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Abstract. The increased use of data mining algorithms reflects the need
for automatic extraction of knowledge from large volumes of data. This
work presents a temporal data mining algorithm that discovers frequent
Association Rules from timestamped data. These rules are named Cause-
Effect Rules, each represented by a multiset of unordered events (Cause)
followed by a singleton event (Effect). Also, a Cause-Effect Rule is valid
within an specific constraint that defines the minimum and maximum
time distance between its Cause and Effect. Our algorithm was tested
on a data set from two hospital emergency departments in Sherbrooke,
QC, Canada.

1 Introduction

The increased use of data mining algorithms reflects the need for automatic
extraction of knowledge from large volumes of data. In many contexts, data con-
tains timestamps or other sequential index. To extract knowledge from this type
of data, the temporal data mining research area was established. Temporal data
mining can be defined as the efficient discovery of frequent sequential patterns.
Identifying such patterns provides the ability to predict a future event, with
certain confidence, if a set of events is identified. Its applications cover differ-
ent areas of knowledge ranging from banking and telecommunications to web
browsing and adverse drug reactions. The data being processed in each of these
areas varies greatly with regard to the number of examples, attributes, noise
level, and others. Temporal data mining algorithms are designed to cope with
specific requirements from the domain in which they are applied. For example,
in healthcare analysis there is a vast amount of data arranged as transactions
of events with timestamps. Specialists in healthcare analysis often want to find
associations between events in patients’ medical history over time in order to
make evidence-based decisions. Informative patterns can be extracted to iden-
tify, for example, that “10 days before being hospitalized patients frequently
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took test A and B” rather than “hospitalized patients frequently took test A
and B”.

Sequential data mining algorithms attempt to find frequent occurrences of
itemsets in a specific order. Introduced by [1], the itemset is a non-empty set
of items, while a sequence [2] is an ordered non-empty list of itemsets. Previous
works [4,7,8] identify sequential patterns that appear more often than a user-
specified minimum support while maintaining their item occurrence order. Time
intervals are commonly added by defining time distance constraints, limiting the
timespan between events. More recently, there has been increasing interest in
extracting Association Rules from temporal data [3].

In this paper we present a new temporal data mining algorithm, namely
Cause-Effect Rules (CER). CER extends and combines definitions found in pre-
vious works to generate insightful, yet simple to understand patterns. CER
generates Association Rules based on the assumption that an event (effect or
consequent) E might have been caused by a set of other events (cause set or
antecedent) C if, and only if, all events in C occurred before E within a timespan
δ. In other words, not every event that happened before E could have influenced
it. For example, if C is composed of patients’ medical history and we are looking
for a specific event like being hospitalized, it is likely that events that occurred
years before the hospital admission may not have influenced E as much as events
that happened a few days or weeks before. Obtaining rules in a similar format,
although from sequential data, has been explored in previous works, like the
MARBLES algorithm [3]. However, combining it with the well-known technique
[6] of time distance constraint has not yet been explored in the literature and we
show that it is very useful for analysing timestamped data, such as emergency
department visits’ data.

The rest of this paper is organized as follows. Section 2 briefly surveys tem-
poral data mining methods. Section 3 formally describes the problem of discov-
ering CERs, while Sect. 4 outlines CER implementation. In Sect. 5, we present
the results and discuss around the experiments conducted on an Emergency
Department dataset. Finally, Sect. 6 concludes the paper.

2 Related Work

In [2] the problem of mining sequential patterns was introduced along with three
algorithms to solve it. Despite the difference between the three approaches, they
aim for the same goal: discovering frequent sequences. A variation of rule support
[1] was used to quantitatively assess the discovered sequences. This support
measure reflects the fraction of transactions in which a sequence occurs. At
a later date the same authors of [2] presented the GSP algorithm in [7], which
performed better than the previous algorithms and permitted the user to specify
constrains to the discovered sequences, such as the minimum and maximum gap
between adjacent itemsets.

In [8] the SPADE algorithm for discovering frequent sequences was presented.
It diverges from previous work as it does not inherit from Association Rules
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Fig. 1. Cause-Effect Sequence derived from a raw sequence of events.

discovery techniques, i.e., it does not explore the anti-monotonicity property,
instead the authors use a Lattice-based approach along with efficient search
methods to discover and count the occurrence of sequences.

In [4], authors present Chrono Assoc, a hybrid data mining method, designed
to combine knowledge from an Association Rules discovery [1] process along with
chronological order evaluation. The algorithm receives as input Association Rules
and the dataset used to generate them, incrementing chronological support and
confidence for each rule based on events that are consistent with the hypothesis
“every antecedent must have happened before consequent”.

