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Abstract. The aim of this study was to establish a multi-stage fuzzy
c-means (FCM) framework for the automatic and accurate detection of
brain tumors from multimodal 3D magnetic resonance image data. The
proposed algorithm uses prior information at two points of the execution:
(1) the clusters of voxels produced by FCM are classified as possibly
tumorous and non-tumorous based on data extracted from train vol-
umes; (2) the choice of FCM parameters (e.g. number of clusters, fuzzy
exponent) is supported by train data as well. FCM is applied in two
stages: the first stage eliminates the most part of non-tumorous tissues
from further processing, while the second stage is intended to accurately
extract the tumor tissue clusters. The algorithm was tested on 13 selected
volumes from the BRATS 2012 database. The achieved accuracy is gen-
erally characterized by a Dice score in the range of 0.7 to 0.9. Tests have
revealed that increasing the size of the train data set slightly improves
the overall accuracy.
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1 Introduction

The early detection of brain tumors is utmost important as it can save human
lives. The accurate segmentation of brain tumors is also essential, as it can assist
the medical staff in the planning of treatment and intervention. The manual
segmentation of tumors requires plenty of time even for a well-trained expert.
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A fully automated segmentation and quantitative analysis of tumors is thus a
highly beneficial service. However, it is also a very challenging one, because of
the high variety of anatomical structures and low contrast of current imaging
techniques which make the difference between normal regions and the tumor
hardly recognizable for the human eye [1]. Recent solutions, usually assisted
by the use of prior information, employ various image processing and pattern
recognition methodologies like: combining multi-atlas based segmentation with
non-parametric intensity analysis [2], AdaBoost classifier [3], level sets [4], active
contour model [5], graph cut distribution matching [6], diffusion and perfusion
metrics [7], confidence guided discriminative classifier [8], 3D blob detection [9],
and support vector machine [10].

The main goal of our research work is to build a reliable procedure for brain
tumor detection from multimodal MRI records, based on semi-supervised cluster-
ing algorithms, using the MICCAI BRATS data set that contains several dozens
of image volumes together with ground truth provided by human experts. As a
first step, in the current paper we present preliminary results achieved using a
two-stage fuzzy c-means clustering cascade algorithm and 13 selected volumes
from the above mentioned data set.

2 Materials and Methods

2.1 BRATS Data Sets

Brain tumor image data used in this work were obtained from the MICCAI
2012 Challenge on Multimodal Brain Tumor Segmentation [11]. The challenge
database contains fully anonymized images originating from the following insti-
tutions: ETH Ziirich, University of Bern, University of Debrecen, and University
of Utah. The image database consists of multi-contrast MR scans of 30 glioma
patient, out of which 20 have been acquired from high-grade (anaplastic astrocy-
tomas and glioblastoma multiforme tumors) and 10 from low-grade (histological
diagnosis: astrocytomas or oligoastrocytomas) glioma patients. For each patient,
multimodal (T1, T2, FLAIR, and post-Gadolinium T1) MR images are available.
All volumes were linearly co-registered to the T1 contrast image, skull stripped,
and interpolated to 1mm isotropic resolution. All images are stored as signed
16-bit integers, but only positives values are used. Each image set has a truth
image which contains the expert annotations for “active tumor” and “edema’.

In our application, each voxel in a volume is represented by a four-dimensional
feature vector:

x = [log(z™)), log(2(™)), log(«™?), log(z AT T

Those voxels which have zero intensity in any of the channels are neglected. Most
of these are voxels outside the volume of interest, but there are a few others as
well. The intensity information of voxels of a whole volume are collected in a
large matrix whose number of rows is 4, while the number of columns is the
number of actual voxels, somewhere between 1 and 2 million. This matrix will
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represent the input data for the FCM cascade. We also store the position of
each voxel, so that we are able to localize them after clustering. The log values
of intensities are likely to be in the range between 3 and 8.

2.2 The FCM Cascade

The FCM cascade algorithm has the main goal of effectively separating homo-
geneous areas in the volume. Further on, based on decision support built upon
prior information, it also distinguishes tumor tissues from normal brain tissues.

