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Abstract. Evolutionary algorithms have been frequently applied to con-
strained continuous optimisation problems. We carry out feature based
comparisons of different types of evolutionary algorithms such as evo-
lution strategies, differential evolution and particle swarm optimisation
for constrained continuous optimisation. In our study, we examine how
sets of constraints influence the difficulty of obtaining close to optimal
solutions. Using a multi-objective approach, we evolve constrained con-
tinuous problems having a set of linear and/or quadratic constraints
where the different evolutionary approaches show a significant difference
in performance. Afterwards, we discuss the features of the constraints
that exhibit a difference in performance of the different evolutionary
approaches under consideration.

1 Introduction

There have been many algorithmic approaches proposed to solve complex opti-
misation problems, including constrained optimisation problems (COP). Several
approaches have been proposed to tackle the constraints in constrained problems.
Most of the research has been focused on introducing differential evolution (DE)
[12], particle swarm optimisation (PSO) [2] and evolutionary strategies (ES) [11]
to solve numerical optimisation problems. In order to deal with these constrained
problems, there have been techniques that applied to these algorithms such as
penalty functions, special operators (separating the constraint and objective func-
tion treatment) and decoder based methods. We refer the reader for a survey of
constraint handling techniques in evolutionary computing methods to [7].

In order to compare and evaluate the evolutionary algorithmsmany approaches
have been used. One is finding which algorithm performs better on a set of contin-
uous problems using benchmarks sets [3,5]. Recently, there has been an increasing
interest to analyse the problem features that make it hard to solve. Initial studies
have been carried out in the field of continuous optimisation in [6]. Furthermore,
there have been techniques that generate a variation of problem instances from
easy to hard. Then, the features of this problem instances are analysed in order to
find which of them make the problems hard or easy to solve. Generating the variety
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of problem instances from easy to hard ensures that the knowledge obtained from
analysis is reliable.

Although there is not only a standalone feature that makes a problem hard
to solve, but it is assumed that constraints are very important in constrained
continuous problems. The evolving approach that has been used to analyse the
constraint features and their effects on COP’s difficulty is discussed in [8,9].
The idea is to evolve constrained problem instances (by using an evolutionary
algorithm) in order to identify the constraint features with more contribution to
problem difficulty.

In this paper, by using a single-objective evolutionary algorithm, we generate
hard and easy COP instances for DE, ES and PSO algorithms. Later, we solve the
generated instances using one algorithm by the other algorithms. The results show
that the hardest generated instances using one algorithm are still hard for the other
ones. To get better insight, we use multi-objective evolving approach to generate
instances that are hard for one algorithm but still easy for the others. By analysing
how an algorithm fails in conditions where the rest perform well, we can derive its
strengths and weaknesses over constraint features. Our study shows the effective-
ness of constraint features that make the problems hard for one and easy for the
other algorithms. It can be translated as over which features of constraints, they
make the problems hard for a certain algorithm but still easy for the others.

The remainder of this paper is as follows: In Sect. 2 we introduce the concept
of COPs. Then we discuss the evolver (single and multi-objective evolutionary
approach) and the solver algorithms (DE, ES and PSO) we use in our exper-
iments. In Sect. 3 we analyse the performance of various algorithms on each
others hard and easy instances (using the single-objective evolver). Section 4
includes the multi-objective approach that generates hard instances for one but
easy for the other algorithms. Furthermore, we carry out the analysis of linear
and quadratic constraint features that make the problem hard for one and still
easy for the rest. Finally, we conclude with some remarks.

2 Preliminaries

2.1 Constrained Continuous Optimisation Problems

In this study, constrained continuous optimisation problems with inequality and
equality constraints are investigated. These problems are optimisation problems
where a function f(x) should be optimisedwith respect to a given set of constraints.

