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Abstract. Gravity aided navigation and geomagnetism aided navigation are
equally important methods in the field of underwater navigation. However, the
former is affected by terrain fluctuations, and the latter is sensitive to
time-varying noise. Considering the characteristics that the gravity gradient
vector can avoid the influence of time-varying noise and is less sensitive to
terrain fluctuations, we propose to integrate the gravity gradient vector and
geomagnetic vector together to achieve the merits of each aided navigation
method. The gravity gradient vector and geomagnetic vector are used as mea-
surement information from both local neural network-aided adaptive UKF fil-
ters, and then an information fusion algorithm based on weighted least squares
estimation is used to combine the estimated values from each local filter to form
an optimal estimated state value. Finally, the optimal estimated value is used to
update the output values from each local neural network –aided adaptive UKF
filter. Experimental results prove the feasibility of this integrated navigation
method.
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1 Introduction

Mono-geomagnetic aided navigation and mono-gravity gradient aided navigation have
both been used for underwater navigation. Guo et al. proposed a geomagnetic navi-
gation algorithm based on the Sage-Husa adaptive Kalman filter to adjust the mea-
surement noise matrix adaptively to eliminate the influence of magnetic storms [1].
Xiong et al. proposed a gravity gradient aided navigation algorithm based on the
extended Kalman filter to correct the inertial navigation system’s accumulated error [2].
Compared with geomagnetic aided navigation, gravity gradient aided navigation is
insensitive to accelerations from various time-varying disturbances. Zheng et al. used a
combined gravity- and geomagnetism-aided navigation method to improve the posi-
tioning success rate [3]. However, gravity aided navigation is affected by terrain
fluctuations, and geomagnetic aided navigation is sensitive to time-varying noise.
Considering various kinds of terrain fluctuations and time-varying noise, especially

© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part II, LNCS 9490, pp. 301–310, 2015.
DOI: 10.1007/978-3-319-26535-3_35



because the variations in gravity or geomagnetism are insufficient in some areas, it is
better to combine the gravity gradient and geomagnetic information together to elim-
inate terrain fluctuations and time-varying disturbances. Based on such considerations,
gravity gradient aided navigation and geomagnetism aided navigation are used as two
local systems in an integrated navigation system. Then a kind of weighted least squares
estimation algorithm is used to fuse information from each local system. Finally, the
estimated optimal position and velocity values are used as feedback to update the
estimated values of two local neural network-aided adaptive UKFs.

This paper is organized as follows. The adaptive UKF for neural network training is
described in Sect. 2. The state model and measurement model of the integrated navi-
gation system are introduced in Sect. 3. The information fusion algorithm is proposed
in Sect. 4. Experimental results are discussed in Sect. 5, and conclusions are sum-
marized in Sect. 6.

2 Adaptive UKF for Neural Network Training

As shown in Fig. 1, a multilayered Neural Network has K inputs xiði ¼ 1; 2; . . .;KÞ and
M outputs yjðj ¼ 1; 2; . . .;MÞ through the connecting weights w and the mapping
function g(•).

To apply Adaptive UKF to Neural Network training, the first step is to organize all
the inputs, outputs, and network weights as state vectors. The Adaptive UKF estimates
the weights of Neural Network, which in turn are used to modify the state estimate
predictions of the filter as observations are processed. The training can then be described
as a state estimate problem with the following dynamic and observation equations [4]

wk ¼ wk�1

dk ¼ yk þ vk ¼ gðwk; xkÞþ vk

�
ð1Þ

where d and y represent the desired and actual outputs, respectively; v denotes the
random observation noise, and is assumed as zero-mean Gaussian and white with the
covariance matrix R.