The conventional FCM algorithm provides the input data set a fuzzy parti-
tioning into a previously set number (c) of clusters, based on the minimization
of a quadratic objective function that contains a parameter referred to as fuzzy
exponent. This parameter m > 1 regulates the fuzzyness of the partition. The
smaller the value of the fuzzy exponent is, the closer the partition will be to the
crisp one [12]. FCM usually places the cluster prototypes in areas where lots of
input vectors are in the neighborhood. In order to provide an accurate cluster-
ing, we should know in advance the exact number of such accumulation points in
the 4D color space, and be able to initialize a cluster prototype in the proximity
of each. Obviously this is not the case. Even if we could do this somehow, clus-
tering would represent a huge computational burden because of the hundreds of
clusters and millions of input vectors. To avoid this case, we propose to perform
FCM in two stages. The first stage will help us get rid of the most part of the
input data, those vectors which are far from all tumor tissue intensities that
we have stored in a predefined atlas. In the second stage we only have voxels of
intensities that are close to those of tumor patterns. Cluster prototypes obtained
in the second stage are individually analyzed, to separate tumor clusters from
normal ones.

So in the first stage, fuzzy c-means is applied to the whole set of n voxels
in the volume. The number of clusters c is typically varied between 6 and 20.
When this first FCM stage is ready, the voxels are categorized into ¢ clusters,
each represented by its cluster prototype v;, ¢ = 1...c. These cluster proto-
types are individually investigated by the decision support system which decides
whether they are suspected of containing tumor tissues or not. Those clusters
whose centroid vector is distant from tumor intensities, are excluded from the
further stages. The decision support at this stage usually keeps up to 3 of the
clusters obtained in the first FCM. The remaining n’ voxels, or more precisely,
the collection of feature vectors that represent them, will serve as input data for
the second stage of the FCM cascade. Fuzzy c-means clustering is applied again,
this time with ¢’ clusters, also varied between 6 and 20. Final cluster prototypes
are checked again by the decision support system. This time all clusters having
their prototypes in the proximity of tumor intensities will be declared tumor
tissues (positive), while all others negative. The fuzzy exponent may vary from
stage to stage within the interval [1.5,2.0], that is why we denoted by m and m/
the exponent applied in the first and second stage, respectively.
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2.3 FCM Initialization

Especially in multi-dimensional problem, the FCM algorithm is highly sensitive
to prototype initialization. Basically it is advised to attempt placing the initial
cluster prototypes far from each other, possibly in accumulation areas of input
vectors. Randomly chosen input vectors can produce high variability among
different runs. So a deterministic rule is needed for a stable solution.

Our algorithm applies FCM clustering in each dimension d on the scalar

data log(:cgd)), log(xgd)) e log(z%d)

) to produce three clusters, whose cluster pro-
totypes l/ld , V2d , and ng will serve as grid points in the given dimension d.
The 4D grid formed this way defines 3* = 81 grid points, which are all treated
as potential cluster seeds for the 4D clustering problem. Let us denote these
potential seeds by w;, ¢ = 1...81. Out of these, we choose initial cluster proto-
types those ones, which have lowest average square distance from input vectors,

computed with the formula A(w;) = >"7_, ||x, — w;||*

2.4 Decision Support

After the first stage of the FCM cascade, it is necessary to separate those clusters
that are likely to contain tumor tissues from the other clusters. After the second
stage of the cascade, a decision has to be taken, which are the tumor tissue clus-
ters and which are declared negative. These decisions rely on prior information
extracted from train volumes. A series of previously performed FCM runs have
established clusters that were declared tumor tissues or negative ones based on
the available ground truth. In the testing phase, a k-nearest neighbors algorithm
is employed to decide, whether the extracted clusters contain tumor tissues or
not. Ground truth information extracted from the test volume is never used by
the decision support algorithm.