The MARBLES [3] algorithm is capable of uncovering Association Rules
between general episodes. A general episode is formed by a parallel episode that
precede a sequential episode, i.e. an unordered set of events that occur before a
set of strictly ordered events. Works before MARBLES used to focus on either
sequential or parallel episodes [6], yet it is intuitive that rules combining both
of them can be useful in many problems domains.

Even though these algorithms can uncover meaningful knowledge they do
not fully explore important information included in some transactional data-
bases. We claim that the next step beyond the informative rules obtained by an
algorithm such as MARBLES, is the exploitation of time distance constraints
according to the problem domain.

3 Cause-Effect Rules

A Cause-Effect Sequence (CES) is defined as a triplet (C,E, δ) where C is a cause
multiset1 of events, E is a singleton effect event, and δ = (TDMin, TDMax) is a
Time Distance Constraint (TDC) over which the sequence is valid. It is assumed
that events in C happened close to each other in time, thus their order is deemed
as irrelevant. δ delimits the minimum (TDMin) and maximum (TDMax) time
distance between C and E. Concretely, δ is the building template for CES,
following the intuitive notion that causes may have influenced a later effect if,
and only if, they have happened neither too close, nor too far apart in time.
Figure 1 presents how a CES is built given a raw event sequence.
1 The multiset is a flexible representation that permits the Cause to contain repeated

events.



On the Discovery of Time Distance Constrained Temporal Association Rules 513

The complete set of CES Cδ of the input database is a different representa-
tion of the original data restricted to a specific TDC δ. Therefore, not all CES
represent frequent patterns, they are only a representation of the original data. A
Cause-Effect Rule (CER) represents a CES that satisfies the user-given thresh-
olds: Minimum Effect Frequency (Emin), Minimum Support Smin, and Minimum
Confidence Cmin. Emin is meant to filter out any candidate CER which effect is
not frequent, while Smin and Cmin are more specific to the rule frequency as a
whole, and related to our Support and Confidence definitions (see Eqs. 2 and 3).

Ultimately, one CER is a CES that either occur or are contained in “a suffi-
ciently large number of CES”. A CES x is said to be contained within CES y if,
and only if, they share the same E and δ, and all events in x cause appear in y
cause. To assess the obtained CERs we use three measures. The first one is the
Effect Frequency Ef (e, δ) (Eq. 1), which represents the ratio of occurrence of an
effect for a given TDC δ.

Ef (e, δ) =
|{x : x ∈ Cδ,Effect(x) = e}|

|Cδ| (1)

The other two measures are inspired by the Support and Confidence defin-
ition are based on those presented originally on [1]. Although, these measures
must be defined differently for CER. The Cause-Effect Support (SCE) outlines
the ratio of CES that are consistent with a given CER (Eq. 2). In other words,
it is the ratio of occurrence of a given CER according to all Cδ.

SCE(r, δ) =
|{x : x ∈ Cδ, r ⊆ x}|

|Cδ| (2)

Cause-Effect Confidence (CCE) represents the ratio of CES that are consis-
tent with a given CER, limited to those that have the same Effect as that CER
(Eq. 3).

CCE(r, δ) =
|{x : x ∈ Cδ, r ⊆ x}|

|{x : x ∈ Cδ,Effect(x) = Effect(r)}| (3)

Other works have been developed to uncover frequent sequences; in CER the
only sense of order that matters is that all events in C must have happened at
a constrained distance from the event in E. Nevertheless, we do treat differently
the same event happening multiple times as this can yield different rules. For
example, a situation in which a patient has visited the emergence department
with the same problem four times in a row is different than a situation with a
single visit.

4 CER 1.0 ALGORITHM

The proposed algorithm for Cause-Effect Rules mining, namely CER 1.0, per-
forms multiple passes over a transformed version of the original database. This
new database is represented in terms of Cause-Effect Sequences. A key com-
ponent of the counting subroutine is the data structure, which represents the
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CER candidates. We use an n-ary tree, which accommodates all the candidates
associated with the same effect for a TDC. The algorithm is divided into three
phases: Transformation, Initialization and Discovery, detailed in the following
sections.

4.1 Transformation Phase

Some preparation steps are performed in the first pass over the database, includ-
ing mapping the events description from string to integer representation. The
most important and time-consuming step is the transformation of original input
database to CESs. The CES form can be used to directly match CER candidates.
It is straightforward to count the occurrences of individual events, e.g., causes
and effects, during this phase, since the whole database is inspected. By doing
that, the first candidates generation can be restricted to those that can actually
yield a CER. At the end of this phase, the input dataset is transformed from a
raw event data into a collection of CES, according to the time constraint chosen.
The effect counter is stored for later use during the Effect Frequency calculation
explained next.

4.2 Initialization Phase

In the Initialization phase, the first generation of candidate trees are created,
such that for each combination of event e, and time constraint δ the correspond-
ing candidate trees Mδ = μ1, μ2, · · · , μe are created. This phase also includes the
calculation of Ef and the removal of CES whose Ef is less than Emin, shrinking
the scope of the mining process. The counters used to calculate Ef are updated
during the Transformation phase (see Sect. 4.1). Therefore, it is only necessary
to iterate over every effect and calculate their frequency.

