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Abstract. This study is concerned with the delay-range-dependent sta-
bility analysis for neural networks with time-varying delay and Markovian
jumping parameters. The time-varying delay is assumed to lie in an inter-
val of lower and upper bounds. The Markovian jumping parameters are
introduced in delayed neural networks, which are modeled in a continuous-
time along with finite-state Markov chain. Moreover, the sufficient condi-
tion is derived in terms of linear matrix inequalities based on appropriate
Lyapunov-Krasovskii functionals and stochastic stability theory, which
guarantees the globally asymptotic stable condition in the mean square.
Finally, a numerical example is provided to validate the effectiveness of
the proposed conditions.
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1 Introduction

Neural networks (NNs) constitute an important research topic in field of science
and technology because of their extensive applications to various domains such as
signal processing, parallel computing, and optimization problems [1,2]. Recently,
studies of NNs along with time-delays have become more popular, which make
NN models more complicated and interesting. Time-delays are encountered in
neural processing and signal transmission, which can destabilize the whole net-
works, create oscillatory behaviours, and even cause chaos. Therefore, the analy-
sis of NN models with time-delays plays a vital role in directly applying the NN
models in real world problems. Indeed, many researchers have conducted dynam-
ical analysis of NN models with time-delays (see, e.g., [3–6]).

Stability analysis plays a significant role in analysing time-delay systems. In
the literature, many researchers have conducted stability analysis of time-delay
systems using the Lyapunov-Krasowskii methodology with linear matrix inequal-
ities (LMIs) [7,8]. Due to the effects of time-delay, the stability criteria can be
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classified into two types, i.e., delay-independent stability and delay-dependent
stability. The delay-dependent stability criterion is less conservative as compared
with the delay-independent one in the case of small time-delays. As such, many
researchers have been investigated the delay-dependent stability criterion related
to a variety of problems (ref [4–8]). As an example, the authors in [4], discussed
the delay-dependent condition for cellular NNs with constant time-delays. Fur-
ther, the authors in [5–8] argued that delay is varying with respect to time, and
derived the stability conditions for NNs with time-varying delays. Based on the
proposed results, many researchers have studied the stability criteria of time-
varying delays that lie between 0 and their upper bounds, i.e., 0 ≤ τ(t) ≤ h. In
practice, a time-delay typically exists in an interval. In other words, a time-delay
varies in an interval for which the lower bound is not restricted to 0. For this
particular reason, the stability criteria pertaining to the time-delay range has
great significance for delayed NN models (see e.g., [9–12]). In [9], the authors
initially investigated the stability problem of NNs based on interval time-varying
delays by constructing an appropriate Lyapunov-Krasovskii function (LKF) and
utilizing the free weight matrix approach. They showed that the proposed results
were less conservative as compared with the existing results of NNs with interval
time-varying delays.

Recently, NNs with Markovian jumping parameters have been investigated
widely due to their random changes of structure. A NN has finite modes, and it
may jump from one to another at different times. It has been pointed out in [13]
that jumping between different NNs modes can be governed by a Markovian chain.
Therefore, many researchers have been investigated NNs with Markovian jump-
ing parameters (see, e.g.,[13–15]). As an example, the authors in [14] investigated
the delayed uncertain Hopfield NN models with Markovian parameters, and the
problem of state estimation was studied in [15] for jumping recurrent NN models
with discrete and distributed delays. However, to the best of the authors’ knowl-
edge, the lower bound of time-varying delay is not restricted to 0 in this paper. In
addition, not many results pertaining to stability analysis of NNs with Markovian
jumping parameters by using convex combination techniques based on the delay
interval have been established, which has motivated the present study.

Inspired by the above account, we aim to analyze the delay dependent stability
criteria for NN models with interval time-varying delays by constructing suitable
LKF and utilizing the free-weighting matrix approach, convex combination tech-
nique in this study. The sufficient condition is derived in terms of LMIs [16] for
the considered problem with Markovian jumping parameters. The obtained for-
mulae can be determined by using the Matlab LMI control toolbox. A numerical
example is provided to illustrate the effectiveness of the proposed results.

