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Preface

This volume is part of the four-volume proceedings of the 22nd International Con-
ference on Neural Information Processing (ICONIP 2015), which was held in Istanbul,
Turkey, during November 9–12, 2015. The ICONIP is an annual conference of the
Asia Pacific Neural Network Assembly (APNNA; which was reformed in 2015 as the
Asia Pacific Neural Network Society, APNNS). This series of ICONIP conferences has
been held annually since 1994 in Seoul and has become one of the leading international
conferences in the areas of artificial intelligence and neural networks.

ICONIP 2015 received a total of 432 submissions by scholars coming from 42
countries/regions across six continents. Based on a rigorous peer-review process where
each submission was evaluated by an average of two qualified reviewers, a total of 301
high-quality papers were selected for publication in the reputable series of Lecture
Notes in Computer Science (LNCS). The selected papers cover major topics of theo-
retical research, empirical study, and applications of neural information processing
research. ICONIP 2015 also featured the Cybersecurity Data Mining Competition and
Workshop (CDMC 2015), which was jointly held with ICONIP 2015. Nine papers
from CDMC 2015 were selected for the conference proceedings.

In addition to the contributed papers, the ICONIP 2015 technical program also
featured four invited speakers, Nik Kasabov (Auckland University of Technology, New
Zealand), Jun Wang (The Chinese University of Hong Kong), Tom Heskes (Radboud
University, Nijmegen, The Netherlands), and Michel Verleysen (Université catholique
de Louvain, Belgium).

We would like to sincerely thank to the members of the Advisory Committee and
Program Committee, the APNNS Governing Board for their guidance, and the mem-
bers of the Organizing Committee for all their great efforts and time in organizing such
an event. We would also like to take this opportunity to express our deepest gratitude to
all the reviewers for their professional review that guaranteed high-quality papers.

We would like to thank Springer for publishing the proceedings in the prestigious
series of Lecture Notes in Computer Science. Finally, we would like to thank all the
speakers, authors, and participants for their contribution and support in making
ICONIP 2015 a successful event.

November 2015 Sabri Arik
Tingwen Huang
Weng Kin Lai
Qingshan Liu



Organization

General Chair

Sabri Arik Istanbul University, Turkey

Honorary Chair

Shun-ichi Amari Brain Science Institute, RIKEN, Japan

Program Chairs

Tingwen Huang Texas A&M University at Qatar, Qatar
Weng Kin Lai School of Technology, Tunku Abdul Rahman College

(TARC), Malaysia
Qingshan Liu Huazhong University of Science Technology, China

Advisory Committee

P. Balasubramaniam Deemed University, India
Jinde Cao Southeast University, China
Jonathan Chan King Mongkut’s University of Technology, Thailand
Sung-Bae Cho Yonsei University, Korea
Tom Gedeon Australian National University, Australia
Akira Hirose University of Tokyo, Japan
Tingwen Huang Texas A&M University at Qatar, Qatar
Nik Kasabov Auckland University of Technology, New Zealand
Rhee Man Kil Korea Advanced Institute of Science and Technology

(KAIST), Korea
Irwin King Chinese University of Hong Kong, SAR China
James Kwok Hong Kong University of Science and Technology,

SAR China
Weng Kin Lai School of Technology, Tunku Abdul Rahman College

(TARC), Malaysia
James Lam The University of Hong Kong, Hong Kong,

SAR China
Kittichai Lavangnananda King Mongkut’s University of Technology, Thailand
Minho Lee Kyungpook National University, Korea
Andrew Chi-Sing Leung City University of Hong Kong, SAR China
Chee Peng Lim University Sains Malaysia, Malaysia
Derong Liu The Institute of Automation of the Chinese Academy

of Sciences (CASIA), China



Chu Kiong Loo University of Malaya, Malaysia
Bao-Liang Lu Shanghai Jiao Tong University, China
Aamir Saeed Malik Petronas University of Technology, Malaysia
Seichi Ozawa Kobe University, Japan
Hyeyoung Park Kyungpook National University, Korea
Ju. H. Park Yeungnam University, Republic of Korea
Ko Sakai University of Tsukuba, Japan
John Sum National Chung Hsing University, Taiwan
DeLiang Wang Ohio State University, USA
Jun Wang Chinese University of Hong Kong, SAR China
Lipo Wang Nanyang Technological University, Singapore
Zidong Wang Brunel University, UK
Kevin Wong Murdoch University, Australia

Program Committee Members

Syed Ali, India
R. Balasubramaniam, India
Tao Ban, Japan
Asim Bhatti, Australia
Jinde Cao, China
Jonathan Chan, Thailand
Tom Godeon, Australia
Denise Gorse, UK
Akira Hirose, Japan
Lu Hongtao, China
Mir Md Jahangir Kabir, Australia
Yonggui Kao, China
Hamid Reza Karimi, Norway
Nik Kasabov, New Zealand
Weng Kin Lai, Malaysia
S. Lakshmanan, India
Minho Lee, Korea
Chi Sing Leung, Hong Kong, SAR China
Cd Li, China

Ke Liao, China
Derong Liu, USA
Yurong Liu, China
Chu Kiong Loo, Malaysia
Seiichi Ozawa, Japan
Serdar Ozoguz, Turkey
Hyeyoung Park, South Korea
Ju Park, North Korea
Ko Sakai, Japan
Sibel Senan, Turkey
Qianqun Song, China
John Sum, Taiwan
Ying Tan, China
Jun Wang, Hong Kong, SAR China
Zidong Wang, UK
Kevin Wong, Australia
Mustak Yalcin, Turkey
Enes Yilmaz, Turkey

Special Sessions Chairs

Zeynep Orman Istanbul University, Turkey
Neyir Ozcan Uludag University, Turkey
Ruya Samli Istanbul University, Turkey

VIII Organization



Publication Chair

Selcuk Sevgen Istanbul University, Turkey

Organizing Committee

Emel Arslan Istanbul University, Turkey
Muhammed Ali Aydin Istanbul University, Turkey
Eylem Yucel Demirel Istanbul University, Turkey
Tolga Ensari Istanbul University, Turkey
Ozlem Faydasicok Istanbul University, Turkey
Safak Durukan Odabasi Istanbul University, Turkey
Sibel Senan Istanbul University, Turkey
Ozgur Can Turna Istanbul University, Turkey

Organization IX



Contents – Part I

Learning Algorithms and Classification Systems

Texture Classification with Patch Autocorrelation Features . . . . . . . . . . . . . . 1
Radu Tudor Ionescu, Andreea Lavinia Popescu, and Dan Popescu

Novel Architecture for Cellular Neural Network Suitable for High-Density
Integration of Electron Devices-Learning of Multiple Logics . . . . . . . . . . . . 12

Mutsumi Kimura, Yusuke Fujita, Tomohiro Kasakawa,
and Tokiyoshi Matsuda

Analyzing the Impact of Feature Drifts in Streaming Learning . . . . . . . . . . . 21
Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck

Non-linear Metric Learning Using Metric Tensor . . . . . . . . . . . . . . . . . . . . 29
Liangying Yin and Mingtao Pei

An Optimized Second Order Stochastic Learning Algorithm for Neural
Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Mohamed Khalil-Hani, Shan Sung Liew, and Rabia Bakhteri

Max-Pooling Dropout for Regularization of Convolutional
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Haibing Wu and Xiaodong Gu

Predicting Box Office Receipts of Movies with Pruned Random Forest . . . . . 55
Zhenyu Guo, Xin Zhang, and Yuexian Hou

A Novel ‘1-graph Based Image Classification Algorithm . . . . . . . . . . . . . . . 63
Jia-Yue Xu and Shu-Tao Xia

Classification of Keystroke Patterns for User Identification in a Pressure-
Based Typing Biometrics System with Particle Swarm Optimization (PSO). . . . . 71

Weng Kin Lai, Beng Ghee Tan, Ming Siong Soo, and Imran Khan

Discriminative Orthonormal Dictionary Learning for Fast Low-Rank
Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Zhen Dong, Mingtao Pei, and Yunde Jia

Supervised Topic Classification for Modeling a Hierarchical
Conference Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Mikhail Kuznetsov, Marianne Clausel, Massih-Reza Amini,
Eric Gaussier, and Vadim Strijov

http://dx.doi.org/10.1007/978-3-319-26532-2_1
http://dx.doi.org/10.1007/978-3-319-26532-2_2
http://dx.doi.org/10.1007/978-3-319-26532-2_2
http://dx.doi.org/10.1007/978-3-319-26532-2_3
http://dx.doi.org/10.1007/978-3-319-26532-2_4
http://dx.doi.org/10.1007/978-3-319-26532-2_5
http://dx.doi.org/10.1007/978-3-319-26532-2_5
http://dx.doi.org/10.1007/978-3-319-26532-2_6
http://dx.doi.org/10.1007/978-3-319-26532-2_6
http://dx.doi.org/10.1007/978-3-319-26532-2_7
http://dx.doi.org/10.1007/978-3-319-26532-2_8
http://dx.doi.org/10.1007/978-3-319-26532-2_8
http://dx.doi.org/10.1007/978-3-319-26532-2_9
http://dx.doi.org/10.1007/978-3-319-26532-2_9
http://dx.doi.org/10.1007/978-3-319-26532-2_10
http://dx.doi.org/10.1007/978-3-319-26532-2_10
http://dx.doi.org/10.1007/978-3-319-26532-2_11
http://dx.doi.org/10.1007/978-3-319-26532-2_11


A Framework for Online Inter-subjects Classification in Endogenous
Brain-Computer Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Sami Dalhoumi, Gérard Dray, Jacky Montmain, and Stéphane Perrey

A Bayesian Sarsa Learning Algorithm with Bandit-Based Method. . . . . . . . . 108
Shuhua You, Quan Liu, Qiming Fu, Shan Zhong, and Fei Zhu

Incrementally Built Dictionary Learning for Sparse Representation . . . . . . . . 117
Ludovic Trottier, Brahim Chaib-draa, and Philippe Giguère

Learning to Reconstruct 3D Structure from Object Motion . . . . . . . . . . . . . . 127
Wentao Liu, Haobin Dou, and Xihong Wu

Convolutional Networks Based Edge Detector Learned via Contrast
Sensitivity Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Haobin Dou, Wentao Liu, Junnan Zhang, and Xihong Wu

Learning Algorithms and Frame Signatures for Video Similarity Ranking . . . 147
Teruki Horie, Akihiro Shikano, Hiromichi Iwase, and Yasuo Matsuyama

On Measuring the Complexity of Classification Problems . . . . . . . . . . . . . . 158
Ana Carolina Lorena and Marcilio C.P. de Souto

The Effect of Stemming and Stop-Word-Removal on Automatic Text
Classification in Turkish Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Mustafa Çağataylı and Erbuğ Çelebi

Example-Specific Density Based Matching Kernel for Classification
of Varying Length Patterns of Speech Using Support Vector Machines . . . . . 177

Abhijeet Sachdev, A.D. Dileep, and Veena Thenkanidiyoor

Possibilistic Information Retrieval Model Based on Relevant Annotations
and Expanded Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Fatiha Naouar, Lobna Hlaoua, and Mohamed Nazih Omri

A Transfer Learning Method with Deep Convolutional Neural Network
for Diffuse Lung Disease Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Hayaru Shouno, Satoshi Suzuki, and Shoji Kido

Evaluation of Machine Learning Algorithms for Automatic Modulation
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Muhammed Abdurrahman Hazar, Niyazi Odabaşioğlu, Tolga Ensari,
and Yusuf Kavurucu

Probabilistic Prediction in Multiclass Classification Derived for Flexible
Text-Prompted Speaker Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Shuichi Kurogi, Shota Sakashita, Satoshi Takeguchi, Takuya Ueki,
and Kazuya Matsuo

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-26532-2_12
http://dx.doi.org/10.1007/978-3-319-26532-2_12
http://dx.doi.org/10.1007/978-3-319-26532-2_13
http://dx.doi.org/10.1007/978-3-319-26532-2_14
http://dx.doi.org/10.1007/978-3-319-26532-2_15
http://dx.doi.org/10.1007/978-3-319-26532-2_16
http://dx.doi.org/10.1007/978-3-319-26532-2_16
http://dx.doi.org/10.1007/978-3-319-26532-2_17
http://dx.doi.org/10.1007/978-3-319-26532-2_18
http://dx.doi.org/10.1007/978-3-319-26532-2_19
http://dx.doi.org/10.1007/978-3-319-26532-2_19
http://dx.doi.org/10.1007/978-3-319-26532-2_20
http://dx.doi.org/10.1007/978-3-319-26532-2_20
http://dx.doi.org/10.1007/978-3-319-26532-2_21
http://dx.doi.org/10.1007/978-3-319-26532-2_21
http://dx.doi.org/10.1007/978-3-319-26532-2_22
http://dx.doi.org/10.1007/978-3-319-26532-2_22
http://dx.doi.org/10.1007/978-3-319-26532-2_23
http://dx.doi.org/10.1007/978-3-319-26532-2_23
http://dx.doi.org/10.1007/978-3-319-26532-2_24
http://dx.doi.org/10.1007/978-3-319-26532-2_24


Simple Feature Quantities for Learning of Dynamic Binary
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Ryuji Sato and Toshimichi Saito

Transfer Metric Learning for Kinship Verification with Locality-
Constrained Sparse Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Yanli Zhang, Bo Ma, Lianghua Huang, and Hongwei Hu

Unsupervised Land Classification by Self-organizing Map Utilizing
the Ensemble Variance Information in Satellite-Borne Polarimetric
Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Yuto Takizawa, Fang Shang, and Akira Hirose

Algorithmic Robustness for Semi-Supervised ð�; c; sÞ-Good Metric
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Eric Gaussier,
and Massih-Reza Amini

Patchwise Tracking via Spatio-Temporal Constraint-Based Sparse
Representation and Multiple-Instance Learning-Based SVM . . . . . . . . . . . . . 264

Yuxia Wang and Qingjie Zhao

An Autonomous Mobile Robot with Functions of Action Learning,
Memorizing, Recall and Identifying the Environment
Using Gaussian Mixture Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Masanao Obayashi, Taiki Yamane, Takashi Kuremoto, Shingo Mabu,
and Kunikazu Kobayashi

SEIR Immune Strategy for Instance Weighted Naive Bayes Classification . . . 283
Shan Xue, Jie Lu, Guangquan Zhang, and Li Xiong

Enhancing Competitive Island Cooperative Neuro-Evolution
Through Backpropagation for Pattern Classification. . . . . . . . . . . . . . . . . . . 293

Gary Wong and Rohitash Chandra

Email Personalization and User Profiling Using RANSAC Multi Model
Response Regression Based Optimized Pruning Extreme Learning
Machines and Gradient Boosting Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Lavneet Singh and Girija Chetty

An Auto-Encoder for Learning Conversation Representation Using LSTM . . . 310
Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, and Xiaolong Wang

On the Use of Score Ratio with Distance-Based Classifiers
in Biometric Signature Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Carlos Vivaracho-Pascual, Arancha Simon-Hurtado,
and Esperanza Manso-Martinez

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-319-26532-2_25
http://dx.doi.org/10.1007/978-3-319-26532-2_25
http://dx.doi.org/10.1007/978-3-319-26532-2_26
http://dx.doi.org/10.1007/978-3-319-26532-2_26
http://dx.doi.org/10.1007/978-3-319-26532-2_27
http://dx.doi.org/10.1007/978-3-319-26532-2_27
http://dx.doi.org/10.1007/978-3-319-26532-2_27
http://dx.doi.org/10.1007/978-3-319-26532-2_28
http://dx.doi.org/10.1007/978-3-319-26532-2_28
http://dx.doi.org/10.1007/978-3-319-26532-2_28
http://dx.doi.org/10.1007/978-3-319-26532-2_29
http://dx.doi.org/10.1007/978-3-319-26532-2_29
http://dx.doi.org/10.1007/978-3-319-26532-2_30
http://dx.doi.org/10.1007/978-3-319-26532-2_30
http://dx.doi.org/10.1007/978-3-319-26532-2_30
http://dx.doi.org/10.1007/978-3-319-26532-2_31
http://dx.doi.org/10.1007/978-3-319-26532-2_32
http://dx.doi.org/10.1007/978-3-319-26532-2_32
http://dx.doi.org/10.1007/978-3-319-26532-2_33
http://dx.doi.org/10.1007/978-3-319-26532-2_33
http://dx.doi.org/10.1007/978-3-319-26532-2_33
http://dx.doi.org/10.1007/978-3-319-26532-2_34
http://dx.doi.org/10.1007/978-3-319-26532-2_35
http://dx.doi.org/10.1007/978-3-319-26532-2_35


A Multifactor Dimensionality Reduction Based Associative Classification
for Detecting SNP Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Suneetha Uppu, Aneesh Krishna, and Raj P. Gopalan

Distributed Q-learning Controller for a Multi-Intersection Traffic Network . . . 337
Sahar Araghi, Abbas Khosravi, and Douglas Creighton

Learning Rule for Linear Multilayer Feedforward ANN by Boosted
Decision Stumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Mirza Mubasher Baig, El-Sayed M. El-Alfy, and Mian M. Awais

Class-Semantic Color-Texture Textons for Vegetation Classification . . . . . . . 354
Ligang Zhang, Brijesh Verma, and David Stockwell

Towards Unsupervised Learning for Arabic Handwritten Recognition
Using Deep Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Mohamed Elleuch, Najiba Tagougui, and Monji Kherallah

Optimum Colour Space Selection for Ulcerated Regions Using Statistical
Analysis and Classification of Ulcerated Frames from WCE Video Footage . . . 373

Shipra Suman, Nicolas Walter, Fawnizu Azmadi Hussin,
Aamir Saeed Malik, Shiaw Hooi Ho, Khean Lee Goh, and Ida Hilmi

Learning the Optimal Product Design Through History . . . . . . . . . . . . . . . . 382
Victor Parque and Tomoyuki Miyashita

Learning Shape-Driven Segmentation Based on Neural Network and Sparse
Reconstruction Toward Automated Cell Analysis of Cervical Smears . . . . . . 390

Afaf Tareef, Yang Song, Weidong Cai, Heng Huang, Yue Wang,
Dagan Feng, and Mei Chen

Adaptive Differential Evolution Based Feature Selection and Parameter
Optimization for Advised SVM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 401

Ammara Masood and Adel Al-Jumaily

TNorm: An Unsupervised Batch Effects Correction Method for Gene
Expression Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Praisan Padungweang, Worrawat Engchuan, and Jonathan H. Chan

Finger-Vein Quality Assessment by Representation Learning
from Binary Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Huafeng Qin and Mounîm A. El-Yacoubi

Learning to Predict Where People Look with Tensor-Based Multi-view
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Kitsuchart Pasupa and Sandor Szedmak

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-26532-2_36
http://dx.doi.org/10.1007/978-3-319-26532-2_36
http://dx.doi.org/10.1007/978-3-319-26532-2_37
http://dx.doi.org/10.1007/978-3-319-26532-2_38
http://dx.doi.org/10.1007/978-3-319-26532-2_38
http://dx.doi.org/10.1007/978-3-319-26532-2_39
http://dx.doi.org/10.1007/978-3-319-26532-2_40
http://dx.doi.org/10.1007/978-3-319-26532-2_40
http://dx.doi.org/10.1007/978-3-319-26532-2_41
http://dx.doi.org/10.1007/978-3-319-26532-2_41
http://dx.doi.org/10.1007/978-3-319-26532-2_42
http://dx.doi.org/10.1007/978-3-319-26532-2_43
http://dx.doi.org/10.1007/978-3-319-26532-2_43
http://dx.doi.org/10.1007/978-3-319-26532-2_44
http://dx.doi.org/10.1007/978-3-319-26532-2_44
http://dx.doi.org/10.1007/978-3-319-26532-2_45
http://dx.doi.org/10.1007/978-3-319-26532-2_45
http://dx.doi.org/10.1007/978-3-319-26532-2_46
http://dx.doi.org/10.1007/978-3-319-26532-2_46
http://dx.doi.org/10.1007/978-3-319-26532-2_47
http://dx.doi.org/10.1007/978-3-319-26532-2_47


Classification of the Scripts in Medieval Documents from Balkan Region
by Run-Length Texture Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Darko Brodić, Alessia Amelio, and Zoran N. Milivojević

Accelerating Artificial Bee Colony Algorithm for Global Optimization . . . . . 451
Xinyu Zhou, Mingwen Wang, and Jianyi Wan

Classification of High and Low Intelligent Individuals Using Pupil
and Eye Blink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Giyoung Lee, Amitash Ojha, and Minho Lee

Learning Task Specific Distributed Paragraph Representations
Using a 2-Tier Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 467

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang

A Comparison of Supervised Learning Techniques for Clustering . . . . . . . . . 476
William Ezekiel and Umashanger Thayasivam

Radar Pattern Classification Based on Class Probability Output Networks . . . 484
Lee Suk Kim, Rhee Man Kil, and Churl Hee Jo

Hierarchical Data Classification Using Deep Neural Networks . . . . . . . . . . . 492
Sreenivas Sremath Tirumala and A. Narayanan

Model Inclusive Learning for Shape from Shading with Simultaneously
Estimating Illumination Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Yasuaki Kuroe and Hajimu Kawakami

A Computational Model of Match Decision-Making Problem Using
Spiking SHESN with Reward-Modulated Reinforcement Learning . . . . . . . . 512

Zhidong Deng and Guorun Yang

Identify Website Personality by Using Unsupervised Learning
Based on Quantitative Website Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Shafquat Chishti, Xiaosong Li, and Abdolhossein Sarrafzadeh

Discriminative Dictionary Learning for Skeletal Action Recognition . . . . . . . 531
Yang Xiang and Jinhua Xu

Single Face Image Super-Resolution via Multi-dictionary Bayesian
Non-parametric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Jingjing Wu, Hua Zhang, Yanbing Xue, Mian Zhou, Guangping Xu,
and Zan Gao

Sparse LS-SVM in the Sorted Empirical Feature Space
for Pattern Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Takuya Kitamura and Kohei Asano

Contents – Part I XV

http://dx.doi.org/10.1007/978-3-319-26532-2_48
http://dx.doi.org/10.1007/978-3-319-26532-2_48
http://dx.doi.org/10.1007/978-3-319-26532-2_49
http://dx.doi.org/10.1007/978-3-319-26532-2_50
http://dx.doi.org/10.1007/978-3-319-26532-2_50
http://dx.doi.org/10.1007/978-3-319-26532-2_51
http://dx.doi.org/10.1007/978-3-319-26532-2_51
http://dx.doi.org/10.1007/978-3-319-26532-2_52
http://dx.doi.org/10.1007/978-3-319-26532-2_53
http://dx.doi.org/10.1007/978-3-319-26532-2_54
http://dx.doi.org/10.1007/978-3-319-26532-2_55
http://dx.doi.org/10.1007/978-3-319-26532-2_55
http://dx.doi.org/10.1007/978-3-319-26532-2_56
http://dx.doi.org/10.1007/978-3-319-26532-2_56
http://dx.doi.org/10.1007/978-3-319-26532-2_57
http://dx.doi.org/10.1007/978-3-319-26532-2_57
http://dx.doi.org/10.1007/978-3-319-26532-2_58
http://dx.doi.org/10.1007/978-3-319-26532-2_59
http://dx.doi.org/10.1007/978-3-319-26532-2_59
http://dx.doi.org/10.1007/978-3-319-26532-2_60
http://dx.doi.org/10.1007/978-3-319-26532-2_60


A Cost Sensitive Minimal Learning Machine for Pattern Classification . . . . . 557
João Paulo P. Gomes, Amauri H. Souza Jr., Francesco Corona,
and Ajalmar R. Rocha Neto

A Minimal Learning Machine for Datasets with Missing Values . . . . . . . . . . 565
Diego P. Paiva Mesquita, João Paulo P. Gomes,
and Amauri H. Souza Jr.

Calibrated k-labelsets for Ensemble Multi-label Classification . . . . . . . . . . . . 573
Ouadie Gharroudi, Haytham Elghazel, and Alex Aussem

EMG Signal Based Knee Joint Angle Estimation of Flexion and Extension
with Extreme Learning Machine (ELM) for Enhancement
of Patient-Robotic Exoskeleton Interaction . . . . . . . . . . . . . . . . . . . . . . . . 583
Tanvir Anwar, Khairul Anam, and Adel Al Jumaily

Continuous User Authentication Using Machine Learning
on Touch Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Ştefania Budulan, Elena Burceanu, Traian Rebedea, and Costin Chiru

Information Theoretical Analysis of Deep Learning Representations . . . . . . . 599
Yasutaka Furusho, Takatomi Kubo, and Kazushi Ikeda

Hybedrized NSGA-II and MOEA/D with Harmony Search Algorithm
to Solve Multi-objective Optimization Problems . . . . . . . . . . . . . . . . . . . . . 606

Iyad Abu Doush and Mohammad Qasem Bataineh

A Complex Network-Based Anytime Data Stream Clustering Algorithm . . . . 615
Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck

Robust Online Multi-object Tracking by Maximum a Posteriori Estimation
with Sequential Trajectory Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Min Yang, Mingtao Pei, Jiajun Shen, and Yunde Jia

Enhance Differential Evolution Algorithm Based on Novel Mutation
Strategy and Parameter Control Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Laizhong Cui, Genghui Li, Li Li, Qiuzhen Lin, Jianyong Chen,
and Nan Lu

Hybrid Model for the Training of Interval Type-2 Fuzzy Logic System . . . . . 644
Saima Hassan, Abbas Khosravi, Jafreezal Jaafar,
and Mojtaba Ahmadieh Khanesar

A Numerical Optimization Algorithm Based on Bacterial Reproduction . . . . . 654
Peng Shao, Zhijian Wu, Xuanyu Zhou, Xinyu Zhou, Zelin Wang,
and Dang Cong Tran

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-26532-2_61
http://dx.doi.org/10.1007/978-3-319-26532-2_62
http://dx.doi.org/10.1007/978-3-319-26532-2_63
http://dx.doi.org/10.1007/978-3-319-26532-2_64
http://dx.doi.org/10.1007/978-3-319-26532-2_64
http://dx.doi.org/10.1007/978-3-319-26532-2_64
http://dx.doi.org/10.1007/978-3-319-26532-2_65
http://dx.doi.org/10.1007/978-3-319-26532-2_65
http://dx.doi.org/10.1007/978-3-319-26532-2_66
http://dx.doi.org/10.1007/978-3-319-26532-2_67
http://dx.doi.org/10.1007/978-3-319-26532-2_67
http://dx.doi.org/10.1007/978-3-319-26532-2_68
http://dx.doi.org/10.1007/978-3-319-26532-2_69
http://dx.doi.org/10.1007/978-3-319-26532-2_69
http://dx.doi.org/10.1007/978-3-319-26532-2_70
http://dx.doi.org/10.1007/978-3-319-26532-2_70
http://dx.doi.org/10.1007/978-3-319-26532-2_71
http://dx.doi.org/10.1007/978-3-319-26532-2_72


Visual-Textual Late Semantic Fusion Using Deep Neural Network
for Document Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

Cheng Wang, Haojin Yang, and Christoph Meinel

Prototype Selection on Large and Streaming Data . . . . . . . . . . . . . . . . . . . . 671
Lakhpat Meena and V. Susheela Devi

GOS-IL: A Generalized Over-Sampling Based Online Imbalanced
Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

Sukarna Barua, Md. Monirul Islam, and Kazuyuki Murase

A New Version of the Dendritic Cell Immune Algorithm Based on the
K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Kaouther Ben Ali, Zeineb Chelly, and Zied Elouedi

Impact of Base Partitions on Multi-objective and Traditional Ensemble
Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Jane Piantoni, Katti Faceli, Tiemi C. Sakata, Julio C. Pereira,
and Marcílio C.P. de Souto

Multi-Manifold Matrix Tri-Factorization for Text Data Clustering . . . . . . . . . 705
Kais Allab, Lazhar Labiod, and Mohamed Nadif

Clustering of Binary Data Sets Using Artificial Ants Algorithm . . . . . . . . . . 716
Nesrine Masmoudi, Hanane Azzag, Mustapha Lebbah, Cyrille Bertelle,
and Maher Ben Jemaa

Inverse Reinforcement Learning Based on Behaviors of a Learning Agent . . . 724
Shunsuke Sakurai, Shigeyuki Oba, and Shin Ishii

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Contents – Part I XVII

http://dx.doi.org/10.1007/978-3-319-26532-2_73
http://dx.doi.org/10.1007/978-3-319-26532-2_73
http://dx.doi.org/10.1007/978-3-319-26532-2_74
http://dx.doi.org/10.1007/978-3-319-26532-2_75
http://dx.doi.org/10.1007/978-3-319-26532-2_75
http://dx.doi.org/10.1007/978-3-319-26532-2_76
http://dx.doi.org/10.1007/978-3-319-26532-2_76
http://dx.doi.org/10.1007/978-3-319-26532-2_77
http://dx.doi.org/10.1007/978-3-319-26532-2_77
http://dx.doi.org/10.1007/978-3-319-26532-2_78
http://dx.doi.org/10.1007/978-3-319-26532-2_79
http://dx.doi.org/10.1007/978-3-319-26532-2_80


Texture Classification with Patch
Autocorrelation Features

Radu Tudor Ionescu1(B), Andreea Lavinia Popescu2, and Dan Popescu2

1 University of Bucharest, 14 Academiei, Bucharest, Romania
raducu.ionescu@gmail.com

2 Politehnica University of Bucharest,
313 Splaiul Independentei Street, Bucharest, Romania

andreea.lavinia@ymail.com, dan popescu 2002@yahoo.com

Abstract. Recently, a novel approach of capturing the autocorrelation
of an image termed Patch Autocorrelation Features (PAF) was proposed.
The PAF approach was successfully evaluated in a series of handwritten
digit recognition experiments on the popular MNIST data set. How-
ever, the PAF representation has limited applications, because it is not
invariant to affine transformations. In this work, the PAF approach is
extended to become invariant to image transformations such as trans-
lation and rotation changes. First, several features are extracted from
each image patch taken at a regular interval. Based on these features,
a vector of similarity values is computed between each pair of patches.
Then, the similarity vectors are clustered together such that the spatial
offset between the patches of each pair is roughly the same. Finally, the
mean and the standard deviation of each similarity value are computed
for each group of similarity vectors. These statistics are concatenated in
a feature vector called Translation and Rotation Invariant Patch Auto-
correlation Features (TRIPAF). The TRIPAF vector essentially records
information about the repeating patterns within an image at various spa-
tial offsets. Several texture classification experiments are conducted on
the Brodatz data set to evaluate the TRIPAF approach. The empirical
results indicate that TRIPAF can improve the performance by up to
10 % over a system that uses the same features, but extracts them from
entire images. Furthermore, state of the art accuracy rates are obtained
when the TRIPAF approach is combined with a scale invariant model,
namely a bag of visual words model based on SIFT features.

Keywords: Patch-based method · Texture classification · Rotation
invariance · Translation invariance · Kernel method · Brodatz

1 Introduction

Complex image classification tasks, such as texture classification, require sophis-
ticated methods, naturally because the methods have to take into account several
aspects such as translation, rotation, and scale variations, illumination changes,

c© Springer International Publishing Switzerland 2015
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viewpoint changes, and noise. Among the state of the art models used in image
classification are elaborate methods such as bag of visual words [5,13], Fisher
Vectors [19], and deep learning [14]. Recently, a simple feature representation for
images that is based on the autocorrelation of the image with itself was intro-
duced in [11]. In this representation, each feature is determined by the euclidean
distance between a pair of patches extracted from the image. To reduce the time
necessary to compute the feature representation, patches are extracted by apply-
ing a grid over the image. This feature representation is termed Patch Autocor-
relation Features (PAF). The authors of [11] have shown that PAF exibits state
of the art performance in optical character recognition. However, the PAF app-
roach is affected by affine transformations and it needs to be further extended
in order to solve1 more complex image classification tasks, such as texture clas-
sification, for example. The main goal of this work is to provide an extension
of PAF that is invariant to image transformations, including but not limited to
translation and rotation changes. Naturally, this extension involves more elab-
orate computations, but the resulted feature vector is actually more compact,
since it involves the vector quantization of pairs of patches according to the
spatial offset between the patches in each pair. Instead of directly comparing
the patches, the extended approach initially extracts a set of features from each
patch. The extended feature representation is termed Translation and Rota-
tion Invariant Patch Autocorrelation Features (TRIPAF). Texture classification
experiments are conducted to evaluate TRIPAF on a popular data set, namely
Brodatz. The empirical results indicate that TRIPAF can significantly improve
the performance over a system that uses the same features, but extracts them
from entire images. By itself, TRIPAF is invariant to rotation and translation
changes, and for this reason, it makes sense to combine it with a scale invari-
ant system in order to further improve the performance. As such, the system
based on TRIFAF is combined with a bag of visual words (BOVW) framework
[12]. The BOVW framework is based on clustering SIFT descriptors [17] into
visual words, which are scale invariant. The performance level of the combined
approach is better than two state of the art methods for texture classification.

The paper is organized as follows. Related work on image analysis using auto-
correlation and patch-based methods is presented in Sect. 2. The translation and
rotation invariant extension of the Patch Autocorrelation Features is presented
in Sect. 3. Section 4 describes the texture classification experiments. Finally, the
conclusions are drawn in Sect. 5.

2 Related Work

In signal processing, the autocorrelation is used to find repetitive patterns in a
signal over time. Images can also be regarded as spatial signals. Thus, it makes
sense to measure the spatial autocorrelation of an image. Certainly, the auto-
correlation has already been used in image processing [2,10,21]. As many other
computer vision techniques [1,4,6], the PAF map considers patches rather than
1 with a reasonable degree of accuracy.
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pixels, in order to capture distinctive patterns such as edges, corners, shapes,
and so on. In other words, the PAF representation stores information about
repeating edges, corners, and other shapes that can be found in the analyzed
image. Patches contain contextual information and have advantages in terms of
computation and generalization. However, patch-based techniques are still heavy
to compute with current machines, as stated in [1]. To reduce the time necessary
to compute the PAF representation, patches are compared using a grid over the
image. The density of this grid can be adjusted to obtain the desired trade-off
between accuracy and speed.

3 Translation and Rotation Invariant Patch
Autocorrelation Features

Several modifications are proposed to transform Patch Autocorrelation Features
[11] into an approach that takes into account several image variation aspects
including translation and rotation changes, illumination changes, and noise.
Instead of comparing the patches based on raw pixel values, a set of features
is extracted from each image patch. Depending on the kind of patch features,
the method can thus become invariant to different types of image variations. In
this work, a set of texture-specific features are used since the approach is evalu-
ated on the texture classification task. These features are described in Sect. 3.1.
The important remark is that a different set of features can be extracted from
patches when PAF is going to be used for a different problem.

The following conventions and mathematical notations are considered
throughout this paper to describe TRIPAF. Arrays and matrices are always
considered to be indexed starting from position 1, that is v = (v1, v2, ..., v|v|),
where |v| is the number of components of v. The notations vi or v(i) are alter-
natively used to identify the i-th component of v. The sequence 1, 2, ..., n is
denoted by 1 : n, but if the step is different from the unit, it can be inserted
between the lower and the upper bounds. For example, 1 : 2 : 8 generates the
sequence 1, 3, 5, 7. Moreover, for a vector v and two integers i and j such that
1 ≤ i ≤ j ≤ |v|, vi:j denotes the sub-array (vi, vi+1, ..., vj). In a similar man-
ner, Xi:j,k:l denotes a sub-matrix of the matrix X. Since the analyzed images
are reduced to gray-scale, the notion of matrix and image can be used inter-
changeably, with the same meaning. In this context, a patch corresponds to a
sub-matrix.

Rather than computing a single value to represent the similarity between two
patches based on the extracted features, the extended PAF approach computes
several similarities, one for each feature. More precisely, patches are compared
using the Bhattacharyya coefficient between each of their features. Given two
feature vectors fX , fY ∈ R

m extracted from two image patches X and Y , the
vector of similarity values between the two patches sX,Y is computed as follows:

sX,Y (i) =
√
fX(i) ·

√
fY (i),∀i ∈ {1, 2, ...,m}. (1)
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Note that each component of sX,Y is independently computed in the sense
that it does not depend on the other features. Therefore, sX,Y can capture
different aspects about the similarity between X and Y , since each feature can
provide different information. The same features are naturally extracted from
each patch, thus |fX | = |fY | = m for every pair of patches (X,Y ).

In the basic PAF approach, the next step would be to concatenate the sim-
ilarity vectors generated by comparing patches two by two. This would be fine,
as long as the method relies entirely on the features to achieve invariance to
different image transformations. However, further processing can be carried out
to ensure that PAF remains invariant to translation and rotation, even if the
extracted features are not. Unlike the basic PAF approach, the pairs of patches
are vector quantized by the spatial offset between the patches of each pair. Given
two patches X and Y having the origins in (x, y) and (u, z), respectively, the
spatial offset o between X and Y is measured with the help of the L2 euclidean
distance between their origins:

o(X,Y ) =
√

(x − u)2 + (y − z)2. (2)

In order to cluster pairs of patches together, the spatial offsets are rounded
to the nearest integer values. Given two pairs of patches (X,Y ) and (U, V ), they
are clustered together only if �o(X,Y )� = �o(U, V )�, where �x� is the rounding
function of x ∈ R, that returns the nearest integer value to x. It is important
to note that the similarity vector determined by a pair of patches is included
in the cluster, not the patches themselves. Formally, a cluster (or a group) of
similarity vectors between patches extracted at a given spatial offset k is defined
as follows:

Ck = {sPi,Pj
| �o(Pi, Pj)� = k, ∀(Pi, Pj) ∈ P × P, 1 ≤ i < j ≤ |P|}, (3)

where P = {P1, P2, ..., P|P|} is the set of patches extracted from the input image,
o(Pi, Pj) is the offset between Pi and Pj determined by Eq. (2), and sPi,Pj

is the
similarity vector between patches Pi and Pj computed as in Eq. (1).

In each cluster, the similarity vectors are computed between patches that
reside at a certain spatial offset, in all possible directions. The exact position of
each patch is simply disregarded in the clustering process. When the image is
translated or rotated, these clusters remain mostly unchanged, because the spa-
tial offsets between patches are always the same. Obviously, the patches extracted
from an image will not be identical to the patches extracted from the same image
after applying a rotation, specifically because the patches are extracted along
the vertical and horizontal axes of the image based on a fixed grid, as described
in [11]. As such, the clusters may not contain the very same patches when the
image is rotated, but in principle, each cluster should capture about the same
information, since the distance between patches is always preserved. Therefore,
the method can be safely considered as translation and rotation invariant. The
final step is to find a representation for each of these clusters. The mean and the
standard deviation are computed for each component of the similarity vectors
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Algorithm 1. TRIPAF Algorithm
1 Input:
2 I - a gray-scale input image of h × w pixels;
3 p - the size (in pixels) of each square-shaped patch;
4 s - the distance (in pixels) between consecutive patches;
5 d - the number of clusters;
6 F = {F1, F2, ...., Fm | Fi : Rp × R

p → R,∀i} - a set of m feature extraction functions.

7 Initialization:

8 I ← resized image I such that
√

(w)2 + (h)2 = d;
9 (h,w) ← size(I);

10 n ← ceil((h − p + 1)/s) · ceil((w − p + 1)/s);
11 P ← ∅;
12 Ci ← ∅, for i ∈ {1, 2, ..., d};
13 vi ← 0, for i ∈ {1, 2, ...,m · d};
14 Computation:
15 for i = 1 : s : h do
16 for j = 1 : s : w do
17 P ← Ii:(i+p−1),j:(j+p−1);

18 for k = 1 : m do
19 fP (k) ← Fi(P );

20 P ← P ∪ fP ;

21 for i = 1 : n − 1 do
22 for j = i + 1 : n do
23 for k = 1 : m do

24 sPi,Pj
(k) ←

√
fPi

(k) ·
√

fPj
(k);

25 C�o(Pi,Pj)� ← C�o(Pi,Pj)� ∪ sPi,Pj
;

26 k ← 1;
27 for i = 1 : d do
28 for j = 1 : m do
29 v(k) ← mean(s(j)), for s ∈ Ci;
30 v(k + 1) ← std(s(j)), for s ∈ Ci;
31 k ← k + 2;

32 Output:
33 v - the TRIPAF feature vector with m · d components.

within a group. Finally, the Translation and Rotation Invariant Patch Autocor-
relation Features (TRIPAF) are obtained by concatenating these statistics for
all the clusters C1, C2, ..., Cd, in this specific order, where d is a constant integer
value that determines the number of clusters. To make sure all the images in
a set I are represented by vectors of the same length, each image needs to be
resized such that its diagonal is equal to the constant integer value d:

√
wI

2 + hI
2 = d,∀I ∈ I, (4)

where wI and hI are the width and the height of image I, respectively. The
number of components of the TRIPAF vector is O(md), where m represents the
number of features extracted from patches and d is a positive integer value that
implicitly controls the number of pairs of patches per cluster.

The TRIPAF representation is computed as described in Algorithm 1. Two
predefined functions are used to compute the mean and the standard deviation
(as defined in literature), namely mean and std. The TRIPAF algorithm can be
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divided into three phases. In the first phase (steps 15–20), feature vectors are
computed on patches extracted by apply a grid over the image, and then, the
resulted feature vectors are stored in the set P. In the second phase (steps 21–25),
the similarity vectors are computed and subsequently clustered according to the
spatial offsets between patches. In the third phase (steps 26–31), the TRIPAF
vector v is generated by computing the mean and the standard deviation of
each component of the similarity vectors within each cluster. Algorithm 1 can
easily be adapted for a variety of image classification tasks, simply by changing
the set of features F . The set of texture-specific features used for the texture
classification experiments are presented next.

3.1 Texture Features

The mean and the standard deviation are the first two statistical features
extracted from image patches, but the more elaborate features described next
are mandatory to adequately discriminate between different textures. One of the
most powerful statistical methods for textured image analysis is based on features
extracted from the Gray-Level Co-Occurrence Matrix (GLCM) proposed in [8].
Relevant statistical features computed from the GLCM are used inside TRIPAF,
namely the contrast, the energy, the homogeneity, and the correlation. Another
feature that is relevant for texture analysis is the fractal dimension, which is
approximated by an efficient box counting algorithm [20]. The local isotropic
phase symmetry measure (LIPSyM) [15] takes the discrete Fourier transform of
the input image, and filters this frequency information through a bank of Gabor
filters. As stated in [15], local responses of each Gabor filter can be represented in
terms of energy and amplitude. Thus, Gabor features, such as the mean-squared
energy and the mean amplitude, can be computed through the phase symmetry
measure for a bank of Gabor filters with various scales and rotations. The Gabor
features are also used in the TRIPAF algorithm.

4 Texture Classification Experiments

4.1 Data Set

Texture classification experiments are presented on a benchmark data set of
texture images, namely the Brodatz data set [3]. This data set is probably the
best known benchmark used for texture classification, but also one of the most
difficult, since it contains 111 classes with only 9 samples per class. The standard
procedure in the literature is to obtain samples of 213 × 213 pixels by cutting
them out from larger images of 640 × 640 pixels using a 3 by 3 grid.

4.2 Learning Methods

All classification systems used in this work rely on kernel methods to learn
discriminant patterns. Kernel-based learning algorithms work by embedding the
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data into a Hilbert space, and searching for linear relations in that space using
a learning algorithm. The power of kernel methods lies in the implicit use of a
Reproducing Kernel Hilbert Space (RKHS) induced by a positive semi-definite
kernel function. For images, many such kernel functions are used in various
applications including object recognition, image retrieval, or similar tasks. In
this work, two popular kernel functions are chosen, namely the linear kernel and
the histogram intersection kernel. After embedding the features with a kernel
function, a linear classifier is used to select the most discriminant features. In
this work, Support Vector Machines (SVM) and Kernel Discriminant Analysis
(KDA) are alternatively used for learning. The KDA method is sometimes able
to improve accuracy by avoiding the class masking problem [9].

4.3 Implementation and Evaluation

The TRIPAF representation is compared with a method that extracts texture-
specific features from entire images, on the texture classification task. The four
GLCM features are averaged on 4 directions (vertical, horizontal and diagonals)
using gaps of 1 and 2 pixels. The mean and the standard deviation are also
added to the set of texture-specific features. Another feature is given by the
box counting dimension. The Gabor features (the mean-squared energy and the
mean amplitude) are computed on 3 scales and 6 different rotations, resulting
in a total of 36 Gabor features (2 features × 3 scales × 6 directions). There are
43 texture-specific features put together. Alternatively, the two Gabor features
are also averaged on 3 scales and 6 different rotations, generating only 4 Gabor
features. This produces a reduced set of 9 texture-specific features, which can be
more robust to image rotations and scale variations. Results are reported using
both representations, one of 43 features and the other of 9 features.

The TRIPAF approach, which is rotation and translation invariant, is com-
bined with the BOVW model described in [12], which is scale invariant (due
to the SIFT descriptors), in order to obtain a method that is invariant to all
affine transformations. These methods are combined at the kernel level through
multiple kernel learning (MKL) [7]. The combined representation is alternatively
used with the SVM or the KDA. The two classifiers are compared with other
state of the art approaches [18,22].

4.4 Parameter Tuning

A set of preliminary tests on a subset of 40 classes from Brodatz are performed to
adjust the parameters of the PAF representation, such as the patch size and the
pixel interval used to extract the patches. Patches of 16×16, 32×32 and 64×64
pixels were considered. Better results in terms of accuracy were obtained with
either patches of 16 × 16 or 32 × 32 pixels, and the rest of the experiments are
based on patches of such dimensions. The TRIPAF representations generated
by patches of 16 × 16 or 32 × 32 pixels are also combined by summing up their
kernels to obtain a more robust representation. After setting up the patch sizes,
the interest is turned to set the grid density. The grid density was chosen such
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that the processing time of TRIPAF is less than 5 seconds per image on a
machine with Intel Core i7 2.3 GHz processor and 8 GB of RAM using a single
Core. As such, patches are extracted at an interval of 8 pixels. Using the same
subset of 40 classes from Brodatz, the regularization parameter C of SVM was
set to 104, while the regularization parameter of KDA was set to 10−5.

4.5 Results on Brodatz Data Set

Typically, the results reported in previous studies [16,18,22] on the Brodatz data
set are based on randomly selecting 3 training samples per class and using the
rest for testing. Likewise, the results presented in this paper are based on the
same setup with 3 random samples per class for training. Moreover, the random
selection procedure is repeated for 20 times and the resulted accuracy rates are
averaged. This helps to reduce the amount of accuracy variation introduced by
using a different partition of the data set in each of the 20 trials. To give an
idea of the amount of variation in each trial, the standard deviations for the
computed average accuracy rates are also reported. The evaluation procedure
described so far is identical to the one used in the state of the art approaches
[18,22] that are included in the following comparative study.

Table 1 presents the accuracy rates of the SVM classifier based on several
TRIPAF representations, in which the number of texture-specific features and
the size of the patches are varied. Several baseline SVM classifiers based on the
same texture-specific features used in the TRIPAF representation are included
in the evaluation in order to estimate the performance gain offered by TRI-
PAF. When the set of 9 texture-specific features is being used, the TRIPAF

Table 1. Accuracy rates of the SVM classifier on the Brodatz data set for the TRIPAF
representation versus the standard representation based on texture-specific features.
The reported accuracy rates are averaged on 20 trials using 3 random samples per
class for training and the other 6 for testing. The best accuracy rate for each set of
texture-specific features is highlighted in bold.

Feature map Texture features Patches Kernel Accuracy

Standard 9 None Linear 76.52 % ± 1.6

Standard 9 None Intersection 77.11 % ± 1.3

TRIPAF 9 16 × 16 Intersection 87.78 % ± 1.2

TRIPAF 9 32 × 32 Intersection 91.40 % ± 0.9

TRIPAF 9 16 × 16 + 32 × 32 Intersection 91.92% ± 0.6

Standard 43 None Linear 89.93 % ± 1.1

Standard 43 None Intersection 90.42 % ± 1.2

TRIPAF 43 16 × 16 Intersection 92.11 % ± 0.8

TRIPAF 43 32 × 32 Intersection 92.28 % ± 0.9

TRIPAF 43 16 × 16 + 32 × 32 Intersection 92.85% ± 0.8
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Table 2. Accuracy rates of the TRIPAF and BOVW combined representation on the
Brodatz data set compared with state of the art methods. The TRIPAF representation
is based on 43 texture-specific features extracted from patches of 16 × 16 and 32 × 32
pixels. The BOVW model is based on the PQ kernel. The reported accuracy rates are
averaged on 20 trials using 3 random samples per class for training and the other 6 for
testing. The best accuracy rate is highlighted in bold.

Model Accuracy

SVM based BOVW [12] 92.94 % ± 0.8

SVM based TRIPAF 92.85 % ± 0.8

SVM based TRIPAF + BOVW 96.24 % ± 0.6

KDA based TRIPAF + BOVW 96.51% ± 0.7

Best model of [22] 95.90 % ± 0.6

Best model of [18] 96.14 % ± 0.4

approach improves the baseline by more than 10% in terms of accuracy. On the
other hand, the difference is roughly 2% in favor of TRIPAF when the set of 43
texture-specific features is being used. Both the standard and the TRIPAF rep-
resentations work better when more texture-specific features are extracted, prob-
ably because the Brodatz data set does not contain significant rotation changes
within each class of images. Nevertheless, the TRIPAF approach is always able
to give better results than the baseline SVM. An interesting remark is that the
results of TRIPAF are always better when patches of 16 × 16 pixels are used in
conjunction with patches of 32 × 32 pixels, even if the accuracy improvement
over using them individually is not considerable (below 1%). The best accuracy
(92.85%) is obtained by the SVM based on the TRIPAF approach that extracts
43 features from patches of 16 × 16 and 32 × 32 pixels.

The empirical results presented in Table 1 clearly demonstrate the advantage
of using the TRIPAF feature vectors. Intuitively, further combining TRIPAF
with BOVW should yield even better results. While TRIPAF is rotation and
translation invariant, BOVW is scale invariant, and therefore, these two rep-
resentations complement each other perfectly. Table 2 compares the results of
TRIPAF and BOVW combined through MKL with the results of two state of
the art methods [18,22]. The intersection kernel used in the case of TRIPAF is
summed up with the PQ kernel used in the case of BOVW [12]. The individ-
ual results of TRIPAF and BOVW are also listed in Table 2. The two methods
obtain fairly similar accuracy rates when used independently, but the accuracy
rates are almost 3% lower than the state of the art methods. However, the kernel
combination of TRIPAF and BOVW yields results comparable to the state of
the art methods [18,22]. In fact, the best accuracy rate on the Brodatz data
set (96.51%) is given by the KDA based on TRIPAF and BOVW, although the
SVM based on the kernel combination is also slightly better than both state of
the art models. The kernel sum of TRIPAF and BOVW is much better than
using the two representations individually, proving that the idea of combining
them up is indeed crucial for obtaining state of the art results.
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5 Conclusion

This work proposed a novel representation for texture images termed Translation
and Rotation Invariant Patch Autocorrelation Features, which is an extension
of the PAF representation that is designed to be invariant to image transfor-
mations, including but not limited to translations and rotations. The TRIPAF
approach was evaluated in a set of texture classification experiments that require
the use of invariant techniques to obtain good performance. The TRIPAF repre-
sentation improves the accuracy rate over a baseline model based on extracting
texture-specific features from entire images. Moreover, the TRIPAF approach
was combined with a BOVW model [12] through MKL. The kernel combination
of TRIPAF and BOVW yields results that are better than two state of the art
texture classification methods [18,22].
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Abstract. We will propose a novel architecture for a cellular neural network
suitable for high-density integration of electron devices. A neuron consists of only
eight transistors, and a synapse consists of just only one transistor. We fabricated
a cellular neural network using thin-film devices. Particularly in this time, we
confirmed that our neural network can learn multiple logics even in a small-scale
neural network. We think that this result indicates that our proposal has a big
potential for future electronics using neural networks.

Keywords: Cellular neural network · High-density integration · Electron device ·
Learning · Multiple logics

1 Introduction

Cellular neural networks are neural networks where a neuron is connected to only
neighboring neurons [1], hence suitable for integration of electron devices, and prom‐
ising for image processing [2], pattern recognition [3], etc. Until now, fundamental
theory, working principle, and application potential have been actively investigated
using formal models and numerical simulation. However, there exist few reports on
actual hardware of cellular neural networks [4], although they are suitable for integration
of electron devices as aforementioned. We imagine that this is because the conventional
circuits of the neurons and synapses are still complicated, even though the structure of
the network is simple.

We are developing neural networks from the viewpoint of device hardware [5, 6]. In
this presentation, we will propose a novel architecture for a cellular neural network suit‐
able for high-density integration of electron devices. The main advantage is that the
circuits of the neurons and synapses are excellently simple. A neuron consists of only eight
transistors, and a synapse surprisingly consists of just only one transistor. As a result, the
structure of the cellular neural network and learning principle must be modified. We will
explain the device architecture, learning principle, fabrication process, experimental
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method and result in detail. It should be also noted that we fabricated a cellular neural
network using thin-film devices, which are expected as key technologies for micro-giant
electronics. Although there will be some repetition of the prior publications, we will
explain them again because it is available for the readers in research areas of information
technologies who have not yet known our research. Particularly in this time, we confirmed
that our neural network can learn multiple logics of AND and OR even in a small-scale
neural network of 5 × 5. Although this result is primitive, we think that it indicates that our
proposal has a big potential for future electronics using neural networks.

2 Device Architecture

2.1 Neuron

Figure 1 shows the neuron. We limited the necessary functions of the neuron to that
a binary state is maintained by itself and altered by the input signals. In order to
realize this simple function, we adopted a latch circuit that circularly connects two
inverters with two switches. The firing or non-firing state is maintained using the
latch circuit when the switches are turned on, namely, we defined the firing state as
a situation when the voltages at node α and node β are high and complementarily
low, respectively, whereas we defined the non-firing state as the opposite situation.
Although the latch circuit is a well-known circuit for maintaining a binary state, it
should be noted that its characteristic is similar to a sigmoid function, a typical func‐
tion used to provide a favorable soft threshold in neural network models. The binary
state is altered after the switches are turned off, the input signals are applied to
nodes α and β, and the switches are turned on again. In any case, by employing
complementary inverters and switches, we succeeded in making a neuron consist of
only eight transistors.

Inverter Switch 

InverterSwitch 

Fig. 1. Neuron.

2.2 Synapse

Figure 2 shows the synapse. We limited the necessary functions of the synapse to that
an input signal from a neuron is weighted by its synaptic connection strength and
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transferred to another neuron, and the synaptic connection strength is adjusted. In order
to realize this simple function, we adopted a variable resistor, which will be replaced by
a transistor in practical electron devices. An input voltage from a neuron is weighted by
the conductance of the variable resistor and transferred to another neuron. The synaptic
connection strength corresponds to the conductance of the variable resistor, which is
adjusted obeying a modified Hebbian learning as below mentioned. In any case, we
succeeded in making a synapse consist of just only one resistor.

Fig. 2. Synapse.

2.3 Network

Figure 3 shows the network. Since the neuron and synapse were dramatically simpli‐
fied, the structure of the cellular neural network must be modified. We arrayed
multiple neurons and connected each neuron to only four up, down, left, and right
neighboring neurons through the synapses. In order to compensate the small number
of the synapses, we connected a pair of neurons through a pair of synapses, namely,
concordant and discordant synapses. The concordant synapse is connected between
the same nodes in the two neurons, nodes α and α or nodes β and β, and tends to
make the states of the two neurons the same. On the other hand, the discordant
synapse is connected between different nodes, nodes α and β, and the discordant
synapse tends to make the states of the two neurons different. The eight input
voltages from the four neighboring neurons are weighted by the conductances of the
four concordant synapses and four discordant synapses and transferred to the target
neuron. The target neuron becomes the firing or non-firing state, namely, is subject
to the majority rule of multiple signals with weighted strengths. Moreover, it should
be noted that this network is a kind of interconnective networks, where a synapse
transfer a signal from a neuron to another neuron and simultaneously from the latter
neuron to the former neuron vice-versa, which may correspond to the function of two
synapses and also compensate the small number of the synapses. In any case, we
succeeded in making an interconnective network where we connected each neuron
to only four neighboring neurons, witch is exceedingly suitable for integration of
electron devices. The detailed information on the structures, sizes, circuits, and char‐
acteristics of the neuron, synapse, and networks were also explained in the prior
reports [5, 6].

14 M. Kimura et al.



Concordant
Synapse 

Discordant
Synapse

Neuron 

Fig. 3. Network.

3 Learning Principle

Hebbian learning is a typical learning procedure in biological and artificial neural
networks [7]. The synaptic connection strength is enhanced when both neurons
connected to the synapse are in firing states and impaired otherwise. Since the neuron
and synapse were dramatically simplified, the leaning principle must be also modified.
Figure 4 shows the modified Hebbian learning. Here, we assume NOT logic as an
example. The left and right neurons are assigned to input and output elements, respec‐
tively. Initially, at the initial recalling stage, a non-firing state is applied to the input
element, and a non-firing state arises from the output elements, and vice versa because
the synaptic connection strength of the concordant synapse is accidentally slightly
stronger than that of the discordant synapse, which is not NOT logic. Next, at the first
learning stage, a non-firing state is applied to the input element, and a firing state is
applied to the output element. Since the concordant synapse is connected between the
same nodes in the two neurons, and the states at both nodes in two neurons are different,
electric current flows through the concordant synapse because of the voltage difference,
whereas electric current does not flow through the discordant synapse. Consequently,
the characteristic degradation gradually occurs, which is a necessary property of our
synapses [8], the conductivity has gradually higher impedance, and only the synaptic
connection strength of the concordant synapse becomes gradually weakened. At the
second learning stage, a firing state is applied to the input element, and a non-firing state
is applied to the output element. Similarly, only the synaptic connection strength of the
concordant synapse becomes gradually weakened. Finally, at the final recalling stage,
a non-firing state is applied to the input element, and a firing state arises from the output
elements, and vice versa because the synaptic connection strength of the concordant
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synapse becomes slightly weaker than that of the discordant synapse, which is NOT
logic. It should be noted that although the absolute values of the synaptic connection
strengths cannot be enhanced even if both neurons connected to the synapse are in the
firing state because we employed the characteristic degradations of the synapses, the
relative values of the synaptic connection strengths can be enhanced, which is a reason
that we called it modified Hebbian learning. In any case, by employing the modified
Hebbian learning and characteristic degradations of synapses, we succeeded in making
a synapse consist of just only one resistor.

In N F
Out N F

   
Recalling 

In N F
Out F N NOT 

Recalling 

In Out
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F
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Discordant 
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In Out
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In Out

F N
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Synapse 

Discordant
Synapse
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N
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F

Concordant
Synapse 

Discordant
Synapse

Learning 

Fig. 4. Modified Hebbian learning.

4 Fabrication Process

We fabricated a cellular neural network using thin-film devices, which are expected as
key technologies for micro-giant electronics. Micro-size electron devices can be fabri‐
cated on large and inexpensive substrates. Although the device size is in the order of
μm in this research, it can be in the order of nm in the most advanced researches [9].
Although they are fabricated on a glass substrate in our research, they can be fabricated
on plastic films [10], which can be folded down to compact size as human brains do.
Therefore, we believe that thin-film devices are most promising electron devices for
cellular neural networks.

We fabricated thin-film devices as follows. First, an amorphous-Si film was depos‐
ited using LPCVD of Si2H6, crystallized using XeCl excimer pulse laser, and patterned
to form poly-Si films [11], whose thickness is 50 nm, which are used as channels for
transistors. Next, a SiO2 film was deposited using PECVD of TEOS to form an insulator
film, whose thickness is 75 nm, which is used as gate-insulator films for transistors.
Afterward, the first metal film was deposited and patterned, which is used as gate termi‐
nals for transistors and simultaneously the first electrode wires. Subsequently, phos‐
phorous and boron were implanted into the poly-Si films and thermally activated to form
doping regions, which are used as source and drain regions for transistors. Next, a SiO2

film was deposited to form an insulator film, which is used as an interlayer-insulator
film. After that, and the second metal film was deposited and patterned, which is used
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as source and drain terminals for transistors and simultaneously the second electrode
wires. Finally, water-vapor heat treatment was performed to improve the poly-Si films,
the SiO2 film and their interfaces. Consequently, the field effect mobility and threshold
voltage of the n-type transistors are 93 cm2 V−1 s−1 and 3.6 V, respectively, while those
of the p-type transistors are 47 cm2 V−1 s−1 and −2.9 V, respectively. These parameters
are sufficient for the circuits in the cellular neural network.

Inverter 

Inverter

Vdd 

Vss

n-sw

p-sw 

Switch 

Switch

Source Drain 
Gate 

Neuron Neuron 

Control

espanyS)b(norueN)a(

Neuron 
Vdd
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p-sw

n-sw Vctrl

(c) Network 

Fig. 5. Actual devices.

Figure 5 shows the actual devices. We arrayed 5 × 5 neurons and utilized transistors
as synapses. The actual chip is die bonded on a printed circuit board and wire bonded
to metal contacts.

5 Experimental Result

We tried to make the cellular neural network learn multiple logics. Figure 6 shows the
input and output pattern. Four neurons at the corners were assigned to In1 and In2, and
two neurons at the inside were assigned to Out1 and Out2, although they can be assigned
freely to some extent. The non-firing or firing states were applied to In1 and In2 for each
logic pair. At the recalling stage, output voltages generated from the network were
measured at Out1 and Out2, whereas at the learning stage, corresponding outputs of
AND and OR were applied to Out1 and Out2. Switching pulses were periodically applied
to repeat the switch on and off of the switches in the neuron. At the recalling stage, a
lower control voltage of 10 V was applied to the gate terminal of the transistor to avoid
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the characteristic degradations of the synapses, whereas at the learning stage, a higher
control voltage of 15 V was applied to induce the characteristic degradations. The
recalling and learning stages were repeated several ten times.

In1

Out1

In1

In2 In2

Out2

Fig. 6. Input and output pattern.
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Figure 7 shows the learning result. It is found that at the first recalling stage, wrong
output voltages were generated from Out1 and Out2. On the other hand, at the final
recalling stage, correct output voltages corresponding outputs of AND and OR were
generated from Out1 and Out2, respectively. Although this is an example, it was checked
that the learning was successful in most cases in spite that the number of the times until
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the correct output voltages were generated was widely distributed. In conclusion, we
confirmed that our neural network can learn multiple logics of AND and OR even in a
small-scale neural network of 5 × 5.

6 Conclusion

We proposed a novel architecture for a cellular neural network suitable for high-density
integration of electron devices. A neuron consists of only eight transistors, and a synapse
consists of just only one transistor. We fabricated a cellular neural network using thin-
film devices. Particularly in this time, we confirmed that our neural network can learn
multiple logics even in a small-scale neural network. We think that this result indicates
that our proposal has a big potential for future electronics using neural networks.
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Abstract. Learning from data streams requires efficient algorithms
capable of deriving a model accordingly to the arrival of new instances.
Data streams are by definition unbounded sequences of data that are
possibly non stationary, i.e. they may undergo changes in data distrib-
ution, phenomenon named concept drift. Concept drifts force streaming
learning algorithms to detect and adapt to such changes in order to
present feasible accuracy throughout time. Nonetheless, most of works
presented in the literature do not account for a specific kind of drifts:
feature drifts. Feature drifts occur whenever the relevance of an arbi-
trary attribute changes through time, also impacting the concept to be
learned. In this paper we (i) verify the occurrence of feature drift in a
publicly available dataset, (ii) present a synthetic data stream genera-
tor capable of performing feature drifts and (iii) analyze the impact of
this type of drift in stream learning algorithms, enlightening that there
is room and the need for dynamic feature selection strategies for data
streams.

1 Introduction

Mining massives amount of data that arrive at rapid rates, namely data streams,
is a recurring challenge. Extracting useful knowledge from these potentially
unbounded sequences of data requires algorithms capable of acting within lim-
ited time, memory space and deal with its peculiarities i.e. concept drifts [9,15]
and evolutions [13]. Concept drifts occur when the data distribution changes
over time and are divided in two types: real and virtual. Real concept drifts
refer to changes in the conditional distribution of the target variable y given
the input (features) D, while its distribution in the data input space P [x] may
stay intact. Conversely, virtual concept drifts occur when the data distribution
P [x] changes, independently of the conditional probability of the output values
P [y|x] [8].

In this paper we review a specific kind of drift that is not commonly addressed
in the literature: feature drifts. Feature drifts occur whenever the relevance of
a feature (dimension) of a data stream grows or shrinks with time, enforcing
the learning algorithm to adapt its model to ignore the irrelevant attributes
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 21–28, 2015.
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and account for the newly relevant ones [14]. Several approaches on how to
compute the relevance of a feature for the classification task were proposed in
the literature, such as Entropy, Information Gain and Gini Index [10].

In order to exemplify a feature drift, we refer to the e-mail spam detection
system presented in [12]. This system was a result of a text mining process on
an online news dissemination system. Essentially, this work intended on creating
an incremental filtering of emails that classifies emails as spam or not and based
on this classification, decides whether this email is relevant for dissemination
among users. The dataset created contains 9,324 instances and 39,917 features,
such that each attribute represents the presence of a single work (feature label)
in the instance (e-mail). This dataset is known for containing a concept drift
which occurs gradually around the instance of number 1,500 [1,12].

In Fig. 1 we present a plot of the information gain [10] of two specific
attributes presented in this problem, namely “directed” and “listinfo”, where
one can see that the importance of these two attributes exchange gradually
around instance 1,500.
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Fig. 1. Information Gain for two specific features of the Spam Corpus dataset.

This paper is divided as follows. The data stream learning and feature drift
problems are specified in Sect. 2. In Sect. 3 we present a data stream generator
able to simulate feature drifts. In Sect. 4 we empirically show the impact of
feature drifts in two algorithms: an updatable näıve bayes algorithm and an
incremental decision tree, namely Hoeffding Tree. Finally, in Sect. 5 we state the
conclusions of this work and discuss envisioned future works.

2 Problem Statement

Let S be a data stream providing instances it = (xt, y) intermittently, where
xt is a d-dimensional data object arriving at a timestamp t and y is its label.
Instances xi are labeled accordingly to values defined in Y = {y1, . . . , yc}. Also,
let D = {D1,D2, . . . , Dd} be the set features of a data stream where d ≥ 1 is the
dimensionality of the problem. It is assumed that S is unbounded, i.e. |S| → ∞,
thus, it is not feasible to store all instances in memory before processing. This
characteristic forces algorithms to either process data in limited size chunks or
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to incrementally process instances. Firstly, every instance xi must be processed
before an instance xi+1 becomes available, otherwise instances start to accumu-
late and the algorithm may have to discard them. Secondly, there is an inherent
temporal aspect associated with a stream process, where the data distribution
may change over time, namely concept drift. Therefore, algorithms must also be
able to detect and adapt to drifts, updating the algorithm’s model.

Definition 1. Let Eq. 1 denote a concept C, a set of prior probabilities of the
classes and class-conditional probability density function [14]. Given a stream S,
instances it retrieved will be generated by a concept Ct. If during each instant
ti of S we have Cti = Cti−1 , it occurs that the concept is stable. Otherwise, if
between any two timestamps ti and tj occurs that Cti �= Ctj , we have a concept
drift.

C = {(P [y1], P [x|y1]), . . . , (P [yc], P [x|yc])} (1)

Definition 2. Given a feature space D at a timestamp t, we are able to select
the top discriminative subset D∗

t ⊆ D. A feature drift occurs if, at any two time
instants ti and tj, D∗

ti �= D∗
tj betides.

In this paper we address the feature drift problem, where relevances of fea-
tures of the data stream vary through time.

Definition 3. Let r(Di, tj) ∈ {0, 1} denote a function which determines the
relevance of a feature Di in a timestamp tj of the stream. A positive relevance
(r(Di, ti) = 1) states that Di ∈ D∗ in a timestamp ti and that it impacts the
underlying probabilities P [x|yi] of the concept Ct in S. A feature drift occurs
whenever the relevance of an attribute Dα changes in a timespan between tj and
tk, as stated in Eq. 2

∃tj∃tk, tj < tk, r(Dα, tj) �= r(Dα, tk) (2)

Changes in r(·, ·) directly affect the ground-truth decision boundary to be
learned by the inductive algorithm. Therefore, feature drifts can be seen as a
specific type of real concept drift which can occur with or without changes in
the data distribution P [x]. As in other concept drifts, changes in r(·, ·) may occur
during the stream, therefore enforcing algorithms to discard or adapt the model
already learned, which is based on features that became irrelevant, which shall
be replaced by the most relevant ones [14]. It is important to emphasize that
feature drifts differ from concept drifts since concept drifts might occur without
changes in attributes relevances but only in the a posteriori probabilities P [x|y].

Additionally, performing dynamic feature selection is desired since it pro-
vides a smaller subset of features that gives you as good or better accuracy
in the predictive model, while requiring less data. Less attributes (dimensions)
is desirable since it reduces the complexity of the model, leading to a smaller
chance of overfitting and a model that is simple to understand and explain [5].

In the following section we present a data stream generator able to simulate
feature drifts.
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3 Simulating Feature Drifts

To verify the impact of feature drifts in existing streaming learning algorithms,
we present a data stream generator that extends the SEA generator [16].

The generator here proposed simulates streams with d > 2 uniformly dis-
tributed features given by the user, where ∀Di ∈ D,Di ∈ [0; 10] and only two
randomly picked features are relevant to the concept to be learned: Dω and Dζ .
As in [16], the class value y is given accordingly to Eq. 3, where θ is a user-given
threshold.

y =

{
1, Dω + Dζ ≤ θ

0, otherwise
(3)

Additionally, each instance synthesized has a 10 % probability of being gen-
erated as noise.

To promote synthetic feature drifts in streams, we adopt the sigmoid frame-
work stated in Eq. 4 and introduced in [4]. This model treats a feature drift
as a combination of two pure distributions that characterizes concepts before
and after the drift. The variables presented in Eq. 4 are the following: f(ti) is
the probability that an instance xi belongs to the prior concept, 1 − f(ti) is the
probability for the posterior concept, w is the drift window size and t0 is the
drift moment.

f(ti) =
1

(1 + e−w×(ti−t0))
(4)

In [2] authors observe that Eq. 4 has a derivative at time t0 equal to f ′(t0) =
s/4 and that tan α = f ′(t0), thus tan α = s/4. Also, tan α = 1/W and as
s = 4 tan α then α = 4/W , namely t0 (time of drift), w and α (phase angle).
In this sigmoid model there are only two parameters to be specified: t0 and W .

Nonetheless, it is important to emphasize that any decay function can be
applied to simulate feature drifts.

4 Analysis

In this section we evaluate the accuracy of an incremental and updatable Näıve
Bayes algorithm and an incremental decision tree, namely Hoeffding Tree [6], in
both abrupt and gradual feature drifts. Firstly, we briefly introduce the evaluated
algorithms and the experimental protocol adopted. Finally, we discuss the results
obtained.

4.1 Evaluated Algorithms

Updatable Näıve Bayes. The updatable Näıve Bayes algorithm is an incre-
mental version of the popular Näıve Bayes algorithm. Both algorithms rely on
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the assumption that all attributes of the dataset are independent, with the excep-
tion of the output value y, which depends on all others D1, . . . , Dd. Therefore,
these algorithms compute the output value for an input instance xi as stated in
Eq. 5, determining the value of y that maximizes the probability P [xi|y].

P [xi|y] =
P [y|xi] × P [xi]

P [y]
(5)

In order to compute probabilities in a streaming environment, the Updata-
ble Näıve Bayes stores a contingency table, therefore, no windowing process is
needed whatsoever.

Hoeffding Tree. Hoeffding Trees algorithms construct decision trees by using
constant memory and constant time per sample [6]. These trees are built by
recursively replacing leaves with decision nodes, as data arrives. Different heuris-
tic evaluation functions are used to determine whether a split should be per-
formed or not, such as Gain Ratio, Entropy and Gini Coefficient [10]. To do so,
Hoeffding Trees assume that the input data meets the Hoeffding bound [11].

Assuming a random variable r ∈ R with range R, a number of independent
observations n, the mean computed by the latter observations n̄; the Hoeffding
Inequality states that with probability 1 − δ the true mean of a variable is at
least r̄ − ε, where ε is given by Eq. 6 and δ is a user-given confidence bound.

ε =

√
R2 ln

(
1
δ

)

2n
(6)

The Hoeffding bound is able to give results regardless the probability distrib-
ution that generates data. However, the number of observations needed to reach
certain values of δ and ε are different across different probability distributions
[3]. Generally, with probability 1 − δ, one can say that one attribute is superior
when compared to others when observed difference of information gain (or any
other metric that computes the importance of an attribute) is greater then ε.

Finally, all tree’s nodes maintain statistics about the data used to derive itself.
Periodically, Hoeffdings Trees discard nodes of the tree that are not accessed
during traverses and replaces them by new ones accordingly to the Hoeffding
bound and the chosen split function.

4.2 Experimental Protocol

Five different scenarios are evaluated in this section. The first scenario is the
Spam Corpus dataset presented in [12], while the other four adopt the generator
presented in Sect. 3 and were parametrized as follows:

– FD-1: 50,000 instances, θ = 7 and d = 10
• Drift 1: t0 = 25, 000, w = 1;

– FD-2: 50,000 instances, θ = 7 and d = 10
• Drift 1: t0 = 25, 000, w = 1, 000;
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Fig. 2. Accuracy obtained during experiments with feature drifts.

– FD-3: 100,000 instances, θ = 9.5 and d = 10
• Drift 1: t0 = 34, 000, w = 1;
• Drift 2: t0 = 67, 000, w = 1;

– FD-4: 100,000 instances, θ = 9.5 and d = 10
• Drift 1: t0 = 34, 000, w = 1, 000;
• Drift 2: t0 = 67, 000, w = 1, 000;

In our experiments accuracy is measured using the Prequential test-then-
train method. We adopted the Prequential procedure [7] due to the monitoring of
the evolution of performance of models over time although it may be pessimistic
in comparison to the holdout estimative. Nevertheless, authors in [7] observe
that the prequential error converges to an periodic holdout estimative when
estimated over a sliding window. Along these lines, we determined an evaluation
sliding window of 1,000 instances for these experiments.

Finally, all experiments here presented were implemented and evaluated
under the Massive Online Analysis (MOA) framework [4].

4.3 Results Obtained

In Fig. 2a one can see that accuracy drops by 60 % during the known feature
drift and slowly recovers after approximately 3,500 instances.

In Figs. 2b through 2e we present the results obtained by the Näıve Bayes and
the Hoeffding Tree algorithms in the FD-1, FD-2, FD-3 and FD-4 experiments,
respectively.
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In Figs. 2b and 2c one can see the impact of one feature drift during the
stream. In both cases, it is, abrupt and gradual changes, both algorithms has its
accuracy damped in 20 % and the Näıve Bayes fails to completely recover until
the end of the stream.

Additionally, in Figs. 2d and 2e one can see that impact of two drifts in
accuracy for both algorithms. Again, the mean accuracy drops by 30 %, showing
the difficulty of adapting to both abrupt and gradual feature drifts.

The results here presented enable us to argue that existing algorithms do not
account for the possibility of feature drifts. Even Hoeffding Trees, which perform
feature selection during the stream, fail to quickly adapt to changes in features’
relevances, showing that there is room and the need for dynamic feature selection
algorithms for data streams.

5 Conclusion

In this paper we analyzed the feature drift problem. Feature drifts differ from
conventional concept drifts since they do not occur accordingly to changes in
the data distribution, but on the relevance of each attribute in the concept to
be learned. Additionally, we presented a data generator capable of synthesiz-
ing data streams with this peculiarity. Finally, we benchmarked an incremental
and updatable Näıve Bayes classifier and an incremental decision tree on syn-
thetic data streams with feature drifts, showing the impact of feature drifts in
their accuracy. We must emphasize that even the Hoeffding Tree fails to quickly
adapt to feature drifts, an important trait since it possesses an embedded feature
selection algorithm to determine splits in real-time processing, which is however,
performed accordingly to user-given parameters and not automatically.

The results here presented highlight the inefficiency of algorithms on track-
ing which attributes are relevant for classification in data streams. Therefore,
dynamic feature selection algorithms are of utmost importance to quickly detect
and adapt to feature drifts. In future works we plan to verify the efficiency of
state-of-the-art algorithms with the addition of feature selection algorithms using
periodical verifications of feature relevances accordingly to a landmark window-
ing technique. Furthermore, we plan to study the impact of feature evolutions,
i.e. appearance and disappearance of features, in streaming learning environ-
ments.
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Abstract. Manifold based metric learning methods have become increasingly
popular in recent years. In almost all these methods, however, the underlying
manifold is approximated by a point cloud, and the matric tensor, which is the
most basic concept to describe the manifold, is neglected. In this paper, we
propose a non-linear metric learning framework based on metric tensor. We
construct a Riemannian manifold and its metric tensor on sample space, and
replace the Euclidean metric by the learned Riemannian metric. By doing this,
the sample space is twisted to a more suitable form for classification, clustering
and other applications. The classification and clustering results on several public
datasets show that the learned metric is effective and promising.

Keywords: Non-linear metric learning · Manifold · Metric tensor · Gaussian
mixture model

1 Introduction

Distance functions or dissimilarity measures are central to many algorithms in machine
learning, pattern recognition and computer vision [1–3], which critically determines the
performance of these algorithms. Instead of predefining a distance function based on
prior knowledge, some more appealing approaches such as metric learning is to learn
an appropriate distance function based on information available about the application.
Metric learning is a type of algorithm which constructs a metric function in sample space
to pull the similar samples close and push the dissimilar samples far, and it can be divided
into linear method and non-linear one.

Linear metric learning is a well-studied problem, and many algorithms are proposed,
such as the method of Xing et al. [4], large margin nearest neighbor (LMNN) [5], and
information-theoretic metric learning (ITML) [6]. The basic idea of these algorithms is
to construct a Mahalanobis distance based on different loss functions. The algorithm in
[7] learned a cosine similarity for metric samples instead of Mahalanobis distance.

For non-linear metric learning, many algorithms use the kernel approach to learn the
metric [8, 9]. GB-LMNN [10] employed a non-linear mapping combined with a tradi‐
tional Euclidean distance function. By training the non-linear transformation directly in
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function space as GBRT [11], the resulting algorithm is insensitive to hyper-parameters
and robust against over fitting.

Instead of mapping methods, geodesic distance in Riemannian geometry presents
a direct and profound method to describe distance function. Recently, the matric
tensor, which is the most fundamental concept to describe the manifold, is intro‐
duced into metric learning., Some researchers use geodesic metric defined by metric
tensor as distance function instead of using homogeneous metric function. However,
using metric tensor directly will encounter the problem of combinatorial explosion.
Shi et al. [12] learned a sparse combination of locally discriminative metric by
assuming that the metric tensor is locally (or globally) constant. Ramanan and Baker
[13] use interpolation to integrate the metric tensor along the lines between the test
and training points under the assumption that the metric tensor is piecewise constant
[14] provides an algorithm for computing geodesics according to the learned
metrics, as well as algorithms for computing exponential and logarithmic maps on
the Riemannian manifold, which let many Euclidean algorithms take advantage of
multi-metric learning.

Different from many current metric tensor algorithms, we propose a new method to
approximate and learn the geodesic distance. As Gaussian mixture model can express
inhomogeneity of the metric tensor easily and intuitively, we use it to learn the metric
tensor on sample space to twist the plane Euclidean space, which can pull the similar
samples close, and push the dissimilar samples far.

Fig. 1. The optimal framework.  corresponds to vector (ó, ì, á), and  is the loss function.
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2 Theoretical Analysis

In the Riemannian geometry, the metric tensor is defined as a second order covariant
symmetric tensor field . We regard it in our method as a symmetric and positive-
definition function matrix  with size , where  is the dimension of sample
space. For example, the metric tensor is a positive-definition function matrix

 for 2-dimension sample space.

The function matrix indicates the local metric property among and can be interpreted
as a Mahalanobis distance on local epsilon neighborhood space among . Then we can
define the arc length L in whole space as:

(1)

where both  and  are terminal point of the curve, and path of integral depends on the
curve.

With this definition of arc length, we can get a new metric space in which the distance
between point  and  is defined as the geodesic distance:

(2)

which is the lower bound in all of the possible integral paths.
From the above mentioned, in our method, we can make a metric tensor in sample

space, which twists the space and pull the similar samples close and push the dissimilar
samples far.

(a) (b)

Fig. 2. (a) Shows the moves of  and the changes of  at stage 1 and (b) is for stage 2. The samples
are divided by 2 colors(red and blue) to express their true classifications. We set number of peaks
is two. To show the changes of both peaks when running the algorithm, we use ‘1’ and ‘2’ to mark
their ì respectively and use ‘start’ and ‘end’ to indicate the starting and ending ì for each peak.
Finally, the two radius of circles colored by blue and red indicate changes of ó for the two peaks
respectively.
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3 Problem Simplification

There are two problems to be solved. One is to compute the , which need to solve
the variational problem; the other one is to optimize the N-order function matrix. It is
very difficult to solve these two problems directly. Therefore, we simplify the problem
as follows. We fixed the integral path as straight line:

(3)

It is a pseudo-distance, which can simplify the variational problem. In general, the
distances will be infinite in  dimensional function space , so with a rational param‐
eter space, we can get the solution with small calculation. We define  as density func‐
tion on sample space, and then define:

(4)

where B can be an arbitrary matrix. We would like to account for the form unrigorously but
rationally, that it is equal to transform the space by multiplying matrix  and then define:

(5)

where    and   . It can be solved by curve integral. This explanation enables
us to use the result of linear metric learning method to initialize B, which will be shown in
next section.

To describe the inhomogeneity of the metric, we set  as:

(6)

which is a Gaussian mixture model with  components  is the weight of Gaussian
model, and is a positive number.  and  are the center and the bandwidth of Gaussian
model, respectively.

4 Algorithm

Our optimizing objective function can be defined as

(7)

where L is the loss functional of distance function , and  is dataset.  is
defined by:
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(8)

where

Ncdf() is short for standard cumulative normal distribution function.
 is differentiable with regard to .   So  can be optimized by gradient

based methods such as gradient descent or conjugate gradients. We first compute the
gradient of .  can be computed by:

(9)

 has no analytic solutions, and difference is used instead. It would not slow down the

algorithm because the major ingredient in gradient of  is . After getting the gradient

of , it is easy to compute  and .
The algorithm framework is shown in Fig. 1. It can be divided into two stages. At

the first stage, we initialize  with random value and then optimize it. We add optimize
 one by one, that is when  is optimized,  remains constant. At the second

stage, we use the optimized  as the initial value and continue to optimize  separately
again as in the first stage. Many optimal algorithms can be used in the optimized step in
both stages such as steepest descent or conjugate gradients. The algorithm is efficient as
it optimizes only one Gaussian peaks in each iteration.

It is worth noting that we can run linear metric learning algorithm firstly and use its
result as matrix  to transform the samples, and set each initial  as a positive number
near to zero. By doing this, the initial metric tensor will approximate to Euclidean space
instead of random space. It means that instead of using our algorithm individually, we
can use linear metric learning algorithm to initialize the matrix  and then run our algo‐
rithm. The experimental results in Sect. 5 show that using linear metric learning algo‐
rithm to initialize matrix B can improve the performance greatly.
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Consider the data shown in Fig. 2, which is divided into two classes (shown by the
different colors), we use 2 Gaussian peaks, and then run the algorithm. Figure 2 depicts
the trajectories of the Gaussian peaks. At the stage one, the algorithm creates the red
Gaussian peak first, then the blue peak. At the second stage, these two peaks move in
turn. The figure also shows that peaks in both of these two stage do their best to ‘avoid’
the dense area and have the tendency of moving to position between classes, which show
that the algorithm can separate samples with different label exactly.

5 Experiment

5.1 Performance in Supervised Metric Learning

We use the loss function which is similar to LMNN [5] in the supervised metric learning.
The loss function of LMNN has two terms, one is for neighboring sample pairs with
same label, and the second is for impostor neighbors (i.e., samples with different labels
and near to each other). In order to adapt characteristic of our algorithm, we modify the
loss function as:

(10)

The definition of target neighbor and imposter are the same as [10]. This loss function
minimizes the distance between an instance and its target neighbors, and maximizes the
distance between an instance and its impostor neighbors. The modified loss function can
solve two problems effectually. First, because the number of Gaussian increased in each
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iteration in stage 1, the metric tensor will rise continuously, which means distance
between all samples has the tendency to decrease. It makes most of the loss functions
fail. Second, if the centers of Gaussian peaks depart from most of samples too much,
these peaks cannot improve the classification performance. Fortunately by using the
division form, our loss function is changed only by relative distance, which can solve
the mentioned problems and pull the centers of Gaussian peaks back.

We evaluate our non-linear metric learning algorithms on several public data sets:
Wine, Iris, Ionosphere, car data, Balance scale and ISOLET from the UCI repository.
ISOLET predefined testing data and training data. For other data sets, results are aver‐
aged over 30 train/test splits (70 %/30 %). ISOLET is reduced the input dimensionality
(originally 617) by projecting the data onto its leading 172 principal components which
accounts for 95 % of its total variance [5]. We set k = 5 for kNN classification. We
compare 6 algorithms: Euclidean kNN, ITML, LMNN, ours, ITML + ours (initialize
matrix B by ITML’s result and learn the metric by our method) and LMNN + ours.
Figure 3 shows the comparison results. We find that initialized by linear algorithms and
optimized by our algorithm can get better performances. Using our algorithm individ‐
ually also can achieve good performance.

5.2 Application in Semi-supervised Clustering

Let S and D be the set of similar and dissimilar pair of the n data points. We define the
following performance measure:

(11)

where  is the mean distance between dissimilar samples with

 being the number of dissimilar pairs, and . is the mean
distance between similar samples with ns being the number of similar sample pairs.

Fig. 4. Semi-supervised clustering results on ORL dataset. The 6 algorithms are (1) Euclidean
kmeans, (2) Xing’s algorithm, (3) ITML, (4) ours, (5) Xing’s + ours, (6)ITML + ours.

We test our algorithm on ORL face data set. The face data set contains 400 grayscale
images of 40 individuals in 10 different poses. We down sample the images to 38 × 31
pixels and use PCA to reduce the dimension to 30 [5]. We want to cluster the data into two
classes: with glasses and without glasses. We select 80 sample pairs randomly from all 
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pairs which include similar pairs and dissimilar pairs. We compare 6 algorithms: Euclidean
k-means, Xing’s algorithm [4], ITML [6], ours, Xing’s+ ours, and ITML+ ours. We run the
experiments for 30 times and the average result is shown in Fig. 4. Figure 5 shows a
specific result of one experiment. Like supervised experiment, we can see that each united
algorithms has improvement to their ununited ones. On these results, we can see that
although result by using our method individually is a bit below ITML, the united one (ITML
+ ours) can improve ITML greatly. The result of Euclidean kmeans indicates that this
problem is so complex that clusters without semi-supervised information is equal to random
guess. Finally, the problem is the variance of ours and the united ones are little bigger then
original ones, which may be probably caused by initializing the arguments randomly.

Fig. 5. These subfigures show a specific semi-clustering result on part of ORL data set. The
algorithms which are used are (1) Euclidean kmeans, (2) Xing’s, (3) ITML, (1’) ours individually,
(2’) Xing’s+ ours, (3’) ITML+ ours. The faces on first line for each subfigure are with glasses,
and others are without glasses. The clustering results are denoted by different color. In these
subfigures, the yellow corresponds to whom with glasses, and blue corresponds to whom without
glasses.

6 Conclusion

In this paper, we have proposed a framework for learning a distance metric based on
metric tensor. Our method can get good performance both using individually and
combining with linear algorithm. Ongoing work is focus on following two aspects.
Currently, we simplify the Geodesic distance to a straight line integral, which is equal
to assume that if point c is at the straight which has terminated point a and b, d(a, c) or
d(c, b) must be less than d(a, b), which is little unfit for some real samples. And we
simplify the function matrix  to function  for fast computation, which may loss
information of the manifold.
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Abstract. The performance of a neural network depends critically on
its model structure and the corresponding learning algorithm. This paper
proposes bounded stochastic diagonal Levenberg-Marquardt (B-SDLM),
an improved second order stochastic learning algorithm for supervised
neural network training. The algorithm consists of a single hyperpara-
meter only and requires negligible additional computations compared to
conventional stochastic gradient descent (SGD) method while ensuring
better learning stability. The experiments have shown very fast conver-
gence and better generalization ability achieved by our proposed algo-
rithm, outperforming several other learning algorithms.

Keywords: Second order method · Fast convergence · Stochastic diag-
onal Levenberg-Marquardt · Convolutional neural network

1 Introduction

Machine learning mainly comprises of two components: a learnable model (e.g.
neural networks) and its corresponding learning algorithm. The structure of
the model is often designed towards providing higher nonlinearity behaviour to
achieve better learning. Regardless of how well the learning capacity of a model
is, the learning performance is still highly dependent on the effectiveness of the
learning algorithm. In this paper, we focus on the development of a supervised
learning algorithm to train neural networks.

Most learning algorithms are based on iterative methods, which aim to find
a set of parameters (weights) that lead to an optimum solution by taking small
steps iteratively towards a direction until it reaches a desired solution:

Wt+1 = Wt − �W (1)

where Wt are the weights at current iteration t, Wt+1 denotes the weights for
next iteration t + 1, and �W represents the step size to be taken at iteration t.
In neural networks, �W is usually computed by finding the corresponding error
gradients, which can be done using back-propagation algorithm.
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Gradient descent (GD) is a simple first order optimization algorithm, but
often suffers from very slow convergence. Many other methods have been pro-
posed to improve the learning convergence rate, but with the expense of addi-
tional computations. This suggests the necessity to develop a learning algorithm
that can converge fast while requiring negligible computational overhead.

In this paper, we propose a second order stochastic learning algorithm that is
optimized for faster learning and efficient computations. Our proposed algorithm,
B-SDLM is inspired by the stochastic diagonal Levenberg-Marquardt (SDLM)
algorithm, and utilizes both curvature information and bounding condition for
better learning. The paper is organized as follows, Sect. 2 covers common learning
algorithms and proposes an optimized algorithm. Section 3 describes the exper-
imental design and discusses the results. The final section concludes the work
and suggests possible future work.

2 Proposed Algorithm

2.1 Overview of Learning Algorithms

Conventional GD works by summing and averaging error gradients of all train-
ing samples before updating the weights, hence the name batch GD (BGD).
BGD is effective and embarrasingly parallel, yet suffers from slow convergence.
Meanwhile, stochastic GD (SGD) attempts to avoid local minima by performing
noisy updates. Still, SGD can suffer from slow convergence near minimum of
ill-conditioned problems.

In general, the convergence rate of a learning algorithm depends on update
step sizes, i.e. the learning rate. Many algorithms have been proposed to adapt
the global learning rate by having annealing schedule, or rely on the sign of
error gradients (e.g. Rprop [6]). Some allow each weight to be tuned using its
specific learning rate, mostly based on first derivatives (e.g. AdaGrad [4] and
AdaDelta [13]).

Second order algorithms generally make use of both gradient and curvature
information for faster optimization, which are mainly based on Newton’s method:

�W = η

(
d2E (W )

dW 2

)−1
dE (W )

dW
(2)

Where η ∈ (0, 1) is the global learning rate. Newton’s method guarantees the
convergence state, but it is prohibitive to compute in practice for large problems.
Many alternative methods have been proposed based on approximations to the
Hessian (second derivatives) to ease the computations [8]. These include Quasi-
Newton [2,11], Gauss-Newton, and Levenberg-Marquardt (LMA) algorithms.
Most second order algorithms generally perform better than conventional first
order methods, but still can be compute-intensive, plus they only support batch
learning mode.
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2.2 Stochastic Diagonal Levenberg-Marquardt Algorithm

Realizing the potentials of second-order methods and their computational inten-
sity, algorithms have been developed to reduce computations while still achieving
desirable learning performance. One of most well known works was by Becker
et al. for proposing back-propagation algorithm with “pseudo-Newton step” [1]:

�wji =
∂E

∂wji∣∣∣ ∂2E
∂w2

ji

∣∣∣ + μ
(3)

Where μ is regularization parameter to deal with regions of small curvature as
suggested in LMA. The “pseudo-Newton step” has later become the underlying
basis of stochastic diagonal Levenberg-Marquardt (SDLM) algorithm [7].

SDLM adds a global learning rate which aids to the convergence, and com-
putes running diagonal estimates of Hessian matrix over a subset of training
samples:

�wji =

⎛

⎝ η∣∣∣
〈

∂2E
∂w2

ji

〉∣∣∣ + μ

⎞

⎠ ∂E

∂wji
(4)

〈
∂2E

∂w2
ji

〉

(t+1)

= (1 − γ)

〈
∂2E

∂w2
ji

〉

(t)

+ γ
∂2E

∂w2
ji (t)

(5)

Where η is global learning rate, and γ determines the portion of previous esti-
mates to be used for new Hessian estimation [8]. SDLM has been successfully
applied to train deep neural networks [7], but there are still some outstanding
issues that need to be solved. Firstly, learning stability is highly dependent on
the choices of both η and γ. Secondly, more hyperparameters will result in hyper-
parameter overfitting problem, in which there are endless ways of configuring the
learning algorithm. Some approaches have been taken to reduce the total hyper-
parameters (e.g. layer-specific SDLM algorithm (L-SDLM) [10]), but in most
cases adding more computations to the learning algorithm, which is undesirable.

2.3 Bounded SDLM Algorithm

We propose an improved version of SDLM algorithm that requires only a sin-
gle hyperparameter, fewer computations, while still retaining the second order
properties of the method for faster convergence. These improvements are mainly
focused on two aspects: hyperparameter overfitting and computational intensity.

Idea 1: Simple averaging of Hessian estimates. Instead of computing running
Hessian estimates (Eq. 5), we take simple average of instantaneous diagonal Hes-
sians to omit the memory constant γ while making the computations much sim-
pler:

∂2E

∂w2
ji

=

∑
MH

∂2E
∂w2

ji (m)

MH
(6)
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Where MH is total samples used for Hessian calculation. Then the computation
of weight-specific learning rate becomes

ηji =
η∣∣∣ ∂2E

∂w2
ji

∣∣∣ + μ
(7)

Where ηji is the learning rate with respect to wji.

Idea 2: Boundary condition for numerical stability. The main reason of having
μ is to prevent the learning rates from blowing up. Our idea is to replace μ with
simple boundary condition as in the following equation:

ηji =

⎧
⎪⎨

⎪⎩

η∣
∣
∣
∣

∂2E

∂w2
ji

∣
∣
∣
∣

∣
∣∣ ∂2E
∂w2

ji

∣
∣∣ > 1

η otherwise

(8)

Where η is now the upper boundary value for the computations of weight-specific
learning rates as well. This has three main advantages: the boundary condi-
tion serves the same purpose of ensuring learning stability; fewer computations
are required; and lastly, the risk of hyperparameter overfitting is significantly
reduced by having only a single hyperparameter η to be tuned.

3 Experimental Design

We have evaluated our proposed learning algorithm on handwritten digit classifi-
cation task based on MNIST dataset. The dataset consists of 60000 training and
10000 testing samples. We performed only z-score normalization on the images
[12]. No other preprocessing techniques were applied. Only 1% of training sam-
ples were randomly selected for Hessian calculation, and the training set was
shuffled before every new training epoch.

In this work, we conducted the experiments on a convolutional neural net-
work (CNN). All convolutional layers perform convolutions with single step-sized
correlation filtering [9]. We used softmax layer and cross-entropy objective func-
tion to perform classification and evaluate the fitness of trained model. Outputs
of all layers (except max-pooling and softmax) are passed through rectified lin-
ear unit (ReLU) activation function due to its superior performance and high
computational efficiency.

In terms of free parameters, we have all convolutional layers with shared
weights and biases, resulting in fewer parameters. We performed normalized
weight initialization on all weights based on each neuron’s fan-in and fan-out [5].
The diagonal Hessians were computed through second order back-propagations.
Exhaustive search of hyperparameters was conducted to produce best learning
results. We ran the experiments using the following global learning rate values:
0.001, 0.0025, 0.005, 0.0075 and 0.01. For SDLM algorithm, we selected from
regularization parameter value of 0.01, 0.02 and 0.03. For each experimental
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Fig. 1. CNN model for handwritten digit classification

setting, we repeated the training procedure three times, with 50 epochs per
repetition. The best results were chosen to be presented in the next section.

All codes were written in C/C++, and were complied in Ubuntu 14.04 64-
bit LTS OS with O3 code optimization level. Real-valued data was represented
by single-precision floating data type throughout the experiments. We ran all
experiments on a PC platform with an overclocked Intel Core i7 4790K 4.5 GHz
CPU and 4 GB of RAM.

4 Results and Discussions

We evaluated our proposed algorithm with several other learning algorithms on
the same case study using identical neural network model.
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Fig. 2. Average cross-entropy errors for various learning algorithms on training set (a)
and testing set (b) (Color figure online)

Figure 2 illustrates the learning curves of various learning algorithms on both
training and testing sets. All variants of SDLM algorithms performed better
than the conventional SGD algorithm due to utilization of second order infor-
mation. The modified version of SDLM algorithm proposed by Milakov per-
formed worse than other SDLM variants despite having additional computations
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of layer-specific hyperparameters. This suggests that these layer-specific hyper-
parameters may not work well for all cases as reported in Milakov’s work [10].
Meanwhile, our proposed algorithm can perform comparably with a finely-tuned
SDLM algorithm, and even outperform it after several epochs as indicated by
its cross-entropy error curve in Fig. 2b.
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Fig. 3. Misclassification errors for various learning algorithms on training set (a) and
testing set (b) (Color figure online)

In addition to the learning curves, we examined the learning performances of
the algorithms by studying their classification accuracies on both data sets. The
misclassification error curves on training set (Fig. 3b) exhibit similar patterns as
observed in Fig. 2a. Meanwhile, Fig. 3b gives us a clear indication of how well
our algorithm has performed on testing set, even within 20 training epochs only.
The steep error curve that is separable from others signifies good generalization
performance of the proposed learning algorithm, which is the main objective of
any machine learning problems.

Table 1 shows the best errors and accuracies for various learning algorithms
within 50 training epochs. The figures in cross-entropy error column suggest
that lower cross entropy error on training set does not directly corresponds to

Table 1. Best cross-entropy errors and classification accuracies of various learning
algorithms

Learning algorithm Cross-entropy error Accuracy (%)

Training Testing Training Testing

SGD 6.43 × 10−5 4.57 × 10−2 99.99 98.88

SDLM 5.48 × 10−4 4.09 × 10−2 99.99 98.92

L-SDLM 5.59 × 10−5 4.34 × 10−2 99.99 98.96

Proposed 2.31 × 10−4 3.76 × 10−2 99.99 99.10
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better classification performance on testing set. A similar pattern is observed in
Fig. 4a, where the classification accuracies of the learning algorithms are com-
parable to each other in training set, with different generalization performances
on testing set.
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Fig. 4. Comparisons among various learning algorithms (a) Best misclassification error
on MNIST dataset; and (b) Average execution time of a single training epoch (Color
figure online)

We also measured the efficiencies of various learning algorithms in terms
of the average execution time per training epoch. By referring to Fig. 4b, it is
reasonable to conclude that SGD algorithm consumes least computational time
among these learning algorithms. This is due to the fact that it does not involve
any additional computations for Hessian approximation. The original SDLM
requires longest time to complete a training epoch due to the running estima-
tion of diagonal Hessian, while the layer-specific SDLM algorithm requires less
execution time than the former algorithm due to averaging of instantaneous
Hessian terms. However, it is still slower than our algorithm, since additional
computations are required to determine the layer-specific regularization para-
meters.

5 Conclusion and Future Works

In this paper, we have presented B-SDLM, an optimized version of SDLM learn-
ing algorithm consisting of a single hyperparameter only. The algorithm can
achieve very fast convergence, while having negligible computational overhead
over SGD method. We evaluated the effectiveness of our learning algorithm on
handwritten digit classification problem using CNN model. The results clearly
indicate that the proposed algorithm outperforms other learning algorithm sig-
nificantly, both in convergence rate and generalization performance.
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Our future work involves extensive analysis of the proposed algorithm for
different neural network models as well as case studies. Mapping the learn-
ing algorithm into distributed learning environment can be a good direction of
expanding its deep learning capability on big data while maintaining reasonable
computational time [3].
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Abstract. Recently, dropout has seen increasing use in deep learning. For deep
convolutional neural networks, dropout is known to work well in fully-connected
layers. However, its effect in pooling layers is still not clear. This paper demon‐
strates that max-pooling dropout is equivalent to randomly picking activation
based on a multinomial distribution at training time. In light of this insight, we
advocate employing our proposed probabilistic weighted pooling, instead of
commonly used max-pooling, to act as model averaging at test time. Empirical
evidence validates the superiority of probabilistic weighted pooling. We also
compare max-pooling dropout and stochastic pooling, both of which introduce
stochasticity based on multinomial distributions at pooling stage.

Keywords: Deep learning · Convolutional neural network · Max-pooling
dropout

1 Introduction

Deep convolutional neural networks (CNNs) have recently been substantially improving
on the state of art in computer vision. A standard CNN consists of alternating convolu‐
tional and pooling layers, with fully-connected layers on top. Compared to regular feed-
forward networks with similarly-sized layers, CNNs have much fewer connections and
parameters due to the local-connectivity and shared-filter architecture in convolutional
layers, so they are far less prone to over-fitting. Another nice property of CNNs is that
pooling operation provides a form of translation invariance and benefits generalization.
Despite these attractive qualities and despite the fact that CNNs are much easier to train
than other regular, deep, feed-forward neural nets, big CNNs with millions or billions
of parameters still easily overfit small training data.

Dropout [1] is a recently proposed regularizer to fight against over-fitting. It is a
regularization method that stochastically sets to zero the activations of hidden units for
each training case at training time. This breaks up co-adaptations of feature detectors
since the dropped-out units cannot influence other retained units. Another way to inter‐
pret dropout is that it yields a very efficient form of model averaging where the number
of trained models is exponential in that of units, and these models share the same param‐
eters. Dropout has also inspired other stochastic model averaging methods such as
stochastic pooling [4], drop-connect [5] and maxout networks [3].
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Although dropout is known to work well in fully-connected layers of convolutional
neural nets [1, 5, 6], its effect in pooling layers is, however, not well studied. This paper
shows that using max-pooling dropout at training time is equivalent to sampling acti‐
vation based on a multinomial distribution, and the distribution has a tunable parameter
p (the retaining probability). In light of this, probabilistic weighted pooling is proposed
and employed at test time to efficiently average all possibly max-pooling dropout trained
networks. Our empirical evidence confirms the superiority of probabilistic weighted
pooling over max-pooling. Like fully-connected dropout, the number of possible max-
pooling dropout models also grows exponentially with the increase of the number of
hidden units that are fed into pooling layers, but decreases with the increase of pooling
region’s size.

As both stochastic pooling [4] and max-pooling dropout randomly sample activation
based on multinomial distributions at pooling stage, it becomes interesting to compare
their performance. Experimental results show that stochastic pooling performs between
max-pooling dropout with different retaining probabilities, yet max-pooling dropout
with typical retaining probabilities often outperforms stochastic pooling by large
margins.

In this paper, dropout on the input to max-pooling layers is also called max-pooling
dropout for brevity. Similarly, dropout on the input to fully-connected layers is called
fully-connected dropout.

2 Related Work

Dropout is a new regularization technique that has been more recently employed in deep
learning. Pioneering work by Hinton et al. [1] only applied dropout to fully connected
layers. It was the reason they provided that the convolutional shared-filter architecture
was a drastic reduction in the number of parameters and thus reduced its possibility to
overfit in convolutional layers. Krizhevsky et al. [6] trained a very big convolutional
neural net to classify 1.2 million ImageNet images. Two primary methods were used to
reduce over-fitting. The first one was data augmentation, an easiest and most commonly
used approach to reduce over-fitting on image data. Dropout was exactly the second one.
Also, it was only used in fully-connected layers.

Stochastic pooling [4] is a dropout-inspired regularization method. Instead of always
capturing the strongest activity within each pooling region as max-pooling does,
stochastic pooling randomly picks the activations based on a multinomial distribution.

Maxout network [3] is another model inspired by dropout. Combining with dropout,
maxout networks have been shown to achieve best results on five benchmark datasets.
However, the authors did not train maxout networks without dropout. Besides, they did
not train the rectified counterparts with dropout and directly compare it with maxout
networks. Dropout has also motivated other stochastic model averaging methods, such
as drop-connect [5] and adaptive dropout [8].
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3 Max-Pooling Dropout

We now demonstrate that max-pooling dropout is equivalent to sampling activation
according to a multinomial distribution at training time. Basing on this interpretation,
we propose to use probabilistic weighted pooling at test time.

3.1 Max-Pooling Dropout at Training Time

Consider a standard CNN composed of alternating convolutional and pooling layers,
with fully-connected layers on top. On each presentation of a training example, if layer
l is followed by a pooling layer, the forward propagation without dropout can be
described as

(1)

Here  is pooling region j at layer l and is the activity of each neuron within it.

 is the number of units in . Pool() denotes the pooling function. Pooling
operation provides a form of spatial transformation invariance as well as reduces the
computational complexity for upper layers. An ideal pooling method is expected to
preserve task-related information while discarding irrelevant image details. Two popular
choices are average- and max-pooling. Average-pooling takes all activations in a pooling
region into consideration with equal contributions. This may downplay high activations
as many low activations are averagely included. Max-pooling only captures the strongest
activation, and disregards all other units in the pooling region. We now show that
employing dropout in max-pooling layers avoids both disadvantages by introducing
stochasticity.

With dropout, the forward propagation becomes

(2)

(3)

Here * denotes element wise product and  is a binary mask with each element
 drawn independently from a Bernoulli distribution. This mask is multiplied with

activations  in a pooling region at layer l to produce dropout-modified activations
. The modified activations are then passed to pooling layers. Figure 1 presents a

concrete example to illustrate the effect of dropout in max-pooling layers. Clearly,
without dropout, the strongest activation in a pooling regions is always selected as the
pooled activation. With dropout, it is not necessary that the strongest activation being
the output. Therefore, max-pooling at training time becomes a stochastic procedure. To
formulate such stochasticity, suppose the activations  in each pooling
region j are reordered in non-decreasing order, i.e., . With
dropout, each unit in the pooling region could be possibly set to zero with probability
of q = 1 – p is the dropout probability, and p is the retaining probability). As a result,
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 will be selected as the pooled activation on condition that (1)  are
dropped out, and (2)  is retained. This event occurs with probability of pi according
to probability theory:

(4)

Fig. 1. An illustrating example showing the procedure of max-pooling dropout. The activation
in the pooling region is 1, 6, 5 and 3 respectively. Without dropout, the strongest activation 6 is
always selected as the output. With dropout, each unit in the pooling region could be possibly
dropped out. In this example, only 1 and 3 are retained, then 3 will be the pooled output.

A special event occurring with probability of  is that all the units in a pooling
region is dropped out, and the pooled output becomes . Therefore, performing
max-pooling over the dropout-modified pooling region is exactly sampling from the
following multinomial distribution to select an index i, then the pooled activation is
simply :

(5)

Let s be the size of a feature map at layer l (with r feature maps), and t be the size
of pooling regions. The number of pooling region is therefore rs/t for non-overlapping
pooling. Each pooling region provides t + 1 choices of the indices, then the number of
possibly trained models C at layer l is

(6)

So the number of possibly max-pooling dropout trained models is exponential in the
number of units that are fed pooling max-pooling layers, and the base b(t)

 depends on the size of pooling regions. Obviously, with the
increase of the size of pooling regions, the base b(t) decreases, and the number of
possibly trained models becomes smaller. Note that the number of possibly fully-
connected dropout trained models is also exponential in the number of units that are fed
into fully-connected layers, but with 2 as the base.
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3.2 Probabilistic Weighted Pooling at Test Time

Using dropout in fully-connected layers during training, the whole network containing
all the hidden units should be used at test time, but with their outgoing weights halved
to compensate for the fact that twice as many of them are active [1], or with their acti‐
vations halved. Using max-pooling dropout during training, one might intuitively pick
as output the strongest activation multiplied by the retaining probability:

(7)

Since the strongest activation in a pooling region is scaled down by the retaining
probability, we call this scaled max-pooling.

At test time, scaled max-pooling generally works well in practice, but is not the
optimal. Instead we propose to use probabilistic weighted pooling to efficiently get a
more accurate approximation of averaging all possibly trained dropout networks. In this
pooling scheme, the pooled activity is linear weighted summation over activations in
each region:

(8)

Here pi is exactly the probability calculated by Eq. (4). This type of probabilistic
weighted summation can be interpreted as an efficient form of model averaging where
each selection of index i corresponds to a different model. Empirical evidence will
confirm that probabilistic weighted pooling is a more accurate approximation of aver‐
aging all possible dropout models than scaled max-pooling.

4 Empirical Evaluations

Experiments are conducted on three datasets: MNIST, CIFAR-10 and CIFAR-100.
MNIST consists of 28 × 28 pixel grayscale images, each containing a digit 0 to 9. There
are 60,000 training and 10,000 test examples. We do not perform any preprocessing
except scaling the pixel values to [0, 1]. The CIFAR-10 dataset [2] consists of ten classes
of natural images with 50,000 examples for training and 10,000 for testing. Each
example is a 32 × 32 RGB image taken from the tiny images dataset collected from the
web. CIFAR-100 is just like CIFAR-10, but with 100 categories. We also scale to [0,
1] for CIFAR-10 and CIFAR-100 and subtract the mean value of each channel computed
over the dataset for each image.

We use rectified linear function [7] for convolutional and fully-connected layers, and
softmax activation function for the output layer. More commonly used sigmoidal and
tanh nonlinearities are not adopted due to gradient vanishing problem with them. Our
models are trained using stochastic mini-batch gradient descent with a batch size of 100,
momentum of 0.95, learning rate of 0.1 to minimize the cross entropy loss. The weights
in all layers are initialized from a zero-mean Gaussian distribution with 0.1 as standard
deviation and the constant 0 as the neuron biases in all layers.
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The CNN architecture for MNIST is 1x28x28-20C5-2P2-40C5-2P2-1000N-10N,
which represents a CNN with 1 input image of size 28 × 28, a convolutional layer with
20 feature maps and 5 × 5 filters, a pooling layer with pooling region 2 × 2 and stride
2, a convolutional layer with 40 feature maps and 5 × 5 filters, a pooling layer with
pooling region 2 × 2 and stride 2, a fully-connected layer with 1000 hidden units, and
an output layer with 10 units (one per class). The architecture for CIFAR-10 is
3x32x32-96C5-3P2-128C3-3P2-256C3-3P2-2000N-2000N-10N. The architecture for
CIFAR-100 is the same with CIFAR-10 except with 100 output units.

4.1 Probabilistic Weighted Pooling vs. (Scaled) Max-Pooling

We initially validate the superiority of probabilistic weighted pooling over max-pooling
and scaled max-pooling using MNIST. The CNNs are trained for 1000 epochs. For max-
pooling dropout, CNN models are trained with different retaining probabilities. Figure 2
compares the test performances produced by different pooling methods at test time.
Generally, probabilistic weighted pooling performs better than max-pooling and scaled
max-pooling with different retaining probabilities. For small p (the retaining proba‐
bility), max-pooling and scaled max-pooling performs very poorly; probabilistic weighted
pooling is considerably better. With the increase of p, the performance gap becomes
smaller. This is not surprising as the pooled outputs for different pooling methods are
close to each other for large p. An extreme case is that when p = 1, scaled max-pooling
and probabilistic weighted pooling are exactly the same with max-pooling.

Fig. 2. MNIST test errors for different pooling methods at test time. Max-pooling dropout is used
to train CNN models with different retaining probabilities at training time.

We then compares different pooling methods at test time for max-pooling dropout
trained models on CIFAR-10 and CIFAR-100. The retaining probability is set to 0.3,
0.5 and 0.7 respectively. At test time, max-pooling, scaled max-pooling and probabilistic
weighted pooling are respectively used to act as model averaging. Figure 3 presents the
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test performance of these pooling methods. Again, for small retaining probability
p = 0.3, scaled max-pooling and probabilistic weighted pooling perform poorly. Prob‐
abilistic weighted pooling is the best performer with different retaining probabilities.
The increase of p narrows different pooling methods’ performance gap.

Fig. 3. CIFAR-10 and CIFAR-100 test errors for different pooling methods at test time.
Maxpooling dropout is used to train CNNs with different retaining probabilities at training time.

4.2 Max-Pooling Dropout vs. Stochastic Pooling

Similar to max-pooling dropout, stochastic pooling [4] also randomly picks activation
according to a multinomial distribution at training time. More concretely, at training
time it first computes the probability pi for each unit within pooling region j at layer l
by normalizing the activations:

(9)

It then samples from a multinomial distribution based on pi to select an index i in
the pooling region. The pooled activation is simply :

(10)

At test time, probabilistic weighting is adopted to act as model averaging. That is,
the activations in each pooling region are weighted by the probability pi and summed:

(11)

One may have found that stochastic pooling bears much resemblance to max-pooling
dropout, as both involve stochasticity at pooling stage. We are therefore very interested
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in their performance differences. To compare their performances, we train CNN models
with different retaining probabilities on MNIST, CIFAR-10 and CIFAR-100. For max-
pooling dropout trained models, only probabilistic weighted pooling is used at test time.
Figure 4 compares the test performances of max-pooling dropout with different retaining
probabilities against stochastic pooling. The relation between the performance of max-
pooling dropout and the retaining probability p is a U-shape. If p is too small or too
large, max-pooling dropout performs poorer than stochastic pooling. Yet max-pooling
dropout with typical p (around 0.5) outperforms stochastic pooling by a large margin.
Therefore, although stochastic pooling is hyper-parameter free and this saves the tuning
of retaining probability, its performance is often inferior to max-pooling dropout.

Fig. 4. MNIST, CIFAR-10 and CIFAR-100 test errors for max-pooling dropout with different
retaining probabilities against stochastic pooling.

5 Conclusions

This paper mainly addresses the problem of understanding and using dropout on the
input to max-pooling layers of convolutional neural nets. At training time, max-pooling
dropout is equivalent to randomly picking activation according to a multinomial distri‐
bution, and the number of possibly trained networks is exponential in the number of
input units to the pooling layers. At test time, a new pooling method, probabilistic
weighted pooling, is proposed to act as model averaging. Experimental evidence
confirms the benefits of using max-pooling dropout, and validates the superiority of
probabilistic weighted pooling over max-pooling and scaled max-pooling. Considering
that stochastic pooling is similar to max-pooling dropout, we empirically compare them
and show that the performance of stochastic pooling is between those produced by max-
pooling dropout with different retaining probabilities.
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Abstract. Predicting box office receipts of movies in theatres is a diffi-
cult and challenging problem on which many theatre managers cogitated.
In this study, we use pruned random forest to predict the box office of
the first week in Chinese theatres one month before movies’ theatrical
release. In our model, the prediction problem is converted into a classi-
fication problem, where the box office receipt of a movie is discretized
into eight categories. Experiments on 68 theatres show that the proposed
method outperforms other statistical models. In fact, our model can pre-
dict the expected revenue range of a movie, it can be used as a powerful
decision aid by theatre managers.

Keywords: Chinese theatres · Box office · Random forest

1 Introduction

Predicting box office receipts of movies in theatres is a difficult and challeng-
ing problem on which many theatre managers cogitated. It has an important
meaning to control the issue risk and also has a practical significance for the
investment decision [4]. Until 2009, there are 37 theatre chains admitted by
State Administration of Press, Publication, Radio, Film, and Television of The
Peoples Republic of China. Only by predicting the box office receipts of movies
correctly will the theatre managers decide the number of release movie theatres,
the promotion of the movie cost, the schedule for showing movie and so on.
Most theatre chains, e.g., Wanda Media, mainly adopt brainstorming method
to predict box office receipts of movies. It may cause low box office receipts for
theatres. Thus a good method to predict box office receipts has an important
impact for theatres.

Though the work associated with the unpredictable nature of problem
domain is difficult, several researches have attempted to develop statistical mod-
els to solve it. In [12], Multi Layer Perceptron neural network model is used
to classify the box office in nine categories. Bayesian belief network [6] and
BP neural network [16] are also constructed to predict box office performance.
Google [10] applies a simple linear regression model using film-related search
query volume as a predictor of weekend box office performance. In our study,
we use pruned random forest to predict the box office performance of movies in
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 55–62, 2015.
DOI: 10.1007/978-3-319-26532-2 7
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Chinese theatres one month before their release. Here, the predict problem is
converted into a classification problem, where movies are categorized into eight
classes according to box office receipt. Figure 1 shows the diagram of the whole
system.

Applications of random forest have been reported in many diverse fields
addressing problems in areas such as prediction and classification. Random for-
est is a combination of several decision tree predictors in machine learning. To
classify a new object from an input vector, we put the data into all trees in the
forest. Each tree gives a classification result and votes for the predicted class [7].
The forest chooses the class with the most votes. In this paper, we prune ran-
dom forest through its strength and correlation. And the pruned random forest
outperforms conventional random forest.

In predict system, the box office data was supplied by 68 Chinese theatres and
the movie information is downloaded from different movie websites. Compares
with other box office predict models [6,12,16], out model adds Baidu Index,
Trailer searches and Lowest Ticket Price as features. Among them, Baidu Index
and Trailer searches could represent the audience’s attention of movies. Lowest
Ticket Price is the studio’s estimate of movies quality.

The remaining of this paper is organized as follows. Section 2 introduces the
process of our methodology and how to predict box office in Chinese theatres,
followed by experimental results in Sect. 3. Final conclusions are given in Sect. 4.

Obtain Box 
office Data

Data
Pre-pocessing Predict Model

Advise for Screen Schedule

Movie
Websites

Chinese
Theatres

Crawl Movie 
Information

Fig. 1. Framework of the box office prediction system

2 Methodology

The box office data from 2013 June to 2014 June was supplied by 68 Chinese
theatres. Each theatre had eight databases, such as Ticket Report, Locations,
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Cinemas, Show Details, Ticket, Ticket Bookings, Booking Payments and Dis-
tributors. In those databases, we could obtain movies’ daily box office, lowest
ticket price and other useful information.

2.1 Movie Information Data Collection

It’s insufficient to predict box office through the dataset above. In [6,12,16],
director, actor, genre, competition and number of screens are used as movie
features to predict box office. To improve predict accuracy, we also choose Baidu
Index and trailer searches as features based on the Google research [10]. At last,
we suppose that studio can also influence the box office. We develop different
crawlers for different websites, such as Baidu Index, Youku Index and so on,
to crawl the data we need and stored data in MySQL. Next we will detail how
to use those data as features. A summary of the above-mentioned and briefly
defined decision variables is given in Table 1.

Baidu Index. For most of movies, the Baidu Index of movies concentrates on one
month before their release. The larger search volumes are, the higher box offices
will be. Movie’s Baidu Index increased as the date is closed to its theatrical
release, so we use Baidu Index of the first five weeks before theatrical release as
features. As movies influence each other at the same time, we also use the Baidu
Index of movies which are released closely as features.

Competition. Movie competes against other movies released at the same time,
which is still a common phenomenon in theatre. For example, there are two
reasons why ’Tiny Times’ has a excellent box office performance. One is that it
was released at the end of June in the summer schedule. As there are not strong
movies released near it, it has a great advantage in schedule. The other is that
its schedule is during the summer vacation of students. Sometimes if an ordinary
movie has a good schedule, it will have a good box office.

Director and Actor. Some researches [1] show that one of the most important fac-
tors that influence the box office is director and actor. As the organizer and leader
of a movie, directors determine the movies’ quality and artistic style largely. And
actors attract audiences attention through their admirable acting skill and grate-
ful characters. Hennig-Thurau [5] use the Hollywood Reporter’s Star power and
Director power indices as features to predict box office. In our model, we suppose
the influences of directors and actors to a movie can embodied through their ever
box office performance.

Genre. As different people have different preferences for different genres, the
genre of a movie is also important. Genres decide movie content expression,
audience basis and movie influence. As different audiences have different cul-
tural background, they have different entertainment consumption demand and
spiritual needs. Such phenomenon is more obvious in the movie theatres, because
the box office of movies in a movie theatre depends on the people nearby.
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Trailer searches. Google research [10] shows that, there is a linear relationship
between the box office and trailer-related search volume. We get search and
paly volume from Youku Index. Youku Index has authority as the largest video
website in China. Like Baidu Index, the higher search and paly volume of trailers
have, the more popular of the movie will be. Therefore, through the search and
play volume, we can determine the level of box office.

Studio. In China, only Huayi Bros Media Group, Emperor Entertainment Group
Limited, Media Asia Group and some other large studios are popular domestic
movie studios. A large studio represents good quality of a movie. The studio will
also give the lowest ticket price of movies. Through it, we can roughly estimate
the box office of a movie.

Number of screens. An intuitive understanding shows that the more number of
screens of movies have, the higher box office of movies will be. In our model,
we represented the number of screen a movie is scheduled to be shown as its
opening with a continuous variable.

Table 1. Summary of independent variables

Variable name No. of values Value source

Baidu Index 5 index.baidu.com

Competition 2 box office data

Director and Actor 4 www.cbooo.cn

Genre 1 www.gewara.com

Trailer searches 2 index.youku.com

Studio 2 www.cbooo.cn

Number of screens 1 box office data

2.2 Pruned Random Forest

Random forest has been used widely in many applications as an ensemble
method. In this paper, we prune random forest through two parameters which
are strength and correlation.

Given an ensemble of random forest classifiers [3] h1(x), h2(x), . . . , hk(x),
and with the training set drawn at random from the distribution of the random
vector X, Y, define the margin function for a random forest is

mr(X,Y ) =
1
N

N∑

n=1

{I(h(X) = Y ) − max
j �=Y

I(h(X) = j)} (1)

where I(·) is the indicator function. The margin measures the extent to which
the probability of the votes at X, Y for the right class exceeds the average vote

www.index.baidu.com
www.cbooo.cn
www.gewara.com
www.index.youku.com
www.cbooo.cn
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for any other class. The larger the margin is, the more confidence is in the
classification. And define the strength function for a random forest as

strength = EX,Y mr(X,Y ) =
1
N

N∑

i=1

mr(xi, yi) (2)

Define the correlation function for a random forest as

ρ =
var(mr)
sd(h)2

(3)

where sd(h) is the standard deviation of random forest.
To improve accuracy, the random forest need to increase the strength while

minimize the correlation. In the past few years many researchers have studied
the pruning methods for random forest, such as pruning a random forest based
on the similarity between tree pairs [15] and margin distance minimization [8,9],
which mainly focus on improving the accuracy of the prediction of each tree.

In this paper, we prune random forest through strength and correlation.
Changing both of the two parameter needs to compute margin of the random for-
est. Margin is important for ensemble classifiers, such as Adaboost [11], Mdboost
[13], Arc-Gv [2] and so on. Above-mentioned classifiers improve their general-
ization by changing the margin. In this algorithm, we assume the random forest
is H. This method ranks the contribution and importance of a base tree h in
the temporary ensemble H by observing the decrease of strength and correla-
tion when removing h from the forest [14]. This is equivalent to evaluating the
subensemble {H/h}. As the redundant tree is pruned, the forest H shrinks to
its subset H ′ = {H/h}. we compute strength and correlation of forest H first.
And then, the strength and correlation of each tree hk are computed. At last,
we eliminate unimportant trees with small strength and large correlation in H.
The strength and correlation of each tree on the training set are computed as
evaluation metrics Strength(hi,Hk, S) and Correlation(hi,Hk, S) as follows,

Strength(hi,Hk, S) = strength(x, y,H) − strength(x, y,H/hi) (4)

Correlation(hi,Hk, S) = ρ(x, y,H) − ρ(x, y,H/hi) (5)

where S is the training set.

2.3 Advice for Screen Schedule

The box office predict model can give a more reliable result than previous meth-
ods such as brainstorming method. And as all requisite data could be obtained
one month before movie’s release, theatre managers have plenty of time to use
the predict categories of movies to adjust the movie screen schedule in order to
get more profits. Through the results, theatre managers also can give movies
which have high box office more attention and drumbeating besides.
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3 Results

3.1 The Classification Performance of Pruned Random Forest

Recall that our pruned random forest model aims to categorize a movie in one
of the eight categories. In this experiment, a 8-fold cross-validation approach is
used to estimate the performance of pruned random forest. And we use average
present hit rate (APHR) to measure the predictive performance of our pruned
random forest approach [12]. In our case, we have two different hit rates: the exact
hit rate (Bingo) which counts the correct classifications to the exact same class
and the within 1 class hit rate (1-Away) which reflects the instance that a movie
forecasted into its adjacent classes. Algebraically, APHR can be formulated as
follows,

APHRBingo =
1
n

c∑

i=1

pi (6)

APHR1−Away =
1
n

c∑

i=1

(pi + pi−1 + pi+1) (7)

where c is the total number of classes, n is the total number of samples, and pi
is the total number of samples classified as class i.

Table 2 presents our aggregated 8-fold cross-validation pruned random forest
results of 68 Chinese theatres in confusion matrix. The columns in a confusion
matrix represent the actual classes and the rows represent the predicted classes.
The intersection cells of the same classes represent the correct classification of
the samples for that class.

Table 2. The total predict results of 68 Chinese theatres

Actual Categories Avg.

1 2 3 4 5 6 7 8

P
re

d
ic

te
d

C
a
te

g
o
ri

es 1 1517 349 58 6 2 0 0 0
2 287 1024 448 76 12 4 1 0
3 28 378 885 417 80 11 0 0
4 7 54 344 942 398 62 7 0
5 0 3 40 368 919 375 57 5
6 0 2 4 42 359 975 349 38
7 0 0 0 7 32 347 1058 303
8 1 1 1 3 6 46 344 1469

Bingo 82.45 56.54 49.72 50.62 50.83 53.57 58.26 80.94 60.37
1-Away 98.04 96.69 94.21 92.80 92.70 93.24 96.42 97.63 95.22
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3.2 Comparison with Other Models

Except conventional random forest, we also compare our model’s performance
with other popular classification methods. Specifically, we use traditional statis-
tical classification methods, such as multiple logistic regression, classification and
regression trees (CART), support vector machine (SVM) and neural networks.

Results shows that pruned random forest has a average bingo accuracy rate
60 % and 1-Away accuracy rate 95 % in Table 1. In Fig. 1, we compare our pruned
random forest model with conventional random forest (RF) and other popu-
lar classification methods, such as decision tree (DT), support vector machine
(SVM) and multi layer perceptron (MLP) in Bingo accuracy (Table 3).

Table 3. The Results of Prediction

PRF RF DT SVM MLP

Bingo(%) 60.09 54.27 52.88 32.15 19.68

1-Away(%) 95.26 90.96 92.11 59.62 48.67
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Fig. 2. Comparison Bingo accuracy results of PRF, RF, DT, SVM and MLP in 68
movie theatres (Color figure online)

From the experimental results, we can see that our method achieves a high
accuracy and the performance is better than conventional random forest, decision
tree, support vector machine and neural networks. We can see both two results
are better than conventional random forest, decision tree and support vector
machine. And pruned random forest is more stable than support vector machine.

From Fig. 2, we can see that some movie theatres have high predict accuracy
and some not. The most important reason is the different scales. First, large
movie theatres locate in better place and have a broader audience base. Second,
large movie theatres have more movies released.
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4 Conclusion

In this paper, we propose a pruned random forest model to predict box office
receipts in Chinese movie theatres. The movie information data is crawled from
internet and box office data is obtained from movie theatres. After data pre-
processing, the pruned random forest is used to classify movie box office. Com-
pared with conventional random forest, our method promote the strength and
reduce the correlation of random forest. And the predict results could provide
theatres managers a guidance on movie schedule and drumbeating. Experiments
on a real word video show our system is able to achieve satisfactory performance
in real time.
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8. Martınez-Munoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proceedings
of the IASTED International Conference on Artificial Intelligence and Applica-
tions, pp. 258–263. Citeseer (2004)

9. Martinez-Muoz, G., Hernández-Lobato, D., Suárez, A.: An analysis of ensemble
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Abstract. In original sparse representation based classification algo-
rithms, each training sample belongs to exactly one class, neglecting the
association between the training sample and the other classes. However,
different classes’ features are visually similar and correlated (e.g. facial
images), which means the association between the training sample and
the different classes contain important information, and must be taken
into consideration. In this paper, we propose a novel �1-graph based
image classification algorithm (LGC). Our algorithm can automatically
calculate associations between training samples and all classes, which are
used for future classification. We evaluate our method on some popular
visual benchmarks, the experimental results prove the effectiveness of
our method.

Keywords: Image classification · Sparse representation · �1-graph

1 Introduction

Image classification is one of the most attractive and challenging research topics
in computer vision and pattern recognition field. Digital images are commonly
high-dimensional signals, that it is hard to process using traditional classifica-
tion algorithms. But in practice these high-dimensional signals usually lie on a
special low-dimensional subspace [2]. So, given a set of basis, the signals can
be sparsely represented using these basis. The obtained sparse representation is
more compact and more useful than the original representation. Sparse represen-
tation has already made wide use in image compact [4], image denoising [7] and
image super-resolution [18] tasks. Inspired by the success of sparse representation
in the image processing field, researchers has applied the sparse representation
methods in computer vision and pattern classification tasks. The recently pro-
posed sparse representation based classifier (SRC) [17], �1-graph methods [6] all
achieved state-of-art results.

Among those above sparse representation methods, correctly choosing the
basis or dictionary is important to successfully apply sparse representation meth-
ods. In classical signal processing applications, the key idea is high fidelity to
the original image [3]. We often use some fixed bases (i.e., Fourier, Wavelet
c© Springer International Publishing Switzerland 2015
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[11]), or dictionary learned from the training signals [1]. But in image classifica-
tion tasks, the image’s semantic meaning is more important. SRC [17] algorithm
directly uses the training samples as the dictionary, finding the obtained sparse
coefficients on the dictionary contains useful information for classification.

After the SRC algorithm has been proposed, recently some researchers have
tried to combine SRC algorithm and dictionary learning method to improve
the classification performance. Instead of directly using the training samples as
the dictionary, these methods try to use dictionary learning methods to learn a
more compact and more discriminating dictionary from the training samples. In
[10,20], the classification error is incorporated into the K-SVD [1] algorithm’s
objective function to reduce the dictionary’s size. The learned dictionary is
shared by all classes, and a linear classifier is simultaneously learned during
the dictionary learning process. In [13], to improve the dictionary’s discriminat-
ing power, an incoherence promoting term is added to the dictionary learning’s
objective function to encourage class specific sub-dictionaries of different classes
as independent as possible. However, some different class’s images are highly
correlated sometimes. In [15,21], a set of class specific dictionaries are learned
for each class that captures the most discriminating features of this class with
a common shared dictionary whose atoms are shared by all classes, which only
contributes to the representation of the data. In [19], linear Fisher discrimination
criterion was combined to the dictionary learning process.

Although those above methods improve dictionary’s discriminative power.
But the learning process of these algorithms is more complex and time consum-
ing. In practice, sometimes different category’s images may be visually similar
and correlated [16]. For example, in face recognition tasks, possibly some differ-
ent people may have similar facial form and hair style, so they may look similar.
How to classify these visually similar images is a difficult task. It is a hard prob-
lem for human to clarify these images, let alone for computers. The commonly
used image classification algorithms also faced this difficulty. In practice, many
training samples may have poor quality, such as extreme illumination in facial
images, screwed handwritten digits. These poor training samples would make
the image classification algorithm degenerate significantly.

To overcome those above difficulties, in this paper, we propose a novel �1-
graph based image classification algorithm (LGC). We still use the original train-
ing samples as the dictionary similar to SRC algorithm. Instead of treating each
training sample belongs to exactly one class in SRC algorithm. In our new meth-
ods, the association between the training samples and all classes are taken into
consideration. We use �1-graph to calculate the association between the training
samples and all classes, then use this information for future classification tasks.
So, the difficulty of classifying visually similar classes, can be reduced by our
algorithm. The experiment results show that LGC algorithm performs better
than other classical algorithms in situations in which different classes are visual
similar.
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2 Background

In this section, we briefly review the sparse representation based classification
algorithm (SRC) [17], which is very related to our work. Then we introduce the
�1-graph [6], which is the foundation of our work.

2.1 Sparse Representation Based Classification Algorithm

Given the prior knowledge that all training samples of the same class lie on a
low dimensional subspace. Then given plenty training samples for each class, the
test image y can be represented as a linear combination of the training samples.
Since the classes of the testing samples are unknown, the SRC [17] using whole
training samples D = [D1,D2, . . . , Dk] ∈ R

m×N (where Di include training
samples from the ith class) as the dictionary. The sparsest representation often
selects training samples which have the same class with the testing sample.
However, finding the sparsest representation is a NP hard problem. But theory
of compressive sensing [5] has pointed out that if the representation is enough
sparse, the �1-minimization results is the sparsest solution. So to get the sparsest
solution, we only need to solve the following �1-minimization problem:

α = argmin
α

‖ α ‖1 s.t. Dα = y (1)

Having found the sparsest presentation, we can determine the class of the train-
ing sample by finding which classes give the lowest reconstruction error:

identity(y) = argmin
i

‖ y − Diδi(α) ‖ (2)

where δi(α) presents the vector that only contains coefficients of the ith class.
The SRC algorithm has not only achieved the state-of-the-art results, but

also showed robustness to noise and occlusions. The details of the experiment’s
results are reported in [17].

2.2 �1-Graph

Cheng et al. [6] proposes the concept of �1-graph. This graph uses data
samples as vertexes. For each vertex, the algorithms use the remaining vertexes
and the noise signals (represented as identity matrix I) as the dictionary, then
using �1-minimization to find a sparse decomposition over this dictionary. The
obtained coefficients are used as edge weights in this directed graph, obtaining
the �1-graph. The �1-graph constructing process can be summarized as follows:

Compared with the other graph models, such as k-nearest-neighbor graph
and ε-ball graph, the advantage of �1-graph is the construction process of
�1-graph is a global process. The �1-minimization process takes all the remaining
data samples into consideration, adaptively find the most relevant data samples
to assign higher weights.

The �1-graph has showed better performance in many machine learning tasks
such as data clustering, subspace learning, and semi-supervised learning. The
details of the experiment results can be found in [6].
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Algorithm 1. �1-graph construction algorithm
Input: Data sample matrix X = [x1, x2, ..., xN ] ∈ R

m×N , where xi is a m dimensional
image sample.

1: Sparse coding process: For each sample xi, solve following �1-minimization problem

min
αi

‖ αi ‖1, s.t. xi = Diαi, (3)

where matrix Di = [x1, ..., xi−1, xi+1, ..., xN , I] ∈ R
m×(m+N−1) and αi ∈ R

m+N−1

2: Graph weights setting: Denote �1-graph as G = {X, W}, where X is the graph
vertex set, W is the graph’s edge weight sets. The vertex set is the sample set. And
wij = ai

j if i > j, and wij = αi
j−1 if i < j.

Output: The obtained �1-graph G = {X, W}

3 �1-graph Based Image Classification Method

The �1-graph is originally designed for data clustering algorithms, in this section
we will introduce how to apply �1-graph into classification tasks.

3.1 Relationship Between Training Samples and Classes

In Sect. 2.2 the constructed �1-graph only considers the edges between different
vertices, neglecting the edges that connect a vertex to itself (loops). But in
classification tasks, the loops also contain important information, which must
be considered. In this section, and the rest part of this paper, the term �1-graph
all means the graph contains loops.

After building the �1-graph G = {X,W}, we can use it to construct the asso-
ciation graph Ga = {V,E}, which demonstrate the association between train-
ing samples and classes. From Fig. 1a, we can see that the association graph is
bipartite graph. The vertex set V can be divided into two parts. The first part X
contains training samples, the second part C represents classes. The edge weight
matrix R describes the membership between training samples and classes. The
matrix’s item rij represents the numerical measure of the membership between
train sample xi and the jth class, which can be obtained by summing all the
weights of edges in the �1-graph G that connect vertex xi and the vertexes
belongs to the jth class.

3.2 Classification Process

After getting the association graph Ga, we can use it for classification. For every
testing sample y, use the training samples as the dictionary, then solve the
�1-minimization problem. The obtained sparse coefficients represent relationship
between the testing sample and the training samples. From Fig. 1b, we can see
that using this information we can calculate the association between the testing
sample and classes easily, and settle the class label of the testing sample. The
whole LGC algorithm is summarized in Algorithm 2.
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Training samples: X

Classes: C

(a)

Testing sample

Training sample: X

Classes: C

(b)

Fig. 1. (a) Association graph Ga, the graph’s vertices set include training samples X
and classes C. (b) Demonstration of the classification process.

4 Experiment Results

In this section, we evaluate the LGC algorithm in some real image classification
tasks such as face recognition and handwritten digit recognition. For comparison
purpose, we also test the original SRC [17] algorithm, together with other classi-
cal algorithms such as nearest neighbor (NN) algorithm, and the support vector
machine (SVM) algorithm. In all the comparing methods, only SVM needs to
assign parameters. We use cross-validation to determine SVM’s parameter.

4.1 Face Recognition

(a) The Extended Yale B [8] database contains 2, 414 frontal-face images of 38
people, which is taken under various illumination conditions. In our experiment,
we use the cropped and normalized 192×168 pixel facial images.In this database,
we use EagenFace [14] to extract 300 features from the images. We randomly
select half of the images for training (about 32 images per person) and the other
half for testing. To remove the effect of different choices of training samples,
we take 10 rounds, and calculate the mean recognition rates. The results of
LGC, SRC, NN and SVM are listed in Table 1. From the experiment results we
can see our LGC algorithm shows significant improvement compared with other
methods.

(b) The AR database [12] contains of over 4, 000 colored frontal-face images of
126 people. Each person takes 26 images from two different sessions. Each session
contains 13 images, which including expression change, illumination change and
partial occlusion. In AR database, we choose a dataset containing 50 male people
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Algorithm 2. LGC algorithm
Input: Training sample D = [D1, D2, . . . , Dk] ∈ R

m×N (where Di include training
samples from the ith class, k is the total number of classes)

1: Using Algorithm 1 to construct the �1-graph, G = {X, W}, where W = [wij ] ∈
R

N×N is the edge weight matrix, and wii = 5, wij = αi
j .

2: Using graph G to calculate the relationship matrix of the training samples and
classes R = [rij ] ∈ R

N×k

rij =
∑

xk∈Dj

wik (4)

3: For every test sample y, solve the �1-minimization problem:

α = argmin
α

‖ α ‖1 subject to Dα = y (5)

4: Compute the relationship between the testing samples and the classes t = α′R,
where α′ is transpose of vector α

Output: identity (y) = argmaxi ti(y).

and 50 female people. For each class we select all the first session’s images for
training and the second session’s images for testing. We also use EagenFace [14]
to distract 300 dimensional features from the images. The experiment results are
listed in Table 2. Again, our algorithm outperforms other competing algorithms.

4.2 Handwritten Digit Recognition

USPS [9] is a handwritten digit database, which contains 7,291 training images
and 2,007 testing images. All of the training and testing images are 16×16 reso-
lution images. Because the training and testing images don’t have a high resolu-
tion, in this database, we directly use the original image for our experiment. For
each digit we randomly select 200 samples for training. The experiment results
are listed in Table 3. In the handwritten digit recognition tasks our LGC algo-
rithm doesn’t perform well, as well the SRC algorithms. Because for each testing
sample, our algorithm and the SRC both need to make a sparse representation
over the training sample, the data samples must be highly correlated. Unlike face

Table 1. Recognition rates(%) on the Extended Yale B database

NN SVM SRC LGC

88.84 93.67 98.30 99.22

Table 2. Recognition rates(%) on the AR database

NN SVM SRC LGC

60.82 82.83 89.15 89.68
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Table 3. Recognition rates(%) on the USPS database

NN SVM SRC LGC

94.42 94.02 93.52 92.78

database, the handwritten digit database doesn’t have such a high correlation
between the data samples, so both SRC and LGC algorithm don’t have a high
advantage in this database. But LGC algorithm’s recognition accuracy is still
acceptable.

5 Conclusion and Future Work

In this paper, we develop a novel �1-graph based image classification algorithm.
Comparing with other algorithm, our algorithm uses the association between the
training samples and all classes. We use �1-graph to evaluate this association,
then use it for classification. The experiment results shows this information can
help us classify visually similar images. Our algorithm has better performance
than the original SRC algorithm, and other classic algorithms such as SVM and
NN in face databases.

The main difficulty of our algorithm is to how to evaluate the association
between the training samples and the classes. In this paper, we use �1-graph
to calculate it. In the future, we will try to find different methods to get a
more precise measure of the association between the training samples and the
classes. The experiment results shows that our algorithm performs well in classify
visually similar images, but doesn’t perform well on other tasks. In the future we
will try to modify our algorithm to make it suitable to other image classification
tasks, or even make it suitable for other pattern recognition tasks .
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Abstract. Classification of users’ keystroke patterns captured from a typing
biometrics system is discussed in this paper. Although the user identification
system developed here requires the user to key-in their passwords as they would
normally do, the identification of the users will only be based on their keystroke
patterns rather than the actual passwords. The keystroke pattern generated is
represented by the force applied on a numerical keypad and it is this set of features
extracted from a common password that will be submitted to the classifiers to
identify the different users. The typing biometrics system had been designed and
developed with an 8-bit microcontroller that is based on the AVR enhanced RISC
architecture. Classification of these keystroke patterns will be with PSO (particle
swarm optimization) and this will be compared with the standard K-Means. The
preliminary experimental results showed that the identity of users can be authen‐
ticated based solely on their keystroke biometric patterns from a numeric keypad.

Keywords: Biometrics · Keystroke dynamics · PSO · K-Means · Artificial neural
networks

1 Introduction

User identification and verification are two common but different applications of
biometric technologies. While verification relates to matching or verifying the patterns
against a single user’s stored identity, identification on the other hand, involves finding
the one unique identity amongst the many stored identities. Essentially, identification
seeks to determine the user’s identity whereas verification attempts to prove the claimed
identity. Although a variety of authentication devices may be used to verify a user’s
identity, passwords remain the most preferred method especially when the keyboard is
the preferred data entry device, due to both the long history of the use of this mechanism
to gain access as well as the fact that it is still relatively inexpensive compared to other
more sophisticated solutions. However, like most modern technologies, unless it is used
correctly, the level of security provided by passwords can be weak. Nevertheless many
users still chose to use rather weak passwords and consequently have to bear with some
of the associated problems that come with them. When it comes to security, multi-factor
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approaches may be used to extend and strengthen the security level that passwords
provide. Ideally, this reinforcement should be transparent and indiscernible to users,
without requiring any additional efforts when gaining entry access. Now in addition to
the different and personalized passwords for each user, the users are also known to have
developed a unique typing style to enter their important account information. For
example, a user may type the characters that constitute the password at different speeds.
By leveraging on such differences, one can develop an approach that may be used to
enhance the system’s security with keystroke biometrics (or in some literature, typing
biometrics) to reinforce password-authentication mechanisms. Previous research [1–4]
has shown that it is possible to identify a user via his or her typing patterns in the form
of keystroke biometrics which attempts to analyze a user’s keystroke patterns. It is well
known that an individual’s keystroke biometrics pattern may be based on any combi‐
nation of the following features [3, 5],

(a) the duration each keystroke is pressed, that is the amount of time a user takes to
press and release when typing,

(b) the latency between consecutive keystrokes,
(c) the force exerted on the keys.

Some prior work has been done on the use of keystroke biometrics as a password
hardening technique [6–9]. In addition to the duration between each pair of keystrokes,
Obaidat and Sadoun [10] investigated the use of the holding time for each key pressed.
The results reported of authenticating users based on just their keystroke have been
encouraging. Nonetheless, these works were centered primarily on the common
QWERTY computer keyboard. While the QWERTY layout has been used extensively
in the past, the simple and inexpensive numeric keypad is gaining popularity especially
when used for access entry. A manufacturer of a leading brand of locks believe that a
global revolution is taking place in home security as home owners across the globe are
looking for smarter, more convenient ways of securing their homes and possessions [11].
Two key advantages stand out for such digital or keyless locks – they cannot be picked
nor opened with lock bumping [12].

Nonetheless, the typing style on the numeric keypad would be significantly different
than that on the QWERTY due to their dissimilar layout. In this paper, we will be inves‐
tigating how we may identify an individual’s keystroke biometric pattern on a numeric
keypad based on the force (or amount of pressure) exerted on each key. The biometric
sensors of the system are force sensitive resistors which were used to capture and trans‐
late the amount of force exerted on the keys into their equivalent electrical values. The
electrical signals will then be digitized into the set of features to represent the user’s
unique keystroke dynamics. Two main authentication issues are emphasized during the
overall design of the system, viz.

(a) the numeric password representing the normal passkey entered by the user, which
consists of a combination of numeric keys of the appropriate length created by the
user and saved in the system,

(b) the keystroke biometrics pattern associated with the user’s password in the form of a
“typing template”. This is the second factor which will be analyzed by the classifiers.
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The remainder of this paper is organised as follows. The next section discusses the
hardware design of the keystroke biometrics user identification system which captures
the force exerted by users on a numeric keypad. In Sect. 3, we describe the important
details of PSO (Particle Swarm Optimization) and the K-Means that will be used to
classify the keystroke patterns. Section 4 discusses the major design issues as well as
the important aspects of the experiments and the results obtained. Finally, in Sect. 5 we
present some conclusions and potential areas for further work.

2 System Design

2.1 Force Sensor

The force sensitive resistors used here are made from a conductive polymer that changes
resistance in a predictable manner following application of force to its surface [13]. Such
a force sensitive resistor was placed underneath the numeric keypad to capture the
keystroke patterns in the biometrics user identification system. This is shown in Fig. 1.

Fig. 1. The system showing the FSR in the centre, and the Arduino Leonardo on the right.

2.2 Microprocessor Design with Arduino

At the core of the Arduino Leonardo micro controller (shown in Fig. 2) is the
ATmega32u4 processor and this was used to digitize the pressure from the keys pressed.
The ATmega32u4 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC (Reduced Instruction Set Computing) architecture and has 32 8-bit
general purpose working registers. Leonardo has 20 digital input-output pins (of which
7 can be used as outputs and 12 as analogue inputs), a 16 MHz crystal oscillator, a micro
USB connection, a power jack, an ICSP header, and a reset button. The system would
capture the force exerted on each key by the user and generate a biometric pattern that
would have the same length as the password entered.
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Fig. 2. The Arduino Leonardo

3 Classification

The performance of the PSO was evaluated and compared with that from the standard
K-Means.

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was originally developed by Kennedy and Eberhart
in 1995, inspired by the social behavior of a bird flock [14]. PSO had been used to solve
a range of different problems. Kiran et al. [15] investigated using PSO for Human Posture
recognition with good recognition rates for many different postures. At the other end of
the spectrum, Mahamed G. H. Omran used the PSO to perform image segmentation
where the problem was modeled as a data clustering problem [16].

The approach that PSO used here can be summarised into two main stages; a global
search stage and a local refining stage. The set of particles move through the search
space to find the particle position that will result in the best evaluation of the given
fitness function. Each particle will have its own memory that consists of two components
– a local best solution (lbest) as well as the global best (gbest) which is basically the
best solution amongst all the lbest. This gbest defines the best solution which all the
other particles will try to emulate on their own individual search for better solutions.
The PSO can be represented by the following equations:

(1)

where,

(2)
Here, Vid represents the velocity that is involved in the updating of the movement

and magnitude of the particles, Xid, the new position of the particles after updating, W
the inertia weight, and C1 and C2 a set of acceleration coefficients. Finally, rand1 and
rand2 are random values that vary from 0 to 1. These parameters provide the necessary
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diversity to the particle swarm by changing the momentum of particles to avoid the
potential stagnation of particles at the local optima. The values for C1 and C2 used here
are both set to 1.4 whereas W was set to 0.01. Five particles were used in the experiments
here.

3.2 K-Means

The K-Means algorithm [17] and its variants [18] is by far the most commonly used
partitional clustering method. The data is partitioned into K clusters C = {cj, j = 1 …
K} by repetitive separation of data X = {xi, i = 1 … n} into clusters with the nearest
mean based on the distance measurement between data and the cluster centroids. The
standard K-Means algorithm is summarised below:

1. Randomly select a set of K cluster centroids.
2. Compute the Euclidean distance between each data and the K cluster centroids.
3. Assign each data to the closest cluster centroid.
4. Recalculate the cluster centroids.
5. Repeat 2-4 till the stopping criteria is satisfied.

4 Experimental Setup and Results

We had tested this new numerical keypad to authenticate the identity of the users based
on their keystroke biometric signatures. Each user’s keystroke biometric signature was
based on their preferred individual password, each of which consists of 8 digits. In
contrast, we are now using the keystroke biometric signatures generated from this
numerical keypad based on the SAME 8 digit password for all users. Clearly, this will
introduce a more challenging set of conditions as the individual identities are now based
on nothing more than their keystroke biometric signatures. 6 samples were obtained
from each of the 10 users, making a total of 60 sets of data. The users are familiar with
the keyboard and have used the keyboard in their daily work but to minimise any incon‐
sistent typing rhythm, they were given sufficient time and opportunities to familiarise
themselves with this common password. The data obtained were also pre-processed
using a standard sigmoid function (Eq. (3)) to convert the biometric (force) data to the
range [0.0, 1.0] i.e.

(3)

where λ, a constant that is set to 10 here. 50 % of the pressure patterns from one class
was randomly selected for registration and to train the system at a time. Correct identi‐
fication of the test samples for the corresponding user contributes towards a True Positive
(TP) measure. This validation strategy was repeated for a total of 1,000 times for each
of the two classifiers, each time with a randomly chosen set of training patterns.
Figure 3(a) and (b) shows the average TP and TN values obtained from both the
K-Means and PSO respectively. Users #4 and #8 were able to produce consistent typing
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styles that were easily picked up by the two classifiers. Nevertheless, PSO gave slightly
better results and this is evident in correctly identifying users #2 and #6 than K-Means.
While the TP classification results for #3 dipped below 30 %, it is probably due to the
user rather than the system. Nevertheless, the inconsistent typing style of #3 was signif‐
icantly different from that of the others for the classifiers to differentiate.

(a) K-Means 

(b) PSO 

Fig. 3. Average True Positive and True Negative results

The second set of classification results examines how different are the keystroke
dynamics of each user. The typing patterns from the remaining 9 users were presented
to the trained classifier that had been trained with the one user. These results then
contributed to the True Negative (TN) values. The results from Fig. 3(a) and (b) seem
to suggest that there is a significant amount of difference in the keystroke dynamics of
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the users from each other, as looking at the TF rates, both the classifiers were able to
correctly identify the incorrect typing patterns at almost 100 %.

They were effective in differentiating the real users from the others just from their
typing dynamics. In general, PSO was slightly better in correctly identifying the users
than K-Means. This seems to suggest that these users have naturally more consistent
typing styles that our system is able to identify. Moreover the results also indicated that
the ability of the classifiers to deny access to typing patterns of the other users is consis‐
tent and accurate too.

5 Conclusions

Together with the electronic keyboard, passwords have been used for a long time as a
simple and convenient means to gain access. However, once the passwords are compro‐
mised, there will not be any more protection from unauthorized entry. This is where
keystroke biometrics may be used to strengthen this mode of access control. Nonethe‐
less, much of the work in this area has been done with the common QWERTY keyboard
using either timing or pressure features. However, the typing style for most people on
a numeric keypad is significantly different when compared with that on a QWERTY
layout. In this paper we have described the development of a keystroke biometrics with
a novel numeric keypad which can generate the keystroke biometric patterns based on
the amount of pressure exerted on each key when the users enter their password. This
keystroke biometric system was designed with a force sensitive resistor that was inte‐
grated into the numeric keypad, and the pressure data from this force sensitive resistor
was then acquired via the Arduino microcontroller. Preliminary work on this system had
produced encouraging results for user authentication - on the set of different passwords
[18]. This paper extends the earlier work which described the use of this system for user
identification [19] on the CogRAM, a weightless neural net. The experimental results
of the keystroke biometrics data, captured from the micro-controller system have shown
that the PSO was able to easily identify some aspects of the individual’s typing style to
either allow or deny access, based on a common password. What this suggests is that
through this password hardening, even if the password had been compromised,
keystroke biometrics can provide an additional level of authentication for access systems
that use the numerical keypad. One key area for further work is to have more data from
this keypad system and to investigate if mounting more pressure sensors can help
improve the classification accuracies of such a system in the future.
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Abstract. This paper presents a discriminative orthonormal dictionary
learning method for low-rank representation. The orthonormal property
is beneficial for the representative power of the dictionary by avoiding
the dictionary redundancy. To enhance the discriminative power of the
dictionary, all the class-specific dictionaries which are encouraged to well
represent the samples from the same class are optimized simultaneously.
With the learned discriminative orthonormal dictionary, the low-rank
representation problem can be solved much faster than traditional meth-
ods. Experiments on three public datasets demonstrate the effectiveness
and efficiency of our method.

Keywords: Discriminative dictionary learning · Orthonormal · Fast
low-rank representation

1 Introduction

Low-rank representation has been widely used in computer vision and pattern
recognition due to its strong robustness to the noise of the corrupted data, such
as occlusions, lightning variations, and pixel corruptions. The basic idea is to
represent the observation data matrix by the addition of a sparse noise matrix
and a low-rank data matrix. The low rank data matrix is often described as the
linear combinations of the dictionary atoms. Since the quality of the dictionary
is quite important to the performance of the low-rank representation, much
work focuses on learning a good dictionary from the observation data matrix
and presents lots of applications including face recognition [1–7], and image
classification [8,9].

The existing dictionary learning methods can be roughly divided into two
categories: unsupervised and supervised. Dictionaries learned by supervised
methods [4,9,12,13] are more discriminative and obtain better performances
in classification tasks. In most supervised methods, the class-specific dictionary
is expected to have the ability of well representing samples from the same class
and not be able to represent samples from other classes for better discriminative
power of the dictionary. However, the idea is explicitly modeled by imposing con-
straints on both the class-specific dictionary and the representation [1,3,12,13],
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 79–89, 2015.
DOI: 10.1007/978-3-319-26532-2 10
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and the class-specific dictionaries are optimized one by one, which leads to the
loss of the relationship among class-specific dictionaries. The class-specific dic-
tionaries thus usually share same or similar atoms due to the inter-class visual
correlations, which makes the learned dictionary redundant. A redundant dictio-
nary with lots of similar atoms will lead to the ambiguity of data representations.
For example, it is shown that the dimensionality of the dictionary learned by K-
SVD [10] for face images can be reduced by half without too much performance
loss [14].

In order to alleviate the problems, we present a discriminative orthonormal
dictionary learning method. Unlike previous discriminative dictionary learning
methods which impose constraints on both the class-specific dictionaries and the
representations, we propose a more concise discriminative regularization term
which only restricts the representation. Using the proposed regularization term,
all the class-specific dictionaries can be optimized simultaneously instead of being
optimized one by one. Furthermore, the dictionary is enforced to be orthonormal,
so the class-specific dictionaries are encouraged to be as incoherent as possible,
i.e., there is hardly similar atoms in different class-specific dictionaries. The
representative power of the compact dictionary is thus improved by avoiding the
ambiguity problem of the data representations.

With the learned orthonormal dictionary, a fast low-rank representation
method is presented. As proved in [15], the rank of the reconstruction data
matrix is upper bounded by the number of non-zero rows of the coefficient matrix
when the dictionary is orthonormal. With this theorem, the nuclear norm in the
low-rank representation can be replaced by its upper bound. The low-rank rep-
resentation is thus solved directly by the magnitude shrinkage function instead
of the singular value shrinkage function which needs the SVD operation. The
solution procedure is much faster than solving the traditional low-rank repre-
sentation problem. The main contributions of this paper are:

– We present an efficient discriminative orthonormal dictionary learning method
which can learn a discriminative and compact dictionary for low-rank repre-
sentation.

– A fast low-rank representation method over the orthonormal dictionary is pre-
sented. With the learned orthonormal dictionary, the low-rank representations
can be obtained much fast and achieve comparable classification performances
to the state-of-the-art methods.

2 Discriminative Orthonormal Dictionary Learning

2.1 Formulation

Given the observation data matrix Y ∈ R
D×N , our goal is to learn the discrim-

inative dictionary D ∈ R
D×K , the representation matrix X ∈ R

K×N , and the
noise matrix E ∈ R

D×N to satisfy Y = DX + E. A redundant dictionary have
lots of similar atoms, which leads to high computation cost and ambiguity in
corresponding representations. In order to alleviate these problems, we impose
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the orthonormal constraint on the dictionary in our model. The discriminative
orthonormal dictionary learning is given by

min
D,X,E

LR(D,X) + λ1SN (E) + λ2DC(X,L)

s.t.Y = DX + E,D�D = I,
(1)

where the function LR(·) measures the low-rankness of the reconstruction data
matrix DX, the function SN (·) measures the sparsity of the noise matrix E,
the DC(·) is the discriminative term for improving the discriminative power of
the learned dictionary, and λ1 and λ2 are parameters to balance the importance
of the three terms. The L is the label matrix of the data Y, and the I is the
identity matrix.

Low-rank Term LR(D,X): In classification task, training samples from the
same class are highly correlated and expected to form a low-dimensionality
subspace. The training data without noise represented by DX should be low-
rank, i.e., LR(D,X) = rank(DX) = rank(Z), where rank(Z) denotes the
rank of the matrix Z. The minimization of rank(·) is an NP-hard problem
and difficult to solve due to the discrete nature of the function. Fortunately,
Fazel proved that the nuclear norm function ‖Z‖∗ (i.e. the sum of the singu-
lar values of Z) is the convex envelope of the rank function rank(Z) on the
set of {Z| ‖Z‖2 < 1}. Furthermore, as demonstrated in [15], ‖DX‖∗ is upper

bounded by ‖X�‖2,1 =
∑K

i=1 ‖xi‖2 =
∑K

i=1

√∑N
j=1 x

2
ij under the constraint

of D�D = I, where xi represents the i-th row of X, and xij denotes the ele-
ment in the i-th row and j-th column of X. Our low-rank term is thus given by
LR(D,X) = ‖X�‖2,1 which can be minimized efficiently.

Sparse Noise Term SN (E): Real-word data is often noisy or corrupted due to
illumination variation, occlusion, and pixel corruption. The classifier trained with
these data may overfit and the classification performance may degrade. Motivated
by the low-rank recovery, the corrupted data matrix Y is decomposed into two
parts: a low rank component DX and a sparse noise component E, to alleviate
the aforementioned problem. Here, we denote the noisy term as SN (E) = ‖E‖2,1.
The ‖ · ‖2,1 is used since we assume that some training samples are corrupted and
the others are not. In addition, E = Y − DX measures the reconstruction error,
and the minimization of SN (E) encourages the dictionary D to well represent the
observation data.

Discriminative Term DC (X,L): In order to enhance the discriminative power
of the dictionary D for classification tasks, we propose the discriminative regu-
larization term, DC(X,L) = ‖X�S‖2F , to the representation X, where � means
the element-wise multiplication operator, ‖ · ‖F denotes the Frobenius norm of
a matrix. The S ∈ R

K×N is defined as

S(i, j) =

{
0, if di and yj belong to the same class
1, otherwise,

(2)
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where di is the i-th column of the dictionary D, and yj is the j-th column of
the observation data matrix Y. This term encourages that the class-specific dic-
tionary is able to well reconstruct the samples from the same class and doesn’t
have the capacity to represent samples from other classes. The S can be com-
puted from the label matrix L easily. In [1,13], the idea is explicitly modeled by
imposing constraints on D and X as

∑C
i=1(‖Yi −DiXi

i‖2F +
∑C

j=1,j �=i ‖DjX
j
i‖2F )

which can easily be proved as equivalent as the proposed discriminative regular-
ization when D is orthonormal. By using our discriminative regularization term,
all the class-specific dictionary can be optimized simultaneously instead of one
by one to obtain a compact and discriminative dictionary.

A similar work is the ideal representation Q = U−S in [8], where U ∈ R
K×N

is a matrix whose elements are all 1. In their work, the code-ideal term repre-
sented by ‖X − Q‖2F encourages X to be close to Q. However, it potentially
means that all the atoms in a class-specific dictionary provide same contribu-
tions to the data, which may bring negative effects to the representations of the
data. The malpractice is dislodged by using the element-wise operator in our
discriminative regularization term.

