

• Assign N80 ←− [s0, s1, . . . , s39], L80 ←− [s40, s41, . . . , s79]
• Run KS−1over N80, L80 for 80 rounds, followed by Init−1for 320 rounds.
• Store the result as V = [v0, v1, . . . , v79].
• If u70 = u71 = · · · = u78 = v70 = v71 = · · · = v78 = 1 and u79 = v79 = 0

then Success =1.
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Table 2. Key-IV pairs that produce 80 bit shifted keystream bits. (Note that the first
hex character in V1, V2 encodes the first 2 IV bits, the remaining 17 hex characters
encode bits 3 to 70)

# K V1 V2

1 8b0b c4c3 781e fe4b 925c 1 03c2cb34d8b8870e5 1 f208a4661d50a1f72

2 be8d d8e2 a818 80c5 eda7 2 d7d0162c62f256ad7 2 5f7c58576e05e3c52

The above algorithm fixes the secret key K, and randomly chooses a state
S and assumes that for two different IVs V1, V2, the state in the 0th round of
the keystream phase for (K,V1) and the 80th round of the keystream phase for
(K,V2) are both equal to S. The algorithm then performs the state inversion
routines in each case and tries to find V1 and V2. A Success occurs when the
last 10 bits of both U, V are equal to the padding 0x3fe used in Sprout. In
that case V1 = [u0, u1, . . . , u69] and V2 = [v0, v1, . . . , v69] produces exactly 80-bit
shifted keystream sequences for the key K. Of course, a Success requires 20 bit
conditions to be fulfilled and assuming that U,V are i.i.d, each iteration of the
above algorithm has a success probability of 2−20 for any randomly selected S.
So running the iteration 220 times guarantees one Success on average. By running
the above algorithm we were able to obtain several Key-IV pairs that generates
80 bit shifted keystream sequences, which we tabulate in Table 2. Note that the
above method can not be used to find Key-IV pairs that generate keystream
bits of shift other than multiples of 80. This is because Sprout employs a counter
whose 4th LSB is used to update the NFSR. The counter resets after every 80
rounds and so any analysis involving the self-similarity of the initialization phase
must be done at intervals of multiples of 80.

Note that it is possible to generate such a Key-IV pair in 210 attempts instead
of 220, if instead of choosing S, we first choose K,V1 randomly, run the for-
ward initialization algorithm to generate S, and then assume that S is the 80th

keystream phase state for some K,V2 and thereafter run 80 rounds of KS−1and
320 rounds of Init−1to generate V. In such a case, Success would be dependent on
only the last 10 bits of V and hence expected once in 210 attempts. However we
present the first algorithm in order to better explain the distinguishing attack.

4.1 The Distinguisher

In the above algorithm for finding Key-IV pairs that generate shifted keystream
sequences, once the key is fixed, a Success is expected every 220 attempts and
since there are 280 ways of choosing S, this implies that for every Key K, there
exist 280−20 = 260 IV pairs V1, V2 such that the key-IV pairs (K,V1) and (K,V2)
produce exactly 80-bit shifted keystream sequences. So our distinguisher is as
follows

1. Generate around 240 keystream bits for the unknown Key K and some ran-
domly generated Initial Vector V .
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Table 3. Experimental values of N for smaller versions of Sprout

# n N (experimental) N (theoretical)

1 8 222.4 256

2 9 446.9 512

3 10 911.7 1024

4 11 1865.7 2048

2. Store the keystream bits in some appropriate data structure like a Binary
Search Tree.

3. Continue the above steps with more randomly generated IVs V till we obtain
two Initial Vectors for K that generate 80-bit shifted keystream.

The only question now remains how many random Initial Vectors do we need
to try before we get a match. The answer will become clearer if (for a fixed K) we
imagine the space of Initial Vectors as an undirected Graph G = (W,E), where
W = {0, 1}70 is the Vertex set which contains all the possible 70 bit Initial vector
values as nodes. An edge (V1, V2) ∈ E if and only if (K,V1) and (K,V2) produce
80-bit shifted keystream sequence. From the above discussion, it is clear that the
cardinality of E is expected to be 260. When we run the Distinguisher algorithm
for N different Initial Vectors, we effectively add

(
N
2

)
edges to the coverage and

a match occurs when one of these edges is actually a member of the Edge-set E.
Since there are potentially

(
270

2

)
edges in the IV space, by the Birthday bound,

a match will occur when the product of
(
N
2

)
and the cardinality of E which is

around 260 is equal to
(
270

2

)
. From this equation solving for N , we get N ≈ 240.

This gives a bound for the time and memory complexity of the Distinguisher.
The time complexity is around 240 encryptions, and the memory required is of
the order of 240 ∗ 240 ≈ 248 bits.

In general for Sprout like structures that have an n bit LFSR and NFSR with
a 2n-bit secret key and 2n−Δ bit IV (for some Δ > 0), the above equation boils
down to

(
N

2

)
∗ 22n−2Δ =

(
22n−Δ

2

)
.

Solving this equation gives N ≈ 2n. In order to verify our theoretical results,
we performed experiments on smaller versions of Sprout with n = 8, 9, 10, 11 to
find the expected value of N in each case. The results have been tabulated in
Table 3.

Decreasing the Time Complexity: So far we have been restricting ourselves
to 80-bit shifts of keystream sequences. We could easily consider shifts of the
form 80 ∗ P where P can be any positive integer. The algorithm to find two
Initial Vectors V1, V2 for any Key K that generates 80 ∗ P -bit shifted keystream
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sequence is not very different from the one which finds IVs that generate 80-bit
shifted keystream. We present the explicit form of the algorithm for convenience.

1. Fix the secret key K to some constant in {0, 1}80
2. Fix Success ← 0
3. Do the following till Success =1

• Select S = [s0, s1, . . . , s79]
R←− {0, 1}80 randomly.

• Assign N0 ←− [s0, s1, . . . , s39], L0 ←− [s40, s41, . . . , s79]
• Run Init−1over N0, L0 for 320 rounds and store the result as U =

[u0, u1, . . . , u79].
• Assign N80∗P ←− [s0, s1, . . . , s39], L80∗P ←− [s40, s41, . . . , s79]
• Run KS−1over N80∗P , L80∗P for 80 ∗ P rounds, followed by Init−1for 320

rounds.
• Store the result as V = [v0, v1, . . . , v79].
• If u70 = u71 = · · · = u78 = v70 = v71 = · · · = v78 = 1 and u79 = v79 = 0

then Success =1.

The only change is that we assume that S is the round 0 state for some K,V1

and the round 80 ∗ P state for some K,V2. We perform the inversion operations
accordingly and look for a Success. Arguing just as before, we can say that, for
any fixed K and P , there exist 260 IV pairs that generate 80 ∗ P -bit shifted
keystream Sequences. So we redefine our Distinguishing attack as follows:

1. Generate around 80 ∗ P keystream bits for the unknown Key K and some
randomly generated Initial Vector V .

2. Store the keystream bits in some appropriate data structure like a Binary
Search Tree.

3. Continue the above steps with more randomly generated IVs V till we obtain
two Initial Vectors for K that generate 80 ∗ i-bit shifted keystream for some
1 ≤ i ≤ P .

We can calculate the expected number of attempts N before we get a match
as follows. Redefine the undirected graph G = (W,E), where W = {0, 1}70 is
the Vertex set which contains all the possible 70 bit Initial vector values as
nodes. An edge (V1, V2) ∈ E if and only if (K,V1) and (K,V2) produce 80 ∗ i-bit
shifted keystream sequence for some 0 ≤ i ≤ P . The expected cardinality of E is
approximately P ∗ 260. Again choosing N Initial Vectors adds

(
N
2

)
edges to the

coverage and so the required value of N is given by
(
N
2

) ∗P ∗ 260 =
(
270

2

) ⇒ N ≈
240√

P
. This implies that the time complexity can be reduced to 240√

P
encryptions

with the memory complexity at 80 ∗ P ∗ 240 bits. For P = 210 say, this results in
a time complexity of 235 encryptions and memory of 257 bits.

5 A Key Recovery Attack

We make another observation to begin this section. During the keystream phase,
the LFSR pretty much runs autonomously. Which means that if after the ini-
tialization phase, the LFSR lands on the all zero state then it remains in this
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state for the remainder of the keystream phase, i.e. if L0 = 0, then Lt = 0 for
all t > 0. Assuming uniform distribution of L0, we can argue that for every Key
K, this event occurs for 2−40 fraction of IVs on average. So for each K, there
exists on an average 270−40 = 230 IVs which lead to an all zero LFSR after the
initialization phase. We shall see two implications of this event.

5.1 Keystream with Period 80

Now once the LFSR enters the all zero state the NFSR runs autonomously.
Since the NFSR is a finite state machine of 40 bits only, we can always expect
keystream of period less than 80 ∗ 240, once the LFSR becomes all zero. Hence
for every Key, we expect to find 230 Initial vectors that produce keystream
sequences of less than 80 ∗ 240. With some effort, we can even find Key-IV pairs
that produce keystream with period 80. We will take help of SAT solvers for his.
The procedure may be outlined as follows:

1. Select a Key K
R←− {0, 1}80 randomly.

2. Assume L0 = [0, 0, 0, . . . , 0].
3. Assign N0 ← [n0, n1, n2, . . . , n39], where all the ni are unknowns.
4. For i = 0 to 79 do

• Introduce the unknown n40+i, and add the equation n40+i = g(Ni)+c4i +k∗
i

to the equation bank.
5. Add the 40 Equations ni = n80+i, ∀ i ∈ [0, 39] to the equation bank.
6. Pass the equations to the Solver. This effectively asks the solver to solve the

vector equation N0 = N80 for the given Key K.
7. If the solver returns the solution N0 = [s0, s1, . . . , s39] then run the

Init−1routine 320 times on N0 = [s0, s1, . . . , s39], L0 = [0, 0, . . . , 0].
8. Store the result in B = [b0, b1, . . . , b79].
9. If b70 = b71 = · · · = b78 = 1 and b79 = 0 then Exit else repeat the above steps

with another random secret key.

The steps in the above the above algorithm can be summarized as fol-
lows. First select a random secret key K. Then assume that the LFSR is all
zero after the initialization phase, and fill the corresponding NFSR state with
unknowns. We then populate the equation bank accordingly for the first 80
rounds and ask the solver to solve the vector equation N0 = N80, in the
unknowns n0, n1, . . . , n119. If the solver returns the solution N0 = [s0, s1, . . . , s39]
then N0 = [s0, s1, . . . , s39], L0 = [0, 0, . . . , 0] is a valid initial state for the
Sprout keystream phase if we can find an IV for the given Key K that results in
this state. So we run the Init−1routine 320 times and obtain the resultant vector
B. Now if the last ten bits of B are equal to the 0x3fe pattern used in Sprout,
then we can be sure that for the key K and the Initial Vector V = [b0, b1, . . . , b69],
the keystream sequence produced is of period exactly 80 since the same state
N0 = [s0, s1, . . . , s39], L0 = [0, 0, . . . , 0] will repeat in the keystream phase every
80 iterations. The above process is expected to produce one such Key-IV pair in
210 attempts. Since the above algorithm can be run for 280 values of the secret
key, this implies that there exist around 280−10 = 270 Key-IV pairs that produce
keystream bits period 80. Table 4 lists a few examples of such Key-IV pairs.
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Table 4. Key-IV pairs that produce keystream sequence with period 80. (Note that
the first hex character in V encodes the first 2 IV bits, the remaining 17 hex characters
encode bits 3 to 70)

# K V

1 2819 5612 323c 2357 3518 2 fbfc75bfcb4396485

2 7047 18a0 f88a aff7 7df5 1 4d57f42712b395015

5.2 Application to Key Recovery

It is clear, that for every Key, on average one out of every 240 Initial Vectors
lands the LFSR in the all zero state after initialization. In such a situation the
algebraic structure of the cipher becomes simpler to analyze. The NFSR update
equation becomes

nt+40 = g(Nt) + c4t + k∗
t ,

where k∗
t = Kt mod 80 · (nt+9 + nt+20 + nt+29) and the output keystream bit is

generated as

zt = nt+1 + nt+6 + nt+15 + nt+17 + nt+23 + nt+28 + nt+34.

Given such a situation, this greatly simplifies the guess and determine approach
of [10] both in terms of time and memory (although only in the multiple IV
mode). To explain the attack better let us define xi = ni+1, for all i ≥ 0 and so
we have N1 = [x0, x1, x2, . . . , x39]. So for i = 0 to 6 we have

zi = xi + xi+5 + xi+14 + xi+16 + xi+22 + xi+27 + xi+33.

This means that if the attacker knows that L0 = 0, then the first 7 keystream
bits z0, z1, z2, . . . , z6 is dependent on only N1 and the secret key is not involved
directly in the computation. This implies that if the attacker intends to guess
N1 then by observing the first seven keystream bits he can narrow down N1 to
a set of 233 possible candidates in the following way:

1. Guess x0, x1, x2, . . . , x32 first. There are 233 possible candidates.
2. Calculate xi+33 = zi + xi + xi+5 + xi+14 + xi+16 + xi+22 + xi+27 for i = 0

to 6.

For each of these 233 candidates, the attacker proceeds as follows: he calcu-
lates x40 from the equation for z7 as x40 = z7 + x7 + x12 + x21 + x23 + x24 + x31

and from x40 he calculates k∗
0 as k∗

0 = x40 + c40 + g(N1). Now we know that
k∗
0 = K0 · (x8 + x19 + x28). So if k∗

0 = 0 and x8 + x19 + x28 = 0 then nothing can
be deduced. If k∗

0 = 0 and x8+x19+x28 = 1 then it can be deduced that K0 = 0.
If k∗

0 = 1 and x8 + x19 + x28 = 1 then it can be deduced that K0 = 1. If k∗
0 = 1

and x8 + x19 + x28 = 0, then a contradiction is reached and it is concluded that
the guess for N1 was incorrect. Thereafter the same procedure with x41, x42 . . .
is followed sequentially. We outline the above procedure formally as follows:
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1. For Each of the 233 choices of N1 do the following till a contradiction is
arrived at
A. Assign i ← 0
B. Do the following:

– Calculate xi+40 = zi+7 + xi+7 + xi+12 + xi+21 + xi+23 + xi+24 + xi+31

– Calculate k∗
i = xi+40 + c4i + g(Ni+1)

– Case 1: k∗
i = 0 and xi+8 + xi+19 + xi+28 = 0 ⇒ No Deduction

– Case 2: k∗
i = 0 and xi+8 + xi+19 + xi+28 = 1 ⇒ If Ki mod 80 is not

already assigned then assign Ki mod 80 = 0, otherwise if this bit has
already been assigned to 0, then we have a contradiction.

– Case 3: k∗
i = 1 and xi+8 + xi+19 + xi+28 = 1 ⇒ If Ki mod 80 is not

already assigned then assign Ki mod 80 = 1, otherwise if this bit has
already been assigned to 1, then we have a contradiction.

– Case 4: k∗
i = 1 and xi+8 +xi+19 +xi+28 = 0 ⇒ we have a contradiction.

– If there is a contradiction, then we restart the process with a new guess
of N1.

– If there is no contradiction then assign i ← i+1 and repeat the process
if the entire secret key has not already been found.

Analysis of Time Complexity: The attacker obtains keystream bits for 240

randomly generated IVs and repeats the above routine for every keystream
sequence, till the correct Key is found. For the first 80 rounds, the only way we
have a contradiction is when Case 4 occurs, i.e. k∗

i = 1 and xi+8+xi+19+xi+28 =
0. So the probability that any guess for N1 is eliminated in 1 round itself is 1

4 , i.e.
assuming that the events k∗

i = 1 and xi+8 +xi+19 +xi+28 = 0 are independently
and uniformly distributed. The probability therefore that it takes 2 rounds to
eliminate is

(
1 − 1

4

)∗ 1
4 . In general, the probability that it takes i steps is roughly

(
1 − 1

4

)i−1 ∗ 1
4 . Therefore the average number of rounds θ that a guess takes to

eliminate is given by

θ =
∞∑

i=1

i

4
∗

(
1 − 1

4

)i−1

= 4.

In the analysis we have assumed that the only source of contradiction arises out
of Case 4. The actual value of θ is hence slightly smaller than 4. The attacker
obtains the keystream for some random IV and then tries all the possible 233

guesses. This takes θ · 233 = 235 steps for any IV that does not lead to L0 = 0.
It has already been pointed out in [6], clocking each Sprout step is equivalent to
2−8.34 encryptions (a proof is presented in Appendix A). And so for every any IV
that does not yield L0 = 0 the total work done is equivalent to 235−8.34 = 226.66

encryptions. Now the attacker has to try out around 240 IVs to succeed in getting
L0 = 0, and so the total time complexity in this process equals 240+26.66 = 266.66

encryptions.

Analysis of Memory Complexity: The memory complexity of the algorithm
is surprisingly negligible. Testing each guess of N1 can be done on the fly and
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hence the memory complexity is limited to that required to run the loop and
store the computed values of the key and the values of the xi bits. This is in
stark contrast to the 246 bits (8 TB) required in [10] or the 770 TB required
in [6]. Thus although, the algorithm that we provide is not the best in terms of
time complexity, it is certainly best in terms of memory.

6 Discussion and Conclusion

In this paper we outline a Distinguishing attack and a Key Recovery attack on
the Sprout stream cipher. We also present some results on Key Recovery from
partial knowledge of the state, shifted keystream sequence producing Key-IV
pairs and Key-IV pairs producing keystream sequences with period 80. The key
recovery attack that we propose is not the best in terms of time complexity but
certainly best in terms of the total memory required. It can be pointed out that
the attack in [6] was possible due to the non-linear mixing of the secret key during
the keystream phase, i.e. k∗

t = Kt mod 80 · (lt+4 + lt+21 + lt+37 + nt+9 + nt+20 +
nt+29). This enabled the attacker to identify and generate special internal states
that for 40 rounds or so do not involve the secret key bit in the computation of the
keystream bit, i.e. those for which lt+4 + lt+21 + lt+37 +nt+9 +nt+20 +nt+29 = 0,
for 40 consecutive rounds. The attack in [6] would not be directly applicable if
the key mixing was linear, for example if k∗

t = Kt mod 80. However even if the
key mixing were done linearly, all the attacks presented in this paper would still
hold. This reiterates the point that when it comes to designing stream ciphers
with shorter internal states, the Sprout architecture needs further tweaks. We
briefly summarize what could be the possible solutions to the problems in the
Sprout architecture:

State Size: In order to prevent the key recovery attacks of [10] and this paper,
one possible solution could be increasing the state size to 100 bits. The cipher
could employ two registers of 50 bits each, which would make the attacks of
[10] and this paper worse than a brute force search for the secret key.

Use of LFSR: One of the reasons that the 40-bit LFSR (generated by a prim-
itive polynomial) is used in the design, is to guarantee that the resulting
keystream has a period which is a multiple 240 − 1. This is true only when
the LFSR is non zero after the initialization phase. However on the rare
occasion that the LFSR lands on the all zero state after initialization, it
remains in this state for ever, and in the process weakens the algebraic struc-
ture of the cipher. One possible solution to this problem is to replace the
LFSR with a register that generates a maximal length DeBruijn Sequence
[7]. Such an n-bit maximal length producing register cycles through all possi-
ble 2n values, and so will not get stuck at the all zero state. However update
functions that produce maximal length sequences are hardware intensive:
if (x0, x1, . . . , xn−1) represents the n-bit register, then the update function
must contain the term x1 ·x2 · · · · xn−1 [8], and so some extra gate area needs
to be used.



138 S. Banik

Reading the IV: Loading the IV on to the register directly is used in ciphers
like Grain v1 and Trivium, but for ciphers with shorter internal states this
is not a good idea. This helps in (a) Finding Key-IV pairs which produce 80
bit shifted keystream bits, (b) Mounting the Distinguishing attack in Sect. 4,
and (c) Finding Key-IV pairs that produce keystream bits with small period.
So a different method of reading the IV information into the registers must
be found. One possible method could be reading the IV the same way the
key is read i.e. bit by bit. For example in rounds t = 80 to 149, the IV bit
could be included in the update function of the NFSR as

nt+50 = zt + g(Nt) + c4t + ν∗
t + lt0,

where ν∗
t = IVt−80.

Key Mixing: After the attack of [6] that specifically exploits the non-linear
Key mixing used in Sprout, it is quite obvious that the key mixing must be
linear to prevent such attacks. Therefore, if the round key bit k∗

t = Kt mod 80,
then the attack of [6] can be prevented.

Although, the cipher Sprout may have been cryptanalyzed, the idea of design-
ing a stream cipher with shorter internal states is indeed quite fascinating. This
does open up a new research discipline in which the scope to experiment could
be boundless.

Appendix A: Cost of Executing One Round of Sprout [6]

To do an exhaustive search, first an initialization phase has to be run for 320
rounds, and then generate 80-bits of keystream to do a unique match. However,
since each keystream bit generated matches the correct one with probability 1

2 ,
280 keys are tried for 1 clock and roughly half of them are eliminated, 279 for 2
clocks and half of the remaining keys are eliminated, and so on. This means that
in the process of brute force search, the probability that for any random key,
(i+1) Sprout keystream phase rounds need to be run, is 1

2i . Hence, the expected
number of Sprout rounds per trial is

79∑

i=0

(i + 1)280−i

280
=

79∑

i=0

(i + 1)
1
2i

≈ 4

Add to this the 320 rounds in the initialization phase, the average number of
Sprout rounds per trial is 324. As a result, we will assume that clocking the
registers once will cost roughly 1

320+4 = 2−8.34 encryptions.
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Abstract. SIMECK is a family of 3 lightweight block ciphers designed
by Yang et al. They follow the framework used by Beaulieu et al. from
the United States National Security Agency (NSA) to design SIMON
and SPECK. A cipher in this family with K-bit key and N -bit block
is called SIMECKN/K. We show that the security of this block cipher
against linear cryptanalysis is not as good as its predecessors SIMON.
More precisely, while the best known linear attack for SIMON32/64,
using Algorithm 1 of Matsui, covers 13 rounds we present a linear attack
in this senario which covers 14 rounds of SIMECK32/64. Similarly, using
Algorithm 1 of Matsui, we present attacks on 19 and 22 rounds of
SIMECK48/96 and SIMECK64/128 respectively, compare them with
known attacks on 16 and 19 rounds SIMON48/96 and SIMON64/128
respectively. In addition, we use Algorithm 2 of Matsui to attack 18, 23
and 27 rounds of SIMECK32/64, SIMECK48/96 and SIMECK64/128
respectively, compare them with known attacks on 18, 19 and 21 rounds
SIMON32/64, SIMON48/96 and SIMON64/128 respectively.

Keywords: SIMECK · SIMON · SPECK · Linear cryptanalysis

1 Introduction

SIMECK [26] is a new family of lightweight block ciphers designed by Yang
et al. and inspired by SIMON and SPECK, designed by the NSA [8]. The round
function of SIMECK is similar to the round function of SIMON while its key
schedule is more similar to the key schedule of SPECK. The aim of SIMECK is to
provide optimal hardware and software performance for low-power limited gate
devices such as RFID devices by combing good components from both SIMON
and SPECK. Variants of this block cipher support plaintext block sizes of 32,
48, 64 and 96 and 128 bits. The key size of those variants are 64, 96 and 128
bits respectively. SIMECKN/K denotes a variant of SIMECK that has a block
size of N bits and a key size of K bits.

Although, several works investigated the security of SIMON and SPECK
against differential attack [2,3,6,9,22,24], its variants such as impossible
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DOI: 10.1007/978-3-319-26617-6 8
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differential attack [2–4,6,10,12,14,15,21,25] and linear attack [1,4,5,7,11,20].
However, we are not aware of any third party security analysis of SIMECK. In
this paper, we present linear cryptanalysis against reduced variants of SIMECK.

Contributions. In this paper, we analyze the security of SIMECK against
linear cryptanalytic techniques. In this direction, we present linear characteristics
for different variants of SIMECK, that can be used for key recovery attacks on
SIMECK reduced to 14, 19 and 22 rounds for the respective block sizes of 32,
48 and 64 bits using Matsui’s Algorithm 1. Furthermore, we extend this linear
characteristics to attack more rounds using Matsui’s Algorithm 2. These attacks
covers 18, 23 and 26 rounds for the respective block sizes of 32, 48 and 64.
A brief summary of our results on SIMECK and the best known results on
the equivalent versions of SIMON are presented in Table 1. It must be noted
that designers’ security analysis against linear cryptanalysis covers 12, 15 and
19 rounds of SIMECK32/64, SIMECK48/96 and SIMECK64/128 respectively
[26, Sect. 5].

Organization. The paper is structured as follows. In Sect. 2 we present a brief
description of SIMECK. In Sect. 3 we present the idea of linear attacks on SIMON
and apply linear attacks to variants of SIMECK using Matsui’s Algorithm 1.
In Sect. 3 we extend our attacks on variants of SIMECK using Matsui’s
Algorithm 2. Finally, we conclude the paper in Sect. 5 and propose possible
future directions of research.

Table 1. Linear cryptanalysis of SIMECK, using the Matsui’s Algorithms 1 and 2,
and comparison with the best known results on the equivalent versions of SIMON,
where the information given as the number of the deduced key bits are based on the
independent-round-keys assumption.

Variant # Attacked Data Time Success # deduced Reference

rounds probability key bits

Matsui’s SIMON32/64 13 232 232 0.997 1 [4]

Algorithm 1 SIMECK32/64 13 230 230 0.997 1 Sect. 3

SIMECK32/64 14 232 232 0.841 1 Sect. 3

SIMON48/96 16 246 246 0.997 1 [4]

SIMECK48/96 18 248 248 0.997 1 Sect. 3

SIMECK48/96 19 246 246 0.841 1 Sect. 3

SIMON64/128 19 258 258 0.997 1 [4]

SIMECK64/128 22 260 260 0.997 1 Sect. 3

SIMECK64/128 23 264 264 0.841 1 Sect. 3

Matsui’s SIMON32/64 17 232 261.5 < 4 0.477 36 [1]

Algorithm 2 SIMECK32/64 18 231 263.5 0.477 44 Sect. 4

SIMON48/96 19 247 282 0.477 53 [1]

SIMECK48/96 24 245 294 0.477 62 Sect. 4

SIMON64/128 21 259 2123 0.477 66 [1]

SIMECK64/128 27 261 2120.5 0.477 76 Sect. 4
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2 Description of the SIMECK Family

SIMECK is a classical Feistel block cipher with the round block size of 2n bits
and the key size of 4n, where n is the word size. The number of rounds of cipher
is denoted by r and depends on the variant of SIMON which are 32, 36 and
44 rounds for SIMECK32/64, SIMECK48/96 and SIMECK64/128 respectively.
For a 2n-bit string X, we use XL and XR to denote the left and right halves of
the string respectively. The output of round r is denoted by Xr = (Xr

R ‖ Xr
L)

and the subkey used in the round r is denoted by Kr. Given a string X, (X)i
denotes the i-th bit of X. Bitwise circular rotation of string a by b position to
the left is denoted by a ≪ b. Further, ⊕ and & denote bitwise XOR and AND
operations respectively. We use P and C to denote a plaintext and a ciphertext
respectively.

The function F : F
n
2 → F

n
2 used in each round of SIMECK is non-linear

and non-invertible, and is applied to the left half of the state, so the state is
updated as:

Xr+1 = (F (Xr
L) ⊕ Xr

R ⊕ Kr ‖ Xr
L). (1)

The F function is defined as:

F (X) = (X ≪ 1) ⊕ ((X) & (X ≪ 5)).

The subkeys are derived from a master key. Depending on the size of the master
key, the key schedule of SIMECK operates on four n-bit word registers. Detailed
description of SIMECK variants structure and key scheduling can be found in [26]
but it has no affect on our analysis.

3 Linear Cryptanalysis of SIMECK Using the Matsui’s
Algorithm 1

Linear cryptanalysis [17] is a classical known-plaintext attack cryptanalytic tech-
nique that was employed on several block ciphers such as FEAL-4, DES, Serpent
and SAFER [13,16,17,23]. In this section, we present linear characteristics for
variants of SIMECK using the Matsui’s Algorithm 1 [17].

In the round function of SIMECK, similar to SIMON, the only non-linear
operation is the bitwise AND. Note that, given single bits A and B, then
Pr (A & B = 0) = 3

4 . Hence, we can extract the following highly biased linear
expressions for the F function of SIMECK (there are equivalent linear expres-
sions for the F function of SIMON [4]):

Approximation 1 : Pr ((F (X))i = (X)i−1) = 3
4 ,

Approximation 2 : Pr ((F (X))i = (X)i−1 ⊕ (X)i) = 3
4 ,

Approximation 3 : Pr ((F (X))i = (X)i−1 ⊕ (X)i−5) = 3
4 ,

Approximation 4 : Pr ((F (X))i = (X)i−1 ⊕ (X)i ⊕ (X)i−5) = 1
4 .

(2)
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Given the round function (1) of SIMECK and these linear approximations,
we can extract the following linear expressions for the ith round of the SIMECK:

(Xi
L)9 ⊕ (Xi

R)10 ⊕ (Ki)10 = (Xi+1
L )10 (3)

(Xi+3
L )10 ⊕ (Xi+3

R )9 ⊕ (Ki+2)10 = (Xi+2
R )10 (4)

Each equality in Eq. (3) holds with probability 3
4 . Given that (Xi+1

L )10 =
(Xi+2

R )10, as it is shown in Fig. 1, we can use Eq. (3) in a meet in the mid-
dle approach to extract a 3-round linear approximation as follows, for which the
bias is 1

8 (the bias of a linear approximation which is hold with the probability
of p is defined as

∣
∣p − 1

2

∣
∣ ):

(Xi
L)9 ⊕ (Xi

R)10 ⊕ (Xi+3
L )10 ⊕ (Xi+3

R )9 = (Ki)10 ⊕ (Ki+2)10. (5)

Since (Xi
R)10 = (Xi−1

L )10 and with the probability of 3
4 , we have (Xi

L)9 =
(Xi−1

L )8 ⊕ (Xi−1
R )9 ⊕ (Ki−1)9, we can add a round to the top of the current

n

F

F

F

n

Fig. 1. A 3-round linear approximation for SIMECK32/64.
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3-round approximation and produce a 4-round linear expression, with the bias
of 1

16 , as follows:

(Xi−1
L )[8, 10] ⊕ (Xi−1

R )9 ⊕ (Xi+3
L )10 ⊕ (Xi+3

R )9 = (Ki−1)9 ⊕ (Ki)10 ⊕ (Ki+2)10.
(6)

where (X)[i1, ..., im] = (X)i1 ⊕ . . .⊕(X)im . Similarly, since (Xi+3
L )10 = (Xi+4

R )10
and with the probability of 3

4 we have (Xi+3
R )9 = (Xi+4

R )8 ⊕ (Xi+4
L )9 ⊕ (Ki+4)9,

we can add a round to the bottom of the current 4-round approximation and
produce a 5-round linear expression, with the bias of 1

16 , as follows:

(Xi−1
L )[8, 10] ⊕ (Xi−1

R )9 ⊕ (Xi+4
R )[8, 10] ⊕ (Xi+4

L )9
= (Ki−1)9 ⊕ (Ki)10 ⊕ (Ki+2)10 ⊕ (Ki+4)9. (7)

Following this approach we can extend this linear approximation by adding extra
rounds to top and bottom and drive a linear approximation for more rounds of
SIMECK. In Tables 2, 3 and 4 sequences of approximation to produce linear
characteristics for SIMECK32/64, SIMECK48/96 and SIMECK64/128 are pre-
sented. In the last column of each table, number of approximation in each round
is presented. Given that for any used approximation in these tables bias is 1

4 ,
based on the piling-up lemma [17] the bias of a linear characteristic with N
approximation would be 2N−1 × ( 14 )N = 2−(N+1).

It is clear from Table 2 that we can produce a 11-round linear characteristic
for SIMECK32/64 with bias 2−15 as follows:

(
(X1

R)7 ⊕ (X1
L)[6, 8, 10]

⊕(X12
L )9 ⊕ (X12

R )[6, 10]

)
=

⎛

⎝
(K1)7 ⊕ (K2)[8, 10] ⊕ (K3)9 ⊕ (K4)10
⊕(K6)10 ⊕ (K7)9 ⊕ (K8)[8, 10]
⊕(K9)7 ⊕ (K10)[6, 8, 10] ⊕ (K11)9

⎞

⎠, (8)

Given this 11-round linear characteristic, we can add another round to its top and
a round to its bottom to extend the attack up to 13 rounds. The added rounds are
related to the plaintext and ciphertext and free of any approximation, because
we know the input of F functions for these rounds and key does not affect
approximation. In this way we have a 13-round linear characteristic between
plaintext and ciphertext of SIMECK32/64 for which the bias is 2−15. Given
this linear characteristic, using Matsui’s Algorithm 1 with the data complexity
of (2−15)2 = 230, an adversary can retrieve 1 bit of the key with the success
probability of 0.997 [17, Table 2].

The adversary can use Table 2 to produce a 12-round linear characteristic for
SIMECK32/32 with bias of 2−17 as follows:

(
(X1

R)7 ⊕ (X1
L)[6, 8, 10]

⊕(X13
L )[6, 10] ⊕ (X13

R )5

)
=

⎛

⎝
(K1)7 ⊕ (K2)[8, 10] ⊕ (K3)9 ⊕ (K4)10
⊕(K6)10 ⊕ (K7)9 ⊕ (K8)[8, 10] ⊕ (K9)7
⊕(K10)[6, 8, 10] ⊕ (K11)9 ⊕ (K12)[6, 10]

⎞

⎠ ,

(9)

Given this 12-round linear characteristic, we can add another round to
its top and a round to its bottom to extend the attack up to 14 rounds.
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Hence, using Matsui’s Algorithm 1 with the data complexity of 1
4 (2−17)2 = 232,

the adversary can retrieves 1 bit of the key with the success probability of
0.841 [17, Table 2].

Similarly, it is clear from Table 3 that we can produce a 16-round linear char-
acteristic (Eq. 10) with bias 2−24 and a 17-round linear characteristic (Eq. 11)
with bias 2−25 for SIMECK48/96.

(
(X1

R)5 ⊕ (X1
L)[4, 6, 10]

⊕(X17
L )[6, 10] ⊕ (X17

R )5

)
=

⎛

⎜
⎜
⎝

(K1)5 ⊕ (K2)[6, 10] ⊕ (K3)9 ⊕ (K4)[6, 8, 10]
⊕(K5)7 ⊕ (K6)[8, 10] ⊕ (K7)9 ⊕ (K8)10
⊕(K10)10 ⊕ (K11)9 ⊕ (K12)[8, 10] ⊕ (K13)7
⊕(K14)[6, 8, 10] ⊕ (K15)9 ⊕ (K16)[6, 10]

⎞

⎟
⎟
⎠ ,

(10)

(
(X1

R)5 ⊕ (X1
L)[4, 6, 10]

⊕(X18
L )5 ⊕ (X18

R )[4, 6, 10]

)
=

⎛
⎜⎜⎝

(K1)5 ⊕ (K2)[6, 10] ⊕ (K3)9 ⊕ (K4)[6, 8, 10]
⊕(K5)7 ⊕ (K6)[8, 10] ⊕ (K7)9 ⊕ (K8)10
⊕(K10)10 ⊕ (K11)9 ⊕ (K12)[8, 10] ⊕ (K13)7
⊕(K14)[6, 8, 10] ⊕ (K15)9 ⊕ (K16)[6, 10] ⊕ (K17)5

⎞
⎟⎟⎠ ,

(11)

Given these linear characteristics, we can add another round to their top and a
round to their bottom to extend the attack up to 18 and 19 rounds respectively,
free of extra approximation. Hence, using these linear characteristics and Mat-
sui’s Algorithm 1 with the data complexity of 248, the adversary can retrieves
1 bit of the key with the success probability of 0.997 and 0.841 respectively.

Table 4 shows the sequence of approximations to produce a 19-round lin-
ear characteristic (Eq. 12) with bias 2−30 and a 20-round linear characteristic
(Eq. 13) with bias 2−33 for SIMECK64/128, which can be extended to attack to
21 and 22 rounds of algorithm respectively. Given those linear characteristics,
using Matsui’s Algorithm 1, with the data complexity of 260 and 264, the adver-
sary can retrieve 1 bit of the key with the success probability of 0.997 and 0.841
respectively.

(
(X2

R)5 ⊕ (X2
L)[4, 6, 10]

⊕(X20
L )[3, 9] ⊕ (X20

R )[2, 6, 8, 10]

)
=

⎛
⎜⎜⎜⎜⎝

(K2)5 ⊕ (K3)[6, 10] ⊕ (K4)9 ⊕ (K5)[6, 8, 10]
⊕(K6)7 ⊕ (K7)[8, 10] ⊕ (K8)9 ⊕ (K9)10
⊕(K11)10 ⊕ (K12)9 ⊕ (K13)[8, 10] ⊕ (K14)7
⊕(K15)[6, 8, 10] ⊕ (K16)9 ⊕ (K17)[6, 10]
⊕(K18)5 ⊕ (K19)[4, 6, 10] ⊕ (K20)[3, 9]

⎞
⎟⎟⎟⎟⎠ ,

(12)

(
(X1

R)[4, 6, 10] ⊕ (X1
L)[3, 9]

⊕(X21
L )[3, 9] ⊕ (X21

R )[2, 6, 8, 10]

)
=

⎛
⎜⎜⎜⎜⎝

(K1)[4, 6, 10] ⊕ (K2)5 ⊕ (K3)[6, 10] ⊕ (K4)9⊕
(K5)[6, 8, 10] ⊕ (K6)7 ⊕ (K7)[8, 10] ⊕ (K8)9
⊕(K9)10 ⊕ (K11)10 ⊕ (K12)9 ⊕ (K13)[8, 10]⊕
(K14)7 ⊕ (K15)[6, 8, 10] ⊕ (K16)9 ⊕ (K17)[6, 10]
⊕(K18)5 ⊕ (K19)[4, 6, 10] ⊕ (K20)[3, 9]

⎞
⎟⎟⎟⎟⎠ ,

(13)
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Table 2. Sequences of approximation of a 12 round linear characteristic for
SIMECK32/64. AL and AR denote the active bits in the left and right side respec-
tively, Used App. denotes the approximation from Eq. 2 that has been used for the
corresponding bit(s) of AR and # App denotes that how many approximation has
been used in each round.

AL AR Used App # App

1 10, 8, 6 7 1 1

2 9, 9, 7 10, 8 1; 1 2

3 10, 8 9 1 1

4 9 10 1 1

5 10 – – 0

6 9 10 1 1

7 10,8 9 1 1

8 9, 9, 7 10, 8 1; 1 2

9 10, 8, 6 7 1 1

10 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3

11 10, 8, 6, 8 9 1 1

12 9, 9, 5 10,6 1; 1 2

Table 3. Sequences of approximation of a 17 round linear characteristic for
SIMECK48/96. Notations are similar to the notations used in this table.

AL AR Used App # App

1 10, 6,4 5 1 1

2 9, 9, 5 10,6 1; 1 2

3 10, 8, 6, 8 9 1 1

4 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3

5 10, 8, 6 7 1 1

6 9, 9, 7 10, 8 1; 1 2

7 10, 8 9 1 1

8 9 10 1 1

9 10 – – 0

10 9 10 1 1

11 10,8 9 1 1

12 9, 9, 7 10, 8 1; 1 2

13 10, 8, 6 7 1 1

14 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3

15 10, 8, 6, 8 9 1 1

16 9, 9, 5 10,6 1; 1 2

17 10, 6,4 5 1 1
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Table 4. Sequences of approximation of a 20 round linear characteristic for
SIMECK64/128. Notations are similar to the notations used in Table 3.

AL AR Used App # App

1 5,9,5,3 10, 6,4 1;1; 1 3

2 10, 6,4 5 1 1

3 9, 9, 5 10,6 1; 1 2

4 10, 8, 6, 8 9 1 1

5 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3

6 10, 8, 6 7 1 1

7 9, 9, 7 10, 8 1; 1 2

8 10, 8 9 1 1

9 9 10 1 1

10 10 – – 0

11 9 10 1 1

12 10,8 9 1 1

13 9, 9, 7 10, 8 1; 1 2

14 10, 8, 6 7 1 1

15 7, 9,5, 7, 5 10, 8, 6 2; 1; 1 3

16 10, 8, 6, 8 9 1 1

17 9, 9, 5 10,6 1; 1 2

18 10, 6,4 5 1 1

19 5,9,5,3 10, 6,4 1;1; 1 3

20 10, 6,4,8,4,2 9,3 2,1 2

4 Linear Cryptanalysis of SIMECK Using the Matsui’s
Algorithm 2

In this section, we use Matsui’s Algorithm 2 to recover the key of more rounds
of variants of SIMECK. For example, in the case of SIMECK 32/64, given the
linear characteristic represented in Eq. 8 with bias 2−15, we guess subkyes of
rounds at the beginning and the end of the cipher and determine the correlation
of the following linear relation to filter the wrong subkeys:

(Xi
R)7 ⊕ (Xi

L)[6, 8, 10] ⊕ (Xi+11
L )9 ⊕ (Xi+11

R )[6, 10] (14)

With respect to Table 5, we can append a round to the beginning of the cipher
to find a new 12-round linear characteristic. Since SIMECK injects the subkey
at the end of its round function, then this work does not add any computational
complexity. More precisely, for the current 11-round linear characteristic, we
evaluate (Xi

R)7 ⊕ (Xi
L)[6, 8, 10]⊕(Xi+11

L )9⊕(Xi+11
R )[6, 10]. When we add a round

in the backwards direction, i.e. round i− 1, we can determine (Xi
L)[6, 8, 10] as a
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function of F (Xi−1
L )[6, 8, 10] ⊕ (Ki−1)[6, 8, 10] ⊕ Xi−1

R )[6, 8, 10], where we know
Xi−1

R and Xi−1
L . On the other hand, (Xi

R)7 = (Xi−1
L )7. Hence, it is possible to

use the correlation of the following linear relation to filter the wrong subkeys:

(Xi−1
L )7 ⊕ F (Xi−1

L )[6, 8, 10] ⊕ Xi−1
R )[6, 8, 10] ⊕ (Xi+11

L )9 ⊕ (Xi+11
R )[6, 10].

It means that we do not need to know the value of (Ki−1)[6, 8, 10] (in Table 5
such bits of key are indicated in red). We can continue our method to add more
rounds to the beginning of linear characteristic in the cost of guessing some bits
of subkeys. To add more rounds in backward, for example we must guess the bit
(F (Xi−1

L ))6 = (Xi−1
L )5⊕((Xi−1

L )6&(Xi−1
L )1). Given that for any 2-bit AND gate

if an input is 0 then the output would be 0, to determine (F (Xi−1
L ))6 one should

guess (Xi−1
L )1 only if the guessed value for (Xi−1

L )6 is 1, but it always should
guess the value of (Xi−1

L )5 (this observation originally has been used in [1] to
attack SIMON). So, in average we need one bit guess for (Xi−1

L )6 and (Xi−1
L )1

(in Table 5 such bits are indicated in blue).
Following this approach, Table 5 shows the bits of subkeys that should be

guessed (31 bits of subkey in average) when we add 3 rounds at the top and

Table 5. The keys (in black) that should be guessed to attack 18 rounds of
SIMECK32/64. The red bits are not required to be guessed and the blue bits cost guess-
ing a half bit on average. Here i ∼ j denotes the sequence of numbers i, i−1, . . . , j+1, j,
LC is the core linear characteristic, BW is the rounds added at the top and FW is the
rounds added at the bottom of the core linear characteristic and AGK denotes average
guessed subkey-bits.

AL AR active subkeys’ bits AGK.

-2 15∼0 14,12,10∼0 14,12,10,8,6,3,1,9,7,5,4,2,0 29.5

BW -1 14,12,10∼0 10∼5,3,1 9,7,10,8,5,6,3,1 23

0 10∼5, 3,1 10, 8, 6 10, 8, 6 0

-76,8,011 -
2 9, 9, 7 10, 8 - -

--98,013
0194 - -

--–015
LC 0196 - -

--98,017
8 9, 9, 7 10, 8 - -

-76,8,019 -
10 7, 9,5, 7, 5 10, 8, 6 - -

--98,6,8,0111

13 10,9,6,5,1 10,6 10,6 0
FW 14 12,10∼8,6∼4,1,0 10,9,6,5,1 9,10,6,5,1 22

15 15,12∼3,1,0 12,10∼8,6∼4,1,0 8,12,10,6,1,9,5,4,0 26

16 15,14,12∼0 15,12∼3,1,0 12,7,15,11∼8,6∼3,1,0 212
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Table 6. The keys (in black) that should be guessed to attack 23 rounds of
SIMECK48/96. Notations are similar to the notations used in Table 5.

AL AR active subkeys’ bits AGK.

-3 23∼12,10∼0 23∼17,15,13,10∼0 7,20,18,15,13,23∼21,19,17,10∼8,6∼0 217

BW -2 23∼17,15,13,10∼0 23,22,20,18,10∼8,6∼0 8,2,23,20,18,10,6,1,22,9,5,4,3,0 29

-1 23,22,20,18,10∼8,6∼0 23,10,9,6∼3,1 9,3,23,10,6∼4,1 23

0 23,10,9,6∼3,1 10,6,4 10,6,4 0

--54,6,011
--6,015,9,92

3 10, 8, 6, 8 9 - -
4 7, 9,5, 7, 5 10, 8, 6 - -

--76,8,015
8,017,9,96 - -

--98,017
LC 0198 - -

--–019
01901 - -

--98,0111
12 9, 9, 7 10, 8 - -
13 10, 8, 6 7 - -

--6,8,015,7,5,9,741
--98,6,8,0151

6,011,5,6,9,0161 10,6 0
FW 17 20,10∼8,6∼4,1,0 10,9,6,5,1 9,10,6,5,1 22

18 23,20,19,15,10∼3,1,0 20,10∼8,6∼4,1,0 8,20,10,6,1,9,5,4,0 26

19 23,22,20∼18,15,14,10∼0 23,20,19,15,10∼3,1,0 7,20,15,23,19,10∼8,6∼3,1,0 212

4 rounds at the bottom of the 11-round characteristic of Eq. 8. Hence, we can
attack 18 rounds of SIMMECK32/64 using Algorithm 2 of Matsui to recover
bits of subkeys. For the data complexity of 231 and the time complexity of 263.5

the attack success probability would be 0.477 [19].
Given Eq. 10, as a linear characteristic for SIMECK48/96, is possible to apply

the above technique to extend the linear characteristics over more number of
rounds. However, the bias of that linear characteristic is 2−24, which means that
we can not use it to mount an attack with high success probability [17,19]. Hence,
we use Eq. 15 which covers 15 rounds. Table 6 shows the bits of subkeys that
should be guessed (49 bits of subkey in average) when we add 4 rounds at the top
and 4 rounds at the bottom of the 15-round characteristic of Eq. 15. Hence, we
can attack 23 rounds of SIMECK48/96 using Algorithm 2 of Matsui to recover
bits of subkeys. For the data complexity of 245 and the time complexity of 294

the attack success probability would be 0.477 [19].

(
(X1

R)5 ⊕ (X1
L)[4, 6, 10]

⊕(X16
L )9 ⊕ (X16

R )[6, 10]

)
=

⎛

⎜
⎜
⎝

(K1)5 ⊕ (K2)[6, 10] ⊕ (K3)9 ⊕ (K4)[6, 8, 10]
⊕(K5)7 ⊕ (K6)[8, 10] ⊕ (K7)9 ⊕ (K8)10
⊕(K10)10 ⊕ (K11)9 ⊕ (K12)[8, 10] ⊕ (K13)7
⊕(K14)[6, 8, 10] ⊕ (K15)9

⎞

⎟
⎟
⎠ ,

(15)
Similarly, given Eq. 12 with bias 2−30, it is possible to apply this technique

to extend the linear characteristics to 27 rounds of SIMECK64/128 (Table 7).
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Table 7. The keys (in black) that should be guessed to attack 27 rounds of
SIMECK64/128. Notations are similar to the notations used in Table 5.

AL AR active subkeys’ bits AGK.

-3 31∼20,18,16,10∼0 31∼25,23,21,10∼0 7,28,26,23,21,31∼29,27,25,10∼8,6∼0 217

BW -2 31∼25,23,21,10∼0 31,30,28,26,10∼8,6∼0 8,2,31,28,26,10,6,1,30,9,5,4,3,0 29

-1 31,30,28,26,10∼8,6∼0 31,10,9,6∼3,1 9,3,31,10,6∼4,1 23

0 31,10,9,6∼3,1 10,6,4 10,6,4 0

-54,6,011 -
--6,015,9,92

3 10, 8, 6, 8 9 - -
4 7, 9,5, 7, 5 10, 8, 6 - -

-76,8,015 -
8,017,9,96 - -

--98,017
0198 - -

-–019 -
LC 01901 - -

--98,0111
12 9, 9, 7 10, 8 - -
13 10, 8, 6 7 - -

--6,8,015,7,5,9,741
--98,6,8,0151

16 9, 9, 5 10,6 - -
54,6,0171 - -

-4,6,013,5,9,581 -
19 10, 6,4,8,4,2 9,3 - -

20 29,10∼5,3∼1 10,8,6,2 10,8,6,2 0
FW 21 30∼28,24,10∼0 29,10∼5,3∼1 9,7,3,29,10,8,6,5,2,1 23.5

22 31∼27,24,23,19,10∼0 30∼28,24,10∼0 8,6,30,29,24,10,3,2,28,9,7,5,4,1,0 210

23 31∼22,19,18,14,10∼0 31∼27,24,23,19,10∼0 30,24,19,7,31,29∼27,23,10∼8,6∼0 217

To attack 27 rounds of SIMECK64/128, the data complexity is 261, the time
complexity is 2120.5 and the attack success probability would be 0.477 [19].

5 Conclusion and Open Problems

In this paper, we analyzed the security of SIMECK family against linear crypt-
analysis techniques. Our results show that each variant of SIMON provides bet-
ter security against linear cryptanalysis compared to equivalent SIMECK vari-
ant. More precisely, the best known attack on SIMON32/64, SIMON48/96 and
SIMON64/128 using Mastui’s Algorithm 1 covers 13, 16 and 19 rounds respec-
tively while our result on SIMECK32/64, SIMECK48/96, SIMECK64/128 cov-
ers 14, 19 and 22 rounds. Moreover, the best known attack on SIMON32/64,
SIMON48/96 and SIMON64/128 using Mastui’s Algorithm 2 covers 18, 19
and 21 rounds respectively while our result on SIMECK32/64, SIMECK48/96,
SIMECK64/128 covers 18, 23 and 27 rounds. Hence, in the perspective of linear
cryptanalysis, SIMON provides better security margin compared to SIMECK.

On the other hand, from the point of number of rounds attacked, linear
hull [18] shows to be a more promising approach to analyze the security of
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SIMON [1,11,20] compared to other attacks. Hence, as a future work, we aim
to investigate the security of SIMECK variants against this attack.

References

1. Abdelraheem, M.A., Alizadeh, J., AlKhzaimi, H., Aref, M.R., Bagheri, N.,
Gauravaram, P., Lauridsen, M.M.: Improved linear cryptanalysis of round reduced
SIMON. IACR Cryptology ePrint Archive 2014/681 (2014)

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential Cryptanalysis of Reduced-
Round Simon. Cryptology ePrint Archive, Report 2013/526 (2013). http://eprint.
iacr.org/

3. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015)

4. Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N., Gauravaram, P.,
Kumar, A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants
with connections. In: Sadeghi, A.-R., Saxena, N. (eds.) RFIDSec 2014. LNCS,
vol. 8651, pp. 90–107. Springer, Heidelberg (2014)

5. Alizadeh, J., Bagheri, N., Gauravaram, P., Kumar, A., Sanadhya, S.K.: Linear
Cryptanalysis of Round Reduced SIMON. Cryptology ePrint Archive, Report
2013/663 (2013). http://eprint.iacr.org/

6. AlKhzaimi, H., Lauridsen, M.M.: Cryptanalysis of the SIMON Family of Block
Ciphers. IACR Cryptology ePrint Archive 2013/543 (2013)

7. Ashur, T.: Improved linear trails for the block cipher simon. IACR Cryptology
ePrint Archive 2015/285 (2015)

8. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013. http://eprint.iacr.org/2013/404

9. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 546–570. Springer, Heidelberg (2015)

10. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014)

11. Chen, H., Wang, X.: Improved Linear Hull Attack on Round-Reduced Simon with
Dynamic Key-guessing Techniques (2015)

12. Chen, Z., Wang, N., Wang, X.: Impossible differential cryptanalysis of reduced
round SIMON. IACR Cryptology ePrint Archive 2015/286 (2015)

13. Cho, J.Y., Hermelin, M., Nyberg, K.: A new technique for multidimensional linear
cryptanalysis with applications on reduced round serpent. In: Lee, P.J., Cheon, J.H.
(eds.) ICISC 2008. LNCS, vol. 5461, pp. 383–398. Springer, Heidelberg (2009)

14. Courtois, N., Mourouzis, T., Song, G., Sepehrdad, P., Susil, P.: Combined alge-
braic and truncated differential cryptanalysis on reduced-round simon. In: Obaidat,
M.S., Holzinger, A., Samarati, P. (eds.) SECRYPT 2014, pp. 399–404. SciTePress
(2014)

15. Dinur, I.: Improved differential cryptanalysis of round-reduced Speck. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Heidelberg
(2014)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/404


152 N. Bagheri

16. Nakahara, Jr., J., Preneel, B., Vandewalle, J.: Linear cryptanalysis of reduced-
round versions of the SAFER block cipher family. In: Goos, G., Hartmanis, J.,
van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, p. 244–261.
Springer, Heidelberg (2001)

17. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

18. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)
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SIMON-48. In addition we have an attack on 24 rounds of SIMON-32
with marginal complexity.

Keywords: SIMON · Linear cryptanalysis · Linear hull · Correlation
matrix · Mixed Integer Programming (MIP)

1 Introduction

Over the past few years, the necessity for limited cryptographic capabilities in
resource-constraint computing devices such as RFID tags has led to the design
of several lightweight cryptosystems [8,12,13,15,17–19,30]. In this direction,
Beaulieu et al. of the U.S. National Security Agency (NSA) designed SIMON
family of lightweight block ciphers that are targeted towards optimal hardware
performance [9]. Meeting hardware requirements of low-power and limited gate
devices is the main design criteria of SIMON.

SIMON has plaintext block sizes of 32, 48, 64, 96 and 128 bits, each with
up to three key sizes. SIMON-N/K denotes a variant of SIMON with block
and key sizes of N and K bits respectively. With the proposed block and key
lengths, SIMON is a family of ten lightweight block ciphers. Since the publication
of SIMON, each cipher in this family has undergone reduced round cryptanaly-
sis against linear [2–6,24], differential [3,4,11,28], impossible differential [14],
rectangular [3,4] and integral [29] attacks.

Contributions. In this paper, we analyse the security of SIMON-32 and SIMON-
48. First we analyze the security of reduced-round SIMON-32 and SIMON-48
against several variants of linear cryptanalysis and report the best results to date
with respect to any form of cryptanalysis in terms of the number of rounds attacked
on SIMON-32/64 and 48/96. Our attacks are described below and results are sum-
marised in Table 1.

– We propose a time-memory trade-off method that combines low Hamming
weight trails found by the correlation matrix (consumes huge memory) with
heavy Hamming weight trails found by the Mixed Integer Programming (MIP)
method [26] (consumes time depending on the specified number of trails to be
found). The method enables us to find a 17-round linear approximation for
SIMON-48 which is the best current approximation.

– We found a 14-round linear hull approximation for SIMON-32 using a squared
correlation matrix with input/output masks of Hamming weight ≤ 9.

– Using our approximations, we are able to break 23 and 24 rounds of SIMON-
32, 23 rounds of SIMON-48/72 and 24 rounds of SIMON-48/96 with a mar-
ginal time complexity 263.9.

Previous Results on SIMON Used in Our Paper. The work in [20] pro-
vides an explicit formula for computing the probability of a 1-round differential
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characteristic of the SIMON’s non-linear function. It also provides an efficient
algorithm for computing the squared correlation of a 1-round linear characteris-
tic of the SIMON nonlinear function which we used in our linear cryptanalysis
to SIMON-48.

The work in [24] defines a MIP linear model that finds linear trails for
SIMON. The solution of the MIP model sometimes yield a false linear trail but
most of the time it yields a valid linear trail. When a solution is found whether
valid or invalid, we add a new constraint to the MIP model that prevents the
current solution from occurring in the next iteration.

Related Work on SIMON. The most improved results in terms of the number
of rounds attacked, data and time complexity presented, up-to-date of this pub-
lication, are in the scope of differential, linear and integral attacks as reflected in
Table 1. Focusing on the different cryptanalysis results of SIMON-32, SIMON-
48/72 and SIMON-48/96, Abed et al. [3,4] have presented that classical dif-
ferential results yield attacks on 18 for the smallest variant and 19 rounds for
SIMON-48 with data and time stated in Table 1. This was improved to 21 rounds
for SIMON-32 and 22−24 rounds for SIMON-48/72 and SIMON-48/96 by Wang
et al. [27,28] using dynamic key guessing and automatic enumeration of differen-
tial characteristics through imposing conditions on differential paths to reduce
the intended key space searched.

Independent to our work, Ashur [7] described a method for finding linear
trails that work only against SIMON-like ciphers. This method finds a multivari-
ate polynomial in GF(2) representing the r-round linear approximation under
consideration. Each solution of the multivariate polynomial corresponds to a
valid trail that is part of the many linear trails that forms the linear approxima-
tion. This suggests that the probability that the r-round linear approximation is
satisfied is equivalent to the number of solutions for its corresponding multivari-
ate polynomial divided by the size of the solution space. For r = 2, the authors
mentioned that the space size is 210. For higher rounds the space gets bigger as
many bits will be involved in the corresponding multivariate polynomial. Find-
ing the number of solutions of a multivariate polynomial is a hard problem. To
overcome this, the author uses the above method to form what is called a “lin-
ear super-trail”which glues two short linear hulls (a short linear hull has a small
number of rounds that make it is feasible to find the number of solutions of the
corresponding multivariate polynomial) in order to form a super-trail.

In contrast, our time-memory trade-off method which basically combines two
different linear trails found using a squared correlation matrix (trails with light
Hamming weight) and a mixed integer programming model (trails with heavy
Hamming weight) is not SIMON specific, it is very generic and can be used
for any permutation allowing low Hamming weight linear/differential trails to
find linear/differential trails. As described in Sect. 5.3, we have better attacks
on both SIMON-32 (using squared correlation matrix) and SIMON-48 (using
time-memory trade-off) compared to the results of [7].
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Organization. The paper is structured as follows. In Sect. 2 we describe SIMON.
In Sect. 3 concepts and notation required for linear cryptanalysis of SIMON are
presented. In Sect. 4 the used Time-Memory Trade-off method is described. In
Sect. 5 we used squared correlation matrix to establish a linear hull of SIMON
and investigate the data and time complexity for the smallest variant of SIMON.
We conclude the paper in Sect. 6.

Table 1. State-of-the-art cryptanalysis of SIMON-(32/64, 48/72, 48/96).

Diff. Imp.Diff. Z-Corr. Integ. Multi.Lin. Lin. Lin. Hull
SIMON [4] [11] [28] [27] [25] [14] [29] [29] [7] [3] [5] [2] [24] [25] This work

32/64 #rounds 18 19 21 21 −− 19 20 21 24 11 13 17 21 −− 23
Time 246.0 232.0 246.0 255.25 −− 262.56 256.96 263.0 263.57 −− −− 252.5 −− −− 250

Data 231.2 231.0 231.0 231.0 −− 232.0 232.0 231.0 231.57 223.0 232.0 232.0 230.19 −− 230.59

48/72 #rounds 19 20 22 23 16 20 20 −− 23 14 16 19 −− −− 23
Time 252.0 252.0 263.0 263.25 −− 270.69 259.7 −− 268.4 −− −− 270 −− −− 262.10

Data 246.0 246.0 245.0 247 244.65 248 248 −− 244.4 247.0 246.0 246.0 −− −− 247.78

48/96 #rounds 19 20 22 24 16 21 21 −− 24 14 16 20 21 23 24
Time 276.0 275.0 271.0 287.25 −− 294.73 272.63 −− 292.4 −− −− 286.5 −− −− 283.10

Data 246.0 246.0 245.0 247 244.65 238.0 248.0 −− 244.4 247.0 246.0 246.0 242.28 244.92 247.78

2 Description of SIMON

SIMON has a classical Feistel structure with the round block size of N = 2n
bits where n is the word size representing the left or right branch of the Feistel
scheme at each round. The number of rounds is denoted by r and depends on
the variant of SIMON.

We denote the right and left halves of plaintext P and ciphertext C by
(PR, PL) and (CR, CL) respectively. The output of round r is denoted by Xr =
Xr

L‖Xr
R and the subkey used in a round r is denoted by Kr. Given a string

X, (X)i denotes the ith bit of X. Bitwise circular left-rotation of string a by b
positions to the left is denoted by a ≪ b. Further, ⊕ and &denote bitwise XOR
and AND operations respectively.

Each round of SIMON applies a non-linear, non-bijective (and hence non-
invertible) function F : Fn

2 → F
n
2 to the left half of the state. The output of F is

added using XOR to the right half along with a round key followed by swapping
of two halves. The function F is defined as

F (x) = ((x ≪ 8)&(x ≪ 1)) ⊕ (x ≪ 2)

The subkeys are derived from a master key. Depending on the size K of the
master key, the key schedule of SIMON operates on two, three or four n-bit word
registers. We refer to [9] for the detailed description of SIMON structure and
key scheduling.

3 Preliminaries

Correlation Matrix. Linear cryptanalysis finds a linear relation between some
plaintext bits, ciphertext bits and some secret key bits and then exploits the
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bias or correlation of this linear relation. In other words, the adversary finds
an input mask α and an output mask β which yields a higher absolute bias
εF (α, β) ∈ [− 1

2 , 1
2 ]. In other words

Pr[〈α,X〉 + 〈β, FK(X)〉 = 〈γ,K〉] =
1
2

+ εF (α, β)

deviates from 1
2 where 〈·, ·〉 denotes an inner product. Let a = (a1, . . . , an), b =

(b1, . . . , bn) ∈ F
n
2 . Then

a · b � a1b1 ⊕ · · · ⊕ anbn

denotes the inner product of a and b. The correlation of a linear approximation
is defined as

CF (α, β) := 2εF (α, β)

Another definition of the correlation which we will use later is

CF (α, β) := F̂ (α, β)/2n

where n is the block size of F in bits and F̂ (α, β) is the Walsh transform of F
which is defined as follows

F̂ (α, β) :=
∑

x∈{0,1}n

(−1)β·F (x)⊕α·x

For a given output mask β, the Fast Walsh Transform algorithm computes the
Walsh transforms of an n-bit block size function F for all possible input masks
α with output mask β using n2n arithmetic operations.

In order to find good linear approximations, one can construct a correlation
matrix (or a squared correlation matrix). In the following, we explain what is a
correlation matrix and show how the average squared correlation over all keys
is estimated.

Given a composite function F : F
n
2 → F

n
2 such that F = Fr ◦ · · · ◦ F2 ◦

F1,, we estimate the correlation of an r-round linear approximation (α0, αr) by
considering the correlation of each linear characteristic between α0 and αr. The
correlation of ith linear characteristic (α0 = α0i, α1i, · · · , α(r−1)i, αr = αri) is

Ci =
r∏

j=1

CFj
(α(j−1)i, αji)

It is well known [16] that the correlation of a linear approximation is the
sum of all correlations of linear trails starting with the same input mask α and
ending with the same output mask β, i.e. CF (α0, αr) =

∑Nl

i=1 Ci where Nl is the
number of all possible linear characteristics between (α0, αr).

When considering the round keys which affects the sign of the correlation of
a linear trail, the correlation of the linear hull (α, β) is

CF (α, β) =
Nl∑

i=1

(−1)diCi,
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where di ∈ F2 refers to the sign of the addition of the subkey bits on the ith linear
trail. In order to estimate the data complexity of a linear attack, one uses the
average squared correlation over all the keys which is equivalent to the sum of
the squares of the correlations of all trails,

∑
i C2

i , assuming independent round
keys [16].