Single-objective functions f : S → R with S ⊆ R
n are considered in this

research. The constraints impose a feasible subset F ⊆ S of the search space
S and the aim is finding x ∈ S ∩ F which minimises f . Formally, we state the
problems as follows:

minimize f(x), x = (x1, . . . , xn) ∈ R
n

subject to gi(x) ≤ 0 ∀i ∈ {1, . . . , q}
hj(x) = 0 ∀j ∈ {q + 1, . . . , p} (1)
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where x = (x1, x2, . . . , xn) is an n dimensional vector and x ∈ S ∩ F . The gi(x)
(inequality) and hj(x) (equality) constraints could be linear/nonlinear. Also, the
equality constraints are usually replaced by |hj(x)| ≤ ε where ε = 10e−4 [5]. The
feasible region F ⊆ S of the search space S is defined by

li ≤ xi ≤ ui, 1 ≤ i ≤ n (2)

where li and ui denote lower and upper bounds respectively for the ith variable
in which 1 ≤ i ≤ n. In this paper, we focus on the ability of constraints (linear,
quadratic) to make a problem hard or easy. The features of these constraints
and their effect on problem difficulty is discussed. The constraints are of the
following form:

linear constraint g(x) = b + a1x1 + . . . + anxn (3)

quadratic constraint g(x) = b + a1x
2
1 + a2x1 . . . + a2n−1x

2
n + a2nxn (4)

or a combination of them, where x1, x2 . . . , xn are values from Eq. 1 and a1, a2,
. . . , an are coefficients within lower (li) and upper bounds (ui). We assume univari-
ant quadratic function to analyse each xn (with exponent 2) independently. Also,
unvivarient quadratic constraints are more popular in recent benchmarks [5]. In
order to include the optimum of objective function in feasible area, we set b ≤ 0
(we assume the objective function optimum is zero).

2.2 Algorithms

We now introduce the algorithms for constrained continuous optimisation that
are subject to our investigation.

One of the most prominent evolutionary algorithms for COPs is ε-constrained
differential evolution with an archive and gradient-based mutation (εDEag). The
algorithm is the winner of 2010 CEC competition for continuous COPs [5]. The
εDEag uses ε-constrained method to transform algorithms for unconstrained
problems to constrained ones. It adopts ε-level comparison to order the pos-
sible solutions. In other words, the lexicographic order is used in which con-
straint violation (φ(x)) has more priority and proceeds the function value (f(x)).
For more details we refer the reader to [13].

The second algorithm we use in this paper is a (1+1) CMA-ES for constrained
optimisation [1]. The (1 + 1) CMA-ES in [4] is a variant of (1 + 1)-ES which
adapts the covariance matrix of its offspring distribution in addition to its global
step size. The idea behind the constraint handling approach of this algorithm
is to obtain approximations to the normal vectors directions in the vicinity of
the current solutions locations by low-pass filtering steps which violates the
respective constraints and reducing the variance of the offspring distribution in
these directions. Incorporating this constraint handling approach with (1 + 1)
CMA-ES makes an algorithm which is significantly more efficient than other
approaches for constrained evolutionary algorithms. Also, the selected algorithm
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is not sensitive to the rotation of the problem search space. We refer the reader
to [1] for more details and implementation.

The third algorithm that is used in our investigation is a particle swarm opti-
misation. This algorithm (HMPSO) applies a method that uses parallel search
operator in which it divides the current swarm into various sub-swarms and
locates the solution between them. In each sub-swarm, all particles follow the
local best (fittest particle) which improves them to be more fitter. Also, since
all sub-swarms are located around different optima (in parallel), then it is more
possible to locate multiple optima which improves the diversity of algorithm.
Dividing the swarms into sub-swarms improves the diversity of the algorithm.
Also, choosing the local best in each sub-swarm can attract the other parti-
cles to fitter positions. We refer the reader to [15] for detailed algorithm and
implementation.

2.3 Features of Constraints

In this paper we analyse the constraint features of generated problem instances.
These features are constraint coefficients relationships such as standard deriva-
tion, angle between constraint hyperplanes, feasibility ratio in vicinity of optimum,
number of constraints, shortest distance of constraint hyperplane to optimum. The
details of these features are discussed in [8].

