Online Training of an Opto-Electronic Reservoir
Computer

Piotr Antonik! ®9 | Francois Duport?, Anteo Smerieri?, Michiel Hermans?,

Marc Haelterman?, and Serge Massar!

! Laboratoire d’Information Quantique, Université Libre de Bruxelles,
50 Avenue F. D. Roosevelt, CP 225, 1050 Brussels, Belgium
pantonik@ulb.ac.be
2 Service OPERA-Photonique, Université Libre de Bruxelles,

50 Avenue F. D. Roosevelt, CP 194/5, 1050 Brussels, Belgium

Abstract. Reservoir Computing is a bio-inspired computing paradigm
for processing time dependent signals. Its analog implementations equal
and sometimes outperform other digital algorithms on a series of bench-
mark tasks. Their performance can be increased by switching from offline
to online training method. Here we present the first online trained opto-
electronic reservoir computer. The system is tested on a channel equali-
sation task and the algorithm is executed by an FPGA chip. We report
performances close to previous implementations and demonstrate the
benefits of online training on a non-stationary task that could not be
easily solved using offline methods.

1 Introduction

Reservoir Computing (RC) is a set of methods for designing and training artificial
recurrent neural networks [9,12]. A typical reservoir is a randomly connected
fixed network, with random coupling coefficients between the input signal and the
nodes. This reduces the training process to solving a system of linear equations
and yields performances equal, or even greater than other algorithms [7,11]. For
instance the RC algorithm has been applied successfully to phoneme recognition
[19], and won an international competition on prediction of future evolution of
financial time series [1].

Reservoir Computing is well suited for analog implementations. The opto-
electronic implementations [10,13,15] were the first fast enough for real time
data processing. Since 2012, all-optical reservoir computers have been reported
using a variety of approaches [5,6,20,21].

The performance of a reservoir computer greatly relies on the training tech-
nique. Up to now offline learning methods have been used [3,5,6,10,15,20]. In these
approaches one first acquires a long sequence of training data, and then uses it to
compute the readout weights. An alternative approach is to use online training in
which the readout weights are progressively adapted in real time. To this end a vari-
ety of algorithms can be used, such as gradient descent or recursive least squares.
Online training is well suited to solve non-stationary problems, as the weights can

© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part II, LNCS 9490, pp. 233-240, 2015.
DOI: 10.1007/978-3-319-26535-3_27

234 P. Antonik et al.

be adjusted while the task changes, and can also be applied to systems with com-
plex nonlinear output, such as analog readout layers, proposed in [18].

Online training requires that the readout weights updates are computed in
real time, as the reservoir is running. This cannot be achieved with a regular
CPU and thus requires dedicated electronics. Field Programmable Gate Arrays
(FPGAs) are particularly suited for such applications. Several RC implementa-
tions using an FPGA chip have been reported [2,8,17], but no interconnection
between an FPGA and a physical reservoir computer has been reported so far.

In the present work we report the first online-trained experimental reser-
voir computer. It consists of an opto-electronic reservoir computer of the type
reported in [10,15], combined with an FPGA board that generates the input
sequence, collects the reservoir states and computes optimal readout weights
using a simple gradient descent algorithm [4]. We evaluate the performance
of our implementation on an example of a real-world task: the equalisation
of a nonlinear communication channel [14]. We consider situations where the
communication channel changes in time, and show that the online training can
deal with this time-varying problem, whereas it would be difficult or impossible
to adapt offline training methods to such a task. Furthermore, the use of an
FPGA chip allows our system to be trained and tested over an arbitrarily long
input sequence and significantly reduces the experimental runtime. The results
(measured by the symbol error rate after equalization) are comparable to those
reported previously [15].

2 Basic Principles

2.1 Reservoir Computing

A typical reservoir computer is depicted in Fig. 1. The nonlinear function used
here is fyr = sin(x), as in [10,15]. To simplify the interconnection matrix a;;,
we exploit the ring topology [16], so that only the first neighbour nodes are
connected. The evolution equations thus become:

xzo(n+ 1) =sin (azn(n — 1) + Bbou(n)), (1a)

z;(n+ 1) = sin (ax;—1(n) + Bbyu(n)), (1b)

with ¢ =1,..., N —1, where o and 3 parameters are used to adjust the feedback
and the input signals, respectively, and b; is the input mask, drawn from a
uniform distribution over the the interval [—1,+1], as in [6,15,16].

2.2 Channel Equalisation Task

The performance of our implementation is evaluated on the channel equalisation
task [9,14,16]. To demonstrate the benefits of the online learning, we investi-
gated two variants of this task, a switching and a drifting channel, where some
parameters of the channel vary during the experiment.

