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Abstract. In this paper, we develop an adaptive dynamic programming-
based robust tracking control for a class of continuous-time matched
uncertain nonlinear systems. By selecting a discounted value function
for the nominal augmented error system, we transform the robust track-
ing control problem into an optimal control problem. The control matrix
is not required to be invertible by using the present method. Meanwhile,
we employ a single critic neural network (NN) to approximate the solu-
tion of the Hamilton-Jacobi-Bellman equation. Based on the developed
critic NN, we derive optimal tracking control without using policy iter-
ation. Moreover, we prove that all signals in the closed-loop system are
uniformly ultimately bounded via Lyapunov’s direct method. Finally, we
provide an example to show the effectiveness of the present approach.

Keywords: Adaptive dynamic programming · Robust control ·
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1 Introduction

During the past several decades, robust tracking control of nonlinear systems has
attracted considerate attention [1–3]. Many significant approaches have been
proposed. Among these methods, the feedback linearization approach is often
employed. However, to use the feedback linearization method, the control matrix
needs to be invertible. This requirement is usually hard to satisfy in applications.

Recently, adaptive dynamic programming (ADP) [4] is applied to give
the optimal tracking control of nonlinear systems. In [5], Heydari and
Balakrishnan proposed a single network adaptive critic architecture to obtain the
optimal tracking control for continuous-time (CT) nonlinear systems. By employ-
ing the architecture, the control matrix was no longer required to be invertible.
After that, Modares and Lewis [6] introduced a discounted value function for
the CT constrained-input optimal tracking control problem. By proposing an
ADP algorithm, the optimal tracking control was obtained without requiring
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the control matrix to be invertible either. Though the aforementioned literature
provides important insights into deriving optimal tracking control for CT nonlin-
ear systems, the ADP-based robust tracking control for CT uncertain nonlinear
systems is not considered.

In this paper, an ADP-based robust tracking control is developed for CT
matched uncertain nonlinear systems. By choosing a discounted value function
for the nominal augmented error dynamical system, the robust tracking control
problem is transformed into an optimal control problem. The control matrix is
not required to be invertible in the present method. Meanwhile, a single critic
neural network (NN) is used to approximate the solution of the Hamilton-Jacobi-
Bellman (HJB) equation. Based on the developed critic NN, the optimal tracking
control is obtained without using policy iteration. In addition, all signals in the
closed-loop system are proved to be uniformly ultimately bounded (UUB) via
Lyapunov’s direct method.

The rest of the paper is organized as follows. Preliminaries are presented in
Sect. 2. The problem transformation is given in Sect. 3. Approximating the HJB
solution via ADP is shown in Sect. 4. Simulation results are provided in Sect. 5.
Finally, several conclusions are given in Sect. 6.

2 Preliminaries

Consider the CT uncertain nonlinear system given by

ẋ(t) = f(x(t)) + g(x(t))u(t) + Δf(x(t)) (1)

where x(t) ∈ R
n is the state vector available for measurement, u(t) ∈ R

m is
the control vector, f(x(t)) ∈ R

n and g(x(t)) ∈ R
n×m are known functions with

f(0) = 0, and Δf(x(t)) ∈ R
n is an unknown perturbation. f(x) + g(x)u is

Lipschitz continuous on a compact set Ω ⊂ R
n containing the origin, and system

(1) is assumed to be controllable.

Assumption 1. There exists a constant gM > 0 such that 0 < ‖g(x)‖ ≤ gM

∀x ∈ R
n. Δf(x) = g(x)d(x), where d(x) ∈ R

m is unknown function bounded by
a known function dM (x) > 0. Moreover, d(0) = 0 and dM (0) = 0.

Assumption 2. xd(t) is the desired trajectory of system (1). Meanwhile, xd(t)
is bounded and produced by the command generator model ẋd(t) = η(xd(t)),
where η : Rn → R

n is a Lipschitz continuous function with η(0) = 0.

