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Abstract. Collaborative filtering (CF) systems aim at recommending
a set of personalized items for an active user, according to the prefer-
ences of other similar users. Many methods have been developed and
some, such those based on Similarity and Matrix Factorization (MF)
can achieve very good recommendation accuracy, but unfortunately they
are computationally prohibitive. Thus, applying such approaches to real-
world applications in which available information evolves frequently, is
a non-trivial task. To address this problem, we propose a novel efficient
incremental CF system, based on a weighted clustering approach. Our
system is able to provide a high quality of recommendations with a
very low computation cost. Experimental results on several real-world
datasets, confirm the efficiency and the effectiveness of our method by
demonstrating that it is significantly better than existing incremental
CF methods in terms of both scalability and recommendation quality.
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1 Introduction

In order to filter large amounts of information, recommender systems (RSs) have
been adopted by many real-world applications such as Amazon [8] and Netflix [7].
Collaborative filtering (CF) is the most often used approach in RSs. It consists
in predicting the items that an active user will enjoy, based on the items that
the people who are most similar to this user have enjoyed. Among CF systems
two distinct types of approach are to be found:

Memory-based CF. These approaches are based on computing similarities [1].
User-based collaborative filtering looks for similarities between the active user
ua and all other users and tries to predict the preference of ua for a set of new
items, according to the preferences of the K most similar users to ua. Item-based
collaborative filtering consists in finding the K nearest neighbors of each item
and making recommendations according to the neighborhood of items enjoyed
by the user ua.

Model-based CF. These approaches begin by suggesting a model that will
learn from the user/item rating matrix U in order to capture the hidden features
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of the users and items. They then predict the missing ratings according to this
model. Many model-based CF techniques have been proposed, the most popular
being those based on clustering [12], co-clustering [4], and matrix factorization
MF [2,11].

Traditional CF approaches, such as matrix factorization (MF) and memory-
based methods, can achieve good prediction accuracy, but their computation
time rises steeply as the number of users and items increases. Further, these
methods need to be performed periodically (i.e., offline) in order to take into
account new ratings, new users and items. However, with this strategy, new
information which appear between two offline computations are not considered.
As a result, applying traditional CF techniques to real-world applications such
as Netflix in which the sets of users, items and ratings are frequently updated,
remains therefore a challenge.

To overcome the problem of computation time, incremental CF systems have
been proposed. The most popular are incremental CF based on MF approaches
[5,10], incremental CF based on co-clustering [4,6], and incremental memory-
based CF, including user [9] and item [13] based approaches. All these efforts have
demonstrated the effectiveness of developing incremental models to provide scal-
able collaborative filtering systems. But often, these will significantly reduce the
quality of recommendations. Further, most of these approaches (except memory-
based CF) do not handle all possible dynamic scenarios (i.e., submission of new
ratings, update of existing ratings, appearance of new users and new items).
For instance incremental CF based on singular value decomposition [10], do not
treat the two first scenarios.

In this paper we focus on the problem of computation time in CF systems.
In order to overcome this drawback we propose a novel incremental CF approach,
which is based on a weighted version of the online spherical k-means algorithm:
OSK-means [14]. Our method is able to handle in a very short time the frequent
changes in CF data; including the submission of new ratings, the update of
existing ratings, the appearance of new users and items. Below, we summarize
the key contributions we make in this paper.

– We derive a novel efficient CF system, based on a weighted clustering
approach.

– In order to handle frequent changes in CF data, we design incremental updates,
which allow to efficiently treat submissions of new ratings, updates of existing
ratings, and occurrence of new users and items.

Numerical experiments validate our approach. The results on several real
datasets show that our method outperforms significantly state-of-the-art incre-
mental methods in terms of scalability and recommendation quality.

The rest of this paper is organized as follows. Section 2 introduces the for-
malism of traditional OSK-means. Section 3 provides details about the weighted
version of OSK-means and our CF system: training, prediction and incremental
training steps. Section 4 presents the results obtained on real-world datasets, in
terms of recommendation quality and computation time. Finally, the conclusion
summarizes the advantages of our contribution.
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2 Online Spherical K-Means

In this paper matrices are denoted with boldface uppercase letters and vectors
with boldface lowercase letters. Given a matrix U = (uij) of size n × p, the ith

row (user) of this matrix is represented by a vector ui = (ui1, . . . , uip)T , where T
denotes the transpose. The column j corresponds to the jth item. The partition of
the set of rows into K clusters can be represented by a classification matrix z of
elements zik in {0, 1}K satisfying

