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Abstract. Modern aircraft and ships are equipped with radars emit-
ting specific patterns of electromagnetic signals. The radar antennas are
detecting these patterns which are required to identify the types of emit-
ters. A conventional way of emitter identification is to categorize the
radar patterns according to the sequences of frequencies, time of arrivals,
and pulse widths of emitting signals by human experts. In this respect,
this paper presents a method of classifying the radar patterns automati-
cally using the network of calculating the p-values of testing the hypothe-
ses of the types of emitters referred to as the class probability output
network (CPON). Through the simulation for radar pattern classifica-
tion, the effectiveness of the proposed approach has been demonstrated.
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1 Introduction

In modern days, radars are essential devices to detect objects such as aircraft
or ships. For detecting objects emitting specific patterns of electromagnetic sig-
nals, the detected signal patterns should be analyzed and categorized according
to the types of emitters. This emitter identification plays an important role
especially in the electronic warfare [1]. The robust performances of emitter iden-
tification becomes more important in complex environments of emitters and
landscapes. In the conventional approach of emitter identification, the key fea-
tures of radar patterns such as the sequences of radar frequencies (RFs), time of
arrivals (TOAs), and pulse widths (PWs) are used to extract the emitter para-
meters and these parameters are compared with tabulated emitter parameters.
However, this process usually requires high computational complexity and needs
to be verified by human experts. In this respect, an approach of automatic classi-
fication of radar patterns is proposed to obtain the conditional class probability
for the given radar pattern.
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There are various ways of implementing pattern classifiers. The most popu-
lar way is using the discriminant function whose value indicates the degree of
confidence for the classification; that is, the decision of classification is made by
selecting the class that has the greatest discriminant value. In this direction,
the support vector machines (SVMs) [2] are widely used in many classification
problems because they provide reliable performances by maximizing the margin
between the positive and negative classes. However, more natural way of repre-
senting the degree of confidence for classification is using the conditional class
probability for the given pattern. In this context, the class probability output
network (CPON) in which the conditional class probability is estimated using
the beta distribution parameters, was proposed [3]. This method is implemented
on the top of a classifier; that is, many-to-one nonlinear function such as the
linear combination of kernel functions. Then, the classifier’s output is identified
by beta distribution parameters and the output of CPON; that is, the condi-
tional class probability for the given pattern is calculated from the cumulative
distribution function (CDF) of Beta distribution parameters. In this computa-
tion, the output of CPON represents the p-value of testing a certain class. For
the final decision of classification, the class which has the maximum conditional
class probability is selected. As a result, the suggested CPON method is able
to provide consistent improvement of classification performances for the classi-
fiers using discriminant functions alone. For the detailed descriptions of CPONs
and CPON applications, refer to [3,4]. In this approach, the selected features of
radar patterns are used as the input to the classifier of many-to-one mapping
nonlinear function and the output distribution is identified by beta distribution
parameters to obtain the p-value of testing the type of emitters. As a result,
the proposed method provides the p-values of testing hypotheses of the types of
emitters and the better performances of classification than other classifiers using
the discriminant function.

The rest of this paper is organized as follows: in Sect. 2, the problem of
radar classification is described, Sect. 3 presents the method of radar pattern
classification using the CPON, Sect. 4 shows simulation results for radar pattern
classification, and finally, Sect. 5 presents the conclusion.

2 Key Features for Radar Pattern Classification

The proposed method is intended to identify radar patterns from various emit-
ters. In this approach, it is assumed that the radar has the ability to monitor a
region of microwave spectrum and to extract pulse patterns. The whole process
of emitter identification (or radar pattern classification) is illustrated in Fig. 1.
In this diagram, the feature extractor receives pulses from the microwave radar
receiver and processes each pulse into feature values such as azimuth, elevation,
intensity, frequency, and pulse width. These data are then stored and tagged
with the time of arrival of the pulse. Then, the clustering block is grouping
radar pulses into groups in which each group represents radar pulses from a
single emitter. For each group of radar pulses, the pulse extraction block is ana-
lyzing the pulse repetition patterns of an emitter by using the information of
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time of arrivals. Finally, from the information of pulse repetition patterns, input
features for the classifier are computed and the decision for the classification of
emitters is made based on extracted key features.

Fig. 1. Process of emitter identification

In the proposed approach, the selected key features are RFs, TOAs, and
PWs. Then, for each sequence of key feature values xi, i = 1, · · · , n, the sta-
tistical measures such as the mean x̄, variance s2, skewness, and kurtosis are
determined by

x̄ =
1
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xi, (1)
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1

n − 1
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i=1

(xi − x̄)2, (2)
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1
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( 1
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3
2
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kurtosis =
1
n

∑n
i=1 (xi − x̄)4

( 1
n−1
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i=1 (xi − x̄)2)2

− 3. (4)

These statistical feature values are calculated for every sweep of received radar
signals. Then, as a result, 12 feature values are used as the input to the classifier
and the decision of emitter identification is made by using the CPON.