2.5 Evaluation of Accuracy

The Jaccard index (JI) is a normalized score of accuracy, computed as JI =

%, where T'P stands for the number of true positives, F'P for the false
~I% \ T e 2 \ 4 r ‘ U N
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Fig. 1. Volumetric segmentation results presented in a single slice: (a)—(d) the four
input channels; (e) ground truth with tumor shown in black and edema in grey; (f)
and (g) results after first and second FCM stage, respectively (TP: black, FN: light
grey, FP: dark grey).
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Table 1. Dice scores achieved in unsupervised and various supervised settings. US
stands for unsupervised processing mode, while SS1...5SS12 indicate the semi-supervised
processing with the number of train volumes varying between 1 and 12.

Scenario HGO1 |HG02 |HG03 |HG04 |HGO7 |HG11 1HGI14 |HG15
US best 0.8925 | 0.7576 | 0.8984 | 0.7878 | 0.7476 | 0.7557 | 0.7855 | 0.8468
US average || 0.85750.5318 |0.8564 | 0.7746 | 0.7188 | 0.4480 | 0.7215 | 0.8256
SS1 average || 0.8701|0.6801 | 0.8770|0.7786 | 0.7306 | 0.6910 | 0.7262 | 0.8359
SS2 average || 0.8696 | 0.6872 | 0.8758 | 0.7769 | 0.7299 | 0.6956 | 0.7247 | 0.8367
SS3 average || 0.87100.6889 | 0.8773|0.7773 | 0.7307 | 0.6946 | 0.7278 | 0.8371
SS4 average || 0.87440.6912 | 0.8794 | 0.7774 | 0.7323 | 0.6974 | 0.7276 | 0.8380
SS5 average || 0.8757|0.6929 | 0.8807 | 0.7775 | 0.7338 | 0.6988 | 0.7279 | 0.8382
SS6 average || 0.8763 | 0.6940 | 0.8817 | 0.7773 | 0.7347 | 0.7002 | 0.7288 | 0.8381
SST7 average || 0.87700.6957 | 0.8827 | 0.7769 | 0.7352 | 0.7007 | 0.7294 | 0.8382
SS8 average || 0.8771|0.7001 | 0.8833 | 0.7763 | 0.7357 | 0.7006 | 0.7309 | 0.8384
SS9 average || 0.87810.7093 | 0.8848 | 0.7758 | 0.7364 | 0.7005 | 0.7320 | 0.8385
SS10 average || 0.8791 | 0.7207 | 0.8867 | 0.7756 | 0.7374 | 0.7012 | 0.7334 | 0.8387
SS11 average || 0.8792 | 0.7349 | 0.8885 | 0.7754 | 0.7381 | 0.7022 | 0.7358 | 0.8391
SS12 average || 0.8789 | 0.7491 | 0.8873 | 0.7749 | 0.7395 | 0.7016 | 0.7361 | 0.8368

positives, and F'N for false negatives. Further on, the Dice score (DS) can be
computed as DS = 575 fgfs TN = 12+J,I 7 Both indices score 1in case of an ideal

clustering, while a fully random result is indicated by a score close to zero.

3 Results and Discussion

Thirteen volumes from the BRATS 2012 data set were selected for evalua-
tion. These underwent the proposed FCM cascade algorithm using various set-
tings regarding fuzzy exponent and number of classes in each stage, namely
e, €{6,7,...20}, and m,m’ € {1.5,1.6,...,2.0}. All these variants sum up to
8100 tests performed for each volume. The average and maximum Dice score for
each volume was extracted, to be used as reference during the evaluation of the
semi-supervised algorithm. Figure 1 presents a slice of a successfully segmented
volume.

