
Xinyu Feng
Sungwoo Park (Eds.)

 123

LN
CS

 9
45

8

13th Asian Symposium, APLAS 2015
Pohang, South Korea, November 30 – December 2, 2015
Proceedings

Programming
Languages
and Systems

Lecture Notes in Computer Science 9458

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Xinyu Feng • Sungwoo Park (Eds.)

Programming
Languages
and Systems
13th Asian Symposium, APLAS 2015
Pohang, South Korea, November 30 – December 2, 2015
Proceedings

123

Editors
Xinyu Feng
University of Science and Technology
of China

Hefei, Anhui
China

Sungwoo Park
Pohang University of Science

and Technology
Pohang
Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26528-5 ISBN 978-3-319-26529-2 (eBook)
DOI 10.1007/978-3-319-26529-2

Library of Congress Control Number: 2015954608

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the proceedings of the 13th Asian Symposium on Programming
Languages and Systems (APLAS 2015), held in Pohang, Korea, from November 30 to
December 2, 2015. APLAS aims to stimulate programming language research by
providing a forum for the presentation of latest results and the exchange of ideas in
programming languages and systems. APLAS is based in Asia, but is an international
forum that serves the worldwide programming language community. Past APLAS
symposiums were successfully held in Singapore (2014), Melbourne (2013), Kyoto
(2012), Kenting (2011), Shanghai (2010), Seoul (2009), Bangalore (2008), Singapore
(2007), Sydney (2006), Tsukuba (2005), Taipei (2004), and Beijing (2003) after three
informal workshops.

APLAS 2015 solicited submissions in two categories, regular research papers and
system and tool presentations. The topics covered in the conference include, but are not
limited to, semantics, logics, and foundational theory; design of languages and foun-
dational calculi; domain-specific languages; type systems; compilers, interpreters, and
abstract machines; program derivation, synthesis, and transformation; program analy-
sis, constraints, verification, and model-checking; software security; concurrency and
parallelism; and tools for programming, verification, and implementation.

This year 74 papers were submitted to APLAS. Each submission was reviewed by
three or more Program Committee members with the help of external reviewers. After
thoroughly evaluating the relevance and quality of each paper, the Program Committee
decided to accept 24 regular research papers and one system and tool presentation. This
year’s program also continues the APLAS tradition of invited talks by distinguished
researchers: Peter O’Hearn (Facebook), Sukyoung Ryu (KAIST), Eran Yahav (Tech-
nion), and Hongseok Yang (University of Oxford).

This program would not have been possible without the unstinting efforts of several
people, whom we would like to thank. First, the Program Committee and additional
reviewers for the hard work put in toward ensuring the high quality of the proceedings.
Our thanks also go to the Asian Association for Foundation of Software (AAFS),
founded by Asian researchers in cooperation with many researchers from Europe and
the USA, for sponsoring and supporting APLAS. We would like to warmly thank the
Steering Committee in general and Gyesik Lee and Hyeonseung Im for their support in
the local organization and for organizing the poster session. Finally, we are grateful to
Andrei Voronkov whose EasyChair system eased the processes of submission, paper
selection, and proceedings compilation.

September 2015 Xinyu Feng
Sungwoo Park

Organization

General Chair

Sungwoo Park Pohang University of Science and Technology
(POSTECH), Korea

Program Chair

Xinyu Feng University of Science and Technology of China, China

Program Committee

James Brotherston University College London, UK
James Cheney University of Edinburgh, UK
Huimin Cui Institute of Computing Technology, CAS, China
Mike Dodds University of York, UK
Xinyu Feng University of Science and Technology of China, China
Nate Foster Cornell University, USA
Alexey Gotsman IMDEA Software Institute, Spain
Aquinas Hobor School of Computing, National University of

Singapore/Yale-NUS College, Singapore
Chung-Kil Hur Seoul National University, Korea
Radha Jagadeesan DePaul University, USA
Annie Liu Stony Brook University, USA
Andreas Lochbihler ETH Zurich, Switzerland
Santosh Nagarakatte Rutgers University, USA
David Naumann Stevens Institute of Technology, USA
Michael Norrish NICTA, Australia
Hakjoo Oh Korea University, Korea
Murali Krishna Ramanathan Indian Institute of Science, India
Xavier Rival CNRS/ENS/Inria, France
Kohei Suenaga Kyoto University, Japan
Gang Tan Lehigh University, USA
Alwen Tiu Nanyang Technological University, Singapore
Martin Vechev ETH Zurich, Switzerland
Bow-Yaw Wang Academia Sinica, Taiwan
Nobuko Yoshida Imperial College London, UK
Lijun Zhang Institute of Software, CAS, China

Poster Chair

Hyeonseung Im Kangwon National University, Korea

Local Arrangements Chair

Gyesik Lee Hankyong National University, Korea

Additional Reviewers

Abate, Pietro
Anderson, Gabrielle
Berger, Martin
Bielik, Pavol
Boyland, John
Brandt, Steven
Brandvein, Jon
Cerone, Andrea
Chand, Saksham
Dahlqvist, Fredrik
Deng, Yuxin
Dhok, Monika
Dietl, Werner
Feret, Jerome
Fernandez, Maribel
Franco, Juliana
Gay, Simon

Gorogiannis, Nikos
Hasuo, Ichiro
He, Chaodong
Hou, Zhe
Igarashi, Atsushi
Kane, Christopher
Kanovich, Max
Lee, Woosuk
Li, Feng
Lin, Bo
Mariño, Julio
Morihata, Akimasa
Mostrous, Dimitris
Mudduluru, Rashmi
Murawski, Andrzej
Padovani, Luca
Paige, Richard

Poluri, Sri Varun
Pérez, Jorge A.
Reich, Jason S.
Rowe, Reuben
Russo, Claudio
Schöpp, Ulrich
Sezgin, Ali
Simon, Axel
Singh, Gagandeep
Song, Lei
Spitters, Bas
Terauchi, Tachio
Turrini, Andrea
Weng, Xuetian
Ying, Mingsheng

VIII Organization

Invited Talks

Programming with “Big Code”

Eran Yahav

Technion, Haifa, Israel
yahave@cs.technion.ac.il

Abstract. The vast amount of code available on the web is increasing on a daily
basis. Open-source hosting sites such as GitHub contain billions of lines of
code. Community question-answering sites provide millions of code snippets
with corresponding text and metadata. The amount of code available in exe-
cutable binaries is even greater. In this talk, I will cover recent research trends on
leveraging such “big code” for program analysis, program synthesis and reverse
engineering. We will consider a range of semantic representations based on
symbolic automata [11, 15], tracelets [3], numerical abstractions [13, 14], and
textual descriptions [1, 22], as well as different notions of code similarity based
on these representations.

To leverage these semantic representations, we will consider a number of
prediction techniques, including statistical language models [19, 20], variable
order Markov models [2], and other distance-based and model-based sequence
classification techniques.

Finally, I will show applications of these techniques including semantic
code search in both source code and stripped binaries, code completion and
reverse engineering.

Analyzing JavaScript Web Applications
in the Wild (Mostly) Statically

Sukyoung Ryu

School of Computing, KAIST, Daejeon, Republic of Korea
sryu.cs@kaist.ac.kr

Analyzing real-world JavaScript web applications is a challenging task. On top of
understanding the semantics of JavaScript [4], it requires modeling of web documents
[20, 21], platform objects [5], and interactions between them. Not only JavaScript itself
but also its usage patterns are extremely dynamic [15, 16]. Most of web applications
load JavaScript code dynamically, which makes pure static analysis approaches
inapplicable.

In this talk, we present our attempts to analyze JavaScript web applications in the
wild mostly statically using various approaches. From pure JavaScript programs to
JavaScript web applications using platform-specific libraries, we explain technical
challenges in analyzing each of them and how we built an open-source analysis
framework for JavaScript, SAFE [7, 17], that addresses the challenges incrementally.

First, we describe quirky language features and semantics of JavaScript that make
static analysis difficult and our first design of SAFE [10] designed to be scalable for
growth. SAFE transforms a JavaScript source program to an Abstract Syntax Tree
(AST), an Intermediate Representation (IR), and a Control Flow Graph (CFG) to
enable various analyses on different levels of representations. Its default static analyzer
on CFGs is based on the abstract interpretation framework, and it supports
flow-sensitive and context-sensitive analyses of stand-alone JavaScript programs by
faithfully modeling the semantics of ECMAScript 5. The pluggable and scalable design
of the framework allowed experiments with JavaScript variants like adding a module
system [8], eliminating the with statement [12], and detecting code clones [3].

We then describe how we extended SAFE to model web application execution
environments of various browsers [14] and platform-specific library functions. To
provide a faithful (partial) model of browsers, we support the configurability of
HTML/DOM tree abstraction levels so that users can adjust a trade-off between analysis
performance and precision depending on their applications. To analyze interactions
between applications and platform-specific libraries specified in Web APIs, we develop
automatic modeling of library functions from Web APIs and detect possible misuses of
Web APIs by web applications [2]. Analyzing real-world web applications requires
more scalable analysis than analyzing stand-alone JavaScript programs [9, 13].

In spite of active research accomplishments in JavaScript web applications [1, 6,
11, 18, 19], many issues still remain to be resolved such as events, callback functions,
and hybrid web applications. We discuss possible future research directions with open
challenges.

References

1. Andreasen, E., Møller, A.: Determinacy in static analysis for jQuery. In: Proceedings of the
29th Annual Object-Oriented Programming Systems, Languages, and Applications (2014)

2. Bae, S., Cho, H., Lim, I., Ryu, S.: SAFEWAPI: Web API misuse detector for web applications.
In: Proceedings of the 22nd ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering. ACM (2014)

3. Cheung, W., Ryu, S., Kim, S.: Development nature matters: an empirical study of code clones
in JavaScript applications. Empir. Softw. Eng. (2015)

4. ECMA. ECMA-262: ECMAScript Language Specification. Edition 5.1 (2011)
5. Linux Foundation. Tizen. http://tizen.org
6. Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and browser API in static

analysis of JavaScript web applications. In: Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering. ACM
(2011)

7. KAIST PLRG. SAFE: JavaScript analysis framework (2013). http://safe.kaist.ac.kr
8. Kang, S., Ryu, S.: Formal specification of a JavaScript module system. In: Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages and
Applications, pp. 621–638 (2012)

9. Ko, Y., Lee, H., Dolby, J., Ryu, S.: Practically tunable static analysis framework for
large-scale JavaScript applications. In: Proceedings of the 30th ACM/IEEE International
Conference on Automated Software Engineering (2015)

10. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and implementation of a
scalable analysis framework for ECMAScript. In: International Workshop on Foundations of
Object Oriented Languages (2012)

11. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript applications in
the presence of frameworks and libraries. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. ACM (2013)

12. Park, C., Lee, H., Ryu, S.: All about the with statement in JavaScript: removing with state-
ments in JavaScript applications. In: Proceedings of the 9th Symposium on Dynamic Lan-
guages (2013)

13. Park, C., Ryu, S.: Scalable and precise static analysis of JavaScript applications via
loop-sensitivity. In: Proceedings of the European Conference on Object-Oriented Program-
ming. LNCS, Springer (2015)

14. Park, C., Won, S., Jin, J., Ryu, S.; Static analysis of JavaScript web applications in the wild via
practical DOM modeling. In: Proceedings of the 30th ACM/IEEE International Conference on
Automated Software Engineering (2015)

15. Richards, G., Hammer, C., Burg, B., Vitek, J.: The eval that men do: a large-scale study of the
use of eval in JavaScript applications. In: Proceedings of the 25th European Conference on
Object-Oriented Programming (2011)

16. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of
JavaScript programs. In: Proceedings of the 2010 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (2010)

17. Ryu, S., Choi, J., Choi, W., Ko, Y., Lee, H., Park, C.: The SAFE specification (2015). https://
github.com/sukyoung/safe/blob/master/doc/manual/safe.pdf

18. Schäfer, M., Sridharan, M., Dolby, J., Tip, F.: Dynamic determinacy analysis. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(2013)

Analyzing JavaScript Web Applications in the Wild (Mostly) Statically XIII

http://tizen.org
http://safe.kaist.ac.kr
https://github.com/sukyoung/safe/blob/master/doc/manual/safe.pdf
https://github.com/sukyoung/safe/blob/master/doc/manual/safe.pdf

19. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking for points-to
analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 435–458.
Springer, Heidelberg (2012)

20. W3C. Document Object Model Activity Statement. http://www.w3.org/DOM/Activity
21. WHATWG. HTML Living Standard. http://www.whatwg.org/specs/web-apps/current-work/

multipage/

XIV S. Ryu

http://www.w3.org/DOM/Activity
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/

Probabilistic Programming

Hongseok Yang

University of Oxford, Oxford, UK

Probabilistic programming refers to the idea of using standard programming
constructs for specifying probabilistic models and employing generic inference
algorithms for answering various queries on these models. Although this idea
itself is not new and was, in fact, explored by several programming-language
researchers in the early 2000, it is only in the last few years that probabilistic
programming has gained a large amount of attention among researchers in
machine learning and programming languages, and that serious probabilistic
programming languages (such as Anglican, Church, Infer.net, PyMC, Stan, and
Venture) started to appear and have been taken up by a nontrivial number of users.
My talk has two goals. One is to introduce probabilistic programming to the

programming-language audience. The other is to explain a few lessons that I learnt
about probabilistic programming frommy machine learning colleagues in Oxford.
They have been developing a high-order call-by-value probabilistic programming
language called Anglican, and through many discussions and close collaborations,
they taught me why people in machine learning cared about probabilistic pro-
gramming and pointed out new interesting research directions. These lessons had
huge influence on how I think about probabilistic programming. I will try to
explain the lessons through their influence on my ongoing projects, which aim at
optimising probabilistic programs using techniques from programming languages
and providing denotational semantics of high-order probabilistic programs. These
projects are jointly pursued with Sam Staton, Jan-Willem van de Meent, Frank
Wood (Oxford), Diane Gallois-Wong (ENS), Chris Heunen (Edinburgh), Ohad
Kammar (Cambridge) and David Tolpin (Paypal).

Contents

Invited Talk

Programming with “Big Code” . 3
Eran Yahav

Compilers

Memory-Efficient Tail Calls in the JVM with Imperative
Functional Objects . 11

Tomáš Tauber, Xuan Bi, Zhiyuan Shi, Weixin Zhang, Huang Li,
Zhenrui Zhang, and Bruno C.d.S. Oliveira

A Secure Compiler for ML Modules . 29
Adriaan Larmuseau, Marco Patrignani, and Dave Clarke

Detection of Redundant Expressions: A Complete and Polynomial-Time
Algorithm in SSA . 49

Rekha R. Pai

Separation Logic

Separation Logic with Monadic Inductive Definitions
and Implicit Existentials. 69

Makoto Tatsuta and Daisuke Kimura

Tree-Like Grammars and Separation Logic. 90
Christoph Matheja, Christina Jansen, and Thomas Noll

Static Analysis and Abstract Interpretation

Randomized Resource-Aware Path-Sensitive Static Analysis. 111
Tomasz Dudziak

Quadratic Zonotopes: An Extension of Zonotopes to Quadratic Arithmetics. . . . 127
Assalé Adjé, Pierre-Loïc Garoche, and Alexis Werey

Abstraction of Optional Numerical Values . 146
Jiangchao Liu and Xavier Rival

http://dx.doi.org/10.1007/978-3-319-26529-2_1
http://dx.doi.org/10.1007/978-3-319-26529-2_2
http://dx.doi.org/10.1007/978-3-319-26529-2_2
http://dx.doi.org/10.1007/978-3-319-26529-2_3
http://dx.doi.org/10.1007/978-3-319-26529-2_4
http://dx.doi.org/10.1007/978-3-319-26529-2_4
http://dx.doi.org/10.1007/978-3-319-26529-2_5
http://dx.doi.org/10.1007/978-3-319-26529-2_5
http://dx.doi.org/10.1007/978-3-319-26529-2_6
http://dx.doi.org/10.1007/978-3-319-26529-2_7
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1007/978-3-319-26529-2_9

Hoare Logic and Types

Fault-Tolerant Resource Reasoning . 169
Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner

Shifting the Blame: A Blame Calculus with Delimited Control 189
Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Aliasing Control in an Imperative Pure Calculus . 208
Marco Servetto and Elena Zucca

Functional Programming and Semantics

A Strong Distillery . 231
Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza

From Call-by-Value to Interaction by Typed Closure Conversion 251
Ulrich Schöpp

Kripke Open Bisimulation: A Marriage of Game Semantics
and Operational Techniques . 271

Guilhem Jaber and Nicolas Tabareau

Model Checking

Automata-Based Abstraction for Automated Verification of Higher-Order
Tree-Processing Programs . 295

Yuma Matsumoto, Naoki Kobayashi, and Hiroshi Unno

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 313
Sadaaki Kawata, Kazuyuki Asada, and Naoki Kobayashi

Program Analysis - I

Uncovering JavaScript Performance Code Smells Relevant
to Type Mutations. 335

Xiao Xiao, Shi Han, Charles Zhang, and Dongmei Zhang

Analyzing Distributed Multi-platform Java and Android Applications
with ShadowVM. 356

Haiyang Sun, Yudi Zheng, Lubomír Bulej, Stephen Kell,
and Walter Binder

Medley

Quasi-Linearizability is Undecidable . 369
Chao Wang, Yi Lv, Gaoang Liu, and Peng Wu

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-26529-2_10
http://dx.doi.org/10.1007/978-3-319-26529-2_11
http://dx.doi.org/10.1007/978-3-319-26529-2_12
http://dx.doi.org/10.1007/978-3-319-26529-2_13
http://dx.doi.org/10.1007/978-3-319-26529-2_14
http://dx.doi.org/10.1007/978-3-319-26529-2_15
http://dx.doi.org/10.1007/978-3-319-26529-2_15
http://dx.doi.org/10.1007/978-3-319-26529-2_16
http://dx.doi.org/10.1007/978-3-319-26529-2_16
http://dx.doi.org/10.1007/978-3-319-26529-2_17
http://dx.doi.org/10.1007/978-3-319-26529-2_18
http://dx.doi.org/10.1007/978-3-319-26529-2_18
http://dx.doi.org/10.1007/978-3-319-26529-2_19
http://dx.doi.org/10.1007/978-3-319-26529-2_19
http://dx.doi.org/10.1007/978-3-319-26529-2_20

Objects in Polynomial Time . 387
Emmanuel Hainry and Romain Péchoux

Programming Models

Programming Techniques for Reversible Comparison Sorts 407
Holger Bock Axelsen and Tetsuo Yokoyama

Transactions on Mergeable Objects . 427
Deepthi Devaki Akkoorath and Annette Bieniusa

A Sound Type System for Layer Subtyping and Dynamically Activated
First-Class Layers . 445

Hiroaki Inoue and Atsushi Igarashi

Program Analysis - II

Bottom-Up Context-Sensitive Pointer Analysis for Java 465
Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig

More Sound Static Handling of Java Reflection . 485
Yannis Smaragdakis, George Balatsouras, George Kastrinis,
and Martin Bravenboer

Author Index . 505

Contents XIX

http://dx.doi.org/10.1007/978-3-319-26529-2_21
http://dx.doi.org/10.1007/978-3-319-26529-2_22
http://dx.doi.org/10.1007/978-3-319-26529-2_23
http://dx.doi.org/10.1007/978-3-319-26529-2_24
http://dx.doi.org/10.1007/978-3-319-26529-2_24
http://dx.doi.org/10.1007/978-3-319-26529-2_25
http://dx.doi.org/10.1007/978-3-319-26529-2_26

Invited Talk

Programming with “Big Code”

Eran Yahav(B)

Technion, Haifa, Israel
yahave@cs.technion.ac.il

Abstract. The vast amount of code available on the web is increas-
ing on a daily basis. Open-source hosting sites such as GitHub contain
billions of lines of code. Community question-answering sites provide
millions of code snippets with corresponding text and metadata. The
amount of code available in executable binaries is even greater. In this
talk, I will cover recent research trends on leveraging such “big code”
for program analysis, program synthesis and reverse engineering. We
will consider a range of semantic representations based on symbolic
automata [11,15], tracelets [3], numerical abstractions [13,14], and tex-
tual descriptions [1,22], as well as different notions of code similarity
based on these representations.

To leverage these semantic representations, we will consider a number
of prediction techniques, including statistical language models [19,20],
variable order Markov models [2], and other distance-based and model-
based sequence classification techniques.

Finally, I will show applications of these techniques including semantic
code search in both source code and stripped binaries, code completion
and reverse engineering.

As of August 2015, the GitHub open-source hosting site hosts over 26 million
public repositories. The popular question-answering site Stackoverflow holds over
16 million answers, many of them containing code. Both of these sites, as well as
other similar sites, are growing rapidly. Furthermore, there are millions of binary
executables of mobile applications hosted on the Apple App Store, Google Play,
and others. The number of binaries of desktop applications is larger by at least
an order of magnitude.

The availability of these massive amounts of code and meta-data has the
potential to revolutionize the way software is being developed, taught, debugged,
analyzed, and reverse-engineered. In this talk, and this short paper, I will give
a brief description of some of the main challenges in leveraging “big code” and
how we address them in our work.

TheUnreasonable Effectiveness ofData. In recent years, statistical techniques have
revolutionized many areas [5]. Problems that have been considered extremely dif-
ficult saw tremendous progress through the use of statistical machine learning and
huge amounts of training data. These include problems from language processing
such as speech recognition and machine translation, problems from machine vision
such as scene completion [6], object identification [9], and others [4]. Applying sim-
ilar techniques to software can unlock a new world of opportunities.
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 3–8, 2015.
DOI: 10.1007/978-3-319-26529-2 1

4 E. Yahav

Challenges

Big Code vs. Big Data. A program is a data transformer, not just data.
A single program may represent an unbounded number of behaviors, depending
on its inputs. The analysis of “big code” therefore includes not only the challenges
associated with big data (see [8]), but also a host of additional challenges, those
that stem from the difficulty of modeling (and extracting) semantic properties
of programs.

The ability to extract precise semantic information from a program is a criti-
cal aspect of learning from “big code”. The semantic information extracted from
the program allows us to reason about a program as a data transformer, and
not only on the surface properties of the program itself. The importance of the
precision of static analysis for effective learning from “big code” is supported by
experimental evidence [11,18,19].

Semantic Representation. To learn from “big code”, we need to define the
semantic representation that we extract from each program, and the model
that we use to represent the aggregate knowledge. The semantic representation
can range from surface properties of the program (based on program syntax),
through tracelets [3] that capture partial information about possible execution
traces, symbolic automata [11,15] that summarize possible execution using regu-
lar approximations, numerical abstractions [13,14] that capture possible numer-
ical runtime values, textual descriptions [1,22] correlated with a program, and
more.

Program Similarity. Similarity is a central notion in many machine learning
algorithms. Even for algorithms that are not based on similarity, understanding
the similarity between objects can help in the design of the model. While there
has been a lot of work on various notions of program equivalence [12,16,17], and
qualitative notions of program differencing [7,13,14], the problem of quantitative
program similarity remains largely unexplored.

Applications

Program Synthesis. Program synthesis techniques generate procedural code
from declarative specifications. Existing techniques apply synthesis at such a fine
grain that they can never hope to generate code of the richness and complex-
ity required by application-level programmers. In contrast, synthesis algorithms
using “big code” may leverage the collective programming knowledge captured
in millions of open-source projects [11,15,19].

While synthesis of an entire realistic program from a declarative specification
remains a somewhat distant vision, there are forms of synthesis that are already
of practical value. In some cases, the problem of synthesis can be reduced to the
problem of semantic code search. That is, trying to synthesize code for which a
solution already exists, the problem is finding that solution (and verifying that
it satisfies the desired specification) rather than synthesizing the solution from
scratch.

In other cases, part of the program is already known, and the programmer
only needs the synthesizer to synthesize a certain code completion, filling the

Programming with “Big Code” 5

missing parts. For example, Fig. 1 shows a partial program using the FTPClient

API. This program has two “holes” (H1, H2) left by the programmer who did
not know which operations should be invoked. Automatic code completion tech-
niques (such as [11,19]) use aggregate models to compute the most likely com-
pletions for a partial program. For this example, one of the results may be that
H1 should be completed with a call to login and H2 should be completed by a
call to logout.

