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Abstract. This paper address the problem of online multi-object track-
ing by using the Maximum a Posteriori (MAP) framework. Given the
observations up to the current frame, we estimate the optimal object tra-
jectories by solving two MAP estimation problems: object detection and
trajectory-detection association. By introducing the sequential trajec-
tory prior, i.e., the prior information from previous frames about “good”
trajectories, into MAP estimation, the output of the pre-trained object
detector is refined and the correctness of the association between trajec-
tories and detections is enhanced. In addition, the sequential trajectory
prior allows the two MAP stages interact with each other in a sequential
manner, which facilitates online multi-object tracking. Our experiments
on publicly available challenging datasets demonstrate that the proposed
algorithm provides superior performance in various complex scenes.

Keywords: Online multi-object tracking · Data association · Maximum
a posteriori estimation · Sequential trajectory prior

1 Introduction

Multi-object tracking is a very challenging problem, especially in complex scenes,
due to frequent occlusions and interactions among similar-looking objects. Driven
by the recent development of object detectors [1–3], tracking-by-detection has
become a popular technique for multi-object tracking. With the detection
responses provided by detectors, tracking-by-detection approaches associate these
detections across frames to form the trajectories of objects.

Many tracking methods [4–6] address the association problem in a large tem-
poral window, which seek for the optimum detection assignments by considering
a batch of frames at a time. Due to the utilization of future information, they
can handle detection errors and tracking failures caused by occlusions. However,
it is difficult to apply the batch methods to time-critical applications, since they
provide tracking results with a significant temporal delay.

Our work focuses on online multi-object tracking which only considers obser-
vations up to the current frame and sequentially builds trajectories via frame-
by-frame association with online provided detections. Compared with the batch
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methods, online tracking systems [7–10] can be applied to real-time applica-
tions, but suffer from performance degradation in complex scenes. We aim to
overcome the limitations for online multi-object tracking and to achieve high
quality tracking results in complex scenes.

In this paper, we formulate the online multi-object tracking problem under
a Beyesian framework, and treat detection and association as two collaborative
maximum a posteriori (MAP) estimation problems by introducing the sequen-
tial trajectory prior. The basic idea is that the observations from previous frames
contain useful prior information to assist the estimation of object trajectories in
the current frame. Intuitively, it is better to allow the high-confidence trajectories
to guide the current estimation of hard-to-see detections. And, for trajectory-
detection association, more reliable detections are likely linked to high-confidence
trajectories. We thus model such cues as the sequential trajectory prior, and use
MAP estimation to simultaneously refine the detector output and enhance the
trajectory-detection association correctness. We show that the two MAP stages
interact with each other via the sequential trajectory prior: high-confidence tra-
jectories from previous frame provide reliable prior information to refine the
detections in the detection stage, and accurate detections facilitate the associa-
tion stage to generate more confident trajectories. Our experiments demonstrate
that the resulting algorithm provides superior tracking performance in various
complex scenes.

Previous methods [10–12] exploit the prior information from previous frames
for online multi-object tracking. Luo et al. [11] introduced a spatio-temporal
consistency constraint to their online detector learning stage. Bae and Yoon [10]
used trajectory confidence to assist their local and global association approach.
Their work is extended in [12] by introducing a track existence probability into
data association. However, these methods utilize the prior information only in the
detection or association task. In contrast, we explicitly introduce the sequential
trajectory prior into both the detection and association stages by using a unified
MAP framework. As a result, the online multi-object tracking performance is
significantly improved especially in complex scenes.

2 Our Approach

2.1 Problem Formulation

Let X1:t, Y1:t and Z1:t be the trajectories, detections and observed images up to
frame t, respectively. We adopt a Bayesian approach to formulate the online
multi-object tracking problem, where trajectories X1:t and detections Y1:t are
random variables and the goal is to maximize the joint posterior distribution
over X1:t and Y1:t given observed images Z1:t. Formally,

(X∗
1:t,Y

∗
1:t) = arg max

X1:t,Y1:t

P (X1:t,Y1:t|Z1:t)

= arg max
X1:t,Y1:t

P (X1:t|Y1:t,Z1:t) P (Y1:t|Z1:t) , (1)
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where the second equation used the definition of conditional probability. Since it
is impossible to globally optimize Eq. (1) using brute force search, we expand the
original formulation by sequentially estimating the current trajectories Xt and
detections Yt conditional on the previous results using the tracking-by-detection
strategy. The problem is then decomposed into two MAP estimation stages:

(detection) Y
∗
t = arg max

Yt

P (Yt|Z1:t) , (2)

(association) X
∗
t = arg max

Xt

P (Xt|Y∗
t ,Xt−1) . (3)

Specifically, in the detection stage, we obtain a MAP estimation of the detections
Y

∗
t by considering the observed images up to the current frame Z1:t. The trajec-

tory estimation problem is then reformulated as a MAP estimation of pairwise
associations between Xt−1 and Y

∗
t in the association stage.

