
A Feature-Based Analysis on the Impact
of Set of Constraints for ε-Constrained

Differential Evolution

Shayan Poursoltan(B) and Frank Neumann(B)

Optimisation and Logistics, School of Computer Science, University of Adelaide,
Adelaide, SA 5005, Australia

{shayan.poursoltan,frank.neumann}@adelaide.edu.au

Abstract. Different types of evolutionary algorithms have been devel-
oped for constrained continuous optimisation. We carry out a feature-
based analysis of evolved constrained continuous optimisation instances
to understand the characteristics of constraints that make problems hard
for evolutionary algorithm. In our study, we examine how various sets
of constraints can influence the behaviour of ε-Constrained Differential
Evolution. Investigating the evolved instances, we obtain knowledge of
what type of constraints and their features make a problem difficult for
the examined algorithm.

1 Introduction

Constrained optimisation problems (COPs), specially non-linear ones, are very
important and widespread in real world applications [1]. This has motivated
introducing various algorithms to solve COPs. The focus of these algorithms is
to handle the involved constraints. In order to deal with the constraints, vari-
ous mechanisms have been adopted by evolutionary algorithms. These techniques
include penalty function, decoder-based methods and special operators that sep-
arate the treatment of constraints and objective functions. For an overview of
different types of methods we refer the reader to Mezura-Montes and Coello
Coello [6].

With the increasing number of evolutionary algorithms, it is hard to predict
which algorithm performs better for a newly given COP. Various benchmark
sets such as CEC’10 [3] and BBOB’10 [2] have been proposed to evaluate the
algorithm performances on continuous optimisation problems. The aim of these
benchmarks is to find out which algorithm is good on which classes of problems.
For constrained continuous optimisation problems, there has been an increasing
interest to understanding problem features from a theoretical perspective [9].
The feature-based analysis of hardness for certain classes of algorithms is a
relatively new research area. Such studies classify problems as hard or easy
for a given algorithm based on the features of given instances. Initial studies in
the context of continuous optimisation have recently been carried out in [4,5].
Having enough knowledge on problem properties that make it hard or easy,
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part III, LNCS 9491, pp. 344–355, 2015.
DOI: 10.1007/978-3-319-26555-1 39

A Feature-Based Analysis on the Impact of Set of Constraints 345

we may choose the most suited algorithm to solve it. To do this, two steps
approach has been proposed by Mersmann et al. [4]. First, one has to extract
the important features from a group of investigated problems. Second, in order
to build a prediction model, it is necessary to analyse the performance of various
algorithms on these features. Feature-based analysis has also been used to gain
new insights in algorithm performance for discrete optimisation problems [7,10].

In this paper, we carry out a feature-based analysis for constrained continuous
optimisation and generate a variety of problem instances from easy to hard ones
by evolving constraints. This ensures that the knowledge obtained by analysing
problem features covers a wide range of problem instances that are of particu-
lar interest. Although what makes a problem hard to solve is not a standalone
feature, it is assumed that constraints are certainly important in COPs. Evolv-
ing constraints is a new technique to generate hard and easy instances. So far,
the influence of one linear constraint has been studied [8]. However, real world
problems have more than one linear constraint (such as linear, quadratic and
their combination). Hence, our study is to generate COP instances to investi-
gate which features of the linear and quadratic constraints make the COP hard
to solve. To provide this knowledge, we need to use a common suitable evo-
lutionary algorithm that handles the constraints. The ε-constrained differential
evolution with an archive and gradient-based mutation (εDEag) [12] is used. The
εDEag (winner of CEC 10 special session for constrained problems) is applied
to generate hard and easy instances to analyse the impact of set of constraints
on it.

Our results provide evidence on the capability of constraints (linear, quadratic
or their set of combination) features to classify problem instances to easy and
hard ones. Feature analysis by solving the generated instances with εDEag
enables us to obtain the knowledge of influence of constraints on problem hard-
ness which could later could be used to design a successful prediction model for
algorithm selection.

The rest of the paper is organised as follows. In Sect. 2, we introduce the
constrained optimisation problems. Then, we discuss εDEag algorithm that we
use to solve the generated problem instances. Section 3 includes our approach
to evolve and generate problem instances. Furthermore, the constraint features
are discussed. In Sect. 4, we carry out the analysis of the linear and quadratic
constraint features. Finally, we conclude with some remarks.

