
Detection of Redundant Expressions:
A Complete and Polynomial-Time Algorithm

in SSA

Rekha R. Pai(B)

National Institute of Technology Calicut, Calicut, Kerala, India
rekharamapai@nitc.ac.in

Abstract. Detection of redundant expressions in a program based on
values is a well researched problem done with a view to eliminate the
redundancies so as to improve the run-time efficiency of the program.
The problem entails the detection of equivalent expressions in a program.
Here we present an iterative data-flow analysis algorithm to detect equiv-
alent expressions in SSA for the purpose of detection of redundancies.
The central challenge in this static analysis is to define a “join” operation
to detect all equivalences at a join point such that any later occurrences
of redundant expressions are detected in polynomial time. We achieve
this by introducing the notion of value φ-function. We claim the algo-
rithm is complete and takes only polynomial time. We implemented the
algorithm in LLVM and demonstrated its performance.

Keywords: Equivalence detection · Global value numbering · Redun-
dancy detection · Value φ-function

1 Introduction

Elimination of redundant expressions in a program, based on values, is an impor-
tant code optimization done with a view to improve run-time efficiency of a pro-
gram. The fundamental problem here is the detection of equivalent expressions
in the program. The detection of all equivalences in a program is undecidable
and hence we focus only on the detection of Herbrand equivalences [8], as is
done traditionally. Two expressions are Herbrand equivalent if they have the
same operator and corresponding operands are Herbrand equivalent.

Equivalences are detected by assigning value numbers to each expression.
The value number vi is assigned to two expressions if they are detected to be
equivalent [3]. Global Value Numbering (GVN) is the problem of assigning value
numbers to expressions to detect equivalences in whole programs. Efforts in the
literature have been to propose a GVN algorithm which is both complete and
efficient. A GVN algorithm is “complete” if it detects all Herbrand equivalences
such that all associated total redundancies are detected.

Current GVN algorithms are either complete [5] or take only polynomial time
[2–4,6,8–10], but not both, in the context of detection of redundancies. As in a
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 49–65, 2015.
DOI: 10.1007/978-3-319-26529-2 4

50 R.R. Pai

data-flow analysis, the central challenge in GVN is to define a “join” operation
to detect equivalences at a join point. Though the detection of all equivalences
at a join point makes a GVN algorithm complete, it blows up the size of partition
of equivalent expressions thus making the algorithm inefficient [5].

In order to make a GVN algorithm polynomial, a solution is to detect only
those equivalences at a point p′ that may be used later at a point p where an
expression, say e, appears. Here, we view the solution from a different perspec-
tive. Instead of detecting equivalences that may be used later, we propose that
given an expression e at a point p in the program, detect whether e is equivalent
to some expression(s) e′ that appear in paths to e. For this we use semantics
of φ-function in Static Single Assignment (SSA) form and introduce the new
concept of value φ-function which is a set of equivalent φ-functions. We then
propose an iterative data-flow analysis algorithm to detect equivalences in SSA
form of programs which is complete and takes only polynomial time. We later
prove the soundness and completeness of the algorithm.

We implemented the proposed algorithm and the algorithms by Kildall [5]
and Gulwani [4] in LLVM to substantiate our claims on completeness and effi-
ciency. The SPEC2006 programs were analyzed using the three algorithms and
experimental results demonstrate that the proposed algorithm is complete as it
detects same number of redundancies as the complete algorithm by Kildall. The
proposed algorithm is also efficient compared to the widely accepted Gulwani’s
polynomial time algorithm since it takes less time to analyze the SPEC2006
programs.

The rest of the paper is organized as follows: in Sect. 2 we analyze two classic
GVN algorithms to get a clarity on the problems in global value numbering.
The terms used in this paper are given in Sect. 3. Value φ-function and the
new algorithm are described in Sect. 4. The algorithm is formally defined in
Sect. 5 and an experimental comparison of our algorithm with Kildall’s [5] and
Gulwani’s [4] is made in Sect. 6. In Sect. 7 we review some of the algorithms in
the literature. Section 8 concludes the work.

2 Motivation

In this section we analyze the classic works by Kildall [5] and Gulwani [4] to under-
stand the problems in the detection of equivalent expressions. The algorithm by
Kildall is complete and the one by Gulwani takes only polynomial time.

2.1 Kildall’s Algorithm

The iterative data-flow analysis algorithm by Kildall detects equivalences at each
point in the program. The equivalences are represented as a partition of expres-
sions into equivalence classes, known as expression pool. The algorithm uses a
powerful concept known as “structuring” in its transfer function. When a new
equivalence class is created in an expression pool corresponding to an expression
e in the program, the algorithm structures the partition by the construction

Detection of Redundant Expressions 51

and addition of all expressions (Herbrand) equivalent to e in the new class. This
ensures detection of all redundant expressions which means that the algorithm
is complete. But this leads to an exponential growth in the size of an equivalence
class. The use of value numbers, as given in ‘Implementation Notes’ section in
[5], avoids this problem. Kildall uses value expression, a compact representation
for a set of equivalent expressions [5,9] to make the size of an equivalence class
linear. But the problem of exponential growth in the size of expression pools
(expressed in terms of number of equivalence classes) persists due to the defini-
tion of join operation as shown by [4]. This is because the join operation applied
on nj input pools may result in an expression pool whose size is exponential in
the size of the input pools [4].