Let C denotes the correlation matrix of an n-bit key-alternating cipher. C has
size 2n ×2n and Ci,j corresponds to the correlation of an input mask, say αi, and
output mask, say βj . Now the correlation matrix for the keyed round function is
obtained by changing the signs of each row in C according to the round subkey
bits or the round constant bits involved. Squaring each entry of the correlation
matrix gives us the squared correlation matrix M . Computing Mr gives us the
squared correlations after r number of rounds. This can not be used for real
block ciphers that have block sizes of at least 32 bits as in the case of SIMON-
32/64. Therefore, in order to find linear approximations one can construct a
submatrix of the correlation (or the squared correlation) matrix [1,12]. In Sect. 5,
we construct a squared correlation submatrix for SIMON in order to find good
linear approximations.

3.1 Mixed Integer Programming Method (MIP)

Mouha et al.’s [21] presented a mixed integer programming model that minimizes
the number of active Sboxes involved in a linear or differential trail. Their work
was mainly on byte oriented ciphers. Later, Mouha’s framework was extended
to accommodate bit oriented ciphers. More recently, at Asiacrypt 2014 [26],
the authors described a method for constructing a model that finds the actual
linear/differential trail with the specified number of active Sboxes. Of course,
there would be many solutions but whenever a solution is found the MIP model
is updated by adding a new constraint that discards the current found solution
from occurring in the next iteration for finding another solution.

For every input/ouput bit mask or bit difference at some round state, a
new binary variable xi is introduced such that xi = 1 iff the corresponding bit
mask or bit difference is non-zero. For every Sbox at each round, a new binary
variable aj is introduced such that aj = 1 if the input mask or difference of
the corresponding Sbox is nonzero. Thus, aj indicates the activity of an Sbox.
Now, the natural choice of the objective function f of our MIP model is to
minimize the number of active Sboxes, i.e., f =

∑
j aj . If our goal from the

above integer programming model is to only find the minimum number of active
Sboxes existing in a differential/linear trial of a given bit-oriented cipher, then
we are only concerned about the binary values which represent the activity of
the Sboxes involved in the differential/linear trail av. Thus, in order to speed
up solving the model, one might consider restricting the activity variables and
the dummy variables to be binary and allow the other variables to be any real
numbers. This will turn the integer programming model into a Mixed Integer
Programming model which is easier to solve than an Integer programming model.
However, since we want to find the differential/linear trails which means finding
the exact values of all the bit-level inputs and outputs, then all these state
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variables must be binary which give us an integer programming model rather
than a mixed integer programming model.

In order to find the differential/linear trails of a given input/output differ-
ential/linear approximation, we set the corresponding binary variables for each
input/output to 1 if it is an active bit in the input/output and to 0 otherwise.
In this paper, we follow the MIP model for linear cryptanalysis presented in [24]
(minimize the number of variables appearing in quadratic terms of the linear
approximation of SIMON’s non-linear function) and use the algorithm presented
in [20] for computing the squared correlation for the SIMON nonlinear function.

In Sect. 4, we propose a hybrid method that combines the matrix method and
the MIP method to amplify the differential probability or the squared correlation
of a specified input and output differences or masks. Using this method we are
able to find a 17-round linear approximation for SIMON-48.

4 Time-Memory Trade-Off Method

Since the matrix method consumes huge memory and the MIP method takes time
to enumerate a certain number of trails. It seems reasonable to trade-off the time
and memory by combining both methods to get better differential/correlation
estimations. Here we combine the correlation matrix method with the recent
technique for finding differentials and linear hulls in order to obtain a better
estimation for the correlations or differentials of a linear and differential approx-
imations respectively.

The idea is to find good disjoint approximations through the matrix and the
mixed integer programming model. Assume that our target is an r-round linear
hull (α, β), where α is the input mask and β is the output mask. The matrix
method is used to find the resulting correlation from trails that have Hamming
weight at most m for each round, from now on we will call them “light trails”.
The MIP method is used to find the resulting correlation from trails that have
Hamming weight at least m + 1 at one of their rounds, from now on we will call
them “heavy trails”.

Now if the target number of rounds is high, then the MIP method might
not be effective in finding good estimation for the heavy trails as it will take
time to collect all those trails. Therefore, in order to overcome this, we split the
cipher into two parts, the first part contains the first r1 rounds and the second
part contains the remaining r2 = r − r1 rounds. Assume r1 > r2, where r2 is
selected in such a way that the MIP solution is reachable within a reasonable
computation time. Now, we show how to find two disjoint classes that contains
heavy trails. The first class contains an r1-round linear hull (α, γi) consisting of
light trails found through the matrix method at the first r1 rounds glued together
with an r2-round linear hulls (γi, β) consisting of heavy trails found through the
MIP method. We call this class, the lower-round class. The second class basically
reverse the previous process, by having an r1-round linear hull of heavy weight
trails found through MIP method glued with an r2-round linear hull containing
light trails found through the matrix method. We call this class the upper-round
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class. Now, adding the estimations from these two classes (upper-round and
lower-round classes) gives us the estimation of the correlation of the heavy trails
which will be added to the r-round linear hull of the light trails found through the
matrix method. We can also include a middle-round class surrounded by upper
lightweight trails and lower lightweight trails found by the matrix method.

Next we describe how to find the heavy trails using MIP with the Big M
constraints which is a well known technique in optimization.

4.1 Big M Constraints

Suppose that only one of the following two constraints is to be active in a given
MIP model.

either
∑

i,j

fiXij ≥ c1 (1)

or
∑

i,k

giXik ≥ c2 (2)

The above situation can be formalized by adding a binary variable y as
follows:

∑

i,j

fiXij + My ≥ c1 (3)

∑

i,k

giXik + M(1 − y) ≥ c2 (4)

where M is a big positive integer and the value of y indicates which constraint is
active. So y can be seen as an indicator variable. One can see that when y = 0,
the first constraint is active while the second constraint is inactive due to the
positive big value of M . Conversely, when y = 1, the second constraint is active.

The above formulation can be generalized to the case where we have q con-
straints under the condition that only p out of q constraints are active. The
generalization can be represented as follows:

∑

i,j

fiXij + My1 ≥ c1

∑

i,k

giXik + My2 ≥ c2

...
∑

i,l

hiXil + Myq ≥ cq

l∑

i=1

yi = q − p



Improved Linear Cryptanalysis of Reduced-Round 161

where yi is binary for all i. Sometimes, we might be interested on the condition
where at least p out of the q constraints are active. This can be achieved by
simply changing the last equation in the constraints above,

∑l
i=1 yi = q − p to

∑l
i=1 yi ≤ q − p. This turns out to be useful in our Hybrid method as it will

allow us to find r-round trails which have a heavy Hamming weight on at least
one of the r rounds.

5 Linear Hull Effect in SIMON-32 and SIMON-48

In this section we will investigate the linear hull effect on SIMON using the
correlation matrix method to compute the average squared correlation.

5.1 Correlation of the SIMON F Function

This section provides an analysis on some linear properties of the SIMON F
function regarding the squared correlation. This will assist in providing an intu-
ition around the design rationale when it comes to linear properties of SIMON
round Function F . A general linear analysis was applied on the F function of
SIMON, with regards to limits around the squared correlations for all possible
Hamming weights on input masks α and output masks β, for SIMON-32/64.

5.2 Constructing Correlation Submatrix for SIMON

To construct a correlation submatrix for SIMON, we make use of the following
proposition.

Proposition 1. Correlation of a one-round linear approximation [10]. Let α =
(αL, αR) and β = (βL, βR) be the input and output masks of a one-round linear
approximation of SIMON. Let αF and βF be the input and output masks of the
SIMON F function. Then the correlation of the linear approximation (α, β) is
C(α, β) = CF (αF , βF ) where αF = αL ⊕ βR and βF = βL = αR.

As our goal is to perform a linear attack on SIMON, we construct a squared
correlation matrix in order to compute the average squared correlation (the sum
of the squares of the correlations of all trails) in order to estimate the required
data complexity. Algorithm 1 constructs a squared correlation submatrix whose
input and output masks have Hamming weight less than a certain Hamming
weight m, where the correlation matrix is deduced from the algorithm proposed
in [20].

The size of the submatrix is
∑m

i=0

(
2n
i

) × ∑m
i=0

(
2n
i

)
where n is the block

size of SIMON’s F function. One can see that the time complexity is in the
order of 2n

∑m
i=0

(
2n
i

)
arithmetic operations. The submatrix size is large when

m > 5, but most of its elements are zero and therefore it can easily fit in
memory using a sparse matrix storage format. The table below shows the number
of nonzero elements of the squared correlation submatrices of SIMON-32/K
when 1 ≤ m ≤ 9. These matrices are very sparse. For instance, based on our
experimental results when m ≤ 8, the density of the correlation matrix is very
low, namely 133253381

15033173×15033173 ≈ 2−20.7.
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Algorithm 1. Construction of SIMON’s Correlation Submatrix
Require: Hamming weight m, bit size of SIMON’s F function n and a map function.
Ensure: Squared Correlation Submatrix M
1: for all output masks β with Hamming weight ≤ m do
2: Extract from β the left/right output masks βL and βR.
3: αR ← βL.
4: Compute C(αF , βL) to SIMON’s F function for all possible αF using the

algorithm proposed in [20].
5: for all input masks αF to SIMON’s F function do
6: c ← C(αF , βL).
7: αL ← αF ⊕ βR.
8: α = αL||αR.
9: if c �= 0 and Hamming weight of α ≤ m then

10: i ← map(α). {map α to a row index i in the matrix M}
11: j ← map(β). {map α to a column index j in the matrix M}
12: M(i, j) = c × c.
13: end if
14: end for
15: end for

5.3 Improved Linear Approximations

One can see that Algorithm 1 is highly parallelizable. This means the dominating
factor is the memory complexity instead of time complexity. We constructed a
sparse squared correlation matrix of SIMON-32/K with input and output masks
that have Hamming weight ≤ 8. Using this matrix, we find a 14-round linear
approximations with an average squared correlation ≤ 2−32 for SIMON-32/K.
We also get better estimations for the previously found linear approximations
which were estimated before using only a single linear characteristic rather than
considering many linear characteristics with the same input and output masks.
For example, in [4], the squared correlation of the 9-round single linear char-
acteristic with input mask 0x01110004 and output mask 0x00040111 is 2−20.
Using our matrix, we find that this same approximation has a squared correlation
≈ 2−18.4 with 11455 ≈ 213.5 trails, which gives us an improvement by a factor
of 21.5. Note that this approximation can be found using a smaller correlation
matrix of Hamming weight ≤ 4 and we get an estimated squared correlation
equal to 2−18.83 and only 9 trails. Therefore, the large number of other trails
that cover Hamming weights ≥ 5 is insignificant as they only cause a factor of
20.5 improvement.

Also, the 10-round linear characteristic in [6] with input mask 0x01014404
and output mask 0x10004404 has squared correlation 2−26. Using our correla-
tion matrix, we find that this same approximation has an estimated squared
correlation 2−23.2 and the number of trails is 588173 ≈ 219.2. This gives an
improvement by a factor of 23. Note also that this approximation can be found
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using a smaller correlation matrix with Hamming weight ≤ 5 and we get an
estimated squared correlation equal to 2−23.66 and only 83 trails. So the large
number of other trails resulting covering Hamming weights ≥ 5 is insignificant as
they only cause a factor of 20.4 improvement. Both of these approximations give
us squared correlations less than 2−32 when considering more than 12 rounds.

In the following, we describe our 14-round linear hulls found using a squared
correlation matrix with Hamming weight ≤ 8.

Improved 14-round Linear Hulls on SIMON-32 (Squared Correlation
Matrix Only). Consider a squared correlation matrix M whose input and
output masks have Hamming weight m. When m ≥ 6, raising the matrix to the
rth power, in order to estimate the average squared correlation, will not work as
the resulting matrix will not be sparse even when r is small. For example, we are
able only to compute M6 where M is a squared correlation matrix whose masks
have Hamming weight ≤ 6. Therefore, we use matrix-vector multiplication or
row-vector matrix multiplications in order to estimate the squared correlations
for any number of rounds r.

It is obvious that input and output masks with low Hamming weight gives us
better estimations for the squared correlation. Hence, we performed row-vector
matrix multiplications using row vectors corresponding to Hamming weight one.
We found that when the left part of the input mask has Hamming weight one
and the right part of input mask is zero, we always get a 14-round squared
correlation ≈ 2−30.9 for four different output masks.Therefore, in total we get 64
linear approximations with an estimated 14-round squared correlation ≈ 2−30.9.

We also constructed a correlation matrix with masks of Hamming weight ≤ 9
but we have only got a slight improvement for these 14-round approximations
by a factor of 20.3. We have found no 15-round approximation with squared
correlation more than 2−32. Table 2 shows the 14-round approximations with
input and output masks written in hexadecimal notation.

Table 2. 14-round linear hulls for SIMON-32/K found, using Hamming weight ≤ 9

βα log2 c2 log2 Nt

0x80000000 0x00800020, 0x00800060, 0x00808020, 0x00808060 −30.5815 28.11
0x02000000 0x00028000, 0x00028001, 0x00028200, 0x00028201 −30.5815 28.10
0x00800000 0x80002000, 0x80002080, 0x80006000, 0x80006080 −30.5816 28.06
0x00400000 0x40001000, 0x40001040, 0x40003000, 0x40003040 −30.5815 28.11
0x00040000 0x04000100, 0x04000104, 0x04000300, 0x04000304 −30.5816 28.10
0x00010000 0x01000040, 0x01000041, 0x010000C0, 0x010000C1 −30.5814 28.11

Improved 17-Round Linear Hulls on SIMON-48 (Squared Correlation
Matrix +MIP). Using a squared correlation matrix of SIMON-48 having input
and output masks with Hamming weight ≤ 6 and size 83278000 × 83278000, we
found that a 17-round linear approximation with input mask 0x404044000001
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and output mask 0x000001414044 (0x404044000001 17−round−−−−−−→ 0x000001C04044)
has squared correlation 2−49.3611. Also the output masks 0x000001414044 and
0x000001414044 yield a similar squared correlation 2−49.3611. Unlike the case for
SIMON-32 where we can easily use brute force to compute the squared correlation
of a 1-round linear approximation, the squared correlation matrix for SIMON-48
was created using the algorithm proposed in [20]. Again the matrix is sparse and
it has 48295112 ≈ 225.53 nonzero elements.

However, it seems difficult to build matrices beyond Hamming weight 6 for
SIMON-48. Therefore we use our time-memory trade-off method to improve
the squared correlation of the linear approximation 0x404044000001 17−round−−−−−−→
0x000001414044.

To find the lower class where the heavy trails are on the bottom are glued
with the light trails on top. The light trails are found using the matrix method
for 11 rounds and the heavy trails are found using the MIP method for 6 rounds.
Combining them both we get the 17-round lower class trails. In more detail, we
fix the input mask to 0x404044000001 and we use the matrix method to find the
output masks after 11 rounds with the most significant squared correlation. The
best output masks are 0x001000004400, 0x001000004410 and 0x0010000044C0,
each give an 11-round linear hull with squared correlation 2−28.6806 coming from
268 light trails. We first create a 6-round MIP model with 0x001000004400 as
an input mask and with the target output mask 0x000001414044 as the output
mask for the 6-round MIP model 0x001000004400 6−round−−−−−−→ 0x000001414044. In
order to find heavy trails we added the big M constraints described in Sect. 4.1
and set M = 200 and all the ci’s to 7 from the end of round 1 to beginning of
round 5. So q = 5, setting p = 1 and using

∑l
i=1 yi ≤ q − p = 4, we guarantee

that the trails found will have Hamming weight at least 7 at one of the rounds.
The constraints should be set as follows:

47∑

i=0

s48+i + 200y1 ≥ 7

47∑

i=0

s96+i + 200y2 ≥ 7

47∑

i=0

s144+i + 200y3 ≥ 7

47∑

i=0

s192+i + 200y4 ≥ 7

47∑

i=0

s240+i + 200y5 ≥ 7

5∑

i=1

yi ≤ 4
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where yj is a binary variable and s48.j+i is a binary variable representing the
intermediate mask value in the jth round at the ith position.

Limiting our MIP program to find 512 trails for the specified approximation,
we find that the estimated squared correlation is 2−22.3426. Combining the light
trails with the heavy, we get a 17-round sub approximation whose squared correla-
tion is 2−28.6806×2−22.3426 = 2−51.0232. To get a better estimation,we repeated the
aboveprocedure for the other outputmasks 0x001000004410 and0x0010000044C0
and get an estimated squared correlation equivalent to 2−28.6806 × 2−24.33967 =
2−53.02027 and 2−28.6806 × 2−24.486272 = 2−53.166872 respectively. Adding all these
three sub linear approximations we get an estimated squared correlation equiva-
lent to 2−51.0232 + 2−53.02027 + 2−53.166872 ≈ 2−50.4607. Moreover, we repeat the
same procedure for the 27 next best 11-round linear approximations and we get
2−49.3729 as a total estimated squared correlation for our 17-round lower class trails
(0x404044000001 17−round−−−−−−→ 0x000001414044). All these computations took less
than 20 hrs on a standard laptop (See Table 11 in the Appendix).

Similarly to find the upper class where the heavy trails are on the top, are
glued with the light trails on bottom. The light trails are found using the matrix
method for 11 rounds and the heavy trails are found using the MIP method for 6
rounds under the same big M constraints described above. Combining them both
we get the 17-round upper class trails. In more detail, we fix the output mask to
0x000001414044 and we use the matrix method to find the input masks with the
most significant squared correlation after 11 rounds. The best input masks are
0x004400001000, 0x004410001000, 0x004C00001000 and 0x004C10001000, each
give an 11-round linear hull with squared correlation 2−28.6806 coming from 268
light trails. We first create a 6-round MIP model with 0x004400001000 as an out-
put mask and the target input mask 0x404044000001 as the input mask for the 6-
round MIP model 0x404044000001 6−round−−−−−−→ 0x004400001000. Limiting our MIP
program to find 512 trails for the specified approximation, we find that the esti-
mated squared correlation is 2−22.3426. Combining the light trails with the heavy,
we get a 17-round sub approximation whose squared correlation is 2−28.6806 ×
2−22.3426 = 2−51.0232. Repeating the above procedure for the other three input
masks 0x04410001000, 0x004C00001000 and 0x004C10001000, we get an esti-
mated squared correlation equivalent to 2−28.6806 × 2−24.33967 = 2−53.02027,
2−28.6806 × 2−24.486272 = 2−53.166872 and 2−28.6806 × 2−23.979259 = 2−52.659859

respectively. Adding all these four sub linear approximations we get an esti-
mated squared correlation equivalent to 2−51.0232 + 2−53.02027 + 2−53.166872 +
2−52.659859 ≈ 2−50.1765. Repeating the same procedure for the 26 next best
input masks and adding them up, we get a total squared correlation equiva-
lent to 2−49.3729 as a total estimated squared correlation for our 17-round upper
class trails (0x404044000001 17−round−−−−−−→ 0x000001414044). All these computa-
tions took less than 18 hrs on a standard laptop (See Table 12 in the Appendix).
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Adding the contributionsof the lowerandupper classes found through theabove
procedure to the contribution of the light trails found through the matrix method,
we get 2−49.3729 +2−49.3729 +2−49.3611 = 2−47.7840 ≈ 2−47.78 as a total estimation
for the squared correlation of the 17-round linear hull (0x404044000001 17−round−−−−−−→
0x000001414044).

5.4 Key Recovery Attack on 24 and 23 Rounds of SIMON-32/K
Using 14-Round Linear Hull

We extend the given linear hull for 14 rounds of SIMON-32/K (highlighted masks
in the last row of Table 2) by adding some rounds to the beginning and the end
of the cipher. The straight-forward approach is to start with the input mask of
the 14-round linear hull (e.g. (Γ0,−)) and go backwards to add some rounds to
the beginning. With respect to Fig. 1, we can append an additional round to the
beginning of the cipher. Since SIMON injects the subkey at the end of its round
function, this work does not have any computational complexity. More precisely,
for the current 14-round linear hull, we evaluate ((Xi

L)0 ⊕ (Xi+14
R )6 ⊕ (Xi+14

L )8)
to filter wrong guesses. On the other hand, we have (Xi

L)0 = (F (Xi−1
L ))0 ⊕

((Xi−1
R )0 ⊕ (Ki)0, where (F (Xi−1

L ))0 = (Xi−1
L )14 ⊕ ((Xi−1

L )15&(Xi−1
L )8). Hence,

if we add a round in the backwards direction, i.e. round i − 1, we know Xi−1
R

and Xi−1
L we can determine F (Xi−1

L ). Then it is possible to use the following
equation to filter wrong keys, instead of ((Xi

L)0 ⊕ (Xi+14
R )6 ⊕ (Xi+14

L )8), where
(Ki)0 is an unknown but a constant bit (in Fig. 1 such bits are marked in red):

(F (Xi−1
L ))0 ⊕ (Xi−1

R )0 ⊕ (Ki)0 ⊕ (Xi+14
R )6 ⊕ (Xi+14

L )8 = (Xi−1
L )14 ⊕ ((Xi−1

L )15
&(Xi−1

L )8) ⊕ (Xi−1
R )0 ⊕ (Ki)0 ⊕ (Xi+14

R )6 ⊕ (Xi+14
L )8.

We can continue our method to add five rounds to the beginning of linear
hull at the cost of guessing some bits of subkeys. To add more rounds in the
backwards direction, we must guess the bit

(F (Xi−1
L ))0 = (Xi−1

L )14 ⊕ ((Xi−1
L )15&(Xi−1

L )8).

On the other hand, to determine (F (Xi−1
L ))0 we guess (Xi−1

L )14 and (Xi−1
L )15

only if the guessed value for (Xi−1
L )8 is 1. Therefore, on average we need one bit

guess for (Xi−1
L )15 and (Xi−1

L )8 (in Fig. 1 such bits are indicated in blue).
The same approach can be used to add five rounds to the end of linear hull

at the cost of guessing some bits of subkeys. More details are depicted in Fig. 1.
On the other hand, in [29], Wang et al. presented a divide and conquer

approach to add extra rounds to their impossible differential trail. We note that
it is possible to adapt their approach to extend the key recovery using the exist
linear hull over more rounds. Hence, one can use the 14-round linear hull and
extend it by adding extra rounds to its beginning and its end. We add five rounds
to the beginning and five rounds to the end of the linear hull to attack 24-round
variant of SIMON-32/K. This key recovery attack processes as follows:
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1. Let Tmax and Tcur be counters (initialized by 0) and SKcan be a temporary
register to store the possible candidate of the subkey.

2. Collect 230.59 known plaintext and corresponding ciphertext pairs (pi, ci) for
24-round SIMON-32/64 and store them in a table T .

3. Guess a value for the subkeys involved in the first five rounds of reduced
SIMON-32/K, i.e. (Ki−4)[0, 2 . . . 4, 5, 6, 7, 9 . . . 13, 14]‖(Ki−3)[4, 5, 6, 8, 11, 12,
13, 14, 15]‖(Ki−2)[0, 6, 7, 13, 14]‖(Ki−1) [8, 15] and do as follows (note that
the red subkey bits involved in the rounds are the constant bits and do not
have to be guessed):
(a) For any pj ∈ T calculate the partial encryption of the first five rounds

of reduced SIMON-32/K and find Vj = (Xi
L)[0]⊕ (Ki)[0]⊕ (Ki−1)[14]⊕

(Ki−2)[12] ⊕ (Ki−3)[10] ⊕ (Ki−5)[8].
(b) Guess the bits of subkeys Ki+19[0 . . . 4, 5, 6, 7, 8 . . . 10, 11, 12, 13, 14, 15],

Ki+18[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15], Ki+17[0, 3, 4, 6, 7, 12, 13], and
Ki+16[5, 14], step by step.

(c) For any cj ∈ T :
i. calculate the partial decryption of the last five rounds of reduced

SIMON-32/K and find Wj = (Xi+14
L )[8]⊕ (Xi+14

R )[6]⊕ (Ki+15)[6]⊕
(Ki+16)[4, 8] ⊕ (Ki+17)[2] ⊕ (Ki+18)[0].

ii. If Vj = Wj then increase Tcur.
(d) If Tmax < Tcur (or resp. Tmax < (232 − Tcur)) update Tmax and SKcan

by Tcur (resp. 232 − Tcur) and the current guessed subkey respectively.
4. Return SKcan.

Following the approach presented in [29], guessing the bits of subkeysKi+19

[0 . . . 4, 5, 6, 7, 8 . . . 10, 11, 12, 13, 14, 15], Ki+18[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15],
Ki+17[0, 3, 4, 6, 7, 12, 13], and Ki+16[5, 14], step by step, to find the amount
of Wj = (Xi+14

L )[8] ⊕ (Xi+14
R )[6] ⊕ (Ki+15)[6] ⊕ (Ki+16)[4, 8] ⊕ (Ki+17)[2] ⊕

(Ki+18)[0], for any cj , are done as follows:

1. Let T2 be a vector of 232 counters which correspond to all possible val-
ues of Vj‖(Xi+19

L )[0 . . . 7, 10 . . . 14]‖(Xi+19
R )[0 . . . 6, 8 . . . 15]‖(Xi+18

R )[8, 9, 15]
(denoted as S1

2). Guess the subkey bit (Ki+19 )[8, 9, 15] decrypt partially
for each possible value of S1

1 (Vj‖(Xi+19
L )‖(Xi+19

R )) to obtain the value of
(Xi+18

R )[8, 9, 15] (and hence S1
2), then increase the corresponding counter

T2,S1
2
.

2. Guess the subkey bits (Ki+19)[5, 14], (Ki+19)[1, 10, 11], (Ki+19)[12], (Ki+19)
[13], and (Ki+19) [0, 2, 3, 4, 6, 7] step by step (see Table 3), do similarly to the
above and finally get the values of the counters corresponding to the state
Vj‖(Xi+18

L )[0 . . . 6, 8, 10 . . . 12, 14, 15]‖(Xi+18
R ) (denoted as S2

0).
3. Let X1 be a vector of 229 counters which correspond to all possible values

of Vj‖(Xi+18
L )[0 . . . 5, 8, 10 . . . 12, 14, 15]‖(Xi+18

R )[0 . . . 4, 6 . . . 15]‖(Xi+17
R )[6]

(denoted as S2
1). Guess the subkey bit (Ki+18)[6]. For each possible value

of S2
0 (Vj‖(Xi+18

L )[0 . . . 6, 8, 10 . . . 12, 14, 15]‖(Xi+18
R )), do partial decryption

to derive the value of (Xi+17
R )[6] and add T7,S1

7
to the corresponding counter

X1,S2
1

according to the value of S2
1 . After that, guess the subkey bits (Ki+18)
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[15], (Ki+18)[1], (Ki+18)[3, 12], (Ki+18)[2], (Ki+18)[11], (Ki+18)[10], (Ki+18)
[14], and (Ki+18)[4, 5, 8], step by step (see Table 4). Do similarly to the above
and eventually obtain the values of the counters corresponding to the state
Vj‖(Xi+17

L )[0′, 2 . . . 4, 6, 7, 12, 13]‖(Xi+17
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] (denoted

as S3
0) where (Xi+17

R )[0′] = (Xi+17
R )[0] ⊕ (Ki+18)[0].

4. Let Y1 be a vector of 221 counters which correspond to all possible values of
Vj‖(Xi+17

L )[0, 2, 3, 6, 7, 12, 13]‖(Xi+17
R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15]‖

(Xi+16
R )[4] (denoted as S3

1). Guess the subkey bit (Ki+17)[4]. For each possible
value of S3

0 (Vj‖(Xi+17
L )[0, 2 . . . 4, 6, 7, 12, 13]‖(Xi+17

R ) [0 . . . 6, 8, 10 . . .
12, 14, 15]), do partial decryption to derive the value of (Xi+16

R )[4] and add
X9,S2

9
to the corresponding counter Y1,S3

1
according to the value of S3

1 . After
that, guess the subkey bits (Ki+17)[3], (Ki+17)[12], (Ki+17)[13], (Ki+17)[7],
and (Ki+17)[0, 6], step by step (see Table 5). Do similarly to the above and
eventually obtain the values of the counters corresponding to the state
Vj‖(Xi+16

L )[4, 5, 8, 14]‖(Xi+16
R )[0, 2′, 3, 4, 6, 7, 12, 13] (denoted as S4

0) where
‖(Xi+16

R )[2′] = (Xi+16
R )[2] ⊕ (Ki+17)[2].

5. Let Z1 be a vector of 26 counters which correspond to all possible values
of Vj‖(Xi+15

L )[6]‖ (Xi+15
R )[4, 5, 8, 14] (denoted as S4

1) where (Xi+15
R )[4′] =

(Xi+15
R )[4] ⊕ (Ki+16)[4] and (Xi+15

R )[8′] = (Xi+15
R )[8] ⊕ (Ki+16)[8]. Guess

the subkey bits (Ki+16)[5, 14] and for each possible value of S4
0 (Vj‖(Xi+16

L )
[4, 5, 8, 14]‖(Xi+16

R )[0, 2, 3, 4, 6, 7, 12, 13]) do partial decryption to derive the
value of (Xi+15

R )[5, 14] and add Y6,S3
6

to the corresponding counter Z1,S4
1

according to the value of S4
1 .

6. Let W1,S5
1

be a vector of 24 counters which correspond to all possible val-
ues of Vj‖(Xi+14

L )[4′, 8′]‖ (Xi+14
R )[6′] (denoted as S5

1) where (Xi+14
R )[6′] =

(Xi+14
R )[6]⊕ (Ki+15)[6], (Xi+14

L )[4′] = (Xi+14
L )[4]⊕ (Ki+16)[4]⊕ (Ki+17)[2]⊕

(Ki+18)[0], and (Xi+14
L )[8′] = (Xi+14

L )[8] ⊕ (Ki+16)[8]. This state are
extracted of S4

1 and add Z1,S4
1

to the corresponding counter W1,S5
1

according
to the value of S5

1 (See Table 7).
7. Let O be a vector of 22 counters which correspond to all possible values of

Vj‖Wj (Note that Wj = (Xi+14
L )[8]⊕(Xi+14

R )[6]⊕(Ki+15)[6]⊕(Ki+16)[4, 8]⊕
(Ki+17)[2] ⊕ (Ki+18)[0] and can be extracted from S5

1). Each possible value
of S5

1 is converted to Vj‖Wj and W1,S5
1

and is added to the relevant counter
in O according to the value of Vj‖Wj . Suppose that O0 means that Vj = 0
and Wj = 0 and O3 means that Vj = 1 and Wj = 1. If O0 + O3 ≥ Tmax

or 232 − (O0 + O3) ≥ Tmax keep the guessed bits of subkey information as a
possible subkey candidate, and discard it otherwise.

Attack Complexity. The time complexity of each sub-step was computed as
shown in the Tables 3, 4, 5, 6 and 7. The time complexity of the attack is about
263.9. It is clear that, the complexity of this attack is only slightly less than
exhaustive search. However, if we reduce the last round and attack 23 round of
SIMON-32/K then the attack complexity reduces to 250 which is yet the best
key-recovery attack on SIMON-32/K for such number of rounds.
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5.5 Key Recovery Attack on SIMON-48/K Using 17-Round Linear
Hull

Given the 17-round approximation for SIMON-48, introduced in Sect. 5.3, we
apply the approach presented in Sect. 5.4 to extend key recovery over more
number of rounds. Our key recovery for SIMON-48/72 and SIMON-48/96 covers
23 and 24 rounds respectively. The data complexity for these attacks is 2−47.78

and their time complexities are 262.10 and 283.10 respectively. Since the attack
procedure is similar to the approach presented in Sect. 5.4, we do not repeat
it. Related tables and complexity of each step of the attack for SIMON-48/96
has been presented in Appendix B (The time complexity of each sub-step was
computed as shown in the Tables 8, 9, and 10). To attack SIMON-48/72, we add
three rounds in forward direction instead of the current four rounds. Hence, the
adversary does not need to guess the average 21 bits of the key in the last round
of Fig. 2.

6 Conclusion

In this paper, we propose a time-memory tradeoff that finds better differen-
tial/linear approximation. The method benefits from the correlation matrix
method and the MIP method to improve the estimated squared correlation
or differential probability. Using MIP we can find the trails that are missed
by the matrix method. This method enables us to find a 17-round linear hull
for SIMON-48. Moreover, we have analyzed the security of some variants of
SIMON against different variants of linear cryptanalysis, i.e. classic and linear
hull attacks. We have investigated the linear hull effect on SIMON-32/64 and
SIMON-48/96 using the correlation matrix of the average squared correlations
and presented best linear attack on this variant.

Regarding SIMON-64, the squared correlation matrix which we are able to
build and process holds masks with Hamming weight ≤ 6. Using only the matrix
and going for more than 20 rounds, the best squared correlation we found has
very low squared correlation < 2−70 and this is because we are missing good
trails with heavy Hamming weights. Applying our time-memory trade-off has
not been effective due to the large number of rounds. However, trying to find
good trails with heavy Hamming weight in the middle beside the upper and lower
classes might yield better results. We note here that we have been looking for
fast solutions. It could be that trying to add up many linear trails for some days
or weeks can yield better results. Our method seems to be slow due to the slow
processing of the huge squared correlation matrix. So it would be very interesting
to build a dedicated sparse squared correlation matrix for SIMON-64 in order to
speed up the selection of the intermediate masks in our time-memory trade-off
method. This will allow us to select many intermediate masks which might yield
better results. One interesting target would be also to apply this method to the
block cipher PRESENT which also allows low Hamming weight trails and see if
we can go beyond the current best 24-round linear approximations [1].
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A Steps of the Key Recovery Attack on SIMON-32/64

Table 3. Step 1 of key recovery attack on SIMON-32/64

i Input (S1
i ) Guessed subkey bit Output (S1

i+1) Counter of S1
i+1

0 (Xi−5
L )‖(Xi−5

R ) (Ki−4)[0, 2 . . . 4, 5, 6, 7, 9 . . . 13, 14]‖(Ki−3)[4, 5, 6, 8, 11, Vj = (Xi
L)[0] ⊕ (Ki)[0] ⊕ (Ki−1)[14] T1,S1

1

12, 13, 14, 15]‖(Ki−2)[0, 6, 7, 13, 14]‖(Ki−1)[8, 15] ⊕(Ki−2)[12] ⊕ (Ki−3)[10] ⊕ (Ki−5)[8]

1 Vj‖(Xi+19
L ) (Ki+19)[8, 9, 15] Vj‖(Xi+19

L )[0 . . . 7, 10 . . . 14] T2,S1
2

‖(Xi+19
R ) ‖(Xi+19

R )[0 . . . 6, 8 . . . 15]
‖(Xi+18

R )[8, 9, 15]

2 Vj‖(Xi+19
L )[0 . . . 7, 10 . . . 14] (Ki+19)[5, 14] Vj‖(Xi+19

L )[0 . . . 4, 6, 7, 10 . . . 13] T3,S1
3

‖(Xi+19
R )[0 . . . 6, 8 . . . 15] ‖(Xi+19

R )[0 . . . 6, 8 . . . 12, 14, 15]
‖(Xi+18

R )[8, 9, 15] ‖(Xi+18
R )[5, 8, 9, 14, 15]

3 Vj‖(Xi+19
L )[0 . . . 4, 6, 7, 10 . . . 13] (Ki+19)[1, 10, 11] Vj‖(Xi+19

L )[0, 2 . . . 4, 6, 7, 12, 13] T4,S1
4

‖(Xi+19
R )[0 . . . 6, 8 . . . 12, 14, 15] ‖(Xi+19

R )[0 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+18

R )[5, 8, 9, 14, 15] ‖(Xi+18
R )[1, 5, 8, 9, 10, 11, 14, 15]

4 Vj‖(Xi+19
L )[0, 2 . . . 4, 6, 7, 12, 13] (Ki+19)[12] Vj‖(Xi+19

L )[0, 2 . . . 4, 6, 7, 13] T5,S1
5

‖(Xi+19
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+19

R )[0 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+18

R )[1, 5, 8, 9, 10, 11, 14, 15] ‖(Xi+18
R )[1, 5, 8, 9, 10, 11, 12, 14, 15]

5 Vj‖(Xi+19
L )[0, 2 . . . 4, 6, 7, 13] (Ki+19)[13] Vj‖(Xi+19

L )[0, 2 . . . 4, 6, 7] T6,S1
6

‖(Xi+19
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+19

R )[0 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+18

R )[1, 5, 8, 9, 10, 11, 12, 14, 15] ‖(Xi+18
R )[1, 5, 8, 9, 10, 11, 12, 13, 14, 15]

6 Vj‖(Xi+19
L )[0, 2 . . . 4, 6, 7, 12, 13] (Ki+19)[0, 2, 3, 4, 6, 7] Vj‖(Xi+18

L )[0 . . . 6, 8, 10 . . . 12, 14, 15] T7,S1
7

‖(Xi+19
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+18

R )
‖(Xi+18

R )[1, 5, 8, 9, 10, 11, 14, 15]

substep 0: 223 × 230.59 × 5/24 = 251.33

substep 1: 223 × 233 × 23 × 3 × 1/(16 × 24) = 252

substep 2: 223 × 232 × 24 × 2 × 1/(16 × 24) = 251.42

substep 3: 223 × 231 × 26.5 × 3 × 1/(16 × 24) = 253.5

substep 4: 223 × 230 × 27.5 × 1/(16 × 24) = 251.92

substep 5: 223 × 230 × 28.5 × 1/(16 × 24) = 252.92

substep 6: 223 × 230 × 214 × 6 × 1/(16 × 24) = 261
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Table 4. Step 2 of key recovery attack on SIMON-32/64

i Input (S2
i ) Guessed subkey bit Output (S2

i+1) Counter of S2
i+1

0 Vj‖(Xi+18
L )[0 . . . 6, 8, 10 . . . 12, 14, 15] (Ki+18)[6] Vj‖(Xi+18

L )[0 . . . 5, 8, 10 . . . 12, 14, 15] X1,S2
1

‖(Xi+18
R ) ‖(Xi+18

R )[0 . . . 4, 6 . . . 15]
‖(Xi+17

R )[6]

1 Vj‖(Xi+18
L )[0 . . . 5, 8, 10 . . . 12, 14, 15] (Ki+18)[15] Vj‖(Xi+18

L )[0 . . . 5, 8, 10 . . . 12, 14] X2,S2
2

‖(Xi+18
R )[0 . . . 4, 6 . . . 15] ‖(Xi+18

R )[0 . . . 4, 6 . . . 13, 15]
‖(Xi+17

R )[6] ‖(Xi+17
R )[6, 15]

2 Vj‖(Xi+18
L )[0 . . . 5, 8, 10 . . . 12, 14] (Ki+18)[1] Vj‖(Xi+18

L )[0, 2 . . . 5, 8, 10 . . . 12, 14] X3,S2
3

‖(Xi+18
R )[0 . . . 4, 6 . . . 13, 15] ‖(Xi+18

R )[0 . . . 4, 6 . . . 13]
‖(Xi+17

R )[6, 15] ‖(Xi+17
R )[1, 6, 15]

3 Vj‖(Xi+18
L )[0, 2 . . . 5, 8, 10 . . . 12, 14] (Ki+18)[3, 12] Vj‖(Xi+18

L )[0, 2, 4, 5, 8, 10, 11, 14] X4,S2
4

‖(Xi+18
R )[0 . . . 4, 6 . . . 13] ‖(Xi+18

R )[0 . . . 4, 6 . . . 10, 12, 13]
‖(Xi+17

R )[1, 6, 15] ‖(Xi+17
R )[1, 3, 6, 12, 15]

4 Vj‖(Xi+18
L )[0, 2, 4, 5, 8, 10, 11, 14] (Ki+18)[2] Vj‖(Xi+18

L )[0, 4, 5, 8, 10, 11, 14] X5,S2
5

‖(Xi+18
R )[0 . . . 4, 6 . . . 10, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 10, 12, 13]
‖(Xi+17

R )[1, 3, 6, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 12, 15]

5 Vj‖(Xi+18
L )[0, 4, 5, 8, 10, 11, 14] (Ki+18)[11] Vj‖(Xi+18

L )[0, 4, 5, 8, 10, 14] X6,S2
6

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 10, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 9, 12, 13]
‖(Xi+17

R )[1, 2, 3, 6, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 11, 12, 15]

6 Vj‖(Xi+18
L )[0, 4, 5, 8, 10, 14] (Ki+18)[10] Vj‖(Xi+18

L )[0, 4, 5, 8, 14] X7,S2
7

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 9, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 8, 12, 13]
‖(Xi+17

R )[1, 2, 3, 6, 11, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 10, 11, 12, 15]

7 Vj‖(Xi+18
L )[0, 4, 5, 8, 14] (Ki+18)[14] Vj‖(Xi+18

L )[0, 4, 5, 8] X8,S2
8

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 8, 12, 13] ‖(Xi+18

R )[0, 2 . . . 4, 6 . . . 8, 12, 13]
‖(Xi+17

R )[1, 2, 3, 6, 10, 11, 12, 15] ‖(Xi+17
R )[1, 2, 3, 6, 10, 11, 12, 14, 15]

8 Vj‖(Xi+18
L )[0, 4, 5, 8] (Ki+18)[4, 5, 8] Vj‖(Xi+17

L )[0, 2 . . . 4, 6, 7, 12, 13] X9,S2
9

‖(Xi+18
R )[0, 2 . . . 4, 6 . . . 8, 12, 13] ‖(Xi+17

R )[0′ . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+17

R )[1, 2, 3, 6, 10, 11, 12, 14, 15] where (Xi+17
R )[0′] = (Xi+17

R )[0] ⊕ (Ki+18)[0]

substep 0: 223 × 214 × 230 × 20.5 × 1/16 × 24 = 258.92

substep 1: 223 × 214 × 229 × 2 × 1/16 × 24 = 258.42

substep 2: 223 × 214 × 228 × 22 × 1/16 × 24 = 258.42

substep 3: 223 × 214 × 227 × 23 × 2 × 1/16 × 24 = 258.42

substep 4: 223 × 214 × 226 × 24 × 1/16 × 24 = 258.42

substep 5: 223 × 214 × 225 × 25 × 1/16 × 24 = 258.42

substep 6: 223 × 214 × 224 × 26 × 1/16 × 24 = 258.42

substep 7: 223 × 214 × 223 × 27 × 1/16 × 24 = 258.42

substep 8: 223 × 214 × 223 × 29.5 × 3 × 1/16 × 24 = 262.5
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Fig. 1. Adding some rounds to the 14-round linear hull for SIMON-32/K (Color figure
online).

Table 5. Step 3 of key recovery attack on SIMON-32/64

i Input (S3
i ) Guessed subkey bit Output (S3

i+1) Counter of S3
i+1

0 Vj‖(Xi+17
L )[0, 2 . . . 4, 6, 7, 12, 13] (Ki+17)[4] Vj‖(Xi+17

L )[0, 2, 3, 6, 7, 12, 13] Y1,S3
1

‖(Xi+17
R )[0 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+17

R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+17

R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+16
R )[4]

1 Vj‖(Xi+17
L )[0, 2, 3, 6, 7, 12, 13] (Ki+17)[3] Vj‖(Xi+17

L )[0, 2, 6, 7, 12, 13] Y2,S3
2

‖(Xi+17
R )[0 . . . 2, 4 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+17

R )[0, 4 . . . 6, 8, 10 . . . 12, 14, 15]
‖(Xi+16

R )[4] ‖(Xi+16
R )[3, 4]

2 Vj‖(Xi+17
L )[0, 2, 6, 7, 12, 13] (Ki+17)[12] Vj‖(Xi+17

L )[0, 2, 6, 7, 13] Y3,S3
3

‖(Xi+17
R )[0, 4 . . . 6, 8, 10 . . . 12, 14, 15] ‖(Xi+17

R )[0, 4 . . . 6, 8, 11, 12, 14, 15]
‖(Xi+16

R )[3, 4] ‖(Xi+16
R )[3, 4, 12]

3 Vj‖(Xi+17
L )[0, 2, 6, 7, 13] (Ki+17)[13] Vj‖(Xi+17

L )[0, 2, 6, 7] Y4,S3
4

‖(Xi+17
R )[0, 4 . . . 6, 8, 11, 12, 14, 15] ‖(Xi+17

R )[0, 4 . . . 6, 8, 14, 15]
‖(Xi+16

R )[3, 4, 12] ‖(Xi+16
R )[3, 4, 12, 13]

4 Vj‖(Xi+17
L )[0, 2, 6, 7] (Ki+17)[7] Vj‖(Xi+17

L )[0, 2, 6] Y5,S3
5

‖(Xi+17
R )[0, 4 . . . 6, 8, 14, 15] ‖(Xi+17

R )[0, 4, 5, 8, 14, 15]
‖(Xi+16

R )[3, 4, 12, 13] ‖(Xi+16
R )[3, 4, 7, 12, 13]

5 Vj‖(Xi+17
L )[0, 2, 6] (Ki+17)[0, 6] Vj‖(Xi+16

L )[4, 5, 8, 14] Y6,S3
6

‖(Xi+17
R )[0, 4, 5, 8, 14, 15] ‖(Xi+16

R )[0, 2′, 3, 4, 6, 7, 12, 13]
‖(Xi+16

R )[3, 4, 7, 12, 13] where (Xi+16
R )[2′] = (Xi+16

R )[2] ⊕ (Ki+17)[2]

substep 0: 223 × 214 × 29.5 × 222 × 20.5 × 1/(16 × 24) = 260.42

substep 1: 223 × 214 × 29.5 × 221 × 21.5 × 1/(16 × 24) = 260.42

substep 2: 223 × 214 × 29.5 × 219 × 22.5 × 1/(16 × 24) = 259.42

substep 3: 223 × 214 × 29.5 × 218 × 23 × 1/(16 × 24) = 258.92

substep 4: 223 × 214 × 29.5 × 216 × 23.5 × 1/(16 × 24) = 257.42

substep 5: 223 × 214 × 29.5 × 215 × 24.5 × 2 × 1/(16 × 24) = 258.42
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Table 6. Step 4 of key recovery attack on SIMON-32/64

i Input (S4
i ) Guessed subkey bit Output (S4

i+1) Counter of S4
i+1

0 Vj‖(Xi+16
L )[4, 5, 8, 14]‖(Xi+16

R )[0, 2, 3, 4, 6, 7, 12, 13] (Ki+16)[5, 14] Vj‖(Xi+15
L )[6]‖(Xi+15

R )[4′, 5, 8′, 14] Z1,S4
1

where (Xi+15
R )[4′] = (Xi+15

R )[4] ⊕ (Ki+16)[4]
and (Xi+15

R )[8′] = (Xi+15
R )[8] ⊕ (Ki+16)[8]

substep 0: 223 × 214 × 29.5 × 24.5 × 213 × 2 × 2 × 1/(16 × 24) = 257.42

Table 7. Step 5 of key recovery attack on SIMON-32/64

i Input (S5
i ) Guessed subkey bit Output (S5

i+1) Counter of S5
i+1

0 Vj‖(Xi+15
L )[6]‖(Xi+15

R )[4, 5, 8, 14] Vj‖(Xi+14
L )[4′, 8′]‖(Xi+14

R )[6′] W1,S5
1

where (Xi+14
R )[6′] = (Xi+14

R )[6] ⊕ (Ki+15)[6],
(Xi+14

L )[4′] = (Xi+14
L )[4] ⊕ (Ki+16)[4] ⊕ (Ki+17)[2] ⊕ (Ki+18)[0], and

(Xi+14
L )[8′] = (Xi+14

L )[8] ⊕ (Ki+16)[8].

B Steps of the Key Recovery Attack on SIMON-48/96

Vj = (Xi
L)[2, 6, 14, 22]⊕(Xi

R)[0]⊕(Ki)[2, 6, 14, 22]⊕(Ki−1)[0, 4, 12, 20]⊕(Ki−2)[2, 18]

Wj = (Xi+18
L )[0] ⊕ (Xi+18

R )[2, 6, 14, 16, 22] ⊕ (Ki+19)[2, 6, 14, 16, 22]

⊕(Ki+20)[0, 4, 12, 20] ⊕ (Ki+21)[2, 18] ⊕ (Ki+22)[0]

Fig. 2. Adding some rounds to the 17-round linear hull for SIMON-48/96 (Color figure
online).
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Table 8. Step 1 of key recovery attack on SIMON-48/96

i Input (S1
i ) Guessed subkey bit Output (S1

i+1) Counter of S1
i+1

0 (Xi−3
L )[0 . . . 6, 8 . . . 23] (Ki−2)[0, 3, 4, 5, 6, 10, 11, 12, 13, 14, 16, 17, 19, Vj‖(Xi+22

L )[0 . . . 6, 8 . . . 23] T1,S1
1

‖(Xi−3
R )[0, 2 . . . 6, 10 . . . 14, 16 . . . 23] 20, 21, 22, 23]‖(Ki−1)[1, 5, 6, 13, 14, 18, 21, 22] ‖(Xi+22

R )

1 Vj‖(Xi+22
L )[0 . . . 6, 8 . . . 23] (Ki+22)[10, 11, 17] Vj‖(Xi+22

L )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23] T2,S1
2

‖(Xi+22
R ) ‖(Xi+22

R )[0 . . . 8, 10 . . . 23]
‖(Xi+21

R )[10, 11, 17]

2 Vj‖(Xi+22
L )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23] (Ki+22)[16, 23] Vj‖(Xi+22

L )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22] T3,S1
3

‖(Xi+22
R )[0 . . . 8, 10 . . . 23] ‖(Xi+22

R )[0 . . . 8, 10 . . . 14, 16 . . . 23]
‖(Xi+21

R )[10, 11, 17] ‖(Xi+21
R )[10, 11, 16, 17, 23]

3 Vj‖(Xi+22
L )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22] (Ki+22)[9] Vj‖(Xi+22

L )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22] T4,S1
4

‖(Xi+22
R )[0 . . . 8, 10 . . . 14, 16 . . . 23] ‖(Xi+22

R )[0 . . . 7, 10 . . . 14, 16 . . . 23]
‖(Xi+21

R )[10, 11, 16, 17, 23] ‖(Xi+21
R )[8, 10, 11, 16, 17, 23]

4 Vj‖(Xi+22
L )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22] (Ki+22)[2, 3] Vj‖(Xi+22

L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] T5,S1
5

‖(Xi+22
R )[0 . . . 7, 10 . . . 14, 16 . . . 23] ‖(Xi+22

R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23]
‖(Xi+21

R )[8, 10, 11, 16, 17, 23] ‖(Xi+21
R )[2, 3, 8, 10, 11, 16, 17, 23]

5 Vj‖(Xi+22
L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] (Ki+22)[1, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] Vj‖(Xi+21

L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23 T6,S1
6

‖(Xi+22
R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8 . . . 23]
‖(Xi+21

R )[2, 3, 8, 10, 11, 16, 17, 23]

substep 0: 217 × 247.78 × 3/24 = 261.78

substep 1: 217 × 248 × 23 × 3 × 1/(24 × 24) = 260.41

substep 2: 217 × 247 × 24 × 2 × 1/(24 × 24) = 259.83

substep 3: 217 × 246 × 25 × 1/(24 × 24) = 258.83

substep 4: 217 × 245 × 27 × 2 × 1/(24 × 24) = 260.83

substep 5: 217 × 244 × 221 × 14 × 1/(24 × 24) = 276.64

Table 9. Step 2 of key recovery attack on SIMON-48/96

i Input (S2
i ) Guessed subkey bit Output (S2

i+1) Counter of S2
i+1

0 Vj‖(Xi+21
L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23 (Ki+21)[19] Vj‖(Xi+21

L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 18, 20 . . . 23 X1,S2
1

‖(Xi+21
R )[0 . . . 6, 8 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8 . . . 16, 18 . . . 23]
‖(Xi+20

R )[19]

1 Vj‖(Xi+21
L )[0, 2 . . . 7, 10 . . . 14, 16 . . . 18, 20 . . . 23 (Ki+21)[12, 13] Vj‖(Xi+21

L )[0, 2 . . . 7, 10, 11, 14, 16 . . . 18, 20 . . . 23 X2,S2
2

‖(Xi+21
R )[0 . . . 6, 8 . . . 16, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8 . . . 10, 12 . . . 16, 18 . . . 23]
‖(Xi+20

R )[19] ‖(Xi+20
R )[12, 13, 19]

2 Vj‖(Xi+21
L )[0, 2 . . . 7, 10, 11, 14, 16 . . . 18, 20 . . . 23 (Ki+21)[11] Vj‖(Xi+21

L )[0, 2 . . . 7, 10, 14, 16 . . . 18, 20 . . . 23 X3,S2
3

‖(Xi+21
R )[0 . . . 6, 8 . . . 10, 12 . . . 16, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23]
‖(Xi+20

R )[12, 13, 19] ‖(Xi+20
R )[11 . . . 13, 19]

3 Vj‖(Xi+21
L )[0, 2 . . . 7, 10, 14, 16 . . . 18, 20 . . . 23 (Ki+21)[0, 17] Vj‖(Xi+21

L )[2 . . . 7, 10, 14, 16, 18, 20 . . . 23 X4,S2
4

‖(Xi+21
R )[0 . . . 6, 8, 9, 12 . . . 16, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 23]
‖(Xi+20

R )[11 . . . 13, 19] ‖(Xi+20
R )[0, 11 . . . 13, 17, 19]

4 Vj‖(Xi+21
L )[2 . . . 7, 10, 14, 16, 18, 20 . . . 23 (Ki+21)[7] Vj‖(Xi+21

L )[2 . . . 6, 10, 14, 16, 18, 20 . . . 23 X5,S2
5

‖(Xi+21
R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 23] ‖(Xi+21

R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22]
‖(Xi+20

R )[0, 11 . . . 13, 17, 19] ‖(Xi+20
R )[0, 7, 11 . . . 13, 17, 19]

5 Vj‖(Xi+21
L )[2 . . . 6, 10, 14, 16, 18, 20 . . . 23 (Ki+21)[10] Vj‖(Xi+21

L )[2 . . . 6, 14, 16, 18, 20 . . . 23 X6,S2
6

‖(Xi+21
R )[0 . . . 6, 8, 9, 12 . . . 15, 18 . . . 22] ‖(Xi+21

R )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22]
‖(Xi+20

R )[0, 7, 11 . . . 13, 17, 19] ‖(Xi+20
R )[0, 7, 10, 11 . . . 13, 17, 19]

6 Vj‖(Xi+21
L )[2 . . . 6, 14, 16, 18, 20 . . . 23 (Ki+21)[4, 5] Vj‖(Xi+21

L )[2, 3, 6, 14, 16, 18, 20 . . . 23 X7,S2
7

‖(Xi+21
R )[0 . . . 6, 8, 12 . . . 15, 18 . . . 22] ‖(Xi+21

R )[0 . . . 2, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22]
‖(Xi+20

R )[0, 7, 10, 11 . . . 13, 17, 19] ‖(Xi+20
R )[0, 4, 5, 7, 10, 11 . . . 13, 17, 19]

7 Vj‖(Xi+21
L )[2, 3, 6, 14, 16, 18, 20 . . . 23] (Ki+21)[3, 6, 14, 16, 20, 21, 22, 23] Vj‖(Xi+20

L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] X8,S2
8

‖(Xi+21
R )[0 . . . 2, 4 . . . 6, 8, 12 . . . 15, 18 . . . 22] ‖(Xi+20

R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23]
‖(Xi+20

R )[0, 4, 5, 7, 10, 11 . . . 13, 17, 19]

substep 0: 217 × 221 × 244 × 2 × 1/24.24 = 273.83

substep 1: 217 × 221 × 243 × 23 × 2 × 1/24.24 = 275.83

substep 2: 217 × 221 × 242 × 24 × 1/24.24 = 274.83

substep 3: 217 × 221 × 241 × 25 × 2 × 1/24.24 = 275.83

substep 4: 217 × 221 × 240 × 25.5 × 1/24.24 = 274.33

substep 5: 217 × 221 × 239 × 26 × 1/24.24 = 273.83

substep 6: 217 × 221 × 238 × 27.5 × 2 × 1/24.24 = 275.33

substep 7: 217 × 221 × 237 × 214 × 8 × 1/24.24 = 282.83
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Table 10. Step 3 of key recovery attack on SIMON-48/96

i Input (S3
i ) Guessed subkey bit Output (S3

i+1) Counter of S3
i+1

0 Vj‖(Xi+20
L )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] (Ki+20)[1] Vj‖(Xi+20

L )[0, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] Y1,S3
1

‖(Xi+20
R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 23] ‖(Xi+20

R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 22]
‖(Xi+19

R )[1]

1 Vj‖(Xi+20
L )[0, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] (Ki+20)[5] Vj‖(Xi+20

L )[0, 4, 6, 8, 12 . . . 15, 18, 20 . . . 22] Y2,S3
2

‖(Xi+20
R )[0, 2 . . . 7, 10 . . . 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10 . . . 14, 16 . . . 22]
‖(Xi+19

R )[1] ‖(Xi+19
R )[1, 5]

2 Vj‖(Xi+20
L )[0, 4, 6, 8, 12 . . . 15, 18, 20 . . . 22] (Ki+20)[13] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 14, 15, 18, 20 . . . 22] Y3,S3
3

‖(Xi+20
R )[0, 2, 4 . . . 7, 10 . . . 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 12 . . . 14, 16 . . . 22]
‖(Xi+19

R )[1, 5] ‖(Xi+19
R )[1, 5, 13]

3 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 14, 15, 18, 20 . . . 22] (Ki+20)[14] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 15, 18, 20 . . . 22] Y4,S3
4

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 12 . . . 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 22]
‖(Xi+19

R )[1, 5, 13] ‖(Xi+19
R )[1, 5, 13, 14]

4 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 15, 18, 20 . . . 22] (Ki+20)[21] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 15, 18, 20, 22] Y5,S3
5

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20 . . . 22]
‖(Xi+19

R )[1, 5, 13, 14] ‖(Xi+19
R )[1, 5, 13, 14, 21]

5 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 15, 18, 20, 22] (Ki+20)[22] Vj‖(Xi+20

L )[0, 4, 6, 8, 12, 15, 18, 20] Y6,S3
6

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20 . . . 22] ‖(Xi+20

R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20, 22]
‖(Xi+19

R )[1, 5, 13, 14, 21] ‖(Xi+19
R )[1, 5, 13, 14, 21, 22]

6 Vj‖(Xi+20
L )[0, 4, 6, 8, 12, 15, 18, 20] (Ki+20)[6, 8, 15, 18] Vj‖(Xi+19

L )[2, 6, 14, 16, 22] Y7,S3
7

‖(Xi+20
R )[0, 2, 4 . . . 7, 10, 13, 14, 16 . . . 18, 20, 22] ‖(Xi+19

R )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22]
‖(Xi+19

R )[1, 5, 13, 14, 21, 22]

7 Vj‖(Xi+19
L )[2, 6, 14, 16, 22] Vj‖(Xi+18

L )[0] Y7,S3
7

‖(Xi+19
R )[0, 1, 4 . . . 6, 8, 12 . . . 15, 18, 20 . . . 22] ‖(Xi+18

R )[2, 6, 14, 16, 22]

substep 0: 217 × 221 × 214 × 235 × 20.5 × 1/(24 × 24) = 278.33

substep 1: 217 × 221 × 214 × 234 × 21 × 1/(24 × 24) = 277.83

substep 2: 217 × 221 × 214 × 233 × 21.5 × 1/(24 × 24) = 277.33

substep 3: 217 × 221 × 214 × 232 × 22 × 1/(24 × 24) = 277.83

substep 4: 217 × 221 × 214 × 231 × 22.5 × 1/(24 × 24) = 276.33

substep 5: 217 × 221 × 214 × 230 × 23 × 1/(24 × 24) = 275.83

substep 6: 217 × 221 × 214 × 229 × 25 × 4 × 1/(24 × 24) = 276.83

C MIP Experiments

Table 11 shows the 30 sub approximations that have been used to estimate the
squared correlations of the lower class trails. The experiments where the MIP
solutions are limited to 512 trails per approximation took exactly 70125.382718
seconds which is less than 20 hrs using a standard laptop.