Fig. 1. Partial code using FTPClient API. Code completion technique can compute
the most likely completions for the holes H1, H2 based on how other programs are using
the API.

Reverse Engineering of Binaries. New software is released daily. Most of
the software that reaches users is delivered in binary form without sources. The
only way to make sure that software is free from vulnerabilities and back-doors
is to understand how it works. To gain such understanding, experts usually go
through the difficult and tedious process of reverse engineering binaries.

Reverse Engineering Dynamic Dispatch: When reverse engineering a binary, the
main goal is to understand the control and data flow of the program. Indirect
calls to dynamically computed targets, such as when virtual tables are in play,
make this task more difficult by hiding the real target of a call [21].

Analysis of “big code” can assist reverse engineering by automatically recov-
ering types of objects in binaries. Specifically, given a stripped (no debug infor-
mation) optimized binary which uses dynamic dispatch, one can use “big code”
to statically infer the likely types for objects in the binary, and thus the likely
targets of each indirect method call. One approach by Katz et al. [10] is to
infer the likely type of an object based on usage patterns of the object. Katz
et al. use Variable-order Markov Models (VMMs) as a classification mechanism
to determine the most likely types for each object.

Finding Similar Code Fragments: One of the goals of reverse engineering is
detecting software vulnerabilities. When a new vulnerability is discovered, it
is challenging to find all of its occurrences in different binaries. The code of
a single vulnerable function may have been stripped from the original library,
slightly patched, and statically linked, leaving a ticking time-bomb in an appli-
cation without an effective way of identifying it.

An effective technique for searching in executables can help find such vul-
nerabilities in a given code base. Given a function f in binary form, and a large
code base, the goal is to statically find functions that are similar to f in the code
base. The main challenge is to define a notion of similarity that goes beyond

6 E. Yahav

Fig. 2. Semantically related fragments for generating permutations of a given string.
(a) in Python and (b) in Java.

direct syntactic matching. One approach, used by David et al. [3] is to define a
notion of similarity by decomposition based on decomposing each function to a
set of control tracelets and defining similarity between sets of tracelets.

Similarity Across Different Programming Languages and Libraries.
Consider the two code fragments in Fig. 2. Both of these fragments generate
permutations of a given string. The code fragment in Fig. 2(a) is written in
Python and the code in Fig. 2(b) is written in Java. Despite their considerable
syntactic difference, and the fact that they are written in two completely different
programming languages, we would like to say that the two are similar, as they
have similar functionality (there is a slight difference as Fig. 2(a) prints the
permutations and Fig. 2(b) just generates them).

Fig. 3. Example textual descriptions associated with the code fragments in Fig. 2

Efforts to capture this similarity via syntactic approaches, such as strings or
ASTs comparison will fail due to the significant differences in the language syn-
tax and the fact that the two use different computation structure. Even seman-
tic approaches based on input-output relations will have difficulty to establish
the connection between the snippets because Fig. 2(a) holds concrete values
and Fig. 2(b) expects to get them as input. Moreover, the usage in language

Programming with “Big Code” 7

specific operations (e.g., range in Python, chatAt in Java), adds another layer
of difficulty. One approach to address these challenges is to bypass them using
external source of information - textual descriptions associated with the code
fragments (as shown in Fig. 3). This approach leverages “big code” together
with its corresponding textual metadata [22].

Acknowledgement. The research leading to these results has received funding from
the European Union’s - Seventh Framework Programme (FP7) under grant agreement
no. 615688 ERC- COG-PRIME.

References

1. http://like2drops.com
2. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order Markov

models. J. Artif. Intell. Res. 22, 385–421 (2004)
3. David, Y., Yahav, E.: Tracelet-based code search in executables. In: Proceedings

of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pp. 349–360 (2014)

4. Faktor, A., Irani, M.: Clustering by composition: unsupervised discovery of image
categories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1092–1106 (2014)

5. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

6. Hays, J., Efros, A.A.: Scene completion using millions of photographs. In: ACM
SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA (2007)

7. Horwitz, S.: Identifying the semantic and textual differences between two versions
of a program, vol. 25. ACM (1990)

8. Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M.,
Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun.
ACM 57(7), 86–94 (2014)

9. Kang, H., Hebert, M., Efros, A.A., Kanade, T.: Data-driven objectness. IEEE
Trans. Pattern Anal. Mach. Intell. 37(1), 189–195 (2015)

10. Katz, O.: Type prediction using variable order Markov models. Master’s thesis,
Technion (2015)

11. Mishne, A., Shoham, S., Yahav, E.: Typestate-based semantic code search over
partial programs. In: OOPSLA ’12 (2012)

12. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, PLDI ’00, pp. 83–94, New York, NY, USA (2000)

13. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs. In:
Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 238–258.
Springer, Heidelberg (2013)

14. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: Proceedings of the ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, OOPSLA’14 (2014)

15. Peleg, H., Shoham, S., Yahav, E., Yang, H.: Symbolic automata for represnting big
code. In: International journal on Software Tools for Technology Transfer, STTT’15
(2015)

16. Pnueli, A., Siegel, M.D., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

http://like2drops.com

8 E. Yahav

17. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
669–685. Springer, Heidelberg (2011)

18. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big
code”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15, pp. 111–124 (2015)

19. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language
models. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI’14, p. 44 (2014)

20. Rosenfeld, R.: Two decades of statistical language modeling: where do we go from
here? Proc. IEEE 88, 1270–1278 (2000)

21. Sabanal, P.V., Yason, M.V.: Reversing C++. https://www.blackhat.com/
presentations/bh-dc-07/Sabanal Yason/Paper/bh-dc-07-Sabanal Yason-WP.pdf

22. Sinai, M.B., Yahav, E.: Code similarity via natural language descriptions. In: POPL
Off the Beaten Track, OBT’15 (2014)

https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf

Compilers

Memory-Efficient Tail Calls in the JVM
with Imperative Functional Objects

Tomáš Tauber1(B), Xuan Bi1, Zhiyuan Shi1, Weixin Zhang1, Huang Li2,
Zhenrui Zhang2, and Bruno C.D.S. Oliveira1

1 The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
{ttauber,xbi,zyshi,wxzhang2,bruno}@cs.hku.hk
2 Zhejiang University, 38 Zheda Road, Hangzhou, China

{lihuanglx,jerryzh168}@gmail.com

Abstract. This paper presents FCore: a JVM implementation of Sys-
tem F with support for full tail-call elimination (TCE). Our compilation
technique for FCore is innovative in two respects: it uses a new rep-
resentation for first-class functions called imperative functional objects;
and it provides a way to do TCE on the JVM using constant space.

Unlike conventional TCE techniques on the JVM, allocated func-
tion objects are reused in chains of tail calls. Thus, programs written
in FCore can use idiomatic functional programming styles, relying on
TCE, and perform well without worrying about the JVM limitations.
Our empirical results show that programs which use tail calls can run
in constant space and with low execution time overhead when compiled
with FCore.

1 Introduction

A runtime environment, such as the JVM, attracts both functional programming
(FP) languages’ compiler writers and users: it enables cross-platform development
and comes with a large collection of libraries and tools. Moreover, FP languages
give programmers on the JVM other benefits: simple, concise and elegant ways to
write different algorithms; high code reuse via higher-order functions; and more
opportunities for parallelism, by avoiding the overuse of side-effects (and shared
mutable state) [2]. Unfortunately, compilers for functional languages are hard to
implement efficiently in the JVM. FP promotes a programming style where func-
tions are first-class values and recursion is used instead of mutable state and loops
to define algorithms. The JVM is not designed to deal with such programs.

The difficulty in optimizing FP in the JVM means that: while FP in the JVM
is possible today, some compromises are still necessary for writing efficient pro-
grams. Existing JVM functional languages, including Scala [16] and Clojure [10],
usually work around the challenges imposed by the JVM. Those languages give
programmers alternatives to a FP style. Therefore, performance-aware program-
mers avoid certain idiomatic FP styles, which may be costly in those languages,
and use the available alternatives instead.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 11–28, 2015.
DOI: 10.1007/978-3-319-26529-2 2

12 T. Tauber et al.

In particular, one infamous challenge when writing a compiler for a func-
tional language targeting the JVM is: How to eliminate and/or optimize tail
calls? Before tackling that, one needs to decide how to represent functions in the
JVM. There are two standard options: JVM methods and functions as objects
(FAOs). Encoding first-class functions using only JVM methods directly is lim-
iting: JVM methods cannot encode currying and partial function application
directly. To support these features, the majority of functional languages or exten-
sions (including Scala, Clojure, and Java 8) adopt variants of the functions-as-
objects approach:

interface FAO {Object apply(Object arg);}

With this representation, we can encode curried functions, partial application
and pass functions as arguments. However, neither FAOs nor JVM methods
offer a good solution to deal with general tail-call elimination (TCE) [22]. The
JVM does not support proper tail calls. In particular scenarios, such as single,
tail-recursive calls, we can easily achieve an optimal solution in the JVM. Both
Scala and Clojure provide some support for tail-recursion [11,16]. However, for
more general tail calls (such as mutually recursive functions or non-recursive
tail calls), existing solutions can worsen the overall performance. For example,
JVM-style trampolines [19] (which provide a general solution for tail calls) are
significantly slower than normal calls and consume heap memory for every tail
call.

Contributions. This paper presents a new JVM compilation technique for
functional programs, and creates an implementation of System F [9,18] using
the new technique. The compilation technique builds on a new representation
of first-class functions in the JVM: imperative functional objects (IFOs). With
IFOs it is possible to use a single representation of functions in the JVM and
still achieve memory-efficient TCE. As a first-class function representation, IFOs
also support currying and partial function applications.

We represent an IFO by the following abstract class:

abstract class Function {
Object arg, res;
abstract void apply();

}

With IFOs, we encode both the argument (arg) and the result of the functions
(res) as mutable fields. We set the argument field before invoking the apply()

method. At the end of the apply() method, we set the result field. An important
difference between the IFOs and FAOs encoding of first-class functions is that, in
IFOs, function application is divided in two parts: setting the argument field ; and
invoking the apply method. For example, if we have a function call factorial
10, the corresponding Java code using IFOs is:

factorial.arg = 10; // setting argument
factorial.apply(); // invoking function

Memory-Efficient Tail Calls in the JVM 13

The fact that we can split function application into two parts is key to enable
new optimizations related to functions in the JVM. In particular, the TCE app-
roach with IFOs does not require memory allocation for each tail call and has
less execution time overhead than the JVM-style trampolines used in languages
such as Clojure and Scala. Essentially, with IFOs, it is possible to provide a
straightforward TCE implementation, resembling Steele’s “UUO handler” [23],
in the JVM.

Using IFOs and the TCE technique, we created FCore: a JVM implementa-
tion of an extension of System F. FCore aims to serve as an intermediate func-
tional layer on top of the JVM, which ML-style languages can target. According
to our experimental results, FCore programs perform competitively against
programs using regular JVM methods, while still supporting TCE. Programs in
FCore tend to have less execution time overhead and use less memory than
programs using conventional JVM trampolines.

In summary, the contributions of this paper are:

– Imperative Functional Objects: A new representation of first-class func-
tions in the JVM, offering new ways to optimize functional programs.

– A memory-efficient approach to tail-call elimination: A way to imple-
ment TCE in the JVM using IFOs without allocating memory per each tail
call.

– FCore: An implementation of a System F-based intermediate language that
can be used to target the JVM by FP compilers.

– Formalization and empirical results: Our basic compilation method from
a subset of FCore into Java is formalized. Our empirical results indicate that
FCore allows general TCE in constant memory space and with execution
time comparable to regular JVM methods.

2 FCore and IFOs, Informally

This section informally presents FCore programs and their IFO-based encoding
and how to deal with tail-call elimination. Sections 3 and 4 present a formalized
compilation method for a subset of FCore (System F) into Java, based on the
ideas from this section. Note that, for purposes of presentation, we show slightly
simplified encodings in this section compared to the formal compilation method.