2.2 Gulwani’s Algorithm

This algorithm works similar to that of Kildall’s with equivalence information
represented as a directed graph known as Strong Equivalence DAG (SED). The
SED provides a compact representation of equivalence classes in a partition. The
algorithm detects equivalences among all expressions of size at most s, where
s is the size of program expression. This reduces the number of equivalence
classes in a partition computed by join operation (compared with Kildall’s) which
makes it take only polynomial time. The join operation as defined in Gulwani
(see Sect. 3.5, Join algorithm, lines 3–5 in [4]) intersects classes only if they have
at least one variable in common. This leads to missing in the detection of some
equivalences that will be useful in detecting redundancies [9].

2.3 Our View

The central problem in GVN is to define a join operation to detect equivalences
at a join point. Detecting all equivalent expressions at a point makes the algo-
rithm exponential. A solution, to overcome this problem, is to detect only those
equivalent expressions at a point that are used to detect later occurrences of
a redundant expression. To the best of our knowledge, currently there are no
methods to precisely predict whether such redundant expressions might appear
or not. Here we propose to view the problem from a completely different per-
spective. Instead of detecting equivalent expressions at a join point j that is used
later, we postpone detection of such equivalences till a point where an expression
actually occurs.

3 Terminology

Program Representation. The program in SSA is represented as a Control Flow
Graph (CFG) [1] that has an empty entry and exit block. Other blocks contain
assignment statements of the form x = e, where e is an expression. We assume
a block can have at most two predecessors and a block with exactly two prede-
cessors is called join block. The input and output points of a block are called in
and out points, respectively, of the block.

52 R.R. Pai

Expression. An expression can be either a constant, a variable, or of the form
x⊕y where x and y are constants or variables and ⊕ is a generic binary operator.
An expression can also be of the form φk(x, y) where x and y are variables and k
is the join block in which it appears. Such expressions are φ-functions. We may
omit the subscript k when the join block is clear from the context. In the CFGs
we draw, φ-functions appear in join blocks. But for the sake of clarity, we assume
φ-functions are transformed to copy statements1 and appended to appropriate
predecessors of the join block.

Equivalence. Two expressions e1 and e2 are Herbrand equivalent, denoted
e1 ≡ e2, if they have the same operator and corresponding operands are Her-
brand equivalent. Two expressions e1 and e2 in a path P are said to be equivalent
in the path, denoted e1 ≡P e2, if they are Herbrand equivalent in that path.

Value Expression. A value expression vi⊕vj represents an operation between two
equivalent classes where vi and vj are the value numbers of the two equivalent
classes. vi ⊕ vj = {x ⊕ y;x ∈ Ci, equivalent class with value number vi and y ∈
Cj , equivalent class with value number vj}. A value expression is a representa-
tive expression of the set of equivalent expressions. Value expression of an expres-
sion x ⊕ y is constructed by replacing the operands with their value numbers.

4 Basic Concept

Our goal is to develop a complete and polynomial time algorithm for redundancy
detection. The cause of redundancy is the equivalence of expressions in a program
and hence detection of redundancies can be stated as a problem of computation
of equivalence classes of expressions at each point in the CFG. The problem can
be formally stated as: given an expression e at a point p detect whether there
are expressions e′ in each path to p such that e′ and e are equivalent in that
path. Here the concept of value φ-function is introduced for the purpose. In this
section we first explain value φ-function and then propose our method to detect
redundancies.

4.1 Value φ-function

Consider the code segment in Fig. 1. Depending on the path taken expression
x3 + 1 is equivalent to either x1 + 1 or x2 + 1. In other words, depending on
the path taken, variable w3 is equivalent to one of variables y1 and z2. That
is, w3 can be viewed as equivalent to the “merge of different variables” – y1
and z2 – at the join point, denoted φ(y1, z2). This kind of a “merge of different
variables” can be seen as an extended form of the φ-function in the literature2.
We use this extended notion of φ-function or “merge of different variables” to
1 A copy statement is an assignment statement of the form x = y, where y is a variable.
2 In the literature, a φ-function restricts its operands to different subscripted versions

of the same non-SSA variable, say φ(x1, x2).

Detection of Redundant Expressions 53

Fig. 1. Program with branches

express equivalences in such cases. Similar to the concept of value expression,
we define the concept of value φ-function as an abstraction of a set of equivalent
φ-functions.

