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Abstract. Trajectory abstracting is to compendiously summarize the
substance of a lot of information delivered by the trajectory data. In
this paper, to cope with complex trajectory data, we propose a novel
framework for abstracting trajectories from the perspective of signal
processing. That is, trajectories are designated as signals, manifesting
the copious information that varies with time and space, and denoising
is exploited to concisely communicate the trajectory data. Resampling
of trajectory data is firstly performed, based on achieving the minimum
Jensen-Shannon divergence of the trajectories before and after being re-
sampled. The resampled trajectories are matched into groups according
to their similarity and, a non-local denoising approach based on wavelet
transformation is developed to produce summaries of trajectory groups.
Our new framework can not only offer multi-granularity abstractions of
trajectory data, but also identify outlier trajectories. Extensive experi-
mental studies have shown that the proposed framework achieves very
potential results in trajectory summarization, in terms of both objec-
tive evaluation metrics and subjective visual effects. To the best of our
knowledge, this is the first to deploy the group-based signal denoising
technique in the context of summarizing the trajectory data.

Keywords: Trajectory abstracting · Multi-granularity abstractions ·
Signal processing · non-local denoising · Wavelet transformation

1 Introduction

Trajectory data is very useful for a lot of practical fields such as intelligent trans-
portation and so on [13]. The processing of the trajectory data is fundamentally
based on clustering, which is basically one of the most powerful techniques to
obtain the patterns and knowledge of these data for the better abstraction and
full employment of them [8]. Unfortunately, the performance of clustering may
degrade when dealing with complex trajectory data. Here the meaning of com-
plexity is at least threefold. First, different trajectories can have largely diverse
numbers of sample points. Second, similarity between trajectories happening in
one area of a scene can significantly differ from that in another area. Third, out-
liers occur together with common clusters of trajectories. An example in Fig. 4(f)
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shows the difficulty of the clustering technique for treating complex trajectory
data.

In this paper, in order to effectively analyze and understand complex trajec-
tories, we propose a totally new approach, called trajectory abstracting, which is
significantly different from the clustering scheme. That is, considering that tra-
jectories are in fact signals handling the information that change with time and
space, the abstraction of trajectory data is performed from the perspective of
signal denoising. At first, resampling of trajectories is taken for combatting the
situation that numbers of trajectory sample points are largely different. Then,
variations of trajectory similarities occurring in different scene areas are tackled
by iterative group-based “non-local” denoising. Our denoising scheme provides
trajectory details and summarizations with multiple granularities, leading to
better analysis and understanding of the complexity of data.

The remainder of this paper is organized as follow. The next Section covers
the related work. The developed trajectory abstracting framework is described in
Sect. 3. Section 4 introduces two metrics to evaluate the proposed framework for
trajectory abstraction. Experimental results are presented in Sect. 5. The final
Section concludes the paper.

2 Related Work

The use of clusters (with their centroids) may the most popular way to represent
the patterns of trajectory data [11]. A lot of good clustering techniques used for
trajectory data have been developed [11,13]. For example, classical algorithms
include k-means [9], BIRCH [17], DBSCAN [6], OPTICS [4], and STING [16].
Among them, k-means and DBSCAN may be the mostly applied in practice due
to their easy use and efficiency. However, as indicated in Sect. 1, the clustering
may not benefit for the reasonable handling of the complex trajectory data. For
the sake of treating complex trajectory data, data filtering is a good preprocess.
For instance, Keogh et al. apply the wavelet transform to represent a single
trajectory and do clustering by k-means [15]. Notice that our proposed approach
is largely different from that by Keogh et al., we perform the wavelet denoising
across all the trajectories in a similarity group.

Block-Matching and 3D Filtering (BM3D) may be the best state-of-the-art
filter for noisy image/video data [5], which utilize coherence among pixel patches
to do denoising very effectively. The core of BM3D inspires us, but we signifi-
cantly extend BM3D to cope with the trajectory data that are greatly different
from the image/video data.

