
Robust L2E Parameter Estimation of Gaussian
Mixture Models: Comparison with Expectation

Maximization

Umashanger Thayasivam1, Chinthaka Kuruwita2,
and Ravi P. Ramachandran1(B)

1 Rowan University, Glassboro, NJ, USA
{thayasivam,ravi}@rowan.edu

2 Hamilton College, Clinton, NY, USA
ckuruwit@hamilton.edu

Abstract. The purpose of this paper is to discuss the use of L2E esti-
mation that minimizes integrated square distance as a practical robust
estimation tool for unsupervised clustering. Comparisons to the expec-
tation maximization (EM) algorithm are made. The L2E approach for
mixture models is particularly useful in the study of big data sets and
especially those with a consistent numbers of outliers. The focus is on
the comparison of L2E and EM for parameter estimation of Gaussian
Mixture Models. Simulation examples show that the L2E approach is
more robust than EM when there is noise in the data (particularly out-
liers) and for the case when the underlying probability density function
of the data does not match a mixture of Gaussians.
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1 Introduction and Motivation

Mixture models and in particular Gaussian Mixture Models (GMM), are com-
monly used for density estimation and classification. In this era of Big Data and
everyday, the data is highly complex and enormous in size. Mixture models offer
a powerful and flexible way to represent the data. A comprehensive discussion
on mixture models can be found in [1,2].

When the number of mixture components is known and the component densi-
ties are assumed to belong to a specified parametric family, the popular Expecta-
tion Maximization (EM) algorithm [3] based on Maximum Likelihood Estimation
(MLE) is often used to estimate the GMM parameters. However, when there is
a small perturbation in one of the component densities, MLE becomes signifi-
cantly biased and very sensitive to outliers [4]. Furthermore, when the data is
not Gaussian, the EM method may not cluster a set of data points to a Gaussian
with a meaningful mean vector and covariance matrix. The EM based approach
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is not robust when the underlying probability density function of the data does
not match a mixture of Gaussians (known as a data/model mismatch).

To overcome this limitation, Scott [5–8] introduced an alternative minimum
distance estimation method based on the integrated squared error criterion
(termed L2E) which avoids the use of nonparametric kernel density estima-
tors. The L2E approach is a special case of a general method introduced in [9]
that is based on a whole continuum of divergence estimators that begin with
MLE and interpolate to the L2E estimator. Markatou [10] used the weighted
likelihood estimation approach to address the effects of data/model mismatch
on parameter estimates.

In this paper, the focus is on the L2E as an alternative to the EM for parame-
ter estimation of models with a known finite number of mixtures. A discussion
of the EM and L2E approaches are given. Simulation results specific to GMM
are shown to depict the robustness property of the L2E method with respect to
noise in the data (particularly outliers) and data/model mismatch [11–13].

The basic notation in this paper is as follows. Let fθm
(x) denote a general

mixture probability density function with m components as given by

fθm(x) =
m∑

i=1

πif(x|φi) (1)

where θm = (π1, . . . , πm−1, πm,φ1
T , . . . ,φm

T )T , the weights πi > 0,
∑m

i=1 πi =
1 and f(x|φi) is a probability density function with parameter vector φi. In
theory, the f(x|φi) could be any parametric density, although in practice they
are often from the same parametric family (usually Gaussian).

2 EM Algorithm

The Expectation-Maximization (EM) algorithm [3] is broadly based on the iter-
ative computation of MLE. The EM method alternates between two steps:

1. Expectation (E) step: Computes an expectation of the likelihood by including
the latent variables as if they were observed and a

2. Maximization (M) step: computes the maximum likelihood estimates of the
parameters by maximizing the expected likelihood found in the E step.

The parameters found in the M step are then used to begin another E step and
the process is repeated.

For finite mixture models, the observed data samples X = {x1, · · ·,xn} are
viewed as incomplete. The complete data is obtained as Z = {xi,yi} for i = 1
to n where yi = (y1i, · · ·,ymi)T is a latent (unobserved or missing) indicator
vector with yij = 1 if xi is from the mixture component j and zero otherwise.
The log-likelihood of Z is defined by

L(θm|Z) =
n∑

i=1

m∑

j=1

yij log yij log[πjf(xi|φj)] (2)
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The EM algorithm obtains a sequence of estimates θ(t), t = 0, 1, · · · by alter-
nating the E-Step and the M-Step until some convergence criterion is met.