Partition. A partition at a point represents equivalences that hold in the paths to
the point. An equivalence class in the partition has a value number and elements
like variables, constant, and value expression. It is also annotated with a value
φ-function when necessary. For example, in a partition {· · · |vr, x1, y1|vs, z1, vr +
1|vm, xn : φk(vi, vj)| · · · } at a point p the class with value number vr represents
equivalence among variables x1 and y1. The class with value number vs represents
equivalence among expressions represented by value expression vr + 1, that is
x1 + 1 and y1 + 1. The expressions are also equivalent to variable z1. From
the class with value number vm we can infer that variable xn is equivalent to
expressions with value number vi in the path to point p through left edge to join
block k. Also, xn is equivalent to expressions with value number vj in the path to
p through right edge to the join block. Note that the value φ-function φk(vi, vj)
appears as the last element in the class and is separated from the rest of the
elements by “:” symbol to indicate that the value φ-function is an annotation of
the class.

4.2 Proposed Method

Using the concept of value φ-function we propose an iterative data-flow analysis
algorithm to compute equivalences at each point in the program. The two main
components of this algorithm are join operation and transfer function.

Join Operation. A join operation detects equivalences that are common in all
paths to the join point. Since in SSA there is only one definition for a variable,
equivalences that hold at a point p, which dominates3 join point j, hold at the
join point. These equivalences are detected at the join point by doing a simple
class-wise intersection of partitions. However, the detection of some common
equivalences that are generated in branches require extra processing and we
illustrate the latter. For clarity we separate the cases of detection of equivalences
among variables from those among expressions-with-operators.
3 Point p in a CFG dominates point p′ if all paths from entry point to p′ go through p.

54 R.R. Pai

Fig. 2. Detecting equivalence of variables

Equivalence of Variables. Consider the code segment in Fig. 2. In the left path
to the join point, variables x1 and y1, defined in the left branch, are equivalent.
Similarly, x2 and y2, defined in the right branch, are equivalent in right path.
By the use of φ-functions that appears in the join block we can detect that x1

is equivalent to x3 in the left path and x2 is equivalent to x3 in the right path.
Similarly, y1 is equivalent to y3 in the left path and y2 is equivalent to y3 in the
right path. By transitivity of equivalence relation, we conclude that x3 and y3
are equivalent at the join point.

In other words, our join operation merge different variables (corresponding
to the same non-SSA variable) defined in different branches - x1 with x2 and y1
with y2 - to obtain x3 and y3, respectively, at the join point. We then conclude
variables x3 and y3 are equivalent at the join point; in addition, they are equiv-
alent to φ-functions φ(x1, x2) and φ(y1, y2). The detection of such equivalences
are done by the transformation of φ-functions to copy statements which are then
appended to appropriate predecessors of the join block.

Equivalence of Expressions-with-Operators. Now consider the code segment in
Fig. 3. The expressions x1 + 1 and x2 + 1, that appear in different branches are
merged4 to obtain x3 + 1 at the join point. By doing this “merge” we detect the
equivalence of x1 + 1 (and x2 + 1) with x3 + 1 if it appears at a point in some
path from join point. However, this merge can be avoided if x3 + 1 (or some
expression equivalent to it) does not appear.

Fig. 3. Detecting equivalence of expressions-with-operators

4 Merge of expressions can be viewed as an extended notion of merge of variables.
“Merge of expressions” ei1 + ei2 and ej1 + ej2 is the expression ei + ej such that ei
is the merge of ei1 and ej1. Similarly, ej is the merge of ei2 and ej2.

Detection of Redundant Expressions 55

As discussed in Sect. 2 the question is whether to merge different expressions
at join points to detect equivalences. Here we take a completely different app-
roach and the join operation does not merge the expressions at the join point.
Instead merge operation is deferred till the occurrence of x3 +1 (or some expres-
sion equivalent to it). This is discussed when the concept of transfer function is
explained.

Example. Consider the case of application of join on partitions P1 = {v1, x1, x3|v2,
y1, y3, v1 + 1|v3, z1, z3} and P2 = {v4, x2, x3|v5, y2, y3|v6, z2, z3, v4 + 1}. In the
classes with value numbers v1 in P1 and v4 in P2 there is only one common variable
x3 and it appears in a class in the resulting partition P3. Since the two classes in
P1 and P2 have different value numbers v1 and v4, respectively, we can infer that
x3 is actually a merge of variables. Hence the resulting class is annotated with
value φ-function φ(v1, v4). The class is assigned a new value number, say v7. The
resulting class is |v7, x3 : φ(v1, v4)|.

Now consider the classes with value numbers v2 in P1 and v6 in P2. There
are no obvious common equivalences in the classes; however we can infer from
the partitions that the different value expressions v1 + 1 in P1 and v4 + 1 in P2

actually represent common equivalences of x3 + 1, which is a merge of different
expressions5 x1 +1 and x2 +1. But as stated above the different expressions (or
different value expressions to be precise) are not merged now and hence no new
class is created in the resulting partition P3.