In this approach, the distributions of these feature values are analyzed and
the centroids representing the types of emitters are determined as the center
points for the distributions of radar patterns. Then, these distributions are used
for the decision of determining the specific emitter type in the CPON.

3 Class Probability Output Networks for Emitter
Identification

In many classification problems, it is desirable that the output of a classifier
represents the conditional class probability. For the conditional class probabil-
ity, the distribution of classifier’s output can be well approximated by the beta
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distribution under the assumption that the output of classifier lies within a finite
range and the distribution of classifier’s output is unimodal; that is, the distrib-
ution has one modal value with the greatest frequency. This assumption is quite
reasonable for many cases of classification problems with the proper selection
of kernel parameters of a classifier. Here, we consider the following discriminant
function y as the classifier’s output for the input pattern x:

ŷ(x) =
m∑

i=1

wiφi(x|θ), (5)

where m represents the number of kernels and wi, φi, and θ represent the ith
weight, the ith kernel function, and the kernel parameter, respectively.

In the proposed CPON, the probability model represents the conjugate prior
of the binomial distribution; that is, in our case, the conditional class probability
in binary classification problems. In this context, we consider the following Beta
probability density function (PDF) of a random variable Y as the normalized
classifier’s output:

fY (y|a, b) =
1

B(a, b)
ya−1(1 − y)b−1, 0 ≤ y ≤ 1, (6)

where a and b represents the parameters of beta distribution, and B(a, b) repre-
sents a Beta function defined by

B(a, b) =
∫ 1

0

ya−1(1 − y)b−1dy. (7)

Here, we assume that the classifier’s output value; that is, ŷ is normalized
between 0 and 1. One of the advantages of the Beta distribution is that the
distribution parameters can be easily guessed from the mean E[Y ] and variance
V ar(Y ) as follows:

a = E[Y ]
(

E[Y ](1 − E[Y ])
V ar(Y )

− 1
)

(8)

and

b = (1 − E[Y ])
(

E[Y ](1 − E[Y ])
V ar(Y )

− 1
)

. (9)

Although this moment matching (MM) method is simple, these estimators usu-
ally don’t provide accurate estimations especially for smaller number of data. In
such cases, the maximum likelihood estimation (MLE) or the simplex method
for searching parameters [5] can be used for more accurate estimation of Beta
parameters. If the data distribution follows a Beta distribution and the optimal
Beta parameters are obtained, the ideal cumulative distribution function (CDF)
values of the data u = FY (y) follow an uniform distribution; that is,

fU (u) =
fY (y)

|dFY /dy| =
fY (y)
|fY (y)| = 1. (10)
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To check whether the data distribution fits with the proposed Beta distribution,
the Kolmogorov-Smirnov (K-S) test [6] of data distribution can be considered
as follows:

– First, determine the distance Dn between the empirical and ideal CDF values:

Dn = supu|F ∗
U (u) − FU (u)|, (11)

where F ∗
U (u) and FU (u) represent the empirical and theoretical CDFs of u =

FY (y); that is, the CDF values of the normalized output of a classifier. In this
case, FU (u) = u since the data u = FY (y) follow an uniform distribution if
the data y follows the presumed (or ideal) Beta distribution.

– Determine the p-value of testing the hypothesis of Beta distribution:

p-value = P (Dn ≥ t/
√

n) = 1 − H(t), (12)

where t =
√

ndn (the value of a random variable Dn) and the CDF of the K-S
statistic H(t) is given by

H(t) =
√

2π

t

∞∑

i=1

e−(2i−1)2π2/(8t2). (13)

– Make a decision of accepting the hypothesis of beta distribution H0 using the
p-value according to the level of significance δ:
accept H0, if p-value ≥ δ ; reject H0, otherwise.

In the construction of CPON for radar pattern recognition, first, the centroids as
the representative of the radar pattern data are obtained in the feature space by a
clustering algorithm such as the learning vector quantization (LVQ) method [7].
Then, the kernel functions are located at the positions of centroids and linearly
combined as the form of (5). The output of (5) is normalized between 0 and 1
by using the linear scale and the normalized classifier’s output distribution is
approximated by the Beta distribution parameters. In this training of classifiers,
the Beta distribution parameters as well as the kernel parameters are adjusted
in such a way that the classifier’s output distributions become closer to the ideal
Beta distributions. The algorithm of constructing the CPON for radar pattern
classification is described as follows:

Step 1. For the features of radar patterns, centroids are determined by the clus-
tering algorithm such as the LVQ method. In this application, one centroid
is assigned to a specific emitter. For more complicated distributions in the
feature space, more than one centroids can be assigned.

Step 2. Then, for each centroid, a kernel function is assigned.
Step 3. Determine the classifier’s output for each kernel function and normalize

the output value between 0 and 1 using the linear scale.
Step 4. The distribution of classifier’s normalized output is identified by Beta

distribution parameters. In this estimation of Beta parameters, the kernel
parameters such as the kernel widths are adjusted in such a way of maximiz-
ing the p-value of (12). For the detailed description of estimating parameters,
refer to [3].
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After the CPON is trained, the classification for an unknown pattern can be
determined by the beta distribution for each class. First, for the unknown pat-
tern, the normalized output y for the classifier is computed. Here, if the normal-
ized value is greater than 1, we set that value as 1; on the other hand, if the value
is less than 0, we set that value as 0. Then, the conditional class probability is
determined by the CPON output as the CDF value for the classifier’s normalized
output.

