
Fault-Tolerant Resource Reasoning

Gian Ntzik(B), Pedro da Rocha Pinto, and Philippa Gardner

Imperial College London, London, UK
{gn408,pmd09,pg}@doc.ic.ac.uk

Abstract. Separation logic has been successful at verifying that pro-
grams do not crash due to illegal use of resources. The underlying
assumption, however, is that machines do not fail. In practice, machines
can fail unpredictably for various reasons, e.g. power loss, corrupting
resources. Critical software, e.g. file systems, employ recovery methods
to mitigate these effects. We introduce an extension of the Views frame-
work to reason about such methods. We use concurrent separation logic
as an instance of the framework to illustrate our reasoning, and explore
programs using write-ahead logging, e.g. an ARIES recovery algorithm.

1 Introduction

There are many ways that software can fail: either software itself can be the
cause of the failure (e.g. memory overflow or null pointer dereferencing); or the
failure can arise independently of the software. These unpredictable failures are
either transient faults, such as when a bit is flipped by cosmic radiation, or host
failures (also referred to as crashes). Host failures can be classified into soft, such
as those arising from power loss which can be fixed by rebooting the host, and
hard, such as permanent hardware failure.

Consider a simple transfer operation that moves money between bank
accounts. Assuming that bank accounts can have overdrafts, the transfer can be
regarded as a sequence of two steps: first, subtract the money from one bank
account; and then add the money to the other account. In the absence of host fail-
ures, the operation should succeed. However, if a host failure occurs in the middle
of the transfer, money is lost. Programmers employ various techniques to recover
some consistency after a crash, such as write-ahead logging (WAL) and associated
recovery code. In this paper, we develop the reasoning to verify programs that can
recover from host failures, assuming hard failures do not happen.

Resource reasoning, as introduced by separation logic [15], is a method for
verifying that programs do not fail. A triple {P }C {Q } is given a fault-avoiding,
partial correctness interpretation. This means that, assuming the precondition
P holds then, if program C terminates, it must be the case that C does not fail
and has all the resource necessary to yield a result which satisfies postcondition
Q. Such reasoning guarantees the correct behaviour of the program, ensuring
that the software does not crash itself due to bugs, e.g. invalid memory access.
However, it assumes that there are no other failures of any form. To reason about

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 169–188, 2015.
DOI: 10.1007/978-3-319-26529-2 10

170 G. Ntzik et al.

programs that can recover from host failures, we must change the underlying
assumptions of resource reasoning.

We swap the traditional resource models with one that distinguishes between
volatile and durable resource: the volatile resource (e.g. in RAM) does not survive
crashes; whereas the durable resource (e.g. on the hard drive) does. Recovery
operations use the durable state to repair any corruptions caused by the host
failure. We introduce fault-tolerant resource reasoning to reason about programs
in the presence of host failures and their associated recovery operations. We
introduce a new fault-tolerant Hoare triple judgement of the form:

S � {PV | PD }C {QV | QD }

which has a partial-correctness, resource fault-avoiding and host failing interpre-
tation. From the standard resource fault avoiding interpretation: assuming the
precondition PV | PD holds, where the volatile state satisfies PV and the durable
PD, then if C terminates and there is no host failure, the volatile and durable
resource will satisfyQV andQD respectively. From the host-failing interpretation:
when there is a host failure, the volatile state is lost, and after potential recovery
operations, the remaining durable state will satisfy the fault-condition S.

We extend the Views framework [3], which provides a general account of con-
current resource reasoning, with these fault-tolerant triples to provide a general
framework for fault-tolerant resource reasoning. We instantiate our framework to
give a fault-tolerant extension of concurrent separation logic [11] as an illustra-
tive example. We use this instantiation to verify the correctness of programs that
make use of recovery protocols to guarantee different levels of fault tolerance. In
particular, we study a simple bank transaction using write-ahead logging and a
simplified ARIES recovery algorithm [8], widely used in database systems.

2 Motivating Examples

We introduce fault-tolerant resource reasoning by showing how a simple bank
transfer can be implemented and verified to be robust against host failures.

2.1 Naive Bank Transfer

Consider a simple transfer operation that moves money between bank accounts.
Using a separation logic [15] triple, we can specify the transfer operation as:

�
{Account(from, v) ∗ Account(to, w)}

transfer(from, to, amount)
{Account(from, v − amount) ∗ Account(to, w + amount)}

The internal structure of the account is abstracted using the abstract predi-
cate [12], Account(x, v), which states that there is an account x with balance v.
The specification says that, with access to the accounts from and to, the

Fault-Tolerant Resource Reasoning 171

transfer will not fault. It will decrease the balance of account from by amount
and increase the balance of account to by the same value. We can implement
the transfer operation as follows:

function transfer(from, to, amount) {
widthdraw(from, amount); deposit(to, amount);

}
Using separation logic, it is possible to prove that this implementation satisfies
the specification, assuming no host failures. This implementation gives no guar-
antees in the presence of host failures. However, for this example, it is clearly
desirable for the implementation to be aware that host failures occur. In addi-
tion, the implementation should guarantee that in the event of a host failure the
operation is atomic : either it happened as a whole, or nothing happened. Note
that the word atomic is also used in concurrency literature to describe an oper-
ation that takes effect at a single, discrete instant in time. In Sect. 3 we combine
concurrency atomicity of concurrent separation logic with host failure atomicity:
if an operation is concurrently atomic then it is also host-failure atomic.

2.2 Fault-Tolerant Bank Transfer: Implementation

We want an implementation of transfer to be robust against host failures and
guarantee atomicity. One way to achieve this is to use write-ahead logging (WAL)
combined with a recovery operation. We assume a file-system module which pro-
vides standard atomic operations to create and delete files, test their existence,
and write to and read from files. Since file systems are critical, their operations
have associated internal recovery operations in the event of a host failure.