3 Single-Objective Investigations

We first consider different algorithms and compare their relative performance on
each other’s generated hard and easy instances. We use single-objective evolver
to evolve and generate hard and easy instances for all types of algorithms. The
detailed procedure and results for DE instances are discussed in [8]). For this
experiment, we perform 30 independent runs generating easy and hard instances
for PSO and ES solvers. It means, the single-objective evolver only generates
instances that are hard/easy for one type of algorithm (PSO, ES and DE). The
required function evaluation number (FEN) for solving these instances (PSO, ES
and DE) is used as fitness value for single-objective evolver. The parameters for
solvers are identical to [1,13,15]. Also, we run our experiments on Sphere func-
tion (bowl shaped) [3]. We now have three groups of easy and hard instances
generated for DE, ES and PSO algorithms. We then compare the DE, ES and
PSO algorithms by applying them on each other’s easy and hard instances. The
analysis is done by comparing the required FEN for an algorithm to solve the
other’s generated problem instances. Then, it is possible to derive strengths
and weaknesses of the considered algorithms by observing how well one algo-
rithm performs in conditions where the other algorithms fail (or it is difficult for
them). Tables 1 and 2 show different algorithms performance on Sphere objec-
tive functions with linear/quadratic constraints (1 to 5 constraints). Considering
the required FEN to solve each instances, it is observed that hard instances are
still the hardest for their own algorithms and hard for the others. It implies
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Table 1. The comparison of algorithms
performance on each other’s easy and
hard instances based on required FEN
for Sphere objective function. DE Easy
(1 c) means instances that are easy for
DE and with 1 linear constraint.

Instances DE algo- ES algo- PSO algo

rithm rithm rithm

DE Easy (1 c) 25.6K 28.2K 33.2K

ES Easy (1 c) 26.3K 27.1K 33.9K

PSO Easy (1 c) 24.9K 29.1K 72.5K

DE Easy (2 c) 28.9K 21.9K 32.1K

ES Easy (2 c) 25.2K 24.3K 29.4K

PSO Easy (2 c) 24.2K 25.2K 33.5K

DE Easy (3 c) 32.4K 31.2K 33.9K

ES Easy (3 c) 31.8K 29.1K 33.2K

PSO Easy (3 c) 35.1K 28.6K 35.1K

DE Easy (4 c) 34.2K 29.8K 38.2K

ES Easy (4 c) 32.1K 31.5K 36.1K

PSO Easy (4 c) 35.7K 28.9K 39.5K

DE Easy (5 c) 35.3K 42.1K 46.4K

ES Easy (5 c) 31.2K 45.2K 38.2K

PSO Easy (5 c) 35.3K 44.9K 41.2K

DE Hard (1 c) 91.2K 78.3K 76.4K

ES Hard (1 c) 81.3K 86.4K 78.8K

PSO Hard (1 c) 82.5K 72.5K 85.4K

DE Hard (2 c) 93.4K 81.3K 81.4K

ES Hard (2 c) 84.3K 92.6K 79.4K

PSO Hard (2 c) 85.7K 84.1K 89.4K

DE Hard (3 c) 98.3K 93.8K 78.9K

ES Hard (3 c) 91.4K 108.6K 81.2K

PSO Hard (3 c) 89.1K 98.2K 91.6K

DE Hard (4 c) 104.2K 89.4K 82.5K

ES Hard (4 c) 89.4K 115.1K 78.4K

PSO Hard (4 c) 92.9K 93.5K 115.3K

DE Hard (5 c) 123.2K 111.4K 98.4K

ES Hard (5 c) 98.2K 133.2K 94.9K

PSO Hard (5 c) 101.3K 109.2K 118.3K

Table 2. The comparison of algorithms
performance on each other’s easy and
hard instances based on required FEN for
Sphere objective function. DE Easy (1 c)
means instances that are easy for DE and
with 1 quadratic constraint.