Table 12 shows the 30 sub approximations that have been used to estimate
the squared correlations of the upper class trails. The experiments where the MIP
solutions are limited to 512 trails per approximation took exactly 62520.033249
seconds which is less than 18 hrs using a standard laptop.
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Table 11. Lower Class Trails found through our time-memory trade-off method, c2i1 ≡
the squared correlation of the ith 11-round linear approximation with light trails found
through the correlation matrix, c2i2 ≡ the squared correlation of the ith 6-round linear
approximation with heavy trails found through the MIP method, c2i1c

2
i2 ≡ is the squared

correlation of the ith 17-round linear approximation and
∑

c2i1c
2
i2 is the total estimated

squared correlation of the lower class trails of our 17-round linear hull after including
i ≤ 30 linear approximations

i Matrix trails log2 c2i1 MIP trails log2 c2i2 log2

∑
c2i1c

2
i2

1 404044000001
11−round−−−−−−→001000004400 -28.6806 001000004400

6−round−−−−−−→000001414044), -22.342570 -51.023180

2 404044000001
11−round−−−−−−→001000004410 -28.6806 001000004410

6−round−−−−−−→000001414044 -24.339670 -50.700671

3 404044000001
11−round−−−−−−→001000004C00 -28.6806 001000004C00

6−round−−−−−−→000001414044 -24.486365 -50.460718

4 404044000001
11−round−−−−−−→001000004C10 -28.6806 001000004C10

6−round−−−−−−→000001414044 -23.979129 -50.176458

5 404044000001
11−round−−−−−−→003000004400 -30.6806 003000004400

6−round−−−−−−→000001414044 -22.342570 -49.988669

6 404044000001
11−round−−−−−−→003000004410 -30.6806 003000004410

6−round−−−−−−→000001414044 -24.339586 -49.945219

7 404044000001
11−round−−−−−−→003000004420 -30.6806 003000004420

6−round−−−−−−→000001414044 -27.953899 -49.941728

8 404044000001
11−round−−−−−−→003000004430 -30.6806 003000004430

6−round−−−−−−→000001414044 -26.956545 -49.934784

9 404044000001
11−round−−−−−−→003000004C00 -30.6806 003000004C00

6−round−−−−−−→000001414044 -24.486642 -49.896909

10 404044000001
11−round−−−−−−→003000004C10 -30.6806 003000004C00

6−round−−−−−−→000001414044 -24.486642 -49.844727

11 404044000001
11−round−−−−−−→003000004C20 -30.6806 003000004C20

6−round−−−−−−→000001414044 26.880410 -49.837883

12 404044000001
11−round−−−−−−→003000005400 -30.6806 003000005400

6−round−−−−−−→000001414044 -31.046525 -49.837503

13 404044000001
11−round−−−−−−→003000005410 -30.6806 003000005410

6−round−−−−−−→000001414044 -32.568502 -49.837371

14 404044000001
11−round−−−−−−→003000005420 -30.6806 003000005420

6−round−−−−−−→000001414044 -31.189830 -49.837026

15 404044000001
11−round−−−−−−→003000005C00 -30.6806 003000005C00

6−round−−−−−−→000001414044 -27.773381 -49.833356

16 404044000001
11−round−−−−−−→001040004400 -30.6806 001040004400

6−round−−−−−−→000001414044 -22.342570 -49.683331

17 404044000001
11−round−−−−−−→001040004410 -30.6806 001040004410

6−round−−−−−−→000001414044 -24.339586 -49.648069

18 404044000001
11−round−−−−−−→001040004420 -30.6806 001040004420

6−round−−−−−−→000001414044 -27.954667 -49.645229

19 404044000001
11−round−−−−−−→001040004430 -30.6806 001040004430

6−round−−−−−−→000001414044 -26.957186 -49.639576

20 404044000001
11−round−−−−−−→001040004C00 -30.6806 001040004C00

6−round−−−−−−→000001414044 -24.486272 -49.608628

21 404044000001
11−round−−−−−−→001040004C10 -30.6806 001040004C10

6−round−−−−−−→000001414044 -23.979129 -49.565757

22 404044000001
11−round−−−−−−→001040004C20 -30.6806 001040004C20

6−round−−−−−−→000001414044, -26.879560 -49.560110

23 404044000001
11−round−−−−−−→001040404400 -30.6806 001040404400

6−round−−−−−−→000001414044 -30.596588 -49.559682

24 404044000001
11−round−−−−−−→001040404410 -30.6806 001040404410

6−round−−−−−−→000001414044 -27.765884 -49.556637

25 404044000001
11−round−−−−−−→001040404420 -30.6806 001040404420

6−round−−−−−−→000001414044 -30.819304 -49.556271

26 404044000001
11−round−−−−−−→001040404C00 -30.6806 001040404C00

6−round−−−−−−→000001414044 -32.191224 -49.556130

27 404044000001
11−round−−−−−−→003040004400 -30.6806 003040004400

6−round−−−−−−→000001414044 -22.342570 -49.431232

28 404044000001
11−round−−−−−−→003040004410 -30.6806 003040004410

6−round−−−−−−→000001414044 -24.339753 -49.401570

29 404044000001
11−round−−−−−−→003040004420 -30.6806 003040004420

6−round−−−−−−→000001414044 -27.954411 -49.399175

30 404044000001
11−round−−−−−−→003040004C00 -30.6806 003040004C00

6−round−−−−−−→000001414044 -24.486457 -49.372938
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Table 12. Upper Class Trails found through our time-memory trade-off method, c2i1 ≡
the squared correlation of the ith 6-round linear approximation with heavy trails found
through the MIP method, c2i2 ≡ the squared correlation of the ith 6-round linear
approximation with light trails found through the correlation matrix, c2i1c

2
i2 ≡ is the

squared correlation of the ith 17-round linear approximation and
∑

c2i1c
2
i2 is the total

estimated squared correlation of the upper class trails of our 17-round linear hull after
including i ≤ 30 linear approximations

i MIP trails log2 c2i1 Matrix trails log2 c2i2 log2

∑
c2i1c

2
i2

1 404044000001
6−round−−−−−−→004400001000 -22.342570 004400001000

11−round−−−−−−→000001414044 -28.6806 -51.023180

2 404044000001
6−round−−−−−−→004410001000 -24.339670 004410001000

11−round−−−−−−→000001414044 28.6806 -50.700671

3 404044000001
6−round−−−−−−→004C00001000 -24.486272 004C00001000

11−round−−−−−−→000001414044 -28.6806 -50.460704

4 404044000001
6−round−−−−−−→004C10001000 -23.979129 004C10001000

11−round−−−−−−→000001414044 -28.6806 -50.176447

5 404044000001
6−round−−−−−−→004400003000 -22.342570 004400003000

11−round−−−−−−→000001414044 -30.6806 -49.988659

6 404044000001
6−round−−−−−−→004410003000 -24.339753 004410003000

11−round−−−−−−→000001414044 -30.6806 -49.945214

7 404044000001
6−round−−−−−−→004420003000 -27.955435 004420003000

11−round−−−−−−→000001414044 -30.6806 -49.941726

8 404044000001
6−round−−−−−−→004430003000 26.956674 004430003000

11−round−−−−−−→000001414044 -30.6806 -49.934783

9 404044000001
6−round−−−−−−→004C00003000 -24.486272 004C00003000

11−round−−−−−−→000001414044 -30.6806 -49.896899

10 404044000001
6−round−−−−−−→004C10003000 -23.979129 004C10003000

11−round−−−−−−→000001414044 -30.6806 -49.844713

11 404044000001
6−round−−−−−−→004C20003000 -26.879317 004C20003000

11−round−−−−−−→000001414044 -30.6806 -49.837864

12 404044000001
6−round−−−−−−→004C20003000 -31.046525 005400003000

11−round−−−−−−→000001414044 -30.6806 -49.837483

13 404044000001
6−round−−−−−−→005410003000 -32.568502 005410003000

11−round−−−−−−→000001414044 -30.6806 -49.837483

14 404044000001
6−round−−−−−−→005420003000 -31.189830 005420003000

11−round−−−−−−→000001414044 -30.6806 -49.837007

15 404044000001
6−round−−−−−−→005C00003000 -27.77338 005C00003000

11−round−−−−−−→000001414044 -30.6806 -49.833337

16 404044000001
6−round−−−−−−→004400001040 -22.342570 004400001040

11−round−−−−−−→ 000001414044 -30.6806 -49.683313

17 404044000001
6−round−−−−−−→004400003040 -22.342570 004400003040

11−round−−−−−−→ 000001414044 -30.6806 -49.547431

18 404044000001
6−round−−−−−−→004410001040 -24.339670 004410001040

11−round−−−−−−→000001414044 -30.6806 -49.515307

19 404044000001
6−round−−−−−−→004410003040 -24.339670 004410003040

11−round−−−−−−→000001414044 -30.6806 -49.483882

20 404044000001
6−round−−−−−−→004420001040 -27.955691 004420001040

11−round−−−−−−→000001414044 30.6806 -49.481349

21 404044000001
6−round−−−−−−→004420003040 -27.954155 004420003040

11−round−−−−−−→000001414044 -30.6806 -49.478817

22 404044000001
6−round−−−−−−→004430001040 -26.956417 004430001040

11−round−−−−−−→000001414044 -30.6806 -49.473776

23 404044000001
6−round−−−−−−→004C00001040 -24.486457 004C00001040

11−round−−−−−−→000001414044 -30.6806 -49.446160

24 404044000001
6−round−−−−−−→004C00003040 -24.486550 004C00003040

11−round−−−−−−→000001414044 -30.6806 -49.419065

25 404044000001
6−round−−−−−−→004C10001040 -23.979259 004C10001040

11−round−−−−−−→000001414044 -30.6806 -49.381407

26 404044000001
6−round−−−−−−→004C20001040 -26.879195 004C20001040

11−round−−−−−−→000001414044 -30.6806 49.376435

27 404044000001
6−round−−−−−−→404400001040 -30.596588 404400001040

11−round−−−−−−→000001414044 -30.6806 -49.376058

28 404044000001
6−round−−−−−−→404410001040 -27.765898 404410001040

11−round−−−−−−→000001414044 -30.6806 -49.373377

29 404044000001
6−round−−−−−−→404420001040 -30.819304 404420001040

11−round−−−−−−→000001414044 -30.6806 -49.373054

30 04044000001
6−round−−−−−−→404C00001040 -32.191224 404C00001040

11−round−−−−−−→000001414044 -30.6806 49.372930
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marine.minier@insa-lyon.fr

Abstract. While many recent publications have shown strong relations
between impossible differential, integral and zero-correlation distinguish-
ers for SPNs and Feistel-like ciphers, this paper tries to bring grist to the
mill to this research direction by first, studying the Type-III, the Source-
Heavy (SH) and the Target-Heavy (TH) Feistel-like ciphers regarding
those three kinds of distinguishers. Second, this paper tries to make a
link between the matrix methods used to find such distinguishers and
the adjacency matrix of the graph of a Feistel-like cipher.
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1 Introduction

Impossible differential (ID) [3,11], integral (INT) [13] and multidimensional zero-
correlation (ZC) [8] distinguishers are efficient ways to mount attacks against
SPNs or Feistel-like block ciphers. Contrary to classical linear or differential
distinguishers, the involved property holds with probability 1.

More precisely, an ID distinguisher looks for differentials with probability 0,
i.e. which are impossible, a ZC distinguisher takes advantage of linear approxi-
mations that have probability 1/2 to happen, i.e. which have a correlation equal
to 0 and finally an INT distinguisher predicts with probability 1 the sum taken on
some ciphertexts computed from particular plaintexts (for example some parts
of the plaintext set could be equal to constant whereas the other parts take all
possible values).

In the literature, two ways have been conducted in parallel: the first one
tries using a matrix representation of the round function to describe automatic
methods to find elementary IDs with the so called U-method [10], more sophisti-
cated IDs on Feistel-like ciphers with the so-called UID-method [14] or on SPNs
[19]; or ZC distinguishers [15]; or INT distinguishers [21]. The second one tries
to exploit the matrix representation to find strong links between those different
c© Springer International Publishing Switzerland 2015
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attacks: between ZC and ID in [4], between ZC and INT in [7], and between the
three in [5,6] and in [16,17].

So, many general schemes have been studied regarding the different attacks
(for example, in [14], many Feistel-like ciphers have been studied regarding ID
distinguishers) but only [5,6] and [16,17] consider the three attacks at the same
time but limit their studies to the case of Type-I and Type-II Feistel-like ciphers
and of SPN schemes.

In this paper, we first sum up in Table 1 the best existing distinguishers in
those three attack models for most of existing Feistel-like ciphers and complete
this Table (the bold results are the new ones). Note that the notation used
in Table 1 is detailed in Sect. 2. More precisely, we study in details Type-III,
Source-Heavy (SH) and Targer-Heavy (TH) especially regarding respectively ZC
and INT distinguishers. We also derived a link between the U-method and the
adjacency matrix of the graph of a Feistel-like cipher under specific conditions.

This paper is organized as follows: some preliminary notation and all the
existing works are summed up in Sect. 2. In Sect. 3, we give some insights on
the distinguishers we found in the ID, ZC and/or INT contexts for the Type-III,
the SH and the TH Feistel-like ciphers. In Sect. 4 we show how the adjacency
matrix of the graph of a Feistel-like cipher could be directly used to compute
the best distinguishers obtained through the U-method or the methods derived
from this one.

Table 1. The best ID, ZC and INT distinguishers for different Feistel-like ciphers with
b = 4 branches found using the UID-method. The bold results are the new ones. In
most cases, the notation l1 and l2 means that l1 and l2 are independent.

Block Cipher Best ID dist. Best ZC dist. Best INT dist.

Gen-Skipjack 16 [14] 16 [4] 19 [12]
(rule-A) (0, l1, 0, 0) � (l2, l2, 0, 0) (l1, 0, 0, 0) � (l2, l2, 0, 0) (m3, m3, m1, m2) → (0, ?, ?, ?)

Gen-Skipjack 16 [4] 16 [4] 19 [12]
(rule-B) (l1, l1, 0, 0) � (l2, 0, 0, 0) (l1, l1, 0, 0) � (0, l2, 0, 0) (m3, m3, m1, m2) → (0, ?, ?, ?)

Type-I 19 [14] 19 [4] 16 [16]
(Gen-CAST256) (0, 0, 0, l1) � (l1, 0, 0, 0) (l1, 0, 0, 0) � (0, l1, 0, 0) (0, m1, m2, m3) → (?, 0, ?, ?)

Type-II 9 [6] 9 [6] 8 [6]
(RC6) (0, 0, 0, l1) � (0, 0, l1, 0) (l1, 0, 0, 0) � (0, 0, 0, l1) (0, m1, m2, m3) → (?, ?, ?, 0)

Type-II 7 [6] 7 [6] 8 [6]
(Nyberg) (0, 0, l1, 0) � (l2, 0, 0, 0) (l1, 0, 0, 0) � (0, 0, 0, l2) (0, m1, m2, m3) � (?, ?, ?, 0)

Type-III 6 [20] 6 6 [20]
(0, 0, 0, l1) � (0, 0, l2, 0) (0, l1, 0, 0) � (0, 0, 0, l1) (0, l1, m1, m2) → (?, ?, ?, 0)

Type-III [20] 5 [20] 5 5 [20]
(1) (0, 0, 0, l1) � (0, l2, 0, 0) (0, l1, 0, 0) � (0, 0, 0, l1) (0, l1, m1, m2) → (?, 0, 0, 0)

Type-III [20] 5 [20] 5 5 [20]
(2) (0, 0, 0, l1) � (0, 0, l2, 0) (l1, 0, 0, 0) � (0, 0, l1, 0) (0, 0, l1, m1) → (?, ?, 0, 0)

TH 11 [14] 11 [4] 10
(Gen-MARS) (0, 0, 0, l1) � (l1, 0, 0, 0) (l1, l1, l1, 0) � (0, l1, l1, l1) (m1, m2, m3, m1) → ∑

= 0

SH 11 [14] 11 [16] 11
(Gen-SMS4) (l1, l1, l1, 0) � (l1, l1, l1, 0) (0, 0, 0, l1) � (l1, 0, 0, 0) (m2, m1, l1, l1) → (0, ?, ?, ?)

Four-Cell 18 [14] 12 [4] 18 [21]
(l1, 0, 0, 0) � (l2, l2, 0, 0) (0, 0, 0, l1) � (l2, l2, l2, l2) (m1, m2, m3, 0) → = 0
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2 Preliminaries

2.1 General Matrix Representation

From the notation and definitions introduced in [4,5,17], we have the following
definition that covers the matrix representation of all the Feistel-like ciphers with
bijective components studied in this paper:

Definition 1. Omitting key and constant addition, the round function of a GFN
with b branches of c-bit blocks, b even, can be matricially represented as a com-
bination of four b × b matrices F , X , Y and P with coefficients {0, 1, Fi} where
the {Fi}i≤b−1 denote the internal non-linear bijective and balanced functions.

– Representing the non-linear layer (F-layer), the non-zero coefficients of the
matrix F are equal to 1 in the diagonal and have coefficient Fi in row j and
column � if the input of the function Fi is given by the �-th branch and the
output is Xor-ed to the j-th branch.

– Representing the permutation of the branches (P-layer), the matrix P is a
permutation matrix with only one non-zero coefficient per line and column.

– Representing the eventual linear layers (L-layer), the matrices X and Y con-
tain only binary coefficients: the diagonal contains 1 and there are at maximum
two 1 per row and column.

From these four matrices, a Feistel-like round function can be represented by
a b × b matrix R as R = P · X · F · Y, the inverse of the round function is
R−1 = Y−1 · F · X −1 · P−1.

Remark 1. As noticed in [4], in fact, only one linear layer is required if we omit
the first Y linear transform. Indeed, in this case, the round function could be
rewritten as R∗ = Y · P · X · F = P · (P−1 · Y · P · X ) · F = P · X ′

∗ · F with
X ′

∗ = P−1 · Y · P · X . We decide to maintain two L-layers for the sake of clarity.
In many cases, such as Feistel Type-I or Feistel Type-II, we have: Y = X = Id.
When not required and for the sake of simplicity, we sometimes identify the Fi

to a single F function.

Example 1. Figure 1 represents one round of a Source-Heavy (SH) scheme
(MARS-like cipher) and its equivalent representation according to Definition 1,
one round of a Type-III and one round of a Type-II cipher.

For the SH scheme, the four matrices are:

Y = X =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 1 1 0
0 1 0 1

⎞

⎟
⎟
⎠ , F =

⎛

⎜
⎜
⎝

1 0 0 0
F 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , P =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ thus R =

⎛

⎜
⎜
⎝

F 1 0 0
F 0 1 0
F 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠

For the Type-III, the four matrices are:

Y = X = Id, F =

⎛

⎜
⎜
⎝

1 0 0 0
F 1 0 0
0 F 1 0
0 0 F 1

⎞

⎟
⎟
⎠ , P =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ thus R =

⎛

⎜
⎜
⎝

F 1 0 0
0 F 1 0
0 0 F 1
1 0 0 0

⎞

⎟
⎟
⎠
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For the Type-II, we have:

Y = X = Id, F =

⎛

⎜
⎜
⎝

1 0 0 0
F 1 0 0
0 0 1 0
0 0 F 1

⎞

⎟
⎟
⎠ , P =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ thus R =

⎛

⎜
⎜
⎝

F 1 0 0
0 0 1 0
0 0 F 1
1 0 0 0

⎞

⎟
⎟
⎠

From [4,15], we need another matrix representation to compute the ZC dis-
tinguishers on Feistel-like schemes using the matrix method. Indeed, from those
results the so-called U and UID methods allow to find ZC distinguishers when
applying those methods on the mirror representation of the round function.

Definition 2. For a GFN, given the matrix representation of the round function
R = P · X · F · Y, we call mirror function the round function described by the
matrix M = P · X T · FT · YT , where the notation AT denotes the transposition
of the matrix A. In the same way, we have: R∗ = P · X ′

∗ · F and thus M∗ =
P · X ′T

∗ · FT .

2.2 Matrix Methods on GFNs for Finding ID, ZC and INT
Distinguishers

We do not give here all the details concerning the matrix methods existing in the
literature [10,14,15,21], we only recall the general results given in [5] omitting
to formally give the inconsistency rules and the passing rules through a XOR or
an F function.

General Passing Rules and Inconsistency Rules. In the matrix methods,
the input/output of the application of s rounds are represented by two column
vectors V0/W0 of size b. Each vector coefficient belongs to the set {0, li,mj , rk}
where i, j and k are local counters. 0 means zero difference in the ID context, zero
mask in the ZC context and constant value in the INT context. li means a known

Fig. 1. One round of a Source-Heavy (SH) (MARS-like scheme) on the left, one round
of a Type-III in the middle and one round of a Type-II on the right.
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non-zero difference, a known non-zero mask and a known permutation property
(i.e. a word takes all possible values of the set exactly once) according to each
context. mj means a non-zero difference, a non-zero mask and a permutation
property according to each context. And finally, rk means an unknown difference,
an unknown mask and an unknown property according to each context. From V0

and W0, the matrix method consists in computing Vi = Ai ·V0 and Wj = Bj ·W0

where A and B are matrices among R,R−1,M,M−1. We denote by Vi[p] or
Wj [p] the coordinate p of Vi or Wj . Of course, the matrix multiplication is
“symbolic” and some rules must be defined to perform the operations (essentially
XOR operations and F functions) linked with the matrix multiplication.

As demonstrated in [5], the rules to pass a XOR or an F function during the
matrix multiplication when the matrix method is used in the different ID, ZC
and INT contexts are the same. More precisely, passing an F function transforms
a 0 into a 0, a li into an mj , an mj into an mj+1 and an rk into an rk+1. The
same kind of rules holds for a XOR. For example a li ⊕ li becomes a 0 whereas
a mi ⊕ mj becomes an rk

1.
From the previous notation, we could easily derive inconsistencies for the ID

and ZC contexts whereas the required properties for an INT distinguisher are
given in Proposition 3. In the ID and ZC contexts, [5] gives 3 possible kinds of
inconsistency:

– ID and ZC of type 1: ∃ p ∈ {0, · · · , (b − 1)} | (Vi[p] = 0 and Wj [p] =
mk) or (Vi[p] = mk and Wj [p] = 0).

– ID and ZC of type 2: ∃ p ∈ {0, · · · , (b − 1)} | Vi[p] = lk and Wj [p] = lk′ .
– ID and ZC of type 3: ∃ p ∈ {0, · · · , (b − 1)} | (Vi[p] = lk ⊕ mk′ and Wj [p] =

lk) or (Vi[p] = lk and Wj [p] = lk ⊕ mk′)

ID Distinguisher. Using the matrix representation of the round function and
the matrix methods described in [10,14], we can derive an ID distinguisher on a
Feistel-like cipher as

Proposition 1. Given V ID
0 and W ID

0 a representation of the input and output
differences, we have an ID distinguisher (V ID

0 ,W ID
0 ) on s0 + s1 rounds if we

have an inconsistency (as previously defined) between Rs0 ·V ID
0 and R−s1 ·W ID

0 .

ZC Distinguisher. In [15], the matrix method to find ZC distinguishers is
presented. It uses mirror matrix M instead of R.

Proposition 2. Given V ZC
0 and WZC

0 a representation of the input and output
linear masks, we have a ZC distinguisher (V ZC

0 ,WZC
0 ) on s0+s1 rounds if we have

an inconsistency (as previously defined) between Ms0 · V ZC
0 and M−s1 · WZC

0 .

INT Distinguisher. In [21], the authors are interested in structural integral
attacks (i.e. attacks that produce particular properties on input/output c-bit
words) and proposed an algorithm to automatically find INT distinguishers.
1 We refer to [5] for the complete table describing the XOR effect in the matrix method.
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The algorithm uses the same rules and the same matrix representation R as in
the ID context, only the termination rules differ.

Proposition 3 ([5,21]). Given ZINT a representation of the state in the INT
context, we have an INT distinguisher on s0 + s1 rounds if the following rules
are fulfilled:

– Termination at the end of an INT distinguisher: If W INT
0 = Rs1 ·ZINT is such

that there exists two set I, J ⊂ {0, · · · , (b − 1)} with ⊕p∈IW
INT
0 [p] = ⊕j∈Jmj

and s1 is the greatest integer for this property to hold.
– Termination at the beginning of an INT distinguisher: If V INT

0 = R−s0 ·ZINT

is such that ∃ i ∈ {0, · · · , (b − 1)} with V INT
0 [i] = 0 (with classical notation

= C) and s0 is the greatest integer for this property to hold.

2.3 Equivalence Between ID, ZC and INT Distinguishers

Many papers [4,5,7,17] show the equivalence between the three kinds of distin-
guishers. We sum up in this Subsection all those results. First and from [4,17],
we have the following Theorem to characterize the link between ID and ZC
distinguishers.

Theorem 1 ([4,17]). Let R be the matrix representation of the round function
of a GFN and M be the matrix representation of its mirror function as given
in Definition 2. If there exists a b × b permutation matrix Q such that R =
Q · M · Q−1 or R = Q · M−1 · Q−1 we deduce that: an impossible differential
distinguisher on s rounds involving a number of differentials equal to M exists
if and only if a zero-correlation linear distinguisher on s rounds involving M
linear masks exists.

Remark 2. As shown in Table 1 and in [4], the following schemes verify this
Theorem and thus their ID and ZC distinguishers reach the same number of
rounds: Gen-Skipjack (rule-A alone), Gen-Skipjack (rule-B alone), Type-I (Gen-
CAST256), all the Type-II (RC6, Nyberg and the ones proposed in [18]), all
the Type-III, Target Heavy (TH, Gen-MARS), Source Heavy (SH, Gen-SMS4).
Finally, only Four-Cell does not verify this property.

The following Theorem from [17] gives a simple equivalence between a ZC
distinguisher and some particular INT distinguishers. Moreover, in [17], some
results are given concerning the link between an ID distinguisher and an INT
distinguisher in the case where the block cipher is a Feistel with two branches
and with internal SP functions or the block cipher is an SPN.

Theorem 2 ([17]). A non trivial ZC distinguisher of a block cipher always
implies the existence of an INT distinguisher.

More precisely, suppose that A and B are the two subspaces linked with the
vectors V ZC

0 and WZC
0 . It means that if we take a ∈ A∗, b ∈ B, {0, a} → b is

a ZC distinguisher. Thus, an INT distinguisher could be deduced from this ZC
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distinguisher as if V = {0, a}, then b · E(x) where E is the block cipher under
study, is balanced on V ⊥ = {x ∈ (Fc)b|v · x = 0, v ∈ V }.

However, as in this paper we focus on structural INT distinguishers, this
kind of distinguishers do not interest us because Theorem 2 does not apply when
the input/output masks are dependent, i.e. l1 �= l2, l1 = l2 or m1 = F (l1).
We finally called INT1 distinguishers the distinguishers constructed using The-
orem 2 and INT2 distinguishers, structural distinguishers built using the matrix
method described in Proposition 3. Moreover, from [17], an INT1 distinguisher
could always been deduced from an ID or a ZC distinguisher. So, the best INT1
distinguisher depends on the best ID or ZC distinguisher which is not the case
for an INT2 distinguisher because when using the matrix method, the matrices
used for building an INT2 distinguisher are different from the ones used to build
ID or ZC distinguishers.

3 Distinguishers

In this Section, we will describe the way we have completed Table 1 with several
discussions considering always that b = 4. We first concentrate our efforts on the
Type-III schemes because up to our knowledge this is the less studied schemes
in the three attack contexts. More precisely, we only found [20] that studies how
to improve diffusion of Type-III and gives some results on best ID and INT
distinguishers for Type-III and the modified Type-III they proposed.

3.1 Results on Type-III

In this Subsection, we will study the classical Type-III with 4 branches regarding
ID, ZC and INT distinguishers and also the two variants proposed in [20] that
improve the diffusion delay by changing the P matrix. The two new schemes
that we will call Type-III(1) and Type-III(2) have the following permutation

matrices: P1 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠ and P2 =

⎛

⎜
⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ .

ID Distinguishers. In Table 3 of [20], the best ID distinguishers found for
Type-III, Type-III(1) and Type-III(2) are on 6, 5 and 5. We retrieve those results.
More precisely, the ID distinguishers of the three schemes are summed up in
Table 2 using the notation of Subsect. 2.2. We will define later an ID of type 4.

Among the six ID distinguishers presented in Table 2, one is of type 1, three
are of type 3 (i.e. the difference values in input/output are both equal to l1) as
defined in Sect. 2 and the two others (called type 4) work only if an inconsistency
of type l1 � m5 or of type m3 � l2 (remember that li is a fixed known non-zero
difference and that mi is an unknown non-zero difference) exists with “m5 =
F (F (F (l2))) �= l1” or “m3 = F (l1) �= l2”.

These kind of inconsistencies have been studied in [9]. More precisely, the
authors defined the following set:
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Table 2. The best ID distinguishers for Type-III, Type-III(1) and Type-III(2). The
notation means (x0, x1, x2, x3) = (0, 0, 0, l1) for example.

Round Type-III Type-III Type-III(1) Type-III(1) Type-III(2) Type-III(2)
Nb. ID type 4 ID type 3 ID type 4 ID type 1 ID type 4 ID type 3

↓ 0 (0, 0, 0, l1) (0, 0, 0, l1) (0, 0, 0, l1) (0, 0, 0, l1) (0, 0, 0, l1) (0, 0, 0, l1)

1 (0, 0, l1, 0) (0, 0, l1, 0) (0, l1, 0, 0) (0, l1, 0, 0) (0, 0, l1, 0) (0, 0, l1, 0)

2 (0, l1, m1, 0) (0, l1, m1, 0) (l1, 0, m1, 0) (l1, 0, m1, 0) (l1, 0, m1, 0) (l1, 0, m1, 0)

3 (l1, r4, m2, 0) (l1, r4, m2, 0) (m3, m2, m1, l1) (m3, m2, m1, l1) (m3, m2, m1, l1) (m3, m2, m1, l1)

3 (m5, r1, r2, r3) (l1 ⊕ m4, r1, r2, r3) (l2, m4, m5, m6) (0, 0, m4, l1 ⊕ m5) (l2, m4, m5, m6) (m4, m5, m6, l1 ⊕ m6)

4 (l2, m3, m4, m5) (m1, m2, m3, l1 ⊕ m4) (0, 0, 0, l2) (0, l1, m4, 0) (0, 0, 0, l2) (0, 0, l1, m4)

5 (0, 0, 0, l2) (0, 0, l1, m1) (0, l2, 0, 0) (l1, 0, 0, 0) (0, 0, l2, 0) (l1, 0, 0, 0)

↑ 6 (0, 0, l2, 0) (0, l1, 0, 0) - - - -

condition m5 = ΔF (ΔF (ΔF (l2))) �= l1 - m3 = ΔF (l1) �= l2 - m3 = ΔF (l1) �= l2 -

Definition 3 ([9]). For a function F (·) and a set ΔS of input differences, we
define the output difference set ΔF (ΔS) to be the set containing all the out-
put differences that are feasible by an input difference in ΔS. The quantity
max|ΔS|>0

|ΔF (ΔS)|
|ΔS| is called the differential expansion rate of F (·) and define as

the maximal increase in the size of a difference set through the round function.

We could map this definition by saying that to hold the three ID distinguish-
ers of type 4 given in Table 2 must verify on their input/output the two following
rules according the studied scheme l1 /∈ ΔF (ΔF (ΔF ({l2}))) and l2 /∈ ΔF ({l1}).

As noticed in [9], if F is a n = 4 or 8-bit bijective Sbox, the differential expan-
sion rate of one value, i.e. ΔF ({α}), is equal to half of the values, i.e. 8 or 128.

Note also that an equivalent property could be defined in the case of a ZC
distinguisher (this property will be used latter in this article).

Definition 4. For a function F (·) and a set ΓL of input linear masks, we
define the output linear mask set ΓF (ΓL) to be the set containing all the out-
put linear masks that are feasible by an input linear mask in ΓL. The quantity
max|ΓL|>0

|ΓF (ΓL)|
|ΓL| is called the linear expansion rate of F (·) and define as the

maximal increase in the size of a linear mask set through the round function.

ZC Distinguishers. We study in this Subsection the best ZC distinguishers
we found for Type-III, Type-III(1) and Type-III(2). They have respectively 6, 5
and 5 rounds and are given in Table 3.

INT Distinguishers. We focus in this paragraph on the INT distinguishers of
Type-III schemes that are of type INT2 as defined in Subsect. 2.2. The results
we obtain are summed up in Table 4.

More precisely, for a Type-III, we obtain the following 6-round INT2 distin-
guisher: for all the 2(b−1)c = 23c possible values of (0, l1,m4,m5) where l1, m4

and m5 take all possible 2c values, then after 6 rounds, the sum taken over all
the 2(b−1)c input values on the first position is equal to 0. Only one distinguisher
is given here but many such distinguishers could be generated. The 5 rounds
INT2 distinguishers of Type-III(1) and of Type-III(2) are derived in the same
way but with only 2(b−2)c input values for Type-III(2).
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Table 3. The best type 3 ZC distinguishers for Type-III, Type-III(1) and Type-III(2).

Round Number Type-III Type-III(1) Type-III(2)

↓ 0 (0, l1, 0, 0) (0, l1, 0, 0) (l1, 0, 0, 0)

1 (l1, 0, 0, m1) (l1, 0, 0, m1) (0, 0, 0, l1)

2 (m3, m2, m1, m4 ⊕ l1) (m3, m1, m2, m4 ⊕ l1) (m1, m2, l1, m3)

3 (r2, r1, m4 ⊕ l1, r3) (r2, m4 ⊕ l1, r2, r3) (m4 ⊕ l1, r1, m3, r2)

3 (r6, r5, l1, 0) (m5, l1, 0, 0) (l1, 0, m2, m1)

4 (m5, l1, 0, 0) (l1, 0, 0, 0) (0, 0, m1, l1)

5 (l1, 0, 0, 0) (0, 0, 0, l1) (0, 0, l1, 0)

↑ 6 (0, 0, 0, l1) - -

3.2 Other Distinguishers

TH and SH Distinguishers When F Has an SP Structure. Linking
together the results of [17] and of [4], the TH and SH schemes are mirror repre-
sentations of one another according to Theorem1 and the following ZC distin-
guisher on 12 rounds of an instantiated SH scheme (SMS4) has been introduced
in Appendix B of [17] (0, 0, 0, l1) →ENCSH

6
(m1 ⊕ m2 ⊕ r1, d ⊕ m2 ⊕ r1,m1 ⊕

r1,m1 ⊕ m2) is incompatible with (l1, 0, 0, 0) →DECSH
6

(m3 ⊕ m4,m3 ⊕ r2, d ⊕
m4 ⊕ r2,m3 ⊕ m4 ⊕ r2) if and only if m1 /∈ ΓF ({l1}) and l1 ⊕ m1 /∈ ΓF ({l1})
and m1 /∈ ΓF ({m1}) and m1 ⊕ l1 /∈ ΓF ({m1 ⊕ l1}).

From those results we could directly derive the following 12-round ZC and
ID distinguishers for the TH and SH constructions. The previous 12-round ZC
distinguisher on a SH scheme is directly equivalent to a 12-round ID distinguisher
on a TH scheme due to the mirror property. The conditions stay the same except
that the ΔF function is used instead of ΓF .

This distinguisher could be directly derived into a 12-round ID distinguisher
for a SH scheme: (l1, l1, l1, 0) →ENCTH

6
(l1,m1, l1 ⊕ m2, l1 ⊕ r1) is incompatible

with (0, l1, l1, l1) →DECTH
6

(l1 ⊕ r2, l1 ⊕ m5,m4, l1) if and only if the condition
r1 = r2 = 0 could not be fulfilled with r1 = F (m1⊕m2) and r2 = F (F (m4)⊕m4)
which happens if m1 ⊕ F (m4) �= l1 and m2 ⊕ m4 �= l1. Those two conditions
could be fulfilled if l1 is chosen such that m1 /∈ ΔF ({l1}) and l1⊕m1 /∈ ΔF ({l1})

Table 4. The best INT2 distinguishers for Type-III, Type-III(1) and Type-III(2).

Round Number Type-III Type-III(1) Type-III(2)

↑ 0 (0, l1, m4, m5) (0, l1, m4, m5) (0, 0, l1, m1)

↓ 1 (l1, 0, 0, 0) (l1, 0, 0, 0) (l1, 0, 0, 0)

2 (m1, 0, 0, l1) (m1, 0, 0, l1) (0, m1, 0, l1)

3 (m2, 0, l1, m1) (m2, l1, 0, m1) (m2, m1, l1, 0)

4 (m3, l1, r1, m2) (r1, m1, m2, m3) (r1, r2, m3, m2)

5 (l1 ⊕ F (m3), r2, r3, r4) (r2,
∑

F (m3) ⊕ m2 = 0, (r3, r4,
∑

F (m3) ⊕ m1 = 0,∑
F (m2) ⊕ r1 = 0,

∑
r1 = 0)

∑
r1 = 0)

6 (r5, r6, r7, l1 ⊕ F (m3) = 0) - -
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Table 5. The best INT2 distinguishers for SH and TH.

Round Nb. SH TH

0 (l1 ⊕ m2, m1, l1, l1) (m3, m3 ⊕ m5, m4 ⊕ m5, m3 ⊕ m5)

1 (m1, l1, l1, l1) (m3, m4, m3, m3)

2 (l1, l1, l1, 0) (l1, m3, m3, m3)

3 (l1, l1, 0, l1) (0, 0, 0, l1)

4 (l1, 0, l1, l1) (0, 0, l1, 0)

↑ 5 (0, l1, l1, l1) (0, l1, 0, 0)

↓ 6 (l1, l1, l1, m3) (l1, 0, 0, 0)

7 (l1, l1, m3, l1 ⊕ m4) (m1, m1, m1, l1)

8 (l1, m3, l1 ⊕ m4, l1 ⊕ r1) (m1 ⊕ m2, m1 ⊕ m2, l1 ⊕ m2, m1)

9 (m3, l1 ⊕ m4, l1 ⊕ r1, l1 ⊕ r2) (r1 ⊕ m1 ⊕ m2, r1 ⊕ l1 ⊕ m2, r1 ⊕ m1, m1 ⊕ m2)

10 (l1 ⊕ m4, l1 ⊕ r1, l1 ⊕ r2, m3 ⊕ r3)
∑

all words = 0

11 ( l1 ⊕ r1 = 0, l1 ⊕ r2, m3 ⊕ r3, r5) -

and m1 /∈ ΔF ({m1}) and m1 ⊕ l1 /∈ ΔF ({m1 ⊕ l1}). This distinguisher also
corresponds to the 12-round ZC distinguisher for a TH scheme.

Note that the conditions used for those distinguishers to work mainly depend
on the F function. Indeed, if F is a single S-box, the two conditions m1 /∈
ΔF ({m1}) and m1 ⊕ l1 /∈ ΔF ({m1 ⊕ l1}) could not be fulfilled. But if F has
an SP structure as in SMS4 there could exist some values that verify those
two conditions depending on the P-layer properties. Thus, in some particular
instantiated cases, those 12 rounds distinguishers could exist.

However, as those distinguishers reduce the number of inputs/outputs by
adding some particular constraints, an important issue (not treated in this paper)
concerns the possible extensions into attacks of those distinguishers: do they
allow to attack the same number of rounds when adding some rounds to guess
the subkeys at the beginning and at the end?

INT2 Distinguishers. In Table 5, we present the results we obtain in terms of
INT2 distinguishers on SH and TH schemes. Note that for the instantiated SH
called SMS4, an INT1 distinguisher on 12 rounds is given in [17].

For the SH construction with b = 4 branches, the 11-round INT2 distin-
guisher works as follows: for the 2(b−1)c = 23c possible values (l1 ⊕m2,m1, l1, l1)
where l1 ⊕ m2, m1 and l1 take all possible 2c values, then after 11 rounds, the
sum taken over all the 2(b−1)c input values on the first position is equal to 0.
Note also that only one distinguisher is given here but many such distinguishers
could be generated as soon as the F function is bijective.

Surprisingly, for the TH construction, we are only able to exhibit a 10-round
INT1 distinguisher that works as follows: for the 2(b−1)c = 23c possible values
(m3,m3 ⊕ m5,m4 ⊕ m5,m3 ⊕ m5) where m3, m3 ⊕ m5 and m4 ⊕ m5 take all
possible 2c values, then after 10 rounds, the sum of all the 4 output words taken
over all the 2(b−1)c input values is equal to 0. Many other such distinguishers
could be generated according the initial position of the first l1 as soon as the F
function is bijective.
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ZC Distinguishers on 19 Rounds of Type-I and on 12 Rounds of Four-
Cell. Those two distinguishers are given in AppendixA. Note that the existence
of these distinguishers is known from [4] but not the detailed paths given here
for the first time.

Concluding Remarks. Whereas the link between ID and ZC distinguishers
has been clearly established in [4], the link between ID or ZC and INT2 dis-
tinguishers seems less evident. Indeed, the number of rounds on which the best
INT2 distinguisher applies could be smaller (Type-I, Type-II, TH) than both
ID and ZC best distinguishers, equal to the number of rounds of the best ID
distinguisher (all Type-III, SH, Four-Cell) or greater (Gen-Skipjack rule A and
B, Type-II Nyberg as shown in [6]). Of course, it is a direct consequence of the
matrix method that differently finds those three kinds of distinguishers.

4 Matrix Method: Another Point of View

Under the same conditions than the ones given in Subsect. 2.2, we could directly
read the three types of distinguishers on the successive powers of the matrix
representation.

4.1 Links Between the Matrix Representation and the Adjacency
Matrix of the Graph

To any round function of an iterative block cipher acting on b blocks, we can
associate a connection graph between the input blocks and the output blocks of
a round function.

Taking as example the Type-II round function described in the middle of

Fig. 1, the matrix of the round function R =

⎛

⎜
⎜
⎝

F 1 0 0
0 0 1 0
0 0 F 1
1 0 0 0

⎞

⎟
⎟
⎠ could also be seen as

the adjacency matrix A with entries in Z[F ] associated with the following graph.

0

1

2

3

F F

Suppose now that we consider s0 iterations of a round function. The coefficient
As0

i,j gives the number of paths between the i-th block in input and the j-th

block in output. With the Type-II example, we have: A3 =

⎛

⎜
⎜
⎝

F 3 F 2 2F 1
1 0 F 2 F

2F 1 F 3 F 2

F 2 F 1 0

⎞

⎟
⎟
⎠.

It means that there exists one path from the input x0 to the output y1, two
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paths from the input x0 to the output y2, and no path from the input x1 to the
output y1. Clearly, we derive directly an ID distinguisher from this last property.

The diameter of such graph, i.e. the least value of s0 such that As0 does not
have any zero coefficient, is then a meaningful measure called diffusion delay in
[2] and in [1]. The minimum diffusion delay corresponds also to the maximum
diffusion rounds as defined in [18]. We denote this value as d0.

Since A4 =

⎛

⎜
⎜
⎝

F 4 + 1 F 3 3F 2 2F
2F 1 F 3 F 2

3F 2 2F F 4 + 1 F 3

F 3 F 2 2F 1

⎞

⎟
⎟
⎠, the diffusion delay of Type-II is d0 = 4.

However, if we look in more details to the output of the 4-th round, we can
observe that the dependency between x1 and y1 is in fact linear due to the
coefficient A4

1,1 = 1, more precisely, y1 = x1 ⊕ c where c is a constant term
depending only on x0, x2 and x3. With the matrix representation, we are able
to distinguish the XOR-linear operations (1 in the matrix As0) and the action
of the F functions (with a polynomial form

∑
a · F b in the matrix As0).

Computing A5, we obtain A5 =

⎛

⎜
⎜
⎝

F 5 + F 3 F 4 + 1 4F 3 3F 2

3F 2 2F F 4 + 1 F 3

4F 3 3F 2 F 5 + 3F F 4 + 1
F 4 + 1 F 3 3F 2 2F

⎞

⎟
⎟
⎠.

As all the coefficients of the matrix A5 are polynomials of degree at least 1, it
means that for any input xi and any output yj after 5 rounds there exists at least
one path from xi to yj that has crossed at least one F function. We call the smallest
integer satisfying this condition the depth of the GFN and we denote it by d1.

4.2 Link Between Powers of the Adjacency Matrix
and the U-Method

In this Subsection, we limit our study to quasi-involutive Generalized Feistel
Networks (GFNs) and their matrix representation as defined in [2] with the
additional condition that the F functions must be bijective.

Definition 5. A matrix R with coefficients in {0, 1, F} ⊂ Z[F ] is a quasi-
involutive GFN matrix if it can be written as R = P · F (i.e. X = Y = Id
if Definition 1 is used) such that P is a permutation matrix and the matrix F
satisfies the following conditions:

1. the main diagonal is filled with 1,
2. the off-diagonal coefficients are either 0 or F ,
3. for each index i, row i and column i cannot both have an F coefficient.
4. for each index i, there is at most one F per row and per column.

As shown in [2], the condition on F is equivalent to F−1 = 2I − F in Z[F ],
which simply means that the matrix representation of the decryption round
function is R−1 = F ·PT which can be rewritten R−1 = P ′ ·F ′ with P ′ = PT =
P−1 and F ′ = P · F · P ′, which is also a quasi-involutive GFN matrix.
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This definition covers Type-I, Type-II and its generalizations introduced
in [18] and also Type-III and its generalizations introduced in [20] but does
not cover Gen-Skipjack Rule-A and Rule-B, Four-Cell, TH and SH Feistel-like
ciphers. The restricted conditions added to this new definition compared to Def-
inition 1 allow to match the order of evaluation of an F function and of a XOR
operation in a GFN to products of adjacency matrices for which the addition is
a concatenation of paths.

We are now interested in using this restricted definition to study, for a given
GFN with its associated matrix A = FP, the coefficients of As0

i,j . There are only
the 5 following possibilities2:

1. If As0
i,j = 0, it means that, after s0 rounds, the output block yj does not

depend on the input value xi.
2. If As0

i,j = 1, it means that, after s0 rounds, for any fixed input value xk, k �= i,
the output block yj is of the form yj = xi ⊕c, where c is a constant depending
only on the xk values, k �= i.

3. If As0
i,j = F k, i.e. is a monic monomial of degree at least 1, it means that, after

s0 rounds, there is only one path from xi to yj , and this path has crossed at
least one F function. As the F function is bijective, it means that, after s0
rounds, the output block yj is of the form yj = p(xi), where p is a random
permutation depending on the xk with k �= i.

4. If As0
i,j = F k + 1, i.e. a monic monomial of degree at least 1 added with the

unit, it means that, after s0 rounds, there is exactly two paths from xi to yj ,
and one of those paths has crossed at least one F function. As the F function
is bijective, it means that, after s0 rounds, the output block yj is of the form
yj = a(xi) = p(xi)+xi, where p is a random permutation. Thus it means that
the dependency between yj and xi is the composition of two known paths.

5. If As0
i,j , is a polynomial such that the evaluation of this polynomial in F = 1

is at least 2 and not of the previous particular form, i.e. there are at least
two paths from xi to yj , and at least two paths have crossed at least one F
function. It means that, after s0 rounds, the output block yj is of the form
yj = f(xi), where f is an unknown function.

Note that the distinction between the two last cases makes sense only if the
F functions are permutations, which is the case in our definitions.

We denote by d2 the minimum value of s0 such that all the entries of As0

correspond to the 5-th case. With the Type-II example, we substitute respec-
tively p, a and f to the coefficients of A4 corresponding to cases 3, 4 and 5. This

leads to A4 =

⎛

⎜
⎜
⎝

a p f f
f 1 p p
f f a p
p p f 1

⎞

⎟
⎟
⎠.

Suppose now that we want to construct an ID distinguisher using this matrix
representation. For example, if we consider a vector of the form (0, 0, 0, δ)T ,

2 In particular a coefficient 2 could not appear due to the restricted previous definition
where a receiver could not receive twice.



Some Results Using the Matrix Methods 193

multiplying it by the matrix A4 leads to (f(δ), p(δ), p(δ), δ)T . This result can be
directly interpreted as (r1,m1,m2, l1)T considering the input vector (0, 0, 0, l1)T

using the previous notation. As an ID distinguisher is composed of a search
in the encryption direction and a search in the decryption direction, we also
introduce the corresponding adjacency matrix B for the decryption round as

B =

⎛

⎜
⎜
⎝

0 0 0 1
1 0 0 F
0 1 0 0
0 F 1 0

⎞

⎟
⎟
⎠, and then B5 =

⎛

⎜
⎜
⎝

p f f a
a f f f
f a p f
f f a f

⎞

⎟
⎟
⎠. As done in the encryption direction, if

an input vector of difference in the decryption direction is of the form (0, 0, δ, 0)T ,
we obtain after 5 decryption rounds, the vector (f(δ), f(δ), p(δ), a(δ))T , which
could be written as (r1, r2,m3,m4 ⊕ l1) with the previous notation creating an
inconsistency of type 3 between the input (0, 0, 0, δ)T and the output (0, 0, δ, 0)T .

Thus using the notation p, a and f , we could reinterpret the 3 kinds of
inconsistencies: an inconsistency of type 1 means that there exists three indices
i, j and k such that (As0

i,j = 0 and Bs1
i,k = p) or (As0

i,j = p and Bs1
i,k = 0); an

inconsistency of type 2 means that there exists three indices i, j and k such that
As0

i,j = Bs1
i,k = 1; an inconsistency of type 3 means that there exists three indices

i, j and k such that (As0
i,j = 1 and Bs1

i,k = a) or (As0
i,j = a and Bs1

i,k = 1).
This method is in fact

equivalent to the U-method and gives the same results. Clearly, it cannot be
extended to the case of differences located on several blocks in input and in
output. Indeed, first the sequential order of the operations is not included in our
adjacency matrix method and second, it seems that when several coordinates
of the input vectors are not equal to 0, it becomes very difficult to read the
matrix and thus to find the corresponding ID distinguisher. Thus our adjacency
matrix method fully captures the U-method but not the UID-method. In this
last case, the adjacency matrix method could be combined with the resolution
matrix method proposed in [19] to simplify the search step of the UID-method.
More precisely, the aim of the algorithm will be to compute all the possible
column combinations of the successive powers of the adjacency matrix.

Moreover, as the UID-method and the U-method give the same results
when considering quasi-involutive GFNs, this is why we limit our study to this
case where the best ID distinguishers have only one active coordinate in the
output/input vectors. This fact is mainly linked with the form of the adjacency
matrices of quasi-involutive GFNs and especially to the fact that the matrix F
contains at most one F on each row and each column. It means that a difference
on a block cannot cross distinct F functions at a given round and thus avoid
correlations between differences on distinct blocks in input.

Note that we could also find the corresponding ZC and INT2 distinguishers
induced by the U-method always using the adjacency matrix method. Indeed
in the case of an ID distinguisher, we look at As0 and at Bs1 computed from
the matrices R and R−1. In the case of a ZC distinguisher, we do the same
study but on the adjacency matrices computed from the matrices M and M−1

corresponding with the mirror graph. For an INT2 distinguisher, we are looking
for the best possible composition between As0 and Bs1 on a given coordinate,
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i.e. we look at the same column in As0 and Bs1 . However, in this case, we need
to specify if the permutations p of As0 and Bs1 are the same or not and thus to
denote them by p1, · · · pt.

Thus, we have the following conjecture concerning the ID distinguishers that
could be directly mapped in the case of ZC and INT2 distinguishers. First, Let
B be the least number of rounds for which a structural ID distinguisher does
not exist (here a structural distinguisher is independent of the properties of
the F functions). Let d+i and d−

i , i ∈ {0, 1, 2} respectively denote the diffusion
delay and the two kinds of depth for encryption and decryption directions (+
for encryption, − for decryption) previously defined.

Following our experimental results and our previous remarks, we propose the
following conjectures:

Conjecture 1. We consider the family of quasi-involutive GFNs defined in
Definition 5 corresponding to the adjacency matrix A = P · F .

– If there exists an ID distinguisher on s rounds, the U-method provides an ID
distinguisher on s rounds (i.e. the UID-method is not more efficient than the
U-method when considering quasi-involutive GFNs).

– The bound B on the minimal number of rounds for which a structural ID
distinguisher exists (i.e. an ID distinguisher which is independent of the prop-
erties of the F functions) satisfies the following inequalities: B ≤ d+1 + d−

1 ,
B ≤ d+0 + d−

2 and B ≤ d+2 + d−
0 .

Note that this conjecture is false for Gen-Skipjack rule-A and rule-B, Source
Heavy, Target Heavy GFNs and Four-Cell where the UID-method gives better
results than the U-method because X �= Id or Y �= Id.

We sum up in Table 8 given in AppendixB the value of d0, d1 and d2 for the
Feistel-like ciphers we have studied in this paper, with di = max(di+, di−) for
i from 0 to 2 regarding the matrices R and R−1. Note that those results could
be slightly modified when computing the same bounds for M and M−1.

5 Conclusion

In this paper, we have first completed the missing parts of Table 1 in terms of
ID, ZC and INT2 distinguishers using the classical matrix methods. We have
essentially focused our work on Type-III, SH and TH Feistel-like ciphers. We
have also proposed another view of how to use the matrix representation to find
such distinguishers. We finally conjecture that this new point of view leads to
upper bounds on the best ID, ZC and INT2 distinguishers that could be found
using the matrix methods especially the U-method.

In future works, we want to see if those bounds could be also applied in the
case of the UID-method and in the context of classical security proofs. Another
research direction concerns the extension of the matrix methods to other attacks
such as meet-in-the middle attacks against Feistel-like and SPN ciphers.
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A ZC Distinguishers on 19 Rounds of Type-I and on 12
Rounds of Four-Cell

A.1 ZC Distinguishers on 19 Rounds of Type-I

If the round function of a Type-I is bijective, then the 19-round ZC linear hull
(l1, 0, 0, 0) → (0, l1, 0, 0) has zero correlation. The details of this ZC distinguisher
is given in Table 6.

Table 6. 19-Round ZC dinstinguisher for Type-I

Round Nb. x0 x1 x2 x3

0 ↓ l1 0 0 0

1 0 0 0 l1
2 0 0 l1 0

3 0 l1 0 0

4 l1 0 0 m1

5 0 0 l1 m1

6 0 m1 l1 0

7 m1 l1 0 m2

8 l1 0 m2 r1
9 0 m2 r1 l1
10 m2 r1 l1 m3

11 r1 l1 m3 r2
12 l1 m3 r2 r3

12 m7 ⊕ l1 m6 m5 m4

13 m6 m5 m4 l1
14 m5 m4 l1 0

15 m4 l1 0 0

16 l1 0 0 0

17 0 0 0 l1
18 0 0 l1 0

19 ↑ 0 l1 0 0

A.2 ZC Distinguishers on 12 Rounds of Four-Cell

If the round function of Four-Cell is bijective, then the 12-round ZC linear hull
(0, 0, 0, l1) → (l2, l2, l2, l2) has zero correlation. The details of this ZC distin-
guisher is given in Table 7.

B Table of the Values of d0, d1 and d2

It is easy to see that the bounds given in Conjecture 1 are false for SH, TH
and Gen-Four-Cell ciphers as for example the best ID distinguisher given by the
UID-method on Gen-Four-Cell is on 18 rounds whereas the best value of B is
upper bounded by 14.
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Table 7. 12-Round ZC dinstinguisher for Four-Cell

Round Nb. x0 x1 x2 x3

0 ↓ 0 0 0 l1
1 0 0 l1 0

2 0 l1 0 0

3 l1 0 0 0

4 m1 m1 m1 m1

5 m1 ⊕ m2 m1 ⊕ m2 m1 ⊕ m2 m2

7 0 m5 m3 ⊕ m4 0

6 m5 m3 ⊕ m4 0 0

5 m4 m3 m3 m3

4 0 0 0 m3

3 0 0 m3 0

2 0 m3 0 0

1 m3 0 0 0

0 ↑ l2 l2 l2 l2

Table 8. Value of d0, d1 and d2 for different Feistel-like schemes with k branches.

Feistel Type d0 d1 d2

Gen-Skipjack (rule-A) k2 − 2k + 2 k2 − k + 1 k2

Gen-Skipjack (rule-B) k2 − 2k + 2 k2 − k + 1 k2

Type-1 (Gen-CAST256) (k − 1)2 + 1 k(k − 1) + 1 k2 + 1
Type-2 (RC6) k k + 1 k + 3
Type-2 Nyberg k k + 1 k + 3

Type-2 [18] 2 log2 k 2 log2 k + 1 2 log2 k + 1

Type-3 k k + 1 k + 2
Type-3(1) and (2) [20] (k = 4) 4 4 6
Type-3(1) and (2) [20] (k = 8) 4 5 6

SH (Gen-SMS4) k k + 1 k + 2
TH (Gen-MARS) k k + 1 k + 2

Gen-Four-Cell k 2k − 1 2k − 1
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LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Blondeau, C., Bogdanov, A., Wang, M.: On the (In)equivalence of impossible dif-
ferential and zero-correlation distinguishers for Feistel- and Skipjack-type ciphers.
In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 271–288. Springer, Heidelberg (2014)



Some Results Using the Matrix Methods 197

5. Blondeau, C., Minier, M.: Analysis of impossible, integral and zero-correlation
attacks on type-ii generalized Feistel networks using the matrix method. In:
Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 92–113. Springer, Heidelberg
(2015)

6. Blondeau, C., Minier, M.: Relations between Impossible, Integral and Zero-
correlation Key-Recovery Attacks (extended version). Cryptology ePrint Archive,
Report 2015/141 (2015). http://eprint.iacr.org/

7. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

8. Bogdanov, A., Rijmen, V.: Zero-correlation linear cryptanalysis of block ciphers.
IACR Cryptology ePrint Arch. 2011, 123 (2011)

9. Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New insights on
impossible differential cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC 2011.
LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012)

10. Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible
differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra,
S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg
(2003)

11. Knudsen, L.: DEAL-a 128-bit block cipher. Complexity 258(2), 216 (1998)
12. Knudsen, L., Wagner, D.: Integral cryptanalysis nes/doc/uib/wp5/015. NESSIE

Report (2001). http://www.cosic.esat.kuleuven.be/nessie/reports/phase2/
uibwp5-015-1.pdf

13. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

14. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differ-
entials of block cipher structures. Inf. Sci. 263, 211–220 (2014)

15. Soleimany, H., Nyberg, K.: Zero-correlation linear cryptanalysis of reduced-round
LBlock. Des. Codes Crypt. 73(2), 683–698 (2014)

16. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li,
C.: Links among impossible differential, integral and zero correlation linear crypt-
analysis. Cryptology ePrint Archive, Report 2015/181 (2015). http://eprint.iacr.
org/

17. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.:
Links among impossible differential, integral and zero correlation linear cryptanaly-
sis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215,
pp. 95–115. Springer, Heidelberg (2015)

18. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

19. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-
oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012)

20. Yanagihara, S., Iwata, T.: Improving the permutation layer of type 1, type 3,
source-heavy, and target-heavy generalized Feistel structures. IEICE Trans. 96–
A(1), 2–14 (2013)

21. Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending higher-order integral: an
efficient unified algorithm of constructing integral distinguishers for block ciphers.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 117–134.
Springer, Heidelberg (2012)

http://eprint.iacr.org/
http://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-015-1.pdf
http://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-015-1.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/


Improved Meet-in-the-Middle Attacks
on 7 and 8-Round ARIA-192 and ARIA-256

Akshima, Donghoon Chang, Mohona Ghosh(B), Aarushi Goel,
and Somitra Kumar Sanadhya

Indraprastha Institute of Information Technology, Delhi (IIIT-D), New Delhi, India
{akshima12014,donghoon,mohonag,aarushi12003,somitra}@iiitd.ac.in

Abstract. The ARIA block cipher has been established as a Korean
encryption standard by Korean government since 2004. In this work, we
re-evaluate the security bound of reduced round ARIA-192 and ARIA-
256 against meet-in-the-middle (MITM) key recovery attacks in the sin-
gle key model. We present a new 4-round distinguisher to demonstrate
the best 7 & 8 round MITM attacks on ARIA-192/256. Our 7-round
attack on ARIA-192 has data, time and memory complexity of 2113,
2135.1 and 2130 respectively. For our 7-round attack on ARIA-256, the
data/time/memory complexities are 2115, 2136.1 and 2130 respectively.
These attacks improve upon the previous best MITM attack on the same
in all the three dimensions. Our 8-round attack on ARIA-256 requires
2113 cipher calls and has time and memory complexity of 2245.9 and
2138 respectively. This improves upon the previous best MITM attack
on ARIA-256 in terms of time as well as memory complexity. Further,
in our attacks, we are able to recover the actual secret key unlike the
previous cryptanalytic attacks existing on ARIA-192/256. To the best of
our knowledge, this is the first actual key recovery attack on ARIA so
far. We apply multiset attack - a variant of meet-in-the-middle attack to
achieve these results.

Keywords: Block cipher · ARIA · Key Recovery · Differential charac-
teristic · Multiset attack

1 Introduction

The block cipher ARIA, proposed by Kwon et al. in ICISC 2003 [12], is a 128-
bit block cipher that adopts substitution-permutation network (SPN) structure,
similar to AES [3], and supports three key sizes -128-bit, 192-bit and 256-bit.
The first version of ARIA (version 0.8) had 10/12/14 rounds for key sizes of
128/192/256 respectively and only two kinds of S-boxes were employed in its
substitution layer [2,19]. Later ARIA version 0.9 was announced at ICISC 2003
in which four kinds of S-boxes were used. This was later upgraded to ARIA
version 1.0 [9], the current version, which was standardized by Korean Agency
for Technology and Standards (KATS) - the government standards organiza-
tion of South Korea as the 128-bit block encryption algorithm (KS X 1213)
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 198–217, 2015.
DOI: 10.1007/978-3-319-26617-6 11
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in December 2004. In this version, the number of rounds was increased to
12/14/16 and some modifications in the key scheduling algorithm were intro-
duced. ARIA has also been adopted by several standard protocols such as IETF
(RFC 5794 [11]), SSL/TLS (RFC 6209 [10]) and PKCS #11 [13].

ARIA block cipher has been subjected to reasonable cryptanalysis in the
past 12 years since its advent. In [1], Biryukov et al. analyzed the first version
(version 0.8) of ARIA and presented several attacks such as truncated differ-
ential cryptanalysis, dedicated linear attack, square attack etc. against reduced
round variants of ARIA. In the official specification document of the standard-
ized ARIA (version 1.0) [12], the ARIA developers analyzed the security of ARIA
against many classical cryptanalyses such as differential and linear cryptanalysis,
impossible and higher order differential cryptanalysis, slide attack, interpolation
attack etc. and claimed that ARIA has a better resistance against these attacks
as compared to AES. In [18], Wu et al. presented a 6-round impossible differen-
tial attack against ARIA which was improved in terms of attack complexities by
Li et al. in [15]. In [16], Li et al. presented a 6-round integral attack on ARIA
followed by Fleischmann et al. [8] who demonstrated boomerang attacks on 5
and 6 rounds of ARIA. Du et al. in [6], extended the number of rounds by one
and demonstrated a 7-round impossible differential attack on ARIA-256. In [17],
Tang et al., applied meet-in-the-middle (MITM) attack to break 7 and 8-rounds
of ARIA-192/256. In Table 1, we summarize all the existing attacks on ARIA
version 1.0.

In this work, we improve the attack complexities of the 7 and 8-round MITM
attack on ARIA-192/256. Our work is inspired from the multiset attack demon-
strated by Dunkelman et al. on AES in [7]. Multiset attack is a variant of meet-
in-the-middle attack presented by Demirci et al. on AES in [4]. Demirci et al.’s
attack involves constructing a set of functions which map one active byte in the
first round to another active byte after 4-rounds of AES. This set of functions
depend on ‘P’ parameters and can be described using a table of 2P ordered 256-
byte sequence of entries. This table is precomputed and stored, thus allowing
building a 4-round distinguisher and attacking upto 8 rounds of AES. Due to
structural similarities between ARIA and AES, a similar attack was applied to
7 & 8-rounds of ARIA by Tang et al. in [17]. The bottleneck of this attack is a
very high memory complexity which is evident in the attacks on ARIA as well
as shown in Table 1. To reduce the memory complexity of Demirci’s attacks on
AES, Dunkelman et al. in [7], proposed multiset attack which replaces the idea
of storing 256 ordered byte sequences with 256 unordered byte sequences (with
multiplicity). This reduced both memory and time complexity of MITM attack
on AES by reducing the parameters to ‘Q’ (where, Q<P). They also introduced
the novel idea of differential enumeration technique to significantly lower the
number of parameters required to construct the multiset from ‘Q’ to ‘R’ (where,
R<Q<P), thus further decreasing the attack complexities on AES. Derbez et al.
in [5] improved Dunkelman et al.’s attack by refining the differential enumeration
technique. By using rebound-like techniques [14], they showed that the number
of reachable multisets are much lower than those counted in Dunkelman et al.’s
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Table 1. Comparison of cryptanalytic attacks on ARIA version 1.0. The entries are
arranged in terms of decreasing time complexities for each category of attacked rounds.

Rounds Attack Time Data Memory Reference

attacked type complexity complexity complexity

5 Boomerang
Attack

2110 2109 257 [8]

Integral Attack 276.7 227.5 227.5 [16]

Impossible
Differential

271.6 271.3 272 [15]

Meet-in-the-
middle

265.4 225 2122.5 [17]

6 Integral Attack 2172.4 2124.4 2124.4 [16]

Meet-in-the-
middle

2121.5 256 2122.5 [17]

Impossible
Differential

2112 2121 2121 [18]

Boomerang
Attack

2108 2128 256 [8]

Impossible
Differential

2104.5 2120.5 2121 [15]

7 Impossible
Differential

2238 2125 2125 [6]

Boomerang
Attack

2236 2128 2184 [8]

Meet-in-the-
middle

2185.3 2120 2187 [17]

Meet-in-the-
middle
(ARIA-192)

2135.1 2113 2130 This work, Sect. 4

Meet-in-the-
middle
(ARIA-256)

2136.1 2115 2130 This work, Sect. 4

8 Meet-in-the-
middle
(ARIA-256)

2251.6 256 2252 [17]

Meet-in-the-
middle
(ARIA-256)

2245.9 2113 2138 This work, Sect. 5

attack. This improvement allowed mounting of comparatively efficient attacks
on AES and also enabled extension of number of rounds attacked. Though the
results of this line of work are quite interesting, yet they have not been explored
further. Coupled with the fact that the security of ARIA has not been analyzed
much after Fleischmann et al.’s attack in Indocrypt 2010 [8], motivated us to
investigate the effectiveness of multiset attack on ARIA.
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In our attacks, we construct a new 4-round distinguisher for ARIA. As a
result, our attacks significantly reduce the data/time/memory complexities of
the previous 7-round MITM attack on ARIA-192/256 shown in [17]. Our 8-round
attack also improves upon the time and memory complexities of the previous
best 8-round MITM attack on ARIA-256 [17] but at the expense of increase in
the data complexity. The key schedule algorithm of ARIA does not allow recov-
ery of master key from a subkey unlike AES [3]. This is likely the reason why
none of the previous attacks have shown the actual key retrieval on any ARIA
variant. However, depending upon the key expansion of ARIA, recovery of spe-
cific subkeys allows extracting the actual secret key. In our 7 and 8-round attack
on ARIA-192/256, we exploit this key scheduling property to demonstrate the
actual secret key recovery in ARIA. To the best of our knowledge, we are the
first to demonstrate actual key recovery on ARIA.

Our Contribution. The main contributions of this work are as follows:

– We present the best 7-round MITM based key recovery attack on ARIA
192/256 and 8-round attack on ARIA-256.

– We apply multiset attack to construct a new 4-round distinguisher on ARIA-
192 and ARIA-256.

– Our 7-round attack on ARIA-192 has data/time/memory complexity of 2113,
2135.1 and 2130 respectively.

– Our 7-round attack on ARIA-256 has data/time/memory complexity of 2115,
2136.1 and 2130 respectively.

– Our 8-round attack on ARIA-192/256 has data/time/memory complexity of
2113, 2245.6 and 2138 respectively.

– We present the first actual master key recovery on our attacks on ARIA-
192/256.

Our results are summarized in Table 1.

Organization. The paper is organized as follows. In Sect. 2, we provide a brief
description of ARIA followed by important notations adopted throughout the
work. In Sect. 3, we give details of our distinguisher so constructed on 4-rounds
of ARIA. In Sect. 4, we present our 7-round attack followed by Sect. 5, where we
demonstrate our 8-round attack on ARIA and show actual key recovery. Finally
in Sect. 6, we summarize and conclude our paper.

