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Abstract. Clinical practice guidelines (CPGs) play an important role in medical
practice, and computerized support to CPGs is now one of the most central areas
of research in Artificial Intelligence in medicine. In recent years, many groups
have developed different computer-assisted management systems of Computer
Interpretable Guidelines (CIGs). We propose a generalization: META-GLARE
is a “meta”-system (or, in other words, a shell) to define new CIG systems. It
takes as input a representation formalism for CIGs, and automatically provides
acquisition, consultation and execution engines for it. Our meta-approach has
several advantages, such as generality and, above all, flexibility and
extendibility. While the meta-engine for acquisition has been already described,
in this paper we focus on the execution (meta-)engine.

Keywords: Computer interpretable guideline (CIG) � Metamodeling for
healthcare systems � Meta CIG system � System architecture � CIG execution

1 Introduction

Clinical practice guidelines (CPGs) represent the current understanding of the best
clinical practice. In recent years the importance and the use of CPGs are increasing in
order to improve the quality and to reduce the cost of health care. ICT technology can
further enhance the impact of CPGs. Thus, in the last twenty years, many different
systems and projects have therefore been developed in order to manage computer
interpretable CPGs. A survey and/or a comparative analysis of these systems are
outside the goals of this paper. A comparison of Asbru, EON, GLIF, Guide, PRO-
forma, PRODIGY can be found in [1]. In [2] the comparison has been extended to
GLARE and GPROVE. The books [3, 4] represent a quite recent consensus of a part of
the computer-oriented CIG community. A recent and comprehensive survey of the
state-of-the-art about CIG has been published by Peleg [5].

The surveys/books show that few important commonalities have been reached. In
particular, most approaches model guidelines in terms of a Task-NetworkModel (TNM):
a (hierarchical) model of the guideline control flow as a network (graph) of specific tasks
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(represented by nodes). Although the terminology may differ, all approaches support a
basic set of core guideline tasks, such as decisions, actions and entry criteria. From the
architecture point of view, most CIG approaches provide specific support for at least two
subtasks: (i) CIG acquisition and representation and (ii) CIG execution, providing
engines which support the execution of an acquired CIG on a specific patient. However,
there are also important distinguishing features between the different CIG systems, often
due to the fact that many of such systems are mostly research tools that evolve and
expand to cover an increasing number of phenomena/tasks.

1.1 Origin and Motivation of the META-GLARE Approach

Such an evolution characterizes the history of GLARE (Guideline Acquisition, Rep-
resentation, and Execution) [6, 7], the prototypical system we have been building since
1996 in cooperation with ASU San Giovanni Battista in Turin, one of the major
hospitals in Italy. In our experience, it is quite frequent that, due to the need of facing a
new real-world clinical guideline domain, some extensions to a CIG system are needed.
In complex CIG systems (like GLARE) extensions require a quite large amount of
work, since different parts of the code system must be modified, and their interactions
considered. Specifically, extensions to the representation formalisms always involve
the need of modifying the code of the acquisition, the consultation, and the execution
engines of the system. On the other hand, the possibility of easily and quickly extend
systems, and, more generally, of achieving fast prototyping when approaching new
domains and\or tasks are essential in this field of AI in medicine research.

With such goals in mind, we started to re-design GLARE. Initially, we wanted to
design yet a new CIG system, based on a new CIG formalism, enclosing the “best
features” of current CIG approaches in the literature. However:

(1) such a general formalism would certainly be very general, and complex.
However, CIGs have to be managed by physicians, so that simplicity (also in terms of
the number of representation primitives being proposed) is a strict requirement. (2) the
long-term experience of AI research has definitely shown that there is no “perfect”
formalism. Whatever general CIG formalism could be defined, for sure can still require
extensions, when facing new phenomena.

As a consequence of (1) and (2), we decided to pursue a completely different and
innovative goal: instead of defining “yet another new CIG formalism and system”, we
chose to devise a “meta-system” (called META-GLARE), or, in other words, a shell
supporting the definition of new CIG formalisms and systems (or facilitating the
extensions of them). Though this idea is entirely new in the CIG literature, it stems
from software engineering consolidated methodologies, and from the recent meta-
modeling field in the medical informatics (see Sect. 6).