Given an arbitrary program C, we use [C] to identify that the program is
associated with a recovery. We can now rewrite the transfer operation, making
use of the file-system operations to implement a stylised WAL protocol as follows:

function transfer(from, to, amount) {
fromAmount := getAmount(from);
toAmount := getAmount(to);
[create(log)] ;
[write(log, (from, to, fromAmount, toAmount))] ;
setAmount(from, fromAmount − amount);
setAmount(to, toAmount + amount);
[delete(log)] ;

}
The operation works by first reading the amounts stored in each account. It
then creates a log file, log, where it stores the amounts for each account. It then
updates each account, and finally deletes the log file. If a host failure occurs the
log provides enough information to implement a recovery operation. In partic-
ular, its absence from the durable state means the transfer either happened or

172 G. Ntzik et al.

not, while its presence indicates the operation has not completed. In the latter
case, we restore the initial balance by reading the log. An example of a recovery
operation is the following:

function transferRecovery() {
b := [exists(log)] ;
if (b) {

(from, to, fromAmount, toAmount) := [read(log)] ;
if (from �= nil && to �= nil) {

setAmount(from, fromAmount); setAmount(to, toAmount);
}
[delete(log)] ;

}
}

The operation tests if the log file exists. If it does not, the recovery completes
immediately since the balance is already consistent. Otherwise, the values of the
accounts are reset to those stored in the log file which correspond to the initial
balance. While the recovery operation is running, a host failure may occur, which
means that upon reboot the recovery operation will run again. Eventually the
recovery operation completes, at which point the transfer either occurred or did
not. This guarantees that transfer is atomic with respect to host failures.

2.3 Fault-Tolerant Bank Transfer: Verification

We introduce the following new Hoare triple for specifying programs that run in
a machine where host failures can occur:

S � {PV | PD }C {QV | QD }
where PV , PD, QV , QD and S are assertions in the style of separation logic
and C is a program. PV and QV describe the volatile resource, and PD and
QD describe the durable resource. The judgement is read as a normal Hoare
triple when there are no host failures. The interpretation of the triples is partial
resource fault avoiding and host failing. Given an initial PV | PD, it is safe to
execute C without causing a resource fault. If no host failure occurs, and C

terminates, the resulting state will satisfy QV | QD. If a host failure occurs,
then the durable state will satisfy the fault-condition S.

Given the new judgement we can describe the resulting state after a host
failure. Protocols designed to make programs robust against host failures make
use of the durable resource to return to a consistent state after reboot. We must
be able to describe programs that have a recovery operation running after reboot.
We introduce the following triple:

R � {PV | PD } [C] {QV | QD }
The notation [C] is used to identify a program with an associated recovery. The
assertion R describes the durable resource after the recovery takes place.

Fault-Tolerant Resource Reasoning 173

emp ∨ file(name, []) � {
emp | emp

}
[create(name)]

{
emp | file(name, [])}

emp ∨ file(name, xs) � {
emp | file(name, xs)} [delete(name)]

{
emp | emp

}
emp � {

emp | emp
}

[exists(name)]
{
ret = false ∧ emp | emp

}
file(name, xs) � {

emp | file(name, xs)} [exists(name)]
{
ret = true ∧ emp | file(name, xs)}

file(name, xs) ∨ file(name, xs ++ [x]) �
{
emp | file(name, xs)}

[write(name, x)]{
emp | file(name, xs ++ [x])

}
file(name, []) � {

emp | file(name, [])} [read(name)]
{
ret = nil ∧ emp | file(name, [])}

file(name, [x] ++ xs) �
{
emp | file(name, [x] ++ xs)

}
[read(name)]{

ret = x ∧ emp | file(name, [x] ++ xs)
}

Fig. 1. Specification of a simplified journaling file system.

We can now use the new judgements to verify the write-ahead logging
transfer and its recovery. In their implementation, we use a simplified jour-
naling file system as the durable resource with the operations specified in Fig. 1.
We specify the write-ahead logging transfer with the following triple:

S �

{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v) ∗ Account(t, w)

}

transfer(from, to, amount){
from = f ∧ to = t ∧ amount = a ∧ emp
Account(f, v − a) ∗ Account(t, w + a)

}

where the fault-condition S describes all the possible durable states if a host
failure occurs:

S = (Account(f, v) ∗ Account(t, w))
∨ (Account(f, v) ∗ Account(t, w) ∗ file(log, []))
∨ (Account(f, v) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)]))
∨ (Account(f, v − a) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)]))
∨ (Account(f, v − a) ∗ Account(t, w + a) ∗ file(log, [(f, t, v, w)])
∨ (Account(f, v − a) ∗ Account(t, w + a))

A proof that the implementation satisfies the specification is shown in Fig. 2.
If there is a host failure, the current specification of transfer only guarantees
that the durable resource satisfies S. This includes the case where money is lost.
This is undesirable. What we want is a guarantee that the operation is atomic.
In order to add this guarantee, we must combine reasoning about the operation
with reasoning about its recovery to establish that undesirable states are fixed
after recovery. We formalise the combination of an operation and its recovery
in order to provide robustness guarantees against host failures in the recovery
abstraction rule:

174 G. Ntzik et al.

S �{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v) ∗ Account(t, w)

}

fromAmount := getAmount(from);
toAmount := getAmount(to);{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v) ∗ Account(t, w))

}

[create(log)] ;{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v) ∗ Account(t, w) ∗ file(log, [])

}

[write(log, (from, to, fromAmount, toAmount))] ;{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)])

}

setAmount(from, fromAmount − amount);{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v − a) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)])

}

setAmount(to, toAmount + amount);{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v − a) ∗ Account(t, w + a) ∗ file(log, [(f, t, v, w)])

}

[delete(log)] ;{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v − a) ∗ Account(t, w + a)

}

Fig. 2. Proof of transfer operation using write-ahead logging.

CR recovers C

S � {PV | PD }C {QV | QD}
S � { emp | S }CR { true | R}
R � {PV | PD } [C] {QV | QD}

When implementing a new operation, we use the recovery abstraction rule to
establish the fault-condition R we wish to expose to the client. In the second
premiss we must first derive what the durable resource S will be immediately
after a host-failure. In the third premiss, we establish that given S, the associated
recovery operation will change the durable resource to the desired R. Note that
because the recovery CR runs immediately after the host failure, the volatile
resource of its precondition is empty. Furthermore, we require the fault-condition
of the recovery to be the same as the resource that is being recovered, since the
recovery operation itself may fail due to a host-failure; i.e. recovery operations
must be able to recover themselves.