2 Preliminaries

In this section, we first describe ARIA and then mention the key notations and
definitions used in our cryptanalysis technique to facilitate better understanding.

2.1 Description of ARIA

The block cipher ARIA adopts substitution-permutation network in its design
and is structurally similar to Advanced Encryption Standard (AES). The ARIA
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specification defines 3 key sizes - 128-bit, 192-bit and 256-bit with block size
limited to a fixed 128-bit size for all the three alternatives. Each ARIA variant
has different number of rounds per full encryption, i.e., 12, 14 and 16 rounds
for ARIA-128, ARIA-192 and ARIA-256 respectively. The 128-bit internal state
and key state are treated as a byte matrix of 4 × 4 size, where the bytes are
numbered from 0 to 15 column wise (as shown in Fig. 1). Each round consists of
3 basic operations (as shown in Fig. 2):

1

2

3

4

5

6

7

0

9

10

11

12

13

14

8

15

Fig. 1. Byte numbering in a state of ARIA

DL⊕

ki

SL

Xi ZiYi

Z(i−1)

Fig. 2. ith round of ARIA.

1. Add Round Key (ARK) - This step involves an exclusive-or operation with
the round subkey. The key schedule of ARIA consists of two phases:
– A nonlinear expansion phase, in which the 128-bit, 192-bit or 256-bit

master key is expanded into four 128-bit words W0, W1, W2, W3 by using
a 3-round 256-bit Feistel cipher.

– A linear key schedule phase in which the subkeys are generated via simple
XORs and rotation of W0, W1, W2, W3 each.

2. Substitution Layer (SL) - It uses four types of 8-bit S-boxes S1, S2 and their
inverses S−1

1 and S−1
2 . Each S-Box is defined to be an affine transformation

of the inversion function over GF(28). The S1 S-box is the same as used in
AES. ARIA has two types of substitution layers for even and odd rounds
respectively. In each odd round, the substitution layer is (LS, LS, LS, LS)
where LS = (S1, S2, S−1

1 , S−1
2 ) operates one column and in each even round,

the substitution layer is (LS−1, LS−1, LS−1, LS−1) where LS−1 = (S−1
1 ,

S−1
2 , S1, S2) operates on one column as well.

3. Diffusion Layer (DL) - This layer consists of a 16 × 16 involutional binary
matrix with branch number 8. Given an input state y and output state z, the
diffusion layer is defined as:

z[0] = y[3] ⊕ y[4] ⊕ y[6] ⊕ y[8] ⊕ y[9] ⊕ y[13] ⊕ y[14]
z[1] = y[2] ⊕ y[5] ⊕ y[7] ⊕ y[8] ⊕ y[9] ⊕ y[12] ⊕ y[15]
z[2] = y[1] ⊕ y[4] ⊕ y[6] ⊕ y[10] ⊕ y[11] ⊕ y[12] ⊕ y[15]
z[3] = y[0] ⊕ y[5] ⊕ y[7] ⊕ y[10] ⊕ y[11] ⊕ y[13] ⊕ y[14]
z[4] = y[0] ⊕ y[2] ⊕ y[5] ⊕ y[8] ⊕ y[11] ⊕ y[14] ⊕ y[15]
z[5] = y[1] ⊕ y[3] ⊕ y[4] ⊕ y[9] ⊕ y[10] ⊕ y[14] ⊕ y[15]
z[6] = y[0] ⊕ y[2] ⊕ y[7] ⊕ y[9] ⊕ y[10] ⊕ y[12] ⊕ y[13]
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z[7] = y[1] ⊕ y[3] ⊕ y[6] ⊕ y[8] ⊕ y[11] ⊕ y[12] ⊕ y[13]
z[8] = y[0] ⊕ y[1] ⊕ y[4] ⊕ y[7] ⊕ y[10] ⊕ y[13] ⊕ y[15]
z[9] = y[0] ⊕ y[1] ⊕ y[5] ⊕ y[6] ⊕ y[11] ⊕ y[12] ⊕ y[14]

z[10] = y[2] ⊕ y[3] ⊕ y[5] ⊕ y[6] ⊕ y[8] ⊕ y[13] ⊕ y[15]
z[11] = y[2] ⊕ y[3] ⊕ y[4] ⊕ y[7] ⊕ y[9] ⊕ y[12] ⊕ y[14]
z[12] = y[1] ⊕ y[2] ⊕ y[6] ⊕ y[7] ⊕ y[9] ⊕ y[11] ⊕ y[12]
z[13] = y[0] ⊕ y[3] ⊕ y[6] ⊕ y[7] ⊕ y[8] ⊕ y[10] ⊕ y[13]
z[14] = y[0] ⊕ y[3] ⊕ y[4] ⊕ y[5] ⊕ y[9] ⊕ y[11] ⊕ y[14]
z[15] = y[1] ⊕ y[2] ⊕ y[4] ⊕ y[5] ⊕ y[8] ⊕ y[10] ⊕ y[15]

In the last round, diffusion layer is replaced by key xoring to generate the
ciphertext. The key schedule algorithm of ARIA [11] is divided into two phases -
Initialization phase and Round Key Generation phase. In the initialization phase,
for ARIA-256, first we compute KL and KR for the master key K as follows:

KL || KR = K || 0...0

where, | KL | = | KR | = 128-bits and number of zeroes padded to K equals
128, 64 and 0 for | K | equal to 128, 192 and 256 respectively.

Then, four 128-bit values W0, W1, W2 and W3 are set as:

W0 = KL (1)
W1 = Fo(W0, CK1) ⊕ KR (2)
W2 = Fe(W1, CK2) ⊕ W0 (3)
W3 = Fo(W2, CK3) ⊕ W1 (4)

where, Fo and Fe are ARIA odd and even round functions and CK1, CK2 and
CK3 are pre-defined constants. In the round key generation phase, the following
round subkeys are generated as follows:

K1 = W0 ⊕ (W1 >>> 19) (5)
K2 = W1 ⊕ (W2 >>> 19) (6)
K3 = W2 ⊕ (W3 >>> 31) (7)
K4 = (W0 >>> 19) ⊕ W3 (8)
K5 = W0 ⊕ (W1 >>> 31) (9)
K6 = W1 ⊕ (W2 >>> 31) (10)
K7 = W2 ⊕ (W3 >>> 31) (11)
K8 = (W0 >>> 31) ⊕ W3 (12)
K9 = W0 ⊕ (W1 <<< 61) (13)

For further details, one can refer [11].
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2.2 Notations and Definitions

The following notations are followed throughout the rest of the paper.

P : Plaintext

C : Ciphertext

ki : Subkey of round i

k∗
i : DL−1(ki), where, DL−1 is the inverse diffusion layer

Xi : State obtained after ARK in round i

Yi : State obtained after SL in round i

Zi : State obtained after DL in round i

Δs : Difference in a state s

si[m] : mth byte of a state s in round i, where 0 ≤ m ≤ 15

si[p, . . . , r] : pth byte, . . . , rth byte of state s in round i, where 0 ≤ p, r ≤ 15

In our attacks, rounds are numbered from 1 to R, where R = 7 or 8. A full
round consists of all the three round operations, i.e., ARK, SL and DL whereas
a half round denotes a round in which the DL operation is omitted.

We utilize the following definitions for our attacks.

Definition 1 (δ-list). We define the δ-list as an ordered list of 256 16-byte dis-
tinct elements that are equal in 15 bytes. Each of the 15 equal bytes is called as
passive byte whereas the one byte that takes all possible 256 values is called the
active byte [3]. We denote the δ-list as (x0, x1, x2, . . . , x255) where xj indicates
the jth 128-bit member of the δ-list. As mentioned in the notations section, xj

i

[m] represents the mth byte of xj in round i.

Definition 2 (Multiset). A multiset is a set of elements in which multiple
instances of the same element can appear. A multiset of 256 bytes, where each
byte can take any one of the 256 possible values, can have

(
28+28−1

28

) ≈ 2506.17

different values.
Two crucial properties that will be used in our attacks are as follows:

Property 1. For a given input-output difference (denoted as (ΔY, ΔZ)) state
over a diffusion layer operation (as shown in Fig. 3), if the 7-bytes of ΔY [3,
4, 6, 8, 9, 13, 14] have equal differences, say y, then it will lead to non-zero
difference only at byte 0 of ΔZ (instead of full state diffusion) after the diffusion
layer operation. Rest all bytes of ΔZ will be passive. Thus, under the given
constraints, probability of the differential trail ΔY → Δ Z is 1.

Proof. As per the diffusion layer specification of ARIA, each output byte of state
Z is a xored sum of 7 input bytes of state Y. The same property is preserved in
case of differences as well, i.e., each output byte difference of Z is a xored sum of
7 input byte difference of Y. In lieu of this, for each output byte, if even number
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y
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DL

ΔY ΔZ
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Fig. 3. Differential property of diffusion layer

of corresponding input bytes (i.e., 2, 4 or 6) have equal differences, then they
cancel out each other. In the above trail, 7 bytes of Y, i.e., Y [3, 4, 6, 8, 9, 13,
14] have equal differences ‘y’, whereas the rest of the bytes have zero differences.
Hence, all output bytes except ΔZ [0] have zero differences since their xored
sum have either 2 or 4 equal input byte differences. E.g.,

ΔZ[0] = ΔY [3] ⊕ ΔY [4] ⊕ ΔY [6] ⊕ ΔY [8] ⊕ ΔY [9] ⊕ ΔY [13] ⊕ ΔY [14]
= �y ⊕ �y ⊕ �y ⊕ �y ⊕ �y ⊕ �y ⊕ y = y

ΔZ[1] = ΔY [2] ⊕ ΔY [5] ⊕ ΔY [7] ⊕ ΔY [8] ⊕ ΔY [9] ⊕ ΔY [12] ⊕ ΔY [15]
= 0 ⊕ 0 ⊕ 0 ⊕ �y ⊕ �y ⊕ 0 ⊕ 0 = 0

ΔZ[11] = ΔY [2] ⊕ ΔY [3] ⊕ ΔY [4] ⊕ ΔY [7] ⊕ ΔY [9] ⊕ ΔY [12] ⊕ ΔY [14]
= 0 ⊕ �y ⊕ �y ⊕ 0 ⊕ �y ⊕ 0 ⊕ �y = 0

Similar equations can be constructed for other output bytes of Z as well.
Thus, Property 1 holds true.

Property 2. For a given ARIA S-box, say S1 and any non-zero input - output
difference pair, say (Δi - Δo) in F256, there exists one solution in average, say y,
for which the equation, S1(y)⊕ S1(y ⊕ Δi) = Δo, holds true (since ARIA uses
AES S-box as S1 [5]). This property is also applicable to other ARIA S-boxes,
i.e., S2, S−1

1 and S−1
2 .

The time complexity of the attack is measured in terms of number of full
round (7 or 8) ARIA encryptions required. The memory complexity is measured
in units of 128-bit ARIA blocks required.

3 Distinguishing Property of 4-round ARIA

Given a list of 256 distinct bytes (M0, M1, . . ., M255), a function f : {0, 1}128 �→
{0, 1}128 and a 120-bit constant U , we define a multiset v as follows:

Ci = f(M i || U),where (0 ≤ i ≤ 255)
v = {C0[0] ⊕ C0[0], C1[0] ⊕ C0[0], . . . , C255[0] ⊕ C0[0]}
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Note that, (M0 || U , M1 || U , . . . , M255 || U) forms a δ-list and atleast one
element of the multiset is always zero.

Distinguishing Property. Let us consider F to be a family of permutations on
128-bit. Then, given any list of 256 distinct bytes (M0, M1, . . ., M255), the aim

is to find how many multisets v are possible when, f
$←− F and U

$←− {0, 1}120.
In case, when F = family of all permutations on 128-bit and f

$←− F .
Under such setting, since in the multiset v, we have 255 values that are chosen
uniformly and independently from the set {0, 1, . . . , 255} (as one element, say
C0[0] ⊕ C0[0], is always 0), the total possible multisets v are

(
28−1+28−1

28−1

) ≈
2505.17.
In case, when F= 4-full rounds of ARIA and f

$←− F . Here, f
$←− F

⇔ K
$←− {0, 1}k and f = EK , where, k = 128 (for ARIA-128), 192 (for ARIA-

192) or 256 (for ARIA-256). Let us consider, 4-full rounds of ARIA as shown
in Fig. 4 where, multiset v is defined as v = {Z0

4 [0] ⊕ Z0
4 [0], Z1

4 [0] ⊕ Z0
4 [0], . . . ,

Z255
4 [0] ⊕ Z0

4 [0]}. Then, we state the following Observation 1.

Observation 1. The multiset v is determined by the following 30 single byte
parameters only:

• X0
2 [3, 4, 6, 8, 9, 13, 14] (7-bytes)

• X0
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] (full 16-byte state)

• X0
4 [3, 4, 6, 8, 9, 13, 14] (7-bytes)

Thus, the total number of multisets possible is 230×8 = 2240 since, each 30-bytes
defines one multiset.

Xi
1 Zi

1Y i
1

⊕

K2 Xi
2 Zi

2Y i
2

SL DL

SL DL

⊕

K3 Xi
3 Zi

3Y i
3

SL DL

K4

⊕

Xi
4 Zi

4Y i
4

SL DL

Round 1

Round 2

Round 3

Round 4

⊕

K1

Pi

Fig. 4. 4-Round distinguisher in ARIA. Here, P i denotes (M i || U) and Xi
j , Y i

j , Zi
j

denote intermediate states corresponding to P i in round j. The round subkeys Ki,
where, 1 ≤ i ≤ 4 are generated from the master key K.
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Proof. In round 1, the set of differences {X0
1 [0] ⊕ X0

1 [0], X1
1 [0] ⊕ X0

1 [0], . . . ,
X255

1 [0] ⊕ X0
1 [0]} (or, equivalently, set of differences at X1[0]) are known as there

are exactly 256 differences possible. Since S-box S1 is injective, exactly 256 values
exist in the set {Y 0

1 [0] ⊕ Y 0
1 [0], Y 1

1 [0] ⊕ Y 0
1 [0], . . . . . . , Y 255

1 [0] ⊕ Y 0
1 [0]} as well.

Due to DL and ARK operations being linear, the set of differences at X2[3, 4, 6,
8, 9, 13, 14] are known (according to diffusion layer (DL) definition discussed in
Sect. 2). Owing to the non-linearity of the substitution layer, the set of differences
at Y2[3, 4, 6, 8, 9, 13, 14] cannot be known and one cannot move forward. To alle-
viate this problem, it is sufficient to know X0

2 [3, 4, 6, 8, 9, 13, 14], i.e., values of the
active bytes of the first state (out of 256 states) at X2 as it enables calculating the
active bytes of the other Xi

2 states (where, 1 ≤ i ≤ 255) and cross SL in round 2.
Again, since DL and ARK operations are linear, the set of differences {X0

3 ⊕ X0
3 ,

X1
3 ⊕ X0

3 , . . . , X255
3 ⊕ X0

3} is known. In order to know the set of values {X0
3 , X1

3 ,
. . . , X255

3 } for crossing the SL in round 3, it is sufficient to know the value of the
full state X0

3 which is given as a parameter.
By similar logic, as explained above, the set of differences {X0

4 ⊕X0
4 , X1

4 ⊕X0
4 ,

. . . , X255
4 ⊕ X0

4} are known. Now, at this stage, if only X0
4 [3, 4, 6, 8, 9, 13, 14]

bytes are known, the SL layer in round 4 can be crossed and the set of 256 values
{Z0

4 [0], Z1
4 [0], . . ., Z255

4 [0]} at Z4 can be computed. Then the value of multiset v
= {Z0

4 [0] ⊕ Z0
4 [0], Z1

4 [0] ⊕ Z0
4 [0], . . . , Z255

4 [0] ⊕ Z0
4 [0]} can be determined easily

as well. This shows that the multiset v depends on 30 parameters and can take
2240 possible values. 	


Since, there are 2240 possible multisets at Z4[0], if we precompute and store
these values in a hash table, then the precomputation complexity goes higher
than brute force for ARIA-192. In order to reduce the number of multisets,
we apply the Differential Enumeration technique suggested by Dunkelman et al.
in [7] and improved by Derbez et al. in [5]. We call the improved version proposed
in [5] as Refined Differential Enumeration.

Refined Differential Enumeration. The basic idea behind this technique is
to choose a list of 256 distinct bytes (M0, M1, . . ., M255) such that several
of the parameters that are required to construct the multiset equal some pre-
determined constants.

To achieve so, let us construct a truncated differential for four full rounds of
ARIA, in which the input and output differences are non-zero at byte 0 only (as
shown in Fig. 5).

ΔP ΔX2

ARK, SL
DL, ARK

SL, DL

ARK

ΔX3 ΔY3

SL

ΔY4

DL, ARK DL

ΔZ4

SL

Fig. 5. 4-Round truncated differential in ARIA

The probability of this trail is 2−120 as follows: the one byte difference at ΔP[0]
propagates to 7-byte difference in ΔX2 and 16-byte difference in ΔY3 with proba-
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bility 1. Next, the probability that full state difference in ΔY3 leads to 7-byte dif-
ference in ΔY4 is 2−72 (since 9 bytes of ΔY4, i.e., ΔY4[0, 1, 2, 5, 7, 10, 11, 12, 15])
have zero difference). Further, the probability that random differences in ΔY3 yield
equal differences in the active bytes of ΔY4 i.e., ΔY4[3, 4, 6, 8, 9, 12, 13] is 2−48.1

Therefore, the total probability of ΔY3 → ΔY4 is 2−(72+48) = 2−120. Then, by the
virtue of Property 1 (mentioned in Sect. 2), 7-byte difference in ΔY4 yields a single
byte difference in ΔZ4[0] with probability 1. Thus, the overall probability of the
differential from ΔP → ΔZ4 is 2−120.

In other words, we require 2120 plaintext pairs to get a right pair. Once, we
get a right pair, say (P 0, P 1), we state the following Observation 2 :

Observation 2. Given a right pair (P 0, P 1) that follows the truncated differen-
tial trail shown in Fig. 5, then the 30 parameters corresponding to P 0 mentioned
in Observation 1 can take one of at most 2128 fixed 30-byte values (out of the
total 2240 possible values) where, each of these 2128 30-byte values are defined
by each of the 2128 values of the 16 following parameters:

• ΔY1[0]
• X0

2 [3, 4, 6, 8, 9, 13, 14]
• Y 0

4 [3, 4, 6, 8, 9, 13, 14]
• ΔZ4[0]

Proof. Given a right pair (P 0, P 1), the knowledge of these 16 new parame-
ters allows us to compute all the differences shown in Fig. 4. This is so because,
knowledge of ΔY1[0] allows computation of ΔZ1[3, 4, 6, 8, 9, 13, 14] and ΔX2[3,
4, 6, 8, 9, 13, 14]. Then, if the values of X0

2 [3, 4, 6, 8, 9, 13, 14] are known,
one can compute the corresponding X1

2 [3, 4, 6, 8, 9, 13, 14], cross the SL layer
in round 2 and calculate the full state difference ΔX3. Similarly, from the bot-
tom side, knowledge of ΔZ4[0] allows computation of ΔY4[3, 4, 6, 8, 9, 13,
14]. Then, if the values of Y 0

4 [3, 4, 6, 8, 9, 13, 14] are known, one can easily deter-
mine Y 1

4 [3, 4, 6, 8, 9, 13, 14], compute the corresponding X0
4 [3, 4, 6, 8, 9, 13, 14] and

X1
4 [3, 4, 6, 8, 9, 13, 14] respectively and subsequently full state ΔY3. Then, using

the differential property of ARIA S-boxes (property 2 mentioned in Sect. 2), the
possible values of X0

3 and X1
3 can be computed. 	


Thus, the knowledge of these 16 bytes given in Observation 2 allows com-
putation of the corresponding 30 parameters described in Observation 1. Hence,
total possible values of these 30 single byte parameters are at most 216×8 = 2128.
Moreover, since these computations do not require the knowledge of key bytes,
they can be easily precomputed.

Using Observations 1 and 2, we state the following third Observation 3 :

Observation 3. Given (M0, M1, . . ., M255) and f
$←− F and U

$←− {0, 1}120,
such that M0 || U and M j || U , (where, j ∈ {0, 1, . . . , 255}) is a right pair
1 Random differences in 16-bytes of ΔY3 yield random differences in the 7 active bytes

of ΔX4 which in turn lead to random differences in the active bytes of ΔY4. The prob-
ability that these random differences in the 7-bytes of ΔY4 are equal is 2−48.
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that follows differential trail shown in Fig. 5, then at most 2128 multisets v are
possible at Z4[0].

Proof. From Observation 1, we know that each 30-byte parameter defines one
multiset and Observation 2 restricts the possible values of these 30-byte para-
meters to 2128. Thus, at most 2128 multisets are only possible for ARIA. 	

As the number of multisets in case of 128-bit random permutation (= 2505.17) is
much higher than 4-round ARIA (= 2128), a valid distinguisher is constructed.

4 Key Recovery Attack on 7-Round ARIA-192/256

In this section, we use our Observation 3 to launch a meet-in-the-middle attack
on 7-round ARIA-192/256 to recover the key. The distinguisher is placed from
round 2 to round 5, i.e., δ-list is constructed in state X2 with byte 0 being the
active byte and multiset is checked in Z5[0] (as shown in Fig. 6). One round at
the top and two rounds at the bottom are added to the 4-round distinguisher.
The attack consists of the following two phases:

Precomputation Phase. Compute and store the 2128 possible multisets at
ΔZ5[0] in a hash table based on Observation 2.

Online Phase. If we extend the differential trail (shown in Fig. 5) by one round
backwards, such that 7-bytes (3, 4, 6, 8, 9, 13 and 14) are active in the plain-
text, then with a probability of 2−48, these 7 active bytes will induce a non-zero
difference of one byte in X2[0]. Thus, we require 2120+48 = 2168 plaintext pairs
to start our online phase. For each of these pairs, we will guess the subkey can-
didates for which the pair becomes a right pair and construct the corresponding
δ-list. The steps of the online phase are:

1. Encrypt 257 structures of 256 plaintexts each, where bytes 3, 4, 6, 8, 9, 13 and
14 take all possible values and rest of the bytes are constants.2

2. For each structure, store the ciphertexts in a hash table and look for pairs in
which the difference in bytes 0, 1, 2, 5, 7, 10, 11, 12, 15 of the ciphertext is
zero. Out of the total 2168 pairs, only 296 pairs are expected to remain.

3. For each of the remaining 296 plaintext pairs do the following:
(a) Guess 7 bytes of K8[3, 4, 6, 8, 9, 13, 14] and check whether ΔY6 has non

zero difference only in byte 0 or not. Out of the 256 possible values for
K8, only 28 key guesses are expected to remain (since with probability
2−48, each will yield equal differences in the active bytes of ΔZ6). Since
we are only interested in checking the difference at ΔY6[0], K7[0] is not
required to be guessed at this stage.

(b) Guess 7 bytes of K1[3, 4, 6, 8, 9, 13, 14] and check whether ΔZ1 has non
zero difference only in byte 0 or not. Out of the 256 possible values for
K1, only 28 key guesses are expected to remain.

(c) For each of the 28 × 28 = 216 remaining guesses of 14 active bytes of K1

and K8:
2 One structure has 256 × 255 = 2111 plaintext pairs. Therefore, 257 structures have

257+111 = 2168 plaintext pairs.
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Fig. 6. 7-round attack on ARIA-192/256. The subkey bytes derived are star marked.

– Take one of the members of the pair and find its δ-list at Z1[0] using
the knowledge of 7 active bytes of K1.3

– Get the corresponding ciphertexts of the resulting plaintext set of
the δ-list from the hash table. Guess byte K∗

7 [0] = DL−1(K7[0]) =
K7[3]⊕K7[4]⊕K7[6]⊕K7[8]⊕K7[9]⊕K7[13]⊕K7[14] and using the
knowledge of K8[3, 4, 6, 8, 9, 13, 14], partially decrypt the ciphertexts
of the δ-list to obtain the multiset at ΔZ5[0] (which is same as that
constructed in ΔX6[0]).

– Check whether this multiset exists in the precomputed table or not.
If not, then discard the corresponding key guess.

3 Encrypt the chosen right pair message to one full round using k1[3, 4, 6, 8, 9, 13, 14]
and compute Z1[0]. Xor other Z1[0] byte with 255 other values and decrypt them
back to obtain the other plaintexts.
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The probability for a wrong guess to pass the test is 2128 × 2−467.6 = 2−339.6.4

Since we try only 296+16+8 = 2120 multisets, only the right subkey should verify
the test with a probability close to 1.

Complexities. The time complexity of the precomputation phase is 2128 ×28 ×
2−1.9 = 2134.1.5 ARIA encryptions. The time complexity of the online phase
is dominated by step 3(c) which is 296 × 216 × 28 × 28 × 2−2.9 = 2125.1 ARIA
encryptions. Clearly the time complexity of this attack is dominated by the
precomputation phase. It was shown in [5] that each 256-byte multiset requires
512-bit space. Hence, the memory complexity of the attack is 2128 × 22 = 2130

128-bit ARIA Blocks. The data complexity of the attack is 2113 plaintexts.

4.1 Recovering the Actual Master Key for 7-Round ARIA-192

In the above attack, 7-bytes of subkeys K1 and 7-bytes of K8 as well as 1 byte
of K∗

7 were recovered. In order to recover the master key do the following:

1. Guess 16-bytes of W0.
(a) Using the guessed value of W0 and 7-bytes of K1 recovered in the attack,

we can deduce 56-bit of W1 from Eq. 5. It is observed that 16-bit of this
56-bit of W1 deduced, are part of 11th, 12th and 13th bytes and rest
40-bits are part of first 8 bytes.

(b) Calculate Fo(W0, CK1). We already know that for ARIA-192,
KR [8, 9,...,15] = 0. Thus, W1[8, 9, ..., 15] equals corresponding bytes of
Fo(W0, CK1) following from Eq. 2.

(c) Discard the guesses of W0 for which the common 16-bit of W1 computed
in (a) and (b) do not match. 2112 guesses of W0 are expected to remain.

2. For each of the remaining guesses of W0, guess 24-bits of W1[0, 1, ...7] other
than the 40-bits deduced in 1(a) to know the 224 possible values of W1 cor-
responding to each of W0.

3. For each remaining guesses of W0 and corresponding guesses of W1, deduce
W2 and W3 from Eqs. 3 and 4.
(a) Following Eq. 12, deduce K8 and compare its bytes 3, 4, 6, 8, 9, 13 and

14 with the values of the same 7-bytes of K8 recovered from the attack.
Discard the guesses of W0 and W1 in case of mismatch of these 7-bytes of
K8. Repeat the same process for 1-byte of K∗

7 . This is a 8-byte and 64-bit
filtering. Out of 2136, 272 guesses of W0 and W1 are expected to remain
which can be tested by brute force to obtain the correct master key.

The time complexity of the recovering process of step 3 is maximum. It is equal
to 2136× (2/7) = 2134.2 7-round ARIA encryptions as we need to compute
4 Note that the probability of randomly having a match is 2−467.6 and not 2−505.17

since the number of ordered sequences associated with a multiset is not constant [7].
5 The normalization factor of 2−1.9 is calculated by calculating the ratio of number of

S-Box operations required in the precomputation phase to the total number of S-Box
operations performed in 7-Round ARIA encryption. Similarly all other normalization
factors have been calculated.
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2 rounds of ARIA to deduce W2 and W3 and all other operations have neg-
ligible complexity as they are simple linear operations.

Therefore, the final time complexity of the attack is 2134.2 + 2134 = 2135.1.
Other complexities remain the same.

4.2 Recovering the Actual Master Key for 7-Round ARIA-256

In the above attack, 7-byte of subkey K1 and 7-byte of subkey K8 as well as
1 byte of K∗

7 were recovered. As shown in Fig. 6, we have obtained a trail such
that 1st byte is active at X2. In order to recover all 16-bytes of subkey K1, we
can repeat the attack 4 times by modifying the trail such that we get a different
byte active at X2:

– bytes 3,4,6,8,9,13,14 to obtain byte 0 active at X2

– bytes 2,5,7,8,9,12,15 to obtain byte 1 active at X2

– bytes 1,4,6,10,11,12,15 to obtain byte 2 active at X2

– bytes 0,5,7,10,11,13,14 to obtain byte 3 active at X2

The time and data complexity of the attack will become 4 times of the time and
data complexties mentioned in the 7-round attack in Sect. 4 respectively. Then
we do the following to recover the master key:

1. Guess 16-bytes of W0

2. For each guess of W0, using the value of K1 recovered from the attack, we
obtain W1 from Eq. 2. Then we follow the step 3 as mentioned in Sect. 4.1.

The time complexity of recovering the master key is 2128× (2/7) = 2126.2 7-round
ARIA encryptions.

Therefore, the final time complexity of the attack is (4×2134) + 2126.2 = 2136.
The data complexity of the attack becomes 2115 while the memory complexity
remains same.

5 Key Recovery Attack on 8-Round ARIA-256

In this section, we describe our meet-in-the-middle attack on 8-round ARIA-256.

5.1 Construction of 4.5-Round Distinguisher

For the 8-round attack, the distinguisher constructed in Fig. 4 is extended by
half round forwards upto Y5 (DL operation is omitted). The distinguisher for
8-round attack is shown in Appendix A. Similar to Observation 1, we state the
following Observation 4 :

Observation 4. Given (M0, M1, . . ., M255) and f
$←− F and U

$←− {0, 1}120,
where, f represents 4.5 rounds of ARIA, the multiset v ={Y 0

5 [0] ⊕ Y 0
5 [0], Y 0

5 [0] ⊕
Y 1
5 [0],....., Y 0

5 [0] ⊕ Y 255
5 [0]} is determined by the following 31 1-byte parameters:



Improved Meet-in-the-Middle Attacks 213

• X0
2 [3, 4, 6, 8, 9, 13, 14]

• X0
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] (full 16-byte state)

• X0
4 [3, 4, 6, 8, 9, 13, 14]

• X0
5 [0]

The number of possible multisets is 231×8 = 2248. The proof for this is similar
to that described for Observation 1 in Sect. 3.

Number of Admissible Multisets. The differential trail shown in Fig. 5 can
be extended 0.5 round forwards to ΔY5 in which only byte 0 is active with
probability 1, i.e., the probability of differential trail: ΔP → ΔY5 remains 2−120.
Then, similar to Observation 2, we state the following Observation 5.

Observation 5. Given a right pair (P 0, P 1) that follows the truncated differen-
tial trail (ΔP → ΔY5), then the 31 parameters corresponding to P 0 mentioned
in Observation 4 can take one of at most 2136 fixed 31-byte values (out of the
total 2248 possible values) where, each of these 2136 31-byte values are defined
by each of the 2136 values of the 17 following parameters:

• ΔY1[0]
• X0

2 [3, 4, 6, 8, 9, 13, 14]
• Y 0

4 [3, 4, 6, 8, 9, 13, 14]
• ΔZ4[0]
• X0

5 [0]

The proof of this Observation is similar to the proof of Observation 2 described
in Sect. 3. From, Observations 4 and 5, we can say that the total number of admis-
sible multisets is 217×8 = 2136.

5.2 Key Recovery Attack

In this section, we discuss our 8-round attack. The distinguisher is placed from
round 2 to round 5.5, i.e., δ-list is constructed in state X2 with byte 0 being the
active byte and multiset is checked in Y6[0] (as shown in Fig. 7). One round at
the top and three rounds at the bottom are added to the 4.5-round distinguisher.
The attack consists of the following two phases:

Precomputation Phase. Compute and store the 2136 possible multisets at
ΔY6[0] in a hash table based on Observation 5.

Online Phase. The steps of the online phase are:

1. Encrypt 257 structures of 256 plaintexts each, where bytes 3, 4, 6, 8, 9, 13
and 14 take all possible values and rest of the bytes are constants. Store the
ciphertexts in a hash table.

2. For each of the 2168 plaintext pairs do the following:
(a) For each 28 guesses of ΔZ1 [0], resolve input-output differences at SL

layer of round 1 (using Property 2 ) and deduce the corresponding value
of K1[3, 4, 6, 8, 9, 13, 14].
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(b) For each 28 × 256 = 264 guesses of ΔY6[0] and ΔY7 [3, 4, 6, 8, 9, 13,
14], resolve input-output differences at SL layers in round 7 and round 8
respectively and deduce corresponding K∗

8 [3, 4, 6, 8, 9, 13, 14] and full
subkey K9.

(c) For each of the 264+8 = 272 guesses of 30 bytes of K1, K∗
8 and K9:

– Take one of the members of the pair and find its δ-list using the
knowledge of 7 active bytes of K1.

– Get the corresponding ciphertexts of the resulting plaintext set of the
δ-list from the hash table. Using the knowledge of K9 and K∗

8 [3, 4, 6,

Fig. 7. 8-round attack on ARIA-256. The subkey bytes derived are star marked.
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8, 9, 13, 14], partially decrypt the ciphertexts of the δ-list to compute
the multiset at ΔY6[0].

– Check whether this multiset exists in the precomputed table or not.
If not, then discard the corresponding key guess.

The probability for a wrong guess to pass the test is 2136 × 2−467.6 = 2−331.6.
Since, we try only 2168+72 = 2240 multisets, only the right subkey should verify
the test with a probability close to 1.

Complexities. The time complexity of the precomputation phase is 2136 ×
28 × 2−2 = 2142 ARIA encryptions. The time complexity of the online phase is
dominated by step 2(c) which is 2168×272×28×2−2.1 = 2245.9 ARIA encryptions.
Clearly the time complexity of this attack is dominated by the online phase. The
memory complexity of the attack is 2136 × 22 = 2138 128-bit ARIA Blocks. The
data complexity of the attack is 2113 plaintexts.

5.3 Recovering the Actual Master Key

In the above attack, 7-bytes of subkeys k1 and k8 as well as full subkey k9 were
recovered. Once these bytes are known, the remaining bytes in k1 and k8 can
be found by exhaustive search without affecting the overall complexity of the 8-
round attack. When full subkeys k1 and k9 are known then the master key K can
be recovered as follows. Since, Eqs. 5 and 6 are two equations in two variables,
they can be solved through standard matrix method by constructing a (256 ×
256) binary matrix. We found the rank of this matrix to be 240 suggesting 216

solutions for the tuple (W0 and W1). Once, values of W0 and W1 are known,
KL and KR can be obtained through Eqs. 1 and 2 respectively. Thus, we get 216

solutions for the master key K. Then through brute-force, the original key can
be easily recovered.

6 Conclusions

In this work, we explore the space of multiset attacks as applied to key recovery
attack on ARIA-192 and ARIA-256. We improve the previous 7-round and 8-
round attacks on these structures and show the best attacks on them. We achieve
these results by constructing a new 4-round distinguisher on ARIA and applying
MITM attacks on the rest of the rounds. We also show recovery of the actual
master key through our 8-round attack on ARIA-256. To our best knowledge, this
is the first attempt in this direction. Currently, the number of attacked rounds
remains 8 and it would be an interesting problem to try applying multiset attacks
to break more rounds of ARIA.
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4. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

5. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

6. Du, C., Chen, J.: Impossible differential cryptanalysis of ARIA reduced to 7
Rounds. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol.
6467, pp. 20–30. Springer, Heidelberg (2010)

7. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. J. Cryptology 28(3), 397–422 (2015)

8. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: New boomerang attacks on
ARIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp.
163–175. Springer, Heidelberg (2010)

9. Korean Agency for Technology and Standards. 128 bit block encryption algorithm
ARIA - Part 1: General (in Korean). KS X 1213-1:2009, December 2009

10. Kim, W.-H., Lee, J., Park, J.-H., Kwon, D.: Addition of the ARIA Cipher Suites
to Transport Layer Security (TLS). RFC 6209, April 2011. https://tools.ietf.org/
html/rfc6209

11. Kwon, D., Kim, J., Lee, J., Lee, J., Kim, C.: A Description of the ARIA Encryption
Algorithm. RFC 5794, March 2010. https://tools.ietf.org/html/rfc5794

12. Kwon, D., et al.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC
2003. LNCS, vol. 2971. Springer, Heidelberg (2004)

13. RSA Laboratories. Additional PKCS #11 Mechanisms. PKCS #11 v2.20 Amend-
ment 3 Revision 1, January 2007

14. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
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A 4.5 Round Distinguisher on ARIA-256

In Fig. 8, we show the 4.5 round distinguisher require for the 8-round attack on
ARIA-256 demonstrated in Sect. 5.
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Abstract. The generalized Feistel structure (GFS) is the variant of Feis-
tel structure with m > 2 branches. While the GFS is widely used, the
security is not well studied. In this paper, we propose a generic algorithm
for searching integral distinguishers. By applying the algorithm, we prove
that the low bound for the length of integral distinguishers is m2 +m−1
and 2m+1 for Type-1 GFS and Type-2 GFS, respectively. Meanwhile, we
evaluate the security of the improved Type-1 and Type-2 GFSs when the
size of each branch and the algebraic degree of F -functions are specified.
Our results show that the distinguishers are affected by the parameters
to various levels, which will provide valuable reference for designing GFS
ciphers. Although our search algorithm is generic, it can improve inte-
gral distinguishers for specific ciphers. For instance, it constructs several
16-round integral distinguishers for LBlock and TWINE, which directly
extends the numbers of attacked rounds.

Keywords: Generalized Feistel structure · Integral distinguisher ·
Algebraic degree · Division property · LBlock · TWINE

1 Introduction

Feistel structure is a basic symmetric cryptographic primitive, which provides
many superior design features, for example, both the encryption and decryption
algorithms can be achieved with a single scheme and the round function can
be non-bijective. The generalized Feistel structure (GFS) introduced by Nyberg
[4] is the variant of Feistel structure with m > 2 branches. Many GFSs exist
in the literature so far. The most popular versions are Type-1 as in CAST-
256 [1] and Type-2 as in CLEFIA [6]. They inherit the superior features from
Feistel structure, moreover, have advantages of high parallelism, simple design
and suitability for low cost implementation. Recently, lightweight cryptography
has become a hot topic. Thus the GFS is an attractive structure for a lightweight
symmetric key primitive such as a block cipher or a hash function.
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A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 218–237, 2015.
DOI: 10.1007/978-3-319-26617-6 12



Structural Evaluation for Generalized Feistel Structures and Applications 219

In 2010, Suzaki et al. introduced the improved Type-2 GFS by replacing the
cycle shift in Type-2 GFS with the optimal permutation [7]. More precisely, they
proposed the maximum diffusion round (DR) which is the minimum number of
rounds such that every output nibble depends on every input nibble. And then
they found that the cycle shift does not provide optimum DR when m ≥ 6.
Hence, they exhaustively searched all the optimum permutations for m ≤ 16,
and gave a generic construction whose DR is close to the lower bound when m
is a power of 2. In [12], Yanagihara and Iwata did the similar work for Type-
1 GFS. They showed that better DR can also be obtained if one uses other
permutations, moreover, an generic construction of optimum permutations for
arbitrary m was devised. As shown in [5,7,12], the improved GFS has more
secure than the standard GFS.

Integral attack was firstly proposed by Daemen et al. to evaluate the secu-
rity of Square cipher [2], and then it was unified by Knudsen and Wagner in
FSE 2002 [3]. The crucial part is the construction of the integral distinguisher,
i.e., choosing a set of plaintexts such that the states after several rounds have a
certain property, e.g., the XOR-sum of all states equals to 0 with probability 1.
This property is called balanced in the following. The integral attack tends to
be one of bottlenecks for the security of the GFS as shown in [5]. [7,12] evalu-
ated the security of Type-1, Type-2 and their improved versions against integral
attack. Their results show there exist m2- and 2m- round integral distinguishers
for Type-1 GFS and Type-2 GFS, respectively. 2DR- or (2DR−1)-round integral
distinguishers exist for the improved Type-2 GFS. However, the specific proper-
ties of the F -functions are not utilized in the evaluations, and F -functions are
restricted to be bijective.

In EUROCRYPT 2015 [10], Todo proposed a new notion, named division
property, which is a generalized integral property. Based on the division property,
he introduced a path search algorithm to derive the integral distinguishers for
Feistel or SPN ciphers. The algorithm has several desirable features, such as,
it can take advantage of the algebraic degree of the F -functions, and it can
effectively construct the integral distinguisher even though the F -functions are
non-bijective. Therefore, generalizing and applying the algorithm to the GFS
will be very meaningful.

Our Contributions. In this paper, we evaluate the security of the GFS against
integral attack. We first study the propagation characteristic of the division
property for the GFS. Due to the rapid expansion of the vectors in the divi-
sion property, it is difficult to directly trace the propagation when m ≥ 14
even if we perform it by computer. Therefore, a technique named early reduce
technique is devised to simplify the procedure, which works by detecting and dis-
carding “useless” vectors. Then we propose a generic algorithm of constructing
integral distinguishers. By using our algorithm, we prove that integral distin-
guishers for Type-1 GFS and Type-2 GFS with bijective F -functions can be
extended by m − 1 and 1 rounds, respectively. And we show (m2 + m − 2)- and
2m- round distinguishers exist even though the F -functions are non-bijective.



220 H. Zhang and W. Wu

For the improved GFS, our results indicate that distinguishers vary with several
parameters, such as the number of branches, size of each branch, algebraic degree
of F -functions, permutation layer and whether F -functions are bijective or not,
which is not reflected from previous analysis. Hence, our results can provide
valuable reference for designing GFS ciphers.

Although our search algorithm is generic, it can improve integral distinguish-
ers for specific ciphers. We construct for the first time several 16-round integral
distinguishers for LBlock and TWINE. The integral attacks can thus be applied
to 23-round LBlock, 23-round TWINE-80 and 24-round TWINE-128.

Paper Outline. Section 2 describes the GFS we focus in this paper and gives
a brief review on the division property. The path search algorithm and the
improved integral distinguishers for the GFS are shown in Sect. 3. In Sect. 4,
we apply the improvements to the integral attacks against LBlock and TWINE.
Finally, we conclude this paper in Sect. 5.

2 Preliminaries

In this section, we introduce the generalized Feistel structure and review the
definition of the division property.

2.1 Generalized Feistel Structure

A GFS divides its input into m > 2 branches of n bits each, where n is defined
as the branch size. The round function can be separated into two successive
layers, as done in [7], a F -function layer and a permutation layer. The F -function
layer is made of F -functions whose inputs are some of the branches and whose
outputs are added to the other branches. The permutation layer is a shuffle of
m branches. In this paper, we focus on the generalized Type-1 GFS and the
generalized Type-2 GFS as shown in Fig. 1. Note that they are Type-1 and
Type-2 GFS, respectively, when the permutation is the left cycle shift.

Fig. 1. Generalized Type-1 (left) and Type-2 (right) GFS

For convenience, we assume all F -functions are with algebraic degree d and
d < n, which is reasonable for applicable ciphers. Let P = {p0, p1, · · · , pm−1}
denote the permutation layer moving i-th branch of the input to pi-th branch
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(we number the branches from left to right, starting with 0 for the left-most
branch), for example P = {3, 0, 1, 2} for Type-1 GFS with 4 branches. Then, a
GFS with parameters n,m,d and P can be defined as [n,m, d, P ]-GFS.

2.2 Division Property

Some notations are first described for clarity. We use ⊕ and + to distinct the
XOR of Fn

2 and the addition of Z, and accordingly,
⊕

and
∑

represents XOR
sum and addition sum, respectively. Denote the hamming weight of u ∈ F

n
2 by

w(u) which is calculated as

w(u) =
∑

0≤i≤n−1

u[i],

where u[i] is the i-th bit. Furthermore, denote the vectorial hamming weight
of U = (u0, · · · , um−1) ∈ (Fn

2 )m, (w(u0), · · · , w(um−1)), by W (U). Let K =
(k0, · · · , km−1) and K ′ = (k′

0, · · · , k′
m−1) be the vectors in Z

m. We define K � K ′

if ki ≥ k′
i for 0 ≤ i ≤ m − 1, otherwise, K �� K ′.

Subset S
n,m
K . Let Sn,m

K be a subset of (Fn
2 )m for any vector K = (k0, · · · , km−1),

where 0 ≤ ki ≤ n. The subset S
n,m
K is composed of all U ∈ (Fn

2 )m satisfying
W (U) � K, i.e.,

S
n,m
K = {U ∈ (Fn

2 )m|W (U) � K}.

Bit Product Functions πu and πU . Let πu : F
n
2 → F2 be a function for

u ∈ F
n
2 . For any x ∈ F

n
2 , πu(x) is the AND of x[i] for i satisfying u[i] = 1.

Namely, the bit product function πu is defined as

πu(x) =
∏

u[i]=1

x[i].

Let πU : (Fn
2 )m → F2 be a function for U = (u0, u1, · · · , um−1) ∈ (Fn

2 )m. For
any X = (x0, x1, · · · , xm−1) ∈ (Fn

2 )m , πU (X) is calculated as

πU (X) =
m−1∏

i=0

πui
(xi).

Definition 1 (Division Property). [10] Let Λ be a multi-set whose elements
take values in (Fn

2 )m, and K(j) (0 ≤ j ≤ q − 1) are m-dimensional vectors
whose elements take a value between 0 and n. When the multi-set Λ has the divi-
sion property Dn,m

K(0),K(1),··· ,K(q−1) , it fulfils the following conditions: the check-
sum,

⊕

X∈Λ

πU (X), equals to 0 if U ∈ {V ∈ (Fn
2 )m|W (V ) �� K(0), · · · ,W (V ) ��

K(q−1)}. Moreover, the checksum becomes unknown if there exist i satisfying
W (U) � K(i).
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Fig. 2. Division Property D4,2
(0,3),(1,2),(2,3),(3,1)

We call U in the bit product function πU as the mask, then view the division
property from a vivid perspective as: it divides the set of all masks (i.e., (Fn

2 )m)
into two subsets, Γ? and Γ0, where Γ? is the subset whose element results in an
unknown checksum and Γ0 is the subset whose element results in the zero-sum.
Specifically, it has Γ? = S

n,m
K(0) ∪ · · · ∪ S

n,m
K(q−1) and Γ0=(Fn

2 )m\Γ?. Taking
D4,2

(0,3),(1,2),(2,3),(3,1) for an example, Γ? consists of all (u0, u1) located in the shadow

area of Fig. 2. Note that this division property equals to D4,2
(0,3),(1,2),(3,1), because

they lead to the same division.
The division property is useful to construct integral distinguishers. The basic

idea is that we choose a set of plaintexts satisfying certain division property and
trace its propagation through r+1 encryption rounds until it has Γ0\{(0m)n} =
φ. Since the cipher reduced to r rounds can be distinguished from a random
permutation according to the checksum, a r-round integral distinguisher is thus
constructed.

3 Improved Integral Distinguishers for GFS

In this section, we first study the propagation characteristic of the division prop-
erty and construct an algorithm of searching integral distinguishers for the GFS.
Meanwhile, a technique is proposed to optimize the program for wider applica-
tions. Finally, we apply the algorithm to evaluate the security of the GFS against
integral attack.

3.1 Propagation Characteristic of the Division Property

The F -function layer of Type-2 GFS can be divided into three successive oper-
ations: “Type-2 copy”, “Type-2 substitution” and “Type-2 compression” as
depicted on Fig. 3, that is similar to [10] done for Feistel structure. We describe
the propagation characteristics for these operations in Proposition 2–4 whose
proofs are shown in AppendixA.

Proposition 1 (Type-2 Copy). Let G : (Fn
2 )m → (Fn

2 )3m/2 be the Type-2
copy, which accepts (x0, · · · , xm−1) and produces (y0, · · · , y3m/2−1) as (x0, x0, x1,
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Fig. 3. Equivalent operations for GFS

· · · , xm−2, xm−2, xm−1). If a multi-set of the inputs has division property Dn,m
K ,

then the multi-set of the outputs has division property Dn,3m/2

K(0),··· ,K(q−1) , where
{K(0), · · · ,K(q−1)} is calculated as

{(i0, (k0−i0), k1, · · · , im/2−1, (km−2−im/2−1), km−1)|0 ≤ ij ≤ k2j , 0 ≤ j < m/2}.

Proposition 2 (Type-2 Substitution). Let G be the Type-2 substitution,
which accepts (y0, · · · , y3m/2−1) ∈ (Fn

2 )m and produces (z0, · · · , z3m/2−1) ∈ (Fn
2 )m

as (y0, F0(y1), y2, · · · , y3m/2−3, Fm/2−1(y3m/2−2), y3m/2−1). If a multi-set of the
inputs has division property Dn,3m/2

K(0),··· ,K(q−1) , then the multi-set of the outputs has

division property Dn,3m/2

K′(0),··· ,K′(q−1) , where

K ′(j) =
(
k
(j)
0 ,

⌈
k
(j)
1 /d

⌉
, k

(j)
2 , · · · , k

(j)
3m/2−3,

⌈
k
(j)
3m/2−2/d

⌉
, k

(j)
3m/2−1

)
.

Moreover, when the F -functions are bijective, we view 	n/d
 as n.

Proposition 3 (Type-2 Compression). Let G : (Fn
2 )3m/2 → (Fn

2 )m be
the Type-2 compression, which accepts (z0, · · · , z3m/2−1) and produces (x′

0, · · · ,
x′

m−1) as (z0, (z1 ⊕ z2), · · · , z3m/2−3, (z3m/2−2 ⊕ z3m/2−1)). If a multi-set of the
inputs has division property Dn,3m/2

K(0),··· ,K(q−1) , then the multi-set of the outputs has
division property Dn,m

K′(0),··· ,K′(q−1) , where

K ′(j) = (k(j)
0 , (k(j)

1 + k
(j)
2 ), · · · , k

(j)
3m/2−3, (k

(j)
3m/2−2 + k

(j)
3m/2−1)).

Following Proposition 2–4, the propagation characteristic for Type-2 GFS is
easily achieved. For simplicity, we write the division property Dn,m

K(0),··· ,K(q−1) as
a set of vectors, {K(0), · · · ,K(q−1)}.
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Theorem 1. For [n,m, d, P ]-Type-2 GFS, if a multi-set of its inputs has division
property Dn,m

K , then the multi-set of the outputs from one encryption round has
division property {σ(i0, 	(k0 − i0)/d
 + k1, · · · , im/2−1,

⌈
(km−2 − im/2−1)/d

⌉
+

km−1)|0 ≤ ij ≤ k2j , 0 ≤ j < m/2}, where σ moves i-th component of the input to
pi-th component.

In the similar manner, we get the propagation characteristic for Type-1 GFS.

Theorem 2. For [n,m, d, P ]-Type-1 GFS, if a multi-set of its inputs has divi-
sion property Dn,m

K , then the multi-set of the outputs from one encryption round
has division property {σ(i, 	(k0 − i)/d
 + k1, k2, k3, · · · , km−1) | 0 ≤ i ≤ k0},
where σ moves i-th component of the input to pi-th component.

3.2 Path Search Algorithm for GFS

The most troublesome problem for the propagation of division property is the
rapid expansion of the vectors, which makes the procedure time-consuming and
costing mass memory. Therefore, we devise a technique to discard “useless”
vectors early. After that, we propose the path search algorithm.

EarlyReduceTechnique. This technique is based on the following observation:

Observation 1. Let K and K ′ be two vectors which respectively propagates
to {K(0), · · · K(q−1)} and {K ′(0), · · · K ′(q′−1)} through the round function. If
there exists a vector, K ′(j) ∈ {K ′(0), · · · K ′(q′−1)}, such that K(i)�K ′(j) for each
K(i) ∈ {K(0), · · · K(q−1)}, Ω ∪ {K,K ′} and Ω ∪ {K ′} propagate to the same
division property for any vector set Ω.

Note that K � K ′ certainly satisfies with the condition, however, not limi-
tation to it. An example is K = (1,3), K ′ = (4,0) for [4,2,3,{1,0}]-Type-2 GFS
with the bijective F -function, which is actually Feistel structure. K propagates
to {(4,0),(3,1)}, while K ′ propagates to {(4,0),(1,1),(0,4)}. It has (4,0)�(4,0) and
(3,1)�(1,1), therefore, {(1,3),(0,4)} and {(0,4)} propagate to the same division
property as depicted on Fig. 4.

The early reduce technique discards vector K if there exist K ′ ∈ Ω satisfying
Observation 1. It can amazingly reduce the division property, meanwhile, it does
not change the division property achieved through one round function. To show
the effectiveness, we compare the numbers of vectors before and after applying
the technique to TWINE in Table 1.

Table 1. Comparison of the numbers of vectors

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Num.
Before 1 2 3 5 11 31 184 1967 22731 113440 124827 42756 7072 952 164 44

After 1 2 3 5 10 30 110 841 3709 10560 8976 2139 415 71 36 8



Structural Evaluation for Generalized Feistel Structures and Applications 225

Fig. 4. An Example for early reduce technique

Path Search Algorithm. We then devise a generic algorithm of constructing
integral distinguishers for the GFS, which is described in Algorithm1. Round-
Prop propagates the division property through the round function by Theorem 1
(or 2). TermCondition judges whether the division property satisfies the terminal
condition: if

1 < max
0≤j≤q−1

{
∑

0≤i≤m−1

kj
i },

it returns true, otherwise, returns false. AddDivision adds vectors, Ki
0, · · · Ki

qi−1,
to the vector set, Ω, and updates p which denotes the number of vectors in Ω.
SizeReduce discards the vector K ∈ Ω if there exists vector K ′ ∈ Ω satisfying
K � K ′, meanwhile, updates the value of p. EarlyReduce further reduces Ω by
using the early reduce technique.

For Type-2 GFS, EarlyReduce is implemented as follows: we first create a list
saving all vectors K = (k0, k1) for each K ′ = (k′

0, k
′
1), which satisfies that there

exists a vector K ′(j′) ∈ {(i, 	(k′
0 − i)/d
+ k′

1)|0 ≤ i ≤ k′
0} such that K(j)�K ′(j′)

for each K(j) ∈ {(i, 	(k0 − i)/d
 + k1)|0 ≤ i ≤ k0}. Then, if (k2i, k2i+1) locals
in the list of (k′

2i, k
′
2i+1) for 0 ≤ i < m/2, we discard K = (k0 · · · km−1) when

K ′ = (k′
0 · · · k′

m−1) is in the vector set Ω. Notice that, the function may change
the result of TermCondition, therefore, we need to set a threshold to decide
whether it will be performed. We suggest the threshold to be 20000 for n =
4,m = 16.

3.3 Improved Integral Distinguishers for GFS

We evaluate the security of [n,m,d,P ]-Type-2 GFS and [n,m,d,P ]-Type-1 GFS
against integral attack by Algorithm1. A low bound of the length of distinguishers
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Algorithm 1. Path search algorithm for the GFS
Input: Parameters n, m, d, P of the GFS and division property of the plaintext set
K = (k0, k1, · · · , km−1).
Output: The number of rounds of the integral distinguisher.
0 ⇒ r
RoundProp(n, m, d, P, K) ⇒ {K0, K1, · · · Kq−1}
while TermCondition({K0, K1, · · · Kq−1}) do

r + 1 ⇒ r
∅ ⇒ Ω, 0 ⇒ p
for i = 0 to q − 1 do

RoundProp(n, m, d, P, Ki) ⇒ {Ki
0, K

i
1, · · · Ki

qi−1}
AddDivision({Ki

0, K
i
1, · · · Ki

qi−1}) ⇒ (Ω, p)
SizeReduce(Ω) ⇒ (Ω, p)
if threshold ≤ p then

EarlyReduce(Ω) ⇒ (Ω, p)
end if

end for
p ⇒ q, Ω ⇒ {K0, K1, · · · Kq−1}

end while
return r

for Type-2 (or Type-1) GFS is first given, and then the lengths of the distinguishers
for improved Type-2 (or Type-1) GFSs are specified.

Results on [n, m, d, P ]-Type-2 GFS. We prove the following conclusion
for Type-2 GFS.

Theorem 3. For Type-2 GFS with m ≤ 16 branches of size n, there always
exist the integral distinguishers with at least 2m + 1 rounds when F -functions
are bijective, moreover, there exist the integral distinguishers with at least 2m
rounds when F -functions are non-bijective.

Proof. For simplicity, we prove the case when Type-2 GFS with m = 4 branches
and bijective F -functions. The general case follows by a similar manner. Firstly,
assume the degree of F -functions to be n−1 and n ≥ 4. We start with the division
property K = {(n−1, n, n, n)} and trace its propagation by Algorithm1, as shown
in Table 2. Since the division property after 10 rounds will be {(0,0,0,1),(0,0,1,0),
(0,1,0,0),(1,0,0,0)}, which reaches the terminal condition, integral distinguishers
with 9 rounds are proved to be existed. Then, in the same way, we can prove the
existence of 10-round distinguishers for n = 3. Due to the fact that the lower
degree of F -functions, the longer distinguishers achieved by our path search algo-
rithm, the results are actually low bounds.

For improved Type-2 GFSs, the shuffles do not show the regularity as the
cycle shift, which leads to the absence of a similar conclusion. However, we
search the integral distinguishers for each most common parameter. The results
are summarized in Table 3 (m ≤8) and Table 6 (8< m ≤16, in AppendixC).
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Table 2. Propagation of division property for Type-2 GFS.

Round Division property

0 {(n-1,n,n,n)}
1 {(n,n,n,n-1)}
2 {(n,1,n,n),(n,n,n-1,n)}
3 {(2,n,n,1),(1,n,n,n),(n,n-1,n,n)}
4 {(n,1,2,2),(n,n,1,2),(n,n,n,1),(n-1,n,n,n)}
5 {(2,0,3,1),(2,2,2,1),(1,0,3,n),(1,2,2,n),(n,1,2,n),(n,n,1,n)}
6 {(1,0,2,0),(1,3,1,0),(0,0,2,2),(0,3,1,2),(3,2,1,0),(2,2,1,2),(0,3,n,1)}
7 {(1,0,1,0),(1,2,0,0),(0,0,1,1),(0,2,0,1),(0,0,3,0),(0,2,2,0),(3,1,0,0),(2,1,0,3)}
8 {(1,1,0,0),(0,1,0,1),(0,0,1,0),(0,3,0,0),(2,0,0,0),(1,0,0,3)}
9 {(0,0,1,0),(0,1,0,0),(1,0,0,0),(0,0,0,2)}

Table 3. Integral distinguishers for improved type-2 GFS

m Type P DR

IND for [n,m,d,P ]-Type-2 GFS
IND [7]

[n, d]=[4,3] [n, d]=[8,7] [n, d]=[16,3] [n, d]=[32,7]

bij bij nbij bij nbij bij nbij bij nbij

6 No. 1 {3, 0, 1, 4, 5, 2} 5 10 11 10 11 10 12 12 11 10

8 No. 1 {3, 0, 1, 4, 7, 2, 5, 6} 6 11 13 13 12 12 15 15 13 13

No. 2 {3, 0, 7, 4, 5, 6, 1, 2} 6 11 13 12 12 12 13 13 12 12

Compared with the integral distinguishers in [7], our results extend the length
of distinguishers by at least one round when the F -functions are bijective. More-
over, the distinguishers on Type-2 GFSs with non-bijective F -functions are con-
structed for the first time. Our results also indicate that the security of struc-
tures is sensitive to the parameters for different degrees. For example, No. 1 and
No. 2 structures with m = 8 have the same length of distinguishers when n=4,
d=3 and F -functions are bijective, however, No. 1 has longer distinguishers than
No. 2 when n=16, d=3 and F -functions are bijective. This difference may help
designers choosing the suitable structure to gain more security.

Results on [n, m, d, P ]-Type-1 GFS. Similar to the proof of Theorem 3,
we get the conclusion for Type-1 GFS.

Theorem 4. For Type-1 GFS with m ≤ 16 branches of size n, there always exist
the integral distinguishers with at least m2 +m− 1 rounds when F -functions are
bijective, moreover, there exist the integral distinguishers with at least m2+m−2
rounds when F -functions are non-bijective.

We also search the integral distinguishers for improved Type-1 GFSs. The
results are summarized in Table 4 (m ≤ 8) and Table 5 (8 < m ≤ 16, in
AppendixB). An interesting observation is that our integral distinguishers have
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the same length with impossible differential distinguishers in [12] for all improved
Type-1 GFSs when [n, d] =[4, 3] or [8, 7]. Besides, the value of DR for the same
m does not affect the length of integral distinguishers when the F -function is
bijective.

Table 4. Integral distinguishers for improved Type-1 GFS

IND for [n,m,d,P ]-Type-1 GFS

m P DR ID
IND [12]

[n, d]=[4,3] [n, d]=[8,7] [n, d]=[16,3]

bij bij nbij bij nbij bij nbij.

4 {2, 0, 3, 1} 10 19 16 19 18 19 18 23 23

5
{2, 0, 3, 4, 1} 17 29 25 29 28 29 28 34 34

{2, 3, 1, 4, 0} 14 29 21 29 27 29 27 32 32

6 {2, 0, 3, 4, 5, 1} 26 41 36 41 40 41 40 47 47

7
{2, 0, 3, 4, 5, 6, 1} 37 55 49 55 54 55 54 62 62

{2, 3, 4, 5, 1, 6, 0} 27 55 37 55 52 55 52 59 59

8
{2, 0, 3, 4, 5, 6, 7, 1} 50 71 64 71 70 71 70 79 79

{2, 3, 4, 5, 1, 6, 7, 0} 38 71 50 71 68 71 68 77 77

4 Applications to LBlock and TWINE

Although our search algorithm is generic, it can improve integral distinguishers
for specific ciphers. We construct several 16-round integral distinguishers for
LBlock and TWINE, which directly leads to the extension of the numbers of
attacked rounds for integral attack.

4.1 Integral Attack on LBlock

LBlock is a 32-round lightweight block cipher with 64-bit block and 80-bit master
key. It adopts a Feistel structure with a twist: an 8-bit rotation is performed
on the branch being XOR with the output of the Feistel function. The Feistel
function is made of a key addition, a S-box layer and a nibble permutation.
We denote Xi

L||Xi
R the internal state which is the input to the i-th round (or

the output from (i − 1)-th round), and further describe 8 nibbles inside of Xi
L

and Xi
R as Xi

L = Xi
L[0]||Xi

L[1] · · · ||Xi
L[7] and Xi

R = Xi
R[0]||Xi

R[1] · · · ||Xi
R[7],

respectively. A plaintext is load into the state X0
L||X0

R which is then processed
as Fig. 5 (left), and finally, X32

L ||X32
R is produced as the ciphertext.

Keyschedule. The keyschedule generates 32 round keys from the master key.
Firstly, the master key is loaded to a key register, denoted by K = k79k78 · · · k1k0.
After that, extract leftmost 32 bits of current content of the register as round
key K0. And then update the key register as follow:
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1. K <<< 29
2. [k79k78k77k76] = S9[k79k78k77k76], [k75k74k73k72] = S8[k75k74k73k72]
3. [k50k49k48k47k46] ⊕ [i]2
4. Output the left most 32 bits of the register as round key Ki

where S8 and S9 are 4-bit S-boxes, and [i]2 is the binary form of i for 1 ≤ i ≤ 31.

Fig. 5. LBlock (left) and the equivalent representation (right)

Improved Integral Distinguishers. As shown in Fig. 5, LBlock is equal to a
[4, 16, 3, {9, 4, 13, 0, 3, 6, 7, 2, 1, 12, 5, 8, 11, 14, 15, 10}]-Type-2 GFS cipher, except
a shuffle and its inverse is applied to the plaintext and the ciphertext, respec-
tively, where the shuffle Pin is {0, 2, 4, 6, 8, 10, 12, 14, 9, 13, 3, 7, 1, 5, 11, 15}. There-
fore, we construct several 16-round integral distinguishers for LBlock by
Algorithm 1, which improves the 15-round distinguisher proposed by designers
in [11]. For example, choosing a set of 263 plaintexts which are constant at one
bit and are active at other 63 bits, then the state X16

R is balanced.

Key Recovery. Appending 7 rounds to the integral distinguisher, we can attack
23-round LBlock with 276 encryption, 263 chosen plaintexts and 267 bytes mem-
ory, which improved the previous best integral attack by one more round. We
first give a high-level description of the key recovery.

1. Query 263 plaintexts which are constant at one bit and are active at other
bits.

2. Compute
⊕

(S(X16
L [0] ⊕ K16[0])) by guessing 60-bit key.
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3. Compute
⊕

(X17
L [2]) by guessing 40-bit key independently.

