
Growing Greedy Search and Its Application
to Hysteresis Neural Networks

Kei Yamaoka and Toshimichi Saito(B)

Hosei University, Koganei, Tokyo 184-8584, Japan
tsaito@hosei.ac.jp

Abstract. This paper presents the growing greedy search algorithm
and its application to associative memories of hysteresis neural networks
in which storage of desired memories are guaranteed. In the algorithm,
individuals correspond to cross-connection parameters, the cost function
evaluates the number of spurious memories, and the set of individu-
als can grow depending on the global best. Performing basic numerical
experiments, the algorithm efficiency is investigated.

Keywords: Greedy search · Hysteresis neural nets · Associative mem-
ories

1 Introduction

The hysteresis neural network (HNN [1]) is a continuous-time recurent-type net-
work characterized by binary hysteresis activation function and ternary con-
nection parameters. Depending on parameters, the HNN can exhibits various
phenomena: co-existing equilibrium points, synchronization, chaos, and bifurca-
tion [2]. The dynamics is described by a piecewise linear differential equation and
he phenomena can be analyzed precisely. The HNN has been applied to asso-
ciative memories, analog-to-digital converters, and combinatorial optimization
problem solvers [1–5]. In the associative memories, we have several theoretical
results for storage and stability of desired memories [1]. However, it is hard to
suppress spurious memories.

This paper presents a simple evolutionary algorithm based on the greedy
search [6,7] and applies it to the suppression of the spurious memories. In the
greedy based algorithm, individuals correspond to cross-connection parameters
of the HNN and the cost function evaluates the number of spurious memories.
The initial individual is given by the correlation based learning [1] that guaran-
tees storage of desired memories. Bit-inversion and elite strategy are applied and
the results are evaluated. Depending on the evaluation, the number of individ-
uals can increase. This growing structure is the major difference from the clas-
sic greedy search. We refer to this algorithm as growing greedy search (GGS).
Performing numerical experiments for basic examples of associative memories,

T. Saito—This work is supported in part by JSPS KAKENHI#15K00350.

c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part III, LNCS 9491, pp. 315–322, 2015.
DOI: 10.1007/978-3-319-26555-1 36



316 K. Yamaoka and T. Saito

we have confirmed that the GGS operates effective to suppress the spurious
memories. Note that this is the first paper of the GGS. Although the GGS is
applied to the HNN in this paper, the GGS will be applied to various systems
[8–10].

2 Hysteresis Neural Networks

The dynamics of hysteresis neural network (HNN) is described by

ẋi = −xi +
N∑

l=1

wijyi + di ≡ −(xi − pi), i = 1 ∼ N

yi = h(xi) =
{

+1 for xi > −Th
−1 for xi < Th

(1)

where x ≡ (x1, · · · , xN ) is the inner state vector and y ≡ (y1, · · · , yN ), yi ∈
{−1, 1}, is the binary output vector. h(x) is the hysteresis activation function
as shown in Fig. 1: h(x) is switched from −1 to 1 (respectively, 1 to −1) if x
reaches the right threshold Th > 0 (respectively, the left threshold −Th). wij

is connection parameters and di is offset parameters. For simplicity, we assume
that the cross connection parameters are ternary and symmetric: wij = wji ∈
{−1, 0, 1}. We also assume that di = 0 and Th = 0. An equilibrium point of the
HNN is given by

p(y) ≡ (p1, · · · , pN ), pi =
N∑

l=1

wijyi (2)

Fig. 1. Binary hysteresis activation function

For stability of the equilibrium point p(y), we have

p(y) is stable if piyi > −Th for any i
p(y) is unstable if piyi ≤ −Th for some i

(3)

In the case where the HNN has equilibrium point, almost all solutions converges
to either equilibrium point if

wii + Th > 0 for i = 1 ∼ N (4)



Growing Greedy Search and Its Application to Hysteresis Neural Networks 317

Proofs of Eqs. (2)–(4) can be found in [1]. Hereafter, we consider an application
to the associative memory, First, we define the desired memories

s1, · · · , sM , sl ≡ (sl1, · · · , slN ), l = 1 ∼ M

If we can determine parameters such that the equilibrium point of some desired
memory is stable, the desired memory is said to be stored into the HNN. Storage
of all the desired memories is guaranteed in the CL-based learning defined as
the following [1]. First, the cross connection parameters are given by ternalizeing
correlation matrix:

wij =
{−1 for cij ≤ 0

+1 for cij > 0 , cij =
M∑

l=1

slis
l
j , i �= j (5)

The auto connection parameter wii is goven by the minimum integer that satisfies

0 < wii + Th + Qi, Qi = min
k

∑

i�=j

wijs
k
i s

k
j (6)

If equilibrium point of some output vector is stable and is not any desired mem-
ory, the output vector is said to be a spurious memory. Even if all the desired
memories are stored, there usually exist spurious memories. Suppression of the
spurious memories is an important problem in the associative memories.

