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Abstract. This paper proposes a patch-based tracking algorithm via a
hybrid generative-discriminative appearance model. For establishing the
generative appearance model, we present a spatio-temporal constraint-
based sparse representation (STSR), which not only exploits the intrinsic
relationship among the target candidates and the spatial layout of the
patches inside each candidate, but also preserves the temporal similarity
in consecutive frames. To construct the discriminative appearance model,
we utilize the multiple-instance learning-based support vector machine
(MIL&SVM), which is robust to occlusion and alleviates the drifting
problem. According to the classification result, the occlusion state can
be predicted, and it is further used in the templates updating, making
the templates more efficient both for the generative and discriminative
model. Finally, we incorporate the hybrid appearance model into a par-
ticle filter framework. Experimental results on six challenging sequences
demonstrate that our tracker is robust in dealing with occlusion.
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1 Introduction

Visual tracking is an active field of research in computer vision. While numerous
tracking methods have been proposed with demonstrated success in recent years,
designing a robust tracking method is still an open problem, due to factors
such as scale and pose change, illumination variation, occlusion, etc. Especially,
occlusion is a core issue. One of the main reasons is the lack of the effective
object appearance models, which play a significant role in visual tracking.

For designing a robust tracker, most tracking algorithms employ genera-
tive learning or discriminative learning based appearance models. Generative
learning based appearance models mainly concentrate on how to fit the data
accurately from the object class using generative methods. Among them, sparse
representation is a widely used generative method. Jia et al. [3] developed a
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local appearance model by utilizing the sparse representation of the overlapped
patches. Zhang et al. [10] proposed a structural sparse tracking algorithm to
exploit the relationship among the target candidates and spatial layout of the
patches inside each candidate. Zarezade et al. [9] presented a joint sparse tracker
by assuming that the target and the previous best candidates have a common
sparsity pattern. Although these methods achieve convincing performance, they
either lack of the description of the target spatial layout or ignore the temporal
consistency constraint of successive frames. In this paper, we propose a spatio-
temporal constraint-based sparse representation (STSR), which not only exploits
the spatial layout of the local patches inside each candidate and the intrinsic rela-
tionship among the candidates and their local patches, but also preserves the
temporal consistency of the sparsity pattern in consecutive frames.

In comparison, discriminative appearance models pose visual tracking as
a binary classification issue, aiming to maximize the inter-class separability
between the object and non-object regions via discriminative learning techniques.
Babenko et al. [2] introduced the multiple-instance learning technique into online
object tracking where training samples can be labeled more precisely. In [4], Kalal
et al. proposed to train a binary classifier using the P-N learning algorithm with
both labeled and unlabeled samples. Despite the convincing performance, most
of these methods use holistic representation to represent the object and hence do
not handle occlusion well. In this paper, we utilize the patch-based discriminative
appearance model proposed by [6] to locate the target from the background, in
which the multiple-instance learning-based support vector machine (MIL&SVM)
is used as the classifier and it can predict the occlusion state and alleviate the
drifting problem. According to the occlusion state, we update the template set
as mentioned in [6], making the templates more effective both for the generative
and discriminative appearance model.

2 Patchwise Tracking via a Hybrid Generative-
Discriminative Appearance Model

In our tracker, we utilize st to denote the object state at time t, and construct
our tracker in the particle filter framework (PF). For the dynamic model of
PF, p(st|st−1), we assume a Gaussian distributed model. For the appearance
model in PF, p(yt|st), we use our patch-based hybrid generative-discriminative
appearance model, which will be introduced below.

2.1 Generative Appearance Model Based on STSR

Given the image set of the target templates T = [T1,T2, ...,Tm], where m is
the number of target templates, we sample K overlapped local patches inside
each target region. The sampled patches are used to form a dictionary D =
[d(1)

1 , ...,d(1)
m , ...,d(K)

1 , ...,d(K)
m ], each column in D is obtained by �2 normalization

on the vectorized gray scale image observations extracted from T.
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Fig. 1. Spatio-temporal constraint-based sparse representation

Let {x∗
t−i}Ni=1 and {xi

t}ni=1 represent the best candidates obtained in the pre-
vious tracking and particles from the current frame respectively. For {x∗

t−i}Ni=1

and {xi
t}ni=1, we also sample K overlapped local patches as done in the tem-

plate set and denote x∗
t−i = [x∗(1)

t−i , ...,x∗(K)
t−i ] and xi

t = [xi(1)
t , ...,xi(K)

t ]. Let
X(k)

t = [x1(k)
t , ...,xn(k)

t ] denote the k-th local patches of n particles at time
t. In order to represent this observations matrix X(k)

t , we not only consider the
spatial constraint of the particles and local patches, but also utilize the temporal
constraint in consecutive frames.

