
MonkeyDroid: Detecting Unreasonable Privacy
Leakages of Android Applications

Kai Ma1(B), Mengyang Liu1(B), Shanqing Guo1(B), and Tao Ban2(B)

1 Department of Computer Science and Technology, Shandong University,
Jinan, China

{makaisdu,mengyang.liu}@gmail.com, guoshanqing@sdu.edu.cn
2 NICT, Tokyo, Japan
bantao@nict.go.jp

Abstract. Static and dynamic taint-analysis approaches have been
developed to detect the processing of sensitive information. Unfortu-
nately, faced with the result of analysis about operations of sensitive
information, people have no idea of which operation is legitimate opera-
tion and which is stealthy malicious behavior. In this paper, we present
Monkeydroid to pinpoint automatically whether the android application
would leak sensitive information of users by distinguishing the reason-
able and unreasonable operation of sensitive information on the basis of
information provided by developer and market provider. We evaluated
Monkeydroid over the top 500 apps on the Google play and experiments
show that our tool can effectively distinguish malicious operations of
sensitive information from legitimate ones.

Keywords: Android security · Privacy leakage detection · Static taint
analysis · Natural language processing

1 Introduction

According to the statistical data from Strategy Analytics [1], Android operat-
ing system accounted for about 84.6 % of the mobile terminal market in 2014.
Because of the importance of mobile devices in our daily life such as storing a
large amounts of sensitive personal information and the openness of the Android
platform, the android platform has become an ideal land of the wanton growth of
malicious software. As more and more apps are used for private and privileged
tasks, concerns are also rising about the consequences of failure to protect or
respect users privacy.

As a result, many approaches have been proposed to automatically reveal pri-
vacy disclosures in Android apps and can be grouped into two major categories:
static analysis (e.g..ScAndroid [2], Androidleaks [3], Chex [4]) and dynamic
analysis(e.g..Taintdroid [5], Appsplayground [6]). Although these work could be
successful to reveal the operations of sensitive information in the Android apps.
However,there is no an approach to judge the legitimacy of the detected flows
of sensitive information(e.g..location, device identifier).
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part III, LNCS 9491, pp. 384–391, 2015.
DOI: 10.1007/978-3-319-26555-1 43



MonkeyDroid: Detecting Unreasonable Privacy Leakages 385

In this paper, we propose Monkeydroid, an approach to automatically pin-
point whether the android application will leak android users sensitive informa-
tion in a mobile device. With the help of application description and Android
API document, this approach leads to a significant reduction in false positives
by distinguishing the reasonable and unreasonable behaviors of android appli-
cation about sensitive information. We evaluated Monkeydroid over the top 500
apps on the Google play. Our experiments show that our tool can effectively
distinguish malicious operations of sensitive information from legitimate ones.

The contributions of this paper are as follows:

• We propose an approach to judge the legitimacy of operations of sensitive
information in Android applications based on natural language processing of
application description and static taint analysis.

• We implement a system named Monkeydroid, which is a prototype of our
approach to detect privacy leakages of Android applications. We evaluate
Monkeydroid on the top 500 apps from the Google Play store. The results
show Monkeydroid has a high accuracy and high performance in distinguish-
ing malicious operations of sensitive information from legitimate ones.

The rest of this paper is organized as following. In Sect. 2, we introduce the
problem statement of our work. Section 3 gives the overview of Monkeydroid and
implementation of Monkeydroid. In Sect. 4, we evaluate Monkeydroid. Section 5
presents the limitation of Monkeydroid. We draw the conclusions in Sect. 6.

2 Problem Statement

Let us consider a weather application (com.devexpert.weather.apk) that the
users location need to be sent to the server when the user utilizes the app to
obtain the local weather information. Using current detection systems to ana-
lyze the app, we will get a report which contains a privacy disclosure about users
location, regardless of the fact that the apps legitimate function depends on users
location. In fact,we lack an effective tool to inform the user which are legitimate
and malicious privacy disclosures reported by static or dynamic analysis.

Based on the above facts, we propose one solution to this problem, where
we try to use application description to judge the legitimacy of operations of
sensitive information in an application.

Question 1. Why do we try to use market description to help us analyze the
privacy disclosure of Android apps?