We allow recovery abstraction to derive any fault-condition that is established
by the recovery operation. If that fault-condition is a disjunction between the
durable pre- and postconditions, PD ∨QD, then the operation [C] appears to be
atomic with respect to host failures. Either the operation’s (durable) resource
updates completely, or not at all. No intermediate states are visible to the client.

In order for transfer to be atomic, according to the recovery abstraction
rule, transferRecovery must satisfy the following specification:

Fault-Tolerant Resource Reasoning 175

S �

{
emp
S

}

transferRecovery(){
true

(Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a))

}

The proof that the implementation satisfies this specification is given in Fig. 3.
By applying the abstraction recovery rule we get the following specification for
transfer which guarantees atomicity in case of a host-failure:

R �

{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v) ∗ Account(t, w)

}

[transfer(from, to, amount)]{
from = f ∧ to = t ∧ amount = a ∧ emp
Account(f, v − a) ∗ Account(t, w + a)

}

where the fault-condition R describes the recovered durable state:

R = (Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a))

With this example, we have seen how to guarantee atomicity by logging the infor-
mation required to undo operations. Advanced WAL protocols also store informa-
tion allowing to redo operations and use concurrency control. We do not go into
depth on how to enforce concurrency control in our examples other than the exam-
ple shown in Sect. 3.1. It follows the common techniques used in concurrent sep-
aration logic.1 However, in Sect. 4 we show ARIES, an advanced algorithm that
uses write-ahead logging. A different style of write-ahead logging is used by file
systems called journaling [14], which we discuss in the technical report [10].

3 Program Logic

Until now, we have only seen how to reason about sequential programs. For
concurrent programs, we use resource invariants, in the style of concurrent sepa-
ration logic [11], that are updated by primitive atomic operations. Here primitive
atomic is used to mean that the operation takes effect at a single, discrete instant
in time, and that it is atomic with respect to host failures.

The general judgement that enables us to reason about host failing concurrent
programs is:

JV | JD ;S � {
PV | PD

}
C

{
QV | QD

}
Here, PV | PD and QV | QD are pre- and postconditions as usual and describe
the volatile and durable resource. S is a durable assertion, which we refer to
as the fault-condition, describing the durable resource of the program C after a
host failure and possible recovery. The interpretation of these triples is partial
1 For an introduction to concurrent separation logic see [18].

176 G. Ntzik et al.

S �{
emp

S

}

b := [exists(log)] ;⎧⎨
⎩

b = b ∧ emp

S ∧ (b =⇒ file(log, []) ∗ true ∨ file(log, [(f, t, v, w)]) ∗ true)
∧ (¬b =⇒ Account(f, v) ∗ Account(t, w) ∨ Account(f, v − a) ∗ Account(t, w + a))

⎫⎬
⎭

if (b) {{
b = b ∧ emp

S ∧ (file(log, []) ∗ true ∨ file(log, [(f, t, v, w)]) ∗ true)

}

(from, to, fromAmount, toAmount) := [read(log)] ;
if (from �= nil && to �= nil) {{

b = b ∧ from = f ∧ to = t ∧ fromAmount = v ∧ toAmount = w ∧ emp

S ∧ (file(log, [(f, t, v, w)]) ∗ true)

}

setAmount(from, fromAmount); setAmount(to, toAmount);⎧⎨
⎩
b = b ∧ from = f ∧ to = t ∧ fromAmount = v ∧ toAmount = w ∧ emp

S ∧ (file(log, [(f, t, v, w)]) ∗ true) ∧
(Account(f, v) ∗ Account(t, w) ∗ true)

⎫⎬
⎭

}⎧⎨
⎩

b = b ∧ emp

S ∧ ((file(log, []) ∗ true) ∨ (file(log, [(f, t, v, w)]) ∗ true)) ∧
(Account(f, v) ∗ Account(t, w) ∗ true)

⎫⎬
⎭

[delete(log)] ;{
b = b ∧ emp

Account(f, v) ∗ Account(t, w)

}

}{
b = b ∧ emp

Account(f, v) ∗ Account(t, w) ∨ Account(f, v − a) ∗ Account(t, w + a)

}

Fig. 3. Proof that the transfer recovery operation guarantees atomicity.

resource fault avoiding and host failing. Starting from an initial state satisfying
the precondition PV | PD, it is safe to execute C without causing a resource
fault. If no host failure occurs and C terminates, the resulting state will satisfy
the postcondition QV | QD. The shared resource invariant JV | JD is maintained
throughout the execution of C. If a host failure occurs, all volatile resource is
lost and the durable state will (after possible recoveries) satisfy S ∗ JD.

We give an overview of the key proof rules of Fault-tolerant Concurrent
Separation Logic (FTCSL) in Fig. 4. Here we do not formally define the syntax of
our assertions, although we describe the semantics in Sect. 5. In general, volatile
and durable assertions can be parameterised by any separation algebra.

The sequence rule allows us to combine two programs in sequence as long as
they have the same fault-condition and resource invariant. Typically, when the
fault-conditions differ, we can weaken them using the consequence rule, which
adds fault-condition weakening to the standard consequence rule of Hoare logic.
The frame rule, as in separation logic, allows us to extend the pre- and postcon-
ditions with the same unmodified resource RV ∗RD. However, here the durable
part, RD, is also added to the fault-condition.