2.2 Optimization

In order to optimize Eq. (1), an auxiliary variable H is introduced, and the
optimization problem is rewritten as

min
D,X,E

‖X�‖2,1 + λ1‖E‖2,1 + λ2‖H � S‖2F
s.t.Y = DX + E, D�D = I, X = H.

(3)

The augmented Lagrangian function of Eq. (3) is

L(D,X,E,H,A,B)

= ‖X�‖2,1 + λ1‖E‖2,1 + λ2‖H � S‖2F + < A,Y − DX − E >

+ < B,X − H > +
μ

2
(‖Y − DX − E‖2F + ‖X − H‖2F )

s.t. D�D = I,

(4)

where < A,B >= tr(AB�) denotes the trace of AB�, A and B are Lagrange
multipliers, and μ is the positive penalty parameter. The linearized alternating
direction method with adaptive penalty (LADMAP) is used to minimize Eq. (4)
with the iterative following steps.

Updating Dictionary D: With fixed X, H, and E, the minimization of Eq. (4)
is a quadratic form of D, and the D is updated as

D(i+1) = (Y − E(i) + A(i)/μ(i))X(i)�(X(i)X(i)�)−1. (5)

Taking the orthonormal constraint of D into account, the Gram-Schmidt method
is processed on the columns of D after updating.
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Updating X: When updating X, the quadratic term of X is replaced by its
first order Taylor approximation at the previous iteration step X(i). The repre-
sentation X is updated by solving

X(i+1) = arg min
X

‖X�‖2,1 +
μ(i)

2

(
‖X − H(i) +

B(i)

μ(i)
‖2F

+ ‖Y − DX − E(i) +
A(i)

μ(i)
‖2F

)

= argmin
X

‖X�‖2,1 +
μ(i)η

2
‖X − F‖2F , (6)

where F = (1 − 2/η)X(i) + (D�(Y − E(i) + A(i)/μ(i)) + H(i) − B(i)/μ(i))/η,
and η > 0 is a parameter. The X is updated as x(i+1)

j = S1/(μ(i)η)(fj), where
Sε(v) is a magnitude shrinkage function for vector v defined as Sε(v) = max(1−
ε/‖v‖2, 0)v, and xj and fj represent the j-th row of X and F, respectively.

Updating H: Keeping other variables fixed, the auxiliary variable H is updated
by solving

H(i+1) = argmin
H

λ2‖H � S‖2F +
μ(i)

2
‖X(i+1) − H +

B(i)

μ(i)
‖2F (7)

Setting the derivation of Eq. (7) with respect to hj to zero, we have

h(i+1)
j = (μ(i)x(i+1)

j + b(i)
j )M−1,

M = λ2diag(sj) + μ(i)I
(8)

where I is the identity matrix in R
N×N , diag(sj) returns a diagonal matrix with

sj as the main diagonal elements, sj , hj , and bj represent the j-th row of S, H,
and B, respectively.

Updating E: When updating the reconstruction error E, Eq. (3) can be rewrit-
ten as

E(i+1) = argmin
E

λ1‖E‖2,1 +
μ(i)

2
‖E − N‖2F , (9)

where N = Y−D(i+1)X(i+1) +A(i)/μ(i). Similar to X, the E is updated as
e(i+1)

j = Sλ1/μ(nj), where ej and nj are the j-th column of E and N, respectively.

Updating A, B, and μ: The Lagrange multipliers are updated as A(i+1) =
A(i) + μ(i)(Y − D(i+1)X(i+1) − E(i+1)) and B(i+1) = B(i) + μ(i)(X(i+1) − H),
and the penalty parameter μ is updated as μ(i+1) = γμ(i), where γ > 1 is the
magnified factor.

The K-SVD method is used to initialize each class-specific dictionary Di

over the training samples of the i-th class. The whole dictionary is obtained by
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combing all the class-specific dictionaries as D(0) = [D1,D2, ...,DC ]. After the
orthonormalization of the initialized dictionary D(0), the representations X(0) is
initialized by the orthogonal matching pursuit. The error E(0) and the auxiliary
variable H(0) are initialized as zeros.

3 Fast Low-Rank Representation

With the learned orthonormal discriminative dictionary D, the representations
of training and testing samples are computed by

min
X,E

‖X�‖2,1 + λ1‖E‖2,1

s.t.Y = DX + E,
(10)

where λ1 is the same as in Eq. (1). The alternating direction method (ADM) is
used to optimize Eq. (10), and the augmented Lagrange function is

L̃ = ‖X�‖2,1 + λ1‖E‖2,1 +
θ

2
‖Y − DX − E +

J
θ

‖2F , (11)

where J is the Lagrange multiplier, and θ is the positive penalty parameter.
Compared with the low-rank representation (LRR) method, the nuclear norm
of S is replaced by its upper bound. Similar to updating the noise matrix in
Sect. 2.2, both of the X and E can be updated easily with the help of the mag-
nitude shrinkage function Sε(v) instead of the singular value shrinkage function
which needs the SVD operation in LRR.

The ridge regression model is used to obtain a linear classifier from the train-
ing representations X:

min
W

‖L − WX‖2F + ζ‖W‖2F , (12)

where ζ is a parameter, L ∈ R
C×N is the label matrix of X, and each col-

umn [0, ..., 0, 1, 0, ...0]� describes the label of a sample. The optimal solution of
Eq. (12) is W∗ = LX�(LX� + ζI)−1. With the optimized W∗, a testing sample
x can be predicted by picking the index of the maximum element of W∗x.

4 Experiments

We evaluate the proposed discriminative orthonormal dictionary learning and
low-rank representation methods on three public datasets, two face datasets:
Extended Yale B, AR, and an object recognition dataset: Caltech-101.

4.1 Extended Yale B Dataset

The Extended Yale B dataset contains 2,414 frontal-face images from 38 people
with 59 to 64 images per person. The images are captured under various con-
trolled lighting conditions. The resolution of the image is 192× 168 pixels. Since
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previous work test their methods on this dataset with different experimental set-
tings, we do various experiments following their settings for a fair comparison.

In [13], the face images are resized to 54×48 pixels. For each people, 20 images
are randomly selected for training with the remaining images for testing. We
test our method under the same settings and compare with the results reported
in [13]. Table 1 shows that our method outperforms other methods. To compare
with more recent work, we follow the same experiment setting of [17]. The images
are projected to a 504-dimensional feature by using a random matrix of zero-
mean normal distribution. For each person, half images are used for training,
and the rest half for testing. The comparison results are displayed in Table 2.
Our method achieves comparable results as other methods.

Table 1. Comparison results on Extended Yale B dataset under the setting of [13].

Methods SRC [16] NN SVM D K-SVD [5] DLSI [12] FDDL [13] Our method

Accuracy(%) 90.0 61.7 88.8 75.3 89.0 91.9 94.4

Table 2. Comparison results on Extended Yale B dataset under the setting of [17].

Methods K-SVD [10] D K-SVD [5] CIDL [17] Our method

Accuracy(%) 93.10 94.10 95.72 95.85

We also evaluate the computation time of our fast low-rank representation
(FLRR) method with the traditional low-rank representation problem solved
by linear alternating direction method with adaptive penalty (LRR-LADMAP).
Both of the FLRR and LRR-LADMP run on the computer with a 3.40GHz
Intel(R) Core(TM) CPU. The FLRR computes all the representations of 2,414
images by 4 iterations, and the average processing time per image is 0.0007
second, while the LRR-LADMAP represents all the images by 185 iterations
with each image taking about 0.058 second. Furthermore, with the same learned
dictionary, the FLRR achieves accuracy of 94.44%, and the LRR-LADMAP
achieves accuracy of 94.80%. It means that our FLRR is much faster on getting
low-rank representations than traditional low-rank representation with similar
recognition accuracy.

4.2 AR Dataset

The AR dataset consists of more than 4,000 color frontal images from 126 people
with 26 images per person. The 26 images are taken in two separated sessions,
and each session contains 13 images. In each session, 3 images are obscured by
scarves, 6 are obscured by sunglasses, and the remaining faces are with different
facial expressions or illuminations conditions and regarded as unobscured images.
Following the protocol in [2,8], we conduct experiments under three scenarios:
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Sunglass: The sunglass give rise to about 20% occlusions of the faces. In this
scenario, 7 unobscured images and 1 randomly selected image with sunglass
from session 1 are used for training, and the remaining unobscured images from
session 2 and the images with sunglass from both session 1 and session 2 are
used for testing.

Scarf: Compared with sunglass, the scarf occludes more regions of faces. The
scarf covers around 40% of the faces. Similar to the sunglass scenario, 7 unob-
scured images and 1 randomly selected image with scarf from session 1 are used
for training, and the remaining unobscured images and images with scarf are
used for testing.

Mixed (Sunglass + Scarf): In this case, the images with sunglass and scarf
are mixed. The training samples are 7 unobscured images, 1 image with sunglass,
and 1 image with scarf from session 1, and the rest images are used for testing.

For each scenario, the experiments are conducted three times and the average
results are reported. The comparison results are displayed in Table 3. As shown
in the table, our method outperforms other methods.

Table 3. Comparison results of face recognition under different scenarios on AR
dataset.

Methods Sunglass Scarf Mixed

LR [2] 84.9 75.8 78.9

SRC [16] 86.8 83.2 79.2

LLC [18] 65.3 59.2 59.9

SLRR [8] 87.3 83.4 82.4

Our method 89.6 88.1 87.8

On this dataset, we also do the experiments of gender classification. As in
[13,19], an unobscured subset of 50 male and 50 female individuals with 14
images per individual is chosen. Images of the first 25 male and 25 female individ-
uals are used for training, and other 25 male and 25 female individuals are used
for testing. Following the protocol in previous works, PCA is used to reduce the
dimension for each image to 300. The number of class-specific dictionary atoms
(#(C-S DA)) are set as 250 and 25, respectively, and the comparison results
with other dictionary learning methods are displayed in Table 4. As shown in
the figure, our method outperforms other methods.

4.3 Caltech 101 Dataset

The Caltech-101 dataset contains 101 object categories, such as cameras, chairs,
flowers, and vehicles. All the categories are with significant variances in shape
and cluttered backgrounds. This dataset has 9, 144 images in all, and the image
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Table 4. Comparison results of gender classification on AR dataset.

Methods #(C-S DA)=250 #(C-S DA)=25

SRC [16] 93.0 –

D K-SVD [5] 86.1 –

LC K-SVD [9] 86.8 –

DLSI [12] 94.0 93.7

COPAR [20] 93.4 93.0

JDL [11] 92.6 91.0

FDDL-LC [13] 94.3 93.7

FDDL-GC [13] 94.3 92.1

LDL-LC [19] 95.3 95.0

LDL-GC [19] 94.8 92.4

Our method 98.3 98.0

Table 5. Comparison results on Caltech 101 dataset.

Methods #(TrS)=15 #(TrS)=30

LR [2] 58.3 65.7

SRC [16] 64.9 70.7

LLC [18] 65.4 73.4

SLRR [8] 66.1 73.6

CCLR-Sc+SPM [21] 70.9 76.6

Our method 71.2 77.0

number varies from 31 to 800 per category. Moreover, it is individually added to
an extra “background” category, i.e., BACKGROUND Google.

Same with the setting in [8], the spatial pyramid features are used to test
our method with 15 and 30 randomly selected images for training per class
(#(TrS)). The comparison results are displayed in Table 5. Our method achieves
the highest classification accuracy.

5 Conclusions

We have presented a discriminative orthonormal dictionary learning method for
fast low-rank representation in this paper. The discriminative regularization term
encourages the class-specific dictionary to well represent the samples from the
same class and cannot represent samples from other classes for the discriminative
power of the learned dictionary. The orthonormal property ensures the repre-
sentative power of the dictionary by avoiding the redundancy. With the learned
discriminative orthonormal dictionary, a fast low-rank representation method is
proposed.
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Abstract. In this paper we investigate the problem of supervised latent
modeling for extracting topic hierarchies from data. The supervised part
is given in the form of expert information over document-topic corre-
spondence. To exploit the expert information we use a regularization
term that penalizes the difference between a predicted and an expert-
given model. We hence add the regularization term to the log-likelihood
function and use a stochastic EM based algorithm for parameter estima-
tion. The proposed method is used to construct a topic hierarchy over
the proceedings of the European Conference on Operational Research
and helps to automatize the abstract submission system.

Keywords: Hierarchical topic model · Labeled classification · Proba-
bilistic latent semantic analysis · EM approach

1 Introduction

Probabilistic topic models are generally unsupervised generative models that
describe document content in large document collections. These models assume
that each document is associated with a set of hidden variables, called topics,
that indicate how the words within the document are generated. Formally, a
topic is a probability distribution over terms in a vocabulary. The two most
popular topic models are the Probabilistic Latent Semantic Indexing (PLSI) [6]
and the latent Dirichlet allocation (LDA) model [2] and their variants. The LDA
model consists of two types of probability distributions: (a) distributions of topics
over documents and (b) distributions of words over topics. After estimating the
model parameters over a training corpus, the obtained distributions of words
over topics can then be used to infer per-document topic distributions on unseen
documents. LDA has found applications in many areas ranging from document
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 90–97, 2015.
DOI: 10.1007/978-3-319-26532-2 11
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clustering, text categorization, ad-hoc information retrieval, to signal analyzes.
Several attempts have been made to extent PLSI and LDA to unsupervised
hierarchical topic modeling. In [5], Dirichlet processes are used to model different
levels of an hierarchy, while in [3] an extension of the PLSI model is proposed
by introducing additional probabilities corresponding to different levels of the
hierarchy.

In this paper, we address the problem of hierarchical topic modeling using
an expert information over the document-topic correspondence in the form of
a labeled document collection with a predefined hierarchical-structured topics.
The problem is hence to predict a topic model for a new document collection
using such past labeled information.

Fig. 1. Hierarchical structure of the conference

The application that we con-
sider is the construction of
an hierarchical topic model for
the “European Conference on
Operational Research” (EURO)
containing over 3000 abstracts.
The structure of the conference
papers is shown in Fig. 1. At the
upper level there are 26 main
areas, each of which contains
about 10 streams. Each stream
then contains about 10 sessions,
and each session is formed by
four abstracts. The main areas correspond to the broad topics of the operational
research field like Non-smooth optimization, timetabling, logistics, etc. Every year
the program committee, constituted by groups of experts, constructs by hand
such an hierarchy for the submitted papers [7]. Each group is responsible for
the organization of a stream or a set of streams. After the abstract submission
deadline each group of experts starts to fill a stream with unassigned abstracts
and to form sessions within a stream. The practical goal of our research is to
construct an efficient structure from the supervised expert information of the
previous years using the topic modeling methodology. For that, we consider the
additive regularization of topic models (ARTM) [9]. In general, this method finds
topic-document and word-topic probabilities by optimizing a log-likelihood qual-
ity measure with an additional regularization term. Here we propose a regularizer
term that penalizes the difference between the predicted and the expert-given
topic models.

Compared to [8], where the prior probabilities are modified with respect to
the projections of document-topic vectors on the set of identified topics, here
we propose a unified formalism to measure the distance between the hierar-
chy trees by introducing a set of hyperparameters that describes the hierarchy
and summarizes penalizations on different hierarchy levels. The optimization
of the regularized likelihood is then carried out using a stochastic version of
the Expectation-Maximization algorithm [6,10]. The algorithm has a modified
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M-step that takes into account the regularization term and samples a current
topic from the conditional distribution on a given word-document pair.

The structure of the paper is as follows. In Sect. 2, we present our frame-
work and a Bayesian interpretation of the proposed supervised topic model.
Section 3 presents its hierarchy extension and empirical results are shown in
Sect. 4. Finally, in Sect. 5 we discuss the outcomes of this study and give some
pointers to further research.

2 Supervised Classification, Flat Case

Let D denote a collection of documents, di ∈ D, and W denote a vocabulary,
a set of terms describing the documents. Let T denote a set of topics such that
each document di may refer to a topic t(di) ∈ T . Let t1, ..., tn denote an initial
expert topic classification of the documents d1, ..., dn. The given sample consists
of the document-topic pairs, {di, ti}n

i=1.
To construct a probabilistic model we use conditional independence assump-

tion. The collection D is generated from the distributions θtd = p(t|d) and φwt =
p(w|t) in the following way:

p(w|d) =
∑

t∈T

p(t|d)p(w|t).

To estimate the probabilities (θtd)t∈T,d∈D and (φwt)w∈W,t∈T , we consider the
PLSI approach [6], where the optimization problem consists in maximizing the
log-likelihood L(Φ,Θ) under non-negativity and normalization conditions:

Φ∗,Θ∗ = argmax
Φ,Θ

L(Φ,Θ) =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

φwtθtd,

u.c. φwt � 0, θtd � 0, and
∑

w∈W

φwt = 1,
∑

t∈T

θtd = 1.
(1)

The PLSI model (1) does not take into account the initial topic classifica-
tion t1, ..., tn, we tackle the problem by introducing the expert-given topic labels
using a regularization term R(t, t̂) that measures the similarity between the
predicted and the expert-given topic vectors, t and t̂:

Φ∗,Θ∗ = argmax
Φ,Θ

L(Φ,Θ) + λR(t, t̂),

u.c. φwt � 0, θtd � 0, and
∑

w∈W

φwt = 1,
∑

t∈T

θtd = 1.
(2)

where is λ the regularization parameter.

Bayesian Interpretation of the Regularized PLSI. As stated in [4], a penalized
approach can be interpreted within the Bayesian framework. According to such
an interpretation, the penalized likelihood function corresponds to the a pos-
teriori density whereas the penalty is the density of the prior. The solution of
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the maximization of the penalized likelihood of the model is then a maximum a
posteriori estimate of the parameters of interest. In our setting, adding a regu-
larization to the PLSI model means that we are setting the following prior for
the latent variables (θ, φ)

π(θ, φ) = C exp (λR(φ, θ)) (3)

where C > 0 is a normalizing constant.
Our corpus can then be assumed to be generated as follows :

– Step 1: Generate the whole set of the topic and of the matrix word–topic
(θ, φ) ∼ π where π is the distribution defined in 3.

– Step 2: for each document d and each word of the document
• Draw the nth topic twn ∼ mult(θtd).
• Draw the nth word wn with probability φwn,twn

.

Labeled Classification. Let Z = ‖ztd‖ be a document-topic correspondence
matrix of size D × T such that

ztd = 1t̂d=t.

where 1π is the indicator function, equal to 1 if the predicate π holds and 0
otherwise. We define similarity R(t, t̂) as a matrix norm of difference between
matrices Θ and Z:

R(t, t̂) = −‖Θ − Z‖1.
This form of regularization leads us to the following optimization problem:

Φ∗,Θ∗ = argmax
Φ,Θ

∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

φwtθtd + λ

(
∑

d∈D

∑

t∈T

θtd(2ztd − 1)

)

,

φwt � 0, θtd � 0,
∑

w∈W

φwt = 1,
∑

t∈T

θtd = 1.

(4)

Parameter Optimization: EM Approach. To solve the optimization problem (4)
we use the Expectation-Maximization algorithm. To derive the explicit expecta-
tion and maximization formulas we use theorem 1 from [9] that gives properties
of the local optimum of the general expression of (Eq. 2). Following this result
if R(t, t̂) is continuously differentiable then at the local maximum of R we have:

φwt ∝
(

nwt + φwt
λ∂R

∂φwt

)

+

, θtd ∝
(

ntd + θtd
λ∂R

∂θtd

)

+

. (5)

Note that in our problem the function R depends only of θtd variables, therefore
we will use only a second equation for θ.

For the problem (4) we hence obtain the following formula for the M-step:

θtd =
ηtd∑

t∈T

ηtd
, ηtd =

⎡

⎣
∑

w∈d

ndw
φwtθtd∑

t∈T

φwtθtd
+ λθtd (2ztd − 1)

⎤

⎦

+

. (6)
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Stochastic EM. To speed up the proposed EM algorithm we rather use its sto-
chastic version that is similar to the Gibbs sampling method for LDA [2]. The
approach consists in sampling a topic t from the estimated distribution p(t|d,w),
where the distribution of a topic t given w, d is given by a formula

p(t|d,w) ∝
⎛

⎝ n̂wt

n̂t

n̂dt + λn̂dt(2ztd − 1)
nd + λ

∑

t∈T

n̂dt(2ztd − 1)

⎞

⎠

+

,

where

n̂dt =
∑

w∈d

ndw
φwtθtd∑

t∈T

φwtθtd
, n̂wt =

∑

d∈D

ndw
φwtθtd∑

t∈T

φwtθtd
, n̂t =

∑

w∈d

n̂wt.

3 Topics Hierarchy

We extend the model by taking into account the expert-given hierarchy defined
on the set of topics. To model the hierarchical structure we introduce the fol-
lowing notations. Let us denote by T = T = T0 � ... � TL a set of topics, or
a set of vertices in a hierarchical tree, where the sets T0, ..., .TL denote disjoint
sets of topics at different levels of hierarchy. For further reading we consider a
two-level hierarchical structure. However, the proposed method can be used for
any number of levels.

For further convenience we introduce parent p(t) and children s(t) operators
defined as follows:

p(t) ∈ Tl−1 for t ∈ Tl, l = 1, ..., L,

s(t) ⊂ Tl+1 for t ∈ Tl, l = 0, ..., L − 1.

To define the loss function R(t, t̂) between topics we propose to measure a sum-
mary loss over the hierarchy levels:

R(t, t̂) =
L−1∑

l=0

r(pl(t), pl(t̂)).

Here the vertex t belongs to the lowest level of hierarchy, t ∈ TL, and pl(t) is the
l-th predecessor of the vertex t.

To measure the value of a single loss r(ti, t̂i) on a document di we expand
Eq. (4) to the different hierarchy levels:

r(t, t̂) = |1t̂=t − θ′
td|,

where θ′
td is defined for an arbitrary hierarchy level as follows:

θ′
td =

⎧
⎨

⎩

θtd, t ∈ Tl,
1

#s(t)

∑

s∈s(t)

θ′
sd, otherwise.
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According to the introduced hierarchy addition we obtain the following modifi-
cation of the M-step formula (6):

ηtd =

⎡

⎣
∑

w∈d

ndw
φwtθtd∑

t∈T

φwtθtd
+ λ1θtd (2ztd − 1) + λ2θ

′
p(t)d

(
2zp(t)d − 1

)
⎤

⎦

+

. (7)

4 Empirical Results

We use the proposed method to construct a topic model for the European Con-
ference on Operational Research. We use the collection of abstracts for the 2012
year. Each abstract contains less than 600 symbols, the collection contains 1342
abstracts, and vocabulary contains 1675 words after preprocessing. The pre-
processing stage includes removing stop words and lemmatization. Together with
the collection we used an initial expert-given conference structure as described
in introduction [1].

To show the hierarchical results we first need to choose the hyperparame-
ters λ1 and λ2 (Eq. 7). To do this we perform the following steps.

Fig. 2. Hierarchical model matching rates for different regularization values

1. Estimate model parameters for different sets of parameters λ1, λ2. We took
about 100 different parameter sets from the range λ1, λ2 ∈ [0, 1].

2. For each set of parameters we obtain three values measuring the quality
of a hierarchical model: (1) the normalized number of documents matched
with the expert model within the areas na ∈ [0, 1], (2) the same for the
streams, ns ∈ [0, 1], (3) the value of perplexity.

3. We chose those regularization values λ1, λ2 that minimize the perplexity for
the values na > 0.8, ns > 0.5.
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Figure 2 illustrates the mentioned steps. x- and y-axis correspond to the val-
ues na and ns, respectively. Each point corresponds to the different set of para-
meters λ1, λ2. The color of each point indicates the values of perplexity: the
darker the color, the higher the perplexity. The optimal point (of minimum per-
plexity with na > 0.8 and ns > 0.5) indicated by the triangle. The regularization
values for this point are λ1 = 0.15, λ2 = 0.2.

Fig. 3. Conference hierarchy matching

Figure 3 shows matching of hierarchical model for the EURO conference.
Each block corresponds to the main area such that the height of each block
indicates total number of documents belonging to the corresponding area due to
the expert-given model. Each block consists of the subblocks corresponding to
the streams; the length of the subblock indicates the size of the stream. The color
of each subblock indicates rate of documents ns matched with the expert-given
model: the more white is subblock, the better is the matching (ns is closer to
1). According to our method we can specify stable and non-stable areas. We see
that good matched areas (mostly white-colored) are “Continuous optimization”,
“Control theory” and “Revenue management”, whereas bad-matched are, e.g.,
“Metaheuristics” and “OR in health”.

5 Conclusion

We proposed a supervised hierarchical topic model, where the expert knowledge
is encompassed into a regularization term measuring the distance between the
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predicted and the expert-given topic models. The optimization of the regular-
ized likelihood is then carried out using a stochastic version of the Expectation-
Maximization algorithm where the modified M-step takes into account the reg-
ularization term and samples a current topic from the conditional distribution
on a given word-document pair. Our experiments on the EURO proceedings
showed that the proposed topic model is able to find expert-given topics, with
high perplexity.
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3. Gaussier, É., Goutte, C., Popat, K., Chen, F.: A hierarchical model for clustering
and categorising documents. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.
(eds.) ECIR 2002. LNCS, vol. 2291, p. 229. Springer, Heidelberg (2002)

4. Good, I.J., Gaskins, R.A.: Nonparametric roughness penalties for probability den-
sities. Biometrika 58(2), 255–277 (1971)

5. Griffiths, T.L., Jordan, M.I., Tenenbaum, J.B., Blei, D.M.: Hierarchical topic mod-
els and the nested Chinese restaurant process. In: Thrun, S., Saul, L.K., Schölkopf,
B. (eds.) Advances in Neural Information Processing Systems 16, pp. 17–24 (2004)

6. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 50–57. ACM (1999)

7. Kuzmin, A.A., Strijov, V.V.: Validation of the thematic models for document col-
lections. Inf. Technol. 4, 16–20 (2013)

8. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume
1, pp. 248–256. Association for Computational Linguistics (2009)

9. Vorontsov, K.V., Potapenko, A.A.: Additive regularization of topic models. Mach.
Learn. J., Special Issue “Data Analysis and Intelligent Optimization” 101, 303–323
(2015)

10. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd
International Conference on Machine Learning, pp. 977–984. ACM (2006)

http://sourceforge.net/p/mlalgorithms/code/ HEAD/tree/EURO_data/
http://sourceforge.net/p/mlalgorithms/code/ HEAD/tree/EURO_data/


A Framework for Online
Inter-subjects Classification in Endogenous

Brain-Computer Interfaces

Sami Dalhoumi1(&), Gérard Dray1, Jacky Montmain1,
and Stéphane Perrey2

1 Laboratoire d’Informatique et d’Ingénierie de Production (LGI2P),
Ecole des Mines d’Alès, Parc Scientifique G. Besse, 30035 Nîmes, France

{sami.dalhoumi,gerard.dray,

jacky.montmain}@mines-ales.fr
2 Movement to Health (M2H), Montpellier University, Euromov,

700 Avenue du Pic Saint-Loup, 34090 Montpellier, France
stephane.perrey@univ-montp1.fr

Abstract. Inter-subjects classification and online adaptation techniques have
been actively explored in the brain-computer interfaces (BCIs) research com-
munity during the last years. However, few works tried to conceive classifica-
tion models that take advantage of both techniques. In this paper we propose an
online inter-subjects classification framework for endogenous BCIs.
Inter-subjects classification is performed using a weighted average ensemble in
which base classifiers are learned using data recorded from different subjects and
weighted according to their accuracies in classifying brain signals of current BCI
user. Online adaptation is performed by updating base classifiers’ weights in a
semi-supervised way based on ensemble predictions reinforced by interaction
error-related potentials (iErrPs). The effectiveness of our approach is demon-
strated using two electroencephalography (EEG) data sets and a previously
proposed procedure for simulating interaction error potentials.

Keywords: Brain-computer interfaces � Inter-subjects classification � Online
adaptation � Weighted average ensembles

1 Introduction

A brain-computer interface (BCI) is a communication and control technology that
allows translating brain’s electrical or hemodynamic activity patterns into commands
for an external device [1]. This technology was originally meant to allow patients with
severe neuromuscular disabilities to autonomously interact with their environment.
Depending on the modality of interaction, BCIs can be classified as either exogenous or
endogenous [2]. Exogenous BCIs rely on brain activity patterns that are elicited
spontaneously in response to external stimuli such as visual evoked potentials (VEPs),
while endogenous BCIs are based on the voluntary induction of different brain states by
the user such as sensorimotor rhythms-based BCIs. Endogenous BCIs can offer a
natural way of interaction for the user but they are difficult to set-up because
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self-regulation of brain rhythms is not a straightforward task. For this reason, a long
calibration phase is needful for user-system co-adaptation before every use of the BCI
[3]. During this phase, the user interacts with the BCI in a cue-based mode which
allows him to learn self-regulating his brain rhythms and the system to create a “robust”
classification model. The accuracy of the system depends on the capacity of the
classification model to decode brain activity patterns of the user during a feedback
phase (self-paced interaction mode).

In order to bring endogenous BCIs out of the lab, many research groups have
focused on conceiving new machine learning approaches that allow reducing calibra-
tion time without decreasing classification accuracy of the system. Among these
approaches, inter-subjects classification has been actively explored during the last years
[3–5]. It consists of incorporating labeled data recorded from different BCI users in the
learning process of current BCI user. When performed correctly, inter-subjects clas-
sification allows capturing information that generalize across users and extend to new
users. One way to do that is to use a weighted average ensemble technique in which
base classifiers are learned using data from different BCI users and weighted according
to their accuracy in classifying signals recorded from current BCI user [4]. In the
absence of true class labels during feedback phase of current BCI user, these weights
can be estimated in two ways: statically using a small calibration set or dynamically by
recalculating these weights for each incoming sample based on its position in the
feature space [4, 5]. The first approach may perform poorly because brain activity
patterns of the BCI user vary between calibration and online phases and during online
phase (non-stationarity). The second approach may not perform well because it does
not take into consideration the stochastic dependence between time-contingent feature
vectors.

In a preliminary work [6], we found that a static classifiers weighting approach
using a small calibration set outperforms dynamic classifiers weighting approaches and
we showed that online adaptation of base classifiers’ weights using ensemble predic-
tions during feedback phase may increase classification accuracy in comparison to the
static approach. However, the update coefficient used for adjusting adaptation speed
was subject-dependent which presented a limitation to the proposed approach. In this
work, we propose to use interaction error-related potentials (iErrPs) as an additional
source of information to reduce uncertainty about ensemble predictions during feed-
back phase. iErrPs are a type of event-related potentials that occur immediately after the
user perceives that the feedback provided by the BCI is in contradiction to his intent
[7]. The physiological background of iErrPs has been well established [7] and they
have been successfully used to improve BCIs accuracy [8, 9]. However, iErrPs are also
subject to a degree of uncertainty because their detection is not perfect. Ferrez and
Del R. Millán [7] reported an average recognition rate of iErrPs with 16.5 % of false
positives (i.e., the correct predictions are considered erroneous) and 20.8 % of false
negatives (i.e., the erroneous predictions are considered correct).

This paper is organized as follows: in Sect. 2, we describe our adaptive weighted
average ensemble method. In Sect. 3, we present material used to evaluate this method
and the experimental results. Section 4 concludes the paper and gives future directions
of this work.
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2 Methods

In this section, we describe different steps of our adaptive weighted average ensemble
method for binary classification tasks. Base classifiers trained on brain signals recorded
from different subjects are weighted according to their accuracies in classifying a small
calibration set from current BCI user. These weights are updated during feedback phase
using ensemble predictions reinforced by iErrPs. In the absence of an iErrP, the label
predicted by the ensemble is considered correct and base classifiers’ weights are
updated based on their disagreement with the ensemble. When an iErrP is detected, the
prediction of the ensemble is considered to be wrong and base classifiers’ weights are
updated using the opposite label.

2.1 Base Classifiers’ Weights Initialization

Let fh1; h2; . . .; hKg be K classification models learned using data from different BCI
users (many classification models may be learned using data recorded from the same
user and preprocessed in different ways). For each incoming feature vector x and each
class label y, the classifier hk; k ¼ 1. . .K outputs the value hky xð Þ 2 ½01� which is an
estimation of the posterior probability pðy=xÞ. Given a small calibration set
L ¼ xt; ytð Þ; xt 2 R

d; yt 2 f0; 1g; t ¼ 1. . .T
� �

recorded from current BCI user, each
classifier is assigned a weight wk inversely proportional to its error in classifying this
labeled set:

wk ¼ max 0;MSEr �MSEk
� �

; k ¼ 1::K ð1Þ

where, MSEr is the mean squared error of a random classifier and MSEk is the mean
squared error of the classifier hk given below.

MSEr ¼
X
y

pðyÞ: 1� p yð Þð Þ2 ð2Þ

MSEk ¼ 1
T
:
XT
t¼1

1� hkyt xtð Þ
� �2

ð3Þ

For binary classification with equal class priors, MSEr ¼ 0:25.
This weighting scheme allows removing classifiers performing less or equal than a

random classifier from the ensemble and assigning weights to the rest of classifiers
inversely proportional to their error in classifying calibration data.

2.2 Base Classifiers’ Weights Adaptation Using Ensemble Predictions

Given a new labeled sample ðxtþ 1; ytþ 1Þ, the mean squared errors of base classifiers up
to the time step ðtþ 1Þ can be updated in the following way:
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MSEk tþ 1ð Þ ¼ 1
tþ 1

: t:MSEk tð Þþ 1� hkytþ 1
xtþ 1ð Þ

� �2� 	
; k ¼ 1. . .K ð4Þ

where, MSEk tð Þ is the mean squared error of the classifier hk up to the time step t.
Base classifiers’ weights can then be updated using the adaptive version of Eq. (1):

wkðtþ 1Þ ¼ max 0;MSEr �MSEkðtþ 1Þ� �
; k ¼ 1::K ð5Þ

In order to take into consideration different types of data shift, we add an update
coefficient UC 2 ½01� to Eq. (4) that becomes:

MSEk tþ 1ð Þ ¼ 1
1� UCð Þ:tþUC

�

1� UCð Þ:t:MSEk tð ÞþUC: 1� hkytþ 1
xtþ 1ð Þ

� �2� 	
; k ¼ 1. . .K

ð6Þ

For UC ¼ 0, there is no update, for UC ¼ 1, only the new data sample is used for
calculating error and when UC ¼ 0:5, we retrieve exactly the update Eq. (4).

In self-paced interaction mode, the true class labels are unknown for the classifi-
cation model. One way to alleviate this problem is to use ensemble predictions for
online adaptation. For each incoming feature vector, the label predicted by the
ensemble is considered to be the true class label and each base classifier’s weight is
updated according to its disagreement with the ensemble. So, formula (6) becomes:

MSEk tþ 1ð Þ ¼ 1
1� UCð Þ:tþUC

�

1� UCð Þ:t:MSEk tð ÞþUC: 1� hk~ytþ 1
xtþ 1ð Þ

� �2� 	
; k ¼ 1. . .K

ð7Þ

Where ~ytþ 1 is the label predicted by the ensemble:

~ytþ 1 ¼ argmaxy
XK
k¼1

wk tð Þ:hky xtþ 1ð Þ
 !

ð8Þ

As ensemble’s decisions are subject to a high degree of uncertainty, using them for
adaptation may lead to error accumulation and consequently degrades the accuracy of
the BCI. Thus, we should use and additional information to minimize uncertainty. In
BCIs, such information could come from interaction error-related potentials.

2.3 Base Classifiers’ Weights Adaptation Using Ensemble Predictions
Reinforced by Interaction Error-Related Potentials

Let E 2 f0; 1g be the true absence or presence of an iErrP following the output of the
BCI. E ¼ 0, when the decision of the ensemble ~ytþ 1 corresponds to the intent of the
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user ytþ 1 and E ¼ 1, in the opposite case. The iErrPs classifier outputs a value ~E 2
f0; 1g which is a prediction of E. The predicted value ~E may or may not correspond to
the real value E depending on the accuracy of the iErrPs classifier. This iErrPs classifier
can be used to assess the reliability of the predicted labels as follows:

MSEk tþ 1ð Þ ¼ 1
1� UCð Þ:tþUC

�

1� UCð Þ:t:MSEk tð ÞþUC: ð1� ~EÞ � hk~ytþ 1
xtþ 1ð Þ

� �2� 	
; k ¼ 1. . .K

ð9Þ

When ~E ¼ 0, the predicted label is considered correct and the update is the same as
in Eq. (7). When ~E ¼ 1, the opposite class label is used for update because

hk~ytþ 1
xtþ 1ð Þ

� �2
¼ 1� hkð1�~ytþ 1Þ xtþ 1ð Þ
� �2

.

3 Experiments

In this section we evaluate our adaptive ensemble approach using two EEG data sets
and the procedure for simulating iErrPs used in [8, 9].

3.1 EEG Data Sets

Data set 2A in BCI Competition IV. This data set comprises electroencephalography
(EEG) signals recorded from 9 subjects using 22 Ag/AgCl electrodes at 250 Hz
sampling rate [10]. Subjects performed left hand, right hand, foot and tongue motor
imagery tasks. For the purpose of this study, only EEG signals corresponding to the left
hand and right hand motor imagery tasks were used. For each subject, two sessions on
different days, each of which comprises 72 trials of duration 7 s, were collected. At the
beginning of each trial, a fixating point appeared on a computer screen. After two
seconds, a cue appeared informing the subject which motor imagery task to perform
until the cue disappeared.

EEG measurements were band-pass filtered using a 5th order Butterworth filter in
the frequency bands of 4 Hz width ranging from 8 Hz to 30 Hz with step size of 2 Hz
and an additional wide band from 8 Hz to 30 Hz. Time segments 3–5 s after the
beginning of each trial were extracted. The common spatial pattern (CSP) algorithm
and the logarithmic variance features are used for spatial filtering and feature extraction
(the three most discriminative CSP filters for each class are used) [11].

Two Class Motor Imagery Data Set from BNCI Horizon 2020 Project. This data
set was provided by the Graz group [12]. 14 subjects performed sustained kinesthetic
motor imagery of the right hand and feet. 5 subjects had previously performed BCI
experiments and 9 subjects were naïve to the task. Each subject performed a training
phase composed of 50 trials per class and a validation phase composed of 30 trials per
class. EEG signals were recorded using 15 Ag/AgCl electrodes at 512 Hz sampling
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rate. Time segments of length 3 s, starting at 3 s after the beginning of each trial were
preprocessed in the same way as in the previous data set. CSP algorithm and loga-
rithmic variance features were used to extract relevant features from this data set.

3.2 Procedure for Simulating IErrPs

Llera et al. [8] proposed a simple procedure for simulating iErrPs that allows under-
standing the relation between the accuracy of the iErrPs classifier and the accuracy of
the task classifier. Below we describe it in case of our adaptive ensemble method.

Let a1 and a2 be the false positive and false negative rates of the iErrPs classifier,
respectively. Given the output of the ensemble classifier ~yt and the true class label yt at
time step t, the procedure is performed as follows:

– If ~yt ¼ yt, we draw ~E ¼ 1 with probability a1 and ~E ¼ 0 with probability 1� a1 and
apply Eqs. (5) and (9).

– If ~yt 6¼ yt, we draw ~E ¼ 1 with probability 1� a2 and ~E ¼ 0 with probability a2 and
apply Eqs. (5) and (9).

3.3 Results

Evaluation was performed offline using leave-one-subject-out cross-validation. In each
step, training data from N-1 subjects (from now called source subjects) were used for
learning spatial filters and base classifiers, the calibration set extracted from training
data of the Nth subject (from now called target subject) was used to initialize base
classifiers’ weights and test data of the same subject was used for evaluation (N = 9 in
the first data set and N = 14 in the second data set). During training phase, CSP filters
and corresponding linear discriminant analysis (LDA) classifiers are learned using EEG
signals recorded from each subject and filtered in different frequency bands, resulting in
88 base classifiers in the first data set and 143 base classifiers in the second data set.
Calibration set of the target subject is filtered in different frequency bands and projected
into the subspaces spanned by the previously learned CSP filter banks. The initial
mean-squared error of each base classifier is calculated using the corresponding pro-
jection. For evaluation, each trial in the test set of target subject is filtered in different
frequency bands and projected into the subspaces spanned by the CSP filter banks.

Figure 1 illustrates the average classification accuracies of a static accuracy-weighted
ensemble (AWE) learned using data from source subjects and a baseline LDA classifier
learned using only calibration data of target subject filtered in the 8–30 Hz frequency
band (traditional approach) for the first data set. As we can see, learning from other users
allows increasing classification accuracy when the size of calibration set is small because
the subject-independent information captured from large data sets is more robust than
subject-specific information learned from a small data set. As the size of calibration set
increases, the accuracy of the baseline classifier increases while the accuracy of the
inter-subject classification model remains relatively constant. This shows that, in con-
trary to the traditional classification approach, the performance of the inter-subjects
classification approach is not much dependent on the size of calibration set.
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In order to assess whether online adaptation of base classifiers’ weights allows
increasing performance of our inter-subjects classification approach, we performed a
comparison between the static accuracy-weighted ensemble and the adaptive
accuracy-weighted ensemble. To do so, we evaluated three scenarios for online
adaptation of base classifiers’ weights:

– Guided: adaptation is performed using only ensemble predictions.
– Realistic iErrPs detection: adaptation is performed using ensemble predictions

reinforced by an iErrPs classifier with false positive rate a1 of 16.5 % and false
negative rate a2 of 20.8 % as found in [7].

– Perfect iErrPs detection: adaptation is performed using ensemble’s predictions
reinforced by a perfect iErrPs classifier ða1 ¼ a2 ¼ 0Þ.
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Fig. 1. Average classification accuracy of the standard classification approach (baseline) and the
static inter-subjects classification approach (AWE) for different sizes of calibration set in the first
data set
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Fig. 2. Average classification accuracies of the static weighted average ensemble and different
scenarios of the adaptive weighted average ensemble when the size of calibration set is equal to
10 trials in the second data set
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Figure 2 illustrates the comparative results for the second data set when the size of
calibration set is equal to 10 trials. The x-axis corresponds to different values of the
update coefficient UC and the y-axis to the average classification accuracy over all
subjects. The results of the adaptive ensemble method using realistic iErrPs classifier
are the average over 100 tests for each subject and each value of UC. This figure shows
that using iErrPs for assessing the reliability of the ensemble predictions allows pre-
venting error accumulation and increases classification accuracy especially for values
of the update coefficient between 0.5 and 0.7.

We performed the same comparison for the first data set with predefined update
coefficient UC ¼ 0:5. Table 1 shows the accuracies of the static ensemble method and
the three adaptive methods for different subjects. For most of subjects, the adaptive
ensemble method using a realistic iErrPs classifier allows increasing classification
accuracy compared to the static method which shows its applicability in online settings.

For further investigation of the behavior of our adaptive ensemble method, Fig. 3
shows an illustration of the evolution of base classifiers’ weights between the beginning
and the end of test session for two different cases in data set 1. Figure 3(a) and (b) show
the normalized weights of the base classifiers for subject 3 at the beginning and the end
of test session, respectively. For this subject, the base classifier learned using EEG
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Fig. 3. The evolution of base classifiers’ weights during the test session for two different
subjects in data set 1. (a) and (b) correspond to base classifiers’ weights at the beginning and the
end of test session of subject 3. (c) and (d) correspond to base classifiers’ weights at the
beginning and the end of test session of subject 7
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signals recorded from subject 4 and filtered in the 8–30 Hz frequency band maintained
the highest weight during all the test set (“robust” classifier) which is reflected in the
classification accuracy of the static weighted-average ensemble that is equal to the
accuracy of the adaptive ensemble using a perfect iErrPs classifier. Oppositely, both
adaptive ensemble method using realistic iErrPs classifier and adaptive ensemble
method using perfect iErrPs classifier significantly increased classification accuracy for
subject 7 in comparison to the static ensemble which is related to the huge change of
base classifiers’ weights between the beginning of the test session (Fig. 3(c)) and the
end of it (Fig. 3(d)).

4 Conclusion

In this paper we presented an online inter-subjects classification framework for
endogenous brain-computer interfaces. A straightforward way to learn from hetero-
geneous data recorded from different subjects is to use a weighted average ensemble in
which each base classifier is trained using a single data set and weighted according to
its accuracy in classifying brain signals of current BCI user. Static weighting of base
classifiers using a small calibration set may increase classification accuracy in com-
parison to standard methods but this approach is limited by the non-stationary nature of
brain signals. In the absence of true class labels during feedback phase, we proposed a
new online adaptation approach of base classifiers’ weights based on ensemble pre-
dictions reinforced by interaction error-related potentials (iErrPs). Results on two EEG
data sets showed that our adaptive ensemble method based on a realistic iErrPs clas-
sifier allows increasing classification accuracy in comparison to the static method and
preventing error accumulation compared to the adaptive method based only on
ensemble predictions.

The proposed online adaptation method was limited to binary classification tasks.
In future work we will extend it to multi-class classification and evaluate it in online
experimental settings. Beyond the scope of BCI applications, our approach can be
extended to other applications in which online transfer learning is needful and infor-
mation about user’s assessment of the system is accessible such as spam filtering
application.

Table 1. Classification accuracy of the static weighted average ensemble and different scenarios
of the adaptive weighted average ensemble when the size of calibration set is equal to 10 trials in
the first data set and the update coefficient UC is equal to 0.5

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean Std.

Static 81.2 51.4 95.8 65.0 48.6 58.3 64.6 89.6 56.3 67.9 17.0
Guided 75.7 50.0 95.8 49.7 50.7 50.7 50.0 90.3 68.1 64.5 18.7
Realistic iErrP 81.9 60.2 94.0 55.5 51.7 54.7 73.7 90.2 71.2 70.3 15.9
Perfect iErrP 82.6 59.7 95.8 60.8 52.7 57.6 83.3 90.3 75.7 73.2 15.8
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Abstract. We propose an efficient algorithm called Bayesian Sarsa (BS)
on the consideration of balancing the tradeoff between exploration and
exploitation in reinforcement learning. We adopt probability distribu-
tions to estimate Q-values and compute posterior distributions about
Q-values by Bayesian Inference. It can improve the accuracy of Q-
values function estimation. In the process of algorithm learning, we
use a Bandit-based method to solve the exploration/exploitation prob-
lem. It chooses actions according to the current mean estimate of Q-
values plus an additional reward bonus for state-action pairs that have
been observed relatively little. We demonstrate that Bayesian Sarsa per-
forms quite favorably compared to state-of-the-art reinforcement learning
approaches.

Keywords: Reinforcement learning · Probability distribution ·
Bayesian Inference · Bandit-based method · Exploration/exploitation

1 Introduction

In general, reinforcement learning (RL) [1] is considered as a kind of Machine
Learning method, which refers to that agent interacts with the unknown envi-
ronment for trying to obtain maximum accumulative rewards. The RL methods
are classified as on-policy and off-policy on the view of policy. When the pol-
icy learned about is the same as the one used to select actions, we call it the
on-policy learning method, otherwise, it is off-policy. Sarsa is one of typical on-
policy algorithms. When we exploit Sarsa to learn an optimal policy, we always
encounter the central problem that is balancing exploration of untested actions
against exploitation of actions. At first, researchers attempted to solve the prob-
lem by means of the methods of ε-greedy [2] and Boltzmann [3,4]. ε-greedy is
the expansion of greedy, which behaves greedily most of the time, but every
once in a while, adopts actions at random with small probability ε. Boltzmann
exploration is a more sophisticated approach in which the probabilities of exe-
cuting actions are related to Q-values. In this approach, the parameter t is used
to control exploration over time, but it is difficult to set the appropriate value
for the rate of it decreasing. As a result, designing a more efficient algorithm
c© Springer International Publishing Switzerland 2015
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to solve the problem of balancing exploration and exploitation will be of great
importance in RL.

Then, researchers set their sights to Bayesian theory, and so Bayesian RL
has been begun to be developed. In 1998, Dearden firstly proposed an algorithm
called Bayesian Q-learning by combining Bayesian Inference with RL, while
Bayesian Q-learning would cost more time to compute value of perfect informa-
tion (VPI) [5–7]. Ishii presented a method which adopts Dirichlet distributions
to estimate the state-transition probability of the environment, but the perfor-
mance of their algorithm is significantly dependent on the inver-temperature
meta-parameter so that it is not very stable [8]. Brochu utilized the predictive
distribution of Gaussian process to balance exploitation and exploration, how-
ever, if the parameter ξ would encourage exploration early, then exploitation
does not work well, in hence, the value of ξ is hard to choose [9]. Kolter and Ng
attempted to use Bayesian Exploration Bonus (BEB) algorithm [10] to drive the
agent towards the Bayesian optimal policy by using exploration rewards similar
to R-MAX [11], but its drawback is that it may fail to find the optimal policy for
some certain MDPs. Strehl developed an algorithm called Delayed Q-learning,
unlike traditional Q-learning, which maintains Q-values estimates and waits for
m samples to update Q-values, but it reduces the rate of convergence when most
of samples are valid [12].

In this paper, We still combine Bayesian Inference with Sarsa and take advan-
tage of normal-gamma distribution to model for Q-value functions, in which we
calculate the posterior distribution over the prior distribution and samples. We
consider a bandit-based method to select actions that we will consider actions
which have been observed relatively little, and then make full use of optimal
actions in the long run. This paper is organized as follows: Sect. 2 describes how
to model for Q-values by normal-gamma distribution and the formula of updat-
ing parameters of probability distribution, and then we demonstrate the method
of actions selection more efficient and present BS algorithms in detail. Section 3
describes the results of experiments by comparing our algorithm against other
methods. In Sect. 4, we make an final conclusion.

2 Bayesian Sarsa

2.1 Q-values Distribution

In the Bayesian framework, we need to consider prior distributions over Q-values,
and then update these priors based on the agent’s experience. Formally, let Rs,a

be a random variable that denotes the total discounted reward received when
action a is executed in state s and an optimal policy is followed thereafter. What
we are initially uncertain about is how Rs,a is distributed, and then the following
five assumption are given first.

Assumption 1. Rs,a has a normal distribution.

Assumption 2. The prior distribution over μs,a and τs,a is independent of the
prior distribution over μs′,a′ and τs′,a′ for s �= s′ and a �= a′.
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Assumption 3. The prior P (μs,a, τs,a) is a normal-gamma distribution.

Assumption 4. The posterior distribution over μs,a and τs,a is independent of
the posterior distribution over μs′,a′ and τs′,a′ for s �= s′ and a �= a′.

Assumption 5. The posterior P (μs′,a′ , τs′,a′) is also a normal-gamma distrib-
ution.

In these assumptions, μs,a is the mean value of normal distribution. Since the
normal distribution is about Rs,a, μs,a can be approximately considered as the
value of Q(s, a). τs,a is the precision of normal distribution, and its value is the
inverse of the variance of normal distribution, τs,a = 1

σ2
s,a

. As it turns out, it is
more convenient to represent the uncertainty about Q-values over the precision
than over the variance. P (μs,a, τs,a) is the probability distribution of Rs,a, and
our ultimate aim is to compute the value of Q∗(s, a), where Q∗(s, a) = E[Rs,a].
In an MDP setting, these assumptions are likely violated. Dearden [5] describes
these five assumptions in detail in their paper.

2.2 Updating Q-Values

We can use a collection of hyperparameters ρ = (μ0, λ, α, β) or the normal-
gamma posterior for the mean and precision of each Rs,a, which is said that
P (μ, τ) ∼ NG(μ0, λ, α, β), if

P (μ, τ) ∝ τ
1
2 e− 1

2 (λτ(μ−μ0)
2)τα−1eβτ = τα− 1

2 exp(−1
2
(λτ(μ − μ0)2) + βτ). (1)

Theorem 1. Let P (μ, τ) ∼ NG(μ0, λ, α, β) be a prior distribution over the
unknown parameter R, and R is a normally distributed variable. Let r1, r2, . . . , rn

be n independent samples of R, C1 = 1
n

∑
i ri and C2 = 1

n

∑
i r2i . From the

assumption 5, posterior distribution is P (μ, τ |r1, r2, . . . , rn) ∼ NG(μ′
0, λ

′, α′, β′),
where μ′

0 = λμ0+nC1
λ+n , λ′ = λ + n, α = α + 1

2n, and β′ = β + 1
2n(C2 − C2

1 ) +
nλ(C1−μ0)

2

2(λ+n) .

The updating equation is obtained based on [13]. However, The difficulty of
computing posterior distribution is that how to calculate the values of C1 and
C2. Suppose that the agent is in state s, executes action a, receives reward r, and
lands up in state s′. We would like to know the complete sequence of rewards
received from s′ onwards, but this is not available. Let Rs′ be a random variable
denoting the discounted accumulative rewards form s′. If we assume that the
agent will follow the apparently optimal policy, then Rs′ is distributed as Rs′,a′ ,
where a′ is the action with the highest expected value at s′. Therefore, we can
randomly sample values R1

s′ , R2
s′ , . . . , Rn

s′ from Rs′,a′ , and then update P (Rs,a)
with the samples r + γR1

s′ , r + γR2
s′ , . . . , r + γRn

s′ , where we take each sample to
have weight 1

n and r is the immediate reward, γ is the discount factor. Theorem
1 implies that we only need the first two moments of samples to update our
distribution. It assumes that n tends to infinity, these two moments are:

C1 = E[r + γRs′ ] = r + γE[Rs′ ], (2)
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C2 = E[(r + γRs′)2] = r2 + 2γrE[Rs′ ] + γ2E[R2
s′ ]. (3)

Because R is a normally distributed variable with unknown mean μ and unknown
precision τ , and P (μ, τ) about R is NG(μ0, λ, α, β), then E[R] = μ and E[R2] =
λ+1

λ · β
α−1 + μ2

0.
Now, we can calculate the C1 and C2. Then we will update the parameters of

posterior distribution as though we have seen a collection of examples with total
weight 1, mean C1, and second moment C2. As the agent learns the policy, the
precision τs,a of each Rs,a will all converge to the threshold and this moment,
μs,a is the value of Qs,a.

Algorithm 1. Bayesian Sarsa
1: Input S, A
2: Initialize Ps,a(μ, τ) ∼ NG(μ0, λ, α, β) for each (s, a), ψ, c, δ, step, N(s), N(s, a)
3: repeat
4: s ← initial (nonterminal) state

5: a ← arg maxa(μ(s, a) + c
√

ln N(s)
1+N(s,a)

)

6: N(s) ← N(s) + 1
7: N(s, a) ← N(s, a) + 1
8: step ← 0
9: repeat

10: execute a, observe reward r, next state s′

11: a′ ← arg maxa′(μ(s′, a′) + c
√

ln N(s′)
1+N(s′,a′) )

12: N(s′) ← N(s′) + 1
13: generate n independent samples of Ps′,a′(μ, τ), e.g. R1

s′,a′ , Rs
s′,a′ , . . . , Rn

s′,a′
14: C1 ← r + γE[Rs′,a′ ]

15: C2 ← r2 + 2rγE[Rs′,a′ ] + γ2(
λs′,a′+1

λs′,a′ · βs′,a′
αs′,a′ −1

+ (E[Rs′,a′ ])2)

16: μ0,s,a ← μ0,s,a + ψ(
λs,aμs,a+nC1

λs,a+n
)

17: λs,a ← λs,a + ψ(λs,a)
18: αs,a ← αs,a + ψ( 1

2
n)

19: βs,a ← βs,a + ψ( 1
2
n(C2 − C2

1 ) +
nλs,a(C1−μ0,s,a)

2

2(λs,a+n)
)

20: s ← s′

21: a ← a′

22: step++
23: until s is terminal
24: μ ← μ0

25: τ ← λ×(α−1)
β

26: Output step
27: until time out
28: Output μ, τ of all distributions

2.3 Actions Selection

In every iteration of the Bayesian Sarsa algorithm we need to selection an
action to execute, and then we consider a reward bonus for actions selection
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which is controlled by the count of actions selection. Specifically, Bayesian Sarsa
algorithm, at each time step, chooses actions based on the multi-armed bandit
algorithm [14].

a = arg max
a

(Q(s, a) + c

√
ln N(s)

1 + N(s, a)
) (4)

where N(s) is the times of state being observed, and N(s, a) is the count of action
a being selected in s, N(s) =

∑
a N(s, a). c a bias parameter which defines the

proportion of exploitation and exploration. If c = 0, this policy becomes a greedy
policy. This is different from β/(1 + N(s, a)) which is proposed by Kolter [10].
Although the method Kolter put forward allows an agent acting in an MDP
to perform ε-close to the (intractable) optimal Bayesian policy after a polyno-
mial number of time steps, it brings about that algorithms may fail to find the
optimal policy for some certain MDPs. Whereas the method of action selec-
tion we proposed avoid this problem, since the reward term Q(s, a) encourages

the exploitation of higher-reward choices, and the right hand term c
√

lnN(s)
1+N(s,a)

encourages the exploration of less-chose actions. In hence, we can present an
algorithm that combines elements from both the Bayesian Q-learning and UCT
algorithms and it shows to perform “nearly as well” as them. we call it Bayesian
Sarsa (BS) which is shown as Algorithm 1.

3 Experimental Results

3.1 Gridworld

Figure 1 uses a rectangular grid to illustrate BS for a simple finite MDP. The
cells of the grid correspond to the states of the environment. At each cell, four
actions are possible: north, south, east, and west, which deterministically cause
the agent to move one cell in the corresponding direction on the grid. Actions
that would take the agent off the grid leave its location unchanged, but also
result in a reward of -10. Other actions also result in a reward of -10, except
those that make the agent to arrive at the goal state, resulting in a reward of
400. In this problem, the starting state is (4, 1), and the goal state is (1, 5). The
discount factor γ = 0.95, and the learning rate ψ = 0.2.

Figure 2 shows the curve of variance about the distribution of the Q-value
which agent executes action east in state (4,2). From the analysis of Fig. 2,
we find that the variance of Q-value of one state-action pair reduces with the
increasing episodes, and the posterior distribution of its Q-value will be close to
the true Q-value in the long run. When episodes tend to infinity, the variance
converges to 0, so as others. In hence, it can demonstrate that BS can converge
to optimal Q-values.

We mainly take Sarsa, Bayesian Q-learning, BEB, Rmax and BS compared
with each other. For Sarsa with softmax actions selection, the temperature t =
10, and the value of decay rate b is respectively 0.003, 0.005, 0.03, 0.09. For
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Fig. 2. Proof of converging to true Q-values

Table 1. The total rewards of Sarsa, Bayesian-Q, BEB, Rmax and BS

Name t b k ε Total rewards

1500 steps 3000 steps

Sarsa-Softmax 10 0.003 / / 10798 96992

0.005 14978 104046

0.03 20552 95738

0.09 19496 −172032

Sarsa-ε-greedy / / / 0.005 50546 136754

0.01 50976 138086

0.05 43834 127888

0.2 29132 84756

Bayesian-Q / / / / 72878 154054

BEB / / 10 / −5920 −21020

Rmax / / / / 66570 151170

BS / / / / 69010 160220
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Sarsa with ε-greedy policy, the value of exploration rate ε is respectively 0.005,
0.01, 0.05, 0.2. For BEB algorithm, its parameter k is 10. In Gridworld problem,
our target is to find the optimal path from the beginning to the end. Firstly, we
should initialize the parameters of normal-gamma distribution for every state-
action pair, μ0, λ, α, β = (0, 2, 2, 630), and the constant of exploration rate c =
5 for Bayesian Sarsa. Each algorithm is repeated 100 times independently in
the experiment , and the results in Table 1 are the average values of the total
discounted rewards.

In Table 1, we can know that BS obtains the more rewards than the other
algorithms over a long period of time, even though Bayesian Q-learning gains
more rewards than BS in the initial 1500 steps. Because at the beginning of
algorithms running, BS attaches more importance to exploration strategy than
Bayesian Q-learning, so Bayesian Q-learning will receive more rewards than BS
during initial period. However, when BS finds optimal actions and makes full use
of them, the total rewards agent receives will be the most. For BEB algorithm, it
is unfortunate that BEB can’t find optimal policy in this certain MDP due to its
own drawback. For Rmax, it also receive less rewards than BS in the process of
learning. We run Sarsa algorithms with each method of actions selection, Soft-
max and ε-greedy, and results show that BS is more efficient than Sarsa with
both methods for all the parameters. Table 1 shows that BS has the best perfor-
mance among all the algorithms, and Fig. 3 reflects the speed of convergence of
all the algorithms with t = 10, b = 0.05, ε = 0.01, which are the best parameter
values in Table 1. As expected, BS is competitive or superior to state of the art
exploration techniques such as Bayesian Q-learning, Rmax, and BEB.

From Fig. 4, we can know that prior with larger variances usually lead to
better performance, like (0, 2, 2, 630) and (0, 2, 2, 63), and c being different values
seems to affect the results of our algorithm, too.
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4 Conclusion

We present a model-free approach to exploration/exploitation called Bayesian
Sarsa (BS) that combines Bayesian Inference with Sarsa algorithm that estimates
Q-values with normal-gamma distributions and chooses actions with bandit-
based method that converges quickly. We compared BS with several state-of-the-
art exploration methods and demonstrate it better than some other algorithms.

We are also investigating alternative actions selection schemes, and approx-
imations that can be used to reduce the computational requirements of BS.
Finally, it should be possible to use function approximator to extend this work
to problems with large or continuous state space.
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Abstract. Extracting sparse representations with Dictionary Learning
(DL) methods has led to interesting image and speech recognition results.
DL has recently been extended to supervised learning (SDL) by using the
dictionary for feature extraction and classification. One challenge with
SDL is imposing diversity for extracting more discriminative features. To
this end, we propose Incrementally Built Dictionary Learning (IBDL),
a supervised multi-dictionary learning approach. Unlike existing meth-
ods, IBDL maximizes diversity by optimizing the between-class residual
error distance. It can be easily parallelized since it learns the class-specific
parameters independently. Moreover, we propose an incremental learn-
ing rule that improves the convergence guarantees of stochastic gradi-
ent descent under sparsity constraints. We evaluated our approach on
benchmark digit and face recognition tasks, and obtained comparable
performances to existing sparse representation and DL approaches.

Keywords: Supervised dictionary learning · Sparse representation ·
Digit recognition · Face recognition

1 Introduction

Feature extraction is a crucial step for improving the performance of machine
learning algorithms. Various engineering methods were proposed in past decades
for extracting the most useful information from raw observations [1]. However,
recent developments in representation learning (RL) showed that feature engi-
neering has limitations [2]. In particular, engineered features do not generalize to
a large amount of problems due to their task-specific design, and the approaches
are theoretically cumbersome to analyze and improve.

On the contrary, RL approaches do not suffer from these limitations because
they aim to learn the relevant features instead of relying on expert knowledge for
creating the pipeline of preprocessing transformations. Their goal is to construct
in an unsupervised fashion a high-level representation from unlabeled data and
use it for feature extraction. An important class of RL approaches, known as

c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 117–126, 2015.
DOI: 10.1007/978-3-319-26532-2 14
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dictionary learning (DL), uses sparse modeling to construct efficient data rep-
resentations by linearly combining a small number of typical patterns (atoms)
learned from data. Significant practical and theoretical contributions for learning
a collection of such patterns (called a dictionary) have lead to state-of-the-art
results in many signal processing and vision-related tasks [3,4].

Recently, DL has been extended to supervised dictionary learning (SDL)
by taking into account the label information instead of only relying on unla-
beled data [5]. Among the different ways to extend a DL approach to supervised
learning, one is to learn class-specific dictionaries. For instance, Ramirez et al.
[6] proposed dictionary learning with structured incoherence (DLSI), a multi-
dictionary approach minimizing the correlation between the class-specific dictio-
naries. Also, Yang et al. [7] incorporated a Fisher discrimination penalty in their
Fisher discrimination dictionary learning (FDDL) approach to make the dictio-
naries more discriminative. Another way is to learn a joint dictionary with class-
specific atoms. For example, Zhang et al. [8] proposed discriminative KSVD and
Jiang et al. [9] proposed label consistent KSVD, both extending the well-known
KSVD algorithm [10] to supervised learning. Finally, Wright et al. [11] proposed
using the whole dataset as the dictionary in their sparse representation-based
classification (SRC) approach and applied it on face recognition tasks.

The critical part when using multiple dictionaries in SDL is encouraging dic-
tionary diversity for learning discriminative patterns [12]. The most common
way to achieve this goal is by incorporating a discriminative term to the learn-
ing framework. For instance, DLSI uses the correlation between the class-specific
dictionaries while FDDL uses a Fisher discrimination criterion. However, these
new terms greatly complexify the learning phase. In this paper, we propose a
framework for learning class-specific dictionaries under a diversity constraint
without adding new discriminative terms. Moreover, we propose a learning algo-
rithm that simultaneously treats the dictionaries in parallel. We finally propose
an incremental learning rule that improves the convergence guarantees of sto-
chastic gradient descent under sparsity constraints.

This paper is organized as follows. We introduce the reader to dictionary
learning in Sect. 2 and present the proposed approach in Sect. 3. We show the
experimentations in Sect. 4 and conclude in Sect. 5.

2 Background on Dictionary Learning

Let us define X = [x1 . . .xN ] ∈ R
M×N as the data matrix containing N M -

dimensional observations and D = [d1 . . .dK ] ∈ R
M×K as the dictionary with

K atoms. Dictionary learning aims to represent each observation xn as a sparse
linear composition wn of the dictionary atoms dk with minimal residual error:

min
D,W

‖X − DW‖2F + λ‖W‖1 s.t. ‖dk‖2 = 1 ∀k , (1)

where W = [w1 . . .wN ] ∈ R
K×N is the weight matrix, ‖ · ‖2F and ‖ · ‖1 are

respectively the squared Frobenius and entry-wise �1 norms. We define the
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residual error as ‖X−DW‖2F and the sparsity constraint as λ‖W‖1. The hyper-
parameter λ > 0 governs the sparsity of the weight vectors wn and is usually
chosen by cross-validation. Constraining the dictionary atoms with ‖dk‖2 = 1 is
needed for removing the trivial solution where W ≈ 0 and D ≈ ∞.

Minimizing Eq. 1 for both the dictionary D and the weight matrix W is
however computationally too expensive, due to the coupling between D and W
and the large amount of data. Approximating the optimum with an iterative-
alternative optimization scheme is the usual choice for finding a suitable solution.
The procedure works as follows. First, initialize randomly the dictionary D.
Second, minimize Eq. 1 w.r.t. the weight matrix W, considering D fixed. We call
this step sparse coding. Then, minimize Eq. 1 w.r.t. the dictionary D, considering
W fixed. We refer to this step as dictionary learning. Finally, alternate the two
last steps until convergence.

Sparse coding is generally reduced to the LASSO [13] problem and has been
solved by many approaches such as orthogonal matching pursuit (OMP) [14],
lest angle regression (LARS) [15] and marginal regression (MR) [16]. On the
other hand, dictionary learning is usually viewed as a constrained least squares
problem. Method of optimal direction (MOD) [17], online dictionary learning
[18] and KSVD [10] are examples of well-known methods for solving it.

3 Incrementally Built Dictionary Learning

In this section, we describe the proposed approach for imposing dictionary diver-
sity. We first develop the optimization framework that will be used for learning
the parameters and elaborate on its convergence guaranty. The section ends with
a discussion on sparse-coding based features.

3.1 Approach Description

Let D be the unknown data distribution that generated the dataset
{(xn, yn)}Nn=1, where observation xn ∈ R

M has class label yn ∈ {1 . . . C}. Let us
define the following residual error-based model:

fc(x) = min
w

‖x − Dcw‖22 + λ‖w‖1 , (2)

where Dc are class-specific dictionaries. Our goal is then to learn the dictionaries
minimizing the expected classification error:

h = arg min
h

E(x,y)∼D [�(h(x), y)] s.t. h(x) = arg min
c

fc(x) , (3)

where � is the 0–1 loss. The classification rule h(x) assigns class label c to obser-
vation x when the combined residual error and sparsity penalty using dictionary
Dc is the smallest. Since Eq. 3 is a multi-dictionary approach, the main con-
cern is imposing dictionary diversity for extracting discriminative features. We
propose to maximize the distance between fc(xi) and fc(xj) where observations
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xi are labeled c (yi = c) and observations xj are not labeled c (yj �= c). This
learning principle is contrary to the one generally used in a SDL approach where
class-dictionary Dc must achieved the smallest residual error on observations
from class c. Here, we rather encourage that the residual fc(xi) is far enough
from the residual fc(xj). In a sense, we want the dictionaries to learn features
maximizing the residual error margin to improve the separation of the classes.
We believe that better classification performances could be achieved by tuning
the class-c dictionary to increase the residual for observations not from class c
rather than to reduce the residual for observations from class c. Therefore, we
define the following optimization problem, ∀c ∈ {1 . . . C}:

Dc = arg min
Dc

∑

xi
s.t. yi=c

∑

xj

s.t. yj �=c

L(γfc(xi) − fc(xj)) s.t. ‖dck‖2 = 1 ∀k , (4)

where L(x) = max{x, 0} is a Hinge-based loss. The hyper-parameter γ ≥ 1
governs the importance of minimizing the residual for xi and will be inferred by
cross validation. We emphasis that our framework is easily parallelized by solving
Eq. 4 simultaneously for each class c. Minimizing Eq. 4 is done with projected
stochastic gradient descent and the gradient of the loss function L(γfc(xi) −
fc(xj)) is computed as follows:

∇Dc
L =

{
Dc

(
γw̃iw̃�

i − w̃jw̃�
j

)
+ xjw̃�

j − γxiw̃�
i if γfc(xi) > fc(xj)

0 otherwise
, (5)

where w̃i = arg minw ‖xi − Dcw‖22 + λ‖w‖1 is the sparse coding solution. The
final update rule is then:

Dc ← Π
D

(Dc − α∇Dc
L(γfc(xi) − fc(xj))) (6)

where α > 0 is the learning rate and Π
D

is a projection onto the subspace D of
dictionaries having normalized columns.

3.2 Incremental Learning Rule

Our approach does not have a convergence guarantee. Due to sparsity, many
dictionary atoms are never updated and only a small subset truly represent the
latent structure. Consequently, we observe a rich get richer phenomenon where
the same atoms get activated over and over again resulting in suboptimal dictio-
naries. To prevent this, we propose the following incremental learning rule. We
initialize the dictionary Dc with K0 < K atoms and perform gradient descent.
At each iteration, we keep track of the usage statistics by incrementing uk by 1
when atom dk is active (w̃ik �= 0), ∀k ∈ {1 . . . K}. After T0 iterations, we recon-
sider the dictionary in two ways. Let u∗ = arg mink uk denotes the least used
dictionary atom1 and p = u/‖u‖2 denotes the probability distribution computed

1 In the case where there are several atoms, randomly select one of them.
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Algorithm 1. Incrementally Built Dictionary Learning
Initialize Dc, ∀c ∈ {1 . . . C}, each with K0 random and normalized atoms.
for c = 1 . . . C do

Initialize the usage statistics: u ← 0
for t = 1 . . . T do

Sample xi ∼ D, xj ∼ D such that yi = c and yj �= c
Compute w̃i and w̃j using, for example, LARS.
Dc ← Dc − α∇DcL(γfc(xi) − fc(xj)) (Eq. 5)
dck ← dck/‖dck‖2, ∀k ∈ {1 . . . K}
u ← u + 1w̃i �=0 (element-wise indicator function)
if 0 ≡ t mod T0 and K0 < K then

u∗ = arg mink uk

i, j ∼ GB(p), where p = u/‖u‖2

dcu∗ ∼ N (dci, σ
21), d+ ∼ N (dcj , σ

21)
Dc ← Dc ∪ {d+}, K0 ← K0 + 1, u ← 0

end if
end for

end for

from the usage statistics. We first resample the least used dictionary atom du∗

and second add a new atom to the dictionary according to the following scheme:

i, j ∼ GB(p), du∗ ∼ N (di, σ
21) d+ ∼ N (dj , σ

21) , (7)

where GB is the generalized Bernoulli distribution and N is the Gaussian dis-
tribution with variance parameter σ2. Based on our experimentations, we found
that σ2 = 1/M and T0 = T/2K achieved good performances, where T is the
total number of iterations. The resulting algorithm is presented in Algorithm1
and we refer to our approach as incrementally build dictionary learning (IBDL).

There are two aspects motivating this incremental learning. First, unused
dictionary atoms are either useless or specialized. At the beginning of the gra-
dient descent, unused atoms are necessarily useless for reasons given earlier.
However, at the end of the descent, unused atoms might represent a relevant
structure even though they are rarely used for sparse coding. This explains our
choice for T0 because no atom resampling is permitted after T/2 iterations to
allow learning specialized atom. Second, overused atoms need specialization. To
understand this principle, let us study the following limit case. Suppose that a
dictionary atom dp has discovered such a complex structure that it always gets
activated for encoding. However, most observations only uses subregions of dp

(corresponding to simpler structures) due to its overly complex nature. As a
consequence, the gradient descent updates only target subregions of dp (those
found in the observation used for the gradient descent) and the content of dp

never settles to a stationary point. Sampling du∗ and d+ according to the usage
statistic allows them to share the complex structure found by dp.
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Table 1. Error rate results (%) of our approaches (IBDL-E and IBDL-C) and the
state-of-the-art on the MNIST and USPS digit recognition tasks.

IBDL-E SDL-G REC L �2-KNN SVM-Gauss FDDL DLSI SRSCIBDL-C SDL-D REC BL

2.88 3.56 4.33MNIST 5.00 1.4 - 1.26 -2.21 1.05 3.41

4.63 6.67 6.83USPS 5.2 4.2 3.69 3.98 6.053.99 3.54 4.38

Table 2. Optimal hyper-parameter values of our approaches on the MNIST and USPS
digit recognition tasks.

MNIST USPS

Encoder K λ γ α Encoder K λ γ α

IBDL-E LARS 75 0.66 11.36 0.00009 LARS 50 0.13 2.86 0.00006

MR 25 0.06 10.60 0.0003 MR 50 11.18 1.84 0.0001IBDL-C
5NN classifier SVM, gam = 0.00005, C = 11851.15

3.3 Sparse Coding-Based Feature Extraction

Another alternative to using the residual error for classification is to train a clas-
sifier on sparse coding-based features. We therefore define e = [f1(x) . . . fC(x)]
the error vector and r = [w1 . . .wC ] the representation vector of observation x
computed from the class-specific dictionaries. We construct a feature vector by
concatenating the normalized vectors e and r to form the vector φ = [ e

‖e‖2
, r

‖r‖2
]

and use it as input for the classifier.

4 Experimentations

We tested IBDL on digit recognition using MNIST and USPS datasets and
on face recognition using the Extended Yale B dataset. We evaluated the
two proposed types of classification: (1) minimal residual error (IBDL-E), as
defined by Eq. 3, and (2) classification with our sparse coding-based features
(IBDL-C), as defined in Sect. 3.3. For all tasks, we cross-validated (3-fold) the
hyper-parameters Θ = {λ, γ, α} using Bayesian optimization [19] and tested
the OMP, MR and LARS sparse coding algorithms with K ∈ {25, 50, 75} and
T ∈ {10000, 25000, 50000}. We report the test score of the approach achieving
the best validation score. For IBDL-C, we evaluated the KNN and RBF-SVM
classifiers. We cross-validated their hyper-parameters using Bayesian optimiza-
tion [19] and report the test score of the best approach.

4.1 Digits Recognition

The USPS dataset contains 7,291 training and 2,007 testing 16 × 16 images
and the MNIST contains 60,000 training and 10,000 testing 28 × 28 images. We
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report in Table 1 the performances of our approach in comparison to others in the
literature: REC-L, REC-BL, SDL-G and SDL-D [5], KNN, SVM and DLSI [6],
FDLL [7] and SRSC [20]. The optimal hyper-parameters are also reported in
Table 2.

Discussion. Our approach IBDL-C has competitive performances on the USPS
dataset and comparable performances on MNIST with the state-of-the-art. The
main difference between these two tasks is the number of observations and the
image size. Since our approach samples one observation from class c and another
one from class ¬c, it appears that more iterations are needed when dealing with
larger datasets. Due to the curse of dimensionality, the image size may also
affect the accuracy. Even though IBDL-E does not work well on either tasks,
our results show that the KNN classifier has better accuracy with our sparse
coding-based features. We believe that using both the structure of the weight
vectors wc and the error values e for constructing the feature vector φ makes it
more discriminative. Further investigations for explaining why IBDL-C achieve
better accuracy than IBDL-E is needed.

4.2 Face Recognition

The Extended Yale B dataset contains 2,414 frontal-face images of 38 individuals
(approximatively 64 images per subject). We used the experimental setup of [11]
and compared against SRC, NN and SVM from [11] for downsampled images and
Eigenfaces. The accuracy results are reported in Fig. 1. We tested for K = 25
and T = 10000. IBDL-E achieved a maximum accuracy of 95.39% with the
OMP encoding and λ = 10, γ = 14.66 and α = 0.000009.

Discussion. The IBDL-E approach has state-of-the-art performances on face
recognition. Interestingly, our approach achieved its best accuracy with down-
sampled images. This was unexpected since eigenfaces are usually known to
outperform them (it is indeed the case for SRC, NN and SVM). We believe that
the eigenface transformation removes important information during the orthog-
onalization affecting the latent structure learning. Using downsampled images
is advantageous because no training data is required for extracting the features.
Also, IBDL-E has better accuracy than SRC with low-dimensional features but
does not outperform it with high-dimensional features. We believe that this is
due to the curse of dimensionality. However, since our approach learns the dictio-
naries independently, the 38 class-specific models were trained in parallel. This
parallel linear speed up is important for recognition task with many classes, such
as face recognition which requires on class per individual.

4.3 The Effects of Incremental Learning

In this section, we demonstrate the beneficial effects of the proposed incremental
learning rule. We trained two IBDL models on the USPS dataset by optimiz-
ing Eq. 4, one with incremental learning and the other without, using a LARS
encoding with hyper-parameters λ = 3, α = 0.0001, γ = 15, T = 5000 and
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Fig. 1. Face recognition results on the Extended Yale B dataset.

K = 25. Figure 2 shows the 25 learned dictionary atoms of both dictionaries for
the class digit 0. As explained in Sect. 3, the dictionary trained without incre-
mental learning is suboptimal containing atoms unrelated to the structure of a 0.
This can clearly be seen in the top row of Fig. 2 where many entries (e.g. 4th) are
just noise. Those atoms were never updated during the gradient descent (their
uk were 0). On the contrary, the dictionary learned with incremental learning
(bottom row of Fig. 2) used all atoms to represent the latent structure. The same
phenomenon appeared for all class-specific dictionaries. Therefore, this shows
empirically that incremental learning improves the convergence guarantee of the
gradient descent under a sparsity constraint for finding a more representative
dictionary.

Without incremental learning.

With incremental learning.

Fig. 2. The effects of incremental learning on the USPS dataset for class digit 0. Each
image corresponds to a dictionary atom dk. The dictionary learned without incremental
learning (top row) contains uninformative features in comparison to the dictionary
learned with incremental learning (bottom row).
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5 Conclusion

In this paper, we proposed incrementally built dictionary learning (IBDL), a
supervised multi-dictionary approach for classification. The IBDL aims to learn
class-specific dictionaries with high diversity by optimizing the between-class
residual error distance. We proposed a parallel optimization framework based
on stochastic gradient descent that allows learning the dictionaries simultane-
ously. The preliminary experimental results on digit and face recognition show
that IBDL achieves good accuracy on face recognition and improved the KNN
classifier performances with the proposed sparse coding-based features. As future
work, we will extend the notion of diversity by using probability simplexes as
dictionary atoms and by considering a Kullback-Leibler based distance between
the dictionaries.
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Abstract. In this paper, we propose a new approach for reconstruct-
ing 3D structure from motion parallax. Instead of obtaining 3D struc-
ture from multi-view geometry or factorization, a Deep Neural Network
(DNN) based method is proposed without assuming the camera model
explicitly. In the proposed method, the targets are first split into con-
nected 3D corners, and then the DNN regressor is trained to estimate
the relative 3D structure of each corner from the target rotation. Finally,
a temporal integration is performed to further improve the reconstruc-
tion accuracy. The effectiveness of the method is proved by a typical
experiment of the Kinetic Depth Effect (KDE) in human visual system,
in which the DNN regressor reconstructs the structure of a rotating 3D
bent wire. The proposed method is also applied to reconstruct another
two real targets. Experimental results on both synthetic and real images
show that the proposed method is accurate and effective.

Keywords: 3D Reconstruction · Structure from Motion · Deep Neural
Network · Kinetic Depth Effect

1 Introduction

2D image features like edges and lines are important for visual perception as they
convey compact information about objects in the world. However they must be
interpreted into 3D structures to make the inferential leap from image to envi-
ronment [4]. 3D reconstruction is one of the basic problem in computer vision,
and has important applications in scene understanding and augmented reality.
Recovering 3D structure from 2D images is an inverse problem, however, the
lost depth information can also be recovered from various visual cues, such as
binocular disparity, motion parallax, accommodation, shading and shadows, etc.
Among these, motion parallax is one of the most important as motion informa-
tion figures importantly in both spatial perception and organization of visual
perception.

In computer vision, recovering 3D structure from images taken from different
views has been widely studied, known as Structure From Motion (SFM). Recent
works on SFM concern the geometric differences and assume that the geometric

c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 127–137, 2015.
DOI: 10.1007/978-3-319-26532-2 15
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Fig. 1. A bent wire is rotating around the vertical axis with its shadow back-projected
onto a translucent screen. Corners are selected to be the reconstruction units.

camera model is accurate. However, these methods are computationally expen-
sive and may not be able to reconstruct correct 3D structures due to local optima.
In this paper, a Deep Neural Network (DNN) based 3D reconstruction method,
which learns the 2D motion patterns of different 3D structures and then infer-
ences 3D structures from the object rotation, is proposed. As the motion parallax
provides relative and quantitative depth information, the proposed method suc-
cessfully recovers the relative 3D structure of the observed object. Furthermore,
a typical experiment of the Kinetic Depth Effect (KDE) [1] is suggested to eval-
uate the proposed method. The KDE is the first phenomenon that demonstrates
the ability of human to perceive depth from the object motion, as is shown
in Fig. 1. The back-projected shadow of a wire is presented to the observers.
As soon as the wire begins rotating, a 3D rotating wire is perceived. Although
reconstructing 3D information from the wire rotation is geometrically underde-
termined, human observers have no difficulty to perceive 3D structure from only
two views. They obtain the possible interpretation with the gained experience.

In the experiments, the objects are first split into several reconstruction units
and the learned DNN model is applied to estimate the 3D structure of each
unit. The whole objects are reconstructed by jointing each units. After that, a
temporal integration method is performed to integrate the 3D structures and
estimate the 3D motion.

The remainder of the paper is organized as follows. Section 2 reviews related
work in SFM and learning based 3D reconstruction. The proposed DNN based
3D structure reconstruction method is presented in Sect. 3, and Sect. 4 shows the
experimental results on both synthetic and real images. Finally Sect. 5 concludes
the paper.

2 Related Work

Structure from motion has been actively studied over decades to estimate 3D
structure and camera motion [10,11,20,22]. The bundle adjustment [6] strategy
was applied to estimate the 3D structure. During the optimization procedure,
nonlinear least squares was often applied to measure the projection errors. The
factorization method was also proposed to reconstruct 3D model from image cor-
respondence [2]. It provided a linear method to initialize iterative techniques, e.g.
bundle adjustment. The shape and motion were able to be reconstructed simul-
taneously under orthography or related models. The factorization approaches
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were extended to handle non-rigidity by Bregler et al. [5]. However, the camera
model was assumed to be orthographic projection.

Many researchers focused on learning based 3D reconstruction methods. They
denoted to the problem as training models via supervised learning to infer the
3D structure. Saxena et al. [12] presented an algorithm for predicting 3D struc-
ture from single still image with a trained Markov Random Field (MRF) model.
Their method produced visually-pleasing 3D depth maps but was not accu-
rate enough. The binocular disparity and the monocular cues were incorporated
to obtain more accurate depth estimation in [13]. Hedau et al. [16] and Xiao
et al. [17] presented methods to detect individual boxy volumetric structures
from single image using 3D cuboid detectors. Edges and corners were modeled
when the spatial consistency were enforced to a 3D cuboid model. Fouhey et
al. [19] aimed at discovering a vocabulary of 3D primitives that are visually dis-
criminative and geometrically informative, and then dense 3D interpretation of
single image was created by the primitives. Li et al. [21] predicted the depth of a
scene from single monocular image by combining deep convolutional neural net-
work and conditional random fields. However, those methods focused on recon-
structing 3D structure from single images based on static visual cues, such as
texture variations and gradients, edge interpretation, etc. Several researchers
had interpreted the SFM as a probabilistic generative model which permitted
the inclusion of priors on the motion sequence [7,15], but they assumed that the
object shape at each time was drawn from a specific distribution.

3 DNN Based 3D Reconstruction Method

In this section, the proposed DNN based 3D structure reconstruction method
is detailed. The representation of the reconstruction unit is presented firstly,
followed by a description of the proposed model, and the temporal integration
is presented at last.

3.1 Reconstruction Unit

In the proposed method, three pairwise point-correspondences from two views
are selected as the reconstruction unit as is illustrated in Fig. 1. Three consecutive
points form a corner which contains a corner point and two edges in KDE. Thus,
the bent wire is first split into reconstruction units, and then the 3D structure
of each unit is estimated from two images taken at time t and t + 1. The 3D
structure of the whole wire is obtained by jointing every parts.

Figure 1 shows the representation of the reconstruction unit. The 3D position
of the kth corner point at time t is represented by P t

k. Sk refers to the 3D
reconstruction unit with the corner point Pk and another two points Pk−1 and
Pk+1. The vectors Et+1

k,k−1 = P t+1
k−1 − P t+1

k and Et+1
k,k+1 = P t+1

k+1 − P t+1
k indicate

the relative 3D structure of Sk at time t + 1. ptk represents the position of the
kth corner point in image taken at time t, and vtk = pt+1

k − ptk ∈ R
2 represents

the 2D motion of the corner point pk from time t to t + 1. etk,k−1 = ptk−1 − ptk
and etk,k+1 = ptk+1 − ptk indicate the 2D structure of the corner at time t.
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3.2 Deep Neural Network for 3D Reconstruction

DNN has emerged as an important research area of machine learning [9,14].
During the past several years, DNN has been impacting a wide range of pattern
recognition tasks. In this work, 3D structure reconstruction from image motion is
regarded as a nonlinear regression problem since the targets are rotating around
different axis at various speed. DNN provides a simple framework to learn such
regression models owe to the multiple levels of nonlinear operations [14].

Fig. 2. DNN architecture for 3D reconstruction, the left one is the structureless model.
The middle structured architecture is the motion-first model and the corner-first model
is on the right.

After obtaining the point correspondences, DNN models are trained to regress
image motions to 3D structures. Three neural networks of different architecture
are trained in our experiment. The first neural network, as depicted in the left
of Fig. 2, which uses positions pk−1, pk and pk+1 at time t and t + 1 as input
followed by 2 layers of hidden units and then output the 3D structure of St+1

k ,
i.e. Et+1

k,k−1 and Et+1
k,k+1.

Good internal representations are supposed to be hierarchical. Pixels are
assembled into edges, and edges are then assembled into parts (like the recon-
struction unit applied in this paper), and parts into objects (e.g. a wire) [18].
Instead of taking the unorganized 2D information as input, the second model
has a structured architecture, as is shown in the middle of Fig. 2. There are four
inputs in this model. (ptk, e

t
k,k−1) represents the position and 2D structure of

edge ek,k−1 at time t and (pt+1
k , et+1

k,k−1) represents the same information of edge
ek,k−1 at time t + 1. The representation of ek,k+1 is the same as ek,k−1. Layers
mk,k−1 and mk,k+1 extract motion information of ek,k−1 and ek,k+1 from t to
t + 1. As the extraction of motion information at each time is consistent, the
parameters of mk,k−1 and mk,k+1 are shared. After modeling the 2D motion of
edges, a joint layer is applied to integrate all the 2D information of corner Sk.
Then the joint layer is full connected to the output layer which indicates the
3D structure of corner St+1

k . To prove that the motion should be processed in
the first layer, another model shown in the right of Fig. 2 is proposed. Edges are
assembled into corners firstly, i.e. ctk and ct+1

k , and then a joint layer integrates
the 2D information.
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After each reconstruction unit is reconstructed individually, P̂ t+1
k , which rep-

resents the position of P t+1
k relative to P t+1

0 , is obtained by assuming that the
first corner point P t+1

0 is located at the origin O of coordinate.

P̂ t+1
k =

⎧
⎪⎨

⎪⎩

O, if k = 0;
P̂ t+1
0 − Et+1

1,0 , if k = 1,

P̂ t+1
k−1 +

Et+1
k−1,k−Et+1

k,k−1
2 , if k > 1.

(1)

3.3 Temporal Integration

The visual system considers motion perception in at least two steps: an early
process of 2D image motion and a later process perceiving the 3D objects motion.
In the experiment of KDE, the wire is supposed to be rotated around the first
part P0P1. 3D motion is firstly estimated from the 3D structure obtained from
the image sequence, while the 3D rotation is assumed to be constant for a short
time. After that, the 3D structure of the wire at each time is integrated to
improve the reconstruction accuracy.

The relationship between the relative 3D position of kth point at time t − 1
and t, i.e. P̂ t−1

k and P̂ t
k, is defined as P̂ t

k = RtP̂ t−1
k . Rt represents the rotation

of the wire from t − 1 to t, which is assumed to be fixed for a short time, i.e.
Rt=Rt+1. As the first point P0 is located at the origin and P0P1 is the rotation
axis. The rotation Rt can be computed by the least square method. Then the

3D structure is extracted at time n by
∗
Pn
k = (Rt)(t−n)P̂n

k . Instead of considering
all reconstructed 3D structures, the 3D structures from n = t − T to t are

integrated, P̄ t
k = 1

T

∑t
n=t−T

∗
Pn
k . T represents the length of the time window of

3D perception. P̄ t
k indicates the relative position of Pk after temporal integration.

4 Experiments

4.1 Data Generation

The synthetic datasets, which contain the ground truth 3D structures and images
of different views, are generated using computer graphics. Human observers place
the target of interest on the fovea which has the highest visual acuity, and track
the target under movements caused by the object or the observer’s head [4].
So more attentions should be paid to the restricted area around the rotation
axis when recovering 3D structures. In the experiment, the synthetic wires are
rotating near the middle of view. The rotation axises which parallel to y-axis are
generated within 20 cm around the y-axis randomly. All corners of the bent wires
are limited to certain range around the rotation axis, which is set to 15 cm in the
experiment. Besides, the range of possible rotational speed is also restricted as
observers could only percept the object motion which is neither too slow nor too
fast [4]. Thus, the rotational speed is restricted from 5 to 10 degrees per frame.
The images of the wires, as is shown in Fig. 3, are captured from a fixed virtual
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camera which is 100 cm from the origin. Only the motion parallax extracted
from the images is used to recover the 3D structure. The camera parameters
is calibrated from a Logitech HD Webcam C270 camera which is also used to
capture real images with a resolution of 640*480 pixels.

Fig. 3. Examples of synthetic data generated by computer graphic. The images in the
same column are captured from the same rotating corner. The white line is the rotation
axis, the yellow point represents the position of a corner and the red lines represent
the 2D structure of the corner (Color figure online).

The DNN models are trained on synthetic data and evaluated on both syn-
thetic and real images. 160,000 reconstruction units are generated randomly for
training and other 40,000 units for testing. 100 wires each contains 5 reconstruc-
tion units are generated to test the model. For each wire, 20 images are generated
to evaluate the temporal integration method. Real images are captured from the
Logitech HD Webcam C270 camera when the targets are rotating.

4.2 Reconstruction on Synthetic Images

To prove the effectiveness and accuracy of the proposed method, it is first tested
on the synthetic dataset. The average distance between reconstructed corner
points and the ground truth, i.e. the reconstruction error, is suggested as metrics.
As the reconstructed 3D structure is relative, the absolute position of point P t+1

k

is provided to align the estimated reconstruction units and the ground truth.
The first model (Structureless Network, SN) has 12 visible units which represent
2D information of the reconstruction unit, followed by 2 layers of 256 hidden
units. The second model (Motion First, MF) and the third model (Corner First,
CF) both contain 4*4 visible units. 128 hidden units are applied for each path
way in the first level hidden layers and 256 hidden units for the joint layer. The
parameters of the first level hidden layers are shared. All networks are trained by
the stochastic gradient descent (SGD) with the sum square loss function. The
weights are initialized from a zero-mean Gaussian distribution with standard
deviation 0.001 and the biases with the constant 0. For all layers, the rectified
linear unit (ReLU) is employed as activation function. The initial learning rate
is 0.001 and decays during training progress. The training process is terminated
when the training error convergences.
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Table 1. Quantitative comparison on synthetic images.

Model Average distance (cm)

CF-unshared 1.52

MF-unshared 1.52

SN 1.49

CF-shared 1.51

MF-shared 1.48

Comparative result is given in Table 1. The following models are evaluated:
(a) CF-unshared: combining the motion information after the corner has been
processed without the parameters sharing. (b) MF-unshared: combining the
motion information before formating corner but not sharing parameters.(c) SN:
the two layers structureless network. (d) CF-shared: the architecture is the same
as CF-unshared but the parameters in the first layer are shared. (e) MF-shared:
MF model with the parameters sharing. The results show that, the DNN based
method is able to reconstruct 3D structure from three points of two distinct
views accurately. The quantitative comparison shows that the average distance
of CF model is larger than both MF and SN models. The results suggest that
image motion should be processed in low level of network. Table 1 also shows
that the MF model with parameters sharing (MF-shared) outperforms all the
other models in reconstruction accuracy with the least trained parameters. The
results prove that sharing low level parameters is more reasonable and accurate.

Although 3D structures of wires could be reconstructed from only two views,
temporal information should also be performed to decrease reconstruction error.
The mean average distance of temporal integration is shown in Fig. 4. The result
shows that the integration method improves the reconstruction accuracy effec-
tively when more images are available. The reconstruction error decreases faster
at the beginning, and slows down when more images are available just as the
human observers do. The results after temporal integration of 20 views are shown
in Fig. 5. The higher corners appear to present larger reconstruction error due
to error accumulation as the proposed model reconstructs the relative structure.

Fig. 4. The temporal integration is represented on the left, in which the rotation Rt

and integrated 3D structure are estimated. The mean average distance after temporal
integration is on the right.
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Fig. 5. Reconstruction results on synthetic images. The input images are on the left
and the reconstruction result of different views is shown on the right. The red lines
represent the ground truth of the wires and the yellow points represent corner points
of the ground truth. The reconstructed structure of each wire is represented in green
and the reconstructed corners are shown as black (Color figure online).

Fig. 6. Reconstruction result of rotation wire on real images. The 3D structure of the
wire is reconstructed from the first two images. The reconstruction result (the green
lines) of different views is shown with the corresponding real images (Color figure
online).

Fig. 7. The reconstruction results of the cube and flowerpot from two real images. The
virtual reconstruction units are represented as green and the results of different views
are also presented (Color figure online).
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4.3 Reconstruction on Real Images

The reconstruction model is also tested on real images. The corners are first
detected by Shi-Tomasi corner detector [3] followed by a non-maximal suppres-
sion. After that, the correspondence is obtained by tracking corners through each
view. The MF-shared model is then performed to reconstruct the 3D structure.
The results on real images are shown in Fig. 6. The 3D wires are reconstructed
from the correspondence between the first two views. The reconstruction result
(the green lines) are shown with the corresponding real images of different views.
The results show that the proposed model is reasonable for reconstruction on real
images. To further evaluate the proposed method, it is employed to more com-
plex targets. SURF extractor [8] followed by the RANSAC method is applied
to extract point-correspondences. Reconstruction unit is assumed to be exis-
tent between every three corner points and the whole 3D structure is obtained
after estimating the relative 3D structure of each units, and then the texture
is mapped to the 3D results. The reconstruction results are shown in Fig. 7. As
the 3D structures are reconstructed from two views, only the visible parts of
the targets are recovered. The complete 3D structure of each target could be
recovered by integrating all the parts when more images are captured, which
can be further considered.

5 Conclusions

In this paper, a DNN based method is presented for reconstructing 3D structure
from object rotation without predefining the camera model. Since the speed of
object motion is various, the 3D reconstruction is treated as a nonlinear regres-
sion problem. DNN is adopted to model the relation between 2D motions and
3D structures. Instead of obtaining absolute 3D position, the proposed method
reconstructs the relative 3D structure of the observed object. Moreover, the
temporal integration estimates 3D structures from multiple frames and further
improves the reconstruction accuracy.

The proposed approach is evaluated on both synthetic and real images. The
experimental results on synthetic images present that the proposed method
reconstructs accurate 3D structures with an average reconstruction error of
1.48 cm. In the experiments on real images, a bent wire and another two real tar-
gets are successfully reconstructed. The experimental results demonstrate that
the proposed method is both accurate and effective.
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Abstract. Edge detection extracts rich geometric structures of the
image and largely reduces the amount of data to be processed, provid-
ing essential input to many visual tasks. Traditional algorithms consist
of three steps: smoothing, filtering and locating, in which the filters are
usually designed manually and thresholds are selected without strictly
theoretical support. In this paper, convolutional networks (ConvNets)
are trained to detect edges by learning a group of filters and classifiers
simultaneously. In addition, the contrast sensitivity function (CSF) in
visual psychology is adopted to determine whether an edge is visible
to human visual system (HVS). Edge samples of various appearance
are synthesised, and then labelled via CSF for model training. Multi-
channel ConvNets are trained to perceive edges of different frequencies
and composed at last. Compared with classical algorithms, ConvNets-
CSF model is more robust to contrast variation and more biologically
plausible. Evaluated on USF edge detection dataset, it achieves compara-
ble performance as Canny edge detector and outperforms other classical
algorithms.

Keywords: Edge detection · Convolutional networks · Contrast sensi-
tivity function

1 Introduction

Edge is defined as the point at which intensity changes abruptly in images.
It may be produced from nonuniform light, surface material variation, object
border, occlusion etc. Edge detection is an essential pre-processing stage in both
biological and machine visual systems and provides important feature cues for
image segmentation, stereo matching, object detection and tracking. Therefore
over a long period of time, edge detection has been a fundamental research topic
in computer vision.

Nowadays lots of algorithms are available for edge detection. They mainly
consist of three steps: smoothing, filtering and locating. Edge operators like Sobel
[1], Prewitt [2] and Roberts [3] are designed to compute image’s intensity gradi-
ent, then on which threshold is applied to locate edge positions. These algorithms
are simple but also crude. To mimic the receptive field of simple cells in primary
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 138–146, 2015.
DOI: 10.1007/978-3-319-26532-2 16
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visual cortex (V1), (Marr and Hildreth 1980) [4] proposed an algorithm by find-
ing zero-crossings of the Laplacian operator applied to a Gaussian-smoothed
image. (Canny 1986) introduced an optimal smoothing filter to satisfy the three
mathematical criteria for edge detection [5]. Strengthened with techniques of
non-maximum suppression and edge tracking by hysteresis, Canny edge detec-
tor has long been the state-of-the-art edge detector.

Although most commonly used by the computer vision community, gradient-
based edge detectors suffer from a number of problems: (1) It’s hard to choose
appropriate threshold values to preserve weak edges while eliminate noise. (2)
The differential operators need to be designed elaborately to perceive all the
morphological properties of edge. (3) The size of operators (and hence the degree
of smoothing) also affects the estimation of edge position.

To solve the first problem, we borrow ideas from the findings of psy-
chophysics. Contrast sensitivity function (CSF) [6] depicts the contrast sensitiv-
ity of human visual system (HVS) to sinusoidal gratings of different frequencies,
and this can be served as criterion to discriminate edge from non-edge in per-
ceptual sense, as all edges can be decomposed into a series of sinusoidal gratings.

For the second problem, we use a learning method to obtain operators directly
from raw data, which has become a trend in edge detection [7,8]. The model used
by us is convolutional networks (ConvNets) [9], which have been widely used in
many tasks of computer vision and become new state of the art. With ConvNets,
differential filtering and edge locating are combined in a unified frame by learning
operators and classifiers simultaneously.

Based on CSF and ConvNets, we build a multi-channel edge detector to per-
ceive both coarse and fine edges. Training samples are synthesised with various
frequencies, orientations and contrasts, and then labelled automatically as edge
or non-edge via CSF. For each frequency channel, a ConvNet is trained with its
filter size adaptive to the frequency. Outputs of all the ConvNets are composed
and thinned to produce the final edge map.

The proposed model is evaluated qualitatively on some standard images.
Compared with classical edge detectors, it is more robust to contrast variation
and more biologically plausible. Quantitative evaluation is also made on the USF
edge detection dataset and comparable result is achieved as Canny detector.

2 The Model Architecture

Our ConvNets based edge detector has a multi-channel architecture, i.e. one Con-
vNet is established for each frequency channel. Then outputs of all the channels
are composed to give the final edge map, as shown in Fig. 1. This is inspired by
the theory of spatial frequency channel in visual psychology.

2.1 Convolutional Networks

Convolutional Networks (ConvNets) were first introduced by (Lecun et al. 1989)
[9]. They are hierarchical feature learning neural networks whose structure is bio-
logically inspired. Compared with traditional fully-connected neural networks,
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Fig. 1. The architecture of our multi-channel ConvNets based edge detector. The ori-
entation map is drawn in color mode and each color depicts pixels of one orientation.

ConvNets adopt convolution mechanism to tie the weights across spatial domain
which largely reduces the parameter amount to be learned.

Formally, let’s denote the k-th feature map at layer l as H lk, whose filters
are determined by the weights W lk and bias blk, then the feature map H lk is
obtained as follows:

H lk
ij = f((W lk ∗ H l−1)ij + blk) (1)

where (∗) is the convolution operation and f(·) is the activation function, here,
ReLU is used. After that are the response normalization layers and no pooling
layers are used in the model to keep spatial resolution unchanged.

As shown in Fig. 1, for each frequency channel, a convolutional layer is firstly
built, denoted as Conv(m,n, sx, sy), m is the number of input channels, n is the
number of filters, (sx, sy) is the size of filters. That means given one input image,
a set of n feature maps are obtained after the convolutional layer. Then the n-
length feature vector of each pixel inputs into a pixel-wise fully-connected layer,
denoted as PW-FC(m,n), that is equivalent to Conv(m,n, 1, 1). After that, two
separate pixel-wise softmax layers are established to output the labels of each
pixel, denoted as PW-SM(m,n). One of them performs a binary classification
to discriminate edge from non-edge, the other is a multi-category classification
to predicate the edge orientation, for which, we quantify its possible values of
[0◦, 360◦) uniformly into 8 categories. Actually our ConvNets can be also
regarded as special patch-based neural networks.

2.2 Multi-channel Structure

In order to perceive both smoothly and sharply changed edges, we estab-
lish a ConvNet for each frequency channel. Their convolutional filter sizes are
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frequency dependent, i.e., lower frequency channel with larger filter size, while
higher frequency channel with smaller filter size. Three channels are established
with filter sizes of 3 × 3, 5 × 5, and 9 × 9. Each channel produces two maps, i.e.
edge map and orientation map. A tuple of (class, likelihood) is assigned to every
pixel of the maps, here likelihood refers to the output of softmax function.

To compose the outputs of multi-frequency channels, a MAX operation is
used, i.e., the composed output is determined by the channels with the maximal
predicated likelihood. On the composed edge map and orientation map, non-
maximum suppression is applied to produce final thinned edge map.

3 Training Data Generation and Annotation

A large number of training samples are required to train our ConvNets, but man-
ually building a dataset for edge detection is costly, and moreover, the annotation
criterion is hard to determine, which usually results in confliction of annotations
from different labelers. To guarantee both quantity and quality, we attempt to
find a more efficient and reliable method to generate training samples.

3.1 Training Data Generation

Edges are basic image elements, which can be expressed and analyzed mathe-
matically. Therefore, methods of computer graphics can be used to synthesise
edge images conveniently. When synthesising training images, we control four
variables: intensity mean (Imean), intensity variation (Ivar), orientation (o) and
sample size (s). Their values are listed in Table 1.

Table 1. Variables controlled to synthesise training samples

Variable Range Step

Imean [0, 255] 16

Ivar [0, min(Imean,255-Imean)] 1

o [0◦, 360◦) 45◦

s {3pixel, 5pixel, 9pixel} –

We firstly generate edge images with large enough fixed size, which we call the
base images used to produce training samples of different sizes. Figure 2 shows
some examples of the base images. They are half-divided images with a dividing
line passing through their centre. Except the size is fixed, their appearance are
changed according to Table 1. Then we crop training samples from these base
images along and around the dividing line with sample size s varying as Table 1.
However, the label of each sample can’t be determined completely by its cropping
positions, i.e. samples off the dividing line should all be labelled as negative, while
samples on the dividing line are not all positive, as they may be invisible to HVS
with contrast below HVS’s perceiving threshold.
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Fig. 2. The process of generating edge image samples.

3.2 Training Data Annotation

Contrast Sensitivity Function. Contrast sensitivity function (CSF) depicts
an important character of the HVS. It is defined as the standard measurement
of how sensitive observers are to gratings at different frequencies.

Since the early work of (Schade 1956), more complete models have been built
for CSF [10,11], which have been applied to many tasks of image processing. The
ModelFest dataset was created by (Watson et al. 2005) [12] to provide a public
source of data to test and calibrate models of foveal spatial contrast detection.
They fitted these data with a variety of simple models and found that simple
models with particular parameters were powerful enough to account for the
visibility of a wide variety of spatial stimuli.

We use the HPmH model proposed in [12] to model our CSF and its output
is the reciprocal of the visible contrast threshold:

1/cthr = G · SHPmH(f ; f0, f1, a, p) = G · {sech[(f/f0)p] − asech[f/f1]} (2)

Including gain, it has five parameters and we use the fitting result of standard
A as: G = 373.08, f0 = 4.1726, f1 = 1.3625, a = 0.8493, p = 0.7786. Here, f
is the input frequency measured in cycles per degree (cpd) and the contrast is
defined as Michelson-contrast, that is c = Ivar/Imean. The contrast sensitivity
curve according to HPmH model is plotted in Fig. 3(a).

Labeling Samples via CSF. As the spatial frequency in CSF is measured
in cpd, when applying it to edge detection, the observation model need to be
considered. Let us assume for the moment, that the edges shall be detected in
an image with a given resolution r measured in pixels (dots) per inch (ppi) and
a viewing distance v measured in meters. The sampling frequency, fS in pixels
per degree is then given by fS = 2vtan(0.5◦)r/0.0254. This transition process is
intuitively shown in Fig. 3(b).
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Fig. 3. Contrast sensitivity curve of the HPmH model and the transition of spatial
frequency to image domain via observation model.

To get the exact fS , we have made some reasonable assumptions according
to the common viewing conditions and monitor settings. We assume that the
viewing distance v = 0.65 metre and the monitor’s resolution r = 144 ppi, then
fS ≈ 64 pixels per degree.

Then for a training sample on the dividing line with size of s pixels, it can
be approximately regarded as a one-cycle square-wave grating and its frequency
(cpd) f can be computed as f = fS/s = 64/s.

As the CSF is mainly measured for sinusoidal gratings, some transfer rules
should be considered for square-wave gratings, which has been well studied in
(Campbell and Robson 1968) [13]. They find out that the CSF of square-wave
grating is mainly determined by its fundamental component when the frequency
is over 0.8cpd and the square/sine ratio is measured as 4/π ≈ 1.273. So for each
sample X(c, o, f, i, j) with contrast c, orientation o, frequency f and the cropped
position (i,j) in the base image, its edge predication label Yedge(X(c, o, f, i, j))
is determined as follows:

Yedge(X(c, o, f, i, j)) =

⎧
⎪⎨

⎪⎩

1, i sin(o) + j cos(o) = 0 and
c > (1.273 · G · SHPmH(f))−1;

0, else.
(3)

If Yedge(X(c, o, f, i, j)) = 1, X(c, o, f, i, j) will also be used to train the orienta-
tion predication layer, here, its label is simply Yori(X(c, o, f, i, j)) = �o/45�.

Finally, the amount of training samples for edge predication in three channels
is: Ns=3

pos = 19, 944, Ns=3
neg = 58, 392; Ns=5

pos = 41, 760, Ns=5
neg = 175, 840; Ns=9

pos =
76, 824, Ns=9

neg = 314, 100. Raw gray value ranging in [0,255] is used directly.

4 Experiments

We employed Theano [14] to build and train our models. Stochastic gradient
descent (SGD) was used during training with a batch size of 500 examples.
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Weights in each layer were initialized from a zero-mean Gaussian distribution
with small standard deviation and the neuron biases with the constant 0. Equal
learning rate of 0.001 was used for all layers and adjusted manually throughout
training.

Firstly, we evaluated our models on some standard images (Lena, Camera-
man, Pirate and Livingroom). The results were compared with some classical
edge detectors, including Sobel, Prewitt, Roberts, Marr-Hildreth and Canny.
They were all implemented through the MATLAB edge detection function, of
which, threshold parameters are set based on the mean squared root or his-
togram of the gradient maps automatically. ConvNets without annotating by
CSF are also compared to prove the effective of CSF. Due to space limitation,
only the results on Cameraman are given here. Prewitt and Roberts detectors
are also absent, as their results are very similar to Sobel.

(a) Cameraman (b) Sobel (c) Marr-Hildreth

(d) Canny (e) ConvNets-NoCSF (f) ConvNets-CSF

Fig. 4. Comparison of our model to classical algorithms on Cameraman image. Red
dash lines in (f) show the edges with low contrast detected by our model (Color figure
online).

Then the proposed model was evaluated quantitatively on the USF
dataset [15], a public edge detection dataset consisting of 60 gray images
with manually labelled ground truth for each image. Precision (P ), recall (R)
and F-measure (F ) were used to compare the performance of detectors, here
F = 2PR/(P + R) is the balanced mean between precision and recall.
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Table 2. Comparison of different detectors on USF dataset

Methods Precision Recall F-measure

Sobel 0.99 0.55 0.71

Prewitt 0.99 0.54 0.70

Roberts 0.99 0.46 0.62

Marr-Hildreth 0.93 0.72 0.81

Canny 0.85 0.82 0.83

ConvNets-NoCSF 0.61 0.87 0.72

ConvNets 0.87 0.80 0.83

As shown in Fig. 4 and Table 2, on the whole, Sobel, Prewitt and Roberts
achieve extremely high precision, but their recalls are much low, as they use much
simple operators and brutal thresholds, only strong enough edges are detected.
Marr-Hildreth is better than them, as finding zero-crossings is more reliable than
finding maximum-points. But single threshold is also used in Marr-Hildreth for
the final output and lots of weak edges get missed. Canny achieves very excellent
performance, as it applies edge tracking by hysteresis with double thresholds to
filter out edges caused by noise and bright variation while preserving true weak
edges. ConvNets based edge detector without CSF obtains very high recall, but
lots of spurious edges are also detected. After adopting CSF to annotate the
training samples, the model is trained to learn HVS’s perceptual limits. Most
of the spurious edges, distributing mainly in high frequencies, are eliminated,
as their contrast is under the visible threshold, while the edges strong enough
to cause perception are preserved. As edge tracking is not used in our model,
continuity of the detected edges is not as good as Canny. While benefiting from
CSF, our model can detect edges of very low contrast, such as edges marked out
by red dash lines in Fig. 4(f). Finally, our ConvNets-CSF model achieves same
value of F-measure as Canny detector and outperforms other methods.

5 Conclusion

In this paper, firstly, multi-channel ConvNets are built and trained for edge
detection. They follow the multi-channel processing of HVS and combine filtering
and locating into one unified leaning architecture. Edge maps and orientation
maps are generated as two classification tasks of the model and final thinned
edge maps are produced using non-maximal suppression. Secondly, to obtain
enough training data, we proposed an approach to generate and annotate edge
samples automatically, i.e. synthetising edge images of various appearance and
annotating them via CSF. With these two proposals, our ConvNets-CSF model
is more robust to contrast variation and achieves comparable performance to
Canny edge detector on the USF edge detection dataset.



146 H. Dou et al.

Acknowledgment. The work was supported in part by the National Basic Research
Program of China (2013CB329304), the “Twelfth Five-Year” National Science & Tech-
nology Support Program of China (No. 2012BAI12B01), the Major Project of National
Social Science Foundation of China (No.12&ZD119), the research special fund for pub-
lic welfare industry of health (201202001) and National Natural Science Foundation of
China (No. 81170906).

References

1. Sobel, I.: An isotropic 3x3 image gradient operator. Talk at the Stanford, Artificial
Intelligence Project (SAIP) (1968)

2. Prewitt, J.M.S.: Object enhancement and extraction. In: Lipkin, B.S., Rosenfeld,
A. (eds.) Picture Processing and Psychopictorics, pp. 75–149. Academic Press,
New York (1970)

3. Roberts, L.G.: Machine perception of three-dimensional solids. In: Tippett, T.,
et al. (eds.) Optical and Electro-Optical Information Processing, pp. 159–197. MIT
Press, Cambridge (1965)

4. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. Ser. B
Biol. Sci. 207(1167), 187–217 (1980)

5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8(6), 679–698 (1986)

6. Schade, O.H.: Optical and photoelectric analog of the eye. J. Opt. Soc. Am. 46,
721–739 (1956)

7. Konishi, S.M., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical edge detection:
learning and evaluating edge cues. IEEE Trans. Pattern Anal. Mach. Intell. 25(1),
57–74 (2003)

8. Pablo, A., Michael, M., Charless, F., Jitendra, M.: Contour detection and hierar-
chical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 57–74
(2011)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). IEEE Press,
New York

10. Mannos, J.L., Sakrison, D.J.: The effects of a visual fidelity criterion on the encod-
ing of images. IEEE Trans. Inf. Theor. 4, 525–536 (1974)

11. Barten, P.G.J.: Contrast Sensitivity Function and Its Effect on Image Quality.
SPIE Press, Bellingham (1999)

12. Watson, A.B., Ahumada Jr, A.J.: A standard model for foveal detection of spatial
contrast. J. Vison 5, 717–740 (2005)

13. Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of
gratings. J. Physiol. 197, 551–566 (1968)

14. Bastien, F., Lamblin, P., et al.: Theano: new features and speed improvements. In:
Deep Learning Workshop, NIPS (2012)

15. Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empir-
ical ROC curves. Comput. Vis. Image Understand. 1(84), 77–103 (2001)



Learning Algorithms and Frame Signatures
for Video Similarity Ranking

Teruki Horie, Akihiro Shikano, Hiromichi Iwase, and Yasuo Matsuyama(B)

Department of Computer Science and Engineering,
Waseda University, Tokyo 169-8555, Japan

{t.horie,a.shikano,ihi}@wiz.cs.waseda.ac.jp,
yasuo2@waseda.jp

http://www.wiz.cs.waseda.ac.jp

Abstract. Learning algorithms that harmonize standardized video sim-
ilarity tools and an integrated system are presented. The learning algo-
rithms extract exemplars reflecting time courses of video frames. There
were five types of such clustering methods. Among them, this paper
chooses a method called time-partition pairwise nearest-neighbor because
of its reduced complexity. On the similarity comparison among videos
whose lengths vary, the M-distance that can absorb the difference of
the exemplar cardinalities is utilized both for global and local matching.
Given the order-aware clustering and the M-distance comparison, system
designers can build a basic similar-video retrieval system. This paper pro-
motes further enhancement on the exemplar similarity that matches the
video signature tools for the multimedia content description interface by
ISO/IEC. This development showed the ability of the similarity ranking
together with the detection of plagiarism of video scenes. Precision-recall
curves showed a high performance in this experiment.

Keywords: Video similarity ranking · Exemplar · Frame signature ·
Numerical label · M-distance

1 Introduction

Learning algorithms for mechanical decision have made rapid progress toward
various types of practical problems. This development has two motives:

(a) Unexpectedly fast accumulation of raw data exceeded human power.
(b) Fast and inexpensive ICT devices became available.

In this paper, we address item (a) through the problem of video similarity rank-
ing. We present a class of clustering algorithms that finds an order-aware exem-
plar set for each video. For experiments, we will design a practical system that
is indebted to item (b).
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Learning algorithms can offer adaptable methods, often flexible too much.
Their flexibility could produce visionary systems easily. In this paper, therefore,
we incorporated a class of video signature tools whose standardization is in
progress by ISO and IEC [1]. Thus, the similar-video retrieval method in this
paper will offer a practical system. The designed system harmonizes a chosen
learning algorithm and an industrially standardized method. We checked its
performance through the plagiarism detection. The detection appears as ranking,
not as a simple dichotomy. Its performance measured by precision-recall curves
is quite high.

This paper has the following organization. In Sect. 2, we formulate the prob-
lem of the similar-video retrieval. A general concept of frame features and
clustering algorithms for exemplar extraction with preliminary experiments are
given. Then, we explain the M-distance for global and local alignments. Section 3
explains the Frame Signature and its related tools from the ISO/IEC Standard
that can harmonize with the learning algorithms for the similar-video retrieval.
Section 4 shows experimental results on the plagiarism detection measured by
precision-recall curves. In Sect. 5, discussions on numerical labeling and further
sophistications are given.

2 Similar-Video Retrieval

2.1 Frame Features

Each video that we can watch is a time series of still images or frames, {vt}Nt=1

that is in a raw format. Each frame vt contains full information. Therefore, this
information needs to be reduced appropriately so that similarity comparison
by machines becomes possible. Let xt be such compressed or feature-extracted
data forming a time series of {xt}Nt=1. This step could be a target problem to
obtain sophisticated patterns. However, the method will be ad hoc. Therefore,
we set our objective of this paper to harmonize machine learning’s flexibility and
industrial standard’s restriction. On the frame feature, we will follow the Frame
Signature that is a 380-dimensional vector xt = [xt1, · · · , xtD]T with D = 380,
where each element xtd assumes base 3 ternary values {0, 1, 2}. Therefore, each
video makes a trajectory in a D dimensional vector space that corresponds to
the feature time series {xt}Nt=1. This interpretation matches to the idea of global
and local alignments between videos. On the detailed description of the Frame
Signature, we will provide an independent section after the full description of
the problem formulation.

2.2 Clustering Algorithms for Exemplar Extraction

Consider the similarity comparison of two videos {vA
t }NA

t=1 and {vB
t }NB

t=1 whose
features are {xA

t }NA
t=1 and {xB

t }NB
t=1, respectively. Although the feature time series

{xA
t }NA

t=1 and {xB
t }NB

t=1 have less complexity than the original raw videos {vA
t }NA

t=1

and {vB
t }NB

t=1, the comparison of two feature time series in the full may become
a complex and wasteful task:
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(a) Lengths of two videos NA and NB are usually large.
(b) Dragging and redundant scenes may exist in the videos.

Therefore, extraction of typical frames, or exemplars, becomes an essential task
for the similarity decision by machines. In the preliminary experiments [2], we
presented five clustering algorithms that are aware of frame ordering. They are
(i) time-bound affinity propagation, (ii) time-partition k-means, (iii) time-split
k-means, (iv) time-partition pairwise nearest-neighbor, and (v) time-bound pair-
wise nearest-neighbor. The first one is a variant of the affinity propagation [3].
The second and the third ones are of a class of the harmonic competition [4].
The rests are a variant of the pairwise nearest-neighbor [5]. We observed that
all methods generated almost equally creditable exemplar sets. Therefore, we
consider another criterion, the system complexity that is related to the com-
puting speed. Accordingly, we set the time-partition pairwise nearest-neighbor
(TP-PNN) as this paper’s basic clustering algorithm for finding an exemplar set.
Note that the TP-PNN chooses one end of the nearest-neighbor pair closer to the
total centroid of the feature frames, unlike the basic PNN that chooses the pair’s
center [5]. The TP-PNN algorithm for the exemplar extraction is described as
follows.

TP-PNN Algorithm

Step 1: In the start, Feature time series X = {xt}Nt=1, block length b, similarity
measure d(·, ·), and a stopping threshold δ are given. Before the following
iteration, each data claims itself to be an exemplar; Ei = xi. An order-aware
partition set is P = {pt}Mt=1 where M = �N/b�. For each partition pt, we
perform steps 2-1 and 2-2.

Step 2-1: Compute the centroid of pt, say cp.
Step 2-2: Find the nearest-neighbor pair xi and xj . If d(xi,xj) ≥ δ, then go

to Step 3. Otherwise, eliminate xj that is more distant from the centroid
cp than xi, i.e., operate Ei ← Ei ∪ Ej and Ej ← ∅. Here, the eliminated
point obtains a label Ei as a member of the remaining point. This process
is repeated until the nearest pair distance exceeds δ.

Step 3: The remaining of points are exemplars. Eliminated points become a
member of one exemplar.

On the block length, b = 100 at 30 fps is proper. The choice of the threshold
δ affects the selection of the exemplar set, and consequently the performance
of the total system of the similar video retrieval. It is important to understand
that ranges of this value are very different depending on the choice of a distance
measure, �1 or �2. Considering this property, we will make a set of preliminary
experiments to decide this value in Sect. 4.2.

2.3 Global and Local Alignments

The next step is to provide methods to compare exemplar sets. Let {vA
t }NA

t=1

and {vB
t }NB

t=1 be two videos. For video A, we obtained a time series of triplets
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{eAi ,xA
i , EA

i }nA
i=1. Here, eAi is an exemplar position as a frame number, xA

i is its
frame feature, and EA

i is the scope of the exemplar. An exemplar is a pair of
(eAi ,xA

i ), however, we will simply call eAi the i-th exemplar. For video B, we use
the same notation. There are important observations here.

(a) An exemplar set is a numerical or a soft label. This expression will be com-
patible with the Frame Signature by the ISO/IEC standard that gives a class
of numerical labels.

(b) The scope of EA
i of the exemplar eAi is an essential existence. This structure

gives a context-aware mechanism. In our later experiments, EA
i will be an

integer-valued cardinality for the sake of system lightness.
(c) There are two main methods on the matching of {eAi ,xA

i , EA
i }nA

i=1 and
{eBj ,xB

j , EB
j }nB

j=1. One is the global alignment that finds a total matching
pattern and the resulting discrepancy score. The other is the local alignment
that finds the best matching sub-regions and its discrepancy score.

On item (a), we will provide Sect. 3 for detailed explanation starting from the
Frame Signature. Items (b) and (c) lead to a new alignment method called
M-distance. It is important to note that scopes EA

i and EB
j play crucial

roles. Therefore, the M-distance generalizes existing alignment methods such
as the Needleman-Wunsch algorithm of the global alignment [7] and the Smith-
Waterman algorithm of the local alignment [8] that are essential tools in bioin-
formatics.

Global Alignment M-Distance
Step 1: Pick up two exemplar sets {eAi ,xA

i , EA
i }nA

i=1 and {eBj ,xB
j , EB

j }nB
j=1 for

the global alignment. Set a gap penalty g as a design parameter.
Step 2: Make an (nA + 1) × (nB + 1) table.

Fill the {i = 0}-th row by {0,−gEB
1 ,−g

∑2
j=1 EB

j ,−g
∑3

j=1 EB
j , · · · }.

Fill the {j = 0}-th column by {0,−gEA
1 ,−g

∑2
i=1 EA

i ,−g
∑3

i=1 EA
i , · · · }.

Step 3: Starting from the position of (i, j) = (1, 1), fill all elements by

f(i, j) = max{f(i−1, j)−gEA
i , f(i−1, j−1)+r(i, j)s(i, j), f(i, j−1)−gEB

j }.
(1)

Here, s(i, j) is the similarity measure between xA
i and xB

j , and r(i, j) is
a weight for the similarity reflecting the exemplar scope. We will use an
algebraic mean (EA

i + EB
j )/2. From the cell (i, j), an arrow to the cell that

gave the maximum is drawn.
Step 4: The value flast in the element (nA + 1, nB + 1) is the global alignment

M-distance. Tracing back from this position following the arrows gives the
global alignment.

Step 5 (Extra step for similarity ranking): For the similarity ranking on
a database, a normalization of flast becomes necessary.

u(A,B) = h(flast)/w({EA
i }nA

i=1, {EB
j }nB

j=1) (2)

Here, h(x) is a monotone increasing function. w is an averaging function.
The simplest one is an algebraic mean of the cardinalities na and nB .
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There is another matching method called local alignment. This method finds
a strong matching between sub-regions.

Local Alignment M-Distance
Step 1: Pick up two exemplar sets {eAi ,xA

i , EA
i }nA

i=1 and {eBj ,xB
j , EB

j }nB
j=1 for

the global alignment. Set a gap penalty g as a design parameter.
Step 2: Make an (nA + 1) × (nB + 1) table.

Fill the {i = 0}-th row and the {j = 0}-th column all by 0.
Step 3: Starting from the position of (i, j) = (1, 1), fill all elements by

f(i, j) = max{0, f(i−1, j)−gEA
i , f(i−1, j−1)+r(i, j)s(i, j), f(i, j−1)−gEB

j }. (3)

From the cell (i, j), an arrow to the cell that gives the maximum is drawn.
Step 4: The maximum value fmax is identified. This value is the local alignment

M-distance. The local matching region is obtained by tracing back from this
position guided by the arrows.

3 Video Signature Tools

The ISO/IEC standard called multimedia content description interface is still in
progress by adding and refining tool boxes. However, the standard called Frame
Signature is open by [1]. This method gives a set of numerical labels for a video.
A simpler method called color structure descriptor (CSD) in our previous study
[2] was also a numerical label. By the preparation of Sects. 2.2 and 2.3, we can
build a similar video retrieval system that harmonizes the clustering algorithm
and the standardized video signature tools.

3.1 Frame Signature

The first step to obtain a video signature {xt}Nt=1 from a raw video {vt}Nt=1 is
the re-sampling. By this re-sampling, each frame is divided into 32 × 32 sub-
blocks. Each sub-block contains a plurality of pixels. Therefore, each sub-block
is assigned by an average value of the luminance (Y component of YCbCr color
space). This process gives a virtual video {v̄t}Nt=1 wherein each virtual pixel is
expressed by 8 bits. Then, from each v̄t that is interpreted as a 1024-dimensional
vector, a D = 380-dimensional base 3 ternary vector xt is computed in the
following way. We omit the frame index t in the following description.

(1) For the first 32 dimensions (d = 1 ∼ 32) of x, a ternary value is decided
by computing the average luminance νd of a sub-region whose position is
pre-specified [1].

xd =

⎧
⎨

⎩

2, if νd − 128 > θA
1, if |νd − 128| ≤ θA
0, if νd − 128 < θA

(4)
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(2) For the dimensions d = 33 ∼ 380 of x, averages of the luminance of two
sub-regions of whose positions are pre-specified [1]. These averages νd,1 and
νd,2 give the following ternary values.

xd =

⎧
⎨

⎩

2, if νd,1 − νd,2 > θD
1, if |νd,1 − νd,2| ≤ θD
0, if νd,1 − νd,2 < θD

(5)

Thresholds θA and θD are defined depending on the virtual frame v̄ [1]. The
above process is applied to all frames of the raw video of {vt}Nt=1 to give the
Frame Signature {xt}Nt=1.

3.2 Word and Bag of Words

In our similar-video retrieval, the Frame Signature is the main feature to be
computed. The standard by ISO and IEC [1] gives two more levels higher than
the Frame Signature. They are the Word and the BagOfWords. Because we will
conduct additional experiments after that of the Frame Signature, we give their
definitions here.

Word
Five sets of components of a feature vector xt is the Word [1]. In the following
definition frame index t is omitted.

Word[0] ⇔ w0 = [x211, x218, x220, x275, x335]
Word[1] ⇔ w1 = [x45, x176, x234, x271, x274]
Word[2] ⇔ w2 = [x58, x71, x104, x238, x270]
Word[3] ⇔ w3 = [x101, x286, x296, x338, x355]
Word[4] ⇔ w4 = [x102, x103, x112, x276, x297]

(6)

Here, Word[i] is the result of the inner product [81, 27, 9, 3, 1] · wi.

BagOfWords
BoW (BagOfWords) is computed from a set of 90 consecutive frames shifted by
45 frames so that temporal information of words can be grasped. Such shifts give
a histogram of Words. In its original definition by [1], this histogram is quantized
to 0 or 1.

Before moving to experiments, we give a preliminary comment. Word and
BoW were defined for a large-scale classification. The Frame Signature is the
primary target of this paper, although characteristics of the Word and BoW will
be examined in our experiments.
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4 Experiments on Video Similarity Ranking

4.1 Test Video Set and Evaluation Method

We collected 2100 videos that form 100 sets of 21 videos from [6]. Collected
videos are in the following class.

(a) The frame size is 640 pixels.
(b) The frame rate is 30 fps.
(c) The length is from 30 to 180 s.

In each of the 21 videos, we randomly selected one video as a query. Then, we
copied and inserted more than 10 % of the query into the remaining 20 videos
into random positions. Therefore, the task for the experiment is a plagiarism
detection. The detection of this level was already successful by the previous
system [2] based on the CSD (color structure descriptor). However, we will check
to see if this paper’s method can detect the plagiarism that has more venomous
intentions. That is, we inserted scenes as follows after [9] with stricter constraints.

(1) Frame rate speedup by removing one frame per {6, 3, 2} frames.
(2) Gray scale processing by

Y = [0.11448, 0.58661, 0.29891][R, G, B]T (7)

(3) Illumination change by {R,G,B} × P for P = 0.6 ∼ 0.9.
(4) Size change by multiplying 0.5 ∼ 2.0.
(5) JPEG modification by CV IMWRITE JPEG QUALITY=20 ∼ 80, whose

default and maximum values are 95 and 100.

For such a set of pseudo-illegal videos, we applied following methods in the order.

Step 1: Computation of the Frame Signature of Sect. 3.1.
Step 2: Exemplar selection by TP-PNN clustering of Sect. 2.2.
Step 3: Local alignment on exemplar sets by the M-distance of Sect. 2.3.
Step 4: Computation of precision-recall curves by the following equations:

racall =
# of correctly detected videos
# of videos in the same class

(8)

precision =
# of correctly detected videos

# of top ranked videos to be checked
(9)

Note that for (9), we adopt an 11-point interpolated precision.

4.2 Experimental Results

We conducted two main sets of experiments on the plagiarism detection. Inserted
data were modified by the transformation of (1)–(5) of Sect. 4.1 so that the detec-
tion becomes harder than the case of the original video insertion. We compared
this paper’s method based on the Frame Signature with a previous MPEG-7
visual descriptor called CSD (color structure descriptor). First, we show the
result by the CSD.
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Experiments Using CSD: In the case of the similar-video retrieval using the
CSD, we use an HSV space quantizes by (12, 8, 8) levels. The similarity measure
is an �2 distance in a 767-dimensional simplex (767 = 12× 8× 8− 1). As a set of
preliminary experiments, we counted an average ratio of exemplars with respect
to frames for test videos. We chose δ = 0.1 as our default value.

Fig. 1. Precision-recall curves for the video similarity detection by the local alignment:
CSD-based method. Design parameters are δ = 0.1, g = 0.2, and D̄ = 0.05.

Figure 1 illustrates precision-recall curves of modified video clip insertions
of types (1)–(5) generated by the methods in Sect. 4.1. In this figure, “frame”
means the frame rate speed up. “gray” indicates gray scale processing. “br”
means illumination or brightness change. “resize” stands for the size change.
“jpeg” means the compression rate change. From the result of Fig. 1, we can
observe the following.

(a) Since the CSD is based on the histogram of the color concentration, this
method gave high performance on the changes in the frame rate and the
size. However, video clips changed to the gray scale were not detectable at
all.

(b) The successful detection of the frame rate change is because of the ability of
the M-distance of the local alignment.

(c) The CSD-based method can detect the insertion of size-changed videos as
long as the change is within the range of viewer’s perception.
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Fig. 2. Precision-recall curves for the video similarity detection by the local alignment:
Frame Signature method. Design parameters are δ = 320, g = 0.2, and D̄ = 15.

(d) The brightness decrease is also difficult to identify because changing colors
darker reduced the sensitivity of the CSD.

(e) The JPEG quality degradation considerably reduced the ability of the CSD-
based method because block noises affect the contents of color bins.

(f) Original video clip insertion is easier to detect than the case of item (c) (see
the result in [2]).

Experiments Using Frame Signature: In the case of the similar-video
retrieval using the Frame Signature, the similarity measure is an �1 distance
in a 380-dimensional Euclidian space. As a set of preliminary experiments, we
counted an average ratio of exemplars with respect to frames for test videos.
We chose δ = 320 as our default value. Figure 2 illustrates a set of resulting
precision-recall curves. We could observe the following.

(a) All precision-recall curves gave creditable performances.
(b) Although the detection result of the frame rate change was satisfactory,

excessive fast-forwarding makes the machine detection of plagiarism difficult
like a human. In this case, we need to make the exemplar detection parameter
δ smaller.

(c) Computing speed of the Frame Signature method is faster than the CSD-
based method by more than two orders of magnitude. The CSD method of
Fig. 1 requires the floating point �2 distance computation of 768-dimensional
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vectors. The Frame Signature method needs �1 distance of 1-byte tertiary
values for 380-dimensional vectors.

(d) From the results of Figs. 1 and 2, we find that a combination of the CSD and
the Frame Signature will produce a very high-performance system. However,
their forms of numerical labels are quite different. The combined system will
lose the merit of the computing speed of item (c). Therefore, our machine
learning-based study suggests to add small amount of color information to
the Frame Signature.

5 Discussions

We presented a method and its system that harmonizes the learning algorithm
and the industrially standardized video signature tools. The learning algorithm
approach and the standard-based method are two extremes. The learning algo-
rithms are so flexible that they may create quite visionary systems. The other
extreme, the international standard is driven by real world applications. In this
paper, we could integrate a class of learning algorithms that perform the cluster-
ing, and an international standard on video signature tools. The designed system
showed high performance on the similar-video retrieval including the problem of
the plagiarism detection.

We conducted experiments on the BagOfWords. This feature value has less
information than the Frame Signature so that time course property can be incor-
porated. However, our methods have the temporal alignment by the M-distance.
Therefore, precision-recall curves by the BagOfWords was considerably inferior
to Fig. 2. We omitted the illustration due to the space limitation.

The interpretation of the total method shows further possibility beyond the
similar-video retrieval. What we have done in the video database processing was
to find and attach numerical labels to each video. Such a class of soft labels
helps to give a structure to the database. We can interpret this process as a
bottom-up approach toward the language expression level. We could find many
promising paths starting in the numerical labels approach of this paper. On the
other hand, there will be top-down approaches from a language level. Learning
algorithms will be essential there again.
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Abstract. There has been a growing interest in describing the difficulty
of solving a classification problem. This knowledge can be used, among
other things, to support more grounded decisions concerning data pre-
processing, as well as for the development of new data-driven pattern
recognition techniques. Indeed, to estimate the intrinsic complexity of
a classification problem, there are a variety of measures that can be
extracted from a training data set. This paper presents some of them,
performing a theoretical analysis.

Keywords: Machine Learning · Complexity measures · Classification
problems

1 Introduction

The seminal work of Ho and Basu [8] proposes analyzing the difficulty of a data
classification problem using descriptors extracted from the data sets available for
learning. These descriptors can provide means to better understand the domain
of competence of different Machine Learning (ML) algorithms [6,13,14]. It is also
possible to develop new techniques for data preprocessing and pattern recogni-
tion that are more data-driven [5,7,10,15,18]. According to Ho and Basu [2,8],
the complexity of a classification problem is associated to three main factors:
(1) class ambiguity, (2) complexity of the boundary separating the classes, and
(3) sparsity of the data. There is often a combination of these three factors.

The ambiguity of the classes is present in situations where the classes cannot
be distinguished using the data provided, regardless of the classification algo-
rithm used. This is the case of ill-defined concepts and the use of attributes
with poor discriminative power. The complexity of the classification bound-
ary is related to the size of the smallest description needed to represent the
classes and it is due to the nature of the problem [1]. It can be characterized by
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the minimum length of an algorithm able to describe the relationships between
data (Kolmogorov complexity) [11]. In practice, this property is estimated by
using indicators or geometrical measurements extracted from the data sets [2,8].
Finally, an incomplete or sparse data set can also add a degree of difficulty for
discriminating the data. This sparsity can make some input space regions to be
arbitrarily classified.

In this paper, we introduce the main measures of complexity that can be
estimated directly from the data available for learning. The contribution of this
work is to bring together/present these measures and their generalizations in a
uniform manner. We also present a critical analysis, discussing limitations of the
measures.

2 Complexity Measures/Indices

Geometric and statistical data descriptors are often the most used to character-
ize the complexity of supervised problems. Some of their main representatives
were proposed in [8]. They describe the complexity of the boundary separating
binary classification problems. Such measures were then extended to multiclass
scenarios in [15,16]. These indices can be divided into three main groups: (1)
measures of overlapping between attribute values, (2) measures of separability
of classes, and (3) measures of geometry, topology and density.

To define the measures one often considers that they are estimated from a
data set T (or part of it) containing n pairs of examples (xi, yi), where xi =
(xi1, . . . , xim) and yi ∈ {1, . . . , k}. That is, each example xi is described by
m attributes, associated with a label yi among k classes. As most measures
described in this paper are sensitive to differences in the magnitude or scales
of the attributes, often, before calculating them one normalizes the attributes
values so that they lie within similar ranges. Moreover, there are measures where
qualitative attributes must be first mapped into quantitative values. Depending
on the mapping employed, this kind of transformation only will make sense for
ordinal attributes [4].

2.1 Feature/Attribute Overlapping

These measures have as goal to estimate how informative the attributes available
are for separating the classes. Often, each attribute is evaluated individually. If
there is at least a very discriminating attribute in the data, the problem can be
considered simpler than if no such an attribute exits.

Maximum Fisher’s Discriminant Ration (F1) measures the overlapping
between the values of attributes in different classes:

F1 =
m

max
i=1

rfi (1)

where rfi is the discriminant ratio of each attribute fi. That is, F1 takes the
value of the largest discriminating ratio among all the attributes. In [16],
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the authors present several equations for calculating rfi . For two classes
problems, one can have:

rfi =
(μfi

c1 − μfi
c2)

2

(σfi
c1)2 + (σfi

c2)2
(2)

where μfi
cj and (σfi

cj )
2 represent, respectively, the mean and the variance of

attribute fi in class cj . For qualitative (ordinal) attributes, each category is
first mapped into an integer number [4,16]. In this case, μfi

cj corresponds to
the value of the median of fi in cj , and (σfi

cj )
2 can be computed by:

σfi
cj =

√
p
µ
fi
cj

(1 − p
µ
fi
cj

) ∗ ncj (3)

where p
µ
fi
cj

is the frequency of the value of μfi
cj and ncj is the number of

examples in cj . For multiclass problems (k > 2), rfi can be calculated as:

rfi =

∑k
cj=1

∑k
cl=cj+1 pcjpcl(μ

fi
cj − μfi

cl
)2

∑k
cj=1 pcjσ

2
cj

(4)

where pcj is the proportion of examples in class cj . That is, one calculates the
discriminant power of the means (or medians) for pairs of classes, weighting
the result by the proportion of the number of examples in each class. Next,
the results are summed up, making the measures to tend to larger values
for a multiclass problem than for a binary one. This is due to the fact that
the former tends to be more complex than the latter. Nonetheless, caution
is required when comparing values of F1 for binary and multiclass problems.
Multiclass F1 also implicitly assumes an analysis pair-by-pair of the classes.
However, when solving the original multiclass problem, not necessarily the
separating boundary needs to cover all classes in pairs. Large values of F1
indicate that there is at least one attribute with little overlap for the different
classes. Thus, there exists an attribute for which a linear boundary perpen-
dicular to the axis of the attribute with the largest discriminant power fi can
separate well the classes. If the problems is linearly separable, but requiring
an oblique boundary for the separation of the classes, F1 will indicate an
overlap between the two classes.

Volume of the Overlapping Region (F2) calculates the overlap of the dis-
tributions of the values of the attributes in each class. F2 can be determined
by finding, for each attribute fi, its minimum and maximum values in the
classes. Then one calculates the length of the overlap region, normalized by
the range of values in both classes. Finally, the values obtained for each
attribute are multiplied.

F2 =
m∏

i

min(max(fi, c1),max(fi, c2)) − max(min(fi, c1),min(fi, c2))
max(max(fi, c1),max(fi, c2)) − min(min(fi, c1),min(fi, c2))

(5)
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The maximum and minimum values of each attribute in a class are deter-
mined by max(fi, cj) and min(fi, cj) respectively. Indeed, the larger the value
of F2, the larger the volume of the overlap between the class of the prob-
lem. As consequence, its complexity will be also higher. And if there is at
least one non-overlapping attribute, the value of the F2 should be null. For
qualitative (ordinal) attributes, each category is first mapped into an integer
number [4,16]. As pointed out in [4,19], Eq. 5 can yield negative values for
some situations where there is no overlap among the attributes. This occurs,
for example, for the attribute illustrated in Fig. 1a. In this case, F2 takes
− 1

3 , though it had to be null. In [16], the authors use the absolute value of
the ratio in the product. However, the result would still be incorrect (13 ).
[12,19] propose to perform the following modification in the numerator:

overlap(fi) = max{0,min(max(fi, c1),max(fi, c2)) − max(min(fi, c1),min(fi, c2))} (6)

This equation provides the calculation for the overlap of the attribute values
fi in two different classes. Cummins [4] also points out a problem for the
situation in Fig. 1b. There is overlap at one point, but the resulting value of
F2 is null. To solve this a small ε can be added to the numerator when it
is not null (although the choice of this value can be rather arbitrary). Two
other situations where Eq. 5 yields spurious values are shown in (1) Fig. 1c,
where the attribute is discriminative, but the minimum and maximum values
for classes overlap; and (2) Fig. 1d, where there is noise. [4] proposes changes
to deal with such cases, by counting the number of points where there is
overlap, which is only suitable for discrete attributes. The presence of noise
is also harmful for the F1 measure. As discussed in [10], F2 also presents
problems in capturing the simplicity of an oblique linear boundary, since it
assumes that the linear boundary should be perpendicular to the axes of the
attributes.
Finally, the product in Eq. 5 can lead to quite small values, since it involves
the product of values between the [0, 1] range. This gets worse for problems
with many attributes, which cannot be comparable to others with fewer
attributes. In [12,19], the authors proposed to use the sum instead of the
product, which partly solves the problems identified, since the value obtained
for F2 will be highly dependent on the number of features the data set has.
Moreover, the result would not be a volume overlapping, but the “size” of the
overlapping. For multiclass problems, F2 calculation is performed for each
pair of classes and produces the sum of the values returned for all pairs [16].
Again, this generalization assumes an analysis of the classes in pairs, which
does not necessarily reflect the real difficulty of the problem. It also makes
it difficult to compare F2 values between binary and multiclass problems.

Maximum Attribute Efficiency (F3) estimates the individual efficiency of
each attribute in separating the classes, returning the maximum value found
among the m attributes. For each attribute, F3 verifies whether there is
overlap between examples from different classes. If this is true, one considers
that the classes are ambiguous in this region. The efficiency of each attribute
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is given by the ratio between the number of examples that are not in the
overlapping region and the total number of examples:

F3 =
m

max
i=1

n − |overlap(fi)|
n

(7)

where in |overlap(fi)| returns the number of instances where there is overlap
in the values in attribute fi in different classes. Large values of F3 indicate
simpler problems, when fewer examples overlap in each dimension. The way
overlap is computed can take into account the minimum and maximum
values of fi in different classes, as in Eq. 6. However, this causes the same
problems identified for F2 with respect to: classes in which the attribute has
more than one valid range (Fig. 1c), sensibility to noise (Fig. 1d), and the
fact that for linearly separable problems it is assumed that the boundary is
perpendicular to one of the axes, which does not always occur.

Collective Attributes Efficiency (F4) gets an overview of all the attributes
together, as opposed to the indices previously defined [16]. It is based on the
successive application of a procedure similar to that adopted in F3. First,
the most discriminating attribute according to F3 is selected. All examples
that can be separated are removed from the data set. The previous step is
repeated, that is, one chooses the next most discriminative attribute, exclud-
ing the examples already separated. This whole process is repeated until all
the examples are separated, or until all the attributes have been considered.
The final result is the proportion of examples that were separated. Larger
values of F4 indicate that it was possible to discriminate more examples and,
thus, the problem is much simpler. The idea is to get the number of exam-
ples that can be correctly classified if hyperplanes perpendicular to the axes
of attributes are used in the separation. It suffers, however, from the same
problems of those from F1, F2 and F3 as not accepting oblique hyperplanes.

F4 =
∑m

i=1 |overlap(fi)Ti
|

n
(8)

where |overlap(fi)Ti
| will measure the overlap in a subset of the data Ti

generated by removing the examples already discriminated in Ti−1, while
T1 = T . Its calculation must be performed like that for F3, except by using
increasingly reduced data sets. Thus, depending on the overlapping measure
used, there could be problems in some estimates (Fig. 1c and d).

2.2 Separability of Classes

These measures try to quantify how separate classes are and estimate the shape
of the boundary separating them. The intuition is that well-separated classes
can be discriminated more easily.
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Fig. 1. Examples of situations where F2 can present problems.

Distance of Incorrect Examples to a Linear Boudary (L1) assesses how
data is linearly separable, that is, whether it is possible to separate the
classes by a hyperplane. L1 computes, for the examples that are incorrectly
classified, the sum of the distances between the prediction of a linear classifier
and the actual value of the class. If the value of L1 is zero then the problem
is linearly separable. Thus, it can be considered simpler than a problem
where a non-linear boundary is required. To generate the linear classifier,
[16] suggest the use of a Support Vector Machine (SVM) [3] with a linear
kernel.

L1 =
∑

h(xi) �=yi

|f(xi)| (9)

where f(x) is a linear function w ·x+ b found by the SVM and h(x) returns
the class from the value of f(x). Smaller values for L1 indicate that the
problem is linearly separable (simple). However, based on the values L1, one
cannot identify if a given linearly separable problem is simpler than another
linearly separable problem. This occurs, for example, when the examples
of a given classification problem are more distant from the linear bound-
ary when compared to those of another problem. L1 can only be estimated
for binary data sets and problems with numerical attributes. For multiple
classes, [16] suggest that the problem should be first decomposed into binary
sub-problems, and an average of L1 computed. Qualitative attributes must
be first converted into numerical values. Another limitation of L1 is its com-
putational cost, as it involves the induction of a classifier.

Training Error Rate of a Linear Classifier (L2) measures the error rate
of a linear classifier like the one previously described. Let h(x) be the linear
classifier obtained:

L2 =
∑n

i=1 I(h(xi) �= yi)
n

(10)

where the I(x) returns 1 if x is true and 0 otherwise. Large values of L2
indicate more errors and, thus, a greater complexity (the data cannot be
separated linearly). The disadvantages of L2 are similar to those of L1.
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Fraction of Examples in the Boudary (N1) first builds a Minimum Span-
ning Tree (MST) from the data, where each node corresponds to an example
and the edges are weighted according to the distance between them. Then,
one calculates the percentage of nodes that connect examples of different
classes. These examples are in the regions of the boundary or overlapping
between the classes. Thus, N1 provides an estimate of the size and complex-
ity of the required boundary to separate the data through the identification
of critical points (those examples of different classes very close to each other).
Large values of N1 indicate a data set in which more complex boundaries
could be required and/or there is more overlap between classes.

N1 =
∑n

i=1 I(xj ∈ 1NN(xi) and yi �= yj)
n

(11)

where the condition of the numerator is satisfied when an example has as
its nearest neighbor (1-nearest neighbor - 1NN) an example of a different
class. To work with both numerical and qualitative attributes, one should
employ a heterogeneous distance, such as the Euclidean-overlap [10]. Data
must also be normalized. Indeed, normalization is required for all subsequent
measures based on calculating distances. N1 is sensitive to noise because the
closest neighbors of these kinds of examples will normally have different
classes. Nevertheless, this could be interesting in that, according to N1, a
noisy data set can be considered more complex (this behavior was observed
experimentally in [7,12]). An important issue discussed in [4] is that, for
a given set of points, multiple valid MSTs could exist. To minimize this
problem, one can generate 10 MSTs from the presentation of different orders
of data and report an average. Another issue is that the value of N1 can be
large even for a linearly separable problem [4]. This occurs when the distance
between boundary examples are smaller than those with respect to other
examples of the same class.

Ration of the Intra/Inter Class Average Distance (N2) computes the
average of the ratio of the intra-class and inter-class distances of the nearest
neighbor to an example:

N2 =
∑n

i=1 dintra(xi, NN(xi))∑n
i=1 dinter(xi, NN(xi))

(12)

where dintra(xi, NN(xi)) corresponds to the distance of the example xi to
the nearest neighbor of its own class and dinter(xi, NN(xi)) is the distance
of xi to the nearest neighbor in a different class. An heterogeneous distance
function should be adopted to deal with both qualitative and numerical
attributes. Small values of N2 indicate simpler problems in that the distance
between examples of different classes exceeds that between examples of the
same class. Thus, N2 reflects how examples in the classes are distributed and
not only how the boundary between the classes is. Like N1, N2 can also be
sensitive to noise in the data.
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Error Rate of the Nearest Neighbor Classifier (N3) returns the error
rate of a 1NN classifier by using the leaving-one-out training strategy.

N3 =
∑n

i=1 I(1NN(xi) �= yi)
n

(13)

Large values of N3 indicate that many examples are close to those of other
classes, making the problem more complex. This measure is computationally
expensive for it must access the classifier n times.

2.3 Geometry, Topology and Density

This category includes information on how dense the classes are and on their
distribution. A dense class can be likely discriminated more easily than a sparse
one. These characteristics are related to the topology and the geometry of the
data in the input space.

Nonlinearity of the Linear Classifier (L3) is based on a method proposed
by [9]. First, a new data set is created by interpolating training examples of
the same class. Specifically, two examples of the same class are selected at
random and a linear interpolation is done with random coefficients between
them, producing a new example. Then, a linear classifier is trained with the
original data and its error in the new data is computed. In [16] a linear SVM
is used. This index is sensitive to how the data of a class are distributed
in the boundary regions, as well as to the degree of overlapping of convex
regions. Large values indicate greater complexity. Le h be the linear classifier
created from the training data T , L3 can calculated as follows:

L3 =
∑l

i=1 I(h(xi) �= yi)
l

(14)

where l and xi are, respectively, the number of points and the examples
generated by the interpolation. Since L3 uses a linear classifier induced by
a SVM, it can only be applied to binary problems. Another issue is that,
by being generated via a linear interpolation of attribute values, L3 is only
applicable to numeric attributes.

Nonlinearity of the 1NN (N4) is similar to L3 but using a 1NN, instead of
the linear classifier.

N4 =
∑l

i=1 |1NN(xi) �= yi|
l

(15)

Large values of N4 indicate problems of greater complexity. For dealing with
both quantitative and qualitative features, one should employ a heteroge-
neous distance. In contrast to L3, N4 can be applied directly to multiclass
problems, without the need to decompose them into binary subproblems.
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Fraction of Hyperspheres Covering the Data (T1) builds hyperspheres
centered in each of the examples. The radius of the spheres is increased until
it reaches an example of another class. The smaller spheres contained in
larger spheres are eliminated. The measure then returns the ratio between
the number of these hyperspheres and the total number of examples.

T1 =
|Hyperpheres(T )|

n
(16)

where |Hyperpheres(T )| returns the number of hyperspheres which can be
built from the data set. Fewer hyperspheres are obtained for simpler data
sets. It reflects the fact that the data of the same class are densely distributed
and close together. Thus, this measure also captures the distribution of data
within the classes and not only on its boundary.

Average Number of Examples by Dimension (T2) consists in dividing
the number of samples in the data set for its dimensionality.

T2 =
n

m
(17)

In some works the logarithmic function is applied to this measure for it can
take arbitrarily large or small values [12]. T2 reflects the sparseness in the
data. If there are many attributes and fewer examples, the examples will
be probably distributed sparsely in the input space. The presence of low
density regions tends to make it difficult the induction of a good classifier to
the problem. Thus, large values of T2 indicate less sparseness and, therefore,
a simpler problem.

3 Conclusion

This paper collected and analyzed the main measures used to characterize the
complexity of classification problems. Although each measure gives an insight
into the complexity of the data according to some of its characteristics, interpret-
ing them separately is not indicated. For example, a linearly separable problem
in that the hyperplane is oblique to the axes of attributes could have a small
F1, indicating that it is complex. And, at the same time, it can have a small L1,
denoting that it is simple. In addition, each measure has some problem associ-
ated to it. For instance, the measures of separability of attributes cannot cope
with situations where an attribute can have different ranges of values for the
same class (Fig. 1c). In fact, they should be considered only as an estimate of
the complexity, which could have errors. This reinforces the need to examine the
measures together, to provide more robustness to the conclusions reached.

There are other indices proposed in the literature to measure the complexity
of the classification problems [4,7,12,17,18]. Several work extend the definitions
of [8] and other propose to cover the limitations found in them. Other studies try
to further define appropriate measures to specific applications. In future work,
we intend to add these measures to the analysis and also conduct experiments
to reinforce the observations outlined in this paper.
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Abstract. Text classification is defined simply as the labeling of natural and
unstructured language text documents using predefined categories or classes.
This classification not only help organizations in improving their business
communication skills and their customer satisfaction levels, but also improves
the usage of unstructured data in academic and non-academic world. The aim of
this study is to analyze the effect of stemming, over-sampling, and stopword-
removal when doing automatic classification on Turkish content. After obtaning
a Turkish Corpus, stemming, balancing, and stopword-removal is applied and
the results are evaluated.

Keywords: Text classification � Turkish text classification � Stemming �
Stopword removal � Over-sampling

1 Introduction

The development of information and communication technologies (ICT) allowed more
people and organization to access to and benefit from more data. Increased amount of
data created the need for more and better tools when dealing with it.

In 2013, the total information capacity in the digital universe was 29 PB, and only
22 % of it was considered analyzable, of which, only 5 % of that was actually analyzed.
Our total digital universe is expected to increase to 290 PB by 2020. Data created by an
average household in 2014 was 2080 GB. By the time 2020, this will increase to
10.176 GB [1]. Most of the mentioned data are both unclassified and unstructured. The
increasing amount of data also increases the requirement for its analysis. Again in
2013, it was estimated that, 90 % of all the data in the world has been generated over
the last two years. [2].

The aim of this study is to analyze the effect of Stemming, and Stop-Word-
Removal when doing automatic classification on Turkish content. Text classification is
defined simply as the labeling of natural and unstructured language text documents
using predefined categories or classes. This classification not only help organizations in
improving their business communication skills and their customer satisfaction levels,
but also improves the usage of unstructured data in academic and non-academic
world [3, 5].
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This paper is organized as follows. Background and related work is discussed in
Sect. 2. In Sect. 3, the proposed work is detailed together with the corpus and used
dataset. Section 4 includes the details of the methodology used throughout the study,
and Sect. 5 is where the obtained results are provided. Section 6 includes the
conclusion.

2 Related Work

Amasyalı and Diri [8] used author, genre, and gender when classifying documents in a
corpus of 630 singly authored documents all from 3 Turkish daily newspapers written
by 18 authors. The system used n-grams to achieve classification, mainly bi-grams and
tri-grams. They concluded that different methods like bi-grams, tri-grams, NaiveBayes,
and SVM can each be more successful on classifying on different aspects of documents
like author, gender, and genre. Bi-gram model was observed as the most successful
model with 83,3 % success using Naïve Bayes method when identifying author.
Also SVM was observed as the most successful model with 93,6 % success when
identifying genre. Again, SVM was observed as the most successful model with 96,3 %
success when identifying gender. Their work did not mention the effect of stemming on
these classifications.

Akkuş and Çakıcı [6] used morphological methods when analyzing 80293 news
articles published in Turkish daily newspaper Milliyet. The training set consisted 5000
documents each with at least 500 words and was manually tagged. The corpus was
analyzed using K-Nearest Neighbours, Naïve Bayes, and Support Vector Machine.
Their work showed that different classifiers like K-Nearest Neighbour (KNN), Naïve
Bayes, and SVM each have their own effects on morphological information when
classifying Turkish Texts. All the three classifiers KNN, NB, and SVM showed that
5 character words with over 6000 or more features had the best scores like 92.50 %,
94.37 %, and 93.12 % respectively. Again, their work did not mention the effect of
stemming on these classifications.

Torunoğlu et al. [3] analyzed the preprocessing methods on Turkish text classifi-
cation. They used 3 different data sets from Turkish Daily newspapers around 1,000
documents from each, and another one with 20,000 news from newsgroups. Naïve
Bayes, Naïve Bayes Multinomial, Support Vector Machines, and K-Nearest Neighbor
were the classification methods used. Their work concluded that stemming and
stop-word-removal has very little effect on automatic Turkish text classification
because of the agglutinative property of Turkish language. Güran et al. [5] proposed a
system classifying a corpus of 600 documents collected from web, using N-gram words
by applying K-Nearest Neighbours, Naïve Bayes, and Decision Tree algorithms. When
comparing the success rates of unigram, bi-gram, and tri-gram representations on data
sets with feature selection, Multinomial Naïve Bayes (MNB) had the lead with unigram
representations success rate as 95.83 %. Their work compared the results of these
algorithms but did not mention the effect of stemming on any step.

Çataltepe et al. [10] analyzed the performance of classifiers when the longest and
shortest roots found by a stemmer are used. They used a corpus of 200 news documents
from a Turkish daily newspaper Milliyet, and another corpus with 200 documents for
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each of the 5 topics from the website tr.wikipedia.org. Their work concluded that
stemming using words with 2 or 3 letter roots usually decreases the success rate in
classification. Longer roots appeared to have around 0.2–2.0 % less successful results
when compared with shorter roots. They have no results comparing a stemmed and
non-stemmed corpus when classifying.

Amasyalı and Beken [12] analyzed the relation between the classification of doc-
uments and the semantic similarities of the words included in them, using a corpus of
1150 documents. They showed that the topic sports (Spor) had a success rate of 97.5 %.
Their work did not involve any analysis on stemming. Some other and different
classification work have also been done. Özgür et al. [9] proposed a system to classify
spam e-mail messages using Artificial Neural Networks (ANN) and Bayesian Net-
works. Their work consisted a corpus of 750 e-mail messages of which 410 were spam,
and did not involve any analysis on stemming. The best success rate were observed
using the Bayesian (Binary Model) as 89 %.

Çıltık and Güngö [11] proposed another spam e-mail filter which uses N-gram and
N-word heuristics. A corpus of 3680 e-mail messages were used including both English
and Turkish content with success rates of 99 % and 98 % respectively, but did not
involve any analysis on stemming. A broader study was done by Can et al. [4] which
analyzed the effect of several stemming options and query-document matching func-
tions on document retrieval performance using a corpus with 408,305 documents.
Looking from the Information Retrieval effectiveness point of view, their work con-
cluded that stop-word-removal has no influence that longer documents and longer
queries provide better success, and that word truncation has similar effect with
lemmatizer-based stemming. They concluded that the best performing matching
function MF8, the stemming options F5 and LV provide, respectively, 33 % and 38 %
higher performance than that of no stemming.

3 Proposed Work

The aim of this study is to analyze the effect of Stemming, and Stop-Word-Removal
when doing automatic classification on Turkish content. The best corpus is assumed to
be from news articles relating to different topics. For such an operation, a corpus had to
be obtained or build. A research on the available corpus alternatives revealed only a
few; “Bilkent News Archive” (http://bilnews.bilkent.edu.tr), “Metu Corpus” (http://ii.
metu.edu.tr/metu-turkish-corpus-project), and “THY SkyLife Corpus” (http://www.
skylife.com/en/magazine).

METU Turkish Corpus is a collection of post-1990 written Turkish samples. The
contents were taken from 10 different genres. Each article comprises a few thousands of
words. The number of words for each article and their sources makes this corpus
non-suitable when doing automatic classification. Bilkent News Archive is a corpus
including news only relating to Bilkent University and the events at the Bilkent
University Campus. Although the number of words in each article are suitable for this
study, the topics of the articles are limited only with Bilkent University and related
events. Limited topics are a big disadvantage when working with text classification.
The THY SkyLife Corpus is a collection of articles published in the Turkish Airlines
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monthly magazine. The copies of this magazine are provided to the passengers for free
during the flights, and have a very limited list of topics, thus makes this corpus
non-suitable too.

The only viable alternative seemed to be building the corpus from scratch with the
help of a Turkish News Agency. There are many news agencies in Turkey, most being
commercial. “Türk Ajansı Kıbrıs”, however, is the only local and governmental agency
in Northern Cyprus which not only is free but also published on web.