The programmer of the application utilizes code to realize his intention in
the app and makes use of natural language to express his intention in the appli-
cation description if he is honest. If the intention of code can match the intention
of application description, we think that the user can know how the apps deal
with his privacy by reading the application description and we can believe that
privacy disclosure does not exist in the app. If the application description does



386 K. Ma et al.

not contain some kinds of sensitive information but the code of the applica-
tion contains them, we can identify benign and malicious operations of sensitive
information through our approach.

Question 2. How to bridge the semantic gap between apk and its description?

Although users can easily understand the meaning of a natural language doc-
ument, it’s difficult for computers to perform like human beings to understand
the meaning of natural language sentences. Therefore, an effective intermediate
expression is in need to help the computer automatically breaks the semantic gap
between application and its description. Considering that the meaning of a well
constructed natural language sentence that describes operations can be regarded
as a statement, it is reasonable to convert these sentences to logic expressions.
Recent research has shown the adequacy of using First-Order-Logic expression
for NLP(Natural Language Processing) related analysis tasks [7]. So we construct
our intermediate-representation, semantic graph, based on the First-Order-Logic
expression.

3 Monkeydroid

In this section, we present the architecture of Monkeydroid (in Fig. 1) and give
the details of design and implementation.

3.1 Extracting Sensitive-Information Behaviors

Monkeydroid unzips an apk file and decomposes the Dalvik bytecode executable
file into Jimple representation, which is a typed-3 address intermediate represen-
tation suitable for analysis and optimization on the Soot framework. Leveraging
layout files and manifest file, Monkeydroid constructs precise call graph and
ICFG(Inter-procedural Control-Flow Graph) [8]. Monkeydroid marks sensitive
sources and outgoing channels(sinks) provided by SuSi [10] and makes use of
static taint analysis to reveal flows from sources to outgoing channels(sinks).

After static taint analysis, Monkeydroid reduced sensitive information flows
to source-to-sink form. Then, Monkeydroid constructs semantic graphs(in Fig. 3)

Fig. 1. The architecture of Monkeydroid



MonkeyDroid: Detecting Unreasonable Privacy Leakages 387

Fig. 2. Android API document

Fig. 3. The semantic graph of this flow

of the simplified flows on the basis of knowledge base. The knowledge base is
defined as a collection of verbs or nouns associated with particular API name.
Knowledge atoms can be represented as <API name - verb or noun set>.
To ensure the accuracy of the semantic graph, Monkeydroid uses Android API
document to generate a knowledge base containing semantic information of sen-
sitive resource related API. In the Android API document, each API name
(e.g. public double getLatitude()) is followed by several nature language sen-
tences (e.g. “Get the latitude, in degrees.”) describing the function of this API.
For the remaining sensitive API, Monkeydroid uses the Stanford parser to iden-
tify the part of speech (POS, such as nouns and verbs) a particular word in a
sentence in the description of an API (in Fig. 2). After POS tagging, Monkey-
droid traverses the tagged sentences and extracts the nouns or verbs respectively
for API in the source or the sink list. The extracted verbs or nouns are organized
in the form of knowledge atoms mentioned above.

3.2 Application Description Analysis

This subsection presents the approach of the transformation between application
description and corresponding semantic tree used in Monkeydroid. This part in
Monkeydroid is implemented as the following two units:

1. Preprocessor. The preprocessor is designed for segmenting target application
description. It accepts the natural language description of target application
and generates a list of separated sentences which contains the keyword of the
source generated by the program analyser. The separated sentences are put
into an automation to check if they contains a keyword.

2. Semantic-tree construction. The semantic-tree construction is designed for
the generation of a semantic-tree of a sentence which contains the keyword
of the source. It accepts the sentence list generated by the preprocessor and
provide a semantic-tree for the checker. The semantic-tree is represented by
the FOL representation. We implement the semantic-tree construction with
the help of Stanford NLP tools [9].