Fault-Tolerant Resource Reasoning 177

sequence

JV | JD ;S � {
PV | PD

}
C1

{
RV | RD

}
JV | JD ;S � {

RV | RD

}
C2

{
QV | QD

}
JV | JD ;S � {

PV | PD

}
C1;C2

{
QV | QD

}
consequence

PV | PD =⇒ P ′
V | P ′

D Q′
V | Q′

D =⇒ QV | QD S′ =⇒ S

JV | JD ;S′ � {
P ′
V | P ′

D

}
C

{
Q′

V | Q′
D

}
JV | JD ;S � {

PV | PD

}
C

{
QV | QD

}
frame

JV | JD ;S � {
PV | PD

}
C

{
QV | QD

}
JV | JD ;S ∗ RD � {

PV ∗ RV | PD ∗ RD

}
C

{
QV ∗ RV | QD ∗ RD

}
atomic

emp | emp ; (PD ∗ JD ∨ QD ∗ JD) � {
PV ∗ JV | PD ∗ JD

}
C

{
QV ∗ JV | QD ∗ JD

}
JV | JD ; (PD ∨ QD) � {

PV | PD

} 〈C〉 {
QV | QD

}
share

JV ∗ RV | JD ∗ RD ;S � {
PV | PD

}
C

{
QV | QD

}
JV | JD ;S ∗ RD � {

PV ∗ RV | PD ∗ RD

}
C

{
QV ∗ RV | QD ∗ RD

}
parallel

JV | JD ;S1 � {
PV 1 | PD1

}
C1

{
QV 1 | QD1

}
JV | JD ;S2 � {

PV 2 | PD2

}
C2

{
QV 2 | QD2

}

JV | JD ; (S1 ∗ S2) ∨ (S1 ∗ QD2) ∨ (QD1 ∗ S2) �
{
PV 1 ∗ PV 2 | PD1 ∗ PD2

}
C1 || C2{

QV 1 ∗ QV 2 | QD1 ∗ QD2

}
recovery abstraction

CR recovers C

JV | JD ;S � {
PV | PD

}
C

{
QV | QD

}
emp | JD ;S � {

emp | S}
CR

{
true | R}

JV | JD ;R � {
PV | PD

}
[C]

{
QV | QD

}

Fig. 4. Selected proof rules of FTCSL

The atomic rule allows us to use the resource invariant JV | JD using a
primitive atomic operation. Since the operation executes in a single, discrete,
moment in time, we can think of the operation temporarily owning the resources
JV | JD. However, they must be reestablished at the end. This guarantees that
the every primitive atomic operation maintains the resource invariant. Note that

178 G. Ntzik et al.

the rule enforces atomicity with respect to host failures. The share rule allows
us to use local resources to extend the shared resource invariant.

The parallel rule, in terms of pre- and postconditions is as in concurrent sepa-
ration logic. However, the fault-condition describes the possible durable resources
that may result from a host failure while running C1 and C2 in parallel. In par-
ticular, a host-failure may occur while both C1 and C2 are running, in which
case the fault-condition is S1 ∗ S2, or when either one of C1, C2 has finished, in
which case the fault-condition is S1 ∗ QD2 and S2 ∗ QD1 respectively.

Finally, the recovery abstraction rule allows us to prove that a recovery oper-
ation CR establishes the fault-condition R we wish to expose to the client. The
first premiss requires operation CR to be the recovery of C, i.e. it is executed on
reboot after a host failure during execution of C. The second premiss guarantees
that in such case, the durable resources satisfy S and the shared resource invari-
ant satisfies JD, while the volatile state is lost after a host failure. The third
premiss, takes the resource after the reboot and runs the recovery operation in
order to establish R. Note that JD is an invariant, as there can be potentially
parallel recovery operations accessing it using primitive atomic operations. While
the recovery operation CR is running, there can be any number of host failures,
which restart the recovery. This means that the recovery operation must be able
to recover from itself. We allow recovery abstraction to derive any fault-condition
that is established by the recovery operation. If the fault-condition is a disjunc-
tion between the durable pre- and post-conditions, PV ∨QD, then the operation
[C] appears to be atomic with respect to host failures.

3.1 Example: Concurrent Bank Transfer

Consider two threads that both perform a transfer operation from account f
to account t as shown in Sect. 2. The parallel rule requires that each operation
acts on disjoint resources in the precondition. Since both threads update the
same accounts, we synchronise their use with the atomic blocks denoted by 〈 〉.
A possible specification for the program is the following:

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

〈[transfer(from, to, amount)]〉; ‖ 〈[transfer(from, to, amount2)]〉;{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

A sketch proof of this specification is given in Fig. 5. We first move the
shared resources of the two transfer operations to the shared invariant (share
rule). We then prove each thread independently by making use of the atomic
rule to gain temporary access to the shared invariant within the atomic block,
and reuse the specification given in Sect. 2.3. It is possible to get stronger post-
conditions, that maintain exact information about the amounts of each bank
account, using complementary approaches such as Owicki-Gries or other forms

Fault-Tolerant Resource Reasoning 179

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

sh
ar
e

emp | ∃v, w.Account(f, v) ∗ Account(t, w) ; emp �{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

emp

}
co
n
se
q
u
en
ce

;
p
ar
al
le
l

emp | ∃v, w.Account(f, v) ∗ Account(t, w) ; emp �{
from = f ∧ to = t ∧ amount = a ∧ emp

emp

}
at
o
m
ic

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount = a ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

[transfer(from, to, amount)] ;{
from = f ∧ to = t ∧ amount = a ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}
{
from = f ∧ to = t ∧ amount = a ∧ emp

emp

}

{
from = f ∧ to = t ∧ amount2 = b ∧ emp

emp

}

at
o
m
ic

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

[transfer(from, to, amount2)] ;{
from = f ∧ to = t ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}
{
from = f ∧ to = t ∧ amount2 = b ∧ emp

emp

}
{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

emp

}
{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

Fig. 5. Sketch proof of two concurrent transfers over the same accounts.

of resource ownership [18]. The sequential examples in this paper can be adapted
to concurrent applications using these techniques.

4 Case Study: ARIES

In Sect. 2 we saw an example of a very simple transaction and its associated
recovery operation employing write-ahead logging. Relational databases support
concurrent execution of complex transactions following the established ACID
(Atomicity, Consistency, Isolation and Durability) set of properties. ARIES
(Algorithms for Recovery and Isolation Exploiting Semantics) [8], is a collection
of algorithms involving, concurrent execution, write-ahead-logging and failure
recovery of transactions, that is widely-used to establish ACID properties.