2.2 Detection Refinement with MAP Estimation

Based on the Bayesian rule, the MAP estimation of the detections Y∗
t defined in

Eq. (2) can be represented as

Y
∗
t = arg max

Yt

P (Zt|Yt,Z1:t−1) P (Yt|Z1:t−1)
P (Zt|Z1:t−1)

, (4)

where P (Zt|Yt,Z1:t−1) models the observation likelihood function which mea-
sures how well the hypothetical detections explain the observed image, and
P (Yt|Z1:t−1) is a prior detection probability which represents the prior infor-
mation collected from the previous observations.

Prior Detection Probability. We approximately compute the prior detec-
tion probability based on the spatio-temporal consistency assumption during
tracking. That is, the object states in two subsequent frames should not change
drastically. Intuitively, the detections in frame t are much likely to appear around
the trajectories from frame (t − 1). To utilize such prior, we predict the object
states of high-confidence trajectories through Kalman filters, and use the pre-
dicted states to produce a density map to represent the prior detection proba-
bility. The trajectory confidence is defined by Eq. (8) in Sect. 2.3. Formally, we
compute a density map Dk

t for a specific confident object k at frame t as

Dk
t (p) = exp(−‖p − pk‖2

2σ2
k

), (5)

where p is the image position, pk is the predicted position of object k, and σk

is the scale parameter which is proportional to the scale of object k (set to 5
times the object scale in our implementation). Suppose that we have c confident
objects from high-confidence trajectories in frame (t − 1), the density map Dt

corresponding to P (Yt|Z1:t−1) is generated by combining the density maps of
all confident objects, expressed as Dt = max(D0

t ,D1
t , . . . , Dc

t ). Note that D0
t is
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a const density map where the prior detection probability for each position is
equal to 0.5, which is used to prevent the suppression of newly appeared objects.

Observation Likelihood Function. We revisit the detection confidence map
produced by the pre-trained object detector to represent the observation like-
lihood function P (Zt|Yt,Z1:t−1). Following the general object detection strategy,
we generate the hypothetical detections Yt in multiple scales. Hence,
P (Zt|Yt,Z1:t−1) is expressed as multiple confidence maps by applying the object
detector to the observed image Zt in multiple scales.

Posterior Detection Probability. Combining the observation likelihood func-
tion and the prior detection probability mentioned above, we can estimate the
posterior detection probability as indicated in Eq. (4). Since the normalized term
P (Zt|Z1:t−1) is constant, we simply use the density map Dt to refine the mul-
tiple confidence maps produced by the detector. Then the optimal detections
Y

∗
t is obtained by applying non-maximum suppression to the refined confidence

maps. Most existing methods use the observation likelihood P (Zt|Yt,Z1:t−1)
to approximate the posterior P (Yt|Z1:t), which actually ignores the useful prior
information. In this paper, we employ the prior information from previous frames
to model a prior detection probability P (Yt|Z1:t−1) which actually refines the
detector output in a principle manner.

2.3 Data Association with MAP Estimation

Since the number of all possible enumerations of Xt given the existing trajec-
tories Xt−1 and the refined detections Y

∗
t is huge, directly solving Eq. (3) is

intractable. We turn to solve a data association problem and then obtain the
optimal trajectories X

∗
t by updating Xt−1 with the associated detections.

Suppose that we have m trajectories Xt−1 = {Xi}m
i=1 at frame t − 1 and n

refined detections Y∗
t = {yj}n

j=1 at frame t, where Xi is the trajectory of the i-th
object and yj is the j-th refined detection. Note that we drop the time index for
simplicity since the association is exactly between Xt−1 and Y

∗
t . We define an

event Ψi,j to represent that the j-th refined detection is associated with the i-th
trajectory. Then, the pairwise association problem between Xt−1 and Y

∗
t can be

expressed as a MAP estimation formulation,

Ψ∗
i,j = arg max

Ψi,j

P (Ψi,j |Y∗
t ,Xt−1), (6)

where P (Ψi,j |Y∗
t ,Xt−1) is the the posterior association probability. It can be

computed by applying the Bayesian rule,

P (Ψi,j |Y∗
t ,Xt−1) =

P (Y∗
t |Ψi,j ,Xt−1) P (Ψi,j |Xt−1)

P (Y∗
t |Xt−1)

, (7)

where P (Y∗
t |Ψi,j ,Xt−1) is the likelihood that indicates the possibility of observ-

ing the detections Y
∗
t given the existing trajectories Xt−1 and the association
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Ψi,j , and P (Ψi,j |Xt−1) is the prior association probability that measures the
possibility of the association Ψi,j before data association.

