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Abstract. This paper presents a novel sufficient condition for the exis-
tence, uniqueness and global robust asymptotic stability of the equilib-
rium point for the class of delayed neural networks by using the Homo-
morphic mapping and the Lyapunov stability theorems. An important
feature of the obtained result is its low computational complexity as the
reported result can be verified by checking some well-known properties
of some certain classes of matrices, which simplify the verification of the
derived result.
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1 Introduction

In recent years, dynamical neural networks have been widely used in solving
various classes of engineering problems such as image and signal processing,
associative memory, pattern recognition, parallel computation, control and opti-
mization. In such applications, the equilibrium and stability properties of neural
networks are of great importance in the design of dynamical neural networks.
It is known that in the VLSI implementation of neural networks, time delays
are unavoidably encountered during the processing and transmission of signals,
which may affect the dynamics of neural networks. On the other hand, some
deviations in the parameters of the neural network may also affect the stability
properties. Therefore, we must consider the time delays and parameter uncer-
tainties in studying stability of neural networks, which requires to deal with the
robust stability of delayed neural networks. Recently, many conditions for global
robust stability of delayed neural networks have been reported [1–19]. In this
paper, we present a new sufficient condition for the global robust asymptotic
stability of neural networks with multiple time delays.

Consider the following neural network model:

dxi(t)
dt

= −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t − τij)) + ui (1)
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where n is the number of the neurons, xi(t) denotes the state of the neuron
i at time t, fi(·) denote activation functions, aij and bij denote the strengths
of connectivity between neurons j and i at time t and t − τij , respectively; τij

represents the time delays, ui is the constant input to the neuron i, ci is the
charging rate for the neuron i.

The parameters aij and bij and ci are assumed to satisfy the conditions

CI = [C,C] = {C = diag(ci) : 0 < ci≤ci≤ci, i = 1, 2, ..., n}
AI = [A,A] = {A = (aij)n×n : aij≤aij≤aij , i, j = 1, 2, ..., n} (2)

BI = [B,B] = {B = (aij)n×n : bij≤bij≤bij , i, j = 1, 2, ..., n}
The activation functions fi are assumed to satisfy the condition:

|fi(x) − fi(y)|≤�i|x − y|, i = 1, 2, ..., n, ∀x, y ∈ R, x �=y

where �i > 0 denotes a constant. This class of functions is denoted by f ∈ L.
The following lemma will play an important role in the proofs:

Lemma 1. [3]: Let A be any real matrix defined by

A ∈ AI = [A,A] = {A = (aij)n×n : aij≤aij≤aij , i, j = 1, 2, ..., n}

Let x = (x1, x2, ..., xn)T and y = (y1, y2, ..., yn)T . Then, we have

2xT Ay ≤ β
n∑

i=1

x2
i +

1
β

n∑

i=1

piy
2
i

where β is any positive constant, and

pi =
n∑

k=1

(âki

n∑

j=1

âkj), i = 1, 2, ..., n

with âij = max{|aij |, |aij |}, i, j = 1, 2, ..., n.

2 Global Robust Stability Analysis

In this section, we present the following result:

Theorem 1. For the neural system (1), let the network parameters satisfy (2)
and f ∈ L. Then, the neural network model (1) is globally asymptotically robust
stable, if there exist positive constants α and β such that

εi = 2ci − β − 1
β

pi�
2
i −

n∑

j=1

(α�j +
1
α

b̂2ji�i) > 0, i = 1, 2, ..., n

where pi =
∑n

j=1(âji

∑n
k=1 âjk), i = 1, 2, ..., n and âij = max{|aij |, |aij |} and

b̂ij = max{|bij |, |bij |}, i, j = 1, 2, ..., n.
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Proof. In order to prove the existence and uniqueness of the equilibrium point
of system (1), we consider the following mapping associated with system (1):

H(x) = −Cx + Af(x) + Bf(x) + u (3)

Clearly, if x∗ is an equilibrium point of (1), then, x∗ satisfies the equilibrium
equation of (1):

−Cx∗ + Af(x∗) + Bf(x∗) + u = 0

Hence, we can easily see that every solution of H(x) = 0 is an equilibrium point of
(1). Therefore, for the system defined by (1), there exists a unique equilibrium
point for every input vector u if H(x) is homeomorphism of Rn. Now, let x,
y ∈ Rn be two different vectors such that x �= y. For H(x) defined by (3), we
can write

H(x) − H(y) = −C(x − y) + A(f(x) − f(y)) + B(f(x) − f(y)) (4)

For f ∈ L, first consider the case where x �= y and f(x) − f(y) = 0. In this case,
we have

H(x) − H(y) = −C(x − y)

from which x − y �= 0 implies that H(x) �= H(y) since C is a positive diagonal
matrix. For f ∈ L, now, consider the case where x − y �= 0 and f(x) − f(y) �= 0.
In this case, multiplying both sides of (4) by 2(x − y)T results in