3 The Framework for Trajectory Abstraction

Our proposed framework is composed of two main components, resampling and
group-based non-local denoising. An abstraction in one granularity is obtained by
an iteration of denoising. Our method iteratively outputs trajectory abstractions
with multi-granularities and outliers.
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3.1 Resampling

In general, complex trajectories have various numbers of sample points. Also,
trajectories are usually corrupted with noise. We propose to make use of a resam-
pling technique to smooth out noise and to make resampled trajectories have a
same number of sample points, leading to a better trajectory abstraction. Each
trajectory is resampled to have a equal distance interval. For the sake of obtain-
ing the minimum bias introduced by resampling, we find an optimal number
nopt of sample points to preserve information of the original trajectory as much
as possible. Since the trajectory shape is very important, we obtain nopt by
minimizing the widely used Jensen-Shannon divergence (JSD) between the tra-
jectory shapes before and after being re-sampled. Actually, the trajectory shape
can be characterized by the distribution of the angles at the sample points.

Suppose a trajectory T = {p1, p2, . . . pn}, is with n sample points, here
pi = (xi, yi) is the 2-D coordinates in a ground plane. We obtain its angles
{θj}, j = 1, 2, . . . , n − 2 (Fig. 1), to build up a probability distribution, Pori =
{p1,p2, . . . ,pM}, using the angle histogram with M bins (M = 10 in this paper).
For the resampled version T ′, we obtain its probability distribution Pres simi-
larly, and then the JSD distance between T and T ′ is computed by

JSD(T ;T ′) = H(
Pori + Pres

2
) − H(Pori) + H(Pres)

2
(1)

where H(.) denotes the Shannon entropy. In this paper, the JSD value between
a dataset before and after being resampled is defined as the mean of JSDs for
the trajectories of this dataset. Apparently, the lower JSD indicates a higher
similarity between the original and the resampled trajectory data. Thus, nopt

is located at the minimum in all the JSD values resulted from the trajectories
with different numbers of resampled points. For example, Fig. 2 presents such a
plot for the Pedestrian dataset (Sect. 5) and undoubtedly, nopt = 21 corresponds
to the minimum JSD.

Fig. 1. A trajectory with its angles Fig. 2. Determination of nopt based on
the JSD value
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3.2 non-local Denoising

With all the trajectories after being resampled, we perform a procedure called
“non-local” denoising, involving three phases, Matching, Thresholding and Com-
bining, in multiple iterations for obtaining the multi-granularity abstractions. In
fact, the summaries in different abstracted levels give a more clear and better
understanding about the trajectory data. It is worthy to point out that outliers
can be detected in the process of non-local denoising. The outliers, picked out
in an iteration, are not be included for the later iterative operations.

For easy understanding, we define TRk = {Tk,1, Tk,2, . . . , Tk,l} (k ≥ 1) as
the k-th iterative output with l abstracted trajectories (and also as the input of
the (k +1)-th iteration). Here TR0 is the product by the trajectory resampling,
as the input of the 1-st iteration. The iterative execution is terminated when the
output abstractions between two consecutive iterations do not change anymore.

Matching. In this phase, similar trajectories are matched to establish groups.
Notice that, simultaneously, outlier trajectories may be identified by the similar-
ity matching. In concrete, each input trajectory is considered as a “reference”,
and the nearby trajectories similar to this reference are matched to form a group.
Assume that there exists a reference trajectory Tk,r ∈ TRk, its similarity group
TGk,r is

TGk,r = {Tk,j ∈ TRk|Diff(Tk,r, Tk,j) < τ (j �= r)} (2)

where Diff(.) is a distance function and the simple and widely used Euclidean
distance is adopted here. τ is a threshold, selected adaptively (Sect. 3.3), to
determine whether two trajectories are distant or not.

Notice that, a trajectory can be used in more than one matching-based
groups. Some outliers with few similar trajectories can be distinguished in this
phase. That is, a trajectory is defined as outlier if the number of trajectories in
its similarity group is less than η (η = 3 is used, for simplicity).

Thresholding. The wavelet threshold technique [7] is operated for the trajec-
tories in the whole group, rather than just for a single trajectory, to obtain a
compacted and summarized representation of these trajectories.

Suppose a reference trajectory Tk,r, having g number of neighboring trajec-
tories Tk,j (j = 1, 2, ..., g; j �= r), is with a similarity group which is now denoted
as a matrix

TGk,r =

⎡
⎢⎢⎢⎢⎣

T r
k,1

T r
k,2

...
T r
k,g

T r
k,r

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

p11 p12 p13 ...
p21 p22 p23 ...

