
A New Heuristic Based on the Cuckoo Search
for Cryptanalysis of Substitution Ciphers

Ashish Jain1(B) and Narendra S. Chaudhari1,2

1 Discipline of Computer Science and Engineering,
Indian Institute of Technology Indore, Indore, India

phd11120101@iiti.ac.in
2 Visvesvaraya National Institute of Technology Nagpur, Nagpur, India

nsc0183@gmail.com

Abstract. The efficient utilization of one of the latest search heuristic,
namely, cuckoo search for automated cryptanalysis (or attack) of sub-
stitution ciphers is addressed. A previously proposed genetic algorithm
based attack of the simple substitution cipher is enhanced. A comparison
is obtained between various attack algorithms that are based on cuckoo
search, genetic algorithm, enhanced genetic algorithm, tabu search and
scatter search where cuckoo search shows the best performance. It is
worth pointing out that the proposed cuckoo search algorithm provides
a valid and efficient option for solving similar permutation problems.
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1 Introduction

The goal of the cryptanalyst is to systematically recover the original text (plain-
text) and/or key by mounting an attack on the cipher. The attack may involve
several ciphertexts and/or some plaintexts, intelligent mathematical computer
algorithms and usually some luck. A ciphertext-only attack is one where the
objective of the adversary (or cryptanalyst) is to recover the plaintext and/or
deduce decryption key by observing only the “known ciphertext”. This class
of attack is most challenging and in this paper, we study such a cryptanalytic
attack on a classical cipher (a most general form –mono-alphabetic (or simple)
substitution cipher, hereinafter, substitution cipher). Although classical ciphers,
namely, substitution and transposition ciphers were used hundreds of years ago, a
particular interest in the study of these ciphers has been retained due to the fact
that most of the modern cryptosystems still utilize the functions of these ciphers
as their basic building blocks. For instance, the Advanced Encryption Standard
(AES) used all over the world by finance community is based on the principle of
the substitution-permutation network. Due to such important facts, the classi-
cal ciphers are normally considered as first choice when investigating new attack
strategies such as the one discussed in this paper. In literature, several heuristics
have been applied successfully for cryptanalysis of classical ciphers. For example,
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[1–8], where the main goal of researchers was to develop efficient cryptanalytic
algorithms by utilizing the search (or optimization) heuristics.

1.1 Simple Substitution Cipher

In this type of cipher a key can be represented as a permutation of the plaintext
alphabet (for example, if the plaintext alphabet consists of 26 English alphabets
and the space character, then a permutation of these 27 alphabet characters
usually forms a key). During the encryption process each letter of the plaintext
message is replaced by the corresponding key element (i.e. ciphertext alphabet)
that forms a ciphertext of length equal to the length of the plaintext message.
The original plaintext message from the ciphertext is then recovered by intended
recipient using decryption process. For details about this cipher we refer the
interested reader to [4].

1.2 Our Contributions

It is surprising that in the last one decade no heuristic attack more efficient than
the tabu search attack has been reported for breaking the substitution cipher. In
this paper, we overcome the limitation by developing a new attack algorithm by
utilizing one of the latest search heuristic, namely, cuckoo search. Moreover, for
optimizing the cryptanalysis process we fine-tune some of the parameters of the
cuckoo search. Additionally, two related and efficient attacks of the substitution
cipher proposed by Clark [4] and are based on the genetic algorithm and tabu
search are implemented. Furthermore, the genetic algorithm attack proposed
by Clark [4] is enhanced by incorporating a new adaptive mutation operator.
Although the scatter search based attack of the substitution cipher proposed by
Garici and Drias [5] is not efficient (with respect to time complexity), it is being
considered to obtain a fair comparison between previously proposed evolutionary
heuristic based attacks and those presented in this paper.