Instances DE algo- ES algo- PSO algo-

rithm rithm rithm

DE Easy (1 c) 24.2K 23.6K 24.9K

ES Easy (1 c) 24.8K 24.2K 25.4K

PSO Easy (1 c) 26.4K 25.4K 26.4K

DE Easy (2 c) 25.3K 28.1K 26.4K

ES Easy (2 c) 24.1K 27.2K 27.4K

PSO Easy (2 c) 23.5K 29.3K 271.K

DE Easy (3 c) 27.9K 31.9K 35.5K

ES Easy (3 c) 29.4K 32.1K 28.5K

PSO Easy (3 c) 28.1K 28.7K 29.4K

DE Easy (4 c) 34.1K 28.9K 36.4K

ES Easy (4 c) 35.2K 35.3K 31.6K

PSO Easy (4 c) 31.8K 29.5K 33.2K

DE Easy (5 c) 38.7K 29.2K 37.2K

ES Easy (5 c) 35.6K 28.2K 39.5K

PSO Easy (5 c) 36.3K 31.5K 36.2K

DE Hard (1 c) 129.3K 102.7K 105.3K

ES Hard (1 c) 104.3K 121.2K 108.2K

PSO Hard (1 c) 108.2K 104.2K 119.8K

DE Hard (2 c) 132.6K 114.2K 114.9K

ES Hard (2 c) 111.2K 127.1K 112.4K

PSO Hard (2 c) 109.4K 112.4K 125.3K

DE Hard (3 c) 136.2K 116.3K 112.4K

ES Hard (3 c) 117.2K 132.1K 109.9K

PSO Hard (3 c) 119.8K 119.2K 132.6K

DE Hard (4 c) 141.2K 119.9K 119.6K

ES Hard (4 c) 113.8K 131.2K 121.9K

PSO Hard (4 c) 115.4K 121.4K 138.9K

DE Hard (5 c) 149.3K 129.7K 122.9K

ES Hard (5 c) 124.4K 149.6K 126.4K

PSO Hard (5 c) 123.9K 124.2K 148.3K

that the hard instances share some common features to make it difficult to solve
for all solvers. However, the obtained knowledge is not enough to compare the
algorithm capabilities to solve hard problem instances.

4 Multi-objective Investigations

Based on the experiment results in previous section, hard instances for each
algorithm are still hard for the others. In order to extract more useful knowledge
about the strengths or weaknesses of certain algorithms on constraint algorithms,
we need problem instances that are hard for one and easy for the others. Analysing
the features of these instances helps us extracting knowledge regarding the
strengths and weaknesses of algorithms by examining why an algorithm performs
better on some groups of features while the others fails. This will help us developing
more efficient prediction model for automated algorithm selection.
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To do this, we use a multi-objective DE algorithm (DEMO) described in
[10] to minimise the FEN for one algorithm and maximise it for the others. In
other words, the FEN for generated problem instances is higher (harder) for a
certain algorithm and lower (easier) for the others. In order to find instances
that are hard for one algorithm type and easy for the others, we need to find
solution as diverse as possible. Also, the solutions need to be close to pareto
front. Satisfying these two aims makes us to use multi-objective evolutionary
algorithm to generate problem instances. Hence, we use differential evolution
for multi-objective optimisation (DEMO) proposed by Robic in [10]. Based on
results in [10], the DEMO achieves efficiently the above two goals. In DEMO,
the candidate solution replaces parent when it dominates it and if the parent
dominates it, the candidate is discarded. Otherwise, if the candidate and parent
cannot dominate each other, the candidate is added to the population. The major
difference between DEMO and other multi-objective evolutionary algorithms is
that the newly generated good candidates are immediately used in creation of
the subsequent candidates. This improves fast convergence to the true pareto
front, while the use of non-dominated sorting and crowding distance metric in
truncation of the extended population promotes the uniform spread of solutions.
We refer the reader to [10] for further details and implementation.