2 Preliminaries

2.1 Constrained Continuous Optimisation Problems

Constrained continuous optimisation problems are optimisation problems where
a function f(x) on real-valued variables should be optimised with respect to
a given set of constraints. Constraints are usually given by a set of inequali-
ties and/or equalities. Without loss of generality, we present our approach for
minimization problems.

346 S. Poursoltan and F. Neumann

Formally, we consider single-objective functions f : S → R, with S ⊆ R
n.

The constraints impose a feasible subset F ⊆ S of the search space S and the
goal is to find an element x ∈ S ∩ F that minimizes f .

We consider problems of the following form:

minimize f(x), x = (x1, . . . , xn) ∈ R
n

subject to gi(x) ≤ 0 ∀i ∈ {1, . . . , q}
hj(x) = 0 ∀j ∈ {q + 1, . . . , p}

(1)

where x = (x1, x2, . . . , xn) is an n dimensional vector and x ∈ S ∩ F . Also gi(x)
and hj(x) are inequality and equality constraints respectively. Both inequality
and equality constraints could be linear or nonlinear. To handle equality con-
straints, they are usually transformed into inequality constraints as |hj(x)| ≤ ε,
where ε = 10e−4 (used in [3]). Also, the feasible region F ⊆ S of the search
space S is defined by

li ≤ xi ≤ ui, 1 ≤ i ≤ n (2)

where both li and ui denote lower and upper bounds for the ith variable and
1 ≤ i ≤ n respectively.

2.2 εDEag Algorithm

One of the most prominent evolutionary algorithms for COPs is ε-constrained
differential evolution with an archive and gradient-based mutation (εDEag). The
algorithm is the winner of 2010 CEC competition for constrained continuous
problems [3]. The εDEag uses ε-constrained method to transform algorithms for
unconstrained problems to constrained ones. It adopts ε-level comparison instead
of ordinary ones to order the possible solutions. In other words, the lexicographic
order is performed in which constraint violation (φ(x)) has more priority and
proceeds the function value (f(x)). This means feasibility is more important.
Let f1,f2 and φ1,φ2 are objective function values and constraint violation at
x1,x2 respectively. Hence, for all ε ≥ 0, the ε-level comparison of two candidates
(f1, φ1) and (f2, φ2) is defined as the follows:

(f1, φ1) <ε (f2, φ2) ⇐⇒

⎧
⎪⎨

⎪⎩

f1 < f2, if φ1, φ2 ≤ ε

f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise

In order to improve the usability, efficiency and stability of the algorithm, an
archive has been applied. Using it improves the diversity of individuals. For a
detailed presentation of the algorithm, we refer the reader to [12].

3 Evolving Constraints

It is assumed that the role of constraints in problem difficulty is certainly impor-
tant for COP. Hence, it is necessary to analyse various effects that constraint can

A Feature-Based Analysis on the Impact of Set of Constraints 347

impose on a constrained problem. Evolving constraints is a novel methodology
to generate hard and easy instances based on the performance of the problem
solver (optimisation algorithm).

3.1 Algorithm

In order to analyse the effects of constraints, the variety of them needs to be
studied over a fixed objective function. First, constraint coefficients are randomly
chosen to construct problem instances. Second, the generated COP is solved by a
solver algorithm (εDEag). Then, the required function evaluation number (FEN)
to solve this instance is considered as the fitness value for evolving algorithm.
This process is repeated until hard and easy instances of constraint problem are
generated (see Fig. 1).

To generate hard and easy instances, we use the approach outlined in [8].
It uses fast and robust differential evolution (DE) proposed in [11] to evolve
through the problem instances (by generating various constraint coefficients). It
is necessary to note that the aim is to optimise (maximise/minimise) the FEN
that is required by a solver to solve the generated problem. Also, to solve this
generated problem instance and find the required FEN we use εDEag as a solver.
The termination condition of this algorithm (evolver) is set to reaching FENmax
number of function evaluations or finding a solution close enough to the feasible
optimum solution as follows:

|f(xoptimum) − f(xbest)| ≤ e−12 (3)

This process generates harder and easier problem instances until it reaches
the certain number of generation for the DE algorithm (evolver). Once two dis-
tinct sets of easy and hard instances are ready, we start analysing various features
of the constraints for these two categories. This could give us the knowledge to
understand which features of constraints have more contribution to problem
difficulty.