Notation: R
n and R

n×n represent the n-dimensional Euclidean space and
the set of all n × n real matrices, respectively. For a given matrix, A−1 and
AT , denote its inverse and transpose, X ≥ Y (similarly, X > Y ), where X
and Y are symmetric matrices, i.e., X − Y is positive semi-definite (similarly,
positive definite). ‖ · ‖ is the Euclidean norm in R

n. diag{· · · } stands for a
block diagonal matrix. The notation ∗ always denotes the symmetric block in
a symmetric matrix. (Ω,F , {Ft}t≥0,P) indicates a complete probability space
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with a filtration {Ft}t≥0 satisfying the usual conditions and E stands for the
mathematical expectation. L2

F0
([−h2, 0],Rn) denotes the family of all bounded

F0- measurable, C([−h2, 0],Rn) -valued random variables ξ = {ξ(θ) : −h2 ≤
θ ≤ 0} such that

∫ 0

−h2
|E(s)|2ds < ∞.

2 Problem Description and Preliminaries

Consider the following NN model with time-varying delays:

ẏi(t) = −aiyi(t) +
n∑

j=1

bijgj(yj(t)) +
n∑

j=1

cijgj(yj(t − τ(t))) + Ii, i = 1, . . . , n(1)

where n denotes the number of neurons in the NN, yi(t) denotes the state of
the ith neuron at time t. gj(yj(t)) is the activation function of the jth neuron
at time t. Parameters bij and cij represent, respectively, the connection weights
and the delayed connection weights, from the jth neuron to the i neuron. Ii is
the external bias on the ith neuron, ai > 0 denotes the rate with which the ith
neuron resets its potential to the resting state in isolation when it is disconnected
from the network and external inputs. The time-varying delay τ(t) satisfies the
following conditions.

0 ≤ h1 ≤ τ(t) ≤ h2, τ̇(t) ≤ μ, (2)

where h1, h2, and μ are constants. The NN model defined in (1) can be expressed
in the matrix-vector form as follows.

ẏ(t) = −Ay(t) + Bg(y(t)) + Cg(y(t − τ(t))) + I, (3)

where y(·) = [y1(·), y2(·), . . . , yn(·)]T ∈ R
n, A = diag{a1, . . . , an} > 0, B =

(bij)n×n, C = (cij)n×n, I = [I1, . . . , In] and g(y(·)) = [g1(y1(·)), . . . , gn(yn(·))]T .

Assumption 1: gi(·) in (1) satisfies

l−i ≤ gi(x1) − gi(x2)
x1 − x2

≤ l+i , ∀x1, x2 ∈ R, x1 	= x2, i = 1, ..., n, (4)

where l−i , l+i are known constants.
Taking the Markov jumping parameters into account, the delayed NN model

defined in (3) becomes

ẏ(t) = −A(η(t))y(t) + B(η(t))g(y(t)) + C(η(t))g(y(t − τ(t))) + I (5)

where η(t) (t ≥ 0) is a right-continuous Markov chain on the complete probability
space (Ω,F , {Ft}t≥0,P) taking values in a finite state space S = {1, 2, . . . , N}
with generator Γ = (γıj)N×N and transition probability from the ıth mode at t
to the jth mode, at t + Δt (ı, j ∈ S)

P{η(t + Δt) = j|η(t) = ı} =
{

γıjΔt + o(Δt), ı 	= j,
1 + γııΔt + o(Δt), ı = j,



300 S. Lakshmanan et al.

where Δt > 0 and limΔt→0
o(Δt)

Δt = 0, γıj ≥ 0 is the transition rate from ı to j,

if ı 	= j; while γıı = −
N∑

j=1, j�=ı

γıj. If we shift the equilibrium point y∗ in (5) to

the origin by letting x(t) = y(t) − y∗, system (5) can be transformed into:

ẋ(t) = −Aıx(t) + Bıf(x(t)) + Cıf(x(t − τ(t))), (6)

where x(t) = [x1(t), . . . , xn(t)]T is the state vector of the transformed system,
and fi(x(t)) = gi(xi(t) + y∗

i ) − gi(y∗
i ), i = 1, 2, ..., n.

From Assumption 1, fi(x(t)) satisfies

l−i ≤ fi(x1) − fi(x2)
x1 − x2

≤ l+i , ∀x1, x2 ∈ R, x1 	= x2, i = 1, ..., n. (7)

Let x(t, φ) be the state trajectories of system (6) with the initial condition
φ ∈ L2

F0
([−h2, 0],Rn). It can be seen that system (6) admits a trivial solution

x(t, 0) ≡ 0 corresponding to the initial condition φ = 0.