Online Training of an Opto-Electronic Reservoir Computer 235

1" N-1 1 d(n) : target signal
Wi+ 1) = fve | S asgay(n) + bru() i

1 zi(n = aijz;(n) + biu(n

:I NL |\]7 555 ('J”
_ 1

| |
| |
| |
| |
| |
| |
I |
| i |
| I I |
i Input signal u[:r‘:* %)‘1‘11‘1‘ signal: i
| |
| |
| |
| |
| |
| |
| |
| |
| |
Fig. 1. Schematic representation of a typical reservoir computer. It contains a large
number N of internal variables x;(n) evolving in discrete time n € Z, fnyr is a nonlinear
function, u(n) is an external signal that is injected into the system, a;; and b; are time-
independent coefficients, drawn from a random distribution with zero mean and w; are
the readout weights, trained either offline (using standard linear regression methods),
or online, as described in Sect. 2.3, in order to minimise the error between the output
signal y(n) and some target signal d(n).

Constant Channel. An input signal d(n) € {-3,—-1,1,3} is transmitted
through a noisy nonlinear wireless communication channel, producing an output
signal u(n). The reservoir computer then has to recover the clean signal d(n)
from the noisy distorted signal u(n). The channel is modelled by the following
equations:

g(n) = 0.08d(n +2) — 0.120d(n + 1) + d(n) + 0.18d(n — 1)
—0.10d(n — 2) + 0.091d(n — 3) — 0.05d(n — 4) + 0.04d(n — 5)
+0.03d(n — 6) + 0.010d(n — 7), (2)

u(n) = p1g(n) + 0.036¢(n) — 0.011¢3(n) + v(n), (3)

where the first equation stands for the symbol interference, the second represents
the nonlinear distortion and v(n) is the noise, drawn from a uniform distribu-
tion over the interval [—1,+1]. The p; € [0, 1] parameter is used to tweak the
nonlinearity of the channel. It is set to 1 for the constant channel, but varies in
other cases. The performance of the reservoir computer is measured in terms of
wrongly reconstructed symbols, given by the Symbol Error Rate (SER).

Switching Channel. In wireless communications, the properties of a channel
are highly influenced by the environment. For better equalisation performance,
it is crucial to be able to detect significant channel variations and adjust the
RC readout weights in real time. We consider here the case of a “switching”
channel, where p; is regularly switched between three predefined values p; €
{0.70,0.85,1.00}. These variations occur at very slow rates, much slower than
the time required to train the reservoir computer.

236 P. Antonik et al.

Drifting Channel. In the second variant the coefficient p; varies faster than
the equaliser learning rate, with the same values as for the switching channel.
In this situation, the reservoir computer is trained over a “drifting” channel,
that is, a channel whose parameters are changing during the computation of the
optimal readout weights.

2.3 Gradient Descent Algorithm

The gradient, or steepest, descent method is an algorithm for finding a local
minimum of a function using its gradient [4]. We use the following rule for
updating the readout weights:

wi(n+ 1) = wi(n) + A(d(n) —y(n)) zi(n), (4)

where A is the step size, used to control the learning rate. It starts with a high
value A(0) = Ao, and then gradually decreases to zero A(n + 1) = yA(n) at rate
v <1

3 Experimental Setup

Our experimental setup is depicted in Fig. 2. It contains three distinctive com-
ponents: the optoelectronic reservoir, the FPGA board implementing the input
and the readout layers and the computer used to control the experiment.

B

[SER

z5(n)
Tr

DAC ——(X)-
:)
’71’31(‘)151 ML605

Optoelectronic reservoir Input & Readout

ain

Clock

d(n)

Amp Comb

Fig. 2. Schematic representation of the experimental setup.

Optoelectronic Reservoir. The optoelectronic reservoir is based on the same
scheme as in [15]. The reservoir states are encoded into the intensity of the inco-
herent light signal, produced by a superluminiscent diode (SLED). The Mach
Zehnder intensity modulator (MZ) implements the nonlinear function. A frac-
tion of the signal is extracted from the loop by the 90/10 beam splitter and
sent to the readout photodiode (P;), the resulting voltage signal is sent to the
FPGA. The optical attenuator (Att) is used to set the feedback gain « of the
system (see Eq. (1)). The fibre spool consists of about 1.6 km single mode fibre,
giving a round trip time of 8.4056 ws. The resistive combiner (Comb) sums the

Online Training of an Opto-Electronic Reservoir Computer 237

electrical feedback signal, produced by the feedback photodiode (Ps), with the
input signal from the FPGA to drive the Mach Zehnder modulator, with an
additional amplification stage of +27 dB to span the entire V, interval of the
modulator.