1. E-Step: Calculate the Q function, the conditional expectation of the com-
plete log-likelihood, given X and the current estimate θ(t).

2. M-Step: Update the estimate of the parameters by maximizing the Q
function.

In the case of GMM, maximizing Q provides an explicit solution. In most
instances, EM has the advantages of reliable global convergence, low cost per iter-
ation, economy of storage, ease of programming and heuristic appeal. However,
its convergence can be very slow in simple problems which are often encountered
in practice. Also, when there is a small perturbation in one of the component
densities due to noise in the data, the MLE estimates become highly unsta-
ble due to the lack of robustness to outliers. For the case of GMM [14], this
can be seen easily as maximization of the likelihood function under an assumed
Gaussian distribution is equivalent to finding the least-squares solution, whose
lack of robustness is well known. As a robust alternative we discuss an approach
based on the minimization of the integrated square distance, namely L2E.

3 Robust L2E Estimator

The integrated squared distance has been used as the goodness-of-fit criterion
in nonparametric density estimation for a long time. In the classic papers of
Scott [6,7], an alternative minimum distance estimation method based on the
integrated squared error criterion, termed L2E, was introduced and has the
following attributes.

1. The use of nonparametric kernel density estimators is avoided.
2. The L2E is especially suited for parameter-rich models such as mixture

models.
3. The genesis of Scott the L2E approach, which can be traced to the pioneering

work of Rudemo [15] and Bowman [16], is computationally feasible and leads
to robust estimators.

4. The L2E is a special class of robust estimators like the median-based estima-
tors, which sacrifice some asymptotic efficiency for substantial computational
benefits in difficult estimation problems.

5. The L2E estimator performs much better than other robust estimators such
as minimum Hellinger estimates (MHD) under severe data contamination.

The L2E estimator belongs to the family of minimum density power diver-
gence (MDPD) estimators introduced in [9] with the tuning parameter α = 1.
The tuning parameter α in an MDPD estimator controls the trade-off between
robustness and efficiency. It is also shown that the robustness of the L2E estima-
tor is achieved at a fairly stiff price in asymptotic efficiency [9]. For the normal,
exponential and Poisson distributions with small values of α ≤ 0.10, the MDPD
has strong robustness properties and retains high asymptotic relative efficiency
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(ARE) with respect to MLE. However, within the family of density-based power
divergence measures, the L2E approach has the distinct advantage that a key
integral can be computed in closed form, especially for Gaussian mixtures.

3.1 L2E Algorithm

Given the true probability density g(x) and the finite mixture with m compo-
nents, fθm

(x), consider the L2 distance between fθm
and g(x) as given by

L2(fθm
, g(x)) =

∫ ∞

−∞
[fθm

(x) − g(x)]2dx. (3)

The aim is to derive an estimate of θm that minimizes the L2 distance [5–7,11–
13]. Expanding Eq. (3) gives

L2(fθm
, g(x)) =

∫ ∞

−∞
f2

θm
(x)dx − 2

∫ ∞

−∞
fθm

(x)g(x)dx

+
∫ ∞

−∞
g(x)2dx (4)

where the last integral is a constant with respect to θm and therefore, may be
ignored for the minimization. The first integral in Eq. (4) is often available as
a closed form expression that, for Gaussian mixtures, may be evaluated for any
specified value of θm as shown later in Eq. (7). The second integral in Eq. (4)
is simply the average height of the density estimate, which may be estimated
as −2n−1

∑n
i=1 fθm

(Xi) where Xi is a sample observation. Based on the above
analysis, the L2E estimator of θm is given by

θ̂
L2E

m = arg min
θm

[∫ ∞

−∞
f2

θm
(x)dx − 2n−1

n∑

i=1

fθm
(Xi)

]
, (5)

3.2 GMM Models

For multivariate Gaussian mixtures,

f(x|φi) = φ(x| μi, Σi) (6)

where μi is the mean vector and Σi is the covariance matrix for component i.
In this case, the problem reduces to finding the L2E estimator for a Gaussian
Mixture Model (GMM). Now, the first integral in Eq. (4) reduces to

∫ ∞

−∞
f2

θm
(x)dx =

m∑

k=1

m∑

l=1

πkπl φ(μk − μl| 0, Σk + Σl), (7)

thereby making Eq. (4) tractable for minimization and significantly reducing the
computations involved in getting the L2E estimator. Since this is a computa-
tionally feasible closed-form expression, estimation of the GMM parameters by
the L2E procedure may be performed by any standard nonlinear optimization
algorithm [5,6,11–13]. In this work, we used the ‘nlminb’ nonlinear minimization
routine in [17].
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4 Experimental Results

4.1 Performance Due to Data Contamination (Outliers)

In this section, simulations using EM and L2E parameter estimates are compared
when there is no data contamination and when there is (with and without the
presence of outliers/noise).