Our meta-system, called META-GLARE

(i) makes “minimal” assumptions as regards the CIG formalisms (basically, it simply
assumes that CIGs are represented through TNM)
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(ii) provides general acquisition, consultation and execution engines, that are
parametric over the specific CIG formalism being considered (in other words,
the CIG formalism is an input of such engines).

1.2 Methodology and Advantages of the META-GLARE Approach

The core idea of our meta-approach is

(i) To define an open library of elementary components (e.g., textual attribute,
Boolean condition, Score-based decision), each of which was equipped with
methods for acquiring, consulting and executing it

(ii) To provide system-designers with an easy way of defining node and arc types
(constituting the representation formalism of a new system) in terms of the ele-
mentary components constituting them

(iii) To devise general and basic tools for the acquisition, consultation and execution
of CIGs, which are parametric with respect to the formalism used to represent
them (in the sense that the definition of node and arc types are an input for such
tools).

In such a way, we achieve several advantages:

– The definition of a new system (based on a new representation formalism) is easy
and quick. Using META-GLARE, a system designer can easily define her/his own
new system, by defining its formalism: (i) the node types, (ii) the arc types (both are
defined types as an aggregation of components from the library), and (possibly) the
constraints on them. No other effort (e.g., building acquisition or execution mod-
ules) is required.

– The extensions to an existing system (through the modification of its representation
formalism) are easy and quick. In META-GLARE, a system designer can extend a
system by defining and adding new node/arc types, or adding components to
existing types (with no programming effort at all)

– User programming is needed only in case a new component has to be added in the
component library. However, the addition is modular and minimal: the system
designer has just to focus on the added component, and to provide the code for
acquiring, consulting, and (if needed) execute it. Such programming is completely
“local” and “modular”: the new methods have to be programmed “in isolation”
(without having to care of the rest of the system). No modification to any software
component in META-GLARE architecture (see Fig. 1 below) is required to inte-
grate the new methods: META-GLARE automatically evokes them when needed
during acquisition, consultation and execution.

– As a consequence, fast prototyping of the new (or extended) system is achieved (see
the examples in Sect. 5).

We have already presented our innovative idea of proposing a “shell” for designing
new CIG systems, and META-GLARE architecture, in the previous KR4HC workshop
[8]. In such a paper, we have also described META-GLARE acquisition engine. This
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paper is the natural completion of such a previous work, with the description of
META-GLARE execution engine.

2 META-GLARE Architecture

META-GLARE supports any CIG representation formalism based on the following
aspects: (1) guidelines are represented by hierarchical graphs (constraints on the
graph –e.g., acyclicity- also supported); (2) there is no assumption on which types of
nodes and arcs can be used to describe the graphs. The only assumption is that each
type (of node and of arc) is defined as a list of attributes. (3) There is no assumption
on which attribute types may be introduced in a specific formalism. We distinguish
between two main categories of attributes: control attributes (i.e., those attributes that
affect the execution of a node/arc; e.g., decision attributes) and non-control ones (e.g.,
textual attributes).

Thus, META-GLARE interpreter (guideline acquisition, consultation and execu-
tion tools) only assumes that a guideline is a hierarchical graph, and is parametrized on
the types of nodes and arcs, and on the types of attributes. The interpretation of each
node/arc type is obtained compositionally through the sequenced interpretation of the
attributes composing it. This means that, practically, each attribute type (e.g., textual
attribute, Boolean condition attribute, etc.) must consists of the methods to acquire,
consult, and (possibly) execute it. Thus, for instance, guideline acquisition consists in
the acquisition of a hierarchical graph, which in turn adopts the methods in each
attribute type definition to acquire the specific attributes of the involved nodes/arcs.