...
pg1 pg2 pg3 ...
pr1 pr2 pr3 ...

⎤
⎥⎥⎥⎥⎦

=
[
s1 s2 s3 ...

]
. (3)

Here si =
[
p1i , p

2
i , ...p

g
i , p

r
i

]T is designated as the i-th signal of this similarity
group, which is actually the collection of the i-th sample points of the different
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trajectories in the group. The wavelet threshold is used for the noise filtering for
si. At first, wavelet transform is performed on si to obtain the corresponding
coefficients. Then the high frequency components are completely suppressed if
and only if their values are smaller than a adaptively determined ε (Sect. 3.3).
Finally, the denoised signal s̃i is given by using inverse wavelet transform

s̃i = �
−1(Υ (�(si))), (4)

where Υ , � and �
−1 denote the wavelet thresholding, wavelet transform and its

inverse, respectively. In this paper Haar wavelet is employed and the denoised
similarity group is as follows

T̃Gk,r = [s̃1, s̃2, ...] =

⎡
⎢⎢⎢⎢⎢⎣

T̃ r
k,1

T̃ r
k,2

...

T̃ r
k,g

T̃ r
k,r

⎤
⎥⎥⎥⎥⎥⎦

(5)

Combining. Basically, for a resampled trajectory, more than one denoised ver-
sions can be obtained if it belongs to several similarity groups. In this case, we
further combine these versions by averaging them to obtain a better abstraction
with richer non-local similarity information.

3.3 Parameter Selection for Group-Based Denoising

All the important parameters used for grouping and denoising are adaptively
selected, achieving the effectiveness and robustness of the proposed technique.

The distance threshold τ for the matching phase is determined based on the
statistically averaged Euclidean distance between two trajectories in the dataset
under consideration. Suppose there exists n trajectories in a dataset. For each
trajectory T , n − 1 Euclidean distances between T and all the other trajectories
are sorted ascendingly. The average of x (1 � x < n) smallest distances, denoted
by Y , can be calculated. A plot of Y versus x is then provided (Fig. 3(a)).
The Y value corresponding to the maximum of the second derivative of this
plot (Fig. 3(b)) can be found. All the Y values resulted from n trajectories are
averaged to obtain τ . We have observed that ε used for the thresholding phase
is closely related with τ , ε = 2.5 × τ can do very well.

4 Evaluation

In this paper, we develop two quantitative criteria, Integrality (INT ) and Fidelity
(FID), to systematically and objectively evaluate the performance of our pro-
posed framework for trajectory abstracting.
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Fig. 3. (a) The plot of Y versus x of the trajectory T . (b) The second derivative of (a).
The maximum point in (b) with red color corresponds to the red point in (a) (Colour
figure online)

4.1 Fidelity (FID)

FID is to measure the similarity between the trajectory datasets before and
after being abstracted, and this is a quality evaluation on the trajectory sum-
marization. Given a original trajectory dataset without detected outliers TR =
{T1, T2, ..., Tn} and its abstract of the last interation (or the cluster centroids)
TR′ = {T ′

1, T
′
2, ..., T

′
m}, we define FID by

FID(TR,TR′) = 1 −
max

i
{min

j
Diff(Ti, T

′
j)}

MaxDiff
, (6)

Here Diff() is the hausdorff distance, and MaxDiff is the global maximum
distance between TR and TR′. Apparently, a higher FID means the trajectory
abstraction can express the dataset more accurately.

4.2 Integrality (INT)

INT measures the degree of coverage by abstracted trajectories for the trajec-
tory dataset. Suppose TR′ = {T ′

1, T
′
2, ..., T

′
m} is the abstracted output by the last

interation (or the cluster centroids), Its original trajectory without detected out-
liers is TR = {T1, T2, ..., Tn}. The INT between original data and the abstraction
is defined as

INT (TR,TR′) =
1

|TR|
∑
i

Diff(Ti, T
′
i ) (7)

Here Diff() is the hausdorff distance. A low INT indicates a completely coverage
of the original.