In the following, we discuss the results for algorithms performances compar-
ison. We carry out 30 independent runs for each number of constraints that are
hard for one algorithm but still easy for the others. We set the evolving algo-
rithm (DEMO) generation number to 5000 and the other parameters of evolving
algorithm are set to pop size = 40, CR = 0.5, scaling factor = 0.9 and FENmax

is 300K. Values for these parameters have been obtained by optimising the
performance of the evolving algorithm in order to achieve the more easier and
harder problem instances. For each of three algorithms, their best parameters
are chosen [3,13,15]. First, the (εDEag) algorithm parameters are considered as:
generation number = 1500, pop size = 100, CR = 0.5, scaling factor = 0.5. Also,
the parameters for e-constraint method are described in [8]. Moreover, for evo-
lutionary strategy we perform (1, 7)-ES algorithm with 1500 generation using
Pf = 0.4 with tendency to focus on feasible solution. In HMPSO algorithm,
the swarm size N is set to 60, each sub-swarm size (Ns) is 8 and all the PSO
parameters are considered as Krohling and Coelho’s PSO [14]. In order to solve
generated COPs, HMPSO generation number is set to 1500. We need to say the
parameters for the solvers are identical to those given in [1,10,13,15]

In our all experiments, we generate set of problem instances that are hard to
one algorithm and easy to the other ones. Tables 3, 4, 5, 6, 7 and 8 show the func-
tion evaluation number (FEN) required for each algorithm to solve DE/ES/PSO
hard instances for Sphere, Ackley and Rosenbrock objective functions (with 1
to 5 linear/quadratic constraints). As it is observed, there is more difference
between the required FEN of instances generated by multi-objective algorithm
evolver than the single-objective one. For instance, the required FEN for solving
DE hard instances are higher for DE algorithm than solving it by ES and PSO
algorithm. It means the DE hard instances are only hard for DE algorithm and
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Table 3. The FEN required for each
algorithm to solve DE/ES/PSO hard
instances (Sphere for 1 to 5 linear
constraints)

Instances DE algo-

rithm

ES algo-

rithm

PSO algo-

rithm

DE hard (1 c) 86.3K 41.5K 43.2K

ES hard (1 c) 45.7K 84.2K 48.3K

PSO hard (1 c) 37.2K 41.8K 80.1K

DE hard (2 c) 88.8K 43.9K 44.2K

ES hard (2 c) 45.9K 85.4K 46.3K

PSO hard (2 c) 43.2K 42.5K 82.9K

DE hard (3 c) 91.4K 44.6K 45.3K

ES hard (3 c) 49.2K 87.8K 48.1K

PSO hard (3 c) 46.2K 47.7K 85.5K

DE hard (4 c) 94.2K 47.5K 47.8K

ES hard (4 c) 51.7K 89.1K 50.1K

PSO hard (4 c) 48.7K 49.9K 87.3K

DE hard (5 c) 96.2K 48.2K 49.5K

ES hard (5 c) 52.4K 90.4K 53.5K

PSO hard (5 c) 49.6K 51.4K 91.6K

Table 4. The FEN required for each
algorithm to solve DE/ES/PSO hard
instances (Sphere for 1 to 5 quadratic
constraints)

Instances DE algo-

rithm

ES algo-

rithm

PSO algo-

rithm

DE hard (1 c) 92.3K 50.2K 51.9K

ES hard (1 c) 48.8K 91.3K 49.3K

PSO hard (1 c) 44.5K 46.8K 93.1K

DE hard (2 c) 93.5K 52.9K 54.2K

ES hard (2 c) 50.9K 95.9K 51.2K

PSO hard (2 c) 50.2K 53.2K 96.3K

DE hard (3 c) 95.9K 54.3K 55.3K

ES hard (3 c) 53.9K 97.4K 52.4K

PSO hard (3 c) 57.3K 56.3K 98.9K

DE hard (4 c) 98.3K 56.4K 57.3K

ES hard (4 c) 56.3K 102.3K 52.1K

PSO hard (4 c) 59.2K 58.2K 101.6K

DE hard (5 c) 102.1K 58.3K 59.4K

ES hard (5 c) 59.2K 103.2K 60.2K

PSO hard (5 c) 62.6K 63.8K 105.2K

Table 5. The FEN required for each
algorithm to solve DE/ES/PSO hard
instances (Ackley for 1 to 5 linear
constraints)