Similar strategies are adopted to detect common equivalences in other pairs
of classes one each from P1 and P2. The resulting partition P3 is {v7, x3 :
φ(v1, v4)|v8, y3 : φ(v2, v5)|v9, z3 : φ(v3, v6)}.

Transfer Function. Based on the equivalences that hold at in point of a
statement s : x = e, transfer function for the statement defines the equivalences
that hold at its out point. This involves detection of whether the expression
e is equivalent to expression e′ in each path to it. Accordingly, the transfer
function computes partition at out point, denoted POUTs (from that at in
point, denoted PINs) by updating an existing class or creating a new class. The
transfer function we define here is similar to the ones in the literature except that
it uses value φ-function to detect equivalences in each path to e. The first step
is to check partition PINs for existence of value expression of e. If not found,
the transfer function proceeds to check whether expression e could be expressed
as a “merge of different expressions”. This is illustrated below using the code
segment in Fig. 4.

Consider processing the last statement w3 = x3 + 1. Since value expression
v7 + 1 of expression x3 + 1 does not appear in PIN3, the transfer function
proceeds to check whether x3 + 1 could be expressed as a merge of expressions
as follows:
5 Since x3 is a merge of variables x1 and x2, expression x3 + 1 is a merge of x1 + 1

and x2 + 1.

56 R.R. Pai

Fig. 4. Concept of transfer function

x3 + 1 ≡ v7 + 1 // value expression of x3 + 1 computed using PIN3

≡ φ(v1, v4) + 1 // class with v7 in PIN3 is annotated with φ(v1, v4)

≡ φ(v1 + 1, v4 + 1) // using semantics of value φ-function

≡ φ(v2, v6) // v1 + 1 ∈ POUT1 having v2, where block 1 is left

predecessor of join block and v4 + 1 ∈ POUT2

having v6, where block 2 is the right predecessor.

Thus using value φ-function we detect that x3 + 1 is actually equivalent to
expression(s) with value number v2, when the left path is considered in isolation.
Similarly, x3 + 1 is equivalent to expression(s) with value number v6, when the
right path is considered in isolation. That is, x3 + 1 is a “merge of expressions”,
here x1 + 1 and x2 + 1. In terms of variables, w3 is merge of different variables,
here y1 and z2.

Since neither value expression v7 +1 nor value φ-function φ(v2, v6) is present
in PIN3, the transfer function creates a new class in POUT3 with new value
number, say v10, and add w3 and v7 + 1 to it. The class is also annotated with
value φ-function φ(v2, v6). The classes in PIN3 are added as such to POUT3.
The resulting partition POUT3 is {v7, x3 : φ(v1, v4)|v8, y3 : φ(v2, v5)|v9, z3 :
φ(v3, v6)|v10, w3, v7 + 1 : φ(v2, v6)}.

Detection of Redundancies. Expression e in statement x = e is redundant if
there exists expression e′ equivalent to e in each path to the statement. In terms
of variables, this implies x is equivalent to some variable y irrespective of path
taken or to the merge of different variables. Given partition POUT at out of
statement x = e, expression e is redundant if there exists a variable in the class
of x in POUT , other than x, or the class of x in POUT is annotated with value
φ-function.

In the example code in Fig. 4, redundancy of expression x3 + 1 in the last
statement w3 = x3 + 1 is detected since the class of w3 in POUT3 (computed in
the previous subsection) is annotated with a value φ-function.

Detection of Redundant Expressions 57

5 Algorithm

Here we formally present the iterative data-flow analysis algorithm to detect
equivalences at each point in the program. The two main components of this
algorithm are join operation and transfer function which are defined below. The
algorithm to detect redundancies is trivial and is not written here.

5.1 Join

The algorithm Join given below defines the join operation. Before the join opera-
tion is performed, the φ-functions in a join block are transformed to copy state-
ments and appended to appropriate predecessors of the join block. Transfer
function is then applied on these copies.

Join(P1, P2)
P = {}
for each pair of classes Ci ∈ P1 and Cj ∈ P2

Ck = Intersect(Ci, Cj)
P = P ∪ Ck // Ignore when Ck is empty

return P

Intersect(Ci, Cj)
Ck = Ci ∩ Cj // set intersection

if Ck �= {} and Ck does not have value number
thenCk = Ck ∪ {vk} // vk is new value number

Ck = (Ck − {vpf}) ∪ {φb(vi, vj)}
// vpf is value φ-function in Ck, vi ∈ Ci, vj ∈ Cj , b is join block

return Ck

Lemma 1. If e1 ≡ e2 at a point p and the point p dominates join point j then
e1 ≡ e2 at j iff the Join algorithm detects their equivalence.