5 Experiments

We have done extensive tests to evaluate the performance of our proposed frame-
work, including 7 public databases listed in Table 1. Considering that trajec-
tory abstracting and cluster are both aimed at pattern mining, two typical and
effective cluster methods widely used in practical applications, DBSCAN and
k-means, are compared with our technique.
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(a) Original (b) By iteration 1 (c) By iteration 2

(d) By iteration 3 (e) By iteration 4 (f) By DBSCAN

Fig. 4. Comparision of different methods on Pedestrian (Colour figure online)

5.1 Results Analysis of Pedestrian Dataset

Figure 4(a) is the original trajectories of Pedestrian, where twenty trajectories in
black color are outliers. The numbers of sample points in this dataset are largely
diverse, varying between 33 and 422. The abstracted trajectories obtained in four
iterations are respectively shown in Fig. 4(b)–(e). Ten clusters and outliers given
by DBSCAN are displayed in Fig. 4(f) with different colors. Overall, the proposed
technique compresses and summarizes very messy data into neat abstractions
with multiple granularities. Fourteen most abstracted patterns, obtained in the
last iteration, in reality exactly exhibit the fourteen pedestrian paths in this
scenario (Fig. 4(e)).

Complex trajectory data can be represented by the multi-granularity abstrac-
tions very well. However, DBSCAN may give out unsatisfactory outputs. For
example, the trajectories in red color (Fig. 4(a)) are messy and, they have two
opposite directions. Iteration 1 makes them become neat and close, and then
Iteration 2 outputs two abstracted patterns presenting trajectories with two
opposite directions. As a result, the products by both two iterations indicate
the processing of abstracting and, more importantly, jointly present trajectory
details and summarizations. In contrast, DBSCAN falsely merge these trajecto-
ries two opposite directions into a single cluster.

As for the complex trajectory data with diverse trajectory similarities in dif-
ferent scene areas, abstractions by the proposed technique can give a concise
representation of the original data. But the clusters by DBSCAN may be mis-
taken in this case. For instance, four trajectories in yellow color (Fig. 4(a)) are
distant, compared with the trajectories in other areas. DBSCAN wrongly iden-
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(a) Original (b) By iteration 1 (c) By iteration 2

(d) By iteration 3 (e) By iteration 4 (f) By DBSCAN

Fig. 5. Comparision of different methods on highway (Colour figure online)

tify these four as outliers. Notably, our approach generates a condensed pattern,
depicting the data satisfactorily.

5.2 Results Analysis of Highway Dataset

Original trajectories of Highway are shown in Fig. 5(a), and eighteen black tra-
jectories are outliers. The trajectory abstractions at multiple granularities clearly
expose the four traffic lanes. The lengths of the trajectories in the leftmost lane
are diverse. Most of them are longer than the four trajectories rendered in red
(Fig. 5(a)). These four short trajectories are compressed into one abstracted pat-
tern which differs from their adjacent trajectories in the same lane. DBSCAN
uses a single cluster for all the trajectories belonging to this traffic lane. But
here a single cluster is not enough to feature the trajectories in largely different
lengths.

5.3 Objective Evaluation

The recall and precision values by several methods for anomaly detection are
listed in Table 1. It is obvious that our method performs the best to detect
outliers. This is due to that non-local denoising can emphasize outliers in the
process of trajectory summarizing.

The FID and INT scores listed in Table 2 indicate that the proposed tech-
nique achieves the best, consistent with the visual results discussed above.

6 Conclusions

In this paper, for the purpose of abstracting the complex trajectory data, we
have established a novel effective technique in which a non-local signal denois-
ing approach is exploited to obtain the summaries of the trajectory groups.
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Table 1. Evaluation on outlier detection