Fig. 1. Multilayered neural network structure.
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For the sake of brevity, herein we present the Adaptive UKF for Neural Network
training in the following steps

Step (1) Initialization

w_0 ¼ E½w0�
P0 ¼ E½ðw0 � w_0Þðw0 � w_0ÞT �

�
ð2Þ

Step (2) Calculation of sigma points with corresponding weights

ðvat Þ0 ¼ x_
a
t

ðvat Þi ¼ x_
a
t þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLþ kÞPa

t

p Þi i ¼ 1; . . .; L
ðvat Þi ¼ x_

a
t � ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLþ kÞPa

t

p Þi�L i ¼ Lþ 1; . . .; 2L

W ðmÞ
0 ¼ k=ðLþ kÞ

W ðcÞ
0 ¼ k=ðLþ kÞþ ð1� a2 þ bÞ

W ðmÞ
i ¼ W ðcÞ

i ¼ 1=f2ðLþ kÞg i ¼ 1; . . .; 2L

8>>>>>>>><
>>>>>>>>:

ð3Þ

Step (3) Time update

ðvatþ 1jtÞi ¼ U½(vxt )i,(vwt )i]
x_
a
tþ 1jt ¼

P2L
i¼0

W ðmÞ
i ðvatþ 1jtÞi

Pa
tþ 1jt ¼

P2L
i¼0

W ðcÞ
i ½ðvatþ 1jtÞi � x_

a
tþ 1jt�½ðvatþ 1jtÞi � x_

a
tþ 1jt�T

ðytþ 1jtÞi ¼ H½ðvxtþ 1jtÞi�
ŷtþ 1jt ¼

P2L
i¼0

W ðmÞ
i ðytþ 1jtÞi

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Step (4) Measurement update

Pa
ytþ 1jt ytþ 1jt ¼ rk

P2L
i¼0

W ðcÞ
i ½ðytþ 1jtÞi � ŷtþ 1jt�½ðytþ 1jtÞi � ŷtþ 1jt�T

Pa
xtþ 1jt ytþ 1jt ¼ rk

P2L
i¼0

W ðcÞ
i ½ðvxtþ 1jtÞi � x_

a
tþ 1jt�½ðytþ 1jtÞi � y_tþ 1jt�T

V 00
k ¼ ðztþ 1jtÞi � ẑtþ 1jt

rk ¼
rk ¼ 1 tr V 00

k V
00T
k

� �� tr Pa
xtþ 1jt ytþ 1jt

� �

rk ¼
tr Pa

xtþ 1jt ytþ 1jt

� �
tr V 00

k V
00T
k

� � tr V 00
k V

00T
k

� �
[ tr Pa

xtþ 1jt ytþ 1jt

� �
8>><
>>:

jtþ 1 ¼ Pa
xtþ 1jt ytþ 1jt Pa

ytþ 1jt ytþ 1jt

� ��1

x_
a
tþ 1 ¼ x_

a
tþ 1jt þ jtþ 1ðytþ 1 � ŷtþ 1jtÞ

Pa
tþ 1 ¼ Pa

tþ 1jt � jtþ 1Pa
ytþ 1jt ytþ 1jtj

T
tþ 1

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ
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where the parameter rk is adopted to improve the robustness of UKF towards a large
initial state error and time-vary noises from measurement sensors, and keep the
measurement covariance matrix to be positive definite. Furthermore, using such
parameter also makes UKF achieve stronger robustness under influences from outliers.

3 State Model and Measurement Model

The process and observation models of the autonomous underwater vehicle system
exhibit significant nonlinearities. When the underwater vehicle is in a state of motion,
the values of gravity gradient and of geomagnetism are measured at discrete points
simultaneously using sensors fixed on underwater vehicles. An approach to model the
integrated navigation system is

