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Abstract. In this tool demonstration, we present ShadowVM, a
dynamic program analysis framework for Java and Android applications.
ShadowVM offers a high-level programming model for expressing analy-
ses, ensures complete bytecode coverage, and isolates the analysis from
the observed application to avoid unwanted interference. An analysis
implemented on top of ShadowVM can handle both Java and Android
applications. First, we present and evaluate a simple code-coverage analy-
sis implemented with ShadowVM. Second, we demonstrate the use of
ShadowVM to analyze a distributed application comprising a Java server
backend and an Android client frontend.
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1 Introduction

Dynamic program analyses, such as profiling, tracing and bug-finding tools,
are essential for software development. However, despite this importance, the
Java platform currently provides very limited support for creating these tools.
Shortcomings common both to existing Java Virtual Machines (JVMs) and
Android’s Dalvik Virtual Machine (DVM) include lack of high-level abstrac-
tions for expressing analyses, lack of support for complete code coverage, and
difficulty of avoiding interference between analysis and the underlying program.
Instead, dynamic program analysis tools must be implemented using low-level
mechanisms, such as the JVM Tool Interface (JVMTI) [19]—making for code
that is error-prone and difficult to maintain, and often supporting only a particu-
lar virtual machine. Bytecode instrumentation presents fundamental interference
and coverage difficulties, meaning that many analysis tools necessarily produce
output that is unsound or incomplete, in order to avoid crashing or corrupting
the application [11].

In this tool paper, we present our dynamic program analysis framework
ShadowVM, which offers a high-level programming model for comprehensive,
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multi-platform analysis. ShadowVM ensures complete bytecode coverage and
isolates the execution of the analysis code from the observed program. With
our framework, the same implementation of an analysis can be applied to pro-
grams running on the JVM and on the DVM. ShadowVM offers dedicated sup-
port for analyzing distributed applications comprising multiple communicating
processes—fundamental for the analysis of Android applications, which are typ-
ically split into multiple components running in separate DVM processes.

This tool demonstration complements our previous publications on Shadow
VM. In [14] we presented our initial design of ShadowVM, which only sup-
ported the JVM. In [20] we described the challenges of enabling dynamic pro-
gram analysis on Android and presented an updated design of ShadowVM suited
for Android applications running in DVM processes. The corresponding software
release of ShadowVM for Android supported only Android SDK ARM emulator,
resulting in extremely slow analysis. This tool demonstration provides the first
complete presentation of the multi-platform analysis framework that has evolved
from these two pieces of work. Additionally, our framework now offers two new
deployment options: Android SDK x86 emulator and Android devices.

Section 2 gives an overview of the ShadowVM architecture. Section 3 illus-
trates how to implement a simple code-coverage analysis with ShadowVM and
evaluates its performance on Android. Section 4 shows a new demonstration sce-
nario, where we use ShadowVM to analyze a distributed application comprised of
a Java server backend and an Android client frontend. Section 5 discusses related
work and Sect. 6 summarizes the strengths and limitations of our framework.

2 ShadowVM Overview

Dynamic program analysis can be regarded as the processing of events that
are produced within an observed application. Depending on the purpose of the
analysis, different kinds of events are relevant, such as e.g. method call, method
entry/exit, field access, or object allocation and reclamation. Most of them cor-
respond to the execution of a specific location in the bytecode of the observed
application; such events can be produced using bytecode instrumentation, and
we call them instrumentation events. Other lifecycle events, such as e.g. object
reclamation or virtual machine termination, do not correspond to any specific
code location; they are produced by the framework using some internal mecha-
nism of the virtual machine (such as the JVMTI [19] on the JVM) [14]. Simi-
larly, special communication events are produced by the framework in the case of
inter-process communication in an Android application [20]. Events may carry
various context information, such e.g. an object reference or the name of an
accessed field.