2.1 Encoding Functions with IFOs

In FCore, we compile all functions to classes extending the Function class
presented in Sect. 1. For example, consider a simple identity function on integers.
In FCore or System F (extended with integers), we represent it as follows:

id ≡ λ(x : Int). x

We can manually encode this definition with an IFO in Java as follows:
class Id extends Function {

public void apply () {
final Integer x = (Integer) this.arg;
res = x;

}
}

14 T. Tauber et al.

The arg field encodes the argument of the function, whereas the res field encodes
the result. Thus, to create the identity function, all we need to do is to copy the
argument to the result. A function invocation such as id 3 is encoded as follows:

Function id = new Id();
id.arg = 3; // setting argument
id.apply(); // invoking apply()

The function application goes in two steps: it first sets the arg field to 3 and
then invokes the apply() method.

Curried Functions. IFOs can naturally define curried functions, such as:
constant ≡ λ(x : Int). λ(y : Int). x

Given two integer arguments, this function will always return the first one. Using
IFOs, we can encode constant in Java as follows:

class Constant extends Function {
public void apply () {

final Integer x = (Integer) this.arg;
class IConstant extends Function {

public void apply() {
final Integer y = (Integer) this.arg;
res = x;

}
}
res = new IConstant();

}
}

Here, the first lambda function sets the second one as its result. The definition
of the second apply method sets the result of the function to the argument of
the first lambda function. The use of inner classes enforces the lexical scoping of
functions. We encode an application such as constant 3 4 as:

Function constant = new Constant();
constant.arg = 3;
constant.apply();
Function f = (Function) constant.res;
f.arg = 4;
f.apply();

We first set the argument of the constant function to 3. Then, we invoke the
apply method and store the resulting function to a variable f. Finally, we set
the argument of f to 4 and invoke f’s apply method. Note that the alias x for
this.arg is needed to prevent accidental overwriting of arguments in partial
applications. For example in constant 3 (constant 4 5), the inner application
constant 4 5 would overwrite 3 to 4 and the outer one would incorrectly return 4.

Partial Function Application. With curried functions, we can encode par-
tial application easily. For example, consider the following expression: three ≡
constant 3. The code for this partial application is simply:

Memory-Efficient Tail Calls in the JVM 15

Fig. 1. Functions even and odd using IFOs with tail-call elimination

Function constant = new Constant();
constant.arg = 3;
constant.apply();

Recursion. FCore supports simple recursion, as well as mutual recursion. For
example, consider the functions even and odd defined to be mutually recursive:

even ≡ λ(n : Int). if (n = 0) then true else odd(n − 1)
odd ≡ λ(n : Int). if (n = 0) then false else even(n − 1)

These two functions define a naive algorithm for detecting whether a number
is even or odd. We can encode recursion using Java’s own recursion: the Java
references even and odd are themselves mutually recursive (Fig. 1).

2.2 Tail-Call Elimination

The recursive calls in even and odd are tail calls. IFOs present new ways for
doing tail-call elimination in the JVM. The key idea, inspired by Steele’s work
on encoding tail-call elimination [23], is to use a simple auxiliary structure

class Next {static Function next = null;}

that keeps track of the next call to be executed. Figure 1 illustrates the use of the
Next structure. This is where we make a fundamental use of the fact that function
application is divided into two parts with IFOs. In tail calls, we set the arguments
of the function, but we delay the apply method calls. Instead, the next field of
Next is set to the function with the apply method. The apply method is then
invoked at the call-site of the functions. The code in Fig. 2 illustrates the call
even 10. In JVM-style trampolines, each (method) call creates a Thunk. IFOs,

16 T. Tauber et al.

Fig. 2. This figure contrasts the TCE approach with JVM-style trampolines (left,
custom implementation) and with IFOs and the Next handler (right, see Fig. 1 for
implementation).

however, are reused throughout the execution. The idea is that a function call
(which is not a tail-call) has a loop that jumps back-and-forth into functions.
The technique is similar to some trampoline approaches in C-like languages.
However, an important difference to JVM-style trampolines is that utilization of
heap space is not growing. In other words, tail-calls do not create new objects
for their execution, which improves memory and time performance. Note that
this method is general : it works for simple recursive tail calls, mutually recursive
tail calls, and non-recursive tail calls.

3 Compiling FCore

This section formally presents FCore and its compilation to Java. FCore is an
extension of System F (the polymorphic λ-calculus) [9,18] that can serve as a
target for compiler writers.

Syntax. In this section, for space reasons, we cover only the FCore constructs
that correspond exactly to System F. Nevertheless, the constructs in System
F represent the most relevant parts of the compilation process. As discussed

Memory-Efficient Tail Calls in the JVM 17

in Sect. 5.1, our implementation of FCore includes other constructs that are
needed to create a practical programming language.

System F. The basic syntax of System F is:

Types τ ::= α | τ1 → τ2 | ∀α.τ
Expressions e ::=x | λ(x : τ).e | e1 e2 | Λα.e | e τ

Types τ consist of type variables α, function types τ1 → τ2, and type abstraction
∀α.τ . A lambda binder λ(x : τ).e abstracts expressions e over values (bound by
a variable x of type τ) and is eliminated by function application e1 e2. An
expression Λα.e abstracts an expression e over some type variable α and is
eliminated by a type application e τ .

From System F to Java. Figure 3 shows the type-directed translation rules
that generate Java code from given System F expressions. We exploit the fact
that System F has an erasure semantics in the translation. This means that
type abstractions and type applications do not generate any code or have any
overhead at run-time.

We use two sets of rules in our translation. The first one is translating Sys-
tem F expressions. The second set of rules, the function 〈τ〉, describes how we
translate System F types into Java types.

In order to do the translation, we need translation environments:

Γ ::= ε | Γ (x1 : τ �→ x2) | Γα

Translation environments have two purposes: (1) to keep track of the type and
value bindings for type-checking purposes; (2) to establish the mapping between
System F variables and Java variables in the generated code.

The translation judgment in the first set of rules adapts the typing judgment
of System F:

Γ � e : τ � J in S
It states that System F expression e with type τ results in Java expression
J created after executing a block of statements S with respect to translation
environments Γ . FJ-Var checks whether a given value-type binding is present
in an environment and generates a corresponding, previously initialized, Java
variable. FJ-TApp resolves the type of an abstraction and substitutes the applied
type in it. FJ-TAbs translates the body of type abstractions – note that, in
the extended language, type abstractions would need to generate suspensions.
FJ-Abs translates term abstractions. For translating term abstractions, we need
evidence for resolving the body e and a bound variable x of type τ1. We then
wrap the generated expression J and its deriving statements S as follows. We
create a class with a fresh name FC, extending the Function class. In the body
of apply, we first create an alias for the function argument with a fresh name
y, then execute all statements S1 deriving its resulting Java expression J that
we assign as the output of this function. Following that, we create a fresh alias f

18 T. Tauber et al.

Fig. 3. Type-directed translation from system F to Java

for the instance of the mentioned function, representing the class FC. FJ-App
is the most vital rule. Given the evidence that e1 is a function type, we generate
a fresh alias f for its corresponding Java expression J1. The S3 block contains
statements to derive the result of the application. As described in Sect. 2, we
split applications into two parts in IFOs. We first set the argument of f to the
Java expression J2, given the evidence resulting from e2. Then, we call f ’s apply
method and store the output in a fresh variable xf . Before executing statements
in S3, we need to execute statements S1 and S2 deriving J1 and J2 respectively.
To derive xf , we need to execute all dependent statements: S1 	 S2 	 S3.

Memory-Efficient Tail Calls in the JVM 19

Properties of the Translation. Two fundamental properties are worthwhile
proving for this translation: translation generates well-typed (cast-safe) Java pro-
grams; and semantic preservation. Proving these two properties requires the sta-
tic and dynamic semantics (as well as the soundness proof) of the target language
(an imperative subset of Java with inner classes in our case). Unfortunately, as
far as we know, the exact subset of Java that we use has not been completely
formalized yet. Three possibilities exist: (1) choosing an existing Java subset for-
malization and emulating its missing features in the translation, (2) developing
our own formalized Java subset, (3) relating the translation to complete Java
semantics within matching logic [5]. Each option would require complex changes
beyond this paper’s scope, hence it is a part of future work.

4 Tail-Call Elimination

In this section, we show how we can augment the basic translation in Sect. 3 to
support tail-call elimination.

As shown in Fig. 1, we can do TCE with IFOs. To capture this formally, we
augment the apply method call generation, in rule FJ-App, with two possibili-
ties:

1. The apply method is in a tail position. This means we can immediately return
by setting the next field of the controlling auxiliary Next class to the current
Function object, without calling the apply method.

2. The apply method is not in a tail position. This means we need to evaluate
the corresponding chain of calls, starting with the current call, followed by
any apply calls within it.

We need to make two changes to achieve this goal: (1) add a tail call detection
mechanism; and (2) use a different way of compiling function applications.

Detecting Tail Calls. We base the detection mechanism on the tail call context
from the Revised Report on Scheme [1]. When we translate a value application
e1 e2, we know that e2 is not in a tail position, whereas e1 may be if the current
context is a tail context. In type applications and abstractions, we know they
only affect types: they do not affect the tail call context. Thus, they preserve the
state we entered with for translating the apply calls. In λ abstractions, we enter
a new tail call context. This detection mechanism is integrated in our translation
and used when compiling function applications.

Compiling Function Applications. We augment the apply method call genera-
tion as follows. We extend the premise of FJ-App to include one extra freshly
generated variable c:

Γ � e1 : τ2 → τ1 � J1 in S1

Γ � e2 : τ2 � J2 in S2 f, xf , c fresh

Γ � e1 e2 : τ1 � xf in S1 	 S2 	 S3

20 T. Tauber et al.

In the conclusion, we change S3. For tail calls, we define it as follows:

S3 := {
Function f = J1;
f.arg = J2;
Next.next = f;

}

Note that xf is not bound in S3 here. Because the result of a tail call is delayed,
the result of the tail call is still not available at this point. However, this does
not matter: since we are on a tail call, the variable would be immediately out of
its scope anyway and cannot be used.

For non-tail calls, we initialize xf in S3 as the final result:
S3 := {

Function f = J1;
f.arg = J2;
Next.next = f;
Function c;
Object xf;
do {
c = Next.next;
Next.next = null;
c.apply();

} while (Next.next != null);
xf = c.res;

}

This generated code resembles the example in Sect. 2, except for the general
Object xf being in place of the specialized Boolean res. The idea of looping
through a chain of function calls remains the same.

5 Implementation and Evaluation

5.1 Implementation

We implemented1 a compiler for FCore based on the representation and type-
directed translation we described in Sects. 3 and 4. Our actual implementation
has extra constructs, such as primitive operations, types and literals, let bind-
ings, conditional expressions, tuples, and fixpoints. It also contains constructs
for a basic Java interoperability. The compiler performs other common forms of
optimizations, such as optimizing multi-argument function applications, partial
evaluation, inlining, and unboxing. We wrote the compiler in Haskell and the
code repository contains several example programs as well as a large test suite.

5.2 Evaluation

We evaluate two questions with the respect to IFOs:

1. Do IFOs support general TCE in constant memory space?
2. What is the execution time overhead of IFOs?
1 FCore code repository: https://github.com/hkuplg/fcore.

https://github.com/hkuplg/fcore

Memory-Efficient Tail Calls in the JVM 21

The first question is assessed through measuring total allocated objects on
heap in an implementation of DFA. The second question is evaluated in two
parts. Firstly, we use microbenchmarks to isolate different simple call behaviors.
Secondly, we come back to the DFA implementation’s time performance.

of Objects Min Max

IFO 5451 5451

Java (T) 4665 104879

Java (M) 4128 4128

Java (FAO) 18102 24082

Fig. 4. The DFA encoding: the two columns show the minimum and maximum numbers
of total allocated objects on heap from isolated profiled runs with all input lengths.
Due to space limitations, the x-axes of plots are cropped at 15000 for clarity.

General TCE in Constant Memory. One common idiom in functional pro-
gramming is encoding finite states as tail recursive functions and state transitions
as mutual calls among these functions. One trivial example of this is the naive
even-odd program which switches between two states. A more useful application
is in the implementation of finite state automata [13]. Normally, functional lan-
guage programmers seek this idiom for its conciseness. However in JVM-hosted
functional languages, programmers tend to avoid this idiom, because they either
lose correctness (StackOverflow exceptions in a method-based representation)
or performance (in a trampoline-based one). In this experiment, we implemented
a DFA recognizing a regular expression (AAB∗|A∗B)+ and measured the per-
formance on randomly generated Strings with different lengths.