∑K
k=1 zik = 1. The notation z = (z1, . . . , zn)T ,

where zi ∈ {1, . . . , K} represents the cluster of i, will be also used.
Before describing OSK-means, we will first introduce spherical K-means (SK-

means). The SK-means [3] algorithm is a K-means algorithm in which the objects
(users) u1, . . . ,un are assumed to lie on a hypersphere. SK-means originally max-
imizes the sum of the dot product between the elements of the data points and
the K means directions characterizing the clusters. This is equivalent to maxi-
mizing the sum of the cosine similarity of the normalized data. The algorithm
then maximizes the following objective function:

L =
n∑

i=1

K∑

k=1

zik cos(ui,µk) =
n∑

i=1

K∑

k=1

zikuT
i µk, (1)

where zik ∈ {0, 1}; zik = 1 if ui ∈ kth cluster, zik = 0 otherwise. SK-means
repeats the following two steps:

– For i = 1, . . . , n, assign ui to the kth cluster, where zi = arg maxk

(
uT

i µk

)
, k =

1, . . . , K.

– Calculate µk =
∑

i,k zikui

||∑i,k zikui|| .

OSK-means [14] uses competitive learning (Winner-Takes-All strategy) to min-
imize the objective function (1), which leads to

µnew
k =

µk + η ∂Li

∂µk

||µk + η ∂Li

∂µk
|| =

µk + ηui

||µk + ηui|| ,

where η is the learning rate, µk is the closest centroid to the object ui, and Li

denotes
∑K

k=1 zikuT
i µk.

In the OSK-means method, each centroid is updated incrementally with a
learning rate η. Zhong [14] proposed an exponentially decreasing learning rate
ηt = η0(

ηf

η0
)

t
n×B , where η0 = 1.0, ηf = 0.01, B is the number of batch iterations

and t, (0 ≤ t ≤ n × B) is the current iteration.

3 Efficient Incremental Collaborative Filtering System
(EICF)

In this section we describe our collaborative filtering system EICF, designed
to provide a high quality of recommendations with a very low computation
cost. This system can be divided into three main steps: training, prediction, and
incremental training. The different steps are described as follows:
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3.1 Training Step

This step, consists in clustering the users into K groups. Unfortunately the tra-
ditional OSK-means which has been proposed in the context of documents clus-
tering, is not adapted for CF data. Unlike text data, the sparsity in CF is caused
by unknown ratings, which requires a different handling than if the sparsity is
caused by entries of “zero”. To address this problem, we propose novel version
of OSK-means which is more suitable for CF. It consists in introducing user
weights, in order to tackle the sparsity problem; by giving more importance for
users who provided many ratings. Thereby, the resulting clusters will be highly
influenced by the most useful users (i.e., users with high weights). Below we
give more details about this weighted version of OSK-means. Let wi denote
the weight of the ith user, the weighted objective function of the SK-means is
given by:

Lw =
n∑

i=1

Lw
i , where Lw

i =
∑K

k=1 wizikuT
i µk, (2)

Thus, the corresponding update centroid for the weighted OSK-means is given by:

µnew
k =

µk + η
∂Lw

i

∂µk

||µk + η
∂Lw

i

∂µk
||

=
µk + ηwiui

||µk + ηwiui|| , (3)

We now give an intuitive formulation of user weights. Let M = (mij) be an
(n×p) binary matrix, such that mij = 1 if the rating uij is available, and mij = 0
otherwise. Its ith row corresponds to a vector mi = (mi1, . . . ,mip)T indicating
which items have been rated by the ith user. Thus, we define the weight of the
ith user to be proportional to the number of his available ratings as follows:

wi = (mT
i 1) × σ(ui) (4)

where 1 is the vector of the appropriate dimension which all its values are 1, and
σ(ui) denotes the standard deviation of ratings provided by ui. We consider the
standard deviation in order to give less importance for users who provide only
low ratings or similarly, only high ratings (i.e., users who expressed the same
preference for all items they have rated). Algorithm algotrain describes in more
details our training step.

3.2 Prediction Step

In this step, unknown ratings are predicted according to the clustering results.
However, it is difficult to make consistent predictions, even when the best clus-
tering results are achieved, because there are so many unknown ratings in U.
To overcome this difficulty we propose to estimate unknown ratings by a weighted
average of observed ratings, as follows:

uaj =
∑n

i=1 wizikuT
i µk × uij

∑n
i=1 wizikuT

i µk

, (5)
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Algorithm 1. EICF training.
Input: n users ui in R

p, K is the number of clusters;
Output: K centers µk in R

p, and z = (z1, . . . , zn);
Steps:
1. Normalize the users (i.e., ui = ui

‖ui‖ , ∀i)

2. Compute user weights: wi = (mT
i 1) × σ(ui);

3. Initialization: random initialization of the partition z, t = 1;
4. Estimation of the initial centroids:

μkj =

∑
i mijwizikuij

‖∑i wizikui‖

for b = 1 to B do
for each ui in U do

5. User assignment: compute zi = arg maxk(wiu
T
i µk);

6. Centroid update: compute the winner centroid by µ̂zi
=

µzi
+ηwiui

‖µzi
+ηwiui‖ ;

t = t + 1;
end for

end for

Let ua denote the active user, k = za. The key idea behind this strategy
is to weight the available ratings uij according to the similarity between each
user ui and its corresponding centroid µk, and to weight by wi, in order to give
greater importance for users closest to their centroid, and respectively to give
more importance for ratings provided by most important users.

