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Abstract. Clustering or cluster analysis is an important and common
task in data mining and analysis, with applications in many fields. How-
ever, most existing clustering methods are sensitive in the presence of
limited amounts of data per cluster in real-world applications. Here we
propose a new method called denoising cluster analysis to improve the
accuracy. We first construct base clusterings with artificially corrupted
data samples and later learn their ensemble based on mutual informa-
tion. We develop multiplicative updates for learning the aggregated clus-
ter assignment probabilities. Experiments on real-world data sets show
that our method unequivocally improves cluster purity over several other
clustering approaches.

1 Introduction

Cluster analysis or clustering is an exploratory data analysis tool which aims at
dividing data objects into groups such that objects in the same group are more
similar than those in other groups. As one of the major tools for modern data
mining and analysis, clustering research has found a wide variety of applications
in many domains of science and technology.

Most clustering methods are built upon statistical laws, assuming a wealth
of samples are available per cluster. With a limited amount of data points, many
existing cluster analysis approaches can only achieve mediocre performance.
Especially, methods that employ non-convex objectives are prone to yield poor
local optima, which demands more complicated pre-training or initialization.

In this paper we propose a new clustering technique called denoising cluster
analysis (DECLU). We first manually incorporate a small amount of noise among
the data points. This is equivalent to sampling from the underlying smoothed
data distribution, which potentially can generate infinite amounts of training
data. We first build a base clustering for each noisy version of the data set.
Next we aggregate the basal partitions into a single final clustering by using an
information theoretic measure based on mutual information.

As an algorithmic contribution, we develop a new clustering ensemble method
based on nonnegative learning, without construction of dense and expensive
consensus relationship graph. We derive the multiplicative update rule for right
stochastic matrices, which result in probabilistic cluster assignments.

We test the new method on various real-world data sets and compare it
with several other clustering and ensemble clustering methods. The experimental
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results indicate that our method is more advantageous in terms of clustering
accuracy.

The remaining paper is organized as follows. Section 2 briefly reviews mutual
information and its application in comparing clusterings. Next we present our
method in Sect. 3, with the base clustering generation, the ensemble clustering
objective, and its optimization using multiplicative updates. In Sect. 4, we report
the experiment setting and results. Section 5 summarizes the paper and discusses
some possibilities for future work.

In what follows, a clustering is represented by a cluster indicator matrix, for
example, denoted by U where Uik = 1 if the ith sample is in the kth cluster,
and Uik = 0 elsewhere.

2 Preliminary: Mutual Information

In probability theory and information theory, the mutual information (MI) of
two random variables is a measure of the mutual dependence between vari-
ables. The mutual information of two discrete random variables X and Y can be
defined as

I(X;Y ) =
∑

y∈Y

∑

x∈X

P (x, y) log
P (x, y)

P (x)P (y)
. (1)

Mutual information measures the information that X and Y share. If X and Y
are independent, then knowing X does not give any information about Y and
vice versa, so their mutual information is zero. At the other extreme, if X is
a deterministic function of Y and Y is a deterministic function of X then all
information conveyed by X is shared with Y . In this case the mutual information
is the same as the uncertainty (entropy) contained in Y (or X) alone.

Mutual information (MI) can be used to compare two clusterings U and
V (see e.g., [12]). Let nij be the number of objects that are common to the ith
cluster in U and the jth cluster in V , ai =

∑
j nij , bj =

∑
i nij , and

∑
ij nij = N .

Then

I(U ;V ) =
∑

i

∑

j

nij

N
log

nij/N

aibj/N2
. (2)

A larger MI indicates that the two clusterings are closer up to a certain cluster
permutation. Various normalizations can be applied to fix the MI range in [0, 1].
See [12] for a summary.

3 Denoising Clustering

Learning with artificially corrupted data, represented by training samples with
manually incorporated noise, is a well-known trick in many machine learning
settings, for example, generating additional training examples for Support Vector
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Machine classifier to improve generalization performance (see e.g., [2,4]), and
reconstructing input data from artificial corruption in Denoising Auto-Encoder
for learning useful representations of data (see e.g., [10,11]). In this work, we
apply a similar trick to cluster analysis. This encompasses two steps: we first
construct base clusterings for noisy versions of the data, and then aggregate
them into a single final clustering.

3.1 Generating Base Clusterings

A good clustering should respect the data distribution that underlies finite
amount of sample data points. Kernel smoothing or Parzen window method
[6] is a common approach to estimate the distribution that underlies the given
data points.

In this work, instead of explicitly run kernel density estimation, which is
usually expensive, we employ an implicit way to achieve a similar regularization
for the clustering task for better accuracy. In the following, we implicitly use
the Parzen window with Gaussian radial kernel, but the same technique can be
extended to other kernels in a straightforward manner.

We add white noise to each data point xi:

x̃i = xi + εi, (3)

where εi ∼ N (0, σ). Next we apply a relatively simple clustering method to
partition the noisy data X̃ = {x̃1, . . . , x̃N}. We choose Normalized Cut [8] for
the base clusterings because it is less sensitive to the initializations and performs
better for data in curved manifolds.