Instances DE algo-

rithm

ES algo-

rithm

PSO algo-

rithm

DE hard (1 c) 102.3K 46.1K 51.4K

ES hard (1 c) 51.2K 104.7K 50.2K

PSO hard (1 c) 47.4K 49.8K 107.4K

DE hard (2 c) 112.1K 56.1K 54.1K

ES hard (2 c) 53.9K 115.9K 48.6K

PSO hard (2 c) 55.5K 55.3K 117.2K

DE hard (3 c) 126.1K 63.7K 65.2K

ES hard (3 c) 59.1K 128.3K 58.7K

PSO hard (3 c) 61.7K 62.8K 134.2K

DE hard (4 c) 124.9K 68.4K 63.1K

ES hard (4 c) 64.1K 129.8K 59.2K

PSO hard (4 c) 67.5K 69.2K 135.2K

DE hard (5 c) 138.8K 75.2K 74.1K

ES hard (5 c) 71.2K 137.1K 76.7K

PSO hard (5 c) 73.1K 74.1K 141.2K

Table 6. The FEN required for each
algorithm to solve DE/ES/PSO hard
instances (Ackley for 1 to 5 quadratic
constraints)

Instances DE algo-

rithm

ES algo-

rithm

PSO algo-

rithm

DE hard (1 c) 142.5K 60.1K 62.5K

ES hard (1 c) 58.5K 148.2K 61.4K

PSO hard (1 c) 53.2K 53.9K 147.7K

DE hard (2 c) 153.3K 58.1K 58.1K

ES hard (2 c) 59.2K 155.5K 59.2K

PSO hard (2 c) 57.8K 56.3K 157.2K

DE hard (3 c) 167.3K 65.2K 68.1K

ES hard (3 c) 63.2K 169.2K 69.8K

PSO hard (3 c) 65.7K 67.9K 167.6K

DE hard (4 c) 174.8K 71.2K 75.1K

ES hard (4 c) 66.8K 169.1K 72.9K

PSO hard (4 c) 69.1K 68.3K 172.9K

DE hard (5 c) 179.5K 75.1K 76.1K

ES hard (5 c) 72.8K 174.9K 77.4.2K

PSO hard (5 c) 75.1K 74.9K 175.9K

easy for the others. In the following we start analysing constraint features of
instances that are hard for one and easy for others.

4.1 Analysis for Linear Constraints

We run our experiments on Sphere, Ackley and Rosenbrock objective functions.
The linear constraints are considered as in Eq. 3 with all coefficients ans that are
in the range of [−5, 5]. Also, the problem dimension is set to 30. As it mentioned
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Table 7. The FEN required for each
algorithm to solve DE/ES/PSO hard
instances (Rosenbrock for 1 to 5 linear
constraints)

Instances DE algo-

rithm

ES algo-

rithm

PSO algo-

rithm

DE hard (1 c) 103.1K 48.2K 53.9K

ES hard (1 c) 53.1K 107.2K 52.7K

PSO hard (1 c) 45.7K 48.1K 109.2K

DE hard (2 c) 115.1K 57.8K 55.7K

ES hard (2 c) 54.7K 113.4K 46.1K

PSO hard (2 c) 54.8K 54.9K 119.5K

DE hard (3 c) 124.3K 65.2K 62.1K

ES hard (3 c) 58.8K 127.1K 59.7K

PSO hard (3 c) 62.3K 65.5K 136.1K

DE hard (4 c) 125.5K 69.1K 65.2K

ES hard (4 c) 67.5K 128.1K 58.7K

PSO hard (4 c) 64.9K 70.6K 137.1K

DE hard (5 c) 135.1K 74.1K 74.7K

ES hard (5 c) 73.7K 135.8K 75.1K

PSO hard (5 c) 72.3K 76.5K 140.9K

Table 8. The FEN required for each
algorithm to solve DE/ES/PSO hard
instances (Rosenbrock for 1 to 5
quadratic constraints)