180 G. Ntzik et al.

It is beyond the scope of this paper to verify that the full set of ARIES
algorithms guarantees ACID properties. Instead, we focus on a stylised version of
the recovery algorithm of ARIES proving that: (a) it is idempotent with respect
to host failures, (b) after recovery, all transactions recorded in the write-ahead
log have either been completed, or were rolled-back.

Transactions update database records stored in durable memory, which for
the purposes of this discussion we assume to be a single file in a file system.
To increase performance, the database file is divided into fixed-size blocks,
called pages, containing multiple records. Thus input/output to the database
file, instead of records, is in terms of pages, which are also typically cached in
volatile memory. A single transaction may update multiple pages. In the event
of a host failure, there may be transactions that have not yet completed, or
have completed but their updated pages have not yet been written back to the
database file.

ARIES employs write-ahead logging for page updates performed by transac-
tions. The log is stored on a durable fault-tolerant medium. The recovery uses the
logged information in a sequence of three phases. First, the analysis phase, scans
the log to determine the (volatile) state, of any active transactions (committed
or not), at the point of host failure. Next, the redo phase, scans the log and redos
each logged page update, unless the associated page in the database file is already
updated. Finally, the undo phase, scans the log and undos each page update for
each uncommitted transaction. To cope with a possible host failure during the
ARIES recovery, each undo action is logged beforehand. Thus, in the event of a
host failure the undo actions will be retried as part of the redo phase.

In Fig. 6, we define the log and database model and describe the predicates
we use in our specifications and proofs. We refer the reader to our technical
report [10] for the formal definitions. We model the database state, db, as a
set of pages, where each page comprises the page identifier, the log sequence
number (defined later) of the last update performed on the page, and the page
data. The log, lg, is structured as a sequence of log records, ordered by a log
sequence number, lsn ∈ N, each of which records a particular action performed
by a transaction. The ordering follows the order in which transaction actions
are performed on the database. The logged action, U [tid, pid, op], records that
the transaction identifier tid, performs the update op : Data → Data on the
page identified by pid. We use op−1 to denote the operation undoing the update
op. B[tid], records the start of a new transaction with identifier tid, and C[tid],
records that the transaction with id tid is committed. The information from the
above actions is used to construct two auxiliary structures used by the recovery
to determine the state of transactions and pages at the point of a host failure.
The transaction table (TT), records the status of all active transactions (e.g.
updating, committed) and the latest log sequence number associated with the
transaction. The dirty page table (DPT), records which pages are modified but
yet unwritten to the database together with the first log sequence number of
the action that caused the first modification to each page. To avoid the cost of
scanning the entire log, implementations regularly log snapshots of the TT and

Fault-Tolerant Resource Reasoning 181

Model:

Database state db ⊆ N× N× Data, triples of pid, lsn, d
Logged actions act ::= U [tid, pid, op] | B[tid] | C[tid] | CHK[tt, dpt]
Log state lg ::= ∅ | (lsn, act) | lg ⊗ lg
Transaction table tt ⊆ N× N× {C,U} , triples of lsn, pid and transaction status
Dirty page table dpt ⊆ N× N, tuples of pid, lsn

Predicates:

log (lg) the state of the log is given by lg (abstract predicate)
db state (db) the state of the database is given by db (abstract predicate)
set (x, s) the set s identified by program variable x (abstract predicate)
log tt (lg, tt) log lg produces the TT entries in tt
log dpt (lg, dpt) log lg produces the DPT entries in dpt
log rl (lg, dpt, ops) given log lg and DPT dpt the list of redo updates is ops
ul undo (lg, tt, ops) given log lg and TT tt the list of undo updates is ops
log undos (ops, lg) given list of undos ops the additional log records are lg
db acts (db, ops, db′) given the list of updates ops, the database db is updated to db′

recovery log (lg, lg′) given log lg log records added by recovery are lg′

recovery db (db, lg, db) given database db and log lg the recovered database state is db′

Axioms:
log lg ⊗ lg′) ⇐⇒ log bseg (lg) ⊗ log fseg lg′)

Fig. 6. Abstract model of the database and ARIES log, and predicates.

DPT in checkpoints, CHK[tt, dpt]. For simplicity, we assume the log contains
exactly one checkpoint.

The high level overview of the recovery algorithm in terms of its analysis, redo
and undo phases is given in Fig. 7. The analysis phase first finds the checkpoint
and restores the TT and DPT. Then, it proceeds to scan the log forwards from
the checkpoint, updating the TT and DPT. Any new transaction is added to the
TT. For any commit log record we update the TT to record that the transaction
is committed. For any update log record, we add an entry for the associated page
to the DPT, also recording the log sequence number, unless an entry for the same
page is already in it. We give the following specification for the analysis phase:

log (lgi ⊗ (lsn, CHK[tt, dpt]) ⊗ lgc) �{
emp

log (lgi ⊗ (lsn, CHK[tt, dpt]) ⊗ lgc)

}

tt, dpt := aries analyse(){∃tt′, dpt′. log tt (lgc, tt
′) ∧ log dpt (lgc, dpt

′) ∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log (lgi ⊗ (−, CHK[tt, dpt]) ⊗ lgc)

}

The specification states that given the database log, the TT and DPT in the
log’s checkpoint are restored and updated according to the log records following
the checkpoint. The analysis does not modify any durable state.

182 G. Ntzik et al.

function aries recovery() {
//ANALYSIS PHASE: restore dirty page table, transaction table

//and undo list at point of host failure.

tt, dpt := aries analyse();
//REDO PHASE: repeat actions to restore database state at host failure.

aries redo(dpt);
//UNDO PHASE: Undo actions of uncommitted transactions.

aries undo(tt);
}

Fig. 7. ARIES recovery: high level structure.