In Fig. 1, we show a simplified version of the architecture of META-GLARE,
focusing on parts affecting execution (for a more extensive description, see [8]). Oval
nodes represent data structures, and rectangles represent computational modules. The
DEFINITION_EDITOR tool supports system-designers in the definition of a new

Fig. 1. The architecture of META-GLARE
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system. It consists in four sub-components, to cope with the definition of (i) attribute
types, (ii) node/arc types, (iii) graph constraints, and (iv) CIG formalism (where a CIG
formalism is just a set of node/arc types and (possibly) of graph constraints). The
output is an XML representation in the library.

Globally, the DEFINITION_EDITOR module manages the definition of the for-
malism a new CIG system. On the other hand, the HG_INTERPRETER (HG stands for
“hierarchical graph”) deals with the aspects which common to all the systems that can
be generated by META-GLARE. It consists of three sub-components: HG_ACQUI-
SITION, HG_CONSULTATION, and HG_EXECUTION. META-GLARE and its
modules are developed as Java Applets. In this way, META-GLARE is a
cross-platform application: it can be embedded into a web page and executed via web
browsers without any installation phase. The libraries in Fig. 1 are implemented by
databases stored in PostgreSQL. In the paper, we focus on the HG_EXECUTION
module only.

3 CIG Execution Meta-Engine

The HG_execution module takes as input:

(1) A formalism (i.e., a set of arc/nodes types, each one consisting of a sequence of
attributes)

(2) A specific CIG (the one to be executed), expressed in the given formalism
(3) A specific patient (whose data are collected in a database).

HG_execution supports the execution of the CIG on the specific data. Notice that,
while all the execution engines in the CIG literature supports are specifically designed
for the execution of a specific CIG formalism (so that their input are only (2) and
(3) above), here the executor much more general, since any input formalism must be
executable (i.e., also (1) is an input for the (meta-) executor). Our (meta-) executor only
assumes that a guideline is a hierarchical graph, and is parametrized on the types of
nodes and arcs, and on the types of attributes. As a consequence, it “inherits” from
the CIG execution engines in the literature (see [9]) the way they deal with hierarchical
graphs (points (i), (ii), and (iii.a) below), but it is parametric on the methods used to
execute control attributes (point (iii.b) below). The basic idea in the definition of the
(meta-) executor is simple:

(i) The execution of a CIG is the sequential execution of its nodes
(ii) Each node in the CIG is an instance of a type of node in the input formalism, and

the node definition basically consists of a sequence of typed attributes
(iii) If the attribute is not a control attribute, (iii.a) it can be ignored by the executor.

Otherwise, (iii.b) each (type of) control attribute has a method stating how it has to
be executed. The executor simply execute such a method.

However, many refinements are required, concerning point (i) above (such
refinements are considered also by most CIG engines in the literature). Basically, three
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main problems have to be addressed: (1) the graph is hierarchical, (2) the graph is not
simply a sequence of nodes (different types of arcs may be used; e.g., arcs for speci-
fying alternatives, or concurrence), and (3) the flow of control may be altered by the
execution of (the execution method of) a control attribute (e.g., the conditioned_GOTO
or REPEAT attributes – see Sect. 3).

Regarding issue (1), since we assume that graphs may be hierarchical, we support
the treatment of composite nodes, which are defined in terms of their components
(which, in turn, are hierarchical graphs). The execution of a composite node starts with
the execution of the first node of the sub-graph defining it, and ends when the execution
of such a subgraph ends. Thus the nesting of calls to subgraphs must be explicitly
managed by the executor.

As regards (2), point (i) naively assumes that graphs are defined only using one
type of arc, representing the sequence in which two nodes have to be executed.
However, notice that also the (types of) arcs are part of the definition of the input
formalism. Thus, our engine must support the treatment of user-defined arcs, where
each arc type is defined as a sequence of attributes. If an arc does not contain any
control attribute, it can simply be ignored by the executor. On the other hand, if it has a
control attribute, its method must be executed, to determine which is the next node to
be executed. For the sake of brevity, in this paper we consider only directed arcs (as all
CIG approaches do, to the best of our knowledge). We admit arcs with one starting
node but multiple ending nodes (to support alternatives, concurrence, etc.). Thus, a set
of nodes (to be executed) may be the result of the execution of an arc. Thus, also the
fact that multiple actions may be candidate to be executed next must be managed by the
executor.