4 Methodology for Dataset

With the help of a web crawler coded in Java, 1000 news articles were recorded in a
database. To minimize the effect of very short and very long articles, 500 of them
having more than one sentence were selected to be included in the study. These 500
articles were then tagged according to 11 different topics for training purposes. The
tagging was done manually by two annotators working independently from each other.
The average number of words per document is 221.22, and the number of documents
tagged for each topic is shown in Table 1. As seen from the number of documents of
each topic, the tagged documents form an unbalanced corpus.

The articles are then saved as separate documents so that they can be used for
creating a Feature Matrix. A template like “000n.txt” for naming the documents was
used, in order to decrease the work done during diagnostics when creating the Feature
Matrix. When analyzing the corpus a number of different methods were used. The
training set was analyzed using Support Vector Machines.

Proposed by Vapnik [17], SVM includes a group of classification algorithms to
solve two-class problems. They are based on finding a separation between hyperplanes
defined by classes of data [15], shown in Fig. 1. The main idea is to measure the margin
of separation of the data rather than measuring matches on words which are called
features.

Table 1. Number of documents for each topic

Topic Number of documents

Politics (Politika) 194
Sport (Spor) 8
Trade (Ticaret) 52
Health (Sağlık) 50
Entertaining (Eğlence) 9
Science and Technology (Bilim ve Teknoloji) 10
Education (Eğitim) 61
International Relations (Uluslararası İlişkiler) 95
Culture (Kültür) 62
Public and State Administration (Kamu Yönetimi) 198
Crime (Suç) 62
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The SVM is trained using manually preclassified documents. Research has shown
[16] that SVM scales well and has good performance even on large data sets, and also
outperforms Naïve Bayes classification algorithms.

Balancing, on the other hand, is done using the Smote method. SMOTE is an
algorithm used for balancing the samples by adjusting the class distribution of a data
set. The main objective is to use a bias for selecting more samples from one class than
from the other. Extra training data is created depending on the amount of
over-sampling required [14].

5 The Experimental Results

After setting up Weka for UTF-8, the manually tagged Feature Matrix was then fed to
Weka for analysis using Support Vector Machines classification technique. For each of
the specified topics used during manual classification, the data was fed to Weka and
analyzed according to “Correctly classified instances”, “F-Measure”, and “ROC Area”
measures. The results are in Table 2.

The documents are then stemmed using Zemberek-2 [7] Library with the help of
another Java code. During this stemming, each and every name root is taken into
consideration together with each and every verb root found. Figures 2, 3, and 4 shows
the core code paragraph used for stemming, a sample input text and the resulting text,
consecutively.

Fig. 1. Example of SVM hyper plane pattern

Table 2. Weka analysis results

Normal
Correct classification F-measure ROC area

Average 88,036 0,859 0,588
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After stemming, the Feature Matrix is rebuild again and the “Correctly classified
instances”, “F-Measure”, and “ROC Area” are obtained once again using Support
Vector Machines classification technique through Weka, as seen in Table 3.

A dataset is accepted as un-balanced if the classification categories are not equally
represented. To overcome this, oversampling and undersampling techniques in data
analysis are usually used to adjust the distribution classes within a corpus. When the
number of documents tagged for a topic is less than the number of documents tagged
for another, both the training and the analysis of the automatic classification may not be

Fig. 2. Core code

Fig. 3. Sample input text

Fig. 4. Resulting text
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biased. Document classifications with similar number of tagged documents within a
corpus is accepted to provide a more trustworthy result. Increasing the number of
samples or documents by counting some less occurring twice within a corpus to
balance the classified documents is called oversampling. Similarly, dropping some of
the more occurring documents from the corpus is called Undersampling [13]. With the
help of the SMOTE filter of Weka, the stemmed Feature Matrix is analyzed once again
for eliminating the difference of balanced and un-balanced sampling. The results are in
Table 4.

The last analysis for this stemmed and balanced Feature Matrix was done after
applying Stop-Word-Removal. For this purpose, the Matrix was sorted according to
total number of word occurrences. The columns including the words which are
occurring the most were removed. The words removed are the ones above the line
drawn showing the occurrences at 97.797 %. The line was drawn such that, the
removed words do not include any important or relevant ones according to manual
classification operation. When removing words, only “the most occurring” ones were
selected. There are no “the least occurring” words removed as they included relevant
ones to manual classification. Table 5 show the results obtained from this analysis.

To observe the combined effect of stemming, balancing, and stopword-removal,
another analysis is done using all three. The comparative results showing the difference
between the classification of normal corpus and the classification of corpus after
stemming, balancing, and Stopwords-removing is shown in Table 6.

Table 3. Comparing results of non-stemmed corpus with stemmed corpus.

NON-stemmed (normal) Stemmed
Correct
classification

F-measure ROC
area

Correct
classification

F-measure ROC
area

Average 88,036 0,859 0,588 88,000 0,872 0,638

Table 4. Comparing results of stemmed corpus with balanced corpus.

Un-balanced Balanced
Correct
classification

F-measure ROC
area

Correct
classification

F-measure ROC
area

Average 88,000 0,872 0,638 95,440 0,954 0,953

Table 5. Comparing results of balanced corpus with stop-words-removed corpus.

Balanced Stop-words-removed and balanced
Correct
classification

F-measure ROC
area

Correct
classification

F-measure ROC
area

Average 95,440 0,954 0,953 95,850 0,877 0,955
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To observe the combined effect of stemming, and stopword-removal, the analysis is
done once again using both. Table 7 shows the classification results of the original
normal corpus and the stemmed and Stop-Words-Removed corpus.

6 Conclusion

It has been observer that stemming has very little effect when doing text classification
on Turkish corpus. When compared with the efforts required, stemming operation can
easily be omitted when classifying Turkish texts. One very important benefit of
stemming, however, is its effect on the number of words each document includes at the
end of stemming. The lower the number of words in each document has, easier and
faster the following operations are. A balanced corpus, improves the results very much.
Similarly, the effect of stopword-removal, has very little effect, even when combined
with stemming. The overall results when all three methods are applied, are very
promising.

Table 6. Comparing results of normal corpus with stemmed, balanced and stop-words-removed
corpus.

Normal Stemmed, stop-words-removed, and
balanced

Correct
classification

F-measure ROC
area

Correct
classification

F-measure ROC
area

Average 88,036 0,859 0,588 95,850 0,877 0,955

Table 7. Comparing results of normal corpus with stemmed and stop-words-removed corpus.

Non-stemmed (normal) Stemmed and stop words removed
Correct
classification

F-measure ROC
area

Correct
classification

F-measure ROC
area

Bilim-Teknoloji 98,400 0,979 0,600 98,200 0,977 0,599
Eğitim 98,200 0,973 0,500 91,400 0,907 0,732
Eğlence 90,000 0,883 0,647 98,200 0,973 0,500
Kamu Yönetim 68,800 0,669 0,642 64,600 0,643 0,623
Kültür 89,400 0,862 0,586 89,200 0,882 0,675
Politika 70,400 0,689 0,658 69,600 0,692 0,669
Sağlık 90,200 0,867 0,537 90,600 0,886 0,601
Uluslararası
İlişkiler

84,600 0,815 0,627 84,000 0,834 0,708

Suç 90,600 0,888 0,656 93,800 0,936 0,833
Ticaret 89,400 0,853 0,516 90,600 0,892 0,642
Spor 98,400 0,976 0,500 98,200 0,975 0,499
Average 88,036 0,859 0,588 88,036 0,872 0,644
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In order to improve the confidence of the results, future work may include the usage
of a Turkish Corpus richer in terms of number of documents and number of words per
article. Another improvement may be using different classification algorithms like
K-Nearest Neighbours, Naïve Bayes.
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Abstract. In this paper, we propose example-specific density based
matching kernel (ESDMK) for the classification of varying length pat-
terns of long duration speech represented as sets of feature vectors. The
proposed kernel is computed between the pair of examples, represented
as sets of feature vectors, by matching the estimates of the example-
specific densities computed at every feature vector in those two exam-
ples. In this work, the number of feature vectors of an example among
the K nearest neighbors of a feature vector is considered as an estimate
of the example-specific density. The minimum of the estimates of two
example-specific densities, one for each example, at a feature vector is
considered as the matching score. The ESDMK is then computed as the
sum of the matching score computed at every feature vector in a pair
of examples. We study the performance of the support vector machine
(SVM) based classifiers using the proposed ESDMK for speech emotion
recognition and speaker identification tasks and compare the same with
that of the SVM-based classifiers using the state-of-the-art kernels for
varying length patterns.

1 Introduction

Short-time analysis of speech signal involves performing spectral analysis on
each frame of about 20 milliseconds duration and representing each frame by
a real valued feature vector. The speech signal of an utterance with T frames
is represented as a sequential pattern X = (x1,x2, . . . ,xt, . . . ,xT ), where xt

is a feature vector for frame t. The duration of the utterances varies from one
utterance to another. Hence, the number of frames also differs from one utterance
to another. In the tasks such as acoustic modeling of subword units of speech
such as phonemes, triphones and syllables, duration of the data is short and there
is a need to model the temporal dynamics and correlations among the features
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in the sequence of feature vectors. The hidden Markov models (HMMs) [1] are
commonly used for sequential pattern classification. On the other hand, in the
tasks such as speaker identification, spoken language identification, and speech
emotion recognition, the duration of the data is long and preserving sequence
information is not critical. In such cases, a speech signal is represented as a set
of feature vectors. The focus of this paper is on classification of varying length
patterns that are represented as sets of continuous valued feature vectors.

Conventionally, Gaussian mixture models (GMMs) [2] are used for classi-
fication of varying length patterns represented as sets of feature vectors. The
maximum likelihood (ML) based method is commonly used for estimation of
parameters of the GMM for each class. When the amount of the training data
available per class is limited, robust estimates of model parameters can be
obtained through maximum a posteriori adaptation of the class-independent
GMM (CIGMM), which is also called as universal background model (UBM),
to the training data of each class [3]. The CIGMM or UBM is a large GMM
trained using the training data of all the classes. Classification of varying length
sets of feature vectors using SVM-based classifiers requires the design of a suit-
able kernel as a measure of similarity between a pair of sets of feature vectors.
The kernels designed for varying length patterns are referred to as dynamic ker-
nels [4]. Fisher kernel using GMM-based likelihood score vectors [5], probabilistic
sequence kernel [6], GMM supervector kernel [7], GMM-UBM mean interval ker-
nel [8], GMM-based intermediate matching kernel [4] and GMM-based pyramid
match kernel [9] are some of the state-of-the-art dynamic kernels for sets of
feature vectors.

In this work, we propose the example-specific density based matching kernel
(ESDMK) as a dynamic kernel to be used in building an SVM-based classifier
for varying length pattern classification. We propose to construct ESDMK for a
pair of examples represented as sets of feature vectors by matching the estimates
of example-specific densities computed at every feature vector in the two exam-
ples. For every feature vector in the pair of examples, K nearest neighbors are
computed. The ratio of the number of feature vectors of an example among the
K nearest neighbors of a feature vector to K is an estimate of density specific
for that example. A matching score at a feature vector is computed as the mini-
mum of the two estimates of example-specific densities, one for each example, at
that feature vector. The ESDMK for a pair of examples is computed as a com-
bination of the matching scores at every feature vector in the pair of examples.
Our studies on the speech emotion recognition and speaker identification tasks
demonstrate the potential of the use of the ESDMK in building the SVM-based
classifiers for the classification of varying length patterns represented as sets of
feature vectors.

The rest of the paper is organized as follows. In Sect. 2, a brief review of
dynamic kernels for sets of feature vectors is presented. The proposed ESDMK
for sets of feature vectors is described in Sect. 3. In Sect. 4, the studies on speech
emotion recognition and speaker identification tasks are presented. The conclu-
sions are presented in Sect. 5.
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2 Dynamic Kernels for Sets of Feature Vectors

In this section, we review the approaches to design dynamic kernels for varying
length patterns represented as sets of feature vectors. Different approaches to
design dynamic kernels are as follows: (1) Explicit mapping based approaches
[6,10] that involve mapping a set of feature vectors onto a fixed-dimensional
representation and then defining a kernel function in the space of that repre-
sentation; (2) Probabilistic distance metric based approaches [7,8] that involve
kernelizing a suitable distance measure between the probability distributions
corresponding to the two sets of feature vectors; and (3) Matching based
approaches [4] that involve computing a kernel function by matching the fea-
ture vectors in the pair of sets of feature vectors.

The Fisher kernel (FK) using GMM-based likelihood score vectors [5] and the
probabilistic sequence kernel (PSK) [6], are the dynamic kernels for sets of feature
vectors constructed using the explicit mapping based approaches. The FK uses a
GMM for mapping a set of feature vectors onto a Fisher score-space. In the FK,
the Fisher score-space for a class is obtained using the first order derivatives of
the log likelihood of GMM for that class with respect to the GMM parameters.
The probabilistic sequence kernel (PSK) maps a set of feature vectors onto a
high dimensional probabilistic score space. The probabilistic score space for a
class is obtained using the posterior probability of components of the GMM built
for that class.

The GMM supervector kernel (GMMSVK) [7] and the GMM-UBM mean
interval kernel (GUMIK) [8], are designed using the probabilistic distance metric
based approaches. The GMMSVK uses example-specific adapted GMM built for
each example by adapting the means of the UBM using the data of that example.
The GMMSVK is then computed between the pair of examples by computing
the KL-divergence between the pair of example-specific adapted GMMs. The
GUMIK uses example-specific adapted GMM built for each example by adapt-
ing the mean vectors and covariance matrices of the UBM using the data of that
example. The GUMIK is then computed between the pair of examples by com-
puting the Bhattacharyya distance between the pair of example-specific adapted
GMMs.

The CIGMM-based intermediate matching kernel (CIGMMIMK) [4] and the
GMM-based pyramid match kernel (GMMPMK) [9] are the dynamic kernels
designed using the matching based approach. An intermediate matching kernel
(IMK) [4] is constructed by matching the sets of feature vectors using a set of vir-
tual feature vectors. For every virtual feature vector, a feature vector is selected
from each set of feature vectors and a base kernel (such as Gaussian kernel)
for the two selected feature vectors is computed. The IMK for a pair of sets of
feature vectors is computed as a combination of these base kernels. In [4], the
set of virtual feature vectors considered are in the form of the components of the
CIGMM. For every component of the CIGMM, a feature vector each from the
two sets of feature vectors, that has the highest probability of belonging to that
component (i.e., value of responsibility term) is selected and a base kernel is com-
puted between the selected feature vectors. In the pyramid match kernel (PMK),
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a set of feature vectors is mapped onto a multi-resolution histogram pyramid.
The kernel is computed between a pair of examples by matching the pyramids
using a weighted histogram intersection match function at each level of pyra-
mid. In [9], the CIGMMs built with increasingly larger number of components
are used to construct the histograms at the different levels in the pyramid. In
our studies, we compare the performance of the SVM-based classifiers using the
proposed ESDMK with that of the SVM-based classifiers using kernels reviewed
in this section.

3 Example-Specific Density Based Matching Kernel for
Sets of Feature Vectors

In this section, we present the ESDMK designed using a matching based
approach for sets of feature vectors. Let Xm = {xm1,xm2, . . . ,xmTm

} and
Xn = {xn1,xn2, . . . ,xnTn

} be the sets of feature vectors for two examples. The
estimates of the example-specific densities are computed in the space of two sets
of feature vectors and that space is given by X = {x1,x2, . . . ,xi, . . . ,xTm+Tn

} =
{Xm,Xn}. The K nearest neighbors for xi ∈ X are obtained using Euclidean
distance. An estimate of densities of feature vectors of Xm and Xn among the
K nearest neighbors of xi are given by p̂m(xi) = Km/K and p̂n(xi) = Kn/K
respectively. Here, Km and Kn are the number of feature vectors from Xm and
Xn among the K nearest neighbors of xi respectively. The matching score at xi

is given by
si = min

(
p̂m(xi), p̂n(xi)

)
(1)

The matching score si is computed for i = 1, 2, . . . , (Tm + Tn). The ESDMK for
Xm and Xn is computed as the sum of the matching score values for all xi ∈ X
as follows:

KESDMK(Xm,Xn) =
1

Tm + Tn

Tm+Tn∑

i=1

si (2)

It is expected that the similarity between the two examples from the same class
to be higher than that between the examples from two different classes.

The proposed ESDMK is similar to one of the state-of-the-art dynamic ker-
nels, GMMPMK as both the kernels are computed by matching the estimates of
densities. However, the procedure for computing an estimate of density is quite
different in both the kernels. In the GMMPMK, an estimate of density of feature
vectors of an example assigned to a component of CIGMM is computed, where
CIGMM is computed using the feature vectors of all the training examples. In
other words, the estimate of density is computed in the global space of all the
feature vectors of all the training examples. In the ESDMK, estimate of density
of feature vectors of an example is computed at every feature vector of the pair
of examples among the K nearest neighbors of that feature vector. Since these
estimate of densities are computed in the local space of feature vectors of pair
of examples, we expect that the proposed ESDMK captures the local variability
better than the GMMPMK.
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The ESDMK is a valid positive semidefinite kernel. The proof for the ESDMK
being a positive definite kernel is excluded due to the limitation of pages. In the
next section we present our studies on speech emotion recognition and speaker
identification tasks using SVM-based classifiers that use ESDMK. We also com-
pare their performance with that of the GMM-based classifiers and SVM-based
classifiers using state-of-the-art dynamic kernels.

4 Experimental Studies on Speech Emotion Recognition
and Speaker Identification

In this section, effectiveness of the proposed kernel is studied for speech emo-
tion recognition and speaker identification tasks using SVM-based classifiers.
A speech utterance is represented by a set of feature vectors by extracting 39-
dimensional feature vectors from every frame by performing spectral analysis.
Among the 39 features, the first 12 features are the Mel frequency cepstral coef-
ficients and the 13th feature is the log energy. The remaining 26 features are the
delta and acceleration coefficients. A frame size of 20 ms and a shift of 10 ms
are used for feature extraction from the speech signal of an utterance.

The Berlin emotional speech database (Emo-DB) [11] and the German FAU
Aibo emotion corpus (FAU-AEC) [12] are used for studies on speech emotion
recognition task. Emo-DB contains 494 utterances belonging to the following
seven emotional categories with the number of utterances for the category given
in parentheses: fear (55), disgust (38), happiness (64), boredom (79), neutral
(78), sadness (53), and anger (127). The multi-speaker speech emotion recogni-
tion accuracy presented in this work for the Emo-DB is the average classification
accuracy along with 95 % confidence interval obtained for 5-fold stratified cross-
validation. We have considered an almost balanced subset of the corpus defined
for these four classes by CEICES of the Network of Excellence HUMAINE funded
by the European Union [12]. We perform the classification at the chunk (speech
utterance) level in the Aibo chunk set. The speaker-independent speech emotion
recognition accuracy presented in this study for the FAU-AEC is the average
classification accuracy along with 95 % confidence interval obtained for 3-fold
stratified cross validation. The 3-fold cross validation is based on the three splits
defined in Appendix A.2.10 of [12].

The studies on the speaker identification task are performed on the 2002 and
2003 NIST speaker recognition (SRE) corpora [13,14]. We considered the 122
male speakers that are common to the 2002 and 2003 NIST SRE corpora. Train-
ing data for a speaker includes a total of about 3 min of speech from the single
conversation in the training set of 2002 and 2003 NIST SRE corpora. The test
data from the 2003 NIST SRE corpus is used for testing the speaker recognition
systems. The speaker identification accuracy presented is the classification accu-
racy obtained for the test examples. The training and test datasets as defined
in the NIST SRE corpora are used in studies.

In our studies, the SVM-based classifiers using the ESDMK are built using
different values for K in K-nearest neighbor method used to obtain an estimate
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Table 1. Classification accuracy (CA) (in %) of the SVM-based classifiers with
ESDMK for speech emotion recognition (SER) and speaker identification (Spk-ID)
tasks. Here, CA95%CI indicates average classification accuracy along with 95% confi-
dence interval. K indicates the number of neighbors considered.

K SER Spk-ID (CA)

Emo-DB (CA95%CI) FAU-AEC (CA95%CI)

2 90.00±0.27 57.71±0.16 88.52

3 90.60±0.24 61.93±0.14 90.54

4 92.00±0.27 65.33±0.09 91.38

5 91.80±0.25 64.40±0.09 89.42

of the density around each feature vector from the pair of sets of feature vectors.
We consider LIBSVM [15] tool to build the SVM-based classifiers. In this study,
one-against-the-rest approach is considered for 7-class and 4-class speech emotion
recognition tasks and 122-class speaker identification task. The value of trade-off
parameter, C in SVM is chosen empirically as 10−3. The classification accuracies
for the SVM-based classifier using ESDMK for different values of K are given
in Table 1 for speech emotion recognition and speaker identification tasks. It
is seen that the SVM-based classifiers using ESDMK with K = 4 give the best
performance for speech emotion recognition and speaker identification tasks.

Table 2 compares the accuracies for speech emotion recognition and speaker
identification tasks obtained using the GMM-based classifiers and SVM-based
classifiers using the state-of-the-art dynamic kernels mentioned in Sect. 2 and
the proposed ESDMK. In this study, the GMMs whose parameters are estimated
using the maximum likelihood (ML) method (MLGMM) and by adapting the
parameters of the UBM or CIGMM to the data of a class (adapted GMM) [3]
are considered to build GMM-based classifiers. The GMMs are built using the
diagonal covariance matrices. The accuracies presented in Table 2 are the best
accuracies observed among the GMM-based classifiers and SVM-based classifiers
with dynamic kernels using different values for Q, K, J and b. The details of the
experiments can be found in [4,9].

It is seen that the adapted GMM-based classifier gives a better performance
than the MLGMM-based classifier for speech emotion recognition and for speaker
identification. The better performance of the adapted GMM-based system is
mainly due to robust estimation of parameters using the limited amount of
training data available for an emotion class, or a speaker as explained in [3]. It is
also seen that performance of the SVM-based classifiers using the state-of-the-
art dynamic kernels is better than that of the GMM-based classifiers. This is
mainly because a GMM-based classifier is trained using the non-discriminative
learning based technique, where as an SVM-based classifier using the dynamic
kernels is built using a discriminative learning based technique. It is also seen
that the performance of the SVM-based classifiers using the proposed ESDMK is
better than that of the SVM-based classifiers using the state-of-the-art dynamic
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Table 2. Comparison of classification accuracy (CA) (in %) of the GMM-based clas-
sifiers and SVM-based classifiers using FK, PSK, GMMSVK, GUMIK, CIGMMIMK,
GMMPMK and proposed ESDMK for speech emotion recognition (SER) task and
speaker identification (Spk-ID) task. Here, CA95%CI indicates average classification
accuracy along with 95% confidence interval. Q indicates the number of components
considered in building GMM for each class or the number of components considered in
building CIGMM or the number of virtual feature vectors considered. The pair (J, b)
indicates values of J and b considered in constructing the pyramid. K indicates the
number of neighbors considered in ESDMK.

Classification model SER Spk-ID

Emo-DB FAU-AEC

Q/(J, b)/K CA95%CI Q/(J, b)/K CA95%CI Q/(J, b)/K CA

MLGMM 32 66.81±0.44 128 60.00±0.13 64 76.50

Adapted GMM 512 79.48±0.31 1024 61.09±0.12 1024 83.08

SVM using FK 256 87.05±0.24 512 61.54±0.11 512 88.54

PSK 1024 87.46±0.23 512 62.54±0.13 1024 86.18

GMMSVK 256 87.18±0.29 1024 59.78±0.19 512 87.93

GUMIK 256 88.17±0.34 1024 60.66±0.10 512 90.31

CIGMMIMK 512 85.62±0.29 1024 62.48±0.07 1024 88.54

GMMPMK (11,2) 88.65±0.23 (5,4) 64.73±0.16 (6,4) 90.26

ESDMK 4 92.00±0.27 4 65.33±0.09 4 91.38

kernels for speech emotion recognition and speaker identification tasks. The bet-
ter performance of the SVM-based classifier using the proposed kernel is mainly
due to the capabilities of the ESDMK in capturing the local information better
than the other dynamic kernels.

5 Conclusions

In this paper, we proposed the example-specific density based matching ker-
nel (ESDMK) for the classification of varying length patterns represented as
sets of feature vectors using the SVM-based classifiers. The ESDMK is com-
puted between two varying length patterns based on the estimate of densities
of feature vectors of the two examples among the K nearest neighbors of every
feature vector from the pair of examples. If the two examples are similar, the esti-
mates of example-specific densities used in the computation of the ESDMK must
be higher than those for a pair of not so similar examples. The effectiveness of
the proposed ESDMKs in building the SVM-based classifiers for classification of
varying length patterns of long duration speech is demonstrated using studies on
speech emotion recognition and speaker identification tasks. The performance of
the SVM-based classifiers using the proposed ESDMK is better than the GMM-
based classifiers and that of the SVM-based classifiers using using FK, PSK,
GMMSVK, GUMIK, CIGMMIMK and GMMPMK. Though the computation
complexity of the proposed ESDMK is slightly higher than that for the other
dynamic kernels, it captures the local information in the data better than the
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other kernels. The proposed ESDMK can be used for classification of varying
length patterns extracted from image, video, audio, music, and so on, repre-
sented as sets of continuous valued feature vectors using SVM-based classifiers.
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Abstract. The heterogeneity and the great mass of information found on the
web today require an information treatment before being used. The annotations,
like all other information, must be filtered to determine those that are relevant.
The new concept of “relevant annotation” can be then, considered as a new
source of evidence. In addition to the vast amount of annotations, we notice that
annotations express generally brief ideas using some words that they cannot be
comprehensible independently of his context. This is why, we thought to
classify it in clusters annotations sharing the same context and semantically
related. In this paper, we propose a new model based on clustering for the
classification and probabilistic model for the filtering. In the experiments, we
tried to consider the relevant annotation classes as a new source of information
able to improve the collaborative information retrieval.

Keywords: Relevant annotation � Expanded classification � Filtering �
Collaborative information retrieval

1 Introduction

Faced with the vast amount of information found on the web today, a collaborative
work is seen necessary to help the user find his need. According to Dinet [8] specialist
in Psychology and Ergonomics, this has demonstrated improved performance of
information retrieval, including the number of relevant information found and the time
taken to do the work. Indeed, work together allows to share the historical retrieval and
to formulate collaborative queries. This can be done through several tools, including
the annotations as a means of communication in a group.

There is today a very large amount of information on the web; some are a source
and other comments and opinions on these sources. This is called annotations, initially
used and have shown their interest on paper media.

These annotations are becoming increasingly attractive in the systems of collabo-
rative retrieval. Where there has been a sharing not only information but also comments
and feedback on these comments [1, 10]. These annotations show their interest in
information retrieval, particularly in multimedia retrieval, where the difficulties related
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to a semantic retrieval persists [14, 17]. So it is difficult to match the user query
expressed in human language to the physical characteristics of multimedia objects
[15, 16, 18, 19]. The user often use annotations expressed by users to have more details
on the information sought. So, the documents being annotated provide a context for the
group discussions. This context enables people to find relevant discussions more easily.

One limitation of the literature works is that the annotations are considered without
taking account on their relevance.

However, annotators can be expressed by experts or by novices. This explains false
information present in some annotations that can disrupt the information retrieval.
Indeed users can end up ruined by sometimes conflicting information. Another aspect
that can be found in this context is that the returns of comments can succeed until the
original topic can be diverted to other topics.

In addition to the relevance problem, the heterogeneity and the vast amount of
information, an annotation may contain little information so that it cannot be treated
independently of context. This is why we need to group in clusters annotation sharing
the same context. Then the data processing will consider a group of semantically
related annotations.

In this context, we propose a new approach able to filter and classify the annotation
that will be a new resource of information. The main questions are how can we define a
relative annotation, how can we detect it and which criteria will be considered to
express the semantic relationship?

In the following we present in second section a brief literature. We will present our
filtering and classification approaches respectively in third and fourth sections. We
detail then the experimentation environment and results in the fifth section and we will
end up with a conclusion.

2 Related Works

As already mentioned despite the importance of annotations under collaborative sys-
tems, it has not been analyzed before their integration into systems as a new source of
information. Indeed, the annotations are expressed by different users with very diverse
profiles and therefore we cannot treat them all with the same degree of importance.
They were found in the literature the work of Cabanac, who tried to evaluate the
relevance of an annotation based on opinions expressed in a debate that is based on the
concept of “social validation” [4]. To validate his work, he tried to compare its results
with the perceptions of 173 people, but the validation always depends on the opinions
of the individuals.

To deal with the large volume of documents and facilitate access to information,
research works have often used the classification techniques.

Mokhtari and Dieng-Kuntz in [11] suggest that the classification is divided in two
types supervised and unsupervised: “Classification is the action to group objects having
some commonalities without having knowledge of the form or the nature of the prior
classes, it is called unsupervised learning problem or automatic classification, or the
action of assigning objects to predefined classes, called supervised learning”. A su-
pervised classification is a manual classification in which a context or set of classes is
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specified in advance. This type of classification is not coherent since it needs to review
the initial classification when the number of elements to classify increases and this by
creating new classes or by changing the classification selection criteria. Many incre-
mental learning algorithms adapted to the problem of supervised classification. Most
cited in the literature are the Separators Vast Machine (SVM) [17], methods of k
nearest neighbors [2]. These methods always have problems to accelerate research and
learning [22, 23].

While an unsupervised clustering is an automatic classification which does not
require to have previously identified classes corresponding to different clusters. The
idea is to form homogeneous clusters where the elements of each cluster should be
similar as possible. A calculation of intra-cluster and inter-cluster distance is performed
to determine the quality of a clustering. Several existing clustering techniques in the
literature and as they may be divided into two main categories: methods of partitioning
and hierarchical methods. The first type of method is based on the principle to fix a
priori the k clusters and using an iterative process of assigning each element to the
nearest class. There are different methods based on classification by partitioning. There
are methods proceeding by aggregation around mobile centers [3], in which a class is
represented by a center of gravity, such as k-means and their numerous variants. This
type of classification allows the classification of a large set but its disadvantage is that it
requires from the number of classes.

The second type of approach is hierarchical methods. The hierarchical classification
is to perform grouping classes by aggregation at each stage of the closest elements [5].
This approach uses the concept of distance, which can reflect the homogeneity or
heterogeneity of classes. Thus, we considered that an element belongs to a class if it is
nearer to this class than to others. There are two types of hierarchical classification:
descending and ascending. The descending hierarchical classification includes all the
elements in one class then divides in an iterative manner.

While the hierarchical cluster represents each element in a class, and then performs
an aggregation successively two by two from the nearest clusters such that a cluster will
be “absorbed” by the nearest cluster. This method allows visualizing the progressive
grouping of data which can give an idea about the right number of groups in which the
data can be grouped. The principal difficulty presented by the hierarchical method is the
definition of two classes of grouping criterion, that is to say, the determination of a
distance between the classes but the advantage of reading the tree determines the
optimal number of classes. Since hierarchical ascending classifications are one of the
most successful and most performed forms of classification procedures. In our work,
we will choose a hierarchical cluster analysis to classify the filtered annotations con-
sidering the similarity between the annotations as grouping criteria.

In our contribution, we proposed a filtering and classification annotations based
respectively on a probabilistic model and on extended hierarchical classification.
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3 Filtering Annotation Approach

In our view, an annotation can have a degree of relevance if it carries information to
annotated object (which can be multimedia). In addition we can say that this annotation
is semantically related to the original object or other annotations with a non-zero degree
of relevance.

To evaluate the weight of each annotation, we considered a probability model based
on conditional probability where annotation is considered as a probabilistic event.

We considered an original document D which may be a media object in general
text, image or video and a set of annotation A ¼ Aif g. As we have already mentioned,
an annotation can be, not only a commentary on the original document, but also a
reaction to previous comments. We then chose a probabilistic network to model the
process of annotation.

To evaluate the weight of each annotation, we considered a probabilistic model that
is based on the conditional probability in which a note is considered as a probabilistic
event. According to the theorem of Bays, the conditional probability P Ai Djð Þ of Ai

given D is defined as the quotient of the probability of joint unconditional Ai and D, and
the unconditional probability of D by the following Eq. 1:

P Ai Djð Þ ¼ P Ai\Dð Þ
P Dð Þ ð1Þ

Where P (D) is the probability of the original document, which is valued at 1 (since
it is considered relevant).

The calculation P Ai\Dð Þ is given the following Eq. 2:

P Ai\Dð Þ ¼ P D Aijð Þ � P Aið Þ ð2Þ

With P D Aijð Þ is the similarity compared to D which given by the Eq. 3:

P D Aijð Þ ¼ Sim D;Aið Þ ð3Þ

P (Ai) is the probability of the annotation Ai linked to other existing annotations.
This means, if an annotation is not connected to another annotation, it is then less
susceptible to be relevant. In the other case when the annotation is only one then P (Ai)
=1 see the following Eq. 4.

P Aið Þ ¼
1 if N ¼ 1

PN
j¼1;j6¼1 Sim Aj;Ai

� �þ SimðD;� �� �
AiÞ

N
; else

8
><
>:

9
>=
>;

ð4Þ

In fact, several works have proposed measures of similarity [15, 16]. The similarity
between Aj and Ai Sim (Aj, Ai) is calculated as the sum of frequent terms Aj in Ai and it is
given by the following Eq. 5.
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Sim Aj;Ai
� � ¼

X
tk2 Ajð Þ tf tk;Aið Þ ð5Þ

In addition to the evaluation of the similarity between an annotation and the pre-
vious annotations and between an annotation and the annotated object to determine the
relevance of an annotation, we thought to reduce noisy annotations. We have intro-
duced that an annotation may be considered “noisy” if it doesn’t provide the infor-
mation to the annotated document. We then could show that short annotations cannot
be carriers of information. In this context, an annotation which its size is less than a
minimum size will be considered non relevant, and then its relevance is equal to zero.

A first observation of the results allowed us to deduce the following table (Table 1).

By statistics, we were able to eliminate by the filtering 87.54 % of invalidated
annotations by experts. We also note that some valid annotations are not known by the
filtering and do not exceed the 14 % while 86.82 % of validated annotations have been
filtered by our system.

After the filtering phase, the relevant annotations are always heterogeneous and
their number is still high (can reach thousands). The coherent annotations can be
grouped in the same class and therefore annotation class can be treated as one unit of
information.

4 Classification of Annotations

In addition to the relevance problem, the heterogeneity and the vast amount of infor-
mation, an annotation may contain little information so that it cannot be treated
independently of context.

This is why we need to group in clusters annotation sharing the same context. Then
the data processing will consider a group of semantically related annotations.

We then, propose a new method of classification, based on the method of Clus-
tering [21], designed to determine the annotation classes according to two additional
characteristics

• The highest internal homogeneity that is to say inside each annotation class,
• The highest external heterogeneity that is to say between the different classes of

annotation.

Table 1. Filtered annotations vs. unfiltered annotations

Category of annotation Results

invalid annotations and removed by the filtering 87.54%
valid annotations but not recognized by filtering 13.18%
valid and filtered annotations 86.82 %
invalid filtered annotations 12.46 %
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In statistical language, internal homogeneity corresponds to the internal variance
i.e. within cluster variance, while external heterogeneity corresponds to the external
variance i.e. between cluster variance. Our classification principle is based on the
algorithm of hierarchical clustering by introducing the semantic relationship between
the terms.

In addition, we propose to classify in progressive manner. In fact, we consider in
first time all annotations to be classified: “Initial classification” that will be explained in
Sect. 4.1. Then the resulted clusters can be extended by adding new annotations:
“Clusters extension” that will be detailed in Sect. 4.2.

4.1 Initial Classification

The object of our work is to classify the relevant annotations. We consider that an
annotation class can contain the annotations that have strong semantic relationships:
more the annotations are coherent more they are considered semantically linked. To
classify the relevant annotations, several steps are performed. Initially, the annotations
are considered independent. Secondly, a comparison in pairs is performed for these
annotations. And in recent times, we group the semantically related annotations in the
same class. The classes obtained in the previous step will be aggregated according to
their semantic relationships two by two.

We consider that an annotation class consists of a set of terms T = {t1, t2, …, tn}. To
give an idea of the representativeness of a term ti of an annotation class, we calculate
the combination of the factors tf*icf. The term frequencies tf of an annotation class
allows determining how much a term is comprehensive while the inverse frequency icf
determines how much a term is specific to this class. For each term ti of an annotation
class, we calculated its number of occurrences in his annotation class and the size of the
annotation class.

tf ti;Caj
� � ¼

P
j¼1�n Occ ti;Caj

� �

taille Caj
� � ð6Þ

With ti represents a term of an annotation class and Caj represents an annotation
class. The value of icf for a term ti in all annotation classes CA, is given by the next
Eq. 7:

icf ti;CAð Þ ¼ log
CAj j

caj 2 CA : ti 2 Cai
� ��� �� ð7Þ

With |CA| is the cardinality of all classes in the annotation collection and
caj 2 CA : ti 2 Cai

� ��� �� is the cardinality of the set of annotation classes where the term
ti appears (that is to say tf (ti, Caj) 6¼ 0).

The calculation of tf * icf is given by the following Eq. 8:
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tf � icf ¼ tf ti;Caj
� � � icf ti;CAð Þ ð8Þ

After calculating the factor of tf*icf for each term ti of an annotation class Caj, we
move to the grouping of these classes. The grouping of annotation classes is based on
the semantic relation between them. In our work, we consider that two annotations are
semantically linked if they have a number of common terms higher than a threshold.
The annotation classification algorithm is described below.

Algorithm 1. Classification Algorithm of annotations

Take the example of a document Dk containing a set of relevant annotation AN that
is composed by a set of terms Tj. Two annotations will be grouped if they have
common terms and their tf*icf is above the threshold. We consider the example of
annotations A1, A2, A10, A11, A12 and AN composed by the following terms (Table 2).

The factor values tf*icf of the annotation terms A1: tf*icf (T1, A1) > s, tf*icf (T2, A1)
> s, tf*icf (Ti, A1) < s and tf*icf (Ti+1, A1) > s. With s is a threshold.

Table 2. Terms constituting annotations

Annotations Terms

A1 {T1, T2, Ti, Ti+1}

A2 {T1, T2, Ti+1, Ti+3}

A10 {T1, Ti, Ti+3, Tj}

A11 {Ti+2, Tj+2}

A12 {Ti+3, Tj, Tj+1}

AN {Ti, Tj, Tj+1, Tj+2}
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The factor values tf*icf of the annotation terms A2: tf*icf (T1, A2) > s, tf*icf (T2, A2)
> s, tf*icf (Ti+1, A2) > s and tf*icf (Ti+3, A2) < s.

Since, the factor values tf*icf of the terms T1, T2 and Ti+1 are above the threshold
for both annotations A1 and A2, then A1 and A2 are grouped in one class Ca1: Ca1 =
{A1, A2}.

For the annotation A10, the factor values tf*icf of the terms are equal to: tf*icf
(T1, A10) < s, tf*icf (Ti, A10) < s and tf*icf (Ti+3, A10) > s.

The annotation A10 does not belong to the class Ca1, but it will belong to a new
independent class Ca2: Ca2 = {A10}.

For annotations A12 et AN, their factor values tf*icf are respectively equal to: tf*icf
(Ti+3, A12) > s, tf*icf (Tj, A12) > s, tf*icf (Tj+1, A12) > s, tf*icf (Ti, AN) < s, tf*icf (Tj, AN)
> s, tf*icf (Tj+1, AN) > s and tf*icf (Tj+2, AN) < s.

By applying our classification algorithm, the annotations A12 and AN will belong to
the same class of the annotation Ca2 that the annotation A10: Ca2 = {A10, A12, AN}.

We finish the comparison of annotations two by two to construct other classes of
annotations. The annotations after classification are shown in the below figure (Fig. 1).

The emergence of new annotations should be considered and therefore an extension
of the classes will be required. The principle of cluster extension will be detailed in the
next section.

4.2 Clusters Extension

Our goal is to extend clusters by adding annotations without applying the new clas-
sification algorithm which remains expensive (since we must treat all annotations).

The problem of classification is to find a way to classify data into one of the
predefined classes with minimum error classification. So, we propose to use a “pilot
annotation” notion (see the following algorithm).

The pilot annotation concept reflects the degree of representativeness of an anno-
tation in the annotation class. It is measured by its semantic relationship with an
annotation set of annotations of his cluster. For each new annotation, comparison with

Fig. 1. Construction of annotation classes
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pilots’ annotations will be made. The new annotation will be added with the most
similar pilot annotation.

Algorithm 2. Extended Classification Algorithm of annotations 

In our work, the semantic relationships can beings translated into similarity. For
each annotation in an annotation class, we calculate his weight which characterizes it.
The weight is the sum of similarities with all annotations constituting an annotation
class, determined by the following Eq. 9.

Weight aið Þ ¼
XN

j6¼1
sim ai; aj

� � ð9Þ

The similarity of an annotation with other annotations determines the weight of this
annotation in the class. The annotation that has the highest weight is considered the
pilot annotation for this class and it is determined by the next Eq. 10.

Weight apilot
� � ¼ Max Weight aið Þð Þ ð10Þ

A new annotation (anew) will be then added to cluster which his pilot annotation
has the highest Sim(anew, apilot). When adding a new annotation in a class, an update
must be performed to determine the new pilot annotation in this class and therefore the
class index annotation pilot must be updated.

5 Experimental Evaluation and Analysis of Results

To evaluate our model, we have applied it on our relevance feedback approach in
collaborative information retrieval. We proposed several approaches in this context
[12, 13]. We will use the possibilistic technique detailed in [12] and used in several
works [7]. Our technique consists of extraction relevant terms from annotation and
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added to initial query expressed by the user. To evaluate the relevance of term t, we
used the possibility theory expressed by the aggregation measure (Agg (t)) given by the
following Eq. 11.

Agg tð Þ ¼ a � N tð Þþ b � P tð Þ ð11Þ

With α and β 2 [0, 1] and
P

aþ b ¼ 1.
The necessity degree N (t) is determined according to appearance the term t of an

annotation class in the title of document, ei = {title}. The necessity degree is calculated
by the following formula:

N tð Þ ¼
P

i¼1�n tf t; eið Þ � ief t; ei;Eið ÞP
i¼1�n tf eið Þ ð12Þ

The possibility degree P (t) is determined according to appearance the term t of an
annotation class in the title of document, ei = {body}. The possibility degree is cal-
culated by the following formula 13:

P tð Þ ¼
P

i¼1�n tf t; eið Þ � ief t; ei;Eið ÞP
i¼1�n tf eið Þ ð13Þ

The factor tf*ief is performed using the next Eq. 14:

tf � ief t; ei;Eið Þ t; eið Þ ¼ tf t; eið Þ � ief t;Eið Þ ð14Þ

With ei = {title, body}. The value of tf (t, ei) is given by the following Eq. 15:

tf t; eið Þ ¼
P

i¼1�n Occ t; eið Þ
size eið Þ ð15Þ

With Occ (t, ei) is the occurrence of a term t of an annotation class in the element ei,
ei represents an element ei = {title} or ei = {body}, and size (ei) represent its size. The
inverse element frequency ief of the term t for all elements Ei is defined by the next
Eq. 16:

ief t1;Eið Þ ¼ log
Eij j

1þ ei 2 Ei : t1 2 eif gj j ð16Þ

5.1 Used Collection of Data

The experiments were conducted on semi-structured document collections. This is a
collection of “YouTube”. It will be built by the documents returned by the system itself
and that will be indexed for the extraction of the information resources already
described in the previous sections. We used 10 queries in various fields and the
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judgment was performed by students and researchers and to evaluate our approach, we
used the precision rate for the top 5, 10 and 20 documents using the residual relevance
[6]. The Residual method can measure the real impact of relevance feedback since it
removes the documents used for the judgment of the relevance of the collection. We
calculated the improvement rates TA, for different query, by the following Eq. 17:

TA ¼ new precision� old precision
old precision

ð17Þ

with TA (5) the rate of improvement, to show the importance of the relevance feedback
of the top five documents and TA (10) and TA (20) respectively to show the perfor-
mance of the top 10 and top 20 documents found. The new precision and the old
precision are respectively the results of the search after the relevance feedback and the
basic results, in the same residual collection.

5.2 Effects of the Classified and Filtered Annotation

We have compared the average precision obtained applying the relevance feedback
approach based on annotations in the rough with obtained results after filtering and
classification (see Table 3).

According to Table 3, we see that the classification and the filtering are essential
for using annotations. We note that the obtained precision using the classified and
filtered annotation for relevance feedback based on the possibilistic model has
improved compared to the initial query especially in the top 20 documents returned. It
was able to achieve an average equal 0.34 with an improvement rate equal to 54.54 %,
compared to 0.24 for the unfiltered and unclassified annotations with an improvement
rate equal to 9 %.

We also note that the filtered annotations showed its interest by improving the
precision rate of the initial query of the user. Even the filtering of unclassified anno-
tations improves initial accuracy which became 0.31 compared to 0.22 with an
improvement rate equal to 40.9 % for the top 20 documents returned by the system.

Table 3. Average precision with and without classified and filtered annotations

Base precision 5 Docs 10 Docs 20 Docs
0.28 0.24 0.22

Unclassified and unfiltered annotations 0.27 0.24 0.24
(% improvement) (-) (0%) (9.09%)
Classified and unfiltered annotations) 0.29 0.25 0.25
(% improvement) (3.57 %) (4.16%) (13.63%)
Unclassified and filtered annotations 0.36 0.30 0.31
(% improvement) (28.57 %) (25%) (40.9%)
Classified and filtered annotations 0.42 0.36 0.34
(% improvement) (53.57%) (50%) (54.54%)
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The relevance feedback based on possibilistic model considering as a source of
information the classified and unfiltered annotation gave a slight improvement com-
pared to the original query with an improvement rate equal to 3.57 % for the top 5
documents returned by the system but using the classified and filtered annotations gave
an improvement equal to 53.57 %. We obtain the corresponding recall rate and the
F-measure presented in Table 4.

According to Table 4, we see that the recall rate has improved from the initial query
compared to the reformulated query. The reformulation performed with the extracted
terms from the classified and filtered annotations based on the possibilistic model has
an improvement rate about 100 % for top 20 documents. These rates are high compared
to precision rates that can be explained by the fact that the initial results are too low
(0.07). These notes are confirmed in the F-measure case.

6 Conclusion and Future Works

Annotation systems have shown their interest in particular in collaborative systems.
These annotations can be carriers of information but also contradictions. A new
challenge is then to filter and to classifier these annotations. In this paper, we define a
new approach based on probabilistic model; enable to detect the relevant annotation
given one source using the similarity function that can reflect the semantic relationship.

To address the heterogeneity and the great mass of sometimes incomprehensible
annotations, we proposed a hierarchical classification approach to group the coherent
annotations in the same cluster. The classification is based on hierarchical method
where cluster can evaluate by adding new annotations using the “pilot annotation”
concept.

To examine our filtering and classification model, we considered our annotations as
a source of information for the relevance feedback in collaborative information retrieval
based on the possibilistic model. They gave a rate of improvement of the initial request
which could reach a rate equal to 55 % for the top 20 documents returned by the
system.

We propose as a perspective of our work a comparison of the results provided by
our filtering and classification annotations approaches with other collaborative test
database.

Table 4. Recall rate and F-measure of classified and filtered annotations

Based on classified and filtered annotations
Nb
Documents

Initial
recall

Initial
F-measure

Recall after relevance
feedback

F-measure after
relevance feedback

5 Docs 0.07 0.11 0.13 (86 %) 0.19 (73 %)
10 Docs 0.11 0.15 0.2 (82 %) 0.25 (65 %)
20 Docs 0.16 0.19 0.32 (100 %) 0.32 (68 %)
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Abstract. We introduce a deep convolutional neural network (DCNN)
as feature extraction method in a computer aided diagnosis (CAD) sys-
tem in order to support diagnosis of diffuse lung diseases (DLD) on
high-resolution computed tomography (HRCT) images. DCNN is a kind
of multi layer neural network which can automatically extract features
expression from the input data, however, it requires large amount of
training data. In the field of medical image analysis, the number of
acquired data is sometimes insufficient to train the learning system. Over-
coming the problem, we apply a kind of transfer learning method into the
training of the DCNN. At first, we apply massive natural images, which
we can easily collect, for the pre-training. After that, small number of
the DLD HRCT image as the labeled data is applied for fine-tuning.
We compare DCNNs with training of (i) DLD HRCT images only, (ii)
natural images only, and (iii) DLD HRCT images + natural images, and
show the result of the case (iii) would be better DCNN feature rather
than those of others.

1 Introduction

In the medical diagnosis, the performance of classification task is important
for the diagnosis quality. For classifying and detecting the diffuse lung disease
(DLD) pattern, which is appeared with idiopathic interstitial pneumonias (IIPs)
[1,3,5,9,11], high-resolution computed tomography (HRCT) images are regarded
to be effective for diagnosis since diffused DLD patterns can be observed in the
lung with any cross section. Unfortunately, diagnosing the IIPs site is difficult
work, because the DLDs on HRCT images show a lot of varieties in the meaning
of texture patterns. The quality of diagnosis is influenced by diagnosing skill of
physician, so that, objective diagnosing and improving its quality are desired for
proper treatment of IIPs. In order to decrease the burden of physicians, devel-
opment of the computer aimed diagnosis (CAD) system is desired for objective
diagnosis in these decades. The CAD systems are designed to provide a classifi-
cation function for second opinion using machine learning techniques.

In the field of machine learning and computer vision, the deep-learning style
classification system arouse a notice for its classification performance [4,6,7].
c© Springer International Publishing Switzerland 2015
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Fig. 1. Schematic diagram of DCNN architecture, which has alternate structure of
“convolution”, “ReLU”, “pooling”, and “normalize” layers. Input image is provided to
the data layer and the input signal transferred from data layer to the “fc8” layer.

In their works, massive labeled example is assumed to train the system, however,
the obtaining cost of such labeled data is expensive in the medical imaging
since it requires physicians decision for proper disease labels. The main idea
in this work is to transfer a feature extraction part in a DCNN for general
object recognition, into the DLD feature extractor. The DCNN for general object
recognition is trained with massive natural images that can obtain with lower
cost rather than that of medical images.

This type of learning is called a kind of transfer learning [10]. In this work,
we adopt a DCNN [6], which is origined from the Neocognitron [2,8], for DLD
pattern analysis with transfer learning.

2 Methods

2.1 Deep Convolutional Neural Network (DCNN)

We adopt a DCNN for the feature extraction of DLD patterns. Figure 1 shows
the schematic diagram of the DCNN in this experiments, which is same as
Krizhevsky’s DCNN [6]. The DCNN has a alternate structure of pattern trans-
formation called “stage” [2,8], which consists of “convolution”, “rectified lin-
ear(ReLU)”, “pooling”, and “normalize” layers. Considering the ith stage for
the pth input pattern, we formulate each layer response as followings. The “con-
volution” layer extracts feature maps as

f conv
p,i (k,x) =

∑

l,u

gi(k, l,u) fpool
p,i−1(l,x− u), (1)
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where k means the index of feature map, and x means the location of the map.
The convolution kernel gi(k, l,u) means the feature including in the lth feature
map of the pooling (with normalization) layer in the previous stage fpool

p,i−1(l,x).
In each feature map f conv

p,i (k,x), extracted features are modulated with the rec-
tified linear unit (ReLU):

fReLU
p,i (k,x) = max[0, f conv

p,i (k,x)]. (2)

Then, in each modulated feature map, spatially neighbor responses are gath-
ered for calculation of representative value, which is called spatial pooling:

fpool
p,i (k,x) = maxξ∈N(x)[fReLU

p,i (k,u)], (3)

where N(x) means the spatial neighbor area around the location x in the
map. Then, these response map are normalized in the same manner with
Krizhevsky [6]. Hereafter, we adopt the ith stage representation as the vector
which arranges whole components of the layer: fpool

p,i = {fpool
p,i (k,x)}k,x.

In the Fig. 1, “fc6”, which abbreviate 6th fully-connected layer, is feature
extraction layer. Following layers, which are “fc7”, “fc8” layers, have the multi-
layer perceptron (MLP) structure, which plays a role as the classier.

Fig. 2. Training the DCNN as general object recognition classifier with massive natural
images at first. Then, tuning the pre-trained DCNN with HRCT image including DLD
patterns for fine-tuning.
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2.2 Transfer Learning for DCNN

We propose a transfer learning style learning for the DCNN for analyzing DLD
patterns in the following. Figure 2 shows the schematic diagram of transfer learn-
ing for the HRCT DLD patterns. At First, we make a reference object classifica-
tion system with DCNN. In this study, we apply it in the manner of Krizhevsky’s
method [6]. In this process, we expect that the connections in the lower stages are
trained enough with massive natural images. After the massive natural images
training, we substitute the higher MLP structure, that is, “fc7”, “fc8” layers
and its corresponding connections, and train the DCNN again with the HRCT
DLD patterns by the conventional back propagation (BP) method with stochas-
tic gradient decent. The problem of the conventional BP is the diffusion of the
modifying information for connections along the error signal propagation from
the higher layer to the lower. As the result, the lower level connections might
not be enough trained in the small number of the dataset. In our approach,
we trained the lower connections with massive natural image data and transfer
them to the specific classification.

For evaluation of our approach, we compare the DCNN features from the
followings:

(i) using only natural images for training,
(ii) using only HRCT DLD patterns for training,
(iii) using both natural images for pre-training and HRCT DLD patterns for

fine-tuning.

We obtain the comparing features from several layers, that is, “pool1”,
“pool2”, and “fc6”, for each DCNN.

2.3 Materials

We acquired 117 scans for different subjects from Osaka University Hospital,
Osaka, Japan. The resolution was 512 × 512 with the pixel size of 0.6[mm] on
each slice, and the slice-thickness was 1.0[mm]. The regions of the seven types of
patterns were marked by three experienced radiologists with following procedure.
At first, each radiologist was asked to review all scans. From each scan, maximum
of three slices were selected where typical DLD patterns dominantly spread. After
that, the seven types of patterns were marked on the selected slices separately
together with the other radiologists. Finally, the common regions marked by
all radiologists were guessed as where typical patterns are located. The ROIs
locations are selected randomly from the region where 80 % area is included in
the region while considering non-overlapped area.

Figure 3 shows a typical image example of each disease in HRCT image. The
left shows an overview of the axial HRCT images of lungs including lesion, and
the right shows segmented images of typical examples of lesion from the left
image collections. The consolidation (CON) and ground-grass opacity (GGO)
patterns are often appeared with the cryptogenic organizing pneumonia diseases
(COPD). The GGO pattern is also often appeared in the non-specific interstitial
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pneumonia (NSIP). The reticular (RET) pattern, which also imply the NSIP,
sometimes appears together with partial GGO patterns. The honeycomb (HCM)
pattern has more rough mesh structure rather than that of the reticular pattern,
and it appeared in idiopathic pulmonary fibrosis (IPF) or usual interstitial pneu-
monia (UIP). Both of the nodular (NOD) and emphysema (EMP) are not DLDs,
however, these patterns sometimes confuse physician, so that, we include these
classes into the experiment. The normal (NOR) pattern appears in the normal
tissue.

Fig. 3. Typical CT images of diffuse lung diseases: The top row shows each overview,
and bottom shows magnified part (ROI) of each lesion. From (a) to (g) represents
“Consolidation (CON)”, “GGO”, “Honeycomb (HCM)”, “Reticular (RET)”, “Nodular
(NOD)” “Emphysema (EMP)”, and “Normal (NOR)” image respectively.

The size of ROI is 32×32 pixel, which is just too small for the DCNN input,
so that, we magnify the ROI image to adjust the DCNN input size. As the result,
we collect 169 ROIs for CON, 655 for GGO, 355 for HCM, 276 for RET, 4702 for
EMP, 827 for NOD, and 5,726 for NOR. We divide the dataset for obtaining the
DCNN feature and evaluation task. For the DCNN training, we use 143 CONs,
609 GGOs, 282 HCMs, 210 RETs, 4,406 EMPs, 762 NODs, and 5371 NORs.
The other 26 CONs, 46 GGOs, 73 HCMs, 66 RETs, 296 EMPs, 65 NODs, and
355 NORs are used for evaluation task.

3 Results

In the analysis, we first compare the classification performance. We compare
the features of “fc6” layer, which has 4,096 units, from the DCNN with only
natural images for training, with only HRCT DLD for training, and proposed
method. In order to evaluate the classification performance, we introduce both
the leave one out cross validation (LOOCV) method and leave one person out
cross validation (LOPOCV). LOOCV method is a standard evaluation method,
however, ROIs from same patients might have several correlation which conduct
the classification bias in the evaluation. Thus, we introduce LOPOCV method
for reducing the bias from the same patient’s ROI.



204 H. Shouno et al.

Table 1. Comparison of SVM accuracy performance for the DCNN feature obtained
only from natural images, obtained only from HRCT images, and the proposed method.

Nat. Imgs HRCT Imgs Proposed

LOOCV accuracy 87.49 % 89.00 % 91.91 %

LOPOCV accuracy 75.78 % 74.13 % 80.04 %

Table 2. Confusion matrix: Trained with only HRCT images

Predicted Evaluation

True CON GGO HCM RET EMP NOD NOR Recall Precision F-score

CON 26 0 0 0 0 0 0 1.00 0.93 0.96

GGO 0 19 0 15 0 10 2 0.41 0.63 0.50

HCM 0 0 66 5 2 0 0 0.90 0.88 0.89

RET 2 9 7 46 0 2 0 0.70 0.69 0.69

EMP 0 0 0 0 274 6 16 0.93 0.88 0.90

NOD 0 2 1 1 6 39 16 0.60 0.52 0.56

NOR 0 0 1 0 28 18 308 0.87 0.90 0.88

Table 3. Confusion matrix: Our method

Predicted Evaluation

True CON GGO HCM RET EMP NOD NOR Recall Precision F-score

CON 26 0 0 0 0 0 0 1.00 0.93 0.96

GGO 0 32 0 9 0 2 3 0.70 0.63 0.66

HCM 0 0 69 4 0 0 0 0.95 0.93 0.94

RET 2 16 5 43 0 0 0 0.65 0.75 0.70

EMP 0 0 0 0 283 1 12 0.96 0.94 0.95

NOD 0 3 0 1 0 32 29 0.49 0.59 0.54

NOR 0 0 0 0 18 19 318 0.90 0.88 0.89

Using only DLD patterns for training (case (ii)), the DCNN shows over-
fitting for the training set. The classification performance using “fc8” layer for
the training set becomes 93.5 %, meanwhile for the test set is 30.0 %. Thus, we
use the intermediate layer expressions for the evaluation. In order to classify the
expressions, we adopt linear support vector machine (SVM) with one-versus-one
method for multi class classification.

The Table 1 shows the accuracy performance for the test set of our experi-
ments. Both of the evaluation methods, that is, LOOCV and LOPOCV methods,
our proposed method shows better result rather than those of others. Especially,
with the LOPOCV method, the DCNN feature obtained from only HRCT images
does not work as well as our method. Hereafter, we focus on the DCNN feature
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obtained from only HRCT images and our method. The detail confusion matrix
and evaluation for LOPOCV method of these two are shown as Tables 2 and 3. In
the Table 3, improved score shows as the bold, and degraded score shows as the
bold in the Table 2. In these tables, we can see the improvement of our method
except of NOD in the meaning of F-score.

In the DCNN, the input image is transformed local feature maps in the lower
stage, and the represented features are integrated gradually. It is important to
investigate the intermediate representation for construction DCNN, so that, we
investigate the representation in the meaning of the projection to the orthogonal
vector of the SVM decision plane. In this experiment, we generate SVMs for
each layer representation. Figure 4 shows a result for the GGO versus RET
classifier. In each graph, the horizontal axis shows the distance from the decision
plane, where the origin indicates the decision boundary, and the vertical one
shows the density of the test examples. In the figure, the top row graphs shows
the result for our proposed method, and the bottom one shows the result for
the DCNN with only HRCT images. The left column shows the result for the
“pool1” layer representation, the middle shows for the “pool2”, and the right
one shows for the “fc6” layer. In our proposed method, we can see the variance

Fig. 4. Projection of each test representation into the normal vector to the SVM deci-
sion plane for the GGO vs RET classifier. The horizontal axis shows the distance from
the plane. The vertical one shows the density of the test patterns. The cross marks
on the horizontal axis show the mean of each class, and the curve shows the normal
distribution for projection data of each class.
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for the projection of each class data shrinks in the “pool2” layer, and the spread
again with uncoupling of each class center in the “fc6” layer. The shapes of
density shapes in the “pool1” and the “pool2” layers are established in the
natural image pre-training. On the contrary, in the case of only using the HRCT
image on the training, the variance of density shape does not shrink in the
“pool2” layer representation. In the “fc6” layer representation, the center of
each class looks uncoupled, however, the variance of density shape looks large in
the representation. As the result, we guess the performance of the classification
becomes worse.

4 Summary and Discussion

In this study, we propose a DLD pattern analysis method with DCNN. In general,
DCNN requires massive training dataset to bring out its performance, however,
it is hard to acquire in the field of medical imaging. Overcoming this problem,
we introduce a transfer learning style training, that is, we train the DCNN
with natural image set, which can obtain in low cost, for pre-training for the
DCNN as the initial state. After that, we train again the DCNN with DLD
patterns for the fine-tuning. The classification performance looks better than
the DCNN with only DLD pattern training in the meaning of the LOPOCV
evaluation. We compare the intermediate representations of the DCNN with
only DLD pattern training and our method by use of the projection of the test
pattern representation into the orthogonal vector for the SVM decision plane. In
our method, the shape of density looks sharp in the intermediate “pool2” layer
representation, and, in the “fc6” layer, the center of each class uncouples with
spreading its shape. We guess the sharp shape in the intermediate representation
comes from the pre-training of the natural image with transfer learning style.
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Grant number 25330285, and 26120515.
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Abstract. Automatic modulation recognition (AMR) becomes more important
because of usable in advanced general-purpose communication such as cognitive
radio as well as specific applications. Therefore, developments should be made
for widely used modulation types; machine learning techniques should be tried
for this problem. In this study, we evaluate performance of different machine
learning algorithms for AMR. Specifically, we propose nonnegative matrix facto‐
rization (NMF) technique and additionally we evaluate performance of artificial
neural networks (ANN), support vector machines (SVM), random forest tree,
k-nearest neighbor (k-NN), Hoeffding tree, logistic regression and Naive Bayes
methods to obtain comparative results. These are most preferred feature extraction
methods in the literature and they are used for a set of modulation types for
general-purpose communication. We compare their recognition performance in
accuracy metric. Additionally, we prepare and donate the first data set to Univer‐
sity of California-Machine Learning Repository related with AMR.

Keywords: Automatic modulation recognition · Nonnegative matrix factorization ·
Artificial neural networks · Support vector machines · Random forest tree · K-nearest
neighbor · Hoeffding tree · Naive Bayes · Logistic regression

1 Introduction

Communication signals are modulated with different modulation types and are radiated
at different frequencies. In some applications, signal identification and information of
the signal is required. These applications are generally used for military purposes such
as electronic warfare, surveillance, threat analysis, counter channel jamming or for
civilian purposes such as spectrum management, interference identification and signal
confirmation. In these applications, recognition of the signal’s modulation type is
required for demodulation and information of the signal. Modulation recognition had
been manually performed in its early days and then was semi-automatic done. According
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to development of recognition technology, it has automatically performed and has
become an important issue of communication intelligence (COMINT). It is investigated
for analogue and digital modulation types in its early time. But depending on the expanse
and development of digital electronics, digital modulation types are focused on. With
steadily increasing use of intelligent modem, expanse of software defined radio, cogni‐
tive radio and systems using adaptive modulation, automatic modulation has become
more important issue to reduce transmitted data as removing information of modulation
type. AMR is designed based on two principles: The first one based on decision theoretic
and the other one based on statistical pattern recognition. Decision theoretic is concerned
many objections and difficulties. Adjusting appropriate threshold require detailed anal‐
ysis. Nevertheless, increasing accuracy is really difficult. Whereas pattern recognition
techniques do not require like threshold determination and are more tolerant of faults,
robust against noise [1, 2].

Pattern recognition systems consist two main parts: Feature extraction and recogni‐
tion subsystems. Therefore, accuracy is increased using more effective feature or
machine learning techniques in a pattern recognition system except extra manipulation.
In the literature, different feature set such as based signal spectral [1–4], high order
cumulants [2–5] based continuous wavelet transform [3, 5, 9], constellation shape [6],
based spectral analysis [7] has been used. Features based on spectral and high order
cumulants are extracted from the digitally modulated signal.

There are lots of machine learning techniques for pattern recognition, support vector
machines (SVM), particle swarm optimization (PSO) [3], multi-layer perceptron (MLP)
[2, 7–9], probabilistic neural network (PNN) [4], genetic algorithms (GA) [2] are used
for this purpose. The other important issue for AMR is modulation set. In the literature,
some AMR systems are designed for more limited modulation set [1, 4]. Some of the
others are applied for specific modulation set such as M-PSK and M-QAM [5], M-PSK,
M-QAM and B-FSK [8] or pulse modulations [10]. The rest of them are developed for
wide modulation set [2, 3, 9]. Another significant subject for AMR is channel type. In
the past, almost all AMR systems are designed for AWGN channel type. In this study,
some of most preferred features in the literature was extracted for 2-ASK, 4-ASK,
8-ASK, 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM modulation types, and then
extracted features are applied the statistical pattern recognition system used NMF, ANN,
SVM, Random Forest, k-NN, Hoeffding tree, Logistic regression and Naive Bayes as
benchmark. The work is performed in consideration additive white Gaussian noise
(AWGN) channel type.

This paper organized as follows. Sections 2 and 3 define problem, explain signal and
channel model, describe chosen features to be used in AMR. Information about NMF
can be found in Sect. 4. Sections 5 and 6 consist of experimental results and conclusion,
respectively.

2 System Model, Signal and Channel Representation

In AMR system, preprocessing includes data sampling, pulse shaping, estimation of
carrier frequency,  and recovery of complex envelope through Hilbert transform. Thus,
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signal is prepared for feature extraction. Then feature extraction is performed and finally,
the normalized features are applied to the automatic recognition subsystem.

A linearly modulated and pulse-shaped communication signal can be expressed as

(1)

where  is pulse-shaped low-pass equivalent of the signal and can be given by:

(2)

where  is signal power,  is the pulse shaping function, T is symbol rate and  is
a wide sense stationary symbol sequence. A symbol can be represented as 
where and  are real-valued in-phase and quadrature components of. After preprocessing
of the received signal, the received complex signal can be expressed as

(3)
where  is the independent sample of zero mean complex Gaussian random variables
with variance  per dimension caused by AWGN channel.  depends on signal to
noise ratio (SNR) [3]. AWGN channel is a convenient model for satellite and deep space
communication signals.

3 Feature Extraction

The recognition system is based on pattern recognition, so it requires suitable features
for the process. A feature set consists of some spectral and statistical features. These
features have been preferred much more in previous works is used.

3.1 Spectral Features

The motivation of the features used in this category is instantaneous amplitude or
instantaneous phase of the signal to contain information about modulation type. The
four features described in [2] and they are shown below.

1. Maximum value of the power spectral density of the normalized-centered instanta‐
neous amplitude:

(4)

where  is number of samples,  and ,  is the
-th instantaneous amplitude and  is the sample mean value. Here,  and
 is sampling frequency.

2. Standard deviation of the absolute value of the centered non-linear components of
the instantaneous phase:
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(5)

where  is the non-linear component of the instantaneous phase,  is the number
of samples in  for which  and  is the threshold for  below which
the estimation of the instantaneous phase is very noise sensitive.

3. Standard deviation of the centered NL component of the instantaneous phase

(6)

4. Standard deviation of the absolute value of the normalized-centered instantaneous
amplitude

(7)

3.2 Statistical Features

The signals modulated with QAM contain information at instantaneous phase and
amplitude. Therefore, signals like these are regarded as complex signals. PSK and ASK
signals are also regarded as complex signals. Taking advantage of high order cumulants
to distinguish complex modulation types is an efficient way. High order cumulants are
not affected by AWGN because the expected value of noise is zero. The features that
used high order cumulants are described in [2, 11] as below.

Let  be a signal vector,  and  denote the statistical expectation. The
second, third and fourth-order cumulants at zero lag are then

(8)

(9)

(10)

It is required to obtain complex envelope of the sampled signal.

(11)

where  is the complex envelope of the sampled signal ,  is Hilbert transform of
 and  is carrier frequency. When  and  is the real and imaginary part of 

respectively. , , , , , , , , , ,  and
 are cumulants and cross-cumulants are used as statistical features.
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4 Nonnegative Matrix Factorization (NMF)

Nonnegative matrix factorization (NMF) is one of the most used techniques in machine
learning. NMF is a matrix factorization algorithm that focuses on the analysis of data
matrices whose elements are nonnegative [12, 13]. NMF has a very broad range of
potential applications [12] and used for different applications [12, 14–16]. Given a
matrix  is a set of multivariate -dimensional data vector where  is the number
of samples in the data set. This matrix is approximately factorized into a  matrix 
and a  matrix  where  is the rank of  that  [12–14].

(12)

There are some cost functions [13, 15, 16] evaluating the quality of the approxima‐
tion and two of them are commonly used. The first is the square of the Euclidean distance
between two matrices [13, 17].

(13)

The second is referenced the “divergence” between two matrices.

(14)

Iterative update algorithms are used  to approximate data matrix. Multiplicative
update algorithm is the most widely used due to its easy implementation and speed [13].
Other update algorithms also existed [18]. In this study, Euclidean distance (cost func‐
tion) and multiplicative update rule are used for analysis:

(15)

5 Experimental Results

The data set is prepared the features that are extracted from instances which consist of
9,600 digitally modulated symbols. The system is trained with 4,000 instances that are
uniformly distributed for each class and is tested with different 4,000 instances similar
to the previous. Training and testing data sets are generated according to SNR level that
is estimated in cognitive radio systems. We also donate (upload) this data set to Univer‐
sity of California, Irvine - Machine Learning Repository (UCI-MLR), namely “Digital
Modulation Features Data Set for Automatic Modulation Recognition1”. This data set
is the first one in UCI-MLR archive related with modulation recognition. It can be
downloaded and used freely in Matlab and Excel formats for all modulation recognition
experiments.
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We implement NMF (with multiplicative update rule [12]) on data set and give
the results below. Negative data has been changed with its absolute value to fit it to
the algorithm for NMF. Illustrated results are given in Fig. 1 and Table 1. We use
accuracy metric to test the recognition performance. We also do the experiments for
the same data set with ANN (multi-layer perceptron with one hidden layer that has
10 neurons as benchmark and gradient descent with momentum weight and bias
learning function are used), SVM (with radial basis function kernel and J. Platt’s
minimum optimization algorithm), random forest tree (with 100 trees), k-NN (Eucli‐
dean distance k-NN = 1), Hoeffding tree (with 0.05 tie threshold and 200 grace
period) and Naïve Bayes.

Table 1. The recognition rates table of NMF, ANN, SVM, Random Forest Tree, k-Nearest
Neighbor, Hoeffding Tree and Naïve Bayes algorithms.

SNR
values

Accuracy

ANN SVM Random
Forest

k-NN Hoeffdi
ng Tree

Naive
Bayes

NMF

−10 0.87 0.75 0.77 0.61 0.83 0.83 0.62

−5 0.94 0.83 0.94 0.81 0.94 0.93 0.73

0 1.00 0.94 1.00 0.91 1.00 1.00 0.87

5 1.00 1.00 1.00 1.00 1.00 1.00 0.78

10 1.00 1.00 1.00 1.00 1.00 1.00 0.84

15 1.00 1.00 1.00 1.00 1.00 1.00 0.82

20 1.00 1.00 1.00 1.00 1.00 1.00 0.89

The recognition performance of NMF lies down between 60–90 % ranges. Espe‐
cially, removing negative values of data set affect the performance. These conditions
have been achieved by replacing them with their absolute values. On the other hand,
ANN, SVM, random forest tree, k-NN, Hoeffding tree and Naïve Bayes give better
recognition results then NMF. The accuracy reach to 1 beginning from SNR = 5. Even
so, different types of NMF, cost functions, r (lower rank value) can have better perform‐
ance of NMF in the future studies. The exact rates on graphic also can be seen Table 1
shown below.
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Fig. 1. The recognition performance of NMF, ANN, SVM, Random Forest Tree, k-Nearest
Neighbor, Hoeffding Tree and Naïve Bayes algorithms.

6 Conclusion

In this article, we propose NMF method for AMR and make comparisons with other
machine learning algorithms. Automatic recognition has never been studied with NMF
in the literature yet for modulation. The system is designed for AWGN channel type
consideration. Some statistical and spectral features are used for recognition. ANN,
SVM, random forest tree, k-NN, Hoeffding tree and Naïve Bayes methods examined
except for NMF. We show the recognition performance of the system with accuracy
metric in graphic. Other algorithms has better accuracy then NMF, especially after
SNR = 5. Although recognition range lies down between 60–90 % for NMF, but this
situation can be improved by offering several different parametric and structural
approaches in the future studies. We also prepare and donate the first “Automatic Modu‐
lation Recognition Data Set” to University of California-Machine Learning Repository
for free usage.
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Abstract. So far, we have presented a method for text-prompted multi-
step speaker verification using GEBI (Gibbs-distribution based extended
Bayesian inference) for reducing single-step verification error, where we
use thresholds for acceptance and rejection but the tuning is not so
easy and affects the performance of verification. To solve the problem
of thresholds, this paper presents a method of probabilistic prediction in
multiclass classification for solving verification problem. We also present
loss functions for evaluating the performance of probabilistic prediction.
By means of numerical experiments using recorded real speech data,
we examine the properties of the present method using GEBI and BI
(Bayesian inference) and show the effectiveness and the risk of probabil-
ity loss in the present method.

Keywords: Probabilistic prediction · Text-prompted speaker verifica-
tion · Gibbs-distribution-based extended Bayesian inference · Loss func-
tions in multiclass classification

1 Introduction

So far, we have presented a method for text-prompted multistep speaker verifica-
tion [1,2]. Here, from [3], text-prompted speaker verification has been developed
to combat spoofing from impostors and digit strings are often used to lower
the complexity of processing. From another perspective, the method focuses
on reducing verification error by means of multistep verification using Gibbs-
distribution-based Bayesian inference (GEBI) for rejecting unregistered speakers
[2], where from the analysis of the properties, it is suggested that the tuning of
the thresholds for acceptance and rejection is not so easy and affects the perfor-
mance. Namely, we have tuned the thresholds by the method of EER (equal error
rate) for FAR (false acceptance rate) and FRR (false rejection rate) to be almost
the same. Furthermore, the obtained values of the thresholds are not so easy to
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Fig. 1. Diagram of text-prompted speaker verification system using CAN2s

be modified for different security or risk level of verification. To solve this prob-
lem, this paper presents probabilistic prediction. Here, note that from [4] and our
experience, we can see that the probabilistic prediction in weather and climate
forecasting allows the users to decide on the level of risk they are prepared and
to take appropriate action within a proper understanding of the uncertainties.
For introducing probabilistic prediction into verification, we first formulate mul-
ticlass classification problem, and then apply Bayesian inference (BI) to obtain
the probability. We also present loss functions to evaluate the performance of the
probabilistic prediction in multiclass classification derived for verification prob-
lem, and then examine the properties and effectiveness of the present method
by means of using real speech signal.

Here, note that our speech processing system employs competitive associative
nets (CAN2s). The CAN2 is an artificial neural net for learning efficient piecewise
linear approximation of nonlinear function [5], and we have shown that feature
vectors of pole distribution extracted from piecewise linear predictive coefficients
obtained by the bagging (bootstrap aggregating) version of the CAN2 reflect
nonlinear and time-varying vocal tract of the speaker [6]. Although the most
common way to characterize speech signal in the literature is short-time spectral
analysis, such as Linear Prediction Coding (LPC) and Mel-Frequency Cepstrum
Coefficients (MFCC) [7], the bagging CAN2 learns more precise information
than LPC and MFCC (see [6] for details).

We show the method of probabilistic prediction in Sect. 2, experimental
results and analysis in Sect. 3, and the conclusion in Sect. 4.

2 Probabilistic Prediction for Text-Prompted Speaker
Verification

Figure 1 shows an overview of the present text-prompted speaker verification
system using CAN2s. In the same way as general speaker recognition systems
[7], it consists of four steps: speech data acquisition, feature extraction, pattern
matching, and making a decision. In this research study, we use a feature vector
of pole distribution obtained from a speech signal (see [6] for details).
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2.1 Multistep Speaker and Text Verification Using GEBI

Here, we show a brief explanation of multistep verification using GEBI (see [2] for
details). In order to achieve text-prompted speaker verification using digits, let
S = {si|i ∈ I [S]} and D = {di|i ∈ I [D]} denote a set of speakers s ∈ S and digits
d ∈ D, respectively, where I [S] = {1, 2, · · · , |S|} and I [D] = {1, 2, · · · , |D|}.
Furthermore, let RLM[M ] for M = S and M be a set of regression learning
machines RLM[m] (m ∈ I [M ]), and each RLM[m] learns to predict a single-step
verification as v[m] = 1 for the acceptance of a speech segment of a speaker
m = si or a digit m = di, and v[m] = 0 for the rejection. Here, let us suppose
that we have speech segments of spoken digits obtained by some appropriate
segmentation method and this research focuses on the multistep verification of
spoken digit sequences.

For multistep verification of input sequence of spoken digits, we have pro-
posed Gibbs-distribution-based extended Bayesian inference (GEBI) as shown
below for overcoming the problem of Bayesian inference (BI) in speaker verifica-
tion of unregistered speakers (see [2] for details). Let v[M ]

1:T = v
[M ]
1 v

[M ]
2 · · ·v[M ]

t be
an output sequence of RLM[m] for the reference sequence m

[r]
1:T =

m
[r]
1 m

[r]
2 · · · m[r]

T , we have recursive posterior probability for t = 1, 2, · · · , T as
follows,

pG

(
m

[r]
1:t | v[M ]

1:t

)
=

1
Zt

pG

(
m

[r]
1:t−1 | v[M ]

1:t−1

)βt/βt−1

p
(
v
[M ]
t | m

[r]
t

)βt

, (1)

pG

(
m

[r]
1:t | v[M ]

1:t

)
=

1
Zt

pG

(
m

[r]
1:t−1 | v[M ]

1:t−1

)βt/βt−1

p
(
v
[M ]
t | m

[r]
t

)βt

. (2)

where βt = β/t (t ≥ 1) and β0 = 1, and Zt is the normalization constant. Note
that the conventional BI is obtained for βt = 1(t ≥ 0) and we denote pB instead
of pG for the probability obtained by the above equations with βt = 1(t ≥ 0),
while pG is obtained for βt = 1/t (t ≥ 1) in the experiments shown below.

The verification by our previous method shown in [2] at t = T is given by

V
[M ]
1:T =

{
1 if pG

(
m

[r]
1:T | v[M ]

1:T

)
≥ p

[M ]
θ

−1 otherwise
(3)

for speaker (m,M) = (s, S) and text (m,M) = (d,D), respectively. Here, p
[M ]
θ

for M = S and D are thresholds, and V
[M ]
1:T = 1 and −1 indicates acceptance

and rejection, respectively. The verification of text-prompted speaker is executed
by V

[SD]
1:T = V

[S]
1:T ∧ V

[D]
1:T = 1 and −1 for acceptance and rejection, respectively.

The performance of verification depends on the thresholds p
[M ]
θ for M = S and

D. To execute more flexible verification than using thresholds, we introduce
probabilistic probability into the verification problem in the next section.

2.2 Probabilistic Prediction for Speaker and Text Verification

We introduce multiple classes to classify the verification results, and then intro-
duce probabilistic prediction for speaker and text verification.
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Multiclass Classification for Speaker and Text Verification. For speaker
verification, we consider the following three classes, where we suppose all ele-
ments in each input and reference speaker sequence, respectively, consists of the
same speaker;

c
[S]
+1 (Class of correct speakers): class of speakers satisfying s1:T = s

[r]
1:T (∈

S1:T ) for the input s1:T and the reference s
[r]
1:T , where S is the set of regis-

tered speakers, and S1:T denotes the set of s1:T whose all elements st (t =
1, 2, · · · , T ) are registered speaker st ∈ S.

c
[S]
−1 (Class of incorrect speakers): class of speakers satisfying s1:T �= s

[r]
1:T for

s1:T , s
[r]
1:T ∈ S1:T .

c
[S]
0 (Class of unregistered speakers): class of speakers satisfying s1:T �= s

[r]
1:T for

s1:T �∈ S[T ].

Here, note that these classes are determined for the pair of input and reference
sequences.

For text (or digit sequence) verification, we consider the following N + 1
classes of T (= mN)-length digit sequence consisting of m times of N -length
subsequences:

c
[D]
i for i = 0, 1, 2, · · · , N (Class of digit sequences with correct ratio being

i/N): class of input d1:T and reference d
[r]
1:T digit sequences, which consist of

m times of N -length subsequence whose i digits are the same.

In order to simplify the explanation, let C [S] = {c
[S]
i | i ∈ I [C

[S]])} be the
set of speaker verification classes, C [D] = {c

[D]
i

∣∣ i ∈ I [C
[D]]} be the set of text

verification classes, C denote C [S] or C [D], and I [C] denote I [C
[S]] = {−1, 0, 1}

or I [C
[D]] = {0, 1, 2, · · · , N}.

Note that these classes have the ordered indices which we utilize for proba-
bilistic prediction of multiclass classification derived for the verification. Namely,
we can divide two sets of classes, where one consists of the classes with the indices
from i = i

[C]
θ to i

[C]
max and the other consists of the remaining classes, where i

[C]
θ

and i
[C]
max indicate the threshold for verification and the maximum index of the

classes in C, respectively. Furthermore, as shown in Sect. 3.2, we have a possibil-
ity to have a class with a large classification error but a sum of adjacent classes
has smaller error. Thus, in order to achieve a reliable probabilistic prediction,
we will combine some adjacent classes so that every combined class has smaller
classification error.

Probabilistic Prediction inMulticlass Classification. In order to formulate
the probabilistic prediction of multiclass classification, let X [test] = {(xj , tj)

∣∣ j ∈
I [test]} be a test dataset, where xj is the jth data of the pair

(
m

[r]
1:T ,v

[M ]
1:T (m1:T )

)

determined by the sequences of reference m
[r]
1:T and input m1:T , tj ∈ C indicates

target class to be classified, and I [test] = {1, 2, · · · , |I [test]|}. Furthermore, let
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pG(xj) denote the GEBI probability pG

(
m

[r]
1:T

∣∣v[M ]
1:T

)
given by (1). Then, from

BI, we have the following posterior probability

p
(
ci

∣∣ pG(xj)
)

=
p

(
pG (xj)

∣∣ ci

)
p(ci)∑

cl∈C

p
(
pG(xl)

∣
∣ cl

)
p(cl)

, (4)

where p(ci) is the prior probability of ci ∈ C, and p
(
pG(xj)

∣∣∣ ci

)
denotes the

likelihood of the value of pG(xj) being for ci. Here, p
(
pG(xj)

∣∣
∣ ci

)
can be esti-

mated from a training dataset X [train] = {(xj , tj)
∣
∣ j ∈ I [train]} involving xj

independent and identically distributed (i.i.d) with respect to the data in the
test dataset, and we usually use p(ci) to be equal for all ci, while we can use
specific values depending on the situation, e.g., we can use p

(
c
[S]
0

)
= 0 for the

situation where there is no unregistered speaker expected.
With the above probability p(ci

∣∣ pG(xj)) for ci ∈ C, the user or a decision
maker is expected to make flexible decision for verification as shown in Sect. 3.2.

2.3 Loss Functions for Evaluating the Performance

We use the following loss functions to evaluate the performance of the proba-
bilistic prediction in multiclass classification extended from the loss functions
for two-class classification shown in [8]. First, we divide the multiple classes into
two sets of classes: one consists of a class with the maximum probability and
the other of remaining classes, where the index of the class in the former set is
given by

iM (j) = argmax
i∈I[C]

p(ci

∣∣ pG(xj)). (5)

Now, the average classification error (ACE) for iM (j) is given by

LACE =
1
n

⎡

⎣
∑

j∈I[test]

1{tj �= ciM (j)}
⎤

⎦ =
1
n

⎡

⎣
∑

{j|tj �=ciM (j)}
1

⎤

⎦ (6)

Here, 1{z} indicates an indicator function, equal to 1 if z is true, and to 0 if
z is false, {j|tj �= ciM (j)} indicates the set of indices satisfying tj = ciM (j) for
j ∈ I [test].

The negative log probability loss (NLP) for iM (j) is given by

LNLP = − 1
n

[
∑

{j
∣∣tj=ciM (j)}

log p
(
ciM (j)

∣∣ pG(xj)
)

+
∑

{j|tj �=ciM (j)}
log

(
1 − p

(
ciM (j)

∣∣ pG(xj)
))

]

(7)
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The first term of the right hand side becomes smaller for larger probability of
correct classification and the second term becomes smaller for smaller probability
of incorrect classification.

The negative log predictive density loss (NLPD) for evaluating regression
performance given by

LNLPD = − 1
n

⎡

⎣
∑

j∈I[test]

log p
(
tj

∣∣ pG(xj)
)
⎤

⎦ (8)

is considered to be applicable for evaluating the performance of probabilistic
prediction in multiclass classification.

3 Experiments

3.1 Experimental Setting

We have recorded speech data sampled with 8 kHz of sampling rate and 16 bits
of resolution in a silent room of our laboratory. They are from seven speakers
(2 female and 5 mail speakers): S = {fHS, fMS,mKK,mKO,mMT,mNH,mYM}
for ten Japanese digits D = {/zero/, /ichi/, /ni/, /san/, /yon/, /go/, /roku/,
/nana/, /hachi/, /kyu/}. For each speaker and each digit, ten samples are
recorded on different times and dates among two months. We denote each spo-
ken digit by x = xs,d,l for s ∈ S, w ∈ W and l ∈ L = {1, 2, · · · , 10}, and the
given dataset by X = (xs,d,l|s ∈ S, d ∈ D, l ∈ L).

By meas of random selection from X, we have generated training dataset
X [train] = {(xj , tj)

∣∣ j ∈ I [train]} for making the likelihood p
(
pG(xj)

∣∣∣ ci

)

given in (4) and test dataset X [test] = {(xj , tj)
∣∣ j ∈ I [test]} for evaluating

the performance of probabilistic prediction. A data xj indicates the jth data of(
m

[r]
1:T ,v

[M ]
1:T (m1:T )

)
consists of reference and input sequences of T (= 15)-length

spoken digits for T = m × N = 15 with m(= 3) times of N(= 5)-length digit
sequences indicating some ID numbers. Of course, xj ∈ X [train] and xj ∈ X [test]

are not the same but should be independent and identically distributed (i.i.d). To
have this done, for each of training and test datasets, we have generated 1,000
data for each combination of 3 classes of speaker sequences involving correct,
incorrect and unregistered speakers and 6 classes of digit sequences involving
i/N correct digits for i = 0, 1, · · · , N = 5. Thus, we have 18,000 data for train-
ing and test datasets.

In order to evaluate the performance of learning machines RLM[M ] for pre-
dicting unknown (untrained) data and the data of unregistered speaker, we
employ a combination of LOOCV (leave-one-out cross-validation) and OOB
(out-of-bag) estimate (see [2] for details). For the regression learning machines,
we have used CAN2s for learning piecewise linear approximation of nonlinear
functions (see [6] for details).
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Fig. 2. Experimental result of multistep probability of (a) GEBI and (b) BI for speakers
(left) and digits (right), where the curves of speakers denote RC (registered correct), UR
(unregistered), RI (registered incorrect). The plus and minus error bars indicate RMS
(root mean square) of positive and negative errors from the mean, respectively. The
curves for different datasets are shifted slightly and horizontally to avoid crossovers.

3.2 Experimental Results and Analysis

Experimental Result of Probabilistic Prediction. First of all, we show
the multistep probabilities in Fig. 2. As explained in [2], we have tuned the
thresholds to be (p[S]

θ , p
[D]
θ ) = (0.80, 0.96) for GEBI and (0.99, 0.80) for BI to

achieve EER (equal error rate) at t = T = 15 for FAR (false acceptance rate)
and FRR (false rejection rate) to be almost the same. For this tuning, we also
have employed thresholds (i[S]

θ , i
[D]
θ ) = (1, 4) for deciding the security level of

correct verification, i.e., we assume that the data in c
[S]
i for i ≥ i

[S]
θ = 1 and

c
[D]
i for i ≥ i

[D]
θ = 4 should to be accepted in speaker and text verification,

respectively, and the other data should be rejected. In Fig. 2, we can see that
these threshold values seem reasonable but not so easy to be tuned.

By means of the probability prediction by (4), we have the probability
p

(
ci

∣
∣ pG

)
= p

(
ci

∣
∣ pG(xj)

)
and p

(
ci

∣
∣ pB

)
= p

(
ci

∣
∣ pB(xj)

)
as shown in Fig. 3.

From Fig. 3(a), we can estimate the probability of the classes depending on pG.
For example, from the left hand side of Fig. 3(a) for speaker verification, the
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Fig. 3. Posterior probability p
(
ci

∣∣ pG
)

for (a) pG obtained by GEBI and (b)
pB (= pG|βt=1) by BI for speaker (left) and text (right) classification. The horizontal
axis indicates pG or pB and the vertical length of a colored bar indicates the probability
of a class ci corresponding to the color (Color figure online).

probability of correct speaker and unregistered speaker is expected for the value
of pG larger than 0.86 and 0.04, respectively, Furthermore, from the right hand
side of Fig. 3(a) for text verification, the ratio of correct digits is expected to be
more than 5/5, 4/5, 3/5, 2/5, 1/5 for the value of pG larger than 0.97, 0.93, 0.62,
0.19, 0.03, respectively, On the other hand, it is hard to obtain the property
of the probability for BI as shown in Fig. 3(b). This is owing to the fluctua-
tion of the mean value and the large variance of pB as shown in Fig. 2 and a
mathematical analysis is shown in [2].

Experimental Result of Losses and Remarks. We show experimental
results of losses in Table 1, where LAVEθ

indicates AVE (average verification
error) obtained for the method using the thresholds given above. From the com-
parison of the losses between GEBI and BI, we can see that GEBI has achieved
smaller losses (bold face figures) for almost all classes than BI, especially, it
has achieved smaller mean values for all losses. From the columns of LAVEθ

for
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Table 1. Experimental result of losses for multiclass classification derived for speaker
and text verification. The losses are obtained for the test dataset consisting of input
and reference sequences in the classes of speakers, c

[S]
i for i = −1, 0, 1, and texts (digit

sequences), c
[D]
i for i = 0, 1, 2, · · · , 5.

Class

index i

LAVEθ
LACE LNLP LNLPD

GEBI BI GEBI BI GEBI BI GEBI BI

Speaker verifi-

cation

zw 1 0.002zw 0.046 0.002zw 0.029 223.2zw 5549.5 224.6zw 6538.9

zw 0 0.011zw 0.050 0.061zw 0.748 7730.9zw 42052.3 7730.8zw 42308.0

zw −1 0.000zw 0.000 0.033zw 0.019 4420.7zw 18796.5 4427.7zw 19332.4

zw Mean 0.004zw 0.032 0.032zw 0.265 4125.0zw 22132.8 4127.7zw 22726.5

Text verifica-

tion

zw 5 0.011zw 0.012 0.009zw 0.015 2708.1zw 5331.8 2736.4zw 5669.5

zw 4 0.180zw 0.216 0.844zw 1.000 7378.3zw 4161.6 7455.7zw 8656.6

zw 3 0.000zw 0.581 0.061zw 0.774 1293.7zw 4844.1 1476.9zw 11600.1

zw 2 0.000zw 0.339 0.043zw 0.862 911.8zw 4694.2 996.1zw 12072.9

zw 1 0.000zw 0.187 0.076zw 0.705 1291.0zw 5768.7 1323.5zw 8475.6

zw 0 0.000zw 0.001 0.042zw 0.004 1297.7zw 3984.0 1345.5zw 4098.9

zw Mean 0.032zw 0.223 0.179zw 0.560 2480.1zw 4797.4 2555.7zw 8428.9

GEBI, we can see that the mean verification error LAVEθ
is 0.004 and 0.032 for

speaker and text verification, respectively, and they seem small enough.
Next, for the class index i = 4 in text verification, we can see that LACE =

0.844 is very larger than others. This indicates that the probabilistic prediction
for the class has very low reliability. As shown in [2], these errors are owing that
the discrimination of the data in c

[D]
4 and c

[D]
5 are difficult which we can see in

Fig. 2(a) (right) for the curves of i/N = 5/5 and 4/5.
To solve this problem for more reliable classification, we combine the class

c
[D]
4 and c

[D]
5 into a class c

[D]
4�5. Then, for a test data in c

[D]
4�5, we have LACE = 0.021

for the prediction using GEBI. As a result, by means of using the classes c
[D]
i for

i = 0, 1, 2, 3, 4 � 5, we have achieved LACE less than 0.076 with the mean 0.044.
These analysis and modification indicate that we have to understand and reduce
the risk of probability loss in using probabilistic prediction. From this point of
view, we hardly use the probabilistic prediction obtained by BI. We would like
to analyse other losses in our future research.

Flexible Verification Using Probabilistic Prediction. For text-prompted
speaker verification, we can use the class index thresholds i

[S]
θ = 1 and i

[D]
θ =

4 � 5 for speaker and text verification, respectively. Here, however, when the
probability p

(
c
[S]
1

∣∣ pG

)
or p

(
c
[D]
4�5

∣∣ pG

)
for an input sequence is not so bigger

than 0.5, a decision maker has a possibility to ask additional question to obtain
much larger or much smaller probability than 0.5.

For text verification, we can tune the threshold i
[D]
θ for accepting the input

sequence satisfying i ≥ i
[D]
θ indicating that more than or equal to i

[D]
θ correct dig-

its out of N -length sequence are expected. Here, the tuning of i
[D]
θ in the present

method is easier and understandable than in the previous method requiring the
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tuning of thresholds p
[D]
θ in (3). Therefore, as an example of application, the

tuning of i
[D]
θ has a possibility to be flexibly used in verifying spoken digits of a

specific speaker in a recorded tape, where we do not need high security level.

4 Conclusion

We have presented a method of probabilistic prediction for flexible verification
without using thresholds for acceptance and rejection. After introducing mul-
ticlass classification for classifying the verification results, the method utilizes
BI to obtain the probability. The method also uses loss functions for evaluating
the performance of probabilistic prediction. By means of numerical experiments
using recorded real speech data, we have examined the properties of the present
method using GEBI and BI, and show the effectiveness and the risk of proba-
bility loss in the present method.
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Abstract. This paper presents simple feature quantities for learning of
dynamic binary neural networks. The teacher signal is a binary periodic
orbit corresponding to control signal of switching circuits. The feature
quantities characterize generation of spurious memories and stability of
the teacher signal. We present a simple greedy search based algorithm
where the two feature quantities are used as cost functions. Performing
basic numerical experiments, the algorithm efficiency is confirmed.

Keywords: Dynamic neural networks · Greedy search · Switching cir-
cuits

1 Introduction

Applying a delayed feedback to a simple binary neural network, the dynamic
binary neural networks (DBNN) is constructed [1–7]. The DBNN is character-
ized by signum activation functions, ternary connection parameters, and integer
threshold parameters. Depending on parameters, the DBNN can generate vari-
ous binary periodic orbits (BPOs). The dynamics is integrated into the Digital
return map (Dmap) from a set of lattice points to itself. The DBNN is a dig-
ital dynamical systems represented by the cellular automata [8]. Such systems
are applicable to various engineering systems: information compressors, image
processors, communication systems, and switching circuits [9–13].

This paper presents two simple feature quantities for learning of DBNN. The
teacher signal is one desired BPO. The first feature quantity α characterizes gen-
eration of spurious memories. The second feature quantity β characterizes basin
of attraction (stability) of the stored BPO. For storage of the BPO, we have
applied a simple algorithm based on the correlation learning (CL-based learn-
ing, [1,14]). For stabilization of the stored BPO, we present a simple algorithm
based on the greedy search that sparsifies the connection parameters. In the algo-
rithm, the two feature quantities α and β are used as cost functions. In order to
investigate the algorithm efficiency, the algorithm is applied to simple teacher
signals corresponding to control signals of switching power converters [12,13].
Performing basic numerical experiments, we have confirmed storage of teacher
signal BPO, suppression of spurious memories, and reinforcement of stability of
the stored BPO.
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 226–233, 2015.
DOI: 10.1007/978-3-319-26532-2 25
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Note that the feature quantities for the learning of DBNN and the greedy
search based algorithm have not been discussed in existing literatures including
our previous papers [1–5].

2 Dynamic Binary Neural Networks

In this section, we introduce DBNN and Dmaps presented in [1–7]. The dynamics
of the DBNN is described by

xt+1
i = sgn

⎛

⎝
N∑

j=1

wijx
t
j − Ti

⎞

⎠, sgn(x) =
{

+1 for x ≥ 0
−1 for x < 0 i = 1 ∼ N (1)

where xt
i ∈ {−1,+1} ≡ B is a binary state at discrete time t. The connection

parameters are ternary wij ∈ {−1, 0,+1} and the threshold parameters are
integer Ti ∈ Z. The domain of the DBNN is a set of binary vectors BN that
is equivalent to a set of lattice points LD = (C1, · · · , C2N ), Ci ≡ i/2N . Hence
the dynamics of the DBNN can be visualized by the digital return map (Dmap)
from LD to itself:

xt+1 = FD(xt), xt ≡ (xt
1, · · · , xt

N ) ∈ BN (2)

Figure 1(a) and (b) illustrate the DBNN and its Dmap for N = 4 where
binary code is used to express L4 = {C1, · · · , C16}: C1 ≡ (−1,−1,−1,−1) · · ·
C16 ≡ (+1,+1,+1,+1). Since the number of lattice points is 2N , direct memory
of all the inputs/outputs becomes hard/impossible as N increases. However, in
the DBNN, the number of parameters is polynomial N2 + N .

Since the number of the lattice points is finite, the steady states are BPOs
defined as the following. A point θp ∈ LD is said to be a periodic point (PEP)
with period p if F p(θp) = θp and F k(θp) �= θp for 1 ≤ k < p where F p is
the p-fold composition of F . Especially, a PEP with period 1 is said to be a
fixed point. A sequence of the PEPs, {F (θp), · · · , F p(θp)}, is said to be a binary
periodic orbit (BPO).

Next, we introduce the CL-based learning for the teacher signal pairs:

(ξl,ηl), ξl ∈ BN , ηl ∈ BN , l = 1 ∼ p (3)

The purpose of learning is to determine the parameters satisfying ηl = FD(ξl)
for all l. The CL-based learning determines the parameters as the following:

wij =

⎧
⎨

⎩

+1 for cij > 0
0 for cij = 0
−1 for cij < 0

, cij =
p∑

l=1

ηl
iξ

l
j , Ti =

Ri + Li

2

Ri = min
l

N∑

j=1

wijξ
l
j for ηl

i = +1, Li = max
l

N∑

j=1

wijξ
l
j for ηl

i = −1

(4)
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Fig. 1. (a) DBNN. Red and blue segments represent wij = +1 and wij = −1, respec-
tively. wij = 0 means no connection. The threshold parameters Ti are shown in the
circles. (b) Dmap. Red and blue orbits are BPOs. Blue cross is fixed point (Color figure
online).

That is, the connection parameters wij are given by ternarising the correlation
matrix elements cij . After wij are given, the threshold parameters Ti are deter-
mined by the quantities Ri and Li. Note that Ri (Li) exists if ηl

i = +1 (ηl
i = −1)

for some l. If ηl
i = −1 (ηl

i = +1) for all l then Ri (Li) does not exist and let
Ti = N + 1 (Ti = −N − 1). Storage of the BPO is guaranteed if Ri > Li is
satisfied for i such that both Ri and Li exist [1].

3 Teacher Signal and Feature Quantities

This paper considers a simple teacher signal: one BPO with period p. The teacher
signal BPO (TBPO) consists of p pieces of the teacher signal PEPs (TPEPs).
The TBPO/TPEPs can be translated into teacher signal pairs in Eq. (3):

z1,z2, · · · ,zp, zi �= zj for i �= j, zi = (z11 , · · · , ziN ) ∈ BN

(ξl,ηl) ≡ (zl,zl+1), l = 1 ∼ p, zp+1 ≡ z1 (5)

Although a variety of teacher signals can be considered, this paper considers two
simple examples: 6 dimensional TBPOs with period 6 in Tables 1 and 2. The
first and second TBPOs correspond to control signal of AC/DC and DC/AC
converters in the power electonics, respectively [1,2].

Applying the CL-based learning to the two TBPOs, we obtain the DBNNs
as shown in Fig. 2. The corresponding Dmaps are shown in Fig. 3. In the figures,
we can see that the TBPOs can be stored. However, several spurious BPOs
(different from the TBPO) exist.

In order to consider spurious BPOs and stabilization of TBPO, we present
two simple feature quantities α and β. In the definition of α and β, we assume
that the TBPO is stored into the DBNN. The first feature quantity is the rate
of PEPs.

α = Np/2N , p/2N ≤ α ≤ 1 (6)
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Table 1. Teacher signal example 1

z1 (+1, −1, −1, −1, −1, +1)

z2 (+1, +1, −1, −1, −1, −1)

z3 (−1, +1, +1, −1, −1, −1)

z4 (−1, −1, +1, +1, −1, −1)

z5 (−1, −1, −1, +1, +1, −1)

z6 (−1, −1, −1, −1, +1, +1)

Table 2. Teacher signal example 2

z1 (+1, −1, −1, −1, +1, +1)

z2 (+1, +1, −1, −1, −1, +1)

z3 (+1, +1, +1, −1, −1, −1)

z4 (−1, +1, +1, +1, −1, −1)

z5 (−1, −1, +1, +1, +1, −1)

z6 (−1, −1, −1, +1, +1, +1)

Fig. 2. DBNN after the CL-based learning. (a) example 1. (b) example 2.

Fig. 3. Dmap after the CL-based learning. Red orbit denotes TBPO. Blue orbit denotes
spurious BPO. (a) example 1. α = 0.23, β = 0.19 (b) example 2. α = 0.23, β = 0.65
(Color figure online)

where Np is the number of PEPs of Dmap. It can evaluate generation of spurious
memories. If no spurious memory exist, we obtain α = p/2Nb ≡ αb. We refer to
αb as the best value. In example 1 and 2, we have α = 0.23 as shown in Fig. 3.
The best value is α = 6/26 ≈ 0.09.
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The second feature quantity is based on the number of initial points falling
into each TPEP:

β = min
i

Mi

2N/p
, i = 1 ∼ p, 2/2N ≤ β ≤ 1 (7)

where Mi is the number of initial points falling into the i-th TPEP. This quantity
is normalized by 2N/p. If p is a divisor of 2N and the distribution of Mi is
uniform for i then we obtain the maximum value β = 1. If p is not a divisor of
2N then the maximum value is given by β = INT(2N/p)

2N/p
≡ βb, where INT(X)

is the integer part of X. In this case, the distribution of Mi is almost uniform
for i. We refer to βb as the best value. This quantity characterizes basin of
attraction (a measure of stability) of the TPEP. In example 1 and 2, we have
obtained β = 0.19 and β = 0.65, respectively, as shown in Fig. 3. The best value
is βb = 10/(26/6) ≈ 0.94 (Mi = 10 or 11). Although the CL-based learning can
store the TBPO, the feature quantities are far from the best value: (αb, βb)=
(p/2N , INT(2N/p)/(2N/p)) ≈ (0.09, 0.94) for (N, p) = (6, 6).

4 Greedy Search Based Sparsification Algorithm

In order to approach the best value of α and β, we present the Greedy search
based sparsification algorithm (GSS). First, we give basic definitions. Let t
denote the evolution step. Let V l ≡ (V l

11, · · · , V l
NN ), V l

ij ∈ −1, 0, 1 be the l-th
individual and let V l correspond to the connection matrix (wij) where l = 1 ∼ K
and K denotes the number of individuals. The two feature quantities (α, β) are
used as the cost functions. The GSS is defined by the following 5 steps.

Step 1: Initialization. Let t = 0 and let K = 1. The individual V 1 is initialized
by connection parameters by the CL-based learning.

Step 2: Sparcification. Let K = K1 > 0 for t ≥ 1. Replacing one element of
each individual with zero, we obtain N × N × K individuals. Note that some
individuals include zero element(s) and does not change for t ≥ 1.

Step 3: Evaluation by β. The individuals are evaluated by the feature quantity
β. Let K2 be the number of individuals that gives better or equal value of β
in the past history. If K2 ≥ K then the K individuals are selected in the elite
preserving and go to Step 5. If K2 < K then K2 individuals are preserved and
go to Step 4.

Step 4: Evaluation by α. Except for the K2 individuals selected in Step 3, the
individuals are evaluated by the feature quantity α. The (K − K2) individuals
are selected in the elite preserving. We obtain K individuals.

Step 5: Termination. Let t ← t+1, go to Step 2, and repeat until the maximum
time limit tmax.

We apply the GSS to example 1 and 2 from control signals of switching power
converters where N = 6. Note that, as N increases, calculation of β in Step 3
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Fig. 4. DBNN after the GSS (sparsification). (a) example 1. (b) example 2.

Fig. 5. Dmap of after GSS (sparcification). Red orbit denotes TBPO. (a) example 1.
α = 0.09, β = 0.75 (b) example 2. α = 0.09, β = 0.84

becomes hard and some approximation/prediction of β is required. However, in
practical applications such as control signals where N is not so large, evaluation
by β is effective.

After trial-and-errors, the algorithm, parameters are selected as K1 = 5 and
tmax = 36. Figures 4 and 5 shows DBNNs and Dmaps after the sparsification
by the GSS. We obtain α = 0.09 and β = 0.75 for example 1 and α = 0.09 and
β = 0.84 for example 2. The GSS can realize the best value of α and can improve
the value of β.

Figure 6 shows evolution process of GSS for example 1. The quantity α is
improved in early stage and is reached the best value at t = 5. The quantity β
is improved intermittently until t = 17. The improvement of feature quantities
is monotone.

Figure 7 shows evolution process of GSS for example 2. For t ≤ 4, the quantity
β is improved but α is stagnated. At t = 5, the GSS cannot give K individuals
and Step 4 (the evaluation by α) is applied. In Step 4, α is improved and the
improvement causes of deterioration of β. After stagnation of β and α for 6 ≤
t ≤ 9, some better individuals can be found. At t = 10, α reaches the best value
and β is close to the best value. This result suggest effectiveness of plural cost
functions α and β. The deterioration of β seems to be a trigger to escape from
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Fig. 6. Evolution process of example 1. (a) α vs t and β vs t. (b) Trajectory on α vs
β plane. A: after CL-based learning. B: after GSS (sparsification). X: the best value.

Fig. 7. Evolution process of example 2. (a) α vs t and β vs t. (b) Trajectory on α vs
β plane. A: after CL-based learning. B: after GSS. X: the best value.

the stagnation of β and α. If the GGS used only one cost function β, the escape
would be hard.

Note again that these two simple examples correspond to control signal of
AC/DC and DC/AC converters. The larger β is suitable for robust operation
against noise. The sparse connection is suitable from viewpoint of power con-
sumption. Since one DBNN can be used for plural circuits (AC/DC and DC/AC
converters), these results will be developed into an application to reconfigurable
control systems of switching circuits.
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5 Conclusions

Feature quantities and learning of the DBNN have been studied in this paper.
Applying the CL-based learning, the TBPO can be stored. In order to char-
acterize generation of spurious memories and stability of the stored BPO, two
feature quantities α and β are presented. In order to improve the feature quan-
tities, the GSS sparsificaton algorithm is presented. Applying the algorithm to
two examples from power electronics, the algorithm efficiency is confirmed.

Future problems include analysis of sparsification effects on the stability,
analysis of the evolution process of GSS, optimization of the algorithm parame-
ters, and application to various switching circuits.
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Abstract. Kinship verification between aged parents and their children
based on facial images is a challenging problem, due to aging factor which
makes their facial similarities less distinct. In this paper, we propose to
perform kinship verification in a transfer learning manner, which intro-
duces photos of parents in their earlier ages as intermediate references
to facilitate the verification. Child-young parent pairs are regarded as
source domain and child-old parent ones are considered as target domain.
The transfer learning scheme contains two phases. In the transfer met-
ric learning phase, the extracted locality-constrained sparse features of
images are projected into an optimized subspace where the intra-class
distances are minimized and the inter-class ones are maximized. In the
transfer classifier learning phase, a cross domain classifier is learned by
a transfer SVM algorithm. Experimental results on UB KinFace dataset
indicate that our method outperforms state-of-the-art methods.

Keywords: Kinship verification · Transfer metric learning · Cross
domain · Sparse representation

1 Introduction

Kinship verification, as an emerging issue in facial image analysis, has attracted
much attention in recent years [2–6,9,10,13–18]. Despite years of studies, kinship
verification is still a challenging problem. Apart from the difficulties encountered
in traditional facial image analysis, such as pose and illumination variations and
different facial expressions, the significant age gap as well as the gender difference
between parents and children make kinship verification more difficult.

Among all the factors, aging is one of the most critical factors that restrain
the verification performance. It is observed that compared with aged parents,
children usually look more like their parents when they were young. If the facial
images of young parents are used as intermediate references, the verification
between children and their old ones would be easier. Another important factor
is feature representation of images. The existing methods normally use vision
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 234–243, 2015.
DOI: 10.1007/978-3-319-26532-2 26
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Fig. 1. Illustration of four facial image triple examples. Each triple contains the facial
images of a parent at his/her young and old ages and the corresponding child which
are shown from left to right. All of them are selected from the UB kinFace dataset.

features such as LBP, Gabor, SIFT or specific facial parts directly in model
building, which might not be optimal for classification and could contain a lot
of noisy and redundant information. It has been proved in recent studies that
by coding on a dictionary under both sparsity and locality constraints, features
can be projected into a more linearly separable space. This motivates us to use
locality-constrained linear coding (LLC) scheme [12] to obtain the final sparse
features.

Motivated by the above ideas, in this paper, we propose a transfer learn-
ing method for kinship verification based on LLC features. As shown in Fig. 1,
we use facial image triples to train the model. Each triple contains the images
of young parent x, old parent y and child z. We regard child-young parent
pairs {(xi, zp)|i, p = 1, · · · , N} as source domain and child-old parent pairs
{(yj , zp)|j, p = 1, · · · , N} as target domain, where N is the number of triples.
In our transfer learning scheme, the young parent x served as an intermediate
reference is only used in the training phrase. The model trained by these triples
are expected to have better performance on the test child-old parent sample
pairs than the traditional ones trained without young parents’ facial images.

In our method, the transfer learning scheme contains two phases. In the first
phase, we introduce a neighborhood repulsed transfer metric learning (NRTML)
method to find a metric subspace, in which the intra-class differences of sample
pairs are decreased and the inter-class differences of neighboring sample pairs are
increased for each domain involved in transfer learning. At the same time, the
differences of young and old parents are decreased to narrow distribution differ-
ence of domains in some degree. In the second phase, sample pairs of source and
target domains are constructed and trained in a transfer SVM manner. Besides,
the features of facial images are extracted by Gabor filters and encoded via LLC
algorithm on a meticulously learned dictionary. At the last, the projected fea-
tures of images under the learned metric subspace are used for classifier learning
and predicting. Experimental results on the UB KinFace dataset demonstrate
the effectiveness of our proposed method comparing with the state-of-the-art
methods.
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Fig. 2. The overall architecture of our proposed kinship verification method based on
facial images.

2 Proposed Approach

Figure 2 shows the overview of our proposed kinship verification approach. Our
method can be divided into three stages, namely, locality-constrained linear cod-
ing features extraction, transfer metric learning and cross-domain classifier learn-
ing. The process of feature extraction and the NRTML method showed in transfer
metric learning stage will be described in details in Sects. 2.1 and 2.2.

The cross-domain classifier utilized in our work is Adaptation Regularization
based Support Vector Machine(ARSVM) [7]. Comparing with the traditional
SVM, it can efficiently solve the cross-domain classification problem by taking
marginal and conditional distribution adaptation and manifold regularization
into consideration. While training the ARSVM classifier, the difference between
the joint probability distributions of source and target domains is measured by
the projected Maxinum Mean Discrepancy (MMD)[11].

The manifold regularization is devoted to further exploit the knowledge of
the marginal distributions of two domains by taking their intrinsic geometry into
consideration to obtain a better classification hyperplane.

2.1 Feature Extraction

The overview of our feature extraction process is illustrated in the first part of
Fig. 2. Firstly, we use overlapped sliding windows on each resized facial image to
obtain patches, and extract Gabor feature for each patch. Since the dimension
of their Gabor features could be very high, we apply PCA to the features to
avoid overfitting and reduce the computational complexity. Next, we encode
these Gabor features on a dictionary using LLC scheme, and use max pooling
operator to obtain the final feature of each image. The dictionary in LLC is
learned by k-means algorithm. To make the solution of k-means more stable and
the coefficients more discriminative, the initial cluster centers are obtained in
the following way: we sort the patches in descending order by their information
entropies, and select m (m is the number of dictionary items) patches in the
sorted sequence at regular intervals as the initial cluster centers in k-means.
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2.2 NRTML

Let m ×N matrices X, Y and Z denote young parent, old parent and child sets
respectively, xi, yi and zi denote the i-th young parent, old parent and child
facial images respectively, where N is the number of images in each set. Then
we use all the samples in the three sets to construct the source domain (child-
young parent pairs) Ss = {(xi, zp)|i, p = 1, · · · , N} and target domain (child-old
parent pairs) St = {(yj , zp)|j, p = 1, · · · , N} involved in our method. For the
samples in the three sets with same indices, such as xi, yi, they represent the
images of the i-th person at different ages and have kin relations with zi.

We attempt to find a metric subspace, in which, the distances between xi

and zi as well as yi and zi are minimized, and the distances between xi and zp
(i �= p), yj and zp (j �= p) are maximized. Given xi and yi representing the same
person at different ages, it is also required to minimize the distance between
them. The metric matrix is denoted as W , so the distance between two samples
u and v in the subspace can be formulated as

d(x, y) =
√

((u − v)TWWT (u − v))

=
√

[WT (u − v)]T [WT (u − v)]

=
√

(u′ − v′)T (u′ − v′),

(1)

where u′ = WTu, v′ = WT v.
The inter-class distance between two matrices U and V is defined as follows:

Db(U,V) =
1

kN

N∑

i=1

∑

t∈Nvi

d2(ui, vt) +
1

kN

N∑

i=1

∑

t∈Nui

d2(ut, vi), (2)

where k is the number of neighbors, Nvi
is the set of indices corresponding to

the k-nearest neighbors of vi and Nui
is the set of indices corresponding to

the k-nearest neighbors of ui. Similarly, the intra-class distance of U and V is
denoted as

Dw(U,V) =
1
N

N∑

i=1

d2(ui, vi). (3)

Based on Eqs. (1), (2) and (3), the NRTML method to solve the cross-domain
kinship verification problem is formulated as the following optimization problem:

max
W

J(W ) = Db(X,Z) − Dw(X,Z) + Db(Y,Z) − Dw(Y,Z) − Dw(X,Y). (4)

By minimizing Hw(X,Z) and Hw(Y,Z), the distances between parents and
their children in the metric subspace are reduced. By maximizing Hb(X,Z) and
Hb(Y,Z), the distances between young and old parents and unmatched neigh-
boring children in the metric subspace are enlarged. The term Hw(X,Y) is used
for decreasing the influence of aging factor by minimizing the distances between
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aged and young parents. In this way, features can be projected to an optimized
metric subspace through the learned projection matrix W .

For Db(U,V), we can simplify it into the following form:

Db(U,V) =
1

kN

N∑

i=1

∑

t∈Nvi

d2(ui, vt) +
1

kN

N∑

i=1

∑

t∈Nui

d2(ut, vi)

=tr

{
WT

( 1
kN

N∑

i=1

∑

t∈Nvi

(ui − vt)(ui − vt)T+

1
kN

N∑

i=1

∑

t∈Nui

(ut − vi)(ut − vi)T
)
W

}

=tr(WTHb(U,V)W ),

(5)

where Hb(U,V) = 1
kN

∑N
i=1

∑
t∈Nvi

(ui − vt)(ui − vt)T + 1
kN

∑N
i=1

∑
t∈Nui

(ut −
vi)(ut − vi)T . Similarly, Dw(U,V) can be simplified as

Dw(U,V) = tr(WTHw(U,V)W ), (6)

where Hw(U,V) = 1
N

∑N
i=1(ui − vi)(ui − vi)T . According to Eqs. (5) and (6),

the objective function of our optimization problem can be reformulated as

max
W

J(W ) = tr(WTHW )

subject to WTW = I,
(7)

where H = Hb(X,Z) − Hw(X,Z) + Hb(Y,Z) − Hw(Y,Z) − Hw(X,Y). The
constraint on W is used to reduce the effect of its scale to the solution of our
objective function.

In order to obtain the metric matrix W , we solve the following eigenvalue
problem:

Hω = λω. (8)

After obtaining the eigenvalues of Eq. (8), they are sorted in descending order
as λ1 ≥ λ2 ≥ · · · ≥ λm. the first l eigenvectors ω1, ω2, · · · , ωl corresponding to
the sorted eigenvalues are used to form the matrix W = [ω1, ω2, · · · , ωl] ∈ Rm×l.
Having obtained W , the original matrices X, Y, and Z are projected into the
metric subspace to obtain X′, Y′ and Z′:

X′ = WTX, Y′ = WTY, Z′ = WTZ. (9)

The proposed NRTML algorithm is summarized in Algorithm 1.

3 Experiments

3.1 Experimental Settings

In the UB KinFace dataset, there are 600 facial images of 400 different people,
some of which are grayscale images and others are color ones. It contains three
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Algorithm 1. NRTML
Input: The training samples of the children, young parents and old parents

xi, yi, zi (i = 1, · · · , N); neighborhood size k; iterative number T .
Output: Metric matrix W , projected sample matrices X′,Y′ and Z′.
1: initialize: X′ = X, Y′ = Y, Z′ = Z.
2: for t = 1, 2, · · · , T do
3: Find the k-nearest neighbors for every x′

i, y′
i and z′

i and record their indices in
sets: Nxi , Nyi , Nzi respectively;

4: Calculate H according to Eqs. (5), (6) and (7);
5: Solve the eigenvalue problem in Eq. (8) to obtain ωi (i = 1, · · · , l);
6: Construct W with ω1, ω2 · · ·ωl;
7: Obtain projected sample matrices X′,Y′ and Z′ according to Eq. (9);
8: Update: xi = x′

i, yi = y′
i, zi = z′

i.
9: end for

Table 1. Verification accuracy
(%) of different kinship verification
methods.

Method Set1 Set2

Method in [13] N.A 60.0

NRML 65.8 65.4

MNRML 66.8 67.3

MPDFL 67.5 67.0

Ours N.A 73.95

Table 2. Performance comparison (%)
between our method and human ability on
kinship verification.

Method Accuracy

Human A 60.75

Human B 66.00

Ours 73.95

subsets, namely, young parent set, old parent set and child set. In our experiment,
we build two kinds of kinship sample pairs: child-young parent pairs and child-
old parent pairs which are regarded as the samples in source and target domains
respectively.

In our experiments, all the images in the UB KinFace dataset are converted
into grayscale ones, then the facial parts are cropped and aligned into 64×64. We
use five fold cross validation to evaluate the performance of our method, where
each subset in the dataset is divided equally into five folds, four for training and
one for testing. As to the training data, positive sample pairs are constructed
with all the matched kinship pairs, while negative ones are obtained by carefully
selecting hard negative sample pairs. When constructing negative sample pairs,
for each parent sample, the child sample with the most similar feature to the it is
selected from unmatched children. In this way which is different from traditional
methods which randomly choose those unmatched pairs, our method can train
a more stable and accurate classification hyperplane. RBF kernel is chosen for
the ARSVM classifier in our experiments.

The size of patches is set to l = 12 and the sampling gap is h = 5. The
Gabor filters used in our experiments have 5 scales and 8 directions. In the LLC
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Fig. 3. The ROC curves of our method using (a) different feature descriptors and (b)
different classifiers, respectively.

scheme, the number of the overcomplete dictionary items is set to m = 630 and
the number of considered nearest neighbors is set to kl = 9. After LLC coding,
we reduce the dimension of LLC features to 300 using PCA algorithm. For the
NRTML scheme, the number of k-nearest neighbors is set to kn = 9.

3.2 Experimental Results

Comparison with the Existing State-of-the-Art Kinship Verification Methods.
Table 1 compares our proposed method with the recent state-of-the-art kinship
verification methods. Most of the state-of-the-art methods just use part of the
UB KinFace dataset to conduct the kinship verification. To make sure the fair-
ness of comparison, we construct two subsets of the UB KinFace dataset: (1)
set 1(200 pairs of child and young parent facial images) and (2) set 2 (200
pairs of child and old parent facial images). The performance of each method
is measured by its mean verification accuracy. As can be seen from Table 1, our
proposed method outperforms the existing methods.

The superior performance of our method could be attributed as follows.
Firstly, the proposed NRTML method projects the features of facial images to an
optimized subspace, where distances between unmatched pairs are enlarged and
those between matched ones are reduced. Secondly, the LLC scheme, in which
not only sparsity constraint but also locality constraint are adopted, makes the
features more separable. Lastly, the ARSVM classifier could further narrow the
difference between distributions of source and target domains, such that it can
take advantage of the intermediary set (young parent images set) to further
improve the verification performance.

Comparison Between Different Features. To demonstrate the effectiveness
of our locality-constrained sparse features, we choose several different feature
descriptors including LBP [1], SIFT [8] and local gabor features for comparison.
All the above mentioned features are all extracted locally from images, where
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the patch size and sampling step are the same as our features. For LBP and
SIFT, the features are concatenated to obtain the final image-wise ones. For
the local gabor features, they are finally processed with a max-pooling opera-
tor. Figure 3(a) illustrates the ROC curves of kinship verification performance
using different feature descriptors. We can see from this figure that our locality-
constrained sparse feature outperforms the other three descriptors and yields
the best performance.

The LLC scheme can project the original features to an optimized space,
where features are more separable. In this way, compared with directly using
local LBP, SIFT and Gabor features, using LLC to generate final feature repre-
sentation makes our method achieve better performance.

Comparison Between Different Classifiers. We compare the performance of
our method versus different classifiers: ARSVM and SVM. Figure 3(b) illustrates
the ROC curves of kinship verification performance using the two classifiers. We
can see that the performance of ARSVM is better than SVM while facing the
cross-domain classification task. It is mainly because that the SVM classifier
regard the samples from the source and target domains as the same in the
training stage while the ARSVM method narrows the difference between the
two domains by taking marginal and conditional distribution adaptation and
manifold regularization into consideration before classification. Hence ARSVM is
more suitable for our kinship verification problem and achieves better verification
performance.

Parameter Analysis. As shown in Fig. 4, the performance of our proposed
algorithm under different parameter settings is compared. The impacts of
neighbourhood sizes kl in LLC and that kn in NRTML are evaluated in the
experiment. From Fig. 4(a), we observe that the impact of kl on the verifica-
tion performance is not apparent and the best performance is achieved when
kl = 9. The Fig. 4(b) shows that kn has significant impact on the verification
performance. When kn is close to 1 which means the neighbors have limited
effects, the verification accuracy is very poor. As kn grows, the performance
becomes better. This indicates the effectiveness of the neighborhood repulsed
scheme. However, when kn is greater than 9, the accuracy starts to degrade.
Our algorithm achieves the best performance when kn = 9.

Comparison with Human Observers. We also test human ability in kinship
verification based on facial images. Ten candidates (five males and five females)
are invited to participate in our experiment. There are two parts in this experi-
ment. For the first one (Human A), we randomly select 80 sample pairs (40 true
child-old parent pairs and 40 false child-old parent pairs) and present them to
human observers. And for the second one (Human B), we add 80 correspond-
ing pairs of child-young parent facial images (40 true pairs and 40 false pairs)
into the above sample pair set. All other sample pairs are identical with the
former one. Then the expanded sample pair set are shown to human observers.
The verification rates of human and our method are shown in Table 2. From the
results we can see, Human B gets better performance than Human A which indi-
cates the effectiveness of young parent set in assisting distinguish the kinship of
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(a) (b)

Fig. 4. Mean verification accuracy of our method versus different values of (a) para-
meter kl and (b) parameter kn respectively.

old parents and children. Besides, our method achieves better performance than
both Human A and Human B.

4 Conclusion

In this paper, we propose a method for solving the problem of kinship verification
between aged parents and children in a transfer learning manner. Young parent
facial image set is introduced as an intermediate reference in our method to con-
struct the source domain with the children set, which is supposed to improve the
verification performance in the target domain, i.e., the child-old parent pairs. The
transfer learning in our method contains two phases. The transfer metric learn-
ing phase uses the proposed NRTML scheme to project features to an optimized
metric subspace, where the intra-class distances are minimized while the inter-
class ones are maximized for both domains. The classifier learning phase trains a
cross domain classifier using ARSVM algorithm. We employ locality-constrained
coding (LLC) algorithm to construct our feature representation. Experimental
results demonstrate that our algorithm performs favourably against the existing
state-of-the-art methods.
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Abstract. Polarimetric satellite-borne synthetic aperture radar is
expected to provide land usage information globally and precisely. In this
paper, we propose a two-stage unsupervised-learning land state classifi-
cation system using a self-organizing map (SOM) based on the ensemble
variance. We find that the Poincare sphere parameters representing the
polarization state of scattered wave have specific features of the land
state, in particular, in their dispersion (or ensemble variance). We present
two-stage clustering procedure to utilize the dispersion features of the
clusters as well as the mean values. Experiments demonstrate its high
capability of self-organizing and discovering classification based on the
polarimetric scattering features representing the land states.

Keywords: Polarimetric synthetic aperture radar · Stokes vector ·
Unsupervised classification

1 Introduction

Satellite-borne synthetic aperture radar (SAR) systems observe the earth con-
tinuously, globally and precisely for various purposes such as disaster monitoring
and mitigation, forest biomass estimation for CO2 reduction, glacier area and
movement watching to water source protection and agricultural crop estimation
in the near future [1–4]. Possible another aim is to observe the land states in arti-
ficial and natural environment. For this purpose, polarimetric SAR is expected
to play an important role in the newly launched satellite systems. Decomposition
of scattering matrix is the method most closest to practical use presently in the
automatic land use classification [6]. Its basis lies in the linear algebra. However,
it sometimes fails in meaningful classification because of its non-uniqueness in
the decomposition.

c© Springer International Publishing Switzerland 2015
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Step 2:  Classification of clusters in SOM (pol. state and ensemble variacnce)

Observation data:  Scattering matrix

Feature extraction:  Poincare sphere parameters

Step 1:  Local clustering with cluster dispersion taken into consideration

(1) Local clustering depending on the similarity of the polarization states
(2) Integration of clusters considering their dispersion

Classified land (usage, natural vegetation, etc.)

Fig. 1. Total processing flow of the proposed adaptive land state classification system
using a SOM in the two-stage clustering.

Previously we proposed the use of Sotokes parameters (or Poincare sphere
parameters) as the primary variables in the land classification [7]. We also con-
structed an adaptive classification system based on supervised learning in quater-
nion domain [8]. The classification performance is so high and the learning cost
is so light that its practical application is strongly expected. Though the super-
vised learning system shows a high accuracy in its adaptive classification, it does
not have the ability to discover new categories of land use. Instead, it indicates
uncategorized areas as an undetermined class. Unsupervised learning system
may have the ability to discover new classes adaptively.

In this paper, we propose an unsupervised adaptive method to classify land
states using a self-organizing map (SOM) that deals with ensemble variance of
land scattering features. We employ two-stage clustering to utilize the dispersion
features, or ensemble variance features, of pre-grouped polarization clusters. In
this method, first we extract the scattering feature values as Poincare sphere
parameters. Then, we group the pixel parameters locally and finely into clus-
ters. Secondly, we classify the clusters adaptively by using a SOM by taking
the ensemble variance of respective clusters into consideration. The preliminary
grouping realizes high robustness against the slant-angle changes in the radar
observation to yield useful ensemble variance of the Poincare sphere parameters.
Experiments demonstrate the effectiveness in adaptive classification correspond-
ing to vegetation and town details.

2 Stokes Vector and Poincare Sphere Parameter

Full PolSAR system observes 2×2 complex scattering matrix S at each resolution
area. The calculation Poincare sphere parameters requires to suppose a certain
incident wave. The incident wave is expressed by a unit Jones vector [Ei

H Ei
V]T .

The scattered wave Jones vector [Er
H Er

V]T is obtained as
[

Er
H

Er
V

]
=

[
SHH SHV

SVH SVV

] [
Ei

H

Ei
V

]
, (1)
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Fig. 2. Satellite-borne SAR observation system and the changes of incident angles.

where EH and EV stand for horizontal and vertical component, respectively. The
averaged Stokes vector [〈g0〉 〈g1〉 〈g2〉 〈g3〉]T is then obtained as

⎡

⎢⎢
⎣

〈g0〉
〈g1〉
〈g2〉
〈g3〉

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

〈Er
HEr∗

H 〉 + 〈Er
V Er∗

V 〉
〈Er

HEr∗
H 〉 − 〈Er

V Er∗
V 〉

〈Er
HEr∗

V 〉 + 〈Er
V Er∗

H 〉
j(〈Er

HEr∗
V 〉 − 〈Er

V Er∗
H 〉)

⎤

⎥⎥
⎦ (2)

where 〈·〉 denotes temporal or spatial averaging process. The Poincare sphere
parameter P representing polarization states in three dimension is given as

P =
( 〈g1〉

〈g0〉 ,
〈g2〉
〈g0〉 ,

〈g3〉
〈g0〉

)
≡ (x, y, z). (3)

The Poincare sphere parameter P should be on or in a unit sphere. The norm
of P shows the degree of polarization, i.e., DoP =

√〈g1〉2 + 〈g2〉2 + 〈g3〉2/〈g0〉.
The Poincare sphere parameter P is a three dimensional vector relevant to

the polarization states of the incident wave. If we consider P for all the possible
incident polarization states, the computational cost will be huge. Instead, we
use only important four polarization states, PH, PV, P 45◦ and P lc, namely,
horizontal, vertical, 45◦ and left-handed circular polarization, as the incident
polarization. The experimental data used in the following experiment is L band
PALSAR 1.1 level data of ALOS (Advanced Land Observation Satellite, JAXA)
observing the Mt. Fuji area having 2932 × 1048 pixels. The spatial averaging
process in (2) is calculated for 5 × 5 local window.

3 Unsupervised Learning Classification of Land States by
Using SOM Based on Ensemble Variance

3.1 Two-Stage Clustering to Utilize the Dispersion Feature

Figure 1 shows the processing flow in total. A rough description is given here
first and, then, followed by detailed explanation in the next subsections. In this
proposal, Step 1 is local clustering to realize the utilization of the variance of
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Poincare sphere parameters in respective land state clusters in the following
process. Regarding Q = [PH P lc P 45◦ P V ]T as the input vector representing
features of each pixel, we conduct the clustering in Step 1 by considering the
dispersion of the clusters under construction. This local clustering also mitigates
the distortion in the radar observation. Figure 2 illustrates the side-looking SAR
observation. A satellite-borne SAR transmits electromagnetic-wave to the earth
surface with a slant angle. Hence, the scattered-wave polarization depends on
the incident angle [2]. This problem mainly happens in the range direction. That
is, similar land states located near or far range generates a polarization state
different from each other. This concern happens also depending on the terrain
shape such as slopes and mountains. Therefore, in Step 1 local clustering, we
first scan in the azimuth direction, and then proceed line by line in the range
direction. We calculate the mean value Q(i) and the standard deviation s(i) for
i-th cluster data.

In Step 2, we classify the clusters adaptively by using SOM. Each cluster has a
24-dimensional feature vector. We found in the following experiments that, even
when two areas are located away from each other, common features exist in their
parameter distributions corresponding to land states especially in the ensemble
variance. Hence, in this process, we multiply the variance by an appropriate
weight in order to emphasize its contribution. We describe the details in the
next subsections.

3.2 Step 1: Local Clustering by Paying Attention to the Cluster
Variance

The Step 1 includes two processes, i.e. local clustering dependent on the sim-
ilarity of the polarization states and integration of clusters considering their
variance.

[(1): Local clustering depending on the similarity of the polarization states.]
We examine the distances between the scanning center pixel’s input vector

Qc and its surrounding eight pixel vectors Qs. We consider the difference of
polarization states of scattered waves as sum of the euclidean distances in the
four incidence Poincare sphere parameters to calculate distance D(Qc,Qs) as

D(Qc,Qs) = ‖P c
H − P s

H‖ + ‖P c
V − P s

V‖ + ‖P c
45◦ − P s

45◦‖ + ‖P c
lc − P s

lc‖.(4)

If D(Qc,Qs) is less than the variable threshold Dth properly set based on the
clustering fitness, we regard pixels c and a as the same land state cluster.

[(2): Integration of clusters considering their variance.]
It sometimes happens that a cluster j whose land state class is the same as

that of an existing cluster k generates a new class faultily. We integrate them in
the every azimuth direction line scanning. We use n(j) to represent the number
of pixels in cluster j. When n(j) is less than n(k) and the following condition
F is fulfilled, we integrate cluster j and cluster k. The condition F is based on
the standard deviation range us(k). We change u decreasingly from us to ue
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(a) Non-dispersion SOM (b) Spatial fluctuation SOM

(c) Proposed ensemble variance SOM

(d) Class color map

Fig. 3. Land classification results for (a) no dispersion SOM, (b) spatial fluctuation
SOM and (c) proposed dispersion (ensemble variation) SOM, and (d)class color map.

according to the increase of n(k), that is,

F (j, k, u) : |QElement(j) − QElement(k)| < usElement(k) (∀Element) (5)

u = ue +
us − ue

1 + n(k)/N
(6)

With these processes, we can conduct the clustering based on the dispersion of
Poincare sphere parameters, which is robust against the angle changes of the
side-looking satellite observation.

3.3 Step 2: Classification of Clusters in SOM

We define the feature vector of i-th clusters as

T =
[
Q(i)
s(i)

]
(7)
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Fig. 4. (a) Optical photo example to show the numerical evaluation areas and (b)
human determined four classes referenced in the evaluation of our previous supervised
learning system [8].

We use a SOM to classify the clusters suitably based on the feature vectors just
like we do in our land penetrating radar (GPR) systems [9–12]. In the present
SAR classification system, we choose 6 × 6 torus as neuron topology.

The input signal is a 24-dimensional feature vector for a cluster T in(i). We
associate neuron g with a weight vector Tw(g) having the same dimension as
that of the input signal. We classify an i-th input into a class represented by a
neuron g when the the following distance becomes minimum for g among neuron
classes:

H(T in(i),Tw(g)) = D(Q(i),Qw(g)) + KD(sin(i), sw(g)) (8)

In this distance calculation, we put an emphasis on the dispersion information in
such a way that we first normalize Q(i) and s(i) and then multiply s(i) with an
appropriate weight K0 (i.e., K = K0σ(Q(i))/σ(s(i))). Self-organization occurs
as the updates of the winner Tw

win(g) and the surrounding neurons Tw
neighbor(g)

with the sequential signal input. We input the features of i = 1st cluster to i = I-
th cluster. Then we repeat this process for a sufficient C times. We determine
empirically the self-organization coefficients α0 and β0 properly to use them with
the iteration number c, that is,

Tw
win(t + 1) = Tw

win(t) + α(T in − Tw
win), α = α0(1 − c/C),

Tw
neighbor(t + 1) = Tw

neighbor(t) + β(T in − Tw
neighbor), β = β0(1 − c/C). (9)

4 Experimental Results

Figure 3 shows the result of land state classification. We evaluate the result of
(c) the proposed method by comparing those with other two methods, namely,
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Table 1. Unsupervised classification accuracy for the Fujisusono area.

Utilizing Condition Accuracy Overall Accuracy

(a) No dispersion information Lake 99.32% 37.33%

Grass 0% (96.92% as Lake)

Forest 5.06%

Town 41.86%

(b) Spatial fluctuation Lake 97.88% 51.50%

Grass 64.36%

Forest 8.98%

Town 34.78%

(c) Variance in the local clusters Lake 93.60% 83.24%

Grass 74.72%

Forest 86.60%

Town 78.02%

(a) SOM processing using Poincare sphere parameters and (b) SOM process-
ing Poincare sphere parameters and information about local fluctuation among
around 9 × 9 pixels that represents spatial variance. Figure 3(d) shows the color
map assigned to represent the classes in such a manner that the color similarity
corresponds to the class feature similarity. Table 1 shows the accuracy compar-
ison calculated for 5000 pixels in lake, grass, forest and city areas, respectively.
Figure 4 shows (a) an optical photo example to show the numerical evaluation
areas and (b)human determined four classes referenced in the evaluation of our
previous supervised learning system [8].

It is found that the proposed method shown in Fig. 3(c) realizes the highest
precision classification. In the non-dispersion SOM result in (a) fails to distin-
guish lakes and grass (aqua blue for both). The spatial fluctuation SOM result
in (b) is successful in this distinction to some extent (aqua blue and pale pur-
ple). But the towns and forests are mixed in most areas. This spatial fluctua-
tion method worked with a high performance in a supervised learning system
[8]. However, the self-organizing system having a larger number of classes may
require a different type of parameter adjustment. The spatial resolution is also
a little degraded because of the use of 9 × 9 spatial window to evaluate the
fluctuation.

In the proposed method, the Step 1 local clustering generates about 400 clus-
ters, in each of which clusters the number of pixels are from one to 200,000. Then,
we conduct the SOM processing. It succeeds in basic classification clearly among
water surface (aqua blue), grass (green), forest (blue and purple), and city (red
and brown). City area is distinguished into about 10 classes, and grass is classified
into mainly four classes according to its vegetation (i.e., grass (green), grass and
tree (yellowish green), farm (jade green), and rice field (ocher)). Other classes
become exceptional classes with no more than 100 pixels. We are successful in
eliminating the effect of the incident angle changes due to the range-directional
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(a)
(b)

Fig. 5. (a) Distribution of Poincare sphere parameters and (b) variance of the clusters
for 45◦ linearly polarization incidence. The colors correspond to those in Fig. 3(c).

location difference, resulting in excellent classification over a wide range of forest
into a single class. In addition, we are able to detect small grass area in forest
(right-hand side, lower) as well as to sharpen the lake boundary.

Figure 5 presents example information of Poincare sphere parameters after
classification, that is, (a) distribution of Poincare sphere parameters and (b)
variance of the clusters in 45◦ linearly polarization. It is found that each cluster
distribution has overlaps with anisotropic dispersion. The variance works well in
the self-organizing classification.

5 Conclusion

We proposed an unsupervised adaptive method to classify land states using a
SOM that deals with dispersion or ensemble variance of land-scattering polariza-
tion features. The system employs two-stage clustering to utilize the dispersion
features. Experimental demonstrated high accuracy and discovering land classi-
fication.
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2 Université Grenoble Alpes, CNRS-LIG/AMA, Saint-Martin-d’Hères, France

Abstract. Using the appropriate metric is crucial for the performance
of most of machine learning algorithms. For this reason, a lot of effort has
been put into distance and similarity learning. However, it is worth noting
that this research field lacks theoretical guarantees that can be expected
on the generalization capacity of the classifier associated to a learned
metric. The theoretical framework of (ε, γ, τ)-good similarity functions
[1] provides means to relate the properties of a similarity function and
those of a linear classifier making use of it. In this paper, we extend this
theory to a method where the metric and the separator are jointly learned
in a semi-supervised way, setting that has not been explored before. We
furthermore prove the robustness of our algorithm, which allows us to
provide a generalization bound for this approach. The behavior of our
method is illustrated via some experimental results.

1 Introduction

The importance of the underlying geometry of the data for improving the per-
formance of learning algorithms has determined the expansion of a new research
area termed metric learning [5]. From the point of view of the metric, most of
these approaches focus on distance learning [3,6,7,14,16], but similarity learning
has also attracted a growing interest [2,8,11,13], as the cosine similarity is more
appropriate for certain problems than the euclidean distance. More recently, [1]
have proposed the first framework that formalizes the relation between the qual-
ity of a metric and that of a classification algorithm making use of them. This
broad framework, that can be used with a large range of similarity functions,
provides generalization guarantees on a linear classifier learned from the sim-
ilarity. However, to enjoy these guarantees, the similarity function is assumed
to be known beforehand and to satisfy (ε, γ, τ)-goodness properties. The main
limitation is that [1] does not provide any algorithm for learning such similarities.

In order to complete this framework, [4] have developped a method that inde-
pendently learns an (ε, γ, τ)-good similarity. It is then plugged into the initial
algorithm [1] to learn the linear separator using the metric. However, the similar-
ity learning step is done in a completely supervised way while the (ε, γ, τ)-good
framework opens the door to the use of unlabeled data.
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 253–263, 2015.
DOI: 10.1007/978-3-319-26532-2 28



254 M.-I. Nicolae et al.

In this paper, our objective is to jointly learn the metric and the classi-
fier in the theoretical framework of (ε, γ, τ)-good similarities. Furthermore, and
unlike [4], the whole process is done in a semi-supervised way. To our knowledge,
joint learning has not been explored before for semi-supervised metric learning.
Enforcing (ε, γ, τ)-goodness allows us to preserve the theoretical guarantees from
[1]. Lastly, proving the algorithmic robustness [17] of our method leads to con-
sistency bounds for different types of similarity functions.

The remainder of this paper is organized as follows: Sect. 2 reviews some
previous results in metric and similarity learning and presents the theory of
(ε, γ, τ)-good similarities. Section 3 introduces our method that jointly learns the
metric and the linear classifier, followed by generalization guarantees for our for-
mulation. We show how to integrate different similarity functions in our setting.
Finally, Sect. 4 features an experimental study on various standard datasets.

2 Notations and Related Work

In our developments, vectors are denoted by lower-case bold symbols (x) and
matrices by upper-case bold symbols (A). A pairwise similarity function over
X ⊆ Rd is defined as K : X ×X → [−1, 1], and the hinge loss as [c]+= max(0, 1−
c). We note the L1 norm by || · ||1 and the L2 norm by || · ||2. The purpose of
metric learning is to learn the parameters of a distance or similarity function
that best fits the underlying geometry of the data. The learning is usually done
using side information, expressed as pair-based (x and x′ should be (dis)similar)
or triplet-based constraints (x should be more similar to x′ than to x′′). The
metric is commonly represented by a matrix of values resulting from solving an
optimization problem.

Most of state-of-the-art approaches focus on learning a Mahalanobis distance,
defined as dA(x,x′)=

√
(x − x′)T A(x − x′). The distance is parameterized by

the symmetric and positive semi-definite (PSD) matrix A ∈ R
d×d. This metric

implicitly corresponds to computing the Euclidean distance after linearly pro-
jecting the data to a different feature space. The PSD constraint on A ensures
dA is a proper metric. Setting A to the identity matrix gives the Euclidean dis-
tance. In this context, LMNN [16] is one of the most widely-used Mahalanobis
distance learning methods. The constraints are pair- and triplet-based, derived
from each instance’s nearest neighbors. The optimization problem they solve
is convex and has a special-purpose solver. The algorithm works well in prac-
tice, but is sometimes prone to overfitting due to the absence of regularization,
especially when dealing with high dimensional data. Another limitation is that
enforcing the PSD constraint on A is computationally expensive. Workarounds
include using a specific solver or opting for information-theoretic approaches.
ITML [6] was the first method to use LogDet divergence for regularization, pro-
viding an easy way for ensuring that A is a PSD matrix. However, the learned
metric A is strongly influenced by the initial value A0, which is an important
shortcoming, as A0 is handpicked. LRML [10] learns Mahalanobis distances with
manifold regularization using a Laplacian matrix in a semi-supervised setting.
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It performs particularly well compared to fully supervised methods when side
information is scarce.

More generally, Mahalanobis distance learning faces two main limitations:
firstly, enforcing the PSD and symmetry constraints on A is costly and often
rules out natural similarity functions; secondly, although state-of-the-art Maha-
lanobis distance learning methods yield better accuracy than using the Euclidean
distance, no theoretical guarantees are provided to establish a link between the
quality of the metric and that of the classifier that makes use of it. [1] defined the
(ε, γ, τ)-good similarity functions based on non PSD matrices, which uses simi-
larities between labeled data and unlabeled reasonable points (roughly speaking,
the reasonable points play the same role as that of support vectors in SVMs).
Their theory was the first stone to establish generalization guarantees for a lin-
ear classifier that would be learned by making use of such similarities. Their
results are derived based on the definition of a good similarity function for a
given problem: considering a set of “reasonable points”, a (1 − ε) proportion of
examples x are on average 2γ more similar to random reasonable examples x′ of
their own label than to random reasonable examples x′ of the other label. For
this, the proportion of reasonable points from the sample must be greater than
τ . In their definition, the margin violation is averaged over all reasonable points
which leads to a more flexible setting than pair- or triplet-based constraints.
If K is (ε, γ, τ)-good and enough reasonable points are available, there exists a
linear separator α with error arbitrarily close to ε in the space φS . Finding the
separator is done by solving the following optimization problem:

min
α

{ dl∑

i=1

[
1 −

du∑

j=1

αj l(xi)K(xi,xj)
]
+
:

du∑

j=1

|αj | ≤ 1/γ
}

.

The previous problem can be solved efficiently by linear programming. Also,
tuning the value of γ (L1 constraint) will produce a sparse solution. The main
limitation of this approach is that the similarity function K is considered known.

This limitation has been partly overcome by SLLC [4] by optimizing the
(ε, γ, τ)-goodness of a bilinear similarity function under Frobenius norm reg-
ularization. The learned metric is then used to build a global linear classifier
with guarantees. Moreover, a bound on the generalization error of the asso-
ciated classifier through uniform stability can be obtained. More recently, [9]
derived generalization bounds for similarity learning formulations that are reg-
ularized with more general matrix-norms, based on the Rademacher complexity
and Khinchin-type inequalities.

There are three main distinctions between these approaches and our work.
Firstly, we propose a method that jointly learns the metric and the linear sepa-
rator at the same time. This allows us to make use of the semi-supervised setting
presented by [1] to learn well with only a small amount of labeled data. Secondly,
our setting uses the algorithmic robustness to establish bounds, which enables us
to characterize our algorithm by exploiting the geometry of the data; that is not
the case with the Rademacher complexity. Lastly, regularization is integrated
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through constraints in our setting, as explained in the following sections, which
leads to a formulation with less hyperparameters.

3 Learning Consistent Good Similarity Functions

In this section, we present our semi-supervised framework for jointly learning
a similarity function and a linear separator from data. We also provide a gen-
eralization bound for our approach based on the recent algorithmic robustness
framework [17]. We end this section by presenting some particular similarity
functions that can be used in our setting.

3.1 Optimization Problem

Let S be a sample set of dl labeled examples (x, l(x)) ∈ Z = X × Y (X ⊆
Rd) and du unlabeled examples. We assume that X is bounded, which can be
expressed, after normalization, by ||x||2 ≤ 1. Let KA(x,x′) be a generic (ε, γ, τ)-
good similarity function, parameterized by the matrix A ∈ R

d×d. We want to
optimize the goodness of KA w.r.t. the empirical loss of a finite sample. To
this end, we must find the matrix A and the global separator α ∈ R

du that
minimize the loss function (in <our case, the hinge loss) over the training set S.
Our learning algorithm takes the form of the following constrained optimization
problem.

min
α,A

1
dl

dl∑

i=1

⎡

⎣1 −
du∑

j=1

αj l(xi)KA(xi,xj)

⎤

⎦

+

(1)

s.t.
du∑

j=1

|αj | ≤ 1/γ (2)

A diagonal, |Akk| ≤ 1, 1 ≤ k ≤ d, (3)

The novelty of this algorithm is the joint optimization over A and α: by
solving problem (1), we are learning the metric and the separator at the same
time. A significant advantage of this formulation is that it extends the semi-
supervised setting from the separator learning step to the metric learning, and
the two problems are solved using the same data. This method can naturally
be used in situations where one has access to few labeled examples and many
unlabeled ones: the labeled examples are used in this case to select the unlabeled
examples that will serve to classify new points. Another important advantage
of our technique is that the constraints on the pair of points do not need to be
satisfied entirely, as the loss is averaged on all the reasonable points. In other
words, this formulation is less restrictive than pair or triplet-based settings.

Constraint (2) takes into account the desired margin γ and is the same as in
[1]. The new Constraint (3) serves two purposes: first, it restricts the similarity
KA, thus preserving its (ε, γ, τ)-goodness; second, as it bounds the values in the



Algorithmic Robustness for Semi-Supervised (ε, γ, τ)-Good Metric Learning 257

matrix A, it limits the risk of overfitting, and thus plays the role of regularization
without imposing sparsity. Regularizing metrics through standard L1 or L(1,2)

norms would slowly push the values in the matrix towards zero, which is not
necessarily desirable. Indeed, let f(x) =

∑du

j=1 αjKA(x,xj) be the output of
the linear separator w.r.t. x. For some linear similarities KA(x, x′), such as the
bilinear form KA(x,x′) = xT Ax′, computing f(x) boils down to calculating
the similarity between x and the barycenter of the (weighted) unlabeled points,
making sparsity superfluous.

3.2 Consistency Guarantees

We now present a theoretical analysis of our approach. For the purpose of dis-
cussing the algorithmic robustness of the method, let us rewrite the minimization
problem (1) with a more generalized notation of the loss function:

min
1
dl

dl∑

i=1

�(A,α, zi = (xi, l(xi))),

where �(A,α, zi = (xi, l(xi))) =
[
1 − ∑du

j=1 αj l(xi)KA(xi,xj)
]

+
is the instan-

taneous loss estimated at point (xi, l(xi)). Therefore, the optimization prob-
lem (1) under constraints (2) and (3) reduces to minimizing the empirical loss
R̂� = 1

dl

∑dl

i=1 �(A,α, zi) over the training set S. To begin with, let us recall the
notion of robustness of an algorithm A.

Definition 1 (Algorithmic Robustness [17]). Algorithm A is (M, ε(·))-
robust, for M ∈ N and ε(·) : Zdl → R, if Z can be partitioned into M disjoint
sets, denoted by {Ci}M

i=1, such that the following holds for all S ∈ Zdl :

∀z = (x, l(x)) ∈ S,∀z′ = (x′, l(x′)) ∈ Z,∀i ∈ [M ] :
if z, z′ ∈ Ci, then|�(A,α, z) − �(A,α, z′)| ≤ ε(S).

Roughly speaking, an algorithm is robust if for any example z′ falling in the
same subset as a training example z, the gap between the losses associated with
z and z′ is bounded. Subsets are constructed using a partitioning of Z based on
covering numbers [12]. Two examples are close if they belong to the same region,
implying that the norm between them is lesser than a fixed quantity ρ (see [17]
for details about building the covering). Now we can state the first theoretical
contribution of this paper.

Theorem 1. Given a partition of Z into M subsets {Ci} such that z =
(x, l(x)) and z′ = (x′, l(x′)) ∈ Ci and l(x) = l(x′), and provided that
KA(x,x′) is l-lipschitz w.r.t. its first argument, the optimization problem (1)
with constraints (2) and (3) is (M, ε(S))-robust with ε(S) = 1

γ lρ, where ρ =
supx,x′∈Ci

||x − x′||.
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Proof

|�(A,α, z) − �(A,α, z′)| ≤ ∣∣
du∑

j=1

αj l(x′)KA(x′,xj) −
du∑

j=1

αj l(x)KA(x,xj)
∣∣

(4)

=
∣∣

du∑

j=1

αj(KA(x′,xj) − KA(x,xj))
∣∣ ≤

du∑

j=1

|αj | · |KA(x′,xj) − KA(x,xj)| (5)

≤
du∑

j=1

|αj | · l||x − x′|| ≤ 1
γ

lρ (6)

Setting ρ = supx,x′∈Ci
||x−x′||1, we get the Theorem. We get Inequality (4)

from the 1-lipschitzness of the hinge loss; Inequality (5) comes from triangle
inequality; the first inequality on line (6) is due to the l-lipschitzness of KA(x,xj)
w.r.t. its first argument, and the result follows from Condition (2).

We now give a PAC generalization bound on the true loss making use of the
previous robustness result. Let R� = Ez∼Z�(A,α, z) be the true loss w.r.t. the
unknown distribution Z and R̂� = 1

dl

∑dl

i=1 �(A,α, zi) be the empirical loss over
the training set S. We have the following concentration inequality that allows
one to capture statistical information coming from the different regions of the
partition of Z.

Proposition 1 [15] Let (|N1|, . . . , |NM |) be an i.i.d. multinomial random
variable with parameters dl =

∑M
i=1 |Ni| and (p(C1), . . . , p(CM )). By the

Bretagnolle-Huber-Carol inequality we have: Pr
{∑M

i=1

∣
∣ |Ni|

dl
− p(Ci)

∣
∣ ≥ λ

}
≤

2M exp
(−dlλ

2

2

)
, hence with probability at least 1 − δ,

∑M
i=1

∣∣Ni

dl
− p(Ci)

∣∣ ≤
√

2M ln 2+2 ln(1/δ)
dl

.

We are now able to present our generalization bound in the following theorem.

Theorem 2 Considering that problem (1) is (M, ε(S))-robust, and that KA is
l-lipschitz w.r.t. to its first argument, for any δ > 0 with probability at least 1−δ,
we have:

|R� − R̂�| ≤ 1
γ lρ + B

√
2M ln 2+2 ln(1/δ)

dl
,

where B = 1 + 1
γ is an upper bound of the loss �.

The proof of Theorem 2 follows the one described in [17]. Note that the cover
radius ρ can be arbitrarily small at the expense of larger values of M . As M
appears in the second term, decreasing to 0 when dl tends to infinity, this bound
provides a standard O(1/

√
dl) asymptotic convergence.

As one can note, our main theorems strongly depend on the l-lipschitzness
of the similarity function. We provide below three standard similarity functions
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Table 1. Properties of the datasets used in the experimental study.

Balance Ionosphere Iris Liver Pima Sonar Wine

# Instances 625 351 150 345 768 208 178

# Dimensions 4 34 4 6 8 60 13

# Classes 3 2 3 2 2 2 3

together with their lipschitz property. K1
A and K2

A are linear w.r.t. their argu-
ments, and have the advantage of keeping Problem (1) convex. K3

A is gaussian-
like kernel based on the Mahalanobis distance, and is non linear.

Ex. 1. Let K1
A be the bilinear form K1

A(x,x′) = xT Ax′. K1
A(x,x′) is 1-lipschitz

w.r.t. its first argument.
Ex. 2. We define K2

A(x,x′) = 1 − (x−x′)T A(x−x′), a similarity derived from
the Mahalanobis distance. K2

A(x,x′) is 4-lipschitz w.r.t. its first argument.
Ex. 3. Let K3

A(x,x′) = exp
(
− (x−x′)TA(x−x′)

2σ2

)
. K3

A(x,x′) is l-lipschitz w.r.t.

its first argument with l = 2
σ2

(
exp

(
1

2σ2

) − exp
( −1
2σ2

))
.

Plugging l = 1 (resp. l = 4 and l = 2
σ2

(
exp

(
1

2σ2

) − exp
( −1
2σ2

))
) in

Theorem 2, we obtain consistency results for Problem (1) using K1
A(x,x′) (resp.

K2
A(x,x′) and K3

A(x,x′)). As the gap between empirical and true loss presented
in Theorem 2 is proportional with the l-lipschitzness of each similarity function,
we would like to keep this parameter as small as possible. We notice that the
generalization bound is tighter for K1

A than for K2
A. The bound for K3

A depends
on the additional parameter σ, that adjusts the influence of the similarty value
w.r.t. the distance to the landmarks.

4 Experiments

Metric learning state-of-the-art algorithms are mostly designed for a supervised
setting, and usually optimize a metric for kNN classification. It is thus difficult
to propose a totally fair comparative study. We compare our method (JSL –
Joint Similarity Learning) with algorithms from different categories (supervised,
kNN-oriented). The experimental study is conducted on 7 classic datasets taken
from the UCI Machine Learning Repository (Table 1).

4.1 Experimental Setup

For a complete comparison, we analyse two main families of approaches: first,
linear classifiers, for which we consider BBS [1], SLLC [4], linear SVM with
L2 regularization and our method, JSL; second, nearest neighbor approaches:
ITML [6], LMNN [16] and LRML [10], for which we report accuracies for
3NN classification. All attributes are centered around zero and scaled to ensure
||x||2 ≤ 1. We randomly choose 15 % of the data for validation purposes,
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Table 2. Average accuracy (%) with conf. interval at 95 %, 5 labeled points/class.

Lmks Sim Balance Ionosphere Iris Liver Pima Sonar Wine

All pts. K1
A 85.7±3.5 88.5±2.6 74.5±4.4 63.9±5.3 71.1±3.8 72.3±4.1 87.7±5.0

K2
A 87.1±2.5 91.0±2.0 71.4±5.9 69.2±3.2 72.9±3.9 71.9±4.2 84.2±6.9

K3
A 81.1±8.5 86.2±2.8 68.2±8.5 58.6±6.3 71.1±4.3 63.9±10.0 83.5±6.2

15 pts. K1
A 84.9±2.6 86.7±1.6 75.5±2.3 63.1±5.9 71.1±4.1 72.9±4.6 87.3±5.5

K2
A 87.5±2.7 85.0±3.8 74.1±6.3 67.3±4.3 74.3±4.1 77.4±6.3 76.9±10.5

K3
A 79.6±10.0 76.3±7.4 72.7±6.3 59.6±6.0 69.0±8.6 68.7±10.0 88.5±5.0

and another 15 % as a test set. The training set and the unlabeled data are
chosen from the remaining 70 % of examples not employed in the previous sets.
We illustrate the classification using a restricted quantity of labeled data by
limiting the number of labeled points to 5, 10 or 20 examples per class, as
this is usually a reasonable minimum amount of annotation to rely on. The
number of landmarks is either equal to the size of the training set, either set
to 15 points (corresponding to k-means++ cluster centroids). When all the
available data is used as landmarks, the L1 constraint on α forces the algo-
rithm to choose the most valuable of them by adapting their respective weights.
All of the experimental results are averaged over 10 runs, for which we com-
pute a 95 % confidence interval. We tune the following parameters by cross-
validation: γ ∈ {10−4, . . . , 10−1} for BBS and JSL, λITML ∈ {10−4, . . . , 104},
γSLLC , βSLLC ∈ {10−7, . . . , 10−2}, λSLLC ∈ {10−3, . . . , 102}, while for LRML
we consider γs, γd, γi ∈ {10−2, . . . , 102}. For LMNN, we set μ = 0.5, as done
in [16]. We solve BBS and JSL using projected gradient descent. In JSL, we
alternate the optimization between α and A.

4.2 Results

Choice of Similarity. We first study the influence of the similarity function
on the proposed framework. We plug into JSL the three similarities studied
previously (see Sect. 3.2) and present the results for classification in Table 2. For
both unlabeled configurations, 15 points or the whole training set, K2

A yields
the best results on 4 out of 7 datasets, while K3

A performs best in only one
case. We explain this by the topology of the involved datasets, which make
the Mahalanobis distance a better dicriminant for classification than the other
similarities. In the case of K3

A, there is a trade-off between the tightness of
the bound in Theorem 2 and the stability of the results. Large values of σ will
lead to tighter bounds (as l is smaller), but the resulting similarity function
becomes linear and less discriminative. As a consequence, the results vary more
for this similarity function, leading to larger confidence intervals, as can be seen
on almost all the collections. When comparing the two unlabeled settings, we
notice that there are only a few cases when the best accuracy is attained with
less unlabeled points for the same similarity, but that when this happens the
improvement is significant. This is due to the fact that the 15 unlabeled points
are not chosen randomly, but contain relevant information w.r.t. data topology.
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Table 3. Average accuracy (%) over all datasets with confidence interval at 95 %.