The redo phase, follows analysis and repeats the logged updates. Specifically,
redo scans the log forward from the record with the lowest sequence number
in the DPT. This is the very first update that is logged, but (potentially) not
yet written to the database. The updates are redone unless the recorded page
associated with that update is not present in the DPT, or a more recent update
has modified it. We give the following specification to redo:

∃ops, ops′, ops′′. (ops = ops′ ⊗ ops′′) ∧ db acts (db, ops′, db′′)
∧ log fseg ((lsn, act) ⊗ lg) ∗ db state (db′′) �{

set (dpt, dpt) ∧ lsn = min(dpt↓2)
log fseg ((lsn, act) ⊗ lg) ∗ db state (db)

}

aries redo(dpt)⎧⎨
⎩

set (dpt, dpt) ∧ lsn = min(dpt↓2)
log fseg ((lsn, act) ⊗ lg) ∗ db state (db′) ∧ db acts (db, ops, db′)

∧ log rl ((lsn, act) ⊗ lg, dpt, ops)

⎫⎬
⎭

The specification states that the database is updated according to the logged
update records following the smallest log sequence number in the DPT. The
fault-condition specifies that after a host failure, all, some or none of the redos
have happened. Since redo does not log anything, the log is not affected.

The last phase is undo, which reverts the updates of any transaction that is
not committed. In particular, undo scans the log backwards from the log record
with the largest log sequence number in the TT. This is the log sequence number
of the very last update. For each update record scanned, if the transaction exists
in the TT and is not marked as committed, the update is reversed. However,
each reverting update is logged beforehand. This ensures, that undos will happen
even in case of host failure, since they will be re-done in the redo phase of the
subsequent recovery run. We give the following specification for the undo phase:

∃lg′, lg′′, lg′′′, ops, ops′, ops′′. lg′ = lg′′ ⊗ lg′′′ ∧ ops = ops′ ⊗ ops′′

∧ db acts (db, ops′, db′′) ∧ log bseg (lg ⊗ (lsn, act) ⊗ lg′′) ∗ db state (db′′) �{
set (tt, tt) ∧ lsn = max(tt↓2)

log bseg (lg ⊗ (lsn, act)) ∗ db state (db)

}

aries undo(tt)⎧⎨
⎩
set (tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo (tt, lg ⊗ (lsn, act), ops)

log bseg (lg ⊗ (lsn, act) ⊗ lg′) ∧ log undos (ops, lg′)
∗ db state (db′) ∧ db acts (db, ops, db′)

⎫⎬
⎭

Fault-Tolerant Resource Reasoning 183

The specification states that the database is updated with actions reverting
previous updates as obtained from the log. These undo actions are themselves
logged. In the event of a host failure the fault-condition specifies that all, some,
or none of the operations are undone and logged.

Using the specification for each phase and using our logic we can derive the
following specification for this ARIES recovery algorithm:

∃lg′, lg′′, db′. log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db) �{
emp

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db)

}

aries recovery()⎧⎪⎪⎨
⎪⎪⎩

true

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ ⊗ lg′′)
∧ recovery log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, lg′′)

∗ db state (db′) ∧ recovery db (db, lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, db′)

⎫⎪⎪⎬
⎪⎪⎭

The proof that the high level structure of the ARIES algorithm satisfies this
specification is given in Fig. 8. For the implementations of each phase and proofs
they meet their specifications we refer the reader to our technical report [10]. The
key property of the ARIES recovery specification is that the durable precondition
is the same as the fault-condition. This guarantees that the recovery is idem-
potent with respect to host failures. This is crucial for any recovery operation,
as witnessed in the recovery abstraction rule, guaranteeing that the recovery
itself is robust against crashes. Furthermore, the specification states that any
transaction logged as committed at the time of host failure, is committed after
recovery. Otherwise transactions are rolled back.

5 Semantics and Soundness

We give a brief overview of the semantics of our reasoning and the intuitions
behind its soundness. A detailed account is given in the technical report [10].

5.1 Fault-Tolerant Views

We define a general fault-tolerant reasoning framework using Hoare triples with
fault-conditions in the style of the Views framework [3]. Pre- and postcondi-
tion assertions are modelled as pairs of volatile and durable views (commutative
monoids). Fault-condition assertions are modelled as durable views2. Volatile and
durable views provide partial knowledge reified to concrete volatile and durable
program states respectively. Concrete volatile states include the distinguished
host-failed state

�

. The semantic interpretation of a primitive operation is given
as a state transformer function from concrete states to sets of concrete states.
2 We use “Views” to refer to the Views framework of Dinsdale-Young et al. [3], and

“views” to refer to the monoid structures used within it.

184 G. Ntzik et al.

∃lg′, lg′, db, rl′. log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db) �{
emp | log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db)

}
se
q
u
en
ce

fr
am

e

//ANALYSIS PHASE

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) �{
emp | log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′)

}
tt, dpt := aries analyse();⎧⎨
⎩

∃tt′, dpt′. log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)
∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)

log (lg ⊗ (−, CHK[tt, dpt]) ⊗ lg′)

⎫⎬
⎭⎧⎨

⎩
∃tt′, dpt′. log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)

∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log (lg ⊗ (−, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db)

⎫⎬
⎭

//REDO PHASE: repeat actions to restore database state at host failure.

co
n
se
q
u
en
ce

∃lgi, lgc, lg, lg′, db, db′, db′′, lsn≤, act, ops′, ops′′. (ops = ops′ ⊗ ops′′) ∧
log bseg (lgi) ∗ log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db′′) ∧ db acts (db, ops′, db′′)

�⎧⎪⎪⎨
⎪⎪⎩

∃tt′, dpt′. lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ = lgi ⊗ (lsn≤, act) ⊗ lgc
∧ lsn≤ = min((dpt � dpt′)↓2) ∧ log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)

∧ log ul (lg′, ul) ∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log bseg (lgi) ∗ log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db)

⎫⎪⎪⎬
⎪⎪⎭

fr
am

e

∃db′′, ops′, ops′′. (ops = ops′ ⊗ ops′′)
∧ log fseg ((lsn≤, act) ⊗ lg) ∗ db state (db′′) ∧ db acts (db, ops′, db′′)

�{
set (dpt, dptu) ∧ lsn≤ = min((dptu)↓2)
log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db)

}

aries redo(dpt);⎧⎨
⎩

set (dpt, dptu) ∧ lsn≤ = min((dptu)↓2)
log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db′)

∧ db acts (db, ops, db′) ∧ log rl ((lsn≤, act) ⊗ lgc, dptu, ops)