In order to decide the optimal number of clusters for each processing stage,
we propose to employ a semi-supervised learning scenario, based on the following
terms. The 13 volumes are separated into train and test data. In a given evalua-
tion, each volume can be either train or test volume, never both. The number of
train volumes, denoted by p, can vary from pupin = 1 t0 pmax = 12. At the eval-
uation of a certain test volume’s segmentation, there are ppax!/(p!(Pmax — p)!)
different possibilities to choose exactly p train volumes. Each of these cases yield
a different Dice score. Average Dice scores were extracted for each test volume
and each possible number of train volumes.
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Fig. 2. Evolution of average Dice score obtained for individual test volumes, plotted
against the number of train volumes (dashed lines). Average and standard deviation
of the thirteen curves obtained for individual test volumes. As the number of train
volumes grows, the achieved Dice score slightly tends towards the maximum.
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Fig. 3. Consecutive slices of a detected tumor. Black pixels are true positives, dark
grey pixels represent false positives, light grey ones indicate false negatives.

Table 1 summarizes the obtained Dice scores in various circumstances. The
first two rows exhibit the reference DS values (average and maximum) obtained
in case of unsupervised processing. Semi-supervision induced by a given single
volume, say HGO1, means that we choose that parameter setting (m, m’, c,
and ¢’) which led to the best DS for volume HGO1 in unsupervised processing,
and applied it at the processing of the other 12 volumes. DS values shown in
the SS1 row were obtained for each volume by choosing the average DS out of
the 12 outcomes. Whichever is the test volume, each of the 12 others can be the
inducing train volume in SS1 mode.
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In semi-supervision induced by two volumes (SS2) processing mode, the para-
meter setting is chosen such a way that the average DS of the train volumes
is greatest. This setting is applied to the other 11 volumes. Each test volume
receives 12!/(1012!) = 66 different optimal settings from the different combina-
tions of train volumes. Out of the 66 Dice scores were computed the values given
in row SS2 of Table 1. Further rows SS3 to SS12 were obtained analogously.

The dashed curves in Fig.2 present the evolution of relative DS achieved
for each individual test volume, compared to the average (AVG) and maximum
(MAX) Dice score obtained in unsupervised mode, plotted against the number of
train volumes that induced the semi-supervised processing. Figure 2 also shows
the global average and standard deviation of the relative Dice scores indicated
by the dashed curves.

Figure 3 exhibits a tumor detected by the proposed algorithm, in consecutive
slices of volume HG15. True positive pixels represented by black seem to have
captured the boundary of the tumor accurately in most places. False negatives
(light grey) and false positives (dark grey) are also present in a considerable
proportion. So there are still challenges to improve the implemented algorithm.

As it was initially suspected, the parameters that assure best segmentation
accuracy for train volumes can indeed give useful support in choosing the right
parameters for the test volume. Parameters provided by the train data lead to bet-
ter accuracy than the expected accuracy via randomly chosen parameters. How-
ever, not every train volume adds to the success of every test volume. Figure 2
reveals the slight improvement achieved by adding more and more volumes to the
train set. Besides the initial goal of including further dozens of volumes in our
study, there are several possible directions for further development of the proposed
system:

1. There is a strong need to establish whether all four channels are necessary for
an accurate tumor detection. If one of the channels does not really contain
useful data, its presence not only hardens the computational burden, but also
hinders c-means clustering models in providing accurate partitions.

2. Obviously not all image volumes share the same properties, not all of them
are clustered best with the same parameter settings. A brief evaluation of the
intensity histograms in different channels of the test data, and matching with
certain previously established templates could be effective in determining,
which train volumes would give best parameter setting for the test volume.

3. The current system neglects the handling of intensity non-uniformity effects.
However, the effective compensation of such phenomena is usually performed
simultaneously with image segmentation [13,14].

4. The tumor detection process should be extended to the identification and
separation of neighboring edema regions as well.

4 Conclusion

In this paper we proposed an automatic tumor detection and segmentation
algorithm employing a fuzzy c-means clustering cascade algorithm and fusing
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it with decision support based on prior information. The proposed algorithm
was validated using 13 selected MRI volumes originating from the BRATS 2012
data set. Preliminary evaluation results revealed the ability of the algorithm to
extract accurate information concerning the presence and position of the tumor.
Further development directions enumerated in Sect. 3 are likely to improve the
benchmarks of the algorithm.
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