Lemma 2. If variable x ≡ y in each path to join point j then x ≡ y at j iff the
Join algorithm detects their equivalence.

5.2 Transfer Function

Given a partition PINs at in of a statement s, the transfer function for the
statement6 computes the partition POUTs at its out point and is defined below.
The transfer function uses the function valueExpr which accepts an expression
e and returns value expression of e, if e is of the form x ⊕ y, otherwise returns e
itself. The function valuePhiFunc accepts value expression and a partition and
returns value φ-function if the expressions represented by the value expression
6 Transfer function for a block is the composition of transfer function of each statement

in the block [1].

58 R.R. Pai

are a merge of expressions. Otherwise it returns NULL. This function assumes
partitions at out of each block are accessible to it. The concept of this function
is given below and the detailed algorithm is in the appendix.

transferFunction(x = e, PINs)
POUTs = PINs

if x is in a class Ci in POUTs

thenCi = Ci − {x}
ve = valueExpr(e)
vpf = valuePhiFunc(ve, PINs) // can be NULL

if ve or vpf is in a class Ci in POUTs // ignore vpf when NULL

thenCi = Ci ∪ {x, ve} // set union

else POUTs = POUTs ∪ {vn, x, ve : vpf } // vn is new value number

return POUTs

valuePhiFunc(ve, P)
if ve is of the form φk(vi1, vj1) ⊕ φk(vi2, vj2)

then vi = getVN(POUTkl , vi1 ⊕ vi2)
if (vi == NULL)

then vi = valuePhiFunc(vi1 ⊕ vi2, POUTkl)
vj = getVN(POUTkr , vj1 ⊕ vj2)
if (vj == NULL)

then vj = valuePhiFunc(vj1 ⊕ vj2, POUTkr)
return φk(vi, vj) // vi, vj are non-NULL

Lemma 3. Let x = e be a statement at a point p in the program and there exist
expressions ei at points pi in each path to p such that at least one of the pi’s
does not dominate p. Then expression e has a value φ-function, as computed by
valuePhiFunc algorithm, iff expressions ei and e are equivalent in respective
paths.

Lemma 4. Let x = e be a statement at a point p in the program and there exist
expressions ei in each path to p. Expressions ei and e are equivalent in their
respective paths iff the transferFunction algorithm detects the equivalences.

5.3 The Iterative Algorithm

The algorithm detectEquivalences given below analyzes the program
(represented as a CFG G) and computes partitions of equivalent expressions
at each point in the program. The iterative analysis method is adapted from [1].
The algorithm initializes out point of each statement (except first statement)
with partition � (top). � is a special partition with the property Join(P,�) =
P = Join(�, P). The algorithm iteratively computes partitions at each point till
there are no changes in the equivalences detected (from the previous iteration).

Detection of Redundant Expressions 59

detectEquivalences(G)
PIN1 = {} // “1” is the first statement in the program
POUT1 = transferFunction(PIN1)
for each statement s other than the first statement in the program

POUTs = �
while changes to any POUT occur // i.e. changes in equivalences

for each statement s other than the first statement in the program
if s appears in block b that has two predecessors

thenPINs = Join(POUTs′ , POUTs′′)a

else PINs = POUTs′

POUTs = transferFunction(PINs)b

a s′ and s′′ are last statements in respective predecessors.
b s′ is the statement just before s.

Theorem 1 (Soundness and Completeness). Let P be a partition at a point
p computed by the iterative data-flow analysis algorithm. Two expressions are
equivalent at p iff the algorithm detects their equivalence.

An outline of the correctness proofs of the algorithms are given in appendix.

5.4 Complexity Analysis

Let there be n number of expressions in a program. By definitions of Join
and transferFunction a partition can have O(n) classes with each class of
O(v) size, where v is the number of variables and constants in the program.
The join operation is class-wise intersection of partitions. With efficient data
structure that supports lookup, intersection of each class takes O(v) time. With
a total of n2 such intersections, a join takes O(n2.v) time. If there are j join
points, the total time taken by all the join operations in an iteration is O(n2.v.j).
The transfer function involves construction and lookup of value expression or
value φ-function in the input partition. A value expression is computed and
searched for in O(n) time. Computation of value φ-function for an expression
x+y essentially involves lookup of value expressions, recursively, in partitions at
left and right predecessors of a join block. If a lookup table is maintained to map
value expressions to value φ-functions (or NULL when a value expression does
not have a value φ-function), then computation of a value φ-function can be done
in O(n.j) time. Thus transfer function of a statement x = e takes O(n.j) time.
In a program with n expressions total time taken by all the transfer functions
in an iteration is O(n2.j). Thus the time taken by all the joins and transfer
functions in an iteration is O(n2.v.j). As shown in [4], in the worst case the
iterative analysis takes n iterations and hence the total time taken by the analysis
is O(n3.v.j).