The prediction Eq. (5) is attractive because it depends only on the clustering
results, which means that it can be performed offline and stored in a (K × p)
matrix P, which leads to very short prediction times.

3.3 Incremental Training Step

In the sequel, we design incremental updates, in order to handle the frequent
changes in CF data. Thus, we can distinguish four main situations: (1) submis-
sion of new ratings, (2) update existing ratings, (3) appearance of new users, (4)
appearance of new items. In the following, we give the update formulas for each
situation.

Submission of a new rating. Let ua denote an active user who submits a
new rating for an item j. The equations below, give the different incremental
updates to perform in this case.

– Update the norm of ua: ‖u+
a ‖ =

√
‖ua‖2 + u2

aj

– For each k, update the similarity between ua and µk:

cos(u+
a ,µk) =

1
‖u+

a ‖ [‖ua‖ × uT
a µk + uajμkj ],



380 A. Salah et al.

– Update the weight of the active user: ŵa = ( wa

σ(ua)
+ 1) × σ(u+

a )
– Update the assignment of ua: ẑa = arg maxkcos(u+

a ,µk).
– Update the corresponding centroid µẑa

, by using formula (3) where

σ(u+
a )2 =

Na × (σ(ua)2 + ū2
a) + u2

aj

Na + 1
−

(
Naūa + uaj

Na + 1

)2

,

thanks to König-Huygens formula, i.e., σ(ua) =
√

1
Na

∑
j u2

aj − ū2
a. The notation

u+
a denotes the active user ua with the new rating uij available, Na and ūa

denote respectively, the number of ratings and the average rating of ua before
evaluating item j. Note that, as the centroids are stable at the end of training,
the two latter incremental updates concerning the assignment of ua, do not need
to be performed after each one new rating.

Update an existing rating. In this case, the active user updates an existing
rating for an item j. As for the submission of a new rating, the main updates
are summarized below.

– Update the norm of ua: ‖u+
a ‖ =

√
‖ua‖2 − u2

aj + û2
aj

– For each k, update the similarity between ua and µk:

cos(u+
a ,µk) =

1
‖u+

a ‖ [‖ua‖ × uT
a µk − uajμkj + ûajμkj ]

– Update the weight of the active user: ŵa = wa

σ(ua)
× σ(u+

a )
– Update the assignment of ua: ẑa = arg maxkcos(u+

a ,µk).
– Update the corresponding centroid ẑa, by using Eq. (3) where

σ(u+
a )2 =

(

σ(ua)2 + ū2
a +

û2
aj − u2

aj

Na

)

−
(

ūa +
ûaj − uaj

Na

)2

,

ûaj denotes the new value substituted for the existing rating uaj , and the nota-
tion u+

a represents the active user after updating the known rating uaj .

Appearance of new user. In this situation, a new user is incorporated into
the model in real time. Let ûa denote a new user. The model is incremented as
follows:

– Compute the weight of ûa, by using Eq. (4).
– Assign ûa to kth cluster where k = arg max1≤k≤K( û

T
a µk

‖ûa‖ ).

– Update the corresponding centroid: µ̂k =
µk+ηwa

ûa
‖ûa‖

‖µk+ηwa
ûa

‖ûa‖ ‖ .

Appearance of new item. When a new item appears, it has no ratings, so
there nothing to change in the model. When a new item starts receiving ratings,
handling new item, reduces to handling the submission of new ratings.
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4 Experimental Results

Hereafter, we propose to evaluate the performances of our CF system on three real-
world datasets. The first is MovieLens1 (ML-1M), consisting of 1,000,209 ratings
provided by 6040 users for 3952 movies (only 4.2% of ratings are observed). The
second is MovieLens (ML-100k), containing 100,000 ratings given by 943 users
for 1664 movies. The proportion of observed ratings in this dataset is 6.4%. The
last dataset is Epinions2, with 664,824 ratings from 49,290 users on 139,738 items
(movies, musics, electronic products, books, . . . ). The Epinion dataset is more
than 99% sparse.