We implemented it in FCore to assess IFOs (with all the optimizations men-
tioned in Sects. 4 and 5.1) and in Java (1.8.0 25) to assess different closure rep-
resentations: method calls, Java 8’s lambdas (functions-as-objects), and custom
trampolines. We chose plain Java implementation, because we can examine the
runtime behavior of different representations without potential compiler over-
heads. All implementations used primitive char variables and did not allocated
any new objects on heap when reading from the input Strings. We report the
total number of allocated objects on heap in the isolated application runs, as
measured by HPROF [17], the JDK’s profiling tool.

We executed all benchmarks on the following platform with the
HotSpotTMVM (1.8.0 25): Intel R©CoreTMi5 3570 CPU, 1600MHz DDR3 4GB
RAM, Ubuntu 14.04.1.

22 T. Tauber et al.

We show the result of this experiment in Fig. 4. The IFO- and trampoline-
based implementations continued executing after method-based and FAO-based
ones threw a StackOverflow exception. IFOs, similarly to the method-based
implementation, allocated a constant number of objects on heap. The trampoline
one, however, increased its object allocation with the input, because it needed
to create an object for each tail call.

Time Overhead: Isolated Call Behavior. For measuring time overhead,
we show two experiments: isolated simple call behavior in different microbench-
marks and the time performance of the DFA implementation. We wrote the
benchmark programs in the extended System F for our compilation process
and in the following JVM-hosted languages in their stable versions: Scala
(2.11.2) [16], Clojure (1.6.0) [10], and Java (1.8.0 25, as before). For encod-
ing mutually recursive tail calls, we used the provided trampoline facilities
in Scala (scala.util.control .TailCalls) and Clojure (tramp from
clojure.core.logic).

The programs were executed on the same platform as the memory exper-
iment. For the automation of performance measurement, we used the Java
Microbenchmark Harness (JMH) tool which is a part of OpenJDK [8]. Based
on the provided annotations, JMH measures execution of given programs. In
addition to that, it takes necessary steps to gain stable results. They include
non-measured warm-up iterations for JITC, forcing garbage collection before
each benchmark, and running benchmarks in isolated VM instances. We config-
ured JMH for 10 warm-up runs and 10 measured runs from which we compute
averages.

We chose four programs to represent the following behaviors:

– Non-tail recursive calls: Computing the factorial and Fibonacci numbers using
naive algorithms.

– Single method tail recursive calls: Computing factorial using a tail recursive
implementation.

– Mutually recursive tail calls: Testing evenness and oddness using two mutually
recursive functions.

Non-tail recursive programs present two examples of general recursive calls and
we executed them, altogether with the tail recursive programs, on low input
values (not causing StackOverflow exceptions in default JVM settings). In
addition to that, we executed the tail recursive programs on high input val-
ues in which method-based implementations threw StackOverflow exceptions
in default JVM settings. We show the results in Fig. 5. Its left part shows the
result for low input values in IFOs, method implementations in all the other
languages and the fastest trampoline implementation (Java); the plot is normal-
ized to the Java method-based implementation’s results. The right part shows
the result for high input values in IFO- and trampoline-based implementations;
the plot is normalized to results of IFO-based implementations. For low input
values, we can see that IFO-based implementations run slightly slower than

Memory-Efficient Tail Calls in the JVM 23

Fig. 5. The isolated call behavior experiments: the reported times are averages of 10
measured runs and corresponding standard deviations. The plots are normalized to
Java’s (left table and plot) and IFO’s (right table and plot) results – the lower, the
faster.

method-based ones. However, their overhead is small compared with the fastest
trampoline implementations in our evaluation. IFOs ran 0.1 to 1.7-times slower
than method-based representations, whereas the fastest trampolines ran 7.7 to
22.3-times slower. In the tail recursive programs, Scala ran slightly faster than
standard Java methods due to its compiler optimizations. Clojure has an addi-
tional overhead, because its compiler enforces integer overflow checking. For the
high input values, the method-based implementations threw a StackOverflow

exception in default JVM settings, unlike IFOs and trampoline implementations
which can continue executing with this input. IFOs ran 3.9 to 12.2-times faster
(excluding Clojure) than trampoline implementations. Again, Clojure suffered
from its additional overhead and threw an integer overflow exception in the tail
recursive factorial. Using BigIntegers would prevent this, but we wanted to iso-
late the call behavior in this experiment, i.e. avoid any extra overhead from other
object allocations.

Time Overhead: DFA Performance. Unlike the first experiment, where
the programs isolated costs of plain recursive calls, DFA encoding represents a
more realistic behavior with other costs, such as non-recursive method calls and
calls to other API methods (e.g. reading input). The setting was the same as in

24 T. Tauber et al.

Fig. 6. The DFA encoding: the reported times are averages of 10 measured runs and
corresponding standard deviations. Due to space limitations, the x-axes of plots are
cropped at 15000 for clarity.

the constant memory experiment and we performed time measurement in the
same way as in the isolated call behavior experiment. We show the result of
this experiment in Fig. 6. The FAO-based implementation ran slowest out of all
implementations and threw StackOverflow exception with a smaller input than
the method-based implementation. That is because it creates extra objects and
performs extra calls due to its representation. As in the isolated calls experiment,
the IFO-based implementation ran about 0.5-times slower than method-based
implementation. Trampolines, however, ran about 2-times slower. The IFO- and
trampoline-based implementations continued executing after method-based one
threw a StackOverflow exception. The IFO-based implementation was about
0.2-times faster than the trampoline one for larger inputs.

6 Related Work

This section discusses related work: intermediate functional languages on top of
the JVM, TCE and function representations, TCE on the JVM, and the JVM
modifications.

Memory-Efficient Tail Calls in the JVM 25

Intermediate Functional Languages on top of the JVM. A primary objective of
our work is to create an efficient intermediate language that targets the JVM.
With such intermediate language, compiler writers can easily develop FP compil-
ers in the JVM. System F is an obvious candidate for an intermediate language
as it serves as a foundation for ML-style or Haskell-style FP languages. However,
there is no efficient implementation of System F in the JVM. The only imple-
mentation of System F that we know of (for a JVM-like platform) was done
by Kennedy and Syme [12]. They showed that System F can be encoded, in a
type-preserving way, into .NET’s C#. That encoding could easily be employed
in Java or the JVM as well. However, their focus was different from ours. They
were not aiming at having an efficient implementation of System F. Instead,
their goal was to show that the type system of languages such as C# or Java is
expressive enough to faithfully encode System F terms. They used a FAO-based
approach and have not exploited the erasure semantics of System F. As a result,
the encoding suffers from various performance drawbacks and cannot be realis-
tically used as an intermediate language. MLj [4] compiled a subset of SML’97
(interoperable with Java libraries) to the Monadic Intermediate Language, from
which it generated Java bytecode. Various Haskell-to-JVM compiler backends
[6,25,27] used different variations of the graph reduction machine [26] for their
code generation, whereas we translate from System F.

Tail-Call Elimination and Function Representations. A choice of a function rep-
resentation plays a great role [21] in time and space efficiency as well as in how
difficult it is to correctly implement tail calls. Since Steele’s pioneering work on
tail calls [22], implementors of FP languages often recognize TCE as a necessary
feature. Steele’s Rabbit Scheme compiler [23] introduced the “UUO handler”
that inspired our TCE technique using IFOs. Early on, some Scheme compilers
targeted C as an intermediate language and overcame the absence of TCE in
the backend compiler by using trampolines. Trampolines incur on performance
penalties and different techniques, with “Cheney on the M.T.A.”[3] being the
most known one, improved upon them. The limitations of the JVM architecture,
such as the lack of control over the memory allocation process, prevent a full
implementation of Baker’s technique.

Tail-Call Elimination on the JVM. Apart from the recent languages, such as
Scala [16] or Clojure [10], functional languages have targeted the JVM since
its early versions. Several other JVM functional languages support (self) tail
recursion optimization, but not full TCE. Examples include MLj [4] or Frege [28].
Later work [15] extended MLj with Selective TCE. This work used an effect
system to estimate the number of successive tail calls and introduced trampolines
only when necessary. Another approach to TCE in the JVM is to use an explicit
stack on the heap (an Object[] array) [6]. With such explicit stack for TCE, the
approach from Steele’s pioneering work [23] can also be encoded in the JVM.
Our work avoids the need for an explicit stack by using IFOs, thus allowing
for a more direct implementation of this technique. The Funnel compiler for
the JVM [19] used standard method calls and shrank the stack only after the

26 T. Tauber et al.

execution reached a predefined “tail call limit”. This dynamic optimization needs
careful tuning of the parameters, but can be possibly used to further improve
performance of our approach.

JVM Modifications. Proposals to modify the JVM [14], which would arguably
be a better solution for improving support for FP, appeared early on. One reason
why the JVM does not support tail calls was due to a claimed incompatibility of
a security mechanism based on stack inspection with a global TCE policy. The
abstract continuation-marks machine [7] refuted this claim. There exists one
modified Java HotSpotTMVM [20] with TCE support. The research Maxine VM
with its new self-optimizing runtime system [29] allows a more efficient execution
of JVM-hosted languages. Despite these and other proposals and JVM imple-
mentations, such as IBM J9, we are not aware of any concrete plans for adding
TCE support to the next official JVM release. Some other virtual machines
designed for imperative languages do not support TCE either. For example, the
standard Python interpreter lacks it, even though some enhanced variants can
overcome this issue [24]. Hence, ideas from our work can be applied outside of
the JVM ecosystem.

7 Conclusion and Future Work

Functional Programming in the JVM is already possible today. However, when
efficiency is a concern, programmers and compiler writers still need to be aware
of the limitations of the JVM. Some of the problems are the need for two function
representations; and the lack of a good solution for TCE. This paper shows that
IFOs allow for a uniform representation of functions, while being competitive in
terms of time performance and supporting TCE in constant space.

There is much to be done for future work. We would like to prove correctness
results for our translation from System F to Java. To achieve this, we will first
need a suitable formalization of Java that includes inner classes and imperative
features. Furthermore, we will adopt the thread-safe version of our translation
– one main difference is that IFOs should be allocated at their call sites rather
than at their definition sites. One other aspect is with currying and partial appli-
cations, where the uniform function representation is important. FAOs here can
have substantial time and memory overheads, especially when defining multi-
argument recursive functions, so current languages tend to avoid them and use
two representations: JVM methods when possible; and FAOs when necessary.
With additional optimizations in FCore, such as multi-argument closure opti-
mization and unboxing, IFOs serve as one uniform efficient function representa-
tion. We would like to formalize and refine a number of optimizations that we
have been experimenting with in FCore; and explore what other optimizations
are possible with IFOs. Finally, we want to build frontends for realistic functional
languages on top of FCore and write large functional programs, including a full
bootstrapping compiler of FCore, in those frontends.

Memory-Efficient Tail Calls in the JVM 27

Acknowledgments. We would like to thank T. H. Tse, C.-L. Wang, Vlad Urechte,
Rúnar Bjarnason, and FCore contributors for help and valuable feedback on pre-
vious drafts of this work. We also thank the anonymous reviewers for their helpful
suggestions. The work described in this paper was partially supported by a grant from
the Research Grants Council of the Hong Kong Special Administrative Region, China
(Project No. HKU 27200514).