6 Implementation and Results

In this section we compare the new algorithm with the algorithms by Kildall [5]
and Gulwani [4]. We chose Kildall’s algorithm since it is complete and the widely

60 R.R. Pai

accepted Gulwani’s algorithm was chosen since it takes only polynomial time.
The three iterative data-flow analysis algorithms compute equivalence informa-
tion at each point in the program. We implemented the algorithms in LLVMv3.4
compiler with clang as front end. The implementations consider all arithmetic
operations, conversion operations, vector operations and aggregate operations,
while to simplify the implementations, memory and branch operations were
ignored. The implementations uses the llvm::DenseMap, llvm::SmallPtrSet and
llvm::SmallVector classes to define the partitions, equivalence classes and value
expressions. Instances of partitions are associated with in and out points of each
instruction. The input to the implementations are in SSA form of LLVM-IR.
Since Kildall’s and Gulwani’s algorithm work on non-SSA form of programs, we
modified the algorithms to process φ-functions. φ-functions are transformed to
copy statements and appended to predecessors of the join blocks. The implemen-
tations were compared using SPEC2006 programs and the results were obtained
on 2 GHz Intel Xeon processor with 8 GB RAM running Ubuntu 12.04.

Table 1. Number of redundancies detected by Gulwani, Kildall, and our algorithm

CINT2006 Gulwani Kildall Proposed Improvement(%)

mcf 32 36 36 12.5

astar 130 153 153 17.7

libquantum 210 259 259 23.3

bzip2 580 691 691 19.1

sjeng 1141 1265 1265 10.9

hmmer 3810 4204 4204 10.3

gobmk 8907 10005 10005 12.3

h264ref 8982 10216 10216 13.7

gcc 19837 23300 23300 17.5

CFP2006 Gulwani Kildall Proposed Improvement(%)

milc 775 867 867 11.9

sphinx3 827 919 919 11.1

lbm 1085 1169 1169 07.7

soplex 2685 3022 3022 12.6

povray 3319 3623 3623 09.2

Table 1 shows the number of redundancies detected in SPEC2006 CINT and
CFP C/C++ programs using Gulwani, Kildall, and the new algorithm. The
table also gives the percentage improvement made by the new algorithm in
detecting redundancies over Gulwani. The results show that the proposed algo-
rithm detects same number of redundancies as the complete algorithm by Kildall
thus demonstrating completeness. Also both these algorithms detect more redun-
dancies when compared to Gulwani’s with an average improvement of 14.2 %.

Detection of Redundant Expressions 61

The figures indicate that there can be statements, say of the form z = x ⊕ y, in
real programs such that variable z is equivalent to different variables in different
paths to the statement. Detection of redundancy of x ⊕ y is missed by Gulwani
while both Kildall and the new algorithm could capture it.

Table 2. Time taken (in seconds) to analyze the input SPEC2006 programs along with
their size (when converted to LLVM-IR SSA form)

CINT2006 Size of program Time for analysis

#joins #instructions Kildall Gulwani Proposed

mcf 171 1815 2.5961 0.8520 0.4917

libquantum 277 5045 7.5244 1.8921 1.1035

astar 450 6586 13.7687 4.1121 2.0936

bzip2 814 13346 66.4680 9.3012 6.3841

sjeng 1874 18658 119.0993 15.7408 9.5835

hmmer 3279 48387 203.3485 34.6138 30.2571

gobmk 9754 105994 361.5141 49.1068 45.5976

h264ref 6804 116253 358.3743 70.6684 67.6074

gcc 45861 605303 750.6864 110.2226 98.3966

CFP2006 #joins #instructions Kildall Gulwani Proposed

lbm 55 3773 7.6245 3.9202 1.4973

milc 1103 18867 30.4560 8.7964 5.5625

sphinx3 1836 22929 62.6717 22.4852 18.4850

soplex 3206 48513 136.0443 25.3210 21.4148

povray 8349 128305 320.8518 79.0802 74.7350

To show the efficiency of our algorithm, we measured the CPU time taken to
perform the analyses during compilation of the SPEC2006 programs. The times
were measured using -ftime-report option of clang. Table 2 gives the time taken
(in seconds) by the implementations to analyze the SPEC programs. The table
also gives the number of join blocks and instructions considered to indicate the
number of join operation and transfer functions being applied on the partitions.

Table 2 shows that the new algorithm takes less time to analyze the SPEC
programs than Gulwani’s polynomial time algorithm. This we believe is because
Gulwani recursively intersects equivalence classes (that has at least one variable
in common) to detect equivalent expressions at a join point (see Sect. 3.5, Join
algorithm, Lines 3–5 in [4]). However, the proposed algorithm does only a sim-
ple intersection of equivalence classes. Equivalences in paths to an expression
is detected only when needed by computing value φ-function. Both these algo-
rithms take considerably less time than Kildall’s exponential time algorithm.
The join operation in Kildall is similar to that in Gulwani except that, in
Kildall’s, the join operation recursively intersects equivalence classes even if there

62 R.R. Pai

are no common variables in the classes which makes it least efficient among the
three algorithms.

