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Abstract. The Lagrange programming neural network (LPNN) is a
framework for solving constrained nonlinear programm problems. But
it can solve differentiable objective/contraint functions only. As the l1-
norm constrained quadratic minimization (L1CQM), one of the sparse
approximation problems, contains the nondifferentiable constraint, the
LPNN cannot be used for solving L1CQM. This paper formulates a new
LPNN model, based on introducing hidden states, for solving the L1CQM
problem. Besides, we discuss the stability properties of the new LPNN
model. Simulation shows that the performance of the LPNN is similar
to that of the conventional numerical method.
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1 Introduction

Throughout the years, there are many studies on solving constrained nonlinear
programming problems [1–3] based on neural circuit approach. When the real-
time solutions are needed, the analog neural circuit is preferred. Although many
neural models [4,5] were introduced, they are designed for a particular kind of
problems only. The Lagrange programming neural network (LPNN) [3,6,7] is a
framework for solving constrained nonlinear programming problems. But it can
solve differentiable objective/contraint functions only.

In signal processing, one of the important topics is sparse approximation [8,9].
Sparse approximation aims at recovering an unknown sparse signal from the
measurements. Sparse approximation has many potential applications, such as
channel estimation in MIMO wireless communication channels [10] and image
denoising [11]. However, in sparse approximation, many problems involve nondif-
ferentiable objective or constraints. By introducing the concept of soft threshold
function, the local competition algorithm (LCA) [12], being an analog method,
is able to solve the basis pursit denoising problem [9]. which is a unconstrained
nonlinear programming problem. However, the LCA is not designed to handle
constrained optimization problems.
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This paper focuses on l1-norm constrained quadratic minimization (L1CQM)
for sparse approximation. Section 2 reviews the basic concept of LPNN, sparse
approximation, and LCA. Section 3 presents the proposed LPNN model for solv-
ing the L1CQM. Section 4 presents some properties of the LPNN. Simulation
results are then presented in Sect. 5.

2 Background

LPNN: The LPNN approach considers a general constrained nonlinear pro-
gramming problem:

EP: min f(x) s.t. h(x) = 0, (1)

where x ∈ �n is the state vector, f : �n → � is the objective function, and
h : �n → �m (m < n) describes the m equality constraints. The objective
function f and constraints h are assumed to be twice differentiable. It should be
noticed that the LPNN approach can solve inequality constraints by introducing
dummy variables.

In LPNN, a Lagrangian function is set up, given by

Lep = f(x) + λTh(x) , (2)

where λ = [λ1, · · · , λm]T is the Lagrange multiplier vector. There are two kinds
of neurons: variable neurons and Lagrange neurons. The variable neurons hold
the variable vector x, while the Lagrange neurons hold the multiplier vector λ.
The LPNN dynamics are given by

1
ε

dx

dt
= −∂Lep

∂x
, and

1
ε

dλ

dt
=

∂Lep

∂λ
, (3)

where ε is the time constant of the circuit. In this paper, ε is considered as equal
to 1 in regard to generality.

Sparse Approximation: In sparse approximation, we would like to estimate
a sparse solution x ∈ �n from the measurement b = Φx + ξ, where b ∈ �m is
the observation vector, Φ ∈ �m×n is the measurement matrix with a rank of m,
x ∈ �n is the unknown sparse vector (m < n), and ξi ’s are the measurement
noise. The recovery can be formulated as the following programming problem:

min |b − Φx|22, s.t. |x|1 ≤ ψ, (4)

where ψ > 0. This problem is called as l1-norm Constrained Quadratic Minimiza-
tion (L1CQM). In this problem, we would like to minimize the residue subject to
the sum of absolute of signal elements is less than a value. Since the constraint
function |x|1 − ψ is nondifferentiable, the conventional LPNN is unable to solve
L1CQM directly.

Subdifferential: Subdifferential was developed to handle nondifferentiable func-
tions. Their definitions are stated in the following.
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Definition 1. Given a convex function f , the subgradient ρ of f at x is

f(y) ≥ f(x) + ρT(y − x), ∀y. (5)

Definition 2. The subdifferential ∂f(x) at x is the set of all subgradients:

∂f(x) =
{
ρ |ρT(y − x) ≤ f(y) − f(x), ∀y

}
. (6)

Note that when f(·) is differentiable at xo, its subdifferential at xo is equal to
the conventional partial derivative. Let us use the absolute function f(x) = |x|
as an example to example the subdifferential:

∂|x| =

{
[−1, 1] x = 0,

sign(x) x �= 0.
(7)

Concept of LCA: The LCA is designed to handle the following unconstrained
optimization problems:

L =
1
2
|Φx − b|22 + λ|x|1, (8)

where λ is a trade-off parameter. In the LCA, there are n neurons. The neu-
ron outputs are denoted as x and their internal states are denoted as u. By a
threshold function, the mapping from u to x is stated as below

xi = Tλ(ui) =
{

0, for |ui| ≤ λ,
ui − λsign(ui), for |ui| > λ.

