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Abstract. In this paper, we study the effect of noise on a gradient system
with forgetting. The noise include multiplicative noise, additive noise and
chaotic noise. For multiplicative or additive noise, the noise is a mean zero
Gaussian noise. It is added to the state vector of the system. For chaotic
noise, it is added to the gradient vector. Let x be the state vector of a sys-
tem, Sb be the variance of the Gaussian noise, κ′ is average noise level of
the chaotic noise, λ is a positive constant, V (x) be the energy function of
the original gradient system, V⊗(x), V⊕(x) and V�(x) be the energy func-
tions of the gradient systems, if multiplicative, additive and chaotic noises
are introduced. Suppose V (x) = F (x) + λ‖x‖2

2. It is shown that V⊗(x) =
V (x) + (Sb/2)

∑n
j=1(∂

2F (x)/∂x2
j )x

2
j − Sb

∑n
j=1

∫
xj(∂

2F (x)/∂x2
j )dxj ,

V⊕(x) = V (x) + (Sb/2)
∑n

j=1 ∂2F (x)/∂x2
j , and V�(x) = V (x) +

κ′∑n
i=1 xi. The first two results imply that multiplicative or additive noise

has no effect on the system if F (x) is quadratic. While the third result
implies that adding chaotic noise can have no effect on the system if κ′

is zero. As many learning algorithms are developed based on the method
of gradient descent, these results can be applied in analyzing the effect of
noise on those algorithms.

1 Introduction

Research on the effect of noise on neural networks has been conducted for almost
two decades. From the earlier 90 s to the mid 90 s, researchers investigated the
effect of noise on the performance of a multilayer perceptron (MLP)/recurrent
neural networks (RNN) [6,11–13,15] and the associative networks [2,19]. Later,
from the mid 90 s to the late 90 s, researchers started to analyze the effects
of additive input noise (AIN) [5,7,8,14] and additive weight noise (AWN) [1]
on back-propagation learning. The objective functions for these noise injection-
based learning algorithms were revealed. In the 2000s, researchers investigated
the effect of chaotic noise (CN) on MLP [3,4].

In recent years, the effects of AWN and multiplicative weight noise (MWN)
on the RBF and MLP learning algorithms have been investigated [9,10,16,17].
It is shown that the objective function of the RBF learning algorithm with
adding AWN or MWN is identical to the original RBF learning algorithm [9].
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Hence, adding AWN or MWN during RBF learning cannot improve the gen-
eralization ability of an RBF. Adding AWN during MLP learning can improve
the generalization ability of an MLP. Adding MWN during MLP learning might
not be [10,17]. These results clarify a common missconception that adding noise
during learning is able to improve the generalization ability of a neural network.

Now, we would like to investigate another question. Would similar results
be obtained for other learning algorithms? To do so, one obvious approach is to
investigate the effect of noise on a gradient system as many learning algorithms
are developed by the method of gradient descent. Understanding the effect of
noise on gradient systems can aid in the understanding of the effect of noise
on these learning algorithms. Therefore, the objective of the paper is to investi-
gate the effects of three types of noise (multiplicative noise, additive noise and
chaotic noise) on a gradient system with forgetting. The energy functions of the
corresponding gradient systems are revealed.

In the next section, the gradient systems with noise are introduced. The
energy functions of these gradient systems with noise will be analyzed in Sect. 3.
Effect of noise on the gradient systems will be elucidated in Sect. 4. Finally.
Section 5 gives the conclusion of the paper.

2 Models

Let x(t) ∈ Rn and F (x) ∈ R is a bounded smooth function of x. The energy
function is given by V (x) = F (x) + λ‖x‖22, where λ is a small positive number
called forgetting factor. The gradient system is defined as follows:

x(t + 1) = x(t) − μ

(
∂F (x(t))

∂x
+ λx(t)

)
, (1)

where μ is the learning step and it is a small positive number, and ∂F (x(t))/∂x =
∂F (x)/∂x|x=x(t).