Objective of Control: Without the requirement of the control matrix g(x) to be
invertible, a robust control scheme based on ADP is developed to keep the state
of system (1) following the desired trajectory xd(t) to a small neighborhood of
the origin in the presence of the unknown term d(x).
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3 Problem Transformation

Define the tracking error as eerr(t) = x(t) − xd(t). Then, the tracking error
dynamics system is derived as

ėerr(t) = f(xd(t) + eerr(t)) + g(xd(t) + eerr(t))u(t)
− η(xd(t)) + Δf(xd(t) + eerr(t)). (2)

In this sense, the robust tracking control can be obtained by giving a control
such that, without the requirement of g(·) to be invertible, system (2) is stable
in the sense of uniform ultimate boundedness and the ultimate bound is small.

Denote z(t) = [eTerr(t), x
T
d (t)]T ∈ R

2n. By Assumption 2 and using (2), we
derive an augmented system for the error dynamics as

ż(t) = F (z(t)) + G(z(t))u(t) + ΔF (z(t)) (3)

where F : R2n → R
2n and G : R2n → R

2n×m are, respectively, defined as

F (z(t)) =
[
f(xd(t) + eerr(t)) − η(xd(t))

η(xd(t))

]
, G(z(t)) =

[
g(xd(t) + eerr(t))

0

]

and ΔF (z(t)) = G(z(t))d(z(t)) with d(z(t)) ∈ R
m and ‖d(z(t))‖ ≤ dM (z(t)).

In what follows we show that the robust tracking control problem can be
transformed into the optimal control problem with a discounted value function
for the nominal augmented error system (i.e., system (3) without uncertainty).

The nominal augmented system is given as

ż(t) = F (z(t)) + G(z(t))u(t). (4)

The value function for system (4) is described by

V (z(t)) =
∫ ∞

t

e−α(τ−t)
[
ρd2M (z(τ)) + Ū

(
z(τ), u(τ)

)]
dτ (5)

where α > 0 is a discount factor, ρ = λmax(R), and λmax(R) denotes the max-
imum eigenvalue of R, Ū(z, u) = zTQ̄z + uTRu with Q̄ = diag{Q, 0n×n}, and
Q ∈ R

n×n and R ∈ R
m×m are symmetric positive definite matrices.

According to [7], the optimal control for system (4) with the value function
(5) is

u∗(z) = −(1/2)R−1GT(z)V ∗
z (6)

where V ∗
z = ∂V ∗(z)/∂z and V ∗(z) denotes the optimal value of V (z) given in

(5). Meanwhile, the corresponding HJB equation is derived as

ρd2M (z) + V ∗T
z (F (z) + G(z)u∗) − αV ∗(z) + zTQ̄z + u∗TRu∗ = 0. (7)

Theorem 1. Consider the CT nominal system described by (4) with the value
function (5). Let Assumptions 1 and 2 hold. Then, the optimal control u∗(x)
given in (6) ensures system (2) to be stable in the sense of uniform ultimate
boundedness and the ultimate bound can be kept small.
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Proof. Taking the derivative of V ∗(z) along the system trajectory ż = F (z) +
G(z)u∗ + ΔF (z), we have V̇ ∗(z) = V ∗T

z

(
F (z) + G(z)u∗) + V ∗T

z ΔF (z). Noticing
that V ∗T

z ΔF (z) = −2u∗TRd(z) and by (7), we obtain V̇ ∗(z) = −ρd2M (z) −
zTQ̄z − u∗TRu∗ − 2u∗TRd(z) + αV ∗(z). Then it can be rewritten as V̇ ∗(z) =
−ρd2M (z)−eTerrQeerr−

(
u∗+d(z)

)T
R

(
u∗+d(z)

)
+dT(z)Rd(z)+αV ∗(z). Observing

that ρ = λmax(R) and ‖d(z)‖ ≤ dM , we derive V̇ ∗(z) ≤ −λmin(Q)‖eerr‖2 +
αV ∗(z). Because u∗ is actually an admissible control, there exists a constant
bv∗ > 0 such that ‖V ∗(z)‖ ≤ bv∗ . Thus, V̇ ∗(z) ≤ −λmin(Q)‖eerr‖2 + αbv∗ . So,
V̇ (z) < 0 as long as eerr is out of the set Ω̃eerr = {eerr : ‖eerr‖ ≤ √

αbv∗/λmin(Q)}.
By Lyapunov Extension Theorem [8], we obtain that the optimal control u∗

guarantees eerr(t) to be UUB with ultimate bound
√

αbv∗/λmin(Q). Moreover,
if α is selected to be very small, then

√
αbv∗/λmin(Q) can be kept small enough.