2 Cryptanalysis of Substitution Ciphers

The main weakness of substitution ciphers is that their character frequency sta-
tistics (or n-grams) are not changed by the encryption algorithm. In other words,
for every grouping of characters in the plaintext there is a distinct and corre-
sponding grouping of characters in the ciphertext [4]. Therefore, most attacks of
substitution ciphers attempt to match the n-grams of the encrypted text with
those of known language (for example, English). In this paper, we use this fact
as the basis to attack the substitution cipher and at the same time automate
the search for the required n-gram frequencies by developing efficient algorithms
based on the optimization heuristics.
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2.1 Fitness Function or Cost

During the optimization process, each candidate key (or individual solution) is
used to decrypt the known ciphertext and at the same time the n-gram statistics
of the decrypted text is compared to the language statistics. In general, Eq. (1)
can be used for comparison of these statistics.
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where A denotes the language alphabet (e.g. in English language: A, B, ..., Z, ),
and K and D denote statistics of the known language and decrypted text, respec-
tively. The indices u, b and t denote the unigram, bigram and trigram statistics,
respectively. Different weights in the range (0.0–1.0) with step size 0.1 can be
assigned to α, β and γ. However, the following constraint must be satisfied to keep
the number of combinations of α, β and γ workable.

α + β + γ = 1.0. (2)

Generally, in order to do more accurate evaluation of candidate keys, the
n-grams should be higher in number. Also as per literature, the inclusion of tri-
gram statistics in the fitness function are generally the most effective basis for
cryptanalysis of classical ciphers [4]. However, for cryptanalysis of the substitu-
tion cipher the fitness function used in literature (for example, [1,4]) is purely
based only on the bigrams. The reason is that the complexity associated with
computation of trigram statistics is high (order of N3, where N is the key size),
while the benefit over the bigrams is minimal. Moreover, even though small
amount of ciphertexts are known, the attack on the substitution cipher is more
effective using fitness function which is based on the bigrams only than one which
utilizes trigrams alone [4]. Due to these facts, the following fitness function which
is purely based on the bigrams is used in this paper to attack the substitution
cipher.

Costk =
∑
i∈A

|Kb
i − Db

i |. (3)

2.2 Cryptanalysis Using Genetic Algorithms

In this section, we enhance the genetic algorithm attack that was proposed by
Clark (particularly, mutation operator). Note, the crossover (or mating) operator
employed in Algorithm 1 is identical to that proposed by Clark. Due to lack of
space, we do not present the crossover operator, but we refer readers to [4].

Mutation-I. This mutation operator is utilized in most of the previously reported
attacks on the classical cipher. It is based on the simple way of perturbing
a cipher key where two randomly selected elements of a key are swapped. In
addition to this mutation operator, we use a similar mutation operator but an
adaptive one which can be described as follows.
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Algorithm 1. GA and Enhanced GA Attack (GA/EGA Attack)
1: Initialization: Randomly generate the initial population (call this population,

Currentpop) containing m individuals, where individuals are keys of the substitu-
tion cipher. Evaluate the fitness of each individuals using Eq. (3).

2: repeat
3: Select m/2 pairs of individuals from the Currentpop. These pairs are referred to

as parents of the new generation. Here we use a tournament selection method that
choose a best individual (for each pairs of individuals) among five individuals,
where the selection of these five individuals should be random.

4: Each pair of parents are then mated that produces two offspring. These m off-
spring form the new population abbreviated as Newpop.

5: In case of GA-Attack: Apply Mutation-I, while in case of EGA-Attack:
Apply Mutation-I and Mutation-II to each of the individual of Newpop .

6: Evaluate the cost of each of the individuals exist in the Newpop using Eq. (3).
7: Merge Currentpop with Newpop and in parallel remove duplicates. The merging

process give a list of sorted (least cost to most cost) solutions, where the size
of list will be between m and 2m. The m best individuals from the merged list
then become the new Currentpop.

8: until (Maximum-Iterations)
9: Output the best solution from the Currentpop.

Mutation-II. Interchange three randomly chosen elements of the key. However,
this mutation operator is adapted when evolution starts to languish, i.e. no
improvement in the solution is observed after some number of iterations. We
limit this number to seven based on the experiments. The main benefit of the
adaptive mutation operator is that it improves the rate of convergence and the
success probability (in terms of full key recovery) of the genetic algorithm attack.

2.3 Cryptanalysis Using Cuckoo Search Combined with Lévy
Flights

In 2009, Yang and Deb [9,10] have proposed a new nature-inspired population
based metaheuristic known as cuckoo search via Lévy flights. “This metaheuristic
is formed by inspiration from the obligate brood parasitic behavior of few cuckoo
species in combination with Lévy flight behavior of some birds and fruit flies [9]”.
For simplicity, the standard cuckoo search method is described in Algorithm 2.