An analysis implemented on top of ShadowVM consists of two parts, the
event producer and the event consumer. ShadowVM offers high-level program-
ming abstractions for implementing the event-producing and event-consuming
logic. Instrumentation events are expressed in the domain-specific aspect lan-
guage DiSL (DSL for Instrumentation) [13,15,24], whereas lifecycle and com-
munication events are automatically generated by the framework. ShadowVM
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Fig. 1. Overview of an analysis receiving events from multiple observed Java and
Android application components.

also includes a library of DiSL code for commonly used instrumentation events.
The event-consuming logic is expressed as Java methods that handle the required
events.

The deployment of an analysis consists of three components: the observed appli-
cation (running with instrumentation), an instrumentation server, and an analysis
server. The instrumentation server and the analysis server may be deployed within
the same JVM process. The observed application is always running in one (or in a
set of) separate JVM or DVM processes to avoid unwanted interferences between
the observed application and the instrumentation/analysis code [14]. Instrumenta-
tion is performed at class load time; any method that has a bytecode representation
can be instrumented (including those in the class library and in dynamically gen-
erated classes). For the DVM, a conversion between dex files and JVM class files
occurs before and after instrumentation, which allows the instrumentation server
(running DiSL) to only deal with Java class files.

The events produced in the observed application are sent to the analysis
server through sockets. For each received event, a corresponding method (defined
in an analysis class) is invoked by the framework’s event dispatcher. The pay-
load of the event can include primitives (passed by value) and object references;
the latter are exposed to the analysis as shadow objects. These preserve the
identity of the objects from the original program, and expose reflective meta-
data mirroring the class hierarchy of the observed application. Shadow objects
allow attaching and accessing arbitrary analysis state—perhaps analysis-specific
data (e.g. timestamps) or perhaps the real object’s contents (by observing field
writes). For convenience, shadow strings replicate the real strings’ contents.

Figure 1 illustrates multiple observed components of a distributed applica-
tion, all sending events to the same analysis server. The server-side components
of the application are running in JVM processes, whereas the client-side fron-
tend components are executing in DVM processes. The origin of a received event
is represented by a JVM/DVM context object. Thanks to ShadowVM, a single
implementation of the event-producing and event-consuming parts can observe
the entire distributed multi-platform deployment. For example, the analysis may
trace all communication between the distributed components. Section 4 demon-
strates such an analysis.
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Fig. 2. Event producer and consumer of JaCoCo recast for ShadowVM.

3 Code Coverage Analysis with ShadowVM

To illustrate how to implement a simple analysis with ShadowVM, we recast the
popular code coverage tool JaCoCo [7].

Figure 2a shows the DiSL [13,15] instrumentation code producing branch
events. Figure 2b shows the plain Java analysis code which consumes these
branch events. The instrumentation assigns each branch a dedicated number
for indexing, and emits an event indicating which branch is taken (the event
marshalling code not shown here is in class CodeCoverageAnalysisProxy). In
DiSL, Java annotations mark a snippet (a static method) with places where it
should be inserted (here before and after branches). The extra “synthetic” local
boolean is inserted into each method body and used to select only the taken
branches. Although snippets appear as static methods within a Java class, along
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with auxiliary definitions (like the synthetic local), this is simply a convenient
container; it is never loaded nor instantiated, and is used only by the instrumen-
tation server. The snippet produces an event consisting of two strings and an
integer, uniquely identifying the branch. The analysis maintains a simple data
structure tracking taken branches, updated in reaction to the events received.

In [20] we compared the analysis results produced by our analysis and by the
original JaCoCo. Both tools support JVM and DVM, and produce equivalent
results for application classes. In contrast to the original JaCoCo, our tool is
also capable of analyzing code coverage in the class library.

Below we report some new results on source-code metrics and on perfor-
mance. The original JaCoCo (excluding report generation features) has 1959 log-
ical lines of code (LOC), whereas our recast has only 363 LOC for the same
functionality (including event producing and consuming logic). That is, with
ShadowVM we can express the same analysis in less than 19 % of the LOC of
the original tool.