2.1 Multiplicative/Additive Noise

With multiplicative noise, the vector x(t) in (1) is replaced by x̃(t), where

x̃(t) = x(t) + b(t) ⊗ x(t). (2)
b(t) ⊗ x(t) = (b1(t)x1(t), b2(t)x2(t), · · · , bn(t)xn(t))T .

With additive noise,
x̃(t) = x(t) + b(t). (3)

In (2) and (3), b(t) ∈ Rn is a Gaussian random vector with mean 0 and covari-
ance matrix SbIn×n. Moreover, E[bi(t)] = 0 for all i = 1, · · · , n and t ≥ 0.
E[b2i (t)] equals to Sb and E[bi(t)bj(t)] equals zero if i �= j. E[bi(t1)bi(t2)] = 0 if
t1 �= t2. The gradient system with noise is given as follows:

x(t + 1) = x̃(t) − μ

(
∂F (x̃(t))

∂x
+ λx̃(t)

)
. (4)
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2.2 Chaotic Noise

With chaotic noise injection, the noise is added to the gradient vector as follows
[3,4,20]:

x(t + 1) = x(t) − μ

(
∂F (x(t))

∂x
+ λx(t) + κn(t)e

)
, (5)

where e is a constant vector of all 1s, κ is a positive constant and n(t) is a
deterministic noise generated by

n(t + 1) = αn(t)(1 − n(t)), 3.6 < α < 4. (6)

3 Energy Functions

In this section, the energy functions of these gradient systems with noise are
revealed. The effect of noise on the gradient systems will be discussed in the
next section.

3.1 Multiplicative/Additive Noise

Given x(t), the mean update of (4) can be written as follows:

E[x(t + 1)|x(t)] = E[x̃(t)|x(t)] − μE

[
∂F (x̃(t))

∂x
+ λx̃(t)

∣∣∣∣x(t)
]

. (7)

In (7), the expectation is taken over the probability space of x̃(t). Since E[b(t)] =
0, by (2) we get that E[x̃(t)|x(t)] = x(t). Equation (7) can be rewritten as
follows:

E[x(t + 1)|x(t)] = x(t) − μ

(
E

[
∂F (x̃)

∂x

∣∣∣∣x(t)
]

+ λx(t)
)

. (8)

Next, we let V⊗(x) be a scalar function such that

E[x(t + 1)|x(t)] = x(t) − μ
∂V⊗(x(t))

∂x
. (9)

The energy function is stated in the following theorem.

Theorem 1. For a gradient system defined as (1) and x(t) is corrupted by mul-
tiplicative noise as stated in (2),

E[F (x̃)|x] = F (x) +
Sb

2

n∑
j=1

∂2F (x)
∂xj∂xj

x2
j (10)

and

V⊗(x) = F (x) +
λ

2
‖x‖22 +

Sb

2

n∑
j=1

∂2F (x)
∂xj∂xj

x2
j − Sb

∫
x ⊗ diag {H(x)} · dx. (11)
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where
∫

is the line integral, H(x) is the Hessian matrix of F (x), i.e. H(x) =
∇∇xF (x) and

diag {H(x)} =
(

∂2F (x)
∂x2

1

,
∂2F (x)

∂x2
2

, · · · ,
∂2F (x)

∂x2
n

)T

.

Proof: Consider (8) and let ∂F (x)/∂xi be the ith element of ∂F (x)/∂x.