3.2 Clustering Ensemble Using Mutual Information

Next we find the consensus clustering of the basal partitions based on noisy
versions of the original data. Classical clustering ensemble methods require con-
struction of a pairwise relationship graph, which is quadratic to the number of
samples and thus prohibitive for large-scale data sets. Here we propose a new
method that directly learns the cluster assignment probabilities of size N × r for
N data points and r clusters. This significantly reduces the computational cost.

Let U (m) denote the mth base clustering indicator matrix, where m =
1, . . . ,M . We seek a probabilistic cluster ensemble W where Wik is the proba-
bility of the kth cluster given the ith sample. The ensemble minimizes the total
difference to the base clusterings, measured by the “Dsum” distance based on
mutual information [12]:

minimize
W≥0

J (W ) =
∑

m

H(W ) + H(U (m)) − 2I(W ;U (m)) (4)

subject to
r∑

k=1

Wik = 1, i = 1, . . . , N, (5)



438 R. Zhang et al.

where H is the entropy of cluster assignment. We choose this objective because
it is a valid metric, bounded in [0,M log N ], and with relatively simple gradient
for optimization.

Writing out the objective, we have

J (W ) =
∑

m

[
−

∑

k

1
N

∑

i

Wik log
1
N

∑

i

Wik

−
∑

k

1
N

∑

i

U
(m)
ik log

1
N

∑

i

U
(m)
ik

−2
∑

kl

1
N

∑

i

WikU
(m)
il log

1
N

∑
i WikU

(m)
il

1
N

∑
i Wik

1
N

∑
i U

(m)
il

]

=
∑

m

[
1
N

∑

k

∑

i

Wik log
∑

i

Wik

− 2
N

∑

kl

∑

i

WikU
(m)
il log

∑

i

WikU
(m)
il

+
2
N

∑

i

(
∑

k

Wik

)
∑

l

U
(m)
il log

∑

j

U
(m)
jl

⎤

⎦ + constant. (6)

Using Lagrangian multipliers λ = [λ1, . . . , λN ] for the sum-to-one constraints,
the relaxed objective function is

J̃ (W,λ) = J (W ) −
∑

i

λi(
∑

k

Wik − 1). (7)

Its gradient w.r.t. W is
∂J̃ (W )
∂Wik

= ∇+
ik − ∇−

ik − λi, where ∇+ and ∇− are the

positive and (unsigned) negative parts of the ∂J (W )
∂W

∇+
ik = − 2

N

∑

m

∑

t

(
log

∑
i WikU

(m)
it

N

)
U

(m)
it +

M

N
(1 + log N) (8)

∇−
ik = −M

N
log

∑
i Wik

N
− 2

N

∑

m

∑

l

U
(m)
il log

∑
j U

(m)
jl

N
. (9)

This suggests the preliminary multiplicative update rule W ′
ik = Wik

∇−
ik + λi

∇+
ik

.

Imposing the constraints
∑

k W ′
ik = 1, we have

∑

k

Wik
∇−

ik

∇+
ik

+ λi

∑

k

Wik

∇+
ik

= 1.

Solving the equation we obtain

λi =
1 − ∑

k Wik∇−
ik/∇+

ik∑
k Wik/∇+

ik

(10)
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Putting them back to the preliminary rule, we have W
′
ik = Wik

∇−
ikAik+1−Bik

∇+
ikAik

,
where

Aik =
∑

k

Wik

∇+
ik

and Bik =
∑

k

Wik
∇−

ik

∇+
ik

. (11)

There is a negative term −Bik in the numerator, which may cause negative
entries in the updated W . To overcome this, we apply the “moving term” trick
[15–18,21] to resettle Bik to the denominator, giving the final update rule

W new
ik = Wik

∇−
ikAik + 1

∇+
ikAik + Bik

. (12)

Our ensemble algorithm simply iterates the above update rule until W converges.
The updates have the following guarantee

Theorem 1. J̃ (W new, λ) ≤ J̃ (W,λ), with λ given in Eq. 10.

The proof is given in the Appendix. The theorem shows that the algorithm
jointly reduces J (W ) while steering W rows to the probability simplex. The
tradeoff between these two forces is adaptively adjusted by Aik.

4 Experiments

We have tested our new method on six real-world data sets from the UCI repos-
itory1. Their statistical characteristics are given in Table 1 and below a brief
verbal description of each data set is given:

– ECOLI, the UCI Ecoli data set, containing protein localization sites, originally
with 8 attributes.

– WINE, the UCI Wine data set, which is a result of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars,
originally with 13 dimensional features;

– MFEAT, the UCI Multiple Features data set, which consists of features of hand-
written numerals; the digits are represented in terms of 649 features from six
aspects;

– SEGMENT, the UCI Image Segmentation data set, image patches from 7 outdoor
images, originally with 19 high-level features;

– OPTDIGITS, the UCI optical recognition of handwritten digits data set, origi-
nally with 64 dimensions;

– PENDIGITS, the UCI pen-based recognition of handwritten digits data set, orig-
inally with 16 dimensions.

