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Abstract. In this study, an adaptive support vector regressor (SVR)
controller which has previously been proposed [1] is applied to control
the liquid level in a spherical tank system. The variations in the cross
sectional area of the tank depending on the liquid level is the main cause
of nonlinearity in system. The parameters of the controller are optimized
depending on the future behaviour of the system which is approximated
via a seperate online SVR model of the system. In order to adjust con-
troller parameters, the “closed-loop margin” which is calculated using
the tracking error has been optimized. The performance of the proposed
method has been examined by simulations carried out on a nonlinear
spherical tank system, and the results reveal that the SVR controller
together with SVR model leads to good tracking performance with small
modeling, transient state and steady state errors.

Keywords: Model based adaptive control · Online support vector
regression · Spherical tank system · SVR controller · SVR model
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1 Introduction

Changing of living organisms’ characteristics physically or behaviorally to
enhance their resistance against alternating environmental aspects is called
“adaptation” [2]. Inspired by this feature of living organisms, adaptation capa-
bility can be interfused to conventional controllers which are especially essential
for nonlinear systems that are hard to control using only fixed parameter con-
trollers. Adaptation of controller parameters to fluxional dynamics of closed-loop
system is required to obtain acceptable control performance. For this purpose,
intelligent systems such as ANN (Artificial Neural Networks), ANFIS (Adaptive
Neuro-Fuzzy Inference Systems) and SVR (Support Vector Regression) can be
utilized to design adjustable controllers for nonlinear systems.

Adaptive controller structures based on SVR have proved to be effective con-
troller design methods among other intelligent methods such as ANN, ANFIS
because of their superior generalization capabilities, in the last decade. The major
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strength of SVR is that it ensures global minimum owing to its convex objective
function and linear constraints, which avoids getting stuck at local minima.

In technical literature, various controllers based on SVR have been proposed
for nonlinear systems such as adaptive PID controller, inverse controller and
model predictive control(MPC). Iplikci [3], Shang et al. [4] and Zhao et al. [5]
have utilized SVR model of the system to update the parameters of PID con-
trollers. Yuan et al. [6] have proposed a control law based on SVR which is
derived via Taylor expansion of system model. Liu et al. [7], Wang et al. [8] and
Yuan et al. [9] have deployed SVR as an inverse controller to identify inverse
dynamics of the controlled system. In MPC, first and second order derivatives
of system output with respect to control input are required. In order to increase
accuracy of the required information about system, Iplikci [10,11], Du and Wang
[12] and Shin et al. [13] have proposed to utilize SVR in MPC framework.

In this study, an adaptive online SVR controller previously proposed in [1]
is used to control the liquid level of a spherical tank system. Two separate
SVRs are employed in the control architecture, one for estimating the system
model and the other for calculating the control input. The paper is organized as
follows: Sect. 2 describes the working prensiples of adaptive SVR controller. In
Sect. 3, optimization problem for SVR controller is constructed. In Sect. 4, the
effectiveness of the proposed controller has been examined on nonlinear spherical
tank system and performance analysis of the controller is given. The paper ends
with a brief conclusion in Sect. 5.

2 Adaptive Online SVR Controller

The tuning mechanism of the adaptive SVR controller based on estimated sys-
tem model is depicted in Fig. 1. The proposed mechanism has two SVR struc-
tures; SVRcontroller generates the control input to be applied to the system and
SVRmodel is utilized to approximate system behaviour. The control signal pro-
duced by online SVRcontroller is computed as:

un =
∑

k∈SVcontroller

αkKcontroller(Πc,Πk) + bcontroller. (1)

where Πc is input vector, Kcontroller(, ., ) is the kernel, αk, Πk and bcontroller
are the parameters of the controller to be tuned at time index n. The future
behaviour of the controlled system is estimated via SVRmodel as

ŷn+1 =
∑

j∈SVmodel

λjKmodel(Mc,Mj) + bmodel (2)

where Kmodel is the kernel matrix of the system model, Mc is current input, and
λj , Mj and bmodel are the parameters of the system model to be adjusted.

The estimation of system model and computation of control input are carried
out in two consecutive phases at each sampling interval, namely the training and
application phases. In training phase of the controller, SVRmodel is employed to
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Fig. 1. Adaptive SVRcontroller mechanism.

observe the impact of the tuned controller parameters on closed-loop system
performance, and SVRcontroller can be optimized depending on approximated
tracking error (êtrn+1 = rn+1 − ŷn+1). ŷn+1 is the system output estimate calcu-
lated by SVRmodel. Therefore, while SVRcontroller is in training phase, SVRmodel

is in application phase. After the training phase of SVRcontroller is completed, the
control signal(un) is computed and applied to the system(yn+1) in the applica-
tion phase of the controller. Thus, the training data pair for SVRmodel (Mc,yn+1)
is obtained for training phase of the system model. The parameters of SVRmodel

are adjusted via modelling error emn+1 = yn+1 − ŷn+1. The training algorithm
for the overall architecture is explained in [1,14].

