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Abstract. We propose wave-based computing based on coupled oscilla-
tors to avoid the inter-connection bottleneck in large scale and densely
integrated cognitive systems. In addition, we introduce the concept of
reservoir computing to coupled oscillator systems for non-conventional
physical implementation and reduction of the training cost of large and
dense cognitive systems. We show that functional approximation and
regression can be efficiently performed by synchronization of coupled
oscillators and subsequent simple readouts.
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1 Introduction

It never ceases to amaze us how biological systems perform complex cognitive
tasks such as memorization, recognition and categorization. Cognitive comput-
ing is an approach for realizing such cognitive abilities artificially. However, soft-
ware implementations at biologically realistic level have proved to be highly
power-hungry and computer-intensive so far because of their serial operation
and von-Neumann bottleneck of the current architecture. In this respect, hard-
ware implementations are of great interest because of their parallel operation
and distributed information representation.

On the other hand, current VLSI technologies also are facing several seri-
ous challenges. Complexity of placement and wiring in VLSI design increasingly
becomes a major bottleneck of chip performance [5]. Since the flexible and diverse
capabilities of brains come from massive synaptic inter-connections rather than
the function of individual neurons, current hardware implementation is not
necessarily efficient in terms of interconnections.

We need to consider other possibilities for implementation than conventional
CMOS-based VLSI technology, such as nano-structures since it is quite unclear
whether the integration by CMOS scaling continues in the future [3]. Our main
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question is that how we can realize interconnection-centric cognitive comput-
ing systems on such non-conventional physical systems beyond the bottleneck
of hard wiring. To this end, we make use of physical waves as an alternative
to hard wiring. The use of wave dynamics for computing is attracting much
interest recently in the research pursuing post-CMOS technology. For example,
wave-based multi-valued logic by superposition of spin waves was proposed as
more power- and area-efficient computing framework than CMOS based digital
computing [4]. From our perspective, waves have an attractive property that
they can propagate in any direction and at any distance as long as there exists
medium transmitting waves, which makes them a promising alternative for hard
wiring. This lead us to explore computing systems where computing elements
interacting through wave propagation. In this work, we use oscillators as comput-
ing elements and realize wave-based computing systems as coupled oscillators.
We show the phase locking in a synchronized state of coupled oscillators can
approximate a given function.

The cost of modifying inter-connections by learning will become another seri-
ous bottleneck if we are going to build cognitive systems on non-conventional
physical systems. In this respect, it is useful to apply the framework of reservoir
computing, where training is performed only in readout part outside compu-
tational part called reservoir [6]. The reservoirs do not need to be traditional
neural networks but can be built on a variety of physical systems such as cou-
pled oscillators. We realize the reservoirs as coupled oscillators and show that the
phase dynamics of coupled oscillators can be viewed as a special case of reservoir
computing in time domain. We also show function approximation problems can
be robustly solved by wave-based reservoir computing using synchronization of
coupled oscillators.

2 Wave-Based Reservoir Computing

The reservoir computing is an emerging computation framework for design of
recurrent neural networks [6]. Generally, reservoir computing systems have two
functional components. One is a fixed recurrent neural network, called reservoir,
which is a (non-linear) mapping of input data to a high dimensional space and
should be complex enough to generate rich dynamical behaviour. The other
is adaptive read-out functions which extract desired results from the reservoir
output.

In this work, we realize the interconnection in the reservoir as wave prop-
agation to avoid interconnection bottleneck. In addition, we use oscillators as
the computational elements because they can naturally interact through waves.
Thus, we formulate the phase domain reservoir computing as phase dynam-
ics of coupled oscillators. Even if the dynamics is restricted to phase domain,
it can still exhibit very rich behaviour such as phase transition, clustering and
synchronization, enough to potentially perform complex computational tasks [8].
For example, coupled oscillators has been applied to associative memory systems
[2] and convolutional neural networks [7]. Since the wave-related phenomena and
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Fig. 1. Proposed architecture of wave-based reservoir computing

synchronization are abundant in the natural world, the wave-based computing
is expected to be advantageous for physical implementation. Therefore, we use
synchronization dynamics for stable computation in this work.

Figure 1 shows the overall architecture of the proposed wave-based reservoir
computing. Multiple waves modulated by analog information are fed into the
reservoir. The reservoir consists of coupled oscillators designed for specific com-
putational tasks. Then, read-out functions are applied to obtain desired results
after the reservoir dynamics reaches a final state. We can apply adaptive filters
such as least mean square filters or simple perceptrons to read-out functions.