As regards point (3), different types of control attributes can be used in a formalism.
Our current library of attributes is briefly described in Sect. 3, and includes the main
types provided by the CIG approaches in the literature [9]. However, we stress that such a
library is open: new attribute types can be introduced when a new formalism (or an
extension to a current formalism) is defined and nomodification of HG_INTERPRETER
is needed to manage them. Indeed, in many cases, such attributes can determine an
“alteration” of the flow of control represented through the arcs in the hierarchical graph.
For instance, an attribute type modeling repetition (REPEAT in our current library) can
state that the next node to be executed is the current node itself; an attribute type
modeling conditional GOTO (ConditionedGOTO in our current library) can state that the
next node to be executed is the another node in the CIG, and so on. These alteration of the
“standard” control flow of the graph must be managed, too, by the executor.

In order to cope with issues (1) and (2) above, the executor adopts a data structure
(the execution_tree) to explicitly represent, at each step, the hierarchy of active
composite nodes (which are represented by the internal nodes of the tree) and the set of
atomic nodes which are candidate to be executed next (the are represented by the leaves
of the tree). The root of the tree is (by default) a “dummy” node representing the whole
CIG, and each node in the tree is a “pointer” to a node in the CIG being executed.

42 A. Bottrighi et al.



Of course, the execution_tree must be properly updated by the executor after the
execution of each atomic node.

For example, the tree in Fig. 2 represents a situation in which CIG1 is being
executed. The current composite action being executed is A1. The composite nodes
A11 and A12 are the components of A1 currently being executed (concurrently). In
turn, the currently executable (atomic) nodes in A11 are the atomic nodes a1 and a2.
On the other hand, the active node composing A12 is still a composite node (A121),
and its active component is the atomic node a3.

Concerning issue 3, though the library of attributes is open, we impose the con-
straint that each execution method in the library must return to the executor an indi-
cation of whether and how they affect the control flow. Six cases are considered
(covering, to the best of our knowledge, the main possibilities considered by CIG
execution engines in the literature [9]; see the discussion in Sect. 6):

(1) “go_on”: this is the standard continuation. With a “go_on”, the executor must
execute the next control attribute in the node (or has finished the execution of the
node, if the current attribute is the last control one) (Algo 1 line 19)

(2) “repeat”: the current control attribute must be executed again (Algo 1 lines 9–11)
(3) “suspend”: the execution of the current CIG has to be suspended (Algo 1 lines

12–13)
(4) “abort”: the execution of the current CIG has to be stopped, and terminates.

(Algo1 line 16)
(5) “goto” <node>: the execution of the CIG restarts from the execution of <node>

(Algo 1 line 18)
(6) “fail”: a failure has occurred (e.g., an action could’t be executed, because the

required instrument is not available). The current execution is stopped, and the
executor must enact the general recovering facility. (Algo 1 line 17).

The execution of a CIG starts with the initialization of the execution tree. Then, the
executor operates as abstractly described by the algorithm Algo 1.

Fig. 2. Execution_tree: an example.
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Algorithm 1. Pseudo-code of the algorithm for the CIG execution 

Leaves of the execution_tree represent possibly concurrent actions, so that it is up
to the user-physician to select which leaf has to be executed next (Algo 1 line 4). In the
case of “goto” (Algo 1 line 18), the current execution tree is substituted by a new tree,
in which a “pointer” to <node> is a leaf. However, also the “upper parts” of such a tree
must be built (considering the composite actions in the CIG containing <node>, if any),
by construct_new_tree. The “standard” continuation (“go_on” modality, Algo 1 line
19) is managed through a proper update of the execution tree, as shown by Algo 2 in
the Appendix.