To generate a new nest (or a solution vector, see Algorithm 2, step 3) xj(t+1)
from an existing nest xj(t), for, a cuckoo j; Lévy flight is performed as [9,11]:

xj(t + 1) = xj(t) + μ. (4)

The above equation is essentially a stochastic equation for a random walk. In
general, a random walk is a Markov chain whose next state/location depends only
on the current location (the first term) and the transition probability (the second
term) [9]. In the second term, μ > 0 is a step-size scaling factor which should be
associated to the scales of the problem of interest [12]. The term l is the step-size
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which is drawn from a probability distribution with a power law tail (also known
as Lévy stable distribution) [13]. It is worth mentioning that the cuckoo search
via random walk using Lévy flights is more efficient than other popular swarm
intelligence techniques (e.g. PSO) in exploring the search space as its step-size
distribution is pseudo-random [12]. Nonetheless, it is not a trivial task to produce
pseudo-random steps that accurately obey the Lévy stable distribution. However,
from the implementation aspects, Mantegna’s [13] algorithm is one of the most
efficient and yet straightforward method that generates a stochastic variable
[12]. Note that the stochastic variable has probability density arbitrarily close to
Lévy stable distribution characterized by an arbitrarily chosen control parameter
(0.3≤ λ ≤ 1.99) [13]. Finally, the step-size l using Mantegna’s algorithm can be
calculated as [13]:

l =
u

|v|1/λ
, (5)

where u and v are two Gaussian stochastic variables with a zero mean and
standard deviations of σu(λ) and σv(λ), respectively, where σu(λ) and σv(λ)
can be given by Eq. (6). Here, Γ (z)=

∫ ∞
0

tz−1e−zdt [13]. For detailed description
on the standard cuckoo search interested reader can refer [9,11,12].

σu(λ) =
[

Γ (1 + λ) sin(πλ/2)
Γ ((1 + λ)/2)λ2(λ−1)/2

]1/λ

= 0.696575 and σv(λ) = 1(if: λ = 1.5),

(6)

Cuckoo Search Attack. The cuckoo search attack algorithm for cryptanaly-
sis of the substitution cipher is intuitive (see Algorithm 3). Therefore, here we
discuss only the mapping of main components of the cuckoo search (i.e. nest,
egg and Lévy flights) to the problem under consideration. In most applications
of the cuckoo search, often it is assumed that each nest has one egg. However,
in case of cryptanalysis of the substitution cipher, we consider each nest has N
distinct eggs/elements (i.e. N distinct characters of a key: n1, n2,..., nn, where
N=27 (i.e. A —Z and the space character). For simplicity, consider each egg has
a unique number (∈ [1, N ]) associated with it. That is there must be a unique

Algorithm 2. Standard Cuckoo Search [9]
1: Generate the initial population of m host nests xi, i = 1, 2, ..., m.
2: repeat
3: Get a cuckoo randomly (say, xj), and generate a new solution by Lévy flights
4: Compute its cost, let it be fj
5: Randomly choose a nest among m host nests, say xk

6: if (fj ¡fk) (Let the problem has minimization objective) then
7: Replace xk by the new solution xj

8: end if
9: Abandon a fraction (pa) of worst nests/solutions and construct new ones

10: Keep the best solutions; rank the solutions and find the current best
11: until (Termination condition is satisfied)
12: Post-process results
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identity of each elements in the nest/solution. In other words, a key cannot have
two similar characters. In this regard, the difficulty is how to preserve distinct-
ness property of the key elements, since we can clearly observe that the Eq.
(4) will destroy the distinctness property of the elements of the current solution
during updation. Note that the importance of Eq. (4) is that it builds the new
solution from an existing solution via Lévy flights which is an efficient approach,
since the step-size is heavy tailed and any large step is possible. That is the
existing solution has better chance to get changed to a better quality solution
in lesser computations. Hence, we do not change this equation, rather we utilize
its efficiency for improving existing solutions using the current best solution and
new solutions generated by Eq. (4) (see Algorithm 3, step 7–11).