4. Find matches between two results, and get corresponding 74-bit key as key
candidates.

5. For 270 key candidates, we exhaustively search remaining 6-bit key to recover
the master key.

Details of Step 2 is given in AppendixD. We obtain a list with 260 entries
which contains 64-bit information:

⊕
(S(X16

L [0]⊕K16[0])) and corresponding 60-
bit guessed key. This procedure costs 269.8 23-round encryptions. Due to the Feis-
tel structure, Step 3 costs much less time to produce a list with 240 entries, which
contains 44-bit information:

⊕
X17

L [2] and corresponding 40-bit guessed key
K22[0, 1, 4, 5, 7]||K21[0, 2]||K20[4, 5]||K21[7](0)||K20[6](2,3)||K20[7](0). In total,
78 bits key are guessed in key recovery as shown in Fig. 8, however, there exist
only 74-bit significant key information, because 4-bit guessed in K18 can be
deduced from remaining 74-bit key. Therefore, we obtain 270 key candidates
after Step 4. For 6-bit key is remained unknown as shown in Fig. 6, we guess it
and exhaustively search the right master key combining with the key candidates.

Fig. 6. Key state after key recovery

The time complexity of the attack is determined by exhaustively searching,
that is 26 × 270 = 276 23-round encryptions. The data complexity is 263 chosen
plaintexts. Besides, we need 260 × 15 × 4 × 2−3 = 261 bytes of memory to save
15 nibbles of ciphertext involved in the computation of X16

L [0].

4.2 Integral Attack on TWINE

TWINE is a Type-2 GFS block cipher with 16 branches of 4 bits each. It sup-
ports two key lengths, 80-bit and 128-bit, which we write as TWINE-80 and
TWINE-128, respectively. They only differ by the key-schedule and both have
36 rounds. The i-round of TWINE is depicted in Fig. 7, where Xi is the input
which is also expressed by Xi = Xi[0]||Xi[1] · · · ||Xi[15] and the S-box S is a
4-bit permutation with algebraic degree 3. We denote the j-th nibble of i-th
round key Ki by Ki[j] for 0 ≤ j ≤ 7.

Keyschedule. The keyschedule produces 36 round keys from the master key.
Firstly, the key register is initialized to the master key, and then the key register
are updated by a sparse GFS using only 2 S-box per updating procedure for
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Fig. 7. Round function of TWINE

TWINE-80 and 3 for TWINE-128. Finally fixed 8 nibbles are extracted from
the key register as the round key. For more details, please refer to [8].

In [8], the designers gave several 15-round integral distinguishers for TWINE.
For example, considering a set of 260 plaintexts which are constant for the left-
most nibble (indexed by 0) and are active for other nibbles, the state after 15
rounds has 4 balanced nibbles indexed by 1, 3, 13, 15. Then, they launched
the integral attack on 22-round TWINE-80 with the time, data and memory
complexity being 277 encryption, 260 chosen plaintexts and 270 bytes. The time
complexity can be further reduced to 268.4 encryption with the data complexity
increased by a factor of 4. In a similar manner, 23-round TWINE-128 can be
attacked with 2106.14 encryptions, 262.81 chosen plaintexts and 2106 bytes mem-
ory. These results are both the best integral attacks up to now.

Improved Integral Distinguishers. We discover several 16-round integral
distinguishers for TWINE by applying our path search algorithm. If we choose
263 plaintexts which are constant at any one bit and are active at other 63 bits,
the state after 16 encryption rounds is balanced for any nibble with odd index.

Key Recovery. Due to the keyschedule, 1-th nibble is the optimal choice for
the attack considering the time complexity, therefore, we can attack 23-round
TWINE-80 by following the key recovery procedure in [8] directly. Note that a
structure for our distinguisher contains 263 plaintexts instead of 260. Using one
structure, the time, data and memory complexities of the attack are thus 277

encryption, 263 chosen plaintexts and 270 bytes, respectively. Similarly, we can
attack 24-round TWINE-128 with 2124 encryption, 263 chosen plaintexts and
2106 bytes.

5 Conclusion

In this paper, we first studied the propagation characteristic of the division
property for the GFS, and then proposed a generic algorithm of searching the
integral distinguishers. Meanwhile, we devised the early reduce technique, which
is useful to optimize the time and memory complexities. By using our algorithm,
we evaluated the security of the GFS. The results show that the length of integral
distinguishers can be extended by at least m − 1 and 1 rounds for Type-1 and
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Type-2 GFS with m branches, respectively. For improved Type-1 and Type-2
GFSs, distinguishers depend on the specific parameters of the structure, such as
m, branch size, algebraic degree of F -functions, permutation layer and whether
F -functions are bijective or not. Finally, the algorithm was applied to LBlock
and TWINE. We constructed several 16-round integral distinguishers, which lead
to the integral attacks on 23-round LBlock, 23-round TWINE-80 and 24-round
TWINE-128.
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National Basic Research Program of China (No. 2013CB338002) and National Natural
Science Foundation of China (No. 61272476, No. 61232009 and No. 61202420).

A Proofs for Proposition 2-4

Proposition 2

Proof. We give the proof for the case of m = 4, which can then simply be
transferred to the general case. Denote Λ and Λ′ as the multi-set of inputs and
outputs, respectively. The checksum of Λ′ for U = (u0, · · · , u5) has

⊕

Y ∈Λ′
πU (Y )

=
⊕

X∈Λ

π(u0,...,u5)(x0, x0, x1, x2, x2, x3)

=
⊕

X∈Λ

πu0(x0) × πu1(x0) × πu2(x1) × πu3(x2) × πu4(x2) × πu5(x3)

=
⊕

X∈Λ

πu0∨u1(x0) × πu2(x1) × πu3∨u4(x2) × πu5(x3)

=
⊕

X∈Λ

π(u0∨u1,u2,u3∨u4,u5)(X)

where ∨ is OR. When (w(u0 ∨ u1), w(u2), w(u3 ∨ u4), w(u5))��K, the result is
always 0. Its sufficient condition is (w(u0)+w(u1), w(u2), w(u3)+w(u4), w(u5))
��K. Therefore, the division property of Λ′ is {(i0, k0 − i0, k1, i1, k2 − i1, k3)|0 ≤
i0 ≤ k0, 0 ≤ i1 ≤ k2}.

Proposition 3

Proof. The proposition describes a special case of Rule 1 in [9]. Readers can refer
to [9] for the details of the proof.

Proposition 4

Proof. We prove the case when m = 4. The general case follows by a similar
manner. Denote Λ and Λ′ as the multi-set of inputs and the multi-set of outputs,
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Table 5. Integral distinguishers for improved Type-1 GFS with 8 < m ≤ 16

Our IND

m P DR ID
IND [12]

[n, d]=[4, 3] [n, d]=[8, 7]

bij bij nbij bij nbij.

9
{2, 3, 1, 4, 5, 6, 7, 8, 0} 58 89 73 89 87 89 87

{2, 3, 4, 5, 6, 7, 1, 8, 0} 44 89 57 89 85 89 85

10 {2, 3, 4, 5, 1, 6, 7, 8, 9, 0} 66 109 82 109 106 109 106

11

{2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 0} 92 131 111 131 129 131 129

{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 0} 83 131 101 131 128 131 128

{2, 3, 4, 5, 6, 7, 1, 8, 9, 10, 0} 74 131 91 131 127 131 127

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 0} 65 131 81 131 126 131 126

12 {2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 0} 82 155 100 155 150 155 150

13

{2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0} 134 181 157 181 179 181 179

{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 0} 123 181 145 181 178 181 178

{2, 3, 4, 5, 6, 7, 1, 8, 9, 10, 11, 12, 0} 112 181 133 181 177 181 177

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 0} 101 181 121 181 176 181 176

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 0} 90 181 109 181 175 181 175

14
{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 0} 146 209 170 209 206 209 206

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 13, 0} 122 209 144 209 204 209 204

15

{2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0} 184 239 211 239 236 239 236

{2, 3, 4, 5, 6, 7, 1, 8, 9, 10, 11, 12, 13, 14, 0} 158 239 183 239 234 239 234

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 0} 119 239 141 239 232 239 232

16

{2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0} 198 271 211 271 268 271 268

{2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 0} 170 271 183 271 266 271 266

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 0} 142 271 141 271 264 271 264

respectively. The checksum of Λ′ for U = (u0, · · · , u3) has
⊕

X′∈Λ′
π(u0,u1,u2,u3)(X

′)

=
⊕

Z∈Λ

πU ((z0, z1 ⊕ z2, z3, z4 ⊕ z5))

=
⊕

Z∈Λ

πu0(z0)×πu1(z1 ⊕ z2)×πu2(z3)×πu3(z4 ⊕ z5)

=
⊕

Z∈Λ

(

πu0(z0)×(
⊕

c1≺u1

πu1(z1)×πu1⊕c1(z2)) ×πu2(z3)×(
⊕

c2≺u3

πu3(z4)×πu3⊕c2(z5))

)

=
⊕

Z∈Λ

⊕

c1≺u1

⊕

c2≺u3

(
π(u0,u1,u1⊕c1,u2,u3,u3⊕c2)(Z)

)

where c ≺ u denotes the elements of Fn
2 satisfying c AND u equals to c. Obvi-

ously, it has w(c) + w(u ⊕ c) = w(u) if c ≺ u. When (w(u0), w(u1), w(u1) −
w(c1), w(u2), w(u3), w(u3) − w(c2)) ��K for any c1 ≺ u1 and any c2 ≺ u3, the
result is always 0. Thereafter, the division property of Λ′ is {K ′(j) = (kj

0, (k
j
1 +

kj
2), k

j
3, (k

j
4 + kj

5))|0 ≤ j ≤ q − 1}.



234 H. Zhang and W. Wu

B Results on Improved Type-1 GFS for 8 < m ≤ 16

Table 5 shows integral distinguishers for improved Type-1 GFS when the number
of branches is more than 8.

C Results on Improved Type-2 GFS for 8 <m ≤ 16

Table 6 shows integral distinguishers for improved Type-2 GFS when the number
of branches is more than 8.

Table 6. Integral distinguishers for improved Type-2 GFS with 8 < m ≤ 16

Our IND

m Type P DR
IND [7]

[n, d]=[4,3] [n, d]=[8, 7]

bij bij nbij bij nbij.

10

No. 1 {5, 0, 7, 2, 9, 6, 3, 8, 1, 4} 7 13 14 14 14 13

No. 2 {3, 0, 1, 4, 7, 2, 5, 8, 9, 6} 7 13 15 14 14 14

No. 3 {3, 0, 7, 4, 1, 6, 5, 8, 9, 2} 7 13 14 13 13 13

12

No. 1 {3,0,7,2,9,4,11,8,5,10,1,6} 8 15 17 16 16 16

No. 2 {3,0,7,2,11,4,1,8,5,10,9,6} 8 16 17 17 17 16

No. 3 {7,0,9,2,11,4,1,8,5,10,3,6} 8 15 16 15 16 15

No. 4 {5,0,9,2,1,6,11,4,3,10,7,8} 8 15 17 17 16 16

14

No. 1 {1,2,9,4,3,6,13,8,7,10,11,12,5,0} 8 15 17 16 16 16

No. 2 {1,2,9,4,13,6,7,8,5,10,3,12,11,0} 8 15 16 15 16 15

No. 14 {1,2,11,4,13,6,7,8,5,12,9,10,3,0} 8 15 16 16 16 16

No. 16 {5,2,9,4,1,6,13,10,11,8,7,0,3,12} 8 15/16 17 17 17 16

No. 20 {7,2,1,4,9,6,5,10,3,12,13,0,11,8} 8 15 16 16 16 15

16

No. 1 {1,2,9,4,15,6,5,8,13,10,7,14,11,12,3,0} 8 16 17 16 17 16

No. 7 {1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10} 8 15 17 16 16 16

No. 10 {7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12} 8 15 16 15 16 15

D Details of the Attack on LBlock

We need to guess 60-bit key to compute the value of
⊕

(S(X16
L [0] ⊕ K16[0]))

according to the keyschedule. These guessed keys are marked by gray cubes in
Fig. 8, and the procedure is as follows:

1. Query 263 plaintexts which are constant at one bit and are active at other
bits.

2. Count whether each 15-nibble value X23
L [0, 1, 2, 3, 4, 6, 7]||X23

R [0, 1, 2, 3, 4, 5,
6, 7] appears even or odd times, and pick the values which appear odd times.

3. Guess K22[3], and then compute X22
R [3]. Compress the data into 256 texts

of the value of X23
L [0, 2, 3, 4, 6, 7]||X23

R [0, 1, 2, 4, 5, 6, 7]||X22
R [3] appearing odd

times.
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4. Guess K22[5], and then compute X22
R [6]. Compress the data into 252 texts

of the value of X23
L [0, 2, 3, 6, 7]||X23

R [0, 1, 2, 4, 6, 7]||X22
R [3, 6] appearing odd

times.
5. Guess K22[1], and then compute X22

R [2]. Compress the data into 248 texts of
the value of X23

L [2, 3, 6, 7]||X23
R [0, 2, 4, 6, 7]||X22

R [3, 6, 2] appearing odd times.
6. Guess K21[6], and then compute X21

R [1]. Compress the data into 244 texts
of the value of X23

L [2, 3, 6, 7]||X23
R [0, 2, 4, 6]||X22

R [3, 2]||X21
R [1] appearing odd

times.
7. Guess K22[4], and then compute X22

R [0]. Compress the data into 244 texts
of the value of X23

L [2, 3, 7]||X23
R [0, 2, 4, 6]||X22

R [0, 2, 3]||X21
R [1] appearing odd

times.
8. Guess K22[6], and then compute X22

R [1]. Compress the data into 244 texts
of the value of X23

L [2, 3]||X23
R [0, 2, 4, 6]||X22

R [0, 1, 2, 3]||X21
R [1] appearing odd

times.
9. Guess K22[0], and then compute X22

R [4]. Compress the data into 244 texts
of the value of X23

L [3]||X23
R [0, 2, 4, 6]||X22

R [0, 1, 2, 3, 4]||X21
R [1] appearing odd

times.
10. Guess K21[4], and then compute X21

R [0]. Compress the data into 240 texts
of the value of X23

L [3]||X23
R [0, 2, 4]||X22

R [0, 1, 2, 3]||X21
R [0, 1] appearing odd

times.
11. Due to the keyschedule, K20[0] is determined by rightmost two bits in K22[5]

and leftmost two bits in K22[6], which are all guessed. We can directly
compute X20

R [4] and compress the data into 236 texts of the value of X23
L [3]

||X23
R [0, 2, 4]||X22

R [0, 1, 3]||X21
R [1]||X20

R [4] appearing odd times.
12. Due to the keyschedule, K20[1] is determined by rightmost two bits in K22[6]

and leftmost two bits in K22[7]. We only need guess the leftmost two bits in
K22[7]. Compute X20

R [2] and compress the data into 236 texts of the value
of X23

L [3]||X23
R [0, 2, 4] ||X22

R [0, 1, 3]||X20
R [2, 4] appearing odd times.

13. Guess K21[1] and compute X21
R [2] and compress the data into 232 texts

of the value of X23
L [3]||X23

R [2, 4]||X22
R [0, 3]||X21

R [2]||X20
R [2, 4] appearing odd

times.
14. Guess K20[2] and compute X20

R [5] and compress the data into 228 texts of
the value of X23

L [3]||X23
R [2, 4]||X22

R [0]||X20
R [2, 4, 5] appearing odd times.

15. Guess K21[0] and compute X21
R [4] and compress the data into 228 texts of

the value of X23
L [3]||X23

R [2, 4]||X21
R [4]||X20

R [2, 4, 5] appearing odd times.
16. Due to the keyschedule, K19[5] is determined by K22[3] and K22[4]. Com-

pute X19
R [6] and compress the data into 224 texts of the value of X23

L [3]||X23
R

[2, 4]|| X20
R [2, 4] ||X19

R [6] appearing odd times.
17. Guess K22[2] and then compute X22

R [5] and compress the data into 220 texts
of the value of X22

R [5]||X23
R [4]||X20

R [2, 4]||X19
R [6] appearing odd times.

18. Guess K21[5] and then compute X21
R [6] and compress the data into 216 texts

of the value of X21
R [6]||X20

R [2, 4]||X19
R [6] appearing odd times.

19. Due to the keyschedule, K19[4] is determined by K22[2] and K22[3]. Com-
pute X19

R [0] and compress the data into 212 texts of the value of X20
R [2]||X19

R

[0, 6] appearing odd times.
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20. Guess K18[0] and compute X18
R [4] and compress the data into 28 texts of

the value of X19
R [6]||X18

R [4] appearing odd times.
21. Due to the keyschedule, K17[4] is determined by the rightmost three bits

of K20[2] and the leftmost bit of K20[3]. Guess the leftmost bit of K20[3],
compute X17

R [0] and compress the data into 24 texts of the value of X17
R [0]

appearing odd times.
22. Due to the keyschedule, K16[0] is determined by the rightmost bit of K21[3]

and the leftmost three bits of K21[4]. Guessing the rightmost bit of K21[3],
and then we compute the sum

⊕
(S(X16

L [0] ⊕ K16[0])).

Fig. 8. Key state for key recovery

Complexity for Computing
⊕

(S(X16
L [0]⊕K16[0])). The complexity for each

step is estimated as a product of the previous date size and the total number of
guessed bits. In total,

24 × 260 + 28 × 256 + 212 × 252 + 216 × 248 + 220 × 244

+224 × 244 + 228 × 244 + 232 × 244 + 232 × 240 + 234 × 236

+238 × 236 + 242 × 232 + 246 × 228 + 246 × 228 + 250 × 224

+254 × 220 + 254 × 216 + 258 × 212 + 259 × 28 + 240 × 24

= 277.3.

That is 277.3 × 1
8 × 1

23 ≈ 269.8 23-round encryptions. After step 22, we obtain a
list with 260 entries which contains 64-bit information:

⊕
(S(X16

L [0] ⊕ K16[0]))
and corresponding 60-bit guessed key.
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Abstract. In this paper, we look at two fault countermeasure schemes
proposed very recently in literature. The first proposed in ACISP 2015
constructs a transformation function using a cellular automata based lin-
ear diffusion, and a non-linear layer using a series of bent functions. This
countermeasure is meant for the protection of block ciphers like AES. The
second countermeasure was proposed in IEEE-HOST 2015 and protects
the Grain-128 stream cipher. The design divides the output function used
in Grain-128 into two components. The first called the masking function,
masks the input bits to the output function with some additional ran-
domness and computes the value of the function. The second called the
unmasking function, is computed securely using a different register and
undoes the effect of the masking with random bits. We will show that
there exists a weakness in the way in which both these schemes use the
internally generated random bits which make these designs vulnerable.
We will outline attacks that cryptanalyze the above schemes using 66
and 512 faults respectively.

Keywords: AES ·Fault analysis ·Grain-128 · Infective countermeasures

1 Introduction

There has been a lot of effort to design hardware based countermeasures to
prevent fault attacks on AES-128 circuits. Most of these countermeasures can
be classified into two broad categories: (a) Detection based and (b) Infection
based. As the name suggests, detection based measures aim to detect the injec-
tion of fault by performing various intermediate checks during the course of the
encryption operation [7,12,15]. The functionality is achieved by comparing two
or more data blocks output by the encryption circuit. Since the comparison oper-
ation is itself prone to faults, Infection based countermeasures have also become
popular [8,14,16]. In this approach, the circuit is designed in such a fashion that
even if an attacker is able to inject a fault in the circuit, he can not utilize the
corrupted output to find the secret key. Most of these countermeasures work
by introducing additional operations in between or after the encryption algo-
rithm that make it difficult for an adversary to deduce simple enough algebraic
relations to deduce the secret key.

c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 241–252, 2015.
DOI: 10.1007/978-3-319-26617-6 13
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As already mentioned, the main philosophy behind infective countermeasures
is to ensure that a faulty ciphertext produced by the system can not be exploited
by the attacker to obtain any non-trivial information about the secret key. There
have been several infective countermeasures proposed in literature but most of
them have a hardware overhead of over 100 %. In [8], a countermeasure using
redundant and dummy round functions was proposed. A countermeasure using
random masks was proposed in [16]. Both these fault protection schemes were
cryptanalyzed in [3]. In response, an improved countermeasure was proposed
in [19], that replaced the output of the cipher with a random 128 bit string
whenever the system detected a fault. This method was again cryptanalyzed in
[4]. In this paper, we will look at two different infective countermeasures that
have been proposed very recently. The first [9], was designed mainly to protect
block ciphers like AES [6]. The design includes two identical AES modules, the
outputs of which are xored and fed into a transformation function composed of
the following functions

1. A linear diffusion function based on the principles of cellular automata,
2. A non-linear mixing function that additionally utilizes some internally gen-

erated randomness.

The output of the transformation function is xored back to the outputs of one of
the AES modules, and produced as ciphertext. Assuming that the adversary does
not have the capability to reproduce the same fault in both the AES modules,
any difference introduced by a fault in one of the modules is transformed by
the non-linear function so that any simple algebraic relation can not be derived
between the faulty ciphertext and the roundkey. The second countermeasure
proposed in [10] has been designed protect the Grain-128 [11] stream cipher.
The work is significant because not many architectures have been proposed to
protect stream ciphers from fault attacks. The design decomposes the output
boolean function of Grain-128 into two component functions. The first called
the masking function, masks the inputs to the output function with certain
random bits generated internally. The second called the unmasking function,
(which is computed securely using a different register) undoes the effect of the
masking, so that the GF(2) sum of the masking and unmasking function equals
the output function of Grain-128. We will show that method of utilizing the
internal randomness in both these schemes has some weakness which can be
used to cryptanalyze them.

1.1 Organization of the Paper

In Sect. 2, we will first provide a complete architectural and mathematical descrip-
tion of the infective countermeasure proposed in ACISP 2015 [9]. In Sect. 3, we
will begin by outlining a fault attack on an unprotected AES implementation. We
will then go on to reveal a weakness in the non-linear mixing function used in this
scheme that makes this function easy to invert. Using this observation we will pro-
pose a method that allows the attacker to deduce the secret key using around 66
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faults on average. In Sect. 4, we will provide a preliminary mathematical descrip-
tion of Grain-128 and the countermeasure as proposed in [10]. Thereafter in Sect. 5
we will then point out two weaknesses in the scheme. First we show, that due to
a flaw in the masking function, any fault localized on a specific LFSR location
reveals non-trivial information about the internal state of the cipher. This can
be used to mount a state recovery attack, that reveals the entire internal state in
less than 512 faults. The second weakness comes from the fact that although the
design tries to protect the output function of the cipher, the NFSR update func-
tion is left completely unprotected. Using this result a fault attack using as less as
4 randomly applied faults can be mounted. Section 6 concludes the paper.

2 Countermeasure Proposed in ACISP 2015 [9]

The scheme proposed in [9] can be described as follows. The design takes the
xor of the outputs of two identical AES modules and passes it through a trans-
formation function T . This function is composed of a sequence of two functions.
The first is a cellular automata based linear diffusion function. The output of
the linear diffusion function is then input to a non-linear mixing function. The
mixing function additionally uses some random bits which are generated inter-
nally by a cellular automata based random number generator. The output of the
mixing function is then xored back with the output of one of the AES modules
and produced as ciphertext. The architecture is described pictorially in Fig. 1.

Fig. 1. Infective countermeasure of ACISP 2015 [9]

The architecture described above makes two assumptions. The first is that
the attacker does not have the capability to inject the same fault in both the
AES modules. Otherwise the output of both the AES modules is identical and
so the input to T is zero, and since T maps the zero input to zero, the attacker
gets back the original faulty ciphertext. The second assumption is that since
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the attacker does not know the random bits used to compute the output of the
mixing function, it is not possible for him to deduce algebraic relations between
the ciphertext and the roundkey.

2.1 Linear Diffusion Function

The linear diffusion function D : {0, 1}128 → {0, 1}128 is based on the principles
of a 3-neighborhood cellular automata. The state update operation in such a
system can be expressed equivalently as pre-multiplication with a 128 × 128
binary matrix. In this specific case, the function D is constructed as follows.
One iteration of the automata is first designed using the following primitive
polynomial over GF(2):

p(x) = x128 + x29 + x27 + x2 + 1

Thus, if Xt and Xt+1 denote the 128 bit vectors that are input and output
respectively of a single iteration of the automata, then these vectors are related
as Xt+1 = A · Xt, where A is a 128 × 128 binary tridiagonal matrix whose ijth

element aij is given as follows:

aij =

⎧
⎨

⎩

mi, if i = j,
1, if |i − j| = 1,
0, otherwise.

The element aii in the principal diagonal of the matrix A is taken as the ith

element mi of the vector M defined as follows:

M =[ 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,

1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,

1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,

1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0 ]

The vector M is constructed using the polynomial p(x) by following the meth-
ods outlined in [5]. The update function described by the single iteration of this
automata has a period of 2128 − 1, and achieves full diffusion of any bit differ-
ence in 127 iterations. The function D is constructed using 255 iterations of the
automata, i.e., D(X) = A255 · X. However, the matrix A is invertible and hence
the function D is efficiently invertible.

2.2 Non-linear Mixing Function

The non-linear mixing function N : {0, 1}128 × {0, 1}128 → {0, 1}128 is a con-
structed using a series of bent functions. The function uses a 128 bit random
string R which is generated using a cellular automata based random number
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generator Given X = [x0, x1, . . . , x127], R = [r0, r1, . . . , r127], N (X,R) = Y =
[y0, y1, . . . , y127] is defined as:

ci =
i⊕

j=0

xjrj ⊕ xi−1xi ⊕ ri−1ri

yi = xi ⊕ ri ⊕ ci−1

for 0 ≤ i ≤ 127, with x−1 = r−1 = 0 with c−1 = c127. Each yi is a bent
function of algebraic degree 2 and nonlinearity 22i+1 − 2i+2. Since the fault
protection mechanism must output the original ciphertext if no fault is injected,
the transformation function T must map the zero input to zero. For this reason,
the output of the nonlinear layer is taken as S(X) = N (X,R) ⊕ N (0,R).

3 Cryptanalysis of the Fault Countermeasure Scheme

3.1 Basic Fault Attack on Unprotected AES

We outline the basic fault attack on AES which finds the secret key by inject-
ing a random byte fault before the 9th round MixColumn (MC) operation [13,
Chap. 4.2]. Assuming that a random byte fault has been injected in the first
element of a column, the attacker computes a list L of possible differences at the
output column of the MixColumn operation. The list L thus contains 4 × 255
four-byte elements. This is a one time operation. As can be seen in Fig. 2, a
fault injected in the first byte of the AES state before the 9th round MixColumn
will result in a faulty ciphertext that differs with the original ciphertext in byte
positions 1, 8, 11, 14. So given a pair of fault-free and faulty ciphertexts C,Cf ,
the attacker guesses 4 bytes of the 10th roundkey K10 (i.e. the 1st, 8th, 11th and
14th bytes) and computes the four differences Δi (i = 1, 8, 11, 14) as follows:

Δi = SB−1 (C[i] ⊕ K10[i]) ⊕ SB−1 (Cf [i] ⊕ K10[i]) ,

(note that the ith byte of any block X is represented as X[i]). Each tuple
(Δ1,Δ8,Δ11,Δ14) is then compared with the elements contained in the list
L. The candidates (K10[1],K10[8], K10[11],K10[14]) for which a match is found
are gathered in another list E . With one pair (C,Cf ), the list E contains 1,036
elements on average. By using another pair (C,Cf ) with a fault injected into the
same column, the corresponding four bytes of the last round key are uniquely

Fig. 2. Basic Attack on unprotected AES
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determined with a 98 % probability. Similar analysis holds for faults injected into
the 2nd, 3rd and 4th columns. Therefore the last round key can be recovered by
using eight faulty ciphertexts with faults induced at chosen locations.

3.2 Cryptanalysis of the Scheme

The fault protection scheme as outlined in [9] can be outlined as follows. The
scheme first computes the difference Δ in the two ciphertexts, the first of which
is produced by a fault in one of the AES modules, and the second produced
by the other AES module which is fault-free. This difference Δ is then passed
through the transformation function T which is basically the composition of the
functions S◦D. The transformation function is probabilistic since it uses some
randomness generated internally by the system. Now instead of Cf = C ⊕ Δ,
the system outputs C ⊕ T (Δ). Now intuitively it is clear that T needs to be a
one way function, because if the attacker can obtain the value of Δ from the
value of T (Δ), he can compute the value of Cf = C ⊕Δ and perform the attack
described in Sect. 3.1. In this section we will prove that T is not a one way
function due to which the security of the scheme collapses. Note that we have
already established that D is efficiently invertible, and hence if we can show that
S is also invertible, we would have proven that T is not one way.

Lemma 1. S is not a one way function.

Proof. For any fixed input X = [x0, x1, . . . , x127], S(X) is queried a few times.
Since the function S uses internally generated randomness, it outputs a differ-
ent value every time. The task therefore would be to recover X from S(X) =
N (X,R) ⊕ N (0,R) for different values of R. From the description given in
Sect. 2.2, the algebraic relation between S(X) = [s0, s1, . . . , s127], X = [x0,
x1, . . . , x127], R = [r0, r1, . . . , r127] is given as:

s0 = x0 +
127⊕

j=0

rjxj + x126x127

s1 = x1 + r0x0

s2 = x2 + r0x0 + r1x1 + x0x1

s3 = x3 + r0x0 + r1x1 + r2x2 + x1x2

s4 = x4 + r0x0 + r1x1 + r2x2 + r3x3 + x2x3

...

si = xi +
i−1⊕

j=0

rjxj + xi−2xi−1

Define the sequence wi as follows:

wi =

⎧
⎨

⎩

s1, if i = 0,
si + si+1, if 0 < i < 127,
s127 + s0, if i = 127,
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It can be checked that w0 = x1 + r0x0, w1 = x1 + x2 + x0x1 + r1x1 and wi =
xi + xi+1 + xi−1xi + xi−2xi−1 + rixi, for all i > 1. Note that

w0 = x1 if x0 = 0, and w0 = x1 + r0 if x0 = 1.

Now, if we compute the value of w0 for different outputs of the function S(X)
(which are generated for different values of the internal random string R), then
the value of w0 will be a constant and equal to x1 if and only if x0 = 0.
If x0 = 1, then w0 = x1 + r0, and w0 will evaluate to a different bit value
each time, depending on the value of the random bit r0. This argument can be
extended to any i. If and only if xi = 0, wi = xi + xi+1 + xi−1xi + xi−2xi−1

and will thus evaluate to a constant for every query. If xi = 1, then the value
of wi has linear dependence on the random bit ri and is more or less uni-
formly randomly distributed over the set {0, 1}. So our algorithm to invert
S is as follows. Query the function S for a fixed X around N times. Then
compute the vector W = [w0, w1, . . . , w127] for each query S(X). If wi eval-
uates to the same value over all the queries, then we conclude that xi = 0,
otherwise we conclude that xi = 1. Computer simulations have confirmed that
N = 8.3 queries on average are required to fully determine the value of X.

Corollary 1. T is not a one way function.

Proof. Since T −1 = D−1 ◦ S−1, and we have established that S−1 and D−1 are
both efficiently calculable, we can conclude as such.

Fault Attack on the Scheme: We have just established that the function
T is invertible, if one ensure that the same input is fed to the non-linear function
around 8 times. So the attacker proceeds as follows:

1. He first obtains the fault-free ciphertext from the device.
2. He resets the device and applies a fault in the 1st column of the AES state

before the 9th round MixColumn and obtains the faulty ciphertext C +T (Δ).
3. He repeats the process 8 times, and each time he applies the same fault in the

device. This ensures that the input to the nonlinear function S is the same
each time. Note that this can be achieved by using optical fault [18] to flip
the logic at a particular register location during each fault injection process.

4. The attacker uses the procedure outlined in Lemma 1 and Corollary 1, to
obtain the value of Δ.

5. He then uses the attack outlined Sect. 3.1 to deduce 4 bytes of the 10th
roundkey. This requires another fault-free and faulty ciphertext pair with
fault in the same column and so the Steps 1–4 need to executed once more.

6. The process is repeated for the 2nd, 3rd and 4th columns of the AES state
to obtain the full roundkey.

Fault Complexity: Since finding 4 bytes of the 10th roundkey, requires around
2×8.3 = 16.6 faults on average, the entire roundkey can be deduced in 4×16.6 ≈
66 faults on average.
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4 Countermeasure Proposed in HOST 2015 [10]

Before we proceed to describe the infective countermeasure proposed in [10],
we will give a short mathematical description of the Grain-128 stream cipher.
Grain-128 consists of a 128 bit LFSR and a 128 bit NFSR. The state is initialized
with a 128 bit Key which is loaded on to the NFSR and a 96 bit IV and a 32
bit pad P = 0x ffff ffff which is loaded on to the LFSR. The LFSR state is
update according to the rule:

yt+128
Δ= f(Yt) = yt+96 + yt+81 + yt+70 + yt+38 + yt+7 + yt.

The NFSR state is updated as follows

xt+128 = yt + g(Xt), where

g(Xt) = xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13+
xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84

The output keystream bit zt in some round t is produced as
∑

j∈A

xt+j + yt+93 + h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+95)

where A = {2, 15, 36, 45, 64, 73, 89} and h(s0, . . . , s8) = s0s1 + s2s3 + s4s5 +
s6s7 + s0s4s8. The cipher is executed for 256 rounds without producing any
output, during which the output bit zt is fed back to the update functions of the
LFSR and NFSR. Thereafter the feedback is discontinued and the cipher starts
producing output.

4.1 Fault Protection Scheme in [10]

The fault protection scheme of [10] can be described as follows. The output
function h used in Grain-128 is decomposed into two component functions: a
masking function hmasked and an unmasking function M. The function hmasked

is computed as follows: a nine bit random string ε0, ε1, . . . , ε8 is generated by an
internal mechanism and then the function is computed as follows:

hmasked = (s0 + ε0)(s1 + ε1) + (s2 + ε2)(s3 + ε3) + (s4 + ε4)(s5 + ε5)+
(s6 + ε6)(s7 + ε7) + s0s4(s8 + ε8) + (s0 + s4)s8ε8

The unmasking function M is computed so that h = hmasked +M. The function
M is computed securely via a different 128 bit register which stores the values of
M for 128 consecutive iterations. The process is described pictorially in Fig. 3.
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Fig. 3. Fault protection scheme in HOST 2015 [10]

5 Cryptanalysis of the Fault Countermeasure Scheme

5.1 Fault Attack on Unprotected Grain-128

There have been several fault attacks on Grain-128 reported in literature [1,2,17].
The basic philosophy in these attacks is the same. The attacker exploits the low
algebraic degree of the output function h. For example if the attacker applies an
optical fault which flips the logic at the bit denoted by the input variable s2, then
the difference between the fault-free keystream bit z and the faulty keystream
bit zf is given as

z + zf = h(s0, s1, s2, . . . , s8) + h(s0, s1, 1 + s2, . . . , s8) = s3

This therefore leaks the value of one state bit of the internal state of Grain-
128. By applying several faults an studying the faulty keystream patterns, the
attacker can easily determine the entire internal state of Grain-128.

However if one uses the fault protection scheme proposed in [10], then since
the value of the unmasking function is computed securely, the difference between
the faulty and fault-free keystream bit is given as:

z + zf = hmasked(s0, s1, s2, . . . , s8) + hmasked(s0, s1, 1 + s2, . . . , s8) = s3 + ε3

Since ε3 is an internally generated random bit which the attacker does not know,
this prevents the leakage of state information. However we will demonstrate that
there exists two weaknesses in this scheme which still allows the attacker to
determine the values of the internal state bits.

5.2 First Weakness

If the attacker faults the input bit s8 (which corresponds to the 95th bit of the
LFSR), then the difference between the faulty and fault-free keystream bit is
given as
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z + zf = hmasked(s0, s1, s2, . . . , s8) + hmasked(s0, s1, s2, . . . , 1 + s8)
= s0s4 + (s4 + s0)ε8

So the attacker proceeds as follows:

– He obtains the fault-free keystream bit zt in some round t.
– He resets the device and injects a fault in the 95th LFSR bit (s8) in the round

t, and obtains the faulty bit zf
t .

– He repeats the process N times so that he accumulates N different values of
the keystream difference zt + zf

t .

Now if and only if s4 + s0 = 0, the value of zt + zf
t = s0s4, and thus the above

process will yield the same value of zt + zf
t for each new fault injection. However

if s4 + s0 = 1, then the value of zt + zf
t is more or less uniformly randomly

distributed over the set {0, 1}. Thus a fault in the bit s8 leaks additional infor-
mation about the internal state. If the attacker is able to execute this process for
0 ≤ t < τ number of keystream rounds, then this leaks the following information
about the state

1. It reveals the value of s0 + s4 in every round t.
2. If s0 + s4 = 0 in some round, it additionally leaks the value of s0s4 in that

round.

Armed with this information the attacker can proceed with the fault attack as
follows. He creates an equation bank containing the following equations in the
internal state variables for every round 0 ≤ t ≤ τ :

A. He adds an equation for the fault-free keystream bit zt:

zt =
∑

j∈A

xt+j + yt+93 + h(xt+12, yt+8, yt+13, . . . , yt+95)

B. He adds an equation for the value of the bit s0 + s4 at each round t (denote
this bit value by the term at).

at = xt+12 + xt+95

C. If s0 +s4 = 0 at any round t (i.e. if at = 0), he additionally adds an equation
for s0s4 (denote this bit value by the term bt).

bt = xt+12 · xt+95

The above equation bank is fed to a suitable equation solver which tries to
determine the value of the internal state bits. In our experiments, we used the
Cryptominisat-2.8 SAT Solver, which determined the solution of the above sys-
tem in around 0.2 s on average on a system running on a 2.5 GHz processor and
16 GB internal memory for τ = 256.
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Fault Complexity: For each round t, we require around N = 2 faults on
average to determine the value of s0 + s4. Since a total of τ = 256 keystream
rounds are used, the total number of faults required is around τ × N = 512.

5.3 Second Weakness

The second weakness of the fault protection scheme arises from the fact that the
designers make no effort to protect either the NFSR update function g or the
seven additional bits from the NFSR that are xored to the function h to produce
the output keystream bit. Any random fault applied in the NFSR would therefore
propagate along the NFSR through the update function g and the since the seven
NFSR bits are unprotected, if the differential introduced by the fault appears
on one of these bits they may reveal non-trivial information about the internal
state bits. In fact in the work presented in [17], the attacker can apply random
faults in the NFSR and by constructing an equation bank for every faulty and
fault-free keystream bit, the attacker is able to find the entire internal state of
Grain-128 in 5–6 faults by using a SAT based solver within 6 min on average. It is
clear that the countermeasure scheme does not counteract the attack presented
in [17]. Hence, in order for the scheme in [10] to be secure, it not only must
design a better masking function hmasked, it must also take steps to protect (a)
the NFSR update function g and (b) the seven NFSR bits that are added to
the h function to produce the output keystream bit.

6 Conclusion

In this paper, we looked at the security of two fault countermeasure schemes
proposed very recently in literature and proposed attacks on them requiring 66
and 512 faults respectively. We conclude that in both the schemes, the manner
in which the designs use the internally generated random bits, make them vul-
nerable to attack. Additionally, the countermeasure used to protect Grain-128 is
simply inadequate since no effort is made to protect the NFSR update function
g or the seven additional bits that are xored to the output function h. From
the discussion it is evident that the transformation function used in the first
scheme needs to be a one way function, failing which the scheme would not pro-
vide any security. In the second scheme, not only must a better masking scheme
be designed, but some additional effort must be expended to protect the other
critical components of the circuit.
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Abstract. In this paper we present the first differential fault analysis
(DFA) of SHA-3. This attack can recover the internal state of two ver-
sions of SHA-3 (namely, SHA3-512 and SHA3-384) and can be used to
forge MAC’s which are using these versions of SHA-3. Assuming that the
attacker can inject a random single bit fault on the intermediate state
of the hash computation, and given the output of the SHA-3 version for
a correct message and 80 faulty messages, we can extract 1592 out of
the 1600 bits of the compression function’s internal state. To the best of
our knowledge, this is the first public analysis of SHA-3 against DFA.
Although our results do not compromise any security claim of SHA-3, it
shows the feasibility of DFA on this scheme and possibly other Sponge
based MACs and increases our understanding of SHA-3.

Keywords: SHA-3 · Keccak · Differential fault analysis

1 Introduction

The new SHA-3 standard [23] is adapted from the Keccak hash function [9].
Keccak hash function is a family of sponge based hash function [8] with Keccak-
f [r+c] as the primitive. The parameters r and c are the bit rate and the capacity
and determine the width of the Keccak-f permutation. In the case of SHA-3, the
internal state size is b = 1600 bits while the output size n ∈ {224, 256, 384, 512}
bits. In this paper, we concentrate on the standard Keccak versions submitted
to the SHA-3 competition and denote them by SHA3-224, SHA3-256, SHA3-384
and SHA3-512, depending on the output size n.

Keccak has received significant attention of the cryptography community,
both during and after the SHA-3 competition. Some of the prominent works
analyzing Keccak are [3,7,11–13,15,17–21,29,33–36]. However, these numerous
analysis have not compromised any security claim of Keccak and there exists
a big gap between the number of rounds practically broken and the number of
rounds of Keccak suggested by the designers.
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 253–269, 2015.
DOI: 10.1007/978-3-319-26617-6 14
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Differential Fault Analysis (DFA), first introduced by Biham and Shamir
in [10], derives information about the secret key from the physical implementa-
tion of the cipher by examining the differences between a fault-free encryption and
several faulty ones. A fault may be injected by introducing an external impact on
the processing device by means of voltage variation, glitch, laser, etc. However, nei-
ther the fault location nor the bit-value at the fault location may be known to the
attacker. This attack model has been successfully applied to several block ciphers,
stream ciphers, hash functions and authenticated encryption functions, where the
attacks onDES [27,39],AES [1,22,25,26,31,32,37,41],Grain [5,16],Mickey [4,30],
SHA-1 compression function [28], Grøstl [24], Streebog [2] and APE [40], CLOC
and SILC authenticated encryption schemes [14] are examples. In the case of the
hash functions, DFA make sense when the hash function is used in a message
authenticated mode such as secret IV-MAC [38], HMAC or NMAC [6]. In such
applications,DFAcouldbeused to recover the secret key or perform forgery against
the MAC. Since using a hash function is common in constructing a secure MAC
scheme, it is important to investigate the security of a hash function against the
DFA attack. However, to the best of our knowledge, there is no public report on
DFA on SHA-3 or Keccak.

On the other hand, Dinur et al. [20] recently have analyzed the keyed modes
of Keccak sponge function where it is used to generate bit stream for stream
cipher or it is used as a building block for message authentication codes(MACs)
and authenticated encryption (AE) schemes. Motiviated by that work, where the
internal state of Keccak permutation is extracted using cube attack, in this paper
the internal state of Keccak permutation is reconstructed with fault injection.
Therefore, this attack could be used to recover the secret key or do forgery
against MACs based on Keccak. It also maybe applicable to recover the secret
key and the initial value of stream cipher based on Keccak if the attack scenario
change to known plaintext attack. In addition, in the keyed version of SHA-3, if
it is used with nonce and there is a restriction on the repeating the nonce, then
the given attack does not work.

1.1 Contribution

We present differential fault analysis on two versions of SHA-3, namely SHA3-
512 and SHA3-384. The attack model follows the approach used already in DFA
against Grøstl [24], Streebog [2] and CLOC & SILC authenticated encryption
schemes [14] where the adversary injects a single bit fault in a random position of
the internal state. The presented attack can recover the complete internal state
of SHA-3 given the first 320 least significant bits of its output (called a plane in
Keccak) for the correct message and enough faulty messages. Since the output
of SHA3-384 and SHA3-512 includes a complete plane, we apply our attack to
these variants of SHA-3. We then present a theoretical bound on the number of
detected bits of the Keccak state after injecting a single bit fault on N messages
and compare the same with simulation results. Our theoretical analysis shows
that injecting 80 randomly distributed single bit faults on internal state are
enough to recover 1592 bits out of 1600 bits of the internal state.
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1.2 Paper Organization

The rest of the paper is organized as follows: in Sect. 2, the notations used in
the paper are presented, and in Sect. 2.2, the Keccak hash function is briefly
described. In Sect. 3, we present our differential fault analysis on SHA3-384 and
SHA3-512. In Sect. 4, we present theoretical bounds and simulation results for
state bit recovery. Finally, we conclude the paper in Sect. 5.

2 Notations and Preliminaries

2.1 Notations

Throughout the paper, we use the following notations:

• Ai(x, y, z): denotes a single bit of state at the beginning of the ith round.
• H(M): denotes the output of SHA-3.
• planeH(m)(0): denotes 320 consecutive bits of output of SHA-3 that could be

used to reconstruct plane(0) of the state.
• planeH(m)(0)

′
: denotes 320 consecutive bits of faulty output of SHA-3 that
could be used to reconstruct plane(0) of the state.

• θi: denotes the θ step at ith round.
• χi: denotes the χ step at ith round.
• πi: denotes the π step at ith round.
• ρi: denotes the ρ step at ith round.
• ιi: denotes the ι step at ith round.
• B: denotes the state before χ step in the penultimate round and

Bl
b denotes the bth bit of the lth lane of B.

• C: denotes the state after θ step in the last round and Cl
b denotes

the bth bit of the lth lane of C.

2.2 Description of Keccak Hash function

Keccak [9] is a family of hash functions and the winner of the SHA-3 competi-
tion. Some of its variants were adapted as SHA-3 [23]. It is a sponge based hash
function based on Keccak-f [b, nr] permutation. Figure 1 illustrates the sponge
construction, based on permutation f : {0, 1}r × {0, 1}c → {0, 1}r × {0, 1}c.
In the sponge construction, r is the bitrate and called rate and c is the secu-
rity parameter and called capacity. Larger r provides higher speed and larger
c provides better security. The state size of the hash function is determined by
b = c + r. In Keccak b ∈ {25, 50, 100, 200, 400, 800, 1600} and for the case of
SHA-3, the state size is 1600 bits.

In Keccak-f [b, nr], b and nr denote the state size and number of the rounds
of the permutation respectively. The SHA-3 standard uses Keccak-f [1600,24]
permutation from [9]. Depending on the output length n, 4 versions of SHA-3
use c = 2n for n ∈ {224, 256, 384, 512}, and are called SHA3-224, SHA3-256 etc.
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Fig. 1. The sponge construction based on permutation f [23].

Keccak-f [1600,24] has 24 rounds, indexed from 0 to 23, and each round
performs 5 consecutive permutations on the state, denoted by θ, ρ, π, χ, and ι.
The only non-linear permutation is χ and the only round dependent permutation
is ι. The input to these permutations is constructed as a 3-dimensional array
(x, y, z) where the dimensions of x, y and z are 5, 5 and 64 respectively. Denoting
the Array by A, each bit of the array can be described as A(x, y, z), where
0 ≤ x ≤ 4, 0 ≤ y ≤ 4 and 0 ≤ z ≤ 63. The initial state of Keccak-f [1600,24] (i.e.
before the application of the 0th round) is denoted by A0(., ., .) and the output
of Keccak-f [1600,24] after the 23rd round is denoted by A24(., ., .).

Keccak-f [1600,24] state can be defined in different parts. This naming con-
vention is helpful in describing Keccak-f [1600,24]:

– A row is a set of 5 bits with constant y and z coordinates, i.e. A(∗, y, z).
– A column is a set of 5 bits with constant x and z coordinates, i.e. A(x, ∗, z).
– A lane is a set of 64 bits with constant x and y coordinates, i.e. A(x, y, ∗).
– A sheet is a set of 320 bits with constant x coordinate, i.e. A(x, ∗, ∗).
– A plane is a set of 320 bits with constant y coordinate, i.e. A(∗, y, ∗).
– A slice is a set of 25 bits with constant z coordinate, i.e. A(∗, ∗, z).

In this paper, each lane of the state is specified according to Table 1.

Table 1. Lane numbering, each square represents a lane in the state.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Next we briefly describe the 5 permutations used in each round of SHA-3. θ.
As the first step in each round, the role of θ is to XOR each bit A(x, y, z) with
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bits in column (x − 1, ∗, z) and (x + 1, ∗, z − 1). Hence, θ can be represented as
follows:

θ : A(x, y, z) ← A(x, y, z) +
4∑

y′=0

A(x − 1, y
′
, z) +

4∑

y′=0

A(x + 1, y
′
, z − 1).

ρ. In this step, the bits are rotated in their lane by T (x, y) positions, which is a
predefined offset value for each lane. Table 2 shows these offset values.

Table 2. Offset values of ρ for Keccak-p[1600,24]

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 43

y = 1 55 20 36 46 6

y = 0 28 27 0 1 62

y = 4 56 14 18 2 61

y = 3 21 8 41 45 15

π. Permutation π is used to rearrange the positions of the lanes in the array.
Each lane in position (x, y, ∗) is moved to the new position (x′, y′, ∗), where
x′ = y and y′ = (x + 3y) mode 5.

χ. This is the only non-linear permutaion in each round. A row in position
(∗, y, z) is processed and replaced by a new row by this permutation. Each input
bit affects 3 bits at the output of χ as described below.

A(x′, y′, z′) = A(x, y, z) ⊕ (A(x + 1, y, z) & A(x + 2, y, z)),

where x̄ = x ⊕ 1 and & is the bitwise AND operator.
ι. The final step in each round is the application of ι, which is the only round

dependent step. In the ith round of this step, a round dependent value RC(i) is
XOR’ed with Lane(0). The values of RC(i) can be found in [9]. However, they
do not impact our attack.

3 DFA Attack on SHA3-384, and SHA3-512

In this section, we show how to obtain the bits of internal state that do not
appear in the output of SHA3-384, and SHA3-512. We assume a single bit fault
is injected at the beginning of penultimate round of Keccak-p[1600,24]. In the
rest of the paper, for simplicity we denote Keccak-p[1600,24] permutation by
Keccak-p. We use the following observations on χ function in the our DFA attack
on SHA-3 variants.
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Observation 1. Suppose a single bit fault is injected in the input of χ and we
are given the difference of the correct and the faulty output of χ. In this case, it
is easy to extract two bits of input of χ given the differential output for χ. This
is due to the fact that bitwise AND operation in χ leaks information of its input,
if a single bit of its input was corrupted.

Let a single bit fault be injected in position (f, i, j) in the input to χ then it
leads to a single bit difference in the output of χ with probability ‘1’. Moreover,
it also leads to a single bit difference in (f − 1, i, j) if A(f + 1, i, j) = 1’ and a
single bit difference in (f − 2, i, j) if A(f − 1, i, j) = 0. It can be seen that if we
have differential output of χ, we can extract two bits of its input.

Observation 2. Given any input bit of the χ function, we receive some linear
equations of the input bits at the output of χ. Denoting the input and output
of χ by x0, . . . , x4 and y0, . . . , y4 respectively, given the input bit xi it appears
at the output as yi−2 = xi−2 ⊕ (xi−1&xi), yi−1 = xi−1 ⊕ (xi&xi+1) and yi =
xi ⊕ (xi+1&xi+2). It is clear that given xi we achieve two linear equations of the
inputs of χ at its output, see Table 3. In Table 4, we represent a case where all
output bits are a linear function of the unknown inputs or they are constant.

Table 3. The relation between input bits (xi) and output bits (yi) of χ assuming
that x4 is known and the rest of the inputs are unknown. Here, NL is used to denote
non-linear function. (In the linear function, the output depends only on the XOR of
its inputs. Otherwise the function is non- linear.)

x0 x1 x2 x3 x4 y0 y1 y2 y3 y4

x0 x1 x2 x3 0 NL NL x2 x3 ⊕ x0 NL

x0 x1 x2 x3 1 NL NL x2 ⊕ x3 x3 NL

Table 4. The relation between input’s bits (xi) and output’s bits (yi) of χ assuming
that x0 and x2 are unknown and the rest of the inputs are known.

x0 x1 x2 x3 x4 y0 y1 y2 y3 y4

x0 0 x2 0 0 x0 ⊕ x2 0 x2 x0 0

x0 0 x2 0 1 x0 ⊕ x2 0 x2 0 1

x0 0 x2 1 0 x0 ⊕ x2 x2 x2 x0 0

x0 0 x2 1 1 x0 ⊕ x2 x2 x2 1 1

x0 1 x2 0 0 x0 1 x2 x0 x0

x0 1 x2 0 1 x0 1 x2 0 x0

x0 1 x2 1 0 x0 x2 x2 x0 x0

x0 1 x2 1 1 x0 x2 x2 1 x0
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Observation 3. Assuming that we know some input bits of the χ function, the
output bits will be non-linear if and only if two consecutive input bits of χ are
unknown. This observation directly comes from the fact that for any output bit we
have yi = xi ⊕ (xi+1&xi+2). In this equation the only no-linear part is the AND
operation and, assuming that we know some input bits, it remains non-linear if
and only if both xi+1 and xi+2 are unknown. Table 3 represents an example of
the case where some of the output bits are non-linear function of unknown bits
and some are linear.

Next, we explain how this single bit propagates in one round.

– Propagation of Active Bit in One Round. Assume that we have
injected a single bit fault on A22(x, y, z), which is the input of penultimate
round of the Keccak-p. Hence, we have ΔA22(x, y, z) = 1 and ΔA22(x′, y′, z′)
= 0, for any (x′, y′, z′) �= (x, y, z). On the other hand, this active bit affects
11 bits after θ22 in the following positions and converts them to active:

(x, y, z), (x−1, 0, z+1), (x−1, 1, z+1), (x−1, 2, z+1), (x−1, 3, z+1), (x−1, 4, z+1),

(x + 1, 0, z), (x + 1, 1, z), (x + 1, 2, z), (x + 1, 3, z), (x + 1, 4, z),

The rest of the bits would remain inactive after the θ22 function. It is clear
from offset values of ρ in Table 2 that, excluding the case where x = 1, ρ22

function moves active bits to different slices. Hence, after ρ22, we expect to
receive 11 slices with only one active bit in each slice or 9 slices with only one
active bit in each slice and slice(z + 1) with two active bits in the positions
(0, 0, z+1) and (1, 0, z+1). The π22 function changes the location of the active
bits in their slices. Hence, the number of active bits after the π22 function
remains unaffected. On the other hand, if we have active bits in (0, 0, z + 1)
and (1, 0, z + 1) after ρ22, the π22 function will move these active bits to
(0, 0, z +1) and (0, 2, z +1). Hence, up to the end of the π22 function, we have
11 rows each having only one active bit and the rest of the rows having no
active bits. Next we apply χ22 to the internal state. It is clear that if any row
has no active bit then it does not generate any active bit after χ22. Hence, the
number of active bits for those rows that have no active bits remains zero after
χ22. On other hand, if Row(i, j) includes single active bit in position (f, i, j),
then after χ22 it leads to an active bit in (f, i, j) with probability ‘1’, leads to
an active bit in (f − 1, i, j) if A(f + 1, i, j) = 1 and leads to an active bit in
(f − 2, i, j) if A(f − 1, i, j) = 0. Finally, the ι22 function keeps the number of
active bits in the state unaffected and produces A23(x, y, z).

According to Observation 1, these 11 active bits, that are located in different
rows at beginning of χ22, on the differential inputs of χ22 leak 22 bits of internal
state. It must be noted that these 22 bits of internal state before χ22 are distinct.

Thanks to θ23, the θ function of the last round, any of those 22 bits of internal
state affects each plane of internal state after θ23 and its differential output. Then
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Differential state at the beginning of round 22 after injection of a single bit fault

|---------------1|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

Differential output after theta in round 22:

|---------------1|---------------1|----------------|----------------|---------------2|

|----------------|---------------1|----------------|----------------|---------------2|

|----------------|---------------1|----------------|----------------|---------------2|

|----------------|---------------1|----------------|----------------|---------------2|

|----------------|---------------1|----------------|----------------|---------------2|

Differential output after rho in round 22:

|---------------1|---------------2|----------------|----------------|--------1-------|

|----------------|----1-----------|----------------|----------------|----------2-----|

|----------------|-------------4--|----------------|----------------|-----1----------|

|----------------|----2-----------|----------------|----------------|-------------2--|

|----------------|---------------4|----------------|----------------|------------8---|

Differential output after pi in round 22:

|---------------1|----1-----------|----------------|----------------|------------8---|

|----------------|----------2-----|----------------|----2-----------|----------------|

|---------------2|----------------|----------------|-------------2--|----------------|

|--------1-------|----------------|-------------4--|----------------|----------------|

|----------------|----------------|-----1----------|----------------|---------------4|

Differential output after chi in round 22:

|----x----------1|----1-----------|------------x---|------------x--x|----x-------8--x|

|----------x-----|----x-----2-----|----x-----------|----2-----------|----------x-----|

|---------------2|-------------x--|-------------x--|-------------2-x|---------------x|

|--------1----x--|-------------x--|-------------4--|--------x-------|--------x-------|

|-----x----------|-----x----------|-----1---------x|---------------x|---------------4|

The state is described as a matrix of 5 × 5 lanes of 64 bits, ordered from left to right, where each lane is
given in hexadecimal using little-endian format.
x represents a bit of χ input (Bl

b) according to observation 1. We stress that the differential characteristic
has probability 1.

Fig. 2. Injection a single bit fault and it’s differential path

the internal state goes through ρ23, π23, χ23 and ι23 to produce the final output.
In Fig. 2, a differential characteristic is shown under the assumption that a single
bit fault is injected on A22(0, 0, 0).

The output of SHA3-384 and SHA3-512 (H(M)) include one complete plane.
Given that plane of the output of H(M), it is possible to invert ι23, χ23, π23

and ρ23 for this plane. Hence, it is possible to compute (ρ23)−1((π23)−1((χ23)−1

((ι23)−1(planeH(M)(0))))). Following this fact, given the output of SHA3-384
(or SHA3-512) it is possible to invert a fraction of output that are included in
plane(0) and determine the internal state of lane(0), lane(6), lane(12), lane(18)
and lane(24) after θ23. These lanes comes from sheet(0), sheet(1), sheet(2),
sheet(3) and sheet(4) respectively. In addition, any active bit in sheet(i) affects
all the lanes in sheet(i − 1) and sheet(i + 1). Hence, we can be sure that any
of these 22 target bits appear linearly in lane(0), lane(6), lane(12), lane(18)
and lane(24) after θ23. Suppose a single bit fault is injected on A22(0, 0, 0), the
equations of these lanes are shown as follow:
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Each lane is represented in 64 bits. Obviously, the above equations are con-
structed under the assumption that a single bit fault is injected on A22(0, 0, 0).
On the other hand, the attacker needs to know the position of single bit fault to
obtain these 22 bits of internal state. Next we describe the technique to know
the fault location itself.

– Determining the Fault Position: Given a faulty output and a correct
output of SHA3-384 (or SHA3-512) (say H(M)), it is possible to compute
(χ23)−1((ι23)−1(planeH(M)(0))). In fact, the plane(0) of differential output
of π23 can be computed as follows:

(χ23)−1((ι23)−1(planeH(M)(0))) ⊕ (χ23)−1((ι23)−1(planeH(M)(0)
′
)). (1)

Again suppose a single bit fault is injected on A22(0, 0, 0), the plane(0) of
differential output of π23 is shown as follow (Fig. 3):

Any bit in the above differential output could be 1, 0 or x. When the
value of a bit is 1 or 0 then the difference in that position is deterministic.
However, any bit that is marked as x could appear as 1 or 0 in the real
differential output. It can be shown that the attacker can find the position of
the fault by using this deterministic differential bits. We describe this method
in Algorithm 1. Given the inverted plane(0) of the output of the correct and
faulty messages, based on a single bit fault on A22(x, y, z), Algorithm 1 can
be used to determine the position of the fault.

We also verified this algorithm in simulations. For any single fault in
A22(x, y, z), the algorithm returned the position of the fault correctly. In the
off-line phase of the algorithm, for any possible positions of fault in A22(x, y, z)
(i.e. all 1600 positions), related differential outputs up to the end of π23 are
generated and plane(0) of the state at the output of π23 is stored in a table T .
In AppendixA, the distribution of fault on plane(0) after π23, for injecting a
single fault in any bits of slice(0) are presented. Any other positions of fault
is just a simple rotation of one of these patterns.

Since there is no collision between deterministic bits of stored values in
T , our Algorithm 1 will return the position of fault correctly, if the fault
happened at the input of θ22. Our simulations verify this claim and the success
probability of the given algorithm to return the correct position of the injected
single bit fault is ‘1’.
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xx1-------xx---1-----x1-----x------------x--x1x-----------------

-x------1-----------x1--xxx-----------------11-x------x1----x---

1-------x----------x---1x1------------------xxx-----xx-----x----

--x-------------------xx1-----x1----x1-----x-----xx----------1--

--------------xxx------1-x---x------x-----x1-----------x---x----

Each lane represents in 64 bits. We stress that the differential output happen with probability 1.

Fig. 3. The plane(0) of differential output of π23

Algorithm 1. Determining the position of a single bit fault, injected at
the beginning of θ22

off-line phase: For any possible position of injecting a single bit fault in A22(x, y, z),
calculate related differential characteristics up to the output of π23

and store plane(0) of the differential output of π23 in table T .

on-line phase: Given a faulty output(planeH(M)(0)
′
)):

S.1 Compute the expected value of the difference of plane(0) at the
output of π23, using Eq. 1.

S.2 For any entry in T , compare it with the computed value in step
S.1 based on the deterministic bits only.

S.3 If there is a match between the computed value in step S.1 and
an entry in T , return the related position as the fault location;
otherwise return unknown.

4 Theoretical Bound and Simulation Result

Following the discussion in Sect. 3, for any single bit fault injection, we can
determine the position of fault uniquely and determine 22 bits of internal state.
Given that we have inverted 5 lanes from output, the total number of required
independent equations are 1600 − 5 × 64 = 1280. However, we have no control
on the position of faults and therefore the extracted bits. Hence, we consider the
upper-bound of required independent equations as 1600. The lower bound on
the number of faulty messages is 1600

22
∼= 73 if all the faults produce independent

equations. However, this lower bound is unlikely to be achieved in reality because
of the possible injection of the fault in same locations or the overlap between
extracted bits of the state by different position of faults. To provide a bound
of the number of detected bits after injecting a single bit fault on N messages,
one can argue that after the first fault one can extract 22 bits of internal state.
On injecting the second fault, if it is in the same location as the first one then
it does not provide any new information, otherwise it is possible to extract
the information of any bit that is not extracted with the first fault. The same
argument can be stated for other faults. Hence, a raw bound of the number of
detected bits after injecting a single bit fault on N messages, denoted by SN ,
are as follows:
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SN =
N∑

1

Xi, (2)

where X1 = 22 and Xi =
(
1 − i−1

1600

) (
22 × 1600−Xi−1

1600

)
. We evaluated this bound

by simulations as well. The results of our simulations are shown in Fig. 4. For
the experiments, for any value of N , we injected faults randomly in N positions
of A22(x, y, z) and counted the number of extracted bits of internal state after
these faults. We also repeated this simulation 100 times for any value of N and
counted the average. The simulation results match the given theoretical bound.

Extracting all bits of the internal state only by injecting single bit faults
requires few faults, because the number of the extracted bits decreases when
N is increased. For example, based on the given theoretical bound, to extract
1480 bits of the internal state, we need 200 faulty messages. However, after
extracting a part of the internal state, given that the only non-linear layer in
Keccak-p round function is χ we can use Observation 2 to extract some of the
unknown bits, without injecting extra faults. On the other hand, we know that
the expected number of the unknown bits after injecting a single bit fault on N
messages is 1600 − SN . Hence, for any bit at the input of χ23 to be unknown,
the probability is determined as follows, denoted by PrN (Uk):

PrN (Uk) =
1600 − SN

1600
.

Based on Observation 3, we have non-linear bit at the output of χ22 if there
are at least two consecutive unknown bits. We know that there are 1600 possi-
bilities for two consecutive bits in the internal state, and any two consecutive
bits are both unknown with probability (PrN (Uk))2. Therefore the probability
of any bit of the output of χ22 to be a non-linear function of the unknown bits is
(PrN (Uk))2 which we denote by PrN (NL). Later, θ23 combines the state bits
linearly. However, if any of bits that are XOR’ed together to generate a single bit
of the internal state after θ23 is non-linear, the output bit will also be non-linear.
Hence, we can state that the probability of any bit at the output of θ23 to be
linear, denoted by PrN (L), is as follows:

PrN (L) = (1 − PrN (NL))11.