Our current version of ShadowVM supports three deployment options for
Android 4.4: (a) Android SDK ARM emulator; (b) Android SDK x86 emulator;
(c) Android devices. Options (b) and (c) are new. Table 1 compares the perfor-
mance of JaCoCo and our recast for the three Android deployment options.1 We
use GrinderBench2 for the analysis. The reported metric is the elapsed wall time
from the start of a benchmark until completion of the analysis.

In general, our ShadowVM recast introduces more overhead than JaCoCo.
The slowdown is explained by event transmission overheads, whereas JaCoCo
collects the coverage data within the observed process. The ShadowVM recast
of JaCoCo offers greater flexibility—we can switch to different metrics, such as
basic block profiling, without redeploying the profiler onto the device, since the
instrumentation server runs separately. The option of deploying on the Android
x86 emulator greatly reduces overhead (down to a factor of 2, instead of 8.3) by
eliminating the cost of emulating a non-native instruction set architecture. We
note that even the higher overhead need not be prohibitive; tools with overheads
a factor of 10 or greater have gained acceptance among developers [17].

4 Fuzzing a Distributed Multi-platform Application

We will demonstrate ShadowVM with a trace validation tool for fuzzing a dis-
tributed application comprising a Java server and an Android device as frontend.
Fuzzing is an automatic testing technique that feeds random inputs to a program
to trigger exceptional behavior [3]. Monkey is a fuzzing tool generating Android
user-interface events; it has been applied to finding security bugs [12]. As Android
applications increasingly rely on server-side components, they increasingly suffer

1 We evaluated the emulator settings with 2GB RAM on a quadcore Intel Core i7
(2.5GHz, 16GB RAM), and the real device setting on a Nexus 5 with 2GB RAM.
The analysis and instrumentation servers were deployed on the same type of machine
as the emulator and ran under Java8.

2 http://www.grinderbench.com/.

http://www.grinderbench.com/


Analyzing Distributed Multi-platform Java 361

Table 1. Execution time (in seconds) of the Grinder benchmarks on ARM emulator,
x86 emulator or real device. Each deployment option is evaluated without instrumen-
tation (baseline), with JaCoCo, or with our ShadowVM recast.

ARM emulator x86 emulator Nexus 5

Baseline JaCoCo Recast Baseline JaCoCo Recast Baseline JaCoCo Recast

Parallel 2.25 2.42 16.67 1.32 1.39 1.93 1.42 1.51 3.25

kXML 2.64 3.00 22.58 1.34 1.43 2.70 1.55 1.55 2.96

PNG 2.28 2.67 19.42 1.34 1.40 2.37 1.42 1.49 2.59

Chess 2.20 2.49 30.75 1.32 1.41 2.88 1.39 1.45 3.48

Crypto 2.38 2.64 7.97 1.31 1.34 1.64 1.39 1.42 1.76

Sum 11.75 13.22 97.39 6.63 6.97 11.52 7.17 7.42 14.04

difficult-to-find bugs triggered only by proper coordination of the client and the
server. ShadowVM enables fuzzing these distributed multi-platform applications,
by analyzing the whole distributed application’s state at once. For example, we
can validate traces against a whole-application state machine; on failure, we
report to the developer the unexpected next state, the current state, and the
triggering input stream.

Figure 3 illustrates the state machine of a login routine. The login credentials
are collected by an Android application and validated by a Java server. To avoid
brute-force attacks, only three successive login attempts are allowed: the server
counts the number of unsuccessful attempts, and will block the account once it
exceeds three. During login, the user may also reset the password; the “Reset
Password” sub-routine should not change the “Login Attempts” state.

Suppose the implementation of the server-side component violates this spec-
ification, by accidentally resetting the “Login Attempts” state after resetting
the password. This would permit brute-force attacks by resetting the password
every two login attempts. Such a bug is difficult to detect when fuzzing only
client or server code in isolation. One must either “mock up” the remote party’s
interactions in a testing harness usable by the fuzzer or deal with the state-space
explosion that can result from overapproximating this behaviour. By contrast,
with ShadowVM we can easily fuzz the whole ensemble.