Database Recall Precision

ours DBSCAN k-means ours DBSCAN k-means

Pedestrian [1] 0.90 0.87 0.69 1.0 0.95 0.63

Highway [3] 0.89 0.94 0.61 0.89 0.84 0.55

Simulation [14] 1.0 1.0 0.79 1.0 0.95 0.78

Edinburgh [1] 0.95 0.76 0.48 0.81 0.86 0.55

Aircraft [2] 0.88 0.89 0.67 0.95 0.81 0.60

CROSS [12] 0.98 0.93 0.50 0.92 0.81 0.64

OMNI [12] 0.96 0.84 0.55 0.79 0.85 0.66

Table 2. Objective evaluation on summarization

Pedestrian Highway SimulationEdinburgh Aircraft CROSS OMNI

FID INT FID INTFID INT FID INT FID INTFID INTFID INT

ours 0.59323 0.58147 0.79 159 0.45871 0.88101 0.73 87 0.63338

DBSCAN 0.53 434 0.56 181 0.81191 0.38 920 0.61 155 0.69 109 0.55 395

k-means 0.56 451 0.51 252 0.75 171 0.43 833 0.68 116 0.80101 0.61 296

The widely used JSD is investigated to do the resampling of the trajectories
with varied lengths. The group-based denoising is iterated to obtain the multi-
granularity condensed and summarized trajectory representations, which in the
meantime may include some outliers of the data. We have also proposed two
metrics to quantitatively evaluate the new framework for trajectory abstraction.
A lot of experiments have clearly shown that the proposed technique is very
helpful for understanding and utilizing the complex trajectory data in practice.
To our knowledge this is the first deployment of the mighty group-based signal
denoising technique for trajectory abstracting.

Several improvements for the proposed trajectory summarizing will be per-
formed in our future work. In order to have some emphasis on the local features
of long trajectories, a long trajectory would be segmented and, our proposed
framework would be extended to deal with the trajectory segments. Further-
more, the powerful and general visual analytics technique [10] would be used to
develop visual interactions to improve the trajectory abstraction.

Acknowledgments. This work has been funded by Natural Science Foundation of
China (61471261, 61179067, U1333110), and by grants TIN2013-47276-C6-1-R from
Spanish Government and 2014-SGR-1232 from Catalan Government (Spain).



Trajectory Abstracting with Group-Based Signal Denoising 461

References

1. http://homepages.inf.ed.ac.uk/rbf/forumtracking/
2. https://c3.nasa.gov/dashlink/resources/132/ (2011)
3. Anjum, N., Cavallaro, A.: Multifeature object trajectory clustering for video analy-

sis. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1555–1564 (2008)
4. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to

identify the clustering structure. In: ACM Sigmod Record, vol. 28, pp. 49–60. ACM
(1999)

5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Trans. Image Proces. 16(8), 2080–
2095 (2007)

6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231
(1996)

7. Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with cor-
related noise. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 59(2), 319–351 (1997)

8. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection
in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)

9. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

10. May, R., Hanrahan, P., Keim, D.A., Shneiderman, B., Card, S.: The state of visual
analytics: views on what visual analytics is and where it is going. In: 2010 IEEE
Symposium on Visual Analytics Science and Technology (VAST), pp. 257–259.
IEEE (2010)

11. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and
analysis for surveillance. IEEE Trans. Circ. Syst. Video Technol. 18(8), 1114–1127
(2008)

12. Morris, B.T., Trivedi, M.M.: Trajectory learning for activity understanding: unsu-
pervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal.
Mach. Intell. 33(11), 2287–2301 (2011)

13. Morris, B.T., Trivedi, M.M.: Understanding vehicular traffic behavior from video:
a survey of unsupervised approaches. J. Electron. Imaging 22(4), 041113 (2013)

14. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detec-
tion. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1544–1554 (2008)

15. Vlachos, M., Lin, J., Keogh, E., Gunopulos, D.: A wavelet-based anytime algorithm
for k-means clustering of time series. In: Proceedings of the Workshop on Clustering
High Dimensionality Data and Its Applications, Citeseer (2003)

16. Wang, W., Yang, J., Muntz, R., et al.: Sting: a statistical information grid approach
to spatial data mining. VLDB 97, 186–195 (1997)

17. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method
for very large databases. In: ACM SIGMOD Record, vol. 25, pp. 103–114. ACM
(1996)

http://homepages.inf.ed.ac.uk/rbf/forumtracking/
https://c3.nasa.gov/dashlink/resources/132/

	Trajectory Abstracting with Group-Based Signal Denoising
	1 Introduction
	2 Related Work
	3 The Framework for Trajectory Abstraction
	3.1 Resampling
	3.2 non-local Denoising
	3.3 Parameter Selection for Group-Based Denoising

	4 Evaluation
	4.1 Fidelity (FID)
	4.2 Integrality (INT)

	5 Experiments
	5.1 Results Analysis of Pedestrian Dataset
	5.2 Results Analysis of Highway Dataset
	5.3 Objective Evaluation

	6 Conclusions
	References