3 Main Results

For convenience, the following notations are used:

L1 = diag{l−1 , l−2 , · · · , l−n }, L2 = diag{l+1 , l+2 , · · · , l+n } and

ξT (t) =
[
xT (t) xT (t − h1) xT (t − τ(t)) xT (t − h2) fT (x(t)) fT (x(t − τ(t)) ẋT (t)

]
.

We derive a range-dependent time-delay stability condition for delayed NNs (6)
with Markovian jumping parameters in the following theorem.

Theorem 1. Given scalars h2 > h1 ≥ 0 and μ ≥ 0, the delayed NN model in (6)
is globally asymptotically stable in the mean square if symmetric matrices Pı > 0,
Ql > 0, R1 > 0, R2 > 0 (l = 1, 2, 3), positive diagonal matrices W,Δ,Γ1, Γ2 and
real matrices Na,Ma,Xa, Ya, Za(a = 1, 2) of appropriate dimensions exist, such
that the following LMIs hold:

⎡

⎣
Ξı

√
h1 N̄

√
h2 − h1 Ȳ

∗ −R1 0
∗ ∗ −R2

⎤

⎦ < 0, (8)

⎡

⎣
Ξı

√
h1 N̄

√
h2 − h1 X̄

∗ −R1 0
∗ ∗ −R2

⎤

⎦ < 0 (9)

where Ξı
7×7 with entries:

Ξ1,1 = −Z1Aı − AT
ı ZT

1 + Q1 + Q2 + Q3 + N1 + NT
1 − 2L1Γ1L2 +

N∑

j=1

γıjPj,
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Ξ1,2 = −N1 + NT
2 , Ξ1,5 = Z1Bı + Γ1(L1 + L2), Ξ1,6 = Z1Cı,

Ξ1,7 = P − LT
1 W + LT

2 Δ − AT
ı ZT

2 − Z1, Ξ2,2 = −Q1 − N2 − NT
2 + X1 + XT

1 ,

Ξ2,3 = −X1 + XT
2 , Ξ3,3 = −(1 − μ)Q3 − X2 − XT

2 + Y1 + Y T
1 − 2L1Γ2L2,

Ξ3,4 = −Y1 + Y T
2 , Ξ3,6 = Γ2(L1 + L2), Ξ4,4 = −Q2 − Y2 − Y T

2 ,

Ξ5,5 = −2Γ1, Ξ5,7 = W − Δ + BT
ı ZT

2 , Ξ6,6 = −2Γ2, Ξ6,7 = CT
ı ZT

2 ,

Ξ7,7 = h1R1 + (h2 − h1)R2 − Z2 − ZT
2 , N̄ = [NT

1 NT
2 0 0 0 0 0]T ,

X̄ = [0 XT
1 XT

2 0 0 0 0]T , Ȳ = [0 0 Y T
1 Y T

2 0 0 0]T .

Proof. Choose the following LKF for the delayed NN with Markovian jumping
in (6),

V (x(t), t, η(t) = ı) = x
T
(t)Pıx(t) + 2

n∑

j=1

(
wj

∫ xj(t)

0
(fj(s) − l

−
i s)ds + δj

∫ xj(t)

0
(l

+
i s − fj(s))ds

)

+

∫ t

t−h1

x
T
(s)Q1x(s)ds +

∫ t

t−h2

x
T
(s)Q2x(s)ds +

∫ t

t−τ(t)
x

T
(s)Q3x(s)ds

+

∫ 0

−h1

∫ t

t+θ

ẋ
T
(s)R1ẋ(s)dsdθ +

∫ −h1

−h2

∫ t

t+θ

ẋ
T
(s)R2ẋ(s)dsdθ. (10)

Let V (x(t), t, η(t) = ı, t > 0) LV (t) be the stochastic positive LKF. The weak
infinitesimal operator is defined as

LV (x(t), t, η(t) = ı) = lim
Δt→0

1
Δt

[
E{V x((t + Δt), r(t + Δt), t + Δt)|x(t), η(t) = ı}

−V (x(t), η(t) = ı, t)
]

=
∂V

∂t
+ ẋT (t)

∂V

∂x

∣
∣
∣
η(t)=ı

+
N∑

j=1

γıjV (x(t), t, ı, j).

