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Abstract. Overfitting is an important problem in neural networks
(NNs) training. When the number of samples in the training set is lim-
ited, explicitly extending the training set with artificially generated sam-
ples is an effective solution. However, this method has the problem of high
computational costs. In this paper we propose a new learning scheme
to train single-hidden layer feedforward neural networks (SLFNs) with
implicitly extended training set. The training set is extended by corrupt-
ing the hidden layer outputs of training samples with noise from exponen-
tial family distribution. When the number of corruption approaches infin-
ity, in objective function explicitly generated samples can be expressed
as the form of expectation. Our method, called marginalized corrupted
hidden layer (MCHL), trains SLFNs by minimizing the loss function
expected values under the corrupting distribution. In this way MCHL
is trained with infinite samples. Experimental results on multiple data
sets show that MCHL can be trained efficiently, and generalizes better
to test data.
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1 Introduction

Overfitting is an important problem in NNs training [1,2]. Overfitting occurs
when the network has too many free parameters relative to the number of train-
ing samples. In this situation the network adapts to the particular details of the
training set and leads to poor generalization performance.

A typical method of solving overfitting is to extend the training set. Because
overfitting can become less severe as the size of the training set increases. When
the number of samples in the training set is limited, explicitly extending the
training set with artificially generated samples is an effective solution. However,
this method has the problem of high computational costs. Because the training
time increases with the number of samples.

To solve overfitting, in this paper we propose a new learning scheme to
train single-hidden layer feedforward neural networks (SLFNs) with implicitly
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extended training set. The training set is extended by corrupting the hidden
layer outputs of training samples with noise from exponential family distribu-
tion. When the number of corruption approaches infinity, in objective function
explicitly generated samples can be expressed as the form of expectation. Our
method, called marginalized corrupted hidden layer (MCHL), trains SLFNs by
minimizing the loss function expected values under the corrupting distribution.
In this way MCHL is trained with infinite samples.

Parameter optimization of NNs is a big challenge. NNs are normally opti-
mized with backpropagation (BP) algorithm [3]. As a first order gradient descent
parameter optimization method, BP algorithm has the problems of local mini-
mum and slow convergence.

To optimize MCHL efficiently, we propose to optimize the parameters of
MCHL by pseudo inverse operation. Our optimization method is inspired by
the work of Guo and Michael [4]. Different from BP algorithm, for MCHL the
previously trained weights in the network are not changed. This makes the train-
ing of MCHL more efficient. In addition, the model parameters have analytical
solution, so MCHL tends to achieve global minima.

Experimental results on multiple data sets show that MCHL can be trained
efficiently, and generalizes better to test data. In summary, we make the following
contributions: (1) to solve overfitting, we propose a new learning scheme to
train SLFNs with implicitly extended training set; (2) for MCHL, we propose
an efficient parameter optimization method; (3) on several data sets, we show
that MCHL can be trained efficiently, and generalizes better to test data.

2 Related Works

In this subsection we brief the related works about corrupting samples during
training. Burges and Scholkopf [5] first propose to improve the generalization
ability of predictors by explicitly corrupting training data. Hinton et al. [1] pro-
pose a method to reduce overfitting by randomly omitting half of the feature
detectors on each training case. Vincent et al. [6] propose a unsupervised repre-
sentation learning method, which corrupts the input data and keeps the desired
output unchanged. Their approach is commonly used to train autoencoders, and
these denoising autoencoders can be further used to initialize deep architectures.
Chen et al. [7] propose marginalized denoising autoencoders for domain adapta-
tion which are linear denoising autoencoders. Maaten et al. [8] propose to extend
the training set with infinitely many artificial samples by corrupting the original
training data. Our method differs from Maaten et al. work in that we corrupt the
hidden layer outputs instead of the original training samples. Except corrupting
features, there is another research direction (corrupting labels). Chen et al. [9]
propose a fast image annotation method based on labels corruption. Lawrence
and Schölkopf [10] propose an algorithm for constructing a kernel Fisher dis-
criminant from training examples with noisy labels.
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3 MCHL

In this section we first introduce MCHL learning scheme, then analyze how to
marginalize the noise introduced in the hidden layer outputs analytically by
minimizing the loss function expected values under the corrupting distribution,
i.e., solve the weights of hidden layer to output layer.