FPGA Board. For our implementation, we use the Xilinx ML605 board, pow-
ered by the Virtex 6 XC6VLX240T FPGA chip. The board is paired with a
4DSP FMC151 daughter card, containing one two-channel ADC (Analog-to-
Digital converter) and one two-channel DAC (Digital-to-Analog converter). The
synchronisation of the FPGA board with the reservoir delay loop is achieved by
using an external clock signal, generated by a NI PXI-5422 AWG card. Its max-
imal output frequency of 80 MHz limits the reservoir size of our implementation
to 40 neurons.

The chip uses two Galois linear feedback shift registers with a total period
of about 10° to generate pseudorandom symbols d(n), which are multiplied by
the input mask and sent to the optoelectronic reservoir through the DAC. The
resulting reservoir states are collected and digitised by the ADC, and used to
compute readout weights and the output signal. The latter is compared to the
input signal d(n) and the resulting SER is transmitted to the computer.

Personal Computer. The experiment is fully automated and controlled by
a Matlab script, running on a computer. It is designed to run the experiment
multiple times over a set of predefined values of parameters of interest and select
the combination that yields the best results. For statistical purposes, each set of
parameters is tested several times with different random input masks.

We scanned the following parameters: the input gain (3, the decay rate -y, the
channel signal-to-noise ratio and the feedback attenuation «. The other para-
meters were fixed during the experiments. Particularly, we used A\g = 0.4 and
v = 0.999 for the gradient descent algorithm.

4 Results

Constant Channel. Figure 3(a) presents the performance of our reservoir com-
puter for different signal-to-noise ratios of the wireless channel (green squares).
Each value is an average of the lowest rates obtained with different random
input masks, and the error bars show the variations of the performance with
these masks. We compare our results to those reported in [15], obtained with
the same optoelectronic reservoir, trained offline (blue dots). For the lowest noise
level (32 dB), our implementation produces an error rate of 4.14 x 10~%, which
is comparable to the 1.3 x 10~* SER of the optoelectronic setup. Note that the
latter value is a rough estimation of the reservoir’s performance, due to the lim-
ited length of the input sequence (6k symbols, see [15] for details), while in our
case, the SER is estimated precisely over 100k input symbols.

These results demonstrate that the online training algorithm works well, and
is able to train an experimental reservoir computer. The obtained SERs are

238 P. Antonik et al.

however somewhat worse than those reported in [15], sometimes with up to an
order of magnitude. This may be due to the use of a smaller reservoir, with
N = 40.

0.4

100 300

Optoclectronic setup —e—s

FPGA setup —s—
10! 403

1075 d02 <

SER
SER (x107%)

107°
o1

v/

10"

10" 0
12 16 20 2 28 32 200 100 600 800

0 20 10 60

Symbols (x10%)

SNR (dB) Symbols (x10%)

(a) (b) ()

Fig. 3. (a) Comparison of experimental results for nonlinear channel equalisation.
(b) Experimental results for switching channel task. After each switch, the SER goes
up, the learning rate A is reset to Ao, and then decreases while the SER gradually goes
back to a low value. (¢) Simulation results in the case of the drifting channel. Even
though the channel is changing during training, the online training method is able to
reach a low SER, that is evaluated during the last 15k points.

Switching Channel. Figure3(b) shows the error rate produced by our exper-
iment in case of a switching noiseless communication channel. The parameter
p1 is programmed to switch every 150k symbols. Every switch is followed by
a steep increase of the SER, as the reservoir computer is no longer optimised
for the channel it is equalising. The performance degradation is detected by the
algorithm, causing the learning rate A to be reset to the initial value A\g. The
readout weights are then retrained to new optimal values, and the SER rate
correspondingly goes down.

Drifting Channel. The reservoir computer is trained over a channel that grad-
ually drifts from channel 3 (with p; = 0.70) to channel 1 (with p; = 1.0), and
then tested over channel 1. Specifically, the system is presented with a sequence
of 60k input symbols: the first 15k inputs are fed through channel 3, the next
15k come out of channel 2, while the last 30k are provided by channel 1. The
reservoir is trained over the first 45k inputs, while the channel is changing, and
tested over the last 15k inputs.