Therefore, the expected number of linear equations in the 320 bits that are
extracted from (ρ23)−1((π23)−1((χ23)−1((ι23)−1(planeH(M)(0))))) are as follows,
denoted by #LN :

#LN ∼= 320 × (1 − PrN (NL))11.

Hence, we can rewrite Xi as follows:

Xi =
(

1 − i − 1
1600

) (
(22 + #LN−1) × 1600 − Xi−1

1600

)
. (3)
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We simulated the stated theoretical bound SN of the number of the extracted
bits after injecting a single bit fault on N messages. The results of our experi-
ments are shown in Fig. 4. It is clear from this figure that to recover the complete
internal state of the last permutation of Keccak-p at the input of χ22, we need
at most 80 faulty messages and the related correct message. To be more precise,
given 80 messages with single bit faults, we can retrieve 1592 out of 1600 input
bits of χ22. The remaining 8 bits can be found by exhaustive search. Given the
internal state of the permutation, it would be straightforward to recover the
secret key or forge MAC of any desired message.

Fig. 4. The number of extracted bits of internal state after injecting a single bit fault
on N messages. Here, Theory 1 and Theory 2 are the theoretical bounds that are
given by Eqs. 2 and 3 respectively and Simulation is number of the extracted bits
after simulating the attack without using information from Observations 2 and 3 which
matches Theory 1.

5 Conclusions

In this work, we investigated the security of SHA-3 against DFA. The main idea
was to extract the capacity of the sponge construction given a correct output
and some related faulty outputs. Our study shows that by injecting around a
random single bit faults on 80 messages, one can obtain the internal state of
the compression function. Given that the primitives of SHA-3 and other sponge
based schemes are permutations, it would be possible to do state/key recovery on
such sponge based MACs/AE. This approach can also be applicable to perform
DFA on sponge based CAESAR candidates, which is an on going work. Another
direction to continue this study is to use some relaxation on the fault injection
model (both the value of fault and its location) which is the subject for future
works.
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A Appendix

We stress that all differential output happen with probability 1. The state is
described as a matrix of 5 × 5 lanes of 64 bits, ordered from right to left, where
each lane is given in bit using the little-endian format.
x represents a linear equation of χ input (B).
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Abstract. The success rate is the classical metric for evaluating the
performance of side-channel attacks. It is generally computed empirically
from measurements for a particular device or using simulations. Closed-
form expressions of success rate are desirable because they provide an
explicit functional dependence on relevant parameters such as number
of measurements and signal-to-noise ratio which help to understand the
effectiveness of a given attack and how one can mitigate its threat by
countermeasures. However, such closed-form expressions involve high-
dimensional complex statistical functions that are hard to estimate.

In this paper, we define the success exponent (SE) of an arbitrary
side-channel distinguisher as the first-order exponent of the success rate
as the number of measurements increases. Under fairly general assump-
tions such as soundness, we give a general simple formula for any arbi-
trary distinguisher and derive closed-form expressions of it for DoM, CPA,
MIA and the optimal distinguisher when the model is known (template
attack). For DoM and CPA our results are in line with the literature.
Experiments confirm that the theoretical closed-form expression of the
SE coincides with the empirically computed one, even for reasonably
small numbers of measurements. Finally, we highlight that our study
raises many new perspectives for comparing and evaluating side-channel
attacks, countermeasures and implementations.

Keywords: Side-Channel distinguisher · Evaluation metric · Success
rate · Success exponent · Closed-form expressions

1 Introduction

Side-channel attacks analyse physical leakage that is unintentionally emitted
during cryptographic operations in a device. This side-channel leakage is sta-
tistically dependent on intermediate processed values involving the secret key.
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It is then possible to retrieve the secret from the measured data by maximizing
some statistical distinguisher. In the past decade, many distinguishers have been
proposed: difference of means test [17] (DoM), Pearson correlation [4] (CPA),
mutual information [12] (MIA), etc. Such distinguishers have different character-
istics and performances, depending on the implementation, measurement noise,
and assumed knowledge on how the device leaks.

To evaluate the performance of a given distinguisher for a limited number
of measurements, the average probability of success a.k.a. success rate (SR) is
the ideal and most common evaluation metric [30]. It provides everything one
needs to know about the performance of a particular attack scenario. Ideally,
one would exhibit an explicit functional relationship of the SR with the number
of measurements, signal-to-noise ratio (SNR), and other important quantities
determining the relationship between correct and false key hypotheses such as
confusion coefficients [10]. The resulting closed-form expression would allow one
to better understand how effective the attack can be under specific conditions
and how one can mitigate it with appropriate countermeasures.

So far, however, it can be theoretically computed only for a very narrow
range of distinguishers (DoM [10], CPA [18,29,31], Bayesian attacks [29]) and
only under restrictive “ideal” scenarios (e.g., perfectly known leakage model in
Gaussian noise). Moreover, the resulting exact expressions involve high dimen-
sional functions whose dependency on the relevant parameters (such as confusion
coefficients) can be very complex. For DoM and CPA under ideal scenarios, the
resulting formulas involve a multivariate normal c.d.f. [28] for which no closed-
form expression exists, while as was found in the case of CPA [29] the correspond-
ing matrices are not of full rank and require heavy Monte-Carlo computation.

In this paper, we carry out a theoretical derivation of the SR for quite
arbitrary distinguishers, at the first order of the exponent. More precisely, our
computation yields closed-form expressions of the success exponent (SE) associ-
ated to the failure rate (1–SR) at first order as the number of measurements m
increases:

1 − SR ≈ e−m·SE. (1)

(The precise mathematical meaning of the equivalence ≈ will be given in
Definition 7.) Even though we obtain the derived expression for the SE under
the asymptotic condition that m tends to infinity, simulations show that Eq. (1)
is still accurate even for fairly small values of m.

Such an evaluation of the success rate, suitable even for a small number of
traces, allows one to compare all possible distinguishers in any scenario (noise dis-
tribution, unprotected or protected implementation, etc.). A recent paper by Duc
et al. [9, Theorem 2] tackles this problem and achieves a unilateral bound. Here
we give both a lower and an upper bound, and as an illustration derive the exact
expression of the SE forDoM,CPA,MIA and the optimal distinguisher when model
is known (template attack) in terms of the appropriate relevant parameters.

The rest of this paper is organized as follows. Section 2 gives the necessary
definitions about distinguishers, success and soundness. In Sect. 3, we examine
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the convergence of success rate and apply a central limit theorem to derive the
SE (Theorem 1). Section 4 validates the SE even for relatively small number
of traces, and Sect. 5 provides closed-form expressions of SE for some popular
distinguishers. The conclusions and promising perspectives are in Sect. 6.

2 Preliminaries

In the sequel, we consider a standard univariate side-channel scenario as defined
in [21]. Let k∗ denote the secret cryptographic key, k any possible key hypothesis.
Also let X be a random variable1 representing the measured leakage and T be
the (random) input or cipher text used for a given encryption request. The
attacker knows some mapping f corresponding to an the internally processed
variable f(k, T ). A common consideration is f(T, k) = Sbox[T ⊕ k] where Sbox
is a substitution box. The measured leakage X can then be written as

X = ϕ(f(T, k∗)) + N, (2)

where ϕ is a deterministic leakage function and where N is an independent—not
necessarily Gaussian—additive noise with zero mean (E{N} = 0). The device-
specific deterministic function ϕ is normally unknown to the attacker but she
may estimate it as ϕ̂ and compute the sensitive variable Y (k) = ϕ̂(f(T, k)) for
each key hypothesis k. For later ease of notation we may drop the letter k and
write Y = Y (k) and Y ∗ = Y (k∗). We do not make any particular assumption
on ϕ or f so that our framework can be applied to any arbitrary scenario.

2.1 Distinguisher

In practice, the distinguisher is a function of m i.i.d. leakage measurements
X1,X2, . . . , Xm and sensitive variables Y1(k), Y2(k), . . . , Ym(k) whose maximiza-
tion over the key hypothesis yields k̂ = arg maxk D̂(k), where

D̂(k) = D̂(X1,X2, . . . , Xm;Y1(k), Y2(k), . . . , Ym(k)). (3)

Definition 1 (Theoretical Distinguisher). We assume that there is a
“theoretical” value of the distinguisher

D(k) = D(X,Y (k)) (4)

for each k such that D̂(k) converges to D(k) as m → +∞ in the mean-squared
sense, i.e., the mean-squared error

MSEm = E

{(D̂(k) − D(k)
)2} → 0 as m → +∞. (5)

1 Capitals such as X denote random variables. The corresponding lowercase x denotes
realizations of these random variables. We write P{A} for the probability of an event
A and E{X} for the expectation of a random variable X.
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This implies that D̂(k) → D(k) in probability. Thus we may consider the practi-
cal distinguisher D̂(k) as an estimator of the theoretical D(k). The corresponding
bias and variance of D̂(k) are

Bm(k) = E{D̂(k)} − D(k) (6)

Vm(k) = Var(D̂(k)). (7)

Example 1 (CPA [4]). For correlation analysis we have

D̂(k) = m
∑m

i=1 XiYi−
∑m

i=1 Xi

∑m
i=1 Yi√

m
∑m

i=1 X2
i −(
∑m

i=1 Xi)2
√

m
∑m

i=1 Y 2
i −(

∑m
i=1 Yi)2

(8)

D(k) = ρ(X,Y ) =
Cov(X,Y )

σXσY
=

E{(X − μX)(Y − μY )}
σXσY

. (9)

Example 2 (MIA [12]). For mutual information

D(k) = I(X,Y ) = H(X) − H(X|Y ) (10)

can be estimated e.g. with histograms as

D̂(k) =
∑

x

∑

y

P̂(x, y) log2
P̂(x, y)
P̂(x)P̂(y)

. (11)

Lemma 1. Bias Bm(k) and variance Vm(k) tend to zero as m increases.

Proof. One has the well-known bias-variance compromise: MSEm = E{(D̂(k) −
E{D̂(k)}+Bm(k)

)2} = Vm(k)+Bm(k)2+0 where the cross-term vanishes. Since
MSEm → 0 it follows that Vm(k) → 0 and Bm(k) → 0. ��

2.2 Success Rate

The success rate (SR) is the classical evaluation metric when comparing empirical
side-channel distinguishers D̂(k). It is generally calculated empirically [8,19,21].
The exact (theoretical) value of SR [10,18,29,31] is as follows.

Definition 2 (Success Rate and Failure Rate). The average success prob-
ability is defined by

SR(D̂) = P{∀k 
= k∗, D̂(k∗) > D̂(k)}. (12)

where k∗ is the actual value of the secret key. It is sometimes convenient to
consider the average failure rate as the complementary probability

FR(D̂) = 1 − SR(D̂) = P{∃k 
= k∗, D̂(k) ≥ D̂(k∗)}. (13)

Evaluating probabilities of events like {∃k 
= k∗, D̂(k) ≥ D̂(k∗)} may be
cumbersome. In order to pass from those to individual events {D̂(k) ≥ D̂(k∗)}
for each k, the following lemma is convenient.
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Lemma 2 (Squeezing the Failure Rate). One can lower and upper bound
the failure rate as follows:

max
k �=k∗

P{D̂(k) ≥ D̂(k∗)} ≤ FR(D̂) ≤
∑

k �=k∗
P{D̂(k) ≥ D̂(k∗)}. (14)

Proof. We can write FR(D̂) = P
{⋃

k �=k∗
{D̂(k) ≥ D̂(k∗)

}}
. The upper bound

follows from the union bound P{⋃k Ak} ≤ ∑
k P{Ak}. Now the probability of

the union is not less that of any individual event {D̂(k) ≥ D̂(k∗)}. Choosing the
one with maximal probability gives the lower bound. ��
Remark 1. The lower bound approximation in Eq. (14) is reminiscent of ideas
developed by Whitnall and Oswald in [33] where they define a framework for the
theoretical evaluation of side-channel distinguishers. Their outcome is captured
by the relative behavior of the distinguisher for the correct key and its nearest
rival. We leverage on this idea to prove our Theorem 1 in Sect. 3.

Lemma 2 leads us to define pairwise quantities (see e.g., [29, Eq. (13)]).

Definition 3 (Pairwise Deltas). For any function f(k) define

Δf(k∗, k) = f(k∗) − f(k). (15)

Thus ΔD̂(k∗, k) = D̂(k∗) − D̂(k) and ΔD(k∗, k) = D(k∗) − D(k). The pairwise
error probability for the transition k∗ → k is

P{D̂(k) ≥ D̂(k∗)} = P{ΔD̂(k∗, k) ≤ 0}. (16)

Lemma 3. The difference ΔD̂(k∗, k) estimates ΔD(k∗, k) with bias and
variance

Bm(k∗, k) = Bm(k∗) − Bm(k) (17)

Vm(k∗, k) = Var(ΔD̂(k∗, k)) (18)

tending to zero as m → +∞.

Proof. Since D̂(k) → D(k) and D̂(k∗) → D(k∗) in the mean-square sense
(Definition 1) we can deduce that D̂(k∗) − D̂(k) → D(k∗) − D(k) also in the
mean-square sense. This follows from Minkowski’s inequality

√
E{(X ± Y )2} ≤√

E{X2}+
√

E{Y 2}. The proof of Lemma 1 now applies verbatim to show that
Bm(k∗, k) → 0 and Vm(k∗, k) → 0. ��

2.3 Soundness

Definition 4 (Soundness Condition). The attack using distinguisher D̂(k)
is sound if the corresponding theoretical distinguisher’s values satisfy the inequal-
ities

D(k∗) > D(k) for all k 
= k∗. (19)

In other words ΔD(k∗, k) > 0 for all bad key hypotheses k.
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In [13] the authors give a proof of soundness for CPA. Note that, DoM can
be seen as a special case of CPA (when m → ∞) where Y ∈ {±1} and thus is all
the more sound. MIA was proven sound for Gaussian noise in [23,26].

Proposition 1 (Soundness). When the attack is sound, the success eventu-
ally tends to 100% as m increases:

SR(D̂) → 1 as m → +∞. (20)

This has been taken as a definition of soundness in [30, Sect. 5.1]. We provide
an elegant proof.

Proof. By Lemma 2, 1 − SR(D̂) ≤ ∑
k �=k∗ P{ΔD̂(k∗, k) ≤ 0}. It suffices to show

that for each k 
= k∗,P{ΔD̂(k∗, k) ≤ 0} = P{ΔD(k∗, k)−ΔD̂(k∗, k) ≥ΔD(k∗, k)}
tends to zero. Now by the soundness assumption, ΔD = ΔD(k∗, k) > 0.
Dropping the dependency on (k∗, k) for notational convenience, one obtains

P{ΔD − ΔD̂ ≥ ΔD} ≤
E

{(
ΔD − ΔD̂)2}

ΔD2
→ 0 (21)

where we have used Chebyshev’s inequality P{X ≥ ε} ≤ E{X2}
ε2 and the fact that

ΔD̂(k∗, k) → ΔD(k∗, k) in the mean-square sense (Lemma 3). ��

Since SR(D̂) → 1 as m increases we are led to investigate the rate of conver-
gence of FR(D̂) = 1 − SR(D̂) toward zero. This is done next.

3 Derivation of Success Exponent

3.1 Normal Approximation and Assumption

We first prove some normal (Gaussian) behavior in the case of additive distin-
guishers and then generalize.

Definition 5 (Additive Distinguisher [18]). An additive distinguisher can
be written in the form of a sum of i.i.d. terms:

D̂(X1,X2, . . . , Xm;Y1(k), Y2(k), . . . , Ym(k)) =
1
m

m∑

i=1

D̂(Xi;Yi(k)). (22)

Remark 2. DoM is additive (see e.g., [10]). Attacks maximizing scalar products∑m
i=1 XiYi are clearly additive; they constitute a good approximation to CPA,

and are even equivalent to CPA if one assumes that the first and second moments
of Y (k) are constant independent of k (see [14,27,29] for similar assumptions).
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Lemma 4. When the distinguisher is additive, the corresponding theoretical
distinguisher is

D(X,Y (k)) = E{D̂(X;Y (k))}. (23)

Thus ΔD̂(k∗, k) is an unbiased estimator of ΔD(k∗, k), whose variance is

Vm(k∗, k) =
Var

(D̂(X;Y (k∗)) − D̂(X;Y (k))
)

m
(24)

Proof. Letting E{D̂(X;Y (k))} = D(k), since the terms D̂(Xi;Yi(k)) are inde-
pendent and identically distributed, one has

E

{(D̂(k) − D(k)
)2} = 1

m2E

{∑m

i=1

(D̂(Xi;Yi(k)) − D(k)
)2} (25)

= 1
mE

{(D̂(X;Y (k)) − D(k)
)2} → 0. (26)

Therefore, 1
m

∑m
i=1 D̂(Xi;Yi(k)) → E{D̂(X;Y (k))} in the mean-square sense.

(This is actually an instance of the weak law of large numbers). The correspond-
ing bias is zero: E{D̂(k)} − D(k) = 0.

Taking differences, it follows from Lemma 3 that ΔD̂(k∗, k) → ΔD(k∗, k) in
the mean-square sense with zero bias. The corresponding variance is computed as
above as E

{(
ΔD̂(k∗, k) − ΔD(k∗, k)

)2} = 1
mE

{((D̂(X;Y (k∗)) − D̂(X;Y (k))
) −

(D(X;Y (k∗)) − D(X;Y (k))
))2} = 1

mVar
(D̂(X;Y (k∗)) − D̂(X;Y (k))

)
. ��

Proposition 2 (Normal Approximation). When the distinguisher is addi-
tive, ΔD̂(k∗, k) follows the normal approximation

ΔD̂(k∗, k) ∼ N (
ΔD(k∗, k), Vm(k∗, k)

)
(27)

as m increases. This means that

ΔD̂(k∗, k) − ΔD(k∗, k)
√

Vm(k∗, k)
(28)

converges to the standard normal N (0, 1) in distribution.

Proof. Apply the central limit theorem to the sum of i.i.d. variables
mΔD̂(k∗, k) =

∑m
i=1 D̂(Xi;Yi(k∗)) − D̂(Xi;Yi(k)). It follows that

mΔD̂(k∗, k) − mΔD(k∗, k)
√

m · Var
(
ΔD̂(k∗, k)

) =
ΔD̂(k∗, k) − ΔD(k∗, k)

√
Vm(k∗, k)

(29)

tends in distribution to N (0, 1). ��
Remark 3. Notice that the normal approximation is not a consequence of a
Gaussian noise assumption or anything actually related to the leakage model
but is simply a genuine consequence of the central limit theorem.
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The above result for additive distinguishers leads us to the following.

Definition 6 (Normal Assumption). We say that a sound distinguisher fol-
lows the normal assumption if

ΔD̂(k∗, k) ∼ N (
E{ΔD̂(k∗, k)}, Vm(k∗, k)

)
(30)

as m increases.

Remark 4. We note that in general

E{ΔD̂(k∗, k)} = ΔD(k∗, k) + ΔBm(k∗, k) (31)

has a bias term (Lemma 3). By Proposition 2 any additive distinguisher fol-
lows the above normal assumption (with zero bias). We shall adopt the normal
assumption even in situations where the distinguisher is not additive (as is the
case of MIA) with possibly nonzero bias. The corresponding outcomes will be
justified by simulations in Sect. 4.

3.2 The Main Result: Success Exponent

Recall a well-known mathematical definition that two functions are equivalent :
f(x) ∼ g(x) if f(x)/g(x) → 1 as x → +∞. The following defines a weaker type
of equivalence f(x) ≈ g(x) at first order of exponent, which is required to derive
the success exponent SE.

Definition 7 (First-Order Exponent [7, Chap. 11]). We say that a function
f(x) has first order exponent ξ(x) if

(
ln f(x)

) ∼ ξ(x) as x → +∞, in which
case we write

f(x) ≈ exp ξ(x). (32)

Lemma 5. Let Q(x) = 1√
2π

∫ +∞
x

e−t2/2 dt be the tail probability of the standard
normal (a.k.a. Marcum function). Then as x → +∞,

Q(x) ≈ e−x2/2. (33)

Proof. For t > x, we can write
∫ +∞

x

1 + 1/t2

1 + 1/x2

e−t2/2

√
2π

dt ≤ Q(x) ≤
∫ +∞

x

t

x

e−t2/2

√
2π

dt. (34)

Taking antiderivative yields

1
1 + 1/x2

1√
2π

e−x2/2

x
≤ Q(x) ≤ 1

x
√

2π
e−x2/2. (35)

Taking the logarithm gives

−x2/2 − ln(x + 1/x) − ln(2π)/2 ≤ ln Q(x) ≤ −x2/2 − ln x − ln(2π)/2 (36)

which shows that ln Q(x) ∼ −x2/2. ��
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Lemma 6. Under the normal assumption,

P{ΔD̂(k∗, k) ≤ 0} ≈ exp
(

−
(
ΔD(k∗, k) + ΔBm(k∗, k)

)2

2 Vm(k∗, k)

)
. (37)

Proof. Noting that

P{ΔD̂(k∗, k) ≤ 0} = P

{
ΔD̂(k∗,k)−E{ΔD̂(k∗,k)}√

Vm(k∗,k)
≤ −E{ΔD̂(k∗,k)}√

Vm(k∗,k)

}
(38)

and using the normal approximation it follows that

P{ΔD̂(k∗, k) ≤ 0} ≈ Q
(
E{ΔD̂(k∗, k)}
√

Vm(k∗, k)

)
(39)

where E{ΔD̂(k∗, k)} = ΔD(k∗, k)+ΔBm(k∗, k). The assertion now follows from
Lemma 5. ��
Theorem 1. Under the normal assumption,

FR(D̂) = 1 − SR(D̂) ≈ exp
(
− min

k �=k∗

(
ΔD(k∗, k) + ΔBm(k∗, k)

)2

2 Vm(k∗, k)

)
. (40)

Proof. We combine Lemmas 2 and 6. The lower bound of FR(D̂) is

≈ max
k �=k∗

exp
(
−

(
ΔD(k∗, k) + ΔBm(k∗, k)

)2

2 Vm(k∗, k)

)
(41)

= exp
(
− min

k �=k∗

(
ΔD(k∗, k) + ΔBm(k∗, k)

)2

2 Vm(k∗, k)

)
. (42)

The upper bound is the sum of vanishing exponentials (for k 
= k∗) which is
equivalent to the maximum of the vanishing exponentials, which yields the same
expression. The result follows since the lower and upper bounds from Lemma 2
are equivalent as m increases. ��
Corollary 1. For any additive distinguisher,

FR(D̂) = 1 − SR(D̂) ≈ e−m·SE(D̂) (43)

where

SE(D̂) = min
k �=k∗

ΔD(k∗, k)2

2 Var
(D̂(X;Y (k∗)) − D̂(X;Y (k))

) . (44)

Proof. Apply the above theorem using Lemma 4 and Proposition 2. ��
Remark 5. We show in Sect. 5 that for non-additive distinguisher such as MIA
the closed-form expression for the first-order exponent is linear in the number
of measurements m so that the expression 1 − SR ≈ e−m·SE may be considered
as fairly general for large m. Moreover, we experimentally show in the next
section that this approximation already holds with excellent approximation for
a relatively small number of measurements m.
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4 Success Exponent for Few Measurements

Some devices such as unprotected 8-bit microprocessors require only a small
number of measurements to reveal the secret key. As the SNR is relatively high,
the targeted variable has the length of the full size, and on such processors,
the pipeline is short or even completely absent. On such worst-case platforms,
such as the AVR ATMega, the SNR can be has high as 7, for those instructions
consisting in memory look-ups. A CPA requires m = 12 measurements (cf. DPA
contest v4, for attacks reported in [2]).

In order to investigate the relation SR ≈ 1−e−mSE for such small values of m,
we target PRESENT [3], which is an SPN (Substitution Permutation Network)
block cipher, with leakage model given by Y (k) = HW (Sbox(T ⊕ k)), where
Sbox : F4

2 → F
4
2 is the PRESENT substitution box and k ∈ F

4
2. We considered

N ∼ N (0, 1) in our simulations applied to the following distinguishers:

– optimal distinguisher (a.k.a. template attack [6], whose formal expression is
given in [15] for Gaussian noise);

– DoM [17]2 on bit #2;
– CPA (Example 1),
– MIA (Example 2), with three distinct bin widths of length Δx ∈ {1, 2, 4}, and

two kinds of binning:
• B1, which partitions R as

⋃
i∈N

[iΔx, (i + 1)Δx[, and
• B2, which partitions R as

⋃
i∈N

[(i − 1
2 )Δx, (i + 1

2 )Δx[.

Fig. 1. Failure rate for few measurements. (a) Optimal distinguisher, CPA, DoM, and
MIA. (b) Zoom out for less efficient attacks DoM and MIA.

Figure 1 shows the failure rate in a logarithmic scale for 10, 000 simulations
with additional error bars as described in [19]. To assess the linear dependence

2 It is known that for bit #1, the DoM is not sound: the same distinguisher value can
be obtained for the correct key k = k∗ and for at least one incorrect key k = k∗⊕0x9.
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log(1−SR) = −mSE between the logarithm of the error rate and the number of
traces, we have superimposed the linear slope −SE in black. We find that CPA
and the optimal distinguishers behave according to the law for m as small as 2!
The error rate of MIA and DoM becomes linear for m ≥ 40. Interestingly, for
MIA, the binning size has an impact (see also [12,23]). The best parameterization
of the MIA corresponds to Δx = 2, for both B1 and B2.

5 Closed-Form Expressions of SE

5.1 Success Exponents for DoM and CPA

We precise our side-channel model from Eq. (2) in case of additive distinguishers.
As these distinguishers are most usually used when the leakage X is linearly
depend on Y ∗, we assume similar to previous works [10,31] X = αY ∗ + N . To
simplify the derivation, we assume that the distribution of Y (k) is identical for
all k. In other words, knowing the distribution of Y (k) does not give any evidence
about the secret (see [14,27] for similar assumptions). In particular Var{Y (k)}
is constant for all k. Without loss of generality we may normalize the sensitive
variable Y such that E{Y (k)} = 0 and Var{Y (k)} = E{Y (k)2} = 1. The SNR
is thus equal to α2/σ2.

We first extend the idea of confusion similar to [31], which we call general
2-way confusion coefficients.

Definition 8 (General 2-way Confusion Coefficients). For k 
= k∗ we
define

κ(k∗, k) = E

{(Y (k∗) − Y (k)
2

)2}
, (45)

κ′(k∗, k) = E

{
Y (k∗)2

(Y (k∗) − Y (k)
2

)2}
. (46)

Remark 6. The authors of [10] defined the confusion coefficient as κ(k∗, k) =
P{Y (k∗) 
= Y (k)}. A straightforward computation gives

P{Y (k∗) 
= Y (k)} = P{Y (k∗) = −1, Y (k) = 1)} + P{Y (k∗) = −1, Y (k) = 1}

= E{(Y (k∗) − Y (k)
2

)2}. (47)

Thus our definition is consistent and a natural extension of the work in [10].
The alternative confusion coefficient introduced in [31] is defined as

κ◦(k∗, k) = E{Y (k∗)Y (k)}. The following relationship is easily obtained:

κ◦(k∗, k) = 1 − 2κ(k∗, k). (48)

Proposition 3 (SE for CPA). The success exponent for CPA takes the closed-
form expression

SE = min
k �=k∗

α2κ2(k∗, k)
2(α2(κ′(k∗, k) − κ2(k∗, k)) + σ2κ(k∗, k))

. (49)
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Proof. Proposition 3 is an immediate consequence of the formula in Eq. (44) and
the following lemma. ��
Lemma 7. The first two moments of Δ̂D(k∗, k) are given by

E{Δ̂D(k∗, k)} = 2ακ(k∗, k), (50)

Var(Δ̂D(k∗, k)) = 4[α2(κ′(k∗, k) − κ2(k∗, k)) + σ2κ(k∗, k)]. (51)

Proof. Recall from Remark 2 that Δ̂D(k∗, k) = XY ∗ − XY = (αY ∗ + N)(Y ∗ −
Y ). On one hand, since we assumed that E{(Y ∗)2} = 1, we obtain

E{Y ∗(Y ∗ − Y )} = 1 − E{Y ∗Y } = 2E
{(Y ∗ − Y

2

)2}
= 2κ(k∗, k). (52)

On the other hand, since N is independent of Y ,

E{N(Y ∗ − Y )} = E{N} · E{Y ∗ − Y } = 0. (53)

Combining we obtain E{Δ̂D(k∗, k)} = 2ακ(k∗, k). For the variance we have

E{Δ̂D(k∗, k)2} = E{(XY ∗ − XY )2} (54)

= E{N2(Y ∗ − Y )2} + α2
E{Y ∗2(Y ∗ − Y )2} (55)

= 4σ2κ(k∗, k) + α24κ′(k∗, k), (56)

since all cross terms with N vanish. It follows that

Var(Δ̂D(k∗, k)) = E{Δ̂D(k∗, k)2} − E{Δ̂D(k∗, k)}2 (57)

= 4[α2(κ′(k∗, k) − κ2(k∗, k)) + σ2κ(k∗, k)]. (58)

as announced. ��
For DoM with one-bit variables Y (k) ∈ {±1} we can further simplify the

success exponent such that it can be expressed directly through the SNR =
α2/σ2, number of measurements and 2-way confusion coefficient κ(k∗, k):

Proposition 4 (SE for 1-bit DoM). The success exponent for DoM takes the
closed-form expression

SE =
1

max
k �=k∗

(2 − 2κ(k∗, k)
κ(k∗, k)

+
2

κ(k∗, k) SNR

) (59)

Proof. When Y (k) ∈ {±1} on has the additional simplification:

κ(k∗, k) = E
{(Y (k∗) − Y (k)

2

)2}
= E

{
Y (k∗)2

(Y (k∗) − Y (k)
2

)2}
= κ′(k∗, k).

(60)

Now Proposition 4 follows directly from Proposition 3. ��
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Remark 7. Estimating the success rate directly from confusion coefficients
includes a computation of a multivariate normal cumulative distribution func-
tion [28] for which we have found that no closed-form expression exists. Moreover,
the corresponding covariance matrices [κ(k∗, i, j)]i,j and [κ(k∗, i) × κ(k∗, j)]i,j
that depend on the confusion coefficients are not of full rank. This effect was
similarly discovered for CPA by Rivain in [29], where the author propose to use
Monte-Carlo simulation to overcome this problem.

Therefore, it is difficult to rederive the expressions above for the success expo-
nent from the exact expressions of SR in [10,29]. However, one clearly obtains
the same exponential convergence behavior of SR toward 100 %.

As a result, we stress that the closed-form expressions of SE above are more
convenient than the exact expressions for the SR for DoM and CPA, since in the
SE, only 2-way confusion coefficients κ(k∗, k), κ′(k∗, k) are involved without the
need to compute multivariate distributions.

5.2 Success Exponent for the Optimal Distinguisher

Definition 9 (Optimal Distinguisher [15]). In case α is known and the noise
is Gaussian the optimal distinguisher is additive and given by

D(k) = −(X − αY )2 (61)

D̂(X,Y (k)) = −(X − αY (k))2. (62)

Interestingly, as we show in the following proposition the optimal distinguisher
involves the following confusion coefficient.

Definition 10 (Confusion Coefficient for the Optimal Distinguisher).
For k 
= k∗ we define

κ′′(k∗, k) = E

{(Y (k∗) − Y (k)
2

)4}
. (63)

Proposition 5 (SE for the Optimal Distinguisher). The success exponent
for the optimal distinguisher takes the closed-form expression

SE = min
k �=k∗

α2κ2(k∗, k)
2(σ2κ(k∗, k) + α2(κ′′(k∗, k) − κ(k∗, k))

. (64)

Proof. Proposition 5 is an immediate consequence of the formula in Eq. (44) and
the following lemma. ��
Lemma 8. The first two moments of Δ̂D(k∗, k) are given by

E{Δ̂D(k∗, k)} = 4α2κ(k∗, k), (65)

Var(Δ̂D(k∗, k)) = 16α2(σ2κ(k∗, k) + α2(κ(k∗, k)′′ − κ(k∗, k))). (66)
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Proof. Recall that E{N}=0. Straightforward calculation yields

E{Δ̂D(k∗, k)} = E{−(X − αY ∗)2 + (X − αY )2} (67)

= E{2Nα(Y ∗ − Y )} + E{α2(Y ∗ − Y )2} (68)

= 4α2κ(k∗, k). (69)

Next we have

E{Δ̂D(k∗, k)2} = E{(2Nα(Y ∗ − Y ) + α2(Y ∗ − Y )2)2} (70)

= E{4N2α2(Y ∗ − 2)2} + E{(Y ∗ − Y )4α4} (71)

= 16α2σ2κ(k∗, k) + 16α4κ′′(k∗, k) (72)

which yields the announced formula for the variance. ��
Corollary 2. The closed-form expressions for DoM, CPA and for the optimal
distinguisher simplify for high noise σ � α in a single equation:

SE ≈ min
k �=k∗

α2κ2(k∗, k)
2σ2κ(k∗, k)

=
1
2

· SNR · min
k �=k∗

κ(k∗, k). (73)

Proof. Trivial and left to the reader. ��
Remark 8. Corollary 2 is inline with the findings in [15], that CPA and the
optimal distinguisher become closer the lower the SNR. However, note that,
in [15] CPA is the correlation of the absolute value.

Remark 9. From Corollary 2 and the relationship 1 − SR ≈ e−m·SE one can
directly determine that if, e.g., the SNR is decreased by a factor of 2 the num-
ber of measurements m have to multiplied by 2 in order to achieve the same
success. This verifies a well-known “rule of thumb” for side-channel attacks (see
e.g., [20]).

5.3 Success Exponent for MIA

Unlike CPA or DoM, the estimation of the mutual information in MIA:

D(k) = I(X,Y ) = H(X) − H(X|Y ) (74)

= −
∫

p(x) log p(x) dx +
∑

y

p(y)
∫

p(x|y) log p(x|y) dx (75)

is a nontrivial problem. While Y is discrete, the computation of mutual infor-
mation requires the estimation of the conditional pdfs p(x|y). For a detailed
evaluation of estimation methods for MIA we refer to [32].

In the following, we consider the estimation with histograms (H-MIA) in order
to simplify the derivation of a closed-form expression for SE. One partitions the
leakage X into h distinct bins bi of width Δx with i = 1, . . . , h.
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Definition 11. Let p̂(x) = #bi
m where #bi is the number of leakage values falling

into bin bi and let p̂(x|y) be the estimated probability knowing Y = y. Then

D̂(k) = −
∑

x

p̂(x) log p̂(x) +
∑

y

p̂(y)
∑

x

p̂(x|y) log p̂(x|y). (76)

To simplify the presentation that follows, we consider only the conditional
negentropy −Ĥ(X|Y ) as a distinguisher, since Ĥ(X) does not depend on the
key hypothesis k. Additionally, we assume that the distribution of Y is known
to the attacker so that she can use p(y) instead of p̂(y). Now H-MIA simplifies
to

H-MIA(X,Y ) =
∑

y

p(y)
∑

x

p̂(x|y) log p̂(x|y) + log Δx. (77)

The additional term log Δx arises due to the fact that we have estimated the
differential entropy H(X). For more information on differential entropy and
mutual information we refer to [7].

Proposition 6 (SE for H-MIA).

SE ≈ min
k∗ �=k

1
2

(
ΔD(k∗, k) + Δx2

24

(
ΔJ(k∗, k)

))2
∑

y

p(y)Var{− log p(X|Y = y)} +
∑

y∗
p(y∗)Var{− log p(X|Y = y∗)}

,

(78)

where ΔD(k∗, k) = H(X|Y ) − H(X|Y ∗), ΔJ(k∗, k) = J(X|Y ) − J(X|Y ∗),
J(X|Y ) =

∑
y p(y)J(X|Y = y) and J(X|Y ) is the Fisher information [11]:

J(X|Y = y) =
∫ ∞

−∞

[ d
dxp(x|y)]2

p(x|y)
dx. (79)

Proof. Since Y is discrete the bias only arise due to the discretization of X and
the limited number of measurements m. Therefore, we use the approximations
given for the bias of Ĥ(X) in [22] (3.14) to calculate E{D̂(k)} and E{Δ̂D(k∗, k)}
for H-MIA. To be specific, let h define the number of bins and Δx their width.
Then

E{D̂(k)} = −E{Ĥ(X|Y )} = −
∑

y

p(y)E{Ĥ(X|Y = y)}, (80)

≈ −
∑

y

p(y)
[
H(X|Y = y) +

Δx2

24
J(X|Y = y)

] − h − 1
2m

, (81)

E{Δ̂D(k∗, k)} ≈
∑

y

p(y)
[
H(X|Y = y) +

Δx2

24
J(X|Y = y)

]

−
(∑

y∗
p(y∗)

[
H(X|Y ∗ = y∗) +

Δx2

24
J(X|Y ∗ = y∗)

])
, (82)
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with J(X|Y ) =
∑

y p(y)J(X|Y = y) and J(X|Y = y) being the Fisher informa-

tion
∫ ∞

−∞
[ d
dxp(x|y)]2

p(x|y) dx [11].

To calculate Var{D̂(k)} we use the law of total variance [16] and the approx-
imations for the variance given in [22] (4.9):

Var{D̂(k)} = Var{Ĥ(X|Y )}} = Var{E{Ĥ(X|Y = y)}} (83)

≈ Var{H(X)} − 1
m

∑

y

p(y)Var{− log p(x|y)} (84)

Var{Δ̂D(k∗, k)} = Var{E{Ĥ(X|Y = y}} − Var{E{Ĥ(X|Y ∗ = y∗}} (85)

− 2Cov(E{Ĥ(X|Y = y}},E{Ĥ(X|Y ∗ = y∗}})

≈ 1
m

(∑

y

p(y)Var{− log p(x|y)} +
∑

y

p(y∗)Var{− log p(x|y∗)}
)

(86)

From Eqs. (82) and (86) Proposition 6 follows directly. ��
Remark 10. Interestingly, even if MIA is not additive the SE is linear in the
number of measurements m just like for DoM and CPA. This is also confirmed
experimentally in the next subsection.

Remark 11. If N is normal distributed with variance σ2 we can further simplify
H(X|Y ∗ = y∗) = 1

2 log(2πeσ2) since p(x|y∗) = pN (x − y∗). Moreover, one has
J(X|Y ∗ = y) = 1

σ2 and Var{− log p(x|y∗)} = 1
2m .

Remark 12. Remarkably, the variance term does not depend on the size of Δx
except in extreme cases like Δx = 1 and Δx → ∞ – see [22] for more information.

5.4 Validation of the SE

To illustrate the validity of the success exponent and the derived closed-form
expressions, we choose the same scenario as in Sect. 4 (targeting the Sbox of
PRESENT) with a higher variance of the noise. We increased the bin width Δx
to 4 for MIA, which lead to the best success when comparing with other widths.
To be reliable we conducted 500 independent experiments in each setting.

With the appropriate parameters (confusion coefficients, SNR, etc.), we have
computed the exact values for the closed-form expressions in Eqs. (49), (59), (64),
and (78) for CPA, DoM, the optimal distinguisher, and MIA which are listed in
Table 1 with SE for several σ’s. Additionally, we computed for CPA, DoM, and
the optimal distinguisher the SE in case of low noise from Eq. (73). To show
that these values are valid and reasonable, we estimated the success exponent
ŜE from the general theoretical formula in Eq. (44) using simulations. One can
observe that Corollary 2 is valid.

Moreover, we estimated the success exponent directly from the obtained suc-
cess rate as − log(1 − SR(D̂))/m; this was done for limited values of m to avoid
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Table 1. Experimental validation of SE for several σ (values ×10−3)

× 10−3 σ = 5 σ = 7 σ = 10

DPA CPA OPT MIA DPA CPA OPT MIA DPA CPA OPT MIA

SE 0.2 4.5 4.8 1.4 0.1 2.3 2.4 0.8 0.01 1.2 1.2 0.4

SE (Eq. (73)) 0.2 4.7 4.7 — 0.1 2.4 2.4 — 0.01 1.2 1.2 —

ŜE 0.3 4.7 4.6 1.4 0.1 2.3 2.3 0.8 0.1 1.1 1.2 0.2

the saturation effect of the SR(D̂) = 1. Figure 2b displays the theoretical value
of SE along with the estimations as a function of the number of measurements
for σ = 5. For comparison we plot the success rate in Fig. 2a.

Remarkably, one can see that for all distinguishers, the two estimated values
are getting closer to the theoretical SE as m increases. This confirms our the-
oretical study in Sect. 3 and also demonstrates that the first-order exponent of
MIA is indeed linear in the number of measurements as expected.

Fig. 2. Success rate [top graph] and success exponent (SE) [bottom graph]
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Fig. 3. Empirical results using real traces (Arduino board)

Furthermore, for practical measurements we used an Arduino pro mini board
with an AVR 328p micro-controller running at 16 MHz. We captured the oper-
ation of the AES Substitution box during the first round at 2 GSa/s using an
EM probe. Figure 3a shows the success rate for DoM, CPA and MIA for 1600
independent retries. We plot − log(1 − SR(D̂))/m in Fig. 3b. One can observe
that DoM converges to a constant. For CPA and MIA the saturation effect of
SR(D̂) = 1 is disguising the convergence.

These results raise a lot of new perspectives which we discuss next.

6 Conclusion and Perspectives for Further Applications

In this work we investigated in the first-order exponent (success exponent SE) of
the success rate for arbitrary sound distinguishers under a mild normal assump-
tion as m increases. The resulting expressions were derived under the asymptotic
condition that the number of measurements m tends to infinity, but already hold
accurately for reasonable low values of m. More precisely, in the investigated
scenarios the approximations for CPA hold for m ≥ 2 whereas for MIA we have
m ≥ 40. As an illustration we derived the closed-form expressions of the SE
for DoM, CPA, the optimal distinguisher, and MIA and showed that they agree
theoretically and empirically.

This novel first-order exponent raises many new perspectives. In particular,
the resulting closed-form expressions for the SE allows one to answer questions
such as: “How many more traces?” for achieving a given goal. For example, sup-
pose that one has obtained SE = 90% after m measurements. To obtain 99%
success with the same distinguisher (hence the same SE), one should approxi-
mately square (1−SR)2 = (0.1)2 = 0.01 which amounts to doubling m. Thus as
a rule of thumb we may say that “doubling the number of traces allows one to
go from 90% to 99% chance of success”.

Finally, we underline that the success exponent would constitute another
approach to the question of comparing substitution boxes with respect to their
exploitability in side-channel analysis. It can nicely complement methods like
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transparency order [25] (and variants thereof [5,24]). It can also characterize, in
the same framework, various countermeasures such as no masking vs. masking.

The generality of the proposed approach to derive the success exponent allows
one to investigate attack performance in many different scenarios, and we feel
that for this reason it is a promising tool.

Acknowledgements. The authors are grateful to Darshana Jayasinghe for the real-
world validation on traces taken from the Arduino board.
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Abstract. Motivated by the problem of how to communicate over a
public channel with an active adversary, Dodis and Wichs (STOC’09)
introduced the notion of a non-malleable extractor. A non-malleable
extractor nmExt : {0, 1}n ×{0, 1}d → {0, 1}m takes two inputs, a weakly-
random W and a uniformly random seed S, and outputs a string which
is nearly uniform, given S as well as nmExt(W, A(S)), for an arbitrary
function A with A(S) �= S.

In this paper, by developing the combination and permutation
techniques, we improve the error estimation of the extractor of Raz
(STOC’05), which plays an extremely important role in the constraints
of the non-malleable extractor parameters including seed length. Then
we present improved explicit construction of non-malleable extractors.
Though our construction is the same as that given by Cohen, Raz and
Segev (CCC’12), the parameters are improved. More precisely, we con-
struct an explicit (1016, 1

2
)-non-malleable extractor nmExt : {0, 1}n ×

{0, 1}d → {0, 1} with n = 210 and seed length d = 19, while Cohen
et al. showed that the seed length is no less than 46

63
+ 66. Therefore, our

method beats the condition “2.01 · log n ≤ d ≤ n” proposed by Cohen
et al., since d is just 1.9 · log n in our construction. We also improve
the parameters of the general explicit construction given by Cohen et al.
Finally, we give their applications to privacy amplification.

Keywords: Extractors ·Non-malleable extractors ·Seed length ·Privacy
amplification protocol

1 Introduction

Randomness extractors are functions that convert weakly random sources into
nearly uniform bits. Though the motivation of extractors is to simulate random-
ized algorithms with weak random sources as might arise in nature, randomness
extractors have been successfully applied to coding theory, cryptography, com-
plexity, etc. [12,14,22]. In this paper, we focus on the extractors that can be
applied to privacy amplification. In this scenario, two parties Alice and Bob share
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a weakly random secret W ∈ {0, 1}n. W may be a human-memorizable pass-
word, some biometric data, and physical sources, which are themselves weakly
random, or a uniform secret which may have been partially leaked to an adver-
sary Eve. Thus, only the min-entropy of W is guaranteed. Alice and Bob interact
over a public communication channel in order to securely agree on a nearly uni-
form secret key R ∈ {0, 1}m in the presence of the adversary, Eve, who can see
every message transmitted in the public channel. The public seed length and
min-entropy of W are two main measures of efficiency in this setting. If Eve
is passive, a (strong) randomness extractor yields the following solution: Alice
sends a uniformly random seed S to Bob, then they both compute R = Ext(W,S)
as the nearly uniform secret key [18]. If Eve is active (i.e., it may change the
messages in arbitrary ways), some protocols have been proposed to achieve this
goal [4,6–9,13–15,21,23].

As a major progress, Dodis and Wichs [9] introduced non-malleable extrac-
tors to study privacy amplification protocols, where the attacker is active and
computationally unbounded. If an attacker sees a random seed S and modifies it
into an arbitrarily related seed S′, then the relationship between R = Ext(W,S)
and R′ = Ext(W,S′) is bounded to avoid related key attacks. More formally, a
non-malleable extractor is a function nmExt : {0, 1}n × {0, 1}d → {0, 1}m that
takes two inputs, a weakly-random secret source1 W with min-entropy α and
uniformly random seed S, and outputs a string which is γ-close to uniform (see
Definition 1), given S as well as nmExt(W,A(S)), for an arbitrary function A
with A(S) �= S. They proved that (α, 2γ)-non-malleable extractors exist as long
as α > 2m + 3 log 1

γ + log d + 9 and d > log(n − α + 1) + 2 log 1
γ + 7. The

first explicit non-malleable extractor was constructed by Dodis, Li, Wooley and
Zuckerman [8]. It works for any weakly random input source with the min-
entropy α > n

2 and uniformly random seed of length d = n (It works even if the
seed has entropy only Θ(m + log n)). However, when outputting more than a
logarithmic number of bits, its efficiency relies on a longstanding conjecture on
the distribution of prime numbers.

Li [14] proposed that (α, 2γ)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}, where α = (12−δ)·n and d = O(log n+log(1/γ)) for any constant
δ > 0, can be constructed as follows: the seed S is encoded using the parity check
matrix of a BCH code, and then the output is the inner product function of the
encoded source and the encoded seed over F2. Dodis and Yu [11] observed that for
4-wise independent hash function family {hw : {0, 1}d → {0, 1}m | w ∈ {0, 1}n},
nmExt(w, s) = hw(s) is a (α, 2

√
2n−α−d)-non-malleable extractor. In 2012, an

alternative explicit construction based on the extractor of Raz [20] was given by
Cohen et al. [6]. Without using any conjecture, their construction works for any
weakly random source with the min-entropy α = (12 + δ) · n and uniformly ran-
dom seed of length d ≥ 23

δ ·m+2 log n (see Theorem 1 for details). However, their
result suffers from some drawbacks: The non-malleable extractor is constructed
based on the explicit seeded extractor of Raz [20], while the error2 estimation in

1 When we say a source in this paper, we mean a random variable.
2 The concept of the error of seeded extractor can be seen in Definition 1.
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that construction is too rough. Furthermore, though one main purpose of [6] is
to shorten the length of the seed, the lower bound on the seed length is still not
optimal.

Our Contributions and Techniques

• By developing the combination and permutation techniques, we improve the
error estimation of Raz’s extractor in STOC’05 [20], a special case of which was
used by Cohen et al. in CCC’12 [6]. For simplicity, denote γ1 as the error of
the extractor in [6], and γ2 as the counterpart in this paper. Recall that γ1 =

2
( 1
2 −δ)n

k ·(2ε)
1
k in [6] under the assumption that ε ≥ 2− dk

2 ·kk and 0 < δ ≤ 1
2 (see

Lemma 1). If ε ≥ 1

2(
1
2 −δ)n+1

, then γ1 = 2
( 1
2 −δ)n

k ·(2ε)
1
k ≥ 1. In this case, the error

estimation is meaningless. One main reason is that in those proofs, the partition
method about the sum [6,20] which bounds the error didn’t capture the essence
of the biased sequence for linear tests (see Definition 2). In this paper, we pro-
pose another partition method and give a better bound on the sum by employing
the combination and permutation formulas. In particular, the combination and
permutation techniques (see Proposition 1) may be useful in future works. Cor-

respondingly, the error is γ2 = 2
( 1
2 −δ)n

k · [2− dk
2 ·(k−1) ·(k−3) · · · · ·1 ·(1−ε)+ε]

1
k

(see Theorem 2). Since ε ≥ 2− dk
2 ·kk and 2− dk

2 ·kk > 2− dk
2 ·(k−1) ·(k−3) · · · · ·1

for any even integer k, we get γ1 > γ2. To simplify this bound, let k be a specific

value. For instance, let k = 4, then the error γ2 = 2
( 1
2 −δ)n

4 · [2−2d ·3 ·(1−ε)+ε]
1
4 .

• Note that the error estimation of the Raz’s extractor impacts greatly on the
constraints of the parameters including the seed length, the weak source’s min-
entropy and the error3 of the non-malleable extractor. Based on the above
improvement of the error estimation, we present an explicit construction of non-
malleable extractors, which is an improvement of the construction of Cohen et
al. in CCC’12 [6] in the sense that the seed length is shorter. More concretely,
we present an explicit (1016, 1

2 )-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1} with n = 1024 and d = 19, which beats the condition
“2.01 · log n ≤ d ≤ n” in [6], since seed length d is just 1.9 · log n in our con-
struction while it is no less than 46

63 +66 according to [6]. Moreover, we improve
the parameters of the general explicit construction given by Cohen et al.

• We show how our non-malleable extractors are applied to privacy amplifica-
tion.

Organization. The remainder of the paper is organized as follows. In Sect. 2,
we review some notations, concepts, and results. In Sect. 2, we show an exist-
ing central lemma about the error estimation of Raz’s Extractor and improve it
by proposing a new partition method. In Sect. 4, we propose the explicit con-
struction of non-malleable extractors with shorter seed length compared with
that in [6]. In Sect. 5, we show how the non-malleable extractors are applied to
privacy amplification. Section 6 concludes the paper.
3 The concept of the error of non-malleable extractor can be seen in Definition 3.
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2 Preliminaries

For any positive integer n, denote [n] = {1, 2, . . . , n}. Denote Um as the uni-
formly random distribution over {0, 1}m. We measure the distance between two
distributions by the L1 norm in order to be consistent with [6]. The statistical
distance of X and Y is defined as SD(X,Y ) = 1

2‖X−Y ‖1. It’s well known that for
any function f , SD(f(X), f(Y )) ≤ SD(X,Y ). Denote SD((X1,X2), (Y1, Y2) | Z)
as the abbreviation of SD((X1,X2, Z), (Y1, Y2, Z)).

The min-entropy of variable W is H∞(W ) = − log maxw Pr(W = w). W
over {0, 1}n is called an (n, α)it-source if H∞(W ) ≥ α. We say that a source
(i.e., a random variable) is a weak source if its distribution is not uniform. We
say W is a flat source if it is a uniform distribution over some subset S ⊆ {0, 1}n.
Chor and Goldreich [5] observed that the distribution of any (n, α)-source is a
convex combination of distributions of flat (n, b)-sources. Therefore, for general
weak sources, it will be enough to consider flat sources instead in most cases.

Definition 1. We say that the distribution X is ε-close to the distribution
Y if ‖X − Y ‖1 =

∑
s |Pr[X = s] − Pr[Y = s]| ≤ ε4. A function Ext :

{0, 1}n × {0, 1}d → {0, 1}m is an (α, γ)-seeded extractor if for every (n, α)-
source W and an independent uniformly random variable S (called seed) over
{0, 1}d, the distribution of Ext(W,S) is γ-close to Um. γ is called the error of
the seeded extractor. A seeded extractor is a strong (α, γ)-extractor if for W and
S as above, (Ext(W,S), S) is γ-close to (Um, Ud).

Definition 2. A random variable Z over {0, 1} is ε-biased if bias(Z) = |Pr[Z =
0] − Pr[Z = 1]| ≤ ε (i.e., Z is ε-close to uniform). A sequence of 0-1 random
variables Z1, Z2, . . . , ZN is ε-biased for linear tests of size k if for any nonempty
τ ⊆ [N ] with |τ | ≤ k, the random variable Zτ = ⊕i∈τZi is ε-biased. We also say
that the sequence Z1, Z2, . . . , ZN ε-fools linear tests of size k.

For every k′, N ≥ 2, variables Z1, · · · , ZN as above can be explicitly con-
structed using 2 · �log(1/ε) + log k′ + log log N� random bits [1].

The Extractor of Raz. Raz [20] constructed an extractor based on a sequence
of 0-1 random variables that have small bias for linear tests of a certain size.
Let Z1, · · · , Zm·2d be 0-1 random variables that are ε-biased for linear tests of
size k′ that are constructed using n random bits. The set of indices [m · 2d] can
be considered as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. Define Ext : {0, 1}n ×
{0, 1}d → {0, 1}m by Ext(w, s) = Z(1,s)(w)||Z(2,s)(w) . . . ||Z(m,s)(w), where “||”
is the concatenation operator. Raz proposed that Ext is a seeded extractor with
good parameters [20].

Cohen et al. [6] proved that the above extractor is in fact non-malleable.
We’ll also construct non-malleable extractors based on it. The formal definition
of non-malleable extractors is as follows.

4 In other papers (e.g., [9,11,14,24]), X is ε-close to Y if 1
2
‖X −Y ‖1 = 1

2

∑
s | Pr[X =

s] − Pr[Y = s]| ≤ ε. To keep consistency, Definition 1 holds throughout this paper.
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Definition 3. (see [6]) We say that a function A : {0, 1}d → {0, 1}d is an
adversarial function, if for every s ∈ {0, 1}d, f(s) �= s holds. A function
nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (α, γ)-non-malleable extractor if for
every (n, α)-source W , independent uniformly random variable S, and every
adversarial function A,

‖(nmExt(W,S), nmExt(W,A(S)), S) − (Um, nmExt(W,A(S)), S)‖1 ≤ γ.

γ is called the error of the non-malleable extractor.

One-time message authentication code (MAC) is used to guarantee that the
received message is sent by a specified legitimate sender in an unauthenticated
channel. Formally,

Definition 4. A family of functions {MACr : {0, 1}v → {0, 1}τ}r∈{0,1}m is a
ε-secure (one-time) message authentication code (MAC) if for any μ and any
function f : {0, 1}τ → {0, 1}v × {0, 1}τ , it holds that,

Pr
r←Um

[MACr(μ′) = σ′ ∧ μ′ �= μ | (μ′, σ′) = f(MACr(μ))] ≤ ε.

Recall that the main theorem about the explicit construction of non-
malleable extractors proposed in [6] is as follows.

Theorem 1. (see [6]) For any integers n, d, and m, and for any 0 < δ ≤ 1
2 such

that d ≥ 23
δ ·m+2 log n, n ≥ 160

δ ·m, and δ ≥ 10 · log(nd)
n , there exists an explicit

((12 + δ) · n, 2−m)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m.

3 Error Estimation of Raz’s Extractor and Its
Improvement

In this section, we first recall the central lemma used in [6], which is a special
case about the error estimation of Raz’s Extractor [20]. Then we point out the
flaw in the proof and improve its error estimation. Afterwards, we compare our
result with the original one and roughly show the role of the improvement.

3.1 A Special Case of Raz’s Extractor

The central lemma used in [6] is below, the proof of which is essentially the same
as that in [20]. It can be considered as a special case of Raz’s Extractor [20].

Lemma 1. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ε-
biased for linear tests of size k′ that are constructed using n random bits. Define
Ext(1): {0, 1}n × {0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext(1)(w, s) is
the random variable Zs, when using w as the value of the n bits needed to produce
Z1, . . . , ZD. Then, for any 0 < δ ≤ 1

2 and even integer k ≤ k′ s.t. k · ( 1ε )
1
k ≤ D

1
2 ,

Ext(1) is a ((12 + δ) · n, γ1)-seeded-extractor, with γ1 = (ε · 2(
1
2−δ)n+1)

1
k .
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Proof. Let W be a (n, (12 + δ) · n)-source. Let S be a random variable that is
uniformly distributed over {0, 1}d and is independent of W . We will show that
the distribution of Ext(1)(W,S) is γ1-close to uniform. As in [5], it is enough to
consider the case where W is uniformly distributed over a set W ′ ⊆ {0, 1}n of
size 2(1/2+δ)n. For every w ∈ {0, 1}n and s ∈ {0, 1}d denote e(w, s) = (−1)Zs(w).

Claim 1. For any r ∈ [k] and any different s1, . . . , sr ∈ {0, 1}d,

∑

w∈{0,1}n

r∏

j=1

e(w, sj) ≤ ε · 2n.

Proof.

∑

w∈{0,1}n

r∏

j=1

e(w, sj) =
∑

w∈{0,1}n

r∏

j=1

(−1)Zsj
(w) =

∑

w∈{0,1}n

(−1)Zs1 (w)⊕···⊕Zsr (w),

and since Zs1(w) ⊕ · · · ⊕ Zsr
(w) is ε-biased, the last sum is at most ε · 2n. ��

The L1 distance of Ext(1)(W,S) and U is

‖Ext(1)(W,S) − U‖1
= |Pr[Ext(1)(W,S) = 0] − Pr[Ext(1)(W,S) = 1]|
= | 1

2(
1
2+δ)n

· 1
2d

(
∑

w∈W ′

∑

s∈{0,1}d

e(w, s))|.

Denote γ(W,S) = 1

2(
1
2+δ)n

· 1
2d (

∑

w∈W ′

∑

s∈{0,1}d

e(w, s)).

Define f : [−1, 1] → [−1, 1] by f(z) = zk, then f is a convex function for any
even positive integer k.

Thus, by a convexity argument, we have

2(
1
2+δ)n · (2d · γ(W,S))k = 2(

1
2+δ)n · {

∑

w∈W ′
[

1
2(1/2+δ)n

∑

s∈{0,1}d

e(w, s)]}k

≤ 2(
1
2+δ)n · {

∑

w∈W ′

1
2(1/2+δ)n

[
∑

s∈{0,1}d

e(w, s)]k}

≤
∑

w∈{0,1}n

[
∑

s∈{0,1}d

e(w, s)]k

=
∑

w∈{0,1}n

∑

s1,...,sk∈{0,1}d

k∏

j=1

e(w, sj)

=
∑

s1,...,sk∈{0,1}d

∑

w∈{0,1}n

k∏

j=1

e(w, sj).
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The sum over s1, . . . , sk ∈ {0, 1}d is broken into two sums. The first sum is
over s1, . . . , sk ∈ {0, 1}d such that in each summand, at least one sj is different
than all other elements in the sequence s1, . . . , sk

5, and the second sum is over
s1, . . . , sk ∈ {0, 1}d such that in each summand every sj is identical to at least
one other element in the sequence s1, . . . , sk. The number of summands in the
first sum is trivially bounded by 2d·k, and by Claim 1 each summand is bounded
by 2n · ε. The number of summands in the second sum is bounded by 2d· k

2 · (k
2 )k,

and each summand is trivially bounded by 2n. Therefore,

2(
1
2+δ)n · 2d·k · γ(W,S)k ≤ 2n · ε · 2d·k + 2n · 2d· k

2 · (
k

2
)k ≤ 2 · 2n · ε · 2d·k,

where the last inequality follows by the assumption that k · (1/ε)1/k ≤ D
1
2 . That

is, γ(W,S) ≤ (ε · 2(
1
2−δ)n+1)

1
k . ��

The above partition method about the sum over s1, . . . , sk ∈ {0, 1}d is not
optimal, since it doesn’t capture the essence of random variable sequence that
is biased for linear tests (i.e., Z1, . . . , Z2d is called ε-biased for linear tests of size
k if for any nonempty τ ⊆ [2d] with |τ | ≤ k, the random variable Zτ = ⊕i∈τZi

is ε-biased). Moreover, the bounds on the number of summands in the two sums
are too large. The same problem exists in [20].

In fact, when every sj is identical to at least one other element in the
sequence s1, . . . , sk under the assumption that at least one sj appears odd

times in the sequence s1, . . . , sk, the summand
∑

w∈{0,1}n

k∏

j=1

e(w, sj) is still

upper bounded by 2n · ε, since
∑

w∈{0,1}n

k∏

j=1

e(w, sj) =
∑

w∈{0,1}n

k∏

j=1

(−1)Zsj
(w) =

∑

w∈{0,1}n

(−1)Zs1 (w)⊕···⊕Zsk
(w) and Z1, . . ., ZD are 0-1 random variables that are

ε-biased for linear tests of size k′. However, in this case the upper bound on the

summand
∑

w∈{0,1}n

k∏

j=1

e(w, sj) was considered to be 2n in [6,20].

3.2 Improvement for the Error Estimation of Raz’s Extractor

We improve the error estimation of Raz’s extractor as follows. Unlike [6,20],
we present another partition method of the sum in the following proof. The
combination and permutation formulas are exploited to show a tight bound on
the sum. Correspondingly, the error can be reduced.

Proposition 1. Consider fixed positive numbers k and d. Assume that a
sequence s1, . . . , sk satisfies the following two conditions: (1) for every i ∈ [k],
si ∈ {0, 1}d, and (2) for every j ∈ [k], sj appears even times in the sequence
s1, . . . , sk. Then the number of such sequences s1, . . . , sk is 2

dk
2 · (k − 1) · (k − 3) ·

· · · · 1.
5 In this paper, two elements si and sj in the sequence s1, . . . , sk, where i �= j, might

represent the same string.
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Proof. Denote Cl
r as the number of possible combinations of r objects from a

set of l objects. Then Cl
r = l!

r!(l−r)! = l(l−1)(l−2)···(l−r+1)
r! . Denote P l

r as the
number of possible permutations of r objects from a set of l objects. Then
P l

r = l!
(l−r)! = l(l−1)(l−2) · · · (l−r+1). Hence the number of the corresponding

sequences is

Ck
2 · Ck−2

2 · · · · · C2
2

P
k
2
k
2

·2 dk
2 =

k! · 1

2
k
2

(k
2 )!

·2 dk
2 =

k!

(k
2 )! · 2

k
2
·2 dk

2 = 2
dk
2 ·(k−1)·(k−3)·· · ··1.

Theorem 2. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ε-
biased for linear tests of size k′ that are constructed using n random bits. Define
Ext(1): {0, 1}n × {0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext(1)(w, s)
is the random variable Zs, when using w as the value of the n bits needed to
produce Z1, . . . , ZD. Then, for any 0 < δ ≤ 1

2 and any even integer k ≤ k′,

Ext(1) is a ((12 + δ) · n, γ2)-seeded-extractor, where γ2 = 2
( 1
2 −δ)·n

k · [2− dk
2 · (k − 1) ·

(k − 3) · · · · · 1 · (1 − ε) + ε]
1
k .

Proof. We improve the proof by proposing another method for partitioning

the sum
∑

s1,...,sk∈{0,1}d

∑

w∈{0,1}n

k∏

j=1

e(w, sj) into two sums. The first sum is over

s1, . . . , sk ∈ {0, 1}d such that in each summand, at least one sj appears odd
times in the sequence s1, . . . , sk, and the second sum is over s1, . . . , sk ∈ {0, 1}d

such that in each summand every sj appears even times in the sequence
s1, . . . , sk. By Proposition 1, the number of summands in the second sum is
2

dk
2 · (k − 1) · (k − 3) · · · · · 1, and each summand is 2n. Therefore, the number

of summands in the first sum is 2dk − 2
dk
2 · (k − 1) · (k − 3) · · · · · 1, and by

Claim 1 each summand is bounded by 2n · ε. Hence, 2(
1
2+δ)·n · 2d·k · γ(W,S)k ≤

2n · [2
dk
2 · (k − 1) · (k − 3) · · · · · 1] + 2n · ε · [2dk − 2

dk
2 · (k − 1) · (k − 3) · · · · · 1].