xtþ 1 ¼ UðtÞxt þ nt
ztþ 1 ¼ Hðxtþ 1Þþ vtþ 1

�
ð6a; bÞ

Equation (6a, b) describes the propagation of system state in time, where xt ¼
½drxðtÞ; dryðtÞ; drzðtÞ; dvxðtÞ; dvyðtÞ; dvzðtÞ�T is the state of the system at time step t; δ is
defined as the error between the actual state and the reference state which is presented
by INS; ðrx; ry; rzÞ are the coordinates of the underwater vehicle’s position in the
Cartesian reference frame in x, y and z directions, respectively; vx, vy and vz are the
velocity components of the vehicle in x, y and z directions, respectively; UðtÞ repre-
sents the state transition matrix, and nt denotes the process noise of dynamic system.
H is the measurement model of the integrated navigation system, vtþ 1 is the mea-
surement error of the dynamic system, z is the output measurement value of the system.
Let et denote the error between the true model and the priori known mathematical

model U
_ðxtÞ and et ¼ UðxtÞ � U

_ðxtÞ. The Neural Network is used to approximate the
error, and we adjust the weights of the Neural Network, when et � gðxt;wtÞ ! 0, the
error et is well approximated. Then we have

xtþ 1 ¼ U
_ðxtÞþ gðxt;wtÞ

wtþ 1 ¼ wt

ð7Þ

U xtð Þ ¼

1 0 0 Dt 0 0
0 1 0 0 Dt 0
0 0 1 0 0 Dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775
� xt ð8Þ
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If we represent the augmented state vector as xat ¼ ½xTt wT
t �T , then the Eq. (7) can be

redefined as

xatþ 1 ¼
xtþ 1

wtþ 1

� 	
¼ U

_ðxtÞþ gðxt;wtÞ
wt

" #
ð9Þ

The Eq. (6a, b) is the measurement equation, so we have

z geo ¼ dgeo ¼ geoactual � geoINS
z gg ¼ dgg ¼ ggactual � ggINS

�
ð10Þ

where geo represents geomagnetism, gg represents gravity gradient, and δ is the error
between the actual geophysical signal (the gravity gradient vector and the geomagnetic
vector) measured values and the referenced geophysical signals, which are given
according to the INS state and the underwater gravity gradient/geomagnetism maps.

4 Information Fusion Algorithm Based on Gravity Gradient
and Geomagnetism Measurement Information

As the state equation and measurement equation are nonlinear, a Neural Network-aided
Adaptive UKF is used in each local filter. Equation (10) is taken to form two local
NN-aided adaptive UKF filters for gravity gradient and geomagnetism measurement
information separately. Using the weighted least squares estimation algorithm, a master
filter fuses the local optimal state estimates liðkÞ (i = 1, 2) from the two local filters to
obtain the entire optimal state estimate. A block diagram in Fig. 2 illustrates the
information fusion algorithm of the integrated navigation system based on the gravity
gradient and geomagnetism sub-filters.

After the positioning results from the gravity gradient local filter and the geo-
magnetism local filter have been obtained, denoted by p1 and p2 respectively, the
weighted least squares estimation is utilized to combine the gravity gradient aided
navigation sub-system and the geomagnetism aided navigation sub-system. They are
affected by various errors, including measurement error, database error, and algorithm
error. Such errors can be treated as Gaussian noise. Then the weighted least squares
estimation method for the combined gravity gradient and geomagnetism measurement
information can be constructed as

WP ¼ ½w1;w2�½p1; p2�T ð11Þ

Where w1 and w2 are the weights of the gravity gradient position result and the
geomagnetism position result, respectively. In other words, the mathematical expec-
tation of the position result after fusion is the weighted expectation of the gravity
gradient local filter and the geomagnetism local filter individually. The accuracy of the
integrated navigation method is
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dT ¼ P ffiffiffiffiffiffiffiffiffiffi
w2
i d

2
i

q
P

wi ¼ 1

(
i ¼ 1; 2 ð12Þ

Where di is the residual error of each local adaptive UKF filter. Thus a kind of
conditional Lagrange multiplier extreme value equation F can be written as

F ¼ P
w2
i d

2
i þ kðPwi � 1Þ

@F
@wi

¼ 0 i ¼ 1; 2

�
ð13Þ

According to Eq. (13), the weights of gravity gradient and geomagnetism filters are
obtained as follows

wi ¼ 1

d2i
P 1

d2i

; i ¼ 1; 2 ð14Þ

Then the final optimal state can be described as

l̂gðkÞ ¼
X

wiliðkÞ
p̂gðkÞ ¼

X
wipiðkÞ

(
i ¼ 1; 2 ð15Þ

Where l̂gðkÞ is the optimal state of local UKFs, and P̂gðkÞ is the optimal covariance
matrix of state.