⎫⎬
⎭⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ = lgi ⊗ (lsn≤, act) ⊗ lgc
∧ lsn≤ = min((dpt � dpt′)↓2) ∧ log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)
∧ log ul (lg′, ul) ∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′) ∗ ulist (ul, ul)

log bseg (lgi) ∗ log fseg ((lsn≤, act) ⊗ lgc)
∗ db state (db′) ∧ log rl ((lsn≤, act) ⊗ lgc, dptu, ops)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∃lgc, lsn≤. lg′ = − ⊗ (lsn≤, act) ⊗ lgc ∧ lsn≤ = min((dpt � dpt′)↓2)
∧ log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′) ∧ log ul (lg′, ul)

∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db′)

∧ db acts (db, ops, db′) ∧ log rl ((lsn≤, act) ⊗ lgc, dpt � dpt′, rl′)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

co
n
se
q
u
en
ce
,f
ra
m
e //UNDO PHASE: Undo actions of uncommitted transactions.

∃lg′, lg′′, lg′′′, ops, ops′, ops′′. lg′ = lg′′ ⊗ lg′′′ ∧ ops = ops′ ⊗ ops′′

∧ db acts (dbr, ops
′, db′′

r) ∧ log bseg (lg ⊗ (lsn, act) ⊗ lg′′) ∗ db state (db′′
r)

�{
set (tt, tt) ∧ lsn≥ = max(tt↓2) | log bseg (lg ⊗ (lsn, act)) ∗ db state (dbr)

}
aries undo(tt, dpt, ul);⎧⎨
⎩
set (tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo (tt, lg ⊗ (lsn, act), ops)

log bseg (lg ⊗ (lsn, act) ⊗ lg′) ∧ log undos (ops, lg′)
∗ db state (db′

r) ∧ db acts (dbr, ops, db
′
r)

⎫⎬
⎭⎧⎪⎪⎨

⎪⎪⎩

true

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ ⊗ lg′′)
∧ recovery log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, lg′′)

∗ db state (db′) ∧ recovery db (db, lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, db′)

⎫⎪⎪⎬
⎪⎪⎭

Fig. 8. Proof of the high level structure of ARIES recovery.

Fault-Tolerant Resource Reasoning 185

To prove soundness, we encode our Fault-tolerant Views (FTV) framework
into Views [3]. A judgement3 s � {(pv, pd)}C {(qv, qd)}, where s, pd, qd are
durable views and pv, qv are volatile views is encoded as the Views judgement:{
(pv, qd)

}
C

{
(qv, qd) ∨ (

�

, s)
}
, where volatile views are extended to include �

and ∨ is disjunction of views. For the general abstraction recovery rule we encode
[C] as a program which can test for host failures, beginning with C and followed
by as many iterations of the recovery CR as required in case of a host failure.

We require the following properties for a sound instance of the framework:

Host failure: For each primitive operation, its interpretation function must
transform non host-failed states to states including a host-failed state. This guar-
antees that each operation can be abruptly interrupted by a host failure.

Host failure propagation: For each primitive operation, its interpretation
function must leave all host-failed states intact. That is, when the state says
there is a host failure, it stays a host failure.

Axiom soundness: The axiom soundness property (property [G] of Views [3]).
The first two are required to justify the general FTV rules, while the final

property establishes soundness of the Views encoding itself. When all the para-
meters are instantiated and the above properties established then the instantia-
tion of the framework is sound.

5.2 Fault-Tolerant Concurrent Separation Logic

We justify the soundness of FTCSL by an encoding into the Fault-tolerant Views
framework discussed earlier. The encoding is similar to the concurrent separation
logic encoding into Views. We instantiate volatile and durable views as pairs of
local views and shared invariants.

The FTCSL judgement (jv, jd) ; s � {
(pv, pd)

}
C

{
(qv, qd)

}
is encoded as:

s � {((pv, jv), (pd, jd))}C {((qv, jv), (qd, jd))}

The proof rules in Fig. 4 are justified by soundness of the encoding and simple
application of FTV proof rules. Soundness of the encoding is established by
proving the properties stated in Sect. 5.1.

Theorem 1 (FTCSL Soundness). If the judgement JV | JD ;S �{
PV | PD

}
C

{
QV | QD

}
is derivable in the program logic, then if we run the

program C from state satisfying PV ∗ JV | PD ∗ JD, then C will either not ter-
minate, or terminate in state satisfying QV ∗ JV | QD ∗ JD, or a host failure
will occur destroying any volatile state and the remaining durable state (after
potential recoveries) will satisfy S ∗ JD. The resource invariant JV | JD holds
throughout the execution of C.
3 Note that judgements, such as those in Fig. 4, using assertions (capital P,Q, S) are

equivalent to judgements using views (models of assertions, little p, q, s).

186 G. Ntzik et al.

6 Related Work

There has been a significant amount of work in critical systems, such as file
systems and databases, to develop defensive methods against the types of failures
covered in this paper [1,8,14,19]. The verification of these techniques has mainly
been through testing [6,13] and model checking [21]. However, these techniques
have been based on building models that are specific to the particular application
and recovery strategy, and are difficult to reuse.

Program logics based on separation logic have been successful in reasoning
about file systems [5,9] and concurrent indexes [16] on which database and file
systems depend. However, as is typical with Hoare logics, their specifications
avoid host failures, assuming that if a precondition holds then associated opera-
tions will not fail. Faulty Logic [7] by Meola and Walker is an exception. Faulty
logic is designed to reason about transient faults, such as random bit flips due
to background radiation, which are different in nature from host failure.

Zengin and Vafeiadis propose a purely functional programming language with
an operational semantics providing tolerance against processor failures in parallel
programs [22]. Computations are check-pointed to durable storage before execu-
tion and, upon detection of a failure, the failed computations are restarted. In
general, this approach does not work for concurrent imperative programs which
mutate the durable store.