4 Control Attributes

In META-GLARE, two basic categories of control attribute types can be defined: the
control attributes of nodes, and the one of arcs.

4.1 Control Attributes of Nodes

In our approach, attribute types are characterized by several features, which are specified
according to the XML document. A XML tag, which describes an attribute type, has
several features, defining its name, its properties, and its interpretation. “Interpretation”
tags are very important, since they define (pointers to) the methods that are used by the
HG_INTERPRETER to acquire, store, consult and execute any instance of such types.
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Notably, the XML definition of “procedural” attributes does not contain the Java code of
the methods, but only symbolic pointers to them.

We have currently several control attributes types. However, the library is open,
and new attributes can be added by users. Indeed, the only constraint is that the
execution methods must return as output one of the five modalities discussed in Sect. 3.
At the current stage, we have implemented: BooleanCondition, BooleanDecision,
ScoredCondition, ScoredDecision, DataEnquiry, FAIL, ConditionedFAIL, ABORT,
ConditionedABORT, GOTO, ConditionedGOTO, REPEAT, external_action. Names
are mostly self-explicative. Conditions are evaluated on the basis of patient’s data
automatically retrieved from a database. Decisions (between alternatives) are evaluated
by evaluating the condition associated with each one of the alternatives, and showing to
the user the result of the automatic evaluation. The final decision between alternatives
is left to the physicians. DataEnquity is a data request. Data are retrieved from the
database. If they are not present, the execution engine waits for them. External_action
is a special control attribute type, to model those activities that have to be performed
(e.g., by physicians, nurses, etc.) on the patient (e.g., the administration of a drug). The
corresponding methods simply ask to the user whether the action has been successfully
performed (returning the “go_on” modality), or not (returning the “fail” modality).

4.2 Control Attributes of Arcs

As discussed in Sect. 3, we support arcs having one starting node, and one or many
ending nodes. Each arc is described by a set of attributes. Control arcs have exactly one
control attribute (but they may have other non-control ones). The library is open, and
currently contains the definition of three control attributes for arcs: sequence, alter-
native, and concurrence. These three types cover the most significant cases considered
in the literature, except “constrained” arcs in GLARE, which support complex temporal
constraints between nodes. Sequence has just one ending node, and its execution
method simply returns it. Concurrence has two or more ending nodes, and returns
them. Alternative has two or more ending nodes, and asks to the user-physician to
choose one of them (which is returned).

5 META-GLARE in Action

META-GLARE takes as input a CIG formalism (based on the TNM model) and
provides as output a CIG system to acquire and execute guidelines represented on top
of such a formalism. Thus, it support fast CIG system prototyping, both when building
a new CIG system (on the basis of a new TNM-based formalism), and when extending
a current one (with the addition of new features to a CIG formalism).

Example 1. As a first concrete example, suppose that, while analysing a new domain,
a system designer identifies the need of enriching her\his CIG formalism (or to design a
new CIG formalism) with a new type of node, consisting of
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– some non-control attributes (e.g., textual attributes for name and goal, numerical
attribute for cost, and so on)

– a sequence of three control attributes, “precondition” (of type ConditionalFAIL),
“body” (of type external_action) and “postcondition” (of type ConditionalFAIL).

In particular, the intended purpose of (the control attributes of) the node is that, during
execution, preconditions (which are Boolean conditions) are first checked on the
patient data. If they are not satisfied, the execution of the node fails (and fail recovery is
started); otherwise, an external action is executed on the patient. After the execution,
post-conditions are verified, possibly leading to a failure of the execution of the node.

All the required attribute types in the example are already present in
META-GLARE Library (textual and numerical types for non-control attributes; type
ConditionFAIL for “preconditions” and “postconditions”; type “external_action” for
the external action). As a consequence, the system-designer has simply to enter the new
node definition (through the graphical interface of the DEFINITION_EDITOR). No
other effort is required. The whole work requires only few minutes to the
system-designer. As a result, the executor described in Sect. 3 will deal also with CIGs
having such a new type of nodes, without requiring any modification.