Instances DE algo-

rithm

ES algo-

rithm

PSO algo-

rithm

DE hard (1 c) 143.1K 61.4K 63.7K

ES hard (1 c) 59.6K 149.7K 62.5K

PSO hard (1 c) 54.3K 54.2K 143.8K

DE hard (2 c) 155.2K 59.2K 59.2K

ES hard (2 c) 61.3K 154.8K 57.9K

PSO hard (2 c) 59.2K 57.1K 158.0K

DE hard (3 c) 168.9K 63.7K 66.8K

ES hard (3 c) 65.2K 170.1K 68.1K

PSO hard (3 c) 63.7K 68.1K 168.9K

DE hard (4 c) 175.1K 73.8K 76.9K

ES hard (4 c) 68.2K 172.7K 75.2K

PSO hard (4 c) 67.7K 69.1K 176.2K

DE hard (5 c) 180.2K 74.2K 77.8K

ES hard (5 c) 74.2K 175.1K 79.2K

PSO hard (5 c) 73.6K 74.4K 179.4K

before, to analyse and discuss some features such as shortest distance, we assume
that the optimum is zero (b ≤ 0). We use three types of problem instances.
DE hard denotes problem instances that are hard for DE algorithm but still
easy for PSO and ES algorithms. Also, ES hard instances are easy for DE and
PSO algorithm in this section. PSO hard means the instances that are hard
for PSO but easy for the rest. Each constraint is generated using multi-objective
evolver to generate instances that are hard for one algorithm but easy for others.
In the following we discuss the features of linear constraints.

Figure 1 represents some evidence of linear constraint coefficient relationship
(standard deviation). It is shown that standard deviation of (1 to 5) linear con-
straints are higher for DE hard instances than ES and PSO hard ones. This
result is similar for all Sphere, Ackley and Rosenbrock objective functions. This
means, the instances that are hard for DE algorithm but easy for ES and PSO
have higher standard deviation for their constraints coefficients. In other words,
this constraint feature has influence on problem difficulty. This improves the
prediction ability for algorithm selection framework.

Box plots shown in Fig. 2 represent the shortest distance from optimum fea-
ture for hard instances. Based on the experiments, hard instances for ES algo-
rithm have higher value (closer to optimum) shortest distance than the other
algorithms. It is noteworthy that lower value in Fig. 2 means the constraint hyper-
plane is further from optimum. In other words, the constraints hyperplanes are
closer to the optimum in ES hard instances. This relationship holds the pattern
for all objective functions in linear constraints. We also study the feasibility ratio
in vicinity of the optimum. As observed in Table 10, hard DE instances have lower
feasibility ratio comparing to PSO and ES hard instances. This follows the same
pattern for all experimented objective functions. Also increasing the number of



340 S. Poursoltan and F. Neumann

constraints decreases the problem optimum-local feasibility for all algorithm prob-
lem instances. The angle between linear constraints feature is analysed for linear
constraints. As it is observed in Table 9, ES hard instances have lower angle values
for all Sphere, Ackley and Rosenbrock objective functions. This means, instances
that are hard for ES have less angle value between their constraint hyperplanes.
Interestingly, all objective function that we use in this experiment follow the same
relationship.

As it is observed, to compare the instances, DE hard instances have higher
linear constraint coefficient standard deviation. It can be translated as DE
algorithm has more difficulty to coefficients standard deviation feature than
PSO and ES algorithms. Also, the local-optimum feasibility ratio value is higher
in ES and PSO hard instances than DE hard ones. This means, ES and PSO
algorithms are more effective to problems with higher optimum feasibility ratio
feature. The shortest distance and angle features for ES is less than DE and PSO
hard instances. Interestingly, this features are similar for all used objective func-
tions. The linear constraint feature based analysis gives us helpful knowledge to
implement algorithm selection framework.

4.2 Analysis for Quadratic Constraints

In this section, we carry out our experiments on Sphere, Ackley and Rosenbrock
objective function with quadratic constraints (see Eq. 4) using same setup as
previous section. In the following we do feature based analysis of constraints in
hard DE, PSO and ES instances (that are easy for the other algorithms).

Figure 1 shows some evidence of quadratic constraint coefficients relation-
ship. Based on our experiments, in each constraint, the quadratic coefficient has
more ability than linear coefficients to make problem harder to solve. In other
words, in Eq. 4, a1 is more contributing than a2 to problem difficulty. As it is
shown in the box plots, the standard deviation of 1 to 5 quadratic constraints in
DE hard instances are higher comparing the other two algorithm hard instances.
In contrast, our results show no systematic relationship between problem diffi-
culty and linear coefficients in each quadratic constraints and quadratic coeffi-
cients have more contribution in problem difficulty.