Data LMNN-dg LMNN ITML SVM BBS SLLC LRML JSL

5 pts./cl 65.1±5.5 69.4±5.9 75.8±4.2 76.4±4.9 77.2±7.3 70.5±7.2 74.7±6.2 78.4±2.3

10 pts./cl 68.2±5.6 70.9±5.3 76.5±4.5 76.2±7.0 77.0±6.2 75.9±4.5 75.3±5.9 78.7±1.9

20 pts./cl 71.5±5.2 73.2±5.2 76.3±4.8 77.7±6.4 77.3±6.3 75.8±4.8 75.8±5.2 78.3±1.6

Fig. 1. Average accuracy w.r.t. the number of labeled points with 15 landmarks.

Comparison of Different Methods. Following the previous analysis, we now
propose to study the classification performance of our method. For this purpose,
we focus on JSL with K2

A using 15 unlabeled landmarks. We compare our app-
roach to state-of-the-art methods when a limited amount of labeled data is used
and present the results in Table 3. In order to ensure fairness, we fix the simi-
larity function in BBS to the Euclidean distance. On average over all datasets,
JSL obtains the best performance in all the settings. The only other methods
with comparable results are BBS and SVM. We mention that JSL using also
K2

A and all the training set as unlabeled landmarks performs similarly to the
setting presented in Table 3. This result proves that we can learn well with a
small amount of both labeled and unlabeled data, when the unlabeled points
are informative (e.g., correspond to cluster centroids, as it is the case here).

Quantity of Labeled Data. We now study the method’s behavior when the
level of supervision varies. For this we keep on using JSL with K2

A and set
the number of unlabeled points to 15. Figure 1 presents the accuracies on two
representative datasets, Ionosphere and Pima, with an increasing number of
labeled examples. JSL obtains the best performance in both cases when less than
50 % of the labeled data is used, which is coherent with the results presented in
Table 3. For greater amounts of data, JSL performs similarly to the best state-of-
the-art methods: SVM and LMNN for Ionosphere, and SVM and BBS for Pima;
these results also correspond to those presented in the previous subsection.
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5 Conclusion

In this paper, we extend the (ε, γ, τ)-good similarity theory to a method where
the metric and the separator are jointly learned in a semi-supervised way, set-
ting that has not been explored before. We show that our joint approach is the-
oretically founded using results from [1] and new results based on algorithmic
robustness. The approach we propose is particularly adapted to learning with
small amounts of both labeled and unlabeled data, when the unlabeled points
are informative. This is revealed in the experiments conducted which illustrate
the good behavior of our method in the above setting on various UCI datasets,
in comparison with different standard approaches (LMNN, ITML, SVM, BBS,
SLLC, LRML).
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Abstract. This paper proposes a patch-based tracking algorithm via a
hybrid generative-discriminative appearance model. For establishing the
generative appearance model, we present a spatio-temporal constraint-
based sparse representation (STSR), which not only exploits the intrinsic
relationship among the target candidates and the spatial layout of the
patches inside each candidate, but also preserves the temporal similarity
in consecutive frames. To construct the discriminative appearance model,
we utilize the multiple-instance learning-based support vector machine
(MIL&SVM), which is robust to occlusion and alleviates the drifting
problem. According to the classification result, the occlusion state can
be predicted, and it is further used in the templates updating, making
the templates more efficient both for the generative and discriminative
model. Finally, we incorporate the hybrid appearance model into a par-
ticle filter framework. Experimental results on six challenging sequences
demonstrate that our tracker is robust in dealing with occlusion.

Keywords: Patchwise tracking · Hybrid generative-discriminative
appearance model · MIL&SVM · Spatio-temporal constraint · Sparse
representation

1 Introduction

Visual tracking is an active field of research in computer vision. While numerous
tracking methods have been proposed with demonstrated success in recent years,
designing a robust tracking method is still an open problem, due to factors
such as scale and pose change, illumination variation, occlusion, etc. Especially,
occlusion is a core issue. One of the main reasons is the lack of the effective
object appearance models, which play a significant role in visual tracking.

For designing a robust tracker, most tracking algorithms employ genera-
tive learning or discriminative learning based appearance models. Generative
learning based appearance models mainly concentrate on how to fit the data
accurately from the object class using generative methods. Among them, sparse
representation is a widely used generative method. Jia et al. [3] developed a
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 264–271, 2015.
DOI: 10.1007/978-3-319-26532-2 29



Patchwise Tracking via STSR and MIL & SVM 265

local appearance model by utilizing the sparse representation of the overlapped
patches. Zhang et al. [10] proposed a structural sparse tracking algorithm to
exploit the relationship among the target candidates and spatial layout of the
patches inside each candidate. Zarezade et al. [9] presented a joint sparse tracker
by assuming that the target and the previous best candidates have a common
sparsity pattern. Although these methods achieve convincing performance, they
either lack of the description of the target spatial layout or ignore the temporal
consistency constraint of successive frames. In this paper, we propose a spatio-
temporal constraint-based sparse representation (STSR), which not only exploits
the spatial layout of the local patches inside each candidate and the intrinsic rela-
tionship among the candidates and their local patches, but also preserves the
temporal consistency of the sparsity pattern in consecutive frames.

In comparison, discriminative appearance models pose visual tracking as
a binary classification issue, aiming to maximize the inter-class separability
between the object and non-object regions via discriminative learning techniques.
Babenko et al. [2] introduced the multiple-instance learning technique into online
object tracking where training samples can be labeled more precisely. In [4], Kalal
et al. proposed to train a binary classifier using the P-N learning algorithm with
both labeled and unlabeled samples. Despite the convincing performance, most
of these methods use holistic representation to represent the object and hence do
not handle occlusion well. In this paper, we utilize the patch-based discriminative
appearance model proposed by [6] to locate the target from the background, in
which the multiple-instance learning-based support vector machine (MIL&SVM)
is used as the classifier and it can predict the occlusion state and alleviate the
drifting problem. According to the occlusion state, we update the template set
as mentioned in [6], making the templates more effective both for the generative
and discriminative appearance model.

2 Patchwise Tracking via a Hybrid Generative-
Discriminative Appearance Model

In our tracker, we utilize st to denote the object state at time t, and construct
our tracker in the particle filter framework (PF). For the dynamic model of
PF, p(st|st−1), we assume a Gaussian distributed model. For the appearance
model in PF, p(yt|st), we use our patch-based hybrid generative-discriminative
appearance model, which will be introduced below.

2.1 Generative Appearance Model Based on STSR

Given the image set of the target templates T = [T1,T2, ...,Tm], where m is
the number of target templates, we sample K overlapped local patches inside
each target region. The sampled patches are used to form a dictionary D =
[d(1)

1 , ...,d(1)
m , ...,d(K)

1 , ...,d(K)
m ], each column in D is obtained by �2 normalization

on the vectorized gray scale image observations extracted from T.
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Fig. 1. Spatio-temporal constraint-based sparse representation

Let {x∗
t−i}Ni=1 and {xi

t}ni=1 represent the best candidates obtained in the pre-
vious tracking and particles from the current frame respectively. For {x∗

t−i}Ni=1

and {xi
t}ni=1, we also sample K overlapped local patches as done in the tem-

plate set and denote x∗
t−i = [x∗(1)

t−i , ...,x∗(K)
t−i ] and xi

t = [xi(1)
t , ...,xi(K)

t ]. Let
X(k)

t = [x1(k)
t , ...,xn(k)

t ] denote the k-th local patches of n particles at time
t. In order to represent this observations matrix X(k)

t , we not only consider the
spatial constraint of the particles and local patches, but also utilize the temporal
constraint in consecutive frames.

Spatio-Temporal Constraint. Based on the fact that n particles at current
frame are densely sampled at and around the target of the previous frame and
the target’s appearance changes smoothly, it is reasonable to assume that these
particles are likely to be similar and they have the similar sparse pattern with
previous tracking results over a period of time. Thus the k-th image patches of
n particles and previous tracking results are expected to be similar. In addition,
for patches extracted from a candidate particle or a previous tracking result,
their spatial layout should be preserved.

Spatio-Temporal Constraint-Based Sparse Representation (STSR).
Based on the above observations, we use X(k) = [x∗(k)

t−i , ...,x∗(k)
t−1 ,x1(k)

t , ...,xn(k)
t ]

to represent the k-th local patches of previous tracking results and n particles
in current frame, D(k) = [d(k)

1 ,d(k)
2 , ...,d(k)

m ] to express the k-th patches of m

templates, and Z(k) = [z∗(k)
t−i , ..., z∗(k)

t−1 , z1(k)t , ..., zn(k)t ] to denote the representa-
tions of the k-th local patch observations of X(k) with respect to D(k). Then the
joint sparse appearance model for the object tracking under the spatio-temporal
constraint can be obtained by using the �2,1 mixed norm as

min
Z

1
2

K∑

k=1

||X(k) − D(k)Z(k)||2F + λ||Z||2,1 (1)

where, Z = [Z(1),Z(2), ...,Z(K)], || · ||F denotes the Frobenius norm, λ is a
regularization parameter which balances reconstruction error with model com-
plexity, ||Z||2,1 =

∑
i(

∑
j |[Z]ij |2) 1

2 and [Z]ij denotes the entry at the i-th row
and j-th column of Z. The �2,1 mixed norm regularizer is optimized using an
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Accelerated Proximal Gradient (APG) method. The illustration of the spatio-
temporal constraint-based sparse representation is shown in Fig. 1.

Generative Appearance Model Based on STSR. After learning the Z, the
observation likelihood of the tracking candidate i is defined as

pg(yt|st) =
1
β

exp(−α

K∑

k=1

||xi(k)
t − Dkzi(k)t ||2F ) (2)

where, zi(k)t is the coefficient of the k-th image patch of the i-th particle corre-
sponding to the target templates, and α and β are normalization parameters.

2.2 Discriminative Appearance Model Based on MIL&SVM

Despite the robust performance of the generative appearance model achieved,
it is not effective in dealing with the background distractions. Therefore, we
introduce a discriminative appearance model based on MIL&SVM to improve
the performance of our tracker.

We denote the overlapped image patches extracted from the target templates
as the positive pathes p+, and the overlapped patches extracted from the back-
ground (which is an annular region and the distance from the center-point of the
target object to the edge of the negative patch sampling area is set to R) are
denoted as negative patches p−. As we all known, some positive patches obtained
above may contain some noisy pixels from background because the bounding box
is rectangular whereas the shape of the target may not be a standard rectangle.
In order to deal with this problem, we adopt the patch-based MIL&SVM to train
a robust classifier. In the training procedure, a row of patches are defined as a
positive bag b+ if they extracted from the target templates, or negative bag b−

if they come from background. The training procedure is illustrated in Fig. 2.
With this classifier, we can classify each patch of a candidate object at time

t. For a candidate, we use r+ to denote the local patches which are classified as
positive and use r− to denote patches classified as negative. Then the probability
of a candidate being the tracking result can be defined as

Fig. 2. Illustration for the patch-based MIL&SVM
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pd(yt|st) =
|r+|

|r−| + |r+| (3)

where |r+| and |r−| are the number of positive patches and negative patches.
Furthermore, according to the classification result, the occlusion state of a

candidate can be obtained as

O =
|r−|

|r−| + |r+| (4)

2.3 Adaptive Hybrid Generative-Discriminative Appearance Model

Based on the likelihood obtained from the spatio-temporal constraint-based
sparse representation and the probability got via multiple-instance learning-
based SVM, we construct our final observation model as:

p(yt|st) = ηpg(yt|st) + (1 − η)pd(yt|st) (5)

where η ∈ [0, 1] is a control parameter, which can adjust weights of the two
methods according to the occlusion state and can be defined as η = 1

2 (1 + O).
In order to deal with appearance variation with time, we need to update our

templates. We divide the templates T into two groups according to the occlusion
state. The group without occlusion is denoted as Tunocc = [T1, ...,Tm1 ], and
the occluded template set is denoted as Tocc = [Tm1+1, ...,Tm], where m1 is
the number of unoccluded patches. The templates in Tunocc are ordered by time
and the templates in Tocc are ordered reversely by time. We use two increasing
interval sequences and a random number r ∈ [0, 2] to determine the sequence
number of the template needed to be deleted as Eq. 6.

f(r) =

⎧
⎪⎪⎨

⎪⎪⎩

i, r ∈ [
(i − 1)2 + (i − 1)

m2
1 + m1

,
i2 + i

m2
1 + m1

], 0 < r ≤ 1

j, r ∈ [1 +
(j − 1)2 + (j − 1)

m2
2 + m2

, 1 +
j2 + j

m2
2 + m2

], 1 < r ≤ 2
(6)

where m2 = m − m1.
After selecting the template to discard, we use the method mentioned in [3]

to update the template. For more detail, please refer [3]. After the templates T
is updated, we retrain the MIL&SVM classifier only with the templates without
occlusion or with light occlusion.

3 Experiments

We validate our tracker on six challenging sequences and compare it with six
state-of-the-art methods proposed in recent years. All of these sequences are
publicly available. The challenges of these sequences include severe occlusion and
drastic shape deformation. In order to test the effectiveness and robustness of our
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Fig. 3. Comparative experimental tracking results of 7 methods on six sequences, from
top to bottom are basketball, DavidOutdoor, girl move, woman sequence, face sequence
and girl head
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Fig. 4. Center error plots for 7 methods on six video sequences
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tracker, we compare it with FragT [1], VTD [5], PT [8], SCM [11], ASLA [3] and
SPT [7]. For our tracker, we set the number of templates m = 10, the number
of local patches K = 9, the number of particles n = 400, and we use 2 previous
tracking results in STSR. We resize all the targets or candidates as (32, 32).The
size of the sampling patch is (16,16) and the sampling step is 8 pixels.

Table 1. Location errors (in pixel, the bold font indicates the best performance)

Sequences FragT VTD PT SCM ASLA SPT Ours

basketball 16.3 9.0 19.1 126.4 112.6 17.4 8.2

DavidOutdoor 63.5 70.0 88.0 101.7 105.2 50.0 8.5

girl move 8.9 45.4 110.2 414.8 214.5 30.0 5.7

woman sequence 138.1 163.1 3.8 122.9 4.4 9.0 4.7

face sequence 4.4 8.5 5.4 4.5 5.4 48.1 5.5

girl head 3.6 7.2 3.1 3.3 38.0 30.0 3.1

Overall 39.1 50.5 38.3 128.9 80.0 30.8 6.0

Comparative tracking results of selected frames are shown in Fig. 3, from
which we can find that our proposed tracker performs very well on all these
challenging sequences. FragT is designed for dealing with occlusion and performs
well in face sequence and girl head when the target is large enough, but it cannot
get good results in other sequences when there exists sever occlusion in a small
target. VTD adopts multi-trackers to track the target and it achieves satisfactory
results in face sequence and basketball but also shows less effective in dealing with
the situation when there exists both rigid shape deformation and occlusion. PT is
a part-based tracker and it performs well in dealing with partial occlusion, but it
fails when the target is full occluded. Both SCM and ASLS adopt sparsity-based
appearance model and they perform well in dealing with occlusion as shown in
face sequence, but cannot get satisfactory performance when there exists rigid
shape deformation. SPT achieves good results on DavidOutdoor and girl move
as shown in Fig. 3, but cannot obtain stable performance in clutter scene or when
there exists severe and frequent occlusion as shown in screenshots of sequences
basketball, woman sequence and face sequence.

We also measure the quantitative tracking error, the Euclidean distance from
the tracking center to the ground-truth. The center error plots of 7 methods on
6 sequences are shown in Fig. 4, which demonstrates that our tracker is robust
in handling occlusion and shape deformation even in a complex scene. We show
the location errors in Table 1, which shows that our tracker achieves the best
tracking results on 4 sequences and gives the the best tracking result on average.

4 Conclusion

In this paper, we have proposed a novel patch-based tracking method based
on the combination of spatio-temporal constraint-based sparse representation
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(STSR) and multiple-instance learning-based SVM (MIL&SVM). By utilizing
the STSR, our tracker effectively captures the structure cues of the target and the
temporal similarity in consecutive frames. Furthermore, we utilize MIL&SVM as
our discriminative appearance model, which is robust in cluttered background
and can predict the occlusion state. Based on the occlusion state, we update
the template set separately, making the generative method obtain more precise
templates and the discriminative method maintain correctness. Qualitative and
quantitative experimental results on different challenging sequences demonstrate
that our tracker is very robust to the occlusion.
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Abstract. In this paper, behavior scheme of autonomous mobile robots to
achieve the objectives of them in environments are proposed, having function of
identifying the current environment in which they are placed and making use of
learning, memorizing and recalling behaviors of corresponding to each of plural
different environments. Specifically, each robot has the function of identifying
the environment using some behavioral statistical data for each environment, and
if the robot has already experienced the environment, it behaves by making use
of own experienced data stored in the database, otherwise it performs a new
behavior learning and adds the learning results into the database.

Keywords: Intelligent robot · Chaotic neural network · Reinforcement learning
· Identification of the environment · Gaussian mixture model

1 Introduction

In recent years, researches on intelligent robots and their practical application have been
attracting attention. For example, meal transport robot, workplace patrol robot, docu‐
ment delivery robot, etc. and their applications have expanded dramatically.

However, such robots are not called so intelligent, because that almost all of them
are given the path to the place of destination and only move along the same path repeat‐
edly. Furthermore, in the field of discrimination of the environment for agent action
learning, we can hardly see papers about such a subject. As previous researches on
identification method of the environment, there are a few ones that are our papers
published in the past, for example, the method [1] that check in order the environments
in the database whether the series of actions in the environment information in the data‐
base are appropriate for the current environment or not. The other is the method [2]
identifying the environment using the feedback SOM with high efficiency and high
precision. In this paper, behavior scheme of autonomous mobile robots to achieve the
objectives of them in environments are proposed, having functions of identifying the
current environment in which they are placed and making use of learning and
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memorizing behaviors of corresponding to each of plural different environments.
Specifically, each robot has the function of identifying the environment using some
behavioral statistical data for each environment, and if the robot has already experienced
the environment, it behaves by making use of own experienced data memorized in the
database constructed by chaotic neural networks (CNNs) and Gaussian mixture models,
otherwise it performs a new action learning and adds them into the database. In this
paper, as the database to perform the memorization and recall of pairs of action and
perceptual information corresponding to the action, we also adopt chaotic neural
networks (CNNs) [3] which is a coupled system of chaotic neuron that models the
refractory and analog input and output characteristics, as an action learning method, we
adopt reinforcement learning, a kind of representative machine learning.

2 Whole Structure of the System

The whole structure of the system including the proposed agent and environment are
shown in Fig. 1. The structure of the agent is inside surrounded by a broken line, it
consists of three functions: identification of the environment, action learning and data‐
base with pairs of state of the environment and action corresponding to it. At first, the
agent receives state information from the environment in which the agent is placed, it
identifies the environment in the database as same as the facing environment, in other
word, the agent investigates the database whether there is the environment that matches
the facing environment in it, or not. If the information about the facing environment has
already memorized in the environment, it behaves by making use of own experienced
data memorizing in the database, otherwise it performs a new action learning and adds
the results of action learning into the database.

state

Experienced 
Unexperienced  

state
action

state Environment

Action module:
Using the database 
of pairs of state and 

action for each 
Env..   

First stage:
Identification of 
the environment

agent

Fig. 1. Whole structure of the proposed autonomous agent
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3 Action Learning

In this paper, as an action learning approach, Q learning method is used, which is one
of typical reinforcement learning method. For more information, see reference [4]. After
end of action learning, pairs of action and perceptual information corresponding to the
action and Gaussian mixture model (GMM) about the environment are added as labeled
information into the database which consisting of CNNs and GMMs.

4 State-Action Storage System

After end of action learning, pairs of useful state and action sequences by trial and
error learning are stored in the state-action storage unit, that is, in the database.
There are two kinds of memory; short term memory and long term memory. In this
paper, the short-term memory corresponds to the transient memory when an action
learning, while long-term memory does to the memory gotten at the end of action
learning, which is transferred to the state-action storage unit called database. CNNs
are adopted as the long-term memory. We describe CNN below shortly.

4.1 Chaotic Neural Network (CNN)

CNN is configured by interconnecting chaotic neuron models, represented by the
following formula [3].

(1)

(2)

(3)

(4)

Here,  are output value of  neuron at the time , internal state on the
refractory and internal state of the interaction, respectively.  is a constant parameter,

 is the connection weight from  neuron to  neuron,  is the time decay constant
for the refractory,  relates to the interaction time decay constant,  compound term of
external input and the threshold of the input,  means  component of  storage
pattern,  means the total number of storage patterns,  shows the total number of
neurons.
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4.2 Memorizing and Recall of an Environmental Data Using Mutual Associative
Type CNN

While our mutual associative CNN (MACNN) has same structure of auto-associative
CNN (AACNN) and MACNN operates same as AACNNs, it looks working as mutual
associative memory model. Figure 2 shows the structure of the MACNN, consisting of
three parts; input, hidden and output part. In the hidden part of neurons, random data
are stored in order to make correlations between input data and output data weaken.
When pairs of both environment and learned action corresponding to the environment
gotten by the action learning are memorized into MACNN, the perceptual patterns are
memorized into the input part of neurons and action patterns are memorized into the
output part of the neurons using Eq. (4). When making use of the MACNN, the current
environment perceptual pattern is set as the output (  in Sect. 4.1) of the input part of
neurons, fixing their values, let MACNN operate, after the MACNN converges, a corre‐
sponding action pattern is recalled on the output part of neurons. Please refer to chapter
11 in the reference [4] for detail explanation.

Input part of neurons
(state pattern )

Hidden part of neurons Output part of neurons
(action pattern )

Fig. 2. Structure of mutual associative type CNN (MACNN)

5 Identification of the Environment

When being stored the features of plural different environments into the database, envi‐
ronmental state patterns of first several random steps from the start position are gotten
many times for each environment, and statistical information for these patterns is
memorized by Gaussian mixture model (GMM). On the other side, when identifying
the facing environment, its GMM is gotten in the same manner. Comparing the GMM
in the database and the GMM for the facing environment, we judge whether the agent
has already experienced the facing environment or not. Details are described below.

5.1 Identification Method of the Environment

In this section, we describe the method to identify the environment. We propose the
identification method using GMM. GMM is represented by mean  and variance .
GMM is used as a distribution function for identification of the environment. GMM
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is built up using the amount of observation data  resulting from (T × X) times
actions where X means the number of trials, one trial is T step random actions from start
position. In 5.1.1, building up algorithm of GMM is explained.

5.1.1 Mean and Variance Configuration Algorithm
The algorithm for determining the mean and variance of constructing a GMM is shown
below.

Step 1: (Initialize) Using the first observation state data , mean and variance
of the first Gaussian distribution  are set as follows,

Here,  is number of Gaussian distribution  that makes up the MMG.
Step 2: Modify the mean and variance using the next data  as follows,

(1) when ,

(5)
(2) otherwise, generate next number of Gaussian distribution that makes up the GMM

as follows,

Step 3: Back to Step 2 if it is within the specified number of times, otherwise, GMM,
, obtained by using the mean-variance obtained by the algorithm is represented by

Eq. (6).

(6)

(7)

Here, : the number of data, : the number of data used during  Gaussian
distribution creation,  is the number of Gaussian distributions.

5.1.2 Identification Algorithm of the Environment
At first, the feature vector for each environment in the database to identify the environ‐
ment are defined as U-dimensional vector consisting of U-dimensional probability
values calculated using GMM (Eq. (6)) by observation resulting from T times random
actions from start position in the current environment. Here U is the number of different
kinds of the states within the T observation states. We identify the environment by the
degree of similarity between each of all the feature vectors in the database and the current
probability vector. The algorithm is as follows,
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Step 1: Using the observation state vector, calculate all the feature vectors corre‐
sponding to each environment presented by GMM in the database and the current prob‐
ability vector for the observation state vector.

Step 2: Calculate the degrees of similarity  between the feature vector  and the
current probability vector , here  is angle between the feature vector and the current
probability vector.

(8)

Here, , , . Here,  is the

number of the storage environments in the database, that is, they have already learned
and stored.

(i) When , the agent judges that the storage environment  is most similar to
the current environment, and pairs of stored state and action corresponding to the envi‐
ronment  is determined to be available, moves to action module. (  is the threshold of
the similarity of the environment.)

(ii) When , the agent judges that there is no storage environments to be avail‐
able and moves to action learning module.

6 Computer Simulation

In the maze problem, a performance comparison of the proposed method and conven‐
tional method [2] through the following two simulations is carried out. The proposed
method identifies the mazes using Gaussian mixture models, and also the conventional
method identifies using feedback SOMs. As data for construction of identification
systems and identification of unknown mazes for each maze, when first 5 actions (T = 5
in Sect. 5.1) from the start position is called one trial, we get the 150 perceptional patterns
through 30 trials (X = 30).

6.1 Preparation

Put the following assumptions at GMM construction of the environment.

(i) GMM is constructed by the data during several actions from the start position in
the maze.

(ii) The agent acts T steps randomly without use of the storage information.
(iii) The agent stays in the same position when colliding with the obstacle.
(iv) It is possible for the agent to take only one of next three actions: forward, left and

right without backward per a step.
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In this simulation, it is assumed that the agent is able to perceive an aisle or an
obstacle toward the five directions up to one square away around it as shown in Fig. 3.

Scope of perception of the agent

: Agent

Fig. 3. Scope of perception and action of the agent

6.2 Observation State Description

The feature extraction algorithm of the environment is as follows,
Step 1: Put the agent at the start position.
Step 2: Repeat Step 3 to Step 4 T (number of actions) times.
Step 3: Move one cell to random direction and get the observation information

according to the following equation,

(9)

Step 4: Get a feature value, a perceptual pattern information named “state”, for each
step according to the following equation,

(10)

Here,  represents one of the situations (= ) around the agent
(See Fig. 3).

6.3 Simulation 1

We consider multiple maze problems. The robot has perception-action capabilities as
shown in Fig. 3, assuming that the robot always faces the upward direction and is able
to move only one cell in an action. After end of action learning for each maze, pairs of
perceptual pattern and action along optimal path from the start to the goal are stored into
the database created by the CNNs group. In this simulation, after one of the stored mazes
is given to the robot, we investigate whether the maze is correctly identified or not. The
predefined number of mazes are generated by the following procedure.

(i) The size of a maze is randomly determined
(ii) A start and goal positions in the maze are randomly decided.
(iii) Walls in the maze are randomly placed
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Here, white cell is aisle, black cell is wall, S is a start position, G indicates a goal.
Among the mazes created by above procedure, mazes that can’t reach the goal, or have
shorter path less than T steps are excluded. As a result, the discrimination rates in the
conventional method and the proposed method obtained in the simulation are shown in
Table 1. It shows the average discrimination rate of 10 trials (the number of available
mazes per trial is 25). Table 1 says our method is better than the conventional one (Fig. 4).

Table 1. Results of simulation 1

The conventional method The proposed method

Discrimination rate 65.20 [percent] 71.40 [percent]

Fig. 4 Failure examples of identification using the conventional method

Fig. 5 Left: success example of identification, right: failure example of identification using the
proposed method

state

pr
ob

ab
il

it
y

Fig. 6. Gaussian mixture probability density functions generated by the left maze in Fig. 5 (two
times construction)
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Figures 6 and 7 show Gaussian mixture probability density functions generated by
left maze and right maze in Fig. 5, respectively. These are constructed by the proposed
method two times in the same manner. The former is success example and the latter is
failure example. The former case looks less difference between two probability density
functions than the latter one.

pr
ob
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il

it
y

state

Fig. 7. Gaussian mixture probability density functions generated by right maze in Fig. 5 (two
times construction)

6.4 Simulation 2

Figure 8 shows 4 mazes to be stored into the database after end of action learning. White
rhombus and black one mean a start position and goal position, respectively. Triangles
means the optimal path at the end of learning and these results are memorized in the
database. In this simulation, firstly, for 4 mazes shown in Fig. 8, optimal paths from the
start to the goal through Q learning are learned. Next, after end of learning both pairs of
perceptual patterns and their optimal actions and GMM for each maze constructed by
the proposed method are memorized into the database. Lastly, we try to solve a little
large-size maze shown in Fig. 9, while making use of these information of 4 mazes in
the database of the agent with much less of additional action learning. As comparing the
method with our proposed method, the method [2] as same as the proposed system
without use of the discrimination method of the environment, namely “feedback SOM”
is adopted. The left maze in Fig. 9 shows the failure results of the conventional method
because that the agent behaved along while using information about the incorrect maze
(b) instead of correct maze (a) in Fig. 8.

Fig. 8. The 4 optimal paths to be stored into the database after action learning
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Fig. 9. Simulation result (left: for the conventional method, right: for the proposed method),
making use of storage information about mazes in Fig. 8

Figure 9 shows Simulation result (left: for the conventional method, right: for the
proposed method) for a little large-scale maze, making use of storage information about
mazes in Fig. 8. In Fig. 9, the white 5 (=T) triangles mean the action series of the agent
when identifying the environment and black ones mean the action series by making use
of the stored information. At the start position, the proposed method correctly identified
the facing environment as maze (a) and it succeeds to get the goal. However, the
conventional method failed to identify the facing the maze as maze (b) in shown Fig. 8.

state
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b
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ty

Fig. 10. Gaussian mixture probability density function obtained using maze (a) and (b) in Fig. 8
(maze (a): solid line, maze (b): broken line)

Figure 10 shows two Gaussian mixture probability density functions for maze (a)
and (b) in Fig. 8. It says that they are very similar. Table 2 shows similarities between
the maze (a) and (b) in Fig. 8 and the maze of Fig. 9 for the first T steps from the start
position of the maze, respectively. The table shows the maze (a) is more similar than
maze (b) for the maze (9) at the start point.

Table 2. Similarities between maze (a), (b) in Fig. 8 and the first T step action from the start
position of maze of Fig. 9.

maze (a) maze (b)

0.988 0.856
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7 Conclusion

We proposed the construction method of a kind of the intelligent agent that has functions
of action learning, memorizing, recall and identifying the environment using Gaussian
mixture model. The robot with these functions could go to the goal efficiently, making
use of the information of their experienced environment before.
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Abstract. Naive Bayes (NB) has been popularly applied in many
classification tasks. However, in real-world applications, the pronounced
advantage of NB is often challenged by insufficient training samples.
Specifically, the high variance may occur with respect to the limited
number of training samples. The estimated class distribution of a NB
classier is inaccurate if the number of training instances is small. To han-
dle this issue, in this paper, we proposed a SEIR (Susceptible, Exposed,
Infectious and Recovered) immune-strategy-based instance weighting
algorithm for naive Bayes classification, namely SWNB. The immune
instance weighting allows the SWNB algorithm adjust itself to the
data without explicit specification of functional or distributional forms
of the underlying model. Experiments and comparisons on 20 bench-
mark datasets demonstrated that the proposed SWNB algorithm out-
performed existing state-of-the-art instance weighted NB algorithm and
other related computational intelligence methods.

Keywords: Naive bayes · Classification · Immune strategy · SEIR

1 Introduction

As a special case of a Bayesian network, Naive Bayes (NB) [3] has been popularly
applied in many real-world learning tasks, such as text classification [7,17], web
mining [19] and other computational approach [10]. Specifically, the high variance
may occur with respect to the limited number of training samples [6,14], where
the estimated class distribution of a NB classifier is inaccurate if the number of
training instances is small.

To address this research problem, instance weighted naive Bayes (IWNB),
as an effective solution, assign different weight values to instances for prob-
ability value estimation can improved the performance of NB. For example,
an instance-cloned naive Bayes, which produces an expanded training set by
cloning some training instances based on their similarities to the test instance
c© Springer International Publishing Switzerland 2015
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is proposed in [5]. Moreover, Jiang [4] proposed to use instance weighting to
improve the performance of Averaged One-Dependence Estimators [12], which
is another Bayesian model. For this type of weighting method, each training
instance is eagerly weighted according to the similarity with the “model” of
training dataset. These instance weight setting methods have achieved good per-
formance to solve domain specific problems [15]. However, for all these methods,
the instance weights are determined without taking the NB objective function
into consideration and the underlying sample distributions should be known in
advance for the former approaches.

In this paper we propose a SEIR Immune based algorithm, which automati-
cally calculates the optimal instance weight values for IWNB, by directly working
on IWNB’s objective function based on SEIR immune strategy. Specifically, our
method uses SEIR procedures to design an automated search strategy to find
optimal instance weight for each dataset. The SEIR immune strategy, including
initialization, clone, mutation and selection, ensures that our method can adjust
itself to the data without any explicit specification of functional or distributional
form for the underlying model.

In contrast to the conventional statistical probabilistic evaluation in NB,
the SWNB algorithm is a self-learning algorithm by utilizing the immunological
properties, such as memory property and clonal selection. The advantages of
SWNB can be understood from the following three aspects: SWNB is a data-
driven self-adaptive method because it does not requires explicit specification of
functional or distributional form for the underlying model. The SWNB algorithm
is a nonlinear model and is flexible in modeling complex real world relationships.
It inherits the memory property of human immune mechanism and can recognize
the same or similar antigen quickly at different times.

The rest of the paper is organized as follows. In Sect. 2, we present a new
SEIR immune strategy and our SWNB algorithm. In Sect. 3, we describe the
experimental conditions, process, and results in details. Section 4 concludes the
paper and outlines several directions for future study.

2 SEIR Immune Strategy Based Instance Weighted
Bayes

2.1 Instance Weighted Naive Bayes

Given a training set D = {xi} with N instances, each instance con-
tains n attribute values and corresponds a class label. We use xi =
{xi1, · · · , xij , · · · , xin, yi} to stand for the ith instance, with xij denoting the jth
attribute value and yi denoting the class label of the instance. Meanwhile, the
class space Y = {c1, · · · , ck, · · · , cL} denotes the set of labels that each instance
belongs to and ck denotes the kth label of the class space. We use a = {aj} to
include all the attributes of all instances, with aj representing the jth attribute.
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Fig. 1. The SEIR immune procedure for IWNB

For a training instance xi ∈ D with its class label satisfies yi ∈ Y, the training
method is based on the IWNB model, which is formally defined as

c(xi) = arg max
ck∈Y

Pw(ck)
n∏

j=1

Pw(xij |ck). (1)

In Eq. (1), Pw(ck) denotes the probability of class ck with a certain weights
set w = {wi, i ∈ [1, · · · , N ]}. Pw(xtj |ck) denotes the joint distribution of xi

conditioned by the given class ck based on w.
In this paper, we focus on the calculation of the priori probability Pw(ck) and

the conditional probability Pw(xij |ck) by using optimal instance weight value
w. The Laplace-estimate instance weighted strategy is introduced and shown in
Eq. (2).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pw(ck) =
nk + 1
Nk + L

, Pw(xij |ck) =
nij
k + 1

nk + |aj | ,

nk =
∑

xi∈D,yi=ck

wi, Nk =
∑

xi∈D
wi, nij

k =
∑

xi∈D,yj=ck,xpq∈xp∈D,xpq=xij

wp

,

(2)
where |aj | is the number of distinct values of attribute aj , and L is the number
of classes.

2.2 SEIR Immune Strategy for Instance Weighting

The classic model for microparasite dynamics is the flow of hosts between Sus-
ceptible (S), Exposed (E), Infectious (I) and Recovered (R) compartments [20].
However, the SEIR immune strategy could not directly applied for the IWNB
classification problem. In this paper, we introduce SEIR model to describe the
immune strategy proposed for instance weight (i.e., antibody) optimization. By
rating the performance of instance weights, the low scorekeepers are defined in
Infectious state I, which are planned to be cloned with a set clone factor c and
then move to Recovered state R. Through mutation, weights are driven into
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Susceptible state S, with a α probability to move into Exposed state E, where
is in an extremely unstable state causing movements to state I in probability β,
and otherwise kept in state S.

Assume in generation t, in the proposed SWNB, the number of weight groups
in S, E, I and R are defined as |(Ws)t|, |(We)t|, |(Wi)t| and |(Wr)t|, we have
the SEIR immune procedure in Fig. 1 and corresponding formulations shown in
Eq. (3).

⎧
⎪⎨

⎪⎩

|Wt| = |(Ws)t| + |(Wi)t| + 1, |(Wr)t| = 1 + c[|(Ws)t| + |(Wi)t|],
|(We)t| = α|(Ws)t|, |(Wi)t| = αβ|(Ws)t| = c[|(Ws)t| + |(Wi)t|],
|(Ws(j))t| = α(1 − β)|(Ws)t|, |Wt| = |(Ws(j))t| + |(Wi)t| + 1

(3)

where |Wt| is the total amount of weight groups in the tth immune generation.
From Eq. (3), we have α = 1

1−c , β = c.

2.3 SWNB Classifier

In this section, we first introduce some important notations and definitions, then
propose our solutions.

Definition 1 (Calculation of Affinity Function). The affinity of the jth
individual in the tth generation wt

j is the classification accuracy that is obtained
by SWNB using the wt

j to carry out the probability estimation. The calculation
of affinity function is defined as

f(wt
j) =

1
NS

∑NS

i=1
s(ct(xi), yi), (4)

where ct(xi) is the classification result of each ith instance in the tth training
generation using the SWNB classifier based on each individual wt

j , i ∈ [1, · · · , N ].
s(ct(xi), yi) defines the similarity between ct(xi) and yi, where s(ct(xi), yi) is 1
if ct(xi) = yi and 0 otherwise.

Definition 2 (Antibody Clone). We select wt
r as the antibody of the tth

generation with the best affinity performance of f(wt
j) sorting from Wt. After

that, we use the antibody to replace the weight groups (Wi)t with low affinity
according to the same rate of a set clone factor c. As a result, wt

i ∈ (Wi)t are
cloned by wt

r and move to (Wr)t.

Definition 3 (Antibody Mutation). The mutate operation is used to treat
all individuals in the tth population Wt and for training preparation on Wt+1 in
the t+1th generation. For any individual wt

j , the new variation vt+1
j is generated

as
vt+1
j = wt

j + [1 − f(wt
j)] ∗ N(0, 1) ∗ (wt

r − wt
j), (5)

where N(0, 1) is a normally distributed random variable within the range of
[0, 1], and

wt+1
j = vt+1

j , f(vt+1
j ) > f(wt

j); or wt
j , f(vt+1

j ) ≤ f(wt
j). (6)
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Algorithm 1. SWNB Classifier
Input:

Training dataset D; Clone Factor c; Threshold ε; Maximum Evolution Generation
MaxGen.

Output:
The target class label c(xt) of a test instance xt.

1: W0 ← Initial population, which is a set of random number distributed between
(0, 1].

2: while t ≤ MaxGen and f(wt+1
c ) − f(wt

c) ≤ ε do
3: f(wt

j) ← Apply Eq. (4) to calculate affinity of wt
j for the tth generation.

4: wt
r ← The selected antibody with highest f(wt

j).
5: Wt ← The population of the tth generation.
6: (Wi)t ← The individual sets with low f(wt

j) selected as I(t) on clone factor c
within Wt but excluding wt

r.
7: (Wr)t ← The R(t) individuals consist of the antibody and the cloned (Wi)t by

wt
r.

8: for all each wt
j in Wt do

9: vt+1
j ← Apply Eq. (5) to do mutation on each wt

j .

10: wt+1
j ← Apply Eq. (6) to obtain the new weights in the t + 1th generation.

11: end for
12: (Ws)t+1 ← The S(t + 1) individuals.
13: (We)t+1 ← The E(t+1) individuals contribute to (Wi)t+1 on β and (Ws(j))t+1

on 1 − β.
14: Wt+1 ← (Ws)t+1 ∪ (We)t+1 ∪ (Wi)t+1 ∪ (Wr)t+1.
15: end while
16: c(xt) ← Apply wt to instance xt to predict the underlying class label via

Eqs. (1) and (2).

3 Experiments

3.1 Experimental Conditions and Baselines

We validate the performance of the proposed method on 20 benchmark datasets
from UCI data repository [2]. Because naive Bayes based classifiers are designed
for categorical attributes, in our experiments, we first replace all missing
attribute values using unsupervised attribute filter ReplaceMissingValues in
WEKA [13]. Then, we apply unsupervised filter Discretize in WEKA to dis-
cretize numeric attributes into nominal attributes. In our experiments, the algo-
rithms are evaluated in terms of classification accuracy via 10 runs of 10-fold
cross validation. Besides, the three parameters maximum iteration MaxGen,
threshold ε, and the clone factor c in Algorithm 1 are set to 50, 0.001 and 0.1
respectively. Moreover, all experiments are conducted on a Linux cluster node
with an Intel(R) Xeon(R) @3.33 GHZ CPU and 3 GB fixed memory size.

For comparison purposes, we use the following baseline algorithms in our
experiments.

(1) NB: The standard naive Bayes classifier with conditional attribute indepen-
dence assumption [3].



288 S. Xue et al.

Table 1. Experimental results for SWNB vs. baselines: classification accuracy %

Dataset SWNB IWNB [4] NB [3] SBC [9] C4.4 [11] KNN [1]

Anneal 97.04 95.93 93.70 91.48 80.37 92.96

Anneal.ORIG 91.11 88.52 90.37 84.07 88.89 84.07

Balance-scale 92.91 89.84 89.84 89.84 64.17 83.42

Breast-cancer 81.76 71.76 70.59 70.59 69.41 75.29

Colic.ORIG 84.09 74.55 79.09 71.82 73.64 70.00

Credit-a 88.54 84.54 84.54 85.02 85.02 84.54

Credit-g 78.67 74.67 74.33 72.00 70.00 72.00

Diabetes 85.65 76.09 77.39 76.96 71.30 70.87

Heart-c 92.42 86.81 86.81 85.71 80.22 82.42

Heart-h 93.76 91.01 86.52 85.39 78.65 85.39

Heart-statlog 83.95 83.95 83.95 82.72 71.60 81.48

Hepatitis 91.11 85.11 89.36 78.72 80.85 82.98

Ionosphere 88.67 86.67 88.57 84.76 83.81 88.57

kr-vs-kp 98.67 81.67 81.67 94.00 93.00 88.00

Labor 94.12 88.24 87.34 88.24 88.24 82.35

Letter 69.56 61.00 57.67 60.67 50.00 45.67

Lymph 88.64 84.09 84.09 81.82 79.55 79.55

Segment 89.74 87.42 84.11 85.43 83.44 80.46

Soybean 93.20 92.68 91.71 88.78 89.76 87.80

Waveform 85.67 79.67 80.33 80.33 65.33 72.00

(2) IWNB: Instance weighted naive Bayes with the weighting method based on
the instance similarity [4].

(3) SBC: A bagged decision-tree based attribute selection filter for naive
Bayes [9].

(4) C4.4: A specially designed tree to improve C4.5 performance [11] on classi-
fication ranking.

(5) KNN : The k-Nearest Neighbors algorithm [1] with k value been set to 10.

3.2 UCI Standard Classification Task

The initial important task is to analyze the performance between the IWNB with
the related instance weighting strategy in literature and NB, in terms of classi-
fication accuracy, which is calculated by the percentage of successful predictions
on domain specific problems [16,18]. Besides, some other types of algorithms
that have been well used in real-world applications have also been used for com-
parison. Specifically, we compare the effect of IWNB [4] with the standard NB
[3], SBC [9], C4.4 [11], and KNN [1]. The purpose of the second experiment is
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Table 2. Winning or losing statistical analysis on 20 UCI datasets

KNN [1] C4.4 [11] SBC [9] NB [3] IWNB [4]

C4.4 [11] 9/1/10

SBC [9] 13/3/4 14/2/4

NB [3] 16/2/2 17/0/3 12/3/5

IWNB [4] 16/1/3 16/1/3 14/2/4 8/6/6

SWNB 20/0/0 20/0/0 20/0/0 19/1/0 19/1/0

All analyses are under two-tailed t-test with a 95 % confidence
level.

to compare the proposed self-adaptive instance weighted Naive Bayes, namely
SWNB, with each other types of baseline approaches in literature.

Instance Weighted NB Vs. Standard NB. Table 1 reports the detailed
results of SWNB and other baseline algorithms, respectively. Besides, Table 2
illustrates the compared results about the winning-or-losing statistical analysis
(i.e., two-tailed t-test with a 95 % confidence level) on those benchmark datasets.
Based on the statistical theory, the difference is statistically significant only if
the probability of significant difference is at least 95 percent, i.e., the p-value for
a t-test between two algorithms is less than 0.05. In Table 2, each entry w/t/l
means that the algorithm in the corresponding row wins in w datasets, ties
in t datasets and loses in l datasets on the 20 UCI datasets, compared to the
algorithm in the corresponding column. Overall, the results can be summarized
as follows:

(1) Instance weighting IWNB outperforms NB (8 wins and 6 losses). In partic-
ular, for the dataset “letter” with 20000 instances and 26 classes, the classi-
fication accuracy for IWNB (61.00 %) is higher than NB (57.67 %). Because
the 26 classes make the classification task particularly difficult, the 3.33 %
superiority on 20000 samples become significant.

(2) Instance weighting IWNB greatly outperforms SBC with (14 wins and 4
losses) on the 20 UCI benchmark datasets.

(3) Instance weighting IWNB significantly outperforms decision tree C4.4 and
lazy learning approach KNN both with (16 wins and 3 losses).

SWNB Vs. Baselines. Our experimental results from Tables 1 and 2 indi-
cate that SWNB has very significant gain compared to the state-of-art instance
weighting strategy and other types of methods. In summary, our experimental
results can be listed as:

(1) SWNB significantly outperforms existing instance weighted IWNB and
unweighted NB both with (19 wins and 0 losses). For the dataset “let-
ter” with 26 classes, the SWNB can achieve a high classification accuracy
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Fig. 2. Convergence learning curves by error rate of SWNB for 9 datasets

(69.56 %), which is 8.56 % and 11.89 % higher than IWNB and NB, respec-
tively.

(2) SWNB greatly outperforms selected naive Bayes SBC with (20 wins and 0
losses) on the 20 UCI benchmark datasets.

(3) SWNB also significantly outperforms decision tree C4.4 and lazy learning
approach KNN both with (20 wins and 0 losses).

3.3 Convergence and Learning Curves

In order to investigate the convergence of the SWNB algorithm, we report the
relationship between the number of iterations and error rate on the 9 datasets,
and the results are shown in Fig. 2. Each point in the curves corresponds to
the accuracy under the underlying iteration with the current optimal instance
weight values. Figure 2 shows that SWNB converges quickly. Although the curves
are not quite smooth, they converge well, which accords with the immunization
strategy in SWNB.
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For additional insight into our experiment, we observe the “kr-vs-kp” for
example. It is a high-dimensional dataset (37 attributes) with 3196 instances.
In addition, strong attribute dependencies have been found in this dataset by
Kohavi [8]. Our results show that SWNB achieves 98.67 % classification accuracy,
which is significantly higher accuracy than instance weighted and unweighted NB
on the same dataset (81.67 %). The accuracy of the final convergence is also much
better than selected naive Bayes SBC (94.00 %), decision tree C4.4 (93.00 %),
and lazy learning KNN (88.00 %). Similar levels of improvement can also be
observed from other datasets.

4 Conclusion and Future Work

In this paper, we proposed a novel algorithm to train weighted instances for naive
Bayes classification, namely SWNB, by extending the classical SEIR immune
strategy. The SWNB algorithm calculates the probability values by using the
adaptively instance weighting approach. Considering real-world applicabilities,
experiments and comparisons taken on the 20 benchmark UCI datasets, with
respect to the classification accuracy performance, show that SWNB outperforms
existing NB instance weighting models and other related algorithms, such as
classification ranking tree, k-Nearest Neighbors, etc.

The proposed immune strategy based instance weighting for naive Bayes can
also be extended to Bayesian networks and applied to other dynamic social net-
works. Our further study will focus on dynamic Bayesian network applications.
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Abstract. Cooperative coevolution is a promising method for train-
ing neural networks which is also known as cooperative neuro-evolution.
Cooperative neuro-evolution has been used for pattern classification,
time series prediction and global optimisation problems. In the past,
competitive island based cooperative coevolution has been proposed
that employed different instances of problem decomposition methods for
competition. Neuro-evolution has limitations in terms of training time
although they are known as global search methods. Backpropagation
algorithm employs gradient descent which helps in faster convergence
which is needed for neuro-evolution. Backpropagation suffers from pre-
mature convergence and its combination with neuro-evolution can help
eliminate the weakness of both the approaches. In this paper, we pro-
pose a competitive island cooperative neuro-evolutionary method that
takes advantage of the strengths of gradient descent and neuro-evolution.
We use feedforward neural networks on benchmark pattern classification
problems to evaluate the performance of the proposed algorithm. The
results show improved performance when compared to related methods.

1 Introduction

Cooperative coevolution (CC) decomposes a problem into subcomponents that
are implemented as sub-populations which cooperatively evolves while mat-
ing is restricted within sub-populations [1]. The process of breaking a problem
down into subcomponents is called problem decomposition. In the case of neuro-
evolution, efficient problem decomposition depends on the network architecture
and nature of the application problem in terms of separability [2]. Cooperative
coevolution has been mostly used for large scale optimisation [3] and evolution
of feedforward and recurrent neural networks in pattern classification and time
series prediction [4–7]. The use of cooperative coevolution for neuro-evolution is
referred to as cooperative neuro-evolution.

In cooperative neuro-evolution, much attention has been given to problem
decomposition, i.e. how to break the neural network into sub-problems through
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 293–301, 2015.
DOI: 10.1007/978-3-319-26532-2 32
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the interconnected weights that contain inter-dependencies [2]. The major prob-
lem decomposition methods involve those that fully or partially decompose the
network, i.e. in full decomposition, the neural network is decomposed into the
lowest level where a single subcomponent represents a weight connection, this
is also called synapse level decomposition [8]. In partial decomposition, the net-
work is decomposed with reference to weight connections linked to each hidden
and output neurons that is also called neuron level decomposition [2,9]. The
performance of a decomposition method varies on different types of problems,
for instance, synapse level decomposition showed very good results in pole bal-
ancing [8] but have been unsuccessful in pattern classification [9]. Both synapse
and neuron level decomposition have shown competitive performance for time
series problems [5]. There has been much focus on adaptation of the problem
decomposition method during the learning process in order to take advantage
global - local search and inter-dependencies [10–12]. In competitive island-based
cooperative neuro-evolution (CICN), two or more problem decomposition meth-
ods are implemented as islands that compete and collaborate at different phases
of evolution [4]. The competitive feature gives subcomponents the ability to com-
pete for resources. There is altruism feature in the algorithm where the winner
island shares its solution with the losing islands so that they can catch up in
the next phase of evolution. The competitive and collaborative features enables
strong solutions to be retained and has been very promising for training neural
networks for time series and pattern classification problems [13,14]

Neuro-evolution has limitations in terms of training time although they are
known as global search methods. Backpropagation algorithm employs gradient
descent which helps in faster convergence. Backpropagation suffers from prema-
ture convergence and its combination with neuro-evolution can help eliminate
the weaknesses of both the approaches. In this paper, we propose a competi-
tive island cooperative neuro-evolutionary method that takes advantage of the
strengths of gradient descent and neuro-evolution. Integrating backpropagation
in competitive island cooperative coevolution can help in achieving faster conver-
gence to a near global optimum solution. We implement backpropogation as an
island in competitive island-based cooperative neuro-evolution (CICN) and use
it for training feedforward networks for selected pattern classification problems.

The remaining sections of the paper are structured as follows. Section 2 pro-
vides the details of the proposed method that features backpropagation in CICN.
Section 3 presents the results with discussion and Sect. 4 concludes the paper
with discussion on future work.

2 Proposed Method

2.1 Backpropagation in CICN

In Competitive Island Cooperative Neuro-evolution (CICN), two or more decom-
position methods are implemented as islands that compete and provide altruism
where the winning islands share solutions with the losing islands over a period
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Fig. 1. The three algorithms employed in this study. These are standalone Backprop-
agation, CC-NL and the 2-Island BCICN algorithm.

until termination. In an environment with multiple species, the competitive fea-
ture relates to the ability of the species to outperform each other for possession
of resources [15]. In the proposed method, two standalone methods are used that
include backpropogation and cooperative neuro-evolution that employs neuron
level problem decomposition as shown in Fig. 1. The details of each island are
given below.

1. Backpropagation Algorithm (BP): Standard backpropagation algorithm
where the entire network is used ‘as-is’ without decomposition.

2. Cooperative Coevolution with Neuron Level Problem Decompo-
sition (CC-NL): The number of neurons in the hidden and output layer
determine the number of subcomponents [2,5].

The proposed backpropagation competitive island cooperative neuro-
evolution (BCICN) method is given in Algorithm 2. In Stage 1, the sub-
populations are randomly initialised and cooperatively evaluated using neuron
level problem decomposition. After evaluation, the current best individual in the
cooperative neuro-evolution island is copied to the Backpropagation Island. This
is to ensure that both islands start from the same set of initial solution(s). In
Stage 2, the islands are evolved per the island evolution time and in Stage 3 the
best solutions from both islands are compared and the winner is selected to be
transferred to the losing island in Stage 4 of the algorithm and then the process
is repeated for the next phase of evolution. As presented in previous work [4],
the respective islands need to be given the same number of function evaluations
for each phase in evolution and this is due to the requirement that each island
be evaluated for complete cycles.

2.2 Backpropagation Island

The conventional backpropagation procedure consists of forward pass where
information is propagated forward through neurons using their activation func-
tion that computes weighted sum of incoming weight-connections to the respec-
tive neurons. Once the information is propagated from input, hidden to output
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later, the network error is computed and used to calculate gradients for each
weight connected that are then updated. The process is repeated until the over-
all error reaches a desired level or when maximum training time in terms of
epochs has been reached [16].

Algorithm 1. Backpropagation Algorithm (BP)
Initialisation:
foreach Epoch until Max-Epoch do

foreach Training-Sample until Total-Training-Samples do
Forward propagation through network
Backward propagation through network

Increment Epoch

If the backpropagation island wins a phase of competition, it transfers the
solution to the island that features cooperative neuro-evolution taking into
account that the solution needs to be decomposed as defined by neuron problem
decomposition in order to maintain solution validity as shown in Fig. 2. In the
case where the Backpropagation Island loses the competition, the solution from
the winner island will be concatenated by combining the best solutions from
all its respective sub-populations. This individual is then refined using backpro-
pogation and then the competition continues.

3 Experiments and Results

In this section, we apply the proposed BCICN to pattern classification problems.
In our previous work, we applied competitive neuro-evolution to pattern classi-
fication and time series prediction [4]. We use the same classification problems
from the UCI Machine Learning Repository [17]. The problems are Cleveland
Heart Disease, Wisconsin Breast Cancer, Iris and the 4-Bit parity problem. They
have been used in other studies to evaluate performances of new methods [2,14].
The details of problems tested are provided in Table 1.

Table 1. Data set information and neural network configuration

Problem Input Output Min. train (%) Max. time Samples

Wisconsin breast cancer 9 1 95 15000 699

4-Bit 4 1 1E-3 30000 16

Wine 13 3 95 15000 178

Iris 4 3 95 15000 150

Cleveland heart disease 13 1 88 50000 303
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Algorithm 2. BCICN for Pattern classification
Stage 1: Initialisation:
i. Generate and cooperatively evaluate NL Island
ii. Copy Best Individual from NL Island to BP Island
Stage 2: Evolution:
while FE ≤ Global-Evolution-Time do

while FE ≤ Island-Evolution-Time do
foreach Sub-population at NL Island do

foreach Depth of n Generations do
Create new individuals using genetic operators.
Cooperative evaluation.

while FE ≤ Island-Evolution-Time do
Execute BP (Algorithm 1) .

Stage 3: Competition: Compare NL Island fitness with BP Island fitness.
Stage 4: Collaboration: Inject the best individual from the island with
better fitness into the other island.
if NL Island fitness ≤ BP Island fitness then

Copy NL Island best individual into the BP Island.

else
Copy BP Island Individual to NL Island

The termination condition for an unsuccessful run is provided in Table 1 as
maximum time (Max. Time). Each problem is set to have 50 independent runs
where the evaluation time, generalisation performance and success rate is given.
We evaluate the performance on different number of hidden neurons (H) in order
to test robustness and scalability of BCICN. For all the 3 methods employed,
the maximum time or island evolution time remained the same regardless of the
number of islands used (in this case, we used 2 islands).

3.1 Results and Discussion

The results of the experiment are presented in Tables 2–3. A comparison is made
between standalone cooperative coevolution with neuron level decomposition
(CC-NL) and the BCICN.

The results show that the method that performed best in terms of conver-
gence time for the Iris, Cancer, Wine and Heart problems was the standard back-
propogation algorithm while the worst performance was that of CC-NL. BCICN
obtained faster convergence and outperformed CC-NL as shown in Fig. 3 where
results for 10 hidden neurons are compared. The success rate of BCICN improved
in some problems but was the same when the standalone methods had an aver-
age success rate of 100 %. BCICN performed best in the 4-Bit problem where

Keys for Tables 2 and3

x̄ev = Mean Fitness Evaluations, x̄er = Mean Generalisation Performance, (H) = No. Hidden

Neurons, and (sr) = Success Rate
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Table 2. Performance for the Iris, Cancer and Heart classification problems

Iris Cancer Heart

Method H x̄ev x̄er sr H x̄ev x̄er sr H x̄ev x̄er sr

BP 4 687 87.50 100 4 246 97.99 100 6 4034 81.29 96

6 684 87.50 100 6 165 98.16 100 8 3390 81.17 100

8 680 87.50 100 8 145 98.38 100 10 1440 81.28 50

10 692 87.50 100 10 129 98.39 100 12 1569 81.53 100

12 700 87.50 100 12 124 98.42 100 14 1451 81.33 100

CC-NL 4 4356 95.50 100 4 5562 96.98 94 6 19097 79.50 90

6 5184 94.88 100 6 4519 97.70 100 8 15719 79.88 100

8 5430 96.75 100 8 5227 97.96 100 10 35760 80.00 50

10 5860 96.00 100 10 5174 98.08 100 12 24445 80.55 100

12 6636 96.20 100 12 5475 98.31 98 14 21051 79.11 100

BCICN 4 2204 95.50 100 4 2034 96.71 94 6 8990 80.94 100

6 3618 95.00 100 6 1454 97.33 100 8 12580 79.55 100

8 4117 94.00 100 8 1485 97.34 100 10 9675 79.95 100

10 3632 94.75 100 10 1140 97.45 100 12 7321 81.53 100

12 4369 95.25 100 12 1248 97.62 100 14 6340 81.02 100

once again the worst performance was that of CC-NL. This is the only prob-
lem BCICN method outperformed backpropogation. The success rate of BCICN
improved over backpropogation in all cases given by number of hidden neurons
(H). The focus of this study was to reduce the convergence time of CC-NL and

Fig. 2. Concatenation of the best individuals from the neuron level island and injec-
tion into the backpropagation island. Note the fitness of the concatenated individual
is acquired from the fitness of the last best individual from the neural level island.
When transferring, backpropagation’s solution is decomposed as defined by neuron
level problem decomposition.
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Table 3. Performance for the Wine and 4-Bit classification problems

Wine 4-Bit

Method H x̄ev x̄er sr H x̄ev x̄er sr

BP 4 262 98.12 100 4 30010 - 0

6 279 98.50 100 6 13995 100.00 70

8 282 98.75 100 8 9442 100.00 95

10 300 99.62 100 10 5228 100.00 95

12 323 99.75 100 12 4795 100.00 95

CC-NL 4 6573 94.73 95 4 11151 100.00 100

6 7371 92.75 100 6 6001 100.00 100

8 7293 94.25 100 8 5772 100.00 100

10 8268 94.00 100 10 7012 100.00 100

12 8730 94.12 100 12 6318 100.00 100

BCICN 4 1959 95.25 100 4 9324 100.00 100

6 1994 94.87 100 6 4944 100.00 100

8 1728 95.50 100 8 3298 100.00 100

10 921 95.12 100 10 3067 100.00 100

12 1023 94.37 100 12 3967 100.00 100

this was achieved in all the problems tested. The performance measure was in
terms of minimising the function evaluations and improving the success rates.

This improved performance is due to the collaborative feature employed here
where the two islands shared best solutions throughout the island evolutionary
phases. In the backpropagation island, gradient information is used for weight
update whereas in the cooperative neuron-evolution island, genetic operators are
used. Gradient information features local search and ensures faster convergence
when compared to neuro-evolution that features global search which is slower
in convergence. Backpropagation island does not require network decomposition
and hence does not face the problems of grouping interacting variables. BCICN
provides the balance between global and local search and also features network
decomposition. It approaches the problem as partially separable through neuron
level problem decomposition and non-separable through backpropagation.

In terms of scalability, we look at the mean evaluations at each total number
of hidden neurons used. It is observed that increasing the number of hidden
neurons in the Cancer, 4-Bit and Heart problems decreased the mean evaluations
needed. On the other hand, mean evaluation performance improved when more
hidden neurons were used in the Wine and Iris problems. The BCICN method
showed good scalability in the Wine and Iris problems, but poor scalability in
Cancer, 4-Bit and Heart problems. It can be generalised that that scalability
features depend greatly on the problem nature, which is in terms of the size of
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the problem, noise, number of attributes and level of inter-dependencies amongst
them.
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Fig. 3. Visualisation of the performance of BCICN with the standalone methods for
10 hidden neurons taken from Tables 2 and 3.

4 Conclusions and Future Work

This paper proposed an algorithm that incorporates backpropagation in com-
petitive island cooperative neuro-evolution for pattern classification. The results
show that the proposed method outperformed the standalone methods through
faster convergence. The backpropagation algorithm provided neuro-evolution
gradient information that led to faster convergence. This can be very beneficial
in the use of neuro-evolution for big data related problems that require faster
learning. Evolutionary computation methods have limitations in the field of big
data due to time required for convergence. The proposed method can motivate
the development of other hybrid algorithms that speed up evolutionary learning
methods for big data problems.

In future work, the proposed method can be used for training recurrent neural
networks for time series prediction problems such as renewable energy load fore-
casting. It can also be used in selected big data problems.
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Abstract. Email personalization is the process of customizing the content and
structure of email according to member’s specific and individual needs taking
advantage of member’s navigational behavior. Personalization is a refined version
of customization, where marketing is done automated on behalf of customer’s
user’s profiles, rather than customer requests on his own behalf. There is very thin
line between customization and personalization which is achieved by leveraging
customer level information using analytical tools. E-commerce is growing fast,
and with this growth companies are willing to spend more on improving the online
experience.

Thus, in this study, we propose a new architectural design of email person‐
alization and user profiling using gradient boost trees and optimized pruned
extreme learning machines as base estimators. We also conducted an in-depth
data analysis to find each member’s behavior and important attributes which plays
a significant role in increasing click rates in personalized emails. From the exper‐
imental validation, we concluded that our prosed method works much better in
predicting customer’s behavior on deals send in personalized emails compared
to other methods in past literature.

Keywords: Email personalization · Gradient boosting · Optimized pruning
extreme learning machines

1 Introduction

Personalization is the idea of interactive marketing with respect to the customization of
some or all elements of the marketing strategy to an individual level. Personalization is
a refined version of customization, where marketing is done automated on behalf of
customer’s user’s profiles, rather than customer requests on his own behalf. There is
very thin line between customization and personalization which is achieved by lever‐
aging customer level information using analytical tools [1, 2].

Personalization is a key component for adapting a standardized product or service
to an individual customer’s needs. Application of personalization fits nicely into notions
of Internet to provide a rich environment for well suited interaction and segmentation.
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The exponential growth of World Wide Web enables new methods of development and
design of online information services. Most web development is large and complicated
and users receive ambiguous results during web navigation. But on the other hand,
rapidly evolving and need of e-commerce marketplaces in World Wide Web anticipate
the need of customers to distinct level. Therefore, the requirement for predicting user
needs in order to improve the usability and user retention of a Web site can be addressed
by personalizing it [6]. Web personalization is defined as any action that adapts the
information or services provided by a Web site to the needs of a particular user or a set
of users, taking advantage of the knowledge gained from the users’ navigational
behavior and individual interests, in combination with the content and the structure of
the Web site. The objective of a Web personalization system is to “provide users with
the information they want or need, without expecting from them to ask for it explic‐
itly” [7].

2 Email Personalization

Email personalization strongly relies on of statistical and data mining methods to the
Web log data, resulting in a set of useful patterns that indicate users’ navigational
behavior. In past, the data mining methods that are employed are: association rule
mining, sequential pattern discovery, clustering, and classification [7]. This knowledge
is then used from the system in order to personalize the site according to each user’s
behavior and profile.

2.1 Gradient Boost Trees

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) [12] is a gener‐
alization of boosting to arbitrary differentiable loss functions. GBRT is an accurate and
effective off-the-shelf procedure that can be used for both regression and classification
problems. Gradient Tree Boosting models are used in a variety of areas including Web
search ranking and ecology. GBM trains many models turn by turn and each new model
gradually minimizes the loss function of the whole system using Gradient Descent
method. Assuming each individual model i is a function  (which we call “base
function” or “base learner”) where X is the input and pi is the model parameter. Now
let’s choose a loss function  where y is the training output, y′ is the output from
the model. In GBM, , where M is the number of base learners. This
can be more defined as

(1)

In further section, we discuss about proposed optimized extreme learning machines
based on RANSAC regularization as base estimator in gradient boosting trees.

The whole classification model is implemented on customer database provided by
OURDEAL database to design user profiles and email personalization for their
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marketing strategy. The model spit up the customer plan each morning at 8.00 am
morning with personalized customer plan for each customers and the personalized deals
can be send to each customers with respect to their web usage behavior on website and
clicks and open rate of emails. Due to sparse database available for new and non-
engaging users, model works perfectly in terms of defining the personalized emails. The
whole strategy is briefly defined in research methodology section.

2.2 Optimized Extreme Learning Machines as Base Estimators for Gradient
Boosting Trees

To resolve these limitations of ELM, constructive and heuristic approaches have
proposed in the literature. In most recent years, regularization or penalty approach seems
to be significant in resolving the ELM limitations. As in extreme machine learning, there
is linear behavior between hidden layer and output layer, thus as a problem of linear
regression, regularization helps to reduce the number of predictors in hidden layer by
using sparse model.

2.2.1 RANSAC Multi Model Response Regularization
RANSAC Multi Model Response Regularization for Regression Problems. To
implement the RANSAC on regression problems, we proposed a RANSAC multi model
response regularization which implements the sequential RANSAC on multiple models
[16–19]. To take out the outliners from data, which in our case, are the irrelevant hidden
nodes as predictor variables, and H is the hidden matrix as input from equation. In our
case, the output weights follow a linear regression between hidden and output layer
defined as

(2)

Where Y is the output of instances of data, m is the predictor’s weights or slope and x
is the input data and c is the constant. Y = Output weights * H + ϵ

(3)

Where

(4)

(5)

Dxwj = {x11, x12 … xwj} be the sets of data H with wth observations in rows and jth

as hidden nodes predictors in columns of D matrix. For regression problems, sequential
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RANSAC implements on the set of all inliners, D1 that are generated by W different
models where Wm = rand(DM). The numbers of models are randomly generated using
20 % of the input data.

To estimate the parameters of W models, each one is represented by k dimensional
parameter vector θw at each iteration iter. CS is estimated using MSS of each W model.
The iteration run M times which is calculated before after removing the inliners from
data D. the total number of inliners at iteration iter is less than total number of inliners
at iteration iter-1. The whole formulation of multiple RANSAC response is defined as

The set of all inliners D is generated by W different models has cardinality CS as

(6)

Let  defines the manifold of dimension kw of all points with respect to param‐
eter  for the specified model for  with a subset Sw from D of kw

elements at iteration i called minimal sample set (MSS). To estimate the parameters of
W models, each one represented parameter vector θw. At each i iterations, MSS for each
W model is defined and CS is estimated removing all outliners.

The proposed RANSAC multi model response regularization for binary and multi‐
class problems for ELM is implemented using one against all (OAA) method. As in
OAA method, j binary classifiers will be constructed in which all the training examples
will be used a teach time of training. The training data having the original class label
jn = (1…n) have each jn elements of positive one class and the remaining training data
will be of zero class, creating jn models implementing proposed RANSAC multi model
response regularization on (jn) binary classes. Finally, CS defined as  of j(n) classes
is computed as

(7)

(8)

For this, consider the ELM for multi-class classification problem, formulated as k
binary ELM classification problem with the following form:

Where for each j, wj is the output weights from the hidden layer to the output layer
with output vector . Thus the output of the hidden layer as H
hidden matrix defines with respect to multiclass binary classifiers as

(9)
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where H is the hidden layer output matrix and Y is the j binary classes with mth obser‐
vations of training data and n binary classes as columns vectors. Thus, we get Hj hidden
matrix where each Hj belong to each binary class and RANSAC multi response regu‐
larization is implemented to acquire CS for each binary class as . It can be
concluded that RANSAC multi response regularization for binary and multiclass prob‐
lems work in similar fashion as OAA-ELM with j binary classes with a difference of jth

label with positive class and rest other classes with -1 class.

3 Experimental Results

To implement the email personalization, firstly data is extracted from data warehouse
and fed into pandas Dataframe in python. Sql queries are integrated in python for
accessing the data from redshift data warehouse and uploading the final plan for email
personalization. Figure 1 represent the distribution of member’s data with respect to
subscribers and non-subscribers in 1 year tenure scale. Subscribers and non-subscribers
in the figure represent members who are subscribers for receiving emails from their
starting tenure until this experiment. Non subscriber are the members which unsub‐
scribes during this experimental study from their starting tenure. Global parameters are
initialized along with exception handling foe extracting data from data warehouse. As
we can see in Fig. 1, distribution of data seems to be normal distribution with skewed
towards right. Figure 2 depicts the member’s data density distribution with respect to
subscriber and non-subscribers in different states of Australia as Sydney, Melbourne
ranked in scale of 1-10. As we can see in all figures, there is a very thin line to differentiate
members behavior in terms of they will keep subscribe the emails or unsubscribe it
(Fig. 1).

Fig. 1. Density Distribution of member’s data with respect to subscribers and non-subscribers in
1 year tenure scale;

Figure 3 depicts the comparison of training data and testing data variance for 300
iterations using regularization and proposed optimized extreme learning machines as
base estimators for gradient boosting trees. A we can see in the Fig. 4, there is less
variance in training and testing data using optimized extreme learning machines as base
estimator for grad boost classifiers. Compared to Fig. 4, where we do not use regulari‐
zation and base estimators, grad boost classifiers by itself doesn’t performs well in term
of low deviance and the model is over fitted creating huge difference of deviance between
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training and testing data. In such case, regularization with optimized RANSAC extreme
learning machines performs significantly well with grad boost trees in terms of less
deviance among training and testing data.

Table 1 depicts the comparative analysis of grad boost classifier on Customer data‐
base provided by OURDEAL database using base estimators and non-base estimators.
As we can see from table as iterations increases from 100 to 300, Grad boost classifier
with optimized RANSAC pruned extreme learning machines (OPRELM) perform better
than grad boost with linear regression (LR) as base estimators. The ROC curve using
base estimator as OPRELM is estimated as 0.96 and confusion matrix shows less false

Fig. 2. Density Distribution of member’s data with respect to subscribers and non-subscribers in
1-10 location scale

Fig. 3. Distribution of deviance for training and testing data for 0-300 iterations. With
regularization and using optimized extreme learning machine as base estimators for gradient
boosting trees;

Fig. 4. Distribution of deviance for training and testing data for 0-300 iterations with no
regularization and no base estimators for gradient boosting trees

Email Personalization and User Profiling Using RANSAC 307



positive and false negative rate. Later, deals recommended by the classifiers are ranked
with respect to click rate and send to each member with personalized deals chosen by
classifier.

Table 1. Comparative analysis using grad boost classifier with proposed base estimator and non-
base estimator

Iterations Mean Square Error (MSE)

Grad-Boost Grad-boost with
ORELM

Grad-boost with LR

100 0.75 0.23 0.67

200 0.56 0.19 0.35

300 0.45 0.11 0.43

4 Conclusions

Email personalization is the process of customizing the content and structure of email
according to members specific and individual needs taking advantage of members navi‐
gational; behavior. In this paper, we proposed the architectural design for email person‐
alization using Customer database provided by OURDEAL database based on grad
boost with optimized pruned extreme learning machines as base estimators. We also
conducted a depth dive in data analysis to find each members behavior and important
attributes which plays a significant role in increasing clicks rates in personalized emails.

After data is extracted using step up process according to defined architectural
design, we treat the data with grad boost classifier using optimized pruned extreme
learning machine and linear regression as based estimator. Experimental results showed
that as the iterations increased from 100 to 300, mean square error is much lower
compare to grad boost with linear regression as base estimators. We can concluded that
our prosed method works much better in predicting customers behavior on deals send
in personalized emails. Higher accurate model helps us to find out better customer
behavior and design the customer plan according to accurate customer’s needs.
Currently this model is implemented in Customer database provided by OURDEAL,
and every morning set of deals are selected using proposed method for personalized
emails and defining user profiles.

Later, further work can be explore by adding more web traffic data and more opti‐
mization to increase the accuracy in predicting the probability of clicking emails in
personalized emails.
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Abstract. In this paper, an auto-encoder is proposed to learn conversation repre‐
sentation. First, the long short term memory (LSTM) neural network is used to
encode the sequence of sentences in a conversation. The interactive context is
encoded into a fixed-length vector. Then, through the LSTM-decoder, the learnt
representation is used to reconstruct the sentence vectors of a conversation. To train
our model, we construct one corpus with 32,881 conversations from the online
shopping platform. Finally, experiments on topic recognition task demonstrate the
effectiveness of the proposed auto-encoder on learning conversation representa‐
tion, especially when training data of topic recognition is relatively small.

Keywords: Auto-encoder · LSTM · Conversation representation

1 Introduction

Many artificial intelligence tasks are essentially the problem of understanding
sequences, such as speech recognition [13], machine translation [8] and community
question answering (cQA) [15]. Likewise, human conversation is a temporal process
[11] consisting of a sequence of sentences, and involves in many challenging problems
such as discourse segmentation [1], topic recognition [2], act classification [3], and
answer or summary generation [4, 5]. These tasks largely depend on how to find and
represent useful features and structures in conversations, but the expression in human
conversation is too flexible to learn good conversation representations by task-driven
supervised learning. Traditionally, it always relies on human intensive work in collecting
labeled data [22]. On the other hand, it is more feasible to learn useful features from a
large scale of unlabeled data by building unsupervised learning model [19].

Recently, deep learning has been used to learn representations of natural language
such as sentence representation [17, 18], document representation [20]. And the encoder-
decoder framework based on recurrent neural networks has demonstrated powerful
ability on various of sequence learning tasks such as short text generation [9], summa‐
rization [21]. To learn representation of paragraph or document, Li et al., [16] introduced
a hierarchical neural auto-encoder based on LSTM. However, the human interactions
in conversation highlight the need for capturing the interactive context to learn
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conversation representation, except for the temporal context. Take the efficient of hier‐
archical model into consider, our approach represents sentence by mean pooling word
vectors, instead of learning sentence embedding from word embeddings.

In this paper, we explore unsupervised learning model to learn conversation repre‐
sentation, and propose an auto-encoder, which consists of LSTM-encoder and LSTM-
decoder, to capture the interactive context in a conversation. Unlike the sequence to
sequence learning framework described in [7], the LSTM-encoder in our model uses the
interactive scheme to run through the sequence of sentences, and learns one hidden
representation of the conversation. Based on the learnt representation, the LSTM-
decoder generates the reconstructed sentence vectors of a conversation. To achieve the
quantitative evaluation of the auto-encoder, we initialize the LSTM-classifier with the
learned weights of our model, and fine tune it for the supervised task of topic recognition.
Experimental results demonstrate the auto-encoder is able to learn good conversation
representation for the supervised task.

2 The Dataset for Our Work

In this paper, the model is trained on a collected corpus, which consists of 32,881 human-
human conversations on the online shopping platform1.

The human-human conversation is a temporal and interactive sequence of sentences,
but quite free-form. Firstly, most of sentences in conversation are short-message.
Secondly, the user tends to use misspelling words and emoticons (e.g., “/: ^_^” and
“/:>_<”). In addition, this data in human-human conversation is less structured than
human-computer conversation, in which clients’ input and agents’ responses alternate
consecutively. Due to the asynchronism of the interactive process, the conversation is
segmented into uncertain turns, e.g., the seller’s response may take multiple turns as the
sentence 2 and 3 shown in Table 1.

Table 1. Human-human conversation on online shopping

Client Merchant

1: ��,����������?
Hi, will you deliver the snack free of charge?

2: ��,�	
�,��
Hi, i will check it as soon as you take the order.

\\\\ 3: ��,��?�����
Ninbo City, right? OK, i have charged the fee for

you.

4: ��� 2��
How about two yuan cheaper?

5: ����������
It is less profit margin for us after free shipping.

6: /: ^_^ ~  !"#�
/: ^_^ ~ Make the deal an even figure.

7: �,$��,��%�&�'�
Honey, i can’t. Free shipping is the best we can

offer.

8: (��)	*+�,-�.
It’s ok to have a few candies for free gifts.

9: $�/0,���1
Sorry, no gifts to deliver.

1 http://www.taoboo.com/.
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To construct this dataset, we first collect thousands of logs of real web-based conver‐
sations from 3 online shopping merchants, and then filter out redundant black spaces in
conversations, finally, we replace the privacy information with pre-defined semantic
labels (e.g., “<Human-name>”, “<Cell-phone>” and “<Email>”).

In our work, 5,000 conversations are used to train unsupervised models, and 1,000
conversations are labeled for supervised learning task – topic recognition. 500 conver‐
sations are used to fine tune unsupervised models and train topic classifiers, 500 conver‐
sations are used as the test dataset. Table 2 shows the statistics of the dataset.

Table 2. The statistics of the dataset

Dataset #Conversation #Sentence

Collected data 32,881 683,157

Unsupervised learning 5,000 102,783

Fine tune/Training 500 10,381

Test 500 9,862

3 The Auto-Encoder Model

To learn the conversation representation, we propose interactive auto-encoder to unsu‐
pervised learning by using LSTM. The basic idea is to use the sequence learning frame‐
work [9] to reconstruct sentence vectors of a conversation. First, our model runs through
an input sequence to learn one hidden representation, which is the interactive context of
a conversation, and then generate the corresponding vectors of the target sequence based
on the learnt representations. The target sequence is the reverse input sequence, which
makes the optimization easier for our model by looking at low range correlation.
Figure 1 summarizes the process of learning conversation representation.

Fig. 1. The framework of learning conversation representation

3.1 LSTM

As the basic building block of our model, The LSTM unit, which has been successfully
to perform sequence learning [9, 10], is used to learn the context and structure in
conversation. Unlike to traditional recurrent unit, LSTM unit modulates the memory at
each step, instead of overwriting the states. This makes it better to exploit long range
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dependencies [12] and discover long-range features in the sequence of sentences. The
key component of LSTM unit is the cell which has a state ct over time, and the LSTM
unit decides to modify and add the memory in the cell via the sigmoidal gates – input
gate it, forget gate ft and output gate . These updates for LSTM unit are chose the one
discussed in [6], and summarized as Eq. 1.

(1)

 is the parameters of LSTM, , , and  are diagonal matrices.

3.2 The Interactive Scheme in LSTM-Encoder

Using LSTM units, general sequence learning framework [7] is able to capture temporal
context as global encoding scheme, shown in Fig. 2a, but fail to learn the interactive
context of a conversation. Inspired by this point, our model uses the interactive scheme,
shown in Fig. 2b, to encode the human interactions of a conversation.

Fig. 2. Encoding schemes in LSTM-encoder. Figure (a) shows the global scheme to learn the
global context; Figure (b) shows the interactive scheme to learn the interactive context.

Given an input sequence of sentences  of a conversation, we extend
general LSTM-encoder with one hidden layer Hm to achieve interactive encoding. The
joint representation mt learned by LSTM-encoder is computed as Eq. 2:

(2)

Where  is the input vector of semantic matching by concatenating  and , and  is
one all-zero padding vector.  are the parameters of the matching layer.
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Based on the joint representation , the LSTM-encoder of our model captures the
matching patterns over time. The final output  is the global representation after
encoding multi-turns interactions, which is essentially the learnt interactive context 
of a conversation and calculated as Eq. 3:

(3)

Here  is a logistic function, which is one LSTM unit for encoding the conversa‐
tion. The weights of LSTM-encoder are .

3.3 The Computation in LSTM-Decoder

As shown in Fig. 1, the LSTM-decoder decodes the learned contexts  to generate
one sequence of sentence vectors , which is the reconstructed
sequence of sentence representations at the output units, but in reverse order. Each
sentence representation  is given by Eq. 4.

(4)

where  is the activation function,  is the parameters of generating the sentence
vector. The hidden state  of decoder at time t is calculated as Eq. 5:

(5)
Here  is a logistic function, which is essentially one LSTM unit for decoding the

interactive context . The weights of LSTM-decoder are .

3.4 Training

To optimize the parameters , stochastic gradient descent
(SGD) algorithm via back-propagation through time is used to train the auto-encoder.
The reconstructed cost is calculated by the squared loss function Eq. 6.

(6)

where  is the target sequence of sentence vectors, each vector is
computed by mean pooling the corresponding word vectors. The word embedding is
pre-trained with the unsupervised neural language model [14] on Collected Data, and
the length of each word vector is 300.

4 Experiments

We design experiments to accomplish two objectives: First, evaluate the benefit of initi‐
alizing LSTM-classifiers with the weights trained by unsupervised learning, especially
with very few training samples. Second, evaluate our auto-encoder in learning conver‐
sation representation, which is given by interactive encoding scheme.
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4.1 Experimental Setting

Table 2 in Sec. 2 shows the experimental dataset. To evaluate our model, we conduct
incremental experiments on labeled data, in which each batch is 20 conversations.

Baselines and Model Setting: In this work, the baseline of unsupervised learning
model is LSTM encoder-decoder [7]. For the topic recognition, LTSM-classifier initial‐
ized with the weights of auto-encoder is compared to the one initialized with the weights
of baseline. In addition, the logistic regression (LR) classifier and LTSM-classifier with
randomly initialized weights are two supervised models for this task.

For our model, the size of input gate in LSTM units is set to 300. The sizes of forget
gate, output gate, and memory cells in LSTM units are all set to 500.

Evaluation Metric: We use the accuracy of topic recognition to evaluate the models
on supervised learning task.

4.2 Experimental Results and Analysis

Figure 3 shows the experimental results of competitor models on incremental experi‐
ments, and the summarized results are shown in Table 3.

Table 3. Summary of results on supervised task (%).

Model One-batch-train (#20) Full-train
(#500)

LR 19.42 47.32

LSTM-classifier random 21.77 49.53

LSTM encoder-decoder 24.63 52.17

Interactive auto-encoder 25.99 54.96

Fig. 3. Comparison of different models on topic recognition
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We can see that for the case of very few training examples, unsupervised learning
gives a substantial improvement. The interactive auto-encoder achieves the improve‐
ment from 19.42 % to 25.99 % when training on only one batch (20 conversations). For
the full-train labeled data, we get a considerable improvement from 47.32 % to 54.96 %.
The improvement by using our unsupervised learning model was not as big as we
expected, however, our model outperforms than the strong baseline - LSTM encoder-
decoder model. These promising results indicate that the conversation representation
learned from sequence to sequence unsupervised learning is helpful to improve the
performance of topic recognition, especially our auto-encoder.

Comparing with the LSTM encoder-decoder, which is another one unsupervised
model, the classification performance of our model is almost same as the LSTM encoder-
decoder model when there are few training samples (2 batches), but performs better with
more training data. The reason for this phenomenon is that the interactive scheme for
encoding conversation is difficult to find interactive context in the case of very few
training data, the model still can capture the temporal context in conversations. But as
the size of the labeled data grows, our model performs the advantage of interactive
scheme in capturing and representing the interactive context by modeling the interac‐
tions in conversations.

5 Conclusions and Future Work

In this paper, the auto-encoder is proposed to learn interactive conversation represen‐
tation based on the sequence to sequence learning framework. We evaluate our
approach by fine tuning the model for topic recognition task. Experimental results
demonstrate that the unsupervised models using LSTM units can learn useful conver‐
sation representation to improve the classification performance. Moreover, the
improvements performed by auto-encoder shows that the interactive encoding scheme
is able to capture interactive context and structure in a conversation. In the future, we
plan to extend the auto-encoder with multi RNN layers to exploit the semantic rela‐
tionships of the sentences in a conversation. Additionally, we will integrate the inter‐
active scheme into hierarchical auto-encoder [16] to explore answer generation for
multi-rounds conversation.
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Abstract. Biometric user verification or authentication is a pattern
recognition problem that can be stated as a basic hypothesis test: X
is from client C (H0) vs. X is not from client C (H1), where X is the
biometric input sample (face, fingerprint, etc.). When probabilistic clas-
sifiers are used (e.g., Hidden Markov Models), the decision is typically
performed by means of the likelihood ratio: P (X/H0)/P (X/H1). How-
ever, as far as we know, this ratio is not usually performed when distance-
based classifiers (e.g., Dynamic Time Warping) are used. Following that
idea, we propose, here, to perform the decision based not only on the
score (“score” being the classifier output) supposing X is from the client
(H0), but also using the score supposing X is not from the client (H1),
by means of the ratio between both scores: the score ratio. A first app-
roach to this proposal can be seen in this work, showing that to use the
score ratio can be an interesting technique to improve distance-based
biometric systems. This research has focused on the biometric signature,
where several state of the art systems based on distance can be found.
Here, the score ratio proposal is tested in three of them, achieving great
improvements in the majority of the tests performed. The best verifica-
tion results have been achieved with the use of the score ratio, improving
the best ones without the score ratio by, on average, 24 %.

Keywords: Score ratio · Signature verification · Distance-based
classifier

1 Introduction

This work focuses on the use of score ratio in biometric person verification sys-
tems which use distance-based classifiers.

The goal in biometric person verification is to authenticate the user (client
or Target Class, TC) by means of unique human characteristics (biometrics,
e.g., iris, fingerprint, etc.). Given a test sample X, the problem of biometric
verification can be stated as a basic hypothesis test between two hypotheses:

H0 : X is from client C H1 : X is not from client C

c© Springer International Publishing Switzerland 2015
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The decision between the two hypotheses can be performed as shown in Eq. (1),
using client information only, or it can be performed by means of the likeli-
hood ratio test given by Eq. (2), also using impostor information. p(X/H0) and
p(X/H1) are, respectively, the probability density functions for the hypotheses
H0 and H1 evaluated for the observed biometric sample X, and θ is the decision
threshold.

p(X/H0)
{≥ θ Accept H0

< θ Reject H0
(1)

p(X/H0)
p(X/H1)

{≥ θ Accept H0

< θ Reject H0
(2)

Biometric verification in general, and signature verification in particular, is
a pattern recognition problem, where each client C is represented by means
of a model λC , e.g., Hidden Markov Model (HMM), Gaussian Mixture Model
(GMM), Support Vector Machine, etc. Then, p(X/H0), whose calculation is not
a straightforward task, is estimated (approximated) by means of the classifier
output (score) s(X/λC). p(X/H1) is estimated by means of the score s(X/λC),
where λC is the impostor (Non Target Class) model, “impostor” being anybody
different from the client. Since an accurate representation of the impostor class
is impossible, different λC model estimation approaches can be found in the
literature; several of them will be shown in Sect. 2.

Following this pattern recognition approximation, Eq. (1) becomes Eq. (3),
and Eq. (2) becomes the score ratio shown in Eq. (4).

s(X/λC)
{≥ θ Accept H0

< θ Reject H0
(3)

s(X/λC)
s(X/λC)

{≥ θ Accept H0

< θ Reject H0
(4)

When probability-based classifiers (e.g., HMM or GMM) are used, the clas-
sifier output can be interpreted as a probability, p(X/λC), and the decision has
been typically performed by means of the likelihood ratio p(X/λC)

p(X/λC) test [1,2,4],
since better performance is achieved. However, when distance-based classifiers
are used, as far as we know, this score ratio (Eq. 4) is not usually performed.

Here, a first approximation to this proposal is successfully approached, show-
ing that to use the score ratio in biometric systems based on distance classifiers
can improve the system, that is, it can be an interesting alternative.

The proposal has been tested in biometric signature recognition. Of the sev-
eral biometrics, signature is the second most important of the behavioral bio-
metrics. Here, on-line signature (the signature is written in a digitizing device)
is used. Depending on the test conditions, two types of forgeries can be estab-
lished: (i) skilled forgery, where the impostor imitates the client signature, and
(ii) random forgery, where the impostor uses his/her own signature as a forgery.

The score ratio proposal has been tested in three different approaches of
systems based on distance classifiers [3,6,8]. For the impostors representation,
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the “cohort” approach (this will be seen in greater depth in Sect. 2) was used: a
set of M signatories (called the cohort set) is used as impostor representatives,
choosing a subset of N of them to get s(X/λC). Different values of M and N
have been tested.

The rest of the paper is organized as follows. Section 2 gives a brief theoretical
background of the score ratio problem, showing the approach chosen in this work.
After describing the experimental setup in Sect. 3, the results achieved with and
without score ratio in all of the tested scenarios can be seen in Sect. 4. The
conclusions and future works are shown in Sect. 5.

2 Score Ratio

The score ratio proposal (Eq. 4) can generally be found associated with systems
based on probabilistic classifiers in the biometric literature. In these works, as
it has been pointed out in the introduction, the classifier output (score) can be
interpreted as a probability, performing the likelihood ratio test: p(X/λC)

p(X/λC) .
Two ways to get p(X/λC) can be found: using a cohort set (representatives

set) of the Non Target Class (NTC) [2,4], or using a single model to explain the
behavior of the NTC [1].

When the cohort set alternative is used, p(X/λC) is calculated as the product
of the scores over the cohort set models, λi

C
: p(X/λC) =

∏
i p(X/λi

C
), where i

is each element of the cohort set. For an adequate representation of the NTC
(impostors), the cohort set size must be large, then, a big amount of calculations
over the cohort set is necessary. Several methods are applied to simplify this
calculation. The most often used is to select the N highest likelihoods from the
cohort set [2] (p(X/λC) =

∏N
i p(X/λi

C
)), that means, using only the N cohort

set elements closest to the client (λC).
When a single model is used to estimate p(X/λC), the model is trained using

samples provided by many different users. For example, in [1], a User Adapted
Universal Background Model (UA-UBM) based on a discrete HMM is proposed.
First, they obtain a UBM trained using signatures from many signatories. Then,
the client model is achieved by adapting the UBM with the enrollment (training)
client signatures. The score ratio is performed by means of the log likelihood:
log p(X/λC)

p(X/UBM) .
With distance-based classifiers, it is impossible to get a single impostors

model, so, here, the cohort set approximation is adopted:

s(X/λC)
∑N

i=1 s(X/λi
C

)
(5)

Following the approach of selecting the cohort set elements closest to the
client, here, the N cohort set signatories with the minimal distances with regard
to the client are selected to perform the score ratio (Eq. 5). We have performed
the score ratio test by crossing two parameters: the cohort set size (50, 100 and
150) and different values of N (1, 3, 5 and 10).
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3 Experimental Setup

3.1 Score Normalization

Given a learning paradigm, its Match (client scores) and Non-Match (impos-
tors scores) distributions vary from the classifier trained to distinguish one user
from another (see Fig. 1(a)). For this reason, score normalization is essential to
transform the scores of the client matchers into a common domain (Fig. 1(b)).

The main score normalization techniques for signature recognition [7] have
been tested here:

Impostor-Centric Techniques:
IC1: snorm = s− μ̂N

C IC2:snorm = s−(μ̂N
C + σ̂N

C ) IC3: snorm = (s− μ̂N
C )/σ̂N

C

where μ̂N
C and σ̂N

C are the mean and the standard deviation of the Non-
Target Class (impostors) scores distribution for the client C classifier, estimated
by means of a Cohort Gallery (see Sect. 3.3).

Target-Centric Techniques:
TC1: snorm = s − μ̂M

C TC2: snorm = s − (μ̂M
C + σ̂M

C ) TC3: snorm =
(s − μ̂M

C )/σ̂M
C

where μ̂M
C and σ̂M

C are the mean and the standard deviation of the Target
Class (client) scores distribution for the client C classifier, estimated by means
of the client model training signatures using the leave-one-out technique.

Target-Impostor Technique:
TI1: snorm = s − sEERC

where sEERC
is the a priori decision threshold of the client C at the Equal

Error Rate point (see Sect. 3.5), obtained from the Non-Target and Target class
scores distributions estimation.

3.2 Corpus

The MCYT database [5] has been used. This database is one of the most popular
and largest in signature verification, and can be considered a benchmark. The
signatures were acquired with a graphic tablet WACOM, obtaining from each
sampling instant: position in x-axis and y-axis, pressure, azimuth and altitude

Non-Match Ci

Match Ci

Non-Match Cj

Match Cj

(a)

Non-Match Ci

Match Ci

Non-Match Cj

Match Cj

(b)

Fig. 1. Example of Match and Non-Match distributions of two users, (a) without score
normalization and (b) with score normalization.
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angles. Samples of 333 different people were acquired. Each target user produced
25 genuine signatures, and 25 skilled forgeries were also captured for each user.

3.3 Experimental Sets

The corpus was split into the following three different and separate subsets:

– Cohort Set (ChS). This was applied to get s(X/λC) in order to perform
the score ratio. Three different sizes were tested: (i) 50 signatories (ChS-50),
(ii) 100 signatories (ChS-100) and (iii) 150 signatories (ChS-150). From this
set, the N nearest to each client and test sample X were used to perform the
score ratio (Sect. 2).

– Cohort Gallery (ChG). This was used to get μ̂N
C and σ̂N

C to perform the
score normalization (Sect. 3.1). The signatories from the ChS not used to
perform the score ratio were included in this set.

– Test Set (TS). This was used to test. This consists of 183 signatories not
used in the previous sets. The same TS was used in all of the tests performed
for an objective comparison. From each user in this set: (i) his/her five first
signatures were used to build the signatory model, the remaining twenty being
used for genuine tests (3660 in total), (ii) his/her 25 skilled forgeries captured
were used for skilled tests (4575 in total) and (iii) one signature out of 100
randomly selected users in the TS (different from the client) were used for
random forgery tests (18300 in total).

3.4 Signature Verification Systems

The following three systems based on distances were tested:
Vector Quantization-based System (VQSys).
The system shown in [6] is used. This system achieves very good performance

with a reduced computational requirement, which is around 47 times lower than
DTW. In addition, the system improves the database storage requirements due
to vector compression. The codebook size is 256. The features vector is composed
by the X and Y coordinates, the pressure, the azimuth, the altitude and each
point timestamp.

Dynamic Time Warping-based System (DTWSys).
Our state of the art system based on DTW has been used here [3]. This

has been among the best in the latest signature recognition evaluation per-
formed (ESRA’2011). A simple, but very effective feature extraction is accom-
plished by means of delta,Δ, features, more specifically Δxi = xi+1 − xi

and Δyi = yi+1 − yi. Then, the feature vector is composed by the sequence:
F = {{Δx1,Δy1}, {Δx2,Δy2}, . . . , {Δxp−1,Δyp−1}}, where p is the number of
signature points.

Fractional Distances-based System (FraDisSys).
Our low-cost proposal shown in [8] is used. This system has less com-

putational and storage requirements than the previous ones. The signature
points number is normalized to a fixed value (15 here), then, signatures can
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be matched by means of a simple distance calculation. Due to its better per-
formance, fractional distances are used. An improved feature extraction has
been accomplished here, adding the following new ones to the features in [8]
(X, Y, Pressure, Azimuth and Altitude): point number, signature section length,
direction changes per section and signature duration.

3.5 Performance Measure

Verification systems can be evaluated using the False Match Rate (FMR, those
situations where an impostor is accepted) and the False Non Match Rate
(FNMR, those situations where a user is incorrectly rejected). The performance
can be plotted on an curve (e.g. ROC), but if the number of comparisons is high,
the use of a single number measure is more useful and easier to understand. The
most used one in the literature is the Equal Error Rate (EER), that is, the
system error when FMR equals the FNMR. This is the measure used here.

4 Results

The score normalization (Sect. 2) performance is system dependent. So, firstly,
we will choose the best score normalization technique with and without score
ratio for each system. A representative cohort set size of 100 users has been
chosen for these tests, using N = 5 for the score ratio. A criterion based on the
lowest average between random forgery EER and skilled forgery EER has been
used to choose the best score normalization technique in each case.

4.1 Vector Quantization-Based System (VQSys)

When VQSys is used, the best system configuration is, exceptionally, without
using the score normalization for both with and without score ratio (Table 1).
Once the best score normalization technique has been fixed (here, none), the
comparative study for this system with and without score ratio can be seen in
Table 2. The smallest error is achieved using the score ratio for both random and
skilled forgeries, with a cohort set of 100 signatories and N = 1 and a cohort set
of 150 signatories and N = 3, respectively.

4.2 Dynamic Time Warping-Based System (DTWSys)

When DTWSys is used, the best score normalization techniques are TI1 without
the score ratio and TC1 when the score ratio is applied (Table 3). Once the best
score normalization technique has been fixed, the comparative study for this
system with and without score ratio is shown in Table 4. The smallest error
for random forgery is achieved using the score ratio with a cohort set of 150
signatories and N = 10. However, for skilled forgery, the best error value has
been achieved without the score ratio and with a cohort set of 50 signatories.
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Table 1. Choosing the best score normalization technique for VQSys. Best results are
bold face emphasized.The system error is measured by means of the EER (%).

NoScoreRatio ScoreRatio

ChS-100 ChS-100, N=5

Technique Random Skilled Random Skilled

No norm. 1.15 6.56 0.71 4.56

IC1 0.85 9.97 1.20 13.01

IC2 0.87 11.24 1.61 13.92

IC3 0.87 14.18 1.15 13.53

TC1 3.37 12.16 2.35 9.45

TC2 3.36 12.24 2.43 9.68

TC3 18.36 26.56 19.78 26.45

TI1 1.04 7.08 0.63 5.33

Table 2. With and without (N = 0 row) score ratio performance comparison for
VQSys. The results for all of the cohort set sizes and values of N are shown. The system
error is measured by means of the EER (%). Best results are bold face emphasized.

ChS-50 ChS-100 ChS-150

N Random Skilled Random Skilled Random Skilled

0 1.15 6.56 1.15 6.56 1.15 6.56

1 0.71 5.16 0.63 4.95 0.68 4.87

3 0.72 4.85 0.67 4.57 0.66 4.45

5 0.74 4.86 0.71 4.56 0.68 4.51

10 0.74 4.87 0.72 4.61 0.71 4.54

Table 3. Choosing the best score normalization technique for DTWSys. Best results
are bold face emphasized. The system error is measured by means of the EER (%).

NoScoreRatio ScoreRatio

ChS-100 ChS-100, N=5

Technique Random Skilled Random Skilled

No norm 14.45 20.55 0.79 9.01

IC1 1.80 7.37 20.46 38.95

IC2 2.49 9.51 34.58 44.63

IC3 1.88 8.02 1.22 15.54

TC1 2.54 5.87 1.01 6.48

TC2 2.80 6.04 1.53 8.17

TC3 7.95 9.70 8.83 16.01

TI1 1.83 4.67 1.31 10.45
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Table 4. With and without (N = 0 row) score ratio performance comparison for
DTWSys. The results for all of the cohort set sizes and values of N are shown. The
system error is measured by means of the EER (%). Best results are bold face empha-
sized.

ChS-50 ChS-100 ChS-150

N Random Skilled Random Skilled Random Skilled

0 1.72 4.66 1.83 4.67 1.94 4.67

1 1.23 7.13 1.18 7.21 1.20 7.49

3 1.05 6.64 1.07 6.54 1.07 6.83

5 0.96 6.54 1.01 6.48 0.96 6.62

10 0.85 6.37 0.85 6.39 0.83 6.51

Table 5. Choosing the best score normalization technique for FraDisSys. Best results
are bold face emphasized.The system error is measured by means of the EER (%).

NoScoreRatio ScoreRatio

ChS-100 ChS-100, N=5

Technique Random Skilled Random Skilled

No norm 2.73 8.63 1.39 6.83

IC1 2.70 10.05 6.21 20.27

IC2 3.58 11.89 11.10 26.34

IC3 2.47 10.01 2.38 13.06

TC1 2.16 6.08 1.31 6.15

TC2 2.73 7.34 1.89 7.43

TC3 10.08 14.29 8.47 14.45

TI1 2.19 7.02 1.97 8.13

4.3 Fractional Distance-Based System (FraDisSys)

When FraDisSys is used, the best score normalization technique is TC1 for
both with and without score ratio (Table 5). Once the best score normalization
technique has been fixed, the comparative study for this system with and without
score ratio can be seen in Table 6. The smallest error is achieved using the score
ratio for both random and skilled forgeries, with a cohort set of 100 signatories
and N = 10 and a cohort set of 50 signatories and N = 10, respectively.

4.4 Results Analysis

From the previous results, the first important consideration is that the use of
the score ratio has improved all of the cases studied except one, skilled forgeries
with DTW. For random forgeries, great improvements have been achieved with
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Table 6. With and without (N = 0 row) score ratio performance comparison for
FraDisSys. The results for all of the cohort set sizes and values of N are shown. The
system error is measured by means of the EER (%). Best results are bold face empha-
sized.

ChS-50 ChS-100 ChS-150

N Random Skilled Random Skilled Random Skilled

0 2.16 6.08 2.16 6.08 2.16 6.08

1 1.94 7.02 1.64 6.94 1.72 7.16

3 1.53 6.31 1.45 6.39 1.49 6.23

5 1.37 6.17 1.31 6.15 1.42 6.10

10 1.28 5.85 1.23 5.93 1.34 5.93

all of the classifiers: 45 % for VQSys (ChS-100, N = 1), 52 % for DTWSys (ChS-
150, N = 10) and 43 % for FraDisSys (ChS-100, N = 10), with regard to the
best results without score ratio, respectively. For skilled forgeries, the following
improvements have been achieved: 32 % for VQSys (ChS-150, N = 3) and 4 %
for FraDisSys (ChS-50, N = 10) with regard to the best results without score
ratio, respectively. It is interesting to note that the skilled forgery tests are used
only in signature recognition, while, for the rest of the biometrics, the impostor
tests are performed by means of random samples (i.e., samples of other users),
which is where the biggest improvements have been achieved with the use of the
score ratio.

From the systems without score ratio, that based on DTW has achieved
the best results for skilled forgeries (this can also be seen in the international
competitions), while for random ones, the best results have been achieved with
VQ. This is typical in signature recognition: improvements in a forgery type
usually worsen the other. However, here, the use of the score ratio has allowed a
system to be achieved with the best results for both forgeries on average: 0.66 %
in random forgery and 4.45 % in skilled forgery for VQSys, with ChS-150 and
N = 3.

The size of the cohort set does not seem to have any great influence on
the results with score ratio. In general, better results have been achieved with
sizes greater than 50, but this is classifier dependent and the differences in the
results are very small. With regard to the value of N , the worst results have been
achieved, in general, with 1, but for the rest of the values tested, the differences
in the results are also very small. These results show that the score ratio proposal
can be applied with small cohort sets and with small values of N , which is very
important for real applications.

5 Conclusions and Future Works

The score ratio, generally applied in biometric probabilistic-based systems, has
not been used, as far as we know, with distance-based ones. Here, we have
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shown that it can also be an interesting proposal for these systems. In this first
approximation, the use of the score ratio has been successfully tested with three
different biometric signature systems based on distance classifiers. Except for
one case, improvements have been achieved in all of the tested scenarios. The
best results have been achieved with the use of the score ratio for both random
and skilled forgeries, improving the results achieved with the reference state of
the art systems tested.

Several cohort set sizes and values of N (number of users used to get the
impostor score) have been tried, showing that even with small values of both,
good results can be achieved with the score ratio application. This is important
for real applications, where limited data are usually available.

These results encourage us to continue with the proposal tried in this work,
testing new proposals to get the score ratio denominator. It can also be interest-
ing to test other biometrics, where, besides, the impostor tests are accomplished
only with random forgeries, the case where greater improvements have been
achieved with the score ratio application.

Acknowledgments. Thanks to A. F. Hynds B.A. Dip. TEFL for revising the English
grammar.
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Abstract. Identification and characterization of interactions between genes
have been increasingly explored in current Genome-wide association studies
(GWAS). Several machine learning and data mining approaches have been
proposed to identify the multi-locus interactions in higher order genomic data.
However, detecting these interactions is challenging due to bio-molecular
complexities and computational limitations. In this paper, a multifactor
dimensionality reduction based associative classifier is proposed for detecting
SNP interactions in genetic epidemiological studies. The approach is evaluated
for one to six loci models by varying heritability, minor allele frequency,
case-control ratios and sample size. The experimental results demonstrated
significant improvements in accuracy for detecting interacting single nucleotide
polymorphisms (SNPs) responsible for complex diseases when compared to the
previous approaches. Further, the approach was successfully evaluated by using
sporadic breast cancer data. The results show interactions among five poly-
morphisms in three different estrogen-metabolism genes.

Keywords: Epistasis � Genome wide association studies � Associative classi-
fication � SNP interactions � Multifactor dimensionality reduction

1 Introduction

Genome-wide association studies (GWAS) are increasingly being used to identify
SNPs that underlay the genetic architecture of complex diseases. A SNP is a variation
of a single nucleotide (A, C, G, and T) that occurs in coding and non-coding regions of
a DNA sequence [1]. On average, SNPs occur once in every 300 nucleotides of the
DNA. It has been estimated that about 10 million SNPs occur along the 3-billion-base
human genome [1]. A number of GWAS have focused on the role of SNPs and their
associations in revealing the genetic epidemiology of disease susceptibility. However,
complex diseases occurring in biological systems are unknown due to multiple genetic
factors, environmental factors, and their interaction effects [2]. The magnitude and
prevalence of interactions and/or the joint actions of SNPs are being increasingly
recognized in recent studies. A number of recent reviews have covered the current
methods and the related software packages to detect these interacting SNPs that
contribute to a disease [2–4]. The data mining and machine learning methods used to
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detect SNP interactions include random forests (RFs) [5], regression models [6],
Bayesian models [7], multifactor dimensionality reduction (MDR) [8], neural networks
(NNs) [9], support vector machines (SVMs) [4], cellular automata (CAs) [10], and
pathway approaches [11].

However, detecting SNP interactions using these approaches are still challenging.
The challenges include the computational burden imposed by the high dimensional
search space, the complexity of genetic architecture, and the choice of evaluation
measures to determine the contribution of the interactions to a disease [2]. Flexible
approaches and the use of appropriate software play a vital role in revealing the
complexity of diseases [12]. Among the recently emerging methods, MDR is the most
prominent as it reduces the dimensionality of multi-locus information to a single
dimension. It can also be used as a preprocessing or interleaving step (combining
attribute selection with the construction method into an iterative process) [13]. Inter-
leaving allows hierarchical interaction models to be constructed and the newly con-
structed attributes can be placed back into the dataset. Interleaving is a valid approach
for GWA studies with more than 300,000 SNPs due to the computational limitations of
exhaustive searches [13]. Many researchers have shown that Associative classification
(AC) improves the classification performance by generating strong association rules
with high confidence and low support [14]. The classifier uses up to k rules (ranging
from one to ten) to determine the class of the test data. Hence, the accuracy rates of
selected Class association rules (CARs) corresponding to the classes are higher than
traditional classifiers [15]. The interactions between SNPs associated with the disease
were explored by integrating association rules and classification in the previous work
[16]. The approach was evaluated for two-locus interactions using balanced and
imbalanced simulated data. The experimental results were encouraging in imbalanced
data compared to balanced data in terms of accuracy [16].

In this paper, the research has progressed by proposing an MDR based associative
classifier (MDRAC) for revealing the unexplained features of a complex disease due to
interaction effects. The approach constructs the new attribute with high or low risk
factors using MDR (constructive induction method) [8] and classifies using an asso-
ciative classifier (CPAR) [18]. The approach was evaluated for one to six loci models
on the simulated data by varying heritability, minor allele frequencies, case-control
ratios, and sample size. The experimental results demonstrate the substantial
improvements in accuracy over existing MDR based methods by reducing classifica-
tion errors. The proposed approach identifies interesting multi-locus SNPs that were not
identified by previous MDR based techniques. Further, the method was successfully
evaluated over sporadic breast cancer data. The approach identified the five-locus
interaction model and its association with the disease.

2 Methods

2.1 MDR Based Associative Classifier (MDRAC)

Multifactor dimensionality reduction (MDR) is a widely used data mining approach for
identifying interactions between genes. It is a non-parametric model which reduces
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high dimensional genetic data to a single dimensional data using the constructive
induction approach [8]. It exhaustively searches all the possible n-locus SNP interac-
tions associated with a complex genetic disease. The proposed approach implements
a series of six steps to find the best model for a genetic trait.

Step 1 performs ten-fold cross validation on dataset of sample size N (with n0
controls and n1 cases). The dataset is divided into ten equal subsets in which, nine
subsets are used as training data and one subset is used as testing data.

Step 2 enumerates all possible combinations of n loci. For each combination of loci,
the number of cases and controls is counted for 3n genotype combinations. For example,
each SNP has two possible alleles (A and a). The possible genotypes are AA (common
homozygous subjects), Aa/aA (heterozygous subjects) and aa (variant homozygous
subjects) due to duplication of DNA in each cell of the individual. Statistically, AA is
represented as zero, Aa/aA is represented as one and aa is represented as two. Hence, the
interaction between two SNPs with three genotypes will have 32 = 9 two locus geno-
types. That is, a three by three contingency table is created and subjects are placed in
their corresponding cells (each cell is referred to as a multifactor cell).

In step 3, the ratio of cases to controls is calculated for each factor and their
corresponding value is compared with the threshold to classify the factor as either high
risk or low risk. The genotype combinations that are not represented in the dataset are
left blank. In balanced data, where the number of cases and controls are equal, the
threshold is equal to one. A multifactor class is classified as high risk when their
corresponding case to control ratio is higher than one. The multifactor cell is classified
as low risk if the corresponding case to control ratio is lower than one. In imbalanced
data (the number of cases and controls are not equal), the threshold is adjusted and its
value is used to classify each multifactor cell as either high risk or low risk. The high
risk factors are pooled together and are labeled as G1. The low risk factors are pooled
together and are labeled as G0. Hence, the data is reduced from n dimensional space to
one dimensional space by forming a new attribute with G0 and G1 levels.

In step 4, the new attribute is constructed by the MDR method [8] and it uses the
weighted FOIL gain associative classifier for the classification [18]. Laplace training
accuracy for each rule of the n-locus model is calculated. The rules with the highest
expected training accuracy are selected. The best rules generated for each class in a rule
set are used for the prediction. Overall classification accuracy is calculated from the
observed data.

For step 5, steps from 2 to 4 are repeated for each possible combination and its
overall classification accuracy is calculated. Finally, the best model based on the
highest classification accuracy is selected. The goal of this procedure is to minimize the
misclassification rates.

In step 6, to avoid over fitting of the data, steps 1 to 5 are repeated for all ten cross
validation intervals. The Laplace expected accuracy is averaged for each n-locus model
in all ten cross validations. Finally, the overall best n locus model is selected with high
cross validation consistency (CVC) and high prediction accuracy, where CVC is
defined as the number of times the n-locus model is selected as the best model during
the cross validation. The balanced accuracy is calculated when cases and controls are
not equal and is defined as the mean of sensitivity and specificity [19].
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Balanced Accuracy ¼ Sensitivityþ Specificity
2

where; Sensitivity ¼ TP
TPþFN

and Specificity ¼ TN
TN þ TP

where TP are true positives, FN are false negatives, and TN are true negatives. The
statistical significance of the predicted model is evaluated using permutation testing.
The more parsimonious model is selected if the models with highest prediction
accuracy and highest CVC are different [20].

2.2 Data Simulation

In this section, a simulation based study is performed before applying to the real data.
The n locus interaction models are generated from publicly available tool GAMETES
[21]. The datasets are generated for single-locus to six locus models with 20 SNPs.
Each genetic model is distributed across seven heritability 0.01, 0.025, 0.05, 0.1, 0.2,
0.3 and 0.4 along with two different minor allele frequencies 0.2 and 0.4 respectively
[19]. Each model is created for 14 heritability-allele frequency combination in accor-
dance with Hardy-Weinberg proportions. The case-control ratios of 1:1, 1:2, and 1:4
are generated for each sample size of 400, 800 and 1600. 100 datasets are generated for
each model. Hence, 12,600 datasets are generated for each locus model. In total, 75,600
datasets has to be generated for one to six loci models. However, only 54,900 datasets
were generated due to limited ability of GAMETES to generate models with higher
heritability [21]. These datasets are analyzed using the proposed method to identify the
interactions responsible for diseases.

2.3 Sporadic Breast Cancer Data

The data comprise of 410 samples obtained according to the requirements of the
Institutional Review Board of Vanderbilt University Medical School [8]. The study is
based on 207 white women with sporadic primary invasive breast cancer and 204
controls that were treated at Vanderbilt University Medical Centre. The genetic variants
in five genes (COMT, CYP1A1, CYP1B1, GSTM1 and GSTT1) affected the meta-
bolism of estrogens, which could increase the risk of breast cancer [8]. Hence, the
analysis focused on the genes COMT (Catechol-O-methyl transferase) on chromo-
some 22q11.2, CYP1A1 (Cytochrome P450 1 A1 enzyme) on chromosome 15q22-
q24, CYP1B1 (Cytochrome P450 1 B1 enzyme) on chromosome 2p21-22, GSTM1
(Glutathione S-transferase Mu 1) on chromosome 1p13.3 and GSTT1 (Glutathione
S-transferase theta 1) on chromosome 22q11.2. The polymorphisms in these genes are
summarised and reported in the research [8]. The dataset considered 10
SNPs (Cyp1A1m1, Cyp1A1m2, Cyp1A1m4, Cyp1B1-48, Cyp1B1-119, Cyp1B1-432,
Cyp1B1-453, COMT, GSTM1, and GSTT1) in five genes for the analysis. Statistically,
the possible genotypes are numerically represented as zero for AA, one for Aa/aA, and
two for aa. There are 19 missing values and these are represented numerically by three.
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3 Results

Several experiments are performed over simulated datasets and real breast cancer data,
to evaluate the accuracy of MDRAC over other approaches. The goal of this study is to
determine whether MDRAC is a better approach for identifying the higher order SNP
interactions in the absence of main effect. The approach considers the ratio of cases and
controls for each SNP combination at different loci. It generates statistically significant
genotype combinatorial associations in terms of rules based on cases and controls.
Predicting class labels of test objects from these rules retains higher accuracy in genetic
combinations that contribute to a disease.

3.1 Analysis of Simulated Data

MDRAC identifies the interactions between SNPs that contributes to a phenotype.
Further, the accuracy of MDRAC is evaluated and validated over the original MDR
method and associative classification. The methods are evaluated with and without
adjusting threshold levels. Table 1 summarises the evaluation results from single locus
to six loci interactions. Figure 1 graphically represents the multi-locus analysis of
SNPs. In the single-locus models, the results show that MDRAC performed better than
MDR and AC both in balanced and imbalanced datasets. In a 1:1 ratio, AC and MDR
performed almost equally across all models. In 1:2 ratio, the accuracy of AC is slightly
better than MDR by about 5 %. In ratio 1:4, the accuracy of MDRAC is about 23 % to
31 % higher than MDR for both balanced and imbalanced datasets. In two-locus
models, MDR performed better than AC in all 14 models of 1:1 case-control ratio.
MDR and AC performed almost equally in 1:2 ratio. In 1:4 ratio, AC performed well
(11 % to 16 %) compared to MDR. However, accuracy of MDRAC is higher than
MDR and AC by up to 27 %. In three-locus models, the results demonstrated
maxi-mum accuracy for MDRAC in all 12 models. MDR performed better than AC in
1:1 case-control ratios and performed equally well with AC in 1:2 case-control ratios.
However, MDRAC predominantly performed well compared to MDR and AC with
approximately 30 % increase in prediction accuracy. In four-locus interaction models,
as expected AC performed poorly in balanced datasets and performed well in

Table 1. Average balanced accuracy of one to six locus models

MDR AC MDRAC MDR AC MDRAC MDR AC MDRAC MDR AC MDRAC MDR AC MDRAC MDR AC MDRAC
1:1 65.8571 64.4643 94.3571429 64.9779 61.4821 94.5714286 62.2292 55.8958 94.875 57.225 52.15 95.65 53 54.6875 97.1875 50.7143 51.9286 96.0714286

1:2 66.85 71.66 93.9464286 64.9586 68.8036 95.25 61.7083 64.1458 94.6458333 56.567 62.025 95.7 51.4225 62.8125 97.3125 52.8057 57.2143 96.2142857

1:4 65.22 80.79 96.5714286 63.2036 79.3929 95.7142857 59.205 79.2917 96 55.141 78.25 96.55 54.96 78.0625 98.5625 52.3014 76 97.4642857

1:1 65.62 61.65 90.4285714 66.8114 60.4107 93.2767857 62.8342 53.4688 92.6770833 58.75 50.425 93.5125 53.81 49.375 96.78125 53.0543 51.1071 93.875

1:2 65.84 66.53 91.7946429 66.9293 66.0179 93.0446429 62.6233 60.9896 93.2708333 57.821 59.5625 94.3125 54.945 57 95.875 53.8186 58.1786 93.7142857

1:4 64.85 78.63 93.9285714 65.47 76.5368 94.8482143 62.6875 75.2708 95.3333333 58.001 74.5 96.05 54.6475 73.8438 97.15625 52.7014 73.9286 97.1428571

1:1 65.83 61.64 87.9464286 67.4386 62.0045 88.2991071 62.6567 55.4479 87.4635417 59.781 51.9438 89.025 53.53 50.3594 91.5625 54 49.5982 91.3214286

1:2 65.43 67.93 89.34375 66.0164 67.1161 90.7901786 64.0192 63.1979 90.8489583 58.775 59.6188 91.2 54.385 58.8438 93.703125 53.8786 58.5089 90.625

1:4 65.75 79.50 92.5401786 65.2357 77.9375 92.9017857 62.605 76.3073 92.7135417 58.434 75.0875 93.04375 53.8175 74.0625 95.84375 54.7214 74.535 94.6875

Balanced Accuracy

400

800

1600

Sample Size Ratio
Single Locus Two Locus Three Locus Four Locus Five Locus Six Locus
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imbalanced datasets compared to MDR. Analysis of results from MDRAC showed
maximum prediction accuracies ranging from 89 % to 96 %. This indicates that
MDRAC can effectively eliminate prediction errors by increasing prediction accura-
cies. Similarly, MDRAC performed well for both five-locus and six-locus analysis. The
results are also compared with and without adjusting the threshold value. It is con-
cluded that MDRAC consistently had higher prediction accuracy for both balanced and
imbalanced datasets. Hence, the rules generated from the model had better ability to
identify the correct interaction model.

3.2 Analysis of Breast Cancer Data

Table 2 summarises the prediction accuracy obtained from MDR and MDRAC analysis
of the sporadic breast cancer case-control dataset. Both methods were evaluated for
each number of loci from one to nine. The five-locus model was identified as the best
model with the highest prediction accuracy and highest cross validation consistency
(CVC). The best prediction model identified by MDR analysis includes the polymor-
phisms of COMT, GSTM1, CYP1A1m1, CYP1B1-codon 48, and CYP1B1-codon
432. The model had a maximum prediction accuracy of 53.41 and had a maximum
CVC of ten. Statistical significance is determined by permutation testing under the null
hypothesis of no association with disease. The χ2 value of the model is 95.4553, whose
p value is less than 0.05 (p < 0.05). Hence, the identified five locus model is statistically
significant. It is suggested that the interactions between five SNPs that occurs in four
genes contributes to the association of the disease.

The best prediction model identified by MDRAC analysis includes the polymor-
phisms of COMT, CYP1A1m1, CYP1B1-codon 119, CYP1B1-codon 432 and
CYP1B1-codon 453. Figure 2, illustrates the five-locus genotype combinations asso-
ciated with sporadic breast cancer. Each cell in the multi-locus genotype combinations
are distributes with cases (left bars in the cell) and controls (right bars in the cell). The
high risk patterns of cells are represented by the dark colour and low risk cells by the
light colour. Finally, empty cells represent no genotype combinations of case-control

Fig. 1. Summary of multi-locus analysis for ratios 1:1, 1:2, and 1:4, and sample size 400, 800,
and 1600.
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data. It is observed that each genotype at a locus has influenced the disease risk with the
interactions of other two genes at different locus. The visual illustration of five inter-
acting polymorphisms in three genes is graphically represented in Fig. 3. Tan lines
indicate independence between SNPs. Red lines indicate synergistic relationship
between polymorphisms in Cyp1B1-453, and COMT genes. The blue line indicates
strong interactions of Cyp1B1-119 with COMT, Cyp1B1-453, and Cyp1A1m1. The
identified model had highest prediction accuracy of 75.61 with highest CVC of ten. The
accuracy of the predicted model by MDRAC is about 22 % higher than the model
identified by MDR analysis. The statistical significance of the model is evaluated by chi
square test with a p value less than 0.05. Hence, it is evident that the interactions
between the five SNPs that occurred in three genes contributed to the disease and had
better prediction ability than the MDR approach.

Table 2. Summary of results for breast cancer

Algorithms Best model No. of
loci

Prediction
accuracy

CVC

MDR Cyp1A1m1, Cyp1B1-48, Cyp1B1-432,
COMT, GSTM1

5 53.41 10/10

MDRAC Cyp1B1-119, Cyp1B1-432, COMT,
Cyp1A1m1, Cyp1B1-453

5 75.61 10/10

Fig. 2. Summary of five locus genotype combinations of MDRAC analysis over breast cancer
data with high risk (dark gray shaded), low risk (light gray shaded), and empty cells (white) with
the corresponding distribution of cases (left bars), and controls (right bars).

Fig. 3. Entropy graph for five-locus interaction model of MDRAC analysis over breast cancer
data.
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4 Conclusions and Future Work

In this paper, the MDR based associative classifier (MDRAC) was described for the
detection and interpretation of epistasis in genetic and epidemiologic studies of com-
plex diseases. The approach was evaluated for one to six loci models of both balanced
and imbalanced simulated case-control data. The experimental results demonstrated
substantial improvements in the accuracy for detecting interaction effects associated
with the phenotype. Further, the approach was successfully evaluated over sporadic
breast cancer data. The results showed that the five-locus interaction model was
responsible for the disease. As these results are reported in terms of rules, their
interpretation was straightforward. Further studies will investigate strategies such as
parallel computational algorithms and incorporating better optimization algorithms to
reduce the computational time.
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Abstract. This paper proposes a Q-learning based controller for a net-
work of multi intersections. According to the increasing amount of traffic
congestion in modern cities, using an efficient control system is demand-
ing. The proposed controller designed to adjust the green time for traf-
fic signals by the aim of reducing the vehicles’ travel delay time in a
multi-intersection network. The designed system is a distributed traffic
timing control model, applies individual controller for each intersection.
Each controller adjusts its own intersection’s congestion while attempt
to reduce the travel delay time in whole traffic network. The results of
experiments indicate the satisfied efficiency of the developed distributed
Q-learning controller.

1 Introduction

Huge amount of traffic congestion in cities and especially modern areas needs
professional managing system. Different studies has been done in this regards.
Applying artificial intelligence (AI) techniques has significant influence in differ-
ent application and traffic control system as well.

The ability of learning from experience is one of the characteristics of AI
methods that makes these methods useful to address real world problems. In
the case of transportation systems, concepts of intelligent agents is applied in
different areas such as traffic signals [8,9,16], vehicles [3], pedestrians [19], and
also to model the behavior of traffic system and detecting critical cases and
violations [10].

Among different approaches to handle increasing amount of traffic, control-
ling traffic signal’s timing recognized as one of the beneficial methods to decrease
daily travel times and its side effects.

During last two decades several related publications has been released. Parts
of these methods handle control of traffic signals by predefined rule-based system
[11], fuzzy rules [12], and centralized techniques [7]. In addition, there are studies
that applied AI to control the signal timing just for an isolated intersection
[5,13,14,21]. However, techniques using for controlling single intersection may
not efficient enough for a multi-intersection network.

Current traffic control systems usually need predefined model of traffic con-
dition in order to provide a prediction for incoming traffic flow. Among AI tech-
niques, Q-learning is a learning method that does not require pre-specified model
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 337–344, 2015.
DOI: 10.1007/978-3-319-26532-2 37
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of the environment. A Q-learning controller is able to learn relationship between
actions, states, and environment by interaction with the environment.

For the first time Thorpe [20] used reinforcement learning for traffic signal
control [22]. SARSA [17] was the reinforcement technique applied by Thorpe.

Abdulhai has several studies in this field. For example, Abdulhai et al. [2],
applied Q-learning as a traffic controller and performed the experiment for an
isolated intersection.

Prashanth and Bhatnagar, in [15] proposed the feature based reinforcement
learning for traffic signal controlling. It is claimed that using feature based state-
action algorithms made the technique useful to be applied in high-dimensional
setting of a multi-intersection network. In this work, it is mentioned that the
proposed method is against the prior work like Abdulhai et al. [2], that required
full state representation and was not practically possible to be implemented.
We have presented a review on applying reinforcement learning in traffic signal
controlling in [4].

In one of our previous work [6], Q-learning is applied for controlling traffic
signal timing for an isolated intersection. During [6], a Q-learning controller
developed based on Abdoos et al. [1] focusing on improving its deficiency. In
current paper, we extend our previous work for a multi-intersection network
while considering new options for improving its efficiency. Flexible cycle time,
broader range of possible green phase time, possibility to extend for different
size of urban traffic networks are the characteristics of the developed controller.

The rest of this paper is organized as: Section 2 for related background and
proposed traffic signal timing controller, explanation about experiments envi-
ronment and results discussion provided in Sect. 3, In Sect. 4 we conclude the
paper.

2 Q-learning for Traffic Signal Timing

2.1 The Q-learning Algorithm

Q-learning is an incremental reinforcement learning method. This method does
not need a model of the environment during learning, and it can be performed
online [18].

In Q-learning the agent choses action a, while considering relative value of
all possible actions in current state s. This value represents the Q-value or
Q(s,a) of action a in state s and leads to transition to state s′. The Q-value
is obtained gradually during the learning. To reach the value the Q-learning
agent needs to explore randomly various possible actions in each state. The agent
receives reward r(s,a) by performing action a in state s. The reward completely
depends on the effect of the action on the environment. During the learning
process, the agent aims to find the optimal policy that maximize the accumula-
tive reward. Considering reward or punishment depends on the problem. In the
case of punishment-based problem the agent aim to minimizes the accumulative
punishment over time.
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1: Initialize Q(s, a) arbitrarily
2: for all episode do
3: Initialize s
4: for all step of episode do
5: Choose a from s using policy derived from Q (e.g., ε-greedy)
6: Take action a, observe r, s′

7: Q(s, a) ← Q(s, a)+
8: α [r + γ maxa′ Q(s′, a′) − Q(s, a)]
9: s ← s′;

10: end for
11: end for

Fig. 1. The standard Q-learning algorithm based on [18].

The other factor that is generally considered in Q-learning is the discount
factor γ (0 ≤ γ ≤ 1). γ is applied for bounding the reward. This factor is useful to
consider higher value for short term reward compared to the long term ones in
problem domain with continuous episodes. The updating formula of Q-value
in learning process is presented in Eq. 1, and Fig. 1 describes the standard
Q-learning algorithm.

Q(st, at) ← Q(st, at) + α
(
rt + γ max

a∈A
Q(st+1, a) − Q(st, at)

)
(1)

where α (0 ≤ α ≤ 1) is the learning rate and γ (0 ≤ γ ≤ 1) is the discount
factor.

2.2 Proposed Developed Q-learning Controller

During our previous work [6], we developed a Q-learning controller for an iso-
lated intersection based on Abdoos et al.’s work [1] while it is considered to
improve the performance of their controller. In our current work, we designed
the enhanced version of our previous controller and extend it to be adopted in
a multi-intersection network.

The proposed systems in [1,6] were cycle-based, it means at the beginning
of each cycle the controller provide the green time for all phases. Noting this
fact that traffic situation is always changing during the time, the proposed green
time at the beginning of a cycle may not be suitable for next phases of the cycle.
In this regard, the current Q-learning controller is designed phase-based.

Here, a tabular Q-learning controller is designed. Each intersection has its
own controller. In this situation, each controller can has its own Q-table as well.
By this distributed design smaller Q-tables are required that leads to increase
of the convergence speed in Q-learning.

States are defined based on the number of vehicles. This number includes
the vehicles make queue at approaching links and to have collaboration with
neighbor intersections, each individual controller also considers the number of
vehicles are coming from the neighbor intersections. Four groups are considered
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Q-Learning 
Controller

(Traffic Signal Controller)

PARAMICS
(Traffic Simulator)

Traffic Data (number of vehicles)

Green Times (Action)

Delay of Cars (Reward)

Each Phase

Fig. 2. This figure shows the learning process during each traffic phase in a Q-learning
controller.

to categorized the vehicles’ length in different states: low, medium, high, and very
high. All states are made of combinations of these four groups for all approaching
links. As an example, for a junction with k approaching links we will have 4k

members in the state list. In our current case, we have 256 states for each isolated
junction with four approaching links.

The action list of the developed tabular Q-learning controller is composed
of these numbers: {10, 20, 30, 40, 50, 60, 70, 80}. Actions are the proposed green
time for the next phase. The Q-table for each Q-learning controller contains
256 × 80 cells.

The Q-learning controller uses inversely proportional to the average delay
time per vehicle in the traffic network at the end of each phase for all the
approaching links as the reward of the Q-learning. It means there is a higher
value for cases with a lower average delay.

During the process of training the obtained traffic information from the traffic
detectors (here this information is obtained from PARAMICS as a simulator)
are sent to Q-learning controller and the proposed green time for each phase is
provided in Fig. 2. The value of green times are selected from the possible green
time in action list previously mentioned.

The Q-learning controller is implemented for a multi-intersection traffic net-
work. The designed control system does not need a central controller for coop-
eration. Each controller receives the traffic data from its neighbors and set the
suitable green time for the next phase based on its current traffic condition and
the incoming vehicles from the neighbors.

3 Experiments Environment and Results Discussion

Evaluation is done in a network of nine intersections designed in PARAMICS
Fig. 3.b. All intersections are 4-way with four phases, as shown in Fig. 3.a. The
simulation model is set up in PARAMICS version 6.8. and all controllers are
implemented in Matlab R2011b.

Three different traffic scenarios with different number of vehicles in the
network are considered for evaluating the performance of the controllers.
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Fig. 3. a. An intersection with four phases.; b. A network of nine intersections. Zones
are the area vehicles released to the intersection.

Scenario 1, 2, and 3 has about 700, 1000, and 1400 vehicles for 15 min of simu-
lation respectively.

In addition, three different seed numbers are involved in each testing sce-
nario. Accordingly, there are nine different test simulations performed for each
controller.

There are in total nine controllers in the network each designed and dedicated
to one intersection. As it is mentioned previously, to balance the traffic in the
network, each controller consider its own traffic congestion and the number of
arrival vehicles from neighbor intersections in its estimation of next phase green
time calculation.

As it is mentioned in previous section, the developed Q-learning control sys-
tem has 256 states for each controller with four approaching links. In addi-
tion, action list is composed of eight values 10, 20, ..., 80 which shows possible
green times for Q-learning controller. For the Q-learning controller with ε-greedy
method, a decreasing ε between 0.9 and 0.1 is considered, α (learning rate) is set
to 0.1, and γ (discount factor) is set to 0.9. The reward function is defined as:

Reward =
1

mean(
∑4

i=1 di) + 1
(2)

where i = 1, . . . , 4 is the number of approaching links, d is the calculated delay
time for each link, and +1 is to refuse zero in denominator.

Fixed-time controller or pre-timed controller is a common benchmark for
evaluating the performance of controllers. Therefore, three fixed-time controllers
are also developed as benchmarks. Their phase green times are set to 20, 50, and
80 seconds respectively. Each fixed-time controller, benefits constant amount of
time for all of its green phase. This property of fixed-time controllers, decreases
its flexibility. During this work, by considering three different fixed-time con-
trollers it is attempted to have a more comprehensive comparison.

In Tables 1, 2, 3, 4, the average delay per vehicle for each of the test scenario
is presented. Obtained results show the superiority of Q-learning controller over
the three fixed-time controllers. Furthermore, it can be concluded that fixed-
time controllers with different green phase time present different performances.
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Table 1. Average delay time per vehicle in the network for Q-learning controller (times
are presented in second)

Q-learning Scenario1 Scenario2 Scenario3

Seed1 34.7 35.1 38.1

Seed2 52.1 46.3 54.9

Seed3 77.5 83.6 86.1

Table 2. Average delay time per vehicle in the network for fixed-time20 controller
(times are presented in second)

Fixed-time20 Scenario1 Scenario2 Scenario3

Seed1 55.5 53.8 58.3

Seed2 69.5 65.5 76.8

Seed3 99.8 98.2 104.5

Table 3. Average delay time per vehicle in the network for fixed-time50 controller
(times are presented in second)

Fixed-time50 Scenario1 Scenario2 Scenario3

Seed1 69.7 68.0 72.9

Seed2 78.6 77.6 83.2

Seed3 103.5 102.2 106.6

Table 4. Average delay time per vehicle in the network for fixed-time80 controller
(times are presented in second)

Fixed-time80 Scenario1 Scenario2 Scenario3

Seed1 84.7 86.3 91.1

Seed2 90.6 92.1 92.4

Seed3 110.91 105.6 108.8

Accordingly, results prove the lack of flexibility for fixed-time controller to adapt
to traffic demand.

Calculating the performance of the Q-learning against the fixed-time con-
trollers in three different scenarios shows its superiority by 49.48 %, 36.65 %,
and 21.12 % against scenario 1,2, and 3 in respect. For obtaining these results
we compare the average performance of Q-learning controller for different seeds
against the average performance of different fixed-time controllers in different
seed numbers. The bars show the performance of Q-learning controller in three
different scenarios is higher than average performance of different fixed-time
controllers.
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In overall, it can be calculated that the performance of the developed
Q-learning controller in nine different test traffic simulation is about 35.75 %
higher than the designed fixed-time controllers.

4 Conclusions

One of the important issues regarding to the problems use Q-learning is about
managing the huge amount of state-action space. Here, by categorizing possible
states in groups we reduced the number of states. In addition, we developed a
distributed controller and each intersection controls its own traffic congestion
while considering arrival traffic from neighbor intersections. In future, we will
propose an efficient method for optimal categorizing in state definition instead
of the manual one used here. In addition, finding the optimal reward definition
is another future plan.
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Abstract. A novel method for learning a linear multilayer feedforward
artificial neural network (ANN) by using ensembles of boosted decision
stumps is presented. Network parameters are adapted through a layer-
wise iterative traversal of neurons with weights of each neuron learned
by using a boosting based ensemble and an appropriate reduction. Per-
formances of several neural network models using the proposed method
are compared for a variety of datasets with networks learned using three
other algorithms, namely Perceptron learning rule, gradient decent back
propagation algorithm, and Boostron learning.

1 Introduction

The single-layer Perceptron of Rosenblatt [6], as shown in Fig. 1(a), is a sim-
ple mathematical model for binary classification of patterns. It takes an input
feature vector pattern x̄ = [x0, x1, x2, . . . , xm] and computes the class of the
input pattern by taking its dot product with an internally stored weight vector,
W̄ = [w0, w1, w2, . . . , wm]. The input component x0 is permanently set to −1
and represents the external bias with weight w0 representing the magnitude of
the bias. The output, y, of a Perceptron is mostly computed using a non-linear
activation function such as sign and can be written as:

y = sign
(
W̄ .x̄

)
= sign

(
m∑

i=0

wi.xi

)

(1)

A supervised-learning algorithm uses n labeled training examples of the form
(x̄i, yi) i = 1 . . . n to select an optimal set of weights W̄ of a given Perceptron. For
example, the well-studied Perceptron learning algorithm initializes the weight
vector to zeros or small random values and iteratively modifies these weights for
each misclassified training example (x̄i, yi) using the Perceptron learning law:

W̄new = W̄old + η.(yi − yi
′).x̄i (2)
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where η is a pre-specified constant known as learning rate. The algorithm con-
tinues until either the mean-squared error over the training data becomes less
than a given threshold, γ, or a maximum number of iterations is reached [7]. To
handle a multi-class problem, a Perceptron structure similar to that shown in
Fig. 1(b) is used. Each output neuron represents a single class and its weights
are adapted independently using the binary encoding of the classes.

Fig. 1. Typical structure of a single-layer Perceptron

Recently an effective learning algorithm, known as Boostron [1], has been pro-
posed for learning weights of a single-layer Perceptron using a real-valued variant
of AdaBoost algorithm [8]. AdaBoost algorithm constructs an accurate classifier
ensemble using a moderately accurate classification algorithm. AdaBoost selects
a number of base classifier instances hk by modifying a weight distribution main-
tained on the training examples. It also computes a weight, αk, of each selected
classifier, hk, and constructs a classifier ensemble using a linear combination of
the selected classifiers as given by:

H(x̄) = sign

(
T∑

k=1

αk.hk(x̄)

)

(3)

Boostron uses homogenous coordinates to represent a decision stump [4] as a dot
product of a weight vector w̄ and the homogenous representation of the instance
x̄ as X̄ using sw(x) = w̄T .X̄. It uses this form of a decision stump as base learner
in AdaBoost [1] to learn a Perceptron given by

H(x̄) = sign
(
W̄ .x̄

)
(4)

where W̄ =
∑T

k=1

(
αk.w̄T

k

)
= [w1, w2, . . . , wm+1], is the weighted sum of weight

vectors w̄T
k learned using decision-stump learning algorithm.

A generalization of Boostron to learn parameters of a feedforward multilayer
neural network is not obvious. This problem is addressed in this paper and a
more general approach for learning a two-layer linear ANN is presented. The



Learning Rule for Linear Multilayer Feedforward ANN 347

proposed extension of the Boostron uses a transformed set of examples and an
iterative approach to optimize weights of neurons in the network.

The proposed method has been used to learn ANN for several binary and
multiclass classification tasks taken from the UCI machine learning repository
[5] and the results are compared to ANN trained using Boostron, Perceptron
learning and back-propagation learning algorithms.

Section 2 presents a detailed description of the proposed method. Experimen-
tal settings and the corresponding results are presented in Sect. 3. Finally, Sect. 4
concludes the paper and highlights some future directions.

Fig. 2. Multilayer feedforward neural network

2 Generalized Boostron

This section presents the proposed extension to learn a feedforward ANN having
a single hidden layer of neurons, a linear activation function, and a single neuron
at the output layer. A more general form is presented later to handle multiclass
problems.

To present the proposed method, it is assumed that inputs of a neuron at
layer l are denoted by xl

0, xl
1,..., xl

k, . . ., xl
n respectively where xl

0 is permanently
set to −1 and represents the bias term. In this notation, the superscript denotes
the layer number and the subscript denotes the input feature number where
n is the total number of neurons in the previous layer (i.e. layer l − 1). The
corresponding weights of the jth neuron at layer l are denoted by wl

j0, wl
j1, . . .,

wl
jk,. . . , wl

jn where the term wl
jk for k ∈ {1, ..., n} is the weight of the connection

from the kth input from the previous layer to jth neuron, and wl
j0 is the bias

term of jth neuron at layer l.
A two-layer feedforward neural network with a set of n input neurons

{I1, . . . , In} at layer 0, m hidden neurons {H1, . . . , Hm} at layer 1 and a single
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output neuron O1 at layer 2 is shown in Fig. 2. Assume the function f l
k denotes

the activation function of the kth neuron in the lth layer. The output, O, of this
neural network is computed as follows:

O = f2
1

(
m∑

k=0

w2
1k.x

2
k

)

(5)

where f2
1 denotes the activation function of neuron 1 at layer 2. Each neuron

in the network is either an output neuron or a hidden neuron, therefore the
proposed algorithm uses two reductions:

– Learning an output neuron is reduced to that of Perceptron learning.
– Learning a hidden neuron is reduced to that of Perceptron learning.

These reductions are iteratively used to learn weights of each neuron in a given
neural network. The details of each is explained in the following subsections.

2.1 Learning Weights of an Output Neuron

To reduce the problem of learning an output neuron into a problem of learning
a Perceptron, each training example (x̄i, yi) is transformed into a new training
example (x̄2

i , yi) by computing the output of each hidden layer neuron using
its present weights. For example, in an ANN with d hidden neurons in a single
hidden layer, for each training instance x̄i ∈ Rm a new training instance x̄2

i ∈ Rd

is computed using the hidden-layer neurons with each component of the vector x̄2
i

corresponding to the output of exactly one of the hidden neuron. The Boostron
algorithm is then used to learn the weights of the output neuron using the
transformed training examples (x̄2

i , yi), i = 1...N .

2.2 Learning Weights of a Hidden Neuron

To learn the weights, {w1
j0, w

1
j1, . . . , w

1
jn}, of the jth hidden neuron Hj while

keeping the rest of network fixed, Eq. 5 is written as:

O = f2
1

⎛

⎝w2
1j .x

2
j +

m∑

k=0,k �=j

w2
1k.x

2
k

⎞

⎠ (6)

Here, the term x2
j is the output of the hidden neuron Hj and can be written as

a combination of the inputs from layer 0 and the weights of the neuron Hj as:

x2
j = f1

j

(
n∑

i=0

w1
ji.x

1
i

)

(7)

Substituting this value of x2
j in Eq. 6 gives:

O = f2
1

⎛

⎝w2
1j .f

1
j

(
n∑

i=0

w1
ji.x

1
i

)

+
m∑

k=0,k �=j

w2
1k.x

2
k

⎞

⎠ (8)
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When both activation functions are linear, the above equation can be written as:

O = w2
1j .

n∑

i=0

w1
ji.f

2
1

(
f1
j

(
x1
i

))
+ f2

1

⎛

⎝
m∑

k=0,k �=j

w2
1k.x

2
k

⎞

⎠ (9)

If C = f2
1

(∑m
k=0,k �=j w2

1k.x
2
k

)
denotes the output contribution of all hidden

neurons other than the neuron Hj and Xj
i = f2

1

(
f1
j

(
x1
i

))
denotes the inputs

transformed using the activation functions, Eq. 9 can be written as:

O = w2
1j .

n∑

i=0

w1
ji.X

j
i + C (10)

A method of learning the weights of the hidden neuron Hj can be obtained by
ignoring the effect of fixed constant term C and the scale term w2

1j on the overall
output by rewriting Eq. 10 as:

O =
n∑

i=0

w1
1i.X

j
i (11)

As the form of this equation is exactly equivalent to the equation of a Perceptron,
the Boostron learning algorithm [1] can be used to learn the required weights,
w1

ji, i = 0, 1, . . . , n, of a hidden neuron.
Algorithm 1 uses the above reductions and outlines a method of iterating

over the neurons of a linear feedforward ANN. The algorithm randomly initial-
izes all weights in the interval (0, 1) and assigns a randomly selected subset of
features to each hidden-layer neuron so that the hidden neuron uses only these
features to compute its output. Such a random assignment is the key difference
between a simple Boostron and the proposed method. It causes each hidden neu-
ron to use a different segment of the feature space to learn its weights. After this
initialization, the algorithm iterates between the hidden layer and the output
layer neurons in order to learn the ANN. At the hidden layer, the algorithm
iterates over the hidden neurons and compute their weights in step 5 and step
6 by using the transformed training examples computed in step 4. The trans-
formed training examples are computed using the reduction given in Eq. 11. The
weights of each hidden neuron are computed using the Boostron algorithm while
keeping the weights of all remaining neurons fixed. These hidden neuron weights
are then used to transform the training examples (x̄i, yi), i = 1...N into new
training examples (x̄2

i , yi), i = 1...N which are subsequently used to learn the
output neuron using Boostron. This whole process is repeated a number of times
specified by the input parameter T .

2.3 Learning a Multiclass Classifier

The algorithm for learning a feedforward ANN, as presented above, can only
be used with networks having a single output neuron and working as binary
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Algorithm 1. ANN learning using AdaBoost and fixed targets
Require: l Training examples (x̄1, y1) . . . (x̄l, yl) where

x̄k is a training instance and yik ∈ {−1,+1}
T is the number of iterations over ANN layers

1: Randomly initialize all weights in the range (0 1)

2: Randomly assign features to each hidden neuron.

3: for j = 1 to T do

4: Compute Transformed training examples
(
X̄k, yk

)
, k = 1, 2, . . . , l where X̄k =

[Xj
0 , X

j
1 , . . . , X

j
n] and the component Xj

i = f2
1

(
f1
j

(
x1
i

))

5: for Each Neurons Hj in the Hidden Layer do

6: Use the Boostron algorithm and the training examples
(
X̄k, yk

)
, to learn the

weights w1
1i for i = 0, 1, . . . , n

7: end for
8: Compute Transformed training examples

(
X̄2

k , yk
)
, k = 1, 2, . . . , l where X̄2

k =
[x2

0, x
2
1, . . . , x

2
n] and the component x2

j = f1
j

(∑n
i=0 w

1
1i.x

1
i

)

9: Use the Boostron algorithm and the training examples
(
X̄2

k , yk
)
k = 1, 2, . . . , l,

to learn the weights w2
0, w

2
1, . . . , w

2
m, of the output neuron O1

10: end for
11: Output the learned ANN weights.

classifiers. Several simple methods for reducing a multiclass learning problem
into a set of problems involving binary classification are in common use. Such
methods include the binary encoding of classes using error correcting codes [2],
the all-pairs approach of Hastie and Tibshirani [3] and a simple approach of one-
versus-remaining coding of classes. For each bit in the binary code of classes, a
binary classifier is trained and the outputs of all binary classifiers are combined,
e.g. using hamming distance, to produce a final multiclass classifier. This paper
uses one-versus-remaining coding of classes (+1 for the class and −1 for the
remaining classes) to reduce a k-class classification into k binary classification
problems.

3 Experiments and Results

A description of datasets, experimental settings and results obtained is presented
in this section. Performance of the proposed method is compared to networks
trained using three learning algorithms including back propagation learning,
Boostron algorithm, and Perceptron learning algorithm.

3.1 Datasets Description and Experimental Settings

A summary of six binary and five multiclass classification datasets, from the
UCI machine learning repository [5], used to evaluate the proposed method, is
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Table 1. Summary of datasets used in our experiments

Data set Name Total Feature Training Set Test Set Total classes

Balance scale 4 625 c.v 3

Breast cancer 30 569 c.v 2

Spambase 57 4601 c.v 2

Two norm 20 2000 2000 2

Three norm 20 1000 2000 2

Ring norm 20 2479 2442 2

Iris 3 150 c.v 3

Lung cancer 56 27 c.v 3

Forest fire 5 500 c.v 3

Glass 10 214 c.v 7

Vowel 10 528 468 11

presented in Table 1. To estimate the test error rate, 10-fold cross validation
(c.v.) has been used for datasets without explicit division into training and test
sets.

For each learning problem, an ANN having 15 neurons in a single hidden
layer and linear activation function (i.e., f(x) = x) for each neuron has been
trained.

3.2 Results

The first set of results, shown in Table 2, compares the performance of the pro-
posed method for the six binary classification problems given in Table 1. Com-
parisons are based on the overall error rate of trained ANN using the proposed
method, back propagation learning algorithm, Boostron learning algorithm and
Perceptron learning algorithm.

Table 2. Overall error rate for linear ANN with 15 hidden neurons

Data set Proposed Back-Propagation Boostron Perceptron

Balance scale 4.82 4.79 7.32 9.73

Spambase 10.58 11.45 24.67 39.43

Ionosphere 13.31 13.68 24.09 17.10

Two norm 2.15 2.05 2.25 5.0

Three norm 18.25 17.4 29.05 35.7

Ring norm 22.29 24.53 46.71 31.58

Both the proposed method and the well-studied back propagation perform
much better than the Perceptron and Boostron learning algorithms. Moreover,
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the proposed method has very similar results to the well-studied back propaga-
tion algorithm with slightly better performance in case of Spambase, Ionosphere
and Ringnorm dataset.

For multiclass classification, a separate neural network was trained for each
class using one-versus-remaining encoding of classes, therefore k different neural
networks are created for a k-class learning problem. For an instance x, the class
corresponding to the neural network producing the highest positive output is
predicted as the class of x. To test and compare the performance in this case, a
second set of results compares the error rate for the proposed method versus the
back propagation algorithm for five multiclass learning problems. The attained
results are shown in Table 3.

Table 3. Comparison of overall average error rate for ANN with 15 hidden neurons

Data set Proposed Back-Propagation

Iris 5.33 7.33

Forest fire 13.6 18.4

Glass 18.39 10.32

Vowel 6.25 1.73

Lung cancer 26.67 41.67

Figure 3 presents a further comparison of the proposed method with the back
propagation algorithm for datasets having no explicit division into training and

Fig. 3. Test error rate per fold
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test sets. The figure plots a fold-wise comparison of the two methods for each
of the 10 folds of training data. It reveals that the proposed method mostly
gives improved accuracy. For binary classification problems, the improvement
is significant for the spambase dataset. For multiclass problems, the proposed
method has better accuracy in the case of iris and lung cancer datasets.

4 Conclusions

This paper presented a method for learning a two-layer feedforward ANN with
linear activation functions. The proposed method reduces the problem of learning
weights of a hidden layer neuron into that of learning a single-layer Perceptron,
then it generalizes the Boostron algorithm to determine the weights. The pro-
posed method has been modified to work with the multiclass problems as well.
Using eleven datasets of various characteristics, the performance of the proposed
method is empirically evaluated and compared to that of back-propagation,
Boostron, and Perceptron learning algorithms. The results demonstrate the effec-
tiveness of the proposed method. As future work some modifications need to be
considered for learning an ANN with arbitrary non-linear activation function
and multiple hidden layers.
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Abstract. This paper proposes a new color-texture texton based approach for
roadside vegetation classification in natural images. Two individual sets of
class-semantic textons are first generated from color and filter bank texture
features for each class. The color and texture features of testing pixels are then
mapped into one of the generated textons using the nearest distance, resulting in
two texton occurrence matrices – one for color and one for texture. The clas-
sification is achieved by aggregating color-texture texton occurrences over all
pixels in each over-segmented superpixel using a majority voting strategy. Our
approach outperforms previous benchmarking approaches and achieves 81%
and 74.5% accuracies of classifying seven objects on a cropped region dataset
and six objects on an image dataset collected by the Department of Transport
and Main Roads, Queensland, Australia.

Keywords: Object classification � Roadside vegetation � Image segmentation �
Texture feature

1 Introduction

Roadside vegetation analysis is of great significance for many applications, such as
vegetation growth monitoring and fire-prone area identification. Although vegetation
has received extensive attention in the fields of remote sensing and agriculture using
satellite and aerial data, vegetation classification on roadside data is a relatively less
investigated field. Previous work can be broadly grouped into visible approaches which
analyze visual characteristics of vegetation and invisible approaches which focus on the
use of the spectral properties of chlorophyll-rich vegetation such as Vegetation Index
(VI). It is still a challenging task to select suitable visible features or design reliable VIs
for real-world conditions, due to substantial variations in the environment.

Recently, textons have demonstrated a compact and effective representation of
visual characteristics for object categorization. The textons are often generated from
filter bank features and further aggregated to form a histogram profile for each image.
Texton based approaches have been successfully applied into natural scene under-
standing [1, 2], but have seldom used for roadside vegetation classification [3].

A new color-texture texton based approach is proposed in this paper for roadside
vegetation classification. It generates class-semantic textons of color and filter bank
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responses from the training data, which represent the intrinsic features learnt for each
class. Features in a testing image are quantized into one of the learnt textons. The
classification is then performed by aggregating texton occurrences over each superpixel
using a simple yet effective majority voting strategy. We demonstrate promising per-
formance of the approach in classifying objects on two natural datasets.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the proposed approach. The experiments are presented in Sect. 4
and finally Sect. 5 draws the conclusions.

2 Related Work

The visible approaches utilize visual characteristics of vegetation in the visible spec-
trum to distinguish them from others. An early study was described in [4], which
extracted color, texture, shape, size, centroid and contextual features of segmented
regions for object classification including vegetation. Except for color, a popular fea-
ture is the intensity difference between pixels, which was combined with a 3D Gaussian
model of YUV channels for the detection of grass regions [5], and with L, a, and
b components for the segmentation of roadside objects such as grass and tree [3]. Other
features include neighborhood statistic [6], entropy [7], superpixel-based texture [8],
and 2D-Discrete Fourier Transform [9]. Most visible approaches are restricted to
vegetation versus non-vegetation classification, and there still lacks a common feature
set that can work well for natural conditions.

The invisible approaches use the spectral properties of chlorophyll-rich vegetation
in the invisible spectrum, particularly VIs such as red and near infrared ray
(NIR) reflectance [10]. Extensions have been made to the NIR, including the nor-
malized difference vegetation index (NDVI) [10], the modification of NDVI (MNDVI)
[11], and combination of NDVI and MNDVI [12] to achieve robustness against illu-
mination variations. Invisible and visible features were also fused for vegetation
detection [13, 14]. Invisible approaches often require specialized data capturing
equipment, which limits its direct adoption in applications, and also face the challenge
of designing reliable VIs for natural conditions.

Texton based approaches employ textons of filter bank responses or other feature
descriptors for object representation. A set of universal texture textons was generated
using 17-D filter banks in [15], showing high accuracy of classifying real-world
objects. The textons have been extended to textonboost [16], hierarchical bag-of-
textons from multibands [2], and histograms of textons of color and intensity differ-
ences [3], etc. Most texton based approaches build generic textons for all classes and
then form a texton histogram profile for each image. However, generic textons may not
be effective to capture class-specific characteristics and histogram representations may
fail in small images due to too sparse histogram bins. This paper investigates the use of
class-specific textons for vegetation classification. The most similar work to ours is [1],
which created a set of class-semantic SIFT words for scene understanding. We extend
this work by integrating color textons.
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3 Proposed Approach

The proposed approach consists of two stages (1) Training Stage and (2) Testing Stage.
An overview of the framework for the proposed approach is shown in Fig. 1. During
the training stage, an equal set of local regions is manually cropped from the training
images for each class. Color and filter bank responses are then extracted from these
regions, which are further fed into K-means clustering to generate two individual sets
of class-semantic color and texture textons for each class. During the testing stage, the
input image is first segmented into a group of superpixels. The color and filter bank
features are then extracted and mapped separately into one of the learnt textons using
the Euclidean distance, forming color-texture texton occurrence matrices – one for
color and one for texture. A superpixel based majority voting is employed to assign
each superpixel to a class which has the maximum occurrence of color-texture textons.

3.1 Color and Texture Feature Extraction

The selection of a suitable color space for effective vegetation representation remains a
challenging task. This paper adopts the CIELab, which has high perceptually consis-
tency with human vision and good performance on scene understanding [2]. We also
include RGB as it may contain complementary information for specific objects. For a
pixel at the coordinate (x, y) in an image, its color feature is composed of:

Vc
x;y ¼ hR;G;B; L; a; bi ð1Þ

For a more discriminative feature representation, we also include texture features.
This paper uses 17-D filter banks [15], due to their high accuracy for texture-rich object
classification. The filter banks include Gaussians with 3 different scales (1, 2, 4) applied
to L, a, and b channels, Lapacians of Gaussians with 4 different scales (1, 2, 4, 8) and

Fig. 1. Framework of the proposed approach.
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the derivatives of Gaussians with two different scales (2, 4) for each axis (x and y) on
the L channel. For a pixel at (x, y), its texture feature is composed of:

Vt
x;y ¼ GL

1;2;4;G
a
1;2;4;G

b
1;2;4;LOG

L
1;2;4;8;DOG

L
2;4;xDOG

L
2;4;y

D E
ð2Þ

3.2 Class-Semantic Color-Texture Texton Generation

Unlike existing approaches that generate a universal vocabulary for all classes, this
paper extracts a set of class-semantic textons to reduce confusions between classes.

Assume there are C classes and n training pixels in the ith class (i = 1, 2, …, C). Let
Vc
i and Vt

i be the color and texture features respectively for the ith class, the K-means
algorithm is used to learn a set of textons for each of Vc

i and Vt
i by minimizing:

Jc ¼
Xn

j¼1
min
k

Vc
i;j � Tc

i;k

���
���
2

ð3Þ

where, Vc
i;j is color features of the jth pixel in Vc

i , T
c
i;k is the kth color textons learnt

(k = 1, 2,…, K) for the ith class, and Jc is the error function. The i
th class-semantic color

and texture texton vectors are composed of:

Tc
i ¼ Tc

i;1;T
c
i;2; . . .; T

c
i;k

D E
and Tt

i ¼ Tt
i;1;T

t
i;2; . . .; T

t
i;k

D E
ð4Þ

For all C classes, a color and a texture texton matrix can be formed respectively:

Tc ¼
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The two matrices contain color and texture textons for all C classes learnt from
training data, and are used for distinguishing between objects in testing data.

3.3 Texton Occurrence and Superpixel-Based Voting

For all pixels in a testing image, they are first mapped into one of the learnt textons and
a superpixel based majority voting is then adopted to label each superpixel with the
class which has the maximum occurrence of textons over all classes.

For an image I, it is first segmented into a set of superpixels using [17]:
S ¼ S1; S2; . . .; SLh i, where, L is the number of segmented superpixels, and Sl stands for
the lth superpixel. For Sl, its color and texture features can be extracted using (1) and (2)
respectively, i.e. Vc

Sl ¼
S

x;y2Sl V
c
x;y and V

t
Sl ¼

S
x;y2Sl V

t
x;y. The V

c
Sl and V

t
Sl are mapped to

the learnt class-semantic color and texture textons respectively by finding the closest
texton using the Euclidean distance:
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f Vc
x;y; T

c
i;k

� �
¼ 1; if jjVc

x;y � Tc
i;kjj ¼ min

q¼1;2;...C;p¼1;2;...;K
jjVc

x;y � Tc
q;pjj

0; otherwise

(
ð6Þ

A color texton occurrence matrix which accounts for the number of the mapped
textons Tc

i;k for all pixels in Sl can be obtained: Ac
i;k Slð Þ ¼ P

x;y2Sl fðVc
x;y; T

c
i;kÞ. The

values in the matrix are accumulated for the ith class, yielding the color confidence of Sl
belonging to this class: Ac

i Slð Þ ¼ PK
k¼1 A

c
i;k Slð Þ. The color confidence is further com-

bined with the texture confidence using a simple summation strategy:
Ai ¼ a � Ac

i Slð Þþ b � At
i Slð Þ, where, a and b are weights and fixed to 0.5, and At

i Slð Þ is
the texture confidence. The Sl is finally assigned to the cth class which has the maxi-
mum confidence over all classes: Sl 2 cth class if Ac ¼ maxi¼1;2;...C Ai.

4 Experiments and Comparative Analysis

The proposed approach is evaluated on two datasets using four metrics – global accu-
racy over all classes, class accuracy over each class, as well as pixel- and region-level
accuracies which are the percentages of pixels and regions correctly classified.

4.1 Evaluation Datasets

Two datasets were created from the video collected by the Department of Transport and
Main Roads, Queensland, Australia. The video was captured using a left-view camera
mounted on a vehicle, which runs across main roads in Queensland. The first dataset is
composed of 650 regions manually cropped from video frames for seven objects,
including brown grass, green grass, road, soil, tree leaf, tree stem, and sky. As shown in
Fig. 2, it is ensured that each region belongs to only one object and there are substantial
appearance variations between regions. The second dataset includes 50 frames that
contain different types of vegetation and other objects. Pixelwise ground truths
regarding the presence of seven objects, including brown grass, green grass, road, soil,
tree, sky, and unknown objects, were manually annotated. The two datasets are pub-
licly accessible at https://sites.google.com/site/cqucins/projects.

4.2 Global Accuracy

Figure 3 shows the global accuracy on two datasets. For both datasets, using
color-texture textons leads to slightly higher accuracy than using color or texture
textons alone. The highest global accuracy of 81.0% is obtained for the cropped dataset
using 80 color-texture textons, and 74.5% for the image dataset using 90 color-texture
textons. When color textons are used alone, the highest accuracy is obtained using 80
and 70 textons respectively on the two datasets. The number of textons for the highest
accuracy is the same (i.e. 90) for the two datasets when texture textons are used alone.
When tested on the cropped data, region-level classification has much higher accuracy
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(about 7%) than pixel-level classification for both the cases of using color or texture
textons. This is within our expectation as region-level classification assigns a class label
to a region by utilizing collective decision information over all pixels in the region,
which is more robust than pixel-level classification.