3.1 Learning Scheme

Given a training set D = {(xi,yi)|xi ∈ Rd,yi ∈ Rk, i = 1, · · · ,M}, let L
denotes the number of hidden nodes, h(x) denotes the feature mapping function
and h(x) denotes mapping result of data x. In MCHL different hidden neurons
can use different feature mapping functions. In real applications h(x) can be
defined as

h(x) = F (a, b,x),a ∈ Rd, b ∈ R , (1)

where (a, b) are hidden node parameters. F (a, b,x) can be any piecewise
continuous function which meets universal approximation capability theo-
rem [11]. Typically used feature mapping functions F (a, b,x) include Sig-
moid ( 1

1+exp(−(a·x+b)) ), Gaussian (exp(−b||x − a||)), Hyperbolic tangent

( 1−exp(−(a·x+b))
1+exp(−(a·x+b)) ) and Cosine (cos(a · x + b)).

We use pseudo inverse operation to learn the parameters of MCHL. MCHL
trains a single-hidden layer feedforward neural network (SLFN) by two stages:
(1) map training data into a new space (called MCHL space); (2) solve the
parameters of hidden layer to output layer in MCHL space. We first introduce
how to solve parameters of hidden layer to output layer (weight W2), then depict
how to figure out the parameters of input layer to hidden layer (weight W1, i.e.
parameters a and b).

MCHL solves weight W2 of hidden layer to output layer in MCHL feature
space by minimizing the training error

min
w2

||HW2 − Y||2 , (2)

where H is the matrix of hidden layer outputs. The smallest norm least squares
solution of optimization problem (2) is W∗

2 = H†Y, where H† is the pseudo
inverse of matrix H.

We hope the outputs of hidden layer are irrelevant. To achieve this objective
we first randomly generate a M × L full rank matrix P. Huang et al. [11] have
proved that SLFNs with arbitrarily assigned input weights and hidden layer
biases and with almost any nonzero activation function can universally approx-
imate any continuous functions on any compact input sets. Solve equation

XW1 = P , (3)

we get W∗
1 = X†P. Different from conventional NNs trained with BP algorithm,

parameters in MCHL have analytical solutions, hence MCHL can be trained
efficiently.
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3.2 Marginalizing the Noise

Intuitively we can improve the generalization ability of SLFNs by extending
the training set in the MCHL feature space. This can be achieved by explicitly
corrupting each training sample in the MCHL feature space.

Given the training set D, let ti denotes the mapping result of sample xi in
MCHL feature space, i.e. ti = h(xi). We can corrupt each sample in MCHL
feature space N times according to a fixed noise distribution to generate a new
data set ˜D with MN samples. For each sample tm in MCHL feature space,
corruption corresponds to generate new samples ˜tmn (with n = 1, · · · , N). For
convenience, we take binary classification, y ∈ {−1,+1}, for example. The newly
generated data set ˜D can be used for training by minimizing

£( ˜D;Θ) =
M
∑

m=1

1
N

N
∑

n=1

L(˜tmn, ym;Θ), (4)

where ˜tmn ∼ p(˜tmn|tm), Θ is the set of model parameters, and L(˜tmn, ym;Θ)
is the loss function of the model. The binary classification can be extended to
multiclass (with k classes) by replace label y with label vector y = {−1, 1}k.

Explicit corruption is effective, but it has the problem of high computational
costs. The computational complexity of the minimization of £( ˜D;Θ) scales
linearly in the number of corrupted samples. Here, we consider the limiting
case, i.e. N → ∞. By applying the weak law of large numbers, we can rewrite
1
N

∑N
n=1 L(˜tmn, ym;Θ) as its expectation, i.e.,

£( ˜D;Θ) =
M
∑

m=1

E[L(˜tm, ym;Θ)]p(˜tm|tm), (5)

We assume: (1) corruption distribution is a member of the natural expo-
nential family and the corruption of each dimension of t is independent; (2)
corruption distribution is unbiased, that is to say E[˜tm]p(˜tm|tm) = tm. Here, we
use w to denote weights of hidden layer to output layer. When loss function is
quadratic loss function, w can be achieved by minimizing the loss function:

£( ˜D;w) =
M
∑

m=1

E[(wT
˜tm − ym)2]p(˜tm|tm)

= wT (
M
∑

m=1

E[˜tm]E[˜tm]T + V [˜tm])w − 2(
M
∑

m=1

ymE[˜tm])Tw + M

(6)

where V [t] is the covariance of t, and all expectation and covariance are under
p(˜tm|tm). According to assumption (1), we can show that V [t] is a diagonal
matrix which stores the variances of t. Set the derivatives of £( ˜D;w) with
respect to w equal to zero, we obtain the optimal solution

w∗ = (
M
∑

m=1

E[˜tm]E[˜tm]T + V [˜tm])†(
M
∑

m=1

ymE[˜tm]) (7)
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Probability density function (PDF), mean and variance of typically used
corrupting distributions are listed in Table 1.