2(x − y)T (H(x) − H(y)) = − 2(x − y)T C(x − y) + 2(x − y)T A(f(x) − f(y))
+ 2(x − y)T B(f(x) − f(y))

= − 2
n∑

i=1

ci(xi − yi)2 + 2(x − y)T A(f(x) − f(y))

+ 2
n∑

i=1

n∑

j=1

bij(xi − yi)(fj(xj) − fj(yj)) (5)

We first note the following inequality:

2
n∑

i=1

n∑

j=1

bij(xi − yi)(fj(xj) − fj(yj))

≤
n∑

i=1

n∑

j=1

2|bij ||xi − yi||fj(xj) − fj(yj)|

≤
n∑

i=1

n∑

j=1

2|bij |�j |xi − yi||xj − yj |

≤
n∑

i=1

n∑

j=1

�j(α(xi − yi)2 +
1
α

b2ij(xj − yj)2)
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= α

n∑

i=1

n∑

j=1

�j(xi − yi)2 +
1
α

n∑

i=1

n∑

j=1

b2ij�j(xj − yj)2

= α

n∑

i=1

n∑

j=1

�j(xi − yi)2 +
1
α

n∑

i=1

n∑

j=1

b2ji�i(xi − yi)2

≤
n∑

i=1

n∑

j=1

(α�j +
1
α

b̂2ji�i)(xi − yi)2 (6)

For any positive constant β, we can also write

2(x− y)TA(f(x)− f(y)) ≤ β(x− y)T (x− y)+
1

β
(f(x)− f(y))T ATA(f(x)− f(y)) (7)

For f ∈ L, from Lemma 1, we can write

(f(x) − f(y))T AT A(f(x) − f(y)) ≤
n∑

i=1

pi(fi(xi) − fi(yi))2

≤
n∑

i=1

pi�
2
i (xi − yi)2 (8)

Hence, in the light of (6)–(8), (5) takes the form:

2(x − y)T (H(x) − H(y)) ≤ −2

n∑

i=1

ci(xi − yi)
2 + β

n∑

i=1

(xi − yi)
2)

+
1

β

n∑

i=1

pi�
2
i (xi − yi)

2 +
n∑

i=1

n∑

j=1

(α�j +
1

α
b̂2ji�i)(xi − yi)

2

which is equivalent to

2(x − y)T (H(x) − H(y)) ≤ −
n∑

i=1

(2ci − β − 1
β

pi�
2
i −

n∑

j=1

(α�j+
1
α

b̂2ji�i))(xi − yi)2

= −
n∑

i=1

εi(xi − yi)2 ≤ −εm

n∑

i=1

(xi − yi)2

= −εm||x − y||22 (9)

where εm = min{εi}, i = 1, 2, ..., n. Let x − y �= 0 and εm > 0. Then,

(x − y)T (H(x) − H(y)) < 0

from which we can conclude that H(x) �= H(y) for all x �= y. In order to show
that ||H(x)|| → ∞ as ||x|| → ∞, we let y = 0 in (9), which yields

xT (H(x) − H(0)) ≤ −εm||x||22
from which it follows that ||H(x) − H(0)||1 ≥ εm||x||2. Using the property
||H(x)−H(0)||1 ≤ ||H(x)||1+||H(0)||1, we obtain ||H(x)||1 ≥ εm||x||2−||H(0)||1
Since ||H(0)||1 is finite, it follows that ||H(x)|| → ∞ as ||x|| → ∞. This com-
pletes the proof of the existence and uniqueness of the equilibrium point of (1).
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We will now prove the global asymptotic stability of the equilibrium point of
system (1). We first shift the equilibrium point x∗ of system (1) to the origin.
Using zi(·) = xi(·) − x∗

i , i = 1, 2, ..., n, puts the (1) in the form:

żi(t) = −cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τij)) (10)

where gi(zi(·)) = fi(zi(·)+x∗
i )−fi(x∗

i ). Note that f ∈ L implies that g ∈ L with

|gi(z)|≤�i|z|, and gi(0) = 0, i = 1, 2, ..., n

Since z(t) → 0 implies that x(t) → x∗, the asymptotic stability of z(t) = 0 is
equivalent to that of x∗. In order to prove the global asymptotic stability of
z(t) = 0, we will employ the following positive definite Lyapunov functional:

V (z(t)) =
n∑

i=1

z2i (t) +
n∑

i=1

n∑

j=1

(γ +
1
α

�j b̂
2
ij)

∫ t

t−τij

z2j (ξ)dξ

where α and γ are some positive constants. The time derivative of the functional
along the trajectories of system (10) is obtained as follows