As it is observed in Fig. 2, the shortest distance feature for DE, PSO and
ES hard instances are compared. In instances that are hard for ES and easy for
the other algorithms, the quadratic constraint hyperplanes are closer to optimum
(zero). This applies to all experimented objective functions. Also, calculating the
angle feature for quadratic constraint does not show any systematic relationship
to problem difficulty. The feasibility ratio near the optimum is analysed for DE,
ES and PSO hard instances. As it is shown in Table 11, the feasibility ratio in DE
hard instances are lower than the other algorithms hard instances. All objective
functions have the same pattern. Also, the number of constraint has a systematic
relationship with feasibility ratio.

Based on the results, to compare COP instances with quadratic constraints,
DE hard instances have higher coefficient standard deviation value than the other
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Table 9. The angle feature for Sphere objective function for linear constraints

Cons 1,2 Cons 1,3 Cons 1,4 Cons 1,5 Cons 2,3 Cons 2,4 Cons 2,5 Cons 3,4 Cons 3,5 Cons 4,5

DE Hard 74 64 63 58 74 71 68 59 62 86

ES Hard 33 21 37 24 44 46 39 46 48 51

PSO Hard 75 63 82 68 71 73 72 69 81 86

Table 10. Optimum-local feasibility
ratio of search space near the optimum
for 1, 2, 3, 4 and 5 linear constraint

1 cons 2 cons 3 cons 4 cons 5 cons

DE Hard 6% 5% 3% 3% 2%

ES Hard 16% 11% 10% 6% 5%

PSO Hard 17% 12% 11% 8% 5%

Table 11. Optimum-local feasibility ratio
of search space near the optimum for 1, 2,
3, 4 and 5 quadratic constraint

1 cons 2 cons 3 cons 4 cons 5 cons

DE Hard 4% 4% 3% 2% 2%

ES Hard 14% 10% 8% 7% 5%

PSO Hard 15% 10% 9% 8% 7%

Fig. 1. Box plot for standard deviation of coefficients in linear constraints with objec-
tive functions: Sphere (A), Ackley (C) and Rosenbrock (E) and quadratic constraints
Sphere (B), Ackley (D) and Rosenbrock (F). Each sub figure includes hard instances
(H) with 1 to 5 constraints using algorithms (a/b/c denotes a: number of constraints,
b: hard instances and c: hard instances for DE/ES/PSO algorithm).

algorithm hard ones. It is translated as the DE algorithm has more difficulty solv-
ing instances with higher standard deviation value for their quadratic constraints
than ES and PSO. Also, the quadratic constraints are closer to optimum in ES
instances than the other experimented algorithms. In other words, ES algorithm
is more influenced by constraint with closer to optimum instances. Moreover, the
optimum feasibility ratio in DE instances are lower than PSO and ES.
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Fig. 2. Box plot for shortest distance feature in linear constraints with objective func-
tions: Sphere (A), Ackley (C) and Rosenbrock (E) and quadratic constraints Sphere
(B), Ackley (D) and Rosenbrock (F). Each sub figure includes hard instances (H) with
1 to 5 constraints using algorithms (a/b/c denotes a: number of constraints, b: hard
instances and c: hard instances for ES/PSO/DE algorithm).

5 Conclusion

In this paper, we carried out an algorithm performance comparison on each
others constrained problem instances. We then analysed the features and char-
acteristics of constraints that make them hard to solve for certain algorithm
but easy for the others. It is observed that some constraint features are more
contributing to problem difficulty for certain algorithms. In linear constraints,
some features such as coefficient relationship, angle, local-optimum feasibility
ratio and shortest distance play an important role in problem difficulty to DE
and ES algorithms. Considering quadratic instances, angle does not show any
relationship to problem difficulty.

By analysing how well one algorithm performs in conditions where other algo-
rithms fail, we can derive its strengths and weaknesses over constrained prob-
lems. These results can help us to improve the efficiency of algorithm prediction
model.
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