3 Phase Dynamics of Coupled Oscillators

3.1 Phase Response Curves

Suppose that a stable limit cycle X0(θ), θ ∈ [0, 2π) → R
n is subject to a small

impulse stimulus I. Since the limit cycle is neutrally stable along its orbit and
stable in the directions orthogonal to its orbit, the small impulse stimulus I
results in a small phase shift on the limit cycle. The phase shift caused by
I can be described by the following phase response curve g(θ; I) = Δθ =
θ(X0(θ) + I) − θ, where θ(X) : X → [0, 2π) is mapping from the point on
the limit cycle X to its phase θ. Since the strength of stimulus |I| is small, the
phase response curve is well approximated by linear response as g(θ; I) ∼= Z(θ)·I.
Here, we introduce the linear response coefficient of phase response for small I as
Z(θ) = ∇Xθ(X)|X=X0(θ). The linear response coefficient Z(θ) is the 2π-periodic
impulse response function for the phase shift and called phase sensitivity func-
tion. Though both I and Z(θ) are n dimensional vectors, we assume hereafter
these two functions are scalar functions for simplicity.

Under some assumptions such as weakness of stimulus and linearity of
response, the phase response can be understood from the viewpoint of linear
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system theory [1]. That is, the total phase response caused by input stimulus
I(θ) during one cycle of oscillation is given by the circular linear convolution as

H(θ; I) =
∫ 2π

0

Z(θ0) · I(θ − θ0)dθ0. (1)

The interactions through the phase response (1) is the counterpart of those in the
reservoir of time domain. Since the interactions in the reservoirs of time domain
are generally nonlinear, the linearity of response (1) means that the wave-based
reservoir computing in phase domain is a special class of reservoir computing
in time domain. However, we will show in Sect. 4 that wave-based reservoir can
still perform complex tasks such as function approximations.

3.2 Phase Synchronization

Consider a N coupled stable limit cycle oscillators described by the following
equation.

dXi(t)
dt

= Fi(Xi(t)) +
N∑

j �=i

Gij(Xj(t)), i = 1, . . . , N. (2)

Here, Xi = (xi, yi . . .)T ∈ R
n is the state variables of the oscillator i, Fi is

a nonlinear function describing limit cycle oscillation. The function Gij means
the interaction waveform from the oscillator j to the oscillator i determined by
the physical interactions among the oscillators, for example, chemical materials,
electric currents, surface acoustic waves on elastic bodies, spin waves on magnetic
materials, etc. If the interaction is small enough, the Eq. (2) can be reduced to
the following dynamical phase equations [9]

dθi(t)
dt

= ωi +
N∑

j �=i

Hij(θi − θj), i = 1, . . . , N. (3)

Here, θi and ωi are the phase and the natural frequency of oscillator i, respec-
tively. The function Hij is called phase coupling function and computed as the
phase response (1) with the input stimulus replaced with the interaction wave-
form between two oscillators:

Hij(θi − θj) =
∫ 2π

0

Z(θ) · Gij(θj − θi + θ)dθ,Gij(θ) = Gij(Xj(θ)). (4)

In a synchronized state, all the oscillators have a common frequency θ̇i = ω̄ and
their phase locked state are given by θi(t) = ω̄t + φi. Thus, the existence of a
phase-locked synchronized state reduces to solving the following set of equations

ω̄ = ωi +
N∑

j �=i

Hij(φij), φij = φi − φj , i = 1, . . . , N. (5)
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4 Function Approximation and Regression by
Wave-Based Reservoir Computing

4.1 Function Approximation by Two Coupled Oscillators

Consider a system of two symmetrically coupled oscillators given by

dθ1(t)
dt

= ω1 + H(θ1 − θ2),
dθ2(t)

dt
= ω2 + H(θ2 − θ1), (6)

where we assume the phase interaction function is an odd function H(θ2 −θ1) =
−H(θ1−θ2). Then, in a synchronized state, it can be easily seen that the common
frequency is given by ω̄ = (ω1 + ω2)/2 and the phase difference φ = φ1 − φ2

satisfies
Δ = −2H(φ), Δ = ω1 − ω2. (7)

The stability of the phase difference can be judged by two conditions. The first
condition is that −Δ/2 is within the range [min H(φ),max H(φ)] so that Eq. (7)
has at least one solution φ∗. The second condition is that the solution φ∗ satisfies
H ′(φ∗) < 0 so that the phase difference φ∗ is stable.

The basic idea for function approximation is that we design the phase cou-
pling function H so that the phase difference after synchronization gives the
inverse of the desired function of the difference of two frequencies ω1 and ω2.
This is a kind of inverse problems where we need to find an interaction waveform
which realize the given target function. Since the Eq. (4) is a linear convolution
of two functions, we can find the appropriate interaction waveforms for the tar-
get phase interaction function by Fourier transforms [9]. Figure 2(a) shows the
examples of interaction waveforms for the target function H(φ) = a

√
φ and logit

function (inverse of the sigmoid function) defined as H(φ) = a+ε log(φ/(2π−φ)).
Here, we extended the square root function as H(φ) = −ε

√−φ,−π ≤ φ ≤ 0 and
H(φ) = ε

√
φ, 0 ≤ φ ≤ π so that H(φ) becomes a 2π-periodic odd function. In

addition, we assumed that the phase sensitivity function is Z(θ) = cos(θ)−sin(θ)
and applied numerical FFT and IFFT by digitizing H and Z with 100 sampling
points equally spaced on [0, 2π).