Fig. 1. Evolving constraints process

3.2 Evolving a Set of Inequality Constraints

We focus on analysing the effects of constraints (linear, quadratic and their
combination) on the problem and algorithm difficulty. We extract features of

348 S. Poursoltan and F. Neumann

constraints and analyse their effect on problem difficulty. The experimented con-
straints are linear and quadratic as the form of:

linear constraint g(x) = b + a1x1 + . . . + anxn (4)

quadratic constraint g(x) = b + a1x
2
1 + a2x1 . . . + a2n−1x

2
n + a2nxn (5)

or combination of them. We also consider various numbers of these constraints
in this study. Here, x1, x2 . . . , xn are the variables from Eq. 1 and a1, a2 . . . , an

are coefficients within the lower and upper bounds (lc, uc). We construct COPs
where the optimum of the experimented unconstrained problem is feasible. We
use quadratic functions of the form of Eq. 5 (univariate) since it is more popular
in recent constrained problem benchmarks. Also, the influence of each xns can be
analysed independently (exponent 2). The optimum of the investigated problems
is x∗ = (0, . . . , 0) and we ensure that this point is feasible by requiring b ≤ 0,
when evolving the constraints.

3.3 Constraints Features

We study a set of statistic based features that leads to generating hard and easy
problem instances. These features are discussed as follows:

– Constraint Coefficients Relationship: It is likely that the statistics such
as standard deviation, population standard deviation and variance of the con-
straints coefficients can represent the constraints influences to problem diffi-
culty. These constraint coefficients are (b, a1, a2, . . . , an) in Eqs. 4 and 5.

– Shortest Distance: This feature is related to the shortest distance between
the objective function optimum and constraint hyperplane. In this paper,
the shortest distance to the known optimum from each constraint and their
relations to each other is discussed. To find the shortest distance of optimum
point (x01, x02, . . . , x0n) to the linear constraint hyperplane (a1x1 + a2x2 +
· · · + anxn + b = 0) we use Eq. 6. Also, for quadratic constraint hyperplane
(a1x

2
1 + a2x1 . . . + a(2n−1)x

2
n + a2nxn + b = 0) we need to find the minimum

of Eq. 7.

d⊥ =
a1x01 + a2x02 + . . . anx0n + b√

a1
2 + a2

2 + · · · + an
2

(6)

d⊥ =
√

(x1 − x01)2 + (x2 − x02)2 + · · · + (xn − x0n)2 (7)

where d⊥ in Eq. 7 is the distance from a point to a quadratic hyperplane. Min-
imising the distance squared (d2

⊥) is equivalent to minimising the distance d⊥.
– Angle: This feature describes the angle of the constraints hyperplanes to

each other. It is assumed that the angle between the constraints can influence
problem difficulty. To calculate the angle between two linear hyperplanes, we
need to find their normal vectors and angle between them using the following
equation:

θ = arccos
n1 · n1

|n1||n2| (8)

A Feature-Based Analysis on the Impact of Set of Constraints 349

where n1,n2 are normal vectors for two hyperplanes. Also, the angle between
two quadratic constraints is the angle between two tangent hyperplanes of
their intersection. Then, the angle between these tangent hyperplanes can be
found by Eq. 8.

– Number of Constraints: Number of constraints plays an important role in
problem difficulty. The number of constraints and their effects to make easy
and hard problem instances is analysed.

– Optimum-local Feasibility Ratio: Although the global feasibility ratio is
important to find the initial feasible point, it should not affect the convergence
rate during solving the problem. So, the feasibility ratio of generated COP is
calculated by choosing random points within the vicinity of the optimum in
search space and the ratio of feasible points to all chosen ones is reported. In
our experiment, the vicinity of optimum is equivalent to 1/10 of boundaries
from optimum for each dimension.

4 Experimental Analysis

We now analyse the features of constraints (linear, quadratic and their combi-
nation) for easy and hard instances. We generate these instances for (εDEag)
algorithm using well known objective functions. In our experiments, we generate
two sets of hard and easy problem instances. Due to stochastic nature of evolu-
tionary algorithms, for each number of constraints we perform 30 independent
runs for evolving easy and hard instances. We set the evolving algorithm (DE)
generation number to 5000 for obtaining the proper easy and hard instances.
The other parameters of evolving algorithm are set to pop size = 40, CR = 0.5,
scaling factor = 0.9 and FENmax is 300, 000. Values for these parameters have
been obtained by optimising the performance of the evolving algorithm in order
to achieve the more easier and harder problem instances. For (εDEag) algorithm,
its best parameters are chosen based on [12]. These parameters are: generation
number = 1500, pop size = 40, CR = 0.5, scaling factor = 0.9. Also, the parame-
ters for ε-constraint method are set to control generation (Tc) = 1000, initial
e level (q) = 0.9, archive size = 100n (n is dimension number), gradient-based
mutation rate (Pg) = 0.2 and number of repeating the mutation (Rg) = 3.