Prior Association Probability. To compute the prior association probability
P (Ψi,j |Xt−1), we exploit two kinds of prior information before performing data
association: the trajectory confidence and the detection reliability.

Similar to [10], we use a trajectory confidence score function Δ(Xi) to mea-
sure the reliability of an existing trajectory Xi,

Δ(Xi) = exp
(

−β · M

L

)
×

(
1
L

∑
k∈Ωi

Φi
k

)
, (8)

where L is the number of frames in which the trajectory has associated detec-
tions, M = |Xi| − L is the number of frames in which the object is missing,
Ωi indicates the set of frames in which the trajectory Xi has associated detec-
tions, Φi

k is the posterior association probability between Xi and the associated
detection at frame k, and β is a control parameter depending on the detection
performance. Since the trajectory confidence lies in [0, 1], we consider a trajec-
tory as a high-confidence when Δ(Xi) > 0.5.

The reliability of a detection yj can be directly represented as the posterior
defined in Sect. 2.2, simply denoted as δ(yj). Then the prior P (Ψi,j |Xt−1) can
be intuitively approximated as

P (Ψi,j |Xt−1) ≈ δ(yj)∑n
v=1 δ(yv)

· Δ(Xi), (9)

where we impose the constraint that the association events for a trajectory Xi

are mutually exclusive.

Observation Likelihood Function. We assume that the detections in Y
∗
t are

conditionally independent given the existing trajectories Xt−1 and the associa-
tion Ψi,j . Then the likelihood P (Y∗

t |Ψi,j ,Xt−1) can be computed as

P (Y∗
t |Ψi,j ,Xt−1) =

n∏
v=1

P (yv|Ψi,j ,Xt−1) . (10)

Note that P
(
yj |Ψi,j ,Xt−1

)
= P

(
yj |Xi

)
is the association likelihood between

yj and Xi. We compute the the association likelihood by using the appearance,
shape, and motion cues, similar to [7]. The remaining task is to estimate the
likelihood P (yv|Ψi,j ,Xt−1) with v �= j which can be explained as the probability
that the detection yv is not originated from the trajectory Xi.

We consider two situations where the detection yv can be observed: yv is
originated from other trajectories except Xi, or yv is a false positive detection.
Using the definition of marginal probability, the likelihood P (yv|Ψi,j ,Xt−1) with
v �= j can be computed by
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P (yv|Ψi,j ,Xt−1) = P (yv, Ψ0,v|Ψi,j ,Xt−1) +
∑
u�=i

P (yv, Ψu,v|Ψi,j ,Xt−1)

= P (yv, Ψ0,v|Xt−1) +
∑
u�=i

P (yv, Ψu,v|Xt−1) , (11)

where Ψ0,v means that the detection yv is not associated with any trajectory.
Denote Pu,v = P (Ψu,v|Xt−1) as the prior association probability defined in
Eq. (9), and ρ = P (yv|Ψ0,v,Xt−1) as the const probability that a detection
becomes false positive, we have

P (yv, Ψ0,v|Xt−1) = P (yv|Ψ0,v,Xt−1) P (Ψ0,v|Xt−1) = ρ ·
m∏

u=1

(1 − Pu,v) , (12)

P (yv, Ψu,v|Xt−1) = P (yv|Ψu,v,Xt−1) P (Ψu,v|Xt−1) = P (yv|Xu) Pu,v, (13)

and thus

P (yv|Ψi,j ,Xt−1) = ρ ·
m∏

u=1

(1 − Pu,v) +
∑
u�=i

P (yv|Xu) Pu,v. (14)

Then the observation likelihood function P (Y∗
t |Ψi,j ,Xt−1) can be obtained

by substituting Eq. (14) into Eq. (10),

P (Y∗
t |Ψi,j ,Xt−1) = P

(
yj |Xi

) ∏
v �=j

Θv
i,j , (15)

where we denote Θv
i,j = P (yv|Ψi,j ,Xt−1) with v �= j for simplicity.