V̇ (z(t)) = − 2
n∑

i=1

ciz
2
i (t) + 2

n∑

i=1

n∑

j=1

aijzi(t)gj(zj(t))

+ 2
n∑

i=1

n∑

j=1

bijzi(t)gj(zj(t − τij))

+
n∑

i=1

n∑

j=1

1
α

�j b̂
2
ijz

2
j (t) −

n∑

i=1

n∑

j=1

1
α

�j b̂
2
ijz

2
j (t − τij)

+ γ
n∑

i=1

n∑

j=1

z2j (t) − γ
n∑

i=1

n∑

j=1

z2j (t − τij) (11)

We have

−
n∑

i=1

ciz
2
i (t)≤ −

n∑

i=1

ciz
2
i (t) (12)

For any positive constant β, we can write

2
n∑

i=1

n∑

j=1

aijzi(t)gj(zj(t)) ≤ βzT (t)z(t) + 1
β gT (z(t))AT Ag(z(t)) (13)

From Lemma 1, we obtain:

gT (z(t))AT Ag(z(t)) ≤
n∑

i=1

pig
2
i (zi(t))
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Since |gi(zi(t))|≤�i|zi(t)|, (i = 1, 2, ..., n), (14) can be written as

gT (z(t))AT Ag(z(t)) ≤
n∑

i=1

pi�
2
i z

2
i (t) (14)

Using (14) in (13) results in

2zT (t)Ag(z(t))≤β

n∑

i=1

z2i (t) +
1
β

n∑

i=1

pi�
2
i z

2
i (t) (15)

We also note that

2
n∑

i=1

n∑

j=1

bijzi(t)gj(zj(t − τij)) ≤
n∑

i=1

n∑

j=1

2|bij ||zi(t)||gj(zj(t − τij))|

≤
n∑

i=1

n∑

j=1

2�j |bij ||zi(t)||zj(t − τij)|

≤
n∑

i=1

n∑

j=1

�j(αz2i (t) +
1
α

b̂2ijz
2
j (t − τij)) (16)

where α is a positive constant. Using (12), (15) and (16) in (11), we obtain

V̇ (z(t)) ≤ −2
n∑

i=1

ciz
2
i (t) +

n∑

i=1

βz2i (t) +
1
β

n∑

i=1

pi�
2
i z

2
i (t)

+
n∑

i=1

n∑

j=1

�jαz2i (t) +
n∑

i=1

n∑

j=1

1
α

�ib̂
2
jiz

2
i (t)

+ γ

n∑

i=1

n∑

j=1

z2j (t) − γ

n∑

i=1

n∑

j=1

z2j (t − τij)

which can be written as

V̇ (z(t)) ≤ −
n∑

i=1

(2ci − β − 1
β

pi�
2
i −

n∑

j=1

(α�j +
1
α

b̂2ji�i))z2i (t)

+ γ

n∑

i=1

n∑

j=1

z2j (t) − γ

n∑

i=1

n∑

j=1

z2j (t − τij)

= −
n∑

i=1

εiz
2
i (t) + γ

n∑

i=1

n∑

j=1

z2j (t) − γ

n∑

i=1

n∑

j=1

z2j (t − τij)

≤ −
n∑

i=1

εmz2i (t) + γ
n∑

i=1

n∑

j=1

z2j (t)

= −εm||z(t)||22 + nγ||z(t)||22 = −(εm − nγ)||z(t)||22 (17)
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In (17), γ < εm

n implies that V̇ (z(t)) is negative definite for all z(t) �= 0. Now
let z(t) = 0. Then, V̇ (z(t)) is of the form:

V̇ (z(t)) = − 1
α

n∑

i=1

n∑

j=1

�j b̂
2
ijz

2
j (t − τij) −

n∑

i=1

n∑

j=1

γz2j (t − τij)

≤ −
n∑

i=1

n∑

j=1

γz2j (t − τij)

in which V̇ (z(t)) < 0 if there exists at least one nonzero zj(t−τij), implying that
V̇ (z(t)) = 0 if and only if z(t) = 0 and zj(t−τij) = 0 for all i, j, and V̇ (z(t)) < 0
otherwise. Also note that, V (z(t)) is radially unbounded since V (z(t)) → ∞
as ||z(t)|| → ∞. Hence, the origin system (10), or equivalently the equilibrium
point of system (1) is globally asymptotically stable.

3 Conclusions

By employing Homomorphic mapping theorem and Lyapunov stability theorem,
we have derived a new result for the existence, uniqueness and global robust
stability of equilibrium point for neural networks with constant multiple time
delays with respect to the Lipschitz activation functions. The key contribution
of this paper is to establish some new relationships between the upper bound
absolute values of the elements of the interconnection matrix, which is given in
Lemma 1. The obtained condition is independently of the delay parameters and
establishes a new a relationship between the network parameters of the system.
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