Table 1. PDF, mean and variance of typically used corrupting distributions.

Noise distribution PDF E[˜t]p(˜t|t) V [˜t]p(˜t|t)
Blankout p(˜t = 0) = q, p(˜t = 1

1−q
t) = 1 − q t q

1−q
t2

Gaussian p(˜t|t) = N(˜t|t, σ2) t σ2

Laplace p(˜t|t) = Laplace(˜t|t, λ) t 2λ2

Poisson p(˜t|t) = Poisson(˜t|t) t t

In summary, training process of MCHL can be summarized as follow:
Given a training set D = {(xi,yi)|xi ∈ Rd,yi ∈ Rk, i = 1, · · · ,M},

feature mapping function F (a, b,x), and hidden neuron number L,
step1: Randomly generate a M × L full rank matrix P.
step2: Evaluate the hidden node parameters (a, b) by solving Eq. (3).
step3: Calculate the hidden layer output matrix H.
step4: Calculate the output weight w∗ according to formula (7).

4 Experiments

Experiments include three parts: (1) analyze the influence of blankout corruption
level q to classification performance of MCHL (We use blankout noise corrup-
tion and assume same noise level q for each dimension of feature.); (2) analyze
the influence of hidden nodes number to classification performance of MCHL;
(3) analyze the classification performance of MCHL.

Feature mapping function uses sigmoid function. l2 regularizer is added to
the weights calculation of hidden layer to output layer. Wide type of data sets
are used in this section, most of the data sets are taken from UCI Machine
Learning Repository [13]. We consider binary classification and multiclass clas-
sification two cases. Binary classification data sets include: Colon [12], Dia-
bete [13], SPECTF [13], Heart [14], Madelon [15], Australian Credit [13] and
Dimdata [16]. Multiclass classification data sets include: Iris [13], Glass [13],
Win [13], Ecoli [13], Segment [13], Vehicle [13] and Letter [13]. The correspond-
ing categories number are 3, 6, 3, 8, 7, 4 and 26, separately. Detailed information
about the data sets are listed in Table 2.

4.1 Influence of Blankout Corruption Level q

We explore the classification performance of MCHL as a function of the blankout
corruption level q. Blankout corruption level q = 0 means that MCHL do not
corrupt the hidden layer outputs. We set the hidden nodes number to the sample
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Table 2. Basic statistics of data sets.

Binary Colon Diabete SPECTF Heart Madelon Australian Dimdata

# total 62 768 267 270 2600 690 4192

# features 2000 8 44 13 500 6 14

Multiclass Iris Glass Win Ecoli Segment Vehicle Letter

# total 150 214 178 336 2310 846 20000

# features 4 9 13 7 19 18 16

features number and regularization parameter C to 10−4. Four data sets are used
in this subsection. The training data number for each data set are 150 (Heart),
1400 (Madelon), 40 (Colon) and 150 (SPECTF). Experimental results are listed
in Table 3.

Table 3. Relation between classification results and blankout corruption level q.

q=0 q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9

Heart 83.33 85.00 80.83 77.50 70.83 67.50 65.83 63.33 60.00 59.17

SPECTF 80.34 81.20 81.20 81.20 81.20 81.20 81.20 81.20 81.20 81.20

Colon 81.82 81.82 86.36 86.36 86.36 86.36 86.36 86.36 86.36 86.36

Madelon 56.67 57.83 58.50 58.17 58.00 58.00 58.00 57.83 57.83 58.33

From Table 3 we can find that: (1) Marginalizing the noise introduced in the
hidden layer outputs can improve the classification results (1.67 % on Heart,
0.86 % on SPECTF, 4.54 % on Colon and 1.83 % on Madelon). (2) On SPECTF,
Colon and Madelon data sets MCHL consistently improves the classification
results on all blankout corruption level; (3) On the whole the best performance
tends to be obtained by MCHL with low corruption levels, i.e. the order of q is
around 0.2.