Spatio-Temporal Constraint. Based on the fact that n particles at current
frame are densely sampled at and around the target of the previous frame and
the target’s appearance changes smoothly, it is reasonable to assume that these
particles are likely to be similar and they have the similar sparse pattern with
previous tracking results over a period of time. Thus the k-th image patches of
n particles and previous tracking results are expected to be similar. In addition,
for patches extracted from a candidate particle or a previous tracking result,
their spatial layout should be preserved.

Spatio-Temporal Constraint-Based Sparse Representation (STSR).
Based on the above observations, we use X(k) = [x∗(k)

t−i , ...,x∗(k)
t−1 ,x1(k)

t , ...,xn(k)
t ]

to represent the k-th local patches of previous tracking results and n particles
in current frame, D(k) = [d(k)

1 ,d(k)
2 , ...,d(k)

m ] to express the k-th patches of m

templates, and Z(k) = [z∗(k)
t−i , ..., z∗(k)

t−1 , z1(k)t , ..., zn(k)t ] to denote the representa-
tions of the k-th local patch observations of X(k) with respect to D(k). Then the
joint sparse appearance model for the object tracking under the spatio-temporal
constraint can be obtained by using the �2,1 mixed norm as

min
Z

1
2

K∑

k=1

||X(k) − D(k)Z(k)||2F + λ||Z||2,1 (1)

where, Z = [Z(1),Z(2), ...,Z(K)], || · ||F denotes the Frobenius norm, λ is a
regularization parameter which balances reconstruction error with model com-
plexity, ||Z||2,1 =

∑
i(

∑
j |[Z]ij |2) 1

2 and [Z]ij denotes the entry at the i-th row
and j-th column of Z. The �2,1 mixed norm regularizer is optimized using an
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Accelerated Proximal Gradient (APG) method. The illustration of the spatio-
temporal constraint-based sparse representation is shown in Fig. 1.

Generative Appearance Model Based on STSR. After learning the Z, the
observation likelihood of the tracking candidate i is defined as

pg(yt|st) =
1
β

exp(−α

K∑

k=1

||xi(k)
t − Dkzi(k)t ||2F ) (2)

where, zi(k)t is the coefficient of the k-th image patch of the i-th particle corre-
sponding to the target templates, and α and β are normalization parameters.

2.2 Discriminative Appearance Model Based on MIL&SVM

Despite the robust performance of the generative appearance model achieved,
it is not effective in dealing with the background distractions. Therefore, we
introduce a discriminative appearance model based on MIL&SVM to improve
the performance of our tracker.

We denote the overlapped image patches extracted from the target templates
as the positive pathes p+, and the overlapped patches extracted from the back-
ground (which is an annular region and the distance from the center-point of the
target object to the edge of the negative patch sampling area is set to R) are
denoted as negative patches p−. As we all known, some positive patches obtained
above may contain some noisy pixels from background because the bounding box
is rectangular whereas the shape of the target may not be a standard rectangle.
In order to deal with this problem, we adopt the patch-based MIL&SVM to train
a robust classifier. In the training procedure, a row of patches are defined as a
positive bag b+ if they extracted from the target templates, or negative bag b−

if they come from background. The training procedure is illustrated in Fig. 2.
With this classifier, we can classify each patch of a candidate object at time

t. For a candidate, we use r+ to denote the local patches which are classified as
positive and use r− to denote patches classified as negative. Then the probability
of a candidate being the tracking result can be defined as

Fig. 2. Illustration for the patch-based MIL&SVM
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pd(yt|st) =
|r+|

|r−| + |r+| (3)

where |r+| and |r−| are the number of positive patches and negative patches.
Furthermore, according to the classification result, the occlusion state of a

candidate can be obtained as

O =
|r−|

|r−| + |r+| (4)

2.3 Adaptive Hybrid Generative-Discriminative Appearance Model

Based on the likelihood obtained from the spatio-temporal constraint-based
sparse representation and the probability got via multiple-instance learning-
based SVM, we construct our final observation model as:

p(yt|st) = ηpg(yt|st) + (1 − η)pd(yt|st) (5)

where η ∈ [0, 1] is a control parameter, which can adjust weights of the two
methods according to the occlusion state and can be defined as η = 1

2 (1 + O).
In order to deal with appearance variation with time, we need to update our

templates. We divide the templates T into two groups according to the occlusion
state. The group without occlusion is denoted as Tunocc = [T1, ...,Tm1 ], and
the occluded template set is denoted as Tocc = [Tm1+1, ...,Tm], where m1 is
the number of unoccluded patches. The templates in Tunocc are ordered by time
and the templates in Tocc are ordered reversely by time. We use two increasing
interval sequences and a random number r ∈ [0, 2] to determine the sequence
number of the template needed to be deleted as Eq. 6.