From Theorem 1, we can find that the robust tracking control can be obtained
by solving the optimal control problem (4) and (5). In other words, we need
get the solution of (7). In what follows, a novel ADP-based control scheme is
developed to obtain the approximate solution of (7). Before proceeding further,
we present an assumption used in [9,10].

Assumption 3. Let L1(z) ∈ C1 be a Lyapunov function candidate for system
(4) and satisfied L̇1(z) = LT

1z

(
F (z)+G(z)u∗) < 0 with L1z the partial derivative

of L1(z) with respect to z. In addition, there exists a symmetric positive definite
matrix Λ(z) ∈ R

2n×2n such that LT
1z

(
F (z) + G(z)u∗) = −LT

1zΛ(z)L1z.

4 Approximate the HJB Solution via ADP

By using the universal approximation property of NNs, V ∗(z) given in (7) can
be represented by a single-layer NN on a compact set Ω̃ as

V ∗(z) = WT
c σ(z) + ε(z) (8)

where Wc ∈ R
N0 is the ideal NN weight, σ(z) = [σ1(z), σ2(z), . . . , σN0(z)]T ∈

R
N0 is the activation function with σj(z) ∈ C1(Ω̃) and σj(0) = 0, the set

{σj(z)}N0
1 is often selected to be linearly independent, N0 is the number of

neurons, and ε(z) is the NN function reconstruction error.
Substituting (8) into (6), we have

u∗(z) = −(1/2)R−1GT(z)∇σTWc + εu∗ (9)

where ∇σ = ∂σ(z)/∂z and εu∗ = −(1/2)R−1GT(z)∇ε. Meanwhile, by using (8),
(7) becomes

WT
c ∇σF − αWT

c σ + zTQ̄z + ρd2M (z) − (1/4)WT
c ∇σA∇σTWc = εHJB (10)

where A = G(z)R−1GT(z) and εHJB = −∇εTF + αε + (1/2)WT
c ∇σA∇ε +

(1/4)∇εTA∇ε is the HJB approximation error [11].
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Due to the unavailability of Wc, u∗(z) given in (9) cannot be implemented
in real control process. Therefore, we use a critic NN to approximate V ∗(z) as

V̂ (z) = ŴT
c σ(z) (11)

where Ŵc is the estimated weight of the ideal weight Wc. The weight estimation
error for the critic NN is defined as W̃c = Wc − Ŵc.

Using (11), the estimated value of optimal control u∗(z) is

û(z) = −(1/2)R−1GT(z)∇σTŴc. (12)

Combining (7), (11) and (12), we obtain the residual error as δ = ŴT
c ∇σF −

αŴT
c σ + zTQ̄z + ρd2M (z) − (1/4)ŴT

c ∇σA∇σTŴc. By utilizing (10), we have
δ = −W̃T

c φ+(1/4)W̃T
c ∇σA∇σTW̃c +εHJB with φ = ∇σ

(
F (z)+G(z)û

)−ασ(z).
To get the minimum value of δ, we develop a novel critic NN tuning law as

˙̂
Wc = − γφ̄

(
Y (z) + ρd2

M (z) − (1/4)ŴT
c ∇σA∇σTŴc

)
+

γ

2
Σ(z, û)∇σAL1z

+ γ
((

K1ϕ
T − K2

)
Ŵc + (1/4)∇σA∇σTŴc

ϕT

ms
Ŵc

)
(13)

where φ̄ = φ/m2
s, ϕ = φ/ms, ms = 1 + φTφ, Y (z) = ŴT

c ∇σF − αŴT
c σ + zTQ̄z,

L1z is given as in Assumption 3, K1 and K2 are tuning parameter matrices with
suitable dimensions, and Σ(z, û) is an indicator function defined as