The results in the tables clearly demonstrate that the proposed algorithm
is complete as it detects the same number of redundancies as the complete
algorithm by Kildall. Also the algorithm is efficient when compared to the poly-
nomial time algorithm by Gulwani as it takes less time. Since more redundan-
cies can be detected by the proposed algorithm in comparatively less time, the
algorithm may be used in redundancy elimination algorithms that aid in the
generation of faster code.

7 Related Work

The seminal work on GVN by Kildall [5] detects equivalences at each point in
the program using an iterative data-flow analysis algorithm. This algorithm uses
“structuring” of partitions of equivalent expressions, which makes it complete.
However, structuring of partitions blows up its size and hence affects efficiency
of the algorithm. The strive to improve efficiency in the detection of equivalences
motivated the algorithm by Alpern and others (referred to as AWZ algorithm) [2]
which works on Static Single Assignment (SSA) form of programs and uses the
concept of congruence. The algorithm though efficient is less precise than Kildall’s,
one of the reasons being that it does not interpret φ-functions. Rüthing, Knoop,
and Steffen [8] improves on AWZ in terms of the number of equivalences detected
by using normalization rules. These normalization rules essentially interpret the
φ-functions. The algorithm is efficient but not complete, as proved by Gulwani [4].
The Dominator-based value numbering algorithm by Briggs and others [3]
works on SSA form. The algorithm is not complete as it makes pessimistic assump-
tions about loops in programs. The SCC-based Value Numbering algorithm by
Simpson [10] considers semantics of operators to improve on AWZ. However the
algorithm has similar issues as AWZ since it does not interpret φ-functions. The
GVN algorithms in SSA by VanDrunen [11] and Odaira [7] detect and eliminate
a broader class of partial redundancies and not just total redundancies. The poly-
nomial time algorithm by Gulwani and Necula [4] is claimed to detect all equiva-
lences among expressions of a particular size. However, some of the redundancies
could not be detected using this GVN algorithm [9]. Nie proposed an SSA version
of Gulwani’s algorithm [6]. In general, the algorithms are either complete or take
only polynomial time but not both.

8 Conclusion

Detection of equivalent expressions in a program is a static analysis aimed at elimi-
nation of redundant expressions. The fundamental problem here is the detection of
equivalences at each point in the program such that all redundancies are detected in
polynomial time. For this we introduced the novel concept of value φ-function. We
then presented an iterative data-flow analysis algorithm which uses value
φ-function to detect equivalences. We showed that the algorithm is complete and

Detection of Redundant Expressions 63

takes only polynomial time. Moreover, we implemented our algorithm and com-
pared it with two widely accepted GVN algorithms in the literature. The experi-
mental results demonstrate that the proposed algorithm is complete and efficient.

Acknowledgements. We thank Vineeth Paleri, Muralikrishnan K, Vinith R, and the
anonymous reviewers for their insightful comments.

A Appendix

A.1 VALUEPHIFUNC

This recursive function computes value φ-function of a given value expression.
The function assumes partitions at out of each block is available to it. The func-
tion uses equiVE to replace operands of a given value expression with equivalent
value φ-functions, whenever possible. Else it returns the value expression as such.
The getVN function used here takes a partition at out of either the left or right
predecessor of a join block k. It searches for the input value expression in the
partition and returns its value number, if present. If the partition was searched
for previously then the function returns a new value number. This case can arise
with loops in the program.

valuePhiFunc(ve, P)

vi = vj = vpf = NULL
ve′ = equiVE(ve, P)
if ve′ is of the form φk(vi1, vj1) + φk(vi2, vj2)

then vi = getVN(POUTkl , vi1 + vi2)
vj = getVN(POUTkr , vj1 + vj2)
if vi == NULL

then vi = valuePhiFunc(vi1 + vi2, POUTkl)
if vj == NULL

then vj = valuePhiFunc(vj1 + vj2, POUTkr)
elseif ve′ is of the form φk(vi1, vj1) + vma

then vi = getVN(POUTkl , vi1 + vm)
vj = getVN(POUTkr , vj1 + vm)
if vi == NULL

then vi = valuePhiFunc(vi1 + vm, POUTkl)
if vj == NULL

then vj = valuePhiFunc(vj1 + vm, POUTkr)
elseif ve′ is of the form vm + φk(vi2, vj2)

then vi = getVN(POUTkl , vm + vi2)
vj = getVN(POUTkr , vm + vj2)
if vi == NULL

then vi = valuePhiFunc(vm + vi2, POUTkl)
if vj == NULL

then vj = valuePhiFunc(vm + vj2, POUTkr)
if vi ∧ vj // both are non-NULL

then vpf = φk(vi, vj)
return vpf

a class with value number vm does not have value φ-function or has φr(vs, vt) such
that block r dominates k.