4.1 Analysis for Linear Constraints

In order to focus only on constraints, we carry out our experiments on various
well-known objective functions. These functions are: Sphere (bowl shaped),Ackley
(many local optima), Rosenbrock (valley shaped) and Schaffer (many local min-
ima) (see [2]). The linear constraint is as the form of Eq. 4 with dimension (n) as
30 and all coefficients are within the range of [−5, 5]. Also, number of constraints is
considered as 1 to 5. To discuss and study some features such as shortest distance
to optimum, we assume that zero is optimum (all bs should be negative). We used
(εDEag) algorithm as solver to generate more easy and hard instances. In the fol-
lowing we will present our findings based on various features for linear constraints
(for each dimension).

350 S. Poursoltan and F. Neumann

Table 1. The angle feature for Sphere objective function

Cons 1,2 Cons 1,3 Cons 1,4 Cons 1,5 Cons 2,3 Cons 2,4 Cons 2,5 Cons 3,4 Cons 3,5 Cons 4,5

DE Easy 15 17 25 21 32 27 41 47 45 43

DE Hard 45 51 63 59 62 73 76 69 79 86

Figure 2 shows some evidence about linear constraints coefficients relation-
ship such as standard deviation. It is obvious that there is a systematic rela-
tionship between the standard deviation of linear constraint coefficients and
problem difficulty. The box plot (see Fig. 2) represents the results for easy and
hard instances using all objective function for (εDEag) algorithm (solver). As
it is observed, the standard deviation for coefficients in each constraint (1 to 5)
for easy instances are lower than hard ones. Both these coefficient values can be
a significant role to make a problem harder or easier to solve. Interestingly, all
different objective functions follow the same pattern.

Figure 3 represents variation of shortest distance to optimum feature for easy
and hard instances using (εDEag) algorithm. Lower value means a higher dis-
tance from the optimum. This means, the linear hyperplanes in easy instances are
further from optimum. Based on results, there is a strong relationship between
problem hardness and shortest distance of constraint hyperplanes to optimum.
In other word, this feature is contributing to problem difficulty. As expected, all
objective functions follow the same systematic relationship between their feature
and problem difficulty. This means, this feature can be used as a proper source
of knowledge for predicting problem difficulty.

The angle between linear constraint hyperplanes feature shows relationship
between the angle and problem difficulty. The angle between constraints in easier
instances are less than higher ones (see Table 1). So, this feature is contributing
in problem difficulty. Table 2 explains the variation of number of constraints fea-
ture group. It is shown that the problem difficulty (required FEN for easy and
hard instances) has a strong systematic relationship with number of constraints
for the experimented algorithm. To calculate the optimum-local feasibility ratio,
106 points are generated within the vicinity of optimum (zero in our problems).
Later, the ratios of feasible points to all generated points are investigated for
easy and hard instances. Results point out that increasing number of linear con-
straints, decreases the feasibility ratio for experimented algorithms (see Table 4).

In summary the variation of feature values over the problem difficulty is more
prominent in some of them than the other groups. Features such as, coefficients
standard deviation, shortest distance, angle, number of constraints and feasibility
ratio exhibit a relationship to problem hardness. This relationship is stronger for
some features.

4.2 Analysis for Quadratic Constraints

In this section, we carry out our experiments on quadratic constraints. We use
objective functions, dimension and coefficient range similar to linear analysis.