For multi-class classification problems, the CPON can be constructed for each
classifier’s output. Then, the following conditional probability for the kth class
Ck; that is, the output of the kth CPON Fk(yk) for kth classifier’s normalized
output yk is calculated as

Fk(yk) = P (Ck|Yk ≤ yk) = FYk
(yk), (14)

where Yk represents a random variable for the kth class Ck and FYk
(yk) repre-

sents its CDF. This output implies the p-value of testing hypotheses of the kth
class Ck. Then, the final decision can be made by selecting the class with the
maximum p-value; that is, for K classes, the selected class Cl is determined by

l = arg max
1≤k≤K

Fk(yk). (15)

From the above equation, the final decision of the type of emitter is made.

4 Simulation

To demonstrate the effectiveness of the proposed method, the simulation for
radar pattern classification was performed for the radar data patterns generated
from the emitter simulator developed by LIGNex1. This simulator was designed
to accommodate the variation of key features such as the RFs, TOAs, and PWs
of real emitters. In this benchmark data, there were 50 sets of emitter types (or
classes) in which each data set included 100 sequences of emitter patterns con-
taining the features of RFs, TOAs, and PWs. For the evaluation of the proposed
method, 10-fold evaluation method was used: 10 disjoint sets of 90% of data as
training data and the rest 10% of data as test data were used. Then, the average
performances of the following accuracy for 50 classes were determined:

Accuracy =
1
50

50∑

i=1

TPi + TNi

TPi + TNi + FPi + FNi
, (16)

where TPi, TNi, FPi, and FNi represent the true positive, true negative, false
positive, and false negative of the ith classifier, respectively.

However, in this evaluation of classification performances, the accuracy mea-
sure can be misleading particularly in the multi-class and/or unbalanced data.
From this point of view, the following exact match ratio (EMR) for n test pat-
terns were also determined:

EMR =
1
n

n∑

i=1

I(xi), (17)
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where xi represents the ith test pattern and I(xi) represents the following indi-
cator function:

I(xi) =
{

1 if L(xi) = D(xi)
0 otherwise.

Here, L(xi) and D(xi) represent the class label and the decision label of the
classifier for the ith test pattern, respectively; that is, the EMR represents the
ratio of correct decision of the classifier.

To compare the performances of the CPON-based method, the k-nearest
neighbor (kNN) and SVM classifiers using the Scikit-learn package [8] were also
trained for the same training data and evaluated for the same test data. In this
simulation, the same features of RFs, TOAs, and PWs were also used for the
training and testing the classifiers. In the case of SVM, 50 binary (one-against-
rest) classifiers were trained and tested for the given data. The simulation results
for emitter identification were summarized in Table 1.

Table 1. Simulation results for emitter identification

Classifier kNN SVM CPON

Accuracy 0.9944 0.9934 0.9861

EMR 0.7952 0.6734 0.9622

These simulation results have shown that (1) three classifiers were good in
the accuracy measure, (2) the SVM was not a good choice for these multi-class
data from a view point of the EMR measure, and (3) the proposed method pro-
vided the best performance in the EMR measure compared with other classifiers.
This implies that the proposed statistical features of the RFs, TOAs, and PWs
are quite effective to identify the characteristics of the emitter types and the
proposed CPON-based classification is also an effective approach for the prob-
lems of emitter identification. Furthermore, the proposed CPON-based method
is also able to provide p-values for testing the types of emitters. In practice, this
information of p-values helps us to make a decision whether the received radar
pattern is a new type of emitter or one of known types of emitters. For exam-
ple, if the maximum p-value is less than some threshold value (the usual value
is 0.05), then there is a high probability that the received radar pattern comes
from a new type of emitter. This ability of finding a new type of emitter is also
an important issue in emitter identification problems.

5 Conclusion

A new method of radar pattern classification was proposed based on the class
probability output network (CPON). In the proposed method, the sequences
of key features such as the frequencies, time of arrivals, and pulse widths of
emitting signals are analyzed and statistical measures of these features such as
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the mean, variance, skewness, and kurtosis are extracted and used as the input
to the CPON. Then, the CPON is used to construct a hypothesis of specific
emitter from the distributions of these features. As a result, the proposed CPON
provides the p-values of testing the hypotheses of the types of emitters. Through
the simulation for radar pattern classification, it has been demonstrated that
the proposed method provides the better performance of classification than other
classifiers using the discriminant function. From the classification performance of
the proposed CPON-based emitter identification, it is expected to be comparable
with human experts. Furthermore, the proposed CPON-based method is able to
provide the information for making a decision whether the received radar pattern
comes from a new type of emitter.
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