In independent work, Chen et al. introduced Crash Hoare Logic (CHL) to
reason about host failures and applied it to a substantial sequential journaling
file system (FSCQ) written in Coq [2]. CHL extends Hoare triples with fault-
conditions and provides highly automated reasoning about host failures. FSCQ
performs physical journaling, meaning it uses a write-ahead log for both data
and metadata, so that the recovery can guarantee atomicity with respect to host
failures. The authors use CHL to prove that this property is indeed true. The
resource stored in the disk is treated as durable. Since FSCQ is implemented
in the functional language of Coq, which lacks the traditional process heap, the
volatile state is stored in immutable variables.

The aim of FSCQ and CHL is to provide a verified implementation of a
sequential file system which tolerates host failures. In contrast, our aim is to
provide a general methodology for fault-tolerant resource reasoning about con-
current programs. We extend the Views framework [3] to provide a general con-
current framework for reasoning about host failure and recovery. Like CHL, we
extend Hoare triples with fault-conditions. We instantiate our framework to con-
current separation logic, and demonstrate that an ARIES recovery algorithm
uses the write-ahead log correctly to guarantee the atomicity of transactions.
In the technical report [10], we explore the differences in the specifications of
fault-tolerance guarantees in physical and logical journaling file systems.

As we are defining a framework, our reasoning of the durable and volatile
state (given by arbitrary view monoids) is general. In contrast, CHL reasoning is
specific to the durable state on the disk and the volatile state in the immutable
variable store. CHL is able to reason modularly about different layers of abstrac-
tion of a file-system implementation, using logical address spaces which give a

Fault-Tolerant Resource Reasoning 187

systematic pattern of use for standard predicates. We do not explore modular
reasoning about layers of abstractions in this paper, since it is orthogonal to rea-
soning about host failures, and examples have already been studied in instances
of the Views framework and other separation logic literature [4,12,17,18,20].

We can certainly benefit from the practical CHL approach to mechanisation
and proof automation. We also believe that future work on CHL, especially on
extending the reasoning to heap-manipulating concurrent programs, can benefit
from our general approach.

7 Conclusions and Future Work

We have developed fault-tolerant resource reasoning, extending the Views frame-
work [3] to reason about programs in the presence of host failures. We have
proved a general soundness result. For this paper, we have focused on fault-
tolerant concurrent separation logic, a particular instance of the framework. We
have demonstrated our reasoning by studying an ARIES recovery algorithm,
showing that it is idempotent and that it guarantees atomicity of database trans-
actions in the event of a host failure.

There has been recent work on concurrent program logics with the ability
to reason about abstract atomicity [17]. This involves proving that even though
the implementation of an operation takes multiple steps, from the client’s point
of view they can be seen as a single step. Currently, this is enforced by syntactic
primitive atomic blocks (〈 〉) in the programming language. In future, we want
to combine abstract atomicity from concurrency with host failure atomicity.

Another direction for future work involves extending existing specifications
for file systems [5,9] with our framework. This will allow both the verification of
interesting clients programs, such as fault-tolerant software installers or persisted
message queues, and the verification of fault-tolerant databases and file systems.

Acknowledgements. We thank Thomas Dinsdale-Young for discussions and useful
feedback. This research was supported by EPSRC Programme Grants EP/H008373/1
and EP/K008528/1. Supplementary material and proofs are available in the technical
report [10].

References

1. Bonwick, J., Ahrens, M., Henson, V., Maybee, M., Shellenbaum, M.: The zettabyte
file system. In: Proceedings of the 2nd Usenix Conference on File and Storage
Technologies (2003)

2. Chen, H., Ziegler, D., Chlipala, A., Kaashoek, M.F., Kohler, E., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: SOSP (2015)

3. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

188 G. Ntzik et al.

5. Gardner, P., Ntzik, G., Wright, A.: Local reasoning for the POSIX file system.
In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 169–188. Springer,
Heidelberg (2014)

6. Kropp, N., Koopman, P., Siewiorek, D.: Automated robustness testing of off-the-
shelf software components. In: 1998 Twenty-Eighth Annual International Sympo-
sium on Fault-Tolerant Computing. Digest of Papers, pp. 230–239 (1998)

7. Meola, M.L., Walker, D.: Faulty logic: reasoning about fault tolerant programs. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 468–487. Springer, Heidelberg
(2010)

8. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst. 17, 94–162 (1992)

9. Ntzik, G., Gardner, P.: Reasoning about the POSIX File System: Local Update
and Global Pathnames. In: OOPLSA (2015)

10. Ntzik, G., da Rocha Pinto, P., Gardner, P.: Fault-tolerant Resource Reasoning.
Technical report, Imperial College London (2015)

11. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

12. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–
258 (2005)

13. Prabhakaran, V., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: Model-based failure
analysis of journaling file systems. In: 2005 Proceedings of the International Con-
ference on Dependable Systems and Networks. DSN 2005, pp. 802–811, June 2005

14. Prabhakaran, V., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Analysis and evo-
lution of journaling file Systems. In: USENIX Annual Technical Conference, Gen-
eral Track (2005)

15. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings. 17th Annual IEEE Symposium on Logic in Computer Science, 2002. pp.
55–74 (2002)

16. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse, M.:
A simple abstraction for complex concurrent indexes. In: OOPSLA, pp. 845–864
(2011)

17. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014)

18. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Steps in modular specifica-
tions for concurrent modules. In: MFPS (2015)

19. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-
structured file system. ACM Trans. Comput. Syst. 10, 26–52 (1992)

20. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

21. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors. ACM Trans. Comput. Syst. 24(4), 393–423 (2006)

22. Zengin, M., Vafeiadis, V.: A Programming Language Approach to Fault Toler-
ance for Fork-Join Parallelism. In: 2013 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 105–112 (July 2013)

	Fault-Tolerant Resource Reasoning
	1 Introduction
	2 Motivating Examples
	2.1 Naive Bank Transfer
	2.2 Fault-Tolerant Bank Transfer: Implementation
	2.3 Fault-Tolerant Bank Transfer: Verification

	3 Program Logic
	3.1 Example: Concurrent Bank Transfer

	4 Case Study: ARIES
	5 Semantics and Soundness
	5.1 Fault-Tolerant Views
	5.2 Fault-Tolerant Concurrent Separation Logic

	6 Related Work
	7 Conclusions and Future Work
	References