Information
Fusion Algorithm

Magnetometer
Sensor

Gradiometer
Sensor

Gravity Gradient 
Reference Map

Terrain 
Reference Map

Local Filter-2
NN-Aided

Adaptive UKF

Geomagnetic 
Reference Map

Local Filter-1
NN-Aided

Adaptive UKF

Optimal
Output

Fig. 2. The block diagram of information fusion on the integrated navigation system.
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5 Experimental Results

This section presents the simulation conditions and shows the experimental results. The
initial position and velocity errors are assumed zero. The parameters related to the local
UKFs are shown in Table 1, where Q is the covariance of state process noise in
the geomagnetic navigation system and Gravity Gradient Navigation system, q1 is the
position error, q2 is the velocity error, R1 is the covariance of measurement noise in the
gravity gradient navigation system, and R2 is the covariance of measurement noise in
the geomagnetic navigation system. Disturbances and noise are assumed to be kinds of
white noise. The underwater geomagnetic reference map is shown in Fig. 3, and the
computed gravity gradient map from the DEM of the terrain-reference map (the method
details in [5]) is illustrated in Fig. 4.

Table 1. Parameters of the integrated navigation simulation

Parameters Values

Q Q ¼ diag½q21; q21; q21; q22; q22�
q1 ¼ 5m; q2 ¼ 0:2m/s

R1 R1 ¼ diag½ð0:2Þ2; ð0:1Þ2; ð0:4Þ2; ð0:3Þ2; ð0:1Þ2; ð0:2Þ2�E
R2 R2 ¼ diag½ð0:5Þ2; ð0:2Þ2; ð0:3Þ2�nT

Fig. 3. Underwater geomagnetic reference map.
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Considering various kinds of measurement noise which have particularly great
influence on the integrated navigation system, some kinds of time-varying noise make
the mono-geomagnetic and mono-gravity gradient navigation systems become unstable
and the covariance matrix of state lose its positive definite character. In addition, a large
time-varying disturbance introduces singularities into the two kinds of navigation
system. To improve robustness of the integrated navigation, the weighted least squares
estimation is utilized to adapt to the residual error of each local UKF and to restrict
various kinds of sensor noise and time-varying disturbances. In particular, the weighted
least squares algorithm is a good method for effectively updating each sub-UKF, and
the optimal states are robust to the uncertainties of a complex integrated navigation
system. At the same time, by using a kind of modified parameter σk in the local filters, it
makes the gravity gradient and geomagnetism sub-systems more robust towards
time-varying noise and terrain fluctuations. Figure 5 shows clearly that the weighted
least squares estimation combining with NN-Aided adaptive UKF is the most effective
algorithm among the three algorithms examined. By achieving the optimal states, the
integrated navigation system has improved its robustness and reduced certain distur-
bances to a controlled level.

Fig. 4. Computed gravity gradient map from the DEM of the terrain-reference map.
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6 Conclusions

This paper presents an integrated underwater navigation, which effectively combines
gravity gradient aided navigation and geomagnetic aided navigation together. The
proposed weighted least squares estimation and Neural Network-Aided adaptive UKF
method exhibits better performance than the MMAE-UKF method and the
adaptive-UKF method. A feasible explanation is that the proposed method takes full
advantage of the two types of measurement and uses the weighted least squares

Fig. 5. Comparison of the three information fusion algorithms.
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algorithm to fuse the two local filters. Moreover, this method is simple for imple-
mentation and able to improve robustness of the integrated navigation. The simulation
results demonstrate that this method is a suitable choice for autonomous underwater
navigation.
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