For simplicity, we simulate our implementation, which makes the reservoir
states easily accessible. Figure 3(c) shows the simulation results. The SER grad-
ually decreases during training. The average SER on the test sequence, when
A =0, is 1.41 x 10~3. For comparison, the same inputs were used for the offline
training algorithm. We obtained a 1.77 x 102 on the test set, that is, a perfor-
mance ten times worse. Thus online training seems particularly adapted to the
drifting channel, as it naturally takes into account the changing nature of the
channel, whereas offline training is not able to cope with this feature.

Online Training of an Opto-Electronic Reservoir Computer 239

5 Conclusion

We reported here the first physical reservoir computer with online training imple-
mented on an FPGA chip. We demonstrated how online training could deal
with a time-dependent channel. These results could not, or only with difficulty,
be obtained with traditional online training methods. The results reported here
thus significantly broaden the range of potential applications of experimental
reservoir computers. In addition, interfacing physical reservoir computers with
an FPGA chip should allow the investigation of many other questions, including
the robust training of analog output layers, and using controlled feedback to
enrich the dynamics of the system. The present work is thus the first step in
what we hope should be a very fruitful line of investigation.

Acknowledgements. We acknowledge financial support by Interuniversity Attrac-
tion Poles program of the Belgian Science Policy Office, under grant IAP P7-35 pho-
tonics@be and by the Fonds de la Recherche Scientifique FRS-FNRS.

References

1. The 2006/07 forecasting competition for neural networks & computational intelli-
gence (2006). http://www.neural-forecasting-competition.com/NN3/. Accessed 21
February 2014

2. Antonik, P., Smerieri, A., Duport, F., Haelterman, M., Massar, S.: FPGA imple-
mentation of reservoir computing with online learning. In: Benelearn 2015: The
24th Belgian-Dutch Conference on Machine Learning (2015)

3. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S.,
Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using
a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

4. Arfken, G.B.: Mathematical Methods for Physicists. Academic Press, Orlando
(1985)

5. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic infor-
mation processing at gigabyte per second data rates using transient states. Nat.
Commun. 4, 1364 (2012)

6. Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical
reservoir computing. Opt. Express 20, 22783-22795 (2012)

7. Hammer, B., Schrauwen, B., Steil, J.J.: Recent advances in efficient learning of
recurrent networks. In: Proceedings of the European Symposium on Artificial
Neural Networks, pp. 213-216, Bruges (Belgium), April 2009

8. Haynes, N.D., Soriano, M.C., Rosin, D.P., Fischer, 1., Gauthier, D.J.: Reservoir
computing with a single time-delay autonomous Boolean node, November 2014.
arXiv preprint arXiv:1411.1398

9. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. Science 304, 78-80 (2004)

10. Larger, L., Soriano, M., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera,
L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond Turing: an
optoelectronic implementation of reservoir computing. Opt. Express 20, 3241-3249
(2012)

http://www.neural-forecasting-competition.com/NN3/
http://arxiv.org/abs/1411.1398

240

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Antonik et al.

Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comp. Sci. Rev. 3, 127-149 (2009)

Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
comput. 14, 2531-2560 (2002)

Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y.K., Larger, L.: Photonic
nonlinear transient computing with multiple-delay wavelength dynamics. Phys.
Rev. Lett. 108, 244101 (2012)

Mathews, V.J., Lee, J.: Adaptive algorithms for bilinear filtering. In: SPIE’s 1994
International Symposium on Optics, Imaging, and Instrumentation, pp. 317-327.
International Society for Optics and Photonics (1994)

Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural
Netw. 22, 131-144 (2011)

Schrauwen, B., D’Haene, M., Verstraeten, D., Campenhout, J.V.: Compact hard-
ware liquid state machines on FPGA for real-time speech recognition. Neural Netw.
21, 511-523 (2008)

Smerieri, A., Duport, F., Paquot, Y., Schrauwen, B., Haelterman, M., Massar, S.:
Analog readout for optical reservoir computers. In: Advances in Neural Information
Processing Systems 25, pp. 944-952. Curran Associates Inc. (2012)

Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.P.: Phoneme recognition
with large hierarchical reservoirs. Adv. Neural Inf. Process. Syst. 23, 2307-2315
(2010)

Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G.,
Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demon-
stration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541
(2014)

Vinckier, Q., Duport, F., Smerieri, A., Vandoorne, K., Bienstman, P.,
Haelterman, M., Massar, S.: High-performance photonic reservoir computer based
on a coherently driven passive cavity. Optica 2(5), 438-446 (2015)

	Online Training of an Opto-Electronic Reservoir Computer
	1 Introduction
	2 Basic Principles
	2.1 Reservoir Computing
	2.2 Channel Equalisation Task
	2.3 Gradient Descent Algorithm

	3 Experimental Setup
	4 Results
	5 Conclusion
	References