388 K. Ma et al.

3.3 Semantic Graphs of APK and Application
Description Matching

This subsection is about to find the contradiction between program context and
application description. After the construction of the semantic graph and the
semantic tree, Monkeydroid tries to justify the rationality of the sensitive behav-
ior found by our framework. A semantic graph is defined as a graph containing
a verb set and a noun set, all of which is related to the result of the static taint
analysis. A semantic tree is defined as a tree structure that is essentially a First-
Order-Logic expression. In the matching process, Monkeydroid traverses all of
the leaf nodes. The leaf node that contains noun in the semantic graph would
yield a procedure to check its ancestor nodes. If there is a ancestor node con-
taining a verb in the corresponding semantic graph, the semantic graph matches
the semantic tree, otherwise the semantic graph does not match the semantic
tree. The algorithm(in Algorithm1) shows the process in pseudo-code.

Input: SemGraph, SemTree
Output: inDesc

1 inDesc = False;
2 for node in SemTree.leafNodes do
3 if node.content in SemGraph.nounSet then
4 iter = node;
5 while iter.hasParent do
6 iter = iter.parent;
7 if iter.content in SemGraph.verbSet then
8 inDesc = True;
9 return inDesc;

10 end

11 end

12 end

13 end
14 return inDesc;

Algorithm 1. Match semantic graph with semantic tree

4 Evaluation

4.1 Study Subjects

In the experiment, we evaluate the effectiveness of Monkeydroid over the top 500
apps downloaded from the Google play store during March, 2014. Although there
are more than one million applications on the Google play, most smartphone
users only concentrate on the top applications and it’s rational for us to choose
the top 500 apps as the study subjects. By testing these apps with Monkeydroid,
we evaluate whether Monkeydroid can precisely identify benign operation on
sensitive information, particularly those delivering sensitive information to the
network.



MonkeyDroid: Detecting Unreasonable Privacy Leakages 389

4.2 Experimental Environment

We setup our evaluation on a sever with 12× 2.00 GHz processors and
32.0 GB physical memory. Each analysis task (for analyzing an app) is assigned to
8× 2.00 GHz processors and 16 GB, which runs JDK 1.7.0 21. Because of either
insufficient memory or failure of type resolving, Monkeydroid cannot analyze
some apps in the evaluation and we share same problem with other flowDroid-
dependent tools [8]. Thus, below we show our experimental results over the
remaining apps.

4.3 Results

We analyze the top 500 apps, among which 164 apps fail to go through and 256
apps contain behaviors of the sensitive information(e.g..location, IMEI, contact).
Monkeydroid identifies that behaviors of the sensitive information are legitimate
in 65 apps and unreasonable in 227 apps by matching apk with app description.

We show a part of the summarized result in Table 1 for these apps. From
left to right of the table, the table shows apps package name, sensitive infor-
mation and sink. If the sensitive information is sent to the outside through the
sink, the flow could be recorded in the table. The fourth column of the table is
“In description” and we fill “Yes” or “No” in the blank if the sensitive informa-
tion mentioned in the market description or not. If the operation described in the
market description, we take it as the rational operation and use a dot to mark
in the table. To check the result of Monkeydroid, we also utilize the VirusTotal
to test the apps and record how many anti-virus engines in VirusTotal identify
the app as malicious.

From this table, our observations and findings are as follows. First, we can
see that the most frequently leaked sensitive information is device ID (IMEI).
The related research work such as Taintdroid [5] can verify this result. Second,
if the sensitive information mentioned in the market description, this operation
of app is likely to be rational. Third, the applications developed by the mature
company like Facebook, Twitter are usual to be reinforced and we can’t analyze
these apps completely.

5 Limitation

There are several limitations with Monkeydroid. As other static analysis systems
on Android, Monkeydroid cannot detect the disclosures caused by Java reflection,
code encryption, JNI calls, or dynamical code loading. As mentioned in Sect. 3.1,
knowledge base only from Android API is not complete and this can produce false
positives in matching semantic graphs. Faced with multiple sentences about one
kind of sensitive information, Monkeydroid cannot take accurate analysis and
this is the major problem we will solve in the future work.