4.3 Global Accuracy Versus Size of Gaussian Filters

Table 1 reveals the impact of the size of Gaussian filters on the global accuracy. Four
methods are included: pixel- and region-level classification using texture textons
(Texture-P and Texture-R) and using color-texture textons (Color-Texture-P and
Color-Texture-R). For all methods and both datasets, there are only small differences in
the accuracy using different sizes of Gaussian filters, but small sizes appear to slightly
outperform higher sizes. The highest accuracy is achieved using the sizes of 5 * 5 and
7 * 7 respectively for the two datasets. This implies that a small size of Gaussian filters
is capable of capturing the most discriminative features.

Fig. 2. Samples of cropped regions for seven objects. Note substantial variations in the
appearance within the same object, as well as between objects (e.g. green grass and tree leaf).
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Fig. 3. Pixel- and Region-level accuracies of using color textons, texture textons, and their
fusion on the cropped region (left), and Pixel-level accuracy on the natural image data (right).
The same number of color and texture textons is used, and Gaussian filters are 7 * 7 pixels.
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4.4 Class Accuracy

Table 2 displays the confusion matrix for different objects. For both datasets, sky is the
easiest one for classification with around 96% accuracies, which is followed by road.
By contrast, soil is the most difficult one with only 60% and 44.7% accuracies
respectively on two datasets. More than 30% of soil pixels are misclassified to brown
grass, and more than 17% tree pixels are misclassified to road, probably due to the
similarity of color between them. For the image dataset, brown and green grasses are
also prone to be misclassified to each other. The results imply the necessity of
designing more discriminative texture features to distinguish between them.

4.5 Performance Comparisons

Table 3 compares the proposed approach with two other approaches on the cropped
dataset. The generic texton approach generates a universal set of textons for all classes
using K-means clustering, and classifies an image by comparing its texton histogram
with that of each class. For fair comparison, the same color and texture features as in
this paper are used. The second approach is based on color intensity and moment
features [18]. It can be seen that using class-semantic textons leads to more than 21%
and 2% higher accuracies than using generic textons and color features respectively,
confirming the benefit of considering class-semantic textons.

Table 1. Accuracy (%) versus size of Gaussian filters (color no. = 70 or 80, texture no. = 90).

Dataset Approach 5 * 5 7 * 7 9 * 9 11 * 11 13 * 13 15 * 15

Cropped Color-Texture-R 82.8 80.9 80.6 80.9 80.8 80.9
Texture-R 82.5 79.7 80.6 81.2 81.1 79.6
Texture-P 72.7 72.7 71.7 72.2 72.6 71.7

Image Color-Texture-P 74.2 74.5 73.7 73.7 74.4 74.0
Texture-P 73.3 73.3 72.2 72.4 72.7 72.5

Table 2. Confusion matrix for different classes using color-texture textons.

Cropped dataset Image dataset
BG GG RD SL TL TS Sky BG GG RD SL Tree Sky

BG 94.0 0 2.0 4.0 0 0 0 73.2 15.5 2.8 3.3 5.2 0.0
GG 0 90.0 0 0 10.0 0 0 7.9 79.9 2.3 0.7 9.2 0.0
RD 0 0 88.0 0 0 10.0 2.0 6.8 0.6 85.0 6.7 0.2 0.7
SL 30.0 0 2.0 60.0 2.0 4.0 2.0 37.8 5.7 10.3 44.7 1.5 0.0
TL 0 10.0 0 0 84.0 6.0 0 5.4 5.4 17.9 0.3 68.1 2.9
TS 2.0 0 20.0 2.0 2.0 74.0 0
Sky 0 0 0 4.0 0 0 96.0 0.2 0.0 2.6 0.2 0.4 96.6

Note: BG – brown grass; GG – green grass; RD – road; SL- soil; TL – tree leaf; TS –

tree stem.
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5 Conclusions

This paper proposes a texton based approach for vegetation classification on natural
roadside images. It learns class-semantic color-texture textons for more effective rep-
resentation of class specific features from training data, and then map features of all
pixels into the learnt textons. A superpixel based majority voting is used to label each
superpixel by aggregating the occurrence of color-texture textons. We achieve the
highest accuracies of 81% and 74.5% on two natural datasets. For robust classification
in natural conditions, our results indicate that it is desirable to consider more dis-
criminative features for the classification of road and tree, as well as soil and brown
grass. Our future work will further improve the results by using summary statistical
features over superpixels to generate more robust descriptors of objects.
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Abstract. In the pattern recognition field and especially in the Handwriting
recognition one, the Deep learning is becoming the new trend in Artificial Intel‐
ligence with the sheer size of raw data available nowadays. In this paper, we
highlights how Deep Learning techniques can be effectively applied for recog‐
nizing Arabic handwritten script, our field of interest, and this by investigating
two deep architectures: Deep Belief Network (DBN) and Convolutional Neural
Networks (CNN). The two proposed architectures take the raw data as input and
proceed with a greedy layer-wise unsupervised learning algorithm. The experi‐
mental study has proved promising results which are comparable or even superior
to the standard classifiers with an efficiency of DBN over CNN architecture.

Keywords: Recognition · Arabic handwritten script · DBN · CNN ·
Unsupervised learning

1 Introduction

In recent years the classification systems based on deep networks and their derivatives
such as Deep Boltzmann Machine (DBM), Stacking Auto-Encoder (SAE), Deep Neural
Networks (DNN), Deep Belief Network (DBN) and Convolutional Neural Networks
(CNN) have proven their performance and accuracy in a broad area of applications
namely in speech recognition [1] and image recognition [2–5]. Recently, it has gained
success in optical character recognition in Latin and Asian languages [6, 7].

We noted that such approaches have not been applied yet to the handwritten Arabic
field. Therefore, we study here two of the above methods: the DBN and CNN, to study
the potential benefits of this Deep learning on working with raw data without feature
extraction. And thus, by analyzing the error classification rates on the Arabic handwritten
characters classification task.

We start our study by overviewing existing research works on handwritten Arabic
script recognition. Indeed, a fast review of the literature shows that relatively limited
applications are based on Deep Neural Networks [8, 9]. The major works were using
only fuzzy approaches or statistical approaches [10]. During the last three decades,
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HMMs were widely used. Indeed, El Abed and Margner [11] presented a system based
on the HMM classifier. They applied sliding approach for extracting the pixel features.
They used the skeleton direction based feature extraction technique where each word
image was splitting into uniform vertical frames and each word image was split into
five horizontal zones with equal height. Al-Hajj et al. [12] used a similar sliding window
for features extraction. Their system relies on combining three homogeneous HMM
classifiers having the same topology in order to make the system more efficient.
Benouareth et al. [13, 14] presented a system based on semi-continuous hidden Markov
models using statistical and structural features.

Another classifier which is used extensively is Support Vector Machines (SVM).
Chen et al. [15] presented a recognition system using SVM. They demonstrate the
efficiency of Gabor features over the previous used features techniques. Later, Hamdi
et al. [16] proposed a new system for handwritten isolated Arabic characters using Prin‐
cipal component analysis and SVM classifier. The features used in this work consist of
moment and Fourier descriptor of profile projection and centroid distance.

The Long Short-Term Memory and the Connectionist Temporal Classification
neural networks were used by Chherawala et al. [17]. They argue their use by their ability
to automatically learn features from the input image. The system has been used for
recognition Arabic isolated handwritten word and validated using the IFN/ENIT data‐
base. And recently, Porwal et al. [18] proposed a system using DBN for feature enhance‐
ment which incrementally learns complex structure of the data by representing it in a
more compact and abstract manner. They applied this model for Arabic character recog‐
nition on raw data and on extracted features using GSC and Gabor features.

Thereby, works using Deep architectures are relatively scarce on handwriting recog‐
nition. That is why we investigate on using such approaches for recognizing Arabic
characters.

The rest of the paper is organized as follows: In Sects. 2 and 3, we describe the basic
concepts behind Deep Belief Network and Convolutional Neural Networks respectively.
Our experimental study using DBN and CNN is next presented in the Sect. 4. Discussion
of the results is made in Sect. 5. And finally, some concluding remarks are presented in
Sect. 6.

2 Deep Belief Networks (DBN)

The DBN introduced by Hinton et al. [19], is a particular type of deep architecture that can
gradually learn complex structures of the data by learning its probability distribution. It
takes raw data of handwritten text as input with the expectation that subsequent layers
would learn good feature representation. Learning in the network takes two steps, an unsu‐
pervised feature learning followed by a supervised learning of discriminating function. The
unsupervised learning is performed by using contrastive divergence algorithm which is an
approximation of maximum likelihood estimation [20], while in the later stage the network
parameters are fine-tuned with the gradient based back propagation algorithm [21].

Indeed, a DBN is a generative graphical model composed of multiple layers of
stochastic hidden variables and one layer of visible units [19] (see Fig. 1). It can be
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trained with an efficient algorithm, by greedily training each layer as a Restricted
Boltzmann Machines (RBM) [22].

Fig. 1. Illustration of a DBN with three hidden layers

The energy function and the probabilistic semantics for an RBM are defined as:

(1)

(2)

Where θ = (W, b, a) and wij represents the weights between visible units vi and hidden
units hj and bi and aj are their biases. Z is the partition function. V and H are the number
of visible and hidden units.

For binary (or real-valued) visible and hidden units, the probability that hidden unit
hj is activated given visible vector v and the probability that visible unit vi is activated
given hidden vector h are given by:

(3)

(4)

Where σ denotes the logistic sigmoid. This logistic function σ(x) = 1/1 + e−x, is a
common choice for the activation function.

A RBM is trained to learn probability distribution of the data with the help of hidden
units. Using Markov Chain Monte Carlo (MCMC) method to maximize the likelihood
is presumably more accurate and stable. In contrast, running an MCMC algorithm to
convergence at each iteration of gradient descent taking a long time, therefore an
approximation called Contrastive Divergence (CD) is generally employed [23]. The
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training process of a single layer RBM to minimize the reconstruction error using CD
is shown in Fig. 2.

 

Fig. 2. Data and reconstruction in the contrastive divergence training

Several RBMs can be stacked to produce a DBN. In a deep network, the activation
of the hidden units in the first layer is the input to the second layer.

After training a stack of RBMs, the bottom-up recognition weights of the resulting
DBN can be used to initialize the weights of a Multi-Layer Feed-Forward Neural
Network, which can then be discriminatively fine-tuned by back propagating error
derivatives. The Feed-Forward Network is given a final “soft-max” layer that calculates
a probability distribution over class labels and the derivative of the log-probability of
the correct class is back propagated to train the incoming weights of the final layer and
to discriminatively fine-tune the weights in all lower layers [24].

3 Convolutional Neural Networks (CNN)

The second architecture, the CNN was first developed by LeCun et al. [25]. It is a speci‐
alized type of neural network which learns the good features at each layer of the visual
hierarchy via back propagation (BP). Ranzato et al. [5] achieves improvements in
performance when they applied an unsupervised pre-training to a CNN.

In fact, CNN are hierarchical, multi-layer neural networks trained with the back
propagation algorithm [25]. CNN are used to learn complex, high-dimensional data. A
variation on convolutional subsampling layers is investigated. The difference is inside
their architecture. Several architectures of CNN are proposed for different problems such
as object recognition [26] and handwritten digit/character recognition [5, 25] and
achieve the best performance on pattern recognition task.

4 Experimental Results and Discussion

We conducted our experimental studies using DBN and CNN for recognizing offline
Arabic character. These both classifiers were tested on HACDB database [27]. Results
are detailed and discussed in the next subsections.

4.1 HACDB Database

The HACDB database [27] contains 6.600 shapes of handwritten characters written by
50 persons (Fig. 3). Each writer has generated two forms for 66 shapes: 58 shapes of
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characters and 8 shapes of overlapping characters (representing 24 basic characters/
overlapping characters without dots). The images are normalized 28 by 28 pixels and
are in the gray scale. The dataset is divided into a training set of 5.280 images and a test
set of 1.320 images.

Fig. 3. Samples from the HACDB database written by 10 different writers

4.2 Experiments Using Deep Belief Network

In order to evaluate the effectiveness of unsupervised feature learning approach using
DBN, we investigated its performance for training and recognizing characters of
HACDB database. To best train the model on further data in order to better take account
the variability of handwriting, we expand the size of the training set ten times by the
technique of elastic deformation proposed by Simard et al. [28]. Technical implemen‐
tation details of the adopted system are given below.

• Model selection and training process

An experimental study was established to evaluate the number of hidden layers (Nhl)
and the number of neurons (Nn) by each hidden layer. Our choice of these parameters
is based on the criterion of the error rate on the test set. To calculate this criterion, a soft-
max layer with 66 output units is first added to the top of each unsupervised trained DBN
and later learned with BP. The output of each unit is just the probability of assigning the
corresponding label. When the number of hidden layers is fixed, the optimal number of
hidden units is selected depending on the number of epoch giving the minimum value
of error rate.

The experiments are based on the HACDB Database with elastic distortion were
performed, the input images consist of 28 × 28 pixels giving an input dimensionality of
784, and the inputs were scaled between 0 and 1. The adopted architecture of DBN was
784-1000-1000-66, i.e., it consisted of two RBMs each one with 1000 hidden neurons
and the number of epoch is fixed at 200 for DBN train. Each RBM of the DBN was
trained using greedy layer-wise unsupervised learning algorithm [9] with contrastive
divergence [29]. The obtained error rate was 3.64 % (see Fig. 4). Again the same archi‐
tecture is used with the 24 class problem; error rate is two times smaller (1.67 %).
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Fig. 4. Samples of 48 incorrectly classified characters using DBN architecture;
784-1000-1000-66

4.3 Experiments Using Convolutional Neural Networks

In this section, we investigated the performance of the CNN for training and recognizing
Arabic characters. For the setting architecture, a convolutional layer is parameterized
by the size and the number of the maps, kernel sizes, skipping factors, and the connection
table.

Figure 5 shows a typical CNN architecture for handwritten character recognition. It
consists of a set of several layers. First, the input is convoluted with a set of filters (C
hidden layers) to get the values of the feature map. After, each convolution layer is
followed by a sub-sampling layer to reduce the dimensionality (S hidden layers) of the
spatial resolution of the feature map. The lowest level of the CNN architecture is the
input layer. It receives the gray-level image containing the character to recognize.

Fig. 5. A Typical Convolutional Neural Network architecture composed of layers for feature
maps

The description of the CNN architecture used in experiments applied to HACDB data‐
base with elastic distortion is given in the following way: 1 × 28 × 28-6C2S-12C2S-66
represents a net with input images of size 28 × 28 with four Convolutional-Subsampling
layers which can be viewed as a trainable feature extractor. The highest level of the CNN
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architecture composed of universal classifier characterized with a full connection layer,
which consists of 66 output neurons corresponding to the 66 class labels of character
patterns.

The first convolutional layer “C1” has 6 feature maps each having 25 weights,
constituting a 5 × 5 trainable kernel, and a bias. The feature maps’ size is 24 × 24. The
second hidden layer “S1” named sub-sampling consists of 2 features maps with
size 12 × 12. The third layer “C2” has 12 convolutional maps of size 8 × 8 and the fourth
layer “S2” has 2 sub-sampling maps of size 4 × 4. When training this architecture, the
feature maps of the 4th layer are merged into a feature vector which feeds into the final
layer.

The CNN architecture already described was trained using gradient descent for 200
epochs; our obtained result is 14.71 % error classification rate on the test set with 66
classes. Using only the 24 basic characters from HACDB database, error rate decrease
approximately three times giving 5 %.

5 Discussion

In the last experimental section, two deep architectures were compared to recognize
Arabic handwritten characters. The DBN architecture outperforms the CNN one tested
on the same database as illustrated in Table 1. It showed that there is a significant gain
in error classification rate (ECR) compared to CNN system where the absolute recog‐
nition rate was improved by 11.07 % with the proposed DBN system for the 66 class
problem.

Table 1. ECR for our proposed systems applied on HACDB database

Approach ECR

24 classes (only basic
characters)

66 classes (all
shapes)

Deep belief network 1.67 % 3.64 %

Convolutional neural
network

5 % 14.71 %

The ECR obtained with the DBN system (with 66 outputs) on the HACDB database
equals to 3.64 %. This rate is statistically significantly important in comparison with
character recognition accuracies obtained from state-of-the-art offline Arabic systems
[18] (see Table 2). The tested CNN architecture presented an ECR equivalent to 14.71 %.
It is to say that CNN are prone to get trapped in local optima of a non-convex objective
function, however DBN resolve this problem by learning feature representations with
two stages: unsupervised pre-training and supervised fine-tuning strategies to construct
the models.
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Table 2. Performance comparisons using DBN approach

Authors Feature extraction Databases (class) ECR

Present work Automatic HACDB (24) 1.67 %

HACDB (66) 3.64 %

Hinton et al. [6] Automatic MNIST (10) 1.25 %

Sazal et al. [30] Automatic BANGLA CHAR‐
ACTERS (60)

9.73 %

Porwal et al. [18] Automatic AMA Arabic PAW
(34)

19.48 %

The obtained results are more sufficiently significant in comparison with the research
studies using other classification techniques especially that they were obtained with raw
data without any feature extraction step (see Tables 2 and 3). This represents a real
revolution in the pattern recognition domain since it will be a real motivation to
encourage the use of deep learning strategies with big data analytics.

Table 3. Performance comparisons using CNN approach

Authors Feature extraction Database (class) ECR

Present work Automatic HACDB (24) 5 %

HACDB (66) 14.71 %

Ciresan et al. [31] Automatic NIST (62: 52 letters
and 10 digits)

11.88 %

NIST (52: 26 upper
and 26 lower
case letters)

21.41 %

6 Conclusion

In this work, we presented two deep learning approaches for handwritten Arabic script
recognition namely DBN and CNN. The purpose was to take advantages of the power
of these deep networks that are able to manage large dimensions input, which allows
the use of raw data inputs rather than to extract a feature vector and learn complex
decision border between classes. In an experimental section we showed that the results
were promising with an ECR of 3.64 % using DBN and 14.71 % with the CNN classifier
when applied to the HACDB database with 66 class labels of character patterns. As
perspective, we have to reconfigure our proposed DBN network architecture to be able
to deal with high-dimension data like words and integrate hand-craft features in order
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to increase the recognition rate. It is a serious challenge to generalize the use of the deep
learning to several recognition applications.
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Abstract. The Wireless Capsule Endoscopy (WCE) is a painless and non-invasive
procedure that allows clinicians to visualize the entire Gastrointestinal Tract (GIT)
and detect various abnormalities. During the inspection of GIT, numerous images
are acquired at a rate of approximately 2 frames per second (fps) and recorded into
a video footage (containing about 55,000 images). Inspecting the WCE video is very
tedious and time consuming for the doctors, resulting in limited application of WCE.
Therefore, it is crucial to develop a computer aided intelligent algorithm to process
the huge number of WCE frames. This paper proposes an ulcerated frame detection
method based on RGB and CIE Lab colour spaces. In order to select and provide the
classifier with the bands containing most ulcer information, a statistical analysis of
ulcerated images pixel based is proposed. The resulting band selection will enhance
the classification results and increase the sensitivity and specificity with regards to
ulcerated frame identification.

Keywords: WCE image processing · Ulcer frame detection · Statistical analysis ·
Colour spaces selection · Classification

1 Introduction

Gastrointestinal tract (GIT) includes the oesophagus, stomach, small bowel, and large
bowel. In order to examine the whole tract, traditional endoscopes have played an
important role. For example, upper endoscopy, push enteroscopy and colonoscopy have
been used to visualise the upper and lower parts of the digestive system. However, they
are not capable of examining the entire small bowel due to the high risk encountered of
penetrating the small bowel membrane. Resulting for patients in more harmful and life
threatening complications such as bleeding and scars. To overcome these drawbacks,
Wireless Capsule Endoscopy (WCE) has been proposed by Given Imaging and was
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approved by Food and Drug Administration (FDA) in 2002. Since then, WCE has
become a crucial tool for small bowel examination.

1.1 Wireless Capsule Endoscopy

WCE is a technological breakthrough that allows visualisation of the whole GIT in a
comfortable and efficient way for the patients [1]. Before a patient swallows the capsule, 8
skin antennas are taped to the anterior abdominal wall (see Fig. 1). While moving inside
GIT, the capsule acquire images at a rate of approximately 2 frames per second (fps) and
sends them through radio frequency (RF) transmitter to the data logger (DL) through the 8
sensor arrays that have been fixed on the anterior abdominal wall (see Fig. 1). The DL is
attached to the patient and stored the complete footage of images in specific format. After
the completion of examination (i.e. WCE exits patient’s body after 8 h), the images are
downloaded to a computer from DL and inspected by doctors through dedicated software.
The use of the real time viewer may shorten the global procedure, as the patient can be
disconnected once the cecum is visualised [2]. WCE produces approximately 55,000
images per examination and clinicians need about 2–3 h to examine the complete footage
carefully, usually frame-by-frame in some cases to detect the abnormalities. This time
consuming and tedious process is the major disadvantage of WCE imaging that prevents
and limits its use as the clinicians spend more time in finding the abnormalities than diag‐
nosing or grading the diseases. Hence, image processing with automatic frame detection
step is a priority key to save lots of analysis time and enhance the diagnostic results.

Fig. 1. Capsule endoscopy components including schematic parts representation and sensor
location on patient body [5]

Many efforts and computational approaches towards the direction of automatic
inspection and analysis of WCE images have been reported in the literature. In particular,
detection of abnormal patterns is achieved by employing texture spectrum for feature
extraction and neural network techniques [3, 4].

In the same direction, image enhancement [6] image registration [7], along with
segmentation techniques [8] were also used. Co-occurrence matrices [9] and local binary
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patterns (LBPs) [10] contributed to polyps and tumours detection. Moreover, blood
detection was performed by taking advantage of chromaticity moments [11] and colour
spectrum transformation [12]. However, there is a lack of research towards ulcer recog‐
nition, despite the high importance and occurrence of the disease. The techniques
proposed include MPEG7 descriptors [13], RGB pixel values evaluation [14], curvelet
transform with uniform LBP [15], and chromaticity moments [16]. The different clas‐
sification accuracy achieved with these methodologies varies from 36 % to 88 %.

1.2 Problem Definition: Ulcer

Peptic ulcer is described as an area where tissues have been destroyed by gastric juices.
In particular, gastric juices are produced by the stomach and the intestine to digest the
starch, fat, and protein in food. Although most peptic ulcers appear in the stomach
(gastric ulcers) and the duodenum (duodenal ulcers), they may also appear in the small
bowel. Some image samples of precise ulcerated regions found in different parts of GIT
are shown in Fig. 2.

Fig. 2. Examples of Ulcerated regions that can be found in GIT

Basically ulcers have three types of complications such as bleeding ulcer, perfo‐
rated ulcer and narrowing ulcer, usually known as stomach ulcer. Bleedings occur
in the wall of stomach or duodenal wall when blood vessels are damaged [17]. When
abdominal or duodenal wall have holes, the sterile abdominal cavity is invaded by
gastric juices causing severe inflammations, also known as perforated ulcer [18].
Usually, a narrowing ulcer is diagnosed and located at the end of stomach at
duodenal attachment area, causing scars and swelling which in turns narrow or
sometimes close the opening of intestine [19].

2 Related Works

Usually, classification results depend on the precision of the features given with respect
to the object to be detected. Hence, the feature extraction is crucial for exhibiting best
classification results. Related works have extracted different features from different
colour spaces to detect ulcers in the GIT image sequences.

2.1 Colour Space Transformation and Information Content

RGB colour space is one of the most well-known colour spaces. It is commonly used in
most of the devices for image representation. Although RGB colour space resembles or
mimics the human visual system in a similar way, it suffers from a major disadvantage:
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for applications on natural images, a high correlation between its components can be
observed [20]. Hence, the highly correlated channels contain redundant information
[11]. In order to overcome this issue and find colour bands that will provide less corre‐
lated features, we selected Lab colour space.

Unlike RGB colour space, Lab is described to approximate human vision system. It
pursues to perceptual uniformity and its L component closely matches human perception
of lightness. This can lead to a more realistic visualisation in specific applications. The
‘a’ and ‘b’ parts are mixed colour representations of magenta-green and yellow-blue
colours, respectively. The representation obtained mimics the non-linear response of
human eyes achieving a more informative description of colours and objects.

2.2 Machine Learning

Support Vector Machines (SVMs) is a supervised learning method, broadly used to clas‐
sify different kind of data. The fundamental idea is that an SVM maps the input informa‐
tive data of a n-dimensional space, where it tries to locate the ideal hyper planes to differ‐
entiate between the different classes associated to datasets [21]. The popularity of SVMs
lies on their application capacity for an extensive variety of pattern recognition issues.

The next section will describe the methodology employed and the specific use of
different colour spaces and machine learning to achieve ulcerated frame extraction.

3 Methodology

Contrary to other researches that are focusing on processing all images in order to detect
the different abnormalities, the proposed work is focused on a divide and conquers
strategy. Indeed, the processing of 55,000 images is very long and our goal is to reduce
the analysis time.

3.1 Image Enhancement

Image enhancement is one of the essential steps in image processing. It is a technique
that is referred to as highlighting key data while reducing or removing non-essential or
auxiliary information in an image. Moreover, the inherent noise of the WCE images
needs to be processed. In this work, wavelet de-noising using 3 level of decomposition
has been used. Soft fixed thresholding method using db2 wavelet has been applied to
reduce noise and enhance ulcer information in WCE images.

3.2 Colour Space Selection for Enhanced Representation of Ulcer Information

RGB and CIE Lab colour spaces have been investigated in terms of ulcer information
content. The goal is to provide the classifier with most informative bands. Indeed, the
different bands obtained (as shown in Fig. 3) highlights the various and different infor‐
mation contained in the RGB and Lab bands. In particular, we are interested to provide
best bands for the classification step.
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Fig. 3. Sample colour images of ulcerated regions visualized in separated bands. The best band
set for classification cannot be inferred directly.

Hence, the choice of best band, in terms of ulcer and foreground separation, will be
based on statistical analysis of ulcer pixel values against foreground pixel values in each
different band. A normal distribution is deduced from each set of pixel values in order
to highlight the separation produced in each separated band. The overlapping area
obtained for each band serves as an index of separation. Indeed, a minimised overlapping
area will express a better separation capability of a specific band (Table 1).

Table 1. Overlapping area results for separated band capability of ulcer and non-ulcer separation.

Colour band R G B L a b

Overlapping values 0.47 0.30 0.67 0.39 0.24 0.75

4 Experimental Results and Discussions

Our work has been done in collaboration with gastroenterologist from Endoscopy unit
at University of Malay Medical Center (UMMC), Kuala-Lampur, Malaysia. They
provide us with a huge set of WCE footages. Moreover, they provide us ground truth
images from these videos with highlighted Ulcerated regions. As per our explained
strategy of divide and conquer, our goal is to use the image set provided as references
to process the video and extract ulcerated frames. Samples of highlighted ulcerated
regions by the doctors can be seen in Fig. 2. It has been very difficult for the doctors to
gather a large number of real ulcer cases in WCE videos as most of them contained a
few frames of significant ulcer findings. The WCE pill used to acquire the different image
sets and videos is of OLYMPUS type. The resolution provided is 576 × 576.

4.1 Data Set

As per availability of data at UMMC, we currently have 6 videos of diagnosed ulcer
patients. From the different images of ulcer extracted by our collaborators (with high‐
lights of ulcer regions), training and testing set have been created for classification
purpose. Our training set consists in 50 ulcerated and 60 non-ulcerated images forming
a 110 image set. For the testing set 60 ulcerated and 80 non-ulcerated images have been
used, summing a total number of frames equal to 140 frames. Labelled images provided
by our collaborators have all been used in the training set for ulcer candidate. Among
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60 non-ulcer images, 19 of these images are contaminated with food residues. 22 images
are contaminated with bubbles and high illumination due to the rolling of the camera in
the GIT. The rest of the images consist in non-ulcerated images from the different video
footages.

4.2 Results of Statistical Analysis

As shown in Fig. 4, each band analysed present a different separation of ulcer and non-
ulcer pixel values. The overlapping areas extracted from the normal distribution of ulcer
and non-ulcer pixels in each band, indicates that the band provide the best separation
between ulcer and non-ulcer pixels. The second band is the Green channel from RGB
colour space. Indeed, this result could be expected as the non-ulcer pixels present mostly
red information and ulcer pixels whitish values. Finally, the Luminance information
from L band of Lab colour space present as well a good separation of ulcer and non-
ulcer pixels. These three bands are believed to provide best separation of ulcer and non-
ulcer pixels compared to the normal colour space representation, i.e. RGB or Lab. These
three selected bands have been fed to the SVM classifier in order to enhance classifica‐
tion results.

Red band Green band Blue band

L band a band b band

Fig. 4. Normal distribution curve for RGB and Lab channels.

The SVM classifier has been used with a Radial Basis Function (RBF) kernel. The
classification results in terms of sensitivity and specificity are presented in Table 2 in
which we tested for various combinations to select the best channels to achieve high
sensitivity and specificity. The band has been selected as high to low overlapping values.
For first phase, ‘b’ band of Lab color space has been chose for high has been coosen as
high overlapping value and ‘a’ from Lab as least overlapping values to compute sensi‐
tivity and specificity for ‘a, G, L, R, B, b’ combination as input vector to SVM. Similarly
in next phases we choose vectors such as ‘a, G, L, R, B’, ‘a, G, L, R’, ‘a, G, L’ and ‘a,
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G,’. So, we can conclude that channel ‘a’, ‘L’ of Lab color space and channel ‘G’ of
RGB color space are best channels to achieve high impact result for disease finding.

Table 2. Sensitivity and specificity For various bands

Colour Bands used Sensitivity Specificity

All 6 Bands (a, G, L,
R, B and b)

87.08 89.11

a, G, L, R and B 87.60 89.32

a, G, L and R 87.63 90.00

a, G and L 88.09 90.88

a and G 87.03 90.21

Also classification result with other author has been compared in Table 3. As
compared to the results of the other methods, our proposed method shows a trade-off
between sensitivity and specificity. Indeed, compared to [22], our method surpasses both
the sensitivity and specificity. Compared to [15, 23], our method shows similar sensi‐
tivity but exhibits an improved specificity. It is believed that these results could be
enhanced by the use of other bands from different colour spaces. Moreover, a high
sensitivity is of crucial importance for the doctors as they do not want to miss any disease.

Table 3. sensitivity and specificity results comparison

Authors Colour Bands Classifier Sensitivity Specificity

[22] Various colour
space

Joint boost 82.3 89.10

[23] HSV SVM 88 84

[15] RGB MLP 88.8 84.1

Proposed
method

a, G, L SVM 88.09 90.88

To compare with other research works, the same dataset could not be used due to
the inexistence of public capsule endoscopy datasets. Our methodology has focused on
perforated ulcers since these are characteristic ulcers [22], whereas the authors of [15]
do not clarify the type of ulcers they detect. Moreover, there is a big difference in patterns
of various types of ulcers.

5 Conclusion

This paper proposed a novel approach to ulcer detection in GIT. Specifically, our
proposed methodologies are based on divide and conquer strategy to extract ulcer frames
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from the huge video footage obtained after WCE examination. Statistical analysis of
ulcer and non-ulcer pixel values has been successfully investigated to provide the clas‐
sifier with the best separating bands from RGB and Lab colour spaces. The classification
results suggest that the approach is efficient and can be enhanced in the future by adding
more bands of other colour spaces.
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Abstract. The search for novel and high-performing product designs
is a ubiquitous problem in science and engineering: aided by advances
in optimization methods the conventional approaches usually optimize a
(multi) objective function using simulations followed by experiments.

However, in some scenarios such as vehicle layout design, simula-
tions and experiments are restrictive, inaccurate and expensive. In this
paper, we propose an alternative approach to search for novel and high-
performing product designs by optimizing not only a proposed novelty
metric, but also a performance function learned from historical data.
Computational experiments using more than twenty thousand vehicle
models over the last thirty years shows the usefulness and promising
results for a wider set of design engineering problems.

Keywords: Design · Vehicle · Optimization · Genetic programming ·
Particle swarm

1 Introduction

How to build optimal product design layouts? A natural answer to this question
is through metaphoring, which consists of mimicking the functions and features of
pre-existing referents, and tooling, which consists of building through modularity
principles to scale toward sophisticated and hierarchical entities. Both principles
rely on heuristics, either artificial or natural, to find articulated rules that map
the space of needs and functions to the product entities with concrete parametric
representations [1–6].

However, in certain circumstances it is difficult to perform the above: either
real-world experiments are expensive or dangerous, or simulations are inaccu-
rate to consider the real-world invariants. Furthermore, neither real-world exper-
iments nor simulation tests consider novelty metrics such as the work of Grignon
et al. [7], which is meaningful for a complete and uniform sampling of the design
search space.

In order to tackle the above problems, we propose a simple and alternative
approach to search for optimal product designs under restrictive simulations-
experimentations. We use historical data to approximate a surrogate function
c© Springer International Publishing Switzerland 2015
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that explains the performance of observed past design variables reasonably; and
use the learned surrogate function as a performance metric, along with a pro-
posed novelty metric, to optimize the product design layouts. The main goal
and advantage of our approach is to map the fast approximations of the off-line
learning (based on historical data) to the global refinements of parameter opti-
mization (both in continuous space), so that the overall optimization is focused
on searching over the most promising (novel and high-performing) regions of the
product layout space. Our approach aims at contributing towards the holistic
design of things.

The rest of this paper is organized as follows. Section 2 describes the problem.
Section 3 shows a case study using real world data for a vehicle design layout
problem and Sect. 4 concludes the paper.

2 The Proposed Method

We aim at tackling the following problem:

Maximize N(x).f(x)
x ∈ X

(1)

where x is the product design variable, X is the box-bounding restriction on the
variables, N(x) is the novelty function of the design variable x, and f(x) is the
performance of the design variable x ∈ Rn. In order to tackle the above, the
following sub-sections describe both how to compute the novelty factor N(x)
and the performance factor f(x).

2.1 Computing Novelty

Let x0 ∈ Rn be the design variable we are interested in measuring the novelty
from a referential set S of points.

A distance metric is a simple heuristic to compute how novel x is compared
to the set S: either by using Euclidean or Manhattan approaches to the mean or
centroid of the set of points S. However, if one is interested in learning optimal
design configurations, the distance metrics using a single referential point give
inaccurate metrics of novelty. We propose a more robust approach to measure
novelty: using the minimum distance to the convex hull of the given input data S.
The problem can be stated as follows:

N(x0) = Min ||Ix − x0||2
Ax ≤ b

Aeqx = beq

(2)

where I is the identity matrix, ||.|| is the norm function, and A, b,Aeq and beq
are the linear constraints defining the convex hull Conv(S) of the points in
the set S so that any point x ∈ Conv(S) satisfies the following: Ax ≤ b and
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Fig. 1. Example of Measuring Novelty between a New Design point and two referential
sets of points. The convex hull points are represented with circles, and any other point
is represented with dots.

Aeqx = beq. The statement above is a constrained linear least squares problem
and convergence to the optimal is guaranteed. Figure 1 shows an example of two
sets of data and the minimum distance to two differentiated sets of data.

One would take the distance of x0 to each point in S and take the mean
(or any statistic) to compute a representative novelty metric for x0; but this
approach is: (1) inefficient : the time complexity is O(|S|) per sampled point,
which is sufficiently large for problems involving rich historical data; and (2)
inaccurate: any point sufficiently close to each point in S brings an incorrect
metric for novelty. Thus, the benefit of using the convex hull Conv(S) instead
of the set of points S is to improve accuracy and robustness to points close to
the set S.

Figure 1 shows differentiated convex hulls. How to deal with arbitrary data
points? A simple solution is to use the K-means clustering algorithm, but it
requires having a-priori knowledge of the number of clusters. A more robust
approach is to use the hierarchical clustering with single (minimum) linkage, in
which the convex hull is computed using the leaves of the tree generated by the
clustering algorithm.

Formally, we follow the two steps: First, cluster the set S, using the single-
linkage hierarchical clustering, into tree To. Second, cut the tree To using the
threshold TH. The result is the set of trees T , each of which defines a subset
of points of S. Note that |T | is unknown a-priori (it is a consequence of choos-
ing the threshold TH ). Thus, smaller values of the threshold TH increases the
granularity of the observed clusters.

To show an example of the above, Fig. 2 shows an example of a tree
To generated by the hierarchical clustering of 100 arbitrary points in R2: In
x-axis we plot the ordering of the points, in y-axis we plot the minimum distance
among clusters. If one decides some threshold TH (Cutting Line) to separate
the clusters, it is possible to obtain the trees T (clusters) automatically. Thus,
by using the points on the leaves of the trees T , it is possible to obtain the con-
vex hull for every cluster. Figure 2-(b) shows the Convex Hulls using the trees
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Fig. 2. Tree and convex hulls generated from a set of arbitrary points.

T obtained from Fig. 2-(a), in which the Convex Hulls are enumerated using the
numbers from 1 to 10.

The reader may note that both computing the Convex Hull and the hier-
archical clustering are time-consuming tasks. Indeed, for a set of data inputs
consisting of m observations in Rn (m = |S|), computing the convex hulls with
the gift wrapping algorithm takes time complexity O(mn+1) [10]. Though, the
quick hull algorithm provides reasonable approximations with average time com-
plexity O(mlog(m)) [9]. In contrast, computing the hierarchical clustering with
single linkage takes time complexity O(m2) [8].

Since the complexity is polynomial in the number of observations, and con-
sidering that the hierarchical clustering is relatively faster; an alternative method
to compute the degree of novelty of a variable x with respect to a set of observed
points in a set of clusters T is the following:

N(x) = min Vi(x) (3)

Vi(x) =
[
1 − 1

n

n∑

j=1

vi,j(x)
]1/a

(4)

vi,j(x) =

{
1 if x ∈ [Li,j , Ui,j ]
0 otherwise

(5)

Li,j = min (Ti,j)
Ui, j = max (Ti,j)
i ∈ [1, k], j ∈ [1, n]

(6)

where i and j are index suffixes for clusters and dimensions, respectively; Li,j

is the lower bound in the j-th dimension of the i-th cluster Ti; Ui,j is the upper
bound in the j-th dimension of the i-th cluster Ti; vi,j(x) is an n-dimensional
binary variable indicating whether x is inside or outside the boundaries of the
i-th cluster Ti; Vi(x) is the novelty degree of variable x with respect to the i-th
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cluster Ti; a is the novelty normalization constant; and n is the dimensionality
of x.

Given that computing the single linkage clustering is relatively fast, comput-
ing the lower and upper bounds [Li,j , Ui,j ] for each cluster i ∈ [1, k], and each
dimension j ∈ [1, n] is fast and parallelizable.

The above equations have the role of measuring the dissimilarity degree of
the variable x with respect to a set of identified clusters Ti: more dissimilar
elements per dimension make the variable x more unique in comparison to each
observed cluster. The reason of taking the min function in Eq. 3 is due to the
fact of aiming to minimize the worst expected case in the observed distance to
each cluster. Other functions such as the quantile or mean are also applicable to
the case.

2.2 Computing Performance

Generally speaking, there exists two widely studied approaches to measure the
performance of a design variable x: by real-world experimental tests or by simu-
lation experiments. However, in a number of circumstances not only real-world
experiments are expensive and dangerous, but also simulations are inaccurate
to consider the real-world noises. An alternative approach is to use historical
data to approximate a surrogate function that explains the variances on the
performances of the past design variables.

Concretely speaking,
Find f : S → Y (7)

where S is the set of historical data (observed points) of the design variables,
Y is the metric with historical performance associated with the set of observed
points in S, and f is the function that approximates the mapping between the
design variable x ∈ S to its performance metric Y .

Basically, without knowledge on the convexity of Y , the above is the regres-
sion:

Minimize

√
1

|S|
∑

x∈S

[f(x) − Y ]2

f ∈ F

(8)

where F is the space of function encodings. There exists various suitable heuris-
tics able to get reasonable approximations of the function f , depending on which
space F we use. For simplicity and without loss of generality, we use Genetic Pro-
gramming due to its feature to offer understandability of the modeled functions.
Concretely speaking, to model the function f we used Genetic Programming
with multi-trees as follows:

f(x) = w0 +
nGP∑

i=1

wi.ti(x) (9)

where w0 is the bias term, ti represents a tree in Genetic Programming, wi is the
weight of the i-th tree used in the linear combination, and nGP is the maximum
number of trees set by the user.
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Table 1. List of variables

Variable Variable

name

Units Min Max Std

x1 Torque Nm 4 92.4 8.474

x2 Maximum

output

Ps 28 550 59.259

x3 Engine dis-

place-

ment

cc 0.533 4.996 0.751

x4 Total

length

m 2.735 5.460 0.456

x5 Full width m 1.390 1.970 0.096

x6 Height m 1.040 2.285 0.184

x7 Interior

length

m 0.630 4.250 0.424

x8 Interior

width

m 1.150 1.730 0.089

x9 Interior

height

m 0.935 1.615 0.079

Y Fuel effi-

ciency

km/l 0 61 4.181

Fig. 3. Hierarchical Clustering

3 Computational Experiments

This section describes studies on finding high-performing and novel vehicle lay-
outs. We collected 23599 observations of car models from 1982 to 2013 consider-
ing the vehicle design variables as shown by Table 1. Thus, we aim at searching
for the vehicle parametric layouts x being both novel and high performing, in
which the novelty function N(x) is computed by Eq. 3 and the performance
function f(x) is computed by the ratio of fuel efficiency.

The hierarchical clustering with single linkage rendered the tree as shown
in Fig. 3, and using the threshold TH = 10 we rendered the set T con-
sisting of 17 subtrees. To generate the performance function f(x), as shown
in Eqs. 7, 8 and 9, we used Genetic Programming with nGP = 3 trees
with the following parameters: population size 500, 500 generations, tourna-
ment selection of size 15, trees with maxdepth 3 and the following operators:
+,−, ∗, /, ()2, tanh, sin, cos, exp, iflte. The best function f minimizing Eq. 8
after 20 independent runs was the following:

f(x) = 0.03862x1 − 5.54x3 − 16.5x6 + 32.88tanh(x2
9) + 32.88cos(x5 + 2.05)

−5.501cos(x9) + 32.88tanh(x6)
−0.01931(cos(x6 + sin(x3)))if lte(x5, x1 − 5.912, x2 + 7.258,−x2 − 8.84)

−0.01931if lte(5.637x1, x2 + x7, exp(x4),−x1 − 9.488) + 20.8
(10)

To solve Eq. 1, we used Particle Swarm Optimization (PSO) with Niching
properties [11] due to its feature to build internal clusters while searching for
the optimal solution. The parameters used include particle size 20, acceleration
constant 2.05 (both local and global) and inertia weight 0.7298. Fine tuning of
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Fig. 4. Convergence behaviour in the studied scenarios.

Table 2. Best results in the studied scenarios

Case x1 x2 x3 x4 x5 x6 x7 x8 x9 Y

A 92.33 508.81 0.63 3.6 1.97 1.59 3.13 1.22 1.57 43.15

90.4 506.61 0.62 4.31 1.96 1.6 2.46 1.48 1.6 43.04

90.98 505.79 0.65 3.51 1.97 1.7 3.5 1.7 1.61 43.03

B 133.17 636 0.64 1.72 2.93 1.81 0.58 0.74 1.81 77.54

138.6 599.86 0.82 7.46 2.91 2.03 4.01 0.58 2.03 75.76

128.56 644.97 0.47 3.34 2.93 2.18 0.66 1.07 1.97 75.54

these parameters is out of the scope of this paper. For experiments, we considered
the following scenarios:

– Scenario A, a tight scenario, in which the search space is restricted to the
boundaries of the observed data points, that is the box-bounding constraint
X is set to [min(S), max(S)].

– Scenario B, a relaxed scenario, in which the search space is allowed to
expand by some small factor, that is the box-bounding constraint X is set
to [min(S)

2 , 3max(S)
2 ].

The convergence of PSO over 30 independent runs with 10000 evaluations
in both scenarios is shown by Fig. 4. Table 2 shows the 3 best solutions in both
scenarios. We can observe that in Scenario A (B), fast (slow) convergence to
optimal fitness values (Eq. 1) is achieved because of having a narrow (wider)
search space. Also, we can confirm that it is possible to obtain improved fitness
values of fuel efficiency f(x) in the relaxed scenario B as a result of (1) widening
the search space, and (2) obtaining different values of x1 and x5 (interestingly,
the learned function f has a direct relationship with the variables x1 and x5 as
shown by Eq. 10).
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4 Conclusion

Inspired by the domain-general process of designing, we have proposed a new
approach to search for novel and high-performing design layouts given observa-
tions of historical data. The basic idea is to first learn a surrogate performance
function that approximates the real-world invariants from past historical data,
and then maximize the learned function along with the proposed novelty metric,
which is defined as the dissimilarity degree with respect to historical clusters.

The application using real world data of more than twenty thousand vehicles
from the last 30 years has shown the usefulness of our proposed approach. Results
show that (1) under a narrow search space, it is possible to obtain novel car
layouts with fairly good fuel efficiency ratios, and (2) under a wider search space,
it is possible to obtain novel car layouts with increased fuel-efficiency compared
to the historical upper bounds.

Our future work aims at exploring the generalizable abilities of our proposed
approach to tackle nonlinear design problems, as well as investigating the trade-
off between novelty and performance in the vehicle design problem. We believe
that advances on learning and pattern recognition algorithms for real world
product design problems will bring further insights to build unique and high-
performing products.
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Abstract. The development of an automatic and accurate segmenta-
tion approach for both nuclei and cytoplasm remains an open prob-
lem due to the complexities of cell structures resulting from inconsistent
staining, poor contrast, and the presence of mucus, blood, inflammatory
cells, and highly overlapping cells. This paper introduces a computer
vision slide analysis technique of two stages: the 3-class cellular compo-
nent classification, and individual cytoplasm segmentation. Feed forward
neural network along with discriminative shape and texture features is
applied to classify the cervical cell images in the cellular components.
Then, a learned shape prior incorporated with variational framework is
applied for accurate localization and delineation of overlapping cells. The
shape prior is dynamically modelled during the segmentation process as
a weighted linear combination of shape templates from an over-complete
shape repository. The proposed approach is evaluated and compared to
the state-of-the-art methods on a dataset of synthetically generated over-
lapping cervical cell images, with competitive results in both nuclear and
cytoplasmic segmentation accuracy.

Keywords: Cervical cell segmentation · Overlapping cells · Neural
network · Sparse reconstruction · Level set evolution

1 Introduction

Cervical cancer is the second most commonly diagnosed gynaecological cancer,
with around 530 thousand new cases diagnosed and more than 270 thousand
c© Springer International Publishing Switzerland 2015
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deaths every year in the world [19]. The signs and symptoms of cervical cancer
often do not begin until a pre-cancer becomes a true invasive cancer and grows
into nearby tissues during the course of several years, reducing the chance of sur-
vival. Fortunately, cervical cancer can be detected by Papanicolau (Pap) smear
test, where the abnormalities in the morphology of the cellular nuclei and cyto-
plasm can be identified. Currently, Pap test is a manual screening procedure, for
which a sample of cells is gathered from the vagina and the neck of the uterus,
and deposited onto a microscope slide for visual examination by a pathologist.
This procedure is a time-consuming and error-prone job. Therefore, the develop-
ment of computer-aided cervical cancer diagnosis system has become important
to ensure the quality of the Pap test. Accurate segmentation of cervical cells is
the most critical precursor step to effective diagnosis system.

The cervical cell in the cytology images consists of two subcellular com-
ponents: nucleus and cytoplasm. Based on the segmented components, recent
research can be classified into two main categories: (1) localizing only the nuclei
boundaries in isolated or overlapping smear cells [3,10–12,22]; (2) localizing the
boundaries of both nucleus and cytoplasm in either isolated or overlapping smear
cells [2,4,7,13,15,16]. For nuclei localization, several methods have been pro-
posed based on active contours [10], level set [3], adaptive active shape model
[21], watershed transform [11,22], and unsupervised classification [12].

To segment single or touching cytoplasm from cervical smear images, earlier
researchers used thresholding techniques (e.g., [27]), which lead to unsatisfac-
tory results due to the complex structure of cervix cells resulted from the poor
contrast and variable staining. Marker-based and multi-scale watersheds have
also been used to segment the cytoplasm [7]. However, it could be difficult to
find a representative marker for each cell and would result in over-segmentation.
Unsupervised classification is another option that has been applied to single
cell segmentation [4]. Other widely used segmentation methods include active
contour models (ACM) with edge- and region-based models [5,15] due to their
ability to recover closed object boundaries with pixel accuracy. These techniques
extract the whole cellular clusters consisting a number of cells, which however
is insufficient for shape analysis.

It is more challenging to segment nuclei and cytoplasm from overlapping
cells, and this has attracted increasing research interests. Algorithms based on
geodesic active contour [9] and watershed transform [2,13] have been developed
to segment cells with small overlapping areas. Nevertheless, these methods may
not be effective for highly overlapping clusters. Ushizima et al. [26] have pro-
posed a segmentation approach based on nuclear narrow-band seeding, graph-
based region growing and Voronoi diagrams to segment the overlapping cells by
straight lines, which however do not represent the true cell boundaries. Tareef
et al. [25] have designed a segmentation framework based on gradient threshold-
ing and morphological operations, but their results are limited to overlapping
cells with noticeable differences in intensities. Some recent methods have tended
to incorporate shape priors with parametric segmentation procedures for more
accurate cell segmentation. Lu et al. [16] and Nostrati et al. [17] incorporated
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Fig. 1. The workflow of the proposed learning methodology. (1) shows the 3-class cel-
lular components classification phase, including clustering, region-based feature extrac-
tion, and FFNN-based classification explained in Fig. 2. (2) is the individual cytoplasm
segmentation phase, including Voronoi segmentation and LS-based deformation.

elliptical shape priors, and Nosrati et al. [18] incorporated a star shape prior with
the level set method. These shape priors however are too simplified to approx-
imate the real shape of the cervical cells. We have proved in this study that
using a learned shape prior is more effective to segment cells with large shape
variations.

In this paper, a novel segmentation approach for the nuclei and cytoplasm of
overlapping cervical cells is proposed based on the neural network and learning
shape-based variational method. The proposed approach performs in two phases:
(1) cellular component classification by applying feed forward neural network to
classify image clusters into three groups: background, nuclear, and cytoplasmic
clusters, and (2) individual cytoplasm segmentation inside each cellular mass by
incorporating a learned shape prior that is iteratively updated into a variational
segmentation framework. The remainder of this paper is organized as follows. In
Sect. 2, the proposed learning segmentation methodology is presented. Section 3
describes the material and experimental setting. The experimental results and
discussion are given in Sect. 4, and the conclusion is provided in Sect. 5.

2 Methodology

The workflow of the proposed segmentation framework is illustrated in Fig. 1.

2.1 Cellular Components Classification Based on Feed Forward
Neural Network

This phase aims to divide the Pap image into background, nuclei, or cellular cyto-
plasmic mass without separating the cytoplasm of different cells by three steps:
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Fig. 2. Building the neural network classifier.

Clustering. In order to get easier, faster, and more accurate classification, we
proposed to segment the image into small coherent regions taking into account
the intensity similarities and spatial proximity. There are many clustering meth-
ods that can be used to divide the image into local regions or clusters. In our
approach, we chose to utilize the simple linear iterative clustering algorithm [1]
to get regular clusters (See region clustering step in Fig. 1).

Feature Extraction. For each region, a number of features with good discrim-
inative ability are extracted. In particular, Gaussian filtering is first applied on
the original Pap image to reduce the noise and smooth the inconsistent regions,
and contrast-limited adaptive histogram equalization is performed to improve
the local contrast in the image. Then, ten shape and texture features (i.e., com-
pactness, circularity, minor axis length, eccentricity, average gray level, standard
derivation, entropy, median value, number of edge pixels, and the average inten-
sity difference between the region of interest and the surrounding regions) are
extracted from each region and arranged into a vector.

Classification. A 3-class feed forward neural network (FFNN) classifier was
proposed to classify image clusters into three cellular components: background,
nuclei, and cytoplasmic mass. A back-propagation neural network was created
and trained with three layers; the input layer, the hidden layer, and the output
layer as shown in Fig. 2. The inputs of the network are the features extracted
from each cluster in the Pap image, and the target outputs are the three cellular
component classes. After classification, the contour of the nuclei and cytoplasmic
mass identified by FFNN is refined by level set evolution to retrieve the missed
pixels around their actual contour.

Neural networks have been recently used in many medical diagnosis systems,
including cervical cancer diagnosis systems to classify the normal and abnormal
cervical cells [4,24]. FFNN classifier is chosen in this research due to its reliability
in classifying data with complex relationships between input and output.

2.2 Individual Cytoplasm Segmentation

In this stage, each individual cytoplasm inside the cellular mass was separated
with two steps: rough segmentation by Voronoi diagram with Delauney Trian-
gulation, followed by final segmentation based on level set with learned shape
prior. Figure 3 illustrates the processes of the individual cytoplasm segmentation,
where (I) shows the shape repository generating process, and (II) represents the
segmentation process with its two phases: rough and final segmentation.
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Rough Segmentation by Voronoi Diagram with Delauney Triangu-
lation. The rough segmentation operates by computing the Voronoi regions
of the image seeds, which are determined as the intensity weighted centroids
of the detected nuclei. Voronoi diagram [6], also known as Voronoi tessella-
tion or Dirichlet tessellation, can be generated by first finding Delauney tri-
angles between the seeds (i.e., red lines in Fig. 3 (II)). Then, the convex regions,
whose boundary points have the shortest Euclidean distances to the correspond-
ing nucleus centroid, are computed (i.e., black dash lines in Fig. 3 (II)). Let C
denote a set of n nuclei centroids {C1, C2, ..., Cn}. The Delauney triangulation
can be generated by connecting C together, and the Voronoi region V for each
Ci, i = 1, ..., n can be written as:

V (Ci) = ∩1≤j≤n,j �=i{p|D(p,Ci) < D(p,Cj)} (1)

where D(p,Ci) is the Euclidean distance between the pixel p and corresponding
centroid Ci. The segmentation process for images with a single cell is completed
by the end of this step, whereas, the overlapping cells are passed to the final
segmentation step by dilating the corresponding Voronoi cells to increase the
search areas.

Final Segmentation Using Learned Shape Prior with Regularized
Level Set Evolution. To get the final segmentation of the overlapping cells, two
shape-driven deformation steps are designed: shape re-initialization, and shape
prior-based level set evolution. The first step re-initializes the cell shape based
on the shape repository, whereas the second step combines local characteristics
of the cell boundary and a prior knowledge about the expected cell shape.

Specifically, an over-complete shape repository is generated based on a train-
ing set of annotated cell images. The annotated cells are first Procrustes trans-
formed [8] to the coordinate system of the mean cell shape to remove the geomet-
rical translation, scale, and rotation effects. Each shape is then represented by
the coordinates of its boundary points. The shape repository is thus represented
by a matrix Φ ∈ R

K×M , where each column refers to a single shape represented
by K/2 boundary points with each point denoted by its xy coordinates, and M
is the total number of cell shapes in the repository Φ.

The segmentation process starts by shape re-initialization. This is conducted
via the reconstruction of the obtained Voronoi cell shape as a weighted combina-
tion of the shape repository Φ, and can be formulated as a sparse reconstruction
problem:

αi = arg min
αi

λ‖αi‖1 + ‖vi − Φαi‖2
2 (2)

where vi of dimension K is the boundary coordinates of the ith Voronoi cell,
λ > 0 is the regularization parameter automatically selected, and αi is a weight-
ing vector with few significant entries corresponding to the most representative
shape templates and their weights in approximating vi computed by [28]. The
reconstructed boundary coordinates are then obtained by v̂i = Φαi.
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Fig. 3. Overlapping cytoplasm segmentation processes: (I) the shape repository gen-
eration process, (II) the rough and final segmentation process.

Then, the level set function (LSF ) φ : Ω → R on a domain Ω is separately
built for each initial cell shape. The energy functional E to be minimized consists
of several terms including the shape prior, data-driven, regularization, and area
terms. E(φ) can be written as:

E(φ) = σES(φ) + βED(φ) + μER(φ) + γEA(φ) (3)

where ES is the shape prior term that constrains possible cell shapes, and defined
as ES(φ) =

∫
Ω

g(x)H(−S(φ))dx [23], where g(x) is the stopping function defined
as g(x) = 1/1 + (|∇GσI|2), Gσ is the Gaussian kernel with standard deviation
σ, and I is the image on a domain Ω. H(.) is the Heaviside function, and S(φ) is
the LSF of the approximated shape prior for φ. The shape prior is dynamically
constructed using the shape repository Φ and the weighting vector α obtained
by Eq. (2) under sparsity constraint, where vi refers to the deformed cell shape
in the previous iteration, and then Procrustes transformed to the cell coordi-
nate system. ED(φ) =

∫
Ω

g(x)δ(φ(x))|∇φ(x)|dx is the data-driven term driving
the segmenting curve to the object boundaries by having a lower energy when
the zero level contour of φ is located at the cell boundaries. δ(.) is the Dirac
delta function. ER(φ) =

∫
Ω

p(|∇φ(x)|)dx is the regularization term defined by
[14], where p : [0,∞) → R is a potential or energy density function, which
guarantees the smoothness of the segmentation boundaries by maintaining the
signed distance property |∇φ| = 1. EA(φ) =

∫
Ω

g(x)H(−φ(x))dx is the area
term computing the segmentation area of φ < 0. σ, β, μ, and γ are constant
weights determining the contribution of each energy term. Finally, the energy
functional E is minimized by solving the gradient descent flow for each LSF as
∂φi

∂t = −∂E(φi)
∂φi

, where ∂E/∂φi is the Gâteaux derivative of the functional E with
respect to φi.

3 Material and Experimental Setting

The performance of the proposed methodology was evaluated using two datasets:
the dataset provided by [16] consisting 18 gray-scale cervical cytology images
with 2 to 5 cells with different degrees of overlap (i.e., 60 cells in total), and
the dataset of the ISBI 2014 challenge [20] consisting of 135 images (45 training
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images and 90 test images) with 2 to 10 cells with different degrees of overlap
(i.e., 810 cells in total). The images are generated by synthetically overlapping
images of real isolated cervical cells. The ISBI training dataset was used to
train the proposed approach and generate the shape repository, whereas the test
datasets of [16] and ISBI were used to evaluate the performance of the proposed
approach in terms of nuclear and cytoplasmic segmentation. The proposed app-
roach was also compared with the results of the ISBI challenge winners: Ushizima
et al. [26], and Nosrati et al. [17] and their newly proposed approach [18] on the
same ISBI test dataset. Furthermore, the proposed approach was compared with
the baseline approach proposed by the ISBI challenge organizers [16] on their
provided dataset.

There were two sets of evaluation measures used to assess the segmentation
results: object-level and pixel-level measures. To evaluate the performance of the
nuclear segmentation, we used the criteria developed by Gentav et al. [7] which
used the ground truth objects (Ogt) to categorize all segmented objects (Od)
into true detection (TPo) , false negative detection (FNo), or false alarm (Fa)
with respect to a threshold Λ = 0.6 on the proportion of overlap between Od and
Ogt. For each true detection instance, the numbers of true-positive pixels (TPp),
false-positive(FPp), and false-negative (FNp) pixels were counted. Based on this
information, the object-level precision and recall (i.e., Po and Ro, respectively),
and pixel-level precision and recall (i.e., Pp and Rp, respectively) were computed
as described in [7].

The Zijdenbos similarity index (ZSI), also known as the Dice similarity
coefficient, is also employed in our evaluation. The values of FNo, TPp, FPp,
and ZSI, computed by the evaluation code provided by ISBI challenge, are used
to evaluate the performance of the cytoplasm segmentation.

4 Experimental Results

Nuclear Segmentation Evaluation. The nuclear segmentation of our pro-
posed approach is assessed and compared with the approaches proposed in [7,16].
As shown in Table 1, the performance of our nuclear segmentation is the best
in terms of both object-based and pixel-based segmentation. We yielded a very
high improvement in object-level precision value of 0.97 (i.e., 31 %, and 41 %
improvement), compared with 0.74, and 0.69 obtained by [7,16], respectively.
We also achieved object-level recall of 0.96 with on average improvement of 8 %.
Our pixel-level results were also better than those obtained by other approaches.
There were only two missed nuclei (i.e., out of 60 nuclei) by our approach. These
results proved the effectiveness of our proposed method in differentiating the
nuclear regions from the other regions. Dividing the image into small clusters,
the selected shape and texture features, and using neural network succeeded in
achieving the highest nuclear segmentation results over the recent approaches,
with promising improvement.

Cytoplasmic Segmentation Evaluation. Table 2 shows a comparison of the
performance of our approach with [17,18,26] for cytoplasm segmentation. Our
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Table 1. Quantitative results of the nuclear segmentation. Bold numbers indicate
superior results.

Po Ro Pp Rp ZSI

[7] 0.74 0.93 0.91(±0.08) 0.88(±00.07) 0.89(±0.04)

[16] 0.69 0.90 0.97(±0.04) 0.88(±0.08) 0.92(±0.04)

Our approach 0.97 0.96 0.98(±0.03) 0.90(±0.08) 0.93(±0.04)

Table 2. Quantitative results of the cytoplasm segmentation. Bold numbers indicate
superior results.

ISBI test dataset

FNo TPp FPp ZSI

[26] 0.17 0.83 0.001 0.87

[17] 0.14 0.90 0.005 0.87

[18] 0.11 0.93 0.005 0.88

Our approach 0.16 0.94 0.005 0.89

Test dataset of [16]

[16] 0.21 0.92 0.002 0.88

Our approach 0.00 0.93 0.005 0.91

proposed approach achieved the highest ZSI value of 0.89 and TPp of 0.94
among the compared approaches. Our approach also outperformed [26] in FNo.
These high ZSI and TPp values demonstrated the capability of our approach to
accurately segment the cytoplasm from highly overlapping cells. We also com-
pared our approach with the elliptical shape prior-based approach proposed by
Lu et al. [16] using their test dataset. The results showed a substantial improve-
ment in performance consisting of zero false negative, TPp of 0.93, and ZSI
of 0.91; compared with FNo of 0.21, TPP of 0.92, and ZSI of 0.88 obtained
by [16]. Our optimal object-level true positive detection (i.e., 1.00) led to an
increase of the FPp value (i.e., 0.005) over that obtained by [16] (i.e., 0.002).
However, this FPp is still small and has minimal impact on the reliability of our
approach. Overall, we suggest that the proposed learned shape prior succeeded
in improving the object-level and pixel-level segmentation performance over the
elliptical shape prior [16,17] and the star shape prior [18], as it was dynami-
cally generated based on the most representative shape templates from similar
training cells. Qualitative segmentation results for cells with different shapes are
shown in Fig. 4.

Finally, the average computational time of our proposed approach was
∼ 40 seconds per image using non-optimized MATLAB code on a PC with Intel
Core i5 3.2 GHz and 8 GB RAM, which was 25 times faster than [16] whose
average computational time was ∼ 1000 seconds per image.
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Fig. 4. Qualitative segmentation results of single (column 1) and overlapping (columns
2 to 7) cervical cells.

5 Conclusions

Cell segmentation is the critical step toward the development of automated
analysis of Pap smears. This study addresses this issue by designing a new slide
analysis technique based on a neural network with cluster-based shape and tex-
ture features, and a variational framework incorporating a learned shape prior
dynamically generated based on Voronoi cells and shape templates from an over-
complete shape repository. The proposed learning method has been tested and
compared to the state-of-the-art methods on two cervical cell databases for a
total of 870 cells. The overall segmentation accuracy and efficiency of the pro-
posed approach have been shown to be better than the compared techniques in
both nuclear and cytoplasmic segmentation performance.
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Abstract. This paper proposes a pattern recognition model for classification.
Adaptive differential evolution based feature selection is used for dimensionality
reduction and a new advised version of support vector machine is used for eval‐
uation of selected features and for the classification. The tuning of the control
parameters for differential evolution algorithm, parameter value optimization for
support vector machine and selection of most relevant features form the datasets
all are done together. This helps in dealing with their interdependent effect on the
overall performance of the learning model. The proposed model is tested on some
latest machine learning medical datasets and compared with some well-developed
methods in literature. The proposed model provided quite convincing results on
all the test datasets.

Keywords: Feature selection · Optimization · Classification · Support vector
machine · Differential evolution · Dimensionality reduction

1 Introduction

Machine learning methods play a great role these days in analyzing and extracting useful
information from datasets in various fields like medical diagnosis, image recognition,
and many other applications. However, affectivity of these models heavily depends on
efficiency of underlying feature selection and classification algorithms.

Feature selection is important for dimensionality reduction and improving accuracy
of the predictive model. This is achieved by identifying features that offer complemen‐
tary information to differentiate the target classes. Finding best feature subset is usually
difficult and has led to the development of variety of techniques for selecting optimal
subset of features from larger sets of possible features [1, 2]. Feature selection methods
can be categorized based on the search strategy and evaluation measure used.

Searching strategy is important aspect of feature selection methods. It can be sorted
in three major types, i.e. the exhaustive search, sequential search [3] and stochastic/
evolutionary [4] search. The exhaustive search, can guarantee the optimal solution, but
it is impractical to run, even with moderate size feature sets. Sequential search methods
can be simpler but are prone to nesting effect. Stochastic search methods especially the
evolutionary algorithms like Genetic methods (GA), Ant Colony Optimization (ACO),
and Particle Swarm Optimization (PSO) and differential evolution (DE) have got a lot
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of attention as a search strategy for feature selection in the past decade [5–7]. They can
include some randomness in the search process and makes it less sensitive to dataset
and avoid local minima but they should be able to explore and exploit the search space
properly to get optimum solutions. Among these methods, DE outperformed other opti‐
mization algorithms in terms of robustness over common benchmark problems and real
world applications. It has less tuning parameters and show better potential of increasing
its explorative and exploitation capabilities [8, 9]. Thus, in this paper differential evolu‐
tion based search strategy is used.

Typical evaluation methods can be categorized as filters or wrappers. Filters
approaches evaluate quality of selected features independently, without using classifi‐
cation algorithm. While, wrapper approach use a classifier trained for given feature set
to evaluate the quality. Filter based methods are faster in general than wrapper based
method, however, wrapper based methods are found to be more accurate. This work will
be using the wrapper based approach for evaluation of selected feature subsets. The
learning model proposed here is based on an improved version of support vector machine
[10] which has the ability to generate advised weights to deal with misclassified data
and outliers present in data to lessen their effect on classifier performance.

It must be noted here that the control parameter of search strategy, tuning parameter
for the classifier and the selected feature subsets all contribute at the same time towards
the overall performance of the model. For example, control parameters and learning
strategies involved in DE are highly dependent on the problem under consideration and
must be set adaptively. Similarly, optimal feature subset selection and setting best kernel
parameter for SVM are crucial for high predictive accuracy and the choices are inter‐
dependent and must occur simultaneously. In addition to this, the need to deal with the
outlier in the training phase is also important, in order to prevent their effect in the
development of predictive model. Although, there are a number of ways proposed in
literature for setting the control parameters for differential evolution [11], choosing
appropriate parameter for SVM [5] and selecting optimal feature subsets independently.
However, our research objective is to adaptively adjust the control parameter for the
problem under consideration and optimize classifier parameters and select the feature
subset simultaneously, without degrading classification accuracy.

The paper is organized as follows; Sect. 2 provides the overview of the proposed
methodology, while Sect. 3 provides the details of the adaptive differential evolution
algorithm and the advised support vector machine algorithm. Section 4 presents the
experimental results and finally conclusion is given in Sect. 5.

2 Proposed Model

The proposed model is presented in Fig. 1. Firstly, data set under consideration is linearly
scaled to the range [−1, +1] or [0, 1] to avoid domination of features in greater numeric
ranges on the ones with smaller numeric ranges. Optimization of feature subsets and
control parameters is done based on adaptive DE algorithm explained in next section.
After evolutionary operations are done trail vector provides the selected feature subset
and optimized SVM C and Kernel parameters. Using selected feature sets, the data
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divided into training and testing sets are fed into classification stage where advised SVM
classifier tuned on the basis of optimized parameters is used. The advised SVM algo‐
rithm is also explained in next section. Each trail vector is evaluated by fitness function
which is the classification accuracy of the classifier. If termination criterion (maximum
number of generations) is satisfied, the process ends, otherwise it proceeds to the next
generation and the evolution process is repeated.

Fig. 1. Proposed learning model

3 Details of Proposed Algorithms

3.1 Adaptive Differential Evolution

Differential evolution (DE) is a population based optimization method, which has
attracted an increased attention in the past few years [12, 13]. It is capable of handling
nonlinear objective functions with parallel and direct search approach and has good
convergence. Many extended versions of Differential Evolution are presented to use it
as a feature selector in pattern recognition process [7, 8]. Although it showed quite
promising results in various applications but some recent publications indicated that DE
may face challenges in complex applications and search performance get highly
depended on the mutation strategy, crossover operation and control factors including
scale factor (F), Cross over rate (Cr) and population size (NP) [11, 14]. The paper
proposes a feature selection method that an extension of DE- based feature selection
technique proposed in [8] with adaptive approach to make the feature selection process
more dynamic to be applied for different pattern recognition applications. It will use
advised support vector machine explained in following section for evaluation of selected
feature subset. The steps of the feature selection procedure are as follows.

1. Initially the generation number is set as G = 0 and a population of NP individuals
is randomly initialized say PopG = { , …, } where  = [x1_iG,
x2_iG, x3_iG, ….., xD_iG], with i = [1, 2, ….,NP] and D is the number of parameter
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to be optimized including features and setting parameter for the classifier. Each
individual parameter is uniformly distributed in the range [  min,  max], where 
min = {x1 min, x2 min, …, xDmin} and  max = {x1max, x2max, …, xDmax}

2. At every generation, the mutation and cross over control parameter are generated
independently for each target vector using following equations

 with  and
 Note  while Cauchy distri‐

bution prevent premature convergence due to its far wider tail property.
 with  and
 Note  and Gaussian

distribution is used as opposite to Cauchy distribution, its short tail property help in keeping
the value of Cr within unity [11] which is required here.

3. WHILE the termination criterion (maximum number of iterations) is not satisfied

DO
for i = 1 to NP//do for each individual
Step 1 – Mutation
Create a mutant vector  corresponding to the ith

target vector  by merging three different randomly selected vectors i.e. using the
DE/rand/1 Mutation strategy.

(1)

Step 2 – Cross over
Employ binomial crossover on each of the D variable as follows for building trial

vector.

(2)

Here jrand  [1,2,..D] is a randomly selected index to ensure that  gets at least
some component from .

Step 3 – Selection
Evaluate the trial vector  with the fitness function f = accuracy of classifier
if f ( )  f ( ), then  = 
else  = .
end if
end for
It must be noted here that as DE is a real number optimizer, two dimensions can

settle at the same feature coordinates after rounding off. So before going to the next
generation, the roulette wheel weighing scheme [15] is utilized in order to overcome the
problem of duplicate features.
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For this a cost weighting is implemented where the probabilities of individual
features are calculated from the distribution factor that is associated with each feature.
The distribution factor of feature  within the current generation G is calculated as
follows:

(3)

where NF is the total number of features and DNF number of desired features.  and
is the number of times feature  has been used in the good subsets and less compet‐

itive subsets respectively. Whereas, a1 is the constant that reflects the importance of
features in PD. Here  factor shows the degree to which feature  contributes in

forming good subsets and the second term help in favouring exploration as this term
will get close to 1 when the overall use of a particular feature is too low. Thus, based
on this ranking the duplicated features of the trial vector are replaced by the next avail‐
able top ranked features.

Secondly, for supressing the domination of certain features on the distribution factor,
the relative difference in distribution factor is calculated using (4) [16].

(4)

This gives higher weigh to features that are making noticeable improvement in the
current generation as compared to previous one. It also helps in intentionally keeping
features that are found to be highly relevant for a particular application, even if they do
not show noticeable improvement.

3.2 Advised Support Vector Machine Based Classification

In this paper, a non-iterative self-advising approach for SVM is adapted that extracts
subsequent knowledge from the misclassified data in training phase that can be a result
of outliers or the data that have not been separated correctly. This is done by generating
advice weights based on the distance of misclassified training data from the correctly
classified training data, and use of these weights together with decision values of SVM
in the test phase. These weights also help the algorithm to eliminate the outlier data. The
details of Advised SVM algorithm (Fig. 2) is as follows:

1. The classifying hyperplane is found by using decision function
, here xl is the input vector corresponding to the lth

sample and labelled by yl depending on its class and αl is the nonnegative Lagrange
multiplier that is inconsistence with standard SVM training.
Note that in order to use SVM to produce non-linear decision functions as the data
is comprised of nonlinearly separable cases, radial basis function kernel

 is used to make all necessary operations in the input space.
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2. The data samples that are misclassified in the initial training phase are identified.
The misclassified data sets (MD) in the training phase is determined as

(5)

The MD set can be null, but experimental results revealed that the occurrence of
misclassified data in training phase is a common occurrence.

3. If the MD is null, go to the testing phase, else compute neighborhood length (NL)
for each member of MD. NL is given as

(6)

Where xm, m = 1, …., N are the training data that do not belong to the MD set.
4. For each sample xn from the test set advised weight AW(xn) is computed. Where

AW is computed as (7), These AWs represent how close the test data is to the
misclassified data

(7)

5. The absolute value of the SVM decision values for each xn from the test set are
calculated and scaled to [0, 1].

6. For each xk from the test set, If (AW (xk) < decision value (xk) then
 which is in consistence with normal SVM

labelling, otherwise .

Fig. 2. Advised support vector machine
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4 Experimental Results

In order to analyze the effectiveness of the proposed model, 4 medical datasets with
varying dimensionalities are utilized and the classification accuracies are calculated. The
first three datasets used are available online from https://archive.ics.uci.edu/ml/
machine-learning-databases, while the fourth one is own data set based on histopatho‐
logical images of skin cancer collected from Sydney Melanoma Diagnostic Centre,
Royal Prince Alfred Hospital. The details of extracted features for this data set can be
found in our previous publication [17]. The classification accuracy of the proposed
model is also compared with KNN, linear SVM, and LDA used for these data sets. The
datasets information and the average classification accuracies (based on 2 fold cross
validation) for respective datasets are presented in Table 1. For testing the effect of
feature selection method and the number of selected features on the overall performance
of the model, the performance of the proposed model is also compared with the ones
based on well-established binary Genetic Algorithm BGA [17], Binary PSO (BPSO)
[18], improved BPSO [19] and hybrid GA [20], see Fig. 3.

Table 1. Classifier performance evaluation based on accuracy

Data sets No of
attributes

No of
Classes

No of
instances

Classification Accuracy (%)

KNN LDA SVM ADSVM

Lung Cancer 56 3 32 77 82.3 81 84.5

Breast cancer 30 2 569 87.2 89.8 90 93

Dermatology 33 6 366 86 87.9 88 90

Skin Cancer 50 2 42 88.6 89.1 89 92

For GA probability of mutation = 0.02 and probability of crossover was chosen as
0.5 after running several tests. This is used to make sure to have the number of ‘1’s in
the strings matching a predefined number of desired features. For BPSO the inertia
weight was made to decrease linearly from 0.9 to 0.4 while the maximum velocity was
set to be clipped within 20 % of the corresponding variable; and acceleration constants
were set to 2.0. Both of BGA and BPSO utilize binary strings representing a feature
subset with ones and zeros to indicate the selection and neglecting of features respec‐
tively. Improved binary particles warm (IBPSO) was implemented according to the
algorithm described in [19]. Hybrid genetic search algorithm (HGA) was implemented
as proposed in [20] to search for subsets of fixed sizes. It should be noted HGA is
computationally very expensive for larger datasets, as the number of subsets to be formed
and evaluated increases with the number of features in the dataset.

All methods were made to start from the same initial population with the population
size set to 50 and terminated at the same number of iterations set to 100. The chosen
fitness function was set to the classification accuracy. It can be seen that the proposed
method attained comparable or better classification accuracies as compared to other
methods for comparatively lesser number of selected features. This shows that if
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parameter tuning and feature selection is done simultaneously and effect of misclassified
data/outliers is minimized, it can improve the classification accuracies of the learning
models. In addition to that, it can also help in minimizing the use of redundant/irrelevant
features in the final optimized model, which will reduce the computational complexity
and chances of having over fitted models.

5 Conclusion and Future Work

This paper presents a novel learning model based on adaptive differential evolution
based feature selection and advised support vector machine based classification, where
the parameter tuning for feature selector and classifier and feature selection process for
the dataset are done simultaneously. Experimental analysis shows that the proposed
model works well and provides an optimal feature set with higher classification rate
when compared with some other popular methods used in literature. The model is more
adaptive and can work for various different types of datasets and help in choosing more
relevant features that can help in classification and reducing the number of feature used
in the final learning model. It also limits the effect of outliers and misclassified data
values of the training set over the final optimized model. In future, this method can be
made more effective by choosing more advanced mutation and selection strategies
developed for differential evolution based feature selection.

Fig. 3. Average classification accuracies vs. feature subset sizes for Dataset (a) Skin cancer (b)
Dermatology (c) Lung Cancer (d) Breast Cancer
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Abstract. In the field of biomedical research, gene expression analysis helps to
identify the disease-related genes as genetic markers for diagnosis. As there is a
huge number of publicly available gene expression datasets, the ongoing chal‐
lenge is to utilize those available data effectively. Merging microarray datasets
from different batches to improve the statistical power of a study is one of the
active research topics. However, various works have addressed the issue of batch
effects variation, which describes variation in gene expression levels induced by
different experimental environments. Ignoring this variation may result in erro‐
neous findings in a study. This work proposes a method for batch effect correction
by mapping underlying topology of different batches. The mapping process for
cross-batch normalization is examined using basic linear transformation. The
comparative study of three cancers is conducted to compare the proposed method
with a proven batch effects correction method. The results show that our method
outperforms the existing method in most cases.

Keywords: Gene expression · Batch effects · Clustering · Linear regression ·
Classification · Cancer · Diagnosis

1 Introduction

Gene expression analysis helps to improve the understanding of cell behavior or how cell
response to stimulus. It is also commonly applied to identify genetic markers of disease
[1, 2]. With advances in molecular biology technology, a huge number of gene expression
datasets has been generated and publicly provided on the online databases. This is a great
opportunity for the research community in gene expression studies. Many researches have
been conducted to improve the efficiency in analyzing those available data [3–5]. Some
complex diseases have high complexity in development mechanisms. So, analyzing a
particular gene expression dataset is inadequate to understand those complex mechanisms,
as the number of samples may be limited [6–8]. Therefore, incorporating many datasets from
multiple experiments is required. To incorporate multiple datasets, two main approaches
have been proposed. Meta-analysis is one of those approaches, which analyze each dataset
independently. The result of each analysis is then combined to produce the final results
[9, 10]. Unlike meta-analysis, one of the hottest issues is to merge microarray datasets from
different batches to enlarge the sample size. As the number of samples is increased, studying
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on merged datasets will improve the statistical power and reliability of a study [11].
However, studying combined gene expression data from different batches can be detri‐
mental due to the occurrence of batch effects variation [12]. Batch effects variation is the
altering of gene expression levels driven by experimental environment. Ignoring the batch
effects variations can result in an improper analysis, as this confounding factor is not
controlled. Our previous work also found that this batch effects variation directly affects to
the performance of disease classification [13]. Many batch effects correction methods have
been proposed to remove the variation in gene expression levels caused by different batches
[12, 14]. Combatting Batch Effects (COMBAT) is a well-known batch effects correction
method, which implements an empirical Bayes framework to normalize the dataset across
genes [14]. However, this method tries to correct the batch effects by treating all samples
in each batch the same way. With the heterogeneity of gene expression profile in each
dataset, it is better to adjust expression levels of different groups differently. This work tries
to improve on the current batch effects correction method by developing a novel method
namely “Topology-based Normalization with Linear transformation (TNorm)”. The
topology of a given gene expression data is viewed as a structure of a set of representative
samples which are present in the data distribution. Then, by matching the representative
samples for each batch, basic linear transformation can be effectively used as a data normal‐
izer. The comparative study is conducted in this work to compare the performance of
proposed method with COMBAT. Six gene expression datasets of three cancer types are
used as case study in this work. The gene-set activity transformation and cross dataset clas‐
sification are applied here to evaluate the performance of each batch effects correction
method.

2 The Proposed Method

Topology preserving map is one of widely used technique in Machine learning.
Normally the high dimensional data set is mapped to a lower one [15] for dimension
reduction purpose. However, this work, the mapping is used for normalization purpose.
In order to analyze data from different source with different experimental environments,
the data set should be preprocessed to be in the same appropriate space. That is, the
mapped data should remain the same dimension as the original data set but the data are
transformed using the same appropriate space and appropriate structure matching. This
paper proposes a batch effect correction called Topology-based Normalization with
Linear transformation (TNorm). The topology structure can be viewed as a graph of
representatives. Node of the graph is a representative sample, which is present in the
distribution of the original dataset. Let  be a matrix
of gene expression with n samples which can be viewed as a matrix of column vectors.

 is an  sample vector with m genes from experimental
environments b.  and  are gene expression from experimental environments b1
and b2 respectively.  denotes the k representative samples of 

here . Suppose  is used for model training and used
as a reference data space.  is a data set from different experimental environments.
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The batch-adjusted  can be viewed as a linear transformation from  space to
the reference data space. In order to match the topology of different batch data set, the
same number of representative samples of each batch are considered. The distance
between pair of representative samples is used to determine which representative
samples from different batch data set should be mapped with which one of the reference
data. Then, the mapping process can be considered as a linear transformation between

 and  that is a map  and can be computed as

(1)
then T is a linear transformation from  to . The batch-adjusted data are given by

(2)
Figure 1 is an illustrative example of adjusting batch data set from different sources,

batch 1 and batch 2 data set, by using the batch 1 data set as a reference. We randomly
generated four normally distributed clusters as shown in Fig. 1(a) and (b). The representa‐
tive samples in each dataset, which are used for topology mapping are also shown. The
Fig. 1(c) and (d) shows the merged data without and with batch effect correction by our
algorithm respectively. It can be seen that using topology mapping, the data set from
different source is also mapped into the same space with the reference one (Fig. 1(d)).

Fig. 1. TNorm algorithm to correct batch effects correction
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3 Experimental Design

The comparative study conducted in this study is divided into several processes (Fig. 2).
First, the gene expression data is pre-processed by z-transformation in order to stand‐
ardize the data. Secondly, gene-set activity transformation method is applied to trans‐
form gene expression to gene-set activity data. Then, the gene-set activity data is
adjusted to remove batch effects variation. Finally, the adjusted data is used to build a
classification model and the performance of the model is evaluated by cross dataset
validation scheme.

Fig. 2. Overview of comparative study.

3.1 Gene Expression Datasets

To evaluate the proposed batch effects correction method, six microarray datasets from
three cancer types, which are breast cancer, lung cancer and colorectal cancer were
obtained from Gene Expression Omnibus (GEO) datasets [16]. For each cancer type
two datasets were obtained to perform cross dataset classification. The information of
each dataset is described in Table 1.

3.2 Gene Expression Analysis

Instead of analyzing gene expression data directly, this study applied gene-set based anal‐
ysis, which transform gene expression data to gene-set activity. By doing so, the features
space in the dataset is significantly reduced from gene expression data [23]. Here, Anal‐
ysis of Variance based Feature Sets (AFS) proposed by Engchuan et al. 2015 was applied
to transform gene expression data [24]. In each gene-set, AFS rank the gene members by
the F-value of ANOVA test. Then, the greedy search algorithm with Pearson’s correlation
analysis is performed to identify the phenotype-correlated genes (PCOGs). PCOGs are used
as the representative of the whole gene-set and their expression level are summarized as
gene-set activity. AFS is available as web-based application and java library on Gene-set
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Activity Toolbox (GAT) at http://gat.sit.kmutt.ac.th. The gene-set data used in this study
was obtained from Molecular Signature Database (MSigDB) [25]. The curated data of
canonical pathways containing 1,320 gene-sets and 8,428 genes was chosen.

Table 1. Gene expression datasets used in this study

Accession Name Publication Samples

GSE5764 Breast1 Turashvili et al. [17] normal: 20 samples
tumor: 10 samples

GSE7904 Breast2 Richardson et al. [18] normal: 19 samples
tumor: 43 samples

GSE4107 Colorectal1 Hong et al. [19] normal: 10 samples
tumor: 12 samples

GSE8671 Colorectal2 Sabates-Bellver [20] normal: 32 samples
tumor: 32 samples

GSE4115 Lung1 Spira et al. [21] normal: 90 samples
tumor: 97 samples

GSE10072 Lung2 Landi et al. [22] normal: 49 samples
tumor: 58 samples

3.3 Batch Effects Correction

The gene-set activity datasets transformed from each two datasets of the same cancer
types are then adjusted to remove batch effects variation. In this study, we compare two
batch effects correction methods, which are COMBAT and our proposed TNorm. The
detail of each method is described as follows.

COMBAT or Combatting Batch Effects was proposed by Johnson and Li in 2007 [14].
The empirical Bayes framework is implemented with COMBAT. So, it makes this
approach robust to high-dimensional data like microarray data. This method pools the
information and estimate batch effects across genes so it is also robust to small sample
datasets compare to other existing batch effects correction methods.

TNorm or Topology-based Normalization with Linear transformation is developed in
this study. Here, we implemented the simply and powerful clustering algorithm,
K-Means clustering. The number of clusters is set to three, where first two clusters are
for case and control samples, and the last cluster is for the outliers. After clustering, the
representative samples from two datasets are then mapped according to their topological
aspect. The Euclidean distance between each pair of representative sample is used to
determine which representative sample of testing data should be mapped with which
one of the training data. Then, the linear transformation is applied to adjust the testing
data to make two datasets have same data distribution topology.
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3.4 Cross Dataset Classification

Cross dataset classification was applied in this study to evaluate the performance of our
proposed batch effects correction method and COMBAT. For each cancer type, one
dataset is used to transform gene expression levels to gene-set activity as mentioned in
Sect. 2.2 and built the classification model by using the transformed gene-set activity.
Then, the model is tested by classifying test instances in another dataset of the same
cancer. To transform gene-set activity in test data, the PCOGs identified from training
data are used. To build the classification model, Support Vector Machine (SVM) was
used as classifier. SVM has been commonly applied as classifier and feature ranker for
gene expression analysis [26]. In addition to classifier, Correlation-based Feature Subset
selection (CFSSubset) was used to select subset of features to improve the classification
performance [27]. In this study, 1 %, 10 % and all features were selected to build three
different models. The Area Under Receiver Operating Characteristic (AUC) was
reported as classification performance. This performance measure has been proved to
be robust against class imbalance issue [28].

4 Results and Discussion

We conducted a case study on six microarray datasets of three cancer types. The case
study was used to assess the performance of batch effects correction methods and
compare against the dataset without batch effect correction. The performance was
reported as AUC of cross dataset validation as mentioned in previous section. The
example of cross dataset validation result can be notated as Breast1-2, which repre‐
senting the result of model built by Breast1 dataset and tested by Breast2 dataset. The
transformation of the Breast1-2 is a map . Figures 3, 4, and 5
present the cross dataset validation results of this study. In breast cancer classification
(Fig. 3), using TNorm as batch effects correction method show significantly better
performance than COMBAT (p-value = 0.0175) and without correction
(p-value = 0.0434).

For colorectal cancer classification, TNorm is significantly better in Colorectal1-2
validation than COMBAT (p-value = 0.0132) and without correction (p-value = 0.006).
However, in Colorectal2-1 validation, using COMBAT achieves higher classification
performance (p-value = 0.0282) but none of Colorectal2-1 validation can achieves AUC
over 0.5.

For lung cancer classification, TNorm is worse than COMBAT (p-value = 0.0411)
and without correction (p-value = 0.0498) in Lung1-2 validation. In Lung2-1 validation,
however, TNorm achieves significantly higher AUC than COMBAT (p-value = 0.0039)
and without correction (p-value = 0.0077).

From results in Figs. 3, 4, and 5, while the improvement from COMBAT is unclear,
it can be seen that TNorm can be used to correct the batch effects variation. As a result,
the classification performance is also improved in most cases. In the case that TNorm
is worse in performance, we found that the other methods also performed poorly
(AUC ~ 0.5). It reflects that those models cannot be applied for classifying testing
instances, which can be caused by the heterogeneity in cancer itself or the bad choice
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in data collection. So, the batch effects correction would be unable to help improving
classification performance in this situation.

Besides that hypothesis, the implementation of clustering technique can be consid‐
ered for improvement. Currently, all 1,320 features were used to build clusters. With
K-Means clustering algorithm, all features are treated the same way. So, if there were a
lot of noisy features, the data points would be poorly clustered and result in a failure in
further analysis. Thus, in the future, the unsupervised feature selection or Weighted
K-means clustering should be applied to address this issue.

In linear transformation, it is still improvable. This work calculates the transforma‐
tion matrix without estimating of random error (ε) to make it fast and simply to imple‐
ment. Calculating transformation matrix with random error is hypothesized to be more
precise as the topology of testing data will be more fitted to training data topology. This

Fig. 3. Comparative result of classification performance in breast cancer between TNorm,
COMBAT and without batch effect correction.

Fig. 4. Comparative result of classification performance in colorectal cancer between TNorm,
COMBAT and without batch effect correction.
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random error can be easily estimated by implementing optimization technique.
However, this will make it more time-consuming. Thus, for the future work of TNorm,
it would be desirable to apply parallel computing technique to help maximizing its
performance.

5 Conclusion

This work proposes a novel batch effects correction method to remove the uncon‐
trolled variations in gene expression data. Six microarray datasets of three cancer
types: breast cancer, colorectal cancer and lung cancer were obtained for a case
study. Each dataset was pre-processed and transformed to gene-set activity to be
more functional-representing and to reduce the number of features. Our proposed
method, TNorm and the existing method, COMBAT were applied to correct batch
effects variation in the dataset. Cross dataset validation was used to evaluate the
performance of each method and the results were reported as AUC. The results show
that TNorm outperforms COMBAT and significantly improves the classification
performance from original gene-set activity data in most cases. Incidentally, TNorm
still needs several improvements such as implementing feature selection, choice of
clustering techniques, parallel computing and optimization for estimating random
error. With these improvements, TNorm should stand out and can be a good choice
for batch effects correction in future gene expression analysis.
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Abstract. Finger-vein quality assessment is an important issue in finger-vein
verification systems as spurious and missing features in poor quality images may
increase the verification error. Despite recent advances, current solutions depend
on domain knowledge and are typically driven by visual inspection. In this
work, we propose a deep Neural Network (DNN) for representation learning
from binary images to predict vein quality. First, driven by the primary target of
biometric quality assessment, i.e. verification error minimization, we assume
that low quality images are false rejected finger-vein images in a verification
system. Based on this assumption, the low and high quality images are labeled
automatically. Second, as image processing approaches such as enhancement
and segmentation may produce false features and ignore actual ones thus
degrading verification accuracy, we train a DNN on binary images and derive
deep features from its last hidden layer for quality assessment. Our experiments
on two large public finger-vein databases show that the proposed scheme
accurately identifies high and low quality images and significantly outperform
existing approaches in terms of the impact on equal error rate (EER)
improvement.

Keywords: Biometrics � Finger-vein quality assessment � Deep learning �
Deep neural network � Representation learning � Feature representation

1 Introduction

Biometrics authentication consists of verifying a person based on his/her physiological
or behavioral traits. Compared to traditional identification means such as cards or
passwords, biometrics are more secure and convenient to users [1]. Biometrics, how-
ever, are prone to performance degradation due to poor image acquisition. For this
reason, various quality assessment approaches have been developed [2–5]. Contrary to
extrinsic biometric traits (e.g., fingerprint, face, iris), finger-vein is intrinsic and is thus
difficult to copy and forge. However, like other biometric traits, finger-vein image
quality is inherently affected by a number of factors that can be split into two cate-
gories: (1) Extrinsic factors associated with environmental illumination, ambient
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temperature, physiological changes, light scattering, and user behavior; (2) Intrinsic
factors as associated with inaccurate parameter estimation during the image prepro-
cessing stage. For example, the finger-vein image enhancement and segmentation
schemes have been developed to extract vein pattern in most finger-vein verification
systems. Incorrect estimation of orientation, scale and rotation angle of vein pattern
may produce false finger-vein features and fail to detect some genuine vein features.

Various finger-vein quality schemes have been recently developed to solve the
problem. Qin et al. [6] combine the Radon transform and curvature to describe the
contrast and quality of finger-vein features. Their experiments on a private database
show their method can detect low quality finger-vein images and reduce the verification
error rate (EER). In [7], quality assessment based on the number of detected vein points
is shown to reduce the EER when rejecting finger-vein images with low quality score.
In [8], Yang et al. combine gradient, image contrast, and information capacity based on
SVM to assess finger-vein quality. Instead of SVM, Peng et al. [9] use Triangular norm
to fuse attributes described in [8] for performance improvement.

Current solutions, nonetheless, have serious issues. First, quality vein attributes are
therein determined by human intuition and a priori knowledge and are detected by
hand-crafted descriptors. Second, all finger-vein quality assessment methods have only
considered the condition of input images because the models to describe vein attributes
are built based on finger-vein grayscale images. However, in most finger-vein verifi-
cation systems, the image processing approaches such as normalization, enhancement
and segmentation are employed to extract the vein pattern for verification. Therefore,
the quality of finger-vein grayscale image can be further affected by inaccurate
parameter estimation during the preprocessing stage. Furthermore, the vein network
which is directly related to EER is extracted from binary and not grayscale images.
Thus the vein network may not match the temp late despite a grayscale-based high
quality score, and vice versa. To sum it up, the limited performance of the quality
assessment methods in [6–9] is due to the fact that the quality attributes are not
objectively linked to the EER but are based on visual inspection.

In this paper, we propose a novel quality assessment method based on Deep Neural
Networks (DNN) to predict low-quality finger-vein image on unseen samples. DNNs
have been successfully applied to several vision tasks [10, 11], as they are capable of
learning robust features from raw pixel images. To the best of our knowledge, this is
the first DNN-based approach on quality assessment for vein images, and actually for
any other biometrics. Our contributions are fourfold: (1) unlike traditional methods, the
low (high) quality finger-vein images in our scheme are associated with the false
non-match/rejected (true match/accepted) images by a finger-vein verification system.
Our assumption can guide the DNN to automatically extract robust quality features that
directly affect the EER rather than being designed by human intuition or knowledge.
(2) We automatically label the high and low quality images, which avoids heavy
manual labeling and human errors. Our label scheme is directly related to biometrics
verification performance rather than to human image quality judgment. (3) Unlike
existing approaches based on handcrafted features, an effective scheme based on DNN
is employed to automatically learn features from raw pixel images. (4) Unlike current
approaches considering only extrinsic factors, we propose an effective quality assess-
ment scheme that considers both extrinsic and intrinsic factors.
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First, vein networks are extracted from grayscale images using a state of the art
system and are input to a DNN for training. The DNN’s last hidden layer is taken as
input deep features to a probabilistic SVM (P-SVM) for finger-vein quality assessment.
As vein networks are associated with extrinsic and intrinsic factors and directly relate to
EER, it makes more sense to evaluate finger-vein quality based on binary rather than
grayscale image. We carry out experiments on two public databases to verify the
efficiency of proposed method.

2 DNN for Finger-Vein Image Quality Assessment

The proposed DNN (Convolutional Neural Network (CNN)) (Fig. 1) is trained to
extract a deep feature representation from each binary finger-vein image. Then, the
deep representation is taken from the last hidden layer of DNN and input to P-SVM for
finger-vein image assessment.

2.1 Deep Neural Networks

Our DNN contains three convolutional layers and two max-pooling layers to extract
features hierarchically, followed by two fully-connected layers and the softmax output
layer indicating identity classes. Figure 1 shows the detailed architecture of the DNN
which takes an image of size 20 × 96 as input and outputs two classes (high quality and
low quality). The dimension of the last hidden layer is fixed to 1000. The width and
height of map in each layer vary according to input size. After forwarding the input
image though the DNN, compact and high level discriminating features are inferred.

For convolutional layers, we use as hidden neuron activations Rectified Linear
Units (RELUs) (y = max(0, x)) that have shown good fitting abilities in many DNN
architectures [10, 11]. We also employ max-pooling to extract location information that
ensures robustness to translation while reducing the filter responses to a lower
dimension. In addition, the dropout technique [10] is applied in the two fully-connected
layers to prevent overfitting. The output of the last fully-connected layer is taken as
finger-vein deep feature representation. Finally, the posterior probability distribution
over n (here n = 2) different classes is estimated using an output softmax layer.
Stochastic gradient descent is performed by back-propagation.

2.2 Feature Extraction

In most finger-vein verification systems, vein networks are extracted in a binary form
from grayscale images and are input for verification matching. As finger-vein grayscale
image quality is further degraded during the binarization stage, we train a DNN for
finger-vein feature representation from binarized images. For a given binary image F,
its label is denoted as q 2 f0; 1g based on the baseline method [12] (the detail of
labeling is described in Sect. 3.2), where 0 and 1 denote low and high quality
finger-vein images, respectively. Each image and its label are then combined to form a
dataset {(F 1, q1), (F 2, q 2),…, (F N, q N)} on which we can train DNN to learn
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discriminating information, with the N number of training finger-vein images. The
output of the last hidden layer generates a 1000-dimensional deep feature vector for
each image. In this way, new deep feature based training and test sets are generated and
used to train a classifier to predict the quality of a finger-vein image.

2.3 Generating Quality Score

Let v be the deep feature representation extracted from a training finger-vein image
F with a label q 2 f 0; 1g . We train a P-SVM [13] to obtain a probabilistic value p (0
to 1: from low to high image quality).

pðq ¼ 1jnðvÞÞ ¼ 1
1þ expðx � nðvÞþ cÞ ð1Þ

where ξ(v) denotes the output of a two-class SVM classifier [14] which takes v as the
input feature vector; ω and γ are probability fitting parameters estimated by P-SVM.

3 Experiments

3.1 Database

Database A: Hong Kong Polytechnic University provides a public database [12]
including 3132 contactless finger-vein images from 156 subjects. The first 105 subjects
provide 2520 images (105 subjects × 2 fingers × 6 images × 2 sessions) in 2 sessions,
separated by 66.8 days in average. The remaining 51 subjects only provide 612 images
(51 subjects × 2 fingers × 6 images) captured in one session. To test our approach, we
use the subset consisting of the first 105 subjects as it is more realistic. All images are
normalized to 50 × 240 using the preprocessing method in [12].

Database B: The Universiti Sains Malaysia finger-vein database [15] contains 5904
images from 123 subjects at two sessions with interval of more than two weeks’ time.
In each session, each volunteer provided four fingers such as left index, left middle,
right index and right middle fingers, and each finger was captured six times, resulting in
a total of 2952 (123 subjects × 4 fingers × 6 images) images. So, for two sessions, there

Fig. 1. Our DNN architecture.
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are a total of 5904 (2952 × 2 sessions) images. ROI images are extracted by the
algorithm described in [15] and proportionally resized to 80 × 240 in our work.

To test our approach, we employ the state of the art method, named “Even Gabor with
Morphological” in [12] to segment the images into two finger-vein databases. Figure 2
shows the vein network (binary image) and its corresponding grayscale image. The
performance of our approach is evaluated based on binary images.

3.2 Experiment Settings on Database A

Image quality assumption: As the EER is the primary performance indicator in bio-
metric authentication systems, image quality algorithms should be assessed by their
effect on EER rather than human perception judgment. Therefore, we assume low
quality finger-vein images are those falsely rejected by the verification system.

Template selection: For each finger image, its average distance score with respect to
the other 11 images from the same finger is computed based on the matching approach
in [12]. We select the image with lowest average score as the finger template. As
different fingers from the same subject are treated as different classes, we get 210 (2
fingers × 105 persons) templates and 2310 (210 × 11) query images.

Labeling high and low quality images: For each query image, we determine its
quality label based on the matching distance against its template. 210 × 11 = 2310
genuine matches are obtained by matching each template against the remaining 11
finger-vein images, based on which the False Rejection Rate (FRR) is computed. We
compute the False Acceptance Rate (FAR) by matching each template against the other
209 templates. Overall, there are 210 × 209/2 = 21945 impostor matches, as the
symmetric imposter matches are not executed. The FAR indicates the system security
level in a biometric verification system. At the predefined system security level (typ-
ically, FAR = 0.1 %), we set label q to 0 for a query finger-vein image that is falsely
rejected by the system, and set q to 1 for accepted genuine finger-vein images. Note
that 0 and 1 denote low and high quality finger-vein images respectively.

Generating the training and test sets: After labeling each query finger-vein image at
FAR = 0.1 %, we select half the fingers associated with 1155 images (105 × 11) for
training and the remaining fingers for test. We obtain, in this way, 101 low-quality and
1054 high-quality images in the training set, and 110 low-quality and 1045 high-quality
images in the test set. To increase the gap between high-quality and low-quality
training images, we keep only 406 high-quality images from the 1054 above by setting
FAR = 0 %. In general, low-quality images are much fewer than high-quality ones in
biometric systems. To overcome the class-imbalanced problem, we generate additional
low-quality images based on our image quality assumption: we pick out 305 samples
from the remaining 648 (1054-406) high-quality training images, and change their
illumination, scale and rotation angle so that the corresponding binary images get
falsely rejected by the verification system. We thus obtain an overall low-quality image
set of 406 (305 + 101) images for training. Figure 3 illustrates some synthesized
low-quality finger-vein binary images using this mechanism.
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3.3 Experiment Settings on Database B

The training and test sets on database B are built in the same way as above.
492 × 491/2 = 120786 impostor scores and 492 × 11 = 5412 genuine scores are
produced to compute the FAR and FRR, respectively. Subsequently, the quality of all
images is labeled at FAR = 0.1 %. We select 2706 images from half the fingers for
training and remaining images for testing. As a result, we obtain 182 low-quality and
2524 high-quality training images, and 140 low-quality and 2566 high-quality test
images. We keep only 635 high-quality images from the 2524 above by setting
FAR = 0 % (highest system security level). Likewise, we generate 495 additional
low-quality images from the remaining 1889 (2524-635) high-quality ones. Therefore,
the size of overall low-quality image training set is also 635 (140 + 495).

3.4 Selection of CNN Architecture

One of the major issues with DNNs is that the size of hidden layers should grow
significantly with input size for robust representation learning, which may lead to
overfitting and to expensive computing and memory costs. In this work, we seek a
DNN with a minimum number of parameters with a small finger-vein image size for
efficient quality assessment. We use a similar CNN architecture to that of Krizhevsky
et al. [10] successfully used on the large-scale ImageNet classification challenge.
Our DNN is trained on binary finger-vein images for subsequent quality assessment.
The DNN parameters such as input size, depth, and dimensionality of the output
representation are optimized in a greedy way, step by step. Table 1 shows identifying
accuracies on Database A of various DNNs for different input image sizes. We observe
that the best performance is achieved based on DNN (96-128-192-1000-1000-2),
consisting of an input layer of size of 20 × 96, 3 convolutional layers, 2 max-pooling
layers, 2 fully-connected layers and the Softmax output layer with 2 classes, as shown
Fig. 1. For database B, we proportionally resized all images to 32 × 96 before DNN
training.

3.5 Evaluation of Quality Image Assessment

To identify high and low quality images, we train a DNN with softmax output layer and
a DNN + P-SVM. In the DNN + P-SVM classification setting, the DNN last feature
representation is input to P-SVM for image quality prediction. The parameters of DNN
such as architecture and size of filters are selected heuristically and the two-class SVM

Fig. 2. Sample results based on Even Gabor with Morphological: (a) Finger-vein grayscale
image from database A, (b) Vein network from (a), (c) Finger-vein grayscale image from
database B, and (d) Vein network from (c).
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classifier [14] is optimized through cross-validation on the training dataset. To further
evaluate the effectiveness of the proposed method, we train a DNN based on grayscale
images on both databases and input the inferred deep feature representation from the
DNN last hidden layer to Softmax and SVM classifiers. We also evaluate two state of
the art finger-vein quality assessment methods, namely Radon transform [6] and
hand-crafted features +SVM [8]. The hand-crafted features we considered for this
purpose are gradient, contrast, and information capacity as implemented in [8]. As
these two methods are based on grayscale images, we only use them to classify the
quality of grayscale finger-vein images. Tables 2 and 3 show the quality assessment
performance of these various methods on databases A and B, respectively. Table 2
shows that deep representation is robust for identifying low and high quality
finger-vein images on database A. Based on grayscale finger-vein image, DNN and
DNN + P-SVM identify more than 80 % low and high quality images respectively
using deep representation, which significantly outperforms current state of the art
approaches based on Hand-craft features. The accuracy of DNN and DNN + P-SVM
dramatically increases and reaches an identification rate above 88 % when the deep
representation is inferred from binary finger-vein images.

The results in Table 3 are consistent with the trends observed in Table 2. When
using the binary images to train DNN, the performance for identifying high and low
quality image is boosted significantly for database B. The highest quality identification
accuracies are 75.02 % and 70.71 % for DNN-Softmax, and 74.98 % and 70.07 % for
DNN + P-SVM, which is again significantly higher those of other methods. There
experimental results in Tables 2 and 3 consistently show that the proposed deep
learning representation is effective in identifying finger-vein image quality and sys-
tematically outperform methods that take grayscale finger-vein image as input.

3.6 Effects on the Finger-Vein Verification System

In this section, we evaluate finger-vein verification performance [12] and show how
much it can be improved by adopting our quality assessment scheme. Without filtering,
105 × 11 = 1155 genuine matches and 105 × 104/2 = 5460 impostor matches on
database A, and 246 × 11 = 2706 genuine and 246 × 245/2 = 30135 impostor matches
on database B, are available for computing the FRR and FAR (the same protocol as
described in Sects. 3.2 and 3.3), respectively. When the templates are selected based on
the method described in Sect. 3.2, the EER of the finger-vein verification system on
databases A and B are 4.97 % and 1.70 %. Harnessing our DNN-based image quality
assessment, we use a filtering mechanism by automatically rejecting genuine matches
associated with low quality query images. Figure 4(a) and (b) show the finger-vein
EER on the two databases after filtering low quality query images using various
approaches at different levels. For example, 1 %, 2 %,…,30 % of test samples

Fig. 3. Low quality images generated by artificially degrading high quality images.
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(1155 images in Database A and 2706 images in Database B) are automatically
removed, based on quality prediction. It can be seen from Fig. 4 that the EER on
databases A and B decreases after filtering. For database A, after rejection of just 10 %
of the samples using the proposed approach, the EER significantly decreases to less
than 1.5 %, which is better than the best performance achieved by the two state of the
art approaches using hand-crafted features. The EER is further reduced after rejecting
more than 10 % images. For database B, the approaches based on hand-crafted features
decrease the EER to about 1 % while ours reduce the EER to about 0.7 %. From Fig. 4,
we can also see that the proposed method significantly reduces the ERR and performs
consistently better than the other approaches at all levels.

The hand-crafted feature based approaches [6, 8] have shown promising results on
their private finger-vein databases, but they do not perform well on the public datasets
A and B. This may be explained by the existence of additional factors affecting image
quality in the contactless finger-vein image capturing system [12], that are not con-
sidered in [6, 8]. This is not surprising as the approaches above are based on a priori
human knowledge of quality degrading factors in a finger-vein verification system.
Different capturing systems, however, may be associated with different quality
degrading factors. Deep feature representations, by contrast, achieve better perfor-
mance, as DNNs directly learn robust abstract features for finger-vein image
representation.

From Tables 2 and 3, we see that using binary instead of grayscale finger-vein
images to train DNN and DNN + P-SVM achieve higher identifying accuracy on both
databases. This is due to following facts: (1) Compared to grayscale images, binary
images are prone to additional quality degradation factors such as intrinsic factors.
(2) Finger-vein binary image are more related to EER degradation, since the EER in
verification systems is usually computed by matching two binary images. (3) Com-
pared to grayscale images, the patterns in binary images are easier to learn by DNN to
assess finger-vein image quality as noise and background information are removed.

Fig. 4. Finger-vein verification EER on (a) database A and (b) database B after filtering the low
quality query finger-vein images at different levels using different approaches
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Notice, nonetheless, that our grayscale image-based quality assessment scheme can be
applied for all finger-vein verification systems, while our binary image-based approach
can be used only for verification systems that match binary image pairs.

Overall, all approaches achieve better performance on database A than on database
B. This may be explained by the fact that the former is faced with additional quality
degradation factors. For example, unlike the work in [15] (Database B) requiring the
user to put the finger inside an envelop box and touch the device wall during the whole
imaging process, the images in Database A are collected by a contactless and open
imaging device. In addition, the average interval time of collecting images in database
A is more than two months which is longer than that in database B.

4 Conclusions and Future Work

This paper proposed a novel approach to predict finger-vein image quality using deep
representation learning from finger-vein binary inputs. Our image quality definition
targets the reduction of EER in biometric authentication systems rather than human
perception judgment. Based on this definition, high and low quality images are auto-
matically labeled. Our DNN directly learns abstract feature representations from raw
pixel images. Experimental results show that learning deep features from binary
finger-vein images significantly outperforms current state of the art methods in terms of
predicting high and low finger-vein images and of reducing the EER accordingly.

Table 2. Accuracy of identifying low and high quality finger-vein images on Database A

Methods Accuracy (%)
High quality image Low quality image

Grayscale image DNN 85.17 85.45
DNN + P-SVM 83.16 83.64
Hand-craft + SVM [8] 68.80 66.36
Radon transform [6] 71.96 67.27

Binary image DNN 88.13 88.18
DNN + P-SVM 88.99 88.18

Table 3. Accuracy of identifying low and high quality finger-vein images on Database B

Methods Accuracy (%)
High quality image Low quality image

Grayscale image DNN 69.80 67.86
DNN + P-SVM 70.54 67.14
Hand-crafted + SVM [8] 65.08 64.29
Radon transform [6] 67.23 67.86

Binary image DNN 75.02 70.71
DNN + P-SVM 74.98 70.07
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Abstract. Eye movements data collection is very expensive and labo-
rious. Moreover, there are usually missing values. Assuming that we are
collecting eye movements data on a set of images from different users
(views). There is a possibility that we are not able to collect eye move-
ments of all users on all images. One or more views are not represented
in the image. We assume that the relationships among the views can
be learnt from the complete items. The task is then to reproduce the
missing part of the incomplete items from the relationships derived from
the complete items and the known part of these items. Using the prop-
erties of tensor algebra we show that this problem can be formulated
consistently as a regression type learning task. Furthermore, there is a
maximum margin based optimisation framework where this problem can
be solved in a tractable way. This problem is similar to learning to pre-
dict where human look. The proposed algorithm is proved to be more
effective than well-known saliency detection techniques.

Keywords: Multi-view learning · Missing data · Tensor algebra · One
rank tensor approximation · Maximum margin learning · Eye movements

1 Introduction

It is important to learn where human looks at scenes or images as this can
facilitate designers to evaluate their visual design quality. Therefore, many works
on saliency modelling have been proposed [1,2]. These methods are investigated
on bottom-up visual saliency (i.e. low level image feature) but human gaze does
not usually match the map [3]. The reason is because task can influence human
gazes. If users are requested to view images without given a particular task,
the gaze will automatically direct by low-level image feature. In the case that
users are given a clear and specific task, the eye movements will be controlled
by the content of images. Consequently, the top-down visual features should be
considered [4].
c© Springer International Publishing Switzerland 2015
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Source spaces: Z1 Z2 Z3 Z4
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z1m z2m z3m z4m

Incomplete items: z1m+1 z2m+1 · z4m+1
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z1m+4 · · z4m+4

· z2m+5 z3m+5 ·
· z2m+6 z3m+6 z4m+6

...
...

...
...

Fig. 1. Graphical representation of the multi-view learning framework.

In real-world scenarios, eye movement data collection is tedious, laborious,
and expensive. Moreover, data loss is inevitable as (i) the eye tracker temporarily
loses track of the subjects because subject is moving during the experiment,
and (ii) participants can fail to respond all the tasks. Consequently, we aim to
estimate the missing eye movement data with available data on the same task.
It is similar to learning to predict where human look based on their previous
eye movement data on other images and other users eye movement data on a
considered image. This leads to the learning scenario focused in this paper. It is
on a general setting in which multiple views of a problem exists. As previously
mentioned, it is not always possible to observe all views in realistic. Therefore,
this can be cast as a multi-view learning problem with missing data as shown in
Fig. 1.

The goal of the learning task is to estimate the values of the missing views
from each sample. This scenario usually occurs. It can be seen that the prob-
lem generalises classical supervised learning problems such as regression. Face
recognition is one of applications which can be considered in this framework
(when some parts–the views–of the faces are unknown, e.g. through occlusion).
In developing the learning framework, we make two mild assumptions: (i) There
is a reasonable large number of observations (samples) where all views are known.
Thus, learning procedure can be made. (ii) In the incomplete observations, at
least one view is available but there are no assumptions in which views are miss-
ing. However, any prior knowledge about the distribution of the missing data
can be exploited to improve the estimation of their values.

In this paper, we introduce a formulation which can be considered as a gen-
eralised regression problem whereby the missing values are estimated from the
relationship amongst the views as well as the known views. Assuming that the
missing views of a sample item can be handled as output y and the known part
as input x, then we have y ⇐ Wx, where W is a linear operator learned from the
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complete data which describes the relationships between the different views. The
difficulty of this kind of regression arises from the fact that the output and the
input can vary among the sample items. We proposed the so-called “Tensor-based
Multi-view Learning (TMVL)”algorithm. It is based on the properties of tensor
algebra in a conjunction with maximum margin based optimization framework.
Thus, it is able to provide a tractable learning algorithm. Tensor decomposition
has been used in missing data problem e.g. [5,6], but they are different from
our settings. Liu et al. (2013) investigated on low rank tensor technique based
on tensor trace norm minimisation problem in image reconstruction [5], while
Chen and Grauman (2014) proposed a probabilistic tensor model for inferring
human appearance in unseen viewpoints [6]. Here, we show that the proposed
method can estimate the missing eye movements. This implied that we can learn
to predict where human look.

The outline of the paper is as follows: Sect. 2 describes an algebraic frame-
work, followed by the corresponding optimisation problem in Sect. 3. In Sect. 4,
we evaluate our proposed algorithm on real-world dataset. Finally, we conclude
our study in Sect. 5.

2 Algebraic Framework

Let us denote R = {1, . . . , nR} as the set of indices of the views considered. In our
model each of these views has a corresponding linear vector space Zr, r ∈ R over
the real numbers, and the dimensions of these spaces are denoted by Dim(Zr) =
dr, r ∈ R. The set JR = {j1, . . . , jnR

} comprises of the indices of the sample
examples within each of the space corresponding to the views, enumerating the
components of the vectors chosen from the space corresponding to the views.
The range of these indices is equal to the dimension of the corresponding spaces.

The sample is chosen out of the direct product of these spaces and each
sample item consists of as many vectors as the number of views,

Views:
Linear vector spaces: Z1 . . . ZnR

⇓ . . . ⇓
Sample: z1i . . . znR

i i = 1, . . . , m.

The product space of the views is given by the tensor product of the spaces,
Z =

⊗
r∈R Zr. This construction forms the algebraic framework of our solution,

see [7,8] and the references therein for more details.
If we are given two tensor products of vectors then the following contraction

operator [., .] can be defined over them as

[
⊗

q∈Q uq,
⊗

r∈R vr] =
∏

q∈Q∩R〈uq,vq〉⊗
q∈Q\R uq

⊗
r∈R\Q vr,

where the inner product is computed for all common indices. When the two
index sets are coincident then the following well known identity can be used to
unfold the inner products of the tensor products as

〈⊗q∈Q zri ,
⊗

q∈Q zqj〉 =
∏

q∈Q〈zqi , zqj〉.
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This identity states that the inner product of tensor products of vectors is equal
to the product of the inner product of these vectors.

This interpretation of the indices is compatible with the notations used in
tensor algebra, namely, with the so-called “Einstein summation convention”. The
symbol of the summation

∑
is omitted and the summation has to be carried out

over all indices which are denoted with the same symbol. Because we use this
to denote views and algorithmic iterations, which are not tensor indices, there-
fore, we choose to handle the summations with a special care by making them
explicit via the contraction operator [., .]. Furthermore we assume an orthogonal
representation of the indices, and in turn, there is no need to make distinction
between covariant and contravariant indices.

In the learning problem, we look for a linear operator, a tensor, which is an
element of the dual space of Z, the space of the linear functionals defined on Z,
namely

W ∈ Z∗, W = [WJR
] = [Wj1,...,jnR

],

where Z∗ denotes the dual space of all possible linear functionals defined on Z.
We can write up Frobenius type inner products between the linear operator

W and the tensor product of a vectors of the views by

〈W,
⊗

r∈R zri 〉F =
∑

j1,...,jnR
Wj1,...,jnR

∏
r∈R zrijr .

In similar fashion we can compute the Frobenius norm of W by

‖W‖F =
(∑

j1,...,jnR
W 2

j1,...,jnR

) 1
2 .

In the next step the set of views is partitioned into two arbitrary parts

RX ⊂ R, RY = R \ RX ,

where we term the views occurring in RX as inputs, and the views in RY can be
handled as outputs. Corresponding to this partition, the set of indices belonging
to each view has to be split,

JX ⊂ JR, JX = {jr, r ∈ RX}, JY = JR \ JX .

Fixing a partition, a contraction of W can be defined by

WJY
= WJR\JX

= W
⊗

r∈RX
zri

def=
∑

jr∈JX
WJR

∏
r∈RX

zrijr ,

where the components of W are summed over the input views only.
Consequently, the relationship between the inputs and the outputs can be

described by the following inner product

〈⊗s∈RY
zsi ,W

⊗
r∈RX

zri 〉F def=
∑

JY

∏
s∈RY

zsijs
∑

JX
WJR

∏
r∈RX

zrijr ,

which provides a similarity measure between the outputs and the projection of
the inputs by the linear operator W. If the norm of W is fixed then this inner
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product takes a greater value if the angle between the direction of outputs and
the projection of the inputs is smaller, thus the correlation between them is
greater. If both the inputs and the outputs are normalised to the same length
then this similarity measure implies small distance as well.

Based on these definitions we can derive a simple but fundamental Lemma:

Lemma 1. For all partitions RX ,RY of R the inner products

〈⊗s∈RY
zsi ,W

⊗
r∈RX

zri 〉F
have the same value, namely

〈W,
⊗

r∈R zri 〉F .

Proof. We need to unfold only the corresponding definitions of the inner products
which give the next chain of equalities

〈⊗s∈RY
zsi ,W

⊗
r∈RX

zri 〉F =
∑

JY

∏
s∈RY

zsijs
∑

JX
WJR

∏
r∈RX

zrijr
=

∑
j1,...,jnR

Wj1,...,jnR

∏
r∈R zrijr

= 〈W,
⊗

r∈R zri 〉F .

This Lemma shows that the value of the inner product of the tensor products is
invariant on the partition of the views into inputs and outputs.

3 The Optimisation Problem

To force the high similarity between the projected inputs and the outputs taken
out of a fixed partition of the views, a “Support Vector Machine”-style, maximum
margin based optimisation problem is formulated for the regression task, see
earlier application of the framework [9,10]:

min 1
2‖W‖2F + C

∑m
i=1 ξi

w.r.t. W tensor ∈ Z∗, ξ ∈ R
m,

s.t. 〈
⊗

s∈RY

zsi

︸ ︷︷ ︸
Outputs

,W
⊗

r∈RX

zri

︸ ︷︷ ︸
Inputs

〉F ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , m,

(1)

where C > 0 is penalty constant.
The form is similar to the Support Vector Machine case with two notable

exceptions: (i) the outputs are no longer binary labels, {−1,+1}, but vectors
of an arbitrary linear vector space, and (ii) the normal vector of the separating
hyperplane is reinterpreted as a linear operator projecting the inputs into the
space of the outputs.

The regularisation term in the objective function forces the projections of
the inputs and the outputs to be similar with respect to their inner products.
When the inputs and the outputs are normalised they live on a sphere in both
corresponding spaces then we solve a problem between spaces with structure of
a Spherical rather then Euclidean geometry.
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Based on Lemma 1 we state the next theorem:

Theorem 1. For all partitions RX ,RY of R the optimisation problem (1) is
equivalent to the following one:

min 1
2‖W‖2F + C

∑m
i=1 ξi

w.r.t. W tensor ∈ Z∗, ξ ∈ R
m,

s.t. 〈W,
⊗

r∈R zri 〉F ≥ 1 − ξi, i = 1, . . . , m,
ξi ≥ 0, i = 1, . . . , m.

(2)

This equivalence holds true if the inputs and the outputs are partitioned inde-
pendently in every sample item.

Proof. We can reformulate the constraints following Lemma 1 which proves the
statement.

This fact guarantees that the linear operator W has an universal property,
namely it is independent on how the views are grouped into inputs and outputs,
thus, it consistently characterises the underlying multi-view learning problem.

The seemingly complex problem (2) leads to a simple Lagrangian dual:

min 1
2α′(K1 • · · · • KnR

)
α − 1′α

w.r.t. α ∈ R
m

s.t. 0 ≤ α ≤ C1,
(3)

where
(Kr)ij = 〈zri , zrj 〉, r ∈ R, i, j ∈ {1, . . . , m} (4)

are kernels corresponding to each of the views. The • expresses the element
wise product of matrices. This dual can be solved in a straightforward way for
very large scale applications1. After computing the dual variables the optimum
solution for the universal linear operator is given by

W =
∑m

i=1 αi

⊗
r∈R zri .

In test phase, known and unknown views are considered as inputs and outputs,
respectively. The output can be estimated in the following way:

( ⊗
s∈Ry

zs
) ∼ W

⊗
r∈RX

zr =
∑m

i=1 αi[
⊗

r∈R zri ,
⊗

r∈RX
zr]

=
∑m

i=1 αi

∏
r∈RX

〈zri , zr〉
⊗

s∈RY
zsi

=
∑m

i=1 βi

⊗
s∈RY

zsi ,
(5)

where
βi = αi

∏
r∈RX

〈zri , zr〉, i = 1 . . . , m.

Thus the prediction is a linear combination of the corresponding outputs.
1 The website of the authors provides an open source implementation to this problem.
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4 Performance Evaluations

We evaluate our method, TMVL, on the public available eye tracking dataset [3].
The dataset contains eye tracking data of 15 different users on 1003 images. Each
image consists of three-second free viewed trajectory of different user. In order
to encourage users to pay attention on the task, users were memory tested at
the end of the data collection on 100 images.

In our experiment, only eight users are randomly selected, hence, there are
eight views in this setting. Each view is represented by a heatmap for each
user. Heatmap quantifies the degree of importance of part of image; the higher
probability of the importance of part of image is implied by the higher density
of eye movements on that part of the image. A users heatmap is created by
convolving a Gaussian kernel on each eye movement point. Here, linear kernel
function is used. The model selection is performed by five-fold cross validation
based on the area under the receiver operating characteristic. All heatmaps are
resized to 50 × 50 and normalised to unit norm.

We examined on two scenarios on test sets: (i) randomly select {1–7} missing
views and (ii) one fixed view is missing on each run. The experiments were run
10 times with different random data splits. We compare our method with well-
known saliency map model, i.e. Graph-Based Visual Saliency (GBVS) [2] and
Conventional Visual Saliency (CVS) [1]. The performance matrices used in this
work are as follows:

TMVL−1 TMVL−2 TMVL−3 TMVL−4 TMVL−5 TMVL−6 TMVL−7 GBVS CVS
0

0.5
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Methods
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C
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D

Fig. 2. A comparison of all methods when randomly select {1–7}-missing-view cases
are considered.
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1. Area under the receiver operating characteristic (AUROC) is one of the com-
monly used performance metric. It is based on the ROC curve which can be
computed by varying the threshold of predicted heatmap. A pixel is predicted
as a target when its heatmap value is greater than a threshold. It is classified
as a background when the value is below the threshold. AUROC ranges from
0 (perfect match) to 1 (complete mismatch).

2. Correlation measures the degree of linear correlation between two maps. It
ranges from −1 (perfect correlation but in opposite direction) to +1 (perfect
correlation). Zero indicates no correlation between two maps.

3. Jensen-Shannon divergence (JSD) is used to identify the dissimilarity of two
distributions. It is based on Kullback-Leibler divergence (KLD) which can
capture a certain kind of non-linear, entropy type and dependency. JSD is
symmetric while KLD is not [11]. Square root of JSD yields a matric prop-
erties. The more similar two objects are, the smaller the value of the JSD is,
and vice versa.

4.1 Randomly Select Missing Views

According to Fig. 2, when the number of missing view increases, AUROC and
correlation decrease. On the other hand, JSD increases when there is an increas-
ing number of missing view. The performances of TMVL on correlation and
JSD are better than GBVS and CVS performances in all cases. In the case of
AUROC, TMVL can outperforms CVS in all cases but is only better than GBVS
in {1–5}-missing-view cases. TMVL is comparable to GBVS when six views are
missing but is worse than GBVS in the case of seven missing views.

Figure 3 shows an example of prediction by GBVS, CVS, and our proposed
algorithm when two views are missing. It can be seen that GBVS and CVS fail
to predict where users look at. Both algorithm distributed their attention on
woman’s arm and windows while users focus on her face. Clearly, TMVL is more
effective than GBVS and CVS on all three performance matrices as shown in
Table 1.

Original Image GBVS CVS

Eye Movements

U
se

r 
1

True Heatmap Predicted Heatmap

Eye Movements

U
se

r 
2

True Heatmap Predicted Heatmap

Fig. 3. An example of 8-view problem
with 2-view missing.

Table 1. Performance matrices of all
methods on figure 3.

User Method AUROC Corr JSD

1 TMVL 0.8065 0.7160 0.3726

GBVS 0.6543 0.0783 1.2755

ITTI 0.7358 0.0792 1.2454

2 TMVL 0.7812 0.6900 0.4064

GBVS 0.6707 0.0985 1.1863

ITTI 0.6983 0.0981 1.1627
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Fig. 4. A comparison of all methods when only one fixed view/user are missing.
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4.2 Fixing a Missing View

In this scenario, we want to predict where a user looks at a (test) set of images
based on the other seven’s eye movements on test set. The overall picture is
much the same as previous scenario according to Fig. 4. TMVL is still the best
contender in all users, followed by GBVS and CVS, respectively.

TMVL displays improvement on AUROC with respect to GBV and CVS
in all users by 17.6 % and 27.3 % on average, respectively, as shown in Fig. 5.
Our proposed algorithm achieves the highest improvement with respect to both
baselines in user 2. This means that other users’ eye movements/behaviours is
very useful to user 2. However, the lowest improvements are found in user 3. This
indicates that user adaptation might be useful as the performance is improved
but have not yet attained high performance as on user 3.

5 Conclusion

In this paper we introduced a missing value prediction schema built upon maxi-
mum margin based learning and invariances of the tensor algebra. The proposed
algorithm was examined on eye movement dataset to identify where human
look. We have demonstrated that it can perform better than well-known saliency
detection techniques. Some initial results show that user adaptation might be
useful, thus user information should be investigated in the future.
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Abstract. The paper presents a script classification method of the
medieval documents originated from the Balkan region. It consists in
a multi-step procedure which includes the text mapping according to
typographical features, creation of equivalent image patterns, run-length
pattern analysis in order to establish a feature vector and state-of-the
art classification method Genetic Algorithms Image Clustering for Doc-
ument Analysis (GA-ICDA) which successfully disseminates the docu-
ments written in different scripts. The proposed method is evaluated on
custom oriented document databases, which include the handprinted or
printed documents written in old Cyrillic, angular and round Glagolitic,
ancient Latin and Greek scripts. The experiment demonstrates very good
results.

Keywords: Classification · Historical document · Optical charac-
ter recognition · Pattern recognition · Run-length statistics · Script
identification

1 Introduction

Script recognition represents an important stage in document image analysis
[1]. The techniques for the script recognition are usually divided into global and
local methods. Global methods process statistically the large image areas. In
contrast, the local methods treat smaller image areas like characters, words or
lines. Then, the black pixel runs analysis is performed [2].

Medieval documents from the Balkan region are especially interesting due to
the variety of scripts. Pre to the Slavs population of the Balkan region, the church
books were written in Greek and ancient Latin. However, the creation of new
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-26532-2 48



Classification of the Scripts in Medieval Documents from Balkan Region 443

alphabet(s), i.e. Glagolitic and old Cyrillic scripts accustomed to the Church
Slavonic language enabled the translation of church books. It contributed to
the variety of handprinted and printed books in the Church Slavonic language.
Hence, the complexity of the problem to be solved raised due to the presence of
five different scripts. The main purpose of the paper is to propose an algorithm
for the classification of the scripts present in the medieval documents from the
Balkan region. A similar approach was proposed in Refs. [3,4] in order to differ-
entiate the South Slavic scripts. However, we extend the method by introducing
the run-length statistical pattern analysis and enlarging the custom oriented
document database, which includes all five scripts. Furthermore, it should be
noticed that the documents include a small number of characters, i.e. up to
150, which makes the problem more complex to solve. Until now, there was no
attempt to solve such a script recognition problem containing five scripts from
medieval documents originated from the Balkans. Although, these old historical
documents are not in good shape, the algorithm is partly prone to errors, which
leads to good script classification results.

The paper is organized as follows. Section 2 describes the proposed algorithm.
Section 3 illustrates the experiments, presents the obtained results and discusses
them. Section 4 gives the conclusions.

2 The Algorithm

2.1 The Proposed Algorithm

The proposed algorithm can discriminate different scripts present in medieval
hand-printed or printed documents of the Balkan region. At the beginning, we
suppose that the skew and slant corrections were previously processed. The
algorithm consists of the following stages: (i) horizontal projection profile of the
text in order to segment text lines, (ii) extraction of the blob by bounding boxing,
(iii) distribution of the blob heights and its center point, (iv) classification and
mapping according to typographical features into image pattern, (v) feature
extraction of the image pattern according to the run-length texture analysis,
(vi) classification of the extracted features by specialized GA-ICDA algorithm.

2.2 Mapping According to Typographical Features

In the first stage of the algorithm, the initial text is converted into the image
pattern according to its typographical characteristics. Figure 1 illustrates the
samples of the medieval documents, which are written in different scripts.

The aforementioned algorithm’s stage includes different steps. First, the hor-
izontal projection profile is applied to the text in order to segment the text lines.
It is used to establish a reference (central) line of each text line. Then, each blob
is framed by the bounding box. Accordingly, the distribution of the blob heights
and its center point can be extracted. These features are mandatory in order
to make a classification according to typographical features. Figure 2 illustrates
these steps of the algorithm.
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Fig. 1. The excerpts from the medieval documents written in different scripts.

Fig. 2. Pre-mapping steps: (a) initial text, (b) bounding box extraction, (c) bounding
box filling, and (d) reference line with the center point of the bounding box.

Fig. 3. Classification of the letters according to typographical features in the text line.

Classification with respect to typographical features means the division of all
the blobs, i.e. letters into the following groups [5]: (i) base letter, (ii) ascender
letter, (iii) descendent letter, and (iv) full letter. Figure 3 illustrates the classifi-
cation according to typographical features.

It can be noticed that there exist three different letter heights. The base let-
ters have the smallest height, while the full letters have the largest height. Fur-
thermore, the ascender and descendent letters have similar heights in between
the base and full letters. Still, the ascender and descendent letters can be discrim-
inated by different center positions. Accordingly, ascender letter has the center
point above the reference line, while the descendent letter has the center point
below the reference line. The algorithm maps each letter according to the typo-
graphical features into an equivalent image pattern. In this way, the following
mapping is carried out: base letter to 0, ascender letter to 1, descendent letter
to 2, and full letter to 3 [3]. Figure 4 illustrates the procedure of mapping initial
text into a gray-level image pattern.
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Fig. 4. Mapping steps: coding text according to typographical features (top left), equiv-
alent image pattern (top right), and full 1-D pattern of the initial text (bottom).

It should be pointed out that each text line is continued in the next line
up to the end of the text. Also, each of four different numbers corresponds to a
different level of gray in the image. Hence, the image is given as long 1-D image
with four gray levels.

2.3 Feature Extraction with the Run-Length Statistics

Texture is a measure of the intensity variation in the image surface. Hence, it is
suitable for information extraction, which can be used to quantify the properties
like image smoothness, coarseness, and regularity. Accordingly, the texture can
be used to calculate statistical measures of the image and make discrimination
between images.

Run-length based statistical analysis can be used to extract texture features
in order to quantify the image (di)similarity. A run is a set of consecutive pixels
characterized with the same gray-level intensity in a specific direction of the
texture. Accordingly, various types of textures characterize different runs. To
define a run-length statistic element, we start with a gray-level image G. It
is determined by X rows, Y columns and M levels of gray. As a first step,
the extraction of run-length matrix p(i, j) is carried out. The matrix p(i, j) is
determined by counting the occurrence of runs for each gray-level and length.
The number of rows represents the number of gray levels i = 1, . . . ,M , while
the number of columns corresponds to the number of run lengths j = 1, . . . , N .
In this way, a set of consecutive pixels with identical gray levels constitutes a
gray-level run. The aforementioned matrix is a starting point for the extraction
of the following eleven run-length features: (i) Short run emphasis (SRE), (ii)
Long run emphasis (LRE), (iii) gray-level non-uniformity (GLN), (iv) Run length
non-uniformity (RLN), and (v) Run percentage (RP) [6], (vi) Low gray-level run
emphasis (LGRE), (vii) High gray-level run emphasis (HGRE) [7], (viii) Short
run low gray-level emphasis (SRLGE), (ix) Short run high gray-level emphasis
(SRHGE), (x) Long run Low gray-level emphasis (LRLGE), and (xi) Long run
high gray-level emphasis (LRHGE) [8]. Table 1 shows the definition of run-length
texture features.
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Table 1. Eleven run-length texture feature definition.

2.4 Feature Extraction by GA-ICDA

To discriminate eleven dimensional run-length feature vectors obtained from
medieval documents written in different scripts, we adopt a framework called
Genetic Algorithms Image Clustering for Document Analysis (GA-ICDA), pre-
viously discussed in [9]. It represents an extension of the Genetic Algorithms
Image Clustering (GA-IC) method, proposed in [10] and performs clustering of
documents written in different scripts. Here we recall it briefly. GA-ICDA is a
bottom-up evolutionary method modelling the document database as a weighted
graph G = (V,E,W ). The nodes V are the documents and the edges E connect
the nodes to each other, with associated weights W representing the similarity
degree among the nodes. Each node v ∈ V is connected only to a subset of its
h-nearest neighbor nodes nnh

v = {nnh
v (1), . . . , nnh

v (k)}, representing the docu-
ments most similar to that node v, in terms of the L1 norm of the corresponding
feature vectors. h is a parameter related to the size of the neighborhood. Now, let
f be a node ordering determined by a one-to-one association from nodes to inte-
ger labels f : V → {1, 2, . . . , n}, where n is the number of nodes. For each node



Classification of the Scripts in Medieval Documents from Balkan Region 447

v ∈ V with associated label f(v), the difference is computed between f(v) and
the labels F of the nodes in nnh

v . Then, for each node v, only the edges between
v and the nodes in nnh

v are considered, whose label difference |f(v)− f(nnh
v (j))|

is less than or equal to a given value T . This concept is derived from the Matrix
Bandwidth definition [11]. In the first step, the node clustering is performed on
the graph G by a genetic algorithm. After that, a merging procedure is repeated
on the clusters found from the algorithm, until a fixed cluster number is deter-
mined. Specifically, for each cluster cx, another cluster cy is selected with the
minimum distance from it. The distance between cx and cy is evaluated as the
L1 norm computed between the two farthest document feature vectors, one for
each cluster. Then, the pair of the nearest clusters (cx, cy) is merged into a single
cluster.

3 Experimentation, Results and Discussion

The proposed framework is evaluated on two custom-oriented databases of short
documents (labels) written in old Cyrillic, angular Glagolitic, round Glagolitic,
ancient Latin and Greek scripts. Each of the documents has less than 150 charac-
ters. The first database is composed of 26 text excerpts from documents, where
16 are in Cyrillic script, 5 are in ancient Latin and 5 are in ancient Greek. The
second database is composed of 15 text excerpts from documents, where 5 are
in Cyrillic script, 5 are in angular Glagolitic and 5 are in round Glagolitic.

The experiment consists in evaluating the ability of the proposed framework
in correctly discriminating among different kinds of scripts. A first test employes
the GA-ICDA classifier on the first database, for clustering of the eleven dimen-
sional coded run-length feature vectors of labels in Cyrillic, ancient Latin and
Greek scripts. Then, in order to confirm the efficacy of our method, a second
more complex test is provided where the second database of feature vectors of
labels in Cyrillic, angular Glagolitic and round Glagolitic scripts is required to
be clustered by GA-ICDA. The task consists in distinguishing the labels written
in one kind of script (i.e. Cyrillic) from the labels written in the other kinds of
scripts (i.e. angular or round Glagolitic).

The classification task presents some difficulties in this context and it is
a real challenge, because the analyzed labels are hand-engraved in stone and
hand-printed on paper. Furthermore, in the second test, the proposed angular
and round Glagolitic scripts are very similar to each other and very difficult to
discriminate. This is mainly because they are both from the Glagolitic script,
but belong to different historical periods and are spread in different regions.

A trial and error procedure is employed for tuning the parameters of the
GA-ICDA classifier on benchmark documents. Consequently, the h value of the
node neighborhood has been fixed to 10 and the T value to 5 in the first test, and
the h value of the node neighborhood to 7 and the T value to 4, in the second
test.

Our framework is compared with other four unsupervised classifiers, well-
known in text document classification, for which the same run-length feature
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Table 2. Classification results obtained from the first database of Cyrillic, ancient
Latin and ancient Greek scripts. nc is the number of detected clusters.

vector representation of labels is used. They are Expectation Maximization
(EM), K-Means, Single Linkage Hierarchical clustering and Self-Organizing
Map (SOM) [12–14]. F-Measure, Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) have been adopted as the performance indexes for
the classifiers evaluation [15,16]. Experiments have been executed on a Desktop
computer quad-core 2.3 GHz with 4 Gbyte of RAM and Linux operative system.
Algorithms have been run 100 times on each dataset and the average values
together with the standard deviation (in parenthesis) of the performance indexes
have been calculated. Table 2 shows the results of the first test for our framework
compared with EM, K-Means, hierarchical and SOM. It is interesting to note as
GA-ICDA outperforms all the other classifiers, by also reaching the maximum
value of 1 for F-Measure, NMI and ARI (in bold). Furthermore, the standard
deviation is always 0, demonstrating the stability of the procedure. Hierarchical
clustering obtains good results but not comparable with GA-ICDA. In fact, it
reaches an F-Measure value of 0.8519, an NMI value of 0.7645 and an ARI value
of 0.7512. Also, it outperforms EM, K-Means and SOM on this database, for
discrimination of Cyrillic, ancient Latin and Greek. Table 3 reports the results
of the second test for our framework compared with EM, K-Means, hierarchical
and SOM. It is worth to observe that, although the task is much more complex
than before, GA-ICDA always obtains the best classification, by reaching the 1
value for all the performance indexes (in bold). Also in this case, the standard
deviation is 0, confirming again the very good results of our procedure. On the
contrary, the other classifiers perform poorly. Among them, the best classifica-
tion result is provided by SOM, with an F-Measure value of 0.6821, an NMI value
of 0.5960, an ARI value of 0.3441 and high values of standard deviation. On the
other hand, hierarchical clustering is not sufficiently robust to a more difficult

Table 3. Classification results obtained from the second database of Cyrillic, angular
Glagolitic and round Glagolitic scripts. nc is the number of detected clusters.
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scenario. In fact, it performs more poorly than before, with an F-Measure value
of 0.5826, an NMI value of 0.3198 and a very low ARI value of 0.0973. On the
contrary, we observe as our framework maintains high performance values inde-
pendently from the proposed database, also when a more difficult classification
task is proposed.

4 Conclusion

The paper proposed a method for the script dissemination on the example of the
old medieval documents from the Balkan region, which were written in old Cyril-
lic, angular and round Glagolitic, ancient Latin and Greek scripts. The algorithm
aggregated the text coding procedure in order to create image patterns, run-
length analysis of image patterns which established 11 elements feature vectors,
and classification of the feature vectors by Genetic Algorithms Image Clustering
for Document Analysis (GA-ICDA) in order to disseminate documents written in
different scripts. The proposed algorithm was evaluated on two custom-oriented
databases which include short documents written in old Cyrillic, angular and
round Glagolitic, ancient Latin and Greek scripts. The experiments gave very
good results.
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Abstract. As an efficient optimization technique, artificial bee colony
(ABC) algorithm has attracted a lot of attention for its good perfor-
mance. However, ABC is good at exploration but poor at exploitation
for its solution search equation. Thus, how to enhance the exploitation
becomes an active research trend. In this paper, we propose a trigono-
metric search equation in which a hypergeometric triangle is formed to
generate offspring. Additionally, the orthogonal learning strategy is inte-
grated into the scout bee phase for generating new food source. Exper-
iments are conducted on 23 well-known benchmark functions, and the
results show that our approach has promising performance.

Keywords: Artificial bee colony · Exploitative capability · Trigonomet-
ric search equation · Orthogonal learning

1 Introduction

Artificial bee colony (ABC) algorithm, proposed by Karaboga in 2005, is one of
the most popular evolutionary algorithms (EAs) for solving optimization prob-
lems [1,2]. A recent comparative study has shown that the performance of ABC
is competitive to that of some other popular EAs [3], such as particle swarm opti-
mization (PSO) and differential evolution (DE). In solving complex optimization
problems, however, ABC has an insufficiency regarding its solution search equa-
tion which is good at exploration but poor at exploitation [4]. To overcome
this drawback, some improved ABC variants have been proposed in the last few
years. For example, inspired by PSO, Zhu et al. [5] proposed a gbest-guided ABC
(GABC) algorithm in which the global best individual is incorporated into the
solution search equation. Based on the idea of utilizing the global best individual,
Gao et al. [6] designed an ABC/best/1 search equation in their modified ABC
(MABC) algorithm. Very recently, Wang et al. [16] proposed a multi-strategy
ensemble ABC (MEABC) algorithm. In MEABC, three solution search strate-
gies with different characteristics compete to produce offspring for a tradeoff
between exploration and exploitation.

Obviously, from the above representative ABC variants, it’s not difficult to
realize that the global best individual (solution) can be utilized to enhance the
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 451–458, 2015.
DOI: 10.1007/978-3-319-26532-2 49
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exploitation of ABC. Following this active research trend, in this paper, we
propose a trigonometric search equation to replace the original solution search
equation. In the trigonometric search equation, the global best individual and
other two randomly selected individuals are included to form a hypergeometric
triangle in the search space. By applying this search equation, the offspring can
be biased strongly in the direction where the global best individual is, which
benefits the exploitation of ABC. This proposed search equation is inspired by
the concept of trigonometric mutation DE (TDE) [7]. Furthermore, the orthog-
onal learning (OL) strategy is employed to generate a new food source for the
scout bee. In ABC, both of the abandoned food source and the global best indi-
vidual may contain useful information (experience), which can be used for the
search of new food source. Hence, in the OL strategy, these two solutions are
considered as the learning exemplars, and the orthogonal experimental design
(OED) method is used to construct an efficient combination of them as a new
food source. Our approach is tested on 23 well-known benchmark functions, and
it is compared with other three state-of-the-art ABC variants. The comparative
results show that our approach has superior performance.

2 Basic ABC Algorithm

The ABC algorithm is a swarm intelligence-based algorithm that simulates the
intelligent foraging behavior of a honeybee swarm. The swarm consists of three
different kinds of bees: employed bees, onlooker bees and scout bees. Accordingly,
the search process of ABC can be divided into the following three phases. Similar
to other EAs, at first, ABC starts with an initial population of SN randomly
generated food sources. Each food source Xi = (xi,1, xi,2, · · · , xi,D) represents a
candidate solution, and D denotes the dimension size. After initialization, these
three phases can be described as follows [8].

(1) Employed bee phase
In this phase, each employed bee generates a new food source Vi =
(vi,1, vi,2, · · · , vi,D) in the neighborhood of its parent position Xi =
(xi,1,i,2 , · · · , xi,D) by using the following solution search equation.

vi,j = xi,j + φi,j · (xi,j − xk,j) (1)

where k ∈ {1, 2, · · · , SN} and j ∈ {1, 2, · · · ,D} are randomly chosen indexes,
k has to be different from i. φi,j is a random number in the range [−1, 1].
If the new food source Vi is better than its parent Xi, then Xi is replaced
with Vi.

(2) Onlooker bee phase
After the employed bees finish their search work, the onlooker bees would
continue to select part of the food sources to exploit by using the same
solution search equation listed in Eq. (1). The select probability pi depends
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on the nectar amounts of a food source, the following Eq. (2) is usually used
to calculate the probability.

pi =
f(Xi)

∑SN
j=1 f(Xj)

(2)

where f(Xi) is the fitness value of the ith food source. As in the case of
the employed bees, the greedy selection method is also employed to retain a
better one from the old food source and the new food source.

(3) Scout bee phase
If a food source cannot be further improved for at least limit times, it is
considered to be exhausted. In ABC, limit is the only one single specific
control parameter needed to be tuned. For the scout bee, the following Eq. (3)
is used to generate a new food source to replace the abandoned one.

xi,j = aj + randj · (bj − aj) (3)

where [aj , bj ] is the boundary constraint for the j th variable, and randj ∈ [0, 1]
is a random number.

3 Our Approach

3.1 Trigonometric Search Equation in the Onlooker Bee Phase

In ABC, the solution search equation (see Eq. (1)) is used in both the employed
bee and onlooker bee phases, thus the performance of ABC mainly depends on
it. However, some pervious works have pointed out that this search equation is
good at exploration but poor at exploitation [5,9,10]. An active research trend
of solving this demerit is to utilize the globe best individual, such as GABC [5]
and MABC [6]. Although the utilization of the globe best individual can indeed
enhance the exploitation, it may also run the risk of being too greedy or getting
be trapped by local optimum. So how to design a mechanism of reasonably
utilizing the globe best individual plays an important role.

In TDE, Fan et al. [7] proposed a trigonometric mutation to speed up the
convergence rate of DE. In this operator, three individuals are randomly selected
as vertexes to form a hypergeometric triangle in the search space at first, and
then the center point of the hypergeometric triangle is perturbed to produce
a trial solution. The perturbation is made up with three weighted differentials
among these three individuals. This mutation operator can be expressed by the
following equation.

Vi = (Xr1 + Xr2 + Xr3)/3 + (p2 − p1)(Xr1 − Xr2)
+ (p3 − p2)(Xr2 − Xr3) + (p1 − p3)(Xr3 − Xr1)

(4)

where p1 = |f(Xr1)|/p, p2 = |f(Xr2)|/p, p3 = |f(Xr3)|/p, p = |f(Xr1)| +
|f(Xr2)| + |f(Xr3)|, and f(·) is the fitness function. As seen, the center point
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can move along in the direction from a vertex with a higher fitness value towards
another with a lower fitness value. It implies that the new trial solution can be
located in the relatively good search landscape.

Motivated by these observations, we propose a trigonometric search equation
in the onlooker bee phase. In contrast with the mutation operator of TDE, the
proposed trigonometric search equation has a minor difference, i.e., the global
best individual is included to substitute one of the three randomly selected indi-
viduals. Accordingly the trigonometric search equation is modified as follows.

Vi = (Xb + Xr1 + Xr2)/3 + (p1 − pb)(Xb − Xr1)
+ (p2 − p1)(Xr1 − Xr2) + (pb − p2)(Xr2 − Xb)

(5)

where Xb is the global best individual, pb = |f(Xb)|/p, p1 = |f(Xr1)|/p, p2 =
|f(Xr2)|/p, and p = |f(Xb)|+ |f(Xr1)|+ |f(Xr2)|. By utilizing this search equa-
tion, the offspring can be biased strongly in the direction where the global best
individual is. It’s worth to note that the proposed search equation is only used
in the onlooker bee phase, while the original search equation is still used in the
employed bee phase. By using both of these two search equations simultaneously,
it’s expected to balance the exploration and exploitation of ABC.

In addition to the trigonometric search equation, another modification is
made in the onlooker bee phase. In the original ABC, a fitness-based selection
mechanism is used to select the food sources with relatively good nectar amounts
for further exploitation. In this case, a food source may be selected for more than
once and then be modified by the same search equation. Unlike this mechanism,
however, we propose an average-fitness-based approach. In this approach, the
average fitness value fmean of all food sources is calculated at first, if a food
source has better fitness value than fmean, then it will be selected and modified
by the proposed search equation. For the remaining food sources whose fitness
value is worse than fmean, the following search equation will be used for them.

Vi = Xr1 + φ · (Xr2 − Xr3) (6)

where r1, r2 and r3 are random indexes within the range [1, SN ], and they
are mutually exclusive. φ has the same role as well as in the Eq. (1). This search
equation is derived from the basic DE, which aims to expand the available search
space for avoiding being trapped in local optimum.

3.2 Orthogonal Learning in the Scout Bee Phase

In the original scout bee phase, if a food source is considered to be abandoned,
then it would be replaced with a new one which is generated in a random man-
ner by the scout bee. Although this mechanism is relatively simple, it may cause
a problem that the search experience contained in the abandoned food source
would be lost. Hence, we introduce the OL strategy to overcome this short-
coming. In the OL strategy, the abandoned food source Xa and the global best
individual Xb are considered as the learning exemplars, and the OED method
is used to construct an efficient combination of these two exemplars as the new
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Algorithm 1. The procedure of OL strategy in the scout bee phase
1: Determine which food source would be abandoned;
2: Select an appropriate orthogonal array LM (QN );
3: Use the quantization technique to divide the dimensions of Xa and Xb into N

factors, and define Q levels among them;
4: Construct M orthogonal combinations according to the selected orthogonal array;
5: Use the factor analysis to construct the best combination of levels;
6: Pick out the best one from M orthogonal combinations and the best combination

of levels as the new food source.

food source. Due to the limited paper space, more details about the OED method
can be referred to the literatures [4,11–13]. The procedure of OL strategy in the
scout bee phase is described in Algorithm 1, where LM (QN ) denotes a predefined
orthogonal array, it has N factors and Q levels per factor, M is the number of
combinations.

3.3 The Procedure of Our Approach

To better clarify our approach, called TABC-OL, its procedure is described
in Algorithm 2. FEs is the number of used fitness function evaluations, and
MaxFEs, as the stopping criterion, is the maximal number of fitness function
evaluations.

Algorithm 2. The procedure of our approach
1: Randomly initialize SN food sources {Xi | i = 1, 2, · · · , SN};
2: while FEs ≤ MaxFEs do
3: /* Employed bee phase */
4: Update the SN food sources using the original solution search equation Eq. (1);
5: FEs = FEs + SN ;
6: /* Onlooker bee phase */
7: Calculate the average fitness value fmean of all food sources;
8: Determine the relationship of f(Xi) and fmean for each food source;
9: Update Xi with the trigonometric search equation Eq. (5) in the case of f(Xi) ≤

fmean, otherwise the search equation Eq. (6);
10: FEs = FEs + SN ;
11: /* Scout bee phase */
12: Use the OL strategy described in Algorithm 1 to generate a new food source;
13: FEs = FEs + M + 1;
14: end while

4 Experiments

4.1 Benchmark Functions

To verify the performance of our approach, 23 well-known benchmark functions
are used, these functions are also widely used in other works. Functions F01–F13



456 X. Zhou et al.

Table 1. The comparative results of GABC, MABC, MEABC, and TABC-OL.

Functions GABC MABC MEABC TABC-OL

F01 2.12E−36+ 1.07E−25+ 1.12E−38+ 3.33E−56

F02 1.67E−19+ 4.31E−14+ 8.35E−21+ 6.08E−34

F03 7.46E+03+ 1.59E+04+ 9.43E+03+ 2.28E+03

F04 1.93E+01+ 1.27E+01+ 4.56E+00+ 2.34E+00

F05 2.07E+01+ 3.69E+00+ 8.14E−01≈ 1.78E+00

F06 0.00E+00≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00

F07 8.16E−02+ 3.79E−02+ 3.00E−02+ 6.23E−03

F08 3.82E−04≈ 3.82E−04≈ 3.82E−04≈ 3.82E−04

F09 5.92E−17≈ 0.00E+00≈ 0.00E+00≈ 0.00E+00

F10 4.09E−14+ 6.38E−13+ 2.98E−14+ 1.39E−14

F11 1.95E−05+ 3.23E−14+ 0.00E+00≈ 0.00E+00

F12 1.57E−32≈ 1.03E−27+ 1.57E−32≈ 1.57E−32

F13 1.35E−32≈ 1.84E−26+ 1.35E−32≈ 1.35E−32

F14 1.12E−13+ 1.17E−13+ 1.23E−13+ 5.68E−14

F15 8.11E+03+ 1.37E+04+ 9.98E+03+ 4.07E+03

F16 1.50E+07+ 1.31E+07+ 1.03E+07+ 2.40E+06

F17 3.73E+04+ 4.65E+04+ 3.55E+04+ 2.02E+04

F18 7.34E+03+ 9.40E+03+ 8.98E+03+ 3.20E+03

F19 4.16E+01≈ 1.93E+00− 3.27E+01≈ 4.46E+01

F20 5.47E−02+ 5.83E−02+ 3.32E−02+ 9.78E−03

F21 2.09E+01+ 2.08E+01+ 2.08E+01+ 2.03E+01

F22 9.28E−14+ 1.23E−13+ 1.17E−13+ 5.68E−14

F23 1.57E+02+ 1.44E+02+ 1.62E+02+ 5.08E+01

+/−/≈ 17/0/6 19/1/3 15/0/8 − −

are classic scalable problems, and they are the first 13 functions in Table 1 of
Yao’s literature [14]. Functions F14–F23 are shifted and/or rotated problems,
and they are the first 10 functions in the CEC 2005 competition [15]. For the
sake of limited paper space, details of these functions can be found in [14,15],
respectively.

4.2 Comparison with Other ABC Variants

This section presents a comparative study of TABC-OL with other three state-
of-the-art ABC variants, they are GABC [5], MABC [6], and MEABC [16].
Short reviews about these three ABC variants have been given in Sect. 1. For
a fair comparison, the parameter settings of the three ABC variants are kept
the same as in their original literatures. For the stopping criterion, according to
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Table 2. Average rankings of GABC, MABC, MEABC, and TABC-OL, and the best
value is shown in boldface.

Algorithms Average rankings

GABC 2.91

MABC 3.24

MEABC 2.35

TABC-OL 1.50

the suggestions in [15], MaxFEs is set to 5000 · D and 10000 · D for the first 13
functions and the remaining 10 functions, respectively. The dimension size D is
set to 30. The orthogonal array in TABC-OL is L9(34). Each algorithm is run
30 times, the mean error (f(X) − f(X∗), X∗ is the global optimum) values are
recorded. Table 1 presents the final results.

In this test, the paired Wilcoxon signed-rank test is used to compare the
significance between two algorithms, and the signs “+”, “−”, and “≈” in Table 1
indicate our approach is, respectively, better than, worse than, and similar to
its competitor according to the Wilcoxon signed-ranked test at α = 0.05. The
last row in Table 1 summarizes the comparative results. It can be seen from this
table, our approach shows the best overall performance. To be specific, compared
with GABC and MEABC, TABC-OL wins on 17 and 15 functions respectively.
For MABC, TABC-OL achieves better results on 19 function, while on the F19
function MABC shows the best performance among the involved four algorithms.
To compare the performance of multiple algorithms, the Friedman test is also
conducted to obtain the average rankings. Table 2 shows the average rankings,
it can been that TABC-OL achieves the best average ranking, and the rest of
algorithms can be sorted into the following order: MEABC, GABC, and MABC.

5 Conclusions

To enhance the exploitive capability of ABC, in this paper, a trigonometric
search equation is proposed to replace the original solution search equation. In
the proposed search equation, the global best individual and other two randomly
selected individuals are included to form a hypergeometric triangle in the search
space. As a result, the offspring can be biased strongly in the direction where
the global best individual is, which benefits the exploitation of ABC. Further-
more, the orthogonal learning strategy is employed in the scout bee phase to
generate new food source. By using this strategy, it’s helpful to preserve the
good information of the abandoned food source. The experiments are conducted
on 23 well-known benchmark functions including shifted and rotated problems.
The results are compared with other three state-of-the-art ABC variants, which
show that our approach has superior performance. In the future, our approach
will be tested on more benchmark functions and applied to solve some real-world
problems, such as data clustering.
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Abstract. A commonly used method to determine the intelligence of an indi‐
vidual is a group test. It checks accuracy and response time while they solve a
series of problems. However, it takes long time and is often inaccurate if the
difficulty level of problems is high or the number of problems is too small. There‐
fore, there is an urgent need to find an objective, readily available, fast and more
reliable method to determine the intelligence level of individuals. In this paper,
we propose an alternative method to distinguish between high and low intelligent
individuals using pupillary response and eye blink pattern. Studies have shown
that these measures indicate the cognitive state of an individual more accurately
and objectively. Our experimental results show that the bio-signals between high
and low intelligent individuals are significantly different and proposed method
has good performance.

Keywords: Bio-signals · Pupil dilation · Eye blink · Intelligence · Classification

1 Introduction

For developing effective and customizable learning methods, it is important to distin‐
guish high intelligent individuals from low intelligent individuals. Several subjective
and objective assessment methods have been proposed in this regard but they have their
own limitations. For example, most commonly used group intelligence tests to check
behavioral data such as accuracy and response time are economical to administer but
fail to identify individual differences. Moreover, it takes long time because participants
need to solve a long list of problems. Similarly individual tests like ‘self-assessment’
and ‘interview’ provide subjective information but they are costly and equally time
consuming. Therefore, considering problems of existing assessment methods, it is
important to find reliable, cheaper, fast and objective assessment methods that can
distinguish between high and low intelligent individuals.

Several studies have shown that cognitive state of humans can be recognized by
analyzing bio-signals such as pupil dilation, eye blink, gaze pattern, facial expressions,
heart rate, skin conductance, etc. Kaliouby and Robinson [1] conducted a study in which
they tried to infer complex mental states of users by analyzing their head gestures and
facial expressions in a real-time video stream. D’Mello and his colleagues [2] specifi‐
cally showed that by analyzing students’ gaze on a commercial eye tracker, they could
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detect if the student is bored, disengaged, or is zoning out. In particular, pupillary
response and eye blinking pattern can be reliably associated with higher cognitive func‐
tions such as thinking, problem solving, memory retrieval, etc., and may also indicate
the intelligence of an individual [3, 4]. Usually the pupil is larger under conditions of
higher attentional allocations, memory use or interpretation of more difficult material.
Increase in pupil diameter also correlates with sustained processing, which means that
pupil dilation persists as long as the demand of information processing sustains [3]. Eye
blink, which is a regular part of daily waking life, too indicates cognitive processing and
does not occur randomly. Blinks potentially reflect preparation and very short blinks are
associated with errors on cognitive tasks, consistent with adequate preparation [5].

Considering above-mentioned findings, we suggest an alternative method (which
can replace conventional methods) to distinguish between high and low intelligent indi‐
viduals by analyzing ‘pupil’ and ‘eye blink’ patterns of individuals while they solve our
pre-designed problems. The rest of the paper is organized as follows: In the next section,
we explain related work for determining intelligence level using bio-signals in detail.
In Sect. 3, we explain the proposed method. In Sect. 4, we report our experimental results
and finally in last section, we present our conclusions.

2 Bio-Signal Analysis for Determining Intelligence

Cognitive activities require consumption of resources [6]. Resources here mean the
amount of activation available for information storage and processing in the underlying
cortical neural system. This pool of activation is assumed to be limited. In last few years,
different measures of activity as indices of resource allocation have been verified [6].
Particularly, studies have shown that assessment of variation of pupil size and eye blink
pattern provides complementary indices of information processing. In general, pupil
dilation indicates sustained information processing. For example, as individuals are
asked to remember larger number of digits, pupil dilation increases proportionally [7].
Pupil dilation also reflects resource allocation, interpretation of complex material,
deception and affective processing.

Along with pupil dilation, eye blinks also indicate cognitive processing. Studies show
that eye blink bursts follow high cognitive load or information processing [8]. This
suggests that eye blinks reflect the release of resources used in stimulus related cognition
[9]. Blinks potentially reflect preparation and very short blinks are associated with errors
on cognitive tasks, consistent with adequate preparation [5]. Other studies have pointed out
that pupil dilation often follows blinks in a cognitive task [8]. Moreover, It has been
suggested that blinking is avoided to maximize stimulus perception during high attention
tasks and blink occurrence is reduced for increasing information content and task
demands [10].