(9)

The forward mapping Tλ from ui to xi is one-to-one for |ui| > λ and is many-
to-one for |ui| ≤ κ. The inverse mapping T−1

λ from xi to ui is one-to-one for
xi �= 0, while it is one-to-many for xi = 0. It implies that T−1

λ (0) is equal to a
set: [−λ, λ]. The LCA defines the dynamics on u rather than x, given by

du

dt
= −∂xLlca = −λ∂|x|1 + ΦT(b − Φx). (10)

With the property of Tλ(·) and the definition subdifferential [12], the LCA
replaces “κ∂|x|1” with “u − x”. The dynamics become

du

dt
= −u + x + ΦT(b − Φx). (11)

If we do not introduce the internal state vector u, ∂|x|1 (may be equal to a set)
is not implementable.

3 LPNN for L1CQM

Our aim is to solve the programming problem:

min |b − Φx|22, s.t. |x|1 ≤ ψ. (12)

From the convex optimization theory, one can obtain the following theorem.
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Theorem 1. For the programming problem (12), x� is an optimal solution, iff,
there exists a λ� (Lagrange multiplier) and

0 ∈ −2ΦT(b − Φx�) + λ�(∂|x�|1), (13a)
|x�|1 − ψ ≤ 0, (13b)
λ� ≥ 0, (13c)
λ�(|x�|1 − ψ) = 0. (13d)

where λ� is the optimal dual variable (Lagrange multiplier).

Since the problem (12) has an inequality constraint, we cannot directly use
the LPNN. However, if ψ2 is less than a certain value, given by ψ2 <

|ΦTb|22
|ΦTΦ|22 ,

then the inequality constraint becomes an equality ones. Therefore, Theorem 1
becomes the following theorem.

Theorem 2. If ψ2 <
|ΦTb|22
|ΦTΦ|22 , then the optimization problem (13) becomes

min |b − Φx|22, s.t. |x|1 = ψ. (14)

And x� is the optimal solution, iff, there exists a λ� (Lagrange multiplier) and

0 ∈ −2ΦT(b − Φx�) + λ�(∂|x�|1), (15a)
|x�|1 − ψ = 0, (15b)
λ� > 0. (15c)

Note that (15) summarizes the KKT conditions (necessary and sufficient).

Proof: Suppose (x�, λ�) is an optimal solution of Theorem 1. That means, λ� ≥ 0.
Firstly, we will use contradiction to prove that λ� cannot be equal to zero when
ψ2 <

|ΦTb|22
|ΦTΦ|22 .

Since (x�, λ�) are optimal, they satisfy the KKT conditions (14) of Theorem 1.
If λ� = 0, then from (13a) we have

ΦTΦx� = ΦTb ⇒ |ΦTΦ|2|x�|2 ≥ |ΦTb|2 ⇒ |x�|22 ≥ |ΦTb|22
|ΦTΦ|22

. (16)

From (13b),

ψ2 ≥ |x�|21 = (
n∑

i=1

|x�
i |)2 =

n∑

i=1

x�
i
2 +

n∑

i=1

n∑

i�=j

|x�
i ||x�

j | ≥
n∑

i=1

x�
i
2 ≥ |x�|22 (17)

From (16) and (17),

ψ2 ≥ |x�|22 ⇒ ψ2 ≥ |ΦTb|22
|ΦTΦ|22

. (18)
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The above contradicts the assumption of ψ2 <
|ΦTb|22
|ΦTΦ|22 . As a result, it proves that

λ� > 0. This means, the KKT conditions of Theorem 1 can be rewritten as (15).
Besides, the inequality in (12) can be removed. Thus, the optimization problem
can be written as (14). The proof is complete. �

With Theorem 2, we can define the Lagrangian function:

Ln = |b − Φx|22 + λ(|x|1 − ψ). (19)

Since the traditional LPNN model cannot handle nondifferentiable constraints,
direct implementing the neuron dynamics is impossible. Using the concept of the
LCA, we introduce the hidden state vector u as the internal state vector and
x as the corresponding neuron outputs. Besides, from the property of Tκ(·) and
the definition subdifferential [12], the dynamics of u and λ is given by

du

dt
= 2ΦT(b − Φx) − λ(u − x) (20a)

dλ

dt
= |x|1 − ψ. (20b)

The role of (20a) is used to minimize the objective value, while the role of (20b)
is used to constraint x in the feasible region.