Gaussian Mixture Model with No Outliers: A GMM model f(x) with
two components, each being a univariate Gaussian density φ(x) is simulated as
given by

f(x) = 0.75φ(x| μ1 = 0, σ2
1 = 1) + 0.25φ(x| μ2 = 1, σ2

2 = 1). (8)

The variable μ denotes the mean and the variable σ2 denotes the variance. A
total of 10000 sample points from the above Gaussian mixture (see Eq. (8)) are
generated and parameter estimation is performed. A total of 100 Monte Carlo
simulations are performed to evaluate consistency and efficiency.

Fig. 1. Boxplots of the estimated mean for L2E and EM from 100 Monte Carlo Sim-
ulations of a GMM Model With No Outliers

The boxplots of the parameter estimates of the component means for the
mixture model in Eq. (8) with no data contamination are shown in Fig. 1. The
results clearly show that both solutions are comparable and close to the true
estimates. Note that the average of the 100 Monte Carlo estimates of the L2E
and EM means are close to the true value.
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Gaussian Mixture Model with Outliers: The second simulation extends
our study by adding outliers to illustrate the robustness property of L2E against
outliers. In this case, 9900 sample points from the above Gaussian mixture in
Eq. (8) are contaminated by adding 100 sample points (outliers) simulated from
φ(x| μ = 5, σ2 = 1). Once again, 100 Monte Carlo simulations are performed to
evaluate the performance of L2E and EM for consistency and efficiency.

Fig. 2. Boxplots of the estimated mean for L2E and EM from 100 Monte Carlo Sim-
ulations of a GMM Model With Outliers

The boxplots of the parameter estimates of the component means for the
mixture model in Eq. (8) with 1 % data contamination are shown in Fig. 2. The
results clearly show that the outliers have a great influence on the EM method
and that the L2E method is inherently robust to outliers.

4.2 Performance Due to Data/Model Mismatch

In this section, data/model mismatch is assessed. The robustness of L2E and EM
is investigated when the postulated model is a mixture of Gaussians (GMM) but
the data are generated from a mixture with symmetric departure from compo-
nent normality. The setup as described in [12,18] is considered for the parameter
estimation. More specifically, for the simulation study, a mixture with two com-
ponents given by

fθ2(x) = πf1(x) + (1 − π)f2(x), (9)

is considered. Note that f1 is the density associated with a random variable
X1 = aY1 (a = 1 chosen for the simulation) and Y1 is a Student’s t(df)-random
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variable with a degree of freedom df = 1. Also, f2 is the density associated with
a random variable X2 = Y2 + b (b = 2 chosen for the simulation) and Y2 is
a Student’s t(df)-random variable with degrees of freedom df = 4. A total of
100 data points were generated and 50 Monte Carlo simulations were conducted
to evaluate the performance of L2E and EM for consistency and efficiency by
calculating the Bias and Mean Square Error (MSE).

Suppose T (X) is an estimate of θ. The Bias and MSE of T are defined as

Bias(θ) = EθT − θ (10)
MSE(θ) = Eθ(T − θ)2 = V arθ(T ) + Bias2(θ) (11)

Note that the general shapes of such a two-component postulated (Gaussian
mixture) model and a two-component t-mixture model from which the data are
generated are different and further, the component densities in the sampling
model have a much heavier tail than those in the postulated (Gaussian) mixture
model. Table 1 depicts the bias and the mean square error for the mean estimates
provided by the L2(E) and EM algorithms. The results show that the L2E is
more robust than the EM approach with respect to data/model mismatch.

Table 1. Simulation results for data/model mismatch

Estimation method Component 1 Component 2

Bias MSE Bias MSE

L2E 0.4 1.57 0.11 0.84

EM −0.43 9.66 1.15 16.55

5 Summary and Conclusions

The L2E estimation technique can be easily constructed and applied to GMM
and is a viable alternative to EM. Simulation studies revealed that the L2E mean
estimates are robust to both outliers and data/model mismatch. The competitive
performance of L2E make it stand out as an attractive alternative to EM for
practical applications.
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