Algorithm 3. Cuckoo Search Attack (CS Attack)
1: Initialization: Randomly generate the initial population of m host nests. Call this

population, POPnests, where host nests are keys of the substitution cipher.
2: repeat
3: Evaluate the cost of each nest of the POPnests using Eq. (3). Select the nest

form the POPnests that has the lowest cost. Call this nest BESTnest.
4: Choose a nest randomly (say, POP i

nests), and generate a new nest/solution
(abbreviated as NEWnest) by the Lévy flights as: NEWnest=POP i

nests+μ l,
where l is computed using Eq. (5) with μ=0.01 and λ=1.5.

5: Evaluate the cost of NEWnest using Eq. (3). If the cost of NEWnest is better
(lower) than BESTnest then it become the new BESTnest. If it is then go to step
4, otherwise, update the ith existing solution (i.e. POP i

nests) by using NEWnest

and BESTnest as follows.
6: Generate a random number in the range [1,N ], call this number n.
7: repeat
8: Find the next egg/element in the NEWnest that has the identity less than n.

Call the position of this element P1. (Note: in case of first iteration, read first
instead of next).

9: Examine the identity of the element which is located at position P1 in the
BESTnest. Call this identity n1.

10: Let P2 is the position in POP i
nests where the element of identity n1 is located.

Swap those elements of the POP i
nests that are located at positions P1 and P2.

As obvious this operation will store the element of identity n1 at position P1,
since P1 is the best position of the same identity element in the BESTnest. Here
we emphasized that this swapping operation is performed in order to preserve
the element that have already placed in POP i

nests to its best position.
11: until (NEWnest list has been traversed completely)
12: If BESTnest and updated POP i

nests are identical then swap the eggs that are
located at two different positions in POP i

nests; positions are determined ran-
domly.

13: Abandon a fraction (pa) of worst nests. Create new nests as replacement of
abandon nests. The new nests are created again from the best nest by swapping
its two randomly chosen elements. In the experiment, we fixed pa=0.01.

14: until (Maximum-Iterations)
15: Output the best solution from the POPnests
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2.4 Cryptanalysis Using Tabu Search

The main focus of this optimization algorithm [4,14] is to provide a heuristic for
searching a good solution to the problem under consideration without becoming
trapped in a local optima. This algorithm maintains a tabu list as a short term
memory list where at each iteration the current key is added to the tabu list,
and the key remains ‘tabu’ for a fixed number of iterations. An intuitive level
heuristic for cryptanalysis of the substitution cipher is shown in Algorithm 4.
Here, we mention that the choice of Nposs parameter must be less than N(N -1),
since this is the maximum number of distinct keys which can be created from
the best key of the tabu by swapping two elements [4], where N is the key size
(e.g. 27). For a detailed description of this heuristic we refer readers to [3,4].

Algorithm 4. Tabu Search Attack (TS Attack) [4]
1: Initialization: Randomly initialize the tabu list containing m keys of the substi-

tution cipher. Set Nposs, the size of the possibilities list.
2: repeat
3: Select the key form the tabu list that has the lowest cost. Call this key TABUbest.
4: for i = 1,2,..., Nposs do
5: Choose n1, n2 ∈ [1, N], such that n1 �= n2.
6: Construct a new key Knew by swapping the elements n1 and n2 of TABUbest.
7: Ensure that Knew is not already in the possibilities list or the tabu list. If it

is return to Step 5.
8: Add Knew to the possibilities list and determine its cost.
9: end for

10: From the possibilities list find the key of lowest cost. Call this key POSSbest.
11: From the tabu list find the key of highest cost. Call this key TABUworst.
12: while the cost of POSSbest is less than the cost of TABUworst do
13: Replace Tabuworst with POSSbest and find the new POSSbest.
14: Find the new TABUworst.
15: end while
16: until (Maximum-Iterations)
17: Output the best solution from the tabu list.

3 Parameters, Experimental Setup and Results

The inputs to all the above presented algorithms are: known ciphertext, its length
and bigram statistics of the language (which are assumed to be known). The out-
put of each algorithm is either full or partial substitution cipher key. Note that
in order to recover the message that is readable, it is not essential to recover
every element of the key, i.e. considerable partial key recovery is also significant
to understand the message. The parameters such as m (i.e. population/tabu-list
size), Maximum-Iterations (i.e. maximum number of iterations) and Nposs (i.e.
size of possibilities list in case of tabu search) were fine-tuned by a combination
of several experiments. Note that the fine-tuning was performed separately for
each of the algorithms in order to optimize the cryptanalysis process.
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In some scenarios guidelines are helpful, for example in Algorithm 3, μ=0.01
and λ=1.5 are taken that has been reported in [10] as general choice. Further-
more, in order to obtain a clear comparison between above algorithms, the guide-
lines reported in [4] followed, i.e. three criteria were used: amount of known
ciphertext available for the attack, number of keys examined prior to determi-
nation of correct solution and the time needed to find the correct solution.