In our earlier study [4], we showed that pupil dilation and eye blink together can be
used as a measure to determine the intelligence of individuals while they solve different
types of tasks with different level of difficulties. Based on our experiment results we
concluded that high intelligent individuals modulate their resource allocation mecha‐
nism while low intelligent individuals do not. Moreover, high intelligent individuals
have higher attention just before the task begins and that period could be the key to
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determine the intelligence of an individual. Based on our findings, here we propose an
alternative method to categorize individuals into high intelligent and low intelligent by
analyzing their pupil and eye blink pattern.

3 Proposed Method

The overall process of proposed method is shown in Fig. 1. In the experimental setup,
we collect and extract pupil size using eye tracker (Tobii 1750) and eye blink using
captured face images from web camera. To classify high and low intelligent individuals
by existing group test results, which can be used for teaching signal of classifier, we also
obtain behavioral data such as accuracy and response time using computer keyboard.
Finally, we classify high and low intelligent individuals using pupil size and eye blink
variation with support vector machine (SVM) classifier [11].

Experimental Setup

Pupil size variation

Eye-blink variation

Behavioral data

Feature Extraction

High Intelligent 
Individuals

Low Intelligent 
Individuals

Tobii eye tracker

Web camera

Keyboard input

SVM
classifier

Classification

Fig. 1. Overview of proposed method

3.1 Experimental Setup and Data Acquisition

Participants were called and seated in a comfortable chair. Stimuli were presented on a
21-inch screen monitor (1280 × 1024). The distance between participants and the screen
was around 60–80 cm. At the beginning of the experiment, participants filled out a ques‐
tionnaire that ascertained demographic information as well as other factors that are known
to affect pupil dilation (e.g., psychiatric and neurological dysfunction, drug consumption,
medication). Then they were calibrated to Tobii eye tracker. A calibration procedure was
conducted prior to every task instruction to obtain accurate pupil data of participants.

At first, the baseline task was conducted to obtain baseline pupil size and eye blink
of participants. Participants were asked to fixate on a plus (+) sign, presented 5 times
for 20 s. The duration between fixations was 40 s when participants close the eyes. The
individual average pupil diameter and the number of eye blink of 100 s of fixation was
taken as pupil and eye blink baseline not influenced by any instructional and expectation
effects. Then, participants did actual tasks as shown in Fig. 2. The stimulus material
included four different types of tasks namely (1) spatial, (2) logic, (3) linguistic, and (4)
natural. These tasks were divided into two parts: encoding and decoding. In encoding
part, there were 10 problems in each type of task, which users had to memorize or learn.
Problems of encoding part included unfamiliar or new information. For example, in case
of logic tasks, we defined new operators. In case of spatial, linguistic and natural tasks,
we chose unfamiliar figure patterns, idioms and flower pictures. In decoding part, there
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were 5 problems in each type of task, which users had to solve based on memorized/
learnt information from the encoding part (see Fig. 3). The medium of instruction as
well as presentation of problems was in Korean Language. Stimuli were presented in
white foreground and black background.

Fig. 2. Experimental procedure in each task

(a) Spatial (b) Logic (c) Linguistic (d) Natural

Fig. 3. An example of stimuli (decoding part)

3.2 Feature Extraction

Division of Processing Period. The standard methodology in a pupillometry study is
to analyze the data during the processing of stimulus (after the onset of stimulus). Pre-
stimulus data is considered to be affected by expectation of task demand [3]. However,
in our study for better assessment of expectation effect (as we argue, is the key to deter‐
mine the intelligence of individuals), we divided the whole processing period into three
stages: (1) pre-stimulus, (2) during-stimulus and (3) post-stimulus as shown in Fig. 2(b).
We assumed that an analysis of pupil size during pre-stimulus stage would indicate the
pattern of preparation and attention [5], post-stimulus would indicate release of cognitive
resources [9] and during-stimulus would indicate time course of processing [7].

Pupil Size Variation. After obtaining left and right pupil size from eye tracker, we
removed artifacts due to excessive blinking and replaced very small blinks by linear
interpolation. Also, we removed the effect of luminance and noise by method in [4].
Then, average pupil size of all problems of decoding part was calculated for feature.
However, bio-signals like pupil dilation are different for different individuals. To
compensate individual characteristic, average pupil size of experimental task was
divided by average pupil size of baseline task using Eq. (1). Change of pupil dilation is
represented in percentage assuming the baseline to be 100 %.

(1)
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Eye-Blink Variation. The eye blink was detected in captured face images obtained
from web camera by method in [12], which detected face and eye region using MCT-
based AdaBoost then detected eye blinks using the difference between center and
surround of Hough circle transform image. After detecting eye blink, the average number
of eye blinks per second of all problems of decoding part was calculated. To consider
subjective characteristics of bio-signals, we subtracted baseline value from calculated
data of each experimental task by using Eq. (2).

(2)

3.3 Classification of High and Low Intelligent Individuals

Participants were divided into two groups namely (1) High Intelligent Individuals (HIs)
and (2) Low Intelligent Individuals (LIs) by traditional method for teaching signal (target
or ground truth) of classifier. However, intelligence, because of its multiple dimensions,
is a complex phenomenon. David Wechsler insisted that intelligence is the aggregate or
global capacity of the individual to act purposefully and to think rationally [13]. Howard
Gardner, on the other hand, proposed theory of Multiple Intelligences (MI), according
to which everyone possess some level of eight aspects of intelligences namely
Linguistic, Logical, Musical, Bodily, Spatial, Interpersonal, Intrapersonal and Naturalist
[14] and people have outstanding skills in more than one intelligence. Therefore, in our
study, we divided HIs and LIs groups using both lines of thought following two criteria.

1. Global group: Participants were divided into HIs and LIs according to Wechsler’s
definition. We calculated average accuracy and response time of all problems in
decoding part across four different types of tasks. Participants who scored more than
average accuracy of all participants and had less than average response time of whole
participants were categorized as HIs. Others were categorized as LIs.

2. MI group: Participants were also divided into HIs and LIs groups in each intelli‐
gence following Gardner’s definition. Using the same method as above, participants
were categorized as HIs using average accuracy and response time in each type of
intelligence. So for each intelligence we had HIs and LIs.

To train the classifier, we extracted pupil and eye-blink features and made input
vector with 6 dimensions: 2 features (pupil size variation and eye blink variation) × 
3 processing period (pre-stimulus, during-stimulus, and post-stimulus). To choose
proper classifier for distinguishing HIs and LIs, we tested several classifiers experimen‐
tally and selected SVM classifier [11] (see Sect. 4.3).

4 Experimental Results

4.1 Participants

Thirty-five university students (6 females and 29 males), with a mean age of 23.6 years
(SD = 1.9) participated in the study. Their participation was voluntary and their socio-
economic background was controlled. It was also confirmed that participants were not
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taking any medications. Data of 5 participants (2 females and 3 males) could not be
analyzed because of missing and/or noisy data. Table 1 shows the divided group infor‐
mation of participants using two criteria, namely Global group and MI group.

Table 1. Number of participants in divided groups

Global group MI group

Spatial Logic Linguistic Natural

HIs 11 16 20 16 15

LIs 19 14 10 14 15

4.2 Statistical Analysis

To check difference of the pupil size and eye blink between high and low intelligent
individuals, we conducted independent t-test using IBM SPSS Statistics 21 software.
The pupil size variation was found to be statistically significant in all processing period
as shown in Fig. 4. The pupil size of HIs was bigger than LIs. Also, the eye-blink varia‐
tion was found to be statistically significant in post-stimulus period. HIs blink more than
LIs. The results of Global group and MI group were found to be similar.

(a) Global Group

(b) MI Group
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Fig. 4. Pupil and eye blink patterns of high and low intelligent individuals. (*p < .05, **p < .01,
***p < .001)

4.3 Comparison with Other Classifiers

To choose the proper classifier for determining intelligence level, a leave-one-out cross
validation was performed, where the classifier was trained on data of 29 participants and
tested on data of the 30th one. It was repeated 30 times that all data of participants are
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used once as the validation data. All experiments were conducted using MATLAB
functions. The compared classification performance of various classifiers (adaptive
neuro fuzzy inference system (ANFIS) [15], naïve Bayesian [16], k-nearest neighbor
(kNN) [17], support vector machine (SVM) [11]) is shown in Table 2. To get the
maximum performance, the parameters were tuned. In ANFIS, we uses ‘Sugeno’ type
and fuzzy c-means clustering. The number of clusters was set automatically. In naïve
Bayesian, we used normal distribution as data distribution and empirical class prior
probabilities that the software uses the class relative frequencies distribution for the prior
probabilities. In kNN, the number of neighbors was 15. We used Mahalanobis distance
and equal distance weights. In SVM, we used Gaussian radial basis function kernel with
sigma of 3. The SVM had the best test performance. Therefore, SVM was chosen as the
proper classifier to determine intelligence level.

Table 2. Classification performance (%)

ANFIS Naïve Bayesian kNN SVM

Global
Group

Train 90.10 79.39 72.97 81.75

Test 67.14 75.00 67.38 76.67

MI Group Train 90.32 66.18 66.99 68.65

Test 56.36 63.64 61.82 65.45

5 Conclusion and Future Work

The purpose of our experiment was to find objective, fast and more reliable method to
determine the intelligence level of individuals. For this, we analyzed pupil size and eye
blink in four intelligence tasks. Our results indicate that there exists a significant differ‐
ence in pupil size and eye blink between high and low intelligent individuals while they
perform problem-solving tasks. Also, the SVM classifier was found to be best in clas‐
sifying two groups using pupil size and eye blink. Based on these results, we argue that
the proposed method can be used as a new measure over conventional ones to determine
the Global intelligence level of an individual. However, determining the intelligence of
an individual in different domains more accurately requires identification of various
factors. In our future work, we investigate difference of results between encoding and
decoding part and increase performance using additional features such as heart rate, skin
conductance, EEG, etc.
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Abstract. We introduce a type of 2-tier convolutional neural network
model for learning distributed paragraph representations for a special
task (e.g. paragraph or short document level sentiment analysis and
text topic categorization). We decompose the paragraph semantics into
3 cascaded constitutes: word representation, sentence composition and
document composition. Specifically, we learn distributed word represen-
tations by a continuous bag-of-words model from a large unstructured
text corpus. Then, using these word representations as pre-trained vec-
tors, distributed task specific sentence representations are learned from
a sentence level corpus with task-specific labels by the first tier of our
model. Using these sentence representations as distributed paragraph
representation vectors, distributed paragraph representations are learned
from a paragraph-level corpus by the second tier of our model. It is eval-
uated on DBpedia ontology classification dataset and Amazon review
dataset. Empirical results show the effectiveness of our proposed learn-
ing model for generating distributed paragraph representations.

Keywords: Natural language processing · Distributed representation ·
Convolutional neural network

1 Introduction

Paragraph or short document representations are important for a variety of NLP
tasks including sentiment analysis, text classification, and document retrieval.
Many applications use distributional representation of text, such as Bag-Of-
Words (BOW) representation, as the input of their algorithms. With the rapid
development of deep neural networking and parallel computing, especial after
distributed representations of word and sentence provides the basis for many
state-of-the-art approaches [1,3,7,11,16], there is rising interest in learning dis-
tributed representational formats of paragraph.

Distributed representations of paragraph usually refers to dense and real-
valued vectors in a low-dimensional space to represent paragraph or short
document, which are assumed to convey semantic information contained in
c© Springer International Publishing Switzerland 2015
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paragraph. Many current approaches try to learn distributed paragraph rep-
resentations without the knowledge of text structures and task-specific anno-
tation information (e.g. sentiment labels for sentiment analysis task) which is
often important for supervised approaches to improve performance in a task.
For example, Le and Mikolov [8] propose an unsupervised framework to learn
continuous distributed vector representations for pieces of texts ranging from
sentences to documents. They only use the context of words in a large unla-
beled corpus to learn paragraph vectors. Zhang and LeCun [17] apply a 9 layers
deep temporal ConvNets to text understanding from character-level inputs all
the way up to abstract text concepts without any syntactic or semantic struc-
tures. Dos Santos and Gatti [15] propose a deep convolutional neural network
that also exploits sentence-level information directly from character-level infor-
mation. Both of them perform sentiment analysis of short texts regarding a short
document as a long sentence.

This paper proposes a supervised framework that learns distributed para-
graph representations by learning word, sentence and paragraph representa-
tions hierarchically using the structure and task-specific annotation information.
Firstly, distributed word representations are learned by a Continuous Bag-Of-
Words (CBOW) model [11] from a large unstructured text corpus. Secondly,
task specific distributed sentence representations are learned from a sentence
level corpus by a one dimensional CNN [7] using previous learned word embed-
dings as pre-trained input vectors. Finally, task specific distributed paragraph
representations are learned from a paragraph or document level corpus by the
same CNN using previous learned sentence vectors as pre-trained input vectors.
The obtained paragraph representations can be used as the input of a machine
learning classifier or clustering algorithm for further processing.

We evaluate our model on DBpedia ontology classification dataset [2] and
Amazon review dataset from Stanford Network Analysis Project (SNAP) [10].
We achieve new state-of-the-art results, better than complex methods, yielding
a relative improvement of more than 20.61 % and 5.19 % in terms of error rate,
respectively.

2 Our Approach

In this study, we propose to learn task specific distributed paragraph represen-
tations by learning distributed word, sentence and paragraph representations
hierarchically. The system framework with three main components is shown in
Fig. 1. The first component, the Distributed Word Representation Model, takes a
large collection of raw text to train a distributed word representation model to
generate word embeddings. These word embeddings are then fed into the Dis-
tributed Sentence Representation Tier, in which a one-dimensional CNN takes a
sentence level corpus to train sentence composition model which is used to train
distributed sentence representation for sentences in target document level cor-
pus. The third component, the Distributed Paragraph Representation Tier takes
sentence representations as input to train distributed document representation
of the target document level corpus.
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Fig. 1. Framework of our approach.

2.1 Distributed Word Representation Model

The CBOW model introduced by Mikolov et al. [11] is used to learning distrib-
uted word representations. The training objective of CBOW model is to use the
surrounding words of the target word in a sentence or a document to predict
word representations. It can capture a large number of syntactic and semantic
word relationships from unstructured text data.

Given a sequence of training words w1, w2, w3 . . . wT , the training objective
is to maximize the average log probability:

1
T

T∑

t=1

∑

−c≤i≤c,i�=0

log p(wt|wt+i) (1)

where c is the size of the training context, wt is the center word, and
log p(wt|wt+i) is the conditional log probability of the center word wt given
the surrounding words wt+i. The prediction task is performed via softmax.
The hierarchical softmax [13,14] process which uses a binary tree representation
of the output layer with the words as leaves, is used to reduce computational
complexity.

2.2 Distributed Sentence Representation Tier

The one-dimensional CNN proposed by Kim [7]1 is used to learn distributed
sentence representation from a sentence level corpus. It is a slight variant of
1 https://github.com/yoonkim/CNN sentence.

https://github.com/yoonkim/CNN_sentence
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Fig. 2. A one-dimensional CNN with 2 filter widths.

the architecture proposed by Collobert and Weston [3]2. As show in Fig. 2, It
takes word embedding matrix s as input where each column corresponds to the
distributed representation vwi

∈ R
d of a word wi in the sentence or padding

vector vzi ∈ R
d:

s = [vz1 , · · · , vzm−1 , vw1 , · · · , vwn
, vz1 , · · · , vzm−1 ] (2)

where vwi
is a d dimensional pre-trained word vector. vzi is d dimensional zero

vector. m is the size of filter window. n is defined as the max length of sentences
in the training set.

The idea behind the one-dimensional convolution is to take the dot product
of the vector w with each m-gram in the sentence s to obtain another sequence c.
In the convolutional layer, one-dimensional convolution is taken between a filter
vector w ∈ R

md and a vector si:i+m−1 ∈ R
md of m concatenated columns in s.

The i-th feature ci ∈ R of a feature map Fj ∈ R
n+m−1 is generated as follows:

ci = f(w · si:i+m−1 + b) (3)

Where b ∈ R is a bias term and f is a point-wise non-linear function such as
the hyperbolic tangent. si:i+m−1 refers to the i-th to (i+m− 1)-th column of s.
A feature map Fj ∈ R

n+m−1 is defined as

Fj = [c1, c2, · · · , cn+m−1] (4)

In the pooling layer, a max-overtime pooling operation [4], which forces the
network to capture the most useful local features produced by the convolutional
layers, is applied over Fj . The maximum value F̂j = max(Fj) taken as the feature
corresponding to a particular filter w. k-F̂j concatenates to a vector F̂ ∈ R

k.
The model uses multiple filters (with varying window sizes) to obtain mul-

tiple features. These features form the penultimate layer and are passed to a
fully connected softmax layer whose output is the probability distribution over
2 http://ronan.collobert.com/senna/.

http://ronan.collobert.com/senna/
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labels. In non-static channel, the training error propagates back to fine-tune the
parameters (w, b) and the input word vectors.

The vector generated in the penultimate layer of the CNN architecture is
regarded as distributed sentence representation which captures the semantic
content of the input sentence, in some degree.

After training distributed sentence representation tier of 2-TCNN on a sen-
tence level corpus, the CNN model are saved. Sentences in the target document
level corpus are fed to the saved CNN model and corresponding sentence vectors
are generated in the penultimate layer of the CNN.

If there are not sentence level corpus for a special task, we can choose sen-
tences in the document level corpus as positive training samples and randomly
replace part of the words (for example, half of the words) in a positive sample
to construct a negative training sample.

2.3 Distributed Paragraph Representation Tier

The distributed paragraph representation tier of 2-TCNN has the same archi-
tecture with the sentence representation tier. The difference is that it takes
sentence vectors of the target document level corpus as input instead of using
word embeddings. The vector generated in the penultimate layer of the CNN in
this tier is regarded as distributed document representation which captures the
semantic content of the target document level corpus.

Both the training set and the test set of the target document level corpus
can be represented as paragraph vectors. These vectors can used as features in
a machine learning classification or clustering algorithm.

3 Evaluation and Discussion

3.1 Experiment Settings

In all experiments, we use the publicly available word embeddings trained by
CBOW model on 100 billion words from Google News as a pre-trained word
embeddings. Words not present in the set of pre-trained words are initialized
randomly in the same way as in [11].

For sentence level corpus used in sentence representation tier of our model, in
the DBpedia ontology classification experiment, we use the glosses in WordNet
[12] as positive training samples. There are 117,791 glosses in the WordNet 3.1
version. We randomly replace half of words in a positive sample to construct a
negative training sample. In Amazon reviews sentiment analysis experiment, we
use Stanford sentiment tree bank [16] to train the sentence composition model.

In all experiments, we train sentence vector and paragraph vector using the
same setting of CNN. We use: rectified linear units, filter windows of 3, 4, 5 with
100 feature maps each, AdaDelta decay parameter of 0.95, dropout rate of 0.5.

For paragraph vectors classification, we use LIBLINEAR tools [5] with default
parameter settings in Weka [6].
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For metrics, we use error rate in all experiments.
We benchmark four models on distributed paragraph representations learn-

ing: word2vec, Bag of Words, ConvNet and 2-TCNN. word2vec refers to a bag-
of-centroids model via word2vec [11], in which k -means algorithm are applied
on word vectors learned from Google News corpus with k = 5000, and then a
bag of these centroids are used for multinomial logistic regression. Bag of Words
refers to the bag-of-words model, in which appearance frequency of each word
in the training dataset are counted, and 5,000 most frequent ones are chose as
the bag of features for multinomial logistic regression. ConvNet model proposed
by Zhang and LeCun [17] are divided into four models by scale and using or not
using thesaurus. Both the large and small ConvNet are 9 layers deep with 6 con-
volutional layers and 3 fully-connected layers, with different number of hidden
units and frame sizes. For more detail, please see the reference. 2-TCNN is our
proposed model.

3.2 DBpedia Ontology Classification

We use the same dataset provided by Zhang and LeCun [17]. The DBpedia ontol-
ogy classification dataset is constructed by picking 14 non-overlapping classes
from DBpedia 2014 [9]. From each class, 40,000 training samples and 5,000 test-
ing samples are chose randomly. In Table 1, we report the error rates of different
models on this dataset. The results of other models are also reported in [17]. It
is observed that Bag of Words model goes beyond the barrier of 5 % error rate.
It is a very significant improvement comparing with word2vec. Another signifi-
cant improvement comes when distributed representation are used in ConvNet
model. Large ConvNet with thesaurus achieves better performance. Our model
outperforms the best ConvNet model for 0.33 % on error rate. This means a
relative improvement of 20.61 %.

Table 1. Experimental results on the DBpedia ontology classification datasets.

Model Error rate

word2vec 10.59 %

Bag of words 3.57 %

Small ConvNet without thesaurus 2.01 %

Small ConvNet with thesaurus 1.85 %

Large ConvNet without thesaurus 1.74 %

Large ConvNet with thesaurus 1.60 %

2-TCNN 1.27%

3.3 Amazon Review Sentiment Analysis

The Amazon review sentiment analysis dataset from the Stanford Network
Analysis Project (SNAP) contains review texts with 5 score labels from 1 to 5.
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In order to construct sentiment polarity dataset, labels 1 and 2 are converted to
negative, 4 and 5 positive. 3,000,000 samples for each positive or negative label
as training set and 450,000 samples for testing are selected randomly by Zhang
and LeCun [17]. The error rates of different models on this dataset are shown in
Table 2. The results of other models are also reported in [17]. It is observed that
Bag of Words model perform better than word2vec again. ConvNet models make
a very significant improvement over the two models. It is a little surprising that
Large ConvNet without thesaurus achieves better performance than Large Con-
vNet with thesaurus. It shows that data augmentation techniques don’t always
work well. Our model outperforms the best ConvNet model for 0.19 % on error
rate. This means a relative improvement of 5.19 %. It shows the effectiveness of
our proposed learning model for distributed paragraph representations.

Table 2. Experimental results on the Amazon review sentiment analysis datasets.

Model Error rate

word2vec 16.93 %

Bag of words 14.46 %

Small ConvNet without thesaurus 4.16 %

Small ConvNet with thesaurus 3.99 %

Large ConvNet without thesaurus 3.66 %

Large ConvNet with thesaurus 3.92 %

2-TCNN 3.47%

3.4 Discussion

All of comparing models regard input paragraph or short document as a long sen-
tence without any structures and sentence-level annotation information. By make
use of knowledge about words, sentences and paragraphs, our model achieves the
best performance on both the two datasets.

Both the large and small ConvNet are 9 layers deep with 6 convolutional
layers and 3 fully-connected layers. Our model is only 2 layers deep. [17] reports
that using an NVIDIA Tesla K40, training takes about 5 hours per epoch for
the large model, and 2 hours for the small model. Using GeForce GTX TITAN
X, training the DBpedia ontology classification dataset takes less than 10 min
per epoch in our model.

4 Conclusion and Future Directions

This paper presents a 2-tier convolutional neural network model to learn dis-
tributed paragraph representations. For each paragraph in a corpus, the model
generates the high quality distributed paragraph representations by using the
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text structure and task-specific annotation information. It is shown helpful to
improve the performance of distributed paragraph representations. The obtained
paragraph representations achieve state-of-the-art results on DBpedia ontology
classification dataset and Amazon review sentiment analysis dataset. It shows the
effectiveness of our proposed learning framework for distributed paragraph rep-
resentations. Our model is only 2 layers deep. It is much more efficient than the
ConvNet models. Future works include further improving the proposed method
and applying the paragraph vectors to more NLP tasks.
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Abstract. The significance of data mining has experienced dramatic
growth over the past few years. This growth has been so drastic that
many industries and academic disciplines apply data mining in some
form. Data mining is a broad subject that encompasses several topics
and problems; however this paper will focus on the supervised learning
classification problem and discovering ways to optimize the classifica-
tion process. Four classification techniques (naive Bayes, support vector
machine, decision tree, and random forest) were studied and applied to
data sets from the UCI Machine Learning Repository. A Classification
Learning Toolbox (CLT) was developed using the R statistical program-
ming language to analyze the date sets and report the relationships and
prediction accuracy between the four classifiers.

Keywords: Classification technique · Supervised learning · Data min-
ing · Naive Bayes · Decision tree · Random forest · Support vector
machine

1 Introduction to Data Mining and Classification

Data mining is a common field of study for many practices. Businesses have gen-
erated customer profiles using data that describes when and where customers’
purchases are made [1]. Mining of this data allows businesses to target their prod-
uct to customers more effectively [1]. The most important application of data
mining in the 21st century is Big Data, where data mining is utilized immensely.
Massive amounts of genomic data are used by molecular biology researchers to
compare the behavioral traits and molecular architecture of countless genes [1,2].
With this knowledge, genes that cause particular illnesses could be determined
and isolated [1]. These are only some of the multiple applications of data mining,
and they provide ample evidence that supports the usefulness of data mining.

Data mining is a broad topic that can be split into several subcategories,
one of which is the classification problem. Classification is a form of supervised
machine learning; in this type of machine learning, previously labeled data, train-
ing data, is used to generate a function or model that can classify future instances
[3]. Classification is the process of taking new instances and predicting their class
labels using a model [1]. This paper will focus on four common classification algo-
rithms: naive Bayes, support vector machine, decision tree, and random forest.
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 476–483, 2015.
DOI: 10.1007/978-3-319-26532-2 52
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With so many classification techniques to choose from, it takes data miners
some time to apply each technique to their data set, especially for the aforemen-
tioned Big Data. No technique is perfect, but some are better suited for certain
data than others. The number of categorical attributes, the number of contin-
uous attributes,and the number of training instances are all factors that affect
the best classification technique to use on a data set.

In the following sections, a brief description of each classification technique,
an explanation of the procedure used to perform the analysis, and the results
and findings of the analysis will be given.

2 A Brief Overview of the Classification Techniques

Before examining the analysis itself, the common applicable techniques will
briefly be discussed so that readers may have a better comprehension each
method’s different features.

2.1 Naive Bayes

Bayes Theorem provides a formula for determining the probability of a previ-
ously defined hypothesis remaining true under a new set of data or evidence
[4]. The naive Bayes classifier uses Bayes Theorem and assumes that the condi-
tional independence assumption holds true [1]. In the conditional independence
assumption, two attributes are considered independent when a third attribute’s
observations are considered [5].

The posterior probabilities [1], or the probability of an event occurring given
a new data [6], is calculated for each class ‘Y’ given a set of attributes X using
Eq. (1).

P (Y |X) =
P (Y )

∏d
i=1 P (Xi|Y )
P (X)

(1)

2.2 Support Vector Machine

Support vector machines utilize decision boundaries, specifically the maximal
margin hyperplane [1,7]. Maximal margin hyperplanes create a decision bound-
ary that accurately splits the data points into their corresponding classes (repre-
sented by different sides of the boundary) while maintaining the longest possible
distance from closest possible training records for each class [1,7]. The maxi-
mum distance is chosen to reduce the classification error as much as possible
[1].Training instances known as support vectors are used to represent the deci-
sion boundary [1]. Support vector machines, or SVM’s for short, can be used
for linear or nonlinear decision boundaries [1,7]. When outliers are present, a
slack variable may be used to allow some amount of training error [1]. This pre-
vents noise points from influencing the decision boundary and generating a less
accurate model [1].



478 W. Ezekiel and U. Thayasivam

2.3 Decision Tree

Decision tree is a simple classifier. As the name implies, decision trees are tree
like structures made up of nodes and edges. Edges are assigned values from the
attribute in the node above them [1]. Nodes fall into three categories: decision
nodes,leaf nodes, and the root node [1,7]. The root node is the very first node
in the tree; it has no edges coming into it, but can have 0 or more edges coming.
out of it [1]. Decision nodes represent an attribute and branches off into two or
more values [7]. Leaf nodes are the ends of a decision tree; it is at these nodes a
classification is made. When creating a decision tree, the goal is to break down
the training data into smaller and smaller subsets as it moves down the tree [1].
Optimal decision trees are generated by determining the best split for all nodes
by determining the best impurity measurement, such as gini or entropy [1].

2.4 Random Forest

Random forest is an ensemble method, or a technique that combines two or
more classification methods into one [1]. In this case, two or more decision trees
are combined [1]. Each decision tree makes its own classification , and after all
classifications are made, the predictions are tallied to a vote [1]. The class that
has the most votes becomes the classification for a new instance [1]. To keep
the decision trees in the forest mostly unique, different bootstrapped samples
[8] of the set with only some of the attributes are used for each tree [1]. As
an ensemble method, the random forest is much better than a decision tree in
terms of accuracy because of its ability to prevent one of decision tree’s biggest
issues, model overfitting [1]. This occurs when a decision tree becomes too big and
complex [1]. Overly complex trees may have minimal error with the training data,
but will perform poorly with new instances [1]. Decision trees that suffer from
overfitting can even end up utilizing noise points [1]. Random forests overcome
this issue by ensuring that each decision tree in the forest is unique [1,8]. By
reducing the number of instances and attributes in each tree, the decision trees
have far less of a chance of becoming too complicated [1].

3 The Analysis

3.1 Computational Algorithm

To analyze the performances of each classifier, twelve data sets from the UCI
Machine Learning Repository [9–11] were acquired. The R statistical program-
ming language was used to build the CLT, so tests could be run on each data
set. The steps of the CLT’s procedure are outlined below.

1. Load all the data sets into the R environment.
2. Run a classifier on the data three times using three different splits. The three

values were 70, 80, and 90. A value of 80 for the split means that 80 % of the
original data set is used as training records. The other 20 % is treated as new
instances.
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3. Compare the predictions for the new instances with their actual classifications
using a confusion matrix.

4. Produce a ‘.csv’ file containing the accuracies, time, number of training
records, and number of new instances for each split of each data set.

Several R packages were implemented into the software in order to utilize the
different techniques. The package ‘e1071’ contains functions for naive Bayes and
SVM [12]. Two packages were used for random forest: ‘randomForest’ [13] and
‘caret’ [14]. The better accuracy between the two was chosen for random forests.
The ‘caret’ package was also used to build the confusion matrices [14]. Decision
trees were implemented using the ‘rpart’ package [15]. The package allows for
the use of two impurity measurements: gini and entropy. One tree for each mea-
surement was generated and the tree with the better accuracy was chosen for
the results.

Table 1. UCI machine learning repository data sets

Data Set T N Categorical Continuous Classes

adult 26049 6512 8 6 2

blood 599 149 0 4 2

credit 552 138 9 6 2

ionosphere 281 70 0 34 2

mushroom 6500 1624 21 0 2

parkinsons 156 39 0 2 2

pima 615 153 0 8 2

rvkp 2557 639 36 0 2

sonar 167 41 0 60 2

spambase 3681 920 0 57 2

telescope 15216 3804 0 10 2

tic-tac-toe 767 191 9 0 2

3.2 Data Analysis

The values of “T” and “N” are based on each data set’s 80|20 split. “T” is the
number of training records. “N” is the number of new instances. “Categorical”
and “Continuous” are the number of categorical and continuous variables in the
set respectively (Table 1).

3.3 Results

The overall classification error and rankings for each classifier are found in
Table 2. The overall classification error was calculated [16] using Eq. 2, where
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Table 2. Overall classification error and rankings of each classifier

Data Set NB Error SVM Error DT Error RF Error

adult 0.172 (3) 0.145 (1) 0.152 (2) 0.174 (4)

blood 0.3 (4) 0.28 (2) 0.247 (1) 0.287 (3)

credit 0.203 (4) 0.188 (3) 0.159 (2) 0.123 (1)

ionosphere 0.085 (3) 0.042 (2) 0.127 (4) 0.028 (1)

mushroom 0.052 (4) 0.003 (2) 0.006 (3) 0 (1)

parkinsons 0.41 (4) 0.154 (2) 0.205 (3) 0.128 (1)

pima 0.201 (1) 0.214 (2) 0.292 (4) 0.24 (3)

rvkp 0.139 (4) 0.058 (3) 0.031 (2) 0.014 (1)

sonar 0.405 (4) 0.238 (3) 0.214 (2) 0.19 (1)

spambase 0.284 (4) 0.061 (2) 0.098 (3) 0.052 (1)

telescope 0.278 (4) 0.134 (2) 0.18 (3) 0.121 (1)

tic-tac-toe 0.302 (4) 0.089 (2) 0.109 (3) 0.01 (1)

Mean error 0.236 0.134 0.152 0.114

TP, TN, FP, FN represent the True Positive, True Negative, False Positive and
False Negative rates of the confusion matrix respectively.

Error = 1 − (
TP + TN

TP + TN + FP + FN
) (2)

In Table 2, only the results of the 80|20 split were recorded, but the other two
splits showed similar results.

Note: if a classifier’s bar is not shown for a data set, the overall classification
error was 0 (Fig. 1).

Random forests surpassed the other techniques, having the lowest overall
classification error in most data sets. SVM performed second best, followed by
decision tree. The worst performing classifier is naive Bayes, which had to worst
error values in nearly all of the sets. Random forests low error value is most likely
due to the fact that random forest is an ensemble method. Ensemble methods
are mean to perform better than their singleton counterparts [1].

The types of attributes impact the overall error classifications of these classi-
fiers. Random forest and decision trees, for example, perform best when the data
sets consists entirely of categorical attributes, but only if there is a high amount
(2000+) of instances (see mushroom, rvkp, and tic-tac-toe). SVM’s overall clas-
sification error decreases as the total number of attributes (both types) increases.
SVM also has better performance when more continuous attributes are present.
no discernible patterns could be found for naive Bayes.

Another important factor when measuring the performance of a classifier is
the false positive (FP) rate. The false positive rate is defined as the propor-
tion of minority (negative) cases that were inaccurately classified as a majority



A Comparison of Supervised Learning Techniques for Clustering 481

Fig. 1. Overall classification error (Color figure online).

Table 3. False positive rates for each classifier

Data Set NB FP SVM FP DT FP RF FP

adult 0.501 (3) 0.42 (1) 0.485 (2) 0.724 (4)

blood 0.814 (2) 0.837 (3) 0.698 (1) 0.837 (3)

credit 0.434 (4) 0.132 (1) 0.208 (2) 0.226 (3)

ionosphere 0.06 (3) 0 (1) 0.12 (4) 0 (1)

mushroom 0.097 (4) 0.006 (2) 0.011 (3) 0 (1)

parkinsons 0.414 (4) 0 (1) 0.103 (3) 0 (1)

pima 0.298 (1) 0.439 (4) 0.368 (2) 0.421 (3)

rvkp 0.1 (4) 0.044 (3) 0.035 (2) 0.018 (1)

sonar 0.333 (2) 0.429 (4) 0.19 (1) 0.381 (3)

spambase 0.043 (1) 0.102 (3) 0.159 (4) 0.086 (2)

telescope 0.626 (4) 0.299 (2) 0.374 (3) 0.223 (1)

tic-tac-toe 0.183 (4) 0 (1) 0.023 (3) 0 (1)

Mean value 0.325 0.226 0.231 0.243

(positive) case [17]. Equation 3 shows the calculations for the false positive
rate [17].

FP =
# of Negative InstancesPredicted asPositive

# of Actual Negative Instances
(3)

The false positive rate finds its significance in the classification of the minority
class. A classifier may be able to perform well overall, but if it has a high false
positive rate, the classifier has trouble classifying new instances belonging to the
minority. This is never good, especially in situations of great importance.
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Table 3 shows the false positive rates for each classifier. Despite random forest
ranking first in most cases, SVM had the best average false positive rate. The
second best is decision tree, although it does not have false positive rates of
zero like random forest (third). Finally, naive Bayes is shows the overall worst
performance in terms of false positive rates. All the classifiers had high false
positive rates in the blood data set. This is most likely due to is low amount of
attributes and relatively small training sample. Decision trees had the best false
positive rates when all the attributes were categorical (see rvkp, mushroom and
tic-tac-toe). A trend seen in the naive Bayes classifier is that as total attribute
count and training sample size increase, the false positive rate decreases. No
discernible patterns could be noted for random forest and SVM.

4 Summary and Conclusions

Four supervised classification techniques were tested with twelve different data
sets to determine any relationships between their accuracies and the data sets.
The results of this presented some ideas about which techniques work best for
which data sets. Further investigations aim to apply this to more data sets, see
if the notions given here continue to hold true for more data sets, including
multi-class sets, and to add support for data set balancing techniques, such as
the Synthetic Minority Over-sampling Technique (SMOTE), to the CLT. With
these discoveries, the optimization of classification could be realized.
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Abstract. Modern aircraft and ships are equipped with radars emit-
ting specific patterns of electromagnetic signals. The radar antennas are
detecting these patterns which are required to identify the types of emit-
ters. A conventional way of emitter identification is to categorize the
radar patterns according to the sequences of frequencies, time of arrivals,
and pulse widths of emitting signals by human experts. In this respect,
this paper presents a method of classifying the radar patterns automati-
cally using the network of calculating the p-values of testing the hypothe-
ses of the types of emitters referred to as the class probability output
network (CPON). Through the simulation for radar pattern classifica-
tion, the effectiveness of the proposed approach has been demonstrated.

Keywords: Radar pattern · Classification · One class · Class
probability · Beta distribution

1 Introduction

In modern days, radars are essential devices to detect objects such as aircraft
or ships. For detecting objects emitting specific patterns of electromagnetic sig-
nals, the detected signal patterns should be analyzed and categorized according
to the types of emitters. This emitter identification plays an important role
especially in the electronic warfare [1]. The robust performances of emitter iden-
tification becomes more important in complex environments of emitters and
landscapes. In the conventional approach of emitter identification, the key fea-
tures of radar patterns such as the sequences of radar frequencies (RFs), time of
arrivals (TOAs), and pulse widths (PWs) are used to extract the emitter para-
meters and these parameters are compared with tabulated emitter parameters.
However, this process usually requires high computational complexity and needs
to be verified by human experts. In this respect, an approach of automatic classi-
fication of radar patterns is proposed to obtain the conditional class probability
for the given radar pattern.
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There are various ways of implementing pattern classifiers. The most popu-
lar way is using the discriminant function whose value indicates the degree of
confidence for the classification; that is, the decision of classification is made by
selecting the class that has the greatest discriminant value. In this direction,
the support vector machines (SVMs) [2] are widely used in many classification
problems because they provide reliable performances by maximizing the margin
between the positive and negative classes. However, more natural way of repre-
senting the degree of confidence for classification is using the conditional class
probability for the given pattern. In this context, the class probability output
network (CPON) in which the conditional class probability is estimated using
the beta distribution parameters, was proposed [3]. This method is implemented
on the top of a classifier; that is, many-to-one nonlinear function such as the
linear combination of kernel functions. Then, the classifier’s output is identified
by beta distribution parameters and the output of CPON; that is, the condi-
tional class probability for the given pattern is calculated from the cumulative
distribution function (CDF) of Beta distribution parameters. In this computa-
tion, the output of CPON represents the p-value of testing a certain class. For
the final decision of classification, the class which has the maximum conditional
class probability is selected. As a result, the suggested CPON method is able
to provide consistent improvement of classification performances for the classi-
fiers using discriminant functions alone. For the detailed descriptions of CPONs
and CPON applications, refer to [3,4]. In this approach, the selected features of
radar patterns are used as the input to the classifier of many-to-one mapping
nonlinear function and the output distribution is identified by beta distribution
parameters to obtain the p-value of testing the type of emitters. As a result,
the proposed method provides the p-values of testing hypotheses of the types of
emitters and the better performances of classification than other classifiers using
the discriminant function.

The rest of this paper is organized as follows: in Sect. 2, the problem of
radar classification is described, Sect. 3 presents the method of radar pattern
classification using the CPON, Sect. 4 shows simulation results for radar pattern
classification, and finally, Sect. 5 presents the conclusion.

2 Key Features for Radar Pattern Classification

The proposed method is intended to identify radar patterns from various emit-
ters. In this approach, it is assumed that the radar has the ability to monitor a
region of microwave spectrum and to extract pulse patterns. The whole process
of emitter identification (or radar pattern classification) is illustrated in Fig. 1.
In this diagram, the feature extractor receives pulses from the microwave radar
receiver and processes each pulse into feature values such as azimuth, elevation,
intensity, frequency, and pulse width. These data are then stored and tagged
with the time of arrival of the pulse. Then, the clustering block is grouping
radar pulses into groups in which each group represents radar pulses from a
single emitter. For each group of radar pulses, the pulse extraction block is ana-
lyzing the pulse repetition patterns of an emitter by using the information of
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time of arrivals. Finally, from the information of pulse repetition patterns, input
features for the classifier are computed and the decision for the classification of
emitters is made based on extracted key features.

Fig. 1. Process of emitter identification

In the proposed approach, the selected key features are RFs, TOAs, and
PWs. Then, for each sequence of key feature values xi, i = 1, · · · , n, the sta-
tistical measures such as the mean x̄, variance s2, skewness, and kurtosis are
determined by

x̄ =
1
n

n∑

i=1

xi, (1)

s2 =
1

n − 1

n∑

i=1

(xi − x̄)2, (2)

skewness =
1
n

∑n
i=1 (xi − x̄)3

( 1
n−1

∑n
i=1 (xi − x̄)2)

3
2
, and (3)

kurtosis =
1
n

∑n
i=1 (xi − x̄)4

( 1
n−1

∑n
i=1 (xi − x̄)2)2

− 3. (4)

These statistical feature values are calculated for every sweep of received radar
signals. Then, as a result, 12 feature values are used as the input to the classifier
and the decision of emitter identification is made by using the CPON.

In this approach, the distributions of these feature values are analyzed and
the centroids representing the types of emitters are determined as the center
points for the distributions of radar patterns. Then, these distributions are used
for the decision of determining the specific emitter type in the CPON.

3 Class Probability Output Networks for Emitter
Identification

In many classification problems, it is desirable that the output of a classifier
represents the conditional class probability. For the conditional class probabil-
ity, the distribution of classifier’s output can be well approximated by the beta
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distribution under the assumption that the output of classifier lies within a finite
range and the distribution of classifier’s output is unimodal; that is, the distrib-
ution has one modal value with the greatest frequency. This assumption is quite
reasonable for many cases of classification problems with the proper selection
of kernel parameters of a classifier. Here, we consider the following discriminant
function y as the classifier’s output for the input pattern x:

ŷ(x) =
m∑

i=1

wiφi(x|θ), (5)

where m represents the number of kernels and wi, φi, and θ represent the ith
weight, the ith kernel function, and the kernel parameter, respectively.

In the proposed CPON, the probability model represents the conjugate prior
of the binomial distribution; that is, in our case, the conditional class probability
in binary classification problems. In this context, we consider the following Beta
probability density function (PDF) of a random variable Y as the normalized
classifier’s output:

fY (y|a, b) =
1

B(a, b)
ya−1(1 − y)b−1, 0 ≤ y ≤ 1, (6)

where a and b represents the parameters of beta distribution, and B(a, b) repre-
sents a Beta function defined by

B(a, b) =
∫ 1

0

ya−1(1 − y)b−1dy. (7)

Here, we assume that the classifier’s output value; that is, ŷ is normalized
between 0 and 1. One of the advantages of the Beta distribution is that the
distribution parameters can be easily guessed from the mean E[Y ] and variance
V ar(Y ) as follows:

a = E[Y ]
(

E[Y ](1 − E[Y ])
V ar(Y )

− 1
)

(8)

and

b = (1 − E[Y ])
(

E[Y ](1 − E[Y ])
V ar(Y )

− 1
)

. (9)

Although this moment matching (MM) method is simple, these estimators usu-
ally don’t provide accurate estimations especially for smaller number of data. In
such cases, the maximum likelihood estimation (MLE) or the simplex method
for searching parameters [5] can be used for more accurate estimation of Beta
parameters. If the data distribution follows a Beta distribution and the optimal
Beta parameters are obtained, the ideal cumulative distribution function (CDF)
values of the data u = FY (y) follow an uniform distribution; that is,

fU (u) =
fY (y)

|dFY /dy| =
fY (y)
|fY (y)| = 1. (10)
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To check whether the data distribution fits with the proposed Beta distribution,
the Kolmogorov-Smirnov (K-S) test [6] of data distribution can be considered
as follows:

– First, determine the distance Dn between the empirical and ideal CDF values:

Dn = supu|F ∗
U (u) − FU (u)|, (11)

where F ∗
U (u) and FU (u) represent the empirical and theoretical CDFs of u =

FY (y); that is, the CDF values of the normalized output of a classifier. In this
case, FU (u) = u since the data u = FY (y) follow an uniform distribution if
the data y follows the presumed (or ideal) Beta distribution.

– Determine the p-value of testing the hypothesis of Beta distribution:

p-value = P (Dn ≥ t/
√

n) = 1 − H(t), (12)

where t =
√

ndn (the value of a random variable Dn) and the CDF of the K-S
statistic H(t) is given by

H(t) =
√

2π

t

∞∑

i=1

e−(2i−1)2π2/(8t2). (13)

– Make a decision of accepting the hypothesis of beta distribution H0 using the
p-value according to the level of significance δ:
accept H0, if p-value ≥ δ ; reject H0, otherwise.

In the construction of CPON for radar pattern recognition, first, the centroids as
the representative of the radar pattern data are obtained in the feature space by a
clustering algorithm such as the learning vector quantization (LVQ) method [7].
Then, the kernel functions are located at the positions of centroids and linearly
combined as the form of (5). The output of (5) is normalized between 0 and 1
by using the linear scale and the normalized classifier’s output distribution is
approximated by the Beta distribution parameters. In this training of classifiers,
the Beta distribution parameters as well as the kernel parameters are adjusted
in such a way that the classifier’s output distributions become closer to the ideal
Beta distributions. The algorithm of constructing the CPON for radar pattern
classification is described as follows:

Step 1. For the features of radar patterns, centroids are determined by the clus-
tering algorithm such as the LVQ method. In this application, one centroid
is assigned to a specific emitter. For more complicated distributions in the
feature space, more than one centroids can be assigned.

Step 2. Then, for each centroid, a kernel function is assigned.
Step 3. Determine the classifier’s output for each kernel function and normalize

the output value between 0 and 1 using the linear scale.
Step 4. The distribution of classifier’s normalized output is identified by Beta

distribution parameters. In this estimation of Beta parameters, the kernel
parameters such as the kernel widths are adjusted in such a way of maximiz-
ing the p-value of (12). For the detailed description of estimating parameters,
refer to [3].



Radar Pattern Classification 489

After the CPON is trained, the classification for an unknown pattern can be
determined by the beta distribution for each class. First, for the unknown pat-
tern, the normalized output y for the classifier is computed. Here, if the normal-
ized value is greater than 1, we set that value as 1; on the other hand, if the value
is less than 0, we set that value as 0. Then, the conditional class probability is
determined by the CPON output as the CDF value for the classifier’s normalized
output.

For multi-class classification problems, the CPON can be constructed for each
classifier’s output. Then, the following conditional probability for the kth class
Ck; that is, the output of the kth CPON Fk(yk) for kth classifier’s normalized
output yk is calculated as

Fk(yk) = P (Ck|Yk ≤ yk) = FYk
(yk), (14)

where Yk represents a random variable for the kth class Ck and FYk
(yk) repre-

sents its CDF. This output implies the p-value of testing hypotheses of the kth
class Ck. Then, the final decision can be made by selecting the class with the
maximum p-value; that is, for K classes, the selected class Cl is determined by

l = arg max
1≤k≤K

Fk(yk). (15)

From the above equation, the final decision of the type of emitter is made.

4 Simulation

To demonstrate the effectiveness of the proposed method, the simulation for
radar pattern classification was performed for the radar data patterns generated
from the emitter simulator developed by LIGNex1. This simulator was designed
to accommodate the variation of key features such as the RFs, TOAs, and PWs
of real emitters. In this benchmark data, there were 50 sets of emitter types (or
classes) in which each data set included 100 sequences of emitter patterns con-
taining the features of RFs, TOAs, and PWs. For the evaluation of the proposed
method, 10-fold evaluation method was used: 10 disjoint sets of 90% of data as
training data and the rest 10% of data as test data were used. Then, the average
performances of the following accuracy for 50 classes were determined:

Accuracy =
1
50

50∑

i=1

TPi + TNi

TPi + TNi + FPi + FNi
, (16)

where TPi, TNi, FPi, and FNi represent the true positive, true negative, false
positive, and false negative of the ith classifier, respectively.

However, in this evaluation of classification performances, the accuracy mea-
sure can be misleading particularly in the multi-class and/or unbalanced data.
From this point of view, the following exact match ratio (EMR) for n test pat-
terns were also determined:

EMR =
1
n

n∑

i=1

I(xi), (17)
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where xi represents the ith test pattern and I(xi) represents the following indi-
cator function:

I(xi) =
{

1 if L(xi) = D(xi)
0 otherwise.

Here, L(xi) and D(xi) represent the class label and the decision label of the
classifier for the ith test pattern, respectively; that is, the EMR represents the
ratio of correct decision of the classifier.

To compare the performances of the CPON-based method, the k-nearest
neighbor (kNN) and SVM classifiers using the Scikit-learn package [8] were also
trained for the same training data and evaluated for the same test data. In this
simulation, the same features of RFs, TOAs, and PWs were also used for the
training and testing the classifiers. In the case of SVM, 50 binary (one-against-
rest) classifiers were trained and tested for the given data. The simulation results
for emitter identification were summarized in Table 1.

Table 1. Simulation results for emitter identification

Classifier kNN SVM CPON

Accuracy 0.9944 0.9934 0.9861

EMR 0.7952 0.6734 0.9622

These simulation results have shown that (1) three classifiers were good in
the accuracy measure, (2) the SVM was not a good choice for these multi-class
data from a view point of the EMR measure, and (3) the proposed method pro-
vided the best performance in the EMR measure compared with other classifiers.
This implies that the proposed statistical features of the RFs, TOAs, and PWs
are quite effective to identify the characteristics of the emitter types and the
proposed CPON-based classification is also an effective approach for the prob-
lems of emitter identification. Furthermore, the proposed CPON-based method
is also able to provide p-values for testing the types of emitters. In practice, this
information of p-values helps us to make a decision whether the received radar
pattern is a new type of emitter or one of known types of emitters. For exam-
ple, if the maximum p-value is less than some threshold value (the usual value
is 0.05), then there is a high probability that the received radar pattern comes
from a new type of emitter. This ability of finding a new type of emitter is also
an important issue in emitter identification problems.

5 Conclusion

A new method of radar pattern classification was proposed based on the class
probability output network (CPON). In the proposed method, the sequences
of key features such as the frequencies, time of arrivals, and pulse widths of
emitting signals are analyzed and statistical measures of these features such as
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the mean, variance, skewness, and kurtosis are extracted and used as the input
to the CPON. Then, the CPON is used to construct a hypothesis of specific
emitter from the distributions of these features. As a result, the proposed CPON
provides the p-values of testing the hypotheses of the types of emitters. Through
the simulation for radar pattern classification, it has been demonstrated that
the proposed method provides the better performance of classification than other
classifiers using the discriminant function. From the classification performance of
the proposed CPON-based emitter identification, it is expected to be comparable
with human experts. Furthermore, the proposed CPON-based method is able to
provide the information for making a decision whether the received radar pattern
comes from a new type of emitter.
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Abstract. Deep Neural Networks (DNNs) are becoming an increas-
ingly interesting, valuable and efficient machine learning paradigm with
implementations in natural language processing, image recognition and
hand-written character recognition. Application of deep architectures is
increasing in domains that contain feature hierarchies (FHs) i.e. features
from higher levels of the hierarchy formed by the composition of lower
level features. This is because of a perceived relationship between on the
one hand the hierarchical organisation of DNNs, with large numbers of
neurons at the bottom layers and increasingly smaller numbers at upper
layers, and on the other hand FHs, with comparatively large numbers of
low level features resulting in a small number of high level features. How-
ever, it is not clear what the relationship between DNNs hierarchies and
FHs should be, or whether there even exists one. Nor is it clear whether
modelling FHs with a hierarchically organised DNN conveys any ben-
efits over using non-hierarchical neural networks. This study is aimed
at exploring these questions and is organized into two parts. Firstly, a
taxonomic FH with associated data is generated and a DNN is trained
to classify the organisms into various species depending on characteristic
features. The second part involves testing the ability of DNNs to iden-
tify whether two given organisms are related or not, depending on the
sharing of appropriate features in their FHs. The experimental results
show that the accuracy of the classification results is reduced with the
increase in ‘depth’. Further, improved performance was achieved when
every hidden layer has the same number of nodes compared with DNNs
with increasingly fewer hidden nodes at higher levels. In other words,
our experiments show that the relationship between DNNs and FHs is
not simple and may require further extensive experimental research to
identify the best DNN architectures when learning FHs.

Keywords: Deep Neural Networks · Hierarchical data classification

1 Introduction

Artificial Neural Networks (ANNs) are ‘once again’ popular due to the success
of ‘Deep Learning’ involving multi-layer neural networks for solving tasks that
are too complex for single-layer or dual-layer neural networks. Common ANN
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learning problems persist in Deep Neural Networks (DNNs). If training is too
long, test results can be poor because the weights have become too specialized
(overfitting). If training is too short, training results can be poor, leading to poor
overall results on the full dataset even when improved test results are taken into
account (underfitting). Introducing a recalibration training dataset (i.e. extra
training data introduced after an initial training set) to help deal with overfit-
ting or underfitting can lead to oscillation of weights and unlearning of initial
samples. Recently the problem of overfitting was addressed in DNNs to some
extent [1]. The idea is to randomly drop units during learning to prevent unit
over-adaptation. But a number of different DNNs need to be trained and then
converged through averaging at the final stage to result in a thinned DNN. Also,
it is not clear what the implications of thinned DNNs are for data representation.
It may not be clear what exactly is being thinned when hierarchical features are
present in the data.

Historically, the concept of DNNs was proposed in 1989 as Convolutional
Neural Networks (CNNs) without using the word ‘Deep’. Back Propagation (BP)
was used to train CNNs and was shown to be not so effective because of the limita-
tions of BP. For instance, feedback is to only the immediately previous layer. After
the introduction of a new greedy-layer-wise training, ANNs once again became
popular in the form of DNNs [2]. The learning mechanism of DNNs is called Deep
Learning and has so far proved to be successful over SVM based systems on the
same problems [3]. DNNs have become increasingly successful with applications
in natural language processing [4], image recognition [5], visual recognition [6],
computer vision [7], text mining [8] and hand-written character recognition [9].
Corporate giants like Apple, Google and Microsoft are using deep learning prin-
ciples for data mining and Facebook and Twitter have invested in DNN research
for understanding aspects of social interactions. Further implementation of DNNs
using evolutionary principles is also gaining momentum [10]. One of the major
problems with all neural networks, however, remains understanding why the ANN
is performing the way it does and formalising this understanding in terms of math-
ematical formulae or rule-based models.

Application of deep architectures is increasing in the domains that contain
feature hierarchies (FHs) i.e., features from higher levels of the hierarchy formed
by the composition of lower level features. While previous research has indicated
that DNNs are quite successful when using flat representations, the capability of
DNNs for FH learning has not been explored. The aim of this paper is to under-
take some exploratory analysis and evaluation of DNNs using synthetic data
known to contain FHs and to evaluate DNNs to identify exactly how DNNs
handle data expressing an FH. It is important to understand whether an effec-
tive conjugation occurs between two (hidden) layers [11]. As a study, we try to
understand this by experimenting with an equal number of nodes for hidden
layers versus unequal number of nodes.

A synthetic dataset is generated with 6 classes (species) of organisms orga-
nized by FHs. To measure the FHs of a dataset, the cophenetic correlation coef-
ficient was calculated from the plotted dendrogram of the data. The resulting
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coefficient value of 0.9934 is considered to be sufficiently precise for experimental
purposes. For the first task of classifying organisms into various species based on
their FHs, experiments are conducted with two strategies: varying DNN depth
and changing the number of nodes for every DNN hidden layer. The results show
that varying the depth is effective in both cases. Further, a DNN topology with
the same number of nodes in all hidden layers is better than having different
number of nodes at different layers, despite the reducing hierarchical aspects of
the FHs involved ‘from bottom to top’. Detailed observations are presented in
experimental results section.

The paper is organized as follows. Section 2 introduces various types of Deep
Architectures. Section 3 briefly explains the data representation and synthetic
data used in this research. Experimental results are presented in Sect. 4 followed
by Conclusion and Future Directions in Sect. 5.

2 History of Deep Neural Networks

The number of layers of an ANN constitutes its depth. If the number of layers
is more than 1, the ANN architecture can be Deep if multiple layers are used to
form DNNs [12]. Feed-forward ANNs with more than one layer of connections
can solve more problems and be more accurate than one-layer [12]. We define a
‘hidden layer’ in a DNN as any layer of connections or units/nodes apart from
those at the input and output stages. We let the context determine whether
we refer to hidden connections or hidden units/nodes. Theoretical studies also
support the statement that DNNs have the advantage of more efficient represen-
tation compared with shallow networks and with fewer hidden units [12]. Unlike
ANNs, the layers of CNNs have neurons arranged in 3 dimensions for overlapping
purposes. CNNs were first proposed by Fukushima as Neocognition [13]. CNNs,
being the first form of a DNN, use the standard BP algorithm for training and
weights are updated using Δwij(t + 1) = Δwij(t) + η ∂C

∂wij
where η represents

the learning rate, C is the associated cost function , wij represents the weight
between unit i and unit j and t represents time.

The major problem with DNNs is that BP results in slow learning with
increasing dimensionality of the data, specially with large volumes of training
data, where the process of training DNNs is done in two steps. Firstly, the data
is divided into small batches of data followed by the batch-wise training process
[4]. With this, there will be an increase in the number of parameters to be
optimized. To overcome this problem, a new greedy-layer-wise training proce-
dure was introduced. The layer wise training mechanism was first implemented
successfully by Lecun on CNNs, Hinton on Deep Belief Networks (DBNs) and
Bengio on stacked auto-encoders. Lecun extended Fukushima’s work by training
each layer of CNN with BP algorithm training [5].

DBN is a multi-layer perceptron (MLP) based DNN with connections existing
only between the layers but not between the neurons within the layer [14]. DBNs
have multiple interconnected hidden layers where each layer acts as an input to
the next layer without lateral connection between the nodes present in that
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layer. DBN is constructed using supervised models like Restricted Boltzmann
Machines (RBMs). An RBM is formed by applying a restriction on Boltzmann
machines that the units within the layers are not connected with each other
but can have connections with the units of other layers. DBN uses probabilistic
logic nodes and Softmax as activation function. Bengio’s stacked auto-encoders
implements encoding and decoding mechanisms using ANNs. The main aim of
auto-encoders is to reproduce the input [2]. Initially both encoder and decoder
networks are assigned with random weights and trained by observing the dis-
crepancy between original data and the reconstructed output. The error is back
propagated through the decoder network followed by encoder network. A stacked
de-noising auto-encoder algorithm was proposed in 2010 that reduced the per-
formance gap between RBM based DBNs and auto-encoder based DNNs [15].

3 Data Representation

Binary number representation generates datasets using just two digits 0 and 1.
Connectionist methods of data representation can be categorized into specific
(localist) or spread out (distributed). In a localist representation each neuron or
unit is associated with a single feature and each feature is represented by one and
only one neuron or unit [16]. Localist representation is simple, easy to code and
understand. However, localist representation cannot be used for componential
structure-based data such as FHs. In distributed representation a single concept
is represented by a combination of neurons or units and each neuron or unit can
be a part of multiple concept [16]. In a distributed representation, an isolated
neuron has no meaning by itself and the existence of a neuron has meaning only
when it is present in a group.

Deep learning is based on feature learning which is also known as represen-
tation learning and we use gradient descent as the most suitable procedure to
train DNNs. Since, distributed representation is considered efficient for repre-
senting taxonomic (hierarchical) data, it makes gradient based learning as ideal
choice to test FHs in distributed representation. With binary encoding, n neu-
rons can produce 2n patterns when distributed representation patterns are used.
A localist representation represents a single feature or concept on its own, such
as an organism having backbone, hair etc., which determines the uniqueness of
the organism. If the organism has multiple features which are represented as
8 localist bits, each bit will stand for the presence or absence of a concept or
feature. For instance, an organism that has a backbone is coded as C1 with last
bit as 1 and is represented as 0 0 0 0 0 0 0 1. Similarly, other features may be
represented as shown in Fig. 1 (a). The remaining bits of a localist representation
can be used to identify individual organisms.

FHs classification of organisms into taxa is based on the features they possess.
Since each feature of an organism is represented in bits, organisms with multiple
features are represented in localist form as a combination of binary bits. For
instance, organism O1 has backbone and hair which are C1 - 00000001 and
C2 - 00000010 as presented in Fig. 1 (a). So, the features of organism O1 are
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(a) Localist representation (b) Multiple features

Fig. 1. Localist representation of features

Fig. 2. Binary Representation of Organism

represented as 00000011 with combined features as shown in Fig. 1 (b). Similarly,
organism O2 has backbone, hands and feet, and hair on the hands (C1, C3 and
C4) which is represented as 00001101. This pattern of features of the organism
determines its sub-group.

Hierarchical data can be defined as data units with hierarchical based inter
relations among them. A taxonomic dataset is taxa based data with FHs to rep-
resent organisms organized by species for easy and efficient management of data
as well as retrieval. Our hierarchical tree is constructed from a synthetic dataset
of organisms. We represent an organism as a stream of binary data of 20 bits
categorized into Rank (4 bits), Group (4 bits), Sub-Group (4 bits) and features
(8 bits) as shown in Fig. 2. The taxonomic Rank is determined by the shared
features, Group and Sub-Group making this a hierarchical representation. The
cophenetic correlation coefficient determines the efficiency of hierarchical struc-
ture by determining similarity of the data between two values by calculating the
distance between a pair of unmodelled data within the dendrogram [17]. The
typical value for this is around 0.8 with values above 0.95 considered as more
efficient [18]. The cophenetic correlation coefficient for our data is 0.9934. This
values highlights that the synthetic data is efficiently structured with consider-
able accuracy.

4 Experimental Results and Discussion

There are 90 organisms in the dataset categorised into 6 different species. For all
experiments, the dataset is divided randomly with the first 60 % for training the
next 10 % for calibration/validation and the remaining 30 % for testing. After
some initial trials to identify appropriate parameters, the initial learning rate is
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determined as 0.01 with a step-ratio (incremental learning step size) of 0.001 and
the momentum as 0.3. To reduce the complexity and irregularity which may be
caused by large weights, weight-decay, a simple penalty function is introduced
to penalize large weights. Weight-decay is calculated as the half of the sum
of squared weights times a coefficient termed as weight-cost which is 0.0002 for
this experiment (a typical starting value for weight-cost is 0.0001). The objective
function for the experiments is ‘Cross Entropy’. Each experiment is performed
10 times with 100 epochs.

This experimental study is divided into two categories. In Experiment I, a
DNN is trained to classify the species depending on the features. In the second
experiment (Experiment II), a second set of data is used to identify whether
any two given organisms are related (belongs to same species) or not. 4 types
of scenarios are adopted for each experiment. For scenario A and B, a 5-layer
ANN with hidden nodes 30,30,30 and 30,40,50 is used whereas for C and D,
a 6-layered ANN with hidden nodes 30,30,30,30 and 30,40,50,60 is used. This
scenario would help to determine the influence of symmetric and asymmetric
node count.

Table 1. Results of experiment - I: confusion matrix values

No Hidden layers Training Validation Testing All Avg.training error

1A 3 (30,30,30) 100 % 100 % 100 % 100 % 0.023

1B 3 (30,40,50) 100 % 100 % 81.5 % 94.4 % 0.021

1C 4 (30,30,30,30) 100 % 100 % 92.6 % 97.8 % 0.0499

1D 4 (30,40,50,60) 13 % 55.6 % 14.8 % 17.8 % 0.0448

For Experiment I, 20 inputs representing the 20 bits of the organism are used
with 6 separate outputs for determining the species of the organism and the
results obtained are presented as Table 1. Experiment 1A, in which the hid-
den nodes are 30,30,30, shows 100 % results for training, validation and testing.
When the number of nodes in the hidden layers is changed to 30,40,50 there was
variation in the testing results which is 81.5 % constituting the overall results as
94.4 % as shown in Table 1. However, when the depth of the ANN is increased
to 4, the confusion matrix showed a little variation compared with earlier ANN
with depth as 3, whereas the results of the experiment with different number of
hidden nodes (1D) showed a drastic fall in the accuracy rate with 17.8 % as an
overall percentage. Inspection of the confusion matrix reveals that classification
error has occurred for species 5 with 3 of class 5 being classified as class 4 due
to similarity in most of their features.

The performance difference between experiment 1A and 1C is 2.2 % in the
favor of 1A. However, the difference between 1B and 1D is 76.6 % in favor of 1C.
On the other hand, if we analyze the significance of the same number of nodes
and different number of nodes with depth being same, the difference between
1 A and 1B is 5.6 % in favor of 1 A and 1 C and 1D is 80 % in favor of 1C.
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Table 2. Results of Experiment - II: Confusion Matrix values

No Hidden layers Training Validation Testing All Avg. Training Error

2A 3 (30,30,30) 100 % 100 % 88.9 % 96.7 % 0.0491

2B 3 (30,40,50) 100 % 100 % 100 % 100 % 0.0027

2C 4 (30,30,30,30) 100 % 100 % 83.3 % 95.0 % 0.0497

2D 4 (30,40,50,60) 100 % 100 % 93.4 % 98.3 % 0.0428

The second set of experiments (Experiment II) were carried out to identify
whether two organisms are related or not. For example, tiger is related to cat
they belongs to the same species whereas rat which belong to different species,
is not related to cat as defined in our synthetic data. The input in this case is
a 40 bit binary number vector fed to the network (20 each for two organisms)
resulting in either ‘0’ for not related or ‘1’ if related. 60 data samples, (10 from
each species) are used for this experiment and the results are shown in Table 2.

Summarising, in Experiment I, better results are achieved with the topology
having the same number of hidden nodes whereas in Experiment II, better results
are achieved with the topology having different number of hidden nodes. The
difference between overall accuracy for experiments with 3 hidden layers, 2A
and 2B is 3.3 % in favor of 2B. In case of experiments with 4 hidden layers,
experiment 2D is 3.3 % more accurate than 2C. When the performance difference
is analyzed in terms of depth, the topology with 3 hidden layers (2A and 2B)
has better performance than the 4 hidden layered topology (2C and 2D) with
an average difference of 5.6 % and 6.4 % respectively.

5 Conclusion and Future Work

The specific aim of this paper is to identify the ability of DNNs to classify organ-
isms into various groups depending on characteristic features and to identify
whether two given organisms are related or not. A taxonomic FH with asso-
ciated data is generated with 6 classes (species) of organisms. The cophenetic
correlation coefficient value of 0.9934 confirms the hierarchical nature of the
dataset. Two experiments are conducted by varying the depth and changing the
number of hidden nodes. Experiment I evaluates the classification into species
and Experiment II evaluates the relationships between species. The experimental
results show that increasing the ‘depth’ of the DNN has negative effects on the
accuracy of the results, especially in the case of classification into species. Inter-
estingly, experiments with same number of hidden nodes at each layer better
results compared with that of different number of hidden nodes. In other words,
a homogeneous node network appears, from our experiments, to be better than
a hybrid node network for dealing with data that contains FHs.

With regard to limitations of our study, these results are derived from syn-
thetic datasets. It will be interesting to observe the results with high volume and
naturally acquired data as well as DNNs with more hidden layers. Also, further
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representational experiments are required to test the efficacy of representation
in relation to architecture.

In summary, while the results reported here are based on simple experiments,
the principles being explored and experimented on are far from simple. The rela-
tionship between architecture and representation is still an open issue in ANN
research, as is the optimal relationship of localist with distributed representa-
tion. There has been little work so far on the relationship between depth and
learning accuracy, especially when the level of depth and the number of nodes
at each depth can influence learning. If deep learning with DNNs is to be better
understood, further systematic experiments such as ours will be required.
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Abstract. The problem of recovering shape from shading is important
in computer vision and robotics and several studies have been done. We
already proposed a versatile method of solving the problem by model
inclusive learning of neural networks. The method is versatile in the
sense that it can solve the problem in various circumstances. Almost all
of the methods of recovering shape from shading proposed so far assume
that illumination conditions are known a priori. It is, however, very dif-
ficult to identify them exactly. This paper discusses a method to solve
the problem. We propose a model inclusive learning of neural networks
which makes it possible to recover shape with simultaneously estimat-
ing illumination directions. The performance of the proposed method is
demonstrated through some experiments.

Keywords: Model inclusive learning · Neural network · Shape from
shading · Parameter estimation · Illumination direction

1 Introduction

The problem of surface-shape recovery of an object from a single intensity image
is an important problem in computer vision and robotics and so on. The problem
was first formulated in the general setting by B.K.P. Horn and several studies
have been done based on the formulation [1,2]. The problem is essentially ill-
posed and reduced to a nonlinear-function approximation problem.

In recent years, there have been increasing research interests of artificial
neural networks and many efforts have been made on applications of neural
networks to various fields. The most significant features of artificial neural net-
works are the extreme flexibility due to the learning capability of nonlinear func-
tion approximation and the generalization ability. It is expected, therefore, that
neural networks make it possible to easily solve the ill-posed problem of shape
from shading by their learning and generalization ability. G. Wei et al. presented
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 501–511, 2015.
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a solution of the problem by using a multilayer feedforward network [3]. They
proposed a method of recovering shape in which a feedforward neural network is
trained so as to satisfy so called image irradiance equation which is a nonlinear
partial differential equation. Motivated by the work [3] we already proposed a
versatile method of solving the problem of recovering shape from shading by
neural networks [4]. The proposed method is versatile in the sense that it can
solve the problem in various circumstances. In order to realize the versatility,
we introduced the concept of model inclusive learning of neural networks [5].
In the model inclusive learning a priori knowledge and inherent property of a
target are incorporated into the formulation of learning problem, which could
regularize an ill-posed problem and could improve learning and generalization
ability of neural networks.

In almost all of the methods proposed so far for the problem of recovering
shape from shading, the following two are assumed; (i) surface reflection prop-
erties of a target object are known a priori, and (ii) illumination conditions in
which an image of a target object taken by a camera are identified. It is, however,
very difficult to obtain surface reflection properties exactly and to identify illu-
mination conditions exactly. We have already proposed a method which solves
the first problem [6]. This paper discusses a method to solve the second problem
that illumination conditions are not identified exactly. In general illumination
conditions are identified through the calibration experiments. However it is very
difficult to identify illumination conditions exactly. In addition to this the cal-
ibration experiments are complicated and troublesome and they cannot always
be performed. We propose a method which makes it possible to recover shape
with simultaneously estimating illumination directions by utilizing the versatile-
ness of the model inclusive learning and present a practical procedure to realize
it. The proposed method can reduce the burden of the calibration experiments.
The performance of the proposed method is demonstrated through experiments.

2 Model Inclusive Learning for Shape from Shading-
Simultaneous Estimation of Illumination Directions

In this section we explain the basic idea and concept of the proposed model
inclusive learning for the problem of recovering shape from shading with simul-
taneously estimating illumination directions. An image of a three-dimensional
object taken by a camera in an imaging condition depends on its geometric
structure (shape), its reflectance properties and the imaging conditions (the dis-
tribution of light sources etc.). The image formation process can be illustrated as
shown in the upper part of Fig. 1. The process can be regarded as a mapping from
the geometric structure of the surface to the image. We call the mathematical
model of the mapping ‘image-formation model’. Note that the image-formation
model, denoted by F̂ , depends on the reflectance properties and the imaging
conditions. We assume that, in the image-formation model F̂ , the mathematical
models of reflectance properties and the imaging conditions are known a priori
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except that the parameters of illumination directions in the the imaging condi-
tions are unknown. This problem can be solved by the model inclusive learning
of neural networks as follows. The schematic diagram of the proposed method is
shown in Fig. 1. Suppose that an image of a three-dimensional target object is
formed through an image formation process shown in the upper part of Fig. 1.
Let G(x, y) denote the brightness at a position (x, y) on the image. We formu-
late the learning problem of a neural network such that it recovers the geometric
structure of the surface of the object as its input and output relation. In the
formulation the neural network is trained with including the image-formation
model F̂ as follows. As shown in Fig. 1, we input a position (x, y) on the image
to the neural network (NN), and we also input the corresponding output of
the neural network to the image-formation model F̂ together with the reflec-
tion properties and the imaging conditions. If the neural network is successfully
trained so that the geometric structure of the surface of the object is realized
as its input and output relation and if illumination directions are successfully
estimated, the output of the image-formation model F̂ becomes equal to the
brightness data G(x, y) which are taken from the object.

Therefore, training the neural network with simultaneously estimating the
illumination directions so as to reduce the error between the output of the image-
formation model F̂ and the brightness G(x, y) over all the data points to zero
would make it possess the geometric structure of the surface as its input and
output relation. Noting that we assume that the parameters of illumination
directions in the imaging conditions are unknown, we adjust not only values
of the neural network parameters but also those of illumination directions, as
shown in Fig. 1, so as to minimize the error between the output of the image-
formation model F̂ and the brightness G(x, y) over all the data points. If the
error can be reduced enough small by the adjustments of the parameters, the
surface recovery and the estimation of the illumination directions are achieved
simultaneously.

3 Problem Formulation and Proposed Learning Method

3.1 Problem Formulation

Suppose that the surface of an object is represented by

z = f(x, y) (1)

in a camera coordinate system x - y - z, with the x - y plane coinciding with
the image plane, and z axis coinciding with the optical axis of the camera. It
is known that, assuming that orthographic projection and uniform reflectance
property of the object, the brightness at position (x, y) on the image plane can
be described as

G (x, y) = R (p, q ; l), p =
∂f

∂x
, q =

∂f

∂y
(2)
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Fig. 1. Shape from shading by model
inclusive learning of a neural network
with simultaneous estimation of illumi-
nation directions.

Fig. 2. Proposed model inclusive learn-
ing method for shape from shading
with simultaneous estimation of illumi-
nation directions.

where l = (�1, �2, �3) is the illuminant direction, and p and q are the surface gradi-
ent at (x, y). Equation (2) is called image irradiance equation. R (p, q ; l) is called
the reflectance map and represents reflection properties. Note that the image
irradiance equation (2) is corresponding to the image-formation model F̂ . In gen-
eral the image formation model (reflectance map) is modeled as being composed
of the specular reflection Φ(θ(p, q; l), c) and the diffuse reflection cos φ(p, q; l) as
follows:

R(p, q; ρ, c, l) = ρ · Φ(θ(p, q; l), c) + (1 − ρ) · cos φ(p, q; l) (3)

where θ(p, q; l) = cos−1 pl1+ql2−(l3−1)√
p2+q2+1

√
l21+l22+(l3−1)2

, cos φ(p, q; l) = pl1+ql2−l3√
p2+q2+1

,

ρ (0 ≤ ρ ≤ 1) is the ratio parameter and c is the parameter describing extent
of the specular reflection. Note that in (3) we use the expression R(p, q; ρ, c, l)
to represent the reflectance map in order to clarify that it depends on reflection
parameters ρ and c. There have been several models proposed for the specu-
lar reflection Φ(θ(p, q; l), c), a typical representative of which is the Torrance-
Sparrow Model [8]:

Φ(θ(p, q; l), c) = exp(−c2θ2(p, q; l)) (4)

The illumination direction l = (�1, �2, �3) is expressed as follows:

�1 = sin θ cos ϕ, �2 = sin θ sin ϕ, �3 = cos θ (5)

where θ is the polar angle and ϕ is the azimuth.
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The objective here is to recover the geometric structure of the surface (1)
from a single image. In this paper we propose a model inclusive learning method
to solve the problem under the following conditions: (A1) the mathematical
expression of the reflectance map R(p, q; ρ, c, l) is known, (A2) the reflection
parameters ρ and c are known, and (A3) the illuminant direction l = (�1, �2, �3)
is not known, that is to say, the polar angle θ and the azimuth ϕ are not known.
In the following we will discuss a method of recovering shape of an object and
estimating the illuminant direction l = (�1, �2, �3) simultaneously.

3.2 Proposed Learning Method

Figure 2 shows the schematic diagram of the proposed model inclusive learning
method of neural networks. Let Gk denote the brightness which is observed at a
position (xk, yk) from an image taken from an object surface. We prepare a neural
network (NN) with two inputs denoted by I = [I1, I2]T and one output denoted
by O and consider that the input I = [I1, I2]T and the output O correspond to
the position (x, y) on the images and the depth z of the surface, respectively.
For an observed brightness Gk, we give its position (xk, yk) on the image to the
input I = [I1, I2]T of the neural network and derive the derivatives of the output
of the neural network with respect to the input, and obtain the values of the
derivatives at [I1, I2]T = (xk, yk)T :

∂O

∂I

∣∣∣∣
I=(xk,yk)

= (
∂O

∂I1

∣∣∣∣
I=(xk,yk)

,
∂O

∂I2

∣∣∣∣
I=(xk,yk)

)T . (6)

Note that those derivatives become equal to the surface gradients p and q at
the position (xk, yk) if the input and output relation of the neural network
exhibits the geometric structure (1) of the object. We substitute the values of
the derivatives (6) into the surface gradient p and q of the image-formation
model R (·, · ; ρ, c, l). The obtained R(∂O/∂I1, ∂O/∂I2; ρ, c, l) corresponds to
the outputs of the image formation model in Fig. 1 and is to be coincided with
the brightness Gk. Accordingly, training the neural network so as to reduce
the error between the brightness data Gk and R(∂O/∂I1, ∂O/∂I2; ρ, c, l) over
all the data points to zero, we can obtain the geometric structure of the sur-
face as the input and output relation of the neural network. Noting that we
assume that the parameters of the illumination direction l = (�1, �2, �3) are not
known, in the model inclusive learning we adjust not only values of the neural-
network parameters but also those of the illumination direction l = (�1, �2, �3), as
shown in Fig. 2, so as to minimize the error between the brightness data Gk and
R(∂O/∂I1, ∂O/∂I2; ρ, c, l) over all the data points. Note also that the reflectance
map R(p, q; ρ, c, l) contains unknown parameters of the illumination direction l
and in the calculation of R(∂O/∂I1, ∂O/∂I2; ρ, c, l) we use the current estimated
values of the parameters of the illuminant direction l = (�1, �2, �3) (θ and ϕ).

Define the performance index by

J =
1
2

∑

(xk,yk)∈DG

{

R

(
∂O

∂I1

∣∣∣∣
I=(xk,yk)

,
∂O

∂I2

∣∣∣∣
I=(xk,yk)

; ρ, c, l

)

− Gk

}2

(7)
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where DG is a set of data points (xk, yk) at which the brightness data Gk

are observed from the image. Note that J is the square error between Gk and
R(∂O/∂I1, ∂O/∂I2; ρ, c, l) over the set of data points DG. The problem is now
reduced to finding values of parameters of the neural network and also the para-
meters of the illumination direction l (the polar angle θ and the azimuth ϕ) that
minimize the performance index J , a solution of which could achieve simultane-
ous recovering shape and estimating the illumination direction.

In order to search values of the network parameters and the parameters of
the illumination direction which minimize J , the gradient based methods can
be used, in which several useful algorithms are available: the steepest descent
algorithm, the conjugate gradient algorithm, the quasi-Newton algorithm and so
on. The main problem associated with these algorithms is the computation of
the gradients of J with respect to the parameter of the neural network and the
parameters of the illumination direction l (θ and ϕ). Note that, as previously
stated, the derivatives of the output with respect to the input of the neural
network ∂O/∂I are also needed to be calculated. Efficient algorithms to calculate
these gradients and the derivatives can be derived by introducing adjoint models
of the neural network [7]. The derivation is omitted.

It is important to note that, in the minimization of the performance index
J by the use of an appropriate gradient based algorithm, it may not succeed
to converge if all the parameters, that is, the parameters of the neural network
and the parameters of the illumination direction l (θ and ϕ) are simultaneously
adjusted from the beginning of the optimization. In order to solve the problem
we take two steps in the optimization procedure. In the first step we adjust only
the parameters of the neural network, and in the second step we adjust all the
parameters simultaneously as follows.

Step 1: Give adequate values to the parameters of the illumination direction l
(θ and ϕ) and give random values to the parameters of the neural network as
an initial guess. Adjust only the parameters of the neural network according
to an appropriate gradient based algorithm with the parameters of the illu-
mination direction being kept constant at the initial guess. The optimization
iterations are continued until it converges and the tentative surface shape of
the target object is obtained. We call it the initial surface shape.

Step 2: Starting from the initial surface shape, adjust all the parameters, that is,
the parameters of the neural network and the parameters of the illumination
direction l (θ and ϕ) simultaneously according to an appropriate gradient
based algorithm. The optimization iterations are continued until it converges.

4 Experiments

In this section we show the results of the experiments in order to demonstrate
the performance of the proposed method. In the following experiments a four-
layer feedforward neural network with 15 hidden units is used. We utilize the
quasi-Newton method with the Davidon-Fletcher-Powell algorithm as a gradient
based method.
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Fig. 3. Synthetic Image

X-axis
Y-axis

Z-axis

Fig. 4. True surface.

X-axis
Y-axis

Z-axis

Fig. 5. Recovered sur-
face

4.1 Experiment 1 - Synthetic Image

In the first experiment we use a synthetic image in order to evaluate accuracy
of the proposed method. We synthesize a target image from an artificial surface
which is given by the following equation.

f(x, y) = 4[exp{−1.75(x2 + y2)} − exp{−1.5(x2 + y2)}] (8)

Figure 3 shows a synthetic image of size 32×32 generated by applying the image
formation model (3) to the surface (8), where the Torrance-Sparrow Model given
by (4) is used as the specular reflection model. In the model values of the reflec-
tion parameters ρ and c are given as ρ = 0.7, c = 0.7 and values of the parame-
ters of the illumination direction θ and ϕ are given as θ = 2.922[rad](167.40◦)
and ϕ = 4.249[rad](243.43◦). Figure 4 shows the true three-dimensional surface
given by (8). In the surface recovery experiment we take the two step procedure
explained in the previous subsection. In Step 1 we give the initial guess of the
parameters of the illumination direction θ and ϕ as θ = 2.526[rad](144.74◦) and
ϕ = 3.927[rad](225.00◦) and adjust (train) only the parameters of the neural
network with those of the illumination direction being kept constant at the ini-
tial guess. The iterations are continued until the optimization converges and the
initial surface shape is obtained. In Step 2 starting from the initial surface shape,
we adjust the parameters of the neural network and those of the illumination
direction l (θ and ϕ) simultaneously. Figure 5 shows an example of the recovered
surface thus obtained.

In order to evaluate accuracy, for the synthesized image we performed surface
recovery experiments 10 times by randomly changing values initial guess of the
learning parameters of the neural networks in the range of [-0.1,0.1]. Table 1
shows the minimum, average and variance of the surface depth error and gradient
error between the true surface and the recovered surface by the proposed method,
which are calculated per one pixel. In the table the estimation errors of the
parameters of the illumination direction θ and ϕ are also shown. Note that the
minimum and maximum values of the depth of the target surface (8) are 0.227
and 3.0, and those values of its surface gradient are -0.461 and 0.461, respectively.
It is observed that all the results are enough accurate for practically.
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Table 1. Accuracy for the experiment using the synthetic image

Depth error Gradient error

Mimimun Average Variance Mimimun Average Variance

3.45 × 10−3 6.22 × 10−3 8.51 × 10−6 3.77 × 10−3 6.90 × 10−3 1.47 × 10−5

Error of θ Error of ϕ

Mimimun Average Variance Mimimun Average Variance

2.00 × 10−4 2.02 × 10−3 3.18 × 10−6 2.81 × 10−2 4.91 × 10−2 8.58 × 10−4

Fig. 6. An example of
convergence behavior of
J during the learning
iteration.

Fig. 7. An example of
convergence behavior
of θ during the learn-
ing iteration.

Fig. 8. An example of
convergence behavior of
ϕ during the learning
iteration.

Figure 6 shows an example of the convergence behavior of the proposed learn-
ing method. In the figure the variation of the performance index J versus the
number of the learning iterations is plotted. It is observed that the values of
J decreases and the learning converges. Note that at the beginning of Step 2
the values of J decreases rapidly, which reveal the effectiveness of the two step
procedure. Figures 7 and 8 show examples of the convergence behavior of the
estimation of the parameters of the illumination direction θ and ϕ. In the fig-
ures the variations of θ and ϕ versus the number of the learning iterations are
plotted from the beginning of Step 2. It can be seen that θ converges to its
true value 2.922[rad](167.40◦) and ϕ converges approximately to its true value
4.249[rad](243.43◦). Those results reveal the validity of the proposed method.

4.2 Experiment 2 - Real Image

We here present results of the experiment using a real image. The image we
used is a Venus statue which is made up of curved surfaces shown in Fig. 9. The
experiment is performed by using the image of size 71×51 shown in Fig. 10 which
is the right eye of the Venus statue in Fig. 9. In the experiment we use the image
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formation model (3) with the specular reflection Φ(θ(p, q; l), c) being Torrance-
Sparrow Model (4) where the reflection parameters ρ and c are set be ρ = 0.460
and c = 0.408 which are obtained by the preparatory calibration experiment.
In Step 1 of the two step procedure we give the initial guess of the illumination
direction as θ = 3.000[rad] and ϕ = 6.0828[rad] which are also obtained by the
preparatory calibration experiment.

Fig. 9. Venus statue consisted of
curved surfaces.

Fig. 10. Real images of the right eye of
the Venus statue.
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Fig. 11. Recovered eye-surface
obtained by the proposed method.
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Fig. 12. Recovered eye-surface
obtained by the method without
estimating the illumination direction.

Figure 11 shows the recovered surface obtained by the proposed method.
In the lower part of the figure the contour map of the surface is also shown.
Figure 12 shows the recovered surface obtained by the method proposed in [4],
that is, the model inclusive learning method without estimating the parameters
of the illumination direction θ and ϕ. It is observed by comparing those figures
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that the result of Fig. 11 can captures the fine structure much more than that of
Fig. 12, which reveals the effectiveness of the estimation of the parameters of the
illumination direction. Figure 13 shows the convergence behavior of the proposed
learning method in which the result in Fig. 11 is obtained, and Fig. 14 shows
that in which the result in Fig. 12 is obtained. In those figures the variations
of the performance index J versus the number of the learning iterations are
plotted. It can be seen that the value of J in Fig. 13 converges to the value much
smaller than that in Fig. 14 and the value of J in Fig. 13 decreases rapidly at the
beginning of the Step 2, which also reveals the effectiveness of the estimation of
the illumination direction.

Fig. 13. An example of convergence
behavior of J during the learning iter-
ation.

Fig. 14. An example of convergence
behavior of J during the learning iter-
ation without estimating the illumina-
tion direction.

5 Conclusion

The problem of recovering shape from shading is important in computer vision
and robotics and many studies have been done. Almost all of the methods pro-
posed so far assume that illumination conditions in which an image of a target
object taken by a camera are identified. It is, however, very difficult to identify
them exactly. In this paper we have proposed a versatile method of recover-
ing shape from shading with solving the above problem. The proposed method
is a model inclusive learning of neural networks which makes it possible to
recover shape with simultaneously estimating the parameters of the illumination
direction.
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Abstract. Match decision-making problem is one of the hot topics in the field
of computational neuroscience. In this paper, we propose a spiking SHESN
model with reward-modulated reinforcement learning so as to conduct com-
putational modeling and prediction of such an open problem in a manner that
has more neurophysiological characteristics. Neural coding of two
sequentially-presented stimuli is read out from a collection of clustered neural
populations in state reservoir through reward-modulated reinforcement learning.
To evaluate match decision-making performance of our computational model,
we set up three kinds of test datasets with different spike timing trains and
present a criterion of maximum correlation coefficient for assessing whether
match/nonmatch decision-making is successful or not. Finally, extensive
experimental results show that the proposed model has strong robustness on
interval of both spike timings and spike shift, which is consistent with monkey’s
behavior records exhibited in match decision-making experiment [1].

Keywords: Computational neural model � Match decision-making problem �
Spiking SHESN � Reward-modulated reinforcement learning

1 Introduction

With advances in experimental techniques, a lot of secrets underlying biological brain
are gradually unveiling. In biological nervous system, carriage of neural information is
spike or action potential. Spike trains are generated due to change in neuronal mem-
brane potential of being greater than a threshold and then transmitted along nerve
fibers. Evidences indicate that any neural information can be represented in firing rate,
spike timing, or assemblies [2]. Among them, a study of neuronal information in spike
timing train is increasingly paid to attention in the past decade. A couple of spike
timing-based learning algorithms were proposed such as spike-timing-dependent
plasticity (STDP) [3].

Attractor is viewed as one of the most important ways for analysis of artificial
recurrent neural network. In fact, the existence of attractor was neurophysiologically
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supported by experimental results on CA1 area of mouse brain that Wills et al. dis-
covered in 2005 [4]. On the other hand, Jaeger et al. [5] proposed a new generation of
recurrent neural network, called echo state network (or ESN), which has continuously
been being improved. In general, ESN contains single hidden layer, i.e. state reservoir,
where all internal/reservoir neurons are randomly connected. It enables state reservoir
to have abundant state space and leads to ESN being able to store more complicated
attractors. At the same time, a set of states that encode external stimuli can readily be
read out from state reservoir by neurons in output layer. Synaptic weights between
internal neurons and output ones can be shaped using supervised learning algorithm.
Up to now, ESN has extensively been applied to many problems such as chaotic time
sequence prediction [6].

In the study of decision-making task, the match decision-making problem is
attracting attention in recent years [1]. Several computational neural models are pro-
posed to investigate such a decision-making behavior [7, 8]. Decision-making often
relies on abilities to compare memories with immediate sensations. In experimental
neuroscience, the match decision-making problem is viewed as one of classical
problems among decision-making tasks, where subjects are requested to classify,
memorize, compare, and discriminate external consecutive stimuli that occur at slightly
different times. Biophysically, neurons in lateral PFC are likely to get involved in
simultaneously memory and comparison [1]. So far we have had, however, little
knowledge of how both working memory and comparison are carried out neurobio-
logically in a single module without specific parameter’s tuning. In existing compu-
tational models for such a problem, network structure is usually required to be
specifically designed and does not reflect characteristics of biological nervous system
in a sense [7, 8]. This paper attempts to develop a biologically inspired computational
model to clarify the match decision-making problem. First, we give a description of
match decision-making problem. Second, we propose a new spiking SHESN model
with reward-modulated reinforcement learning. Third, neuronal spike timing trains are
used to fulfill simulation on match/nonmatch decision-making problem. Furthermore,
the experimental results are discussed. Finally, we draw conclusions.

2 Problem Description

Working memory is considered to play an important role in regular decision-making
task of human beings. To have knowledge of functioning of working memory in
decision-making process, two different types of classical experimental paradigms are
generally designed by physiologists. One is to discriminate whether subsequent stim-
ulus, which is produced after a short duration from the onset of the first stimulus, is
identical to the preceding stimulus. Another is that given two consecutive stimuli, one
needs to judge whether the two stimuli belong to the same class [1]. In the first type of
decision-making problem, called a delayed discrimination task, it is only required to
know if stimulus occurs repeatedly. But as for the second type, i.e. match/nonmatch
decision-making problem, we must first make appropriate classification of stimulus and
then decide whether the class of two consecutive stimuli is the same or different
according to preceding classification results [1].
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As shown in Fig. 1, an external stimulus is simply represented in a single neuronal
spike in study of match/nonmatch decision-making problem. Suppose that there are
two input stimuli of A and B presented. It is regarded as a match pattern if neuronal
spike trains A (or B) contain two consecutive stimuli and B (or A) have nothing in
stimuli. A nonmatch pattern is defined, if spike trains A (or B) consist of only one
stimulus and B (or A) also include only one stimulus that triggers at different timings.

3 Methods

3.1 Network Architecture

A novel spiking SHESN network is proposed to establish our computational neural
model for match decision-making problem. The proposed clustered reservoir computing
model consists of three layers: input, working memory/comparison/clustering (WCC),
and output, as shown in Fig. 2. The input layer functions somatosensory neurons (S1) in
brain. It is composed of two neurons, which receive two spike trains of external stimuli
to be classified, respectively. The internal neurons in the hidden state reservoir layer, i.e.
the WCC layer, are sparsely connected to form complex network according to naturally
evolving rules presented in [9]. We unveiled that it is able to simultaneously perform
working memory, comparison, and clustering for two consecutive stimuli in singleWCC
layer, which is significantly consistent with biological plausibility in brain cortex [1].
Additionally, there exhibit great heterogeneity over reservoir neurons in such a WCC
layer. This is also observed in PFC neurons during recent monkey’s experiments [2].
The output layer contains one neuron that is employed to read out neural coding of two

( a ) ( b ) ( c ) ( d )

Fig. 1. Match and nonmatch stimuli expressed in neuronal spike trains. (a) and (c) Match
patterns. (b) and (d) Nonmatch patterns.

Fig. 2. The network structure of spiking SHESN model for match decision-making problem.
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sequentially-presented stimuli from a collection of clustered neuronal populations in
state reservoir through reward-modulated reinforcement learning. Using reinforcement
learning for shaping plasticity of output synapses, activities of single neuron in the
output/read-out layer are demonstrated to generate the same decision as that in match
decision-making experiments. From this perspective of brain science, biological net-
work is always sparsely connected and has very low connectivity. Similarly, the sparse
connectivity from input neurons to any WCC neuron in our computational model is set
to cin ¼ 0:5, whereas the WCC neurons themselves are also randomly connected with
very low connectivity of cres ¼ 0:01. Interestingly, output synapses are found to be
sparse after reinforcement learning completes. Totally, the whole spiking SHESN has
very low connectivity. These data are in accord with recently reported experimental
results on PFC activity [1].

The leaky integrator neuron is adopted to store the past state and improve learning
and classification performance of network [10]. The leaky integrator neuron model of
spiking SHESN is described below,

s
dxðtÞ
dt

¼ �axðtÞþ f ðWresx tð ÞþWfby tð ÞþWinu tð Þþ vðtÞÞ; ð1Þ

y tð Þ ¼ WoutxðtÞ; ð2Þ

where xðtÞ denotes the state vector of state reservoir, y tð Þ the output vector of network,
u tð Þ the input vector, vðtÞ the noise vector, Wres the reservoir synaptic matrix in the
WCC layer, Wfb (Win) the feedback (input) synaptic matrix, both of which take uni-
form distribution over [−1, 1], Wout the output synaptic matrix, f ð�Þ ¼ tanhð�Þ the
activation function of internal neurons, s ¼ 1:0 the time constant, and a ¼ 0:9 the
leaky decay rate. In our experiment, Eq. (1) was solved using Runge-Kutta-Fehlberg
algorithm (or RKF45). The other parameters were selected below: the number of
internal neurons n ¼ 1; 000, the number of backbone neurons b ¼ 2, and the spectral
radius r ¼ 0:5.

3.2 Reward-Modulated Reinforcement Learning for Output Synapses

In our model, only output synaptic weights are updated based on reward-modulated
reinforcement learning during training phase. Note that output weights remain
unchanged in test phase. The exploratory Hebb rule (or EH-rule) [11] is given below,

wout
ji kþ 1ð Þ ¼ wout

ji kð ÞþDwout
ji kð Þ; ð3aÞ

Dwout
ji kð Þ ¼ gðr kð Þ � E½rðkÞ�ÞxiðkÞðyj kð Þ � E½y kð Þ�Þ= k xðkÞ k; ð3bÞ

and

yj kð Þ ¼
Xn

i¼1

wout
ji ðkÞxiðkÞ; ð4Þ
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where g ¼ 0:0001 is the learning rate, wout
ji kð Þ represents the synaptic weights between

neuron j in the readout layer and neuron i in the WCC layer, and yj kð Þ indicates
responses of output neurons. The initial weights wout

ji 0ð Þ were found using the ridge
regression.

The instantaneous reward signal rðkÞ at the current trial k is defined as 1 if
match/nonmatch is carried out and 0 otherwise. E½rðkÞ (or E yj kð Þ� �

) expresses the
averaging of previously received rewards (or output responses), i.e.,

E r kð Þ½ � ¼ 0:8E r k � 1ð Þ½ � þ 0:2r kð Þ;E yj kð Þ� � ¼ 0:8E yj k � 1ð Þ� �þ 0:2yj kð Þ: ð5Þ

Essentially, deviation of r kð Þ � E½rðkÞ� denotes the difference between the actual
and predicted rewards, namely, the reward prediction error, while deviation of yj kð Þ �
E½yj kð Þ� stands for exploratory signals for output neuron response [11].

4 Results and Discussion

4.1 Construction of Training Datasets and Test Datasets

We implemented a computational neural model of accomplishing match decision-
making task (Fig. 1). In our experiment, the training and test duration all lasted for
Tf ¼ 8s and the step-size for discretization was set to Dt ¼ 0:002s (using RKF45).
There were two spike train stimuli of ut1ðtÞ and ut2ðtÞ with a presentation of spike
timing being assumed to be t1 ¼ 1s and t2 ¼ 3s, respectively. Meanwhile, the ampli-
tude of spike was set as gin ¼ 0:675 and the interval of spike timings as k ¼ 1. It had

ut1 tð Þ ¼ 0 t 62 ½t1; t1 þ k�
gine�bðt�t1Þ t 2 ½t1; t1 þ k�

�
; ð6aÞ

ut2 tð Þ ¼ 0 t 62 ½t2; t2 þ k�
gine�bðt�t2Þ t 2 ½t2; t2 þ k�

�
; ð6bÞ

where b ¼ 2 was a time constant.
Suppose that the output spike train response ypsp was a sine signal with amplitude

of spike gout ¼ 1:2, i.e.,

ypsp tð Þ ¼ 0 t 62 ½t2; t2 þ k�
gout sin p

s t � t2ð Þ� �
t 2 ½t2; t2 þ k�

�
: ð7Þ

The four pairs of input-output spike trains are listed in Table 1, where M1 and M2
indicate a pair of spike trains that led to a Match response, and NM1 and NM2 to a
Nonmatch behavior. The match/nonmatch response corresponds to excitatory/
inhibitory post-synapse potential (EPSP/IPSP), respectively.

We used the above-mentioned four pairs of input-output spike trains for con-
structing the training and test datasets in our experiment, as listed in Table 2. The
interval of spike timings was set to D ¼ t2 � t1 ¼ 2. For each of the experiments, one
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of the four pairs of input-output spike trains, i.e. M1, M2, NM1, or NM2, which
constituted the training dataset S1, was selected for training. The test datasets of S2 to
S4 had different parameters below. (a) The first spike timing t1 ¼ 1 was kept
unchanged, but the interval of spike timings D ranged from 0.5 to 5. (b) The interval of

Table 1. Four pairs of input-output spike trains.

Pairs of spike trains Input Desired output

M1 u1 ¼ u1 þ u2 u2 ¼ 0 yd ¼ ypspðtÞ
M2 u1 ¼ 0 u1 ¼ u1 þ u2
NM1 u1 ¼ u1 u2 ¼ u2 yd ¼ �ypspðtÞ
NM2 u1 ¼ u2 u2 ¼ u1

Table 2. Training and test datasets used in the experiment.

Type Dataset Pairs of spike trains Parameter

training S1 M1, M2, NM1, NM2 t1 ¼ 1s;D ¼ 2s
test S2 M1, M2, NM1, NM2 t1 ¼ 1s;D ¼ 0:5s to 5s
test S3 M1, M2, NM1, NM2 t1 ¼ 0:5s to 4s;D ¼ 2s
test S4 M1, M2, NM1, NM2 t1 ¼ 0:5s to 3s;D ¼ 0:5s to 3s

(a)                                           (b)

(c)       (d)
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Fig. 3. The MCC curve obtained using S2. (a) M1. (b) M2. (c) NM1. (d) NM2.
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spike timings D ¼ 2 was fixed, but the first spike timing t1 had change from 0.5 to 4.
(c) Both the first spike timing t1 and the interval of spike timings D had variation.

In the test phase, we assessed actual response y kð Þ of network according to the
maximum correlation coefficient (MCC) #M (or #NM) evaluated for match (or non-
match) response, which indicated the match level between y kð Þ and the desired output
ydðkÞ of match (or nonmatch) response, as described in (7). Specifically, it generated a
match behavior if #M [ 0:70, while a nonmatch response if #NM\0:35. Similarly, a
unmatch behavior is produced if #NM [ 0:65 and #M\0:40.

#M=NM ¼ max
t2;D

corrcoef ðy kð Þ; ydðkÞÞ ¼ max
t2;D

Pl
k¼0ðy kð Þ � �yÞðyd kð Þ � �ydÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

k¼0ðy kð Þ � �yÞ2 Pðyd kð Þ � �ydÞ2
q :

ð8Þ

4.2 The Behavioral Results of Model

The match and nonmatch MCC curves achieved using the test dataset S2 are shown in
Fig. 3, which includes both the mean and variance over 50 independent runs. When the
interval of spike timings in the input spike trains for a match stimulus D[ 2:5, the
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Fig. 4. The MCC curve achieved using S3. (a) M1. (b) M2. (c) NM1. (d) NM2.
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match MCC of #M [ 0:70 decreased while the nonmatch MCC of #NM\0:35 went up,
both of which led to the failure of decision-making that the network accomplished.
Thus the spiking SHESN model was considerably sensitive to the interval of spike
timings.

The match and nonmatch MCC curves yielded based on the test dataset S3 are
shown in Fig. 4. Apparently, the curves of Fig. 4(a)–(c) manifested considerable
smoothness, which meant that the network was not very sensitive to the spike timing.

According to the test dataset S4, Fig. 5 shows the match and nonmatch MCC
curves. Different spike timings result in different MCC curves achieved for either match
or nonmatch decision-making tasks, when the interval of spike timings was fixed. The
match MCC variations got larger with the increase of the interval of spike timings and
otherwise smaller for the nonmatch input spike trains. This suggested that sensitivity of
network to the interval of spike timings was greater than to the spike timing.

5 Discussion and Conclusion

Many neurophysiological experimental results show that neurons in PFC is often
persistently spiking so as to temporarily keep external stimuli, when subject performed
match decision-making task. A couple of computational models have been proposed so
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Fig. 5. The MCC curve obtained using S4. (a) M1. (b) M2. (c) NM1. (d) NM2.
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far, in order to explore such a decision-making problem [1, 7, 8]. In these models,
however, there exists common drawback that specific synaptic connection structures or
supervised learning are required, although such specifically designed structures or
learning mechanisms are not supported by any physiological evidence in biological
brain. Thus resulting computational models seem to be not so convincing. Meanwhile,
parameter settings in the models have to be provided empirically, which may have
significant influence upon experimental results if there is any change in the initial
values of parameters.

Our experimental results demonstrate that our spiking SHESN can classifying a
couple of spike train stimuli that are used for match/nonmatch decision-making. It can
learn from different input spike train samples through reward-modulated reinforcement
learning, which implies judgments for success or failure of match/nonmatch
decision-making. This seems to have direct physiological evidence [11, 12]. From
the perspective of attractor, different attractors that correspond to input spike train
stimuli are memorized in our spiking SHESN and attractor patterns are then correctly
recalled in the test phase. As a result, using generic computational model instead of any
connection relationship between neuronal populations, match decision-making can be
fulfilled. This is in accord with characteristics of biological neural system. There still
exist some disadvantages in our computational model. The spiking SHESN is unable to
correctly make any match/nonmatch decision for larger interval of spike timings,
although it has strong robustness to interval of spike timings and spike shift in input
spike trains. Additionally, the match decision-making in our model is simplified to
pattern recognition of binary classification.

This paper proposes a new computational neural model with reward-modulated
reinforcement learning for the match decision-making problem in neurophysiology. We
employ the MCC for assessment of success or failure for match/non-match behaviors.
The experimental results show that our spiking SHESN can achieve promising dis-
crimination results after completing training.
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Abstract. This paper reports a pilot study in identifying and ranking the per-
sonality of a website automatically and intelligently to help the users to find a
more suitable website and to help the owners to improve the quality of their
websites. The mapping between the selected items defined in WPS and the
quantitative elements of a website was developed first. 240 valid websites were
classified by using unsupervised clustering algorithm K-means. The classifica-
tion was implemented for multiple times from K = 2 to K = 15. The average
values for each attribute in each cluster were calculated, the standard deviation
for all the clusters for a given K value was calculated to find out a suitable K
value. A preliminary verification suggested that the attributes and the method
used can properly identify the personality of a website. A software written in
Java integrating other existing software packages was developed for the required
experiments.

Keywords: Website � Unsupervised learning � K-means � Data extraction �
Experiments � Ranking � Personality � Classification

1 Introduction

Websites become more and more important in people’s life, from online shopping to
routine business such as banking, booking and etc., websites play very important role.
The business owners would like their websites to be more user-friendly and appealing
to their users, so they can do their business easily and successfully. This becomes a
challenge for the website developers.

A research showed that students with different personal attributes such as age,
gender and academic achievement have different preferences on the website types [1].
Understanding the users’ preferences can help the developers to make the website
satisfying the users better. The developers could design and develop websites more
effectively by introducing different attributes like colorful texts, search boxes and
audio/video clips for the product information to make the website possess human-like
characteristics. These characteristics altogether develop the website personality. The
personality of the salesman plays a vital role in developing of long-lasting and trust-
worthy relationships between customers and business. Similarly the website of a
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business can be thought of as a salesman for the business, representing it to the
potential customers. Therefore the website’s personality is also vital, just like that of a
salesman [2]. Research also showed that there is a relationship between the customer
personalities and the website personalities for e-commerce websites. Website person-
alities, therefore, could help to maintain customer loyalty in e-commerce [3].

In most of the research work, website personality has been measured with the help
of human interactions like surveys, interviews etc. [4], such as the work presented in
[5]. This is influenced by the individual’s own personality, way of thinking and likes
and dislikes etc. The website personality scale (WPS) research [4] is a good effort for
the diagnosis of a website personality. The researchers investigated the presence of
human and brand personality attributes as well as information characteristics in over
one hundred websites. They found that the human attributes correlated with overall
attitude and liking of the websites [4]. Their research showed that website personality is
based on different factors like intelligence, fun etc. Each of these factors further breaks
down into different facets like proficiency, sophistication, engagement etc. and further
depends on different factors such as whether it is searchable, satisfying, colorful etc.

This paper reports a pilot study in identifying and ranking the personality of a
website automatically and intelligently to help the website users to find out which one
is more suitable for them and to help the website owners to improve the quality of their
websites such that they are more likely accepted by their target users.

The mapping between the selected items defined in WPS and the quantitative
elements related to the website features such as search boxes, colorful texts etc. was
developed first. The website features were then quantified by means of website content
mining. The quantitative elements form the measurable framework for identifying and
ranking the personality of a website. 250 website in five different website categories
(Academic, Banks, E-commerce, News and Sports) were selected, where, there were 50
websites in each category. After the data extraction, the websites with invalid data were
eliminated and 240 valid websites were obtained. These websites then were classified
by using unsupervised clustering algorithm K-means aiming to construct a classifier,
which can identify the personality characteristics for a new website. The classification
were implemented for multiple times from K = 2 to K = 15. The results were analyzed
to find a suitable K value. A preliminary verification was done by comparing the
resulting clusters and their original categories. A software written in Java integrating
other existing software packages such as Weka and Jsoup was developed to conduct the
required experiments.

In the rest of the paper, the mapping from WPS to quantitative website elements is
described first, the method used in this research is discussed after, then the data
extraction is described, which is followed by a discussion of the experiments results,
and a summary at last.

2 Mapping WPS Items to Quantitative Website Elements

WPS includes five factors (Intelligent, Fun, Organized, Candid, and Sincere), each of
the factor includes a number of facets, and a facet includes a number of items. Due to
the time and implementation limitations, five items from two facets were selected as the
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start point of our study. These include Proficient facet with Informative, Satisfying and
Searchable items and Systematic facet with Concise and Fast items. The mapping
between the WPS items and the quantitative website elements are based on the existing
literature.

For Informative item, quantitative elements Hyperlinks, Word Count and
Video/Audio Clips were chosen. The number and placement of links in a page provides
valuable information about the broad category the page belongs to. A high ratio of the
number of characters in links to the total number of characters in the page means the
probability of the page being an information page is high [6]. The amount of text in a
page gives an indication of the type of page, generally information and personal
homepages are sparse in text compared to research pages [6]. People comprehend and
grasp the content shown on a website much better when it is shown visually on a video,
rather than just text. So a website that has videos and text, rather than just text will be
more informative for the user since they will be able to understand more information [7].

For Satisfying item, quantitative elements Search Boxes and Images were chosen.
Search boxes make it very easy for the user to use the website and the user is satisfied
after the search for an item is ended. This makes the website itself satisfying and
proficient to use. As the user came to purchase something, the user found the item on
the website very easily without surfing through pages and content [8]. Images are easier
for users to assess and help them to further broaden their horizon on the subject, by
breaking the dullness and monotony of texts. This makes the website very interesting
for the user and adds to the satisfying quality of the web pages [9].

For Searchable item, quantitative element Search Boxes was chosen. Most
important characteristics to search a website is an implementation of a search box [10].

For Concise item, quantitative element Density was used, which is inversely pro-
portional to the Item Concise. Webpage density is dependent on number of characters
and number of tags. If the number of characters are very large when compare to number
of tags, the density will be higher or vice versa [11].

For Fast item, quantitative elements Webpage size, Duration and Graphic Files
were chosen. Large pages and applets slow down the page loading speed, to make a
page fast loading avoid large pages and applets [12]. Page loading speed is the key
factor in successful website designing [13]. Graphical files and animation makes
websites so slow that the e-commerce business may lose their customers [14].

3 Method

250 website in five categories (Academic, Banks, E-commerce, News and Sports) were
selected, where, there were 50 websites in each category. After the data extraction, the
websites with invalid data were eliminated and 240 valid websites were obtained:
Academic (50), Banks (49), E-commerce (49), News (45) and Sports (47).

The quantitative elements defined previously were used as attributes to model a
website. Due the software performance issue, Webpage size and Duration elements
were not implemented. So each website was modelled by seven attributes: Hyperlinks,
Word Count, Video/Audio Clips, Search Boxes, Images, Density and Graphic Files.
These websites then were classified into the clusters with different personalities based
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on these attributes aiming to construct a classifier, which can identify the personality
characteristics for a new website.

Due to lack of the knowledge of existing websites’ personality, unsupervised
learning was employed [15, 16] and K-means clustering algorithm was used [17].
Other hierarchical clustering algorithms such as COBWEB [18] are available as well.
While a hierarchical clustering can provide more accurate classification, it requires
unification criteria and division criteria in the classification procedures. These criteria
are hardly determined in this pilot study.

K-means is a simple and effective clustering algorithm, however, it requires
pre-knowledge on the number of the clusters, i.e. the K value [17]. To gain knowledge
on the suitable K value, the classification were implemented for multiple times from
K = 2 to K = 15. The average values for each attribute in each clusters were calculated,
the standard deviation for all the clusters for a given K value was calculated, assuming
that the K value with the maximum standard deviation would provide maximum
amount of information and should be a suitable K value.

It is fair to assume that the website in different categories (Academic, Banks,
E-commerce, News and Sports) should have obvious difference in terms of personality.
Based on this assumption, a preliminary verification was done by comparing the
resulting clusters and their original categories to check that if this method is on the right
track. If the system can correctly classify the selected websites in the right categories,
the quantity elements defined in the proposed approach should be on the right track.

For a website, the data extraction starts from its home page and then propagates to
the secondary pages linked to the home page. The home page and a few other pages get
lots of views and most others get much less traffic, Chapter 5 of [19]. Most websites are
organized in a multitier hierarchy from home pages to secondary pages. Home pages
have four primary elements: Identity, Navigation, Timelines and Tools, Chapter 6 of
[19]. These give us confidence to believe that the data from the home page and the
secondary pages can capture the main characteristics of a website.

4 Data Extraction

The quantitative elements for a website defined previously can be extracted from the
website by various techniques including structure mining, information entropy etc.

The Images element is achieved by detecting the “img” HTML tag in the source
code of a web page. HTML tags are usually used for website user interface presen-
tation, this element should reflect/contribute to the characteristics of visual appearance
for the website. For Graphic Files element, a few well known media formats (.jpg,.tif,.
gif,.png and.raw) are picked up from parsing the web page. This could include the
images in the content and the images in the background, animations or slideshow. This
element reflects the amount of the image files used in the website in general. For
Hyperlinks, Word Count, Video/Audio Clips, and Search Boxes elements, each ele-
ment is simply counted on a webpage. The Density element is calculated by using the
method described in [11]. First the number of characters (‘A’, ‘3’, ‘@’ etc.), say C, on
the web page is calculate, then the number of tags (‘img’, ‘a’ etc.), say n, on the web
page is calculated, the web page Density is obtained by the following formula:
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Density ¼ C=n ð1Þ

In order to rank the websites personality, a cluster is rated for each item respec-
tively. A Unit is defined to allocate ratings to the quantitative elements of different
clusters by the following formula, where Dn is the number of distinct values of a
quantitative element in the cluster, 10 is the highest rating scale and 0 is the lowest:

Unit ¼ 10=Dn � 1 ð2Þ

1 is subtracted to assure that the smallest rating scale is 0.
For a given K value in the K-means, initially rating 0 is allocated to the cluster with

the lowest quantity for a particular element, then this number is increased by the Unit
defined in formula (2) which is allocated to the cluster with the second lowest quantity
for the same element, this is repeated until the last cluster is reached, which will
definitely get rating 10.

5 Experiment Results and Analysis

240 valid websites in five categories, Academic (50), Banks (49), E-commerce (49),
News (45) and Sports (47), were used in the K-means algorithm, which was imple-
mented for 14 times from K = 2 to K = 15. The average values for each attribute in each
clusters were calculated, the standard deviation for all the clusters for a given K value
was calculated. For each quantitative element in a website, two options were used: one
is the sum of the values for all the pages reached in the data extraction; another is the
average of all the pages reached in the data extraction. Table 1 shows the standard
deviation obtained from the experiment when sum was used and Table 2 shows the
standard deviation when average was used.

The above data are depicted in Fig. 1 to observe the trend of the standard deviation
over the K values for both of the sum and average options.

For sum option, it is clear that when K = 8 all the attributes reach its maximum
STDEV and that value remains after K > 9; on the other hand, no obvious trend is
observed for average option.

The above observation can be supplemented by comparing the websites in each
cluster with their original categories in Tables 3 and 4.

In Tables 3 and 4, short codes INFO, SAT, SEARCH, CON and FAST are used for
items Informative, Satisfying, Searchable, Concise and Fast respectively; short codes
C, A, B, E, N and S are used for Cluster, Academic, Banks, E-commerce, News and
Sports respectively. Their ratings are displayed in the tables. The experiment results
showed that when K = 7 in the sum option and K = 9 in the average option, the
websites in each cluster only belong to one of the original categories: A, B, E, N and S,
and that remains true for the rest of the K value with one exception: one news website
stays with 8 e-commerce websites. This preliminarily verified that the attributes and the
K-means algorithm used in this study can properly identify the personality of a website.

For sum option, when K = 9, the STDEV almost reached the lowest value, so
K = 10 was selected for discussion in both of the options. An interesting fact is that all
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the bank websites stays together for most of the K values. By examining the ratings for
each website category, it was found that in general, news websites are more infor-
mative, e-commerce websites are more satisfying, and sports websites are more concise
and fast. Bank websites stay neutral in all aspects. In Table 3, the academic websites
are classified into three clusters: 0, 4 and 6. The ratings for cluster 4 and 6 are quite
similar. The ratings for cluster 0 suggest the websites in this cluster are quite infor-
mative. A close look at the actual websites in this cluster, it is found that these websites

Table 1. The STDEV when sum was used.

K Density Graphical files Hyperlinks Images Search box Video Word count

2 315.970 846.190 5943.842 406.508 13.114 1803.504 47419.014
3 169.412 1174.103 2733.596 801.118 9.126 1492.724 23636.063
4 151.542 1803.013 7753.403 1424.544 21.097 1419.146 27885.943
5 356.866 3466.880 11627.801 2120.743 26.260 3969.308 70280.086
6 262.604 1893.566 7965.622 1304.320 25.456 1762.272 36290.168
7 469.261 7819.499 39431.165 6045.300 88.003 2439.092 122654.970
8 559.593 8306.351 36846.807 5394.063 72.096 5842.067 141229.674
9 270.878 2105.205 9796.252 1359.416 25.854 1157.128 44446.370
10 507.159 6703.533 36212.846 5280.065 66.473 6310.415 132807.482
11 484.832 6365.247 34464.775 5017.440 63.659 5989.316 126419.544
12 519.533 6604.232 36470.576 5179.422 117.374 6371.876 137997.621
13 504.686 6362.182 34873.606 4983.817 63.404 6118.294 131763.573
14 507.971 6662.538 34221.049 4947.990 63.760 5917.615 132308.078
15 490.344 5967.677 32945.650 4679.086 59.725 5736.350 125275.481

Table 2. The STDEV when average was used.

K Density Graphical files Hyperlinks Images search box Video Word count

2 1.782 33.935 92.452 24.522 0.13991 13.031 379.765
3 1.470 22.945 66.548 17.874 0.09866 6.443 275.592
4 1.228 18.738 55.539 12.430 0.15074 11.127 502.627
5 1.037 16.626 50.675 11.228 0.14840 11.910 180.045
6 2.786 18.166 71.060 13.413 0.12887 96.923 302.599
7 2.366 18.284 75.553 14.674 0.14243 93.746 321.219
8 1.703 20.955 73.607 22.163 0.21546 90.786 426.141
9 1.921 22.863 58.204 21.549 0.21964 85.224 415.162
10 1.984 32.301 110.465 27.736 0.21207 80.721 444.059
11 4.126 29.508 107.103 24.907 0.22892 22.308 450.987
12 4.055 28.915 106.969 25.153 0.23361 74.529 431.453
13 4.153 49.044 131.274 33.398 0.20020 14.829 1099.768
14 4.505 47.961 129.298 32.481 0.20015 51.451 1070.459
15 7.173 17.434 91.608 14.086 0.78260 4.478 512.565
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have more complex information structure and more images comparing with the other
academic websites. In Table 4, the e-commerce websites are classified into three
clusters: 1, 5 and 9. A close look at the actual websites in cluster 9, it is found that these
websites have large amount of catalogues associated with nice images and rich options

Fig. 1. The trend of the STDEV over the K values

Table 3. K = 10 (Sum)

C A B E N S INFO SAT SEARCH CON FAST

0 10 0 0 0 0 8.148148 5.555556 7.777778 2.222222 4.444444
1 0 0 33 0 0 2.592593 2.222222 2.222222 7.777778 7.777778
2 0 49 0 0 0 4.444444 3.333333 4.444444 4.444444 5.555556
3 0 0 0 0 7 8.148148 8.888889 8.888889 1.111111 1.111111
4 22 0 0 0 0 0.000000 0.000000 0.000000 10.000000 10.000000
5 0 0 8 0 0 5.925926 7.777778 6.666667 5.555556 2.222222
6 18 0 0 0 0 2.962963 4.444444 3.333333 6.666667 6.666667
7 0 0 0 0 40 1.111111 1.111111 1.111111 8.888889 8.888889
8 0 0 0 44 0 6.666667 6.666667 5.555556 3.333333 3.333333
9 0 0 8 1 0 10.000000 10.000000 10.000000 0.000000 0.000000

Table 4. K = 10 (Average)

C A B E N S INFO SAT SEARCH CON FAST

0 1 0 0 0 0 5.000000 1.428571 0.000000 0.000000 8.888889
1 0 0 36 0 0 1.944444 5.714286 0.000000 8.000000 5.555556
2 0 49 0 0 0 3.750000 4.285714 0.000000 6.000000 3.333333
3 0 0 0 0 33 0.370370 1.428571 0.000000 2.000000 6.666667
4 45 0 0 0 0 4.120370 1.428571 0.000000 4.000000 7.777778
5 0 0 3 0 0 7.314815 2.857143 0.000000 10.000000 4.444444
6 4 0 0 0 0 3.101852 0.000000 0.000000 0.000000 10.000000
7 0 0 0 0 14 7.731481 8.571429 0.000000 8.000000 1.111111
8 0 0 0 45 0 6.527778 7.142857 0.000000 4.000000 2.222222
9 0 0 10 0 0 8.888889 10.000000 0.000000 10.000000 0.000000
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for each products. It is noticed that for the average option, the searchable rating is
always 0 for all the clusters. This is reasonable as usually there is only one search box
on each page in a website. This suggests that the formula of the rating could be
improved.

6 Summary and Future Work

This paper reports a pilot study in identifying and ranking the personality of a website
automatically and intelligently to help the website users to find out which one is more
suitable for them and to help the website owners to improve the quality of their
websites such that they are more likely accepted by their target users.

The mapping between the selected items defined in WPS and the quantitative
elements related to the website features were developed first. The website features were
then quantified by means of website content mining. The quantitative elements form
the measurable framework for identifying and ranking the personality of a website.
240 valid websites were classified by using unsupervised clustering algorithm
K-means. The classification were implemented for multiple times from K = 2 to
K = 15. The average values for each attribute in each clusters were calculated, the
standard deviation for all the clusters for a given K value was calculated to find a
suitable K value. The results showed that K = 10 is a suitable value. A preliminary
verification was done by comparing the resulting clusters and their original categories,
the results suggested that the attributes and the K-means algorithm used in this study
can properly identify the personality of a website. The personality of the websites in
different clusters is discussed.

In the future study, more quantitative elements can be included in the experiments
and more website categories can be included in the verification. The software will be
improved accordingly and user evaluation will be conducted.
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Abstract. Human action recognition is an important yet challenging
task. With the introduction of RGB-D sensors, human body joints can
be extracted with high accuracy, and skeleton-based action recognition
has been investigated and gained some success. In this paper, we split an
entire action trajectory into several segments and represent each segment
using covariance descriptor of joints’ coordinates. We further employ
the projective dictionary pair learning (PDPL) and majority-voting for
multi-class action classification. Experimental results on two benchmark
datasets demonstrate the effectiveness of our approach.

Keywords: Action recognition · Covariance descriptor · Discriminative
dictionary learning

1 Introduction

Action recognition is an active research field in computer vision. It has many
applications, including video surveillance, human-computer interaction and
health care. Traditional research mainly concentrates on action recognition from
video sequence of 2D frames with RGB channels [1], which only capture pro-
jective information of the real world, and is sensitive to lighting conditions and
occlusion. Recently, with the introduction of the low-cost RGB-D sensors such as
Microsoft Kinect [7], depth information has been employed for action recognition
[3,25].

There are two kinds of approaches for human action recognition based on the
depth information, depth map-based approaches and skeleton-based approaches
[25]. The depth map-based methods rely mainly on features that extracted from
the space time volume (STV) [29]. In [11], Li et al. employed the concept of
bag-of-points to construct the action graph to encode the human actions where
a small number of 3D skeleton points were sampled from depth maps to describe
the 3D shape of each salient posture. In [19], Vieira et al. presented a representa-
tion for 3D action recognition named Space-Time Occupancy Patterns (STOP).
In order to address the noise and occlusion issues, Wang et al. proposed features
named Random Occupancy Pattern (ROP) in [20].
c© Springer International Publishing Switzerland 2015
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The study of skeleton-based activity recognition dates back to the early work
by Johansson [9], which demonstrated that a large set of actions can be recog-
nized solely from the joint positions. This concept has been extensively explored
ever since. In [2], Bashir et al. segmented the trajectories into small units of
perceptually similar pieces of motions and then built their models on Principal
Component Analysis (PCA)-based representation of these trajectories. In [12],
Lv et al. proposed a set of local features based on joints and then used Hidden
Markov Models (HMMs) to model the temporal dynamics. In [21], differential
invariants were proposed to describe trajectory features and then a nonlinear
signature warping method was employed to recognize trajectories. In [22], Xia
et al. proposed a feature named Histogram of 3D Joint Locations (HOJ3D) that
encoded the distribution of joints around the skeleton root and employed a HMM
to model the temporal changes of the features. In [26], Yuan et al. proposed an
actionlet ensemble model to represent the interaction of a subset of human joints.
In [23], EigenJoints were proposed to describe positional differences between
joints, and then Naive Bayes nearest neighbour classifier was employed for action
classification. Covariance descriptor captures the dependence of locations of dif-
ferent joints on one another during the performance of an action and has been
used for action recognition [8,17]. In [17], joint trajectories were represented
using vectorized log-covariances, then the sparse representation-based classifier
was employed for action classification. In [8], a temporal hierarchy was used to
encode the temporal information which was lost in the covariance descriptor,
and SVM was used as the classifier.

One of the drawbacks of covariance descriptor for action recognition is the
high dimensional problem. Different from the methods in [8,17] which used full
covariance descriptor, we reduce the dimension of covariance descriptor by con-
sidering only the most correlated joints coordinates. In addition, we calculate the
covariance matrix on multiple overlapped segments instead of the entire action
sequences so that majority voting can be employed for classification. Finally,
we employ the projective dictionary pair learning (PDPL) [6] for discrimina-
tive dictionary learning and feature encoding. This is different from the work in
[8,17] where covariance descriptor was directly applied to sparse representation
classifier [17] and Naive Bayes nearest neighbour classifier [8].

We make three contributions in this paper. First, we present the dimension-
reduced log-covariance features. Second, we employ a discriminative dictionary
learning method to encode the covariance features. The action label can be easily
predicted based on the reconstruction error. Third, we split an entire action tra-
jectory into some overlapped segments and predict the label for each segment,
then the action label is predicted by majority voting. The remainder of this
paper is organized as follows. In Sect. 2, we introduce log-covariances features
for representation of trajectory and our dimension reduction method. In Sect. 3,
we explain the projective dictionary pair learning (PDPL) for dictionary learn-
ing and multi-class action classifications. In Sect. 4, we report the experimental
results of our method on two datasets and compare them to other methods. In
Sect. 5, we briefly summarize this paper.
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2 Representation of Trajectory Information

For the t-th frame, the 3D coordinates of J joints are available:

St = [x1, ..., xJ , y1, ..., yJ , z1, ..., zJ ]′.

A Joint trajectory information is specified in terms of positional information
over time. The covariance matrix of the 3n joint coordinates over the T -length
frames can be calculated as follows [8,17]:

cov(S) =
1

T − 1

T∑

t=1

(St − S̄)(St − S̄)′ (1)

where S̄ =
∑T

t=1 St. Covariance matrix lies on a Riemannian manifold. The
log-covariance belongs to the tangent space of this Riemannian manifold. This
space is Euclidean, giving rise to the Log-Euclidean distance metric, that is
regarded as a good approximation of the geodesic distance on the manifold.
Therefore, the matrix logarithm of the covariance descriptor is computed. Then
the upper-triangular part of the resulting symmetric matrix is vectorized into an
3J×(3J+1)

2 -dimensional feature vector. The covariance descriptor was considered
as simple but robust feature for representing the human actions. However, the
dimension can be very high, e.g. it is 1830 for J = 20 joints. For the temporal
hierarchy in [8], multiple covariance descriptors were used, and the dimension
increases linearly with the number of windows of each level and the number of
levels.

The covariance in (1) calculates the correlations between each pair of ele-
ments. We assume among an action sequence the coordinate (x) of a joint is most
correlated with this joint’s other coordinates (y and z) and the same coordinate
(x) of the other joints. Therefore, we calculate only partial elements (denoted as
o as follows) of the covariance matrix in (1).

x1 · · · xJ y1 · · · yJ z1 · · · zJ

x1 o o o o o
... o o o o

xJ o o o
y1 o o o o
... o o o

yJ o o
z1 o o o
... o o

zJ o

As a result, the log-covariance is vectorized into a feature vector with
J×(J+1)

2 ×3+3J dimension. For J = 20 joints, the dimension is 690, much lower
than the original 1830.
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As observed in [23], a short segment of the entire video sequence is sufficient
to recognize the action. We split an entire trajectory into several segments,
and calculate the covariance descriptor for each segment. Then we predict the
label for each segment, and the label of the entire sequence can be predicted by
majority voting.

3 Projective Dictionary Pair Learning (PDPL)

Supervised dictionary learning (SDL) has been widely employed in various clas-
sification problems. Most of the existing SDL methods aim to learn a syn-
thesis dictionary to sparsely represent the input signal. We represent a set of
p-dimensional training samples as X = [X1 · · · Xk · · · XC ], where C is the num-
ber of classes, Xk ∈ R

p×n is the training samples of class k, and n is the number
of samples of each class. The conventional supervised dictionary learning meth-
ods can be formulated as below:

min
D,α

‖X − Dα‖2F + γ‖α‖p + λΨ(D,α, Y ) (2)

where D is the synthesis dictionary to be learned, α is the coefficient matrix, Y
represents the class labels of samples. The third term Ψ(D,α, Y ) is introduced
to learn a discriminative dictionary [13]. γ and λ are parameters to balance the
reconstruction error and regularization terms.

In [6], a projective dictionary pair learning (PDPL) method was proposed,
in which a new analysis dictionary P ∈ Rmk×p was introduced, such that the
coefficient matrix was obtained as α = PX. The PDPL model was formulated
as below:

P ∗,D∗ = arg min
P,D

‖X − DPX‖2F + λΨ(D,P,X, Y ) (3)

where Ψ(D,P,X, Y ) is some discrimination function. In [6], it was defined as
‖PkX̄k‖F , and X̄k denotes the complementary data matrix of Xk in the whole
training set X. In the PDPL model, the analysis sub-dictionary P ∗

k is trained
to generate significant coding coefficients for sample from class k, and produce
small coefficients for samples from classes other than k. And the synthesis sub-
dictionary D∗

k is trained to reconstruct the samples of class k, that is the residual
‖Xk − D∗

kP ∗
k Xk‖ will be small, and the residual ‖Xi − D∗

kP ∗
k Xi‖2F , i �= k will be

much larger than ‖Xk − D∗
kP ∗

k Xk‖.
The analysis dictionary P = [P1; · · · ;Pk; · · · ;PC ] and synthesis dictionary

D = [D1, · · · ,Dk, · · · ,DC ], Dk ∈ Rp×m, Pk ∈ Rm×p form a sub-dictionary pair
corresponding to class k. Although this is a non-convex problem, it can be solved
as introduced in [6].

In the test phase, the class l which gives the smallest reconstruction residual
by this idea is assigned as the label of the test vector x:

label = arg min
l

‖x − DlPlx‖2 (4)
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4 Experimental Results

We tested our method on two publicly available datasets: the Cornell Activity
Dataset-60(CAD-60) [18] and the MSR Daily Activity3D dataset [26]. We con-
structed the first baseline in which the full covariance was used to demonstrate
the partial covariance will capture most of the correlation information between
joints coordinates. Also we constructed the second baseline in which the full
covariance was calculated on the entire action sequence, rather than on multiple
segments. We set the parameters empirically.

4.1 CAD-60 Dataset

The CAD-60 dataset [18] contains the RGB frames, depth information and the
skeleton joint positions captured with Microsoft Kinect sensor. The actions in
this dataset were performed in 5 different environment by 4 subjects (two males
and two females). The frame rate is 30 frames per second with resolution of
640×480. The dataset contains twelve actions: rinsing mouth, brushing teeth,
wearing contact lens, talking on the phone, drinking water, opening pill con-
tainer, cooking(chopping), cooking(strring), talking on couch, relaxing on couch,
writing in whiteboard, working on computer.

We followed the “new person” setting as [18]: the data of three people were
used for training and the remaining one person for testing. We split each entire
image sequence into 10 segments, and each segment contains 150 frames. The
dictionary size for each category was 30, and λ in (3) was 0.002. Classification
was performed on each of the segments from a test sequence, and class decision
for the entire sequence was made by taking a majority-voting of the predicted
labels from the individual segments. Our method achieved an accuracy of 85.3 %.

Table 1. Results of our method and other methods on the CAD-60 dataset.

Method Accuracy(%) Precision(%) Recall(%)

Sung et al., AAAI PAIR 2011, ICRA 2012 [18] 67.9 55.5

Koppula, Gupta, Saxena, IJRR 2012 [10] 80.8 71.4

Zhang, Tian, NWPJ 2012 [28] 86 84

Yang, Tian, JVCIR 2013 [24] 71.9 66.6

Ni et al., Cybernetics 2013 [15] 75.9 69.5

Wang et al., PAMI 2014 [20] 74.70

Gaglio, Lo Re, Morana, HMS 2014 [5] 77.3 76.7

Zhu, Chen, Guo, IVC 2014 [29] 93.2 84.6

Faria, Premebida, Nunes, RO-MAN 2014 [4] 91.1 91.9

Shan, Akella, ARSO 2014 [16] 91.9 93.8 94.5

Baseline 1 (Full Cov, multi Segments) 85.3

Baseline 2 (Partial Cov, single segment) 79.4

Ours (Partial Cov, multi segments) 85.3 87.73 84.82
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We compared our results with baselines and other existing methods in Table 1.
It can be seen that our result is better than some of existing methods, but not
the best one. Compared with the two baselines, the result with partial covariance
is similar to that with full covariance, and the result with multiple segments is
significantly better than that with the entire sequence. This demonstrated our
dimension reduction and majority voting methods are effective.

4.2 MSR Daily Activity3D Dataset

The MSR Daily Activity3D dataset is a daily activity dataset where each action
was performed twice by 10 subjects. There are sixteen activities: drink, eat, read
book, call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up,
sit still, toss paper, play game, lay down on sofa, walk, play guitar, stand up, sit
down.

The experimental setting was the same as in [26]: subjects 1,3,5,7,9 were used
for training and 2,4,6,8,10 for testing. We split each entire image sequence into
5 segments, and each segment contains 70 frames. The dictionary size for each
category was 50, and λ in (3) was 0.00004. We performed action classification
at all segments and then made decisions by majority-voting. The accuracy of
our algorithm was 73.1 %. The confusion matrices of our approach was shown in
Fig. 1. All instances of “cheer up”, “stand up” and “walk” were correctly recog-
nized. However, for “call cellphone”, only 2 out of 10 were correctly recognized,
and four of them were recognized as “drink” by mistake. This is because the
joint trajectories of “call cellphone” and “drink” are quite similar, and the main
difference between them is the objects in hands.
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Fig. 1. The confusion matrix of our approach on the MSR Daily Activity3D dataset.
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We compared our results with other existing skeleton-based methods in
Table 2. Some best results [26] that simultaneously used the depth information
on this dataset were not compared to our method. It can be seen that our result
is comparable or better than other methods. Compared with the two baselines,
the result of full covariance is slightly better than that of partial covariance, and
the result with multiple segments is significantly better than that with the entire
sequence.

Table 2. Results of our method and other methods on the MSR Daily Activity 3D
dataset.

Method Accuracy(%)

Dynamic Temporal Warping [14] 54

Only LOP features [26] 42.5

Only Joint Position features [26] 68

Moving Pose [27] 70.6

Baseline 1 (Full Cov, multi Segments) 73.7

Baseline 2 (Partial Cov, single segment) 65.6

Ours (Partial Cov, multi segments) 73.1

5 Conclusion

In this paper we proposed dimension-reduced log-covariance features to represent
joints trajectories of human activity. Then we used Projective Dictionary Pair
Learning to learn a set of discriminative dictionaries for feature encoding. Our
method performed well on two benchmark datasets.

As discussed in [8], the covariance descriptor captures the dependence of
locations of different joints on one another during the performance of an action.
However, it does not capture the order of motion in time. Therefore, if the frames
of a given sequence are randomly shuffled, the covariance matrix will not change.
For skeleton-based action recognition, the temporal order in joints trajectories
carry important information of action, therefore we will work on some more
efficient features of actions which captures both joints dependence and temporal
relation in the future work.
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Abstract. The face image super-resolution is a domain specific problem.
Human face has complex, and fixed domain specific priors, which should be
detail explored in super-resolution algorithm. This paper proposes an effective
single image face super-resolution method by pre-clustering training data and
Bayesian non-parametric learning. After pre-clustering, face patches from dif-
ferent clusters represent different areas in face, and also offer specific priors on
these areas. Bayesian non-parametric learning captures consistent and accurate
mapping between coupled spaces. Experimental results show that our method
produces competitive results to other state-of-the-art methods, with much less
computational time.

Keywords: Super-resolution � Multi-dictionary � Beta process � Pre-clustering

1 Introduction

The face image super-resolution algorithm aims to generate high-quality high-
resolution (HR) face images from low-resolution (LR) inputs [1]. Image super-
resolution is an ill-posed problem as some image details and texture characteristics in
HR images are lost in LR images. Numerous methods have been proposed to address
this problem, and sparse representation based single image super-resolution methods
receive a lot of attention recently [2–4].

Yang et al. [2] first introduced the sparse representation method to super-resolution
algorithms. It transfers HR-LR mapping into dictionary learning in sparse coding. Since
the dictionaries are learned jointly, the computation cost is small. It only need to infer the
sparse coefficient of LR, but it is not guaranteed to be consistent with the sparse rep-
resentation of HR. Afterwards, [3] proposed Couple Dictionary Training to solve the
problem using the stochastic gradient descent. However, in the coupled spaces, sparse
coefficients are same and coefficients don’t fit the coupled space at the same time.

In order to solve the problem of inconsistency between two coupled spaces sparse
representations, [5] relaxes the coupled representation to a semi-coupled one and
attempts to find the mapping relation between pairs of coefficients, by using a linear
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transformation. Yang [6] formulated the couple space sparse coding problem as a
bilevel optimization problem and moves one of the optimization problem to the reg-
ularization term of the other problem. This method has less error than [3] but still
required the same sparse coding coefficients for both feature spaces.

Recently, using non-parametric Bayesian method [7] to learn an over-complete
dictionary offers several advantages and shows significant improvement in sparse
representation based application, such as image denoising, image inpainting and
compressive sensing [8]. Reference [9, 10] extended the non-parametric Bayesian
approach to coupled feature spaces by using beta process model and get competitive
result in general image super-resolution.

There are other factors which can enhance sparse representation based single image
super-resolution result. Research in [11] shows that it is ideal to pre-cluster training
examples by analyzing image contents to facilitate specific priors for different stuff in a
single image simultaneously. Reference [12] has used this idea for textures super-
resolution. Similar to training data pre-clustering, [13, 14] proposed position-patch
based face hallucination methods. The method needs large database (the patch in the
database and the test image should be aligned) and the coefficients are as same as in
[2, 3]. A more complex face hallucination is proposed in [15]. The pose and landmark
points in low resolution image should be extracted to locate facial components and
contour, so as to capture the structural information.

This paper proposes an effective single image face super-resolution algorithm to
capture the complex and nonlinear relationship between the coupled spaces. First, the
face image patches are categorized to different clusters to represent different areas in
face, which offers specific priors. Second, the number of dictionary elements is inferred
non-parametrically by using beta process construction. Third, in coupled spaces for
super-resolution, the sparse representation coefficients of face image patches can be
decomposed to values and dictionary atom indicators. The coupled patches in HR and
LR face image can be sparse represented with the same sparsity but different values,
thus bringing consistent and accurate mapping.

2 Problem Formulation

In single face image super-resolution, there are two coupled spaces X 2 RBx , Y 2 RBy .
The relationship between the dictionary and two spaces follow as:

xi ¼ DðxÞaðxÞi þ �
ðxÞ
i ; yi ¼ DðyÞaðyÞi þ �

ðyÞ
i ;M aðyÞi ¼ aðxÞi ð1Þ

xi; yi denote training samples with dimensions Bx andBy. DðxÞ 2 RBx�K , DðyÞ 2 RBy�K are

dictionaries of two coupled spaces. aðxÞi , aðyÞi are sparse representation coefficients. K is

the number of dictionary atoms. �ðxÞi , �ðyÞi are the recovery errors. M is a mapping matrix
from sparse coding of yi to xi.

We divide HR and LR face image patches into different clusters pairs. For each
cluster pair, two coupled dictionaries (for low resolution patches and high resolution
patches) and the mapping matrix M should be learned.
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3 Proposed Approach

The proposed algorithm can be divided into three steps: First, training data are clustered
by K-Means; Second, for each image patch pair, dictionary and mapping function are
learned by beta process coupled dictionary learning; Finally, HR face images are
synthesized. The schematic of the proposed method is shown in Fig. 1.

3.1 Training Set Clustering

HR and LR face image patches are extracted to make up training set. Due to the
complex structures in face images, learning only one pair of dictionaries and an
associated linear mapping function is often not enough to cover the relation of different
resolution images. Therefore, the face image patches can be clustered into different
categories couples and different categories image patches have different distribution.
This paper adopts K-Means to divide the image patches of the training set into n
classes. We can get n anchor points vcðc ¼ 1; . . .; nÞ.

3.2 Dictionary Learning with Beta Process

For single face image super resolution, in coupled spaces of high resolution and low
resolution, a pair of patches may have the same sparse representation structure but
different values to capture the accuracy of the sparse representation. Beta process BP
(a, b, H0), one of the non-parametric Bayesian methods, can learn this kind of sparse
representation with a, b > 0. The formula can be written as:

H ¼
XK

k
pkddðyÞk

pk �Beta a=K; bðK � 1Þ=Kð Þ; dðxÞk dðyÞk �H0 ð2Þ

Fig. 1. Schematic of the proposed method. Dictionary atom indicators Z are the same in the
coupled spaces to ensure coupled patches in HR and LR have the same sparse structure but
different sparse representation value.
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where ddðxÞk
and ddðyÞk

are unit point mass at dðxÞk and dðyÞk which are dictionary atoms. pk is

the probability of the kth dictionary atom. H0 is basic metric, and it is a fixed proba-
bility value in fact. In other words, H0 is the initial value of pk for all (k = 1, …, K). In
the dictionary learning stage, pk is ever-changing and pk is no less than H0, otherwise

the kth dictionary atom can’t participate in the sparse representation, just as dðxÞk ,

dðyÞk �H0. Equation (2) implies H is the sum of the probability of all dictionary atoms,

namely H ¼ PK

k
pk . The beta process coupled dictionary learning model can be express

as:

xi ¼ DðxÞaðxÞi þ �
ðxÞ
i ; yi ¼ DðyÞaðyÞi þ yi ¼ DðyÞaðyÞi �

ðyÞ
i aðxÞi ¼ zi � sðxÞi ; aðyÞi ¼ zi � sðyÞi

dðxÞk �N 0;B�1
x IBx

� �
; dðyÞk �N 0;B�1

y IBy

� �
sðxÞi �Nð0; c�1

sðxÞ ÞIK ; s
ðyÞ
i �Nð0; c�1

sðyÞ ÞIK
zi �

QK
k¼1 BernoulliðpkÞ;pk �Beta a=K; bðK � 1Þ=Kð Þ

�
ðxÞ
i �N 0; c�1

�ðxÞ IBx

� �
; �

ðyÞ
i �N 0; c�1

�ðyÞ IBy

� �
csðxÞ ; csðyÞ �C c; dð Þ; c�ðxÞ ; c�ðyÞ �Cðe; f Þ

ð3Þ

where sðxÞi and sðyÞi are the weight of sparse representation coefficients and zi is dic-
tionary atom indicator, namely a k-dimension binary vectors. The final coefficients are

aðxÞi ¼ zi � sðxÞi and aðyÞi ¼ zi � sðyÞi , where � is an elementwise multiplication. csðxÞ and

csðyÞ are the variance of s
ðxÞ
i and sðyÞi . c�ðxÞ and c�ðyÞ are the variance of the recovery errors

�
ðxÞ
i and �

ðyÞ
i respectively. IBx , IBy and IK are identity matrix.

With the special characteristic of beta process, for aðxÞi and aðyÞi , we use the same
dictionary atom indicator zi which have the same number of non-zero elements, fol-

lowing different distributions with sxÞi and sðyÞi . It not only can ensure the consistency
that a pair of patches have the same sparse representation that correspond to the same
dictionary atoms but different values, but also ensure the sparsity employing

aðxÞi ¼ zi � sðxÞi . Thus, coupled patches have the same sparse structure but different
sparse representation value. Besides, Sx and Z are made up of N weight vector sxi and
N binary vector zi�f0; 1gK , i ¼ 1; . . .;N, respectively. Because the Bernoulli distri-
bution is a discrete probability distribution which only has two values, 0 or 1. The
value range is the same with zi. And zi is mainly decided by the probability pk . When
pk reaches a certain value, zik ¼ 1. So, we let zik �BernoulliðpkÞ. The beta distribution
is often used to as the conjugate prior distribution density function of the Bernoulli
distribution. But the beta distribution is a family of continuous probability distributions
defined on the interval [0,1] parameterized by two positive shape parameters, denoted
by a and b, that appear as exponents of the random variable and control the shape of the
distribution. The interval is the same with the scope of the value of pk. So, we use beta
prior to set the value of pk with a = b = 1 in Eq. (2).

Consecutive elements in the above hierarchical model are in the conjugate expo-
nential family, and therefore inference may be implemented via a variational Bayesian
or Gibbs sampling analysis. Gibbs sampling is adopted in this paper. In order to
acquire the truth pk, we do N independent repeated trials by the binomial distribution.
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However, the binomial distribution consider as a normal distribution when N ! 1.

So, dðxÞk , sðxÞi and �
ðxÞ
i follow the multivariate zero-mean Gaussian with variance B�1

x IBx ,
B�1
y IBy , c

�1
sðxÞ ÞIK , c�1

sðyÞ ÞIK and c�1
�ðxÞ IBx , c

�1
sðyÞ ÞIK respectively. In addition, because the inverse

Gamma distribution is conjugate with the Gaussian distribution, csðxÞ , csðyÞ and c�ðxÞ , c�ðyÞ
follow the Gamma distribution. In this paper, the parameter c and d initialize
with 10�6.

3.3 Synthesizing High-Resolution Face Image

In this stage, the input LR image Y is first magnified to the size of the desired HR
image using Bi-cubic interpolation getting y. The synthesized high resolution image X0

is initialized by y. X0 and y are then partitioned into a set of overlapping 5 * 5 patches.
We can select the anchor point vc which is closest to x0i by computing Euclidean
distances for each input image patch x0i. Then, we use the corresponding D and M to
synthesize patches to reconstruct the high-resolution face image. In addition, because
the recently introduced non-local redundancies in image have an advantage in image
restoration [16, 17], we also incorporate the non-local self-similarities to our approach.
The face image synthesis algorithm is summarized in Algorithm 1.
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4 Experimental and Discussion

Three state-of-the-art dictionary learning based image super-resolution methods [4, 5,
8] were compared to our approach using the FERET and ORL datasets. SSIM, CSNR
and recovery time are calculated for comparison. In the experiment, 24 images are used
to train dictionary and 5 images to test. 40000 patches are randomly selected for each
class at least. The LR image is directly down-sampled from the HR image. We use
5 * 5 patches, with overlap of 4 pixels between adjacent patches. And the training HR
image size is 256 * 256. The size of test image is 86 * 86. Experiments were carried out
on a Dell Precision workstation T7600 with 1.8G CPU*8 and 16 GB RAM.

4.1 Training Set Clustering

During the pre-cluster process, we have done a number of attempts, c are equal to 64,
40, 32, 30, 25, respectively. Only when c is equal to 32, the distribution of all clusters is
the most homogeneous. And it produces the best super resolution results compared to
other values.

4.2 Non-parametric Dictionary Learning

Because the proposed method has the non-parametric advantage, with different initial
Ks, the dictionary size decreases rapidly and gradually converges to similar values,
confirming that it can infer appropriate dictionary size no matter what the initial value is.

Fig. 2. Our method infers dictionary size non-parametrically

Table 1. Average results for the FERET dataset

Method Time (s) CNSR (dB) SSIM

SCDL 41.478 43.288 0.988
ScSR 157.451 38.158 0.961
BPJDL 239.519 39.447 0.98
OURS 32.217 48.732 0.976
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In terms of a single large dictionary, 771 is an appropriate dictionary size as in [8]. But
our dictionaries are more accurate than others due to pre-cluster, dictionary size will
shrink in some degree (See Fig. 2 for details). The initial value is 512.

Table 2. Average results for the ORL dataset

Method Time (s) CNSR (dB) SSIM

SCDL 42.5459 37.07 0.952
ScSR 162.147 36.003 0.906
BPJDL 301.124 37.806 0.959
OURS 32.725 38.178 0.954

Fig. 4. The detail face images both the FERET(bottom) and ORL (top) datasets(scaling factor:
3). From left to right: high resolution, ground-truth, reconstructed images by SCDL [5], ScSR
[4], BPJDL [8], and our method.

Fig. 3. The results on face image super-resolution both the FERET(bottom) and ORL
(top) datasets (scaling factor: 3). From left to right: low resolution image, high resolution
ground-truth reconstructed images by SCDL [5], ScSR [4], BPJDL [8] and our method.
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4.3 Super Resolution Result

Tables 1 and 2 show the average results that our method is able to largely reduce the
recovery time owe to pre-clustering and the smaller dictionary. And the CSNR of our
method is the highest. Moreover, their structural similarities are similar.

Super resolution results on FERET and ORL are shown in Figs. 3 and 4. Our
method is able to learn precious details competitive to previous methods.

5 Conclusions

In this paper, a novel method to generate HR face image by using domain specific
priors and the non-parametric dictionary learning is proposed. In the algorithm, training
data are clustered by K-Means to represent different areas in face due to different cluster
has their specific distribution. Then, the dictionary atoms will more close to sample
patches than the single big dictionary. At the same time, dictionary and mapping
function are learned by beta process coupled dictionary learning to capture consistent
and accurate mapping between the coupled spaces but they have different sparse
representation. Of course, these will lead to better result. Experimental results show
that the proposed method indeed generates high-quality images with favorable per-
formance than state-of-the-arts methods with faster processing speed.
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Sparse LS-SVM in the Sorted Empirical Feature
Space for Pattern Classification
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Abstract. In this paper, we discuss an improved sparse least support
vector training in the reduced empirical feature space which is gener-
ated by linearly independent training data. In this method, we select
the linearly independent training data as the basis vectors of empirical
feature space. Then, before we select these data, we sort training data
in ascending order from the standpoint of classification with the values
of objective function in training least squares support vector machines.
Thus, good training data from the standpoint of classification can be
selected in preference as the basis vectors of the empirical feature space.
Next, we train least squares support vector machine in the empirical
feature space. Then, the solution is sparse since the number of support
vectors is equal to that of the basis vectors. Using two-class problems, we
evaluate the effectiveness of the proposed method over the conventional
methods.

Keywords: Classification · Empirical feature space · Least squares sup-
port vector machine · Sparse

1 Introduction

Since support vector machine (SVM) [1] is one of most powerful tool for pattern
classification, SVM has been widely studied by many researchers. However, the
computational of training the standard SVMs cost may be too large because it
is necessary for standard SVM to solve a quadratic programming problem. To
overcome this shortcoming, least squares SVM (LS-SVM) [2] was proposed. LS-
SVM is trained by solving a set of linear equations. However, in LS-SVM, the
solution is not sparse because all training data become support vectors (SVs)
unlike standard SVM.

To overcome this problem, many types of sparse LS-SVMs (SLS-SVMs)
[1,3–8] have been proposed by many researchers. As a type of SLS-SVMs, Abe
proposed SLS-SVM in reduced empirical feature space [1,8]. Empirical feature
space [9] is proposed by Xiong. The dimension of this space is the same as the
number of training data at most. And the values of kernel function in this space
are equivalent to those in feature space. Namely, the solution of training LS-
SVM in empirical feature space is equivalent to that in feature space. Because
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 549–556, 2015.
DOI: 10.1007/978-3-319-26532-2 60
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empirical feature space is generated by eigenvalue problem with kernel matrix,
the computational cost can be too large. To overcome this problem, Abe use the
reduced empirical feature space, whose basis vectors are linearly independent
training data instead of eigen vectors, for SLS-SVM. Namely, it is not necessary
for generating this space to solve eigenvalue problem. However, the solution and
the values of kernel functions in the reduced empirical feature space differ from
those in feature space. And, in order of the given data, we determine whether
the training data are linearly independent. Hence this selection of the linearly
independent training data and the solution of Abe’s SLS-SVM depend on this
order. However, the order is not determined from standpoint of classification.
Thus, the generalization capability of this method may be lower than that of
LS-SVM.

In this paper, to overcome this problem, we propose SLS-SVM in the
improved empirical feature space which is generated by the selected linearly
independent training data from the standpoint of classification as the basis vec-
tors. Namely, we sort the training data in ascending order from the standpoint
of classification before we determine whether the training data are linearly inde-
pendent. Then, we determine this order based on each value of the obtained
objective function by training LS-SVM in one-dimensional space, whose basis
vector is each training data. The smaller the value of the objective function is,
the better the training data can be from the standpoint of classification as a
basis vector of the empirical feature space. Thus, by the sorting, good training
data from standpoint of classification can be selected in preference as the basis
vectors of the empirical feature space. Finally, we train LS-SVM in the improved
empirical feature space. Then, the solution is sparse since the number of sup-
port vectors is about equal to that of the selected linearly independent training
data, like the conventional SLS-SVM. Here, we will call the proposed SLS-SVM
“ISLS-SVM” in this paper.

This paper is organized as follows. In Sect. 2, we describe the conventional
SLS-SVM in the reduced empirical feature space. In Sect. 3, we propose ISLS-
SVM. In Sect. 4, we demonstrate the effectiveness of ISLS-SVM through com-
puter experiments using bench mark data sets. And we conclude our work in
Sect. 5.

2 Sparse Least Squares Support Vector Training in the
Reduced Empirical Feature Space

2.1 Reduced Empirical Feature Space

Usually, the empirical feature space [9] is generated by using all the training
data. Then, the kernel value in the empirical feature space is equivalent to that
in the feature space. Hence, the obtained solution by training SVM or LS-SVM
in the empirical feature space is equivalent to that in the feature space.

Let the number of training data, the m-dimensional training vectors, and
the kernel be M , x j (j = 1, . . . , M), and H(x ,x ′) = g�(x )g(x ′) where g(x )
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is the mapping function into the l-dimensional feature space. It is necessary for
generating the empirical feature space to solve the eigenvalue problem of kernel
matrix K. However, it is time consuming to solve this problem and to transform
input variables into variables in the empirical feature space. Hence, in Abe’s
SLS-SVM [1,8], the mapping function h(x ) is transformed into the empirical
feature space as follows:

h(x ) = (H(x ,x e
1), . . . , H(x ,x e

M ′))�, (1)

where x e
j (i = j, . . . , M ′) are the M ′ linearly independent data in the feature

space. Namely, the basis vectors of the empirical feature space are these data.
Here, the linearly independent training data are selected by Cholesky factoriza-
tion. We assumed that the diagonal element in Cholesky factorization is zero if
the argument of the square root in the diagonal element is less than or equal to a
threshold value μ which is selected by cross-validation. We called the empirical
feature space of Abe’s SLS-SVM “reduced empirical feature space (REF)” in
this paper.

2.2 Training SLS-SVM in REF

For two-class problem, let M training data pairs be (x 1, y1), . . . , (xM , yM ), where
yj = 1 or yj = −1 if the j-th training data x j belongs to class 1 or class 2. Then,
we formulate SLS-SVM in REF as follows:

min 1
2w

�w + C
2

∑M
j=1 ξ2j (2)

s.t. yi(w�h(x j) + b) = 1 − ξj for j = 1, . . . , M, (3)

where w , C, ξj , and b are M ′-dimensional vector, the margin parameter which
determines the trade-off between maximizing margins and minimizing misclassi-
fications, the slack variable for x j , and the bias term, respectively. Then, we solve
the primal form of the optimization problem because the number of variables in
the primal form is M ′(≤ M). The decision function is given by

D(x ) = w�h(x ) + b. (4)

Here, (4) is obtained with the optimized w , b by solving (2), (3) and h(x ), which
is given by the M ′ independent training data. Hence, the required training data
for decision function are the M ′ linearly independent data and these data become
SVs.

However, the solution in this method and the values of kernel functions in
this space differ from those in feature space. REF is not generated from the
standpoint of classification because the basis vectors of REF are selected by
only determining whether each training data is linearly independent without
the standpoint of classification ability. And, then, we determine in order of the
given data. The selection of the linearly independent training data depend on
this order, but this order is random. Hence, as the computer experiments in [8],
this method often performs worse than the conventional LS-SVM.
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3 Sparse Least Squares Support Vector Training in the
Sorted Empirical Feature Space

In this section, we will describe SLS-SVM in the sorted empirical feature space,
whose basis vectors are selected from the standpoint of linear independence and
classification. We call this proposed method and the sorted empirical feature
space “ISLS-SVM” (Improved SLS-SVM) and “SEF”.

First, in this method, we obtain the mapping function hi(x ) into one-
dimensional feature space, whose basis vector is each training data, as follows:

hi(x ) =
H(x i,x )
||g(x i)|| (5)

for i = 1, . . . , M.

With (5), we formulate optimization problem in primal form as follows:

min Qi =
1
2
w2

i +
C

2

M∑

j=1

(yj − wihi(x j) − bi)2 (6)

for i = 1, . . . , M,

where Qi, w i and bi are the objective function, the weight value and the bias
term. w i and bi are obtained by solving (6) as follows:

wi = (
1
C

+
M∑

j=1

h2
i (x j) − 1

M

M∑

j,k=1

hi(x j)hi(xk))−1 (7)

(
M∑

j=1

yjhi(x j) − 1
M

M∑

j,k=1

yjhi(xk)),

bi =
1
M

M∑

j=1

(yj − wihi(x j) (8)

for i = 1, . . . , M.

And, we obtain the values of objective function Qi (i = 1, . . . , M) with (6)–(8).
If the value of Qi is small, x i is good from the standpoint of classification as
a basis vector of SEF because this optimization problem (6) is a minimization
problem. Hence, we sort the training data in the order of the associated values
from smallest to largest. Thus, in the order of classification ability from best
to worst as the basis vectors of SEF, we can determine whether the training
data are linearly independent. Namely, in preference, we can select the good
linearly independent training data as the basis vectors. After sorting, we select
the linearly independent training data by Cholesky factorization and generate
SEF and train LS-SVM in primal form like the conventional SLS-SVM.

In our following study, we use linear kernels: xTx ′, polynomial kernels:
(xTx ′ + 1)d, where d is a positive integer, and radial basis function (RBF) ker-
nels: exp(−γ||x − x ′||2), where γ is the width of the radius. Then, d and γ are
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kernel parameters while linear kernels do not have those. In training ISLS-SVM,
we need to determine a kernel type, an associated kernel parameter, a margin
parameter C, and a threshold value μ in Cholesky factorization. In the following,
we show the training algorithm using these selected kernel and parameters by
cross-validation.

Algorithm of ISLS-SVM

Step 1: Set i = 1.
Step 2: Calculate hi(x j) (j = 1, . . . , M) with (5).
Step 3: With hi(x j) (j = 1, . . . , M), calculate Qi by (6)–(8).
Step 4: If i �= M , we set i = i + 1 and go to Step 2, otherwise go to Step 5.
Step 5: Sort the training data in the order of the associated Qi from smallest

to largest.
Step 6: Select the linearly independent training data by Cholesky factorization

in the sorted order and those selected training data become the basis vector
of SEF.

Step 7: Using the selected linearly independent training data x e
k (k = 1,

. . . , M ′) in Step 6, calculate the mapping function h(x ) into SEF with (1).
Step 8: Using h(x ) determined in Step 7, calculate w and b by solving the

optimization problem (2), (3) in primal form.
Step 9: Using w and b determined in Step 8, calculate D(x ) by (4).

4 Experimental Results

We compared the generalization ability and the number of SVs of ISLS-SVM,
SLS-SVM, and LS-SVM, using two-class benchmark data sets [1,8,10–13] listed
in the Table 1 that shows the number of inputs, training data, test data, and data
sets. We measured training time using a personal computer (3.10 GHz, 2.0 GB
memory, Windows 7 operating system).