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 1. Statistics of the data sets.

Data set Samples Dimensions Classes

ECOLI 327 7 5

WINE 178 13 3

MFEAT 2000 649 10

SEGMENT 2310 19 7

OPTDIGITS 5620 64 10

PENDIGITS 10992 16 10

We have compared DECLU with five other clustering approaches, three single
clustering methods and two clustering ensemble methods:

– Normalized Cut (Ncut) [8], a spectral clustering method that projects the tail-
ing eigenvectors of symmetric normalized Laplacian of the similarity matrix
to the closest cluster indicator matrix;

– Probabilistic Latent Semantic Indexing (PLSI) [5] which factorize the similar-
ity matrix P (xi, xj) ≈ ∑

k P (xi|C = k)P (xj |C = k)P (C = k), where C is
the cluster variable; the cluster assignment P (C = k|xi) can then be obtained
with P (xi|C = k) and P (C = k) through Bayes rule;

– Left Stochastic Decomposition (LSD) [1] which factorizes the similarity matrix
into two left-stochastic matrices;

– Cluster-based similarity partitioning algorithm (CSPA) [9], the similarity
between two data-points is defined to be directly proportional to number of
constituent clusterings of the ensemble in which they are clustered together;

– Meta-clustering algorithm (MCLA) [9], which is based on clustering clusters;
first, it tries to solve the cluster correspondence problem and then uses voting
to place data-points into the final consensus clusters.

We use the default setting in the above methods. The number of clusters is set to
the number of known classes in each data set. We followed the convention that
uses kmeans for generating base clustering for CSPA and MCLA. For DECLU,

Table 2. Clustering purities for the compared methods. Boldface numbers indicate the
best for each data set.

Data set Ncut PLSI LSD CSPA MCLA DECLU

ECOLI 0.79 0.80 0.68 0.75 0.79 0.82

WINE 0.72 0.72 0.72 0.69 0.70 0.73

MFEAT 0.76 0.75 0.78 0.57 0.66 0.78

SEGMENT 0.62 0.63 0.59 0.51 0.60 0.63

OPTDIGITS 0.84 0.85 0.81 0.77 0.80 0.90

PENDIGITS 0.74 0.77 0.84 0.65 0.68 0.85
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we have used σ = 0.02 in noise generation and K = 5 in K-Nearest-Neighbor
similarity graph. For all cluster ensemble methods, we have used M = 10 base
clusterings.

The clustering performance is evaluated by cluster purity, calculated by

purity =
1
N

r∑

k=1

max
1≤l≤r

nl
k, where nl

k is the number of data samples in the cluster

k that belong to ground-truth class l. A larger purity in general corresponds to
a better clustering result.

The resulting cluster purities are shown in Table 2. We can see that DECLU
yields top performance for all data sets, with a tie with a different method on
two (MFEAT and SEGMENT) out of the six data sets in total.

5 Conclusion

In this paper we have proposed a new clustering method which consists of two
steps. First, we repeatedly incorporate a small amount of noise to the data
to generate multiple base partitions of the data. Next, we have developed a
new ensemble method using information theoretic metric and its multiplicative
optimization algorithm. Empirical studies on the new method indicate that it
outperforms several other existing clustering approaches in terms of clustering
accuracy.

In this work we used a fixed amount of Gaussian noise. Other types of noise
would be interesting to study in the future. Similarly, it would be valuable to
investigate how to automatically adjust the noise level for generating better base
clusterings. Moreover, we aim at examining other information divergence (e.g.,
[3,20]) or mutual information variants besides Dsum to improve the ensemble
performance (e.g., [7,12,19]). Other types of base clustering generation meth-
ods (e.g., [13,14]) could further improve the accuracy. In summary, the con-
sistently satisfactory performance of DECLU and its computational scalability
suggest considerable potential for further development of denoising based clus-
tering methods.

Appendix: Proof of Theorem1

Proof. We use W for current estimate, W̃ for variable, and W new for the new
estimate, respectively. The objective function J̃ fulfills the theorem conditions
in [16]. Therefore, we can construct the majorization function

G(˜W,W ) =
∑

ik

[

∇+
ik
˜Wik − ∇−

ikWik log˜Wik +
Bik

Aik
Wik − Wik

Aik
log˜Wik

]

+ constant

such that G(W̃ ,W ) ≥ J̃ (W̃ , λ) and G(W,W ) = J̃ (W,λ). Let W new be the
minimum of G(W̃ ,W ), which is implemented by zeroing ∂G/∂W̃ and yields
Eq. 12. Therefore J̃ (W new, λ) ≤ G(W new,W ) ≤ G(W,W ) = J̃ (W,λ).
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