A Feature-Based Analysis on the Impact of Set of Constraints 351

Table 2. The FEN for linear con-
straints

Constraint - Function DE Easy DE Hard

1 c Sphere 25.6K 91.2K

2 c Sphere 28.9K 93.4K

3 c Sphere 32.4K 98.3K

4 c Sphere 34.2K 104.2K

5 c Sphere 35.5K 123.2K

1 c Ackley 65.2K 232.1K

2 c Ackley 69.3K 243.7K

3 c Ackley 74.2K 265.4K

4 c Ackley 86.4K 271.3K

5 c Ackley 92.3K 277.2K

1 c Rosenbrock 32.8K 145.2K

2 c Rosenbrock 35.9K 153.3K

3 c Rosenbrock 34.5K 167.9K

4 c Rosenbrock 42.2K 172.4K

5 c Rosenbrock 48.3K 176.8K

1 c Schaffer 84.8K 247.1K

2 c Schaffer 87.9K 259.1K

3 c Schaffer 93.5K 280.3K

4 c Schaffer 103.2K 293.8K

5 c Schaffer 112.4K 297.4K

Table 3. The FEN for quadratic
constraints

Constraint - Function DE Easy DE Hard

1 c Sphere 24.2K 129.3K

2 c Sphere 25.3K 132.6K

3 c Sphere 27.9K 136.2K

4 c Sphere 34.1K 141.2K

5 c Sphere 38.7K 149.3K

1 c Ackley 68.4K 228.3

2 c Ackley 72.9K 232.5K

3 c Ackley 84.5K 239.6K

4 c Ackley 95.3K 247.9K

5 c Ackley 98.1K 251.9K

1 c Rosenbrock 31.4K 173.2K

2 c Rosenbrock 32.45K 182.3K

3 c Rosenbrock 42.5K 190.6K

4 c Rosenbrock 52.7K 192.8K

5 c Rosenbrock 71.1K 213.4K

1 c Schaffer 91.3K 278.9K

2 c Schaffer 94.9K 283.1K

3 c Schaffer 103.7K 289.3K

4 c Schaffer 114.1K 296.1K

5 c Schaffer 123.4 300k

In the following the group of features are studied for easy and hard instances
using quadratic constraints.

Observing the Fig. 2, we can identify the relationship of quadratic coeffi-
cients and their ability to make problem hard or easy. Based on the experiments,
quadratic coefficients has the ability to make problems harder or easier for algo-
rithms. In other words, in each constraint, the quadratic coefficients (within the
quadratic constraint) are more contributing to problem difficulty than linear
coefficients (see Eq. 5). Figure 2 shows the standard deviation of quadratic coef-
ficients for easy and hard COPs. As shown, the standard deviation of quadratic
coefficient in 1 to 5 constraints in easy instances are less than harder one. In
contrast to quadratic coefficients, our experiments show there is no systematic
relationship between the linear coefficient in quadratic constraints and problem
hardness. In other words, quadratic coefficients (a2n−1) are more contributing
than linear ones (a2n) in the same quadratic constraint (see Eq. 5).

Box plots shown in Fig. 3 represent the shortest distance of a quadratic con-
straint hyperplanes to optimum. As it is observed, harder instances have con-
straint hyperplanes closer to optimum than easier ones. Calculating the angles
between constraints do not follow any systematic pattern and there is no rela-
tionship between angle feature and problem difficulty for quadratic constraints.
We also study the number of quadratic constraints feature. As it is shown in

352 S. Poursoltan and F. Neumann

Fig. 2. Box plot for standard deviation of coefficients in linear (A,C,E,G) and quadratic
(B,D,F,H) constraints for Sphere (A,B), Ackley (C,D), Rosenbrok (E,F) and Schaffer
(G,H). Each sub figure includes 2 sets of hard (H) and Easy (E) instances with 1
to 5 constraints using algorithms (a/b/c denotes a: constraint number, b: easy/hard
instances and c:algorithm)

Table 3, the number of quadratic constraints is contributing to problem diffi-
culty. It is obvious that increasing the number of quadratic constraints makes
a problem harder to solve (increases FEN). As observed in Table 5, our investi-
gations on the feasibility ratio show that increasing the number of constraints
decreases the problem optimum-local feasibility ratio for easy and hard instances
respectively. As it is observed, some groups of features are more contributing to
problem difficulty than others. It is shown that the angle feature does not follow
any systematic relationship with problem hardness for the considered algorithm
in the case of quadratic constraints. On the other hand, the standard deviation,
feasibility ratio and number of constraints are more influencing the performance
of εDEag.

4.3 Analysis for Combined Constraints

In this section, we consider the combination of linear and quadratic constraints.
The generated COPs have different numbers of linear and quadratic constraints

A Feature-Based Analysis on the Impact of Set of Constraints 353

Fig. 3. Box plot for the shortest distance to optimum of linear (A,C,E,G) and quadratic
(B,D,F,H) constraints for Sphere (A,B), Ackley (C,D), Rosenbrok (E,F) and Schaffer
(G,H). Each sub figure includes 2 sets of hard (H) and Easy (E) instances with 1 to
5 constraints using DE algorithm (a/b/c denotes a: constraint number, b: easy/hard
instances and c:algorithm)

(up to 5 constraints). The obtained results show the higher effectiveness of
quadratic constraints than linear constraints. In other words, these constraints
are more contributing to problem difficulty than linear ones. By analysing the
various number of constraints (See Table 6) we can conclude that the required
FEN for sets of constraints with more quadratic ones is higher than sets with
more linear constraints. This relationship holds the pattern for both easy and
hard instances.