We can realize arithmetic operations such as adder and multiplier based
on this function approximation by two coupled oscillators. We can implement
the adder ω1 ± ω2 by reading out 2ω̄ of the synchronized oscillators in (6).
Similarly, we can implement the square operation ω �→ ω2 by Δ = −2H(φ) =
−√

2φ. Note that there is only one stable fixed point for Δ < 0 since −√
2φ is a

monotonously decreasing function. Using these two operations and the identity
xy = ((x+y)2 − (x−y)2)/4, we can construct a multiplier ω1ω2 as is depicted in
Fig. 2(b) under the restriction that input variables ω1 and ω2 satisfy ω1 ± ω2 ∈
[min H(φ),max H(φ)].

4.2 Functional Regression by an Oscillator Reservoir

Though we can realize any target function as the phase interaction function by
the method in Sect. 4.1, the problem is that we need to re-design the interactions
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Fig. 2. (a) Phase sensitivity function Z(θ) = sin θ − cos θ, interaction waveforms for
square root function with a = 0.05 and logit function with a = 0, ε = 0.01. (b) Coupled
oscillators computing the product ω1ω2.

depending on the target function. This is a disadvantage especially for non-
conventional implementation such as nano structures. In this subsection, we show
that one fixed oscillator reservoir can approximate different target functions. Let
us consider the coupled oscillators connected in star-like topology as illustrated
in Fig. 3. The phase dynamics is written as

dθ0(t)
dt

= ω +
N∑

j=1

H0n(θ0 − θn),
dθn(t)

dt
= Hn0(θn − θ0), n = 1, . . . , N. (8)

We assume that the phase interaction functions are all odd H0n(−φ) = −H0n(φ),
the interaction between oscillator 0 and n are symmetric H0n(φ) = Hn0(φ) and
all the oscillators have the same phase sensitivity function Z(θ). We initialize the
coupled oscillators so that only the central one oscillates with frequency ω and
the rest are all quiescent. After synchronization state is reached, the oscillators
have common frequency ω̄ and relative phase difference φn − φ0 which satisfies

ω̄ = ω +
N∑

n=1

H0n(φ0 − φn), ω̄ = Hn0(φn − φ0), n = 1, . . . , N. (9)

It can be easily seen that the common frequency is ω̄ = ω/(N + 1). Assum-
ing φ0 = 0 and replacing ω̄ with ω, we calculate the n-th basis functions as
fn(ω) = H−1

n0 (ω) by the method in Sect. 4.1. Thus, we can view the reservoir of
N + 1 coupled oscillators as calculating N different basis functions in parallel.
We employ sigmoid functions fn(ω) = 1

1+exp(−(ω−pn)/ε) as basis functions and
set the parameters to pn = 2πn/N and ε = 0.1.

Given a target function f(ω), we approximate f(ω) by the linear combination
of basis functions f1, . . . , fN as follows

f̂(ω) =
N∑

n=1

anfn(ω). (10)
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Fig. 3. The oscillator reservoir for linear regression at training stage

(a) Regression for ω2 with N = 5 and
N = 10 oscillators.

(b) Regression errors for√
ω, ω2, sin ω.

Fig. 4. Functional regression by oscillator reservoir.

The role of the readout function is to determine the coefficients a = (a1, . . . , aN )
by minimizing the mean square error

min
a1,...,aN

∫ 2π

0

(f(ω) − f̂(ω))2dω. (11)

at training stage and to output the estimated value f̂(ω) by (10) at operation
stage. The minimization of (11) can be achieved by solving the normal equa-
tion Ca = r , where C = (cij), cij =

∫ 2π

0
fi(ω)fj(ω)dω and r = (r1, . . . , rN ),

ri =
∫ 2π

0
f(ω)fi(ω)dω. Figure 4(a) shows the regression for target function φ2

by solving the normal equation. To perform the training online, we choose ran-
domly ωi from 100 sampling points equally spaced on [0, 2π) and inject wave with
frequency ωi to the central oscillator. After the oscillator reservoir reaches syn-
chronization, the readout updates the coefficients by stochastic gradient descent
method as a ← a + αeiφi, ei = f(ωi) − f̂(ωi),φi = (f1(ωi), . . . , fN (ωi)). We
choose the step size parameter α = 0.01 and iterate this update 104 times.
Figure 4(b) shows that how root mean square error is improved by increasing
the number of oscillators for f(ω) =

√
ω, ω2, sin ω.
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5 Conclusion

We have proposed a framework for wave-based reservoir computing based on syn-
chronization of coupled oscillators. We applied the proposed framework to func-
tion approximation and regression and showed that such problems can be solved
efficiently due to the parallelism and stability of synchronized state. In sum-
mary, wave-based reservoir computing is promising for large scale and densely
integrated cognitive computing systems.
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