3 Growing Greedy Search Algorithm

We present a novel evolutionary algorithm: the growing greedy search method
(GGS). First, we give basic definitions. Let t denote evolution steps and let
P i(t) ≡ (pi1(t), · · · piM (t)) be the i-th individual at step t where M is the dimen-
sion of the individual and i = 1 ∼ k(t). Note that the number of individuals k(t)
can vary. An individual corresponds to half of the cross-connection parameters:

P i(t) ≡ {wij}, i > j, i, j = 1 ∼ N

where M = N(N − 1)/2. The other half cross-connection parameters are given
by the symmetricity, wji = wij . The cost function is defined by

F (P i(t)) = the number of spurious memories

Substituting P i(t) into wij and substituting the output vectors into Eqs. (2)–
(4), this cost function can be calculated where wii is given by Eq. (6). The GGS
consists of the following two sub-programs.

3.1 GGS1: Bit Inversion

Step 1: Initialization. Let t = 0 and let k(t) = 1. The initial individual P i(t),
i = 1 ∼ k(t) is given by the CL-based learning of Eq. (5). The cost function is
also initialized, F (P i(t)). Let Gb denote the global best and let Gb(t) = F (P i(t))



318 K. Yamaoka and T. Saito

Step 2: One bit inversion. For P i(t), i = 1 ∼ k(t), one of the elements is inversed.
After the inversion, we obtain N × k(t) individuals Qj(t), j = 1 ∼ N × k(t).

Step 3: Evaluation. {Qj(t)} are evaluated by the cost function F . Let F (Qb(t))
be the best value of F (Qj(t)) for j = 1 ∼ N × k(t). The global best is updated:

Gb(t) ←
{
F (Qj(t)) if F (Qb(t)) < Gb(t)
Gb(t) otherwise (7)

If plural individuals Qj(t) have the same best value of F , then the individuals
are preserved in the next step and the number of individuals varies. If the num-
ber of the best individuals exceeds the number limit Ma then Ma of the best
individuals are selected randomly. For example, if Q1(t), Q7(t), and Q9(t) have
the same best value, these three individuals are preserved as P 1(t), P 2(t), and
P 3(t), respectively; and let k(t) ← 3.

Step 4: Update check of Gb. If the Gb(t) has not been updated Mb times then
the GGS1 is terminated and is switched to GGS2.

Step 5: Let t ← t + 1, go to Step 2, and repeat until the maximum time limit
tmax1.

3.2 GGS2: Zero Insertion

Step 1: Initialization. Let t ← t1 + 1 where t1 is the last step in GGS1. Let
k(t) = 0. P i(t), i = 1 ∼ k(t) is given by the best individuals after GGS1. If plural
best individuals exist, one of them is selected randomly. The cost function and
Gb are initialized by the P i(t).

Step 2: Zero insertion. For P i(t), i = 1 ∼ k(t), zero is inserted into one of the ele-
ments. After the insertion, we obtain N×k(t) individuals Rj(t), j = 1 ∼ N×k(t).

Step 3: Evaluation. {Rj(t)} are evaluated by the cost function F . Let F (Rb(t))
be the best value of F (Rj(t)) for j = 1 ∼ N × k(t). The global best is updated:

Gb(t) ←
{
F (Rj(t)) if F (Rb(t)) < Gb(t)
Gb(t) otherwise (8)

If plural individuals Qj(t) have the same best value of F , then the individuals
are preserved in the next step and the number of individuals varies. If the num-
ber of the best individuals exceeds the number limit Ma then Ma of the best
individuals are selected randomly.

Step 4: Update check of Gb. If the Gb(t) has not been updated Mb times then
the search is terminated.

Step 5: Let t ← t + 1, go to Step 2, and repeat until the maximum time limit
tmax2.