f(r) =

⎧
⎪⎪⎨

⎪⎪⎩

i, r ∈ [
(i − 1)2 + (i − 1)

m2
1 + m1

,
i2 + i

m2
1 + m1

], 0 < r ≤ 1

j, r ∈ [1 +
(j − 1)2 + (j − 1)

m2
2 + m2

, 1 +
j2 + j

m2
2 + m2

], 1 < r ≤ 2
(6)

where m2 = m − m1.
After selecting the template to discard, we use the method mentioned in [3]

to update the template. For more detail, please refer [3]. After the templates T
is updated, we retrain the MIL&SVM classifier only with the templates without
occlusion or with light occlusion.

3 Experiments

We validate our tracker on six challenging sequences and compare it with six
state-of-the-art methods proposed in recent years. All of these sequences are
publicly available. The challenges of these sequences include severe occlusion and
drastic shape deformation. In order to test the effectiveness and robustness of our
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Fig. 3. Comparative experimental tracking results of 7 methods on six sequences, from
top to bottom are basketball, DavidOutdoor, girl move, woman sequence, face sequence
and girl head
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Fig. 4. Center error plots for 7 methods on six video sequences
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tracker, we compare it with FragT [1], VTD [5], PT [8], SCM [11], ASLA [3] and
SPT [7]. For our tracker, we set the number of templates m = 10, the number
of local patches K = 9, the number of particles n = 400, and we use 2 previous
tracking results in STSR. We resize all the targets or candidates as (32, 32).The
size of the sampling patch is (16,16) and the sampling step is 8 pixels.

Table 1. Location errors (in pixel, the bold font indicates the best performance)

Sequences FragT VTD PT SCM ASLA SPT Ours

basketball 16.3 9.0 19.1 126.4 112.6 17.4 8.2

DavidOutdoor 63.5 70.0 88.0 101.7 105.2 50.0 8.5

girl move 8.9 45.4 110.2 414.8 214.5 30.0 5.7

woman sequence 138.1 163.1 3.8 122.9 4.4 9.0 4.7

face sequence 4.4 8.5 5.4 4.5 5.4 48.1 5.5

girl head 3.6 7.2 3.1 3.3 38.0 30.0 3.1

Overall 39.1 50.5 38.3 128.9 80.0 30.8 6.0

Comparative tracking results of selected frames are shown in Fig. 3, from
which we can find that our proposed tracker performs very well on all these
challenging sequences. FragT is designed for dealing with occlusion and performs
well in face sequence and girl head when the target is large enough, but it cannot
get good results in other sequences when there exists sever occlusion in a small
target. VTD adopts multi-trackers to track the target and it achieves satisfactory
results in face sequence and basketball but also shows less effective in dealing with
the situation when there exists both rigid shape deformation and occlusion. PT is
a part-based tracker and it performs well in dealing with partial occlusion, but it
fails when the target is full occluded. Both SCM and ASLS adopt sparsity-based
appearance model and they perform well in dealing with occlusion as shown in
face sequence, but cannot get satisfactory performance when there exists rigid
shape deformation. SPT achieves good results on DavidOutdoor and girl move
as shown in Fig. 3, but cannot obtain stable performance in clutter scene or when
there exists severe and frequent occlusion as shown in screenshots of sequences
basketball, woman sequence and face sequence.

We also measure the quantitative tracking error, the Euclidean distance from
the tracking center to the ground-truth. The center error plots of 7 methods on
6 sequences are shown in Fig. 4, which demonstrates that our tracker is robust
in handling occlusion and shape deformation even in a complex scene. We show
the location errors in Table 1, which shows that our tracker achieves the best
tracking results on 4 sequences and gives the the best tracking result on average.

4 Conclusion

In this paper, we have proposed a novel patch-based tracking method based
on the combination of spatio-temporal constraint-based sparse representation
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(STSR) and multiple-instance learning-based SVM (MIL&SVM). By utilizing
the STSR, our tracker effectively captures the structure cues of the target and the
temporal similarity in consecutive frames. Furthermore, we utilize MIL&SVM as
our discriminative appearance model, which is robust in cluttered background
and can predict the occlusion state. Based on the occlusion state, we update
the template set separately, making the generative method obtain more precise
templates and the discriminative method maintain correctness. Qualitative and
quantitative experimental results on different challenging sequences demonstrate
that our tracker is very robust to the occlusion.
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