We compare EICF with several popular methods, namely: incremental user-
based CF IUCF [9], incremental item-based CF IICF [13], and incremental CF
based on co-clustering COCLUST [4]. All the evaluations are made under the
same machine (OS: ubuntu 14.04 LTS 64-bit, Memory: 16 GiB, Processor: Intel R©
CoreTM i7-3770 CPU @ 3.40 GHz × 8). To evaluate our CF system we focus on
the quality of the recommendations and computational time. Thus, we chose the
F-measure F1 [1] as the evaluation metric. Unlike accuracy metrics such as mean
average error and root means square error, the F-measure allows to evaluate the
quality of the set of recommendations [1], which is more relevant in the context
of CF. The results reported in Table 1 are obtained as follows: (1) We generate
ten random training-test (80–20 %) sets from each dataset. (2) Users in test sets
are considered as new ones, and are incorporated incrementally. (3) Finally, we
report the average F-measure for each method, over different recommendation
lists (i.e., containing 10, 25 and 40 items). We also report the average computa-
tion time required by each method, for incorporating and generating recommen-
dations, for users from the test sets. Note that, in terms of computation time,
IICF is favoured in this comparison; unlike the other methods, incorporating
new users is not the most expensive computation for this approach.

From Table 1, we note that our method provides a high quality of recommen-
dations, thanks to our strategy for alleviating the sparsity problem; by introduc-
ing user weights. In fact, our CF system EICF exhibits the best quality of rec-
ommendations, over all datasets. Moreover, from Table 1 we observe that EICF
requires much less time for handling new information and generating recom-
mendations, than the other incremental methods, including IICF although it is
favoured. This performance rises significantly as the volume of data increases.
In fact, contrary to the other methods, the complexity of EICF does not depend
on the number of users and items, as reported in Table 2. Therefore, EICF is more
suitable than the other incremental methods, for real world-applications involv-
ing large databases in which users, items and ratings are frequently updated.
Note that, the computation time of COCLUST reported in Table 1 is high, even
1 http://grouplens.org/datasets/movielens/.
2 http://www.epinions.com.

http://grouplens.org/datasets/movielens/
http://www.epinions.com
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Table 1. Comparison of several CF systems in terms of F1 and computation time

CF methods

Datasets Recom. lists COCLUST IICF IUCF EICF

ML-100k F1 10 0.02 0.10 0.16 0.21

25 0.06 0.16 0.22 0.30

40 0.05 0.10 0.24 0.33

Comp. time (s) 0.97 0.88 1.78 0.51

ML-1M F1 10 0.2e-4 0.04 0.10 0.14

25 0.02 0.08 0.15 0.21

40 0.05 0.11 0.17 0.25

Comp. time (s) 11.85 7.96 138.1 2.86

Epinion F1 10 0.45e-4 0.008 0.022 0.038

25 0.38e-4 0.011 0.029 0.043

40 0.73e-4 0.012 0.032 0.046

Comp. time (s) 212.71 927.22 4041.01 149.20

Table 2. Comparison of computational times (in the worst case) in various situations.
W ∗ denotes the number of observed ratings in U. K and L are the number of row
and column clusters, K also denotes the number of neighbours for memory CF (IUCF,
IICF). p∗ is the number of observed ratings for a new user, n∗ denotes the number of
available ratings for a new item. Finally, B denotes the number of iterations

Algorithm Static training Prediction Inc. train

IUCF O(nW ∗) O(K) O(np∗)

EICF O(BKW ∗) O(1) O(Kp∗)

COCLUST O(BW ∗ + nBKL + pBKL) O(1) O(p∗)

IICF O(pW ∗) O(p∗) O(pn∗)

if its complexity in the dynamic situation (i.e., inc. train: O(p∗)) might appear
attractive. The reason is that, this approach provides only partial updates, and
the co-clustering is performed periodically to completely incorporate new infor-
mation.

5 Conclusion

We presented EICF, a novel efficient and effective incremental CF system, which
is based on a weighted clustering approach. To achieve high quality of recom-
mendations, we introduced user weights into the clustering process, to lessen the
effect of users who provided only few ratings. In order to address the computa-
tional time problem, we designed incremental updates, which allows our system
to handle in a very short time, the frequent changes in CF data; such as submis-
sions of new ratings, appearance of new users and items. Numerical experiments
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on real-world datasets demonstrate the efficiency and the effectiveness of our
method which provides better quality of recommendations than existing incre-
mental CF systems, while requiring less computation time. Thus, our CF system
is more suitable than existing incremental approaches, for real-world applications
involving huge databases, in which available information (i.e., users, items and
ratings) changes frequently. For future work, we will investigate other strategies
for handling the sparsity problem in CF, and try to develop a parallel version of
EICF, that can support distributed computations.
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