4.1 Parameter Setting

In the following study, we normalized the input ranges into [0, 1]. For
ISLS-SVM, SLS-SVM, LS-SVM, we determined a kernel type, a kernel
parameter of the selected kernels, and a margin parameter C by five-
fold cross-validation for each problem, where training SLS-SVM in REF
is called “SLS-SVM” simply. For ISLS-SVM and SLS-SVM, we determined
the threshold value μ of Cholesky factorization by five-fold cross-validation.
We selected a kernel type from linear, polynomial, and RBF kernels. If we
selected polynomial or RBF kernels, we selected d or γ from {2, 3, 4, 5} or
{0.1, 0.5, 1, 1.5, 3, 5, 10, 15, 20}. For multi-class problem, if we selected RBF
kernels, we selected γ from {0.1, 0.5, 1, 1.5, 3, 5, 10, 15, 20, 30, 50, 100, 200}. And
we selected C from {0.1, 1, 5, 10, 50, 100, 500, 103, 5 × 103, 104} and μ from
{10−2, 10−3, 10−4, 10−5}. Table 2 shows the selected type of kernels and para-
meters by the above procedure. In this table, “Pol.” denote polynomial kernels.
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Table 1. Two class Benchmark data sets

Data Inputs Training Test Sets

Banana 2 400 4900 100

B. cancer 9 200 77 100

Diabetes 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1300 1010 20

Ringnorm 20 400 7000 100

F. solar 9 666 400 100

Splice 60 1000 2175 20

Thyroid 5 140 75 100

Titanic 3 150 2051 100

Twonorm 20 400 7000 100

Waveform 21 400 4600 100

Table 2. Determined kernels and parameters values by five-fold cross-validation

Data LS-SVM SLS-SVM ISLS-SVM

Kernels d or γ C Kernels d or γ C μ Kernels d or γ C μ

Banana RBF γ = 20 103 RBF γ = 20 5 × 103 10−3 RBF γ = 20 5 × 103 10−4

B. cancer RBF γ = 10 1 Pol. d = 2 100 10−3 Pol. d = 2 500 10−5

Diabetes RBF γ = 10 5 Pol. d = 3 5 10−5 Pol. d = 2 103 10−2

German RBF γ = 3 50 RBF γ = 5 50 10−3 RBF γ = 10 10 10−3

Heart RBF γ = 1.5 10 RBF γ = 15 0.1 10−2 RBF γ = 0.5 50 10−5

Image Pol. d=5 104 Pol. d = 5 104 10−5 Pol. d = 5 104 10−6

Ringnorm RBF γ = 20 5 RBF γ = 0.1 50 10−4 RBF γ = 0.5 1 10−3

F. solar Pol. d = 3 1 Pol. d = 3 10 10−2 Pol. d = 3 5 10−2

Splice RBF γ = 10 50 RBF γ = 10 100 10−2 RBF γ = 15 5 × 103 10−2

Thyroid RBF γ = 20 103 RBF γ = 20 5 × 103 10−2 RBF γ = 20 104 10−2

Titanic Linear – 5 RBF γ = 10 10 10−2 Linear – 50 10−2

Twonorm Pol. d = 2 0.1 RBF γ = 1.5 5 10−4 RBF γ = 1 10 10−6

Waveform RBF γ = 15 1 RBF γ = 3 100 10−4 RBF γ = 3 103 10−4

4.2 Performance Comparison

Table 3 shows the average recognition rates of the test data sets, their standard
deviations, which are denoted in columns of “Rec.”, and the average number
of support vectors which are denoted in columns of “SVs”. In this table, the
best results of the average recognition rates and the fewest number of SVs in
each row of the data sets are shown in boldface. From the standpoint of clas-
sification ability, ISLS-SVM performs the best among all the methods for five
problems and better than SLS-SVM for four problems. But, for other problems,
CSLS-SVM performed about the same as SLS-SVM. Additionally, for the most
problems, the average number of SVs for ISLS-SVM is about the same as that for
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Table 3. Comparison of the average recognition rates in percent, standard deviations
of the rates, and the average number of support vectors

Data LS-SVM SLS-SVM ISLS-SVM

Rec. SVs Rec. SVs Rec. SVs

Banana 89.5± 0.5 400 89.2 ± 0.5 44 89.2 ± 0.5 63

B. cancer 73.6 ± 4.5 200 74.1± 4.5 52 74.1± 4.6 52

Diabetes 77.0± 1.6 468 77.0± 1.7 165 77.0± 1.6 39

German 76.2± 2.1 700 75.9 ± 2.1 189 76.0 ± 2.2 321

Heart 84.2± 3.1 170 84.2± 3.3 126 84.0 ± 3.6 53

Image 95.5± 0.7 1300 91.7 ± 1.2 279 92.1 ± 1.1 451

Ringnorm 96.3± 0.5 400 94.2 ± 3.0 22 93.9 ± 3.7 33

F. solar 66.6 ± 1.6 666 66.6 ± 1.6 32 66.8± 1.9 36

Splice 89.4± 0.7 1000 89.3 ± 0.7 977 89.1 ± 0.8 977

Thyroid 93.8± 2.8 140 92.7 ± 2.8 29 92.7 ± 2.7 32

Titanic 77.3± 1.2 150 77.2 ± 0.8 10 77.1 ± 1.3 3

Twonorm 97.4 ± 0.2 400 97.5± 0.2 306 97.5± 0.2 239

Waveform 90.3± 0.4 400 89.6 ± 0.6 393 90.2± 0.5 392

SLS-SVM and much fewer than that for LS-SVM. Therefore, from Table 3, we
can conclude that ICSLS-SVM performed better than SLS-SVM from the stand-
point of classification ability, and the solution of ISLS-SVM is sparse as compared
with that of LS-SVM like that of SLS-SVM.

5 Conclusions

In this paper, we proposed ISLS-SVM that is trained in the improved empirical
feature space. Because, unlike SLS-SVM, the improved empirical feature space is
generated by the selected linearly independent training data from the standpoint
of classification with the values of the objective functions as basis vectors, the
generalization ability of ISLS-SVM can be higher than that of SLS-SVM. And,
like SLS-SVM, the solution of ISLS-SVM is sparse.

According to the computer experiments using two-class benchmark data sets,
ISLS-SVM performed better than SLS-SVM from the standpoint of classifica-
tion. And ISLS-SVM performed about the same as SLS-SVM from the stand-
point of sparsity.
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Abstract. The present work proposes a variant of the Minimal Learning
Machine (MLM) in a cost sensitiVe framework for classification. MLM is
a recently proposed supervised learning algorithm with a simple formu-
lation and few hyperparameters. The proposed method is tested under
two classification problems: imbalanced classification and classification
with reject option. The results are comparable to other to state of the
art classifiers.

Keywords: Supervised learning · Minimal Learning Machine · Cost
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1 Introduction

Standard supervised classification techniques have been successfully applied in
many real world. However, in some specific domains, the classifier needs to incor-
porate in its formulation different misclassification costs. A typical example can
be found in medical applications. Misclassifying a patient with cancer may lead
to death and on the other hand, misclassifying a patient without cancer may
only lead to extra spendings in further examinations.

To overcome this problem, many researchers have proposed cost sensitive
variants of standard classifiers, such as ELM [1] and SVM [2]. Loosely speaking,
the proposed methods add extra terms to its cost function. The terms refer to
the cost of misclassifying each of the examples.

Recently, a new supervised learning algorithm called Minimal Learning
Machine (MLM) was proposed in [3]. MLM is based on the idea of the exis-
tence of a mapping between the geometric configurations of points in the input
and output space. The main advantages of MLM are its easy understanding,
simple implementation and the use of only one hyperparameter.
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 557–564, 2015.
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In this paper, a variant of the original Minimal Learning Machine called
Weighted Minimal Learning Machine (wMLM) is proposed. The main idea of
wMLM is to weight the instances of the training set and modify the contribution
of each sample on the definition of the final MLM model. This novel method
adds flexibility to the original MLM, since it is able to deal with a variety of
classification problems while maintaining MLM advantages. In order to show the
wMLM effectiveness, we propose two ways of configuring its weights to deal with
the problems of imbalanced classification and classification with reject option.

The remainder of the paper is organized as follows. Section 2 introduces
the Minimal Learning Machine. Section 3 presents the proposed method and
its applications. The experiments are reported in Sect. 4. Conclusions are given
in Sect. 5.

2 Minimal Learning Machine

We are given a set of N input points X = {xi}Ni=1, with xi ∈ R
D, and the set

of corresponding outputs Y = {yi}Ni=1, with yi ∈ R
S . Assuming the existence of

a continuous mapping f : X → Y between the input and the output space, we
want to estimate f from data with the multiresponse model Y = f(X)+R. The
columns of the matrices X and Y correspond to the D inputs and S outputs
respectively, and the rows to the N observations. The columns of the N × S
matrix R correspond to the residuals. The MLM design can be divided in two
steps: distance regression and output estimation.

2.1 Distance Regression

For a selection of reference input points R = {mk}Kk=1 with R ⊆ X and cor-
responding outputs T = {tk}Kk=1 with T ⊆ Y , define Dx ∈ R

N×K in such a
way that its kth column d(X,mk) contains the distances d(xi,mk) between
the N input points xi and the kth reference point mk. Analogously, define
Δy ∈ R

N×K in such a way that its kth column δ(Y, tk) contains the distances
δ(yi, tk) between the N output points yi and the output tk of the kth reference
point.

The mapping g between the input distance matrix Dx and the correspond-
ing output distance matrix Δy can be reconstructed using the multiresponse
regression model

Δy = g(Dx) + E.

The columns of the matrix Dx correspond to the K input vectors and columns
of the matrix Δy correspond to the K response vectors, the N rows correspond
to the observations. The columns of matrix E ∈ R

N×K correspond to the K
residuals.

Assuming that mapping g between input and output distance matrices has
a linear structure for each response, the regression model has the form

Δy = DxB + E. (1)
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The column bk of the K ×K regression matrix B corresponds to the coefficients
for the kth response and it can be solved from data through a minimization of
the corresponding residual sum of squares as loss function:

RSS(bk) = (δ(Y, tk) − Dxbk)′(δ(Y, tk) − Dxbk). (2)

When the number of selected reference points is smaller than the number of
available points available (i.e., K < N), the regression vectors bk can be approx-
imated by the usual least squares estimate. Due to the independence of the K
least-squares estimates, the estimated regression matrix B̂ can be written in
compact matrix notation

B̂ = (D′
xDx)−1D′

xΔy. (3)

For an input test point x ∈ R
D whose distances from the K reference input

points {mk}Kk=1 are collected in the vector d(x, R) = [d(x,m1) . . . d(x,mK)], the
corresponding distances between its unknown output y and the known outputs
{tk}Kk=1 of the reference points is

δ̂(y, T ) = d(x, R)B̂. (4)

The vector δ̂(y, T ) = [δ̂(y, t1) . . . δ̂(y, tK)] provides an estimate of the geomet-
rical configuration of y and the reference set T , in the Y-space.

2.2 Output Estimation

The problem of estimating the output y, given the outputs {tk}Kk=1 of all the ref-
erence points and estimates δ̂(y, T ) of their mutual distances, can be understood
as a multilateration problem to estimate its location in Y.

The location of y is estimated from the minimization of the objective function

J(y) =
K∑

k=1

(
(y − tk)′(y − tk) − δ̂2(y, tk)

)2

. (5)

An optimal solution to (5) can be achieved by any minimizer ŷ =
argmin

y
J(y) like the nonlinear least square estimates from standard gradient

descent methods.

3 Weighted Minimal Learning Machine

The Weighted MLM (wMLM) consists of a generalized least-squares fit between
distances in the input and output spaces. The idea is to bring in a differential
weighting of residuals in the regression step of the MLM to account for errors that
are not independently and identically distributed with zero mean and constant
variance.
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This is practically achieved by extending the least-squares criterion to the
generalized form

RSS(bk) = (δ(Y, tk) − Dxbk)′Wk(δ(Y, tk) − Dxbk), (6)

where Wk is a symmetric positive definite matrix that allow for an unequal
weighting of squares and products of residuals. Considering that the matrix Dx

comprise the training examples non-linearly projected on a space defined by the
reference points, one can weight the columns of Dx instead of the vectors x
directly. Under this assumption, the distance regression problem can be seen as
a weighted linear regression problem. Defining a weight matrix W, the MLM
loss function can be rewritten as:

RSS(B) = tr
(
W(Δy − DxB)′W(Δy − DxB)

)
. (7)

where W is a diagonal matrix and each element wii of its diagonal represents
the weight of each training sample xi.

The optimization can now be defined as a weighted least squares problem
and the matrix B can be estimated by:

B̂ = (D′
xWDx)−1D′

xWΔy. (8)

The modified calculation of B̂ defines the wMLM since all other step can
be performed according to the original formulation presented in section 2.The
possibility to choose different values for W allows the application of wMLM in
different classification problems.

3.1 Imbalanced Data Classification

Among the strategies for imbalanced learning, one can cite the use of a cost
sensitive learning framework. In this framework, the error cost of each sample
is weighted according to the sample class. The main idea is to provide a higher
weight to those examples that belong to the class that is less represented on
the training set. Choosing the weights for each sample determines the degree of
re-balance towards the minority class. A possible choice for the weights is given
by:

wii =
1

Cyi

(9)

where Cyi
is the number of elements in the training set that belong to class yi.

3.2 Classification with Reject Option

Classification with reject option consists in withholding the automatic classifi-
cation of an item, if the decision is considered not sufficiently reliable. Rejected
patterns can then be handled by a different classifier, or manually by a human.
Implementation of reject option strategies requires finding a trade-off between
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the achievable reduction of the cost due to classification errors, and the cost of
handling rejections (which are application-dependent).

The wMLM-based classifier with reject option is built upon a two classifiers
framework [5]. The first classifier (classifier 1) is designed with a bias for the
class C1, as well as the second classifier (classifier 2) is designed with a bias for
the class C2. This can be performed by tuning the weight matrix so that the
examples of class C1 are more weighted for the classifier 1 and examples of class
C2 are more weighted for the classifier 2. An example is rejected whenever the
classifiers disagree.

In this work, the weighting schemes for the classifier 1 and 2 are given respec-
tively by:

wii =

{
1−Rs if xi is from class C1;
Rs otherwise.

and wii =

{
Rs if xi is from class C1;
1−Rs otherwise.

where Rs is an input parameter in [0, 0.5] that defines the degree of bias towards
class s. The choice of Rs impacts on the number of rejected samples.

4 Results

4.1 Imbalanced Classification

The performance of wMLM on imbalanced classification was assessed using 4
real world binary classification datasets. Table 1 present the characteristics of
the datasets used in this work.

Table 1. Datasets characteristics

Dataset Attributes Instances IR

Pima 8 768 0.536

Haberman 3 306 0.360

Vertebral 6 310 0.476

Yale 105 164 0.071

The first three datasets are available on UCI [6].The last one is based on the
Yale face recognition database. This database is composed of 164 images of 15
subjects. For this classification task, the feature vectors were generated using
PCA and preserving 99% of the variance. This resulted on feature vectors of
dimension 105.

The last column of Table 1 presents the imbalance ratio (IR). IR measures
the imbalance degree of each dataset and is defined by the number of examples
in the minority class divided by the number of examples of the majority class.

The performance of the methods were analyzed using accuracy and F-
measure. All datasets were normalized within the range of [0, 1]. 50% of the
data were used for training and 50% for testing.
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Table 2. F-measure

Dataset MLM wMLM WELM

Pima 0.624 0.670 0.675

Haberman 0.316 0.468 0.461

Vertebral 0.700 0.731 0.742

Yale 0.407 0.444 0.448

Table 3. Accuracy

Dataset MLM wMLM WELM

Pima 0.765 0.741 0.735

Haberman 0.737 0.699 0.687

Vertebral 0.816 0.807 0.812

Yale 0.939 0.928 0.923

wMLM was compared to MLM and the recently proposed Weighted Extreme
Learning Machine (WELM, [1]). For MLM and ELM, all hyperparameters (num-
ber of reference point for MLM and number of hidden neurons for ELM) were
chosen using grid search and 10 fold cross validation. ELM’s hidden layer weights
and MLM’s reference points were randomly assigned.

Tables 2 and 3 present the performance comparison for all datasets.
As expected, the wMLM achieved a better F-measure performance for all

datasets when compared to MLM. wMLM and WELM achieved similar results.
As a consequence of the F-measure increase, the total accuracy is reduced for
all classifiers.

4.2 Classification with Reject Option

The performance of the wMLM was assessed for the same UCI datasets used
for imbalanced learning. wMLM was compared to a Gaussian Quadratic Dis-
criminant classifier (QDC) and an ELM. The ELM was designed as a regression
algorithm and then a rejection threshold could be used. Similarly, for the QDC, a
rejection threshold could be used since the QDC provides a probabilistic output.

Comparisons of classifiers with reject option are usually performed using
Accuracy Rejection (A-R) curves. This curve shows the relation between classi-
fication accuracy and rejection rate.

The curves were built under the framework of reject option, proposed by
Chow [4]. In this work, the empirical risk is given by:

ER = wRR + E (10)

where wR is the rejection cost, R is the rejection rate and E is the misclassifica-
tion rate (error rate). A-R curves are generated by finding the rejection threshold
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Fig. 1. A-R curve for Pima dataset

Fig. 2. A-R curve for Haberman dataset

Fig. 3. A-R curve for Vertebral column dataset

that minimize 10 for a given rejection cost. Figures 1, 2 and 3 present the A-R
curves for all datasets.
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In A-R curves, a method performs better as it achieves a higher accuracy
for a given rejection rate. Based on that, it can be seen that ELM and the
wMLM achieved a similar performance. Both methods had better results than
the QDC. This may be explained by the fact that the QDC can only design
a quadratic decision boundary and both ELM and wMLM can generate other
nonlinear decision boundary functions.

5 Conclusion

The current work proposed a variant of the Minimal Learning Machine for cost
sensitive classification.

Two possible applications of the Weighted MLM were shown: imbalanced
data classification and classification with reject option. For both applications
wMLM achieved promising results, compared to state of the art classifiers.

Although wMLM achieved a similar performance when compared to ELM
versions, it is important to emphasize that both reject option and imbalanced
classification MLM versions are based on the same weighting framework. Future
works may address the application of wMLM on regression problems.

Acknowledgments. The authors acknowledge the support of CNPq (Grant
456837/2014-0).
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Fortaleza, Ceará, Brazil
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Abstract. Minimal Learning Machine (MLM) is a recently proposed
supervised learning algorithm with simple implementation and few hyper-
parameters. Learning MLM model consists on building a linear mapping
between input and output distance matrices. In this work, the stan-
dard MLM is modified to deal with missing data. For that, the expected
squared distance approach is used to compute the input space distance
matrix. The proposed approach showed promising results when compared
to standard strategies that deal with missing data.

1 Introduction

Missing attributes in feature vectors are present in many real world machine
learning applications. Despite that, traditional machine learning models rely
on the assumption that feature vectors have a fixed dimension and none of its
features are missing. To overcome this issue, many strategies have been pro-
posed. Some naive approaches include eliminating examples that have missing
attributes and filling the missing feature with the mean value for this feature,
estimated using all other examples.

Eliminating feature vectors with missing values can degrade the model perfor-
mance, specially when the dataset comprises a small number of samples. Filling
the missing entries with the mean value of the correspondent features may also
result in a poor performance when features exhibit high variance.

Another simple strategy of imputation consist on finding the nearest neighbor
among the fully known feature vectors and filling the missing feature with the
feature value of this nearest neighbor. This approach becomes ineffective as the
number of examples with missing feature increase [1].

More sophisticated approaches include the imputation of missing values based
on the knowledge of the other features that belong to the same vector. Using a
probabilistic model, the missing value can be estimated by using, for instance,
the Expectation-Maximization (EM) algorithm [2].

c© Springer International Publishing Switzerland 2015
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Recently, the authors in [3] proposed an approach for estimating the pairwise
distance between vectors with missing values. Assuming that data is Missing-
at-Random (MAR) [4] and that the samples originate from some probability
distribution, statistical techniques were applied to find an expression for the
expectation of the squared Euclidean distance (ESD) between samples.

In the present work, we propose an adaptation of the Minimal Learning
Machine (MLM, [5]) capable of handling missing vales, based in the ESD cal-
culation. MLM is a supervised learning method that builds a linear mapping
between distance matrices on the input and output space. The ESD is used to
as part of the input space matrix estimation. The proposed approach is com-
pared to other imputation methods under real world datasets and achieved the
best overall performance.

The remainder of the paper is organized as follows. Section 2 introduces the
Minimal Learning Machine. Section 3 presents the method for missing values
imputation on MLM. The experiments are described in Sect. 4 and the results
are shown in Sect. 6. Conclusions are given in Sect. 6.

2 Minimal Learning Machine

We are given a set of N input points X = {xi}N
i=1, with xi ∈ R

D, and the set
of corresponding outputs Y = {yi}N

i=1, with yi ∈ R
S . Assuming the existence of

a continuous mapping f : X → Y between the input and the output space, we
want to estimate f from data with the multiresponse model

Y = f(X) + R.

The columns of the matrices X and Y correspond to the D inputs and S outputs
respectively, and the rows to the N observations. The columns of the N × S
matrix R correspond to the residuals.

The MLM is a two-step method designed to

1. reconstruct the mapping existing between input and output distances;
2. estimating the response from the configuration of the output points.

In the following, the two steps are discussed.

2.1 Distance Regression

For a selection of reference input points R = {mk}K
k=1 with R ⊆ X and cor-

responding outputs T = {tk}K
k=1 with T ⊆ Y , define Dx ∈ R

N×K such that
its kth column d(X,mk) contains the distances d(xi,mk) between the N input
points xi and the kth reference point mk. Analogously, define Δy ∈ R

N×K in
such a way that its kth column δ(Y, tk) contains the distances δ(yi, tk) between
the N output points yi and the output tk of the kth reference point.
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We assume that there exists a mapping g between the input distance matrix
Dx and the corresponding output distance matrix Δy that can be reconstructed
using the multiresponse regression model

Δy = g(Dx) + E.

The columns of the matrix Dx correspond to the K input vectors and columns
of the matrix Δy correspond to the K response vectors, the N rows correspond
to the observations. The columns of matrix E ∈ R

N×K correspond to the K
residuals.

Assuming that mapping g between input and output distance matrices has
a linear structure for each response, the regression model has the form

Δy = DxB + E. (1)

The columns of the K × K regression matrix B correspond to the coefficients
for the K responses. Under the normal conditions where the number of selected
reference points is smaller than the number of available points available (i.e.,
K < N), the matrix B can be approximated by the usual least squares estimate:

B̂ = (D′
xDx)−1D′

xΔy. (2)

For an input test point x ∈ R
D whose distances from the K reference input

points {mk}K
k=1 are collected in the vector d(x, R) = [d(x,m1) . . . d(x,mK)],

the corresponding estimated distances between its unknown output y and the
known outputs {tk}K

k=1 of the reference points are

δ̂(y, T ) = d(x, R)B̂. (3)

The vector δ̂(y, T ) = [δ̂(y, t1) . . . δ̂(y, tK)] provides an estimate of the geomet-
rical configuration of y and the reference set T , in the Y-space.

2.2 Output Estimation

The problem of estimating the output y, given the outputs {tk}K
k=1 of all the ref-

erence points and estimates δ̂(y, T ) of their mutual distances, can be understood
as a multilateration problem [6] to estimate its location in Y.

Numerous strategies can be used to solve a multilateration problem [9]. From
a geometric point of view, locating y ∈ R

S is equivalent to solve the overde-
termined set of K nonlinear equations corresponding to S-dimensional hyper-
spheres centered in tk and passing through y. Figure 1 graphically depicts the
problem for S = 2.

Given the set of k = 1, . . . , K spheres each with radius equal to δ̂(y, tk)

(y − tk)′(y − tk) = δ̂2(y, tk), (4)

the location of y is estimated from the minimization of the objective function

J(y) =
K∑

k=1

(
(y − tk)′(y − tk) − δ̂2(y, tk)

)2

. (5)
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Fig. 1. Output estimation.

The cost function has a minimum equal to 0 that can be achieved if and only if
y is the solution of (4). If it exists, such a solution is thus global and unique. Due
to the uncertainty introduced by the estimates δ̂(y, tk), an optimal solution to
(5) can be achieved by any minimizer ŷ = argmin

y
J(y) like the nonlinear least

square estimates from standard gradient descent methods. The original MLM
proposal applies the Levenberg-Marquardt (LM) method [7] to solve the output
estimation step.

3 Computing Dx in the Presence of Missing Data

The training phase of the MLM model consists on fitting a linear model of the
form Δy = DxB+E. That being said, given a pair of labeled examples feature
vectors Xi and Xj , instead of estimating what values to impute in the missing
entries of these feature vectors, we want to estimate its pairwise distance D(i,j)

x .
For that purpose, we use the Expected Squared Distance method, which was
introduced by Eirola et al. in [3]. In the subsequent section, we describe the
ESD method and how to proceed with its computation.

3.1 Expected Squared Distance (ESD) Calculation

Consider α, β ∈ R
D drawn from a same multivariate probability distribution, but

possibly with deleted entries. It is reasonable to estimate the squared euclidean
norm between α and β as

E[‖α − β‖22] =
D∑

i=1

E[(αi − βi)2] (6)
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Let Mα and Mβ be sets containing the index of the missing entries of α and β,
respectively. We can further expand (6) into

E[‖α − β‖22] =
∑

i/∈Mα∪Mβ

(αi − βi)2 +
∑

i∈Mα\Mβ

E[(αi − βi)2]

+
∑

i∈Mβ\Mα

E[(αi − βi)2] +
∑

i∈Mα∩Mβ

E[(αi − βi)2]
(7)

By performing simple expected value calculations, we can develop the terms
comprising the entries i ∈ Mα\Mβ into.

E[(αi − βi)2] = E[α2
i + β2

i − 2αiβi] = E[α2
i ] + β2

i − 2E[αi]βi

= E[α2
i ] − E[αi]2 + E[αi]2 + β2

i − 2E[αi]βi

= (E[αi] − βi)2 + Var[αi]

By symmetry the terms involving entries i ∈ Mβ\Mα resume to

E[(αi − βi)2] = (αi − E[βi])2 + Var[βi]

In case both αi and βi are missing, assuming these are uncorrelated (E[αiβi] =
E[αi]E[βi]) we have

E[(αi − βi)2] = E[α2
i ] + E[βi]2 − 2E[αi]E[βi]

= E[α2
i ] − E[αi]2 + E[β2

i ] − E[βi]2 + E[αi]2 + E[βi]2 − 2E[αi]E[βi]

= (E[αi] − E[βi])2 + Var[αi] + Var[βi]

If we assume that the distribution from which both αi and βi were drawn is
a multivariate normal distribution, we can use the Expectation Maximization
(EM) algorithm to estimate a mean vector μ and a covariance matrix Σ based
on training data. We can then use μ and Σ to substitute each expected value by
its conditional mean and substitute the variance of an entry by its conditional
variance.
It is interesting to notice that the only real difference between the estimate of
the ESD and the result obtained by the direct substitution of a missing value
by its EM estimate is the presence of the variance terms, which manifest some
uncertainty on the operation being performed using the imputed values.

4 Performance Evaluation

Standard techniques to deal with missing data include imputing the missing
entries with the sample mean or EM estimates. A more naive approach is to
simply drop the examples that contain missing data. To evaluate the performance
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Table 1. Datasets characteristics

Dataset Attributes Instances

Concrete compression 8 1030

Boston Housing 13 506

Servo 4 167

Stocks 9 950

Breast cancer 30 569

Wine 13 178

of the proposed algorithm, we compare it with MLMs trained on datasets treated
with these techniques.

To carry the experiments, 6 different regression datasets from the UCI machine
learning repository [8] were chosen. Details about each dataset are presented in
Table 1.

To simulate the impact of the number of missing values for each method,
we gradually increase the number of examples with missing attributes in each
dataset. The artificial missing values were generated in a manner to guarantee
that they are Missing at Random [4]. The experiments were repeated 10 times.
At each trail, the data was split between training and test sets (70% and 30%,
respectively).

For all experiments, the MLMs used all the examples with no missing entries
as reference points. The adopted performance measure was the Root Mean
Square Error (RMSE).

5 Results

Figure 2 presents the RMSE for all datasets as the number of examples with
missing data increase. Each point consists on the mean value for all 10 runs.

As expected, more naive strategies lead to the worst results. Using the mean
value for each missing feature (input sample mean) achieved the worst overall
result in 3 of the 6 datasets. Discarding examples (Drop entries) achieved the
worst results in the other 3 datasets.

It is interesting to notice that the Drop entries approach obtained a similar
result to EM and ESD in 2 of the 6 dataset. This can be explained by the
fact both Stocks and Concrete Compression datasets have a higher number of
examples when compared to the other datasets. This can be observed in Table 1.
In such cases, discarding some examples my not have a significant impact on the
resulting model.

Analyzing the performance of ESD it can be noticed that the proposed
method achieved the lowest RMSE in 5 datasets. For the Stocks dataset, ESD
achieved the best results for datasets with up to 30% of missing data. For values
above 30%, ESD obtained the second best overall result.
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Fig. 2. RMSE for all datasets

6 Conclusion

This work presented a variation of the Minimal Learning Machine (MLM) with a
built-in mechanism to deal with missing attributes. The proposed approach uses
the Expected Squared Distance (ESD) calculation to estimate the pairwise dis-
tance between input point, potentially with missing attributes, and the reference
points.

It is worth noting that the proposed algorithm can handle not only missing
data on the training set but also capable of making decision under new data
with missing attributes.

Results showed that MLM with ESD achieved the best overall results when
compared to different standard strategies to deal with missing data such as sam-
ple mean imputation and EM imputation. Future works shall include a variant
of MLM with ESD to handle missing values in the output space.
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Abstract. RAndom k-labELsets (RAkEL) is an effective ensemble
multi-label classification (MLC) model where each base-classifier is
trained on a small random subset of k labels. However, the model con-
struction does not fully benefit from the diversity of the ensemble and
the label probability estimates obtained with RAkEL are usually badly
calibrated due to the problems raised by the imbalanced label represen-
tation. In this paper, we propose three practical solutions to overcome
these drawbacks. One is to increase the diversity of the base classifiers in
the ensemble. The second to smooth the label powerset probability esti-
mates during the ensemble aggregation process, and the third to calibrate
the label decision thresholds. Experimental results on various benchmark
data sets indicate that the proposed approach outperforms significantly
recent state-of-the-art MLC algorithms, including RAkEL and its vari-
ants.

Keywords: Multi-label classification · Ensemble learning

1 Introduction

In contrast to traditional single-label classification, instances in Multi-label
classification (MLC) can be associated simultaneously with more than one
label. Given a training sample (x, y) such as, x ∈ X is a feature vector and
y ∈ Y = {0, 1}Q indicates its affected labels in L = {λ1, . . . , λQ}, MLC task
learns the decision function h : X → Y. There are mainly two categories of MLC
methods [6]: (a) algorithm adaptation methods and (b) problem transformation
methods. Algorithm adaptation methods extend specific learning algorithms to
handle multi-label (ML) data directly. Problem transformation methods, on the
other hand, transform the ML learning problem into either several binary clas-
sification problems, such as the Binary Relevance (BR) approach, or one multi-
class classification problem, such as the Label Powerset (LP) approach. The BR
method ignores the probabilistic dependency structure of the labels (given the
inputs) as each label is predicted independently of the other. In contrast, by
combining all the labels into one multi-class label, the LP method takes into
account the label correlation (to some extent). Unfortunately, the multi-class
learning task in LP is known to be difficult as the effective number of classes
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 573–582, 2015.
DOI: 10.1007/978-3-319-26532-2 63
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grows swiftly with the number of labels, especially when most label subsets are
associated with very few examples only.

With a view to trade off the BR label independence assumption with LP
complexity, Tsoumakas et al. [11] proposed an effective ensemble method named
RAndom k-labELsets (RAkEL). Each base-classifier in RAkEL is a LP based on
a random small subset of k labels (k-labelsets). By construction, RAkEL takes
into account the correlation structure between the labels, and at the same time,
reduces the number of labels handled by each LP. Prediction of new instances
is achieved by combining the ensemble binary outputs through a label majority
voting process. The aggregation step helps correct potential uncorrelated errors
and improves the overall performance. RAkEL is now considered as a state-of-
the-art MLC algorithm due to its simplicity and practical efficiency. However,
as all heuristic methods, RAkEL has several shortcomings: First; considered as
an ensemble approach, RAkEL does not fully take advantage of the best part of
the diversity concept when constructing its base-classifiers since that each label
combination is allowed to appear at most once. Second, the labels that are drawn
more often than the others during the random label sampling should not be
overly weighted in the aggregation process. Third, the use of a unique threshold
to select the final predicted labelset is not well adapted for the data sets having
many labels associated with few training examples. In this paper, we discuss a
method to improve the overall performance of k-labelsets based ensemble models.
Our contribution is three-fold: First, we use Bagging in tandem with random k-
labelsets to increase the diversifity of the base classifiers and thus the robustness
of the ensemble. Second, the label set probabilities are calibrated to account
for the effective label occurrence rate in the random labelsets sampling. Third,
a finely-tuned threshold is associated to each label instead of using a single
threshold for all the labels [11].

The paper is organized as follows: Sect. 2 presents an overview of the related
work. Our contribution is discussed in Sect. 3. Extensive experiments on Mulan
[12] benchmark data sets are reported in Sect. 4 to demonstrate the usefulness
of the method.

2 Related Work

In this Section, we provide an overview of the recent attempts to improve the
RAkEL approach and discuss some state-of-the art thresholding schemes in MLC.

As a first extension of RAkEL, Kouzani et al. [7] combine a random selec-
tion of labels, feature subsets and instance subsets, to build a Triple-Random
Ensemble Multi-Label Classification (TREMLC). Each base-classifier in TREMLC
is trained using a portion of data drawn randomly without replacement and
trained to predict k-labelsets using only a subset of features. They reported that
the model performance was especially susceptible to the percentage of instance
selection and the random subspace size. In fact, such diversity is hard to manage
and requires a large ensemble size. The ensemble size depends on the number
of labels since the k-labelsets selection is carried by a random selection with-
out replacement from all possible k-labelsets in L. In [10], an improved version
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of RAkEL [11] named RAkEL++ is presented. The idea is to, (i) aggregate the
probabilities provided by the base-classifiers rather than 0/1 votes in the orig-
inal RAkEL, and (ii) use in the labelling step a single threshold for all labels,
calibrated by optimizing a performance measure of interest via a cross validation
(CV) procedure.

It should also be emphasized that RAkEL - as many ML classifier methods - is
trained to output a score for each label, and thus requires a thresholding strategy
to implement a decision function. Works on thresholding MLC outputs reveals
that thresholding can improve dramatically the performance of most MLC algo-
rithm [3–5,8]. In [4], Ioannou et al. conduct a comparative study on thresholding
strategies based on multi-label output scores which conclude that calibrating
one single threshold for all labels remain the most promising strategy. Authors
attribute its, compared to a strategy using distinct thresholds for each label
T = {t1, . . . , tQ}, to the limited number of calibrated thresholds which attenuate
risks of overfitting. However, the study was only carried on HammingLoss met-
ric [6]. A distinct label thresholds calibration strategy, not included in the study
of [4], was proposed in [3]. The threshold calibration problem was handled via a
greedy cyclic optimization algorithm named FBR. The heuristic aims to update
iteratively each label threshold tk to optimize either MicroF1 or MacroF1 for
BR models. In [8], the authors analyzed the optimization strategies proposed
in [3] and concluded that Maximizing MicroF1 on a given data set can easily
lead to overfitting. Beside Authors derived MicroF1 and MacroF1 properties to
reduce computational cost of such optimization strategy. Recently, a theoretical
study on threshold optimization for F1 measures has been proposed in [5]. This
study confirms previous experimental finding and demonstrate that MicroF1

could be optimized by predicting all instances to be negative for high imbalance
labels. Thereby calibrating threshold via CV can be too intensive and may lead
to overfitting. An alternative was proposed in [1] for Ensemble Classifier Chain
with Random Forest (ECC-RF) in which out-of-bag instances are used for thresh-
old calibration. Nevertheless, only the decomposable ML metric HammingLoss
[6] was the only loss function considered.

3 Calibrated k-labelsets Ensemble Method

In this section, we discuss our Calibrated k-labelsets for Ensemble Multi-Label
Classification method (termed CkMLC as a shorthand).

Committee Construction: In k-labelsets ensemble models, diversity is carried
in the output space by a random selection of m k-labelsets without replacement
from the set of all possible label sets of size k in L. However nothing hinders two
base-classifiers to share the same output space if diversity is maintained in the
input space. On the contrary this will improve the predictive performance of the
ensemble since more votes for each k-labelsets lead to more accurate estimates of
the true value of this k-labelsets. In this work we propose to induce diversity in
the input space by a bootstrapping strategy. In contrast to [7] we enforce diversity
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only in instance space via random sampling with replacement from the instance
set. Combining input and output strategies has two advantages: The k-labelsets
strategy provides a specific output view to the base-classifier. Meanwhile, the
latter strategy enforces diversity by allocating distinct samples to the classifiers.
Last but not least, in each bootstrap, almost 33 % are left out-of-bag (oob),
i.e., they are not used for the construction of their corresponding model. These
samples can be used as an unbiased validation set of the thresholding strategy
in the sequel.

Aggregating Base-Classifier Predictions: The overlapping property of k-
labelsets ensembles induces different numbers of predictions for each label. Thus,
for a test instance xt, prediction for λj is the average of all base-classifiers predic-
tions. Therefore, the aggregation involves that each label prediction has it own
significance since it depends on the label occurrence in the ensemble. Obviously
the probability predicted for a label appearing in several k-labelsets is more accu-
rate than the probability predicted for label appearing in one k-labelsets. The
following example illustrates the potential problem with such ensemble aggre-
gation. Assume that λ1 and λ2 appear respectively in 10 and 3 k-labelsets. If
for a test sample (xt), 9 base-classifiers predict λ1 and 3 classifiers predict λ2,
the probabilities to assign λ1 and λ2 to xt given by the original RAkEL are
respectively P̂λ1 = (9/10) = 0.9 and P̂λ2 = (3/3) = 1. Our confidence in the
probably prediction based on 3 classifiers is not as good as for 10 classifiers of
course. Therefore, we propose to smooth the ensemble probabilities for each label
using the Laplace estimate as: P̂λi

= h(xt,λi)+1
n+C (C is the number of classes per

label, here C = 2). In our example, the Laplace estimate yields a probability
of 9+1

10+2 = 0.83 for λ1 and 3+1
3+2 = 0.8 for λ2. This smoothing strategy flattens

the label probability distribution and improve the MLC performance in terms
of probability-based ranking measure.

Threshold Calibration: In this work we propose a simple forward algorithm
easy to implement with a low computational cost for calibrating label decision
thresholds. The algorithm benefits from oob instances and does not need to
carry CV procedure to create a validation data set. The proposed optimization
algorithm is valid for both, decomposable and non-decomposable performance
measure. To calibrate decision threshold for a specific performance measure. First
the best thresholds are selected independently for each label λ ∈ L, then the label
achieving the best performance λ∗ is selected as well as its optimal threshold tλ∗ .
Then, λ∗ is removed from the search space L and added to L∗. Afterwards, for
each label in L the best thresholds are selected as having the best performance
jointly with labels in L∗ associated with their calibrated thresholds. The process
is repeated until calibrating all thresholds. Algorithm 1 gives a formal description
of the procedure. To the best of our knowledge, this is the first attempt to propose
an algorithm for selecting a distinct threshold per label by optimizing any ML
performance measure of interest for any ML classifier.
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Texte en blancAlgorithm 1 Forward Multi-label Thresholds Calibration
Require: Oob predictions probabilities (Ŷ ), Oob real labels (Y ), label set L, multi-

label performance measure to optimize (MLmeasure). =0

L∗ ← ∅; T ← ∅
while = ∅ do

λ∗, tλ∗ ← argmax
λ∈L,t∈[0,1]

MLmeasure([ŶL∗/T ∪ {Ŷλ/t}], [YL∗ ∪ {Y }])

L∗ ← L∗ ∪ λ∗

T ← T ∪ tλ∗

L ← L\λ∗

end while
return T

4 Experimental Evaluation

In this section, we investigate the effectiveness of the proposed approach and
compare its performances against several state-of-art MLC methods.

4.1 Data Sets and Experimental Setup

To thoroughly evaluate the performance of our approach, a total of twelve real-
word ML data sets given from the Mulan’s repository [12] are employed in
this paper. Table 1 summarizes their basic statistics: M number of features,
Q number of labels; Label Cardinality LC= 1

N

∑N
i=1 |Yi| and Label Density

LD= 1
N

∑N
i=1

|Yi|
Q .

Table 1. Description of the multi-label data sets used in the experiments.

Data Domain N M Q LC LD

Arts Text 5000 462 26 1.636 0.063

Bird Audio 645 260 19 1.014 0.053

Business Text 5000 438 30 1.588 0.053

Education Text 5000 550 33 1.460 0.044

Emotions Music 593 72 6 1.869 0.311

Enron Text 1702 1001 53 3.378 0.064

Flag Images 194 19 7 3.392 0.485

Health Text 5000 612 32 1.662 0.052

Image Image 2000 249 5 1.236 0.247

Medical Text 978 1449 45 1.245 0.028

Scene Image 2407 294 6 1.074 0.179

Slashdot Text 3782 1079 22 1.180 0.041



578 O. Gharroudi et al.

In the experiments, both the new ensemble construction and the threshold
calibration strategies combined together in our CkMLC approach are studied and
compared against several state-of-the-art MLC methods, namely RAkEL taken as
our gold standard ML ensemble approach, RAkEL++ [10] and TREMLC [7] that
should be viewed as another variants of RAkEL, two recently proposed MLC
techniques named ECC-RF [1] and FBR [3] which implement (as for CkMLC)
respectively two different thresholding strategies for the prediction step.

To make fair comparisons, the same experimental setting in [7] was adopted
here for the RAkEL approach [11] and its variants (RAkEL++ and TREMLC),
i.e., the number of models was set to m = min(2Q, 100) and a size of labelsets
k of 3. These values were found to yield the most satisfactory performances in
[7,11]. The remaining parameters of TREMLC are tuned as suggested by the
authors in [7]. In our CkMLC approach, the number of label per bag k was set
to 3 as for RAkEL and the committee size m was computed using the following
formula: m = 10 × ceil(log(α)/ log(1 − 1/k)). This formula ensures that each
label is drawn 10 times at a confidence level of α = 1%. To ensure that the total
number of classifiers which cast a vote in every prediction is the same between
CkMLC and ECC-RF, the number of iterations done for ECC and RF within ECC-
RF were both taken to be

√
m [1]. The classregtree Matlab implementation of

decision tree was used as the base learner in all compared algorithms. Finally,
instead of manually setting up the single threshold for all labels to 0.5 to output
the final decision as in RAkEL and TREMLC, this threshold was tailored to each
dataset in RAkEL++ using a 5-fold CV procedure [10]. On the other hand, FBR,
ECC-RF and CkMLC select a separate threshold for each label, calibrated using
5-fold CV for FBR and oob estimation for both ECC-RF and CkMLC. We tested
9 different threshold values ranging from 0.1 to 0.9 in 0.1 steps.

The algorithm’s performances were analyzed according to three standard ML
measure: RankingLoss, MicroF1 and MacroF1 [6] using a 2-fold CV [9]. To
get reliable statistics over the performance metrics, experiments were repeated
5 times. So the results obtained were averaged over 10 iterations. Significant
differences among the methods were established using statistical tests.

4.2 Results

Performances are tabulated in terms of averaged values as well as standard devi-
ations on each data set. The symbol ‘↓/↑’ indicates the smaller/larger the better.
To examine whether the results are statistically significant, paired t-tests were
carried out at 5 % significance level. The marker ‘•/◦’ suggests that our app-
roach is statistically superior/inferior to others. Otherwise, a tie is counted and
no marker is placed. Furthermore, following [2], if two compared algorithms are,
as assumed under the null-hypothesis, equivalent, each should win on approxi-
mately n/2 out of n data sets. The number of wins is distributed according to
the binomial distribution and the critical number of wins at α = 5% is equal
to 10 in our case. Since tied matches support the null-hypothesis we should not
discount them but split them evenly between the two classifiers when counting
the number of wins; if there is an odd number of them, we again ignore one. The
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Table 2. Predictive performances in terms of RankingLoss.

↓ CkMLC RAkEL RAkEL++ TREMLC FBR ECC-RF

Arts .080±.029 .100±.034• .082±.029• .096±.033• .235±.082• .124±.043•
Birds .169±.026 .315±.057• .176±.037 .279±.044• .235±.040• .271±.047•
Business .029±.009 .052±.017• .031±.010 .044±.015• .122±.042• .052±.018•
Education .058±.019 .089±.031• .060±.019 .078±.026• .283±.101• .088±.029•
Emotions .099±.034 .164±.063• .123±.043• .158±.049• .230±.084• .158±.045•
Enron .057±.018 .089±.030• .065±.020• .094±.030• .155±.050• .072±.025•
Flags .138±.038 .204±.045• .153±.041• .202±.041• .202±.052• .208±.041•
Health .034±.012 .056±.019• .033±.011 .045±.015• .176±.061• .055±.019•
Image .088±.031 .169±.066• .129±.050• .150±.041• .270±.093• .161±.040•
Medical .020±.008 .064±.021• .024±.011• .033±.013• .070±.026• .037±.015•
Scene .045±.015 .104±.034• .077±.028• .098±.025• .193±.065• .096±.027•
Slashdot .048±.018 .118±.034• .044±.018 .079±.025• .085±.028• .085±.028•
(win/tie/loss) (12/0/0) (8/4/0) (12/0/0) (12/0/0) (12/0/0)

•/◦ CkMLC is significantly better/worse, at a level of significance of 5%.

obtained (win/tie/loss) counts for CkMLC against the compared algorithms are
reported in the bottom row of each Table. Note that calibrating the thresholds
should not affect the RankingLoss as the latter is a probability-based rank-
ing metric [6]. However, calibration can greatly help to reduce example-based
metrics like the MicroF1 and MacroF1 measures.

As may be observed in Table 2, the performances of CkMLC in terms
of RankingLoss are statistically distinguishable from the performance of all
other algorithms. CkMLC outperforms the other methods by generally achieving
the smallest RankingLoss values. This firstly validates the motivation behind
our method CkMLC that encouraging diversity in the committee construction
achieves more robust votes per label and thus more accurate probability esti-
mates for each label. Moreover, results in Table 2 also confirms the effectiveness
of the smoothing strategy in CkMLC to rank the labels properly. Compared to
TREMLC for which the idea is to mainly encourage the diversity in RAkEL using
a triple randomization, the combination of our diverse committee construction
and probability smoothing strategy in CkMLC shows promise for obtaining a ML
ensemble classification framework that enjoys significant improvements in terms
of RankingLoss metric.

Tables 3 and 4 depict the performances in terms of MicroF1 and MacroF1

measures respectively. In the sequel, the thresholding strategies proposed respec-
tively in CkMLC, FBR and RAkEL++ are implemented twice as we tune the
decision thresholds for optimizing either the MicroF1 or the MacroF1. So each
approach has two variants: one devoted to optimizing the MicroF1 measure ’
superscript ‘m’, the other devoted to optimizing the MacroF1 denoted with the
superscript ‘M ’.
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Table 3. Predictive performances in terms of MicroF1.

↑ CkMLCm RAkEL RAkEL++m CkMLC0.5 TREMLC FBRm ECC-RF

Arts .650±.123 .620±.144• .599±.149• .539±.106• .528±.107• .508±.107• .521±.091•
Birds .560±.080 .498±.079• .418±.110• .476±.068• .420±.056• .470±.074• .472±.057•
Business .807±.057 .799±.044• .796±.061• .801±.043 .796±.045• .757±.055• .779±.040•
Education .655±.119 .637±.144• .585±.153• .585±.127• .568±.130• .534±.106• .545±.098•
Emotions .798±.062 .728±.081• .742±.080• .778±.071• .699±.078• .727±.085• .726±.063•
Enron .716±.059 .698±.075• .720±.083 .670±.060• .654±.059• .631±.071• .678±.060•
Flags .809±.043 .787±.039• .804±.037 .806±.027 .764±.036• .778±.044• .773±.039•
Health .769±.072 .755±.080• .751±.087• .736±.070• .732±.068• .674±.077• .715±.057•
Image .789±.070 .707±.095• .707±.105• .745±.091• .681±.081• .673±.090• .685±.070•
Medical .871±.031 .857±.034• .862±.035• .859±.032• .860±.035• .853±.032• .853±.025•
Scene .840±.059 .769±.077• .773±.084• .803±.072• .746±.070• .725±.077• .752±.058•
Slashdot .818±.021 .816±.030 .817±.029 .815±.019• .816±.017 .814±.030 .807±.016•
(win/tie/loss) (11/1/0) (9/3/0) (10/2/0) (11/1/0) (11/1/0) (12/0/0)

•/◦ CkMLCm is significantly better/worse, at level of significance of 5%.

Table 4. Predictive performances in terms of MacroF1.

↑ CkMLCM RAkEL RAkEL++M CkMLC0.5 TREMLC FBRM ECC-RF

Arts .405±.131 .429±.136 .402±.140 .299±.075• .282±.073• .398±.114 .326±.079•
Birds .384±.097 .324±.082• .253±.098• .276±.056• .220±.035• .336±.067• .294±.049•
Business .385±.125 .295±.098• .329±.126• .271±.079• .245±.075• .375±.110 .278±.073•
Education .349±.117 .360±.123 .294±.109• .256±.081• .226±.068• .316±.105• .249±.071•
Emotions .784±.078 .721±.083• .736±.082• .767±.078• .689±.078• .721±.085• .715±.069•
Enron .382±.135 .279±.076• .386±.133 .204±.044• .184±.032• .320±.087• .257±.066•
Flags .738±.054 .724±.050 .757±.046 .742±.058 .664±.048• .734±.052 .713±.052

Health .440±.092 .439±.099 .445±.109 .352±.060• .333±.048• .416±.091• .351±.059•
Image .786±.074 .707±.093• .707±.104• .746±.090• .682±.081• .674±.089• .687±.069•
Medical .541±.091 .524±.083• .525±.091• .511±.086• .481±.090• .524±.083• .430±.070•
Scene .842±.058 .773±.076• .778±.084• .805±.074• .748±.070• .730±.075• .756±.058•
Slashdot .294±.093 .205±.063• .263±.081• .151±.029• .127±.018• .284±.088 .145±.026•
(win/tie/loss) (8/4/0) (9/3/0) (11/1/0) (12/0/0) (8/4/0) (11/1/0)

•/◦ CkMLCM is significantly better/worse, at level of significance of 5%.

In order to better assess the effectiveness of our thresholding strategies,
Tables 3 and 4 report also the results of our algorithm using a 0.5 single thresh-
old for all labels. This approach without threshold selection is denoted with the
superscript ‘0.5’. There are several remarks we can draw for these observations:

– CkMLC exhibits the highest performances in terms of MicroF1 (CkMLCm) and
the MacroF1 (CkMLCM ) measures than the original RAkEL and TREMLC.

– CkMLCm (respectively CkMLCM ) significantly outperforms CkMLC0.5 (with-
out threshold calibration) by a noticeable margin in terms of MicroF1 (respec-
tively MacroF1). This confirms the ability of the proposed greedy thresholding
algorithm to optimize the performance measure of interest (here MicroF1 and
MacroF1).

– The strategy proposed in CkMLC to calibrate a separate threshold per label
seems to perform better than selecting one single threshold for all labels in
RAkEL++.
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– CkMLC is shown to reduce significantly the micro-average (respectively macro-
average) F-measure when optimizing MicroF1 (respectively MacroF1) com-
pared to ECC-RF. It is interesting to notice that ECC-RF computes a separate
threshold for each label by optimizing the HammingLoss performance mea-
sure.

– FBR is worse than CkMLC in all comparisons. Even if our thresholding
greedy algorithm has no optimality guarantee (as for FBR), the results in
Tables 3 and 4 confirm its ability, compared to FBR, to select the relevant
thresholds accurately by optimizing the performance measure of interest.

5 Conclusion

In this paper, we discussed a novel strategy to build and aggregate k-labelsets in
the context of ensemble multi-label classification. The proposed strategy extends
and improves upon the original RAkEL algorithm in three ways: (i) new random-
ization strategy using bagging in tandem with random k-labelsets; (ii) account-
ing for the imbalanced label representation when aggregating the base-classifiers
predictions; and (iii), a specific label threshold calibration procedure on out-
of-bag instances. Experimental results on twelve benchmark data sets indicate
that the proposed model outperforms the RAkEL algorithm and other recent
state-of-the-art MLC algorithms. Future works will be conducted to analyze the
thresholding strategy on different ensemble MLC approaches and to adapt, in a
more principled way, the aggregation procedure to the specific loss function.
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Abstract. To capture the intended action of the patient and provide assistance
as needed, the robotic rehabilitation device controller needs the intended posture,
intended joint angle, intended torque and intended desired impedance of the
patient. These parameters can be extracted from sEMG signal that are associated
with knee joint. Thus an exoskeleton device requires a multilayer control mech‐
anism to achieve a smooth Human Machine Interaction force. This paper proposes
a method to estimate the required knee joint angles and associate parameters. The
paper has investigated the feasibility of Extreme Learning Machine (ELM) as a
estimator of the operation range of extension  and The performance is
compared with Generalized Regression Neural Network (GRNN) and Neural
Network (NN). ELM has performed relatively better than GRNN and NN.

Keywords: EMG · Flexion · Extension · Interaction force · Neural network ·
ELM

1 Introduction

The conventional Robotic Rehabilitation Device (RRD) is in the pattern of industrial
robot which still behaves like master-slave manner (MIT-MANUS). One of the main
objectives of a RRD is to obtain a smooth human machine interaction in different phases
of gait cycle at the interaction point by considering patient-exoskeleton interaction is
bidirectional rather than unidirectional. To achieve bidirectional interaction, a design of
an effective wearable exoskeleton is possible where minimum interaction force is expe‐
rienced, since patient now become an active element of the conventional closed loop
control system of a RRD. In human body, brain is the controller that generates necessary
signal for muscle which is the actuator. In the exoskeleton device, Robot is the controller
and generates necessary signal for the actuator. When patient’s brain is affected due to
stroke or any other injury then brain cannot generate necessary signal for limb move‐
ment. Then Robotic Rehabilitation device shares most of the joint activities and help
patient perform the required movements. As a result of robotic therapy, the brain will
be able to generate necessary EMG signal responsible for lower limb movement in the
long run. This process is called plasticity. But for plasticity to occur, prolonged and
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intensive therapy is required. Whole process of brain plasticity has to undergo different
phases of rehabilitation. For lower limb robotic rehabilitation, knee and hip joint requires
certain set of joint kinematic and dynamic properties in each phase [1]. Dynamic param‐
eters like muscle sEMG and interaction force are always changing with respect to time
and it is very important that these parameters are captured to produce suitable control
signal to generate desired knee joint kinematics and dynamics.

2 Proposed Model

Figure 1 shows the complete proposed closed loop adaptive control schematics. It
consists of task level, Low Level and High Level controller.

Fig. 1. Wearable bidirectional exoskeleton.

In the manipulation of interaction force of exoskeleton which is interacting with
environment, it is very important that enough effort has been made to learn the envi‐
ronment. If the environment is static, then a fixed exoskeleton will interact with the
environment with a fixed interaction force. But if the environment (muscle activity) is
changing with respect to time then exoskeleton will interact with the environment with
a manipulated interaction force which is also changing adaptively [2]. So an extracted
EMG signal can be a function of stiffness, damping, mass, force parameters for knee
joint that behaves like impedance (spring, mass and damper) like knee joint rather than

584 T. Anwar et al.



rigid joint. Extreme Learning Machine (ELM) has been used here to represent the func‐
tion that maps EMG signal to above mentioned parameters so that knee joint properties
can be changed dynamically. So far researchers are able to extract muscle force, fatigue,
muscle activation time, muscle load, joint angle and torque based on EMG signal. EMG
is a bio- signal that can be analyzed in time domains and frequency domain and use
features that describes the behavior of EMG. On set and off set time of EMG signal best
describes the transient behavior of EMG signal and it is triggered when knee joint flexes
or extends to the operating range of angle. Transient of EMG also describes as to how
knee joint torque is changing [3]. To boost the system accuracy, different approach like
number of electrode per muscle, the electrode configuration, selection of good filters for
noise reduction and various features (application dependent) are used so far. The signals
that are very dynamic in nature and their composites are changing with respect of time,
for such signal frequency domain features are very useful. For dynamic signal, features
that contains derivative  from  yields higher accuracy than without . Root mean
square (RMS), Integral of absolute value (IAV), Auto Regression Coefficients, Slope
Sign Changes, Zero Crossing, Fourier Coefficients, Wavelets are most popular features
used in research [4]. The EMG signal can also be mapped to swing, stance, support,
standing, sitting and climbing phases of lower limb gait cycle [5]. Movement of any
limb of the body is a synchronized co-ordination of various muscle activities with
different degree of intensity. In standing position, estimated knee joint torque is observed
to be decreasing and torque of hip is increasing. To lift upper body, a large hip torque
is observed. Similarly, in sitting and climbing also such variations in EMG signal inten‐
sity at various muscle involved in knee and hip are observed.

3 Data Acquisition

In order to obtain the convincing experimental data, six able bodied subjects participated
in leg extension exercise. The subjects were asked to do the leg extension exercise
movement completed in 2 s, 3 s, 4 s, and 5 s. The knee joint flexion has an operational
range of 50° and extension has an operational range of 125°. But operational range of
extension has been limited to 90° due to sitting position. Two sets of muscles are
involved. 1st set is called Quardriceps which consists of Rectus Femoris, Vastus medialis
and vastus lateralis. This set is responsible for extension. The 2nd set of muscle is called
Hamstrings and it consists of bicep femoris, semitendinosus and semimembranosus.
This set is responsible for flexor movement. To extract information about information
of flexor and extensor, one channel has been used for each posture. So Rectus Femoris
is used for extensor and Bicep Femoris is used for flexor. The muscles are selection for
this specific application of posture selection based on their relatively better intensity
over other muscle and they can serve the purpose better. For angle estimation, Rectus
femoris and Vastus medialis are selected for extension angle estimation. Bicep femoris
and semitendinosus are selected for flexion angle estimation. sEMG measuring device
recorded sEMG data of these muscles simultaneously. So each subject has been made
to repeat a complete flexion and extension for six consecutive trials of EMG data. sEMG
signal acquisition equipment used in the experiment named “FlexiCom” which is a

EMG Signal Based Knee Joint Angle Estimation 585



product of Thought Technology Ltd, from Canada. The device can simultaneously
capture 10 channels of sEMG data with sampling rate at 2048 Hz for each channel. The
joint angle measurement device MPU6050, 6 axis gyroscope is used to measure knee
joint angles. The MPU6050 is incorporated with Arduino nano microcontroller mounted
the lower limb that is used to extend or flex about knee joint. The sensor MPU6050
communicate with Arduino through I2C protocol. Then collected angle data is then
transferred to Matlab in PC from Arduino through serial port. Recording of EMG and
recording of knee joint angle have been done simultaneously so that for each EMG data
there is a corresponding angle data. The sampling rate of the joint angles is selected as
100 Hz. Shaving and cleaning of the skin surface is desired of all the muscles in order
to reduce input resistance and the external disturbance. Ag/AgCl electrodes with glue
solution were used for measuring the analog sEMG signal. Each of the electrodes in a
pair was separated from each other by 2 cm. The tissue underlying the sEMG electrodes
on the skin filter the muscle action potentials. The filtering characteristics of this tissue
depend on day to day variation in the position of sEMG electrodes, skin preparation,
ambient temperature and electrical impedance. The tissue filtering characteristics are
implicitly accounted for by the sEMG to activation filter [6].

4 Signal Processing

It is prominent that original sEMG signals are contaminated during signal acquisition.
These noise signals may come from inherent noise in electronic equipment such as
industrial frequency interference, DC bias and baseline noise. Motion artifact which is
mainly caused by electrode interface and electrode cable will also cause irregularities
in sEMG data. Firing rate of the motor units and the firing frequency region 0–20 Hz
also affect the sEMG signals. So the removal of the noise required. The power density
spectra of the EMG contains most of its power in the frequency range of 5–500 Hz at
the extremes, so the signal over the high cut off frequency 500 Hz should be eliminated.
In the present work, a notch filter with 50 Hz and a band pass filter with low cut off
frequency 500 Hz should be applied to the raw sEMG signals to remove the noise signal.
The sEMG data is high pass filtered between 20 Hz to 450 Hz with a forth order recursive
Butterworth filter (30 Hz) to remove the movement artifact. Then EMG is filtered again
with Butterworth low-pass filter with a 6 Hz low-pass cut-off frequency.

5 Proposed Knee Model

Due to non-linear relationship of EMG and angle, it is very difficult to model such
system. So ELM, GRNN and NN are used as model to establish EMG-angle relationship.
Figure 2 show the steps required to prepare the data set for training the ELM model.
Most of the blocks have been described in the preceding sections. The data have been
rectified to avoid negative values of input vector. The filtered data have been resampled
to reduce the dimension of the input vector of ELM. The input vector dimension has to
match target vector dimension. So it is desired that input vector is reduced by resampling
it with sampling rate that ensure a dimension that match target vector. The data is filtered
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with a 2nd order digital filter so that there is not too much variation in the data and it
becomes relatively smoother. A recursive filter has been used which is a second order
discrete linear mode to model muscle excitation from the rectified and the low-pass
filtered EMG data. The filter used is as follows [7],

(1)

Where  the high-pass filtered, full wave is rectified and low-pas filtered EMG of
muscle j at time t,  the post-processed EMG of muscle j at time t,  the gain coefficient
for muscle j,  the recursive coefficients for muscle j, d the electromechanical delay.
A set of constraints are employed. Normalized data is quite an obvious issue to be
addressed for ELM due to too much variation in the signal. Normalization improves the
signal to noise ration. No feature has been taken of the data.

Raw sEMG 
data

Butterworth 
Filter

Resampling for 
Dimensionality 

Reduction

Rectification 
of Data by 
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absolute 

value of Data

2ndOrder 
Digital 

Filtering 
of Data

Training ELM 
Network and 
Optimization 
with various 
parameter

Testing 
ELM 

Normalization 
of Data to 

improve the 
Signal to Noise 

Ratio (SNR) 

Fig. 2. The steps required to prepare the data set for training the ELM model

Next normalized filtered data is used to train ELM model. To optimize the perform‐
ance of ELM as joint angle estimator the node activation function, number of hidden
layer neuron are changed to improve accuracy.

6 Data Analysis

For estimation of flexion and extension angle, The Generalized Regression Neural
Network (GRNN) has been used with radial basis activation function in neurons, Feed
forward Neural Network (NN) is used with 150 hidden layer neurons and ‘tansig’ as
activation function in the neurons [8]. GRNN has Mean Square Error (MSE) of 14.9058,
NN has MSE of 13.9623. ELM exhibits an MSE of 9.8746; ELM is trained with 300
hidden layer neurons and node activation function as ‘Sig’. Now the ELM model is
optimized with parameter tuning the testing of model with testing data set. ELM is
relatively more consistent along the entire range of extension angles. The estimated
angle decently follows the knee joint target angles and does not change so abruptly as
it is very conspicuous in Figs. 4 and 5. The ELM regression model has been optimized
with 200 hidden layer neurons and activation function ‘Triangular Basis Function’ at
the hidden layer.
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ELM activation Function 

MSE 
‘Sig’ ‘Sin’ ‘hardlim’ ‘tribas’ ‘radbas’ 

11.9248 11.6478 10.3921 9.8746 11.08178

ELM Number of Hidden Nodes 

MSE 
50 100 150 200 300 

12.3659 11.9831 11.8889 11.8889 11.9303 

Fig. 3. EMG data before filtering and after filtering

The changes in number of hidden layers nodes do not make any significant changes
in the system accuracy. But accuracy does improve with the change in node activation
function. Figure 3 shows the Channel 1 and Channel 2 data before filtering and after
filtering. There are 26 trials of extension data in each channel. The 26 available data has
been divided into 5 equal test data sets and each one of them has been tested on the ELM
Regression Model. The average Mean Square Error of five test sets has been shown in
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the table above. For training and testing both are done with ELM type as regression.
Regression is required when we are trying to fit a function (activation function or kernel
function) into our EMG data that best estimates knee joint angle.

Fig. 4. Training the ELM with 5 different sets of training data.

Fig. 5. Cross validation of ELM with 5 sets of testing data.
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7 Conclusion

The angle estimation of GRNN and NN has high MSE and too much fluctuation in
estimation make GRNN and NN not suitable estimator. ELM regression has low MSE
and very efficiently estimates joint kinematics (Knee joint angle) which is necessary to
generate actuator trajectory of the robotic exoskeleton.
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Abstract. In the context of constantly evolving carry-on technology
and its increasing accessibility, namely smart-phones and tablets, a
greater need for reliable authentication means comes into sight. The cur-
rent study offers an alternative solution of uninterrupted testing towards
verifying user legitimacy. A continuously collected dataset of 41 users’
touch-screen inputs provides a good starting point into modeling each
user’s behavior and later differentiate among users. We introduce a sys-
tem capable of processing features based on raw data extracted from
user-screen interactions and attempting to assign each gesture to its orig-
inator. Achieving an accuracy of over 83 %, we prove that this type of
authentication system is feasible and that it can be further integrated as
a continuous way of disclosing intruders within given mobile applications.

1 Introduction

The need for technology increases every day, from using basic electronic devices,
even up to efficiently organizing our daily activities. The mobile market embraces
new consumers steadily, facilitating access to thousands of applications. The
fact that mobile phones can successfully replicate most of the computers’ fea-
tures leads to the imperative upgrade towards a lower-risk security. In terms
of rejecting access to illegitimate users, most smart-phone security is limited to
setting a Personal Identification Number (PIN) (usually) or a graphical pattern
for screen unlock. Additionally, each application may require a user-name and
password in order to allow access, but many users choose to opt for permanently
“signed in”, increasing the risk of unauthorized access. Considering all that, an
attacker, if having the means of entering someone else’s phone (e.g. shoulder
surfing or guessing a common password), he/she might gain permanent access
to that phone or have at his/her disposal a sufficiently amount of time to retrieve
the owner’s personal information.

An authentication system which can perform seamless licit user acknowledg-
ment without disrupting in any way the user’s activity is needed. We propose a
model that can discriminate among users based on data taken from user-screen
interactions (e.g. x,y coordinates, time). Our project stands out from previous
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 591–598, 2015.
DOI: 10.1007/978-3-319-26532-2 65
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similar work in the field in terms of feature exploitation engaged in different
types of classification and its results. Moreover, our aim is to achieve a high
accuracy in the smallest amount of time possible while distinguishing gestures
for a relatively large number of users (41 users, leading to a total of 912,133
records), using different types of classifiers. The results are conclusive enough to
infer that this type of authentication is relevant, its error rate can be lowered
and even if it does not perform at its best as a standalone authorization system,
it represents a valid and suitable complementary security solution for mobile
devices.

2 Previous Work

The research in this field has become more prominent in the past couple of years,
but there are discussions related to this topic at least since 2011 (mouse dynam-
ics [6], biometric gestures [4]). One of the former experiments involved a Sensor
Glove [2] for recording data such as screen coordinates, finger direction, speed,
etc., but became obsolete due to the usage difficulty. Also, it is uncertain if wear-
ing the glove determined an unnatural behavior of the handler, entailing artificial
dissimilarities among users. However, they proved that, when having recorded
the features previously mentioned from 40 users, a system can be designed to
lead to a False Acceptance Rate (FAR) of 4.66 % and a False Rejection Rate
(FRR) of 0.13 % for user authentication (with Random Forest, Decision Tree
and Bayes Net).

Nowadays, the Android API has built-in functions allowing an application
to acquire basic data about touch-screen interactions. Touchalytics [3], a project
gathering data through 2 types of applications - a document reader and an image
comparison game, collected data from 41 participants across multiple sessions
during a day, but also at one week distance. Their approach consists in applying
two classifiers: support-vector machine (SVM) and k-nearest-neighbors (kNN)
for each user, in a one-vs-rest classification, reaching a 0 % Equal Error Rate
(EER) during the same authentication session, 2 %−3 % in-between sessions and
almost 4 % on data recorded the following week. Using this dataset, we decided
to tackle the problem differently: given all users’ input, what is the best accuracy
obtained with one-vs-one classifiers, instead of one-vs-rest, that way solving a
much more difficult problem: dissociating the gestures of all users.

More recent studies, such as TIPS [1], came to the conclusion that the con-
text of each application plays a critical role when discriminating among users’
inputs. Therefore, they modified the Android kernel so that interactions were
recorded from all applications, not just one. They used One Nearest Neighbor
(1NN) and Dynamic Time Warping (DTW) in order to capture variances among
users’ touch screen data by saving several gesture templates per application and
using them for comparing data over time and across users. Their system reached
90 % accuracy within what they reported as “real-life naturalistic conditions”.
However, in order to benefit from that kind of security system, the user needs to
install a different version of Android OS and that constitutes not only a privacy
issue, but can also lead to losing the device’s warranty in most cases.
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3 Proposed Approach

3.1 Dataset

The dataset we employed was gathered for extracting biometrics also for authen-
tication1. We created several features using the given raw data for extracting our
own sets of touch gestures and characteristics needed for best shaping each user’s
input. In Fig. 1, all data recorded for the first 8 users is plotted. The fact that
even the human eye can differentiate among these is conspicuous.

Fig. 1. Input data for the first 8 users. Every point marks a touch with its true coor-
dinates on screen; pressure is represented by color” the higher the pressure, the darker
the color; the dimension of bullets on screen is proportional to the area recorded for a
particular touch.

For each user-screen interaction, the dataset contains: phone ID, User ID,
document ID, action, phone orientation, Ox-coordinate, Oy-coordinate, pressure,
area covered and finger orientation. The “Phone ID” column identifies the phone
and the experimenter who conducted data recording. “Doc ID” is a number
directly related to the ongoing session. There were 4 Wikipedia articles (IDs 0–2
and 5) and 3 comparison games (IDs 3, 4 and 6). The “Action” column may take
one of the following values: 0 - touch down, 1 - touch up or 2 - displacement.
Timestamp measures the absolute time (milliseconds since 1970).

This data was collected from 41 users operating on 5 Android phones; a dis-
tinct stroke is considered an input sequence starting with a touch-down action
and ending with a touch-up action (e.g. records for clicks span from action 0
to action 1, without any coordinate displacement in-between). Since the partic-
ipants received a similar device to their own and therefore the time allocated
1 http://www.mariofrank.net/touchalytics/.

http://www.mariofrank.net/touchalytics/
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usually for getting familiar with the phone could be neglected, most of data was
recorded during the same day. The rest of it was logged a week after the initial
experiment took place, permitting an inter-week analysis.

3.2 Feature Processing

As previously shown, the way data is stored makes it easier to divide it into
smaller subsets, depending on the current action. Every gesture starts with
a “touch down” (0) action, followed by several “move on screen” (2) actions
and usually finished with a “touch up” (1) action. Each subset (gesture) was
processed and transformed into one instance in the final dataset used for train-
ing and testing, containing in the end 64 features (derived from the initial 10).
Those features are either the same as the initial dataset (e.g. “docID” which
remains the same for the entire gesture), extracted with descriptive statistics, or
computed for each particular set of entries which forms a gesture.

Initial Features. Some of the initial features remain constant throughout the
entire gesture. “docID” and “orientation” do not change during a touch-down
touch-up sequence of events. Therefore, these are very important and are kept
as features in the final dataset. The distance between two points with screen
coordinates is computed as Euclidean distance, speed (velocity) is distance over
time and acceleration is speed over time.

Features Obtained with Descriptive Statistics. Considering that multiple
touch events constitute a given gesture for a certain user, it is very important
to memorize the particularities of the gesture with respect to finger orienta-
tion, pressure, area covered, distance on screen, end-to-end distance. In terms
of pressure and area, it was found to be very important to keep the mean, the
minimum, the maximum, the mid one and the standard deviation of the set of
pressures/areas for each gesture.

We extract (for each gesture) the mean, maximum, mid and standard devi-
ation, having distance(s), speed(s) and acceleration(s) for each two consecutive
points (that make up a segment). Screen coordinates proved to be very impor-
tant in the final modeling of data. We stored the start point, the stop point,
the minimum, the maximum, the mid, the mean and the standard deviation for
both x and y coordinates. A user tends to be almost repetitively precise when
touching the screen targeting a certain movement (e.g. click, scroll, swipe). Also,
we compute the mean distance, speed and acceleration for the initial 3 and final
3 segments as they tend to capture additional information.

Computed Features. On the column “click” is stored 0/1 if the user
had/hadn’t moved his finger on the screen in between touching and releasing
the finger of the screen.
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We consider a trajectory as being a trail of points characterized by coordi-
nates on screen, speed and acceleration, contained by a single gesture. Consider-
ing this, we determined as being particularly important to model a trajectory for
each gesture of each user. After some research and several attempts, it resulted
that the best way of doing this is by modeling a trajectory as a 3rd degree
polynomial function of time, with 4 coefficients - matrices of shape (2, 1).

A deviation of a certain (intermediate) point in relation to the line given
by initial and final points of a trajectory can show the curvature of a complete
gesture and it was computed as the distance from a point to a line (given by two
points). Then we computed maximum, median, mean and standard deviation of
all deviations of a gesture and selected them as features for the final set.

3.3 Models and Tools

After each step of processing we applied several models, usually including
AdaBoostClassifier - an ensemble method implementing a boosting technique
in which many classifiers with weaker performances are built into one stronger
classifier, for instance over DecisionTreeClassifier. For each of the trained clas-
sifiers we used GridSearchCV - a tool found in Scikit-learn [5] for searching the
best parameters for a specific estimator, applied over CrossValidation - a tool for
computing a more accurate score than the one obtained for only one train-test
cycle. It resides in splitting the data (train, validation) for a number of times
(default 3) and applying the same estimator with the same parameters each
time, obtaining an array containing the scores for each run. The final score was
computed as a mean among those contained by the array.

Other models (from Scikit-learn [5] or XGBoost2) can be found in the final
results, where all 64 features were present. Their descriptions are available usu-
ally in Scikit-learn, by following the links. Most of them are ensemble methods
applied over much simple estimators such as Decision Tree.

4 Results

Before any further modification on raw data, we computed GridSeachCV over
AdaBoostClassifier with DecisionTreesClassifier, in order to obtain an initial
cross validation score for further references and comparisons. The running time
was approximately 7 min and the accuracy for the untouched dataset, having
only the relevant features (e.g. time stamp is not a relevant feature) was 35.90 %.
It is not very small, but certainly not enough to discriminate against similar
users. Here, even the same user would not manage to authenticate on his/her
own phone.

The next steps were based on extracting new features, from every complete
set of actions that define a gesture. Some features increased the accuracy very lit-
tle on their own, but were very powerful combined with similar statistics for the
2 https://github.com/dmlc/xgboost.

https://github.com/dmlc/xgboost
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Fig. 2. AdaBoost Classifier over Decision Trees learning curve with respect to parame-
ters for AdaBoost number of estimators between 150−300 and learning rates between
0.2−0.6. darker dots represent better results.

Table 1. Importance of features extracted after fitting ExtraTreesClassifier

Feature name Feature importance (out of 100 %)

maxPressure 3.7839

meanPressure 3.5867

midPressure 3.3212

docID 2.8676

initPressure 2.8258

meanArea 2.7452

minX 2.5355

maxX 2.5074

startX 2.3952

stopX 2.3818

same initial feature. For instance, pressure was a strong feature from the begin-
ning, but transformed only as the mean per gesture, it loses power. Therefore,
we produced as final features along with the mean pressure, also the minimum,
the maximum, the mid one and the standard deviation pressure. This ensures a
score increase by almost 5 %.

AdaBoostClassifier was one of the best estimators on our data. Figure 2 shows
learning curves for AdaBoost over DecisionTreeClassifier, in order to find best
suited parameters which obtain the greatest score using Cross-Validation. The
best score, achieved for a depth of 16, for the Decision Tree, and number of
estimators equal to 270 and a learning rate of 0.4, for AdaBoost Classifier, was
82.83 %.

In Table 1 are showed the first 10 features, according to their importance
when training the ExtraTrees classifier. Pressure alone represents over 13 % of
the total feature importance and also some of the most relevant features were
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Table 2. Accuracy and duration for several estimators

Estimator Accuracy(%) Running time (s)

XGBoost 83.60 774

AdaBoost over DecisionTree 82.73 367

AdaBoost over ExtraTrees 82.05 639

ExtraTrees 81.85 19

RandomForest 80.24 551

GradientBoosting 77.10 2201

Bagging over DecisionTree 77.04 327

given by user’s coordinates on screen. Features with (almost) 0 % importance
were removed from dataset.

After all features were extracted, the next steps include running different
estimators, finding the best set of parameters for each of them, preferable using
Grid Search, and comparing the results (depicted in Table 2).

5 Conclusions

The dataset provided by Touchalytics team was really appreciated and demand-
ing into conceiving new and relevant features. The fact that it contained mainly
raw data (e.g. pressure, timestamp) was both challenging and convenient. It is
hard to imagine a set of features that are important to our case, but, once you
have an idea, it is easier to compute them out of an essential given dataset.

The best score obtained of 83.60 % demonstrates that an authentication of
users can be made, using solely their interactions with smart-phone screens.
Even several minutes can be a little too long only for training, but the model
can be trained previously and tested with a smaller set of gestures at a time.
Therefore, it does not lose the feeling of real-time authentication. Even if we
intend to retrain the model after continuously recording data, the faster model
obtains an accuracy of 81.85 % in just a few seconds.

Considering the outcomes of the current state-of-the-art research, it is safe
to assume that the user’s touch-screen input can be used as a continuous form
of authentication within the context of a specific application. Furthermore, the
accuracy can be improved when combined with other types of authentication.
Moreover, it will be a binary classification task, where the legitimate user will
have a complete recorded gesture-profile and new input data has to be compared
only against the owner’s data, not against other 40 users, as in our case.

6 Future Work

There are several main improvements with respect to our work. The first is
to implement our system on a phone, gather real-time data, and re-analyze
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its performance. In addition, users often give more feedback than the accuracy
score itself, if it is a matter of security on their phones. There are still some
unanswered questions, raised during the developing and also collecting results
stages of our work. For instance, it is important to know if there are people with
similar touch-patterns and they are the ones who always get mis-classified data.
Also, it is important to know how hard it is for a human or agent to emulate
other user’s behavior when interacting with the screen.

Another direction would be to develop a model that analyses time-series data
(e.g. use Recurrent Neural Networks: having a set of consecutive gestures, find
an appraisal for the next one). This matters because, usually, the user’s behavior
changes in time and, at a certain point, he/she would not be able to authenticate,
and the model will become purposeless. One other important betterment resides
in training various Neural Networks on the data. Auto-encoders are suitable for
obtaining new features, with a non-linear method, which can be furthermore
trained and improve overall accuracy.
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Abstract. Although deep learning shows high performance in pattern
recognition and machine learning, the reasons are little clarified. To
tackle this problem, we calculated the information theoretical variables
of representations in hidden layers and analyzed their relationship to the
performance. We found that the entropy and the mutual information
decrease in a different way as the layer gets deeper. This suggests that
the information theoretical variables may become a criterion to deter-
mine the number of layers in deep learning.

Keywords: Entropy · Conditional entropy · Mutual information

1 Introduction

Deep learning, a multi-layered neural network, has been changing the history
of pattern recognition and machine learning in performance [1] and is applied
to computer vision, automatic speech recognition and translation, and so on
[2,3]. However, the reasons of its high performance are little clarified since lay-
ered models have singular points that are difficult to treat statistically [4,5]. In
addition, the performance has improved by combining several heuristics such as
pre-training [1,6] and drop-out [7].

We tackled the problem of why deep learning works well by analyzing its
representations in hidden layers from the information theoretical point of view.
Let us consider the simplest case where the network has the input, hidden and
output layers and the activation functions are linear (Fig. 1):

hj =
I∑

i=1

wjixi, j = 1, . . . , J (1)

yk =
J∑

j=1

vkjhj , k = 1, . . . ,K (2)

where I, J and K are the number of nodes in the input, hidden and output layers.
Suppose that we set I = K and train the network so that it becomes an encoder,
that is, minimizes the squared errors,

∑
i |xi−yi|2, for training samples. Then, it

c© Springer International Publishing Switzerland 2015
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Fig. 1. Linear neural network.

is easily shown that the three-layered network works as the principle component
analysis (PCA) and projects a vector x = {xi} onto the space spanned by the
first and second principal components of training samples. Since the PCA is
equivalent to the maximum entropy method, autoencoder may be trained to
maximize the entropy of the data. In fact, the denoising autoencoder maximizes
a lower bound of the cross entropy (or the mutual information) between a layer
and the succeeding layer for each local connection [8].

Another key is the discrepancy between the classes. Since deep neural net-
works are mainly used as classifiers, the labels should be taken into account. The
key is considered as the variance between the classes and the variance within the
classes in the Fisher discriminant analysis (FDA), assuming that all the distribu-
tions are Gaussian. From the information theoretical point of view, the variance
within the classes is the conditional entropy of data given labels to be minimized
and the variance between the classes is the conditional entropy of labels given
data to be maximized.

In this paper, to see how deep learning “encodes” input data in the hidden
layers, we trained a deep neural network with major (pre)training methods using
real data (MNIST database) and investigated the entropy and the conditional
entropies in the hidden layers. As results, we found that the entropies of the
representations of data and their labels remain high in early layers and decrease
in higher layers and that the mutual information between the representations
and the labels as well as the prediction performances decrease in earlier layers.
This suggests that the information theoretical variables may become a criterion
to determine the number of layers in deep learning.

2 Materials and Methods

2.1 MNIST Database

The MNIST database was used for the experiments [9]. Each image was deci-
mated to one fourth of the original (196 pixels) by merging four pixels to one
to reduce the complexity for brevity. 70,000 images in 10 categories are divided
to three sets for training (50,000 images), validation for early-stopping (10,000
images) and test for evaluation (10,000 images).



Information Theoretical Analysis of Deep Learning Representations 601

2.2 Deep Neural Network

Our deep neural network has one input layer (196 nodes), six hidden layers (150,
120, 90, 60, 30, 10 nodes, respectively) and one output layer (10 nodes), corre-
sponding to the number of pixels and that of categories (Fig. 2). The activation
function of each node in the hidden layers was the sigmoid while the category
was determined by winner-take-all in the output layer.

2.3 Learning Algorithms

Pretraining is an essence of deep learning. Among the restricted Boltzmann
machine [1], the autoencoder [8] and their variants, we chose four representative
methods below:

1. Stacked Autoencoder (SAE) [10]
2. Stacked Denoising Autoencoder (SDAE) [8]
3. Stacked Contractive Autoencoder (SCAE) [11]
4. Deep Belief Network (DBN) [1]

After pretraining with one of the algorithms above, the network was fine-
tuned using the stochastic gradient method with early-stopping using the vali-
dation data.

2.4 Evaluation

The entropy and the conditional entropies,

H(hi, t) = E
[− log2 P (hi, t)

]
, (3)

H(hi|t) = E
[− log2 P (hi|t)], (4)

H(t|hi) = E
[− log2 P (t|hi)

]
, (5)

were calculated for the deep neural network with each algorithm, where hi =
{hi

j} is the activation of the jth node in the ith layer and is binarized to 0 or
1 using the threshold 0.5. In our analysis below, the mutual information I(hi, t)
was considered instead of H(t|hi) since they are essentially equivalent and the
former seems easier to understand the meaning due to

I(hi, t) = H(t) −H(t|hi), (6)

H(hi) = H(hi|t) + I(hi, t). (7)

The prediction error of the deep neural network as a classifier was also eval-
uated to see the relationship between the information theoretical variables and
the performance. Here, the prediction error of each layer was calculated using
a linear classifier that outputs the signature of a weighted sum of the hidden
nodes.
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Fig. 2. Structure of our deep neural network.
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(a) Entropy H(hi, t) (b) Conditional Entropy H(hi|t)

(c) Mutual Information I(hi, t) (d) Prediction Error of Classifiation

Fig. 3. Entropies of hidden nodes trained by the four methods and their performance.

3 Result

As the index of a hidden layer i increased, the entropy H(hi, t), the conditional
entropy H(hi|t), and the mutual information I(hi, t) decreased for any method,
without a small number of exception (Fig. 3a,b,c). However, the prediction error
was not monotonically decreasing but took a minimum when i = 3, 4 or 5,
depending on the pretraining algorithms (Fig. 3d).

4 Discussion

4.1 Entropy, Mutual Information and Performance

The conditional entropy H(hi|t) is a kind of variances within the classes and
the mutual information I(hi, t) corresponds to the variance between the classes.
As the FDA maximizes the ratio of the latter to the former as a separation
criterion, we plotted the performance vs. the ratio I(hi, t)/H(hi|t) and found
that the curves have an L-shape (Fig. 4), indicating that the ratio may be a
criterion to stop increase of layers.
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Fig. 4. The performance of DNN vs. the ratio of MI/CE.

4.2 Differences in Pretraining Algorithms

DBN shows a large difference from the others, SAE, SDAE and SCAE, in the
entropy and the mutual information (Figs. 3, 4). This seems because DBN is
based on the energy minimization while the others explicitly consider encoding.

Although SAE, SDAE and SCAE have a similar tendency, SDAE and
SCAE perform better than SAE. This will be an effect of regularization in the
algorithms [8,11].

5 Conclusion

We analyzed the representations in hidden layers of deep neural networks from
the information theoretical point of view. We calculated the entropy and the
conditional entropies in each of the hidden layers when the deep neural network
was trained with one of the four major pretraining algorithms and found that
the entropies of the representations of data and their labels remain high in early
layers and decrease in higher layers while the mutual information between the
representations and the labels decrease in earlier layers. The ratio of the mutual
information to the conditional entropy is related to the prediction performances,
suggesting that the information theoretical variables may work as a criterion for
model selection.
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Abstract. A multi-objective optimization problem is an area concerned
an optimization problem involving more than one objective function to
be optimized simultaneously. Several techniques have been proposed to
solve Multi-Objective Optimization Problems. The two most famous
algorithms are: NSGA-II and MOEA/D. Harmony Search is relatively
a new heuristic evolutionary algorithm that has successfully proven to
solve single objective optimization problems. In this paper, we hybridized
two well-known multi-objective optimization evolutionary algorithms:
NSGA-II and MOEA/D with Harmony Search. We studied the effi-
ciency of the proposed novel algorithms to solve multi-objective opti-
mization problems. To evaluate our work, we used well-known datasets:
ZDT, DTLZ and CEC2009. We evaluate the algorithm performance using
Inverted Generational Distance (IGD). The results showed that the pro-
posed algorithms outperform in solving problems with multiple local
fronts in terms of IGD as compared to the original ones (i.e., NSGA-II
and MOEA/D).

Keywords: Multi-objective optimization problems · Harmony search
algorithm · Multi-objective optimization evolutionary algorithms

1 Introduction

Multi-objective Optimization Problems (MOPs) is an area concerned with opti-
mization problems that have two objective functions or more to be optimized
simultaneously [4]. It can be found everywhere in nature, and we deal with such
problems on a daily basis. From a person who tries to optimize a budget on a
supermarket, trying to get better quality products for less amounts of money;
industries trying to optimize their production, reducing their production costs
and increasing their quality. The objectives in most of engineering problems are
often conflicted. (i.e., maximize performance function, minimize cost function,
maximize reliability function, etc.). In this case, one solution would not sat-
isfy both objective functions and the optimal solution of one objective will not
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necessary be the best solution for other objective(s). Therefore, different solu-
tions will produce trade-offs between different objectives and a set of solutions is
required to represent the optimal solutions of all objectives. One of the effective
approaches that solve MOPs is Multi-Objective Evolutionary Algorithm.

EA was inspired by natural evolution, and relies on the concept of survival
of the fittest. Evolutionary method imitating the evolution principle of nature
to reach best solutions. In general, all evolutionary algorithms start with an
initial population of random solutions, then the population is updated in each
generation based on fitness function by using three operators: selection, repro-
duction and mutation. EA runs until reaches the wanted convergence. One of the
important feature of evolutionary algorithm is that it have a population nature,
which is very useful to solve MOPs. Since when we tend to solve MOPs, we
seek to find a set of non-dominated solutions. EA has the ability to get a set of
non-dominated solutions in each generation. EA characterized by less allergies
to shape of PF and continuity, robustness and the ability to be implemented in
parallel mode [1]. The previous reasons make EA suitable for solving MOPs.

Harmony Search (HS) algorithm, an Evolutionary Algorithm (EA), was pro-
posed by Geem et al. [6]. It is inspired by musical improvisation process, where
a group of musicians improvise the pitches of their musical instruments seek-
ing for a fantastic melody on determined aesthetic estimation, practice after
practice. Similarly, in optimization, iteration after iteration, HS seeks a good
enough solution by evaluating a set of decision variables using fitness function.
HS proved to be successful in many single objective optimization problems such
as: multi-buyer multi-vendor supply chain problem, timetabling, and flow shop
scheduling [7,9,12]. HS can be extended to solve MOPs in collaboration with
Multi-Objective Evolutionary Algorithm (MOEA) frameworks, which have the
ability to solve this kind of problems.

There are many frameworks for solving MOP. The following are the frame-
works we used to develop our novel algorithms based on HSA. This work summa-
rizes part of the results from the authors’ master thesis [3]. Non-domination
Sorting Genetic Algorithm (NSGA-II) [5] is based on the genetic opera-
tors, Pareto optimality and density estimation. Multi-objective Evolutionary
Algorithm Based on Decomposition (MOEAD) [10,13] framework breaks
a Multi-objective Optimization Problem (MOP) into several number of scalar
optimization sub problems and starts to optimize them simultaneously by taking
information from its neighbor sub problems.

2 Methodology

2.1 The Proposed Hybridized Frameworks

Harmony Search (HS) Algorithm: HS has been proved its success in many
optimization problems such as multi-buyer multi-vendor supply chain problem,
timetabling, flow shop scheduling [7,9,12], and others as recorded in [8]. HS starts
with a set of solutions stored in Harmony Memory (HM). At each generation, a
new harmony is generated as a new solution using three operators: (a) memory
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consideration, to select the variable values from HM; (b) random consideration,
to maintain the diversity of the new solution, and (c) pitch adjustment to do
local enhancements.

HS need a set of parameter to be tuned:

1. HMCR: The Harmony Memory Consideration Rate, to determine the number
of decision variable that will be selected in New Harmony from HM.

2. HMS: The Harmony Memory Size, maximum number of solutions that will
be stored in HM.

3. PAR: The Pitch Adjustment Rate, to determine the rate of decision variables
will be changed to their neighboring values.

4. BW: The bandwidth, to determine the allowed amount of change in the pitch
adjustment operator.

5. NI: The number of iterations.

Harmony Search has been used in large number of applications and problems
in single objective optimization problems. HS can be extended to solve multi-
objective optimization problems by using multi-objective evolutionary algorithm
(MOEA) frameworks. We propose two hybrid multi-objective evolutionary algo-
rithm frameworks based on Harmony Search. These modified frameworks are
based on previous frameworks [5,10].

Harmony NSGA-II: Initially, Harmony NSGA-II generates an initial HM of
size HMS randomly. Then non-dominated sorting procedure is used to sort the
population based on Pareto optimality, best solution is given rank 1 and the
second best rank 2 and so on. After that Harmony NSGA-II use Harmony oper-
ators to create a new Harmony from the original HM and insert it into a new
empty population with size HMS (HM2), creation process continues until it is
filled HM2. The two populations (HM and HM2) are combined to form a large
population of size 2HMS. Again the sorting procedure runs to sort the two pop-
ulations to several ranks rank 1,. . . , rank m. Figure 1 summarizes the steps of
Harmony NSGA-II.

Harmony MOEA/D: MOEA/D was proposed by [10], this algorithm break
a Multi-objective Optimization Problem (MOP) down into several number of
scalar optimization sub-problems and starts to optimize them simultaneously by
taking information from its neighbor sub-problems. To decompose a MOP into
several number of scalar optimization sub-problems there are many number of
approaches (e.g., weighted sum). MOEA/D uses the Tchebycheff approach to
decompose a MOP.

Harmony MOEA/D need to tune a set of parameters: N : the number of sub-
problem of MOP (represent population size), N weight vectors (are generated
by uniform distribution) and T : the number of the weight vectors in the neigh-
borhood of each weight vector (as desired). Then Harmony MOEA/D creates
an empty External Population (EP) to be used as the set of non-domination
solutions, next Harmony MOEA/D finds the indexes of closest weight vectors
of size T formulating B sets. Next Harmony MOEA/D generate an initial pop-
ulation HM randomly. For all solutions in HM Harmony MOEA/D computes
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Fig. 1. Harmony NSGA-II steps.

F(x) which consist of a set of f objective functions with size m. Lastly, in initial-
ization process Harmony MOEA/D assigns a target point in objective space Z
from problem-specific method to guide the solutions towered Pareto front and in
each iterations Z vector is modified. Figure 2 summarizes the steps of Harmony
MOEA/D.

3 Experimental Results

In this section, we first present a numerical experiment studies for our four
algorithms. In addition we present parameter settings.

Fig. 2. Harmony MOEA/D steps.
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Harmony-NSGA-II and Original NSGA-II: The following is a summary of
parameter settings. This study is evaluated on different test instances, these test
instances differed in terms of computational complexity, so different maximum
number of function evaluations (FE) are used to different test instances. Based
on literature [11] we set FE as follows: 20,000 for ZDT family and DTLZ1 and
DTLZ7, 5000 for DTLZ2, DTLZ4, and DTLZ5, 15,000 for DTLZ6, and 50,000
for DTLZ3 and UF family. The number of independent runs is 15 [11]. The
population size and Harmony memory size (HMS)is 100 for bi-objective problems
and 200 for three objectives for both algorithms [11].

The parameter setting for NSGA-II is as follows [11]: probability of crossover
is 0.9, probability of mutation is 1/number of variables. The distribution
index for SBX crossover is 10 for bi-objective problem and 15 for 3-objectives
one, distribution index for mutation is 20 for both bi-objective problem and
3-objectives one.

The harmony parameters are set from literature and empirically as follows:
memory consideration rate (MCR)= 0.95 empirically, some of MCR values are
tested like 0.90, 0.94, 0.98. The pitch adjustment rate (PAR)= 0.4 empirically,
some of PAR values are tested like 0.1, 0.2, 0.5. The bandwidth (bw)= 0.01 [2,7].

We compare Harmony-NSGA-II and NSGA-II on the three aforementioned
datasets (22 test instances). Table 1 shows the minimum, median, and maximum
of the IGD-metric values of the 15 independent run. Harmony-NSGA-II outper-
formed in 13 problems out of 22 problems in total. Meantime in non-convex
problem tests (ZDT2, ZDT6 and UF4) showed a rapprochement in IGD val-
ues in both algorithms. The nondominated solutions of the Harmony-NSGA-II
algorithm showed slightly lower IGD values when compared to the NSGA-II
algorithm in this type of problems. Test problems ZDT4, DTLZ1, DTLZ3, UF1
and UF3 have multiple local fronts. When the comparing Harmony-NSGA-II
algorithm with the NSGA-II algorithm in DTLZ1, DTLZ3 and UF1 test prob-
lems the Harmony-NSGA-II algorithm showed significant lower IGD values. This
indicates the efficiency of the Harmony-NSGA-II algorithm in handling problems
with multiple local fronts. The success of the pitch adjustment operator in reach-
ing global region really was helpful for Harmony-NSGA-II algorithm to achieve
a significantly faster convergence.

On the other hand, Harmony-NSGA-II failed to approximate Pareto fronts of
ZDT4 and UF3. The problem is that Harmony-NSGA-II stuck in local minima
which causes higher median IGD values for the Harmony-NSGA-II algorithm.
This is due to the unfortunate tuning of the PAR. UF3 has a slightly high
IGD values. We can see that Harmony- NSGA-II has the preference to solve
problems that have multiple local fronts. The test problems DTLZ2, DTLZ4,
DTLZ5, UF2, UF4, UF7 seems to be easier as compared with other problems.
Relatively, Harmony-NSGA-II and NSGA-II have similar IGD values in these
test problems, what causes this comparable performance could be the random
consideration operator that seeks to increase the diversity of the population by
inserting dominated solutions to the population.



Hybedrized NSGA-II and MOEA/D with Harmony Search Algorithm 611

Table 1. The minimum, median (best is in bold), and maximum of the IGD-metric
values for Harmony-NSGA-II, NSGA-II, Harmony-MOEAD and MOEAD.

Test problem Type HarmonyNSGA-II NSGA-II HarmonyMOEAD MOEAD

ZDT1 Best 6.54e-04 7.21e-04 1.37e-03 2.55e-04

Median 8.03e-04 2.52e-03 1.86e-03 3.14e-04

Worst 1.14e-03 8.13e-03 2.18e-03 4.54e-04

ZDT2 Best 9.98e-04 8.20e-04 2.26e-03 1.82e-04

Median 1.12e-03 2.50e-03 3.01e-03 2.80e-04

Worst 1.32e-03 5.01e-03 4.01e-03 4.16e-04

ZDT3 Best 6.63e-04 5.18e-04 9.15e-04 3.13e-04

Median 5.01e-04 2.66e-03 1.19e-03 3.53e-04

Worst 7.67e-04 3.23e-03 1.76e-03 5.09e-04

ZDT4 Best 1.68e-02 7.09e-04 1.76e-04 6.75e-02

Median 8.33e-02 4.22e-03 1.64e-04 2.08e-01

Worst 2.19e-01 1.04e-02 4.23e-03 4.45e-01

ZDT6 Best 1.97e-04 6.71e-04 1.59e-04 1.39e-04

Median 2.11e-04 7.73e-04 1.91e-04 1.42e-04

Worst 2.41e-04 8.89e-04 2.42e-04 1.83e-04

DTLZ1 Best 7.40e-04 1.38e-02 4.69e-03 5.23e-02

Median 6.28e-03 2.63e-02 1.28e-02 3.05e-02

Worst 1.22e-02 5.01e-02 4.16e-02 1.07e-01

DTLZ2 Best 6.08e-04 6.49e-04 3.23e-03 2.73e-03

Median 7.55e-04 5.25e-04 4.08e-03 3.92e-03

Worst 1.04e-03 8.05e-04 4.71e-03 4.57e-03

DTLZ3 Best 1.75e-02 2.11e-01 8.62e-02 1.59e-01

Median 5.20e-02 3.01e-01 1.33e-01 4.86e-01

Worst 8.19e-02 5.31e-01 2.00e-01 1.22e+00

DTLZ4 Best 8.45e-04 8.14e-04 8.43e-03 8.78e-03

Median 9.24e-04 9.64e-04 9.76e-03 1.09e-02

Worst 7.59e-03 1.31e-03 1.06e-02 1.27e-02

DTLZ5 Best 8.65e-05 4.04e-05 1.34e-03 1.40e-03

Median 1.54e-04 4.83e-05 1.40e-03 1.44e-03

Worst 2.29e-04 9.23e-05 1.45e-03 1.45e-03

DTLZ6 Best 4.62e-04 2.06e-02 1.21e-02 6.40e-03

Median 5.83e-04 2.20e-02 2.21e-02 1.74e-02

Worst 1.02e-03 2.37e-02 3.35e-02 3.51e-02

DTLZ7 Best 2.84e-03 1.73e-03 2.89e-02 2.29e-02

Median 3.32e-03 1.90e-03 3.00e-02 2.71e-02

Worst 3.55e-03 1.99e-03 3.07e-02 2.97e-02

(Continued)
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Table 1. (Continued)

Test problem Type HarmonyNSGA-II NSGA-II HarmonyMOEAD MOEAD

UF1 Best 2.98e-03 4.04e-03 1.68e-03 1.68e-03

Median 3.69e-03 6.86e-03 2.56e-03 2.08e-03

Worst 4.64e-03 2.23e-02 3.79e-03 7.32e-03

UF2 Best 3.51e-03 1.04e-03 1.49e-03 9.16e-04

Median 3.45e-02 3.45e-02 1.75e-03 1.88e-03

Worst 3.86e-02 1.50e-02 2.68e-03 6.15e-03

UF3 Best 7.72e-03 4.07e-03 5.04e-03 4.78e-03

Median 8.54e-03 6.83e-03 6.69e-03 8.37e-03

Worst 1.00e-02 9.56e-03 8.90e-03 1.07e-02

UF4 Best 3.02e-03 3.41e-03 1.93e-03 1.93e-03

Median 3.29e-03 9.26e-03 2.07e-03 2.15e-03

Worst 3.46e-03 1.32e-02 2.23e-03 2.66e-03

UF5 Best 4.32e-02 4.61e-02 3.94e-02 9.31e-02

Median 4.57e-02 8.14e-02 4.88e-02 1.28e-01

Worst 4.78e-02 1.56e-01 6.29e-02 1.74e-01

UF6 Best 5.88e-03 6.21e-03 6.94e-03 3.36e-03

Median 8.91e-03 5.86e-03 9.22e-03 5.82e-03

Worst 1.24e-02 1.99e-02 1.46e-02 3.00e-02

UF7 Best 2.76e-03 9.40e-02 1.30e-03 7.14e-04

Median 1.13e-02 1.33e-01 1.18e-02 1.18e-03

Worst 1.70e-02 1.65e-02 1.64e-02 2.20e-02

UF8 Best 2.71e-03 1.97e-03 4.98e-03 5.14e-03

Median 2.78e-03 2.78e-03 5.38e-03 6.42e-03

Worst 2.89e-03 2.88e-03 5.72e-03 1.00e-02

UF9 Best 3.78e-03 1.30e-03 4.94e-03 5.17e-03

Median 4.39e-03 2.51e-03 6.04e-03 6.18e-03

Worst 4.63e-03 3.82e-03 6.78e-03 7.03e-03

UF10 Best 2.89e-03 2.89e-03 7.12e-04 1.06e-02

Median 3.63e-03 3.52e-03 5.91e-03 9.67e-02

Worst 4.78e-03 6.65e-03 9.67e-03 1.60e-01

Harmony-MOEAD and Original MOEAD: Here, we present a study for
Harmony-MOEAD and original MOEAD. The parameters setting is as follows:
MOEAD parameters: T = 20, delta = 0.9 and nr = 2 [10]. For all other parame-
ters we used values similar to the previous experiment. A comparison between
Harmony-MOEAD and MOEAD is presented in this section. Table 1 shows the
minimum, median, and maximum of the IGD-metric values of the 15 independent
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run. Harmony-MOEAD outperformed in 11 problems out of 22 problems in total.
The test problems DTLZ7 and DTLZ6 are formulated to be more complicated
when compared to DTLZ5 by adjusting the g function. Harmony-MOEAD algo-
rithm assigns a higher IGD value in DTLZ6 and DTLZ7 as compared to the
MOEAD algorithm. The reason for this result is due to Harmony-MOEAD
attempts to increase the diversity by inserting dominated solutions. However,
Harmony-MOEAD and MOEAD have similar IGD median values in DTLZ6
and DTLZ7.

Test problems ZDT4, DTLZ1, DTLZ3, UF1 and UF3 have multiple local
fronts. When comparing Harmony-MOEAD algorithm with the MOEAD algo-
rithm in this type of problem, we found that Harmony-MOEAD algorithm
showed lower median IGD values except UF1 test problem. This give an indica-
tion that Harmony-MOEAD algorithm has the efficiency in handling problems
with multiple local fronts. The success of the pitch adjustment operator in reach-
ing a relatively global region really was helpful for Harmony-MOEAD algorithm
to achieve a faster Convergence.

Three objectives space problems UF8 UF9 and UF10 were approximated by
Harmony-MOEAD and MOEAD algorithms. Harmony-MOEAD got lower mean
IGD values as compare to MOEAD. Generally the Harmony-MOEAD outper-
formed on MOEAD in terms of median IGD values. MOEAD algorithm showed
relatively lower median IGD values as compared to the Harmony-MOEAD
algorithm in convex test problems ZDT1 and ZDT3, but in UF2 Harmony-
MOEAD outperformed MOEAD. Meantime in non-convex problem tests ZDT2
and ZDT6, but in UF4 Harmony-MOEAD outperformed MOEAD. In both type
of problems (convex and non-convex) Harmony-MOEAD failed to outperform
on MOEAD, this due to unfortunate tuning parameters for this kind of prob-
lems. The test problems UF4, DTLZ2, UF7, DTLZ4, DTLZ5 and UF2 seems
to be easier as compared with other problems. Relatively, Harmony-MOEAD
and MOEAD have similar IGD values in these test problems, what causes this
comparable performance could be the random consideration operator that seeks
to increase the diversity of the population by inserting a random values to the
solutions.

4 Conclusion

In this paper, new algorithms for multi-objective optimization field are devel-
oped. A Comprehensive study is conducted to study the performance of the
proposed algorithms in terms of IGD. This research is done by using three prob-
lem families: ZDT, DTLZ and CEC2009 as datasets. Our work has investigated
solving multi-objective optimization problem by using various parameter set-
tings such as HMCR and PAR that are being used in enhancing solutions. Also,
both the experimental results discussion and the compared results from both
sides our proposed experiments and the state-of-the-art algorithms were clearly
stated.

In general, all proposed algorithms which hybridized with Harmony Search
are superior in solving multiple local front problems and 3-objectives problems
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in terms of IGD. Harmony NSGAII presented a better solutions in solving non-
convex test problems as compare to the original algorithms. Harmony MOEAD
algorithm showed a better IGD values as compared to the original ones when
solving discontinuous problems. However, Harmony MOEAD algorithm suffered
in solving ZDT family test instances except ZDT4 which has multiple fronts. The
results shows that Harmony MOEAD algorithm did not give good results when
solving ZDT family test instances, so we suggest to enhance these algorithms to
be able to deal with this kind of problems as a future work.
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Abstract. Data stream mining is an active area of research that poses
challenging research problems. In the latter years, a variety of data
stream clustering algorithms have been proposed to perform unsuper-
vised learning using a two-step framework. Additionally, dealing with
non-stationary, unbounded data streams requires the development of
algorithms capable of performing fast and incremental clustering address-
ing time and memory limitations without jeopardizing clustering quality.
In this paper we present CNDenStream, a one-step data stream cluster-
ing algorithm capable of finding non-hyper-spherical clusters which, in
opposition to other data stream clustering algorithms, is able to maintain
updated clusters after the arrival of each instance by using a complex
network construction and evolution model based on homophily. Empiri-
cal studies show that CNDenStream is able to surpass other algorithms
in clustering quality and requires a feasible amount of resources when
compared to other algorithms presented in the literature.

1 Introduction

Data stream clustering can be described as the act of grouping streaming data in
meaningful classes [4]. Data stream clustering is subject to acting within limited
time, memory and treating data incrementally with single pass processing. Apart
from the time and memory space constraints, two requirements are long-awaited
for data stream clustering algorithms. Data stream clustering algorithms must
not make assumptions about the number of clusters, since it is not often known
in advance and due to the temporal aspect, the number of ground-truth clusters
may change regularly [13] and they must be capable of discovering clusters with
arbitrary shapes, since most of data streams are not Gaussian distributed.

In this paper we present an extension of the DenStream algorithm: CNDen-
Stream. CNDenStream, in opposition to other data stream clustering algorithms,
performs a single step processing to find clusters. CNDenStream does so by
using a complex network construction and evolution model based on homophily.
Moreover, CNDenStream is not bounded to the k-means algorithm [11] to find
clusters, therefore it is able to discover clusters with arbitrary shapes and not
only hyper-spherical clusters.
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 615–622, 2015.
DOI: 10.1007/978-3-319-26532-2 68
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The remainder of this work is organized as follows: Section 2 surveys related
work for data stream clustering. Section 3 introduces basic concepts of com-
plex networks. In Sect. 4 we present our proposal: CNDenStream. In Sect. 5
we present a performance study and discuss about parametrization sensitivity.
Finally, Sect. 6 concludes this paper and presents future work.

2 Related Work

A variety of data stream clustering algorithms were developed throughout the
last decade. Generally, these algorithms are divided in online and offline steps.

During the online step, algorithms incrementally update specific data struc-
tures aiming at dealing with the evolving nature of data streams and time-
space constraints. One widely used data structure is the feature vector, a triplet
CF = 〈LS, SS,N〉, where LS stands for the sum of the objects xi summarized,
SS is the squared sum of these objects and N is the amount of objects [13].
Feature vectors are able to represent hyper-spherical clusters incrementally due
to its incremental and additive properties. Basically, an instance xi can incre-
ment an feature vector CFj as follows: LSj ← LSj +xi, SSj ← SSj +(xi)2 and
Nj ← Nj +1. As for the additive property, two feature vectors CFi and CFj can
be merged into a third CFl as follows: LSl ← LSi +LSj , SSl ← SSi +SSj , and
Nl ← Ni + Nj . Also, in order to assign more importance to recently retrieved
instances in clustering, various window models featuring sliding, damped and
landmark were developed [13]. During the offline step, conventional batch clus-
tering algorithms are used to form final clusters using the CF s.

In the following sections we describe other data stream clustering algorithms.

2.1 CluStream

CluStream adopts the landmark windowing technique, treating the stream based
on data chunks of size H [1]. CluStream assumes a number q of CF s that are
maintained at any instant of the stream. Initial CF s are computed with an
amount of instances N , also determined by the user. CluStream computes an
Euclidean distance for each instance xi to each CF , then, determines whether
the distance to the closest CFj is less or equal to its radius. Positively, xi is
merged within CFj . Conversely, xi starts a new CFk. If the amount of CF s is
above q, the two closest CF s are merged. When H is reached, all q CF s are
recomputed with the next N instances obtained from the stream.

On the offline step, CluStream uses a modification of the k-means or
DBSCAN algorithms to obtain clusters based on the q CF s computed during
the online step. In this paper, we compare the DBSCAN version, since k-means
is highly dependent of the user-given parameter of ground-truth clusters K.

2.2 ClusTree

ClusTree [9] maintains CF s in a hierarchy with different granularity levels.
Depending on how much time is available to process each instance, ClusTree
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performs a search in the R-Tree in order to find the most similar CF . Accord-
ingly to user-given thresholds, it is determined whether this instance should or
not be merged. In the negative case, a new CF is then created and added to the
R-Tree. ClusTree also copes with noisy data by using outlier-buffers.

In order to assign more importance to recent data, ClusTree assigns a expo-
nentially decaying weight for all CF s’ components.

On the offline step, algorithms such as k-means and DBSCAN are used in
order to obtain clusters, where CF s centers are treated as centroids.

2.3 DenStream

DenStream is based on the DBSCAN algorithm, which guarantees the union of
the ε-neighborhood of clusters which covers all dense areas of the attribute space.
A core object is an object which ε-neighborhood has at least ψ neighbors and
a dense area is the union of all ε-neighborhoods of all core objects. DenStream
defines the concept of a core-micro-cluster in a time instant t, which is a temporal
extension to a CF , as CMC(w, c, r) to a group of near instances xi,xi+1, . . . ,xn

where w is its weight, c its center and r its radius. DenStream assumes two
types of micro-clusters: potential and outlier micro-clusters. A micro-cluster is
said potential or outlier based on its weight restriction, where w ≥ βψ implies
in a potential micro-cluster and outlier otherwise and 0 ≤ β ≤ 1.

The online step of DenStream has the objective of maintaining a group of
potential and outlier micro-clusters. At the arrival of each instance xi, Den-
Stream tries to aggregate xi to the closest potential micro-cluster accordingly to
the weight restrictions. In the negative case, the same occurs for outlier micro-
clusters. If xi was aggregated in an outlier micro-cluster, the weight restriction is
checked to determine whether this micro-cluster should be promoted to a poten-
tial micro-cluster. Conversely, if xi was not merged with any micro-cluster at
all, it starts a new outlier micro-cluster.

The offline step of DenStream uses the DBSCAN algorithm to find clusters
based on current potential micro-clusters.

3 Complex Networks

Complex Network Theory has been applied in many research fields, from com-
puter science to sociology, mainly due to its formal description of structural
variables. Although complex networks analysis are mixed with social network
analysis for subjective topics, such as an individual behavior in society, both of
its building blocks can be represented computationally as a graph.

Different complex network models were developed over the years, aiming
at representing the evolutionary aspects of real networks [3,7,12,14]. The first
complex network model is denominated random [7]. This model is based on the
hypothesis that the existence of a connection between any pair of nodes is given
by a probability p. The Small-world model, based on the studies of “Small-
World” conducted in [12], incorporates attributes of both random and regular
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(lattices) networks and presents high clustering coefficient and a small average
path length. Finally, the Scale–free model aims on modeling networks presented
in real–world situations with higher accuracy than both random and small–world
networks by performing nodes additions and edges rewirings throughout time.
In this paper we adapt the rewiring component for the clustering task so they
occur accordingly to homophily. Homophily is a characteristic of real networks
where nodes tend to eradicate connections with dissimilar nodes and replace
these by new connections with more similar ones.

4 CNDenStream

Complex Network-based DenStream (CNDenStream) is based on the hypothesis
that intra-cluster data are related due to high similarity and inter-cluster data
are not related, due to high dissimilarity. CNDenStream generates a complex
network G = (V,E,W ), where the set of nodes V are micro-clusters, edges E
represent connections between these nodes, W is a set of weights (Euclidian
distances) wi associated to each edge ei ∈ E where subgroups in this network
represent clusters and an outlier micro-cluster buffer B. In order to keep track of
clusters during the stream without the need of batch processing during the offline
step, CNDenStream uses an homophily-based insertion and rewiring procedures
inspired in complex networks theory.

Initially, CNDenStream stores the first N instances retrieved from S in a
buffer to an initial DBSCAN run, thus finding initial potential and outlier micro-
clusters. While outlier micro-clusters are stored in an outlier buffer B, potential
micro-clusters PMCi are added to the network G, where each potential micro-
cluster establishes with the k closest possible neighbors (considering Euclidian
distances) currently in V.

Afterwards, PMCi is added to V and edges and corresponding weights are
added to its correspondent sets E and W . Figure 1 presents the insertion of 4
potential micro-clusters, namely PMC1 to PMC4. The insertion procedure is
able to connect the last added node to the k-most similar nodes in G, neverthe-
less, the same can not be said for the other nodes currently in G. In Fig. 1(d)
one can see that after the addition of PMC4, PMC1 should be connected to
PMC4 instead of PMC3, since d(PMC1, PMC4) < d(PMC1, PMC3).

PMC1

(a)
PMC1

PMC1

PMC2

(b) PMC2

PMC1

PMC2 PMC3

(c) PMC3

PMC1

PMC2 PMC3

PMC4

(d) PMC4

Fig. 1. Insertion example using k = 2.
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PMC1

PMC2 PMC3

PMC4

(a) Node PMC1

rewiring.

PMC1

PMC2 PMC3

PMC4

(b) Euclidean distance
comparison.

PMC1

PMC2 PMC3

PMC4

(c) Node PMC1

rewired.

Fig. 2. Example of node PMC1 rewiring.

After the addition of each PMCi obtained from the DBSCAN initial run
to the network, all nodes PMCi ∈ V perform rewirings based on homophily,
such that each PMCi replaces its edges with higher dissimilarities w by edges
to its closest neighbors, i.e., edges with lower dissimilarity. For every PMCi

the Euclidean distances for all of its 2-hop neighbors are then computed. A
2-hop neighborhood is assumed since potential closest nodes are likely to be
neighbors (2-hop) of the current neighbors (1-hop). This 2-hop neighborhood is
an approximation in order to prevent distance computation between all nodes,
which would be computationally costly. With the results of these Euclidean
distances, PMCi replaces edges by the most dissimilar instances with some
similar ones, yet, maintaining its degree di.

In order to present how the rewiring procedure works, we refer back to the
addition of nodes presented in Fig. 1, where one could see that PMC1 is capa-
ble of connecting itself with higher similar nodes. Therefore, Fig. 2 presents the
rewiring of node PMC1. Firstly, Euclidean distances between PMC1 and its
2-hop neighborhood are computed, and compared to its current neighbors (1-
hop). In Fig. 2(b) one can see that d(PMC1, PMC4) < d(PMC1, PMC3). Con-
sequently, PMC1, in order to maintain its degree d1 = 2, must eliminate the
its current most dissimilar edge to replace it with a similar one. Figure 2(c) the
edge between PMC1 and PMC3 is removed from G and a new one connecting
PMC1 and PMC4 and its corresponding weight d(·, ·) are added to E and W .

Due to the rewiring process, communities of potential micro-clusters tend to
appear naturally since the amount of intra-clusters edges between similar micro-
clusters grows, while those of dissimilar micro-clusters shrinks. Figure 3 presents
the evolution of a network as instances arrive, where one can see that the rewiring
procedure enlarges the amount of intra-cluster edges and diminishes the amount
of inter-clusters connections. This procedure is repeated until, in Fig. 3(r), two
clusters emerge.

After the DBSCAN execution and the initial network is build, all arriv-
ing instances xi are processed according to an adaptation of the DenStream
algorithm. Firstly, CNDenStream finds the potential micro-cluster in V which
minimizes the dissimilarity with xi: PMCi. Afterwards, CNDenStream verifies
whether the addition of xi with PMCi results in a micro-cluster with a radius
below ε, if true, then xi is added to PMCi. Otherwise, this process is repeated
within the outlier micro-clusters: the most similar outlier micro-cluster OMCj

to xi is found and if the addition of xi results in a micro-cluster with radius
below ε, xi is then added to OMCj .
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

(l) (m) (n) (o) (p) (q) (r)

Fig. 3. Insertion of potential micro-clusters obtained from the insertion of micro-
clusters during the RBF2 experiment.

When an outlier micro-cluster OMCj is promoted to a potential micro-
cluster, i.e., w(OMCj) ≥ βψ, it is removed from the outlier buffer B, and thus
it is inserted in the network G.

As in DenStream, micro-clusters weights’ decay exponentially with time.
When the weight w(PMCi) of an micro-cluster PMCi is below βψ, it is removed
from the network, or from B. In the first case, all neighbors PMCj of PMCi are
allowed to rewire in order to maintain their degree dj after the PMCi’s removal.
When the micro-cluster is an outlier, it is simply removed from B.

CNDenStream’s power resides in the rewiring process which aims to enable
each micro-cluster to establish connections with the most similar micro-clusters.
As presented in Fig. 1, the rewiring procedure finds clusters without using any
batch clustering algorithm at the offline step such as k-means or DBSCAN.

One could argue about the effects of the parameter k on the construction and
evolution of the network, therefore, in Sect. 5, we discuss about the parameter
sensitivity and show that k = 4 is a good choice for many data streams domains.

5 Experimental Evaluation

Our proposal is evaluated in several experiments with different types of data
domains. Synthetic data streams were generated using the Radial Basis Function
(RBF) generator, which creates a user-given number of drifting centroids, each
defined by a class label, position, weight and standard deviation accordingly
to a Gaussian distribution. In our experiments, the RBF generator is used for
modeling concept drifts every 500 instances. Three data streams using the RBF
generator were created changing the dimension of the instances d = {2, 5, 10}.

Additionally, we evaluated algorithms in two massive datasets, namely Forest
Covertype [8] and KDD’99 [2], where clusters are non-hyper-spherical.

Algorithms parameters were set accordingly to its original papers. CluStream
parameters are: a horizon H = 1000 and q = 1000 [1]. ClusTree parameters are:
a horizon H = 1000 and a maximum tree height = 8 [9]. DenStream parameters
are: ψ = 1, N = 1000, λ = 0.25, ε = 0.02, β = 0.2 and an offline step multiplier
η = 2 [6]. Finally, CNDenStream parameters are: ψ = 1, N = 1000, λ = 0.25,
ε = 0.02 and β = 0.2 and k = 4. All experiments were performed on a Intel



A Complex Network-Based Anytime Data Stream Clustering Algorithm 621

1234567

CD = 2.84

CluStream

ClusTree

DenStream

CNDenStream

(a) CMM comparison with other algo-
rithms.

345678910

CD = 4.28

k = 1

k = 2

k = 9

k = 10

k = 7

k = 4

k = 5

k = 3

k = 6

k = 8

(b) CMM comparison when varying the
parameter k.

Fig. 4. Critical distances CMM comparison for results obtained in experiments.

Xeon CPU E5649 @ 2.53 GHz ×8 based computer running CentOS with 16 GB
of memory at MOA framework [5].

5.1 Discussion

In order to evaluate algorithms in terms of clustering quality, we have adopted
the Cluster Mapping Measure (CMM). CMM is an external clustering evaluation
metric that accounts for non-associated and misassociated instances and noisy
data inclusion [10]. Also, CMM considers recently retrieved instances with more
weight than older ones by using an exponential decay function inside evaluation
windows. In Fig. 4(a) we summarize the results obtained by algorithms after
applying Friedman’s and Nemenyi’s tests, where one can see that CNDenStream
is superior when compared to others with a 95 % confidence level.

Besides CMM, we evaluated both CPU Time and RAM-Hours, however,
Friedman test pointed out that there is no significant difference between algo-
rithms in these two dimensions.

5.2 Parameter Sensitivity

In opposition to pure density-based algorithms, CNDenStream relies on the
amount of connections k established at the arrival of each instance parame-
ter to find and keep track of clusters. Therefore, to determine whether different
values of k affect results directly, we ran all experiments varying it in the [1; 10]
interval.

In Fig. 4(b) we summarize the results obtained by applying Friedman and
Nemenyi’s tests, where one can see that k ∈ [2; 10] � k = 1. Also, one can see
that k = 4 presents the best averaged rank, therefore, this value is adopted as a
default value for CNDenStream.

6 Conclusion

In this paper CNDenStream algorithm was presented. CNDenStream is a one-
step incremental complex network-based data stream clustering algorithm. It
was empirically evaluated in both real and synthetic datasets where one can see
that it achieves significant superior CMM when compared to others algorithms,
while demanding similar resources (CPU Time and RAM-Hours). Additionally,
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CNDenStream does not make assumptions about the number of ground-truth
clusters. This characteristic also allows the algorithm to naturally cope with
concept evolutions.

In future works we expect to use archive programming techniques to optimize
distance computation and develop a specific graph implementation to reduce
memory usage. Besides, we envision experiments with other evaluation metrics,
algorithms and datasets.
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Abstract. This paper address the problem of online multi-object track-
ing by using the Maximum a Posteriori (MAP) framework. Given the
observations up to the current frame, we estimate the optimal object tra-
jectories by solving two MAP estimation problems: object detection and
trajectory-detection association. By introducing the sequential trajec-
tory prior, i.e., the prior information from previous frames about “good”
trajectories, into MAP estimation, the output of the pre-trained object
detector is refined and the correctness of the association between trajec-
tories and detections is enhanced. In addition, the sequential trajectory
prior allows the two MAP stages interact with each other in a sequential
manner, which facilitates online multi-object tracking. Our experiments
on publicly available challenging datasets demonstrate that the proposed
algorithm provides superior performance in various complex scenes.

Keywords: Online multi-object tracking · Data association · Maximum
a posteriori estimation · Sequential trajectory prior

1 Introduction

Multi-object tracking is a very challenging problem, especially in complex scenes,
due to frequent occlusions and interactions among similar-looking objects. Driven
by the recent development of object detectors [1–3], tracking-by-detection has
become a popular technique for multi-object tracking. With the detection
responses provided by detectors, tracking-by-detection approaches associate these
detections across frames to form the trajectories of objects.

Many tracking methods [4–6] address the association problem in a large tem-
poral window, which seek for the optimum detection assignments by considering
a batch of frames at a time. Due to the utilization of future information, they
can handle detection errors and tracking failures caused by occlusions. However,
it is difficult to apply the batch methods to time-critical applications, since they
provide tracking results with a significant temporal delay.

Our work focuses on online multi-object tracking which only considers obser-
vations up to the current frame and sequentially builds trajectories via frame-
by-frame association with online provided detections. Compared with the batch
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 623–633, 2015.
DOI: 10.1007/978-3-319-26532-2 69



624 M. Yang et al.

methods, online tracking systems [7–10] can be applied to real-time applica-
tions, but suffer from performance degradation in complex scenes. We aim to
overcome the limitations for online multi-object tracking and to achieve high
quality tracking results in complex scenes.

In this paper, we formulate the online multi-object tracking problem under
a Beyesian framework, and treat detection and association as two collaborative
maximum a posteriori (MAP) estimation problems by introducing the sequen-
tial trajectory prior. The basic idea is that the observations from previous frames
contain useful prior information to assist the estimation of object trajectories in
the current frame. Intuitively, it is better to allow the high-confidence trajectories
to guide the current estimation of hard-to-see detections. And, for trajectory-
detection association, more reliable detections are likely linked to high-confidence
trajectories. We thus model such cues as the sequential trajectory prior, and use
MAP estimation to simultaneously refine the detector output and enhance the
trajectory-detection association correctness. We show that the two MAP stages
interact with each other via the sequential trajectory prior: high-confidence tra-
jectories from previous frame provide reliable prior information to refine the
detections in the detection stage, and accurate detections facilitate the associa-
tion stage to generate more confident trajectories. Our experiments demonstrate
that the resulting algorithm provides superior tracking performance in various
complex scenes.

Previous methods [10–12] exploit the prior information from previous frames
for online multi-object tracking. Luo et al. [11] introduced a spatio-temporal
consistency constraint to their online detector learning stage. Bae and Yoon [10]
used trajectory confidence to assist their local and global association approach.
Their work is extended in [12] by introducing a track existence probability into
data association. However, these methods utilize the prior information only in the
detection or association task. In contrast, we explicitly introduce the sequential
trajectory prior into both the detection and association stages by using a unified
MAP framework. As a result, the online multi-object tracking performance is
significantly improved especially in complex scenes.

2 Our Approach

2.1 Problem Formulation

Let X1:t, Y1:t and Z1:t be the trajectories, detections and observed images up to
frame t, respectively. We adopt a Bayesian approach to formulate the online
multi-object tracking problem, where trajectories X1:t and detections Y1:t are
random variables and the goal is to maximize the joint posterior distribution
over X1:t and Y1:t given observed images Z1:t. Formally,

(X∗
1:t,Y

∗
1:t) = arg max

X1:t,Y1:t

P (X1:t,Y1:t|Z1:t)

= arg max
X1:t,Y1:t

P (X1:t|Y1:t,Z1:t) P (Y1:t|Z1:t) , (1)
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where the second equation used the definition of conditional probability. Since it
is impossible to globally optimize Eq. (1) using brute force search, we expand the
original formulation by sequentially estimating the current trajectories Xt and
detections Yt conditional on the previous results using the tracking-by-detection
strategy. The problem is then decomposed into two MAP estimation stages:

(detection) Y
∗
t = arg max

Yt

P (Yt|Z1:t) , (2)

(association) X
∗
t = arg max

Xt

P (Xt|Y∗
t ,Xt−1) . (3)

Specifically, in the detection stage, we obtain a MAP estimation of the detections
Y

∗
t by considering the observed images up to the current frame Z1:t. The trajec-

tory estimation problem is then reformulated as a MAP estimation of pairwise
associations between Xt−1 and Y

∗
t in the association stage.

2.2 Detection Refinement with MAP Estimation

Based on the Bayesian rule, the MAP estimation of the detections Y∗
t defined in

Eq. (2) can be represented as

Y
∗
t = arg max

Yt

P (Zt|Yt,Z1:t−1) P (Yt|Z1:t−1)
P (Zt|Z1:t−1)

, (4)

where P (Zt|Yt,Z1:t−1) models the observation likelihood function which mea-
sures how well the hypothetical detections explain the observed image, and
P (Yt|Z1:t−1) is a prior detection probability which represents the prior infor-
mation collected from the previous observations.

Prior Detection Probability. We approximately compute the prior detec-
tion probability based on the spatio-temporal consistency assumption during
tracking. That is, the object states in two subsequent frames should not change
drastically. Intuitively, the detections in frame t are much likely to appear around
the trajectories from frame (t − 1). To utilize such prior, we predict the object
states of high-confidence trajectories through Kalman filters, and use the pre-
dicted states to produce a density map to represent the prior detection proba-
bility. The trajectory confidence is defined by Eq. (8) in Sect. 2.3. Formally, we
compute a density map Dk

t for a specific confident object k at frame t as

Dk
t (p) = exp(−‖p − pk‖2

2σ2
k

), (5)

where p is the image position, pk is the predicted position of object k, and σk

is the scale parameter which is proportional to the scale of object k (set to 5
times the object scale in our implementation). Suppose that we have c confident
objects from high-confidence trajectories in frame (t − 1), the density map Dt

corresponding to P (Yt|Z1:t−1) is generated by combining the density maps of
all confident objects, expressed as Dt = max(D0

t ,D1
t , . . . , Dc

t ). Note that D0
t is
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a const density map where the prior detection probability for each position is
equal to 0.5, which is used to prevent the suppression of newly appeared objects.

Observation Likelihood Function. We revisit the detection confidence map
produced by the pre-trained object detector to represent the observation like-
lihood function P (Zt|Yt,Z1:t−1). Following the general object detection strategy,
we generate the hypothetical detections Yt in multiple scales. Hence,
P (Zt|Yt,Z1:t−1) is expressed as multiple confidence maps by applying the object
detector to the observed image Zt in multiple scales.

Posterior Detection Probability. Combining the observation likelihood func-
tion and the prior detection probability mentioned above, we can estimate the
posterior detection probability as indicated in Eq. (4). Since the normalized term
P (Zt|Z1:t−1) is constant, we simply use the density map Dt to refine the mul-
tiple confidence maps produced by the detector. Then the optimal detections
Y

∗
t is obtained by applying non-maximum suppression to the refined confidence

maps. Most existing methods use the observation likelihood P (Zt|Yt,Z1:t−1)
to approximate the posterior P (Yt|Z1:t), which actually ignores the useful prior
information. In this paper, we employ the prior information from previous frames
to model a prior detection probability P (Yt|Z1:t−1) which actually refines the
detector output in a principle manner.

2.3 Data Association with MAP Estimation

Since the number of all possible enumerations of Xt given the existing trajec-
tories Xt−1 and the refined detections Y

∗
t is huge, directly solving Eq. (3) is

intractable. We turn to solve a data association problem and then obtain the
optimal trajectories X

∗
t by updating Xt−1 with the associated detections.

Suppose that we have m trajectories Xt−1 = {Xi}m
i=1 at frame t − 1 and n

refined detections Y∗
t = {yj}n

j=1 at frame t, where Xi is the trajectory of the i-th
object and yj is the j-th refined detection. Note that we drop the time index for
simplicity since the association is exactly between Xt−1 and Y

∗
t . We define an

event Ψi,j to represent that the j-th refined detection is associated with the i-th
trajectory. Then, the pairwise association problem between Xt−1 and Y

∗
t can be

expressed as a MAP estimation formulation,

Ψ∗
i,j = arg max

Ψi,j

P (Ψi,j |Y∗
t ,Xt−1), (6)

where P (Ψi,j |Y∗
t ,Xt−1) is the the posterior association probability. It can be

computed by applying the Bayesian rule,

P (Ψi,j |Y∗
t ,Xt−1) =

P (Y∗
t |Ψi,j ,Xt−1) P (Ψi,j |Xt−1)

P (Y∗
t |Xt−1)

, (7)

where P (Y∗
t |Ψi,j ,Xt−1) is the likelihood that indicates the possibility of observ-

ing the detections Y
∗
t given the existing trajectories Xt−1 and the association
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Ψi,j , and P (Ψi,j |Xt−1) is the prior association probability that measures the
possibility of the association Ψi,j before data association.

Prior Association Probability. To compute the prior association probability
P (Ψi,j |Xt−1), we exploit two kinds of prior information before performing data
association: the trajectory confidence and the detection reliability.

Similar to [10], we use a trajectory confidence score function Δ(Xi) to mea-
sure the reliability of an existing trajectory Xi,

Δ(Xi) = exp
(

−β · M

L

)
×

(
1
L

∑

k∈Ωi

Φi
k

)

, (8)

where L is the number of frames in which the trajectory has associated detec-
tions, M = |Xi| − L is the number of frames in which the object is missing,
Ωi indicates the set of frames in which the trajectory Xi has associated detec-
tions, Φi

k is the posterior association probability between Xi and the associated
detection at frame k, and β is a control parameter depending on the detection
performance. Since the trajectory confidence lies in [0, 1], we consider a trajec-
tory as a high-confidence when Δ(Xi) > 0.5.

The reliability of a detection yj can be directly represented as the posterior
defined in Sect. 2.2, simply denoted as δ(yj). Then the prior P (Ψi,j |Xt−1) can
be intuitively approximated as

P (Ψi,j |Xt−1) ≈ δ(yj)
∑n

v=1 δ(yv)
· Δ(Xi), (9)

where we impose the constraint that the association events for a trajectory Xi

are mutually exclusive.

Observation Likelihood Function. We assume that the detections in Y
∗
t are

conditionally independent given the existing trajectories Xt−1 and the associa-
tion Ψi,j . Then the likelihood P (Y∗

t |Ψi,j ,Xt−1) can be computed as

P (Y∗
t |Ψi,j ,Xt−1) =

n∏

v=1

P (yv|Ψi,j ,Xt−1) . (10)

Note that P
(
yj |Ψi,j ,Xt−1

)
= P

(
yj |Xi

)
is the association likelihood between

yj and Xi. We compute the the association likelihood by using the appearance,
shape, and motion cues, similar to [7]. The remaining task is to estimate the
likelihood P (yv|Ψi,j ,Xt−1) with v �= j which can be explained as the probability
that the detection yv is not originated from the trajectory Xi.

We consider two situations where the detection yv can be observed: yv is
originated from other trajectories except Xi, or yv is a false positive detection.
Using the definition of marginal probability, the likelihood P (yv|Ψi,j ,Xt−1) with
v �= j can be computed by
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P (yv|Ψi,j ,Xt−1) = P (yv, Ψ0,v|Ψi,j ,Xt−1) +
∑

u�=i

P (yv, Ψu,v|Ψi,j ,Xt−1)

= P (yv, Ψ0,v|Xt−1) +
∑

u�=i

P (yv, Ψu,v|Xt−1) , (11)

where Ψ0,v means that the detection yv is not associated with any trajectory.
Denote Pu,v = P (Ψu,v|Xt−1) as the prior association probability defined in
Eq. (9), and ρ = P (yv|Ψ0,v,Xt−1) as the const probability that a detection
becomes false positive, we have

P (yv, Ψ0,v|Xt−1) = P (yv|Ψ0,v,Xt−1) P (Ψ0,v|Xt−1) = ρ ·
m∏

u=1

(1 − Pu,v) , (12)

P (yv, Ψu,v|Xt−1) = P (yv|Ψu,v,Xt−1) P (Ψu,v|Xt−1) = P (yv|Xu) Pu,v, (13)

and thus

P (yv|Ψi,j ,Xt−1) = ρ ·
m∏

u=1

(1 − Pu,v) +
∑

u�=i

P (yv|Xu) Pu,v. (14)

Then the observation likelihood function P (Y∗
t |Ψi,j ,Xt−1) can be obtained

by substituting Eq. (14) into Eq. (10),

P (Y∗
t |Ψi,j ,Xt−1) = P

(
yj |Xi

) ∏

v �=j

Θv
i,j , (15)

where we denote Θv
i,j = P (yv|Ψi,j ,Xt−1) with v �= j for simplicity.

Posterior Association Probability. Denote the normalization term in Eq. (7)
as γ = P (Y∗

t |Xt−1), we can derive the posterior as

P (Ψi,j |Y∗
t ,Xt−1) = γ−1Pi,jP

(
yj |Xi

) ∏

v �=j

Θv
i,j . (16)

In a similar manner, the posterior association probability for the non association
event Ψi,0 of the trajectory Xi can be acquired by

P (Ψi,0|Y∗
t ,Xt−1) =

P (Y∗
t |Ψi,0,Xt−1) P (Ψi,0|Xt−1)

P (Y∗
t |Xt−1)

= γ−1

⎛

⎝1 −
n∑

j=1

Pi,j

⎞

⎠
n∏

v=1

Θv
i,0. (17)

Using the fact that
∑n

j=1 P (Ψi,j |Y∗
t ,Xt−1) + P (Ψi,0|Y∗

t ,Xt−1) = 1, the normal-
ization term γ can be computed as

γ =
n∑

j=1

⎛

⎝Pi,jP
(
yj |Xi

) ∏

v �=j

Θv
i,j

⎞

⎠ +

⎛

⎝1 −
n∑

j=1

Pi,j

⎞

⎠
n∏

v=1

Θv
i,0

=

⎛

⎝1 −
n∑

j=1

Pi,j +
n∑

j=1

Qi,j

⎞

⎠
n∏

v=1

Θv
i,0, (18)
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where Qi,j = Pi,jP
(
yj |Xi

)
/Θj

i,0, and the second equation uses the fact Θv
i,j =

Θv
i,0 when v �= j.

Data Association. With the posterior probabilities given by Eqs. (16) and (17),
the data association problem of Eq. (6) can be solved by the Hungarian
algorithm [13]. Specifically, a association cost matrix S = [sij ]m×n is constructed
with each entry sij = − log(P (Ψi,j |Y∗

t ,Xt−1)) to indicate the cost when j-
th refined detection is associated with the i-th trajectory. Then the optimal
trajectory-detection pairs are determined by minimizing the total cost in Sm×n.
When the association cost of a trajectory-detection pair is less than the cost
of non association − log(P (Ψi,0|Y∗

t ,Xt−1)), the detection yj is associated with
Xi. A Kalman filter is used to refine the object states for a trajectory, with the
associated detections as the measurement data. Then the confidence Δ(Xi) is
updated using Eq. (8). The detections that are not associated with any existing
trajectories are used to initialize a new potential trajectory. Once the length of
a potential trajectory grows over a threshold (set to 5 frames in our implemen-
tation), it gets formally initialized.

3 Experiments

In this section, we give a detailed analysis of our approach compared to the
state-of-the-art in multi-object tracking. The state-of-the-art trackers include
DP [4], TBD [6], CEM [5] and CMOT [10], in which the CMOT tracker is online
algorithms while the other trackers perform multi-object tracking in a batch
mode. We report the results by using the source codes publicly provided by the
authors with the same object detector and their default parameters.

3.1 Implementation Details

Our online multi-object tracking algorithm is implemented in MATLAB, and
operates entirely in the image coordinate without camera or ground plane cal-
ibration. Without code optimization and parallel programming, our algorithm
runs at about 10 fps on an Intel Core i7 3.5 GHz PC with 16 GB memory. The
system parameters that need to be set beforehand include the control factor β
in Eq. (8), and the const probability ρ in Eq. (14). In our implementation, we
empirically set β = 2 and ρ = 0.1 for all experiments.

3.2 Datasets and Object Detector

We use the following datasets for performance evaluation: PETS2009 dataset
[14], TUD dataset [15], and ETH Mobile Scene (ETHMS ) [16]. The PETS2009
dataset shows an out door survivance scene where large amount of pedestri-
ans enter and exit the filed-of-view. We adopt the widely used S2L1 and S2L2
sequences for evaluation. In the TUD dataset, the sequences Campus, Crossing
and Stadtmitte are used, where the challenges include severe occlusions between
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Table 1. Quantitative comparison results. Batch methods are marked with an asterisk.
Bold scores highlight the best results.

Method MOTA↑ MOTP↑ FP↓ FN↓ MT↑ ML↓ IDS↓ FG↓
DP [4] 31.1% 71.6% 3,695 11,890 19.6% 33.2% 3,177 1,277
CEM [5] 39.7% 70.7% 4,656 11,411 24.5% 34.0% 349 640
TBD [6] 35.4% 71.4% 6,267 9,995 27.5% 31.3% 1,329 1,025

CMOT [10] 21.7% 69.9% 7,912 11,354 20.1% 33.4% 1,998 1,139
Ours (w/o all) 27.3% 70.5% 4,855 13,293 21.5% 41.3% 679 990
Ours (w/o MAP assoc.) 43.5% 71.2% 3,982 10,764 24.7% 37.0% 634 931
Ours (w/o MAP det.) 40.8% 70.9% 4,292 11,521 28.1% 34.0% 312 790
Ours (with all) 49.0% 71.2% 3,603 9,942 31.0% 32.8% 235 754

objects and low viewpoint. In the ETHMS dataset, we evaluate our algorithm
on the sequences Bahnhof, Jelmoli and SunnyDay, which are taken by a mov-
ing camera in crowded street scenes. In total, the test datasets contain over
3500 frames and 368 annotated trajectories (27240 bounding boxes). For fair
comparison, we use the ground truth publicly provided by Milan et al. [5].

To efficiently acquire online detections, we use the aggregate channel features
object detector [3] which can be operated in almost real time. The detector is
trained on the INRIA dataset [1] with default parameters.

3.3 Evaluation Metrics

We use the widely accepted CLEAR performance metrics [17] for quantitative
evaluation: the multiple object tracking precision (MOTP↑) that evaluates aver-
age overlap rate between true positive tracking results and the ground truth, and
the multiple object tracking accuracy (MOTA↑) which indicates the accuracy
composed of false positives (FP↓), false negatives (FN↓) and identity switches
(IDS↓). Additionally, we report measures defined by Li et al. [18], including the
percentage of mostly tracked (MT↑) and mostly lost (ML↓) ground truth tra-
jectories, as well as the number of times that a ground truth trajectory is inter-
rupted (FG↓). Here, ↑ means that higher scores indicate better results, and ↓
represents that lower is better.

3.4 Results and Discussion

Quantitative results of our algorithm compared with the state-of-the-art tracking
methods on the datasets are listed in Table 1, and sample results are shown in
Fig. 1. Overall, our algorithm outperforms the competing online tracker CMOT,
and achieves competitive results compared to the state-of-the-art batch methods
(i.e., DP, TBD and CEM). It owes to the proposed two collaborative MAP esti-
mation stages which simultaneously incorporate the sequential trajectory prior
into both the detection and association procedures during tracking. As can be
observed from the quantitative evaluation results, our algorithm achieves far
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Fig. 1. Sample tracking results of our method on three representative test video
sequences (PETS2009-S2L2, TUD-Stadtmitte and ETHMS-Jelmoli). At each frame,
objects with different IDs are indicated by bounding boxes with different colors.

superior performance in terms of MOTA, FP and FN, which indicates that the
detection refinement stage integrating with the sequential trajectory prior signif-
icantly facilitates the tracking process. In addition, we achieve excellent results
in terms of MT, ML, IDS and FG, demonstrating that the combination of asso-
ciation likelihood and sequential prior benefits the correct association between
trajectories and detections. As shown in the qualitative examples of tracking
results in Fig. 1, our method is able to accurately track the target persons under
various challenging conditions.

To demonstrate the effectiveness of the proposed two MAP estimation stages
with the sequential trajectory prior, we build three baseline algorithms to do
validation and analyze various aspects of our approach. The comparison results
between our approach and three baseline algorithms are also listed in Table 1,
where removal of the MAP estimation stage means removal the prior and only
using the likelihood as most tracking methods do. As can be seen from the com-
parison results, the baseline algorithm without both of the two MAP estimation
stages shows severe performance degradation. Using sequential trajectory prior
to refine the detections results in significant improvement on MOTA and FN,
which validates that the sequential trajectory prior indeed assists the detector
to recall more accuracy detections. In addition, incorporating sequential trajec-
tory prior to trajectory-detection association apparently improves the accuracy
in terms of MT, ML, IDS and FG, which demonstrated that the association cor-
rectness is improved by using the MAP estimation of the posterior association
probability. The proposed algorithm considers the sequential trajectory prior in
both the detection and association stages, and thus shows the best performance.
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4 Conclusion

We have proposed an online multi-object tracking-by-detection algorithm by
using the Maximum a Posteriori (MAP) framework. To account for noisy detec-
tions and improve trajectory-detection association correctness, we exploit the
prior information contained in previous frames, such as the positions of objects
that most likely to appear, the adaptive confidences of trajectories and the detec-
tion reliability, to guide the detection and association stages in the current frame.
By using these sequential trajectory priors in MAP, the tracker is able to recall
more reliable detections and alleviate the ambiguity of trajectory-detection asso-
ciation, and achieves great improvement on tracking performance.
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Abstract. Differential evolution (DE) algorithm is a very effective and
efficient approach for solving global numerical optimization problems.
However, DE still suffers from some limitations. Moreover, the perfor-
mance of DE is sensitive to its mutation strategy and associated para-
meters. In this paper, an enhanced differential evolution algorithm called
EDE is proposed, which including a new mutation strategy and a new
control method of parameters. Compared with other DE algorithms
including four classical DE and two state-of-the-art DE variants on ten
numerical benchmarks, the experiment results indicate that the perfor-
mance of EDE is better than those of the other algorithms.

Keywords: Differential evolution · Mutation strategy · Parameter con-
trol method · Exploration and exploitation

1 Introduction

Differential evolution algorithm (DE) is a simple yet effective heuristic algo-
rithm firstly proposed by Storn and Price [1] for dealing with global optimization
over continuous space. Due to its outstanding characteristics, such as compact
structure, ease to use, speediness and robustness, it has become more and more
popular and been employed to handle many optimization problem in real-world
applications [2,3]. However, like other evolutionary algorithms, DE does not
ensure to find the global optimum, especially for the complicated multimodal
functions. Many approaches have been proposed to improve the optimal perfor-
mance of DE, which can be mainly divided into three categories:

1. New mutation strategies. There have been some classical DE muta-
tion strategies, such as DE/rand/1, DE/rand/2, DE/best/1, DE/best/2,
DE/current-to-rand/1. Different DE mutation strategies have distinct charac-
teristics, that means they may bring different effects when solving various global
optimization problems. For further improving the performance of DE, many new
DE mutation strategies are put forward, such as [4,5].
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 634–643, 2015.
DOI: 10.1007/978-3-319-26532-2 70
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2. New parameter control methods. The classical DE algorithm has three
control parameters, which significantly affect the performance of DE. Therefore,
many different parameter control methods are proposed to enhance the perfor-
mance of DE, such as [4–8].

3. New universal DE operators. In recent years, more and more universal
operators have been proposed, which can be applied to different DE algorithms
for effectively improving the performance of DE, such as [9,10].

This paper pays attention to the first and the second category for improv-
ing the performance of differential evolution algorithm. An enhanced DE called
EDE with a new mutation strategy and a new parameter control method is pro-
posed, which can effectively enhance the performance of the classical differential
evolution algorithm.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the classical DE algorithm briefly. The details of our proposed algorithm are
described in Sect. 3, which includes the new mutation strategy and the new
parameter adjustment method. The experiment and evaluation of our proposed
algorithm are presented in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Classical Differential Evolution Algorithm

Differential evolution algorithm (DE) is a branch of Evolution Algorithm (EA)
that also follows the general procedures of EA. More specifically, three are three
basic operators of DE, including mutation, crossover and selection operator, and
the algorithm flowchart of DE is illustrated in Fig. 1.

As described in Fig. 1, after the initialization process, DE turns into the loop
including the process of mutation, crossover, and selection, until the termination
condition is satisfied. The processes of these operators are described as follows.

2.1 Initialization

In the initialization process, the control parameters and the initial population are
produced. The initial population includes NP solutions (vectors), each of which

Fig. 1. The flowchart of differential evolution algorithm (DE)
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contains D variables. NP is the size of the population and D is the dimension
of the search space. A solution (individual) of the population at the generation
G is defined as follows:

XG
i = (XG

i,1,X
G
i,2, . . . , X

G
i,D), i = 1, 2, . . . , NP (1)

Generally speaking, the initialization population should be evenly distrib-
uted throughout the whole search space [4,5]. The commonly used initialization
method for solutions (individuals) is:

X0
i,j = Xmin

j + rand(0, 1) · (Xmax
j − Xmin

j ) (2)

where rand(0, 1) is a uniformly distributed random real number in the range
of 0 to 1, Xmax

j and Xmin
j are the maximum and minimum bound of the j th

dimension of the search space respectively.

2.2 Mutation Operator

DE adopts the mutation strategy to create a mutant vector for each individual
(also called a target vector) at each generation G. Some of the most widely used
DE mutation strategies are shown as follows [7],

DE/rand/1: V G
i = XG

r1 + F · (XG
r2 − XG

r3) (3)

DE/rand/2: V G
i = XG

r1 + F · (XG
r2 − XG

r3) + F · (XG
r4 − XG

r5) (4)

DE/best/1: V G
i = XG

best + F · (XG
r1 − XG

r2) (5)

DE/current-to-rand/1: V G
i = XG

i + F · (XG
r1 − XG

i ) + F · (XG
r2 − XG

r3) (6)

where r1, r2, r3, r4, r5 are the distinct integers randomly generated from the
range of [1, NP ], and they are not equal to i. XG

best is the best individual with
the best fitness value at generation G. The parameter F is the scaling factor to
control the mutation scale, which is generally restricted in the range of (0, 1].

2.3 Crossover Operator

After mutation, a trial vector UG
i = (UG

i,1, U
G
i,2, . . . , U

G
i,D) is generated for each

individual according to a binomial crossover operator on XG
i and V G

i as follows,

UG
i,j =

⎧
⎨

⎩

V G
i,j if (randi,j(0, 1) ≤ CR or j == jrand)

XG
i,j otherwise

(7)

In the above equation, jrand is a uniformly distributed random integer in the
range of [1,D], which should be generated for each individual. CR is the crossover
rate, which is restricted in range of [0, 1].

If the j th variable UG
i,j of the trial vector UG

i violates the boundary con-
straints, it will be reset as follows

UG
i,j = Xmin

j + rand(0, 1) · (Xmax
j − Xmin

j ) (8)
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2.4 Selection Operator

Selection operator determines whether the target or the trial vector survives and
goes into the next generation based on their fitness values. For a minimization
problem, the decision vector with the lower fitness value (objective value) could
enter the next generation, which can be defined as follows.

XG+1
i =

⎧
⎨

⎩

UG
i if (fit(UG

i ) ≤ fit(XG
i ))

XG
i otherwise

(9)

3 The Enhanced Differential Evolution Algorithm

In this section, a new mutation strategy and a new parameter control method
are proposed to enhance the performance of DE.

3.1 The New Mutation Strategy

As described in the previous section, there are some mutation strategies in DE,
which have different characteristics and are suitable for solving different opti-
mization problems. For example, DE/rand/1 and DE/rand/2 pay more attention
to exploration and are suitable for solving multimodal problem, while DE/best/1
and DE/best/2 pay more attention to exploitation and are suitable for solving
unimodal problems [4,6]. So, in this paper, we design a new mutation strategy
to combine the merits of DE/rand/1 and DE/best/1 mutation strategy, which
is called DE/rand-superior/1.

DE/rand-superior/1:

Xbase = λ · XG
r1 + (1 − λ) · XG

superior (10)

V G
i = Xbase + F · (XG

r2 − XG
r3) (11)

where r1, r2, r3 are the distinct integers randomly generated in the range
of [1, NP ], and they are not equal to i. XG

superior is randomly selected from the
superior individuals, which contains the top floor(p ·NP ) individuals in the cur-
rent population. floor(x) is a rounding function, returning the largest integer
that is smaller than its parameter x. The parameter λ controls the base vector
Xbase to make it close to a randomly selected individual or a randomly selected
superior individual. Obviously, when λ = 1, DE/rand-superior/1 degenerates to
DE/rand/1, and when λ = 0, DE/rand-superior/1 degenerates to DE/superior/1
[5]. Therefore, the parameter λ can adjust the exploration and exploitation abil-
ity of DE/rand-superior/1. The parameter p and λ are set respectively as follows:

p = rand(0.05, 0.15) (12)

λ = (
Gmax − G

Gmax
)4 (13)
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where rand(0.05, 0.15) is a uniformly distributed random real number in
the range of [0.05, 0.15]. G is the current generation count, and Gmax is the
maximal generation count. The changing curve of parameter λ is shown in Fig. 2.
Obviously, at the early stage of the evolution, DE/rand-superior/1 pays more
attention to exploration for locating the promising area, while at the late stage
of the evolution, it pays more attention to exploitation for finding out the global
optimal solution.
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Fig. 2. The changing curve of λ

3.2 The New Parameter Control Method

The performance of DE is significantly affected by its parameters (scaling factor
and crossover rate) [4,8]. Generally speaking, at the early stage of evolution, DE
need to locate an area that contains the global optimal solution, and at the late
stage of evolution, DE should search at a fine-grained level. According to this
principle, we propose a new control method for scaling factor F and crossover
CR as follows.

Scaling Factor F . A population level scaling FP is assigned to the whole
population, which linearly decreases from Fmax

P to Fmin
P as follows

FP = Fmax
P − (G/Gmax) · (Fmax

P − Fmin
P ) (14)

The individual level parameter Fi for each individual in population is gener-
ated by Gaussian distribution [4,6] based on the population level parameter FP

as follows

Fi = randn(FP , 0.1) (15)

Fi is truncated to be 1 when Fi > 1, and Fi is regenerated when Fi < 0.
This control method can make sure that scaling factor F gradually decreases

as the evolution process from the overall level. Moreover, the Gaussian distrib-
ution can provide the flexibility for F from the individual level.

Crossover Rate CR. A CR candidate pool is established which includes some
typical values, such as 0.1, 0.5 and 0.9. At each generation, each individual
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randomly picks up a value from CR candidate pool as its crossover rate. The
CR candidate pool is set as follows

CRcandidate = {0.1, 0.5, 0.9} (16)

The rationality of this setting is that the values of 0.1, 0.5 and 0.9 are widely
assigned to CR in other literatures [11,12]. Besides, CR = 0.1 emphasizes on
exploitation, and CR = 0.9 emphasizes on exploration and CR = 0.5 can balance
between exploration and exploitation.

3.3 The Enhance Differential Evolution Algorithm (EDE)

Our new mutation strategy and new parameter control method are integrated
with the framework of classical DE to form the EDE algorithm. The pseudo-code
of the complete EDE is demonstrated in Algorithm 1.

Algorithm 1. The procedure of the EDE algorithm
1: Initialization: Generate a uniformly distributed random initial population
2: while termination condition is not satisfied do
3: FP = Fmax

P − (G/Gmax) · (Fmax
P − Fmin

P )
4: λ = (G/Gmax)4

5: p = rand(0.0.5, 0.15)
6: for i = 1 to NP do
7: Fi = randn(FP , 0.1)
8: Select random indexes r1, r2 and r3, r1 �= r2 �= r3 �= i //mutation
9: Select XG

superior randomly from top floor(p · NP ) individuals
10: V G

i = λ · XG
r1 + (1 − λ) · XG

superior + F · (XG
r2 − XG

r3) // end mutation
11: jrand = randint(1, D) //crossover
12: Select a value for CR from candidate pool randomly
13: for i = 1 to D do
14: if rand(0, 1) ≤ CR or j == jrand then
15: UG

i,j = V G
i,j

16: else
17: UG

i,j = XG
i,j

18: end if
19: end for//end crossover
20: if f(UG

i ) ≤ f(XG
i ) then

21: XG+1
i = UG

i //selection
22: else
23: XG+1

i = XG
i

24: end if//end selection
25: end for
26: end while
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4 Experiments and Results

EDE will be tested by ten benchmark numerical functions with 30D to evalu-
ate the performance, which are proposed in the special session on real-parameter
optimization of CEC 2014 [13] (the first ten test functions). The detailed descrip-
tion of these benchmark functions can be found in [13].

Table 1. The parameter settings for the compare algorithms

Algorithm Parameter values

DE NP = 100, F = 0.5, CR = 0.9

ODE NP = 100, F = 0.5, CR = 0.9, Jr = 0.3

SaDE NP = 100, k = 4, ε = 0.01, L = 50

EDE NP = 100, Fmax
P = 0.9, Fmin

P = 0.1, CR ∈ {0.1, 0.5, 0.9}

In our experimental studies, the average and the standard deviation of the
function error value f(Xbest) − f(X∗) are adopted to evaluate the optimization
performance, where Xbest is the best solution found by the algorithm in each run
and X∗ is the actual global optimal solution of the test function. The maximal
function evaluation (max FES ) is adopted as the termination condition, which
is set to 10000 ·D. For all experiments, 20 independently runs are conducted for
each test function. Wilcoxon’s rank-sum test is conducted on the experimental
results at the 5 % significant level to obtain the reliable statistic conclusion. For
clarity, the best results for each test problem are marked in boldface.

EDE is compared with other six DE algorithms, which are DE/rand/1/bin,
DE/rand/2/bin, DE/current-to-rand/1/bin, DE/best/1/bin, ODE [12] and
SaDE [6]. The parameter settings for these seven algorithms are given in Table 1
and the experimental results are shown in Table 2.

Table 2 clearly indicates that EDE has the best performance among the
seven algorithms on unimodal functions F1-F3, and DE/rand/1/bin has the sec-
ond best performance. This phenomenon effectively demonstrates that EDE not
only retains the merits of DE/rand/1/bin, but also improves the performance
of DE. On multi-modal functions F4-F10, EDE outperforms DE/rand/1/bin,
DE/rand/2/bin, DE/current-to-rand/1/bin, DE/best/1/bin, ODE and SaDE
on most test functions and EDE is only beaten by DE/rand/1/bin and ODE
on F6, and SaDE on F10. Overall, EDE is significantly better than DE/rand/1,
DE/rand/2, DE/current-to-rand/1/bin, DE/best/1/bin, ODE and SaDE on 5,
10, 10, 10, 5 and 6 test functions respectively, while DE/rand/1/bin, ODE
and SaDE are better than EDE only on one of the test functions respectively.
Moreover, DE/rand/2/bin, DE/current-to-rand/1/bin and DE/best/1/bin are
unable to outperform EDE on any of 10 test functions. The box plot of 20 func-
tion error values of each algorithm on each test function are plotted in Fig. 3,
where 1, 2, 3, 4, 5, 6, and 7 denote EDE, DE/rand/1/bin, DE/rand/2/bin,
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Table 2. The parameter settings for the compare algorithms

F1
7.36e+04 2.71e+07 9.19e+06 6.42e+08 1.11e+05 3.70e+05 4.86e+04
4.55e+04− 8.09e+06− 4.99e+06− 2.48e+08− 7.64e+04− 2.31e+05− 2.92e+04

F2
0.00e+00 4.58e+06 2.44e+09 5.84e+10 7.80e-13 2.65e-14 0.00e+00
0.00e+00= 1.66e+06− 1.23e+09− 1.50e+10− 8.01e-13= 8.31e-14= 0.00e+00

F3
0.00e+00 2.79e+01 4.08e+03 1.27e+05 1.14e-14 9.25e+00 0.00e+00
0.00e+00= 6.93e+00− 2.02e+03− 3.06e+04− 2.31e-14= 2.52e+01− 0.00e+00

F4
4.93e-01 1.76e+02 2.63e+02 9.27e+03 3.50e-01 3.39e+01 6.88e-01
1.31e-01= 1.50e+00− 9.92e+01− 3.38e+03− 2.07e-01= 3.47e+01− 1.54e-01

F5
2.09e+01 2.09e+01 2.09e+01 2.09e+01 2.09e+01 2.06e+01 2.05e+01
5.63e-02− 5.12e-02− 6.66e-02− 5.12e-02− 4.75e-02− 6.15e-02= 3.98e-02

F6
2.54e-04 3.46e+01 1.27e+00 3.61e+01 6.00e-02 4.79e+00 8.43e-01
4.16e-04+ 1.14e+00− 7.52e-01− 1.78e+00− 1.73e-01+ 1.45e+00− 9.34e-01

F7
0.00e+00 9.79e-00 2.54e+01 5.30e+02 3.79e-15 9.84e-03 0.00e+00
0.00e+00= 3.77e-02− 8.95e+00− 7.87e+01− 2.08e-14= 1.39e-02− 0.00e+00

F8
1.30e+02 2.18e+02 1.48e+02 3.04e+02 1.53e+02 3.32e-02 0.00e+00
2.37e+00− 6.46e+00− 9.62e+00− 3.34e+01− 2.08e+01− 1.82e-01− 0.00e+00

F9
1.82e+02 2.35e+02 1.59e+02 3.56e+02 1.83e+02 3.50e+01 3.78e+01
1.08e+00− 9.15e+00− 9.00e+00− 3.88e+01− 1.25e+01− 7.79e+00= 1.88e+01

F10
5.76e+03 6.34e+03 5.60e+03 5.92e+03 6.00e+03 2.33e-01 7.33e+00
4.85e+00− 1.84e+02− 2.91e+02− 5.52e+02− 5.01e+02− 4.76e-01+ 4.13e+00
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Fig. 3. Box plot of 20 function error values
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DE/current-to-rand/1/bin, DE/best/1/bin, ODE and SaDE respectively. Obvi-
ously, EDE has better robustness and accuracy than other algorithms. The evolu-
tion curves of the mean function error values derived from EDE, DE/rand/1/bin,
DE/rand/2/bin, DE/current-to-rand/1/bin, DE/best/1/bin, ODE and SaDE
versus the number of FES are plotted in Fig. 4.
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Fig. 4. Evolution curve of the mean function error values

5 Conclusion

In this paper, a novel mutation strategy and a new parameter control method
are proposed to enhance the performance of DE. The new mutation strategy
and parameter control method are integrated with the framework of classical
DE to form our new DE algorithm, called EDE. EDE balances the exploration
ability and exploitation ability of DE algorithm effectively. The performance of
EDE is validated by comparing with four classical DE and two state-of-the-art
DE variants on ten test functions. In the future, the proposed new mutation
strategy and parameter control method will be applied to other DE algorithms,
and EDE could also be applied to solve real-world optimization problems.
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Abstract. In this paper, a hybrid training model for interval type-2
fuzzy logic system is proposed. The hybrid training model uses extreme
learning machine to tune the consequent part parameters and genetic
algorithm to optimize the antecedent part parameters. The proposed
hybrid learning model of interval type-2 fuzzy logic system is tested on
the prediction of Mackey-Glass time series data sets with different levels
of noise. The results are compared with the existing models in literature;
extreme learning machine and Kalman filter based learning of consequent
part parameters with randomly generated antecedent part parameters. It
is observed that the interval type-2 fuzzy logic system provides improved
performance with the proposed hybrid learning model.