Posterior Association Probability. Denote the normalization term in Eq. (7)
as γ = P (Y∗

t |Xt−1), we can derive the posterior as

P (Ψi,j |Y∗
t ,Xt−1) = γ−1Pi,jP

(
yj |Xi

) ∏
v �=j

Θv
i,j . (16)

In a similar manner, the posterior association probability for the non association
event Ψi,0 of the trajectory Xi can be acquired by

P (Ψi,0|Y∗
t ,Xt−1) =

P (Y∗
t |Ψi,0,Xt−1) P (Ψi,0|Xt−1)

P (Y∗
t |Xt−1)

= γ−1

⎛
⎝1 −

n∑
j=1

Pi,j

⎞
⎠ n∏

v=1

Θv
i,0. (17)

Using the fact that
∑n

j=1 P (Ψi,j |Y∗
t ,Xt−1) + P (Ψi,0|Y∗

t ,Xt−1) = 1, the normal-
ization term γ can be computed as

γ =
n∑

j=1

⎛
⎝Pi,jP

(
yj |Xi

) ∏
v �=j

Θv
i,j

⎞
⎠ +

⎛
⎝1 −

n∑
j=1

Pi,j

⎞
⎠ n∏

v=1

Θv
i,0

=

⎛
⎝1 −

n∑
j=1

Pi,j +
n∑

j=1

Qi,j

⎞
⎠ n∏

v=1

Θv
i,0, (18)
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where Qi,j = Pi,jP
(
yj |Xi

)
/Θj

i,0, and the second equation uses the fact Θv
i,j =

Θv
i,0 when v �= j.

Data Association. With the posterior probabilities given by Eqs. (16) and (17),
the data association problem of Eq. (6) can be solved by the Hungarian
algorithm [13]. Specifically, a association cost matrix S = [sij ]m×n is constructed
with each entry sij = − log(P (Ψi,j |Y∗

t ,Xt−1)) to indicate the cost when j-
th refined detection is associated with the i-th trajectory. Then the optimal
trajectory-detection pairs are determined by minimizing the total cost in Sm×n.
When the association cost of a trajectory-detection pair is less than the cost
of non association − log(P (Ψi,0|Y∗

t ,Xt−1)), the detection yj is associated with
Xi. A Kalman filter is used to refine the object states for a trajectory, with the
associated detections as the measurement data. Then the confidence Δ(Xi) is
updated using Eq. (8). The detections that are not associated with any existing
trajectories are used to initialize a new potential trajectory. Once the length of
a potential trajectory grows over a threshold (set to 5 frames in our implemen-
tation), it gets formally initialized.

3 Experiments

In this section, we give a detailed analysis of our approach compared to the
state-of-the-art in multi-object tracking. The state-of-the-art trackers include
DP [4], TBD [6], CEM [5] and CMOT [10], in which the CMOT tracker is online
algorithms while the other trackers perform multi-object tracking in a batch
mode. We report the results by using the source codes publicly provided by the
authors with the same object detector and their default parameters.

3.1 Implementation Details

Our online multi-object tracking algorithm is implemented in MATLAB, and
operates entirely in the image coordinate without camera or ground plane cal-
ibration. Without code optimization and parallel programming, our algorithm
runs at about 10 fps on an Intel Core i7 3.5 GHz PC with 16 GB memory. The
system parameters that need to be set beforehand include the control factor β
in Eq. (8), and the const probability ρ in Eq. (14). In our implementation, we
empirically set β = 2 and ρ = 0.1 for all experiments.

3.2 Datasets and Object Detector

We use the following datasets for performance evaluation: PETS2009 dataset
[14], TUD dataset [15], and ETH Mobile Scene (ETHMS ) [16]. The PETS2009
dataset shows an out door survivance scene where large amount of pedestri-
ans enter and exit the filed-of-view. We adopt the widely used S2L1 and S2L2
sequences for evaluation. In the TUD dataset, the sequences Campus, Crossing
and Stadtmitte are used, where the challenges include severe occlusions between
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Table 1. Quantitative comparison results. Batch methods are marked with an asterisk.
Bold scores highlight the best results.