Correspondingly,

γ(W,S)k ≤ 2n · 2dk

2(
1
2+δ)·n · 2d·k · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

= 2(
1
2−δ)·n · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

That is, γ(W,S) ≤ 2
( 1
2 −δ)·n

k · [2− dk
2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

1
k . ��

3.3 Comparison

For simplicity, in the rest of the paper, denote γ1 as the error of the extractor
in Lemma 1, and γ2 as the counterpart in Theorem 2.

Proposition 2. (k − 1) · (k − 3) · · · · · 1 ≤ (k
2 )k for any positive even integer k,

and “=” holds iff k = 2. Furthermore, lim
k→∞

(k−1)·(k−3)·····1
2

1
2 ·( k

e )
k
2

= 1.
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Proof. When k = 2, it’s trivial that (k−1)·(k−3)·· · ··1 = (k
2 )k. In the following,

we only consider any positive even integer k with k > 2.
Since k!

( k
2 )!

< kk

2
k
2
, we have k!

( k
2 )!·2

k
2

< kk

2k . Hence,

(k − 1) · (k − 3) · · · · · 1 =
k!

(k
2 )! · 2

k
2

<
kk

2k
.

From the Stirling’s Formula, we have lim
k→∞

k!√
2πk( k

e )k
= 1. Therefore,

lim
k→∞

(k − 1) · (k − 3) · · · · · 1

2
1
2 · (k

e )
k
2

= lim
k→∞

[
k!√

2πk · (k
e )k

·
√

2π · k
2 · ( k

2e )
k
2

(k
2 )!

] = 1. ��

The error estimation of the extractor in Theorem 1 is better than that in
Lemma 1. Recall that in Theorem 1, we have

γ2 = 2
( 1
2 −δ)n

k · [2− dk
2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

1
k

= 2
( 1
2 −δ)n

k · {2− dk
2 · (k − 1) · (k − 3) · · · · · 1 + [1 − 2−

dk
2 · (k − 1) · (k − 3) · · · · · 1] · ε} 1

k ,

while in Lemma 1, we have γ1 = 2
( 1
2 −δ)n

k ·(2ε)
1
k in [6] under the assumption that

ε ≥ 2− dk
2 · kk and 0 < δ ≤ 1

2 .
In general, since ε ≥ 2− dk

2 · kk and 2− dk
2 · kk > 2− dk

2 · (k − 1) · (k − 3) · · · · · 1
for any even integer k, we get γ1 > γ2. In particular, when k is large enough,

from Proposition 2, we get that (k − 1) · (k − 3) · · · · · 1 ≈ 2
1
2 · (k

e )
k
2 . Therefore,

γ2 ≈ 2
( 1
2 −δ)n

k · {2− dk
2 · 2

1
2 · (

k

e
)

k
2

+ [1 − 2− dk
2 · 2

1
2 · (

k

e
)

k
2

] · ε} 1
k .

Correspondingly, ε ≥ 2− dk
2 · kk > 2− dk

2 · 2
1
2 · (k

e )
k
2 . Hence, γ1 > γ2.

Remark 1. To simplify γ2, let k be a specific value. For instance, let k = 4, then

the error γ1 = 2
( 1
2 −δ)n

4 · (2ε)
1
4 and γ2 = 2

( 1
2 −δ)n

4 · [2−2d · 3 · (1 − ε) + ε]
1
4 .

Remark 2. Noted that when k is large enough, (k
2 )k is much greater than

(k − 1) · (k − 3) · · · · · 1. For instance, when k = 6, we have (k
2 )k = 729 and

(k −1) · (k −3) · · · · ·1 = 15. Therefore, “The number of summands in the second
sum is 2

dk
2 · (k − 1) · (k − 3) · · · · · 1, and each summand is 2n.” in the proof of

Theorem 2 is a great improvement on “The number of summands in the second
sum is bounded by 2d· k

2 · (k
2 )k, and each summand is trivially bounded by 2n.”

in the proof of Lemma 1.

Remark 3. If ε ≥ 1

2(
1
2 −δ)n+1

, then γ1 = 2
( 1
2 −δ)n

k · (2ε)
1
k ≥ 1. In this case, the error

estimation is meaningless.
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3.4 Important Role in Improving the Seed Length of Non-malleable
Extractors

It should be noticed that the error of the non-malleable extractor in Theorem1
given by Cohen et al. [6] relies on some constrained parameters. The main idea
of the proof about Theorem1 given by Cohen et al. [6] is as follows. Assume for
contradiction that Ext is not a non-malleable extractor, then after some steps,
an inequality γ1 > A is deduced, where A denotes a certain formula. On the
other hand, from the assumption of Theorem1, γ1 < A should hold. Thus Ext
is a non-malleable extractor. Essentially, the constraints on the parameters in
Theorem 1 are chosen according to the inequality γ1 < A. From Proposition 2,
we have γ1 > γ2 for any positive even integer k ≥ 4. Therefore, we may relax
the constraints on the parameters in Theorem 1 according to γ2 < A. See the
proofs of Theorems 3 and 4 below for details. Correspondingly, the seed length
may be further shortened.

4 Explicit Construction of Non-malleable Extractors
with Shorter Seed Length

In this section, we improve the parameters of the explicit construction of non-
malleable extractors by Cohen et al. in [6]. The seed length here is shorter than
that in Theorem 1.

We first review two lemmas that will be used later.

Lemma 2. (see [6]) Let X be a random variable over {0, 1}m. Let Y , S be two
random variables. Then,

‖(X,Y, S) − (Um, Y, S)‖1 = Es∼S [‖(X,Y, S)|S=s − (Um, Y, S)|S=s‖1].

Lemma 3. (see [6]) Let X, Y be random variables over {0, 1}m and {0, 1}n

respectively. Then ‖(X,Y )− (Um, Y )‖1 ≤ ∑

∅�=σ⊆[m],τ⊆[n]

bias(Xσ ⊕Yτ ), where Xi

is the i-th bit of X, Yj is the jth bit of Y , Xσ = ⊕i∈σXi, and Yτ = ⊕j∈τYj.

In what follows, we show a specific explicit construction of a non-malleable
extractor such that it is an improvement of [6] in the sense that the seed length
is shorter.

Theorem 3. There exists an explicit (1016, 1
2 )-non-malleable extractor Ext :

{0, 1}1024 × {0, 1}19 → {0, 1}.
Proof Idea. We borrow the reductio ad absurdum approach in the proof of

Theorem1. The proof sketch is as follows. Assume by contradiction that Ext is
not non-malleable. Then

Phase 1: There must exist a weak source W with min-entropy at least
α and an adversarial function A such that the statistical distance between
(Ext(W,S),Ext(W,A(S)), S) and (U1,Ext(W,A(S)), S) has a certain lower
bound. Then there exists S ⊆ {0, 1}d s.t. for every s ∈ S, Ys = Ext(W, s) ⊕
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Ext(W,A(s)) is biased. Consider the directed graph G = (S ∪ A(s), E) with
E = {(s,A(s) : s ∈ S}, where G might contains cycles. By employing a lemma
about graph as shown in [6], we can find a subset S′ ⊆ S s.t. the induced graph
of G by S′ ∪ A(S′) is acyclic.

Phase 2: We prove that the set of variables {Ys}s∈S′ is ε-biased for linear
tests of size at most k/2. Consider the extractor of Raz built on the variables
{Ys}s∈S′ . It’s a good seeded-extractor, which yields a contradiction.

Phase 1 of the proof is almost the same as that in [6]. Phase 2 jumps out
of the idea in [6]. We exploit the error estimation of the extractor in Theorem2
instead of Lemma 1. We use a trick such that the even integer k is just 4 instead
of the largest even integer that is not larger than �128δ�

2 , where δ can be seen in
Theorem1. Therefore the extractor error can be simplified and we don’t need to
prove k · (1ε )

1
k ≤ (2d)

1
2 as shown in Lemma 1.

Proof. The explicit construction we present is the extractor constructed in [20].
Alon et al. [1] observed that for every k′, N ≥ 2, the sequence of 0-1 random
variables Z1, . . . , ZN that is ε-biased for linear tests of size k′ can be explicitly
constructed using 2 · �log(1/ε) + log k′ + log log N� random bits. Therefore, let
D = 219 and ε = 2− 1024

2 +r with r = 1 + log k′ + log 19, then we can construct a
sequence of 0-1 random variables Z1, . . . , Z219 that is ε-biased for linear tests of
size k′ using n random bits. Let k′ = 8. Define Ext : {0, 1}1024×{0, 1}19 → {0, 1}
by Ext(w, s) = Zs(w).

Let S be a random variable uniformly distributed over {0, 1}19.
Assume for contradiction that Ext is not a (1016, 1

2 )-non-malleable-extractor.
Then there exists a source W of length 1024 with min-entropy 1016, and an
adversarial function A : {0, 1}19 → {0, 1}19 such that

‖(Ext(W,S),Ext(W,A(S)), S) − (U1,Ext(W,A(S)), S)‖1 >
1
2
.

As in [5], suppose W is uniformly distributed over a set W ′ ⊆ {0, 1}1024 of size
21016.

For every s ∈ {0, 1}19, let Xs be the random variable Ext(W, s). By Lemmas 2
and 3, we have

∑

∅�=σ⊆[1],τ⊆[1]

Es∼S [bias((Xs)σ ⊕ (XA(s))τ )] >
1
2
.

Let σ∗, τ∗ ⊆ [1] be the indices of (one of) the largest summands in the above
sum. For every s ∈ {0, 1}19, let Ys = (Xs)σ∗ ⊕ (XA(s))τ∗ .

There is a set S′′ ⊆ {0, 1}19 satisfying that

|S′′| >
ξ · 219−2

2(1 + 1)2
= 213.

The S′′ here is the same as that in the proof of Theorem 1 by replacing t there
with 1 and the error 2−m there with 1

2 . Please see [6] for details.
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Define a random variable YS′′ over {0, 1} as follows: To sample a bit from YS′′ ,
uniformly sample a string s from S′′, and then independently sample a string
w uniformly from W ′. The sampled value is Ys(w). We have that bias(YS′′) >

1
2

21+1(2−1)(1+1) = 1
24 . For every s ∈ S′′, let Y ′

s = Z(1,s) ⊕ (⊕j∈τ∗Z(j,A(s))), where
Z(1,s) = Zs.

Let t = 1 and m = 1 in Claim 7.2 of [6], we get the following claim.
Claim 2. The set of random variables {Y ′

s}s∈S′′ ε-fools linear tests of size 4.
We apply Theorem 2 on the random variables {Y ′

s}s∈S′′ . For simplicity of pre-
sentation we assume |S′′| = 2d′

. By Theorem 2, the distribution of Ext(1)(W,S′′)
is γ2-biased for γ2 = 2

8
k · [2− d′k

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]
1
k . Let

k = k′
2 = 4, then γ2 = 2

8
4 · [2−2d′ · 3 · (1 − ε) + ε]

1
4 . We note that Ext(1)(W,S′′)

has the same distribution as YS′′ . In particular, both random variables have the
same bias. Therefore, we get

2
8
4 · [2−2d′ · 3 · (1 − ε) + ε]

1
4 ≥ bias(YS′′) >

1
24

,

Moreover, since 2d′
= |S′′| > 213, we have

22 · [4 · 2−28 · 3 · (1 − ε) + ε]
1
4 > 22 · [2−2d′ · 3 · (1 − ε) + ε]

1
4 >

1
24

.

That is,

2−38 >
2−4 · 2−20 − ε

3(1 − ε) · 212
, (a)

where ε = 2−516+r and r = 4 + log 19.
On the other hand, we have 2−38 < 2−4·2−20−ε

3(1−ε)·210·22 , which is in contradiction to
the inequality (a). ��
Comparison. In Theorem 1, the seed length d and the source length n should
satisfy d ≥ 23

δ m + 2 log n with 0 < δ ≤ 1
2 . However, in the above construction,

we have d = 1.9 log n. We compare them in detail as follows.
Let n = 210, m = 1, and δ = 63

128 in Theorem 1, then it can be easily
verified that n ≥ 160

δ ·m. To construct an explicit ((12 +δ) ·n, 2−m)-non-malleable
extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m (that is, an explicit (1016, 1

2 )-
non-malleable extractor nmExt), by Theorem 1, the seed length d should satisfy
d ≥ 23

δ · m + 2 log n = 46
63 + 66. Moreover, when d ≤ 241, the precondition

δ ≥ 10 · log(nd)
n in Theorem 1 is satisfied. Meanwhile, by Theorem 3, the seed

length d can just be 19. In this sense, our construction is much better than that
of [6].

Using the extractor with improved error estimation (see Theorem2), we can
also improve the parameters of the explicit non-malleable extractor nmExt :
{0, 1}n × {0, 1}d → {0, 1}m constructed by Cohen et al. [6] below.

Theorem 4. Assume that

0 < 2log 3−2θ+4m+8 − 2log 3− n
2 +4+log d−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d− n

2 +4+log d.
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Then there exists an explicit (α, 2θ)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

The proof is similar to that of Theorem3. Please see Appendix A for details.
Due to the analysis of Sect. 3.4, we conclude that the above theorem is really

an improvement in the sense that the seed length here is shorter. Though the
constrains on the parameters in Theorem 4 are complex, we show some sim-
plification in AppendixB. How to further simplify the constraints is an open
problem.

5 Application to Privacy Amplification

In this section, we show how the non-malleable extractor is applied to the pri-
vacy amplification protocol [8,9] (also known as an information-theoretic key
agreement protocol), the formal concept of which can be seen in AppendixC.

Roughly speaking, in this scenario, Alice and Bob share a shared weak
secret W , the min-entropy of which is only guaranteed. They communicate over
a public and unauthenticated channel to securely agree on a nearly uniform
secret key R, where the attacker Eve is active and computationally unbounded.
To achieve this goal, the protocol is designed as follows.

Table 1. The Dodis-Wichs privacy amplification protocol.

Alice: W Eve Bob: W

Sample random S.

S −→ S

Sample random S0.

R = nmExt(W,S ).

T0 = MACR (S0).

Reach KeyDerived state.

Output RB = Ext(W,S0).

(S0, T0) ←− (S0, T0)

R = nmExt(W,S).

If T0 = MACR(S0), output RA = ⊥.

Otherwise, reach KeyConfirmed state,

and output RA = Ext(W,S0).

Assume that we’ll authenticate the seed S0. Alice initiates the conversation
by transmitting a uniformly random seed S to Bob. During this transmission,
S may be modified by Eve into any value S′. Then Bob samples a uniform seed
S0, computes the authentication key R′ = nmExt(W,S′), and sends S0 together
with the authentication tag T0 = MACR′(S0) to Alice. At this point, Bob reaches
the KeyDerived state and outputs RB = Ext(W,S0). During this transmission,
(S0, T0) may be modified by Eve into any pair (S′

0, T
′
0). Alice computes the
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authentication key R = nmExt(W,S) and verifies that T ′
0 = MACR(S′

0). If the
verification fails then Alice rejects and outputs RA = ⊥. Otherwise, Alice reaches
the KeyConfirmed state and outputs RA = nmExt(W,S′

0).
The security can be analyzed in two cases [6,8]. Case 1: Eve does not modified

the seed S in the first round. Then Alice and Bob share the same authentication
key (i.e., R′ = R), which is statistically close to a uniform distribution. Therefore,
Eve has only a negligible probability of getting a valid authentication tag T ′

0 for
any seed S′

0 �= S0. Case 2: Eve does modify the seed S to a different seed S′.
Since T0 is a deterministic function of S0 and R′, Eve may guess R′. According to
the definition of non-malleable extractors, the authentication key R computed
by Alice is still statistically close to a uniform distribution. Thus, again, the
adversary has only a negligible probability of computing a valid authentication
T ′
0 for any seed S′

0 with respect to the authentication key R. Consequently, the
above protocol is secure.

Theorem 5. (see [6,9]) Assume nmExt : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a
(α, γnmExt)-non-malleable extractor, Ext : {0, 1}n×{0, 1}d2 → {0, 1}m2 is a strong
(α−(d1+m1)− log 1

ε′ , γExt)-extractor, and {MACr : {0, 1}d2 → {0, 1}τ}r∈{0,1}m1

is a εMAC-secure message authentication code. Then for any integers n and α ≤
n, the protocol in Table 1 is a 2-round (n, α,m, η)-privacy amplification protocol,
with communication complexity d1+d2+τ and η = max{ε′+γExt, γnmExt+εMAC}.

The explicit non-malleable extractor in this paper can be applied to construct
the above privacy amplification protocol with low communication complexity.

6 Conclusion

Non-malleable extractor is a powerful theoretical tool to study privacy amplifi-
cation protocols, where the attacker is active and computationally unbounded.
In this paper, we improved the error estimation of Raz’s extractor using the
combination and permutation techniques. Based on the improvement, we pre-
sented an improved explicit construction of non-malleable extractors with shorter
seed length. Similar to [6], our construction is also based on biased vari-
able sequence for linear tests. However, our parameters are improved. More
precisely, we presented an explicit (1016, 1

2 )-non-malleable extractor nmExt :
{0, 1}1024 × {0, 1}d → {0, 1} with seed length 19, while it is no less than 46

63 + 66
according to Cohen et al. in CCC’12 [6]. We also improved the parameters of
the general explicit construction of non-malleable extractors proposed by Cohen
et al. and analyzed the simplification of the constraints on the parameters (see
AppendixB for details). How to further simplify the constraints is an open prob-
lem. Finally, we showed their applications to privacy amplification protocol (or
information-theoretic key agreement protocol).
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A Proof of Theorem4

Proof. The explicit construction we present is the extractor constructed in [20].
Alon et al. [1] observed that for every k′, N ≥ 2, the sequence of 0-1 random
variables Z1, . . . , ZN that is ε-biased for linear tests of size k′ can be explicitly
constructed using 2 · �log(1/ε) + log k′ + log log N� random bits. Therefore, let
D = m · 2d and ε = 2− n

2 +r with r = 1+ log k′ + log log D, then we can construct
a sequence of 0-1 random variables Z1, . . . , ZD that is ε-biased for linear tests of
size k′ using n random bits. Let k′ = 8m. We interpret the set of indices [D] as
the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. Define Ext : {0, 1}n × {0, 1}d → {0, 1}m by
Ext(w, s) = Z(1,s)(w) · · · ||Z(m,s)(w), where “||” is the concatenation operator.

Let S be a random variable uniformly distributed over {0, 1}d.
Assume for contradiction that Ext is not a (α, 2θ)-non-malleable-extractor.

Then there exists a source W of length n with min-entropy α, and an adversarial-
function A : {0, 1}d → {0, 1}d such that

‖(Ext(W,S),Ext(W,A(S)), S) − (Um,Ext(W,A(S)), S)‖1 > 2θ.

As in [5], suppose W is uniformly distributed over W ′ ⊆ {0, 1}n of size 2α.
For every s ∈ {0, 1}d, let Xs be the random variable Ext(W, s). By Lemmas 2

and 3, we have
∑

∅�=σ⊆[m],τ⊆[m]

Es∼S [bias((Xs)σ⊕(XA(s))τ )] > 2θ. Let σ∗, τ∗ ⊆ [m]

be the indices of (one of) the largest summands in the above sum. For every
s ∈ {0, 1}d, let Ys = (Xs)σ∗ ⊕ (XA(s))τ∗ . There is a set S′′ ⊆ {0, 1}d satisfying
that

|S′′| >
2θ · 2d−2

2mt(2m − 1)(t + 1)2
=

2θ · 2d−2

2m+2(2m − 1)
.

The S′′ here is the same as that in the proof of Theorem 1 by replacing t there
with 1 and the error 2−m there with 2θ. Please see [6] for details.

Define a random variable YS′′ over {0, 1} as follows: To sample a bit from
YS′′ , uniformly sample a string s from S′′, and then independently sample a
string w uniformly from W ′. The sampled value is Ys(w). We have that

bias(YS′′) >
2θ

2mt+1(2m − 1)(t + 1)
=

2θ

2m+2(2m − 1)
.

For every s ∈ S′′, let Y ′
s = ⊕i∈σ∗Z(i,s) ⊕ (⊕j∈τ∗Z(j,A(s))).

Let t = 1 in Claim 7.2 of [6], we get the following claim.
Claim 2’. The set {Y ′

s}s∈S′′ε-fools linear tests of size k′
(t+1)m = 4.

We apply Theorem 2 on the random variables {Y ′
s}s∈S′′ . For simplicity of pre-

sentation, we assume |S′′| = 2d′
. By Theorem 2, the distribution of Ext(1)(W,S′′)
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is γ2-biased for γ2 = 2
n−α

k · [2− d′k
2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ε) + ε]

1
k . Let

k = 4, then γ2 = 2
n−α

4 · [2−2d′ · 3 · (1 − ε) + ε]
1
4 . We note that Ext(1)(W,S′′)

has the same distribution as YS′′ . In particular, both random variables have the
same bias. Therefore, we get

2
n−α

4 · [2−2d′ · 3 · (1 − ε) + ε]
1
4 ≥ bias(YS′′) >

2θ

2m+2(2m − 1)
.

Moreover, since 2d′
= |S′′| > 2θ·2d−2

2m+2(2m−1) , we have

2
n−α

4 · [(2θ)−2 · 2−2d+2m+8 · (2m − 1)2 · 3 · (1 − ε) + ε]
1
4 >

2θ

2m+2 · (2m − 1)
.

Hence, 2n−α · [2−2θ · 2−2d+4m+8 · 3 · (1 − ε) + ε] > 24θ

28m+8 . That is,

2−2d >
24θ−8m−8−n+α − ε

3(1 − ε)2−2θ+4m+8

with ε = 2− n
2 +4+log d, which is in contradiction to the assumption of the

theorem. ��

B Analysis of the Assumption in Theorem4

In order to construct an explicit non-malleable extractor, it’s enough to guaran-
tee that the parameters satisfies

0 < 2log 3·(1−2− n
2 +4+log d)·2−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α−22d− n

2 +4+log d. (b)

For simplicity, denote

A′ = log 3 − 2θ + 4m + 8, B′ = log 3 − n

2
+ 4 + log d − 2θ + 4m + 8,

C ′ = 2d + 4θ − 8m − 8 − n + α, D′ = 2d − n

2
+ 4 + log d,

then (b) holds ⇔ 0 < 2A′ − 2B′ ≤ 2C′ − 2D′
. We discuss what happens under

the assumption (b) in three cases as follows.
Case 1. Assume that A′ ≥ C ′ and B′ ≥ D′. Since “B′ ≥ D′” implies

“A′ ≥ C ′”, we only need to consider B′ ≥ D′ (i.e., log 3 − 2θ + 4m + 8 ≥ 2d).
Let 1 − ε = 1 − 2− n

2 +4+log d = 2ρ′
.

From log 3 + 8 + 4m ≥ 2d + 2θ, α ≤ n, m ≥ 1, and θ < 0, we get

− 16 > −8m − 8 + 4θ − n + α

= (log 3 + 8 + 4m) + 4θ − 12m − 16 − log 3 − n + α

≥ 2d + 2θ + 4θ − 12m − 16 − log 3 − n + α.

Let ρ′ ≥ −16. Then we have ρ′ > 2d + 2θ + 4θ − 12m − 16 − log 3 − n + α.
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Therefore, log 3 + ρ′ − 2θ + 4m + 8 > 2d + 4θ − 8m − 8 − n + α, which is in
contradiction to the inequality (b).

Consequently, when ε ∈ (0, 1−2−16], A′ ≥ C ′, and B′ ≥ D′, (b) does not hold.
From Theorem 2, only if ε is small enough, the corresponding seeded extractor
is useful. Therefore, we assume that ε ∈ (0, 1 − 2−16].

Case 2. Assume that A′ ≥ C ′ and B′ < D′, then it’s in contradiction to the
inequality (b).

Case 3. Assume that A′ < C ′, then it’s trivial that B′ < D′. Thus, we
only need to consider A′ < C ′. Since A′ > B′, we have C ′ > D′, that is,
4θ − 8m − 12 − n

2 + α > log d.
Therefore, we obtain the following corollary.

Corollary. Assume that ε = 2− n
2 +4+log d ∈ (0, 1 − 2−16] and

2log 3 · (1 − 2− n
2 +4+log d) · 2−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d− n

2 +4+log d.

Then there exists an explicit (α, 2θ)-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

In particular, the parameters of the non-malleable extractor can be chosen
according to the inequality system

⎧
⎨

⎩

log 3 − 6θ + 16 + 12m + n − α < 2d
4θ − 8m − 12 − n

2 + α > log d
2− n

2 +4+log d ≤ 1 − 2−16
(1)

then check whether they satisfy the inequality

2log 3−2θ+4m+8 − 2log 3− n
2 +4+log d−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d− n

2 +4+log d.

Remark. α can’t be less than n
2 , since 4θ − 8m − 12 − n

2 + α > log d.

C The Concept of Privacy Amplification Protocol

Definition 5. (see [6,9]) In an (n, α,m, η)-privacy amplification protocol (or
information-theoretic key agreement protocol), Alice and Bob share a weak secret
W , and have two candidate keys rA, rB ∈ {0, 1}m ∪ ⊥, respectively. For any
adversarial strategy employed by Eve, denote two random variables RA, RB as
the values of the candidate keys rA, rB at the conclusion of the protocol execution,
and random variable TE as the transcript of the (entire) protocol execution as
seen by Eve. We require that for any weak secret W with min-entropy at least α
the protocol satisfies the following three properties:

• Correctness: If Eve is passive, then one party reaches the state, the other
party reaches the KeyConfirmed state, and RA = RB.
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• Privacy: Denote KeyDerivedA and KeyDerivedB as the indicators of the events
in which Alice and Bob reach the KeyDerived state, respectively. Then dur-
ing the protocol execution, for any adversarial strategy employed by Eve, if
Bob reaches the KeyDerivedB state then SD((RB , TE), (Um, TE)) ≤ η; if Alice
reaches the KeyDerivedA state, then SD((RA, TE), (Um, TE)) ≤ η.

• Authenticity: Denote KeyConfirmedA and KeyConfirmedB as the indicators
of the events in which Alice and Bob reach the KeyConfirmed state, respectively.
Then, for any adversarial strategy employed by Eve, it holds that

Pr[(KeyConfirmedA ∨ KeyConfirmedB) ∧ RA �= RB] ≤ η.
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Abstract. In this paper we show that every source X having very high
min-entropy conditioned on side information Z, can be efficiently sim-
ulated from Z. That is, there exists a simulator Sim(·) such that (a) it
is efficient, (b) (Sim(Z), Z) and (X, Z) are indistinguishable and (c) the
min-entropy of Sim(Z) and X given Z is (almost, up to a few bits) the
same. Concretely, the simulator achieves (s, ε)-indistinguishability run-
ning in time s · poly

(
1
ε
, 2Δ, |Z|), where Δ is the entropy deficiency and

|Z| is the length of Z.
This extends the result of Trevisan, Tulsani and Vadhan (CCC ’09),

who proved a special case when Z is empty.
Our technique is based on the standard min-max theorem combined

with a new convex L2-approximation result resembling the well known
result due to Maurey-Jones-Barron.

Keywords: Simulating high entropy · Min-entropy · Convex
L2-approximation

1 Introduction

Simulatability. Entropy sources we have in practice are far from ideal and suf-
fer from many limitations, in particular exact sampling may be too expensive
or time consuming. In this paper we study the possibility of sampling a given
entropy source X only approximately, but in an efficient way and preserving its
entropy; everything against computationally bounded adversaries. Such a fea-
ture is called simulatability. In a more realistic setting, the simulator may know
some information Z about X and the entropy is conditioned on Z. The existence
of such a simulator for a given distribution (and possibly side information) is
not only an elegant foundational question. Simulatable high entropy sources are
important in memory delegation [CKLR11], and the (more general) problem of
simulating a given random variable (not necessarily of high entropy) is important
in leakage-resilient cryptography [JP14,VZ13,SPY13] and even in the theory of
zero-knowledge [CLP13].
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1.1 Problem Statement

Informal statement. The discution above motivates the following question

Problem: Given a possibly inefficient entropy source X and (possibly
long) side information Z, can one design a simulator Sim, which takes Z
on its input and satisfy the following postulates:
(a) Efficiency : the simulator Sim is efficient.
(b) Accuracy : the distributions (X,Z) and (Sim(Z), Z) are close
(c) Entropy Preserving : the conditional min-entropy of Sim(Z) and X

given Z are the same

Precise requirements. To have a meaningful statement, we want the simula-
tion cost to be at most polynomial in |Z|, which is motivated by applications
where side information might be noisy (i.e. very long but still entropy is high);
such settings are of theoretical and practical concern [FH]. We also require the
simulator to be at most polynomial in the accuracy (which is parametrized by
computational indistinguishability). Finally, we allow the entropy of the simu-
lator output to be smaller by a constant than the entropy of X which doesn’t
matter in most of applications. Generally speaking, we want to construct a sim-
ulator by trading accuracy for efficiency. Note however, that the simulator has
to be more complicated than the required indistinguishability, see discussions in
[TTV09,JP14].

1.2 Some Technical Issues

Approximating distributions in the total variation. Our problem regarded as
a two player game has a very common form: the first player plays with func-
tions (distinguishers) and the second player plays with distributions. It might be
tempting then to think that the application of the min-max theorem solves the
problem as in similar cases, except maybe not best possible complexity. How-
ever, in our case the set of pure strategies corresponding to the distributions is
not convex! Indeed, we not only want to have a high entropy distribution, but
also make it efficiently samplable. Thus, at some point in the proof, we need
to approximate combinations of efficiently samplable distributions in the total
variation (statistical distance). Doing this by a standard application of the Cher-
noff Bound leads to an unacceptable cost equal the size of the domain! This is
because to make the variation distance smaller than ε, we need to approximate
every point mass up to ε/2n where n is the length of X. Therefore, more clever
approximation techniques are required.

1.3 Related Works

Trevisan, Tulsani and Vadhan [TTV09] gave a bunch of “decomposition” results,
in particular they studied the problem of efficiently simulating a high min-
entropy source X. Their analysis however does not cover side information.
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Indeed, from their result one can only derive a simulator for some (X ′, Z ′) which
is close (X,Z) but the marginal distribution Z ′ is not guaranteed to be identical
to Z. This distinction is important in settings where Z is information that an
adversary might have learned.

1.4 Our Contribution

Summary. We prove that every distribution with high conditional min-entropy
is efficiently simulatable (indistinguishable from a samplable distribution having
essentially the same amount of entropy.

Simulating high min-entropy entropy sources with side information. We give the
following positive answer to the posted question

Theorem 1 (Simulating High Min-entropy Sources with Side Informa-
tion, Informal). Let X ∈ {0, 1}n be an min-entropy source and Z ∈ {0, 1}m ba
a side information, such that X conditioned on Z has n−Δ bits of min-entropy1.
Let D be a class of [0, 1]-valued functions on n-bits. Then there exists a random
variable Y ∈ {0, 1}n such that

(a) (Y,Z) = (Sim(Z), Z), where Sim is a randomized function 2O(Δ)ε−O(1) times
more complex than D

(b) Y and X are ε-indistinguishable given Z by functions in D
(c) the conditional min-entropy of Y and X given Z differ by at most O(1) bits.

The exact parameters are given in Theorem 2.
It would be nice to have a boosting argument, which could perhaps reduce the

complexity by a factor of εΩ(1). However, it might be very complicated because
of the consistency issue. These problems appear in [JP14] and lead to severe
complications in the proof. In fact, we do not expect a boosting proof to be
simpler than the min-max theorem based argument, which is already involved.

Proof techniques of independent interests. To get rid of the exponential depen-
dency on the domain, we replace the popular argument based on the Chernoff
Bound [BSW03] (see also Sect. 1.2) by a more delicate approximation technique.
Our auxiliary result on L2-convex approximation is actually an extension of the
classical theorem attributed to Maurey, Jones and Barron. This is the more
tricky part of our proof. See Sect. 3 for more details.

Impact and possible applications. The problem we solved is very foundational
and certainly deserves explanation. But we also believe that the result we present
improves the understanding of high entropy sources and might be used elsewhere,
in particular in cryptography. In fact, simulatability condition already appeared
in works on memory delegation [CKLR11]. Moreover, what we proved suggests

1 There are two ways to define conditional min-entropy as explained in Sect. 2. Our
result holds in any case.
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that it might be possible to extend the other results in [TTV09,JP14,VZ13] to
the conditional case, gaining a huge improvement in interesting entropy regimes
where the deficiency is small. Replacing the dimension by the deficiency in these
results would be a remarkable and important result.

2 Preliminaries

Entropy. In information theory the notion of Shannon entropy is a fundamental
measure of randomness. In cryptography we use min-entropy.

Definition 1. The min-entropy of a variable X is

H∞(X) = − log max
x

Pr[X = x]

More generally, for a joint distribution (X,Z), the average min-entropy of X
conditioned on Z is

H̃∞(X|Z) = − logEz←Z max
x

Pr[X = x|Z = z]

= − logEz←Z 2−H∞(X|Z=z) .

and worst-case min-entropy of X conditioned on Z is

H∞(X|Z) = − log max z max
x

Pr[X = x|Z = z]

Sometimes the second conditional notion is more convenient to work with. We
can go back to average entropy losing only log(1/ε) in the amount

Lemma 1 (From Average to Worst-Case Conditional Min-entropy).
For any pair (X,Z) there exists a pair (X ′, Z) such that

(a) (X,Z) and (X ′, Z) are ε-close
(b) H̃∞(X ′|Z) � H∞(X|Z) − log(1/ε).

Probabilities. By US we denote the uniform distribution over the given set S,
we omit the subscript if it is clear from the context. When S = {0, 1}n we also
use the shortcut US = Un. By PY we denote the probability mass function
of the given distribution Y . By YZ|=z we denote the conditional distribution

Pr[Y = x|Z = z]. Sometimes we slightly abuse the notation and write Y
d= p1 ·

Y1+p2 ·Y2 by which we man that the distribution of Y is a convex combination of
distributions of Y1 and Y2 with coefficients p1, p2, that is PY = p1 ·PY1 +p2 ·PY2 .

Computational and variational distance. Given a class D of functions (typically
taking values in [0, 1] or [−1, 1]) we say that the distributions X1, X2 are (D, ε)-
indistnguishable if for every D ∈ D we have |ED(X1) −ED(X2)| � ε. If D is the
class of all circuits of size s then we also say about (s, ε)-indistinguishability. If
D consists of all possible boolean functions then we get the maxD |ED(X1) −
ED(X2)| = dTV (X1;X2) where dTV (X1;X2) is the variation distance, defined
as dTV (X1;X2) = 1

2

∑
x |PX1(x) − PX2(x)|.
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Vectors and scalar products. Sometimes we slightly abuse the notation and
understand PY as a vector which assigns the probability mass to each point
in the range of Y . Also, we can think of a function D : {0, 1}d → R as a vector
with 2d real coefficients. By ‘·’ we denote not only the multiplication sign, but
also the scalar product. Given a vector v, we denote v2 = v · v. In particular,
(PY )2 =

∑
x PY (x)2 and ED(Y ) = D · PY .

3 A New Result on Convex L2-approximation

We need the following technical result, which can be understand as a conditional
version of the famous Maurey-Jones-Barron Theorem (see Lemma 1 in [Bar93])
on approximating convex hulls in Hilbert spaces. It shows how to approximate
long convex combinations in L2-norm by much shorter combinations.

Lemma 2 (Convex Approximation). Let (Y,Z), {(Yi, Z)}i∈I be random
variables such that the distribution of (Y,Z) is a convex combination of dis-
tributions (Yi, Z). Then for any t there are indexes i1, . . . , it ∈ I such that if we
define PY ′|Z = 1

t

∑t
j=1 PYij

|Z then

E
z←Z

(
PY ′|Z=z − PY |Z=z

)2 �
maxi Ez←ZVari

(
PYi|Z=z

)

t
(1)

The proof appears in Appendix A.

4 Main Result

4.1 Statement

Below we present our main result with some discussion given in the remarks.

Theorem 2 (High Conditional Min-entropy is Simulatable). Let X ∈
{0, 1}n and Z ∈ {0, 1}m be correlated random variables and H∞(X|Z) = n−Δ.
Then there exists a distribution Y,Z such that

(a) There is a circuit Sim of complexity O
(
n(n + m)22Δε−5

)
and such that

Sim(Z) d= Y
(b) (X,Z) and (Y,Z) are (s, ε)-indistinguishable
(c) We have H∞(Y |Z) � n − Δ − 6.

Remark 1 (A version for average conditional entropy). We stress that it holds
also for average min-entropy, that is when H̃∞(X|Z) = n − Δ, with the simu-
lating complexity O

(
n(n + m)22Δε−7

)
.

Remark 2 (Independency on m). With a little bit of more effort one can replace
m by log(1/ε) and make the result completely independent on m. Even stated
as above, the factor n + m does not matter in asymptotic settings. Indeed, the
circuits which computes Sim must be of size at least m = |Z| in order to read
its input.
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4.2 Proof of Theorem 2

How to fool a boolean distinguisher. We will show that for any fixed boolean D
there exists an efficiently samplable source Y such that ED(X) � ED(Y ) + ε
and H∞(Y ) � H∞(X) − 3. The idea is very simple: if we don’t care about
computational issues, we just define p = min(2n−kED(U), 1) and set

Y
d= p · U{x: D(x)=1} + (1 − p) · Un

It is easy to check that H∞(Y ) � k−1 and that ED(X) � min(2−k|D|, 1) = p �
ED(Y ). To make this distribution efficiently samplable, we need to compute the
weight p and sample from the set {x : D(x) = 1}. The sampling is relatively easy
when the set is dense in the domain but the efficiency decreases exponentially in
the density, see Proposition 1. However, it turns out that this is the case when
p is very small, so that Y is close to Un. This observation is the heart of the
proof for the computational case. First, we give a formal proof of the simple
observation about sampling from the dense subset

Proposition 1. Let D : {0, 1}n → {0, 1} be a function of size s and let
δ = ED(U) and ε > 0. Then there is a distribution ŨD samplable in time
O

(
log(1/ε) · δ−1

)
which is ε-close to U{x: D(x)=1} and has at least the same

min-entropy.

Proof. We define ŨD as follows: we sample x at random, reject and repeat
if D(x) = 0, and return x if D(x) = 1 or the number of rejections
exceeds t = log(1/ε) · δ−1 times. This distribution is given by

ŨD
d= (1 − (1 − δ)t) · U{x: D(x)=1} + (1 − δ)t · U (2)

Note that dTV (ŨD, U{x: D(x)=1}) � (1 − δ)t � ε and that we also have

H∞
(
ŨD

)
� H∞

(
U{x: D(x)=1}

) ��
Now we are in position to prove the main lemma:

Lemma 3. Let X ∈ {0, 1}n be a random variable of min-entropy at least k =
n − Δ. There exists a uniform probabilistic algorithm S = S (1n,D,Δ, ε) that
for any boolean D, using only O

(
2Δ/ε

)
queries to D and in time O

(
n · 2Δ/ε

)
,

outputs a random variable Y ∈ {0, 1}n that has min-entropy k − 3 and satisfies

ED(X) � ED(Y ) + ε (3)

Proof. Define δ = 2−(Δ+2)ε. Let μ = ED(U) and μ̄ = 1
�

∑�
i=1 D(xi) where xi

are sampled at random and independently. If μ̄ < 2δ then we output random
x. Otherwise if μ̄ > 2δ, we consider the distribution Y0 defined as follows: we
sample x ← {0, 1}n and check if D(x) = 1; if this is true we output x otherwise
we reject it and repeat - but no more than t times. We define Y to be Y0 with
probability p = min(2 · 2Δμ̄, 1) and U with probability 1 − p (see Algorithm -).
The values for t and � we set so that t > n/δ and � > n/δ; now observe that, by
definition
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Function FoolBoolean(D)

Input : accuracy ε, deficiency Δ, {0, 1}-valued D
Output: x ∈ {0, 1}n

1 δ ← 2−2−Δε, � = �2n/δ�, t = �2n/δ�
2 for i = 1 to � do
3 xi ← {0, 1}n

4 end

5 μ = 1
�

∑�
i=1 D(xi) /* estimating μ ≈ ED(U) */

6 p = min(2 · 2Δμ̄, 1)
7 x ← {0, 1}n

8 if μ < 2δ then
9 return x /* w.h.p. ED(U) < ε */

10 else
11 i ← 0, b ← 0
12 while b = 0 and i < t do
13 x0 ← {0, 1}n

14 if D(x0) = 0 then
15 i ← i + 1
16 else
17 b ← 1 /* success: a point x0 s.t. D(x0) = 1 */

18 end

19 end
20 r ← [0, 1] /* random real number */

21 if r � p then
22 return x0

23 else
24 return x
25 end

26 end

(a) if μ̄ < 2δ then Y
d= U

(b) if μ̄ > 2δ then Y0 is (1 − μ)t-close to the distribution uniform over the set
{x : D(x) = 1}.

By the Multiplicative Chernoff Bound2 we obtain the following properties

Claim. If μ < δ then with probability 1 − exp(−�δ)

μ̄ � (1 + δ/μ) · μ � μ + δ (4)

Claim. If μ > 4δ then with probability 1 − exp(−�δ)

μ

2
� μ̄ � 2μ (5)

2 Here we slightly abuse the notation and for simplicity write exp(·) meaning the
exponential function at such a base such that the written inequalities are valid.
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We chose � > n/δ. Consider the case μ > 4δ, when we are with high probability
in case (b). Observe that for t > n/δ the distribution Y0 is 2−n-close to the
distribution uniform over {x : D(x) = 1}. Therefore, for ε > 2 · 2−n we obtain

ED(Y ) � Ex1,...,x�
[D(Y )|μ̄ > 2δ] − 2−n

� Ex1,...,x�
[pED(Y0) + (1 − p)ED(U)]

� min(2Δμ, 1) + (1 − p)ED(U) − 2 · 2−n

> min(2ΔED(U), 1) − ε

� ED(X) − ε (6)

In turn the min-entropy of Y can be estimated as follows

Pr[Y = x] � Pr
x1,...,x�

[Y = x|μ̄ > 2δ] + 2−n

� Ex1,...,x�
[p Pr[Y0 = x] + (1 − p) Pr[U = x]] + 2−n

� 2Δ+2μ · /|D| + 4 · 2−n

= 2Δ+2 · 2−n + 4 · 2−n

� 2Δ+3 · 2−n = 2−k+3 (7)

The case μ < δ is much simpler because then trivially

ED(X) � 2ΔED(U) < ε < ED(Y ) + ε, (8)

and since (a) holds with probability 1 − 2−n,

Pr[Y = x] � Pr
x1,...,x�

[Y = x|μ̄ < 2δ] + 2−n = 2 · 2−n. (9)

It remains to consider the case when δ < μ < 4δ. It is easy to observe that, as
before

Ex1,...,x�
[D(Y )|μ̄ > 2δ] � ED(X) − ε (10)

and, trivially

Ex1,...,x�
[D(Y )|μ̄ < 2δ] � ED(X) − ε (11)

Therefore, no matter what the probabilities of μ̄ > 2δ and μ̄ < 2δ are, we obtain
ED(X) � ED(Y ) + ε. Similarly, we obtain

Pr [Y = x|μ̄ > 2δ] � 2−k+3 (12)

and

Pr [Y = x|μ̄ < 2δ] � 2−n (13)

and again, H∞(Y ) � k − 3 independently of the probabilities of μ̄ > 2δ and
μ̄ < 2δ. ��
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It is easy to see that what we have proven applies also to high-min entropy
distributions in the conditional case. We simply apply the last result to D(·, z).

Corollary 1. Let X ∈ {0, 1}n and Z ∈ {0, 1}m be random variables such
that H∞(X|Z) � n − Δ. There exists a uniform probabilistic algorithm
S = S (1n,D,Δ, ε, Z) that for any boolean D on {0, 1}n+m and distribution Z,
using only O

(
2Δ/ε

)
queries to D and in time O

(
n · 2Δ/ε

)
, outputs a random

variable Y (Z) ∈ {0, 1}n that satisfies

H∞(Y (Z)|Z) � n − Δ − 3 (14)

and
ED(X,Z) � ED(Y (Z), Z) + ε (15)

How to fool a real-valued distinguisher. The statement and the efficiency is sim-
ilar for the real-valued case, however the proof becomes a bit complicated and is
referred to Appendix B. The main idea is to discretize the distinguisher D and
approximate by boolean distinguishers.

Lemma 4. Let X ∈ {0, 1}n be a random variable of min-entropy at least n−Δ.
There exists a uniform probabilistic algorithm S = S (1n,D,Δ, ε) that for any
D : {0, 1}n → [0, 1], using only O (

2Δ/ε
)

queries to D and in time O (
n · 2Δ/ε

)
,

outputs a random variable Y ∈ {0, 1}n that satisfies

ED(X) � ED(Y ) + ε (16)

and3

H∞(Y ) � n − Δ − 6 (17)

How to fool a real conditional distinguisher. Again, it is easy to see that the
result above applies also to high-min entropy distributions in the conditional
case. This is because H∞(Y |Z) � k means H∞(Y |Z = z) � k for every z.

Corollary 2 (Fooling Real Distinguisher, Conditional Case). Let X ∈
{0, 1}n and Z ∈ {0, 1}m be random variables such that H∞(X|Z) � n − Δ.
There exists a uniform probabilistic algorithm S = S (1n,D,Δ, ε, Z) that for any
boolean D on {0, 1}n+m and distribution Z, using only O

(
2Δ/ε

)
queries to D

and in time O
(
n · 2Δ/ε

)
, outputs a random variable Y (Z) ∈ {0, 1}n that satisfies

ED(X) � ED(Y ) + ε (18)

and4

H∞(Y ) � n − Δ − 6 (19)

3 The constant 6 can be replaced by 1, and even by any arbitrary small number, at
the price of increasing the constant hidden under the asymptotic notation.

4 The constant 6 can be replaced by 1, and even by any arbitrary small number, at
the price of increasing the constant hidden under the asymptotic notation.
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How to fool the whole class of distinguishers. We have shown that one can
simulate against every single distinguisher. By the min-max theorem and a non-
trivial approximation argument we switch the order of quantifiers, obtaining
one simulator for the entire class of distinguishers. Indeed, let D′ be a class
of distinguishers of size s′ = sε2/(n + m), D be the class of distinguishers of
size s and let Y be the set of all distributions of the pairs (Y ′, Z) such that
H∞(Y ′|Z) � n − Δ − 6 and Y ′ is simulatable in time O

(
s · 2Δε−1

)
from Z.

Directly from Lemma 4 we obtain

min
D∈D

max
(Y,Z)∈Y

(ED(X,Z) − ED(Y,Z)) � ε

By the Chernoff Bound it’s easy to see that for every D ∈ conv (D′) there exists
D′ of size only s′ · (m + n)ε−2 = s such that |D(x, z) − D′(x, z)| for all x, z. This
means that

min
D∈conv(D′)

max
(Y,Z)∈Y

(ED(X,Z) − ED(Y,Z)) � 2ε.

By the min-max theorem it is equivalent to

max
(Y,Z)∈conv(Y)

min
D∈D′

(ED(X,Z) − ED(Y,Z)) � 2ε. (20)

This is not what we really want, because long convex combinations are inefficient
to compute. We will remove the convex hull over Y by finding a shorter com-
bination which satisfies similar inequality. The standard Chernoff Bound is not
enough, as we need not the uniform error but the error in the variational norm.
Consequently, the use of Chernoff Bound would lead to an unacceptable blowup
of 2|Z| in complexity. Therefore, we will use the L2-norm approximation result in
Lemma 2. Namely, for every (Y,Z) ∈ conv (Y) and � there is (Y ′, Z) ∈ conv (Y)
being a convex combination of only t terms and such that

E
z←Z

(
PY |Z=z − PY ′|Z=z

)2 �
max(Y,Z)∈Y Ez←ZP2

Y |Z=z

t
.

Since (Y,Z) ∈ Y we have P2
Y |Z=z � 2−(n−Δ−6) for every z, which means

E
z←Z

(
PY |Z=z − PY ′|Z=z

)2 � t−12−(n−Δ−6)

where squares are interpreted as scalar products. Now the above bound, the
Cauchy-Schwarz Inequality, and the assumption

|ED(Y ′, Z) − ED(Y,Z)| =
∣
∣
∣
∣ E
z←Z

D(·, z) · (PY ′|Z=z − PY |Z=z

)
∣
∣
∣
∣

� E
z←Z

√
D(·, z)2 ·

√(
PY ′|Z=z − PY |Z=z

)2

�
√

2n ·
√

t−12−(n−Δ−6) = 8 · 2− Δ
2 t

1
2
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and choosing t = 2Δε−2 we obtain from Eq. 20 that

min
D∈D′

(ED(X,Z) − ED(Y ′, Z)) � 10ε.

Since D can be assumed to be closed under complements (that is if D ∈ D then
also 1 − D ∈ D (with an additive loss of 1 in complexity) we get

min
D∈D′

|ED(X,Z) − ED(Y ′, Z)| � 10ε, (21)

and the result follows. We only note that we lose uniformity due to the noncon-
structive min-max theorem.

5 Conclusion

We proved that high conditional entropy sources can be efficiently simulated.
We believe that the simulator costs can be improved much by a clever boosting
argument, and that using our ideas (especially the L2-approximation trick) one
can prove other strong generalizations of different results in the literature. We
leave this as a problem for further studies.

A Proof of Lemma 2

Proof (Proof of Lemma 2). Suppose that PY ′,Z =
∑

j θjPYj ,Z is a convex combi-
nation of distributions

{
PYj ,Z

}
i
. Let i1, . . . , it be sampled independently accord-

ing to the probability measure given by {θj}j , that is i1 = j with probability θj .
Define

PY ′,Z =
1
t

t∑

j=1

PYij
,Z

Using independency of ij and the fact that Eji
PY ′

ij
,Z = PYij

,Z we obtain

E
i1,...,it

E
z←Z

(
PY ′|Z=z −PY |Z=z

)2
=

1

t2
E

z←Z
E

i1,...,it

⎛
⎝ t∑

j=1

(
PY ′

ij
|Z=z −PYij

|Z=z

)⎞
⎠

2

=
1

t2
E

z←Z

⎡
⎣ t∑

j=1

⎛
⎝E

ij

P2
Y ′

ij
|Z=z −

(
E
ij

PY ′
ij

|Z=z

)2
⎞
⎠
⎤
⎦

which means that there is a choice of i1, . . . , ij such that

E
z←Z

(
PY ′|Z=z − PY |Z=z

)2 � 1
t2

t∑

j=1

Varij

(
PY ′

ij
|Z=z

)

and the result follows. ��
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B Proof of Lemma 4

Proof Let Δ = n−k. By replacing ε with 2ε we can assume that D =
∑j

i=1 αiDi

where αi = 1 − (i − 1)ε for i = 1, . . . , �1/ε	 and Di are boolean such that
1 =

∑
i Di. Define

d(i) = Pr[D(U) � αi]. (22)

and let M be the smallest number i such that d(i) � 2−Δ. Note that if we didn’t
care about computational efficiency then the best answer would be

Y + d=
d(M − 1)

2−Δ
· UD1+...+DM−1 +

2−Δ − d(M − 1)
2−Δ

· UDM
(23)

because then

ED(Y +) =

∑M−1
i=1 αi|Di| +

(
2k − ∑M−1

i=1 αi|Di|
)

αM

2k

= max
Y : H∞(Y )�k

ED(Y ) (24)

The approach we chose is quite obvious - we efficiently approximate the distri-
bution Y +. For any i, sample x1, . . . , x� where � > 2Δn log(1/ε)/ε and let

d̃(i) = �−1
�∑

j=1

1{D(xi)�αi} (25)

Now let M ′ be the smallest number such that d̃(M ′) > 3
4 · 2−Δ. Note that that

M ′ is well defined with probability 1 − 2−n, and then we have

d̃(M ′ − 1) <
3
4

· 2−Δ < d̃(M ′) (26)

Now we define Y as follows:

Y
d
=

⎧
⎪⎨

⎪⎩

d̃(M′−1)

2−Δ · ŨD1+...+DM′−1
+
(
1 − d̃(M′−1)

2−Δ

)
· ŨDM′ 2−Δε < d̃(M ′ − 1) < 2−Δ/16

ŨD1+...+DM′−1
, 2−Δ/16 < d̃(M ′ − 1)

ŨDM′ , 2−Δε > d̃(M ′ − 1)

(27)

Observe that if d(i) < 2−Δ/4 then with probability 1−2−n we get d̃(i) < 2−Δ/2.
Thus, the probability that d(M ′) < 2−Δ/4 and d̃(M ′) > 2−Δ/2 is at most
2−n log(1/ε) and we can assume that d(M ′) > 2−Δ/4. Similarly, if d(i) > 2−Δ

then with probability 1 − 2−n we have d̃(i) > 3
4 · 2−Δ which means M ′ � i.

Therefore, with probability 1−2−n log(1/ε) we can assume that d(M ′−1) < 2−Δ.
Now we split the analysis into the following cases
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(a) d̃(M ′ − 1) < 2−Δε and d(M ′ − 1) < 2 · 2−Δε. Since |DM ′ | = 2n(d(M ′) −
d(M ′−1)) � 2n−Δ/8, we see that UDM′ is samplable in time O (

2Δ log(1/ε)
)

and that H∞(UDM′ ) � k − 3. Note that

ED(Y +) = ED(Y +)1D(Y +)�αM′−1
+ ED(Y +)1D(Y +)�αM′

� 2ε + αM ′

� 3ε + ED(Y ) (28)

(b) d̃(M ′ − 1) > 2−Δ/16 and 2−Δ > d(M ′ − 1) > 2−Δ/32. Then we have
|D1| + . . . + |DM ′−1| � 2n−Δ−5 and thus H∞(ŨD1+...+DM′−1

) � n − Δ − 5
and ŨD1+...+DM′−1

is samplable in time O (
2Δ log(1/ε)

)
. Since |D1| + . . . +

|DM ′−1| � 2n−Δ, we have

ED(Y +) � ED(UD1+...+DM′−1
)

� ED(ŨD1+...+DM′−1
) + ε (29)

(c) 2−Δε < d̃(M ′ −1) < 2−Δ/16 and 2−Δε/2 < d(M ′ −1) < 2−Δ/8 and d̃(M ′ −
1) � 2d(M ′ − 1). We have |D1| + . . . + |DM ′−1| = 2nd(M ′ − 1) > 2n−Δε/2
and |DM ′ | = 2n(d(M ′) − d(M ′ − 1)) � 2n−Δ/8, therefore Y is samplable in
time O (

2Δ log(1/ε)/ε
)
. Moreover, we have H∞(ŨD1+...+DM′−1

) � log(|D1|+
. . . + |DM ′−1|) and H∞(ŨDM′ ) � log |DM ′ |. Hence H∞(ŨD1+...+DM′−1

) �
n + log d(M ′ − 1) and H∞(ŨDM′ ) � n − Δ − 3 and

Pr[Y = x] � d̃(M ′ − 1)
d(M ′ − 1)

· 2−n+Δ + 2−n+Δ+3

� 2−n+Δ+4 (30)

Suppose now that d(M ′ − 1) < 2−Δε/2. Then, by the Chernoff Bound with
probability 1 − 2−n we have d̃(M ′ − 1) < 2−Δε/2 + d(M ′ − 1) < 2−Δε and we
are in case (a). If 2−Δε/2 < d(M ′ − 1) < 2−Δ/32 then with probability 1 − 2−n

we have 1
2 < d̃(M ′−1)

d(M ′−1) < 2 and it is easy to check that we can be either in (a)

or in (c), depending on d̃(M ′ − 1). If 2−Δ/32 < d(M ′ − 1) < 2−Δ/8 then with
probability 1 − 2−n we are either in (c) or in (b). If 2−Δ/8 < d(M ′ − 1) < 2−Δ

then with probability 1 − 2−n we can be only in (b). ��
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Abstract. There is a significant effort in building lightweight cryp-
tographic operations, yet the proposed solutions are typically single-
purpose modules that can implement a single functionality. In contrast,
we propose BitCryptor, a multi-purpose, compact processor for crypto-
graphic applications on reconfigurable hardware. The proposed crypto
engine can perform pseudo-random number generation, strong collision-
resistant hashing and variable-key block cipher encryption. The hard-
ware architecture utilizes SIMON, a recent lightweight block cipher, as
its core. The complete engine uses a bit-serial design methodology to
minimize the area. Implementation results on the Xilinx Spartan-3 s50
FPGA show that the proposed architecture occupies 95 slices (187 LUTs,
102 registers), which is 10× smaller than the nearest comparable multi-
purpose design. BitCryptor is also smaller than the majority of recently
proposed lightweight single-purpose designs. Therefore, it is a very effi-
cient cryptographic IP block for resource-constrained domains, providing
a good performance at a minimal area overhead.

Keywords: Lightweight cryptography · Bit-serialization · Hardware
architecture · Crypto engine · SIMON · FPGA

1 Introduction

Lightweight cryptography studies the challenges of enabling security services on
resource-constrained platforms. Typical applications on such devices require a
protocol execution for secure key exchange or entity authentication. For exam-
ple, the protocol with non-reversible functions (Sect. 6.1.5. of [12]) uses a PRNG,
hash function and encryption, all within a single protocol run. Yet, most com-
pact implementations in the literature are single-purpose building blocks that
can perform only one of these three operations. How should a designer com-
bine a multi-purpose requirement with an area resource-constraint? Figure 1
shows the advantage of our proposal compared to the traditional approaches.
The straightforward approach is to include optimized single-purpose hardware
blocks and to glue them with a finite-state machine wrapper. Clearly, a solution
that uses these disjoint kernels (like PRESENT [7] for encryption, PHOTON [19]
for hashing, and TRIVIUM [13] for PRNG) yields a design that is larger than
c© Springer International Publishing Switzerland 2015
A. Biryukov and V. Goyal (Eds.): INDOCRYPT 2015, LNCS 9462, pp. 329–346, 2015.
DOI: 10.1007/978-3-319-26617-6 18
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Fig. 1. Comparison of design methods for flexibility

the sum of its composing kernels. It also ignores the opportunity to share the
internal designs for each kernel. Another solution would be to use embedded soft-
ware on a compact microcontroller. The program memory of the microcontroller
can store an instruction-level description of each operation, and can configure
the small microarchitecture. But such a solution is not ideal either, because
the instruction-set of the microcontroller is generic, and not optimized for the
multi-purpose kernel which we have in mind. Therefore, we will evaluate a third
option: the design of a flexible yet specialized crypto-engine.

In this paper, we propose BitCryptor, a bit-serialized compact crypto engine
that can execute fundamental cryptographic operations. BitCryptor is a multi-
purpose design that can perform PRNG, encryption and hash operations. There-
fore, we are promoting BitCryptor as a generic lightweight crypto engine upon
which protocols can be built as a sequence of BitCryptor commands. We show
that the BitCryptor is significantly smaller than competing crypto engines and
it has a better performance than low-cost microcontrollers.

1.1 Compact and Efficient Crypto Engine on FPGAs

ASIC technology offers a high integration density and a low per-unit price, yet
there exist a myriad of applications where FPGAs are preferred over ASICs
due to their lower NRE cost and reconfigurable nature. Wireless sensor nodes
(WSN) [30], wearable computers (WC) [31], and Internet-of-Things (IoT) [25]
are amongst such application domains that require compact solutions and still
incorporate FPGAs. In addition to their primary functionality, secure systems in
FPGAs need a method to perform cryptographic operations. Thus, the resource-
constrained device should embody this method with low operational and area
costs.
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We are not the first to propose a multi-purpose design in FGPA, but our pro-
posal is the smallest so far.BitCryptor occupies 95 slices, 12 %of available resources
of a Spartan-3 s50 FPGA whereas the nearest competitor with similar function-
alities [24] occupies 916 slices and cannot even fit into the same device. Hence, a
system using [24] must migrate to a larger device (eg. Spartan-3 s200), effectively
increasing the component cost. A larger device also increases the system cost, as it
increases static power dissipation, and possibly PCB cost. So, the argument that
it is always possible to use a larger FPGA, and thus that FPGA area optimization
has little value, is not correct in the context of IoT, WSN, and so on.

One can argue the use of embedded microcontrollers for low-cost reconfig-
urable systems. However, these platforms are at a disadvantage in terms of oper-
ational costs: A recent work [14] shows that, compared to BitCryptor, encryp-
tion on a 16-bit MSP430 microcontoller needs 4.8× more clock cycles, 70.8×
execution time, and 15.2× energy1. Alternatively, to achieve a higher operat-
ing frequency, the same general purpose MSP430 microcontroller can also be
configured as a soft-core processor on FPGAs. However, this trivial approach is
problematic as the resulting hardware occupies a very large area, requiring the
system to again move to an expensive board. Therefore, a designer has to find
the delicate balance between the area-cost, performance, and flexibility. BitCryp-
tor is such a solution that offers multiple cryptographic operations at minimal
area-cost and performance hit on reconfigurable hardware.

1.2 Novelty

Achieving the combination of area resource constraints with multi-purpose func-
tionality requires sound cryptographic engineering. It requires picking a light-
weight crypto kernel, applying specific functionalities with a careful analysis of
modes-of-operations, selecting proper configuration parameters, employing an
appropriate design methodology, and back-end engineering for EDA tool opti-
mizations. In this paper, we guide through these steps to reveal how to realize
a compact and multi-purpose crypto-engine on FPGA. We also provide detailed
analysis on the trade-offs within the design space.

The major contributions of this work are as follows

• We demonstrate a multi-purpose design that is 10× smaller than the nearest
comparable crypto-engine [24] and even smaller than the majority of single-
purpose encryption and all hash function implementations.

• We develop a systematic design approach with optimizations at several
abstraction levels.

• We show area-performance trade-offs between different serialization methods
and on multiple platforms.

1 The previous work implements a 128-bit security encryption with a fixed key, results
section elaborates on comparisons.
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Table 1. BitCryptor construction

Operation Kernel and configuration Modes-of-operation Security-level

Encryption SIMON 96/96 ECB, CBC 96-bits

Hash function SIMON 96/144 Hirose [20] 96-bitsa

PRNG SIMON 96/96 CTR 96-bits
a SIMON 96/144 generates a digest of 192-bits which has 96-bits of strong collision
resistance.

• We present a comparison with 8-bit, 16-bit, and 32-bit microcontroller designs
and quantify the performance improvement of our solutions.

• We provide a small isolated security module that is easier to validate and
certify.

1.3 Organization

The rest of the paper is organized as follows. Section 2 explains SIMON, the
lightweight core of the crypto engine, and discusses high-level design parameters.
Section 3 illustrates the bit-serial design methodology with a simple example.
Section 4 describes the hardware architecture of BitCryptor. Section 5 shows the
implementation results and its comparison to previous work and Sect. 6 concludes
the paper.

2 High-Level Description of BitCryptor

Table 1 summarizes the design of BitCryptor. The heart of BitCryptor is a flex-
ible block cipher, SIMON [6]. The flexibility of SIMON allows multiple key and
block lengths. The choice of security-level (96-bits, corresponding to ECRYPT-II
Level 5 or ‘legacy standard-level’ [36]) is a trade-off between selecting the shortest
key length possible while offering reasonable security for the intended applica-
tion domains. Using SIMON as the kernel, we then configure different mode-
of-operations to achieve message confidentiality (encryption), message integrity
(hashing), and pseudo-random number generation. Each row in Table 1 describes
such a mode-of-operation. In all of these configurations, we maintain the selected
96-bit security level.

2.1 SIMON Block Cipher

The lightweight block cipher SIMON is developed by NSA, targeting compact
hardware implementations [6]. So far, conventional cryptanalytic techniques
against SIMON did not demonstrate any weaknesses [1,3,38]. Equations 1 and 2
formulate the SIMON round and key expansion functions respectively, and Fig. 2
illustrates them. SIMON has ten configurations with different block and key
sizes, giving users the flexibility to choose the best one that fits into their appli-
cations requirements. Block size indicates the bit length of the input message
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Fig. 2. (a) SIMON round function, (b) SIMON key expansion function for m = 2, (c)
SIMON key expansion function for m = 3

to the block cipher while the key size is the bit length of the key. SIMON is a
Feistel-based block cipher and the input block (2n) is divided into two words,
shown as the word size (n). The key is formed by (m) words making the key
size (mn). SIMON using a block size 2n and key size mn is denoted as SIMON
2n/mn.