References

1. Abelson, H., Dybvig, R., Haynes, C., Rozas, G., Adams, N.I.I., Friedman, D.,
Kohlbecker, E., Steele, G.L., Bartley, D., Halstead, R., Oxley, D., Sussman, G.,
Brooks, G., Hanson, C., Pitman, K., Wand, M.: Revised5 report on the algorithmic
language scheme. High.-Order Symbolic Comput. 11(1), 7–105 (1998)

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World, p. 536.
Pragmatic Bookshelf, Raleigh (2007)

3. Baker, H.G.: CONS should not CONS its arguments, part II. ACM SIGPLAN Not.
30(9), 17–20 (1995)

4. Benton, N., Kennedy, A., Russell, G.: Compiling Standard ML to Java Bytecodes.
In: Proceedings of the 3rd ACM SIGPLAN International Conference on Functional
Programming (1998)

5. Bogdanas, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 445–456. POPL 2015, ACM, New York, NY, USA (2015)

6. Choi, K., Lim, H., Han, T.: Compiling lazy functional programs based on the
spineless tagless G-machine for the java virtual machine. In: Kuchen, H., Ueda, K.
(eds.) FLOPS 2001. LNCS, vol. 2024, pp. 92–107. Springer, Heidelberg (2001)

7. Clements, J., Felleisen, M.: A tail-recursive machine with stack inspection. ACM
Transactions on Programming Languages and Systems 26(6), 1029–1052 (2004)

8. Friberg, S., Shipilev, A., Astrand, A., Kuksenko, S., Loef, H.: OpenJDK: JMH
(2014). openjdk.java.net/projects/code-tools/jmh/

9. Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)

10. Hickey, R.: The Clojure programming language. In: Proceedings of the 2008 Sym-
posium on Dynamic Languages (2008)

11. Hickey, R.: Recur construct, Clojure documentation (2014). clojuredocs.org/
clojure.core/recur

12. Kennedy, A., Syme, D.: Transposing F to C#: expressivity of parametric polymor-
phism in an object-oriented language. Concurrency Comput. Pract. Experience
16(7), 707–733 (2004)

13. Krishnamurthi, S.: Educational pearl: automata via macros. J. Funct. Program.
16(3), 253–267 (2006)

14. League, C., Trifonov, V., Shao, Z.: Functional java bytecode. Proceedings 5th
World Conference on Systemics, Cybernetics, and Informatics (2001)

15. Minamide, Y.: Selective tail call elimination. In: Proceedings of the 10th Interna-
tional Conference on Static Analysis (2003)

16. Odersky, M.: The scala language specification, Version 2.9. École Polytechnique
Fédérale de Lausanne (2014)

17. O’Hair, K.: HPROF: a Heap/CPU profiling tool in J2SE 5.0. Sun Developer
Network, Developer Technical Articles & Tips (2004)

http://www.openjdk.java.net/projects/code-tools/jmh/
http://clojuredocs.org/clojure.core/recur
http://clojuredocs.org/clojure.core/recur

28 T. Tauber et al.

18. Reynolds, J.C.: Towards a theory of type structure. In: Symposium on Program-
ming (1974)

19. Schinz, M., Odersky, M.: Tail call elimination on the Java Virtual Machine. Elec-
tron. Notes Theor. Comput. Sci. 59(1), 158–171 (2001)

20. Schwaighofer, A.: Tail Call Optimization in the Java HotSpotTMVM, master
Thesis, Johannes Kepler Universität Linz (2009)

21. Shao, Z., Appel, A.W.: Space-efficient closure representations. ACM SIGPLAN
Lisp Pointers 7(3), 150–161 (1994)

22. Steele, G.L.: Debunking the “Expensive Procedure Call” myth or, procedure call
implementations considered harmful or, LAMDBA: the ultimate GOTO. In: Pro-
ceedings of the 1977 Annual Conference (1977)

23. Steele, G.L.: Rabbit: a compiler for scheme. Technical report, Massachusetts Insti-
tute of Technology (1978)

24. Tismer, C.: Continuations and stackless Python. In: Proceedings of the 8th Inter-
national Python Conference, vol. 1 (2000)

25. Tullsen, M.: Compiling Haskell to Java. Technical Report YALEU/DCS/RR-1204,
Yale University (1996)

26. Wadsworth, C.: Semantics and Pragmatics of the Lambda-Calculus. Ph.D. thesis,
University of Oxford (1971)

27. Wakeling, D.: Compiling lazy functional programs for the Java Virtual Machine.
J. Funct. Program. 9(6), 579–603 (1999)

28. Wechsung, I.: Frege (2014). github.com/Frege/frege
29. Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer, C.,

Richards, G., Simon, D., Wolczko, M.: One VM to rule them all. In: Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software (2013)

http://www.github.com/Frege/frege

A Secure Compiler for ML Modules

Adriaan Larmuseau1(B), Marco Patrignani2, and Dave Clarke1,2

1 Uppsala University, Uppsala, Sweden
{adriaan.larmuseau,dave.clarke}@it.uu.se
2 IMinds-Distrinet, K.U. Leuven, Leuven, Belgium

marco.patrignani@cs.kuleuven.be

Abstract. Many functional programming languages compile to low-
level languages such as C or assembly. Numerous security properties of
those compilers, however, apply only when the compiler compiles whole
programs. This paper presents a compilation scheme that securely com-
piles a standalone module of ModuleML, a light-weight version of an ML
with modules, into untyped assembly. The compilation scheme is secure
in that it reflects the abstractions of a ModuleML module, for every
possible piece of assembly code that it interacts with. This is achieved
by isolating the compiled module through a low-level memory isolation
mechanism and by dynamically type checking its interactions. We eval-
uate an implementation of the compiler on relevant test scenarios.

1 Introduction

High-level functional programming languages such as ML or Haskell offer pro-
grammers numerous security features through abstractions such as type systems,
module systems and encapsulation primitives. Motivated by speed, memory effi-
ciency and portability these high-level functional programming languages are
often compiled to low-level target languages such as C and assembly [3]. The
security features of such low-level target languages, however, rarely coincide with
those of high-level source languages. As a result the compiled program might leak
confidential information or break integrity when faced with an attacker operating
in the low-level target language.

This security risk is rarely considered in existing compilers as it is often
assumed that the compiler compiles the whole program, isolating it from mali-
cious attackers. In practice, however, the final executable will consist of more
than just the program in the functional language, it will be linked with various,
low-level libraries and/or components that may be written with malicious intent
or susceptible to code injection attacks. These low-level components have low-
level code execution privileges enabling them to inject code into the system and
inspect the variables and memory contents of the compiled program.

This paper presents a compilation scheme that compiles ModuleML, a light-
weight version of ML featuring references and a module system, into an untyped
assembly language running on a machine model enhanced with the Protected
Module Architecture (PMA) [19]. PMA is a low-level memory isolation mech-
anism, that protects a certain memory area by restricting access to that area
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 29–48, 2015.
DOI: 10.1007/978-3-319-26529-2 3

30 A. Larmuseau et al.

based on the location of the program counter. Our compilation scheme compiles
an input ModuleML module to this protected memory in a way that protects it
from low-level attackers while at the same time preserving all of its functionality.

Contributions. The security of a compilation scheme between two programming
languages, is often discussed in terms of full abstraction [1]. A fully-abstract com-
pilation scheme preserves and reflects contextual equivalence between source and
target-level components (Sect. 2). Preservation of contextual equivalence means
that the compilation scheme outputs target-level components that behave as
their source-level counterparts. Reflection implies that the source-level security
properties are not violated by the generated target-level output.

This paper introduces a secure compilation scheme from ModuleML to
untyped assembly extended with PMA (Sect. 3), that is proven to reflect con-
textual equivalence (Sect. 4). As is common in secure compilation works that
target a realistic low-level language [16], we assume that preservation holds.
Preservation coincides with compiler correctness, it establishes that the secure
compiler is a correct ModuleML compiler. While we have tested our implemen-
tation intensely (Sect. 5), we consider formally verifying our compiler a separate
research subject (Sect. 6). To better explain the secure compilation scheme, this
paper also introduces a pattern referred to as the Secure Abstract Data Type
pattern (Sect. 2.4). This pattern bundles together some of the techniques applied
in previous secure compilation and full abstraction works.

This paper is not the first work to securely compile to untyped assem-
bly extended with PMA. Previous work on secure compilation by Patrignani
et al. [16] has fully abstractly compiled an object-oriented language to PMAs.
The secure compilation scheme introduced in this paper differs from that work
in the following three ways. Firstly, the secure compilation scheme of Patrignani
et al. is limited in its usefulness as a real world compilation scheme in that it
does not accept any arguments from the attacker outside of basic values, such
as integers and booleans, and shared object identities. In this work we develop
a more realistic compiler that accepts attacker defined functions, locations and
modules.

Secondly, the abstractions of functional languages are more challenging than
those of imperative object-oriented languages. In a functional language such as
ModuleML, functions are for example higher-order and thus cannot be compiled
into a straight-forward sequence of calls and returns. In this work we address
these challenges through the use of an interaction counting masking mechanism.

Lastly, the inclusion of functors, higher-order functions mapping modules
to modules, in ModuleML presents a novel secure compilation challenge. The
modules created through functors are not analogous to objects, from a secure
compilation standpoint. Whereas every object produced by a constructor is of
the same type and thus subject to the same type checks and security constraints,
functors can produce modules with different types and security constraints. In
this work we address all security challenges introduced by functors and develop
an efficient method of encoding the required checks.

A Secure Compiler for ML Modules 31

Limitations. To simplify the compilation scheme, polymorphic types and type
kinds have been left out of ModuleML. The effects of certain low-level errors
such as stack overflows or out of memory errors are also not considered.

2 Overview

This section introduces the source language ModuleML (Sect. 2.1), the target
language A+I (Sect. 2.2), the threat model (Sect. 2.3) and a secure compilation
pattern that we reuse throughout this work (Sect. 2.4).

2.1 The Source Language ModuleML

The source language ModuleML is divided into a core language and a module
language. The core language is an extension of the simply typed λ-calculus fea-
turing booleans, integers, unit, pairs, references, sequences, recursion and integer
and boolean comparison operators. The module system is an adaption of Leroy’s
variant of the SML module system that features manifest types [11]. It consists
of signatures, structures and functors, as illustrated below.

signature S = sig
type T
val func: T → T
end

Signature

module M : S =
struct

type T = int
val func x = x +1
end

Structure

module F = functor(A : S)
struct
val fd y = (A.func y)
end
module M’ = F(M);

Functor

A signature is a sequence of signature components that are either value decla-
rations type declarations or module declarations. The signature S listed above,
for example, defines an abstract type T and a value declaration func that is
a function of type T → T. A structure is a sequence of structure components
that are either value bindings, module bindings or type bindings. The structure
M listed above, binds the type T to int and binds the value func to a simple
addition function. A functor can be considered as a parametrized module, a pos-
sibly higher-order function mapping modules to modules. The module F listed
above, is a functor that maps a structure conforming to S to a new structure
that consists only of a value binding fd that applies the value binding A.func
to the argument y. The module M’, for example, is the result of applying F to M.

The typing rules for the ModuleML module system are standard. Note that
this work uses SML style generative functors which return fresh abstract types
with each application [4], as this type of functor provides strong data encapsu-
lation. The interested reader can find a complete formalisation of ModuleML in
the accompanying technical report [10].

Contextual Equivalence. The secure compilation scheme aims to reflect Module-
ML contextual equivalence in the target language A+I. A ModuleML context

32 A. Larmuseau et al.

C : τ ′ → τ is a well-typed program P of type τ with a single hole [·] that is to
be filled with a module M of type τ ′. Two ModuleML modules M1 and M2 are
contextually equivalent if and only if there is no context C that can distinguish
them. Contextual equivalence is formalised as follows.

Definition 1 (Contextual Equivalence)

M1 �M2
def
= ∀C : τ ′ → τ. C[M1]⇑ ⇐⇒ C[M2]⇑

where ⇑ indicates divergence.
The following two ModuleML modules M1 and M2 are, for example, not con-

textually equivalent as they are distinguishable by the denoted context C, assum-
ing Ω is a diverging term.

module M1 = struct
val v1 = ref 1

end

Module A

module M2 = struct
val v1 = ref 0

end

Module B

open M
(if (!(M.v1) == 0) Ω
else true)

Context C

Note that the open M statement implements the hole of the context C.

2.2 The Low-Level Target Language A+I

To model a realistic compilation scheme, the target language should be close
to what is used by modern processors. For this reason this paper adopts A+I
(acronym of Assembly plus Isolation), a low-level language that models an ide-
alised von Neumann machine enhanced with a low-level memory protection
mechanism referred to as Protected Module Architecture (PMA) [19]. PMA is
a fine-grained, program counter-based, memory access control mechanism that
divides memory into a protected memory module and unprotected memory. The
protected module is further split into two sections: a protected code section
accessible only through a fixed collection of designated entry points, and a pro-
tected data section that can only be accessed by the code section. As such the
unprotected memory is limited to executing the code at entry points. The code
section can only be executed from the outside through the entry points and the
data section can only be accessed by the code section. An overview of the access
control mechanism is given below.

From \To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

A variety of PMA implementations exist. While most of them are research pro-
totypes [19], Intel is developing a new instruction set, referred to as SGX, that
enables the usage of PMA in commercial processors [15].