Σ(z, û) =

{
0, if LT

1z

(
F (z) + G(z)û

)
< 0,

1, otherwise.
(14)

Then, we obtain the weight estimation error dynamics of the critic NN as

˙̃Wc = γφ̄
(
−W̃T

c φ + (1/4)W̃T
c ∇σA∇σTW̃c + εHJB

)
− γ

2
Σ(z, û)∇σAL1z

− γ

((
K1ϕ

T − K2

) − (1/4)∇σA∇σT
(
Wc − W̃c

) ϕT

ms

) (
Wc − W̃c

)
. (15)

In what follows we develop a theorem to show the stability of all signals in
the closed-loop system. Before proceeding further, an assumption is provided as
follows.

Assumption 4. Wc is bounded by a known constant WM > 0. There exist
constants bε > 0 and bεz > 0 such that ‖ε(z)‖ < bε and ‖∇ε(z)‖ < bεz ∀z ∈ Ω̃.
There exists a constant bεu∗ > 0 such that ‖εu∗‖ ≤ bεu∗ . In addition, there exist
constants bσ > 0 and bσz > 0 such that ‖σ(z)‖ ≤ bσ and ‖∇σ(z)‖ ≤ bσz ∀z ∈ Ω̃.

Theorem 2. Consider the CT nominal system given by (4) with associated HJB
equation (7). Let Assumptions 1–4 hold and take the control input for system (4)
as given in (12). Meanwhile, let the critic NN weight tuning law be (13). Then,
the function L1z and the weight estimation error W̃c are guaranteed to be UUB.
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Proof. We provide an outline of the proof due to the space limit. Consider the
Lyapunov function candidate L(t) = L1(z) + (1/2)W̃T

c γ−1W̃c. Taking the time
derivative of L(t), we have L̇(t) = LT

1z

(
F (z) + G(z)û

)
+ ˙̃WT

c γ−1W̃c. By using
(15) and simplification, and noticing that ż = F (z) + G(z)û, we obtain

L̇(t) ≤ LT
1z ż − λmin(M)‖Z‖2 + bN‖Z‖ − (1/2)Σ(z, û)LT

1zA∇σTW̃c (16)

where Z =
[
W̃T

c ϕ, W̃T
c

]T, bN is the upper bound of ‖N‖, M and N are, respec-
tively, given as

M =

[
I −WT

c B
8ms

− KT
1
2

−BWc

8ms
− K1

2 K2 − ϕTWcB
4ms

]
, N =

[
εHJB
ms

BWcϕTWc

4ms
+ K2Wc − K1ϕ

TWc

]

with B = ∇σA∇σT. Due to the definition of Σ(z, û) given in (14), we divide
(16) into the following two cases for discussion:

(i) Σ(z, û) = 0. In this circumstance, we have LT
1z ż < 0. By employing dense

property of R [12], we can obtain a positive constant β such that 0 < β ≤
‖ż‖ implies LT

1z ż ≤ −‖L1z‖β < 0. Then (16) can be developed as L̇(t) ≤
−‖L1z‖β +(1/4)b2N/λmin(M)−λmin(M)

(‖Z‖− (1/2)bN/λmin(M)
)2. Notice

that ‖Z‖ ≤ √
1 + ‖ϕ‖2‖W̃c‖ ≤ (

√
5/2)‖W̃c‖. Therefore, L̇(t) < 0 is valid

only if ‖L1z‖ > b2N/(4βλmin(M)) or ‖W̃c‖ > 2bN/(
√

5λmin(M)).
(ii) Σ(z, û) = 1. In this case, (16) can be developed as L̇(t) ≤ LT

1z

(
F (z) +

G(z)u∗) + LT
1zG(z)(û − u∗) − λmin(M)‖Z‖2 + bN‖Z‖ − 1

2LT
1zA∇σTW̃c. By

using Assumption 3 and similar with (i), we can obtain that L̇(t) < 0 is
valid only if ‖L1z‖ > gMbεu∗ /(2λmin(Λ(z))) +

√
�/λmin(Λ(z)) or ‖W̃c‖ >

bN/(
√

5λmin(M)) +
√

4�/(5λmin(M)), where � = g2Mb2εu∗ /(4λmin(Λ(z))) +
b2N/(4λmin(M)).