∂F (x̃)
∂xi

=
∂F (x)
∂xi

+
n∑

j=1

∂2F (x)
∂xj∂xi

(bjxj) +
1
2

n∑
k=1

n∑
j=1

∂3F (x)
∂xk∂xj∂xi

bkbjxkxj . (12)

Therefore,

E

[
∂F (x̃)
∂xi

∣∣∣∣x
]

=
∂F (x)
∂xi

+
Sb

2

n∑
j=1

∂3F (x)
∂xj∂xj∂xi

x2
j . (13)

On the other hand, by expanding F (x̃) about x, we get that

F (x̃) = F (x) +
n∑

i=1

∂F (x)
∂xi

bixi +
1
2

n∑
j=1

n∑
i=1

∂2F (x)
∂xj∂xi

bjbixjxi

and hence

E[F (x̃)|x] = F (x) +
Sb

2

n∑
j=1

∂2F (x)
∂xj∂xj

x2
j . (14)

Differentiate both side of (14) with respect to xi, we get that

∂

∂xi
E[F (x̃)|x] =

∂F (x)
∂xi

+
Sb

2

n∑
j=1

∂3F (x)
∂xi∂xj∂xj

x2
j + Sb

∂2F (x)
∂xi∂xi

xi. (15)

As F (x) is smooth, ∂3F (x)/∂xj∂xj∂xi = ∂3F (x)/∂xi∂xj∂xj . Compare (13)
and (15), we get that

E

[
∂F (x̃)
∂xi

∣∣∣∣x
]

=
∂E[F (x̃)|x]

∂xi
− Sb

∂2F (x)
∂xi∂xi

xi.

Further by (8) and (9), we get that

V⊗(x) = E[F (x̃)|x] − Sb

∫
x ⊗ diag {H(x)} · dx +

λ

2
‖x‖22. (16)

Putting (10) in (16) and rearranging the terms, we can get the energy function
as given in (11) and the proof is completed. Q.E.D.

Similarly, the energy function of the gradient system with additive noise is
stated in the following theorem.
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Theorem 2. For a gradient system defined as (1) and x(t) is corrupted by addi-
tive noise as stated in (3),

V⊕(x) = F (x) +
λ

2
‖x‖22 +

Sb

2

n∑
j=1

∂2F (x)
∂xj∂xj

. (17)

Proof: For additive noise, the noisy x̃ in (4) is given by x̃ = x + b. Similarly,
we consider (8) and let ∂F (x)/∂xi be the ith element of ∂F (x)/∂x.

∂F (x̃)
∂xi

=
∂F (x)
∂xi

+
n∑

j=1

∂2F (x)
∂xj∂xi

bj +
1
2

n∑
k=1

n∑
j=1

∂3F (x)
∂xk∂xj∂xi

bkbj .

Therefore,

E

[
∂F (x̃)
∂xi

∣∣∣∣x
]

=
∂F (x)
∂xi

+
Sb

2

n∑
j=1

∂3F (x)
∂xj∂xj∂xi

. (18)

Using similar technique as in multiplicative noise, we can get that

E[F (x̃)|x] = F (x) +
Sb

2

n∑
j=1

∂2F (x)
∂xj∂xj

(19)

and
∂

∂xi
E[F (x̃)|x] =

∂F (x)
∂xi

+
Sb

2

n∑
j=1

∂3F (x)
∂xi∂xj∂xj

. (20)

Compare (18) with (20), we get that E [∂F (x̃)/∂xi|x] = ∂E[F (x̃)|x]/∂xi and
thus

∂V⊗(x(t))
∂x

=
∂E[F (x̃)|x]

∂x
+ λx (21)

By (19), (20) and (21), the energy function as stated in (17) can be obtained
and the proof is completed. Q.E.D.

3.2 Chaotic Noise

For the system with chaotic noise injection, all elements in x suffered the same
amount of noise κn(t) in the tth step. As observed from Fig. 1 which plots the
value

∑T−1
τ=0 n(t + τ)/T for t = 1, · · · , 2000 and for different values of T , it is

reasonable to assume that
∑T−1

τ=0 n(t + τ)/T is a constant for all t if T � 1.
Then, we can get the following theorem on the energy function of a gradient
system with chaotic noise.