On the other hand, some programming is required in case a new attribute type (not
already existent in the library) has to be added.

Example 2. When choosing among clinically “equivalent” (with respect to the patient
at hand) therapies, the “long term” effects of the therapeutic choice (e.g., what path of
actions should be performed next, what are their costs, durations and expected utilities)
may be helpful to discriminate. Decision theory [10] may be helpful in this context. In
particular, it allows to identify the optimal policy, i.e., the (sequence of) action(s)
changing the states of the system in such a manner that a given criterion is optimized. In
order to compare the different action outcomes, one commonly assigns a utility to each
of the reached states. Since there is uncertainty in what the states will be, the optimal
policy maximizes the expected utility. It has been recently shown how decision theory
can be exploited in the CIG context, to model cost/benefit decisions [11]. Currently, no
facility for cost/benefit decisions is provided in META-GLARE Library. Thus, to extend
a (META-GLARE-based) CIG formalism with a new type of control attribute (say
Cost/Benefit_Decision) modelling cost/benefit decisions, new methods must be devel-
oped by the system designer, to acquire, consult, and execute it. But no modification to
META-GLARE acquisition, consultation and execution engines has to be performed. In
particular, focusing on execution, it is fundamental to stress that, as long as the new
execution method Cost/Benefit_Decision returns one of the six modalities managed by
the executor, no modification to the executor itself is needed at all.

6 Related Works, Conclusions, and Future Work

In this paper, we propose a (partial) description of the execution engine of META-
GLARE, an innovative approach to cope with CIGs.
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The HG_INTERPRETER, discussed in Sect. 3 is general, in that it covers a family
of different formalisms (all the formalism that can be defined by META-GLARE). In
such a way, it is neatly different from all the others CIG interpreters in the literature,
which are biased to the treatment of a specific formalism [9]. In particular, different CIG
interpreters have been compared in [9], where it is highlighted that, with the only
exception of PROforma [12], that uses Prolog interpreter for execution, all the other
systems have developed their own formalism-dependent interpreter. However, some of
them share common features. Systems such as ArezzoTM [13], GLARE [7], HeCaSe2
[14], SAGE [15] and GLEE [16] use similar basic elements (actions, decisions and
enquiries). In particular, to enhance the generality of our approach, the META-GLARE
interpreter covers (to the best of our knowledge) all the main modalities considered by
the different interpreters in the literature. Notably, our treatment of modality partly
encompasses the state transition model for the execution of a single action of approaches
like PROforma [12] and Asbru [17] (which, for instance, consider states like “abort” or
“suspend”; other states, like “in progress” or “completed” represent the “standard”
execution of an action, so that they are implicitly managed by our meta-interpreter).

The main idea underlying META-GLARE is simple: instead of proposing “yet
another system” to acquire, represent and execute CIGs, we propose a “meta-system”,
i.e., a shell to define (or modify) CIG systems. Roughly speaking, the input of
META-GLARE is a description of a representation formalism for CIGs, and the output
is a new system able to acquire, represent, consult and execute CIGs described using
such a formalism. Indeed, such a basic idea is not at all new in Computer Science,
although it is the first time that it has been applied to the domain of CIGs.

A similar idea, in a completely different context, has emerged in Computer Science
in the 70’, with the definition of the so-called “compilers of compilers”, like YACC
(Yet Another Compiler of Compilers [18]). In particular, META-GLARE takes as
input any CIG formalism and provides as output a CIG system (i.e., an acquisition, a
consultation and an execution engine) for such formalism just as YACC takes as input
any context free language (expressed through a formal attribute grammar) and provides
as output a compiler for it. More recently, Model-Driven Software Engineering
(MDSE) has emerged as a promising methodology for software systems, targeting
challenges in software engineering relating to productivity, flexibility and reliability.
MDSE is especially useful as a methodology for the development of healthcare sys-
tems, and even a dedicated workshop (the International Workshop on Metamodelling
for Healthcare Systems, 2014 (http://mmhs.hib.no/2014/) and 2015 (http://mmhs.hib.
no/2015/) has been created to face such a topic).