We will demonstrate fuzzing of the aforementioned distributed application
(driven by Monkey) using a ShadowVM-based trace validation tool. In the
observed virtual machines, events are produced for the login-related actions of
both client (DVM) and server (JVM). In the analysis server, a state machine
validates the event trace. The specification of the state machine is configurable
such that the trace validation tool can analyze different applications.

5 Related Work

The baseline approach on which ShadowVM improves is explicit bytecode instru-
mentation. Various systems offering services and simple abstractions for this have
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Fig. 3. State machine illustrating all possible login sequences.

been described in the literature [4,6,9,23], but in all cases direct manipulation
of instructions, much lower-level than the aspect-oriented primitives proposed
in DiSL [15], on which ShadowVM is based, and lack our framework’s multi-
platform capability. RoadRunner [8] offers a pipeline abstraction, but is special-
ized to the specific analysis domain of dynamic data-race detection.

Other research addresses the dynamic analysis of distributed systems. Pin-
point [5] aims to identify components correlated with failed requests in multi-tier
JavaEE server systems, by tracking incoming requests using a unique identifier
propagated along a request execution path. ARM [22] (Application Response
Measurement) defines a standardized infrastructure for monitoring multi-tier
enterprise applications, using tags to associate system behavior with individual
requests. Magpie [2] allows analyzing server workloads and resource consump-
tion of individual requests, enabling the construction of workload models for
clusters of canonicalized requests. Aguilera et al. [1] use statistical methods to
infer dominant causal paths in a distributed system, using only message-level
traces.

The common denominator of these approaches is their use of events for the
analysis of the system behavior. None of them focuses on the task of instrumen-
tation and event production. In contrast, ShadowVM is primarily a framework
providing easy-to-use event-producer and event-consumer programming models
which can be used for implementing cross-platform distributed program analyses.

ShadowVMalso relates todistributedaspect-orientedprogramming [16,18,21],
which introduces the concept of a remote pointcut and allows deploying aspects
on a set of hosts. In contrast, ShadowVM is primarily tailored for the devel-
opment of dynamic analyses deployed on a single host, correlating events from
potentially many observed hosts.

Existing fuzzing or active testing systems such as CalFuzzer [10] have tack-
led scenarios similar to our demonstration, with some degree of extensibility, but
stop short of being general-purpose dynamic analysis frameworks. For example,
CalFuzzer provides a fixed set of instrumentation callbacks that cover only syn-
chronization and shared-memory operations.

6 Conclusions

We gave the first demonstration of our multi-platform dynamic program analy-
sis framework ShadowVM, which reconciles a high-level programming model,
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expressiveness, complete bytecode coverage, and isolation of the analysis from
the observed application. ShadowVM offers seamless support for both the JVM
and the DVM; an analysis written for Java applications also supports Android
applications out-of-the-box. As demonstrated before, one analysis server can
handle the events of multiple observed JVM and DVM processes, enabling cen-
tralized analysis of distributed systems. Because the event consumer executes in
a separate analysis server, ShadowVM implicitly parallelizes the execution of the
observed application and the analysis. This approach also minimizes the extra
memory requirements on the observed virtual machine, crucial for deploying
heavyweight analyses on resource-constrained Android devices.

The design of ShadowVM also has some drawbacks. As shown in our perfor-
mance evaluation, the analysis overhead is often higher than with straightforward
analysis within the observed virtual machine. In particular, using Android SDK’s
ARM emulator results in excessive overhead. The newly supported deployment
options (Android SDK x86 emulator and Android devices) mitigate this over-
head. For the analysis of Android applications, a version-specific patch needs to
be applied to the DVM first. The implicit conversion between JVM and DVM
bytecode may introduce some bias in metrics related to individual bytecodes
or basic blocks of code. As events are processed remotely and asynchronously
by the analysis, ShadowVM is not suited for interactive debugging. Finally, our
system cannot observe execution in native code.

ShadowVM is available as part of the DiSL 2.1 open-source release (http://
disl.ow2.org/). DVM support is currently available as a prototype (http://dag.
inf.usi.ch/downloads/); it will be part of the forthcoming DiSL 3.0 open-source
release.
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