Now take LV (t) along a given trajectory of the delayed NN in (6) as follows

LV (x(t), t, η(t) = ı) ≤ 2xT (t)Pıẋ(t) +

N∑

j=1

γıjx
T (t)Pjx(t) + 2[f(x(t)) − L1x(t)]T Wẋ(t)

+2[L2x(t)−f(x(t))]T Δẋ(t)+xT (t)Q1x(t)−xT (t−h1)Q1x(t−h1)

+xT (t)Q2x(t) − x(t − h2)Q2x(t − h2) + xT (t)Q3x(t)

−(1 − μ)xT (t − τ(t))Q3x(t − τ(t)) + h1ẋ(t)R1ẋ(t)

−
∫ t

t−h1

ẋT (s)R1ẋ(s)ds + (h2 − h1)ẋ
T (t)R2ẋ(t)

−
∫ t−h1

t−h2

ẋT (s)R2ẋ(s)ds. (11)
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where W = diag{w1, ..., wn} and Δ = diag{δ1, ..., δn}. It should be noted that

−
∫ t−h1

t−h2

ẋT (s)R2ẋ(s)ds = −
∫ t−h1

t−τ(t)

ẋT (s)R2ẋ(s)ds −
∫ t−τ(t)

t−h2

ẋT (s)R2ẋ(s)ds.

By Lemma 2.1 in [17], it follows that

−
∫ t

t−h1

ẋT (s)R1ẋ(s)ds ≤ h1ξT (t)N̄R−1
1 N̄T ξ(t) + 2ξT (t)N̄ [x(t) − x(t − h1)] (12)

∫ t−h1

t−τ(t)
ẋT (s)R2ẋ(s)ds ≤ (τ(t) − h1)ξ

T (t)X̄R−1
2 X̄T ξ(t)

+2ξT (t)X̄[x(t − h1) − x(t − τ(t))] (13)
∫ t−τ(t)

t−h2

ẋT (s)R2ẋ(s)ds ≤ (h2 − τ(t))ξT (t)Ȳ R2Ȳ T ξ(t)

+2ξT (t)Ȳ [x(t − τ(t)) − x(t − h2)]. (14)

Further, we add the following zero equation with any chosen matrices of Z1

and Z2

2[xT (t)Z1 + ẋT (t)Z2][−Aıx(t) + Bıf(x(t)) + Cıf(x(t − τ(t)) − ẋ(t)] = 0.(15)

Noting that for positive diagonal matrices Γ1, Γ2 and Assumption 1, one has

−fT (x(t))Γ1f(x(t)) + 2xT (t)Γ1(L1 + L2)f(x(t)) − 2xT (t)L1Γ1L2x(t) ≥ 0. (16)
−fT (x(t − τ(t)))Γ2f(x(t − τ(t))) + 2xT (t − τ(t))Γ2(L1 + L2)f(x(t − τ(t)))
−2xT (t − τ(t))L1Γ2L2x(t − τ(t)) ≥ 0. (17)

Substituting (12)–(14) into (11) and adding (15)–(17) into (11), yields

LV (x(t), t, η(t) = ı) ≤ ξT (t)
[
Ξı

τ(t)

]
ξ(t) (18)

where Ξτ(t) = Ξ + h1N̄R−1
1 N̄T + (τ(t) − h1)X̄R−1

2 X̄T + (h2 − τ(t))Ȳ R−1
2 Ȳ T .

Taking the mathematical expectation E on both sides of (18) and from LMIs
(8)–(9), we can obtain

E

{
LV (x(t), t, η(t) = ı)

}
≤ E

{
ξT (t)

[
Ξı

τ(t)

]
ξ(t)

}
≤ −λ{E{|x(t, φ, ı0)‖2}},

where λ = λmin

(
−Ξı

τ(t)

)
. This implies that system (8) is globally asymptotically

stable in the mean square. Notice that (τ(t)−h1)X̄R−1
2 X̄T +(h2−τ(t))Ȳ R−1

2 Ȳ T

is a convex combination of matrices X̄R−1
2 X̄T and Ȳ R−1

2 Ȳ T on τ(t) ∈ [h1, h2].
Therefore, by following the convex analysis approach, Ξτ(t) < 0 if and only if