R(Xu,Xl) = (Xu � 1) ∧ (Xu � 8) ⊕ (Xu � 2) ⊕ Xl ⊕ ki (1)

K(i + m) =

{
ki ⊕ (ki+1 � 3) ⊕ (ki+1 � 4) ⊕ zi form = 1
ki ⊕ (ki+2 � 3) ⊕ (ki+2 � 4) ⊕ zi form = 2

(2)

2.2 Parameter Selection

The parameters we select directly affect the area and performance of the crypto
engine. Typically, to reduce the area, lightweight cryptographic systems utilize
shorter keys (80-bits). In our design, we aim to find the best configuration that
will at least meet this security level while minimizing the area. We utilize SIMON
96/96 for symmetric key encryption and PRNG, and SIMON 96/144 for hashing.

One of the challenges in selecting the parameters of the crypto engine is to
satisfy the security needs of the hash function. The security level of a hash is
determined by the size of the output digest and the probability of a collision
on the value of a digest. We choose the most stringent security constraint of
strong collision resistance [27] which requires that a hash at a k-bit security level
provides a 2k-bit digest. A common practice in building hash functions is to use a
block cipher with single-block-length (SBL) constructions like Davies-Meyer [39]
or double-block-length (DBL) constructions like Hirose [20]. In SBL, the output
size of the hash function is equal to the block size of the underlying block cipher,
while in DBL it is twice the block size. For lightweight applications, DBL is more
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Fig. 3. Hirose double-block-length hash function

advantageous than SBL because it requires a smaller block cipher. To have a
strong collision resistance of minimum 80-bits with SBL, the underlying block
cipher must have a block and key size of at least 160-bits, which is in fact an
undefined configuration for lightweight ciphers like SIMON. On the other hand,
DBL can achieve the same level of security with a block size of only 80-bits,
which will result in a smaller architecture.

Figure 3 shows the DBL Hirose construction. The input message mi is con-
catenated with the chaining value Hi−1 and fed into the key input. Both block
ciphers use the same key generated by a single key expansion function. The
Hirose construction requires a block cipher with a key size that is larger than
the block size. The digest is the concatenation of the last two chaining values
Hi and Gi. The computation equations of Hi and Gi are as follows.

Hi = E(Gi−1 ⊕ c,mi||Hi−1) ⊕ Gi−1 ⊕ c (3)

Gi = E(Gi−1,mi||Hi−1) ⊕ Gi−1 (4)

The Hirose construction is regarded as secure if the underlying block cipher is
secure. However, the security of SIMON is not yet evaluated for such a usecase.
For the scope of this paper, rather than focusing on security proofs, we study
practical lightweight instantiations. The configuration of SIMON that will be
used in Hirose construction must have a block size that is at least 80-bits for
strong collision resistance and it must have a key size that is larger than the
block size. Therefore we select SIMON 96/144 because it gives us the most
compact solution and provides a security level even stronger than the minimum
requirements. The resulting hash function reads messages in 48-bit blocks and
produces a 192-bit digest.

To minimize the area, the crypto engine shares the SIMON block cipher used
in hash function to implement symmetric key encryption and PRNG. However,
having a 144-bit key is unnecessary in both operations since it is beyond our
security requirements. Therefore, the performance of the system improves if we
use SIMON 96/96 which has the same block size but a shorter key. In [18], Gulcan
et al. show that the flexible architecture of SIMON with all block and key sizes
is still very compact. So, the crypto engine uses a flexible SIMON architecture
with 96-bit key size for symmetric key encryption and PRNG, and 144-bit key
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size for hash function. Since only the key size is flexible, the number of words
in the key expansion function changes while the datapath remains exactly the
same.

For the implementation of the PRNG, the crypto engine uses SIMON 96/96
in counter mode of operation. The host system provides a 96-bit key (seed) as
the source of entropy for the PRNG and is responsible to reseed the PRNG
when necessary. In [15] authors suggest that a single key be used to generate at
most 216 blocks of random data. For a block size of 96-bits, this corresponds to
approximately 222 bits hence the PRNG module uses a 22-bit counter.

3 Design Methodology

The way to systematically reduce the area of a circuit is through sequential-
ization; dividing operations in time and reusing the same resources for similar
computations. In our design, we have applied bit-serialization [4], a sequentializa-
tion methodology that processes one output bit at a time. We have adapted and
applied this methodology with an architecture optimization using shift register
logic (SRL-16) for the target FPGA technology.

3.1 Datapath

Figure 4 illustrates an example where the datapath computes c = a ⊕ b by
XORing two 16-bit registers a and b, and generates the 16-bit output c. In
this example, the datapath uses the same value of a multiple times while the
value of b changes. If all the bits are processed in the same clock cycle (Fig. 4(a)),
the datapath produces all bits of c in parallel. This datapath utilizes 48 registers
(to store a, b, and c) and 16 LUTs (to compute 16 XOR operations of c = a⊕b).
We can map these elements to 24 slices.

If we bit-serialize the entire datapath (Fig. 4(b)), the resulting hardware will
produce one output bit in one clock cycle. The 16-bit register blocks can now

Fig. 4. (a) Bit-parallel datapath (b) Bit-serial datapath
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Fig. 5. (a) Control with up-counters (b) Control with ring counters (c) Control of
nested loops

be mapped to SRL-16 logic and the output of a and b can be XORed using a
single XOR gate. To keep the value of a, SRL-16 a should have a feedback from
its output to input. Thus, the resulting hardware architecture will consist of 5
LUTs (3 SRL-16 to store a, b, and c, 1 LUT to compute the XOR operation
and 1 LUT to apply the feedback via a multiplexer). Now, the datapath can be
mapped to a total of 3 slices, which is one-eight of the size of the bit-parallel
implementation.

3.2 Control

Bit-serialization comes with control overhead. If not dealt carefully, this can
counteract the area gain of the datapath. In bit-serial designs, to identify when
to start and end loading shift registers, and when to finish operations, we need
to keep track of the bit positions during computations. In the example, since
the value of a is fixed for a number of c = a ⊕ b executions, the control needs
to determine the value of the select signal at the input multiplexer of SRL-16 a.
It will select 0 while a in is loaded, otherwise it will select 1. Usually, this is
implemented with counters and comparators. Figure 5(a) shows a 4-bit counter
with a corresponding comparator. In each clock cycle, the counter value incre-
ments by one and four registers update their values in parallel. A comparator
checks the counter value and returns 1 when the check condition occurs. This
architecture consists of 5 LUTs (4 LUTs for counter and 1 LUT for comparator)
and 4 registers.

Instead of using an up-counter, the same functionality can be realized using
a ring counter. Ring counters consist of circular shift registers. Figure 5(b) shows
a 16-bit ring counter. After 16 clock cycles, the output of this counter will return
1 indicating that 16 cycles have passed. The control unit can use a single LUT
(SRL-16) to implement the ring counter which is less than one-fifth of a counter-
based control mechanism. If the control signal has to remain 1 after 16 clock
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cycles, the controller can use an edge detector which costs an extra LUT and
register, to check when a transition from 1 to 0 occurs.

Managing the hierarchy of control is also simpler using ring counters and edge
detectors. Consider an example with two nested loops both counting up to 16.
Figure 5(c) shows the implementation of this nested loop with two ring counters
and an edge detector. The outer (SRL-16 outer) loop may count the number
of rounds while the inner (SRL-16 inner) loop counts the number of bits. The
Edge Detector will convert the start pulse into a continuous enable signal which
will keep SRL-16 inner active until a positive edge is detected at the output of
SRL-16 outer. Once the SRL-16 inner is active, its output will be 1 every 16
clock cycles and enable the SRL-16 outer for a single clock cycle. This control
unit can be realized with 4 LUTs and 3 register (2 LUTs for SRL-16, 2 LUT
and 3 register for the Edge Detector).

3.3 Bit-Serializing BitCryptor

The datapath of BitCryptor is serialized similar to the example. The bit-parallel
operations are converted into bit-serial ones and the necessary data elements are
stored in SRL-16. The sequentialization of the control flow is achieved by using
ring counters and edge detectors. The ring counters control the internal signals
when there is a data transmission with the host system. The I/O structure of
BitCryptor is also simplified using bit-serial design methodology. The data input
and output of the BitCryptor are single bit ports which makes it very suitable
for standard serial communication interfaces.

4 Hardware Implementation

Figure 6 shows the block diagram of BitCryptor. The host system indicates the
operation mode as 1, 2 or 3 for hash, encryption and PRNG respectively. It
also provides the input data, key/IV (Initialization Vector) and the start signal.
There are two output signals showing the current status of the engine. The first
status signal Next Block indicates that a new block of input data can be hashed
while the second signal Done states that the operation is completed and the
output can be sampled. All the data interfaces (Data In, Key/IV , Data Out)
are realized as serial ports and the control signals (Start, Mode, Next Block,
Done) are synchronized with the corresponding data.

BitCryptor is an autonomous module and it does not reveal any internal
state to outside. To have a secure mode switching, the crypto engine requires
the host system to provide a key/IV at the start of each operation. This process
overwrites the residues of the key/IV from a previous execution and ensures
that no secret information is leaked between two consecutive operations. Output
data is revealed together with the done signal if and only if the operation is
completed. Hence, an adversary abusing the input control signals cannot dump
out the internal states of the engine.
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Fig. 6. Block diagram of the BitCryptor

The main controller of BitCryptor handles the selection of operation modes,
starting the functions and reading the output values. Ring counters and edge
detectors are used to manage the control hierarchy of modes following the
methodology in Sect. 3.2. The hash function encapsulates the block cipher mod-
ule and controls it during the hashing operation. Also, the main controller has
direct access to the block cipher for encryption and PRNG modes, bypassing the
hash controller. Next, we describe the details of the individual operations.

4.1 Hash Function

In the Hirose construction, we can use two block ciphers to compute the two
halves of the digest. However, this does not necessarily mean that there have to
be two full block cipher engines. Since both encryption engines use the same key,
they can share a single key expansion function. Moreover, the internal control
signals of both round functions are the same so they can share the same control
logic. We call this architecture the Double-Datapath (DDP) SIMON with a
master round function, slave round function and a shared key expansion function.
The master round function is the full version that is capable of running on its
own, independently. On the other hand, the slave round function gets the internal
control signals from the master so it can only run while the master is running.

Figure 7 shows the DDP SIMON architecture following a master/slave con-
figuration. The architecture is bit-serialized using the design methodology of
Sect. 3. The hash function has two 96-bit chaining variables Gi and Hi, which
are produced by the master and slave round functions respectively. These two
variables are loaded with the IV value at the beginning of each operation. A
96-bit shift register (6 SRL-16) stores the Gi value while the shift registers of
the key expansion function store Hi. When the hash function is completed, it
returns Gi and Hi as the lower and upper 96-bits of the digest respectively.
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Fig. 7. Architecture of the Double-Datapath SIMON with Hirose construction

4.2 Symmetric Key Encryption

At the core, the crypto engine uses the SIMON block cipher with a 96-bit block
and key size. In [5], Aysu et al. implement the bit-serial version of SIMON
128/128 and show that it is an extremely compact design. To adapt the bit-
serial SIMON block cipher to our crypto engine, we modify the implementation
in [5] and convert it into SIMON 96/96. We also extend it to perform Cipher-
block-chaining (CBC) mode as well as Electronic-code-book (ECB).

Figure 7 shows the hardware architecture of the hash function, which also
includes the SIMON 96/96 block cipher. When the crypto engine is in encryption
mode, it only uses the master round function while the slave round function is
inactive. The key expansion function uses the 96-bit key configuration. The input
data BC plain and key BC key come directly from the host system through the
main controller, bypassing the hash function. When the block cipher completes
encryption, it gives the output from the same data output port that is shared
with the hash function.

4.3 PRNG

The PRNG uses the SIMON 96/96 in counter mode of operation. When the host
system requests a random number, it provides the key as the source of entropy
and the PRNG module feeds the 22-bit PRNG counter value to the block cipher
padded with zeros. The host system is also responsible to change the key after
receiving 222 bits of random data. After the block cipher generates the random
number, the PRNG module increments the counter value. We verified that the
output of the PRNG passes the NIST statistical test suite [32].
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Table 2. Area-cost breakdown of BitCryptor

Block LUTs Registers

Round-function master 15 29

Round-function slave 9 15

Key expansion 16 53

Control 62 91

5 Results

In this section, we first focus on BitCryptor, the lightweight bit-serialized imple-
mentation. Then, we show the trade-off between the area and performance on a
round-serial variant of BitCryptor.

5.1 Smallest Area – BitCryptor

The proposed hardware architecture is written in Verilog HDL and synthesized
in Xilinx ISE 14.7 for the target Spartan-3 XC3S50-4 FPGA as well as a more
recent Spartan-6 XC3S50-4 FPGA. In order to minimize the slice count, the
synthesized design is manually mapped to the FPGA resources using Xilinx
PlanAhead and finally the design is placed and routed. The power consumptions
are measured using Xilinx XPower. BitCryptor occupies 95 slices (187 LUTs, 102
Registers) and the area consumption details are given in Table 2. On the target
FPGA, BitCryptor achieves a throughput of 4 Mbps for encryption and PRNG,
and 1.91 Mbps for hashing at 118 MHz.

For classic hardware design, efficiency (area-per-throughput) is the typical
comparison metric. However, for lightweight applications, area-cost is the most
important evaluation criterion. Indeed, even reducing the area-cost of a design by
2.3 % is accepted as a significant contribution [42]. The improvement we achieve
in this paper is much more significant. Comparing hardware implementations is
a hard task due to the differences in EDA tools, target technology, optimiza-
tion heuristics, and the security level of the underlying primitives. In Fig. 8,
we demonstrate the area comparison of the designs that have the same prac-
tical functionality for lightweight applications, which is having at least 80-bits
of security. The figure shows a detailed area comparison of BitCryptor with the
smallest previous multi-purpose engine [24] and with various standalone area-
optimized block ciphers [5,10,11,22,26,28,37,41], hash functions [2,23,28], and
PRNGs [21]. The results show how small a flexible solution can become with
sound cryptographic engineering. Next, we discuss the details of area compar-
isons and the compromise in performance and efficiency.

Migrating to More Recent Xilinx FPGAs. For comparison fairness with
the previous work, we implement our hardware architecture on a Spartan-3 fam-
ily FPGA (XC3S50-4TQG144C). In addition, we also map our design on a more
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Fig. 8. Implementation results and comparison with previous work. For comparison
fairness with the previous work, we map our architecture on an older Spartan-3 FPGA
but we also provide the result on a recent Spartan-6 FPGA.

recent Spartan-6 device. On a Spartan-6 XC6SLX4-2 FPGA, BitCryptor occu-
pies 5 % of available resources which corresponds to only 35 slices (136 LUTs,
103 Registers) with a maximum frequency of 172 MHz.

Comparison with Single-Purpose Designs. The results show that our
design is more compact than the sum of implementing these functionalities indi-
vidually. Moreover, it is even smaller than the majority of the lightweight block
ciphers and all hash functions. Standalone PRNGs are usually based on simple
stream cipher constructions thus making them very compact. Table 2 reveals
that the increase of BitCryptor is largely due to the control overhead of the
flexible engine.

Comparison with Other Multi-purpose Designs. Most of the previous
multi-purpose designs do not target lightweight applications [29,33–35]. They
are mapped on ASIC technology and optimized primarily for performance to
provide a throughput at the orders of Gbps. Bossuet et al. survey a number of
multi-purpose designs and document the smallest to be 847 slices [8]. In [24],
Laue et al. propose a compact hardware engine on FPGAs that offers the closest
functionality to our design. However, they do not apply our design and optimiza-
tion methods. Therefore, it requires 916 slices on a Virtex-II family FPGA (which
has the same slice structure with Spartan-3). Compared to this design, our archi-
tecture has an area improvement of almost 10×. The net area reduction of 800
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Table 3. Comparison of encryption performance with low-cost microcontrollers

Platform Clock cycles Max. frequency (MHz) Throughput (Kbps)

ATmega128 [14] 24369 16 82.07

MSP430F1611 [14] 12902 8 77.50

This work (bit-serial) 2685 118 4120

XC3S50-4TQG144C

This work (bit-serial) 2685 172 6005

XC6SLX4-2TQG144C

slices is not achievable by simply plugging in SIMON instead of AES because
the area difference of these kernels is 150 slices. Instead, the improvement is due
to the combination of our design and optimization methods.

Comparison with Soft-core and Embedded Processors. We also compare
our results with the software implementations on actual microcontrollers and on
FPGAs using soft-core processors. Good et al. provide the smallest soft-core
processor in the literature that is capable of running only a single-purpose AES
encryption [17]. This design utilizes the 8-bit PicoBlaze processor [9], achieves
0.71 Mbps, and occupies 119 slices and a BRAM (≈ 452 slice equivalent), mak-
ing it larger and slower than BitCryptor. Likewise, the 16-bit MSP430 softcore
processor [16] on FPGAs occupies more than 10× of BitCryptor and it can not
even fit into the same device.

Table 3 shows the comparison of a SIMON block cipher encryption on FPGAs
vs. low-cost 8-bit and 16-bit microcontrollers. BitCryptor is two orders of mag-
nitude better than ATmega128 and MSP430 based microcontroller implemen-
tations. Note that the previous work [14] uses a fixed-key implementation that
requires fewer operations and we provide throughput results to compensate for
different SIMON configurations. Unfortunately, the power and energy results
of Dinu et al. is not available, but we can make a rough estimation on TI
MSP430F1611. The typical energy consumption of this microcontroller at an
energy optimized configuration of 2.2 V and 1 MHz is 330µJ. A SIMON exe-
cution with this setting takes 1.3 ms and consumes 4.26 × 10−6 J of energy
which is 15.2× of our bit-serial compact design. Table 4 shows the details of the
performance figures.

5.2 Relaxing Area – Round-Serial Variant

Area-Performance Tradeoff. A bit-serial design exchanges performance for
area savings. Typically, by extending the width of the datapath, it is possible
to achieve a more area- and energy-efficient design, because the control and the
storage do not scale with the datapath. Therefore, bit-serial architectures are less
efficient than 4-bit, 8-bit, or round-serial designs. We have evaluated the relative
impact of this trade-off, by comparing a bit-serial implementation of BitCryp-
tor with a round-serial version of BitCryptor. The area improvement comes at
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Table 4. Area-performance tradeoff (@100 MHz XC3S50-4)

Bit-serial Round-seriala Unit

Block cipher & PRNG 3.41 169.54 Mbps

Hash short blockb 1.64 83.23 Mbps

Hash long blockb 1.80 86.37 Mbps

Static powerc 3.24 14.31 mW

Dynamic power 7 38 mW

Total power 10.24 52.31 mW

Average energyd 2.80 × 10−7 2.85 × 10−8 J

Energy-delay 7.79 × 10−12 1.57 × 10−14 J-s

Area 95 500 Slice
a The Round-Serial results are estimated from a simulation of SIMON
96/96 hardware
b Short block is one 48-bit input block, long block is 1000 48-bit input
blocks
c Static power is scaled with respect to the resource utilization ratio
d Average energy refers to the averaged energy consumption of three
modes

the expense of throughput and energy-efficiency. Compared to bit-serial archi-
tectures, round-serial designs have simpler control and a faster execution time,
resulting in a reduced energy consumption and a higher throughput. Table 4
quantifies these trade-offs. The round-serial design is approximately two orders
of magnitude faster and more energy efficient, but it occupies 5 times the area
compared to the bit-serial. However, the power requirement of the bit-serial
design is lower due to sequentialization (dynamic) and reduced total area (sta-
tic). The area-efficiency (defined as Mbps/slice) of the flexible bit-serial and
round serial designs are 0.036 and 0.339. Normalized at the same frequency (to
compensate for FPGA difference), the efficiency of the previous compact flexi-
ble engine is 0.311. The compact single-purpose designs like HIGHT [40] has an
efficiency of 0.71 which is, as expected, much better than the flexible engines.

The round-serial variant of BitCryptor is still smaller than previous multi-
purpose implementations and can also fit into the same Spartan-3 and Spartan-6
FPGA with the bit-serial design. Table 5 shows that this architecture can achieve
a two orders of magnitude performance improvement compared to a capable 32-
bit ARM microcontroller.

6 Conclusion

The key contribution of this work is to provide a flexible engine with a min-
imal area overhead. We showed that selecting the optimum encryption kernel
and parameters, using a bit-serial design methodology, targeting the architecture
optimization for the shift register logic (SRL-16), and manual placement of LUTs
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Table 5. Comparison of encryption performance with moderate microcontrollers

Platform Clock cycles Max. frequency (MHz) Throughput (Mbps)

ATSAM3A8 1406 84 7.29

ARM-CORTEX-M3 [14]

This work (round-serial) 54 112 189.88

XC3S50-4TQG144C

This work (round-serial) 54 162 274.66

XC6S50-2TQG144C

and registers can significantly minimize the area. The resulting hardware archi-
tecture is 10× smaller than a previous multi-purpose design and smaller than
majority of single-purpose crypto modules. BitCryptor can fit into the small-
est FPGA of Spartan-3 and Spartan-6 family with only 12 % and 5 % resource
utilization respectively, leaving a large amount of logic for other embedded func-
tionalities. Hence, the proposed hardware architecture is a promising IP block
for system designers who seek compact and efficient solutions on reconfigurable
hardware.
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Abstract. Elliptic curve cryptography (ECC) is an ideal choice for low-
resource applications because it provides the same level of security with
smaller key sizes than other existing public key encryption schemes. For
low-resource applications, designing efficient functional units for ellip-
tic curve computations over binary fields results in an effective platform
for an embedded co-processor. This paper proposes such a co-processor
designed for area-constrained devices by utilizing state of the art binary
Edwards curve equations over mixed point addition and doubling. The
binary Edwards curve offers the security advantage that it is complete
and is, therefore, immune to the exceptional points attack. In conjunc-
tion with Montgomery Ladder, such a curve is naturally immune to most
types of simple power and timing attacks. The recently presented formu-
las for mixed point addition in [1] were found to be invalid, but were
corrected such that the speed and register usage were maintained. We
utilize corrected mixed point addition and doubling formulas to achieve
a secure, but still fast implementation of a point multiplication on binary
Edwards curves. Our synthesis results over NIST recommended fields for
ECC indicate that the proposed co-processor requires about 50 % fewer
clock cycles for point multiplication and occupies a similar silicon area
when compared to the most recent in literature.

Keywords: Crypto-processor · Binary edwards curves · Gaussian nor-
mal basis · Point multiplication · Low-resource devices

1 Introduction

Deeply-embedded computing systems, nowadays, are essential parts of emerg-
ing, sensitive applications. With the transition to the Internet of Things (IoTs),
where all tools and electronics will be linked wirelessly, there is a need to secure
these devices from malicious intent. However, these devices are mainly designed
in such a way that the functionality and connectivity monopolize the device’s
area and power. Little power and area are allocated for the establishment of
c© Springer International Publishing Switzerland 2015
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security. Therefore, a secure co-processor that can fill this niche in the current
technological world is necessary for the evolution of achieving security for IoTs
in the near future.

Elliptic Curve Cryptography (ECC) is the ideal implementation for this
application because it provides a secure application for far fewer bits than RSA
and other public key encryption schemes. ECC provides key exchange ECDH,
authentication ECDSA, and encryption ECIES protocols. An elliptic curve is
composed of all points that satisfy an elliptic curve equation as well as a point
at infinity. This forms an Abelian group, E, over addition, where the point at
infinity represents the zero element or identity of the group. The most basic
operations over this Abelian group are point addition and point doubling. Using
a double-and-add method, a point multiplication, Q = kP , where k ∈ Z and
Q,P ∈ E, can be computed quickly and efficiently. Protocols implemented over
ECC rely on the difficulty to solve the elliptic curve discrete logarithm problem
(ECDLP), that given Q and P in Q = kP , it is infeasible to solve for k [2]. For
the computations of ECC, several parameters should be considered including
representation of field elements and underlying curve, choosing point addition
and doubling method, selecting coordinate systems such as affine, projective,
Jacobian, and mixed, and finally arithmetic (addition, inversion, multiplication,
squaring) on finite field. Field multiplication determines the efficiency of point
multiplication on elliptic curves as its computation is complex and point multi-
plication requires many field multiplications. IEEE and NIST recommended the
usage of both binary and prime fields for the computation of ECC [3,4]. How-
ever, in hardware implementations and more specifically for area-constrained
applications, binary fields outperform prime fields, as shown in [5]. Therefore,
a lot of research in the literature has been focused on investigating the effi-
ciency of computing point multiplication on elliptic curves over binary fields.
For instance, one can refer to [6–9] to name a few, covering a wide variety of
cases including different curve forms, e.g., generic and Edwards, and different
coordinate systems, e.g., affine, projective, and mixed. The formulas for point
addition and point addition can be determined by using geometric properties. In
[10], binary Edwards curves are presented for the first time for ECC and their
low-resource implementations appeared in [9]. It has been shown that a binary
Edwards curves (BEC) is isomorphic to a general elliptic curve if the singulari-
ties are resolved [10]. Based on the implementations provided in [9], it has been
observed that their implementations are not as efficient as other standardized
curves. Recently, in [1], the authors revisited the original equations for point
addition and doubling and provided competitive formulas. We observed that the
revisited formulas for mixed point addition in [1] are invalid. After modifying
their formulas, we employed them for the computation of point multiplication
using a mixed coordinate system and proposed an efficient crypto-processor for
low-resource devices. The main contributions of this paper can be summarized
as follows:
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– We propose an efficient hardware architecture for point multiplication on
binary Edwards curves. We employed Gaussian normal basis (GNB) for rep-
resenting field elements and curves as the computation of squaring, inversion,
and trace function can be done very efficiently over GNB in hardware.

– We modified and corrected the w-coordinates differential point addition for-
mulas presented in [1]. We provide explicit formulas over binary Edwards
curves that maintain the speed and register usage provided in [1] and employed
the formulas in steps on the Montgomery Ladder [11]. This is the first time
this double-and-add algorithm has appeared in literature. This implementa-
tion was competitive with many of the area-efficient elliptic curve crypto-
processors found in literature, but adds the additional security benefit of
completeness.

– We implemented and synthesized our proposed algorithms and architectures
for the computation of point multiplication on binary Edwards curves and
compared our results to the leading ones available in the literature.

This paper is organized as follows. In Sect. 2, the binary Edwards curve is intro-
duced and proper mixed coordinate addition formulas are presented. Section 3
details the area-efficient architecture used for this ECC co-processor. Section 4
compares this work to other ECC crypto-processors in terms of area, latency,
computation time, and innate security. Section 5 concludes the paper with take-
aways and the future of area efficient implementations of point multiplication.

2 Point Multiplication on Binary Edwards Curves

ECC cryptosystems can be implemented over a variety of curves. Some curves
have more inherent properties than others. Table 1 contains a comparison of point
addition and doubling formulas presented in literature. Completeness means
that there are no exceptional cases to addition or doubling (e.g., adding the
neutral point). From this table, the choice was to apply the new mixed coordi-
nate addition and doubling formulas over new binary Edwards curves presented
in [1].

2.1 Binary Edwards Curve

Definition 1. Consider a finite field of characteristic two, K. Let d1, d2 ∈ K
such that d1 �=0 and d2 �=d2

1 + d1.Then the binary Edwards curve with coefficients
d1and d2 is the affine curve [10]:

EF2m ,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2 (1)

This curve is symmetric in that if (x, y) is on the curve, then (y, x) is also on
the curve. In fact, these points are additive inverses over the Edwards addition
law. The point (0, 0) is isomorphic to the point at infinity in a binary generic
curve. This represents the neutral point in the binary Edwards curve. The point
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Table 1. Cost of point operations on binary generic curves (BGCs) [12], binary
Edwards curves (BECs) [10], binary Edwards curves revisited [1], and generalized
Hessian curves (GHC) [13] over GF (2m).

Curve Coordinate System Differential PA and PD Completeness

BGC Projective 6M + 1D + 5S ×
Mixed 5M + 1D + 4S ×

BEC (d1 = d2) Projective 7M + 2D + 4S �
Mixed 5M + 2D + 4S �

BEC-R (d1 = d2) Projective 7M + 2D + 4S �
Mixed 5M + 1D + 4S �

GHC Projective 7M + 2D + 4S �
Mixed 5M + 2D + 4S �

(1,1) is also on every binary Edwards curve, and has order 2. The curve is
complete if there is no element t ∈ K that satisfies the relation t2 + t + d2 = 0
[10]. Alternatively, this means that if Tr(d2) = 1, then the curve is complete [14].

Point addition and point doubling do not have the same representation or
equations as standard generic curves. The Edwards Addition Law is presented
below. The sum of any two points (x1, y1), (x2, y2) on the curve defined by
EF2m ,d1,d2 to (x3,y3) is defined as [10]

x3 = d1(x1+x2)+d2(x1+y1)(x2+y2)+(x1+x2
1)(x2(y1+y2+1)+y1y2)

d1+(x1+x2
1)(x2+y2)

(2)

y3 = d1(y1+y2)+d2(x1+y1)(x2+y2)+(y1+y2
1)(y2(x1+x2+1)+x1x2)

d1+(y1+y2
1)(x2+y2)

We note that [10] uses this addition law to prove that ordinary elliptic curves
over binary fields are birationally equivalent to binary Edwards curves.

2.2 Revised Differential Addition and Doubling Formulas

Point multiplication utilizes point doubling and point addition to quickly gener-
ate large multiples of a point. As a deterrent to timing and other side channel
attacks, the Montgomery Ladder [11] is used as a method to generate multipli-
cations efficiently and securely. Montgomery Ladder is shown in Algorithm 1. At
each step of the ladder, there is an addition and doubling. The current bit of a
key determines which point is doubled and where the point addition and dou-
bling reside. For standard point additions and point doublings, the finite field
inversion dominates the computation. To reduce this impact, the typical con-
vention is to use projective coordinates, (x, y) → (X,Y,Z), where x = X

Z and
y = Y

Z . X,Y, and Z are updated at each step of the ladder and a single inversion is
performed at the end. An additional improvement to this convention is to use w-
coordinates, (x, y) → (w), where w = x+y. Mixed coordinates is the combination
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Algorithm 1 . Montgomery algorithm [11] for point multiplication using
w-coordinates.
Inputs: A point P = (x0, y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · , k1, k0)2.
Output: w(Q) = w(kP ) ∈ E(F2m).
1: set : w0 ← x0 + y0 and initialize

a: W1 ← w0 and Z1 ← 1 and c = 1
w0

(inversion)

b: (W2, Z2) = DiffDBL(W1, Z1)
2: for i from l − 2 down to 0 do

a: if ki = 1 then
i): (W1, Z1) = MDiffADD(W1, Z1,W2, Z2, c)
ii): (W2, Z2) = DiffDBL(W2, Z2)

b: else
i): (W1, Z1) = DiffDBL(W1, Z1)
ii): (W2, Z2) = MDiffADD(W1, Z1,W2, Z2, c)

end if
end for

3: return w(kP ) ← (W1, Z1) and w((k + 1)P ) ← (W2, Z2)

of w-coordinates and the projective coordinates. Hence, (x, y) → w → (W,Z),
where w = x + y = W

Z . For computing point multiplication, let P be a point on
a binary Edwards curve EF2m ,d1,d2 and let us assume w(nP ) and w((n + 1)P ),
0 < n < k are known. Therefore, one can use the w-coordinate differential addi-
tion and doubling formulas to compute their sum as w((2n + 1)P ) and double
of w(nP ) as w(2nP ) [10].

2.3 Fixed w-Coordinate Differential Addition

In [1], the authors present faster equations for w-coordinates and mixed coordi-
nates addition than those presented in [10]. This equation makes the assump-
tion that d1 = d2. An analysis of the formula, however, shows that they do not
properly produce the correct w-coordinates. The authors correctly identify the
relation, w3w0

d1(w2
1+w2

2)
= w3+w0+1

d1
, but incorrectly solve for w3. We observe that

the final equation for differential point addition that is presented in subsection
(3.19) of [1] is faulty. Therefore, we wrote a sage script to verify this claim1. This
algebra was performed correctly and here we present the revised formulas. The
incorrect formula presented in [1] is in (3) and the corrected formula is shown in
(4). This formula defines the addition of w1 + w2 = w3, given that wi = xi + yi
and w0 = w2 − w1.

Proposition 1. The w-coordinate differential addition formula over binary
Edwards curves with d1 = d2 proposed in [1] does not provide correct formu-
lation based on the following equation:

1 http://github.com/briankoziel/BEC Small.

http://github.com/briankoziel/BEC_Small
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w3 = 1 +
1
w0

(w2
1 + w2

2)
1
w0

(w2
1 + w2

2) + 1
(3)

Proof. In the following equations, the correct w-coordinate differential addition
formula over binary Edwards curves with d1 = d2 is discovered from the starting
relation in [1].

w3w0

d1(w2
1 + w2

2)
=

w3 + w0 + 1
d1

w3w0

(w2
1 + w2

2)
= w3 + w0 + 1

w3w0

(w2
1 + w2

2)
+ w3 = w0 + 1

w3(
w0

(w2
1 + w2

2)
+ 1) = w0 + 1

w3(w0 + w2
1 + w2

2) = (w0 + 1)(w2
1 + w2

2)

w3 =
(w0 + 1)(w2

1 + w2
2)

w0 + w2
1 + w2

2

w3 =
(1 + 1

w0
)(w2

1 + w2
2)

1
w0

(w2
1 + w2

2) + 1

Corrected w-Coordinate Differential Addition

w3 =
w2

1 + w2
2 + 1

w0
(w2

1 + w2
2)

1
w0

(w2
1 + w2

2) + 1
. (4)

The explicit affine w-coordinate differential addition is

A = (w1 + w2)2, B = A · 1
w0

, N = A + B, (5)

D = B + 1, E = 1
D , w3 = N · E.

The total cost of this corrected formula is still 1I + 1M + 1D + 1S, but now
the differential addition functions as intended. Assuming that inversion requires
at least two registers, a total of three registers are required. 1

w0
is the inverse of

the difference between the points and will not be updated in each step of the
point multiplication algorithm. For the application in Montgomery Ladder [11],
the difference between the two points is always P (specifically w(P )). Therefore,
this value can be determined at the start of the ladder and used throughout to
cut down on each step.
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[1] uses the faulty formula (3) for determining explicit formulas in mixed w-
coordinates, but also gives a faster and correct formula for affine w-coordinate
differential addition which requires 1I + 1M + 2S, so long as the values 1

w0+w2
0

and w0 are known. This formula is shown below.

w3 = w0 + 1 +
1

1
w0+w2

0
(w2

1 + w2
2 + w0)

(6)

The explicit affine w-coordinate differential addition is

A = (w1 + w2)2, B = A + w0, D = B · 1
w0 + w2

0

, (7)

E =
1
D
, w3 = E + 1 + w0

Assuming that w0 and 1
w0+w2

0
are known, the actual cost for w-coordinate

differential addition can be reduced down to 1I+1D+1S. This method requires
two registers for w1 and w2, and the storage of w0 and 1

w0+w2
0
.

Mixed w-Coordinate Differential Addition and Doubling. Equation (4)
can be applied to mixed w-coordinate differential addition and doubling. The
general formula and explicit formula are shown below. This formula defines the
addition of W1

Z1
+ W2

Z2
= W3

Z3
, given that w0 = w2 − w1.

W3

Z3
=

(W1Z2 + W2Z1)2 + 1
w0

(W1Z2 + W2Z1)2

Z2
1Z

2
2 + 1

w0
(W1Z2 + W2Z1)2

(8)

C = (W1Z2 + W2Z1)2, D = (Z1Z2)2, E =
1
w0

· C, (9)

W3 = E + C, Z3 = E + D

Thus, mixed w-coordinate differential addition requires 3M +1D+2S. From
a simple analysis of the formula, four registers are needed.

For mixed w-coordinate differential addition and doubling, the doubling for-
mula from [10] can be used in conjunction with this corrected differential addition
formula, with the assumption that d1 = d2. This formula defines the addition of
W1
Z1

+ W2
Z2

= W3
Z3

and doubling of 2 × W1
Z1

= W4
Z4

given that w0 = w2 − w1.

W4

Z4
=

(W1(W1 + Z1))2

d1 � Z4
1 + (W1(W1 + Z1))2

(10)

C = (W1Z2 + W2Z1)2, D = (Z1Z2)2, E =
1
w0

· C, (11)

W3 = E + C, Z3 = E + D W4 = (W1(W1 + Z1))2,
Z4 = W4 + d1 · Z4

1
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Thus, mixed w-coordinate differential addition and doubling requires 5M +
1D + 5S. From an analysis of the formula, five registers are needed.

Mixed w-Coordinate Differential Addition and Doubling with the Co-Z
Trick. We note that in [15] the common-Z trick is proposed. This method to
reduces the number of registers required per step of the Montgomery Ladder
[11] and simplifies the number of operations per step. Each step of the Mont-
gomery Ladder is a point doubling and addition. By using a common-Z coor-
dinate system, one less register is required for a step on the ladder, and the
method becomes more efficient, requiring one less squaring operation. The dou-
bling formula was obtained from [10] and it is assumed that d1 = d2. The general
formula and explicit formulas are shown below. This formula defines the addition
of W1

Z + W2
Z = W3

Z′ and doubling of 2 × W1
Z = W4

Z′ given that w0 = w2 − w1.

W3

Z ′ =
(W1 + W2)2 + 1

w0
(W1 + W2)2

Z2 + 1
w0

(W1 + W2)2
(12)

W4

Z ′ =
(W1(W1 + Z))2

d1 � Z4 + (W1(W1 + Z))2
(13)

C = (W1 + W2)2, D = Z2, E =
1
w0

· C, (14)

U = E + C, V = E + D, S = (W1(W1 + Z))2,
T = S + d1 · D2, W3 = U · T, W4 = V · S,

Z ′ = V · T

Thus, the mixed w-coordinate differential addition and doubling formula
requires 5M+1D+4S. An analysis of this formula shows that it requires only four
registers. As will be discussed later, this implementation incorporates shifting for
the multiplication within the register file, forcing the need for an additional reg-
ister. This formula requires one less squaring than that provided in [10], and also
uses registers much more efficiently. Table 2 shows a comparison of differential
point addition schemes for BEC with d1 = d2.

Table 2. Comparison of Differential Point Addition Schemes for BEC with d1 = d2.

Operation Formula Complexity #Registers

Affine w-coordinate Differential Addition (5) 1I + 1M + 1D + 2S 3

Affine w-coordinate Differential Addition (7) 1I + 1D + 1S 2

Mixed Differential Addition (9) 3M + 1D + 1S 4

Mixed Differential Addition and Doubling (11) 5M + 1D + 5S 5

Mixed Differential Addition and Doubling w/Co-Z (14) 5M + 1D + 4S 4
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Algorithm 2. Retrieving x and y from w-coordinates
Inputs: A point P = (x0, y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · , k1, k0)2.
Output: Q = kP ∈ E(F2m).
1: set: w0 ← x0 + y0 and initialize
2: compute: w2 ← w(kP ), w3 ← w(kP + 1)
3: solve (15) for x2 + x2

2

4: if Tr(x2 + x2
2) = 0 then

a: x2 =half-trace(x2 + x2
2)

end if
3: solve (16) for y2 + y2

2

4: if Tr(y2 + y2
2) = 0 then

a: y2 =half-trace(y2 + y2
2)

end if
5: return Q = (x2, y2) = kP ∈ E(F2m)

Retrieving x and y from w-Coordinates. The formula to retrieve the x-
coordinate from w-coordinates is presented in [10]. This formula requires P,
w(kP ), and w(kP + 1). Again, relating back to the application of Montgomery
Ladder [11], each consecutive step produces w(mP ) and w(mP + 1), where m
represents the scalar multiplication over each steps. The formula to solve for
the x-coordinate of mP is shown below [10]. In this formula, P = (x1, y1),w0 =
x1 + y1, w2 = w(kP ), and w3 = w(kP + 1).

x
2
2 + x2 =

w3(d1 + w0w2(1 + w0 + w2) +
d2
d1

w2
0w

2
2) + d1(w0 + w2) + (y2

1 + y1)(w
2
0 + w2)

w2
0 + w0

(15)

This formula requires 1I+4M +4S if d2 = d1. After solving for x2
2 +x2 = A,

if Tr(A) = 0, then the value of x2 or x2 + 1 can be recovered by using the
half-trace.

After the value of x2 has been found, y2 can be retrieved by solving the curve
equation for y2

2 + y2 (16) and also using the half-trace to solve for y2 or y2 + 1.

y2
2 + y2 =

d(x2 + x2
2)

d + x2 + x2
2

(16)

Therefore, recovering y2 requires 1I+2M+S, and the total cost of recovering
points from w-coordinates is 2I + 6M + 5S. Even though the point (x2 + 1,
y2 + 1) is not the same as (x2, y2), both points will produce the same value in
standard ECC applications. Algorithm2 summarizes how to retrieve the x and
y-coordinates.

The implementation of the algorithms noted in this section require a binary
Edwards curve with d1 = d2. The standardized NIST curves over binary generic
curves [3] could be converted to binary Edwards curves. However, there is no
guarantee that these isomorphic binary Edwards curves would satisfy d1 = d2.
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Therefore, values for x and d were randomly picked and used in conjunction
with (16) to solve for y. If the point (x,y) was on the curve, then the point
and corresponding binary Edwards curve were valid and could be used with the
above algorithms. It can also be noted that there are no restrictions on d, so it
could be chosen to be small for faster arithmetic.

2.4 Resistance Against Side-Channel Attacks

The binary Edwards curve features the unique properties that its addition for-
mula is unified and complete. Unified implies that the addition and doubling
formulas are the same. This gives the advantage that no checking is required for
the points to differentiate if an addition or doubling needs to take place. Com-
plete implies that the addition formula works for any two input points, including
the neutral point. Therefore, as long as two points are on the curve, no check-
ing is needed for the addition formula, as it will always produce a point for a
complete binary Edwards Curve [10].

One common attack to reveal bits of an ECC system’s key is to use the
exceptional points attack [16]. This attacks the common projective coordinate
system. For the point at infinity in a non-binary Edwards curve system, the
point is often represented as (Xk, Yk, 0). Hence, a conversion back to the (xk, yk)
coordinate system would attempt to divide by zero, causing an error or revealing
a point that is not on the curve [16]. In either case, an adversary could detect
that the point at infinity was attempted to be retrieved. The attack relies on
picking different base points, which after multiplied by the hidden key, reveal
that the point of infinity was retrieved.

The binary Edwards curve’s completeness property and coordinate system
make the curve immune to this form of attack. For a complete binary Edwards
curve, the projective coordinate system representation for the neutral point,
which is isomorphic to the point at infinity of other curves, is (Xk, Yk, 1). Fur-
thermore, the completeness also ensures that no other sets of points can be used
to break the system and reveal critical information about the key. The mixed
w-coordinates that are used for their speed in the binary Edwards curve are also
invulnerable to this attack as long as w0 �= 0, 1, since the denominator will never
be 0 [1]. With the Montgomery Ladder [11], a proper curve and starting point
will never violate this condition.

Montgomery Ladder [11] is a secure way to perform repeated point addi-
tion and point doublings to thwart side channel attacks. The ladder provides
a point addition and point doubling for each step, with each step taking the
same amount of time. Therefore, this application provides an extremely pow-
erful defense against power analysis attacks and timing attacks. Power analysis
attacks identify characteristics of the power consumption of a device to reveal
bits of the key and timing attacks identify characteristics of the timing as the
point multiplication is performed. By application of the binary Edwards curve
with Montgomery Ladder, the binary Edwards curve features an innate defense
against many of the most common attacks on ECC systems today.
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It should be noted that this work does not investigate resistance against
differential power analysis (DPA) [17] or electromagnetic (EM) radiation leaks.
These will be investigated in detail in a future work.

3 Architecture

The architecture of the ECC co-processor that was implemented resembles that
of [6]. However, there are several major differences. An analysis of the explicit
formula presented for mixed w-coordinate addition and doubling revealed that
five registers (T0, T1, R0, R1, R2) and four constants ( 1

w0
, d1, x1, y1) were required.

Additionally, it was deemed that the neutral element in GNB multiplication (all
‘1’s) was not required for any part of the multiplication, which reduced the size
of the 4:2 output multiplexer to a 3:2 multiplexer. These following sections will
explain the design in more detail. Architectures for each of the components can
be found in Fig. 1.

3.1 Field Arithmetic Unit

The field arithmetic unit is designed to incorporate the critical finite field opera-
tions in as small of a place as possible. In particular, this requires multiplication,
squaring, and addition. The XOR gate to add two elements was reused in the
multiplication and addition to reduce the total size of the FAU. Since the neutral
element was not necessary for this point multiplier, the neutral element select
from the output multiplexer in [6] was removed to save area. Swap functionality
was added to incorporate quick register file swap operations. The field arithmetic
unit incorporates the GNB multiplier from [18]. The operations are as follows:

– Addition C = A + B: Addition is a simple XOR of two inputs. The first
input is loaded to Z by selecting the first input in the register file, and setting
s1 = “01” and s2 = “00”. The next cycle, the second operand is selected from
the register file, and s2 = “01” so that the output register has the addition
of the two input elements. The output is written on the third cycle. This
operation requires three clock cycles.

– Squaring C = A � 1: Squaring is a right circular shift of the input. The
input is loaded to Z by selecting the input in the register file, and setting
s1 = “01” and s2 = “00”. The next cycle, s1 = “10” and s2 = “10” so that the
output register has been shifted. The output is written on the third cycle.
This operation requires three clock cycles.

– Multiplication C = T0 × T1: Multiplication is a series of shifted additions.
For the first cycle, s1 = “00”,s2 = “00”, and sT0 = sT1 = “1”. The next cycle,
s2 = “01”. After m cycles of shifts and addition, sT0 = sT1 = “0”, and the out-
put is ready. The output is written on the mth cycle. This operation requires
m clock cycles.
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Fig. 1. Architecture of the Proposed Co-processor for Point Multiplication on Binary
Edwards Curve. This includes (a) Field Arithmetic Unit, (b) Register File, and Top-
Level Control Unit.

– Swapping A,B = B,A: Swapping is a switch of two registers within the
register file. The first register is loaded to Z by selecting the input in the
register file, and setting s1 = “01” and s2 = “00”. The next cycle, the first
register is written to the second register’s location as it is being loaded to Z.
The second register’s value is written to the first register’s place on the third
cycle. This operation requires three clock cycles.
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3.2 Register File

Similar to [6,9], the register file was designed to contain registers, with two
particular registers that perform special shifting for the finite field multiplication.
An analysis of the formulas used in this ECC unit revealed that four registers and
four constants were required. However, with two registers being designated as
multiplication registers, an extra register is needed for swapping in the value of d1

for a multiplication with D2. The other three registers would be holding (U, V, S).
Thus, the formulas require five registers with the Co-Z trick implementation.

For unified access to constants and not impact the retrieval, the registers and
constants are co-located in the register file. However, since this implementation
targets a future standardization of a binary Edwards curve, the idea was that a
starting point and curve parameters would be strictly defined. Therefore, there is
no reason to add flexibility to the parameters of the base point or d1. Hardwiring
these coordinates to the register file provides the advantage that they can be
used on-the-fly and that no extra control is necessary to bring these into the
register file. For instance, [9] uses a small and external RAM chip to hold these
constants. Such a design requires extra interfacing and extra cycles to load the
value into the register file. After NIST standards for ECC are revised, hardwiring
the constants in a place close to the register file is the best solution to save power
and area.

The register file is random access to values including the constants. A register
is written to when write is enabled and the multiplexer for writing selects that
register.

3.3 Control Unit

The control unit handles the multiplexers for reading, writing, and performing
operations. The four operations are ADD, SQ, MULT, and SWAP. The control
unit uses a Finite State Machine to switch between these operations. A program
counter is sent to an external ROM device that feeds in the current instruction.
Instructions are ten bits long. The first two bits indicate which instruction is
being used. The next four bits indicate the input register. This value does not
matter for multiplication. The last four bits indicate the output register.

The key is never stored in the control unit, such as how it was in [6]. The
controller signals the master device to provide the next bit as the Montgomery
Ladder [11] is being performed. Special SWAP instructions that depend on the
key were left inside the controller to handle each step of the ladder, depending
on the provided bit of the key. The subroutine for a step on the Montgomery
Ladder with the corresponding register usage is shown below in Table 3. Table 3
shows the registers after each instruction. Six multiplications are required for
each step.

To save area, the half-trace functionality was left as a series of squarings and
additions. Adding additional area to handle the half-trace saves a relatively small
fraction of instructions but adds an additional multiplexer select in the FAU.
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Table 3. Point Addition and Doubling Register Usage

# Op T0 T1 R0 R1 R2

1 ADD T0 T1 W1 W1 + W2 Z

2 SQ T1 R1 W1 W1 + W2 Z C

3 SWAP T1 R0 W1 Z W1 + W2 C

4 SQ T1 R0 W1 Z D C

5 ADD T0 T1 W1 W1 + Z D C

6 MULT T1 T0 W1 · (W1 + Z) W1 + Z D C

7 SQ T0 R2 W1 · (W1 + Z) W1 + Z D C S

8 SWAP R1 T1 W1 · (W1 + Z) C D W1 + Z S

9 SWAP R3 T0 1
w0

C D W1 + Z S

10 MULT T0 R1 1
w0

C D E S

11 ADD R1 T1 1
w0

U D E S

12 ADD R0 R1 1
w0

U D E S

13 SQ R0 R0 1
w0

U D2 V S

14 SWAP R0 T1 1
w0

D2 U V S

15 SWAP R4 T0 d D2 U V S

16 MULT T1 T0 d · D2 D2 U V S

17 ADD R2 T0 T D2 U V S

18 SWAP R0 T1 T U D2 V S

19 MULT T0 T1 T W3 D2 V S

20 SWAP T1 R1 T V D2 W3 S

21 MULT T0 T0 Z′ V D2 W3 S

22 SWAP T0 R2 S V D2 W3 Z′

23 MULT T0 T1 S W4 D2 W3 Z′

24 SWAP R0 R2 S W4 Z′ W3 D2

25 SWAP T0 R1 W3 W4 Z′ S D2

Inversion and the half-trace were implemented as subroutines within the
ROM for instructions. The half traces uses a repetitive combination of dou-
ble SQ then ADD. This was used to recover the x and y-coordinates of
the final point. Inversion was used to obtain wi = Wi

Zi
, recover the x-

coordinate, and recover the y-coordinate. Itoh-Tsujii inversion algorithm [19]
was used to reduce the number of multiplications. For F2283 , the addition chain
(1,2,4,8,16,17,34,35,70,140,141,282) was used. By implementing these repeated
functionalities as subroutines, the number of instructions in the ROM is dra-
matically reduced. The main program is shown in Fig. 2. The subroutines for
inversion in F2283 and the half-trace are shown in Fig. 3. The total instruction
count of the point multiplier for F2283 is shown in Table 4. Approximately 132,
10-bit instructions were needed.
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T1, R2 ← R2, T1 T0 ← T0 + R0 T0 ← halfTr(T0)
T0 ← x1 R2 ← T0 × T1 T0 ← T0 + R0 x2, 0, 0, 0, 0
T0 ← T0 + y1 T1, R1 ← R1, T1 T1 ← d y2
T1 ← T 2

0 T1 ← T0 × T1 T0 ← T0 × T1 R2 ← T 2
0

T1 ← T1 + T0 T0 ← x0 R2 ← R2 + T0 R2 ← R2 + T0

R0 ← T 2
1 T0 ← T0 + y0 T0 ← y2

1 R1, T0 ← T0, R1

T1 ← d w0, w2, 0, 0, w3 T0 ← T0 + y1 T0 ← T0 + R2

T1 ← T1 + R0 x2 T1 ← R2
0 T0 ← T−1

0

T0 ← T0 × T1 R0 ← T0 × T1 T1 ← T1 + R0 T1, R2 ← R2, T1

T1, R0 ← R0, T1 T0 ← T0 + R0 T0 ← T0 × T1 T0 ← T0 × T1

W1,W2, Z, 0, 0 T0 ← T0 + T1 R2 ← R2 + T0 T1 ← d
T1, R0 ← R0, T1 T0 ← x0 T0 ← T0 × T1

W3,W4, Z
′, 0, 0 T0 ← T0 × T1 T0 ← T0 + y0 T0 ← halfTr(T0)

w2 w3 T0 ← T0 + d T1 ← T 2
0 T2 ← Z

R1, T0 ← T0, R1 T1, R2 ← R2, T1 T0 ← T0 + T1 T0, T1 ← T1, T0

T1, R2 ← R2, T1 R2 ← T0 × T1 T0 ← T−1
0 T0, R1 ← R1, T0

T0, R0 ← R0, T0 T0 ← x0 T1, R2 ← R2, T1 x2, y2, 0, 0, 0
T0 ← T−1

0 T0 ← T0 + y0 T0 ← T0 × T1

Fig. 2. Main Program Listing for Point Multiplication using Binary Edwards Curves
[10]

Fig. 3. Itoh-Tsujii [19] Inversion (F2283) and Half-Trace Subroutines

4 Comparison and Discussion

This design was synthesized using Synopsys Design Compiler in F2283 ,F2233 , and
F2163 , each a different standardized binary field size by NIST [3]. The TSMC
65-nm CMOS standard technology and CORE65LPSVT standard cell library
were used for results. This implementation was optimized for area.

The area was converted to Gate Equivalent (GE), where the size of a single
NAND gate is considered 1 GE. For our particular technology library, the size of a
synthesized NAND gate was 1.4µm2, so this was used as the conversion factor.
Latency reports the total number of cycles to compute the final coordinates
of a point multiplication. Parameters such as the type of curve used and if
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Table 4. Necessary Subroutines.

Subroutine Iterations #ADD #SQ #MULT #SWAP Latency (cycles)

Init 1 3 2 1 4 310

Step 281 5 4 6 10+2a 494,841

x Recovery, no HT and Inv 1 16 5 9 13 2,649

y Recovery, no HT and Inv 1 3 2 3 6 882

Half Trace 2× 141 1 2 0 0 2× 1,269

Inversion 3× 1 0 282 11 6 3× 3,977

Total 1,705 2,540 1,730 3,410 512,555
a Special SWAP’s that the controller handles.

Table 5. Comparison of Different Point Bit-Level Multiplications Targeted for ASIC

Work Curve Ladder? Field Size Tech (nm) Mult # of clock Cycles Coord Area (GE)

[15], 2007 BGC � F2163 180 Bit-serial 313,901 Projective 13,182

[8], 2008 BGC � F2163 130 Bit-serial 275,816 Mixed 12,506

[9], 2010 BEC � F2163 130 Bit-serial 219,148 Mixed 11,720

[20], 2011 BGC � F2163 130 Comb-serial 286,000 Projective 8,958

[6], 2014 BKC × F2163 65 Bit-serial 106,700 Affine 10,299

[21], 2014 BGC × F
p160 130 Comb-serial 139,930 Projective 12,448a

[7], 2015 BKC × F2283 130 Comb-serial 1,566,000 Projective 10,204b (4,323)c

This work BEC � F2163 65 Bit-serial 177,707 Mixed 10,945d

� F2233 351,856 14,903d

� F2283 512,555 19,058d

a Includes a Keccak module to perform ECDSA.
b RAM results were not synthesized, but extrapolated from a different implementation.
c Area excluding RAM.
d Area excluding ROM. Approximately 274 GE more with ROM.

Montgomery Ladder were used to indicate some innate security properties of
the curve. Power and energy results were not included as a comparison because
they are dependent on the underlying technology, frequency of the processor,
and testing methodology. The comparison results are shown in Table 5.

This ECC implementation over BEC does make a few assumptions that not
necessarily each of these other implementations make. This architecture’s area
does not include the ROM to hold the instructions. The ROM was not syn-
thesized, but approximately 165 bytes of ROM were required. By the estimate
that 1,426 bytes is equivalent to 2,635 GE in [22], 165 bytes of ROM is roughly
equivalent to 274 GE. This architecture assumes that each bit of the key will be
fed into the co-processor. These assumptions are explained in previous sections.
The areas of the implementation for F2163 , F2233 , and F2283 excluding the register
file and program ROM are 3,248 GE, 3,788 GE, and 5,566 GE, respectively.

Looking at timing for these implementation, the number of clock cycles
appears to rise quadratically when comparing F2163 to F2283 . This is to be
expected, as the Montgomery Ladder performs 6 multiplications each step. A
multiplication takes m clock cycles and there are m − 2 steps.

The area appears to have a linear relationship. This is also to be expected,
as the register file’s size increases linearly. The area of the FAU depends on the
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underlying finite field and the area of the controller is fairly constant. The area
of the FAU and controller for F2233 is only a slight increase over the area of the
FAU and controller for F2163 because the F2233 is type II GNB, in contrast to
F2163 and F2283 are type IV GNB. Therefore the p′ block in F2233 requires much
fewer XOR gates.

The underlying architecture of this implementation was similar to [6]. This
implementation uses more area because an additional register and two addi-
tional constants were used in the register file. However, one less multiplexer was
required in the FAU since the neutral element in GNB was not required in any
formulas. Other than that, the implementation in [6] does not use the Mont-
gomery Ladder and performs over Koblitz curves, which speeds up the point
multiplication at the cost of some security.

The only other light-weight implementation of BEC point multiplication is
found in [9]. Many of the internals of our point multiplier are different. For
instance, this implementation uses a circular register structure, and also a differ-
ent bit-serial multiplier in Polynomial Basis. A Polynomial Basis parallel squar-
ing unit was used in this implementation, which is costly when compared to the
GNB. This implementation uses Common-Z differential coordinate system for
the Montgomery Ladder, but each step requires 8 multiplications. Our imple-
mentation requires only 6 multiplications, representing a reduction of latency
in the Montgomery Ladder by approximately 25 %. Lastly, this implementation
requires a register file to hold 6 registers, whereas our register file only requires
5 registers. Hence, our implementation features a smaller and faster point mul-
tiplication scheme than that in [9].

The introduction of extremely area-efficient crypto-processors with comb-
serial multiplication schemes [23] like the one proposed in [7] indicates that
there is a need for new trade-off for future implementations of these ECC tar-
geted at RFID chips. Bit-parallel multiplication architectures are among the
fastest approaches to perform finite field multiplications, but this requires a
tremendous amount of area. Digit-serial schemes require a factor more of cycles,
but use less area. The most popular scheme for RFID chip point multiplication
is bit-serial, which requires a fraction of the area of digit-serial and requires m
cycles to perform a multiplication. Comb-serial multiplication takes this a step
further by performing small multiplications over many small combs. Depend-
ing on the multiplication scheme, this could require more than m cycles but
holds new records for area-efficiency. The work presented in [7] is among the
smallest ECC co-processors, even in F2283 . It was designed as a drop-in concept,
such that the co-processor can share RAM blocks with a microcontroller. This
implementation utilizes a comb-serial multiplicationscheme in polynomial basis
over Koblitz curves. As such, the latency of each operation is larger than that
of this work. Field addition, squaring, and multiplication require 60, 200, and
829 cycles, respectively. This implementation needs space to hold 14 intermediate
elements throughout the point multiplication operation. Including the constants,
our implementation requires 9 intermediate values. The area of the co-processor
without the RAM for the register file is 4,323 GE. Moreover, in [7], the RAM
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results that were included were extrapolated from a different implementation of
ECC appeared in [22]. With these extrapolated results, the total area of the co-
processor would be 10,204 GE. Our crypto-processor with the register file uses
87 % more area, but performs the point multiplication approximately three times
faster, reducing the need to run at higher speeds to meet timing requirements in
a device. Further, [7] utilizes zero-free tau-adic expansion to enforce a constant
pattern of operations, similar to the Montgomery ladder [11], to protect against
timing and power analysis attacks. However, this new technique has not been
thoroughly explored like the Montgomery ladder. Furthermore, the co-processor
does not have any protection against exceptional points attacks such as the ones
presented in [16]. In summary, for higher levels of security as was implemented in
[7], the time complexity was several factors higher, but the area was comparable
to an implementation of a smaller finite field. As there is a push for larger field
sizes for higher security levels, the time complexity of the comb-serial method
of multiplication and other operations becomes inefficient.

5 Conclusion

In this paper, it is shown that new mixed w-coordinate differential addition and
doubling formulas for binary Edwards curve produce a fast, small, and secure
implementation of point multiplication. Corrected formulas for addition in this
coordinate system have been provided and proven. Binary Edwards curves fea-
ture a complete and unified addition formula. The future of point multipliers
targeted at RFID technology depends on the trade-offs among area, latency, and
security. The binary Edwards curves implementation presented in this paper has
demonstrated that BEC is highly-competitive with the dominant elliptic curve
systems standardized by NIST and IEEE. As such, new standardizations that
include binary Edwards curves are necessary for the future of elliptic curve cryp-
tography. The detailed analysis in this paper also suggests that binary Edwards
curves are among the fastest and most secure curves for point multiplication
targeting resource-constrained devices.

Acknowledgments. The authors would like to thank the reviewers for their construc-
tive comments. This material is based upon work supported by the National Science
Foundation under Award No. CNS-1464118 to Reza Azarderakhsh.

A Appendix

A.1 Subroutines

This contains a code listing of the program in assembly.
Algorithm 3 shows the Itoh-Tsujii [19] inversion subroutine for F2283 . This

follows the addition chain (1,2,4,8,16,17,34,35,70,140,141,282). Eleven multipli-
cations are required for this binary field. A similar approach was done for F2163

and F2233 .
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Algorithm 3. Itoh-Tsujii [19] Inversion Subroutine for GF (2283)
SQ T0 T1
MULT T1 T1 –2ˆ2-1
SWAP T0 R0
SQ T1 T0
SQ T0 T0
MULT T1 T0 –2ˆ4-1
SQ T0 T1
SQ T1 T1 3 Times
MULT T1 T0 –2ˆ8-1
SQ T0 T1
SQ T1 T1 7 Times
MULT T1 T0 –2ˆ16-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 –2ˆ17-1
SWAP T1 R0
SQ T0 T1
SQ T1 T1 16 Times
MULT T1 T0 –2ˆ34-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 –2ˆ35-1
SWAP T1 R0
SQ T0 T1
SQ T1 T1 34 Times
MULT T1 T0 –2ˆ70-1
SQ T0 T1
SQ T1 T1 69 Times
MULT T1 T0 –2ˆ140-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 –2ˆ141-1
SQ T0 T1
SQ T1 T1 140 Times
MULT T1 T0 –2ˆ282-1
SQ T0 T0

Algorithm 4. Half-Trace Subroutine
SQ T0 T1
SQ T1 T1
ADD T1 T0
{SQ T1 T1
SQ T1 T1
ADD T1 T0} loop for m−2

2
times
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Algorithm 4 shows the half-trace subroutine. This is a simple double square
and add routine that produces the result after m−1

2 iterations.
Algorithm 5 shows the beginning of the main program that was used. This

includes the initialization of the point and the repeated step of the Montgomery
ladder [11].

Algorithm 5. General Program Flow
INIT
SWAP R5 T0
ADD R6 T0
SQ T0 T1
ADD T0 T1
SQ T1 R0 –W4
SWAP R4 T1
ADD R0 T1 –Z4
MULT T1 T0 –W1 revised
SWAP T1 R0 –W1 W4 Z4
STEP
SWAP T0 T0 –OUTPUT register selected by k bit
ADD T0 T1
SQ T1 R1
SWAP T1 R0
SQ T1 R0
ADD T0 T1
MULT T1 T0
SQ T0 R2 –S
SWAP R1 T1
SWAP R3 T0 –1/w0
MULT T0 R1 –E
ADD R1 T1 –U
ADD R0 R1 –V
SQ R0 R0
SWAP R0 T1
SWAP R4 T0 –d1
MULT T1 T0
ADD R2 T0 –T
SWAP R0 T1
MULT T0 T1 –W3
SWAP T1 R1
MULT T0 T0 –Z’
SWAP T0 R2
MULT T0 T1 –W4
SWAP R0 R2
SWAP T0 R1
SWAP T0 T0 –Output register selected by k bit. Repeat for every step
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Algorithm 6 shows the end of the main program that was used. This includes
the recovery of w2, w3, x2, y2.

Algorithm 6. General Program Flow (cont.)
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