4.2 Influence of Hidden Nodes Number

As a kind of SLFNs, hidden layer of MCHL can nonlinear map training data
into a high dimensional feature space. In this subsection we analysis the impact
of hidden nodes number to the classification performance of MCHL. Heart and
Madelon data sets are used in this subsection, and the training data number
are 150 and 1400, respectively. Regularization parameter C is set to 10−4. We
analyze two cases, q = 0 (does not have corruption) and q = 0.1 (has corruption).
Experimental results are listed in Tables 4 and 5. First column of Tables 5 and
6 corresponds to the primary feature dimension of the data.

From Tables 4 and 5, we can find that an appropriate increase in the number
of hidden nodes can improve the classification performance of MCHL. Nonlinear
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Table 4. Classification accuracies of different hidden nodes number on Heart data set.

L=13 L=50 L=100 L=200 L=400 L=800 L=1000 L=1500 L=2000

q=0 78.33 82.50 73.33 70.00 69.17 70.83 72.50 70.83 72.00

q=0.1 81.67 84.17 83.33 85.00 84.17 83.33 83.33 80.83 83.33

Table 5. Classification accuracies of different hidden nodes number on Madelon data
set.

L=500 L=50 L=100 L=200 L=400 L=800 L=1000 L=1500 L=2000

q=0 55.00 49.00 53.83 55.50 54.33 56.83 55.67 52.67 54.33

q=0.1 56.50 50.67 52.33 55.17 54.50 58.17 57.67 58.50 58.33

feature mapping in MCHL has a similar effect of kernel function used in support
vector machine (SVM).

4.3 Classification Performance

This subsection we make detailed experiments to analyze the classification per-
formance of MCHL. SVM is used as baseline. All of data sets are used in the
subsection. The training data number for each data set are: 150 (Hear), 1400
(Madelon), 40 (Colon), 150 (SPECTF), 510 (Diabete), 460 (Australian),1000
(Dimdata), 100 (Iris), 140 (Glass), 120 (Win), 220 (Ecoli), 1540 (Segment), 560
(Vehicle) and 13333 (Letter).

SVM uses popular RBF Kernel (k(xi,xj) = exp(−γ‖xi−xj‖2)). Experimen-
tal parameters are selected by cross-validation. Parameters C and γ are searched
on grid {2−16, 2−14, 2−12, · · · , 212, 214, 216}. The number of hidden layer nodes is
selected on grid {50, 100, 200, 400, 800, 1000, 1500, 2000}. Blankout noise corrup-
tion level q is searched on grid {0, 0.1, 0.2, · · · , 0.9}. Experiments on each dataset
are repeated ten times with randomly selected training and test data. The mean
and standard deviation of classification accuracy are recorded. Experimental
results are shown in Tables 6 and 7. From Tables 6 and 7, we can find that the
classification performance of MCHL is slightly better than SVM. In addition the

Table 6. Binary class classification performance compare.

Data set Colon Diabete SPECTF Heart Madelon Australian Dimdata

SVM 89.55± 5.77 79.22± 1.92 82.22± 3.19 86.33± 2.01 58.12± 1.04 86.43± 1.50 95.68± 0.24

MCHL 88.64± 6.51 79.38± 1.56 81.54± 3.16 85.75± 2.75 59.15± 0.96 87.65± 1.89 95.74± 0.29

Table 7. Multiclass classification performance compare.

Data set Iris Glass Win Ecoli Segment Vehicle Letter

SVM 97.80± 1.89 68.24± 4.57 98.10± 1.21 87.07± 3.27 96.43± 0.63 84.09± 1.71 92.85± 0.28

MCHL 98.20± 1.66 67.84± 4.79 98.45± 1.43 87.59± 2.62 96.14± 0.65 83.57± 1.57 93.50± 0.22
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parameters of MCHL have analytical solutions, this makes the training efficiency
of MCHL higher than SVM.

5 Conclusions

Generalization ability of NNs is limited by the number of training samples.
Explicitly extending the training set with artificially generated samples by cor-
rupting hidden layer outputs can improve the generalization ability of NNs. But
it has the problem of high computation costs. We propose MCHL which improves
the generalization ability of SLFNs by marginalizing the noise introduced in the
hidden layer outputs. In this way MCHL is trained with infinite samples. Exper-
imental results on multiple data sets show that MCHL can be trained efficiently,
and generalizes better to test data.
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