64 R.R. Pai

A.2 Proof

Correctness of Join Algorithm

Lemma 1. If e1 ≡ e2 at a point p and the point p dominates join point j then
e1 ≡ e2 at j iff the algorithm detects their equivalence.

Proof. Let expressions e1 and e2 be equivalent at a point p such that p dominates
join point j. Since a variable is defined only once in SSA the expressions are
equivalent in each path to j. Line 1 in the algorithm Intersect ensures such
common equivalences are detected at the join point. 	

Lemma 2. If variable x ≡ y in each path to join point j then x ≡ y at j iff the
algorithm detects their equivalence.

Proof. Let two variables x and y be equivalent in each path to join point j. Then
by suitably transforming the φ-functions in the join block j and by line 1 of the
Intersect algorithm such equivalences could also be detected. 	

Let there be expressions ei in each path to an expression e and ei ≡ e in respec-
tive paths. The equivalences are detected by the transferFunction algorithm
which is proved below.

Correctness of transferFunction Algorithm

Lemma 3. Let x = e be a statement at a point p in the program and there exist
expressions ei at points pi in each path to p such that at least one of the pi’s
does not dominate p. Then expression e has a value φ-function, as computed by
valuePhiFunc algorithm, iff expressions ei and e are equivalent in respective
paths.

Proof. This can be proved by induction on the number of join points in paths
with the base case similar to that in Fig. 4. 	

Lemma 4. Let x = e be a statement at a point p in the program and there exists
expressions ei in each path to p. Expressions ei and e are equivalent in respective
paths iff the transferFunction algorithm detects the equivalences.

Proof. Let the expression(s) ei appear at point p′ such that p′ dominate p. Then
an equivalence class for ei with its value expression will appear in the partition
at p′ (ensured by lines 7 and 8 in the algorithm). Since a variable is defined only
once in SSA the partition at in point of the statement x = e will have a class
with the value expression of ei. Then line 6 in the algorithm ensures equivalence
of ei and e is detected.

Now consider the case where an expression ei appear at a point p′ such that
p′ does not dominate p. In this case computation of value φ-function in line 5
(Lemma 3) and subsequent check for its existence in line 6 ensures detection of
equivalences of ei and e in respective paths. 	

Detection of Redundant Expressions 65

Correctness of Iterative Data-Flow Analysis Algorithm

Theorem 1 (Soundness and Completeness). Let P be a partition at a
point p computed by the iterative data-flow analysis algorithm. Two expressions
are equivalent at p iff the algorithm detects their equivalence.

Proof This follows from Lemmas 1, 2, and 4. 	

Correctness of Algorithm for Detection of Redundancies

Theorem 2 (Soundness and Completeness). Let s : z = x + y be a state-
ment at a point p. The expression x+ y is redundant iff the algorithm detects its
redundancy.

Proof This follows from Theorem 1. 	

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison Wesley, Boston (2006)

2. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 1988, pp. 1–11. ACM, New York (1988)

3. Briggs, P., Cooper, K., Simpson, L.: Value numbering. Software: Practice and Expe-
rience 27(6), 701–724 (1997)

4. Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value number-
ing. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 212–227. Springer,
Heidelberg (2004)

5. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 1973, pp. 194–206. ACM, New York (1973)

6. Nie, J.-T., Cheng, X.: An efficient SSA-based algorithm for complete global value
numbering. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 319–334. Springer,
Heidelberg (2007)

7. Odaira, R., Hiraki, K.: Partial value number redundancy elimination. In:
Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602, pp. 409–
423. Springer, Heidelberg (2005)

8. Rüthing, O., Knoop, J., Steffen, B.: Detecting equalities of variables: combining
efficiency with precision. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 232–247. Springer, Heidelberg (1999)

9. Saleena, N., Paleri, V.: Global value numbering for redundancy detection: a simple
and efficient algorithm. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC 2014, pp. 1609–1611. ACM, New York (2014)

10. Simpson, L.T.: Value-driven redundancy elimination. Ph.D. thesis, Rice University,
Houston, TX, USA (1996)

11. VanDrunen, T., Hosking, A.L.: Value-based partial redundancy elimination. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 167–184. Springer, Heidelberg
(2004)

	Detection of Redundant Expressions: A Complete and Polynomial-Time Algorithm in SSA
	1 Introduction
	2 Motivation
	2.1 Kildall's Algorithm
	2.2 Gulwani's Algorithm
	2.3 Our View

	3 Terminology
	4 Basic Concept
	4.1 Value -function
	4.2 Proposed Method

	5 Algorithm
	5.1 Join
	5.2 Transfer Function
	5.3 The Iterative Algorithm
	5.4 Complexity Analysis

	6 Implementation and Results
	7 Related Work
	8 Conclusion
	References