The initialization of the candidate trees requires combining frequent effects
and causes that withstand filtering. If none were filtered out, the number of
candidates of the first generation grows as much as the number of occurrences
of its effect Ne × Nδ, although this is rare in practice. The number of trees is
exactly the same as the number of Frequent Effects, since each tree represents
candidates that share the same effect. The assertion behind which candidates
can yield a CER is based on the anti-monotonicity (Apriori) property, which
states that one set can only be frequent if each of its subsets is also frequent.
Another interpretation, focused on the current work, is that a CES can only
become a CER if its Effect and its Cause set are frequent. Besides, one Cause
set can only be frequent if each of its subsets are also frequent.

4.3 Discovery Phase

The last phase incrementally expands the candidate trees and filters out candi-
dates. There are two levels of filtering. The first filter is the Cause-Effect Support
(SCE) followed by the Cause-Effect Confidence (CCE), both set by the user as
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Table 1. Number of CERs found for different
cause set sizes (|C|).

TDmin TDmax |C| = 1 |C| = 2 |C| = 3 |C| = 4

# % # % # % # %

1 s 1h 4 4.3 4 1.9 0 0 0 0

1h 1 day 17 18.1 29 13.6 5 7.6 1 5

1h 2 days 18 19.1 44 20.7 11 16.7 1 5

1h 3 days 19 20.2 52 24.4 20 30.3 8 40

1h 4 days 19 20.2 55 25.8 25 37.9 9 45

Table 2. CERs with effect = 24
(LWBS).

Frequent CERs SCE

(%)

CCE

(%)

24 (1 h, 1 day, 24) 5.00 52.15

24 (1 h, 2 days, 24) 5.11 45.42

24 (1 h, 3 days, 24) 4.74 40.99

24 (1 h, 4 days, 24) 4.58 39.35

17 (1 h, 1 day, 24) 0.92 09.57

17 (1 h, 3 days, 24) 1.23 10.62

5 (1 h, 2 day, 24) 1.10 09.76

5 (1 h, 3 day, 24) 1.23 10.62

5 (1 h, 4 day, 24) 1.43 12.26

the minimum support (Smin) and Minimum Confidence (Cmin), respectively. In
order to calculate a candidate’s SCE and CCE it is necessary to count how many
CES contains it. A given CES is said to contain a candidate CER if their effects
match and if every member of the candidate’s cause multiset is present in the
CES cause multiset. For example, consider candidate CER x = ({A,B,C},D, δz)
and CES y = ({B,C,D,A},D, δz), then y contains x. The candidates’ cause sets
are represented recursively in the candidate trees, as follows:

Nodes. Each node contains a list of event identifiers. If it is a parent node, each
of its events may or may not have a child node.

Leaves. Every event on the leaves list is the last cause of a candidate; thus the
size of all leaves lists combined corresponds exactly to the number of candidates
that exists for a tree.

Height. A tree with height h represents candidates up to generation h + 1,
e.g., trees with height equals two have candidates on the third candidate (Gen3)
generation.

New generations, except the first one (Gen1), are created by adding a level
on all existing trees. The last cause of a candidate, i.e., the event at the leaf, will
receive a child node if, and only if, the candidate has surpassed Smin and Cmin

thresholds. This effectively eliminates candidates that cannot become CER.
Trees that do not have nodes on the current generation level are removed. For
every generation, the set of CES is compared to each tree according to the effect
and TDC that the tree represents. The comparison of a CES and a candidate
tree starts at the root and advances to lower levels according to the CES events
in the cause set. If a leaf node is reached, then a counter is incremented indicat-
ing that the CER candidate, represented by the inverse traverse of the tree (leaf
to root), support has been increased.
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5 Experiments

We tested the CER 1.0 algorithm on a dataset from two hospital emergency
departments (ED) in Sherbrooke, QC. Canada. The dataset contained 138,107
low acuity visits to the EDs during a period of 3.5 years, from June 2006 to
December 2009. Besides the visit’s date and arrival time, each record include a
40-character patient identifier that allows to follow the person over time; other
visit details include age, sex, postal code, diagnostic code(s) as written by a
doctor, and whether the patient was admitted to the hospital. We were partic-
ularly interested in uncompleted visits because the patient left without being
seen by a doctor (LWBS). These LWBS visits receive a particular code (24) and
represent 13.9 % of all visits in the dataset. The rate of LWBS has been used
as an indicator of quality of care, although there is controversy about its use
and interpretation. LWBS behaviour has been associated with very long waiting
times at the ED, lack of access to medical care, and higher risks of short term
adverse events [5]. A sequence was defined as a list of visits by the same patient.
The TDCs used to mine the dataset were small time intervals: between 1 s and
1 h, between 1 h and 1 day, 1 h and 2 days, 1 h and 3 days, and 1 h and 4 days,
for |C| ∈ [1; 5].