Keywords: Hybrid learning model · Extreme learning machine ·
Genetic algorithm · Interval type-2 fuzzy logic system · Prediction

1 Introduction

Information deficiencies such as incomplete, fragmentary, not fully reliable, vague
and contradictory information [1] results in uncertainties in data and a process.
Type-1 fuzzy logic system (T1FLS) can only handle the uncertainties about
the meaning of the words by using precise membership functions. The choice of
T1FLS is not appropriate in the presence of other sources of uncertainties in the
real world data as it may cause problem in determining the exact and precise
parameters of both the antecedents and consequents [2]. However, T2FLS can
handle all type of uncertainties with their fuzzy grades [3].

T2FLS is computationally demanding because of the extra dimension. Inter-
val T2FLS (IT2FLS) is the simplest form of T2FLS as all points in the third
dimension are at unity and can be ignored for modelling purposes [4]. Though
improvements of IT2FLS to its earlier version have been evidenced, yet it still
lacks a systematic and coherent design. Different learning algorithms proposed
for parameters optimization of IT2FLS include back propagation based learning
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 644–653, 2015.
DOI: 10.1007/978-3-319-26532-2 71
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method [5], genetic and other bio-inspired algorithms [6–9], ant colony optimiza-
tion [10], and extended Kalman filter based learning algorithm [11]. A hybrid
model for IT2FLS was also proposed by [12] using orthogonal least-squares and
back-propagation methods. The distressing issues of learning algorithms i.e. stop-
ping criteria, learning rate, learning epochs and local minima may not be handled
by the conventional learning algorithms. Huang et al. [13] introduced extreme
learning machine (ELM) that can solve the stated issues of conventional training
methods. Jang et al. established a functional equivalent between fuzzy and single
hidden layer feed-forward neural network (SLFN) [14], that made it possible to
hybridize fuzzy and ELM. Different hybrid models of fuzzy and ELM reported in
literature include an evolutionary fuzzy extreme learning machine analyzed for
mammographic risk [15], a hybrid model of fuzzy and ELM for fault detection
method in power generation plant [16], ELM based fuzzy inference system [17]
and an online sequential fuzzy ELM for function approximation and classifica-
tion problems [18]. The antecedent parameters in the above mentioned models
were randomly assigned and the consequent parameters were determined analyt-
ically. However, there are chances that the randomly assigned parameters might
not create suitable membership function in fuzzy model. As it is noted that the
randomly generated parameters may not be effective for network output [19] and
can cause high learning risks [20] due to overfitting. Soon after the realization
of this issue, optimal parameters (hidden node) are reported for ELM [19–22].
However the hybrid model of fuzzy and ELM have not yet been reported with
optimal parameters and are generated randomly.

ELM is an efficient learning algorithm for T2FLSs [23], however, the
antecedent part parameters were generated randomly. Inspired by the competi-
tive performance of the T2FLS with ELM and motivated from the issue to find
the optimal parameters of fuzzy and ELM hybrid model, this paper proposes a
hybrid training model for IT2FLS, where the antecedent parameters are opti-
mized using genetic algorithm (GA) and consequent parameters are determined
analytically through ELM. GA proposes multiple solutions which evolve to find
best point, so it is less probable that it fells in a local minima than other optimiza-
tion methods. Moreover, this optimization method is suitable for the nonlinear
optimization problems. These are the reasons why GA is proposed to be used
to optimize the parameters of antecedent part. The proposed hybrid learning
model for IT2FLS is described in Sect. 3. The parameters of optimization, such
as length of chromosome, fitness function and simulation results are discussed
in Sect. 4. Section 5 concludes the paper with some remarks and guidelines for
future work.

2 Structure of the Interval Type-2 FLS Used
in This Paper

An IT2FS Ã can be defined as follows:

Ã =
∫

x∈X

∫

u∈Jx

1/(x, u) Jx ⊆ [0, 1] (1)
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Fig. 1. Block diagram of type-2 FLS.

A type-2 FLS (see Fig. 1) maps crisp input into type-2 fuzzy sets by assigning
membership grade to each fuzzy set in the Fuzzifier block. There are various type-
2 fuzzy membership functions (MFs), however the Gaussian MF is utilized here
because of less parameters. The Gaussian MF with fixed mean mn

i and uncertain
deviation [σn1

i , σn2
i ] can be represented as:

μÃn
i
(xi) = exp[−1

2
(
xi − mn

i

σn
i

)2], σn
i ∈ [σn1

i , σn2
i ] (2)

where μÃn
i

is a Gaussian MF that has upper and lower MFs [μÃn
i
(xi) μ

Ãn
i

(xi)]
as:

μÃn
i
(xi) = N(mn

i , σn2
i ;xi) (3)

μ
Ãn

i

(xi) = N(mn
i , σn1

i ;xi) (4)

A fuzzy Rule Base is a set of linguistic rules in the form of a two parts IF-THEN
conditional statements. The IF part (known as antecedents) need to be satisfied
to inferred the THEN part (known as consequents). The interval type-2 FLS’s
with a rule-base of Nth rules (Rn) are taken as:

Rn: if x1 is Ãn
1 ∧ x2 is Ãn

2 ∧ · · · ∧ xd is Ãn
d

Then wn(x) = pn0 + pn1x1 + · · · + pndxd, n = 1, · · · , N
In the Inference Engine, each fuzzy rule is premised on the input vec-

tor x = [x1, x2, · · · , xn]T as a varying singleton wn. Ãn
i is the ith IT2 fuzzy

subset generated from the input variable xi in the nth rule domain. N and
∧ represent the number of fuzzy rules and conjunction operator respectively.
pn = [pn0 , pn1 , · · · , pnd ]T denotes the nth fuzzy rule parameters of the consequent.

The Output Processing block in type-2 FLS comprises of an additional com-
ponent called the Type reducer followed by a Defuzzifier block. Because of the
distinct nature of type-2 fuzzy membership functions, the output from the infer-
ence engine is type-2 FS. Since the defuzzifier block can only input the type-1
FSs to produce crisp output therefor, a type reducer is needed after the infer-
ence engine to produce a type-reduced set using a centroid calculation. This
type-reduced set can be then defuzzified to crisp output.
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3 Structure of the Hybrid Learning Model for Interval
Type-2 FLS (IT2FELM-GA)

The major task in the design process of a type-2 FLS involves the selection of
optimal parameters. In this paper, a hybrid learning model for IT2FLS is pro-
posed based on ELM and GA. The proposed hybrid learning model tune the
consequent part parameters using ELM with randomly generated antecedent
part parameters initially. The antecedent part parameters are then encoded as
chromosome and optimize using GA in the direction of having better perfor-
mance. Figure 2 shows the flowchart of the hybrid learning model of IT2FLS
using ELM and GA.

Initialize the Type-2 Gaussian MF 
parameters (m,δ1 and δ2)

Calculate the objective function for 
each IT2FLS

stopping criteria 
achieved

GA operations: selection, crossover
and mutation

No

End

Start

Calculate the Type-2 FLS’s consequents part using ELM

Initialize the 
consequents

Tune the 
consequents

Use the optimal
antecedent
parameters

Yes

Repeat the computation 
for test set

Fig. 2. Flowchart of the hybrid learning model of IT2FLS model.

3.1 Optimal Parameters Using GA

GA, an optimization tool, is based on a formalization of natural selection and
genetics. A population of chromosomes, objective function and stopping criteria
are defined in GA. The population then undergoes genetic operation to evolve
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and the best population is selected based on the objective function. An IT2FS
described by a Gaussian membership function with fixed mean and uncertain
standard deviation is encoded into a population of chromosomes. Root means
square error (RMSE) is defined as the fitness function for the determination
of the best chromosomes. Maximum number of iterations and relatively small
changes in the value of RMSE are the stopping criteria. The GA runs for each
iteration and calculated the RMSE for the IT2FLS with the consequents parame-
ters are learnt through ELM. Learning of consequents through ELM is described
in the next section. The optimal parameters are achieved once GA stops with the
minimum RMSE. These optimal parameters are then used in the ELM strategy
to develop a hybrid learning model for IT2FLS.

3.2 Extreme Learning Machine Strategy for Interval Type-2 FLS
(IT2FELM) [24]

ELM is originally proposed for SLFN [13]. From the functional relationship
between FLSs and neural networks [14,25], it is observed that under some mild
conditions FLSs can be interpreted as a special case of SLFN and can be trained
using its learning algorithms. The ELM considers the fuzzy rules as hidden nodes
of the SLFN [18]. Learning of IT2FLS using ELM is done in three steps.

– Generate the antecedent parameters.
– Initialize the Consequents parameters.
– Tune the Consequents parameters.

Generate the Antecedent Parameters. In the beginning of IT2FELM-GA
model the GA initialize a population of chromosomes randomly which are used
as the initial set of antecedent parameters in the ELM strategy.

Initialize the Consequents Parameters. After the antecedent parameters
are set by the GA, the IT1 fuzzy set [yl, yr] are initially used to initialize the
consequent parameters using the fuzzy basic function as:

yl =
N∑

n=1

´̄fnwn, ´̄fn =
fn

∑N
ń=1 f̄ń

(5)

yr =
N∑

n=1

f́
n
wn, f́

n
=

f
n∑N

ń=1 fń
(6)

The initialized consequent parameters in IT2FELM-GA are then expressed
as a function of linear system using the ELM strategy. Under the constraints of
minimum least square, the linear system is optimized by ELM. Huang et al. [13]
observed that such an optimal solution has the smallest least-squares norm and
has a unique solution.
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Tune the Consequents Parameters. Having the optimized initial consequent
parameters of the IT2FLS in Sect. 3.2, the K-M algorithm [26] is utilized to
obtain the final consequent parameters. The obtained final parameters are once
again expressed as a function of linear system and is optimized using ELM. This
step gives an optimized output of the IT2FLS.

Repeat the Computation for Test Data Set. The above parts of subsec-
tions 3.2 described training of IT2FLS with ELM strategy. Since the antecedents
are computed once, the test data set is utilized with the last two parts for the
prediction purposes.

3.3 Objective Function Evaluation

Once the ELM strategy is finished, the chromosome in each iteration is evaluated
using the objective function of RMSE. The chromosomes’ population having
lowest RMSE represents the best population of the solution. The chromosome
having best value of the objective function is saved in each iteration.

3.4 GA Operations

The current population of chromosome in IT2FELM-GA is updated to gener-
ate the new set of chromosomes for the next iteration using genetic operations
of selection, crossover and mutation. Parents are selected using the tournament
selection mechanism. Crossover operation creates new chromosomes inherit infor-
mation (genes) from parents. The mutation operation introduce new genetic
information hence promote diversity in population. These genetic operation are
performed to evolve and optimize the encoded antecedent part parameters (chro-
mosomes). These chromosomes are iteratively utilized in the ELM strategy of
IT2FLS for several generations until the optimum solution is achieved.

4 Simulation Results

In this paper, an IT2FS described by a Gaussian membership function with 5
number of MFs (nMF) and 4 inputs is optimized using GA. This means that
each parameter of the Gaussian MF requires 20 chromosomes. Thus, a total of
60 chromosomes of population 10 are generated randomly in the range [0,1].
One-point crossover with a probability of 0.8 is utilized.

The proposed hybrid learning model of interval type-2 fuzzy logic system is
tested on the prediction of Mackey-Glass time series data sets with different levels
of noise. The results are compared with the existing model in literature; extreme
learning machine and Kalman filter based learning of consequent parameters
with randomly generated antecedent parameters are used.

The IT2FEKM-GA is tested on the prediction of Mackey-Glass time series
data sets with different levels of noise. The noise-free Mackey-Glass time series
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Table 1. Numerical values of Mackey-Glass time series data

Parameter Value

a 0.2

b 0.1

τ 17

x0 1.2

ts 0.1

nData 12000

data is generated using a nonlinear time-delay differential equation as expressed
as follows:

dx(t)
dt

=
ax(t − τ)

1 + xn(t − τ)
− bx(t) (7)

where x(t) is the time series data at time t, a, b and n are constants and τ is the
delay parameter used to produce chaotic behavior in the data. The discretiszed
data is obtained for simulation using the Fourth-Order Runge-Kutta method
with an initial condition x0 and a time step ts. Table 1 shows the numerical
values to generate Mackey-Glass time series data. The dataset with 4 inputs
and one output is extracted in the form of x(t − 18), x(t − 12), x(t − 6), x(t)
and x(t + 6). By adding different levels of noise to the Mackey-Glass time series
data, five noisy data sets are generated. The training and testing data sets are
obtained with a ratio of (70/30).
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Table 2. RMSE of IT2FELM-GA, IT2FELM and IT2FKF obtained with noisy
Mackey-Glass data sets.

IT2FELM-GA IT2FELM IT2FKF

0db 0.171 0.198 0.192

10db 0.075 0.125 0.106

20db 0.030 0.105 0.073

30db 0.014 0.095 0.112

40db 0.011 0.060 0.110

The best and average trend of convergence of the IT2FELM-GA can be seen
in Figs. 3 and 4. Continuous reduction of the best and average values of the
fitness function is observed. The average value of the fitness function drops from
0.182 to 0.173 for the most noisy data (0db) and from 0.1 to 0.02 for 40db.

600 700 800 900 1000 1100 1200
0.2

0.4
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IT2FELMGA

Fig. 5. Actual and forecasted times series data using IT2FELM-GA.

In order to show the effectiveness of optimal parameters, the IT2FELM-GA
is compared with IT2FELM [23,24] and Kalman filter based IT2FLS (IT2FKF)
[11], where the antecedent parts are generated randomly and consequent parts
are learnt using ELM and KF respectively. The results of the last two models are
taken after 10 runs. The minimum among the 10 RMSE is selected as the best
performance of these models. Table 2 shows the results of IT2FELM-GA over
IT2ELM and IT2FKF in terms of RMSE. The prediction results of IT2FEL-
GA gradually decrease with decrease in the level of noise in data. It is also
observed that the prediction results of IT2FELM-GA is very stable even with
higher level of noise. The IT2FELM produces higher errors with higher level of
noise. Whereas the IT2FKF produces good results in the presence of high level
of noise as compared to IT2FELM. However, increase in RMSE value is observed
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with lower level of noise. It may be due to the fact that the KF algorithm are
designed to perform well with noisy data [11].

Figure 5 shows the actual data and the forecasts obtained with the hybrid
learning algorithm of IT2FLS. As can be seen from the figure, the results of
IT2FELM-GA is quite satisfactory.

5 Conclusion

In this paper, effectiveness of the optimal parameters in ELM based fuzzy model
is demonstrated with a hybrid learning model for IT2FLS using GA and ELM.
The consequent parameters are tuned using ELM whereas the antecedent para-
meters are encoded as a chromosome and are optimized using GA. The pro-
posed hybrid learning model is compared with IT2FELM and IT2FKF where
the antecedent parameters are generated randomly. Competitive performance of
the proposed hybrid learning model with optimal parameters is observed as com-
pared to IT2FELM and IT2FKF in the presence of uncertainty. Uncertainty in
models is introduced using noisy Mackey-Glass data sets. It is concluded that,
the results achieved with randomly generated parameters in the ELM based
fuzzy models can be optimized by using various optimization algorithms.
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Abstract. According to characteristics of rapid speed and large quan-
tity in the process of bacterial reproduction, and natural selection, sur-
vival of the fittest in the process of evolution, the framework of bacterial
reproduction optimization(BRO) algorithm is proposed from a macro
perspective of bacteria reproduction. The process of bacteria reproduc-
tion is divided to four periods with lag period, logarithmic period, stable
period and decline period. Likewise, the process of optimization algo-
rithm proposed by this paper is segmented into four periods with ini-
tial period, iteration period, stable period and decline period. Based on
the framework, strategies are introduced to design BRO more efficiently.
Experimental results and theoretical analysis show that BRO has faster
convergence speed and higher accuracy for high-dimensional problems.

Keywords: Intelligent algorithms · Reproduction · Bacterial swarm ·
Particle swarm optimization

1 Introduction

Intelligent algorithms [1] have aroused attention of researchers in recent years
because of their excellent optimization performance, a part of which mimic bio-
logical social behaviors of foraging such as particle swarm optimization (PSO) [2],
artificial bee colony (ABC) [3], bacterial foraging optimization(BFO) [4] and so
on. Besides these algorithms mentioned above, there are other algorithms such as
genetic algorithm (GA) [5], cultural quantum-inspired shuffled frog leaping algo-
rithm [6], group search optimization (GSO) [7], and social emotional optimiza-
tion algorithm [8] and so forth. However, these algorithms have better effect on
optimization for low-dimensional problems, but for high-dimensional problems
they have some disadvantages over optimization such as curse of dimensionality
easily, lower accuracy and slower convergence speed and higher time complexity
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and so on [9,10]. This paper, from the macro perspective of biological individu-
als reproduction, proposes bacterial reproduction optimization(BRO)according
to reproduction, another social behavior different from foraging.

2 Design of BRO Algorithm

2.1 The Frame of BRO

The reproduction, a phenomenon that biological individuals reproduce their off-
springs, is a basic characteristic of biological individuals. For bacterial swarm,
reproductive process undergoes four periods with lag period, logarithmic period,
stable period and decline period [11,12]. Likewise, the process of BRO is also
divided into four periods and described as follows. The process of BRO initial-
ization is called initial period; the process of BRO iterating evolution is called
iteration period; the process that BRO is trapped into the local optima is called
stable period; the dead process of the Mothers is called decline period.

Definition 1. The best individual reproduced on some condition is called the
Mother in the first generation, and in the later generations the best individuals
are called the Sub Mothers at the same condition.

In the four periods of BRO, the function of the first period is to implement
initialization of the Mother, the Sub Mother and parameters of BRO. BRO
achieves reproducing offsprings in the second period. BRO, in the third period,
will fall into local optima, and the last period makes BRO out of local optimal
values. The basic idea of BRO is described in Fig. 1.

2.2 BRO Algorithm Design

The minimization principle is adopted to choose the Mother and the sub Mother
from bacterial swam, and its basic idea is described as follows. n bacterial indi-
viduals are generated randomly regarded as xi, i = 1, 2, · · · ,n and then fitness
values f(xi)are calculated. The fitness values, next, are compared with each
other to find out the bacterial individual of minimal fitness value. The method
that generates the sub Mother is the same as the Mother except for one different
point that the individual selected as the Mother reproduces n-1 bacterial indi-
viduals, and the sub Mother is selected from n-1 individuals which are born by
reproduction and inherit their Mother genetic information. Therefore, strategies
that generate them are shown as follows.

Mother = min(f(xi)), i = 0, 1, · · · , n − 1 (1)

subMother =
{

f(x0) = Mother
min(f(xi)), i = 0, 1, · · · , n − 1

}
. (2)
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Fig. 1. The flowchart of BRO frame
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where f(•) is the fitness function and xi is the ith bacterial individual.
A bacterial individual is regarded as a possible solution xi, in D dimension

space, which is represented as xD
i = (xi1, xi2, · · · , xiD). Hypothesis that the

searching area of the Mother x0 is [a, b] and its offspring bacterial searching area
is [ave a, ave b]. Hence we can get the formula as xD

0 = (x01, x02, · · · , x0D), x0 ∈
[a, b] and ave a and ave b is shown as

ave a = −
∣∣∣
∣
x01 + x02 + · · · + x0D

D

∣∣∣
∣ (3)

ave b =
∣∣∣∣
x01 + x02 + · · · + x0D

D

∣∣∣∣ (4)

According to Eqs. 3 and 4, ave a and ave b are the lower limit and upper limit
of offspring bacterial searching area respectively. By this way, it can implement
information exchange among individuals. Since offsprings inherit their Mother
information, this paper adopts the searching area designed above and takes into
consideration the following equation to reproduce offsprings.

xi
D = k1x0

D + k2, i = 1, 2, · · · , n − 1 (5)

where xD
i is the offspring bacterial individual the Mother reproduced which

locates at the searching area [ave a, ave b]; k1 and k2 are the random numbers
uniformly distributed between (−1,1).

Definition 2. Suppose that x is a real number that defines in the range [a, b],
that is, x∈ [a, b], the definition of the escaping value x1 of x is as follows.

x1 = x − h (6)
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where h is a random number that locates at [-0.1, 0.1] uniformly distributed.

The advantage of Eq. 6 is that the Mothers which have been dead are adjusted
slightly to escape the local optima. Meanwhile, fitness values of x1 and the
Mother are calculated. If the fitness of the Mother is worse than x1, it is regards
as the new Mother. Otherwise, x1 insteads of x to continue calculating the
escaping value until the new Mother appears or the algorithm meets the stop
condition. Optimization process of BRO with 10 offsprings is shown in Fig. 2. In
Fig. 2, the sub Mother closed to the optimal solution is better than the Mother
obviously and then the sub Mother substitutes for it to continue reproducing
and other individuals are abandoned except for the Mother.

3 Experimental Results and Analysis

3.1 Comparative Algorithms Parameters Setting

Eight benchmark functions are chosen and divided into two categories, which
are all high and changeable dimension functions [13,14]. The first category func-
tions with no peaks or simply multi peaks and the second with no rotated
multi peaks, all minimization problems, are (1) Sphere(F1), Rosenbrock(F2);
(2) Ackley(F3), Griewanks(F4), Weierstrass(F5), Rastrigin(F6), Noncontinuous
Rastrigin(F7), Schwefel(F8), which are described in literatures [15,16].

For testing the performance of BRO, PSO, GA and BFO are chosen as
comparative algorithms with 500 dimension. The parameters initial values of
PSO and BFO are as follows: acceleration factors c1 = c2 =1.49, inertia weight
ω =0.729, maximum speed =2.0, population size=30, iteration numbers = 20000,
run times = 30, chemotactic steps = 20, swimming length = 5, reproduction steps
= 8. r1 and r2 are random numbers uniformly distributed between(0, 1).

3.2 Experimental Results and Analysis

The Performance Evaluation of PSO and GA. PSO, because of few com-
plicate operating factors, has a better effect on some typical optimizing problems.
The research of literature [16] shows that PSO ameliorates the speed and accu-
racy of convergence compared with GA with selection, crossover and mutation
for most non-linear and complex problems, which is hard to meet the needs of
practical applications. In other word, the performance of PSO exceeds GA for
problems above. Therefore, GA is no longer to be tested.

The Performance Evaluation of BRO, PSO and BFO. Eight fitness func-
tions are tested for 30 times by PSO and BRO separately in experiments with
500 dimension. The comparison results are shown in Table 1. In Table 1, ‘mean’
represents average values of 30 times and ‘std’ represents standard deviation.
‘RA’ is the ratio of convergence accuracy of PSO and BRO. ‘RT’ is the ratio of
average running time of 30 times of BRO and PSO (seconds).
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Table 1. The experimental results with 500 dimension

Functions Indexes PSO BRO RA

F1 Mean/Std 5.61e+02/4.93e+01 5.26e−06/1.35e−05 108/106

F2 Mean/Std 1.31e+04/1.18e+03 7.92e−04/1.57e−03 108/106

F3 Mean/Std 1.75e+01/2.92e−01 2.38e−04/2.14e−04 105/103

F4 Mean/Std 1.92e+03/1.36e+02 1.62e−08/3.09e−08 1011/1010

F5 Mean/Std 5.02e+02/2.18e+01 3.73e+00/2.42e+00 102/101

F6 Mean/Std 3.49e+03/1.11e+02 5.98e−04/1.04e−03 107/105

F7 Mean/Std 1.30e+04/9.72e+02 7.71e−04/1.47e−03 108/105

F8 Mean/Std 1.64e+05/3.72e+03 2.01e+05/1.92e+03 100/100

As it can be seen from the Table 1, BRO outperforms PSO on seven out
of eight functions except for F8(equivalent performance both PSO and BRO),
especially for F4, the ratio of accuracy is about 1011. Table 1 and following Table 3
show that, for F1, F2, F3, F4,F6, F7, BRO has better optimizing performance.
Table 3, meanwhile, shows that, the highest time ratio of the seven functions
above is only 17.8 and the lowest is only 4.3. The time ratio of BRO is more
than PSO but the lowest accuracy ratio of BRO is 106 times and the highest
is 1016 times compared with PSO. For F5, PSO consumes about 18 s and BRO
improves the accuracy but consumes more than 1000s. BRO and PSO both trap
into the local optimum and running time of BRO is 20 times more than PSO for
F8. Hence the two algorithms both have worse effect on the function in that its
local extreme point is hidden near the optimal solution. In addition, it is obvious
from Fig. 3 that convergence speed of BRO is far faster than PSO for the top 7
functions but slightly slower than PSO for F8. In sum, the performance of BRO
is far better than PSO.

BFO [4] is proposed according to the social behavior of bacterial foraging
but BRO is proposed according to bacterial reproduction. The experimental
results are shown in Table 2 when the dimension is 500. As it can be seen from
Table 2, BRO outperforms BFO obviously for the top 7 functions except for F8.
Therefore, BRO has better performance over high-dimensional problems.

4 The Theoretical Analysis of BRO

4.1 The Analysis of Convergence

Theorem 1. The ith and (i+1)th optimum are regarded as the Mother(i) and
the subMother(i)respectively,y(i)represents the ith optimal value and the highest
accuracy of convergence M will be produced when meets the stop condition.

Proof. The Eq. 7 is obtained according to the idea of BRO.

y(i) = min(Mother(i), subMother(i + 1)) (7)
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Fig. 3. The convergence curve of BRO

Table 2. The experimental results of BFO and BRO

Functions Dimensions Optimum values

BFO BRO RA

F1 500 3.90e+03 1.07e−09 1012

F2 500 1.90e+05 8.95e−08 1013

F3 500 2.10e+01 2.22e−05 106

F4 500 1.35e+04 5.98e−13 1017

F5 500 9.34e+02 2.74e−01 103

F6 500 8.41e+03 7.75e−08 1011

F7 500 6.27e+04 7.94e−08 1012

F8 500 2.01e+05 1.96e+05 100

If Mother(i) ≥ subMother(i + 1)

y(i) = subMother(i + 1) (8)

Conversely, the following equation can be obtained

y(i) = Mother(i) (9)

With incensement of iterating numbers, the following relationship is obtained

y(i) ≥ y(i + 1) (10)

When BRO meets the stop condition or accuracy, the optimal M is obtained

y(0) ≥ y(1) ≥ y(2) ≥ · · · ≥ y(n) = M (11)
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Table 3. The optimal values of BRO and PSO

Functions Dimension Best value Cost time

PSO BRO RA PSO BRO RT

F1 500 4.78e+02 1.07e−09 1011 0.9 3.95 4.30

F2 500 1.09e+04 8.95e−08 1012 0.96 6.04 6.29

F3 500 1.68e+01 2.22e−05 106 1.37 15.4 11.2

F4 500 1.63e+03 5.98e−13 1016 1.34 22.8 17.0

F5 500 4.57e+02 2.74e−01 103 18.3 1003 54.8

F6 500 3.25e+03 7.75e−08 1011 1.11 19.8 17.8

F7 500 1.14e+04 7.94e−08 1012 1.65 21.9 13.2

F8 500 1.55e+05 1.96e+05 100 1.33 32.3 24.2

Taking the limit for y(i)

lim
i→n

y(i) = y(n) = M (12)

��
It is obvious from Eq. 12 that BRO converges to higher accuracy M.

4.2 The Analysis of Time Complexity

According to Cost time in Table 3, compared with PSO, excluding F5, the high-
est time ratio of BRO is 24.2, for the other 7 functions with 500 dimension. The
consuming time of BRO is slightly higher than PSO, but except for F5, F8, from
the ratio of accuracy, it is improved greatly for the other 6 functions. The lowest
accuracy ratio of BRO is 106, and the highest is 1016. For F5, the time is more
than 50 times but the accuracy is only 1000 times, not by much but at least the
accuracy increases slightly. For F8, whether time or accuracy BRO is not better
than PSO and the optimization performance is poor.

5 Conclusion

This paper, from the macro perspective of biological reproduction, proposes
the frame of BRO according to characteristics of biological reproduction and
introduces some strategies to design BRO based on the frame. A large number
of experimental results and the analysis of time complexity and accuracy, show
that BRO is an optimization algorithm, simply, few parameters and easy to
implement. What more important is that BRO has faster convergence speed
and higher accuracy dealing with high-dimensional problems.
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Abstract. Multi-modality fusion has recently drawn much attention
due to the fast increasing of multimedia data. Document that consists
of multiple modalities i.e. image, text and video, can be better under-
stood by machines if information from different modalities semantically
combined. In this paper, we propose to fuse image and text informa-
tion with deep neural network (DNN) based approach. By jointly fusing
visual-textual feature and taking the correlation between image and text
into account, fusion features can be learned for representing document.
We investigated the fusion features on document categorization, found
that DNN-based fusion outperforms mainstream algorithms include K-
Nearest Neighbor(KNN), Support Vector Machine (SVM) and Naive
Bayes (NB) and 3-layer Neural Network (3L-NN) in both early and late
fusion strategies.

Keywords: Categorization · Semantic feature · Late fusion · Deep
neural network

1 Introduction

Over the past decade, the tremendous increasing of multimedia data (e.g.image,
audio and video) brings difficulties to information processing. Traditional app-
roach for representation learning, classification and retrieval tasks usually focus
on singe modality. However, in reality, we receive data from different information
channels, one of the most common scenarios is image-text paired document. It is
worth to note that different data modalities actually carry different information
at different semantic levels. As shown in Fig. 1, an example document which con-
tains an image and a loosely related descriptive text. If image and text informa-
tion can be semantically fused, the more expressive and representative features
can be learned for representing this document, and further improve multimodal
document classification accuracy. Realizing the importance of multimodal infor-
mation, in this work, we propose to address this problem by fusing visual and
textual information with deep neural network. Multi-modality joint modeling is
an open problem in bridging “semantic gap” across modalities. The procedure for

c© Springer International Publishing Switzerland 2015
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“Though adult lions have no natural predators, evi-
dence suggests that the majority die violently from
humans or other lions.Schaller, p. 183 This is partic-
ularly true of male lions, who, as the main defenders
of the pride, are more likely to come into aggressive
contact with rival males...” (—-from Wikipedia)

Fig. 1. An example document that paired with an image and a descriptive text

multimodal data modeling generally falls into two stages: (1) modality represen-
tation and (2) correlation learning. In modality representation, one popular app-
roach for image representation is to represent images as “bag-of-visual-words”
(BOVW) using scale-invariant feature transform (SIFT) [10] or Dense SIFT
[16] descriptor. In text representation, text is represented as topic feature that
derived from Latent Dirichet Allocation [2]. Recently, many approaches have
been proposed to explore the correlation between different modalities, includ-
ing Canonical Correlation Analysis (CCA) [14], Semantic Correlation Match
(SCM)[12], Cross-Modal Topic Correlations (CMTC) [19].

Unfortunately, the problem of fusing and combining different modalities was
rarely discussed for multimedia data classification. In this paper, from different
perspective, we focus on multimodal fusion problem [1]. In [3] St. Clinchant et al.
proposed semantic combination approach for late fusion and image re-ranking
in multimedia retrieval. D.Liu et al. [9] proposed Sample Specific Late Fusion
(SSLF) method, which learns the optimal sample-specific fusion weights and
enforces the positive sample have the highest fusion scores. In [17] deep neural
network has been proved effective at fusion video keyframe and audio information
for video classification. Considering the powerful capability of late fusion in areas
such as video analysis [18], image retrieval [5] and object recognition [13].

Our work is distinguished from previous works in two aspects. First, we
investigated deep convolutional neural network(CNN) features as image feature,
this is motivated by recent success of deep CNN feature in addressing various
research questions such as speech recognition [6], image classification [8] and
multimodal learning [11]. Compare to commonly used SIFT feature, we prove
that deep CNN features are more robust and representative in multi-modality
fusion. Second, we propose to use deep neural network (DNN) to capture the
highly non-linear dependency between different modalities, besides, late fusion
with linear interpolation rule is adopted to capture the semantic contribution of
image and text. Our contributions can be summarized as follows:

1. We propose to represent image and text to higher level feature using deep
CNN feature and topic feature respectively.

2. We propose a novel approach to learn visual-textual fusion feature, which is
seen as a unified representation for document categorization.

3. Extensive experiments and discussion were provided to show the effectiveness
of DNN based late semantic fusion.
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Fig. 2. DNN late fusion framework. Red nodes are visual (image) feature inputs and
blue nodes are textual (text) feature inputs. The visual-textual fusion feature can be
extracted from the output of 4th layer (Color figure online).

The remainder of this paper is organized as follows. Section 2 states pro-
posed approach for late semantic fusion and then we describe our implemen-
tation details in Sect. 3. Section 4 presents the experimental evaluation which
illustrates the effectiveness of DNN-based late semantic fusion. Section 5 con-
cludes this work.

2 DNN Late Semantic Fusion

This section introduces proposed DNN late semantic fusion. Given a set of N
documents S = {Dn},∀n = 1, 2...N , where Di is image-text paired document.
We extracted the deep CNN feature and topic feature for each document Dn,
then document Dn can be represented as Dn = {In, Tn}, In ∈ R

di , Tn ∈ R
dt

at feature level, where di and dt are the dimensionality of visual and textual
feature respectively. Traditionally, if we combine visual feature In and textual
feature Tn at feature level, called early fusion, formulated as

F(n) = αvfr(In) + (1 − αv) fr(Tn), ∀n = 1, 2, .., N, r ∈ [0, 1] (1)

where F(n) is early fused feature which is used to represent given document Dn

and fr(·) is normalization operator. αv(0 ≤ αv ≤ 1) and 1-αv denotes the fusion
weight of visual and textual feature respectively. Another common approach is
depicted in Eq. (2) called late fusion that performs fusion at decision level by
combining the prediction scores of M pre-trained classifiers Cm.

P(n) = αvCm(In) + (1 − αv)Cm(Tn),∀n = 1, .., N,∀m = 1, ..,M (2)

In both approaches, αv is usually assigned according to empirical experiments
for demonstrating the importance of individual feature or classifier. Unfortu-
nately, both fusion strategies do not take the correlations between visual and tex-
tual feature into account. A good fusion approach should consider the underlying
shared semantic correlation between different modalities and take the advantage
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of the complementarity of modalities. To address the problem, besides heuristi-
cally assign αv from 0 to 1 to capture the semantic contribution of each modal-
ity, we also learn latent fusion weights using deep neural network to capture the
relationships across image and text. To achieve this goal, we propose a DNN
fusion architecture which is shown as in Fig. 2. For a given single training sam-
ple {In, Tn, Yn}, where In and Tn are input image and text feature respectively,
Yn is ground truth category label. The final output the global network can be
represented as

{
Ŷ (5) = g(5)(Ŷ (4)W (4) + b(4))
Ŷ (4) = f (4)((αvPv + (1 − αv)Pt)W (3) + b(3))

(3)

where Ŷ (l) is the output of lth layer and W (l) denotes the weights that connect
to (l − 1)th layer(also see from Fig. 2). g(·) and f(·) are activation functions and
b(l) is bias item corresponding to lth layer. Pv and Pt are prediction scores that
computed from input feature In and Tn by

{
Pv = f (3)[f (2)(InW

(1)
v + b

(1)
v )W (2)

v + b
(2)
v ]

Pt = f (3)[f (2)(TnW
(1)
t + b

(1)
t )W (2)

t + b
(2)
t ]

(4)

We unitized sigmoid function f (2)(x)=f (3)(x)=f (4)(x)= 1
1+e−x and softmax

function g(5)(x)=e(x−ε)/
∑K

k=1 e(xk−ε) where ε = max(xk). To learn optimal
weight set W={W (l)} and b={b(l)}, ∀l = 1, 2, 3, 4, with all training samples,
the objective is to minimize following loss function

argmin
W,b

1
2N

N∑

n=1

‖ Ŷ (5)
n − Yn ‖2 +

λ

2

L−1∑

l=1

‖ Wl ‖2 (5)

Where the second part is weight decay item for preventing overfitting. In
learning procedures, the weights W

(1)
m and W

(2)
m , m={v,t} are first learned by

intra-modality training. Those weights can be regarded as local weights for
achieving better prediction results. W (3) and W (4) are learned globally by fusing
the scores of predicting image and text feature. The output of the 4th layer are
fusion features which combines visual and textual predictions.

3 Implementation

Our experimental configuration are Ubuntu 12.04, Nvidia GTX 780 GPU with
3G memory for image feature extraction. Ubuntu 12.04, Intel 3.20GHz×4 CPU,
8G RAM for text model training and feature extraction. And Window 8, Intel
3.20GHz×4 CPU, 8G RAM for training visual-textual joint model on Matlab.

Dataset: Our experiments were conducted on open benchmark Wikipedia
dataset1, which contains 2886 documents (2173 for training and 693 for test).
1 http://www.svcl.ucsd.edu/projects/crossmodal/.

http://www.svcl.ucsd.edu/projects/crossmodal/
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Fig. 3. Top: The mean squared error of training and test against epochs. Bottom: Test
accuracy against epochs

This dataset has 10 semantic categories such as “biology”,“geography”. Each
document is comprised of an image and a short descriptive text as the example
we given in Fig. 1.

Image Representation: We use deep convolutional neural network (deep
CNN) [8] that has been proved its effectiveness in image representation in recent
years. Based on Caffe framework [7] we extracted the image feature with Caffe
model that on ImageNet [4] ILSVRC2012 dataset (more than 1.2M training
images). By extracting the output of the 7th layer(F7), each image can be rep-
resented as a 4096-dimension vector, that is, visual feature I ∈ R

4069. Due to
image features are highly learned by deep CNN, it can be considered as kind of
high level semantic feature.

Text Representation: To represent text as semantic feature, Latent Dirichlet
Allocation(LDA) [2] was used to generate 20 topics. We compute the topic distri-
bution of given text document d over 20 topics and finally obtain a 20-dimension
vector, that is, textual feature T ∈ R

20.

Training: In DNN learning, the first three layers are designed for intra-modal
regularization which optimizes the weights within each modality to improve per-
formance firstly. Thus we named our fusion framework as RE-DNN. The net-
works are designed as [4096/100/10] and [20/100/10] for image and text recep-
tively, and the last three layers is set as [20/100/10]. In our experiments, learn-
ing rate α=0.001, momentum=0.9 achieved the best performance. According the
scale of our training data (2173 training samples), we adopted the mini batch
gradient descent with batch size 41. The epoch number fixed at K=200. Figure 3
shows the change of mean squared error of training and test during training pro-
cedure as well as the increasing of test accuracy against training epochs. We
obtained the final test accuracy is 74.6 %.
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Table 1. Comparison between unimodal and multimodal fusion feature. Top: visu-
alization of visual feature(a(1)), textual feature(a(2)) and fusion features (a(3)) from
test examples. Bottom: classification results include precision (P), recall (R), F1-score
(F1) and Accuracy (A).

a(1).Visual Feature a(2).Textual Feature a(3).RE-DNN Fusion
Feature

classifier P R F1 A
KNN 0.43 0.42 0.42 0.417
SVM 0.44 0.44 0.40 0.440
NB 0.48 0.46 0.45 0.463

3L-NN 0.42 0.44 0.42 0.446

b(1).Classification Result

classifier P R F1 A
KNN 0.67 0.68 0.67 0.678
SVM 0.69 0.65 0.66 0.653
NB 0.64 0.59 0.59 0.594

3L-NN 0.69 0.70 0.70 0.695

b(2).Classification Result

classifier P R F1 A
RE-DNN 0.74 0.74 0.73 0.746

b(3).Classification Result

4 Experimental Evaluation

To validate the effectiveness of proposed RE-DNN approach for multimodal fea-
ture fusion. Our experiment first consider unimodal (visual or textual feature
separately) to perform document categorization task and then compared with
RE-DNN approach. In this work, we also explored early fusion and late fusion on
some mainstream classifiers such as K-Nearest Neighbor(KNN), Support Vector
Machine (SVM), Naive Bayes (NB) and Neural Network(NN).

Table 1 shows the comparison between unimodal feature and multimodal
fusion feature based classification. We visualized visual feature I ∈ R

4096 and
textual feature T ∈ R

20 to 2D by using t-SNE [15] as shown in a(1) and a(2)
respectively. By visually comparing visual and textual feature from a(1) and
a(2) find that the margin of textual feature tend to be clearer. Meanwhile, we
applied those features to classification. We note that text-based classification
outperforms image-based classification for all employed classifiers. This confirms
previous research that text information is easier to be perceived and recognized
by machines compare to image information. The best performed classification
accuracy of visual feature is achieved by NB with 0.463, and a 3L-NN achieved
the best classification accuracy 0.695 for textual feature. The configuration of
3L-NN are {4096/100/10} for visual feature and {20/100/10} for textual fea-
ture. The learning rate is adjusted as 0.001 and momentum=0.9. However, the
further improvements are made by fusing visual and textual feature with deep
neural network. This relies on the fact that paired image and text are perceived
by machines that they belong to same semantic and the latent relationships
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(a) visual-textual early fusion (b) visual-textual late fusion

Fig. 4. Visual-textual early and late fusion

between visual and textual features are captured by network. At this stage, we
set αv=0.5, it means the semantic contribution of each modality are equal so
that we can observe the capability of RE-DNN in fusing features. Our final clas-
sification accuracy is 74.6 %. Here we extracted the late fusion feature from the
output of the 4th layer in RE-DNN and visualized as in a(3). It is clear to see,
the fusion features tend to more discriminative than both textual and visual fea-
tures. Compare Table 1 b(1)–b(3) we see that the overall performance including
precision, recall, F1 and accuracy of RE-DNN approach are higher than uni-
modal based classification. The result shows that late fusion based RE-DNN
improves on the approaches “3L-NN for textual” and “NB for visual” by 5.1 %
and 28.3 % respectively.

Further experiments were conducted to explore visual-textual early fusion
and late fusion by taking the semantic contribution of each modality into con-
sideration. In both fusion strategies, according to Eqs. (1) and (2) we heuristically
assign αv(image modality weight) from 0 to 1. For early fusion, the inputs are
raw image and text features. For late fusion, the inputs are prediction scores of
different classifiers. Figure 4(a) shows the accuracy changes in early fusion and
Fig. 4(b) describes late fusion results. It is observed that late fusion outperforms
early fusion at most of levels of αv. In early fusion approach, almost the accuracy
for all classifiers decreasing along with the increasing of αv. When we impose
linear interpolation on RE-DNN, we note that for all levels of αv, RE-DNN late
fusion with linear interpolation further improved the classification accuracy to
75.3 % at αv=0.3. It proves the effectiveness of our approach.

5 Conclusions

In this paper, we have proposed a DNN framework for fusing visual and tex-
tual features. By imposing linear interpolation on DNN, more discriminative
and representative fusion feature can be extracted. Our experiments on docu-
ment categorization show that our proposed approach outperforms mainstream
classifiers in both early fusion and late fusion.
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Abstract. Since streaming data keeps coming continuously as an
ordered sequence, massive amounts of data is created. A big challenge
in handling data streams is the limitation of time and space. Prototype
selection on streaming data requires the prototypes to be updated in an
incremental manner as new data comes in. We propose an incremental
algorithm for prototype selection. This algorithm can also be used to
handle very large datasets. Results have been presented on a number of
large datasets and our method is compared to an existing algorithm for
streaming data. Our algorithm saves time and the prototypes selected
gives good classification accuracy.

Keywords: Prototype selection · One-pass algorithm · Streaming data

1 Introduction

Streaming algorithms are one-pass algorithms, used for processing data streams
which can be examined in only one-pass. Typical prototype selection methods
work with static data sets which means we have the whole data set on disk and
we can access the data any number of times to run the algorithm on the whole
data set. In case of stream data and very large data sets, it may be impossible to
store the entire data set on disk.In order to reduce the space and time complexity
for classification, it is better to work on the condensed set instead of the large
training set. Prototype selection refers to the process of reducing the size of the
training set to get a training set consistent subset. Let,

T = {(x1, c1), (x2, c2), . . . , (xn, cn)} (1)

be the given labelled training set of n patterns. Prototype selection gives reduced
condensed set

S = {(x1, c1), (x2, c2), . . . , (xk, ck)}. (2)

S is the obtained condensed set, where k <n and S is a subset of T and each
xi, 1 ≤ i ≤ k with class label ci is obtained from patterns in T.

The first and well known algorithm for prototype selection is Condensed
nearest-neighbour rule (CNN rule) introduced by P.E. Hart [2]. CNN rule uses
c© Springer International Publishing Switzerland 2015
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nearest neighbour rule to compute misclassified data points. Cover and Hart [1]
proposed that single-NN rule has lower probability of error than other k-NN rules
and hence it is admissible among all k-NN rules. Initially it takes a random data
point from the training set and adds it to the condensed set. After initialization of
condensed set, it checks the next selected point from training set T using nearest-
neighbour algorithm. If it is misclassified, then it is included in condensed set S.
The algorithm terminates when all data points are correctly classified using the
condensed set. CNN is order-dependent as the points of condensed set S depends
on selection of initial sample point and order in which data is presented to the
algorithm. The Fast CNN rule [5] uses the voronoi set to compute representative
data points. The Voronoi cell of point p ∈ S set is the set of all points of T that
are closer to p than any other point p, in set S. Voronoi enemies of p ∈ S is set of
data points that have different class label. During each iteration, for each point
p ∈ S, nearest neighbour of point p in Voren(p,S,T) is selected and inserted to
condensed set S. Karacali and Krim [6] proposed Structural Risk Minimization
using the NN rule (NNSRM). The complexity of NNSRM algorithm is O(n3).
The Reduced nearest neighbour rule [3] reduces the size of the final condensed
set. In Bien and Tibshirani [12], the problem of finding prototypes is translated
into a set cover optimization problem. Verbiest et al. [14], use a fuzzy rough
approach to carry out prototype selection. In Li and Wang [15], multi-objective
optimization and partitioning is used to carry out prototype selection. Garcia
and Derrac [10] give a taxonomy of methods for prototype selection. In Gadodiya
and Chandak [13], a survey is made of prototype selection algorithms for kNN
classification.

All these prototype selection algorithms are for static data sets. Prototype
selection algorithms for streaming data should run in linear time. In Czarnowski
and Jedrzejowicz [11], ensemble classifier is used for classification of data streams,
where each ensemble is induced from the incoming chunks of data in the data
stream. This is the algorithm WECU which we have compared with our method.
In Law et al. [7], they proposed an incremental classification algorithm based
on multi-resolution data representation to compute nearest neighbors of a point.
Beringer and Hüllermeier [8] have proposed instance-based learning on data
streams. The subset D is considered as training set for operations on given
query. Tabata et al. [9] proposed a volume prototype selection algorithm for
streaming data. The algorithm uses the acceptance region to update prototypes.
If the new sample data point falls into the acceptance region, then this point is
added to update the prototypes.

Prototype selection algorithms compute condensed set, that provides faster
classification without sacrificing the classification accuracy. In this paper, pro-
totype selection is carried out to get condensed set for streaming data sets and
large data sets. As the data keeps coming, the condensed set has to be modified
to reflect the data coming in. This should be done in an incremental manner
without having to go through the entire prototype selection algorithm again.
Also, as the data stream comes in, stays for some time and goes away, we can
sample the data only once and we need a one-pass algorithm to incrementally
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Fig. 1. Algorithm flow

obtain the condensed set. Our algorithm is a one-pass algorithm and computa-
tion time is linear. This algorithm is used with big data sets, where each instance
comes in one by one.

2 Methodology

The algorithm deals with data streams, which have infinite data points. To deal
with these infinite and large data sets, the algorithm executes in two phases.
The initial phase deals with small amount of data points and computes initial
prototypes. Second phase deals with remaining incoming streaming data points
to compute next prototypes for condensed set. In the initial prototype selection
phase of the algorithm, it considers the data set

D = {(x1, c1), (x2, c2), . . . , (xn, cm)} (3)

here ci is the class label of xi, as initial training set, where (i) m <n and (ii)
D is a subset of T. We can choose initial data size σ according to our memory
space. To compute initial condensed set, we apply MCNN rule [4] on the initial
set D (Fig. 1).

2.1 MCNN Rule

Initial condensed set is computed by MCNN rule [4]. MCNN rule does partition-
ing of class regions to non-overlapping regions. It computes prototype samples
in an incremental manner. MCNN rule starts with taking centroid points of each
class of training set into condensed set. In each iteration, it applies this method
on misclassified data points. In each iteration, MCNN adds at most c prototypes
to condensed set S , where c is the number of classes in the training set T. Unlike
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CNN, MCNN is order-independent. We use MCNN with a small subset of stream
points to get the initial condensed set.

The MCNN rule terminates when all data samples of training set are correctly
classified using condensed set cond and therefore the condensed set gives 100 %
accuracy on the training set.

2.2 Prototype Selection on Remaining Data Points

Initial phase is used to compute initial condensed set for small subset D of data
stream. The second phase deals with remaining data points. It requires only one-
time scan of incoming data samples. In second phase, it takes initial condensed
set D from initial phase as condensed set. Two methods have been used for
updating the condensed set. In Method 1, data points which are misclassified by
condensed set are added directly to the condensed set. In Method 2, misclassified
samples are collected together and every now and then MCNN is run on these
samples to get a condensed set which is added on to the original condensed set.

2.3 Algorithm

Method 1: In phase, the algorithm considers each incoming data sample and
incrementally adds misclassified data samples in to the current condensed set.

Algorithm 1. Prototype selection on streaming data set
Input: T= training set, cond = φ.
1. Initialize set D = {(x1, c1), (x2, c2), . . . , (xm, cm) } dataset for first phase.
2. Initialize set R = T \ D remaining data set.
3. Set cond = mcnn(D) .
4. Classify remaining data samples.
for all xi in R do

find neigh = nearest-neighbour(xi , cond) .
if label(xi) �= label(neigh) then

update cond by adding xi sample into cond.
end if

end for
5. Stop and cond is final condensed set.

It requires only one-pass to get remaining prototypes of condensed set from
remaining data stream. It will terminate after full scan of training data set T.
The algorithm of Method 1 is shown in Algorithm 1. In the Algorithm 1, We used
set D as input to MCNN rule to compute initial condensed set. All remaining
data samples xi, where i > m, are data samples belonging to R.

In step 2–3, it creates initial subset D of size m and set R is the remaining
data set. The algorithm then computes initial condensed set using MCNN rule.
MCNN rule is applied on set D. Step 4 is used to select prototypes in remaining
data samples of data stream i.e. from set R. When new data sample comes, it
computes its nearest-neighbour in current cond set. For all data samples, If class
label of data sample is different than class label of computed neighbour data
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point, then add this data sample into cond (condensed set). For streaming data
set, when we want to have final condensed set, we use the current condensed
set as final condensed set. With big data sets, it will terminate after full scan of
training data set T .

The algorithm also computes condensed set for big data sets in only one-
pass scan. The algorithm in this paper, computes condensed set without the
availability of complete data set at same time. To use this algorithm on big data
sets, we can handle big data set as data streams. In this approach, data samples
of big data set will come as sequence of data samples. So with big data sets, it
handles both memory management and execution time requirements.

Method 2: This is a variation of method 1. The algorithm described in this
section results in a smaller condensed set than method 1. On the other hand, it
takes more time to compute the final condensed set than method 1. In method 2,
prototype set is built incrementally with different small subsets of data points.
The algorithm of Method 2 is shown in Algorithm 2.

Algorithm 2. Method 2 for Prototype selection on Streaming data set
Input: T= training set, cond = φ, counter = 0.
1. Initialize set D = {(x1, c1), (x2, c2), . . . , (xm, cm) } dataset for first phase.
2. Initialize set R = T \ D remaining data set.
3. Set cond = mcnn(D) .
4. Classify remaining data samples.
for all xi in R do

Increment counter by one.
Find neigh = nearest-neighbour(xi , cond) .
if label(xi) �= label(neigh) then

Update typical by adding xi sample into typical.
end if
if counter == L then

cond = cond ∪ mcnn(typical).
Set counter = 0 and typical = φ.

end if
end for
5. Stop and cond is final condensed set.

The main difference between method 1 and method 2 occurs in step 4. In
this algorithm L is the number of analyzed data points after which the algorithm
carries out prototype set selection on the misclassified data points from these L
data points using MCNN. In this step, it classifies each incoming data sample
using current condensed set cond as in method 1. For each data sample, if it is
misclassified then add this data sample into typical set and increase the counter
value by one. When counter value is equal to L, it applies MCNN rule on typical
set and sets counter value to zero. It adds this condensed set computed from
typical to the current condensed set and sets typical = φ. As in Method 1, it
computes the final condensed set after full scan of data set.
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Table 1. Datasets used in experiments

Dataset No. of samples No. of features No. of classes

Optical dig. rec 5,620 64 10

Pen dig. rec 10,992 16 10

Letter image rec 20,000 16 26

Gisette 15,300 5000 2

Forrest cover type 581,012 54 7

Opt. recog. Pen recog. Letter recog. Gisette Forest cover
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(a) Accuracy comparison

Datasets

Algorithms optical recog. pen digit recog. letter recog. gisette forest cover

Total Execution
time
(in seconds)

K-NN 219.367 367.252 1881.049 8592.908 67485.967
CNN 108.543 113.988 1088.749 3261.942 39481.851
MCNN 123.475 151.387 1258.749 5136.131 45541.165
WECU 103.162 109.370 835.046 2409.370 23109.370
Method 1 51.404 84.035 587.914 1732.530 17489.347
Method 2 57.017 96.460 746.046 2318.855 20942.107

Size of dataset for
initial phase

K-NN - - - - -
CNN - - - - -
MCNN - - - - -
WECU - - - - -
Method 1 260 230 702 978 12922
Method 2 260 230 702 978 12922

Size of condensed
set

K-NN - - - - -
CNN 306 313 1532 195 31204
MCNN 68 45 189 71 18809
WECU - - - - -
Method 1 217 256 708 152 24763
Method 2 143 189 504 108 19045

Time taken for
condensation
process
(in seconds)

K-NN - - - - -
CNN 74.531 78.875 781.824 2065.741 23849.168
MCNN 107.562 121.387 1142.120 3036.458 32513.984
WECU - - - - -
Method 1 31.348 47.374 410.568 1426.945 12943.985
Method 2 38.407 58.975 574.349 1823.367 17063.451

Accuracy (%)

K-NN 97.997 (k=1) 97.885 (k=3) 95.292 (k=1) 96.200 (k=1) 84.074 (k=1)
CNN 93.843 90.939 91.292 88.913 73.549
MCNN 92.654 89.365 91.456 87.200 71.592
WECU 91.597 90.337 88.969 89.900 72.783
Method 1 93.712 95.426 90.061 91.700 75.042
Method 2 91.041 91.567 89.021 90.300 71.523

(b) Experimental results for all datasets used

Fig. 2. Comparison of all six algorithms for five different data sets
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In streaming data set, whenever we want to have a condensed set for classifi-
cation, we use current condensed set as the final condensed set. During classifica-
tion of testing data set, algorithm will use this condensed set instead of complete
training data set. It takes some time for condensation but after condensation,
classification requires less time using the condensed set.

3 Results

We used five data sets for performance analysis. The data set details are given in
Table 1. The algorithm is also applied on large data set. The last data set, Forest
cover type data set is a large data set having 581,012 data points. Experimental
results of both the proposed methods for streaming data sets are compared with
previous algorithms.

Figure 2(a) gives the comparison of classification accuracy on different
datasets for all methods. Figure 2(b) shows experimental results of all the data
sets used for performance analysis. From Fig. 2(b), In each part, the first row
of table shows the result obtained by using k-nn rule on complete dataset. The
given result is the highest accuracy for a specific k value in k-nn rule. No con-
densation approach is applied in this classification. The execution time which is
given in the table for this approach, is the overall time it takes to classify testing
data set using whole training data set. As expected this takes the most time.

The condensed set produced by proposed methods give better classification
accuracy on most datasets than other approaches since it includes all important
required data points in condensed set with respect to their distribution. From the
experimental results, we can see that proposed methods of our paper give better
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Fig. 3. Execution time comparison of all six algorithms for five different data sets
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results than the result obtained by ANNCAD approach [7] for both letter recog-
nition and forest cover datasets. Experimental results show that the proposed
methods gives good accuracy with less execution time. On every data set, pro-
posed methods compute very small condensed set. We can observe from results
that both proposed methods give better results than existing WECU approach
for data streams with less execution time and memory space. In all five data
sets, there is a huge saving in the time required. Method 1 gives higher no. of
prototypes than method 2 but gives better results. Also, the entire data set need
not be stored. Only the initial training set and the condensed set formed needs
to be stored. We get performance comparable to CNN and MCNN and often
gives better result than CNN and MCNN. To give an idea of the huge saving in
times Fig. 3, gives the time taken by the various algorithms for all the datasets.

4 Conclusion

In this paper, we proposed two prototype selection methods for data streams.
The algorithms give good results for both streaming data set and large data
sets. Streaming data comes as a sequence of data points with infinite length. The
proposed methods do not require complete data set at same time, therefore they
handle memory requirement and strict time constraints for streams. It has also
been shown how for large data by dividing it into chunks or using one pattern
at a time, this algorithm can be used leading to considerable saving in time
and space complexity. We have discussed both proposed methods with regard
to accuracy and execution time and also comparison with existing approaches.
Method 1 requires less execution time and Method 2 computes smaller condensed
set. Both methods have their own advantages.
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Abstract. Online imbalanced learning has two important characteris-
tics: samples of one class (minority class) are under-represented in the
data set and samples come to the learner online incrementally. Such a
data set may pose several problems to the learner. First, it is impos-
sible to determine the minority class beforehand as the learner has no
complete view of the whole data. Second, the status of imbalance may
change over time. To handle such a data set efficiently, we present here
a dynamic and adaptive algorithm called Generalized Over-Sampling
based Online Imbalanced Learning (GOS-IL) framework. The proposed
algorithm works by updating a base learner incrementally. This update
is triggered when number of errors made by the learner crosses a thresh-
old value. This deferred update helps the learner to avoid instantaneous
harms of noisy samples and to achieve better generalization ability in
the long run. In addition, correctly classified samples are not used by
the algorithm to update the learner for avoiding over-fitting. Simulation
results on some artificial and real world datasets show the effectiveness
of the proposed method on two performance metrics: recall and g-mean.

Keywords: Imbalanced learning · Online learning · Oversampling

1 Introduction

A class imbalance problem deals with data sets where number of samples of one
class is very few compared to the number of samples of other classes. Whenever
a classifier is presented with such a dataset, it usually performs badly. Specif-
ically, its performance is worse on the minority class, the class having under-
representation in the data set. Online learning adds an additional dimension to
the problem in the sense that data samples come to the classifier one by one in
online fashion. Online imbalance learning has practical applications such as web
click data [1], spam filtering [2], and credit card transactions [3].

The online nature of data creates some additional problems for a classifier.
In offline version, the classifier can detect the minority class and majority class
before learning begins. So, the majority or minority status of a class is static and
it does not change over time. However, in online learning, it is not possible to
determine in advance which class will be minority or majority as the classifier has
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 680–687, 2015.
DOI: 10.1007/978-3-319-26532-2 75
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no complete view of the data. In addition, classes can even change their minority
or majority status over time. So, classifiers have to be adaptive to detect minor-
ity and majority classes dynamically and to cope with the changing nature of the
data. Although, imbalance learning problem has been studied extensively in lit-
erature [4–8], few studies have been done to tackle the online version [9–11]. The
authors in [11] proposed two algorithms based on online bagging: Over-sampling
based Online Bagging (OOB) and Under-sampling based Online Bagging (UOB)
algorithm. Two perceptron based methods were proposed in [9,10] that adjusts
misclassification costs to update the weights of underlying learning model.

In this paper, we propose a general framework to handle online imbalanced
learning problems. We named our framework as Generalized Over-Sampling
based Online Imbalanced Learning (GOS-IL) algorithm. The proposed algo-
rithm has the following key characteristics that make it different from existing
approaches:

– GOS-IL works in online fashion and keeps a base classifier model that is
updated dynamically. Unlike existing approaches, GOS-IL does not update
the learner by samples that are correctly classified by the learner. It is done
to avoid over-fitting to the majority class samples. Because, the number of
majority samples is far greater than the minority, and therefore updating
learner by correctly classified samples may over-fit it towards majority class.

– GOS-IL uses a deferred update mechanism in which it does not update the
learner after receiving each sample. Errors are inherent to any learning model.
GOS-IL allows its underlying classifier to mis-classify samples up-to an accept-
able amount that may help the learner to gain more generalization ability and
to avoid any erroneous update by noisy samples. To the best of our knowledge,
no other works has such characteristics.

The rest of the works are described in four sections. In Sect. 2, we describe the
proposed framework GOS-IL and its features. Section 3 presents experimental
designs and results. In Sect. 4, we look into some future works and conclude the
paper.

2 Proposed Framework: GOS-IL

In this section, we present GOS-IL algorithm. The complete algorithm is shown
in Algorithm 1: GOS-IL. For each class wi, GOS-IL maintains three dynamic
parameters ewi

, nwi
, and Swi

where ewi
is the number of samples of class wi

that are mis-classified by the model so far, nwi
is the number of samples of

class wi encountered by the model so far, and Swi
stores the samples of class wi

encountered by the model so far.
Let, (xt, wt) be the data sample comes at time t to the algorithm where xt is

the feature vector and wt is the class identifier. GOS-IL updates the parameters
ewi

, nwi
, and Swi

at each time step t depending on the target class wt and
learner’s current prediction yt (Lines 6–10). These parameters are also reset to
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0 after certain number of samples (Tn) of a class are processed or after certain
amount of misclassification (Te) of a class occurs.

Algorithm 1. GOS-IL

1. L ← Initialize learning model
2. for each class wi

3. ewi
← 0, nwi

← 0, Swi
← φ, Pwi

← φ
4. end for
5. for each sample (xt, wt) received at time step t
6. nwt

← nwt
+ 1, Swt

← Swt
∪ {xt},

7. yt ← Prediction of xt by the current model L
8. if yt �= wt

9. ewt
← ewt

+ 1, Pwt
← Pwt

∪ {xt}
10. end if
11. if ewt

> Te

12. rt ← nwt∑
i nwi

13. if rt < δr
14. Owt

← Apply oversampling on Pwt
using Swt

15. else
16. Owt

← Pwt

17. end if
18. L ← Update model L using samples in Owt

19. ewt
← 0, nwt

← 0, Swt
← φ, Pwt

← φ
20. else if nwt

> Tn

21. ewt
← 0, nwt

← 0, Swt
← φ, Pwt

← φ
22. end if
23. end for

GOS-IL uses the dynamic parameters ewi
and nwi

to determine the follow-
ing: (i) when to update the underlying learner (Line 11 of Algorithm 1), and
(ii) whether current data stream is imbalanced (Line 12). Although, GOS-IL
works in an online fashion, it stores the last Tn data samples (at a maximum)
of each class wi in the set Swi

in memory. These Tn samples include both mis-
classified samples (to be used for future update) and correctly classified samples
(used in over-sampling).

The key characteristics of the proposed GOS-IL algorithm are described
below.

Deffered Update and Permissible Error Level (PEL). GOS-IL uses a
differed update technique. Rather than updating the learner after receiving each
sample, GOS-IL allows the underlying classifier to make errors up to a certain
amount during the online learning phase. This amount is denoted as permissible
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Fig. 1. Prequential minority recall values for (a) dynamic, (b) static high, (c) static
moderate, and (d) static low data stream. Prequential g-mean values for (a) dynamic,
(b) static high, (c) static moderate, and (d) static low data stream.

error level(PEL). The algorithm waits to find whether the cumulative number
of errors is within PEL (Line 11). PEL can be calculated as PEL = Te

Tn
. This

property can help the learner to achieve more generalization capability. A PEL
value of 0.05 means the learner is allowed to make at most 5 % errors on each
class individually. Typical values of Te and Tn can be set so that PEL is within
0.01 – 0.05.

No Update for Correct Classifications. Unlike existing works, GOS-IL does
not update the model with samples that are correctly classified by the learner.
This is done to increase the generalization capability of the online learner and
to avoid any over-fitting issues. Specifically the learner will be over-fitted to
majority class as the number of samples of majority class will be abundant
in the stream. So, it will result in severe mis-classifications in future minority
instances and poor performance on the minority class.

Detection of Imbalance. To detect imbalance, GOS-IL uses the class fraction
of samples rt of a class wt to detect imbalance in the online stream. If rt is less
than the threshold value δr (Line 12), GOS-IL marks that class as a minority.
The value of rt is also used in over-sampling phase to determine the amount of
over-sampling required for the current misclassified samples.

3 Experimental Study

In this section, we show the effectiveness of the proposed algorithm GOS-IL. We
use some artificially generated data sets as well as some real world data sets in
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the experiments. As for performance criteria, we use prequential measures [12]
used by several other earlier works [11]. For imbalance study, minority recall
and G-mean are the two most important measures [4]. So we used these two
performance measures to compare the methods.

3.1 Data Sets

We created two types of artificial imbalanced data stream: static and dynamic.
The details of data set generation can be found in [5]. All data streams consisted
of ten data chunks. In each chunk, 100 samples were generated for the majority
class. The number of data samples generated for the minority class was varied
among the chunks as follows.

Dynamic Scenario. In this case, numbers of minority samples generated in ten
chunks were varied to reflect a dynamic change of imbalance in the data stream.
We created following number of minority examples in ten chunks: 10, 20, 30,
40, 0, 50, 40, 30, 20, 10. In the 5th chunk instead of generating any minority
example, some noisy samples were intentionally generated for the minority class.

Static Scenario. In this case, we created three different data sets of three
different imbalance ratios. The number of minority examples generated were
kept same for all chunks and it was set to 10 (high imbalance), 20 (moderate
imbalance), and 30 (low imbalance) respectively in three imbalance scenarios.

So, we had four artificial data sets that were termed as dynamic, static high,
static moderate, and static low. As for real world data sets, we collected following
four real world data sets from UCI machine learning repository [13]: Glass, Pima,
Semeion, and Yeast. Some of these original data sets had more than two classes
and we converted them to a two-class data set according to [5]. The details of
these data sets can be found in [5].

3.2 Methods and Learner Settings

We compared the performance of GOS-IL with the following two methods:

(1) A naive MLP, denoted as N-MLP, works in online fashion. After each data
sample is encountered, the sample is simply fed to the N-MLP and its weights
are updated incrementally. No over-sampling and imbalance detection meth-
ods are used for the N-MLP.

(2) The algorithm proposed in [11] is one of the most recent and preliminary
works in online imbalanced learning. However, as GOS-IL is a over-sampling
based approach, we chose the Over-sampling based Online Bagging (OOB)
method of [11].

For the GOS-IL, we used a multi-layer perceptron (MLP) as the base classifier
model that works in online mode. Similar to GOS-IL, one MLP was used as
the base classifier model for OOB. In all experiments, the number of hidden
layer for the MLP was set to one and ten (10) nodes were used for the hidden
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layer. For GOS-IL, different parameters were set as follows: Te was set to 2
and Tn was set to 40. This implies that permissible error level was set to 5 %.
(PEL = 2/40 = 0.05). For imbalance detection, the threshold δr was set to 0.5
and random over-sampling was used. For the OOB algorithm, parameters were
set according to [11].

3.3 Experimental Results

The simulation results obtained are shown in Table 1. The prequential values of
minority recall and g-mean are shown at four different time steps: at the time
when processing of 25 %, 50 %, 75 %, and 100 % of the total number of samples
completes. The best performance values are shown in bold-faced type. The mean
of all performance values over the eight data sets are also shown in Table 1.

From Table 1, we see that GOS-IL outperforms both N-MLP and OOB com-
prehensively in most of the experiments. For the static low data stream, we see
that the g-mean values of N-MLP are almost near to values of OOB and GOS-IL.

Table 1. Prequential minority recall and g-mean values of N-MLP, OOB [11], and
GOS-IL on four artificial data sets and four real world data sets.

Prequential minority recall Prequential G-mean

Dataset Method t= 25% t= 50% t= 75% t= 100% t= 25% t= 50% t= 75% t= 100%

Dynamic N-MLP 0.0980 0.1000 0.1442 0.1654 0.3125 0.3156 0.3769 0.4044

OOB 0.2549 0.2909 0.3269 0.3615 0.4630 0.5122 0.5472 0.5789

GOS-IL 0.2549 0.3273 0.4231 0.4654 0.4503 0.5202 0.5893 0.6282

Static high N-MLP 0.0667 0.0333 0.0222 0.0250 0.2561 0.1818 0.1487 0.1578

OOB 0.2333 0.2667 0.2889 0.3083 0.4593 0.4888 0.5072 0.5200

GOS-IL 0.3000 0.2667 0.3111 0.3250 0.4911 0.4727 0.5116 0.5241

Static moderate N-MLP 0.1429 0.2000 0.2416 0.2500 0.3696 0.4414 0.4869 0.4962

OOB 0.2857 0.3500 0.3691 0.3700 0.5061 0.5587 0.5828 0.5888

GOS-IL 0.4082 0.4400 0.4564 0.4450 0.5760 0.6029 0.6163 0.6059

Static low N-MLP 0.3250 0.4000 0.4515 0.4656 0.5527 0.6216 0.6625 0.6738

OOB 0.2750 0.2875 0.3291 0.3844 0.4986 0.5221 0.5590 0.6014

GOS-IL 0.4375 0.4750 0.5316 0.5563 0.5931 0.6218 0.6675 0.6872

Glass N-MLP 0.0000 0.0000 0.0000 0.7451 0.0000 0.0000 0.0000 0.8605

OOB 0.0000 0.0000 0.0000 0.8235 0.0000 0.0000 0.0000 0.8906

GOS-IL 0.0000 0.0000 0.0000 0.9216 0.0000 0.0000 0.0000 0.9391

Pima N-MLP 0.2286 0.3446 0.3413 0.3657 0.4435 0.5431 0.5457 0.5660

OOB 0.3286 0.4189 0.4038 0.4254 0.4923 0.5589 0.5553 0.5775

GOS-IL 0.3857 0.4392 0.4519 0.4478 0.5029 0.5474 0.5618 0.5670

Semion N-MLP 0.4250 0.5000 0.5932 0.6329 0.6474 0.7017 0.7659 0.7911

OOB 0.3500 0.5128 0.5424 0.5633 0.5833 0.7081 0.7292 0.7440

GOS-IL 0.6750 0.6923 0.7203 0.6962 0.7960 0.8068 0.8268 0.8126

Yeast N-MLP 0.1154 0.2796 0.2712 0.3026 0.3315 0.5074 0.5051 0.5343

OOB 0.4231 0.4355 0.4491 0.4671 0.5893 0.5989 0.6035 0.6348

GOS-IL 0.3974 0.4086 0.4110 0.4507 0.5875 0.5924 0.6119 0.6292

Mean N-MLP 0.1752 0.2321 0.2581 0.3690 0.3641 0.4140 0.4364 0.5605

OOB 0.2688 0.3202 0.3386 0.4629 0.4489 0.4934 0.5105 0.6420

GOS-IL 0.3573 0.3811 0.4131 0.5385 0.4996 0.5205 0.5481 0.6741



686 S. Barua et al.

However, N-MLP performs very poorly for dynamic and static high imbalanced
data streams. This observation implies that treatment of imbalance is very nec-
essary for data streams that have high imbalance and that changes imbalance
over time.

In some cases, e.g., Yeast data set, GOS-IL is beaten by OOB method in
both recall and g-mean values. However, on average GOS-IL achieves the best
value of prequential recall and g-mean among the three methods as can be seen
from the mean values of the three methods (Table 1). These results prove the
superiority of the GOS-IL algorithm over the other two methods.

We also show the graphs of prequential values vs. t for the four artificial
data sets in Fig. 1. Due to space constraints, we do not show the similar graphs
for the other data sets. From Fig. 1(a)–(h), we see that GOS-IL achieves better
minority recall and g-mean values than the other two methods in most portion of
the time domain. For the dynamic data set, the performance difference between
GOS-IL and OOB is not significant when time steps t is less than 500 (Fig. 1(a)
and (e)). Because, learner is not stable during the initial phases as it requires
a sufficient amount of samples to learn the underlying concepts. However, after
that point, the performance difference between GOS-IL and OOB is significant
and GOS-IL clearly beats OOB with very good margin values (Fig. 1(a) and (e)
after t > 500). This is due to the fact that GOS-IL’s deferred update method
and permissible error level helps it to gain better generalization ability in the
long run. Similarly, for the other three data sets, GOS-IL achieves better values
specially in prediction of minority samples (Fig. 1(b)–(d)).

4 Conclusion

In this paper, we present a new framework for handling online class imbalance
problem. The proposed framework GOS-IL uses a base learner model that is
incrementally updated by data samples. However, unlike other works, GOS-IL
updates its learner only after it makes a certain number of mis-classifications.
Moreover, GOS-IL does not update the learner by samples that are correctly
classified by the learner. This is done to avoid over-fitting to the majority class
samples as they are abundant in imbalanced data. The prequential recall and g-
mean performances of GOS-IL method are measured by simulation experiments
over artificial and real world data sets. The results show that GOS-IL achieves
better performance values than other methods. Several other research issues can
be investigated such as how GOS-IL performs for multi-class problems, whether
GOS-IL’s performance remain same when some other learning model (e.g., deci-
sion tree, support vector machine) are used, and whether use of some other state
of the art over-sampling methods (e.g., synthetic over-sampling) can bring better
performance values.
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Abstract. In this paper, we propose a new approach of classification
based on the artificial immune Dendritic Cell Algorithm (DCA). Many
researches have demonstrated the promising DCA classification results
in many real world applications. Despite of that, it was shown that the
DCA has a main limitation while performing its classification task. To
classify a new data item, the expert knowledge is required to calculate
a set of signal values. Indeed, to achieve this, the expert has to provide
some specific formula capable of generating these values. Yet, the expert
mandatory presence has received criticism from researchers. Therefore,
in order to overcome this restriction, we have proposed a new version of
the DCA combined with the K-Nearest Neighbors (KNN). KNN is used
to provide a new way to calculate the signal values independently from
the expert knowledge. Experimental results demonstrate the significant
performance of our proposed solution in terms of classification accuracy,
in comparison to several state-of-the-art classifiers, while avoiding the
mandatory presence of the expert.

Keywords: Artificial immune systems · K-Nearest Neighbors · Classi-
fication

1 Introduction

The Dendritic Cell Algorithm (DCA) is an immune inspired classification algo-
rithm based on the abstract model of immune Dendritic Cells (DCs) [1]. It was
applied to a wide range of applications, precisely in data classification such as
in [2,3]. The DCA performance relies on its data-preprocessing phase where a
signal dataset is generated for classification and which is based on three input
signals pre-categorized as Pathogenic Associated Molecular Patterns (PAMPs),
Danger Signals (DS) and Safe Signals (SS). All input signals cooperate with
each other to give a final decision; i.e., the class of the data item. To achieve
this classification task, the expert knowledge is required to calculate the signal
values of the new data item to classify. More precisely, the expert has to give
specific formula to calculate the signal values and specifically the DS values that
play the leading role in assigning the class of each data instance.

Our aim, in this paper, is to propose a new DCA version capable of over-
coming the mentioned DCA restriction which is based on the need of the expert
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 688–695, 2015.
DOI: 10.1007/978-3-319-26532-2 76
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knowledge to provide a complete signal data set for classification. Our proposed
method, named KNN-DCA, is a new version of the DCA hybridized with the
K-Nearest Neighbors (KNN) machine learning technique [4]. KNN is used as a
technique to automatically calculate signals, precisely, the danger signal values
that strongly depend on expert knowledge. We will show that our KNN-DCA is
capable of processing the danger signal values and finding out the class of a new
item without the need of an expert knowledge.

To guarantee the effectiveness and the efficiency of our proposed method, the
material in this paper is organized as follows: In the remainder of this introduc-
tion, we specify our issue. In Sect. 2, the problem statement is highlighted. In
Sect. 3, a detailed description of our proposed approach KNN-DCA is presented.
This is followed by Sect. 4, where the results obtained from a set of experi-
ments are discussed. Finally, Sect. 5 concludes the paper and presents some future
directions.

2 Problem Statement

In this section, we will mainly clarify the main DCA limitation while performing
its classification task. Yet, first, we have to elucidate one important characteristic
of the DCA. Actually the algorithm, in literature, was applied in two different
manners to machine learning datasets depending on the presence or absence of
the expert. The first application manner of the DCA is its application as an
unsupervised algorithm. In this case, no information about the previous data
item classes are needed while classifying a new data instance. Technically and in
this case, the presence of the expert is mandatory where he/she will provide a
specific formula showing how to calculate the signal values of that new instance.
Once the signal values are calculated, the DCA will generate the MCAVs and
classify the new antigen. The second case is where the DCA is applied as a semi-
supervised algorithm and in this case some information is required to acquire
from the initial training dataset that includes the classes of all antigens. Here, the
expert knowledge is not needed. Meanwhile, the classes of the data items have to
be known and based on that, the algorithm applies a formula to classify the new
data item. More precisely, the needed information from the initial training data
set is the number of data items belonging to the normal class (class 1). Based on
this information, a formula is applied to calculate only the danger signal values
of the new data instance. However, to calculate the values of PAMPs and SS
of the same new instance, a second formula is applied which does not depend
on the class type; either class 1 or class 2. As discussed, the manner of how
to apply the DCA strongly depends on the presence or absence of the expert
knowledge. Yet, in most cases no information is afforded about the classes of the
data items belonging to the training dataset and at the same time we want to
avoid the expert knowledge. In this case, DCA is not capable of performing its
classification task nor able it is to classify a new data instance. Thus, it would
be very interesting to propose a new DCA version capable of performing its
classification task in an autonomous way; i.e., independently from the need to
the expert knowledge.
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3 The Proposed Approach: A New Dendritic Cell
Algorithm Based on the K-Nearest Neighbors

In this section, we will give a detailed description of our proposed new DCA
version; the Dendritic Cell Algorithm based on the K-Nearest Neighbors (KNN-
DCA). First, we will highlight the KNN-DCA architecture and then we will
explain how our KNN-DCA is capable of performing its classification task with-
out the mandatory presence of the expert nor the need of his/her guidelines on
how to generate the signal values of the new data item to classify.

3.1 The KNN-DCA Architecture

The contribution of our work is to present a new DCA version capable of sur-
mounting the mentioned DCA restriction which is based on the need of the
expert knowledge to provide a signal dataset for classification. Our proposed
method is a new version of the DCA hybridized with the K-Nearest Neighbors
(KNN) machine learning technique. KNN is used as a technique to automati-
cally calculate signals, precisely, the danger signal values that strongly depend
on expert knowledge. The algorithmic steps of our KNN-DCA are as follows:

1. Preprocessing and Initialization phase.
2. Detection phase.
3. Context Assessment phase.
4. Classification phase based on KNN.

As presented in the itemized list, our proposed KNN-DCA is based on the same
DCA steps [1,5,6] except for the classification phase which is based on the KNN
concept. That is why in this section, we will focus mainly on the KNN-DCA
classification step where we will explain in details how our KNN-DCA is capable
of classifying a new data item via a new calculation process showing how to
generate the signal values, without calling the expert knowledge.

3.2 The KNN-DCA Classification Phase

To classify a new data instance, KNN-DCA has to calculate a set of signals which
are the PAMP signals, the safe signals and the danger signals without referring
to the expert guidelines to do so. In what follows, we will give the algorithmic
steps showing how to perform the signals calculation process.

Calculating the SS and the PAMP Signal Values. Based on immunolog-
ical concepts, both PAMP and SS are considered as positive indicators of an
anomalous and normal signal. This is because the PAMP signals are essential
molecules produced by microbes but not produced by the host. They are definite
indicators of abnormality indicating the presence of a non-host entity. However,
the SSs are released as a result of a normal programmed cell death. They are
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indicators of normality which means that the antigen collected by the DC was
found in a normal context. Hence, tolerance is generated to that antigen.

Mapping the immunological semantics of these two signals to the algorithmic
KNN-DCA signal calculation process, one attribute is used to form both PAMP
and SS values. The selected attribute is the one having the highest standard
deviation among the feature set presented in the input training dataset. Using
one attribute to derive the signal values of the new data item X to classify
requires a threshold level to be set: values greater than this can be classified as
a safe signal with a specific value, while values under this level would be used
as a PAMP signal with another specific value. The process of calculating PAMP
and SS values is itemized as follows:

1. Recall the most interesting feature which was selected to represent both SS
and PAMPs, i.e., the selected one having the highest standard deviation
among the feature set presented in the input training dataset; during the
data pre-processing phase.

2. Calculate the median (M) of that attribute for all data instances in the
training data set.

3. For the data item to classify determine its PAMP and safe signal values based
on its attribute value (V alX) which is the same used to calculate the median
in Step 2. If the attribute value is greater than the median then this value
is used to form the safe signal of the new data item. The absolute distance
from the median is calculated and attached to the safe signal value and the
PAMP signal value takes 0 (and vise versa). This can be seen as follows:

If (V alX > M) then SSX = |M − V alX | and PAMPX = 0; (1)

As noticed, the process of calculating SSX and PAMPX is independent from
the need to the expert knowledge. This process is the same one performed by
the standard DCA to calculate the values of PAMP and SS for all data items in
the training dataset [1].

Calculating the DS Values. Let us remind that the standard DCA version,
to calculate the DS value of a new data item X, has either to call the expert
or to use the information related to the number of data items having the label
“normal” in the training dataset. Yet, we aim to avoid the expert mandatory
presence and to avoid using the mentioned needed information from the training
dataset. This is because this information, in most cases, is not accessible. Thus,
we propose to apply the KNN machine learning technique in order to calculate
automatically the DS value of X without referring to the two main restrictions;
i.e., expert knowledge and the number of class 1 data items.

Our proposed KNN-DCA is based on the idea of applying KNN in order to
select the nearest neighbors to the new data item X that will be classified and
to find out an adequate formula mapping the nearest neighbors danger signal
values to the DSX value. This is how the DSX value will be automatically
calculated. Yet, while applying the KNN machine learning technique we may
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face two possible cases; either we may select the first nearest neighbor to X
(k=1) and define the DSX value based on that or to select a set of the nearest
neighbors to X (k>1) and define the DSX value. Based on these two possibilities,
in what follows, we will propose two KNN-DCA methodologies to calculate the
DSX value.

First Case: DS Calculation Process based on the 1-Nearest Neighbor (K=1). At
this stage the PAMPX and the SSX values are calculated and what is missing
is the DSX value. Based on the KNN-DCAk=1, we will search the input signal
dataset which includes all the signal values of the antigens of the training dataset
(PAMP, SS and DS) and from there we will select the nearest antigen (K=1).
We will apply the Euclidian distance to calculate the similarities between all
antigens and the new data item X. The similarity is calculated between both
PAMPX and SSX and between PAMPyi

and the SSyi
; where y is referring to

a data instance belonging to the training data set and i ∈ {1, n} where n refers
to the length of the input signal dataset; i.e., the number of all antigens in the
training data base. The calculation of the DSX value is given by Eq. 2.

DSX =
DSY ∗ SignalX

SignalY
(2)

In Eq. 2, Y refers to the nearest object to the X data item to be classified and
DSY is the value of the Y danger signal. Let us remind that while calculating
the PAMP and SS values, if the PAMP has a value different than zero then
the SS value equals zero and vise versa. Thus, if both SSY and SSX are null
then SignalX equals the value of PAMPX and SignalY equals the value of
PAMPY . In the opposite case, where both SSY and SSX are different from null
and where PAMPX and PAMPY are null then SignalX equals the value of
SSX and SignalY equals the value of SSY .

Second Case: DS Calculation Process based on the K-Nearest Neighbors (K>1).
The second case is focused on calculating the DSX value based on the KNN-
DCAk>1. In this case, we will search the same input signal dataset used before
and from there we will select the K nearest antigens (K>1). Just like the first
case, we will apply the Euclidian distance to calculate the similarities between all
antigens and the new data item X but instead of selecting one nearest neighbor
we will select a set of nearest neighbors. The calculation of the DSX value is
given by Eq. 3.

DSX =
mean(DSYk

) ∗ mean(SignalXk
)

mean(SignalYk
)

(3)

In Eq. 3, Yk refers to the set of the k nearest objects to X and DSYk
is the set

of the Yk danger signal values. The semantics of both SignalXk
and SignalYk

hold as in Eq. 2. So, we will calculate the mean of all DSYk
values and the mean

of both SignalXk
and SignalYk

values and apply Eq. 3 to calculate the DSX

value.
Based on the set of these three calculated signal values, PAMPX , SSX and

DSX , and just like the standard DCA process, KNN-DCA can generate the
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MCAV of the new data item and then compare the later value to the anomaly
threshold which is generated automatically from the data at hand. So, if the
MCAV of the new instance is greater than the anomaly threshold; the data item
will be classified as a dangerous one (class 2) else it will be tolerated and assigned
a normal label (class 1).

4 Experimental Setup and Results

In this section, we try to show the effectiveness of our KNN-DCA as well as its
performance. The aim of our method is to show that our KNN-DCA is capable of
performing well its classification task, in an autonomous way, in comparison to a
set of well known state-of-the-art classifiers. We will, also, test the performance of
our proposed KNN-DCA under a variation of the k parameter which is referring
to the number of the nearest neighbors to the object to be classified. We have
developed our program in Eclipse V 4.2.2 for the evaluation of our KNN-DCA.
Different experiments are performed using two-class data sets from the UCI
Machine Learning Repository [7]. The used datasets are described in Table 1.

Table 1. Details about the used Datasets

Data set Ref Instances Attributes

Wisconsin Breast Cancer WBC 699 10

SPECTF Heart SH 267 45

Pima Indians PI 768 6

Blood Transfusion BT 748 5

Haberman’s Survival HS 306 4

In all experiments, each data item is mapped as an antigen, with the value
of the antigen equals to the data ID of the item. A population of 100 cells is
used. The DC migration threshold is set to 10. To perform anomaly detection,
a threshold is applied to the MCAVs. The threshold is calculated by dividing
the number of anomalous data items presented in the used data set by the total
number of data items. So, if the MCAV is greater than the anomaly threshold
then the antigen is classified as anomalous else it is classified as normal. For
each experiment, the results presented are based on mean MCAVs generated
across a 10-folds cross validation. We evaluate the performance of our KNN-
DCA in terms of classification accuracy where we compare it with a set of well
known classifiers, namely, the Decision Tree (C4.5), the Support Vector Machine
(LibSVM), BayesNet, NaiveBayes, Hoeffding Tree (HT), Wrapper Classifier and
the K star classifier. All the parameters used for these classifiers are set to the
most adequate values to perform the classification results based on the Weka
Software. We will divide our comparison methodology into two main phases.
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Table 2. Comparison of Classifiers in terms of Classification Accuracy (%)

DataSets KNN-DCA DT HT Wrapper BayesNet NaiveBayes SVM K Star

k=1 k=3 k=5

WBC 99.71 99.57 99.86 94.70 96.20 42.90 96.20 97.20 96.70 95.60

SH 99.63 99.25 98.87 72.10 69.30 30.30 69.30 69.30 66.80 65.10

PI 99.61 99.35 99.22 74.40 75.70 42.40 79.80 79.80 77.60 70.90

BT 99.73 99.47 99.33 58.10 58.10 58.10 71.60 70.80 87.17 82.10

HS 87.26 86.60 84.64 68.60 71.50 54.10 69.10 73.80 63.80 71.00

First, we will test the influence of the variation of the k parameter on the KNN-
DCA classification performance. We have chosen three different values of k;
k ∈ {1, 3, 5}. The objective is to select the most convenient k value where KNN-
DCA gives the most interesting results. Second, we will compare the KNN-DCA
classification results with the already mentioned state-of-the-art classifiers.

Studying the influence of the k parameter on our KNN-DCA classification
results and from Table 2, we notice that the three KNN-DCA PCCs are close to
each other. For example, applying the KNN-DCA to the PI dataset, the classi-
fication accuracies are set to 99.61 %, 99.35 % and 99.22 % for KNN-DCAk=1,
KNN-DCAk=3, KNN-DCAk=5, respectively. The same remark is noted for the
rest of the used datasets. Yet, we can notice that even if the classification accu-
racies are roughly the same, the PCC of KNN-DCAk=1 is better than KNN-
DCAk=3 and KNN-DCAk=5; in most datasets. Thus, we can conclude that the
variation of k keeps the good performance of our proposed KNN-DCA and, as
a consequence, this shows that our proposed danger signal calculation method-
ologies are valid as good classification results are obtained. Now, from Table 2,
we can notice that in most cases our KNN-DCA is outperforming the used
state-of-the-art classifiers in terms of classification accuracy. For instance, while
applying the algorithms to the HS database and for the different values of k, the
lowest PCC value of our KNN-DCA is set to 84.64 % with k=5. Yet, this value
is greater than 68.60 %, 71.50 %, 54.10 %, 69.10 %, 73.80 %, 63.80 % and 71 %
which are given by C4.5, HT, Wrapper, BayesNet, NaiveBayes, LibSVM and K
Star; respectively.

To summarize, with the variation of the parameter k on the used datasets, our
KNN-DCA gives better classification results when compared to other classifiers.
Moreover, we have shown that despite of varying the k value, the KNN-DCAs
are producing close PCCs which endorses the validity of our mathematical DS
calculation processes which were detailed in Sect. 4.

5 Conclusion and Future Directions

This work extends the original DCA to be more applicable to the problem of
interest without the need of expert knowledge. KNN-DCA has provided good
classification results on a number of datasets. Indeed, our proposed algorithm
is based on robust mathematical formula based on the KNN machine learning
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technique allowing the DCA classification task in an autonomous way. As future
work, we intend to further explore the new instantiation of our KNN-DCA by
extending the applicability of the KNN algorithm within a fuzzy context.
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Abstract. This paper presents a comparative study of cluster ensemble
and multi-objective cluster ensemble algorithms. Our aim is to evaluate
the extent to which such methods are able to identify the underlying
structure hidden in a data set, given different levels of information they
receive as input in the set of base partitions (BP). To do so, given a
gold/reference partition, we produced nine sets of BP containing prop-
erties of interest for our analysis, such as large number of subdivisions of
true clusters. We aim at answering questions such as: are the methods
able to generate new and more robust partitions than those in the set of
BP? are the techniques influenced by poor quality partitions presented
in the set of BP?

Keywords: Clustering · Cluster ensemble · Multi-objective clustering ·
Performance evaluation

1 Introduction

Ensemble approaches for clustering are aimed at dealing with many drawbacks
of traditional clustering methods [2,3]. The goal of cluster ensemble methods is
to obtain a partition that represents the consensus among a set of base parti-
tions (BPs) [6,9]. For this, it first produces a set of BPs and, then, applies a
consensus function to combine the members in the set into a single partition.
Several strategies for generating BPs and different types of consensus function
have been described in the literature. In this paper, we focus on heterogeneous
cluster ensembles, where the set of BPs is assumed to have been generated by
clustering algorithms with different biases/criteria. Without loss of generality to
our experimental setting, we assume that the set of BPs is provided.

In traditional cluster ensembles, the consensus function combines all partition
in a single step. As a consequence, high quality clusters with respect to one
criterion can be diluted by weak clusters when they are combined. This can
lead to an overall poor quality of the consensus partition, even if good clusters
(or even if the whole true partition) is presented in the set of BPs [2]. Another
c© Springer International Publishing Switzerland 2015
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drawback of traditional cluster ensembles is the fact that they are not intended
for generating multiple partitions as solution. Multiple partition solutions is a
relevant issue in many real scenarios.

Multi-objective clustering approaches are based on the simultaneous opti-
mization of two or more complementary clustering criteria [2,3]. By doing so,
they are able to produce as solution a set of diverse partitions. Such proper-
ties tend to lead the algorithm to produce high quality solutions. However, as a
disadvantage, the algorithm can yield a set of solutions with a large number of
partitions. This can make the step of analyzing/interpreting the solutions very
time consuming. In the previous context, a hybrid approach of multi-objective
ensemble can minimize the problem of the possible large number of solutions,
while maintaining the advantage of producing diverse partitions as results [2].
In this paper, we will focus on this multi-objective ensemble approach. Other
multi-objective clustering frameworks, such as the algorithm presented in [3],
has a built in heuristic to generate the set of BPs. Thus, in such a context, the
analysis proposed in this paper does not apply.

The purpose of this paper is to present a comparative study of the traditional
and multi-objective ensemble approaches analyzing: (1) capability of them in
terms of generating solutions containing partitions not presented in the set of
BPs (novelty); and (2) how the quality of final solution is influenced by the
different levels of information provided in the BPs. To do so, taking as reference a
given gold/reference partition (GD), we produced scenarios where the set of BPs
were composed by (i) partitions whose clusters contained only partial clusters
in GD, (ii) partitions whose clusters contained partial clusters in GD, as well
as complete clusters, (iii) partitions containing clusters as (i), (ii), as well as
GD itself, and (iv) partitions containing (i)–(iii), as well as random partitions.
This way, we aim at answering the following questions: are the techniques able to
generate new and more robust partitions than those in the set of base partitions?
are the techniques influenced by extremely poor quality partitions?

2 Related Work

Several papers have been published comparing ensembles and/or multi-objective
approaches for clustering. In [6], the authors compared the quality of 24 alterna-
tives for building an ensemble. The study taked into account different strategies
to generate the base partitions, as well as the use of different consensus func-
tions. In [9], the authors presented a theoretical comparative study of several
methods. Their analysis considered six properties relevant to an ensemble. They
also discussed the advantages and disadvantages of each method.

In [4,7], the authors presented detailed reviews on multi-objective evolution-
ary algorithms applied to clustering. The analysis presented in these two works
are more oriented to intrinsic issues of evolutionary algorithms, such as chro-
mosomes representation, objective functions and evolutionary operators, rather
than to the characteristics and/or performance of the techniques.
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Comparison among ensembles and multi-objective approaches are presented
in [2,3]. These works introduced, respectively, the multi-objective clustering algo-
rithm MOCK (Multi-Objective Clustering with automatic K-determination) and
the multi-objective ensemble MOCLE (Multi Objective Clustering Ensemble).
In order to evaluate their framework, the authors compared them with other
ensembles and multi-objective algorithms, pointing out the advantages of using
multi-objective approaches over traditional ensembles.

All the studies previously described present very general comparisons regard-
ing the characteristics of the techniques or a performance evaluation. Indeed,
differently from the work we present in this paper, none of them explores the
behavior of the algorithms with respect to the quality of the set of base partitions
used as input.

3 Materials and Methods

In this section, we briefly describe the clustering algorithms employed in our
study. More specifically, we introduce the traditional cluster ensembles CSPA
(Cluster-based Similarity Partitioning Algorithm), HGPA (HyperGraph-Parti-
tioning Algorithm), MCLA (Meta-CLustering Algorithm) [8] and BCE (Bayesian
Cluster Ensembles) [10] and the multi-objective ensemble MOCLE [2]. Figure 1
summarizes the main similarities and differences between traditional and multi-
objective ensembles. In this figure, X is a data set and ΠI and ΠF are collections
of partitions with nI and nF partitions, respectively.

.

.

.

.

.

.

ΠI ΠF

π1
I

π2
I

πnI
I

π1
F

π2
F

πnF
F

MCLA, HGPA, CSPA, BCE

X

MOCLE
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+
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Fig. 1. Overview of the approaches investigated

Regarding the input, traditional cluster ensembles depend on a set of base
partitions, which can be externally provided, not requiring access to the original
data. MOCLE, on its turn, has as input the data set together with a set of base
partitions (initial population). To generate the solution, traditional ensembles
make use of consensus functions while MOCLE combines consensus function
together with multi-objective optimization. Finally, regarding the output, for
traditional ensembles, nF = 1, that is, for each run, a single partition is generated
while for MOCLE a higher number of partitions are produced as solution.

Further details about the algorithms we employ in this paper is provided next.
The ensembles CSPA, HGPA and MCLA are based on graph and hipergraph [8],
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whereas BCE is based on probability. CSPA generates a co-association matrix
from the base partitions and uses this matrix as input to a graph partitioning
algorithm to produce the consensus partition. MCLA constructs a meta-graph
where each cluster of the base partitions is considered as a vertex and the edges
link only clusters from different partitions, with weights proportional to the
similarity between the clusters. This meta-graph is partitioned producing meta-
clusters which encompasses the corresponding clusters. Finally, the consensus
partition is produced by assigning each object to the meta-cluster it is more
strongly associated with. HGPA produces a hypergraph where the clusters of
base partitions are hyperedges. A hypergraph partitioning algorithm is used
to partition the hypergraph into k unconnected components of approximately
the same size, where k is a predetermined number of clusters for the consensus
partition. BCE treats all base clustering results for each data point as a vector
with a discrete value on each dimension, and learns a mixed-membership model
from such a representation [10].

MOCLE is a multi-objective clustering ensemble. Starting with a diverse
set of base partitions, it employs the multi-objective evolutionary algorithm
NSGA-II to generate an approximation of the Pareto optimal set. It simultane-
ously optimizes the compactness and the connectivity criteria and uses a special
crossover operator, which combines pairs of partition using an ensemble method.
No mutation is employed. By iteratively combining pairs of partitions, MOCLE
can avoid the negative influence of low quality partitions presented among the
base partitions.

4 Experimental Protocol

In this study, experiments were performed with ensemble clustering methods
applied to different sets of base partitions (BPs), in order to evaluate them with
respect to their ability to identify high quality partitions given different initial
scenarios. For this, we used an artificial data set called 2sp2glob — Fig. 2a. This
data set contains 2000 objects, grouped in four clusters with 500 objects each:
two spirals (C1 and C2) and two globular shaped clusters (C3 and C4). Based
on this data set, we artificially generated nine sets of BPs with the properties of
interest for analysis. These sets are described in Sect. 4.3. The data set and BPs
are available at http://lasid.sor.ufscar.br/2sp2globBPCollection/.

4.1 Performance Evaluation

We used the AR index (Adjusted Rand Index) [5] to measure similarity between
a partition generated with the algorithm with the true structure (gold/reference
partition) presented in the data set. The better the partition, the closest to 1 the
value of AR is. To provide a sound and reliable analysis, we made a statistical
analysis. For this, we performed the Friedman test, together with Nemenyi post
test when appropriate [1]. More specifically, we performed two types of analysis.
For all cases, the significance level was set to 5 %.

http://lasid.sor.ufscar.br/2sp2globBPCollection/
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In one type of analysis, we considered the algorithms as the treatments being
compared and the set of BPs (the initial conditions) as the blocks. In this way,
we tested the null hypothesis H0: there is no difference among the algorithms,
against H1: there is significant statistical difference between at least two algo-
rithms. When the null hypothesis was rejected, we performed the Nemenyi post
test with the hypothesis H0: algorithms i and j present the same performance,
against H1: performance of algorithms i and j differ.

In the other type of analysis, we compared the influence of different initial
conditions (given by BPs) on the performance of the algorithms. For this, we
tested the null hypothesis H0: the initial conditions does not influence the results
of the algorithms, against H1: at least two different initial conditions influenced
the performance of algorithms. When the null hypothesis was rejected, we pro-
ceeded the Nemenyi post test with the hypothesis H0: BPs i and j lead to the
same performance of the algorithms, against H1: BPs i and j lead to different
performances.

4.2 Parameters’ Settings

The only parameter of BCE, CSPA, MCLA and HGPA is k, the number of clus-
ters for the consensus partition. We run experiments with k = [4, 8], obtaining
a set of five partitions as the result of each algorithm. Then, for each algorithm,
we calculated the AR for the respective partitions generated and the best one
was selected for the analysis.

The current version of MOCLE allows the variation of two parameters, L
and G, respectively related to the connectivity and to the number of genera-
tions of the genetic algorithm. In addition, two crossover operators are available,
being the MCLA ensemble considered more effective in analysis reported by the
authors [2]. Thus, we employed MCLA. For determining values for L and G, we
run some preliminary tests with various combinations of these values. Applying
Friedman test [1], there was no difference in the result’s quality at a significance
level of 0.5. Thus, we decided to employ the default values: L = 5 and G = 100.

Since MOCLE is non-deterministic, it was run 30 times, resulting in 30 sets
of partitions. For each of these 30 sets, we calculated the AR for its partitions
and selected the best one. Then, we calculated the mean of the 30 solutions
selected. This is the value that we will use in the analysis.

4.3 Sets of Base Partitions

We produced nine sets of BPs (BP1–BP9). They were generated so as to contain
partial information concerning the gold/reference partition, with properties of
interest for our analysis. Figure 2 illustrates examples of partitions in BPs. More
specifically, each partition in BP1, BP2 and BP3 represents partial information
regarding the true partition. Each of these three sets contains 12 partitions. More
specifically, each cluster in these partitions represents one true cluster or part of a
true cluster. The difference among them is the degree to which the true clusters
are subdivided. These BPs are used to analyze the ability of the methods in
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Fig. 2. Partitions examples

reconstructing the true partition, given only partial information. That is, if a
new and higher quality partition with respect to BPs can be obtained. The
differences among these sets allow to analyze whether the level of details of
partial information influences the final solution outputted by algorithms.

BP1 contains partitions with 15 to 24 clusters, all presenting a large number
of subdivisions of all true clusters. The subdivisions in one partition comple-
ment the subdivisions in other partitions, meaning that two partitions contain
part of clusters that overlap. For example, Fig. 2c and d illustrates overlapping
subdivisions of cluster C4. BP2 contains partitions with 10 to 22 clusters. Each
partition has one of the true cluster together with subdivisions of the others,
as the partition in Fig. 2b, where C4 is present together with subdivisions of
C1, C2 and C3. BP3 contains one or more of the true clusters together with
subdivisions of the others. In this case, a smaller number of subdivisions than
in BP2 is provided. Thus, the partitions contain between 5 and 8 clusters.

BP4, BP5 and BP6 contain 13 partitions each, corresponding respectively
to BP1, BP2 and BP3 added with the true partition. With such BPs, we aim
at investigating if the presence of true partition helps to improve the quality of
consensus or if this information is lost during the processing. BP7, BP8 and
BP9 contain 14 partitions each, also corresponding to BP1, BP2 and BP3,



702 J. Piantoni et al.

respectively, added with two random partitions. These random partitions were
generated with random distribution of objects into different numbers of clusters,
resulting in very low quality partitions. They were generated with the same
number of clusters as the smallest and biggest number in BP1, BP2 and BP3,
respectively. With this BPs, we intend to investigate the influence of low-quality
partitions in the recovery of true partition.

5 Results

Table 1 contains the AR of the best partition obtained with each algorithm,
as well as the AR value for the best partition among those in each set of BP
(column BP). We use this best partition in the set of BP as a type of baseline to
compare the results of the methods. In the case of the performance of traditional
ensembles, the AR value corresponds to the best partition presented in each set.
For MOCLE, the AR value represents the average over 30 runs.

Table 1. AR of the best partitions

BP ID BP BCE CSPA MCLA HGPA MOCLE

BP1 0.5204 0.5134 0.5078 0.5165 0.5285 0.9736

BP2 0.7226 0.5678 0.5743 0.6021 0.5832 0.9678

BP3 0.9354 0.6084 0.6112 0.5991 0.6002 0.9232

BP4 1 0.5208 0.5122 0.5321 0.5397 0.9743

BP5 1 0.6032 0.5832 0.5973 0.5899 0.9433

BP6 1 0.6008 0.6218 0.6199 0.6078 0.9671

BP7 0.5204 0.3832 0.3944 0.4231 0.3755 0.9429

BP8 0.7226 0.3784 0.3983 0.3678 0.3813 0.9534

BP9 0.9354 0.3988 0.3786 0.4009 0.4023 0.9734

From Table 1, we can observe a clear distinction among the results of tradi-
tional ensembles and MOCLE, which presented an overall superior performance.
Moreover, compared to the baseline (BP), that is, the best partition in the set of
BP, we can see that MOCLE provided solutions with similar or better quality. In
contrast, with respect to the baseline, traditional cluster ensembles consistently
generated partitions of inferior quality.

To check if the differences in performance observed was not due to chance, we
applied the Friedman test [1] as described in Sect. 4. We performed the statistical
analysis considering the algorithms as treatments and BPs as blocks. Applying
the Friedman test, we obtained χ2 = 30.27, with p-value = 1.305× 10−5 < 0.05.
We thus rejected H0 and can conclude that there is a difference between at
least two algorithms or between an algorithm and the baseline (BP). In order
to verify which algorithms are different, we proceeded with Nemenyi post test.
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The results of the test confirmed that the results of MOCLE is superior to those
of the traditional cluster ensemble methods (BCE, CSPA, MCLA and HGPA).
Moreover, if we consider the traditional methods only (BCE, CSPA, MCLA and
HGPA), there was no statistical evidence of difference among them.

With respect to the comparison to the baseline (BP), there was not enough
statistical evidence to state the results obtained by MOCLE were different from
those of the baseline. That is, MOCLE in the worst case, at least, managed to
keep the good information already presented in the set of base partitions. Indeed,
when one observes the results in Table 1, one can verify that for several configu-
rations of base partitions (e.g., BP1, BP2, BP7 and BP8), MOCLE generated
solutions with AR much larger than those of the baseline (best partition of the
set of base partition). This means it was able to discover (novelty) high quality
partition not initially presented in the base partitions.

Differently from the case of baseline versus MOCLE, for the traditional
ensembles the results of the statistical test showed that the AR of the clus-
ter ensembles are significantly inferior to those of the baseline (BP). In this
context, we performed a statistical analysis, now considering the BPs as treat-
ments and the traditional ensembles as blocks. Applying the Friedman test, we
obtained χ2 = 29.667 with a p-value of 0.0002 < 0.05. We thus rejected H0,
concluding that at least two BPs lead to different performance of the traditional
ensembles. Proceeding with the Nemenyi post test, we identified that BP6 leads
to different performance than BP7, BP8 and BP9; and BP3 leads to different
performance than BP8. That is, the BPs containing random partitions led to
significant differences in performances of the traditional ensembles, specifically
when compared to the BPs designed with the smallest amounts of subdivisions
(BP3 and BP6). This means that most of the initial conditions did not influ-
ence the results of the traditional ensembles. On the other hand, differently from
what happened with MOCLE, the best consensus partitions found presented AR
values smaller than those of the baseline.

6 Final Remarks

In this paper, our aim was to evaluate the extension to which some advanced
clustering ensemble strategies are able to identify the underlying structure hid-
den in a data set, given different levels of information they receive as input.
Specifically, we presented a comparative study of four traditional cluster ensem-
ble and a multi-objective ensemble.

Taking into account the results presented in previous sections, we observed
that traditional cluster ensembles presented a poor overall performance for all
levels of information provided in the set of base partitions (BPs). For example,
the results of our experiments showed that the presence of random partitions
among the set of BPs had a great negative influence in the consensus. The results
of the experiments also showed that the presence of true clusters, or even whole
true partition (gold/reference partition), in the set of BP was not enough to
provide information to ensembles recover the true structure.
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In contrast, our experimental results, showed that multi-objective ensem-
ble could produce new high quality solutions, even when fed only with partial
information. Moreover, they were not negatively influenced by extremely poor
quality partitions presented in the set of BPs. In other words, according to our
experimental results, when compared to traditional cluster ensembles, for data
with a heterogeneous underlying structure (clusters with different shapes and
sizes) the multi-objective approach showed to be more adequate.

Finally, in terms of limitation and further work, we could point out that,
besides the AR, other evaluation indices could have been used to calculate the per-
formance of the algorithm (e.g., normalized mutual information index). As further
work, we can also increase the number of methods used in the experiments — the
experiments in this paper were conducted only with the algorithms whose code
was made available by the authors.
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Abstract. We propose a novel algorithm that we called Multi-Manifold
Co-clustering (MMC). This algorithm considers the geometric struc-
tures of both the sample manifold and the feature manifold simulta-
neously. Specifically, multiple Laplacian graph regularization terms are
constructed separately to take local invariance into account; the optimal
intrinsic manifold is constructed by linearly combining multiple mani-
folds. We employ multi-manifold learning to approximate the intrinsic
manifold using a subset of candidate manifolds, which better reflects the
local geometrical structure by graph Laplacian. The candidate manifolds
are obtained using various representative manifold-based dimensionality
reduction methods. These selected methods are based on different ratio-
nales and use different metrics for data distances. Experimental results on
several real world text data sets demonstrate the effectiveness of MMC.

Keywords: Multi-manifold · Matrix tri-factorization · Co-clustering

1 Introduction

Clustering methods based on matrix factorization have recently been emerging
as beneficial tools, mainly because of the simplicity of the formalization and their
close relationships to other well-studied problems, such as spectral clustering or
matrix decomposition. Recently, Non-negative Matrix Factorization (NMF) [12]
has become one of the most frequently used matrix factorization tool. NMF
was proposed to learn a parts-based representation, but it focuses on unilateral
clustering, i.e., on only one of the two sets of samples or features of a data
matrix. Largely because of this, Non-negative Matrix Tri-Factorization (NMTF)
[12] was presented for co-clustering dyadic data (on both sets of samples and
features) whose interest is well established (see for instance, [2,3,7,8]). NMTF
is 3-factor decomposition, seeking an approximation of the data matrix via the
product of a row-coefficient matrix, a block value matrix and a column-coefficient
matrix, with the restriction that these three matrices are all non-negative [4,14].
Regardless of them merits, one drawback of factorization-based co-clustering
methods is that they see only the global Euclidean geometry, and the local
manifold geometry is not fully considered. To address this major limitation, some
researchers have sought to take into account the local geometrical structure in
c© Springer International Publishing Switzerland 2015
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matrix-factorization-based co-clustering. It has been shown that just as sample
data lie on a nonlinear low-dimensional manifold, namely the data manifold,
features too lie on a manifold, namely the feature manifold [9,17].

2 Related Works and Aims

The Multi-Manifold Learning was proposed to approximate the intrinsic man-
ifold using a subset of candidate manifolds, which can better reflect the local
geometrical structure of data. Kmanifolds [18], which starts by estimating geo-
desic distances between points, is the first method to classify unorganized data
nearly lying on multiple intersecting nonlinear manifolds. Unfortunately, this
method is limited to deal with intersecting manifolds since the estimation of
geodesic distances will fail when there are widely separated clusters. On the
contrary, the Spectral Multi-Manifold Clustering (SMMC) [19], which is able
to handle intersections, is well suited to group samples generated from sepa-
rated manifolds. In SMMC, the data are assumed to lie on or close to multiple
smooth low-dimensional manifolds, where some data manifolds are separated
but some are intersected. Then, local geometric information of the sampled data
is incorporated to construct a suitable affinity matrix. Finally, spectral method
is applied to this affinity matrix to group the data.

Recently, Relational Multi-manifold Co-clustering (RMC) [13] has been pro-
posed for co-clustering relational data via ensemble manifold learning. RMC
estimate the data geometric structure through a K nearest neighbour (KNN)
graph on a scatter of objects. The geometric structure modelled by the KNN
graph learns incomplete and inaccurate intra-type relationships, i.e., only find-
ing favourable neighbours that are close in Euclidean space instead of finding
distant objects that are within manifold neighbours. In addition, in real world
applications, there exists no unique (global) manifold but a number of manifolds
with possible intersections [11]. KNN graph fails to distinguish the manifolds
that are intersecting due to that objects located at manifold intersections share
almost the same K nearest neighbours. Moreover, RMC construct the manifolds
not only from the informative part, but also from the noisy part of the dif-
ferent candidate manifolds. However, it is difficult to learn accurate intra-type
relationships in the presence of noise and outliers. To address the above prob-
lems, the Robust High-order Co-clustering via Heterogeneous Manifold Ensemble
(RHCHME) [11] method has been proposed. RHCHME incorporates multiple
subspace learning with a heterogeneous manifold ensemble to learn complete and
accurate intra-type relationships.

Furthermore, RMC and RHCHME are based on a very sparse matrix and
are applied to modified block matrices instead of the original data and Laplacian
matrices. The RMC and RHCHME Algorithms employ the alternately iterative
method, and involve intensive matrix multiplication at each iteration step. The
high computational cost of such algorithms makes them unsuitable for large-
scale real-world data. To help overcome such problems that are encountered
when processing large-scale and noisy data, we propose a novel algorithm that
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we call Multi-Manifold Co-clustering (MMC). We constrain the factor matrices
of MMC to be cluster indicator matrices, which dramatically reduces the compu-
tational complexity of co-clustering. We also attempt to consider simultaneously
the diversity of geometric structures in the sample manifold and the feature
manifold, with the aim of discarding the noisy part in each candidate mani-
fold. Specifically, this involves constructing multiple low-dimensional manifold
regularization terms separately, using state of the art dimensionality reduction
methods to take account of local invariance; the optimal intrinsic manifold is
constructed by linearly combining multiple manifolds.

The selected dimensionality reduction methods includes Canonical Discrim-
inant Analysis (CDA), Multi-Dimensional Scaling (MDS), Isometric Feature
Mapping (ISO), Locally Linear Embedding (LLE), Locally Preserving Projec-
tions (LPP) and Stochastic Neighbor Embedding (SNE) (for details see for
instance [5,6,15]). These methods include different techniques for capturing the
non-linearity of the underlying manifold, and they incorporate local distance
information in different ways. This is the idea behind our work. Furthermore,
the effectiveness of different methods varies, and it has been shown that no sin-
gle method constantly outperforms the others. Rather than choosing a single
method, therefore, we seek to apply a set of dimensionality reduction methods
and to merge the output of the different methods. Our multi-manifold learning
algorithm aims to overcome the drawbacks of single manifold learning methods
and to combine the different data structures to which they give rise.

This paper is organized as follows. In Sect. 3 we introduce our new approach
that we called Multi-Manifold Co-clustering algorithm (MMC) and we represent
the simplified process to resolve the Matrix Tri-Factorization based Co-clustering
optimization problem. In Sect. 4 the proposed algorithm is evaluated and com-
pared against other algorithms designed to solve the same tasks, on both single
manifold and multiple manifolds cases. Finally, a conclusion summarizes the
main points of our contribution.

3 Multi-Manifold Matrix Tri-Factorization Based
Co-clustering

3.1 Problem Formalization

Given a data set X ∈ R
d×n and defined by X := {xji; j = 1, . . . , d; i = 1, . . . , n},

the co-clustering considers simultaneously the set of samples {x.1, . . . ,x.n} and
the set of features {x1., . . . ,xd.} in order to organize data matrix X into homo-
geneous blocks. This block structure can be obtained by a couple of partitions
P = {P1 , . . . ,Pk} of columns into k clusters and Q = {Q1 , . . . ,Q�} of rows into
� clusters. Then a summary defined by a matrix S := {(sqp; q = 1, . . . , �; p =
1, . . . , k} of size � × k can be computed. Each summary sqp corresponding to
block (q, p) is a real number and the row and column vectors of S are noted
s.q and sp.. The partitions P and Q can be respectively expressed as binary
matrices G := {gip; i = 1, . . . , n; p = 1, . . . , k} with gip = 1 if i ∈ Pp and gip = 0
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Table 1. Notation used in this paper

Notation Description

X Data matrix of size (d × n)

n, d Number of data samples and data features

k , � Number of sample clusters and feature clusters

P, Q Data samples and data features partitions

G Sample partition matrix of size (n × k) G ∈ {0, 1}n×k

F Feature partition matrix of size (d × �); F ∈ {0, 1}d×�

S Block value matrix of size (� × k)

Lg Multi-manifold sample graph Laplacian of size (n × n)

Lf Multi-manifold feature graph Laplacian of size (d × d)

otherwise, and F := {fjq; j = 1, . . . , d; q = 1, . . . , �} with fjq = 1 if j ∈ Qq and
fjq = 0 otherwise. For convenience, Table 1 gives the notation used throughout
this paper.

The co-clustering can be formulated as a matrix approximation problem that
consists in minimizing the approximation error between the original data matrix
X and the reconstructed matrix based on P, Q and S, defined by

min
G,F,S

∥∥X − FSGT
∥∥2

. G ∈ {0, 1}n×k, F ∈ {0, 1}d×l. (1)

where ‖.‖ denotes the the Frobenius norm.

3.2 Multi-Manifold Co-clustering Algorithm (MMC)

To consider different data manifolds, a set of C candidate graph Laplacians are
defined. The intrinsic manifold of the sample or feature space lies in the con-
vex hull of these pre-given candidate manifolds. Sample multi-manifold learning
means that the manifold ensemble Lg is represented as a linear combination of
the predefined sample candidate manifolds

{
L1

g, . . . , L
C
g

}
. Each candidate Lc

g is
linked to a coefficient γc

g. Similarly, the manifold ensemble Lf is represented as a

linear combination of the predefined feature candidate manifolds
{

L1
f , . . . , LC

f

}

and each candidate Lc
f is linked to a coefficient γc

f .

Lg =
∑C

c=1 γc
g Lc

g, s.t.
∑C

c=1 γc
g = 1, γc

g ≥ 0. (2)

Lf =
∑C

c=1 γc
f Lc

f , s.t.
∑C

c=1 γc
f = 1, γc

f ≥ 0. (3)

In Eqs. 2 and 3, if we assume the candidate graph Laplacian are obtained
directly from the original data matrix X, this is why each of them contains
an informative part and a noisy part. Consequently, we may consider that the
learned compromise L is made on both the informative and the noisy parts.
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In order to discard the noisy part in each of the C candidate manifolds,
we propose using a set of C low-dimensional data representations {B1, ..., BC}
instead the data matrix X in the candidate graph Laplacians construction. These
low-dimensional data representations {Bc}c=1..C are obtained using C selected
dimensionality reduction methods.

Since G is a binary matrix, the following loss function is used as a mea-
sure of disagreement between each low-rank manifold representation Bc

g and the
clustering matrix G with respect to Qg:

C∑

c=1

γc
g

∥∥G − Bc
gQg

∥∥2 s.t. {QT
g Qg = I}. (4)

where each candidate distance
∥∥G − Bc

gQg

∥∥2 has a corresponding coefficient γc
g.

In the same way, for the feature space, we consider a set of C feature candi-
date low-dimensional data representations {B1

f , ..., BC
f }. Multiple manifolds are

integrated using a similar loss function:

C∑

c=1

γc
f

∥∥F − Bc
fQf

∥∥2 s.t. {QT
f Qf = I}. (5)

To preserve the local geometrical structure of data samples and data features
spaces, we integrate the two multi-manifold regularizing terms defined in Eqs. 4
and 5.

min
G,F,S

∥∥X − FSGT
∥∥2

+ α

C∑

c=1

γc
g

∥∥G − Bc
gQg

∥∥2 + β

C∑

c=1

γc
f

∥∥F − Bc
fQf

∥∥2 (6)

s.t., QT
g Qg = I,QT

f Qf = I.

where the parameters α and β are used to trade-off the contribution of the multi-
manifold regularizing. We also introduce the l2 norm of the variable γ (i.e.,
‖γ‖2) to avoid over-fitting on only one manifold. After some simple algebraic
manipulations, the MMC objective function is formulated as:

min
G,F,S

∥∥X − FSGT
∥∥2 − 2 αTr[GT (

C∑

i=c

γc
gB

c
g)Qg] + θg ‖γg‖2

−2 βTr[FT (
C∑

c=1

γc
fBc

f )Qf ] + θf ‖γf‖2 (7)

s.t., QT
g Qg = I,QT

f Qf = I.

where θg and θf controls the regularization terms ‖γg‖2 and ‖γf‖2, respectively.

3.3 Optimization

To solve (7), we use an alternated iterative method. The problem is simplified
using the following theorem.
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Theorem 1. Let Gn×k and Bn×k be two matrices. Consider the constrained
minimization problem

Q∗ = arg min
Q

∥∥G − BQT
∥∥2

subject to. QT Q = I. (8)

Let UΛV T be the SVD for GT B, then Q∗ = UV T .

Proof. Expanding the matrix norm
∥∥G − BQT

∥∥2 leads to

Tr(GT G) − 2Tr(GT BQT ) + Tr(QBT BQT ).

Since Tr(GT G) = n and QT Q = I, the last term is equal to Tr(BT B) and the
optimization problem (8) is equivalent to

arg max
Q

Tr(GT BQT ) subject to. QT Q = I.

Let GT B = UΛV T be the SVD for GT B, the Tr(GT BQT ) term becomes

Tr(UΛV T QT ) = Tr((UΛ0.5)(Λ0.5V T QT )) = 〈UΛ0.5, Λ0.5V T QT 〉.

By the Cauchy-Schwartz inequality, we get

〈UΛ0.5, Λ0.5V T QT 〉 ≤ ‖(UΛ0.5)‖‖(Λ0.5V T QT ))‖ = ‖Λ0.5‖‖Λ0.5‖ = Tr(Λ)

due to the invariance of ‖·‖ under orthogonal transformations. Hence, the sum in
(9) is maximized if UT QV = I and the solution Q∗ to (9) is given by Q∗ = UV T .

Hereafter we present the computation of all matrices and parameters.
* Computation of S: Fixing G and F , by setting the derivative of

W (G,F, S) with respect to S as 0, we obtain:

S = (FT F )−1 FT XG(GT G)−1 (9)

* Computation of Qg and Qf : Fixing G, F and S, we can separate (7)
into two sub-problems:

max
QT

g Qg=I
Tr[GT (

C∑

c=1

γc
gB

c
g)Qg] and max

QT
f Qf =I

Tr[FT (
C∑

c=1

γc
fBc

f )Qf ].

Based on Theorem 1, by applying SVD on GT (
∑C

c=1 γc
gB

c
g), we obtain Qg =

UgV
T
g . Similarly, applying SVD on FT (

∑C
c=1 γc

fBc
f ) yields Qf = UfV T

f .
* Computation of G: We fix S, F and Qg, and let be B̃g =

(
∑C

c=1 γc
gB

c
g)Qg.

g
(t+1)
ip =

{
1 p = argminp′ ||(xi.)(t) − s

(t)
p′.||2 − 2α(B̃g)ip′

0 otherwise.
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* Computation of F : We fix S, G and Qf , and let be B̃f =
(
∑C

c=1 γc
fBc

f )Qf .

f
(t+1)
jq =

{
1 q = argminq′ ||(x.j)(t) − s

(t)
q′.)||2 − 2β(B̃f )jq′

0 otherwise.

* Computation of γg and γf : Fixing α, β, G and F , the objective function
in Eq. 7 reduces to two subproblems:

1 : maxγg
Tr[GT (

∑C
c=1 γc

gB
c
g)Qg] + θg ‖γg‖2

, s.t.,
∑C

c=1 γc
g = 1, γc

g ≥ 0.

2 : maxγf
Tr[FT (

∑C
c=1 γc

fBc
f )Qf ] + θf ‖γf‖2

, s.t.,
∑C

c=1 γc
f = 1, γc

f ≥ 0.

To optimize the multi-manifold coefficients γg and γf , we can use the entropic
mirror descent algorithm (EMDA) [1], which is especially well suited for deal-
ing with convex problems. In the interests of simplicity, we present the EMDA
process for sub-problem 1 only. If θg equals 0, then γg will have the trivial
solutions 0 and 1. If θg approaches infinity, the manifolds Lc

g will be treated
equally. Hence, we need to assign a proper value to θg to guarantee the effec-
tiveness of multi-manifold learning. EMDA can use a general distance-like func-
tion rather than Euclidean squared distance. Since the constraints imposed on
γg is a unit simplex: Δg =

{
γg ∈ R

c,
∑C

c=1 γc
g = 1, γg ≥ 0

}
. EMDA requires

the objective function Φ to be a convex Lipschitz continuous function with
Lipschitz constant ZΦ w.r.t. a fixed norm. In our approach, this Lipschitz con-
stant is computed for data samples by ‖� Φ (γg)‖1 ≤ 2 θg + sg = ZΦ where
sg = tr(GT (

∑C
c=1 γc

gB
c
g)Qg). The pseudocode of EMDA is given in Algorithm1,

and the steps of MMC are shown in Algorithm2.

Algorithm 1. Entropic Mirror Descent Algorithm.
Input : Lipschitz constant ZΦ, θ, L, G;
Output : Multi-manifold ensemble coefficient γ;
Initialize : γi with identical weights 1

C ; m =1 (number of iterations);

for c = 1 to C do
repeat

(a) - tm =
√

2 ln C

m Z2
Φ

(b) - γm+1
c ←

γm
c exp

[
−tm Φ

′
(γm

c )
]

∑C
c=1 γm

c exp
[
−tm Φ

′ (γm
c )
] , where Φ

′
(γm

c ) = 2 θ γm
c + sm

c

until Convergence;

4 Numerical Experiments

In this section we investigate the use of our proposed MMC algorithm for data
co-clustering. First, we present the performance of MMC on single manifold. The
single candidate manifold is constructed using each of the selected dimensional-
ity reduction methods. Second, we evaluate the impact that combining all the
manifolds has on the quality of the co-clustering.
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Algorithm 2. MMC algorithm
Input: - Data matrix X, the trade-off parameters α and β,
- C sample candidate manifolds {B1

g , .., BC
g } and C feature candidate manifolds

{B1
f , .., BC

f }.
Output: Partition matrices G and F .
Initialize: G and F using Kmeans ; S by (9).
repeat

(a) - Compute Q(t)
g and Q

(t)
f .

(b) - Compute γ(t)
g and γ

(t)
f using the EMDA algorithm.

(c) - Update G(t+1) by (10).

(d) - Update F (t+1) by (10).

(e) - Update S(t+1) by (9).
until convergence;

The selected dimensionality reduction methods that we compared and com-
bined are CDA, LPP, LLE, MDS, ISO and SNE. Note that CDA is a supervised
method, which is why its candidate manifold is computed using the partitions
obtained by Spherical Kmeans rather than the correct data set partitions. These
numerical experiments were performed using some benchmark text data sets
from the clustering and co-clustering literature. Table 2 summarizes the charac-
teristics of these data sets.

4.1 Parameter Settings

To measure the clustering performance of the proposed algorithm, we use the
commonly adopted metrics, the Accuracy (Acc), the Normalize Mutual Infor-
mation (NMI) [16] and the Adjusted Rand Index (ARI) [10]. We focus only on
the quality of row clustering. We run each method under different parameter
settings 50 times, and the average result is computed. We report the best aver-
age result for each method. We set the number of sample clusters equal to the
true number of classes in data sets (k).

For each of the compared approaches: Kmanifolds, RHCHME, SMMC and
RMC, the best parameters are used, as suggested in each of the reference articles
(see for details [9,11,13,17,19]). For MMC, the graph Laplacian is constructed
using the Cosine-distance-based K-Nearest Neighbors in which the neighborhood
size is fixed to 5. The regularization parameter α is searched from the grid (0.01,

Table 2. Data set characteristics.

Data set Type Samples Features Classes

CSTR Text 1428 1024 4

WebKB4 Text 4199 1000 4

WebACE Text 2340 1000 20

RCV1 Text 9625 29992 4

Ng20 Text 19949 43586 20
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0.1, 1, 10, 100, 500, 1000). We set β = α for both the sample and feature graphs.
Moreover, the spherical Kmeans (SKmeans) algorithm [2] has computational
advantages for sparse high-dimensional data vectors. For this reason, we use
SKmeans to initialize the factor matrices.

Note that for all the compared methods, it was suggested that the number
of feature clusters is equal to the number of sample clusters � = k. However, in
our approach, the candidate manifolds are generated by using some reduction
dimension methods. Taking a too small value of � for determining the number of
components (dimensions), may cause a loss of the information provided by the
initial features. Contrariwise, a too large number increases the computational
complexity. Then in order to assess the number of feature clusters, we varied �
between 2 and 10 k, and retained the one that optimizes the criterion.

4.2 Results

First, we present the effectiveness of MMC on single manifold. The single candi-
date manifold is constructed using each of the dimensionality reduction methods,
i.e., CDA, LPP , LLE, MDS, ISO or SNE. Next, we report the performance of
MMC when the dimensionality reduction algorithms are combined. MMC is com-
pared against the multi-manifold approaches Kmanifolds, RHCHME, SMMC
and RMC. The main comments arising from our experiments are the following.

– In Table 3, we observe that RMC outperforms Kmanifolds, RHCHME and
SMMC for all data sets. Note that RMC is a KNN based method and uses
the squared loss function to measure the quality of the matrix decomposition,
which is unstable with respect to noise and outliers. This is why MMC which
exploits only the informative part of the data and removes the noisy part, is
clearly more efficient than RMC; we confirm this thanks to t-tests on 50 ran-
dom initialisations. We show that the improvement is statistically significant;
all p-values are less than 10−8%.
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Fig. 1. CSTR: reorganized data visualisation according row and column clusters (k×�).
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Table 3. MMC results on the manifold-based dimensionality reduction methods.

Data set Metric SKmeans Single manifold (C = 1) Multi-manifolds

CDA LLE LPP MDS SNE ISO Kmanifolds RHCHME SMMC RMC MMC

CSTR Acc 0.903 0.909 0.929 0.920 0.939 0.922 0.903 0.745 0.806 0.512 0.898 0.956

NMI 0.780 0.783 0.915 0.903 0.902 0.814 0.833 0.689 0.751 0.461 0.766 0.906

ARI 0.818 0.822 0.852 0.824 0.829 0.795 0.754 0.616 0.721 0.355 0.733 0.860

WebKB4 Acc 0.778 0.783 0.853 0.893 0.892 0.807 0.897 0.730 0.775 0.652 0.835 0.928

NMI 0.551 0.557 0.691 0.778 0.717 0.476 0.873 0.666 0.683 0.637 0.573 0.843

ARI 0.563 0.566 0.558 0.735 0.628 0.457 0.682 0.493 0.536 0.419 0.587 0.772

WebACE Acc 0.653 0.686 0.722 0.776 0.802 0.760 0.735 0.602 0.713 0.597 0.718 0.888

NMI 0.698 0.704 0.836 0.818 0.880 0.833 0.790 0.640 0.727 0.625 0.766 0.916

ARI 0.586 0.603 0.538 0.616 0.659 0.600 0.578 0.399 0.485 0.368 0.530 0.766

RCV1 Acc 0.681 0.715 0.734 0.784 0.759 0.764 0.739 0.721 0.730 0.556 0.777 0.807

NMI 0.523 0.512 0.602 0.641 0.615 0.629 0.622 0.469 0.495 0.287 0.608 0.651

ARI 0.485 0.565 0.509 0.566 0.523 0.533 0.522 0.465 0.523 0.230 0.551 0.618

NG20 Acc 0.388 0.406 0.437 0.517 0.488 0.492 0.456 0.414 0.431 0.288 0.504 0.533

NMI 0.365 0.397 0.416 0.491 0.485 0.485 0.450 0.392 0.422 0.307 0.493 0.526

ARI 0.148 0.155 0.227 0.286 0.265 0.271 0.243 0.162 0.223 0.113 0.266 0.311

– In the multi-manifold case, the candidate manifolds are weighted according
to them quality in reflecting the local geometrical structure of data. These
coefficients are an additional indicator of the effectiveness of each method.

– MMC is a co-clustering method revealing a reorganization into homogeneous
blocks of data. In Fig. 1, we illustrate visually the obtained co-clusters accord-
ing to several numbers of the feature clusters � = 3, 4 and 10.

5 Conclusion

We propose a novel algorithm, MMC, which simultaneously considers the geo-
metric structures of both the sample manifold and the feature manifold. Specif-
ically, we employ multi-manifold learning to approximate the intrinsic manifold
using a subset of candidates, which better reflects the local geometrical struc-
ture by graph Laplacian. In order to utilize the respective strengths of different
dimensionality reduction techniques, we selected six manifold-based dimension-
ality reduction methods that were designed for a variety of purposes and use
different metrics for data distances. Our candidate manifolds are obtained using
these methods. In our experiments on real text data sets, MMC outperforms
other algorithms designed to solve the same tasks, on both single manifold and
multiple manifolds cases.
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Abstract. As an important technique for data mining, clustering often
consists in forming a set of groups according to a similarity measure such
as hamming distance. In this paper, we present a new bio-inspired model
based on artificial ants over a dynamical graph of clusters using colonial
odors and pheromone-based reinforcement process. Results analysis are
provided and based on the impact of parameter values on purity index
which is a measure of clustering quality. Dynamic evolution of cluster
graph topologies are presented on two databases from Machine Learning
Repository.

Keywords: Swarm intelligence · Data clustering · Binary data · Arti-
ficial ants model

1 Introduction

Clustering in data mining is a discovery process that groups each set of similar
data in clusters. Clustering consists in either constructing a hierarchical struc-
ture, or forming a set of groups. It is a useful technique for knowledge discovery
from a data set. However, when the amount of data is huge, it is necessary to
form homogeneous groups to allow a better understanding and operational rea-
soning. Swarm intelligence is a broader issue that suggests a new approach to
the clustering of individuals in groups: this method draws upon the behavior of
ants as a source of inspiration for the concept of clustering. Despite the lack of
cognition in individual ants, they can instinctively group themselves with sim-
ilar individuals and groups to appear as a distinct and homogeneous group of
individuals. Swarm intelligence is a relevant technique in dynamical situations.
In this paper, we will focus on qualitative variables with several modalities. This
type of data is used for example in surveys and polls whose answer to a question
must be unique by choosing one method among the methods proposed. Thus,
we propose in this work a new algorithm named CL-Ant dealing with this new
challenging type of data.
c© Springer International Publishing Switzerland 2015
S. Arik et al. (Eds.): ICONIP 2015, Part I, LNCS 9489, pp. 716–723, 2015.
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2 Related Work

Some clustering models are based on neighboring graphs requiring distances or
similarities to define between couples of data. Using this distance, appropriate
heuristics can discover underlying topological information about the dataset.
This learned topology can be used in various ways: for instance, starting from a
selected datum, one may explore the content of the dataset by following edges
of the graph to find interesting neighbors (i.e., similar data). Another possibility
is to use the topology to define clusters. Building a proximity graph consists
in using an existing distance (or similarity) between data in order to establish
binary relations between nodes. Several standard methods exist [1]. Building a
neighborhood or proximity graph over a dataset is an interesting process which is
used in many domains [2]. The graphs of neighborhoods involved in many areas
such data mining [3], the pattern recognition [4] and the spatial data mining [5]
due to their intrinsic qualities [6–8]. In [9], they are interested in the complex
structures that are built by real ants and studied the self-assembly behavior of
real ants, in order to define a hierarchical clustering algorithm called AntTree
where each tree node represents one data object. It is a new algorithm to perform
a hierarchical clustering inspired from the ants self-assembly behavior. In this
paper, we want to use such a graph to help a domain expert to discover knowledge
about a large dataset.

3 Swarm Intelligence and Clustering

We describe the artificial ants approaches for clustering as a rich source of inspi-
ration. The initial and pioneering work in this area is due to [10] where the way
real ants sort objects in their nest is modeled. A complete study of approaches
using Ant-based and Swarm-based clustering is presented in [11]. Ant Colony
System (ACS) and Ant Colony Optimization (ACO) were developed from the
foraging behavior of real ants [12] based on the pheromone where the basic enti-
ties are virtual ants which cooperate to find the solution of graph-based prob-
lems, like network routing problems, for example. Authors [12] simulated the
way ants work collaboratively in the task of grouping dead bodies. Monmarche
et al. [13] combined the stochastic principles of an ant colony in conjunction
with the deterministic principles of the K-means algorithm. Labroche et al. [14]
presented a new model called AntClust based on an ant clustering system using
the colonial odors. In this new version, the same principles of real ants behavior
and the chemical odor in ant species proposed in [16] are applied. We focus an
important real ant collective behavior, namely the construction of a colonial odor
and its use for determining the ant nest membership. It involves modeling the
way ants recognize the odor of their nest that allows them to protect it by recog-
nizing, rejecting intruders and sharing a common colonial odor to all ants of the
same nest. In [17] authors describe the mechanisms of recognition in most ant
species, colonies are made up of individuals from one or more queens. Between
individuals of the same colony, the atmosphere is generally peaceful as opposed
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to individuals from different colonies. All work on the subject confirms that
the discrimination between individuals of different colonies is based on chemi-
cal recognition. This notion of development by allowing colonial odor exchanges
more or less important chemicals was expressed in [14] by a similarity measure
and a set of behavioral rules for performing clustering. Also our method CL-Ant
simulates how ants move following volatile substances called pheromones on a
graph of cluster [15].

4 The CL-Ant Clustering Algorithm

For all of the algorithm that we propose, we used the same similarity measure
Sim(X, Y) between two data X and Y, belonging to a metric space:

Sim(X,Y ) = 1− ‖ X − Y ‖2 (1)

The data are aggregated in clusters, the jth is noted CLj , located by its cen-
troid Wj .

We therefore use the following parameters:

– ai, i = 1,...,n are the set of ants. Each ant is associated to a data.
– CLj , j = 1,...,k are the set of clusters.
– Wj is the centroid of the cluster CLj .
– Phij is the pheromone rate of each edge.
– ThCLj

: each cluster CLj has a threshold of affiliation defined as follows:

ThCLj
=

∑n
i=1

∑n
j=i+1

Sim(xai
,xaj

)

N + min(Sim(xai
, xaj

))
2

(2)

Where ai and aj ∈ CLj , i ∈ {1, ..., n}, N = n(n−1)
2 , xai

is the data vector
associated to ant ai.

Our model lies within an environment represented by a graph (see Fig. 1).
The CL-Ant algorithm is divided into two main steps:

1. Initialization step using K-means algorithm: The K-means algorithm
[18] chooses inadvertently K first points representing the centers of K classes.
The initial graph is a complete graph whose nodes are groups of data known a
priori and whose edges represent the neighborhood relations between clusters.
From there, a first partition is formed by allotting each data to the class K
to which the center is closest in terms of hamming distance.

2. The first step of clustering: In this step, the CL-Ant algorithm [16] is
applied to build a dynamic graph that represents topology preservation of
data clusters. The main idea is to associate data to be classified to an artificial
ant. Each cluster represents a node on the dynamic graph. Each edge connect-
ing two neighboring clusters is weighted by hamming distance between the
centers of two clusters. We aim to improve the partitioning of K-means using
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Fig. 1. General principles of graph building with artificial ants, and the computation
of an ant’s neighborhood.

artificial ant rules to produce dynamic graph after a fixed number of itera-
tions. Once the ant has left its cluster, it moves towards another cluster by
choosing a path which has a stronger concentration of pheromone (see Fig. 1
(a, b)). If an ant cannot integrate another nest (cluster), it moves towards
another one taking the densest way. The ant is accepted by a cluster CLj′ if
(Sim(ai, Wj′) >= ThCLj′ ). After each assignment of data to a new cluster,
an update of the pheromone rate on edge is carried out. The weight of edge
is then increased by a pheromone rate with α value (Phjj′ = Phjj′ + α),
corresponding to the path crossing by ants when they find a better cluster
to belong. This process corresponds to a reinforcement process (see Fig. 1
(c)). If Sim (ai,Wj′) < ThCLj′ all edges weight decreased with γ value
(Phhl = Phhl(1 − γ); 1 ≤ h, l ≤ k), corresponding to clusters of height
dissimilarity. When the weight of some edge becomes under a threshold the
edge is removed.

5 Experimental evaluation

5.1 Experiments with Binary Data Sets

To validate our approch. We used different binary data sets extracted from the
Machine Learning Repository [19] whose general characteristics are summarized
in Table 1 (a): Nb is the total number of data forming the data bases, NAtt of
the number of attribute, K the number of theoretical cluster fixed by k-means
algorithm in initial step, CR the number of real classes.
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Table 1. Description of used databases (Machine Learning Repository).

Datasets Nb NAtt CR

Breast cancer 286 9 2

Spect 267 22 2

Balance scale 625 4 3

Tic-Tac-Toe endgame 958 9 2

Lymphography 148 18 4

Primary tumor 339 17 22

Fig. 2. Results of purity index obtained with CL-Ant (Test 1, Test 2, Test 3) on binary
data sets after 1000 iterations (Color figure online).

There are many suggestions for a quality measure [21]. Such a purity measure
[20] can be used to compute the quality of a clustering. It takes its value in [0, 1];
1 indicates whether all clusters are pure. Clustering methods group these objects
into K clusters, thus two partitions to compare are defined:

Purity(P1, P2) =
1
N

k∑

i

argmax
j

| Wi

⋂
Cj | (3)

Where P1 = W1,W2, ...,Wk is the set of clusters result, P2 = C1, C2, ..., Cj

is the set of reference cluster and i, j ∈ {1, ...k}.

We tested our method with different values of α and γ in Fig. 2. For all
databases and as far as the purity values in Fig. 2 are concerned, the results
obtained by CL-Ant (Test 1) with α = 0.02 and γ = 0.001 are globally similar
to those obtained by CL-Ant (Test 2) and CL-Ant (Test 3) on balance scale and
lymphography databases. CL-Ant (Test 1) with α = 0.02 and γ = 0.001 yielded
the best results compared to CL-Ant (Test 1) and CL-Ant (Test 2) on breast
cancer dataset. We obtained a higher purity value equals to 0.9755 for breast
cancer dataset with K = 4 after 1000 iterations. Results of CL-Ant with three
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Fig. 3. Processing time in millisecondes obtained with CL-Ant (Test 1, Test 2, Test 3)
after 1000 iterations (Color figure online).

Fig. 4. An example of primary tumor dataset with k = 23, α = 0.02 and γ = 0.001;
(a) Complete graph before clustering, (b) Dynamic graph after CL-Ant.

Fig. 5. An example of breast cancer dataset with k = 4, α = 0.02 and γ = 0.001; (a)
Complete graph before clustering, (b) Dynamic graph after CL-Ant.

tests were comparable: equal for different databases, and one test better than
the other for the other databases. We give the computation time of CL-Ant with
different values of α and γ (see Fig. 3). All three CL-Ant tests are outperformed
in processing time. It is noteworthy that the CL-Ant (Test 1) with α = 0.02
and γ = 0.001 is faster than CL-Ant with other values of α and γ (see Fig. 3).
Experimental results are given by Figs. 4 and 5. Figure 4 shows different graphs
tested on the primary Tumor dataset with k = 23, α = 0.02 and γ = 0.001. The
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purpose of our algorithm is to reduce the initial graph by removing edges with
a low rate of pheromone and maintaining the strong neighborhood relationship
represented by a high rate of pheromone. Figures 4 and 5 (a) present the complete
graph obtained after the initialization step (execution of K-means algorithm).
Figures 4 and 5 (b) show the dynamic graph obtained after CL-Ant algorithm
during 100 iterations.

6 Conclusion and Future Works

We presented in this paper a new model for binary data clustering named
CL-Ant based on the chemical odor in real ants considered as a source of bio-
mimetic inspiration. CL-Ant algorithm introduced new heuristics for unsuper-
vised clustering techniques and also the field of artificial ants simulation methods.
The obtained results are encouraging in terms of the quality of data clustering.
Future work consists on comparative study with biomimetic algorithms could
be very beneficial in terms of outcome of our work. Another perspective work
is that how to apply our models on big data? To handle large data sets, one
of newest paradigm is MapReduce which performs map and reduce operations.
Further investigation shall focus on the study of another type of datasets such
as text, images.
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Abstract. Reinforcement learning agents can acquire the optimal pol-
icy to achieve their objectives based on trials and errors. An appropri-
ate design of reward function is essential, because there are variety of
reward functions for the same objective whereas different reward func-
tions would give rise to different learning processes. There is no system-
atic way to determine a good reward function for a given environment
and objective. One possible way is finding a reward function to imitate
the learning strategy of a reference agent which is intelligent enough to
efficiently adapt even variable environments. In this study, we extended
the apprenticeship learning framework in order to imitate a learning ref-
erence agent, whose policy may change on the process of optimization.
For the imitation above, we propose a new inverse reinforcement learning
based on that agent’s history of states and actions. When mimicking a
reference agent that was trained with a simple 2-state Markov decision
process, the proposed method showed better performance than that by
the apprenticeship learning.

Keywords: Reinforcement learning · Inverse reinforcement learning ·
Apprenticeship learning

1 Introduction

Reinforcement learning (RL) is a framework to achieve the optimal action pol-
icy that maximizes expected cumulative reward [1]. When applying the RL to
an optimal control problem, the reward function is arbitrarily set such to allow
the learning agent to achieve an intended objective in a given environment. An
appropriate design of the reward function is important to efficiently learn the
control policy that realizes the objective, because there are variety of reward
functions for the same objective whereas different reward functions would give
rise to different RL processes. A simple reward function which applies a large
positive reward at a goal state and uniform, negative reward at the other states
leads to a policy to track the shortest path to the goal state. However, the RL
process with this simple reward function is usually very slow because the agent
with an initial policy barely reaches the goal state. On the other hand, a grad-
ually increasing reward function as approaching the goal state would accelerate
c© Springer International Publishing Switzerland 2015
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the RL, but it can lead to local optimal solutions. There is no systematic way
to determine a good reward function that accelerates RL while stably achieving
the optimal policy in a given environment and objective.

Conversely to the RL, inverse reinforcement learning (IRL) estimates the
reward function when an agent, called a reference agent, optimizes the expected
cumulative reward, based on observation of the agent’s behaviors. Especially
when the reference agent achieves the objective in our optimal control problem,
one possible way to set the reward function is to imitate this agent’s one. In this
study, we are interested in a case where a reference agent is adaptive to even
variable environments; such a reference agent is called a learning agent. Esti-
mating the reward function that a learning reference agent employed, we can
expect that our RL agent acquires the optimal policy and even adapts variety
of environments appropriately. The IRL was first applied to modeling of animal
and human learning processes [2]. There are many studies to improve the esti-
mation accuracy of reward functions in the framework of IRL [3–5]. IRL has also
been introduced to apprenticeship learning which allows an agent to mimic the
expert’s policy [4,6,7]. In these studies, the reference agent was regarded as an
expert which had realized the optimal policy based on its reward function.

In this study, we propose the new IRL which allows our agent to mimic a
learning reference agent whose policy may not be optimal because of the refer-
ence agent still being in a learning process. The proposed method is preferable
because of the following three advantages. First, learning behaviors of the learn-
ing reference agent would provide additional information to improve estimation
of the reward function. Second, our method focuses on imitating learning process
rather than on copying the optimal policy, which means that our agent can mimic
the reference agent’s way to adapt to even changing environments. Third, our
agent does not need to know the state transition probability of the environment,
because it also follows the model-free RL scheme of its own.

2 Background

2.1 Markov Decision Process (MDP)

A Markov decision process (MDP) is characterized by a state transition prob-
ability p(s′|s, a) denoting the probability from state s to state s′ by taking an
action a, where s, s′ ∈ S and a ∈ A, and S and A are finite sets of possible states
and actions, respectively. We assume action a is probabilistically determined at
state s, according to a stochastic policy π(a|s) that satisfies

∑
a∈A π(a|s) = 1.

For a fixed policy π, action-value function Qπ is defined as

Qπ(s, a) =Eπ

[ ∞∑

t=0

γtR(st, at)|s0 = s, a0 = a, at ∼ π(at|st)

]

, (1)

respectively, where R(s, a) and γ ∈ [0, 1) are the reward function and the dis-
count factor, respectively. From the definition of action-value function (1), the
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following Bellman equation for a policy π is derived,

Qπ(s, a) = R(s, a) + γ
∑

s′∈S
a′∈A

p(s′|s, a)π(a′|s′)Qπ(s, a). (2)

2.2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning framework to obtain the
optimal policy π∗ that maximizes the expected cumulative reward, which is
estimated by the summation of instantaneous rewards obtained in a course of
trials and errors [1]. In this study, we assume each agent, either of a reference
agent or our agent in hand, produces its actions based on its own policy and
also updates its policy according to an RL algorithm. In particular, we used
the following SARSA algorithm, which is a typical on-policy temporal difference
learning, to update the action-value function,

Qt+1(st, at) = (1−α)Qt(st, at) + α{R(st, at)+γQt(st+1, at+1))}. (3)

As a stochastic policy, we used the following soft-max (Boltzmann) policy

πt(at|st)=
exp( 1

τ Qt(st, at))∑
a exp( 1

τ Qt(st, a))
, (4)

where α ∈ [0, 1) and τ are parameters that signify the learning rate and the
greediness of policy, respectively. In this study, we assume the stochastic policy
(4) and the value updating rule (3) of the reference agent are known for our agent
which attempts to mimic the reference agent. On the other hand, the reward
function R(s, a) and hence the action-value function Qt(s, a) are unknown for our
agent. Then, in order for our agent to mimic the reference agent, our agent should
estimate the reward function and then the action-value function of the reference
agent from its behaviors. In this estimation, we assume that the time-course of
policy update πt = πt(a|s;Ot−1, R) is characterized by the past observation of
behaviors Ot−1, the unknown reward function R, the known action-value update
rule (SARSA), and the known stochastic policy (soft-max).

2.3 Related Works

Inverse reinforcement learning (IRL) is a framework to determine the reward
function that an agent is optimizing under the following conditions: (1) the
behaviors of the reference agent are accessible in variety of circumstances, (2) the
sensory inputs to the reference agent are accessible, and (3) the dynamic charac-
ter of the environment (including the agent’s dynamics) is known [2]. These con-
ditions are translated into MDP framework by determining the unknown reward
function R from the observed behaviors OT = {(s0, a0), (s1, a1), · · ·, (sT , aT )}
with the known (stochastic) dynamics of the environment p(s′|s, a).

The first IRL was implemented as an iterative algorithm [2]. The IRL was
used for apprenticeship learning [6], which tried to mimic experts’ behaviors
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and a gradient-based optimization method for IRL was introduced [7]. In many
IRL studies including those, the reward function of the reference agent was esti-
mated based on the known state transition probability of the environment and
the Bellman equation assumed to be used by the reference agent. Such infor-
mation, however, may not be sufficient to estimate the unique reward function,
then additional restrictions can be necessary , such as assuming that the differ-
ence in the value between optimal actions and non-optimal ones is large [3] and
introducing a prior distribution of rewards [4]. When the action-value update
rule is assumed to be known, a reward function can be estimated on situations
where the state transition probability is unknown [8]. In the IRL studies above,
the observation of the reference agent’s behaviors OT was implicitly assumed to
be generated by the optimal policy. Because of this assumption, two issues arise;
first, if OT was generated by a premature policy, we cannot estimate the accurate
reward function. Especially when the reference agent is adaptively behaving in,
for example, a changing environment, it would be difficult for us to assume the
agent employs the optimal policy in the present environment. Such situations
are typical when mimicking behaviors of animals including humans. Second,
even if the observation of behaviors has been generated by the optimal policy of
the reference agent, the reward function estimated by the existing IRL methods
does not incorporate the information observed when the reference agent is in
the learning process. Hence, existing IRL methods have not provided any way
to allow us to imitate learning process of the reference agent.

To overcome these two issues, we propose a new IRL method to estimate a
learning reference agent’s reward function based on the history of its behaviors
on the process of optimization, and hence to allow a new agent to mimic the RL
process of the reference agent.

3 Inverse Reinforcement Learning with a Developing
Agent

3.1 Likelihood of Reward Function

Here, we present an idea that the stochastic policy πt(at|st;R,Ot−1, Q0) is
regarded as a likelihood of reward R and initial action-value Q0, given the obser-
vations, st, at, and Ot−1. Note here that although this stochastic policy itself is
non-stationary, our unknown reward function is assumed to be stationary. Then,
our problem is to estimate the unknowns, R and Q0, based on the available obser-
vations. This estimation can be performed in the framework of the maximum
likelihood estimation. Given the observed history of the reference agent’s states
and actions, the likelihood becomes

T∏

t=0

πt(at|st) =
T∏

t=0

exp( 1
τ Qt(st, at))∑

a exp( 1
τ Qt(st, a))

. (5)
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Note that we used the policy’s non-stationarity here. The log likelihood becomes

L(R,Q0) =
T∑

t=0

{
1
τ

Qt(st, at) − ln

(
∑

a

exp(
1
τ

Qt(st, a))

)}

. (6)

Note that Qt is an implicit function of R. There RL settings of the reference
agent are arbitrary, but they are assumed to be known.

3.2 Matrix Representation of SARSA

Vector forms of the reward R and the action-value Qt are defined as vectors
whose each element corresponds to each pair of state s and action a. Using those
vector notations, the SARSA update rule (3) is rewritten as

Qt+1 = (I − At,t)Qt + At,t+1{R + γQt}
= (I − At,t + γAt,t+1)Qt + At,t+1R, (7)

where the (it1×m + jt1 , it2×m + jt2)-th element of At1,t2 is α and all the other
elements are 0, and (st, at) = (sit , ajt). m is the size of the finite action set.
Equation (7) is further transformed into

Qt = CtQ0 + DtR, (8)

where we defined Bt = I − At,t + γAt,t+1, Ct+1 = BtCt, Dt+1 = At,t + BtDt,
C0 = I, and D0 = 0. Then, we can optimize the log likelihood with respect to the
reward and the initial action-value according to the gradient-based optimization,
leading to the maximum likelihood estimates. In actual implementation, we used
BFGS method for the optimization [9].

4 Numerical Experiment

Here, we evaluated how well our new IRL method worked for mimicking a learn-
ing reference agent; the evaluation criteria are: how well the reward function of
the learning reference agent was estimated, and how well the RL behaviors of
the learning reference agent could be mimicked by a new RL agent employing
the reward function estimated above. We prioritized the latter rather than the
former. In this evaluation, we used a simple 2-state MDP task (Fig. 1), whose
optimal policy is to move to state S2 when it is at an initial state S1 and to stay on
S2 after having come to S2. The evaluation procedure consisted of the following
four steps: (1) The reference agent performed the RL to obtain its optimal policy
in the MDP above during which its history of states and actions was recorded.
(2) The reward function of the reference agent was estimated by our IRL and
other existing IRL methods, based on the behavioral history recorded in (1). (3)
A new agent, called the target agent, was prepared and performed the RL with
the reward function estimated in (2). (4) Compare the RL processes between
the reference agent and the target agent. The reference agent performed the RL
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Fig. 1. A simple 2-state MDP task. When an agent takes an action a1 at state S1, it
continues to stay at S1 with probability θ or moves to S2 with probability 1 − θ. θ is
the parameter that characterizes this MDP. Since the reward at S2 is higher than that
at S1, the agent should move to and stay at S2 to behave optimally.

with SARSA with a soft-max policy, whose RL settings were shared by the tar-
get agent. In steps (1) and (3) above, each history consisted of 200 episodes each
of which contained 50 steps in the 2-state MDP environment. The true reward
function R† of the reference agent was R†(S1) = −1.0 and R†(S2) = 0.1. The
learning parameters of the reference agent were set at α = 0.001, γ = 0.9, and
τ = 0.1, which were also shared by the target agent.

We compared our IRL method (learning agent: LA) with three existing IRL
methods, gradient method: GM, maximal posterior: MP, and dynamic program-
ming: DP. The GM [7] minimizes the squared error between the reference agent’s
policy and the target agent’s policy by a gradient-based optimization method.
The MP [4] maximizes the posterior of reward functions by setting a prior on
reward functions. These two methods, GM and MP, need the true state transi-
tion of the environment. The DP [8] assumes that the reference agent employs
dynamic programming to obtain its own policy, but the target agent does not
need to know the true transition probability.

Because the reference agent was continuously learning in its history of 200
RL episodes and hence changing by itself, the reward function estimated by the
IRL could be different by using different periods in the history. To examine such
dependency on the behavioral history, we prepared three kinds of sub-history by
the reference agent: (1) an earlier part of the history (history 1), from the 1st to
the 100th episodes, (2) a middle part of the history (history 2), from the 26th
to the 125th episodes, and (3) a later part of the history (history 3), from the
101st to the 200th episodes. For each IRL algorithm, LA, GM, MP, or DP, we
trained 100 target agents based on the reward function estimated by the IRL
algorithm.

Table 1 shows the reward functions estimated by the four IRL methods. When
estimated from earlier part of the history (history 1), our method (LA) exhibited
the most accurate reward function. When estimated from middle or later part
of the history, on the other hand, the DP was the best. Since our method (LA)
assumed that the reference agent is on the course of learning, it showed the best
estimation performance especially when the reference agent was in a premature
stage, as expected. The other IRL methods performed better when they used
observations after the reference agent was matured enough.
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Table 1. Reward functions estimated by GM, MP, DP, and LA (proposed).

GM MP DP LA (proposed)

History 1 [−0.0384, 0.192] [−0.134, 0.0936] [−0.104, 0.104] [−0.955, 0.104]

History 2 [−0.0365, 0.282] [−0.0621, 0.106] [−0.152, 0.152] [−1.86, 0.105]

History 3 [−0.0305, 0.468] [−0.118, 0.108] [−0.238, 0.238] [−4.25, 0.253]

Next, we examined the RL process of the target agent employing the reward
function estimated by the four IRL algorithms, GM, MP, DP, and LA (Fig. 2).
When evaluating a target agent’s RL process, we defined a policy imitation error
between the reference and target agents, as

Je =
∑

s
μ′(s)

∑

a

(
μ(s, a)
μ(s)

− μ′(s, a)
μ′(s)

)2

, (9)

where μ(s) (μ′(s)) and μ(s, a) (μ′(s, a)) count the numbers of visits to state s
and selecting action a at state s by the reference (target) agent, respectively.

Figure 2(a), (b) and (c) show profiles of the average policy imitation error by
the four IRL methods, each of which used the earlier part of the reference agent’s
history (history 1), the middle part (history 2), and the later part (history 3),
respectively. When the target agent performed the RL from the earlier or middle
history part, our IRL (LA) showed best mimicking performance of the RL process
by the target agent. When learning from the middle part, the GM showed per-
formance being comparable to or even better than our LA after the RL process
approached convergence. When learning from the later part, our LA showed a lit-
tle worse mimicking performance than that by GM or DP when the target agent
was premature, but became comparable after the target agent’s RL approached
convergence.

When comparing summation of policy imitation error over the 200 episodes of
the target agent (Table 2), our LA showed the apparent minimum error with the
earlier (history 1) or middle (history 2) part of the reference agent’s behavioral
history. When estimated from the latter part (history 3), on the other hand,
our method (LA) was slightly inferior to the GM. When the information of the
RL processes of the reference agent is available, like in history 1 or 2, our LA
agent could fully utilize the information and then mimic the RL process of the
reference agent. The GM was superior to other IRL methods when mimicking
the reference agent’s RL from its later learning stage (history 3), because it
knows the dynamics of the MDP environment.

In total, our new IRL outperformed the existing IRL methods especially
when reference agent’s behaviors are available on its learning process, while the
other IRL methods performed well only when the behaviors after the reference
agent got matured were available.
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Fig. 2. Time-course of the average policy imitation error by the four IRL methods,
each of which used the earlier part of the reference agent’s history (history 1, panel
(a)), the middle part (history 2, panel (b)), and the later part (history 3, panel (c)).
The horizontal and vertical axes denote the episode number experienced by both of
the reference and target agents, and the average policy imitation error, respectively.

Table 2. Summation of policy imitation errors along over the episodes.

GM MP DP LA (proposed)

History 1 293.6 552.9 559.3 115.9

History 2 172.3 698.9 272.5 106.5

History 3 114.7 492.6 135.6 132.4

5 Conclusion

We proposed an new IRL method that estimates the reward function of a ref-
erence agent based on its behaviors along its learning process and then allows
our agent to mimic the learning reference agent. According to the numerical
experiment using a simple 2-state Markov decision process, the proposed method
showed better estimation performance of the reward function than that by exist-
ing IRL methods. Moreover, by letting our new agent do the RL based on the
estimated reward function, we found our agent exhibited similar RL profiles with
the reference agent, which suggests preferable performance of our new method
when mimicking a reference agent being adaptive to even changing environ-
ments. In addition, our method did not need to know the true state transition
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probability because of the usage of model-free RL method, SARSA. On the
other hand, our IRL method required to estimate the initial action-value func-
tion. Since this may restrict its applicable situations, an ease of this disadvantage
will be left for a future work.
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