A Secure Compiler for ML Modules 33

Trace Equivalence. Our secure compiler relates contextually equivalent Mod-
uleML modules to contextually equivalent low-level components. Reasoning
about contexts is, however, notoriously complex. Reasoning about untyped low-
level contexts is especially complex as they lack any inductive structure. In this
work we thus adopt the fully abstract trace semantics of Patrignani and Clarke
for PMA enhanced programs, to reason about trace equivalence instead [17].

The trace semantics transition over a state Λ = (p, r, f,m, s), where m repre-
sents only the protected memory of PMA and s is a descriptor that details where
the protected memory partition starts, as well as the number of entry points and
the size of the code and data sections. Additionally, Λ can be (unknown,m, s)
a state modelling that A+I code, possibly malicious, is executing in unprotected
memory. The trace semantics denote the observations of the A+I contexts that
interact with the protected memory through labels L as follows.

L :: = α | τ α :: =
√ | δ! | γ?

γ :: = call p(r; f) | ret p(r; f) δ :: = γ | ω(a, v).δ ω :: = read | write

A label L can be either an observable action α or a non-observable action τ indi-
cates that an unobservable action occurred in protected memory. Decorations
? and ! indicate the direction of the observable action: from the unprotected
memory to the protected memory (?) or vice-versa (!). Observable actions γ are
function calls or returns to a certain address p, combined with the registers r
and flags f . Registers and flags are in the labels as they convey information
on the behaviour of the code executing in the protected memory. Observable
actions ω(a, v) from the protected memory to the unprotected memory detail
read and writes to the unprotected memory where a is the memory address and
v is the value written to the address. The values will always be data, the com-
piler does not produce code that writes instructions to the unprotected memory.
Additionally, an observable action α can be a tick

√
indicating termination.

Formally the trace semantics of an A+I program L, denoted as Traces(L), are
computed as follows: Traces(L) = {α|∃Λ.Λ0(L) α==⇒⇒ Λ}. Where Λ0 is the initial
state and the relation Λ

α==⇒⇒ Λ′ describes the traces generated by transitions
between states. An important property of this trace equivalence is that the infor-
mation they convey is so precise that we can rely on the equality between the
traces produced by A+I programs as a replacement for contextual equivalence.

Proposition 1 (Fully Abstract Trace Semantics for A+I [17])

L1 �l L2 ⇐⇒ Traces(L1) = Traces(L2)

Where �l denotes contextual equivalence between two A+I programs.

2.3 The Attacker

The attacker considered in this work has kernel-level code injection privileges
that can be used to introduce malware into a software system. Kernel-level
code injection is a critical vulnerability that bypasses all existing software-based

34 A. Larmuseau et al.

security mechanisms: disclosing confidential data, disrupting applications and
so forth. For the sake of simplicity, no differentiation between kernel and user
code is defined in A+I. Thus, by modelling the attacker as injecting A+I code, we
are modelling kernel-level code injection. Note that PMA is a program counter
based mechanism that this attacker model cannot bypass [19].

2.4 The Secure Abstract Data Type Pattern

An A+I context must be able to perform the operations of ModuleML on the
compiled ModuleML module. Each of these operations is different, but poses a
similar secure compilation challenge: how do we enable the A+I context to per-
form the relevant operations without exposing the implementation details of the
abstraction? In this work we introduce the Secure Abstract Data Type (ADT)
pattern as a general approach to addressing this challenge. This pattern bundles
together the individual techniques applied in certain secure compilation [16] and
full abstraction results [14].

An ADT defines both the values of a data type as well as the functions that
apply to it, relying on static typing rules to hide the implementation details of the
data type. The Secure ADT pattern, in contrast, protects the implementation
details of a source language abstraction τ without relying on static typing rules.
As illustrated in Fig. 1, it does this by inserting an ADT like interface between
the actual implementation of the abstraction and the target language context.
Concretely a secure ADT has the following elements: a secured type Sec[τ], an
interface that defines the operations applicable to the protected type, marshalling
rules that handle the transitions between the different representations for τ , and
additional run-time checks if required.

Secured Type. The Secure ADT pattern states that values of the type τ , the type
of the abstraction that the Secure ADT aims to secure, must be isolated and can
thus not be shared directly. Instead they can be, for example, shared securely

Fig. 1. The Secure ADT pattern isolates an abstraction of type τ through an ADT-like
interface that shares secured instances of τ (Sec[τ]) and accepts outside input (Ins[τ ′]).

A Secure Compiler for ML Modules 35

by encrypting the value or by providing a reference object, an object that refers
to the original value. The type of these securely shared instances is denoted as
Sec[τ]. The Secure ADT pattern considers not only the secure sharing of values
of type τ , but also input from the target language context. This input is denoted
as Ins[τ ′], where τ ′ denotes the source language type that the input is expected
to conform to. We use τ ′ and not τ as the outside input can be of a different
type then the abstraction that the secure ADT pattern secures.

Interface. As illustrated in Fig. 1, the interface defines a series of functions (vi)
that provide the outside context with the functionality of ModuleML. These
functions take as arguments some sequence of securely shared values and target
language input and return a securely shared or a target language value.

Marshalling. The Secure ADT pattern introduces type directed marshalling func-
tions to handle the transitions between the values of type τ , which are the
securely compiled values, the values of type Sec[τ], which are the securely shared
instances, and the values of type Ins[τ] which are defined by the outside con-
text. The function Marshallτo : τ → Sec[τ] converts values into their secured
instances. The function Marshallτi : Sec[τ] → τ converts the secured instances
back into the original value. Note that this function performs an implicit run-
time type check. It fails when given an input that does not correspond to a
securely shared value of type τ . Certain secure compilation schemes, such as the
one considered in this work, also specify a third type of marshalling function:
Marshallτc : Ins[τ] → τ . Such a marshalling function converts values from the
target language context into values of the secured type τ , by converting the input
value into the correct representation and by wrapping the result with type checks.
Note that if the input is of type Ins[τ ′], where τ ′
= τ , then the input will only
be marshalled in if there exists a marshalling function:Marshallτc : Ins[τ ′] → τ ′.

Run-Time Checks. The marshalling rules verify that the input provided by the
outside target language context and the output shared to the outside context
conform to the typing rules of the source language. This, however, is sometimes
not enough to protect the abstractions of the source language. Certain security
relevant language properties such as, for example: control-flow integrity, are not
always explicitly captured by the typing system. Enforcing these properties must
thus be done through additional run-time security checks.

3 A Secure Compiler for ModuleML

The secure compilation scheme for ModuleML is a type directed compilation
scheme that compiles a standalone ModuleML module and its signature to a pro-
tected module (Fig. 2). The secure compilation scheme applies the Secure ADT
pattern in a general manner. The entry points of the protected module imple-
ment an ADT-like interface to the A+I context. The abstractions of ModuleML
are isolated by placing all code and data into the data and code sections of the

36 A. Larmuseau et al.

Fig. 2. Our scheme compiles the module and its type into the protected memory.

protected module. The protected data section also includes a heap and stack of
a fixed size, that can only be accessed by the securely compiled program. This
ensures that the run-time memory of the compiled program is also inaccessible.

The inner workings of how ModuleML is compiled to assembly is of little
relevance to this result of this paper. Instead this section focusses on the security
relevant aspects of the compilation scheme. This section details how we apply the
Secure ADT pattern of Sect. 2.4 to securely compile abstract types (Sect. 3.2),
structures and signatures (Sect. 3.3), functions (Sect. 3.4), locations (Sect. 3.5)
and functors (Sect. 3.6). Basic types such as integers or pairs are not compiled
using the Secure ADT pattern, but must still be marshalled when interacting
with the A+I context (Sect. 3.1).

3.1 Booleans, Integers and Pairs

The securely compiled module shares and inputs not only abstractions such
as functions, but also basic ModuleML values: booleans, integers and pairs.
Booleans and integers are exchanged with the A+I context using their respec-
tive A+I representation. The marshalling functions for integers are thus defined
as Marshallintc : Ins[int] → int, which converts A+I integers into ModuleML
integers, and Marshallinto : int → Ins[int], which converts ModuleML integers
to A+I integers. The marshalling functions for booleans are analogous.

Marshalling pairs is different. When marshalling, for example, a pair 〈v1, v2〉
the marshalling functions for pairs marshall each value with the type appropriate
marshalling function as dictated by the Secure ADT pattern. Marshalling out
the pair 〈1, 2〉, for example, will thus produce a value of type 〈Ins[int], Ins[int]〉,
while marshalling out the pair of lambdas 〈(λx : τ.t), (λx : τ.t′)〉 will produce a
value of type 〈Sec[τ → τ ′],Sec[τ → τ ′′]〉.

3.2 Abstract Types

Abstract types are, as the name indicates, abstract in that associated values
are unobservable to an ModuleML context. Consider, for example, the following

A Secure Compiler for ML Modules 37

module A that conforms to the signature S. This signature defines an abstract
type T that abstracts the value bindings v1 and v2.

module A : S = struct
type T = bool
val v1 = true
val v2 = v1
end

signature S = sig
type T
val v1 : T
val v2 : T
end

An A+I context should not be able to observe that A.v1 and A.v2 both return
the value true. To achieve this our compilation scheme applies the Secure ADT
pattern to compile values of an abstract type. Instead of directly sharing the
value of an abstract type T with the A+I context, we share a secured instance
of type Sec[T] instead. These secured instances are implemented as indices to
a table A. This table A maps natural numbers to values and their types in a
deterministic manner, simply denumerating its entries. Note that this map is not
a set: it may map different numbers to duplicate elements.

As illustrated in Fig. 3, every time a value of an abstract type is returned
the securely compiled module will share a new index i that corresponds to the
number of requests that the A+I context has made to abstract types. Note that
each member of a pair (Sect. 3.1) counts as a separate request. The marshalling
functions MarshallTo and MarshallTi are thus implemented as extending the
table A and looking up an index in A respectively, as illustrated in Fig. 3.

We have formally proven in prior work [9], by means of a full abstraction
proof, that these request counting indices do not reveal any information to the
A+I context other than the number of times the A+I context has requested a
value of an abstract type. This is information that the context of any source
language with state can reproduce and thus does not harm full abstraction. In
the case of ModuleML, a context can count its interactions with the protected
module by making use of references (a detail that returns in our proof of Sect. 4).

3.3 Structures and Signatures

Our compiler compiles both structures and signatures into records stored within
the data section of the protected memory. As dictated by the Secure ADT pattern

Fig. 3. We use request counting to obscure the value of an abstract type.

38 A. Larmuseau et al.

these records are not exposed directly to the A+I context. Instead the compilation
scheme defines an ADT-like interface of entry points to the protected memory
that provide access to the value and structure bindings exposed by the module’s
signature. Note that, as in previous works [16], these entry points are sorted
to obscure their implementation order. The compiler also includes a load entry
point that evaluates each of the expressions defined within a structure. Our
compilation scheme defines marshalling rules that both share secure structures
as well as convert in structures created by the A+I context.

Load Entry Point. As is the case in most ML implementations, the value bindings
of ModuleML map names to expressions not values. These expressions must be
reduced to values before the value bindings of a structure can be queried. Our
compiler, however, compiles a standalone ModuleML module not a full program,
it thus does not have any control over when or if the expressions are evaluated.
Instead our compilation scheme provides the A+I context the ability to load
the module through a load entry point. This entry point takes no arguments
and executes each of the expressions defined throughout the compiled module,
storing the result in the appropriate record. Because it is up to the low-level
context to invoke this load entry point, a malicious A+I context may attempt
to query bindings before the module is loaded or attempt to load the module
multiple times. To prevent this, the compiler introduces an additional run-time
check in the form of a global flag Lf , that encodes whether or not the module
has been loaded. What follows is a pseudo code implementation of the load entry
point.

1. Check the flag Lf . Abort if set.
2. For each value binding vi with an associated expression e:

(a) Evaluate e and store the result in the appropriate record.
3. Set Lf .

Value Binding Entry Points. For each value binding vi reduced to a value v : τ
declared within the signature of a structure, the compilation scheme creates an
entry point of type: vi : Sec[τ], if τ is an abstraction that must be secured, or
vi : Ins[τ] if τ is a basic type such as int. Both are implemented as follows.