Now, we discuss the experimental setup and their details. We tested each of
the algorithms on 100 different messages. For each message, each of the crypt-
analytic algorithms was run 3 times (it comes to a total of 300 times) and the
best of the 3 was recorded. Afterwards, 100 best recorded results corresponding
to each algorithm were then averaged. The above described process of recording
and averaging is repeated for known ciphertext of size 100 to 800 with step size of
100. The average results of each of the algorithms are then plotted in Fig. 1. From
Fig. 1, we can clearly observe that each of the attack algorithms perform well and
comparably. Nevertheless, the best way to identify the proper efficiency of the
approximation algorithms is; to compare them on the basis of two factors: state
space searched (i.e. number of keys examined before evolving the best result) and
complexity of the attack (i.e. performance time). For this purpose, we tested each
of the attack algorithms on the 100 different known ciphertext of length 1000
characters and then recorded the amount of keys examined and the time taken
by the attack. The average results are shown in Table 1. Note that the scatter
search method has not been considered in Table 1 (and not re-implemented in
this paper), since Garici and Drias (investigators of this algorithm) have con-
cluded that the scatter search method takes 75 % more time than the genetic
algorithms (please see Sect. 4.2 in [5]), while the quality of the results is only
15 % better. From Table 1, we can clearly see that the mean performance time of
enhanced genetic algorithm is comparatively lesser than the genetic algorithm
proposed by Clark, while the average number of keys examined is approximately
equal. From Table 1, we can note that the tabu search is more efficient in both
respects than genetic algorithms. However, it is also clear from the table that
the cuckoo search outperforms tabu search in both respects. Most importantly,
the overall performance of cuckoo search is much better among all the attack
algorithms (including mean and standard deviation of the key elements correctly
found).

Table 1. A comparison based on: mean performance time (Tmean), average number
of keys examined before the best solution found (Mavg) and number of key elements
correctly found–mean (X̄) & standard deviation (S).

Method → CS Attack TS Attack EGA Attack GA Attack

Tmean (in sec.) 0.137 0.241 0.397 0.416

Mavg 1823 3306 3707 3695

X̄ 25.4 24.05 24.3 24.1

S 1.04 1.52 1.23 2.04
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Fig. 1. A comparison based on the amount of known ciphertext. (In case of scatter
search (SS) attack, the results were taken from Fig. 3 of [5] which may be not exact.)

4 Conclusion

This paper presents various attacks on the substitution cipher where genetic
algorithms, tabu search and cuckoo search have been utilized. We examined
that the adaptive mutation operator along with appropriate selection procedure
improves the performance of previously proposed genetic algorithm attack. It is
worth pointing out that the cuckoo search attack has shown the best performance
among all attacks. Most importantly, we needed to fine-tune lesser number of
parameters for cuckoo search than genetic algorithms and tabu search. This
study indicates that the developed attack algorithm (which utilizes the cuckoo
search) is able to produce results that are clearly better than previous attack
algorithms of the substitution cipher, and therefore it can be used as a valid and
efficient alternative for solving this kind of permutation problems.
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In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 31–40.
Springer, Heidelberg (2005)

6. Song, J., Yang, F., Wang, M., Zhang, H.: Cryptanalysis of transposition cipher
using simulated annealing genetic algorithm. In: Kang, L., Cai, Z., Yan, X., Liu,
Y. (eds.) ISICA 2008. LNCS, vol. 5370, pp. 795–802. Springer, Heidelberg (2008)

7. Cowan, M.J.: Breaking short playfair ciphers with the simulated annealing algo-
rithm. Cryptologia 32(1), 71–83 (2008)



A New Heuristic Based on the Cuckoo Search for Cryptanalysis 215

8. Boryczka, U., Dworak, K.: Genetic transformation techniques in cryptanalysis. In:
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