Ξı
τ(t)

∣
∣
∣
τ(t)=h1

< 0, (19)

Ξı
τ(t)

∣
∣
∣
τ(t)=h2

< 0. (20)

Using Schur complement, (19)–(20) are equivalent to (8)–(9), respectively. This
completes the proof.
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Remark 1. A range-dependent time-delay stability criterion has been proposed
for a delayed NN model with Marakovian jumping parameters. The sufficient
condition has more information of the lower and upper bounds of time-varying
delays. Moreover, we have introduced few free weight matrices, and expressed
the derived sufficient condition in two LMIs (8) and (9) by using the convex
combination technique, which is based on τ(t) ∈ [h1, h2]. Here, it should be
mentioned that the restrictive condition of μ ≤ 1 has been removed in Theorm
3.1, and we can easily derive the corresponding results in the non-differentiable
case of time-varying delays when Q3 = 0 in LKF (10).

4 Numerical Example

A numerical example is presented to illustrate the potential benefits and effec-
tiveness of the developed method for delayed NNs with Markovian jumping
parameters. Consider a three-order delayed NN of (6) with mode ı = 2 and the
following parameters

A1 =
[
1.8 0 0
0 1.2 0
0 0 1.4

]
, A2 =

[
2 0 0
0 1.3 0
0 0 1.8

]
, B1 =

[
0.4 1.5 0.1
0.56 0 −1.4
0.1 1 1.2

]
,

B2 =
[ −0.5 1.2 0

−0.5 0 1
0.45 1.25 0.3

]
. C1 =

[
1.5 1 0.8
0 1.5 0

0.25 1.2 0.5

]
, C2 =

[
1.8 0 0.24
0 0.8 0

0.54 1.2 0.9

]
.

In this example, the activation function is assumed to satisfy Assumption 1
with l−1 = l−2 = l−3 = 0, l+1 = 0.2, l+2 = 0.2 and l+3 = 0.2. Then the transition

probability matrix is assumed to be Γ =
[−7 7

6 −6

]

. Let h1 = 0.5, h2 = 1, μ = 1.1.

Using the Matlab LMI control toolbox to solve LMIs (8)–(9) in Theorem 1, we
obtain the following feasible matrices:

P1 =
[

6.1996 −1.5709 −3.7824
−1.5709 5.2842 −0.2011
−3.7824 −0.2011 7.4683

]
, P2 =

[
6.0627 −1.5764 −3.7717

−1.5764 5.1513 −0.0142
−3.7717 −0.0142 7.1369

]
,

Q1 =
[

3.5372 −0.9294 −1.6140
−0.9294 2.7700 0.0282
−1.6140 0.0282 3.5646

]
, Q2 =

[
3.7535 −1.0086 −1.6783

−1.0086 2.8251 −0.0018
−1.6783 −0.0018 3.7860

]
.

Q3 =
[

1.3690 −0.4091 −0.7585
−0.4091 0.8596 0.0282
−0.7585 0.0282 1.3981

]
, R1 =

[
2.5604 −0.5296 −1.3084

−0.5296 3.3156 0.0930
−1.3084 0.0930 3.4785

]
,

R2 =
[

2.6831 −0.5575 −1.3459
−0.5575 3.3690 0.1050
−1.3459 0.1050 3.5392

]
, W = diag{6.1985, 6.7736, 6.3091},

Δ = diag{6.6897, 7.0455, 7.8224}.

Therefore, the proposed NN model with time-varying delays is globally asymp-
totically stable. In addition, Fig. 1(a) shows the convergence of the state trajec-
tories of the delayed NN model to the zero equilibrium point with different initial
conditions. The response of the Markovian jumping modes are shown in Fig. 1(b).

5 Conclusions

In this paper, we have studied the range-dependent time-delay stability criteria
for delayed NN models with Markovian jumping parameters. Based on suitable
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Fig. 1. (a). State trajectories of delayed NNs with different initial conditions. (b). The
response of Markovian jumping signal when mode ı = 2.

LKF, integral inequalities, LMI framework, and convex combination technique,
the conditions for delay-dependent stability criteria are derived. From the numer-
ical example, it is evident that the proposed method is effective, and is able to
provide less conservative results.
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