Growing Greedy Search and Its Application to Hysteresis Neural Networks 319

Table 1. Parameters after the CL-
based learning (1)

j 1 2 3 4 5 6 7 8

w1j +3 −1 −1 −1 +1 +1 +1 −1

w2j −1 +1 −1 −1 −1 −1 −1 +1

w3j +1 −1 +3 −1 −1 −1 +1 −1

w4j −1 −1 −1 +1 −1 −1 −1 +1

w5j +1 −1 −1 −1 +3 +1 −1 −1

w6j +1 −1 −1 −1 +1 +1 −1 +1

w7j +1 −1 +1 −1 −1 −1 +3 −1

w8j −1 +1 −1 +1 −1 +1 −1 +1

Table 2. Parameters after the CL-
based learning (2)

j 1 2 3 4 5 6 7 8

w1j +1 +1 +1 −1 −1 −1 +1 −1

w2j +1 +3 +1 −1 −1 −1 −1 −1

w3j +1 +1 +1 +1 −1 −1 −1 −1

w4j −1 −1 +1 +1 +1 +1 −1 −1

w5j −1 −1 −1 +1 +3 +1 −1 −1

w6j −1 −1 −1 +1 +1 +1 −1 +1

w7j −1 −1 −1 −1 −1 −1 +3 +1

w8j +1 −1 −1 −1 −1 +1 +1 +3

Table 3. Parameters after GGS1 (1)

j 1 2 3 4 5 6 7 8

w1j +4 +1 +1 −1 −1 −1 −1 −1

w2j +1 +6 +1 −1 −1 −1 +1 −1

w3j +1 +1 +2 +1 −1 −1 −1 −1

w4j −1 −1 +1 0 −1 −1 −1 +1

w5j −1 −1 −1 −1 0 +1 −1 −1

w6j −1 −1 −1 −1 +1 0 −1 +1

w7j −1 −1 −1 −1 +1 −1 +4 −1

w8j −1 −1 −1 +1 −1 +1 −1 0

Table 4. Parameters after GGS1 (2)

j 1 2 3 4 5 6 7 8

w1j 0 +1 +1 −1 −1 +1 +1 −1

w2j +1 +2 −1 −1 −1 −1 −1 −1

w3j +1 −1 0 +1 −1 −1 −1 −1

w4j −1 −1 +1 0 −1 +1 −1 −1

w5j −1 −1 −1 −1 +2 +1 −1 −1

w6j +1 −1 −1 +1 +1 0 −1 +1

w7j +1 −1 −1 −1 −1 −1 +4 +1

w8j −1 −1 −1 −1 −1 +1 +1 +4

Table 5. Parameters after GGS2 (1)

j 1 2 3 4 5 6 7 8

w1j +3 0 +1 0 −1 −1 0 −1

w2j 0 +4 0 −1 −1 −1 +1 −1

w3j +1 0 +2 0 −1 −1 +1 −1

w4j 0 −1 0 0 −1 −1 −1 +1

w5j −1 −1 −1 −1 +1 +1 0 −1

w6j −1 −1 −1 −1 +1 0 −1 +1

w7j 0 +1 +1 −1 0 −1 +2 −1

w8j −1 −1 −1 +1 −1 +1 +1 0

Table 6. Parameters after GGS2 (2)

j 1 2 3 4 5 6 7 8

w1j +1 +1 0 −1 −1 0 +1 0

w2j +1 +1 0 0 −1 −1 −1 0

w3j 0 0 +1 +1 0 −1 −1 −1

w4j −1 0 +1 +1 0 0 −1 −1

w5j −1 −1 0 0 +1 +1 0 −1

w6j 0 −1 −1 0 +1 +1 0 +1

w7j +1 −1 −1 −1 0 0 +2 +1

w8j 0 0 −1 −1 −1 +1 +1 +2



320 K. Yamaoka and T. Saito

4 Numerical Experiments

In order to investigate the algorithm efficiency, we have performed basic numeri-
cal experiments. We consider the following two examples of 14 desired memories.
Example 1 (s8–s14 are inverse patterns of s1–s7, respectively.)

s1 ≡ (−1, 1,−1,−1, 1, 1,−1, 1) = −s8

s2 ≡ (1,−1, 1,−1, 1,−1, 1,−1) = −s9

s3 ≡ (1, 1,−1,−1, 1, 1,−1,−1) = −s10

s4 ≡ (1, 1, 1,−1,−1,−1, 1,−1) = −s11

s5 ≡ (−1, 1, 1,−1, 1, 1,−1,−1) = −s12

s6 ≡ (1,−1, 1,−1, 1, 1,−1,−1) = −s13

s7 ≡ (−1, 1, 1, 1,−1,−1,−1, 1) = −s14

Fig. 2. Evolution process of Gb and #IDU (1)



Growing Greedy Search and Its Application to Hysteresis Neural Networks 321

Fig. 3. Evolution process of Gb and #IDU (2)

Example 2 (s8–s14 are inverse patterns of s1–s7, respectively.)