Indeed, the application of models to software development is a long-standing tra-
dition, and has become even more popular since the development of the Unified
Modeling Language (UML). Yet we are faced with ‘mere’ documentation, MDSE has
an entirely different approach: Models do not constitute documentation, but are con-
sidered equal to code, as their implementation is (semi)automated. MDSE therefore
aims to find domain-specific abstractions and makes them accessible through formal
modeling. This procedure creates a great potential for automation of software pro-
duction, which in turn leads to increased productivity, increasing both the quality and
maintainability of software systems. We share part of the methodology of MDSE, such
as the use of three levels of models (the meta-formalism level, the formalism level, and
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the CIG instance level), but a relevant difference should be pointed out. In “standard”
MDSE approaches, the final model is used to semi-automatically generate the appli-
cation code, through the adoption of transformation rules. On the other hand, there is
no semi-automatic code generation in META-GLARE. Indeed, the HG-interpreter is
already provided by META-GLARE, but it is parametrized over the CIG formalism, so
that a CIG interpreter is automatically obtained when a specific CIG formalism is
selected.

To the best of our knowledge, the application of such ideas to the context of CIG is
completely new. Such an application has mainly motivated by our goal of designing
and implementing a flexible and powerful vehicle for research about CIG. In our
opinion, META-GLARE provides two main types of advantages, both strictly related
to the notion of easy and fast prototyping. Using META-GLARE

(1) the definition of a new system (based on a new representation formalism) is easy
and quick;

(2) The extension of an existing system (through the modification of the represen-
tation formalism) is easy and quick.

In particular, the executor described in Sect. 3 will deal also with CIGs having such
a new type of nodes, without requiring any modification. On the other hand, some
programming is required in case a new attribute type (not already existent in the
library) has to be added (see discussion in Sect. 5).

Thus, META-GLARE is, above all, a good vehicle for fast definition/extension and
prototyping CIG systems, making it quite suitable especially as a research tool to
address new CIG phenomena.

The implementation of META-GLARE execution engine is actually ongoing. We
plan to finish it as soon as possible, to start with an extensive experimental evaluation
of our approach. Though quite powerful, the current approach has several limitations,
which we want to overcome in our future work. In particular, we want to consider the
addition of new modalities (besides the ones discussed in Sect. 3), and we aim to
extend our current approach to deal (i) with exceptions (along the lines discussed in
[19] and (ii) with the concurrent (but possibly interacting) execution of two or more
CIGs, to cope with comorbidities (integrating the work in [20] into META-GLARE)).

Acknowledgements. The research described in this paper has been partially supported by
Compagnia San Paolo, within the GINSENG project.

Appendix

Algorithm Algo 2 in the following describes how to update of the execution tree, in
case of “go_on” modality.
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Algorithm 2. Pseudo-code of the algorithm for the update of the execution tree, in case of 
“go_on” modality. 

Once a node has been executed, it is deleted from the execution tree. In case there
are concurrent nodes to be executed (brothers) (line 5), the executor simply has to
operate on such a new tree. Otherwise (lines 7–13), the deleted node has to be sub-
stituted by the immediately-next nodes to be executed in the CIG (in the case of
concurrent actions, there is more then one “immediatly-next” node to be considered).
The function get_next consider the control arc (which must be unique, if it exist)
exiting from Node in the CIG, and execute it is execution method (line 8). As a result, a
set of next nodes to be executed is returned. Each one of such nodes must be added to
the tree (append function), and possibly expanded (expand_down: if Node is com-
posite, then the first nodes (in the case of concurrent actions, there is more then one
“first” node to be considered) of the CIG subgraph representing it are appended to
treeNode, and so, on, recursively, until atomic nodes are reached, lines 10–12). On the
other hand (line 13), if there are no next node (i.e., if the executed node was the last one
in a graph or subgraph), then the update_tree algorithm must be recursively applied on
the mother of the current node.
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