The regressor margins of SVRcontroller and SVRmodel of the closed-loop sys-
tem are illustrated in Fig. 2 where fcontroller and fmodel denote the regression

Fig. 2. Margins of SVRcontroller(a) and SVRmodel(b).
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Fig. 3. Projected closed loop margin before(a) and after(b) training.

functions of controller and system model, respectively. Actually, in training phase
of the SVRmodel, it can be thought that the output of the system model(ŷn+1)
is forced to track system output (yn+1) by optimizing model parameter and
using (Mc,yn+1) as the input-output training data pair. Therefore, the axes
for SVRmodel regresion surface are given as M and Ysys in Fig. 2 (b). Since
the control signal that minimize tracking error is unknown, the parameters of
SVRcontroller can not be obtained directly. For this reason, closed-loop margin
notion which is emerged by combining controller and system model margins
has been proposed to optimize controller parameters in [1]. If the margins of
the controller and system model are fused, the combined closed-loop margin
is projected onto R-Π axes as in Fig. 3. Since the aim in controller design is to
force closed-loop system output (yn+1) to track reference signal(rn+1), (Πc,rn+1)
data pair has been utilized to optimize closed-loop margin. For this reason, the
input-output axes for closed-loop system are defined as Π and R with respect
to input-output data pair of closed-loop system as in Fig. 3. That is, the axis R
which denotes the reference signal is used in place of Ysys for closed-loop system
as in Fig. 3. For more detailed information, it can be consulted to [1].

3 Online ε-SVR for Controller Design

Consider a training data set for the closed-loop system as:

T = {Πi, ri+1}Ni=1 Πi ∈ Π ⊆ Rn, ri+1 ∈ R (3)

where N is the size of the training data, n is the dimension of the input, Πi is
input feature vector of controller and ri+1 is the reference signal that system is
forced to track. The closed-loop error margin function for the ith sample Πi is
described as:

hclosed-loop(Πi) = ŷi+1 − ri+1 = fmodel(Mi) − ri+1 (4)
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where

ŷi+1 = fmodel(Mi) =
∑

j∈SVmodel

λjKmodel(Mj,Mi) + bmodel

Mi = [ui · · · ui−nu
, yi · · · yi−ny

]

ui = fcontroller(Πi) =
∑

k∈SVcontroller

αkKcontroller(Πk,Πi) + bcontroller

Πi = [ri · · · ri−nr
, yi · · · yi−ny

, ui−1 · · · ui−nu
]

and êtri+1 is approximated tracking error. As mentioned before, SVRmodel is
utilized to approximate system behaviour, the system model is fixed and system
model parameters are known in training phase of the controller. Therefore, the
closed loop margin in (4) can be rewritten as

hclosed-loop(Πi) = ŷi+1 − ri+1 = fclosed-loop(Πi) − ri+1 = −êtri+1 (5)

with respect to an input-output data pair of closed-loop system (Πi,ri+1) where
fcontroller is the approximated output of the closed-loop system. The main aim
is to adjust the unknown parameters of SVRcontroller (αk,bcontroller) for the given
training samples (Πi,ri+1). Using (Πi,ri+1) data pair and closed-loop error
margin defined in (4), online learning rules for the parameters of SVRcontroller

(αk,bcontroller) can be acquired. The basic idea is to change the coefficient αc

corresponding to the new sample Πc in a finite number of discrete steps until
it meets the KKT conditions while ensuring that the existing samples in T con-
tinue to satify the KKT conditions at each step [14]. The derivation of update
rules for controller design are described in detail in [1].

4 Simulation Results

The performance of the controller has been examined on the spherical tank
system which is pictured in Fig. 4. Dynamics of the spherical tank system are
defined with the following set of differential equation:

oh

h

0q

2R

iq

Fig. 4. Spherical tank system.
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dh(t)
dt

=
qi(t − d) − qo(t)

πR2(1 − R2−h(t)
R2 )

, q0(t) =
√

2g(h(t) − h0) (6)

where R is the radius of spherical tank, qi(t) is the input flow rate and control
signal, h(t) is the level of the liquid system and controlled output of the system,
qo(t) is the outlet flow rate and d indicates the delay in system. In simulations, the
dynamics of the system are defined via fourth order Runge-Kutta method with
0.1 s sampling period, system parameters are chosen as d = 0 s, R = 1 m, h0 =
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Fig. 5. System (a) and controller output (b) with no measurement noise.
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0.1 m, magnitude of the control signal is allowed to vary between umin = 0 and
umax = 6; and its duration is kept constant at τmin = τmax = 0.5 s. The input
feature vector for SVRcontroller is selected as: Πc = [rn, Pn, In,Dn, yn, un−1]T

where Pn = en − en−1, In = en, Dn = en − 2en−1 + en−2 and en = rn − yn. In
order to identify the dynamics of the controlled system, SVRmodel with Mc =
[un · · · un−nu

, yn · · · yn−ny
]T as the input feature vector where nu = ny = 1 is

utilized. The closed-loop tracking performance of the controller and the control
signal are illustrated in Fig. 5 (a) and (b) respectively. It can be deduced that
the closed-loop system has very small transient-state and steady state errors.
The first Lagrange multiplier and bias of SVRcontroller are depicted in Fig. 6 (a)
and (b) respectively to exemplify the adaptation of the SVRcontroller in order to
capture new dynamics [1]. In Fig. 6 (c), the number of the support vectors are
illustrated to demonstrate the evolution of SVRcontroller.

5 Conclusion

In this paper, liquid level of a spherical tank system has been controlled by
an adaptive architecture based on SVR. The control mechanism is composed of
two seperate SVR structures where SVRcontroller and SVRmodel are concurrently
utilized to compute the control input signal and estimate the system model.
The proposed mechanism adjusts SVRcontroller parameters without an explicit
knowledge of the control signal applied to the system. The results indicate that
the closed-loop system can be successfully forced to track reference signal with
small transient and steady-state errors. In future works, new SVR type adaptive
controllers can be developed for nonlinear liquid level systems.
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