In summary, it is observed that the variation of linear and quadratic con-
straint coefficients over the problem difficulty is more contributing for some
group of features. Considering quadratic constraints only, it is obvious that some
features such as angle do not provide useful knowledge for problem difficulty. In
general, this experiments point out the relationship of the various constraint fea-
tures of easy and hard instances with the problem difficulty while moving from
easy to hard ones. This improves the understanding of the constraint structures
and their ability to make a problem hard or easy for a specific group of evolu-
tionary algorithms.

354 S. Poursoltan and F. Neumann

Table 4. Optimum-
local feasibility ratio
of search space near
the optimum for 1,2,
3,4 and 5 linear con-
straint

DE Easy DE Hard

1 cons 42% 7%

2 cons 32% 6%

3 cons 22% 4%

4 cons 17% 3%

5 cons 11% 2%

Table 5. Optimum-
local feasibility ratio
of search space near
the optimum for 1,2,
3,4 and 5 quadratic
constraint

DE Easy DE Hard

1 cons 36% 11%

2 cons 27% 7%

3 cons 12% 4%

4 cons 11% 3%

5 cons 8% 2%

Table 6. The FEN for com-
bined constraints using Sphere
objective function

DE Easy DE Hard

1 Lin 4 Quad 22.4K 97.5K

2 Lin 3 Quad 17.5K 95.1K

3 Lin 2 Quad 16.5K 94.2K

4 Lin 1 Quad 14.1K 91.4K

5 Conclusions

In this paper, we performed a feature-based analysis on the impact of sets of
constraints (linear, quadratic and their combination) on performance of well-
known evolutionary algorithm (εDEag). Various features of constraints for easy
and hard instances have been analysed to understand which features contribute
more to problem difficulty. The sets of constraints have been evolved using an
evolutionary algorithm to generate hard and easy problem instances for εDEag.
Furthermore, the relationship of the features with the problem difficulty have
been examined while moving from easy to hard instances. Later on, these results
can be used to design an algorithm prediction model.

Acknowledgments. FrankNeumannhas been supported byARCgrantsDP130104395
and DP140103400.

References

1. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained
Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990)

2. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2010: Experimental setup (2010)

3. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for
the CEC 2010 competition on constrained real-parameter optimization. Nanyang
Technological University, Singapore (2010)

4. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 829–836. ACM (2011)

5. Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms:
towards exploratory landscape analysis. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg
(2010)

A Feature-Based Analysis on the Impact of Set of Constraints 355

6. Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in nature-inspired
numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–
194 (2011)

7. Nallaperuma, S., Wagner, M., Neumann, F., Bischl, B., Mersmann, O., Trautmann,
H.: A feature-based comparison of local search and the christofides algorithm for
the travelling salesperson problem. In: Proceedings of the Twelfth Workshop on
Foundations of Genetic Algorithms XII, pp. 147–160. ACM (2013)

8. Poursoltan, S., Neumann, F.: A feature-based analysis on the impact of linear
constraints for ε-constrained differential evolution. In: 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 3088–3095. IEEE (2014)

9. Poursoltan, S., Neumann, F.: Ruggedness quantifying for constrained continuous
fitness landscapes. In: Datta, R., Deb, K. (eds.) Evolutionary Constrained Opti-
mization, pp. 29–50. Springer, Heidelberg (2015)

10. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learn-
ing from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol.
6073, pp. 266–280. Springer, Heidelberg (2010)

11. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

12. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential
evolution with an archive and gradient-based mutation. In: 2010 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–9. IEEE (2010)

	A Feature-Based Analysis on the Impact of Set of Constraints for -Constrained Differential Evolution
	1 Introduction
	2 Preliminaries
	2.1 Constrained Continuous Optimisation Problems
	2.2 DEag Algorithm

	3 Evolving Constraints
	3.1 Algorithm
	3.2 Evolving a Set of Inequality Constraints
	3.3 Constraints Features

	4 Experimental Analysis
	4.1 Analysis for Linear Constraints
	4.2 Analysis for Quadratic Constraints
	4.3 Analysis for Combined Constraints

	5 Conclusions
	References