We can use Fig. 1 to illustrate the idea of LPNN for L1CQM. In Fig. 1(a),
there is a 1D sparse signal. The length of this signal is 128. There are five nonzero
elements. The number of measurement is 30. The measurement matrix is an
±1 random matrix. In Fig. 1(b), we show the recovery from the pseudoinverse.
Clearly it is not our expected signal. In Fig. 1(c), we show the recovery signal
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Fig. 1. Illustration example for the LPNN. (a) The original signal. (b) Recovery from
pseudoinverse. (c) Recovery from LPNN. (d) The dynamics of LPNN.
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from the LPNN, which is pretty close to the original signal. Figure 1(d) shows the
dynamics of x. It can be seen that the LPNN can settle down in five characteristic
time.

4 Properties of LPNN

This section discusses the properties of the proposed LPNN for L1CQM. Firstly,
we will show that the equilibrium point of the LPNN approach is the global
minimum point of the L1CQM.

Theorem 3. Let (u�, λ∗), with λ� > 0 and u� �= 0, be an equilibrium point of
the LPNN dynamics (Eq. (20a)) and x� be the corresponding output vector. The
KKT conditions in Theorem 2 are satisfied at this equilibrium point. And the
corresponding output vector x� is the optimal solution of the problem.

Proof: In the proof, we will prove that (u�, λ∗), with λ� > 0 and u� �= 0 satisfies
the KKT conditions in Theorem 2. At the equilibrium point, from (20b), we
have

2ΦT(b − Φx�) − λ�(u� − x�) = 0, (21)
|x�|1 − ψ = 0. (22)

For (21) and by ∂|x|1 = u − x,

2ΦT(b − Φx�) − λ�(u� − x�) = 0 ⇒ −2ΦT(b − Φx�) + λ�(∂|x�|1) = 0.

The above means that “0 ∈ −2ΦT(b − Φx�) + λ�(∂|x�|1)”. This satisfies the
KKT condition (15a). Based on the assumption that λ� > 0, (15c) is satisfied.
Also for “|x�|1 − ψ = 0” in (22), it satisfies the KKT condition (15b). As the
KKT conditions are necessary and sufficient, which implies that any equilibrium
point (u�, λ�), with u� �= 0 and λ� > 0, is an optimal solution to the problem.
The proof is complete. �

Another thing needed to be concern is the stability of the equilibrium point.
Otherwise, the equilibrium points of the LPNN are not achievable. Based on the
approach in [3,6], the equilibrium point of (20) is an asymptotically stable point.

5 Simulations

The proposed LPNN approach is undergoing some experiments by using the stan-
dard configures [13,14]. The aim of the experiment is to verify if the proposed
LPNN has the similar performance to the conventional numerical method LASSO.
For the sparse vector x ∈ �n, we consider two signal lengths: n = 512, 4096. The
numbers of non-zero elements in x are selected as 15 and 25 for n = 512, and 75
and 125 for n = 4096, respectively. For the non-zero elements, they are uniformly
distributed random numbers, either in between −5 to −1 or in between 1 to 5.
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In the tests, the measurement matrix is an ±1 random matrix, which is then
normalized with the signal length. In the experiments, we vary the number m
of measurement signals. For each setting, we repeat the experiments with 100
times using different measurement matrices and sparse signals. The variances of
Gaussian noise introduced in the measured signal are σ2 = {0.052, 0.0252, 0.0052}.

In order to compare the proposed LPNN approach with digital method, the
LASSO algorithm from SPGL1 [13,14] is applied for recovering the sparse sig-
nals. During comparison, the mean square error (MSE) values of recovery signals
are recorded. The results are shown in Figs. 2 and 3. From the figures, the per-
formance of the LPNN is similar to that of the LASSO algorithm. In addition,
as shown in Fig. 2, for n = 512 with 15 non-zero data points, around 80 mea-
surements are required to recover the sparse signal. For 25 non-zero data points,
around 120 measurements are required. As shown in Fig. 3, for n = 4096 with 75
non-zero data points, around 500 measurements are required to recover the sparse
signal. For 125 non-zero data points, around 700 measurements are required.
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Fig. 2. The MSE of the recovery signals from noisy measurement for signal length
n = 512. The signals contain 15 and 15 non-zero data points in first and second row.
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Fig. 3. The MSE of the recovery signals from noisy measurement for signal length
n = 4096. The signals contain 75 and 125 non-zero data points in first and second row.
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6 Conclusion

This paper proposed a new LPNN model for solving the L1CQM problem. In
the theoretical side, we proved that the equilibrium points of the LPNN is the
optimal solution. Besides, stimulations are carried out to verify the effectiveness
of the LPNN. There are some possible extensions of our works. From the sim-
ulation, the network always converges. However, we do not theoretically show
that the LPNN is global stable. Hence it is interesting to theoretically study the
global stability.
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