s1 ≡ (−1,−1,−1,−1, 1, 1, 1, 1) = −s8

s2 ≡ (1,−1,−1,−1,−1, 1, 1, 1) = −s9

s3 ≡ (1, 1,−1,−1,−1,−1, 1, 1) = −s10

s4 ≡ (−1,−1, 1, 1,−1,−1, 1, 1) = −s11

s5 ≡ (−1, 1,−1, 1,−1, 1,−1, 1) = −s12

s6 ≡ (−1,−1,−1, 1, 1, 1,−1, 1) = −s13

s7 ≡ (−1,−1,−1, 1, 1, 1, 1,−1) = −s14

Applying the CL-based learning, these desired memories can be stored into 8-
dimensional HNN (N = 8). Tables 1 and 2 show parameters after the CL-based
learning. However, the Examples 1 and 2 have 88 and 68 spurious memories,
respectively. In order to suppress the spurious memories, we have applied the
GGS1 (bit-inversion) and GGS2 (zero insertion). After trial-and-errors, the algo-
rithm parameters are set as the following.

tmax1 = tmax2 = 25,Ma = 20,Mb = 5

The GGS1 and GGS2 can remuve the spurious memories. Tables 3 and 4 show
parameters values after the GGS1. The Examples 1 and 2 have 12 and 22 spurious



322 K. Yamaoka and T. Saito

memories, respectively. Tables 5 and 6 show parameters values after the GGS2.
The Examples 1 and 2 have 4 and 6 spurious memories, respectively.

Figure 2 shows Gb and #IDU (the number of individuals) in the evolution
process of Example 1. In the figure, we can see that the GGS1 removes spurious
memories sufficiently. #IDU varies widely and the variation seems to be helpful
for the effective evolution. At t = 13, Gb improvement is stagnated and GGS1
is switched to GGS2. The GGS2 removes a few spurious memories and is not so
effective. At t = 21, the Gb improvement is stagnated and GGS2 is terminated.

Figure 3 shows Gb and #IDU in the evolution process of Example 2. In the
figure, we can see that the GGS1 cannot removes spurious memories sufficiently.
At t = 7, Gb improvement is stagnated and GGS1 is switched to GGS2. The
GGS2 works effectively to further removal of spurious memories. #IDU varies
and the variation seems to be effective. At t = 22, the Gb improvement is
stagnated and GGS2 is terminated.

5 Conclusions

A simple evolutionary algorithm, GGS (GGS1 and GGS2) is presented in this
paper. The GGS1 and GGS2 operate based on the bit-inversion and zero-insertion,
respectively. The individuals is evaluated by a cost function and the set of individ-
uals can grow depending on the evaluation by the cost function. The algorithm is
applied to the suppression problem of spurious memories in hysteresis neural net-
works. In basic experiments. the algorithm efficiency is confirmed.

Future problems include analysis of search process, effective setting of the
algorithm parameters, and application to various discrete problems.

References

1. Jin’no, K., Saito, T.: Analysis and synthesis of a continuous-time hysteresis neural
network. In: Proceedings of IEEE/ISCAS, pp. 471–474 (1992)

2. Jin’no, K., Nakamura, T., Saito, T.: Analysis of bifurcation phenomena in a 3 cells
hysteresis neural network. IEEE Trans. Circuit Syst. I 46(7), 851–857 (1999)

3. Jin’no, K., Tanaka, M.: Hysteresis quantizer, In: Proceedings of IEEE/ISCAS, pp.
661–664 (1997)

4. Nakaguchi, T., Jin’no, K., Tanaka, M.: Hysteresis neural networks for n-queens
problems. IEICE Trans. Fund. E82–A(9), 1851–1859 (1999)

5. Nakaguchi, T., Isome, S., Jin’no, K., Tanaka, M.: Box puzzling problem solver by
hysteresis neural networks. IEICE Trans. Fund. E84–A(9), 2173–2181 (2001)

6. Couvreur, C., Bresler, Y.: On the optimality of the backward greedy algorithm for
the subset selection problem. SIAM J. Matrix Anal. Appl. 21(3), 797–808 (2000)

7. Ertel, W.: Introduction to Artificial Intelligence. Springer, London (2009)
8. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-

putation abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)
9. Müezzinoglu, M.K., Güzelis, G.: A Boolean Hebb rule for binary associative mem-

ory design. IEEE Trans. Neural Netw. 15(1), 195–202 (2004)
10. Tarzan-Lorente, M., Gutierrez-Galvez, Dominique Martinez, D., Marco, S.: A Bio-

logically inspired associative memory for artificial olfaction. In: Proceedings of
IJCNN, pp. 25–30 (2010)


	Growing Greedy Search and Its Application to Hysteresis Neural Networks
	1 Introduction
	2 Hysteresis Neural Networks
	3 Growing Greedy Search Algorithm
	3.1 GGS1: Bit Inversion
	3.2 GGS2: Zero Insertion

	4 Numerical Experiments
	5 Conclusions
	References