390 K. Ma et al.

Table 1. Partial experimental results

Package name Sensitive informa-

tion

Sink In descrip-

tion

Rational Not ratio-

nal

Virus

total

Vitamio Plugin.apk IMEI Log Yes − • 0/57

IMSI Log No − •
SimSerialNumber Log No − •
SimCountryIso Log No − •

com.whatsapp.wallpaper.apk location Internet No − • 0/57

com.gameloft.android.apk location Internet No − • 0/57

com.photo.ghost.prank.apk location Internet No − • 0/57

AccuWeather 3.2.14.1 IMEI Log No − • 0/57

IMEI Internet No − •
location Log No − •
location Internet Yes • −

Amazon 2.9.7 location Internet No − • 0/57

Backgrounds HD Wallpapers 2.0.1 IMEI Log No − • 0/57

IMEI Internet No − •
Contact Log Yes • −

Chase Mobile 3.16 Contact Internet Yes • − 0/57

ebay 2.6.0.98 Location Internet Yes • − 0/57

HotPads 3.1 Location Internet Yes • − 0/55

6 Conclusion

In this paper, we propose an approach to judge the legitimacy of operations of
sensitive information in Android Applications based on natural language process-
ing of application description and static taint analysis. We implement a system
named Monkeydroid, which is a prototype of our approach. Compared with
previous work, Monkeydroid effectively rules out the legitimate and malicious
privacy disclosures, which exposes those privacy leakages that cannot be asso-
ciated with apps functions. As a result, Monkeydroid can greatly increase the
detection rate of threatening privacy leaks, and at the same time, considerably
prompt developer to pay attention to the description of apps and to be honest.

Acknowledgments. This work is partially supported by National Natural Science
Foundation of China (61173068, 61173139), Program for New Century Excellent Tal-
ents in University of the Ministry of Education, the Key Science Technology Project of
Shandong Province (2014GGD01063), the Independent Innovation Foundation of Shan-
dong Province(2014CGZH1106) and the Shandong Provincial Natural Science Foun-
dation (ZR2014FM020, ZR2014FM031).

References

1. https://www.strategyanalytics.com/access-services/devices/mobile-phones
2. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifi-

cation of android applications. Manuscript, University of Maryland 2(3), (2009).
http://www.cs.umd.edu/avik/projects/scandroidascaa

https://www.strategyanalytics.com/access-services/devices/mobile-phones
http://www.cs.umd.edu/avik/projects/scandroidascaa


MonkeyDroid: Detecting Unreasonable Privacy Leakages 391

3. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically
detecting potential privacy leaks in android applications on a large scale. In:
Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X.
(eds.) Trust 2012. LNCS, vol. 7344, pp. 291–307. Springer, Heidelberg (2012)

4. Lu, L., Li, Z., Wu, Z., et al.: Chex: statically vetting android apps for compo-
nent hijacking vulnerabilities. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 229–240. ACM (2012)

5. Enck, W., Gilbert, P., Han, S., et al.: TaintDroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Trans. Comput.
Syst. (TOCS) 32(2), 5 (2014)

6. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of
smartphone applications. In: Proceedings of the third ACM Conference on Data
and Application Security and Privacy, pp. 209–220. ACM (2013)

7. Pandita, R., Xiao, X., Zhong, H., et al.: Inferring method specifications from nat-
ural language API descriptions. In: Proceedings of the 34th International Confer-
ence on Software Engineering, pp. 815–825. IEEE Press (2012)

8. Arzt, S., Rasthofer, S., Fritz, C., et al.: Flowdroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. ACM SIG-
PLAN Not. 49(6), 259–269 (2014). ACM

9. Pandita, R., Xiao, X., Yang, W., et al.: WHYPER: towards automating risk assess-
ment of mobile applications. In: USENIX Security 2013 (2013)

10. Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying and
categorizing android sources and sinks. In: 2014 Network and Distributed System
Security Symposium (NDSS), February 2014, to appear. http://www.bodden.de/
pubs/rab14classifying.pdf

http://www.bodden.de/pubs/rab14classifying.pdf
http://www.bodden.de/pubs/rab14classifying.pdf

	MonkeyDroid: Detecting Unreasonable Privacy Leakages of Android Applications
	1 Introduction
	2 Problem Statement
	3 Monkeydroid
	3.1 Extracting Sensitive-Information Behaviors
	3.2 Application Description Analysis
	3.3 Semantic Graphs of APK and Application Description Matching

	4 Evaluation
	4.1 Study Subjects
	4.2 Experimental Environment
	4.3 Results

	5 Limitation
	6 Conclusion
	References