Combining (i) and (ii) and using the standard Lyapunov Extension Theorem
[8], we derive that the function L1z and the weight estimation error W̃c are UUB.

5 Simulation Results

Consider the CT uncertain nonlinear system given by

ẋ1 = −x1 + x2

ẋ2 = −(x1 + 1)x2 − 49x1 + u + q cos3(x1) sin(x2) (17)

where x = [x1, x2]T ∈ R
2, and the uncertain term d(x) = q cos3(x1) sin(x2) with

unknown parameter q ∈ [−1, 1]. We choose dM (x) = ‖x‖. The reference trajec-
tory xd is generated by ẋ1d = x2d and ẋ2d = −49x1d with the initial condition
xd(0) = [0.2, 0.4]T. Then the augmented tracking error system is derived as

ż = C(z) + D(z)(u + d(z)) (18)



Robust Tracking Control of Uncertain Nonlinear Systems 15

0 500 1000 1500 2000
−4

0

4

8

12

Time (s)

(a)

0 500 1000 1500 2000
−20

−10

0

10

20

Time (s)

(b)

u

0 500 1000 1500 2000
−4

−2

0

2

4

Time (s)

(c)

eerr1

eerr2

0 500 1000 1500 2000
−6

−3

0

3

6

9

Time (s)

(d)

eerr1

eerr2

Fig. 1. (a) Convergence of critic NN weights (b) Control input u (c) Evolution of
tracking errors eerri(t) (i = 1, 2) during NN learning process (d) Tracking errors eerri
(i = 1, 2) between the state of system (17) and the desired trajectory xd under the
approximate optimal control

where z = [z1, z2, z3, z4]T = [eerr1 , eerr2 , x1d, x2d]T with eerri
= xi − xid, and

D(z) = [0, 1, 0, 0]T, and C(z) = [−z1 + z2 − z3;−(z1 + z3)(z2 + z4) − 49z1 − z2 −
z4; z4;−49z3]. The nominal augmented system is ż = C(z)+D(z)u with C(z) and
D(z) is given in (18). The cost function V (z) for nominal augmented error system
is given as (5), where R = 1 and Q = 2I2. The activation function of the critic NN
is chosen with N0 = 10 as σ(x) =

[
z21 , z

2
2 , z

2
3 , z

2
4 , z1z2, z1z3, z1z4, z2z3, z2z4, z3z4

]T,
and the weight of the critic NN is written as Ŵc = [Wc1,Wc2, . . . , Wc10]T.

The initial system state is x(0) = [0.5,−0.5]T, and the initial weight for the
critic NN is selected randomly within an interval of [0, 1], which implies that
no initial stabilizing control is required. In addition, α = 0.15 and γ = 0.5.
The developed control algorithm is implemented via (12) and (13). The com-
puter simulation results are shown by Fig. 1(a)–(d). Figure 1(a) and (b) indicate
convergence of critic NN weights and control input u, respectively. Figure 1(c)
shows the evolution of tracking errors eerri

(i = 1, 2) during NN learning process.
Figure 1(d) illustrates tracking errors eerri

(i = 1, 2) between the state of system
(17) and the desired trajectory xd under the approximate optimal control. From
simulation results, it is observed that the state x(k) tracks the desired trajectory
xd(k) very well, and all signals in the closed-loop system are bounded.
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6 Conclusions

We have developed an ADP-based robust tracking control for CT matched uncer-
tain nonlinear systems. The robust tracking control is obtained without the
requirement of the control matrix to be invertible. By using Lyapunov’s method,
the stability of the closed-loop system is proved, and all signals involved are UUB.
The computer simulation results show that the developed control scheme can
perform successfully control and attain the desired performance. In our future
work, we focus on studying robust control for CT nonaffine nonlinear systems.
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