5.1 Results Before a LWBS Visit

In the first set of experiments we find out which diagnostic codes patients
received previously to a LWBS visit; the “causes” are the previous diagnostic
codes and the “effect” is an incomplete visit (code 24). We found many CERs
having effect = 24 (LWBS), but not many with a high support. For each time
interval, code 24 came out as the second or third most frequent one. Other
frequent CERs had effect = 17 (Infections and parasitic diseases), 5 (Mental
illness) and 16 (Ill-defined conditions). These are also the most frequent codes
in the original database [9]. The most frequent rules for effect = 24 are shown
in Table 2. For each TDC, the most common event prior to a LWBS visit is
another LWBS visit, so patients who left the ED are more likely to come back
in a very near future and leave again. The rules with the highest support were
24 → 24, with near 5 % support but with high confidence values (CCE) ranging
from 52 % for a repeat behaviour within a day, down to 39.35 % within 4 days.
The originality of our results is the fact that patients come back and leave again
within a short period of time, indicating their healthcare needs were unfulfilled.

5.2 Results Before a Hospital Admission via ED

In the second set of experiments we find out whether LWBS patients were hos-
pitalized after an incomplete visit to the ED; the “effect” is being hospitalized
and the “causes” are any previous diagnostic codes received by the patients. As
we do not have data about all hospitalizations that occurred during the time
intervals studied (only those admissions from the ED), we must be careful in the
interpretation of the results.
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Table 3. CERs of size 1 with effect = hospitalization.

Table 4. CERs with effect = LWBS visit (24).

TDmin TDmax Cause Effect Ef % SCE % CCE %

1 s 1h {24} 24 09.20 4.60 50.00

1 s 1h {5, 5} 24 09.20 1.15 12.50

1 s 1h {16, 9, 5} 24 08.86 0.04 00.46

1h 1 day {24} 24 08.84 4.61 52.15

1h 1 day {5, 5} 24 08.84 0.17 01.91

1h 1 day {16, 9, 5} 24 08.84 0.04 00.48

1h 2 days {24} 24 10.46 4.75 45.43

1h 2 days {5, 5} 24 10.46 0.38 03.66

1h 2 days {16, 9, 5} 24 10.46 0.03 00.30

1h 3 days {24} 24 10.76 4.41 40.99

1h 3 days {5, 5} 24 10.76 0.45 04.20

1h 3 days {16, 9, 5} 24 10.76 0.03 00.25

1h 4 days {24} 24 10.89 4.28 39.35

1h 4 days {5, 5} 24 10.89 0.56 05.16

1h 4 days {16, 9, 5} 24 10.89 0.02 00.22

When considering only the most recent previous visit, we found LWBS was
the most frequent “cause” only in the very short interval [1 s, 1 h]. For other
periods of time and with 2 or more previous visits, LWBS was not the most
frequent code. Other diagnostic codes like ill-defined conditions (16), diseases of
the digestive system (9), respiratory problems (8) and a previous hospitalization
were found more frequently than a LWBS visit, but we noticed the low frequence
values Ef of all rules. Table 3 shows the detailed results for |C| = 1 only.
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5.3 Discussion

Experiments conducted using the CER 1.0 algorithm revealed for the first time
according to the authors, that patients who leave the emergency department
before seeing a doctor (LWBS) are more likely to come back in a short period of
time ranging up to 4 days, and leave again before seeing a doctor. This behav-
iour was found more frequently in men than in women. We also found that other
common diagnostic codes previous to an LWBS visit are infections and para-
sitic diseases and mental illnesses, indicating that the healthcare needs of these
patients were not fulfilled. A third result of our experiments showed no major
risk of hospitalization after an incomplete LWBS visit. However, our study is
not conclusive because of two reasons: (i) we do not know if these patients came
back to the ED but were assigned a more urgent triage code, or (ii) they were
admitted to the hospital shortly after an LWBS visit by other pathway than the
ED.

6 Conclusion

In this paper we presented a new data mining algorithm for finding temporal
rules constrained by user-defined Time Distance Constraints. To illustrate our
method, we applied the algorithm to a dataset of low acuity emergency depart-
ment visits from two hospitals in Sherbrooke, QC, Canada. Our results provide
information on specific diagnosis associated with a higher likelihood of bounc-
ing back and contributed to assess the risks of short term adverse effects like
hospitalization. The results are noteworthy as the same rule structures held for
different TDCs. Future work includes automatic discovery of TDCs, since these
require domain knowledge and may be difficult to determine, and generating
rules that combine static attributes and temporal events.
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