Method MOTA↑ MOTP↑ FP↓ FN↓ MT↑ ML↓ IDS↓ FG↓
DP [4] 31.1% 71.6% 3,695 11,890 19.6% 33.2% 3,177 1,277
CEM [5] 39.7% 70.7% 4,656 11,411 24.5% 34.0% 349 640
TBD [6] 35.4% 71.4% 6,267 9,995 27.5% 31.3% 1,329 1,025

CMOT [10] 21.7% 69.9% 7,912 11,354 20.1% 33.4% 1,998 1,139
Ours (w/o all) 27.3% 70.5% 4,855 13,293 21.5% 41.3% 679 990
Ours (w/o MAP assoc.) 43.5% 71.2% 3,982 10,764 24.7% 37.0% 634 931
Ours (w/o MAP det.) 40.8% 70.9% 4,292 11,521 28.1% 34.0% 312 790
Ours (with all) 49.0% 71.2% 3,603 9,942 31.0% 32.8% 235 754

objects and low viewpoint. In the ETHMS dataset, we evaluate our algorithm
on the sequences Bahnhof, Jelmoli and SunnyDay, which are taken by a mov-
ing camera in crowded street scenes. In total, the test datasets contain over
3500 frames and 368 annotated trajectories (27240 bounding boxes). For fair
comparison, we use the ground truth publicly provided by Milan et al. [5].

To efficiently acquire online detections, we use the aggregate channel features
object detector [3] which can be operated in almost real time. The detector is
trained on the INRIA dataset [1] with default parameters.

3.3 Evaluation Metrics

We use the widely accepted CLEAR performance metrics [17] for quantitative
evaluation: the multiple object tracking precision (MOTP↑) that evaluates aver-
age overlap rate between true positive tracking results and the ground truth, and
the multiple object tracking accuracy (MOTA↑) which indicates the accuracy
composed of false positives (FP↓), false negatives (FN↓) and identity switches
(IDS↓). Additionally, we report measures defined by Li et al. [18], including the
percentage of mostly tracked (MT↑) and mostly lost (ML↓) ground truth tra-
jectories, as well as the number of times that a ground truth trajectory is inter-
rupted (FG↓). Here, ↑ means that higher scores indicate better results, and ↓
represents that lower is better.

3.4 Results and Discussion

Quantitative results of our algorithm compared with the state-of-the-art tracking
methods on the datasets are listed in Table 1, and sample results are shown in
Fig. 1. Overall, our algorithm outperforms the competing online tracker CMOT,
and achieves competitive results compared to the state-of-the-art batch methods
(i.e., DP, TBD and CEM). It owes to the proposed two collaborative MAP esti-
mation stages which simultaneously incorporate the sequential trajectory prior
into both the detection and association procedures during tracking. As can be
observed from the quantitative evaluation results, our algorithm achieves far
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Fig. 1. Sample tracking results of our method on three representative test video
sequences (PETS2009-S2L2, TUD-Stadtmitte and ETHMS-Jelmoli). At each frame,
objects with different IDs are indicated by bounding boxes with different colors.

superior performance in terms of MOTA, FP and FN, which indicates that the
detection refinement stage integrating with the sequential trajectory prior signif-
icantly facilitates the tracking process. In addition, we achieve excellent results
in terms of MT, ML, IDS and FG, demonstrating that the combination of asso-
ciation likelihood and sequential prior benefits the correct association between
trajectories and detections. As shown in the qualitative examples of tracking
results in Fig. 1, our method is able to accurately track the target persons under
various challenging conditions.

To demonstrate the effectiveness of the proposed two MAP estimation stages
with the sequential trajectory prior, we build three baseline algorithms to do
validation and analyze various aspects of our approach. The comparison results
between our approach and three baseline algorithms are also listed in Table 1,
where removal of the MAP estimation stage means removal the prior and only
using the likelihood as most tracking methods do. As can be seen from the com-
parison results, the baseline algorithm without both of the two MAP estimation
stages shows severe performance degradation. Using sequential trajectory prior
to refine the detections results in significant improvement on MOTA and FN,
which validates that the sequential trajectory prior indeed assists the detector
to recall more accuracy detections. In addition, incorporating sequential trajec-
tory prior to trajectory-detection association apparently improves the accuracy
in terms of MT, ML, IDS and FG, which demonstrated that the association cor-
rectness is improved by using the MAP estimation of the posterior association
probability. The proposed algorithm considers the sequential trajectory prior in
both the detection and association stages, and thus shows the best performance.
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4 Conclusion

We have proposed an online multi-object tracking-by-detection algorithm by
using the Maximum a Posteriori (MAP) framework. To account for noisy detec-
tions and improve trajectory-detection association correctness, we exploit the
prior information contained in previous frames, such as the positions of objects
that most likely to appear, the adaptive confidences of trajectories and the detec-
tion reliability, to guide the detection and association stages in the current frame.
By using these sequential trajectory priors in MAP, the tracker is able to recall
more reliable detections and alleviate the ambiguity of trajectory-detection asso-
ciation, and achieves great improvement on tracking performance.
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