Theorem 3. For a gradient system defined as (5) and μT → 0,

V�(x) = F (x) +
λ

2
‖x‖22 + κ′

n∑
i=1

xi, (22)

where κ′ is a constant.
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Fig. 1.
∑T−1

τ=0 n(t + τ)/T against t, for t = 1, · · · , 2 K; T = 500, 1 K, 5 K. α = 3.8

Proof: Suppose μT → 0 for all t, we could assume that

x(t + τ) = x(t),
∂F (x(t + τ))

∂x
=

∂F (x(t))
∂x

for τ = 0, 1, · · · , T − 1. In such case, we can get from (5) that

x(t + T ) = x(t) − μ′
(

∂F (x(t))
∂x

+ λx(t) +
κ

T

T−1∑
τ=0

n(t + τ)e

)

= x(t) − μ′
(

∂F (x(t))
∂x

+ λx(t) + κn̄e
)

, (23)

where μ′ = μT and n̄ = limT→∞
∑T

t=1 n(t)/T . Clearly, the energy function is
given by (22) and κ′ = κ limT→∞

∑T
t=1 n(t)/T . Q.E.D.

4 Effect of Noise

For multiplicative noise, let us rewrite that V⊗(x) = F (x) + λ
2 ‖x‖22 + SbR(x),

where R(x) corresponds to a regularizer. From (11), it is given by

R(x) =
1
2

n∑
j=1

∂2F (x)
∂xj∂xj

x2
j −

∫
x ⊗ diag {H(x)} · dx. (24)

The effect of the first term is to bring x closer to the zero vector while the
second term is to push it away. Therefore, the existence of multiplicative noise
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in a gradient system would lead to two opposite effects. It should also be noted
that H(x) is a constant matrix (say H̄) and R(x) = 0 if F (x) is quadratic.
Existence of multiplicative noise has no effect on the gradient system.

For additive noise, the additional term (Sb/2)
∑n

j=1 ∂2F (x)/∂xj∂xj has the
effect that brings the solution closer to the zeros vector. This term reduces to
a constant if F (x) is quadratic. The different between V⊕(x) and V (x) is just
a constant. So, existence of additive noise has no effect on a gradient system if
F (x) is quadratic.

For chaotic noise, from (22), the additional term is κ′ ∑n
i=1 xi. Its effect is to

let x slide along the direction −[1 1 · · · 1]T . If all the xis are positive, the addi-
tional term will bring them move slightly towards the zero vector. If all the xi are
negative, it will move x slightly further away from the zero vector. The effect of
noise on the gradient system will depend on the minimum point of the V (x) and
it has no effect if limT→∞

∑T
t=1 n(t)/T = 0.

5 Conclusion

In this paper, we have introduced the models of the gradient systems with three
different type of noise, namely multiplicative, additive and chaotic noise. The
energy functions of the corresponding gradient systems with noise have been
revealed. By investigating the additional term in the energy functions as com-
pared with the original energy function, it is found that only additive noise has
a clear effect on the gradient system. It enforces the state vector moving slightly
towards the zero vector. With multiplicative noise, two opposite effects exists,
moving towards and away. With chaotic noise, the effect will be depended on the
location of the minimum point of V (x). It could be enforced to move towards or
away from the zero vector. Moreover, if F (x) is quadratic, either multiplicative
or additive noise will have no effect on the gradient system.

Treating (i) the state vector as the weight vector of a neural network, (ii) F (·)
as the mean square errors and (iii) moving toward the zero vector as improving
generalization, our results imply that (a) injecting AWN during MLP learning
can improve generalization, (b) injecting MWN or CN during MLP learning
might not be and (c) injecting AWN or MWN during RBF learning cannot
improve generalization. Results (a) and (b) are equally applied to other nonlinear
neural networks. Treating x as the state variable in the stochastic Wang’s kWTA
model [18] or x as the neuronal outputs of Hopfield network, the effect of noise
on these models can thus be analyzed by the same technique. Due to page limit,
those results will be presented elsewhere.
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