1. Check the flag Lf . Abort if not set.
2. Fetch the value v and its type τ from the data section.
3. Return Marshallτo (v)

Entry Points to Structures. For each module binding Mi to a structure s with
signature S that is declared within the signature of the outer structure, our

A Secure Compiler for ML Modules 39

compiler creates an entry point of type: Mi : Sec[S] that takes no arguments and
returns a marshalled instance of the structure of secured type Sec[S], as follows.

1. Check the flag Lf . Abort if not set.
2. Return MarshallSo (s)

MarshallSo and MarshallSi . As dictated by the Secure ADT pattern, structures
are not shared directly but instead marshalled out using a type directed function
MarshallSo : S → Sec[S]. This function converts a structure of signature S into a
secured instance Sec[S]: a record that contains an index i to the table M and ref-
erences to the entry points of each value/module binding in S. The references to
the entry points are included to inform the A+I context of the functionality that
the structure provides, simplifying interoperation. Like the table A of Sect. 3.2,
the table M maps numbers to structures and their signatures. This index i thus
enables the marshalling in function MarshallSi : Sec[S] → S to retrieve the orig-
inal structure and its signature from M. Note that this marshalling function
thus performs an implicit type check as the function fails whenever the retrieved
signature is not a subtype of S.

MarshallSc. Our compilation scheme enables the A+I context to supply its own
structures as arguments to the functors of Sect. 3.6. These structures are mar-
shalled in by a function MarshallSc : Ins[S] → S, that iterates through the com-
ponents of the expected signature S, querying the A+I context’s structure for
the names of the bindings, marshalling in the results or aborting if a name
isn’t found. When a value binding is marshalled in it is marshalled in using the
type appropriate function. When a module binding is marshalled the marshalling
function recurses. Note that this function performs a sub-type check: Ins[S] <: S.

3.4 Higher-Order Functions

To compile the λ-terms of ModuleML the compiler uses closure conversion [18]
to eliminate free variables by using an explicit environment that stores bindings
between variables and values. As is required by the Secure ADT pattern, these
closures are not made available to the A+I context but are instead shared as
secured instance of type Sec[τ1 → τ2]: indices to a table C that maps numbers to
closures and their types. As was the case for the indices of Sect. 3.2, these num-
bers simply denumerate the requests made by the A+I context. The marshalling
functions Marshallτ1→τ2

o and Marshallτ1→τ2
i are thus implemented as extending

the table C and looking up the closure and its type in C respectively.

Closure Application Entry Point. As is required by the Secure ADT pattern
we enable the A+I context to apply shared closures through an entry point of
type: appl : Sec[τ1 → τ2] → (Ins[τ1] ∨ Sec[τ1]) → (Ins[τ2] ∨ Sec[τ2]), where the
result is Ins[τ2] if τ2 is a basic type and Sec[τ2] otherwise. This entry point takes
as its arguments an index i to the table C and as a value v of the appropriate
representation for type τ1. The entry point is implemented as follows.

40 A. Larmuseau et al.

1. Check the flag Lf . Abort if not set.
2. c = Marshallτ1→τ2

i (i)
3. Depending on the representation of v:

(a) If Ins[τ1]: r = Marshallτ1c (v)
(b) If Sec[τ1]: r = Marshallτ1i (v)

4. Apply c to v, store the result in r′.
5. Return Marshallτ2o (r ′)

Note that the marshalling rules of 3(a) and 3(b) implement the typing rule for
function applications, by ensuring that the input value v is of type τ1.

Marshallτ1→τ2
c . Our compilation scheme enables the A+I context to supply its

own functions as arguments to the securely compiled entry points that accept
an argument of type: Ins[τ1 → τ2]. These A+I functions are marshalled by a
function Marshallτ1→τ2

c : Ins[τ1 → τ2] → (τ1 → τ2), that takes in a reference to
the A+I function f and wraps that function into a new function that performs
the following steps, whenever the A+I function f is applied to a ModuleML value
v within the securely compiled module.

1. a = Marshallτ1o (v)
2. Apply f to a. Store the result in r.
3. Return Marshallτ2c (r)

3.5 Locations

As is the case in most commonly used ML variants [13], memory locations do
not explicitly appear in the syntax used by programmers. Locations are thus not
directly observable to an ModuleML context, leading to many equivalences. Con-
sider, for example, the following two contextually equivalent implementations of
the value binding v1.

val v1 = (let x = (ref true) in
let y = (ref true) in y)

val v1 = (let x = (ref true) in
let y = (ref true) in x)

No ModuleML context can observe that the left implementation differs from the
right implementation in that it returns the second location it created, stored
within variable y, and not the first location stored within the variable x.

Again our compilation scheme applies the Secure ADT pattern to protect
ModuleML’s locations and the operations available on them. Locations are
shared with the A+I context in the same manner as higher-order functions
(Sect. 3.4) and abstract types (Sect. 3.2): as indices into a table L that maps
numbers to locations and their types. As was the case previously, these numbers
simply denumerate the requests made by the A+I context for access to ModuleML
locations. The marshalling functions Marshallref τ

o and Marshallref τ
i are thus

implemented as extending the table L and looking up an index in L respectively.

A Secure Compiler for ML Modules 41

Write and Read Entry Points. To enable the low-level A+I context
to write and read to shared locations in the same way that an
ModuleML context can, we introduce a write location entry point of type:
write : Sec[ref τ] → (Ins[τ] ∨ Sec[τ]) → unit, and a read location entry point
of type read : Sec[ref τ] → (Ins[τ] ∨ Sec[τ]). The write location entry points
takes two arguments: an index i to the table L and a value v of the appropriate
representation for type τ . It securely writes v to the appropriate location, as
follows.

1. Check the flag Lf . Abort if not set.
2. l = Marshallref τ

i (i).
3. Depending on the representation of v:

(a) If Ins[τ]: r = Marshallτc (v)
(b) If Sec[τ]: r = Marshallτi (v)

4. Write r to l.

Note again, that the marshalling rules 3(a) and 3(b) implement the assign loca-
tion typing rule, by ensuring that the input value v is of type τ .

The implementation of the read location entry point is straight-forward: it
retrieves the location from L, dereferences it and marshalls the value.

Marshallref τc . A ModuleML context can allocate new locations and share them
with the ModuleML module embedded within the context’s hole. We thus enable
the A+I context to supply its own locations as arguments to entry points that
accept an argument of type Ins[ref τ1]. As specified by the Secure ADT pattern
these locations are marshalled by a function Marshallref τ

c : Ins[ref τ] → ref τ ,
that takes in a location lf of the A+I context and wraps it with two functions. The
first function enables a ModuleML expression to read the foreign location, the
second function enables an ModuleML expression to write to the foreign location.
The implementation of the latter is analogous to the implementation of the write
entry point. The implementation of the former is simply: Marshallτc (!lf), where
!lf denotes the dereference of the A+I location lf .

3.6 Functors

As noted earlier, a ModuleML functor is a higher-order function that maps
modules (structures or functors) to modules. Consider the following example.

signature Sa =
sig

type U
val v1: int →

int
val vs : U
end

signature Sr = sig
type T
val fd: int → int
val F1:functor(X:Sa)→S

a
val M1: sig
val v1: T
end
end

module F = functor(A : Sa)
struct
type T = int
val fd y = (A.v1 y)
module F1 = functor(X:Sa)=

A
module M1 = A
end : Sr
module M’ = F(Mi)

42 A. Larmuseau et al.

Fig. 4. The secure compiler compiles the signature of F into a tree of unique stamps
Σi, that enable the functor entry points to identify their arguments.

Module F is a functor that maps a structure that conforms to signature Sa,
to a new structure that consists of: a value binding fd, that applies the argu-
ment’s value binding v1 to an argument y, and an inner functor F1 and an inner
structure M1 that copies the argument. This new structure is ascribed with the
signature Sr which seals the value binding M1.v1 with the abstract type T. When
compiling functors the compiler operates in two modes. The first mode considers
the static functor applications within the compiled module, such as, for example,
the application of F to an example module Mi in the above listing. Compiling
these applications is straightforward, the compiler performs the application and
compiles the result in the same way that it compiles any other module.

The second mode considers those functors that are part of the interface to
the A+I context. In this case we must securely compile functors into run-time
constructs. As is dictated by the Secure ADT pattern we do not share these
run-time representations directly with the A+I context, but instead share them
(again) as indices into a table F that maps numbers to functors and their types.
As was the case previously, these numbers simply denumerate the requests made
by the A+I context for access to ModuleML functors. The marshalling functions
Marshallfunctor(Xi :S)→S′

o and Marshallfunctor(Xi :S)→S′

i , where functor(Xi : S) →
S′ is the expected type of the functor, are thus implemented by extending the
table F and looking up an index in F and confirming the type respectively. Our
compilation scheme also provides a marshalling rule Marshallfunctor (Xi :S)→S′

c

that converts structures of the A+I context.

Compiling Run-Time Functors. Functors are compiled into run-time constructs
in a manner similar to the way in which λ-terms are compiled to closures. The
functor body is compiled into a function that takes as its arguments a module
and an environment of module bindings and returns a new module that conforms
to the specification of the functor body. In addition to being compiled into a
function, every functor is also compiled into a tree structure of the accessible
bindings, assigning a unique stamp Σi to each non-leaf node (Fig. 4). These
stamps Σi are used by the entry points for these bindings to authenticate its
arguments.

A Secure Compiler for ML Modules 43

The module that results from applying a run-time functor is stored as a
record that incorporates the resulting module as well as additional run-time
data. Additionally the record stores a stamp Σi, that identifies the functor that
produced it, a module binding environment e, which includes the argument to
the functor, and environment of abstract type identifiers et. The latter is required
to keep track of the abstract types that are created by functors that seal their
result, as they generate a new abstract type each time they are applied.

Functor Application Entry Point. To enable the low-level A+I context to apply
functors to modules in the same way that a ModuleML context can, we intro-
duce a functor application entry point into the protected memory that has
type: fappl : Sec[functor(Xi : S) → S′] → (Ins[S] ∨ Sec[S]) → Sec[S′]. The
first argument to this entry point is an index to the table F , the second argu-
ment m is a shared module or a module defined by the A+I context. The entry
point securely applies the appropriate functor f with associated stamp Σf to
the argument a, as long as a conforms to the signature S, as follows.

1. Check the flag Lf . Abort if not set.
2. f = Marshallfunctor(Xi :S)→S′

i (i).
3. Depending on the representation of m:

(a) If Ins[S]: a = MarshallSc (a)
(b) If Sec[S]: a = MarshallSi (a)

4. Apply f to a. Store the result in r.
5. Stamp r with Σf .
6. Return MarshallS

′
o (r).

Note that as specified in Sect. 3.3, the marshalling rules of 3(a) and 3(b) perform
the sub-typing check required by the functor application rule.

Functor Entry Points. The secure compilation scheme outputs entry points that
enable the A+I context to gain access to the functor as well as interact with the
result of the functor application. The entry points to functor bindings that are
not embedded within another functor have a type: Mi : Sec[functor(Xi : S) →
S′] and marshall out the associated functor through an index to a table F .

The entry points to the bindings of structures that are defined within the
body of a functor, differ from the previously detailed entry points for value, struc-
ture and functor bindings in that they take an argument: an index i to the table
M. As detailed in the previous paragraph, the functor application entry point
marshalls out its result through the marshalling function MarshallSo , which, as
explained in Sect. 3.3, stores the result into the structure requests counting table
M. The implementations of these entry points extend the previously discussed
entry point implementations in that their result is not statically defined but
depends on the structure associated with the input index i. The entry points
will thus look up index i in M and check that the retrieved structure is stamped
with the correct stamp Σi, as follows.

44 A. Larmuseau et al.

1. d = MarshallSi (i).
2. Check that stamp of d = Σi. If not Abort.

To illustrate the necessity of this stamp check, we reconsider the example func-
tor F introduced at the beginning of this section. This functor is assigned the
stamp Σ1 (Fig. 4) and each of its bindings F.fd, F.F1 and F.M1, check that
the structure associated with input index i is stamped by Σ1. If they did not do
so the A+I context could, for example, violate the typing rules of ModuleML by
passing a structure created using F to the bindings of the following functor Fb.

signature Sb = sig
type U
val v1: int →

int
val vs: int
end

module Fb = functor (A : Sb) struct
type T = int
val fd y = (A.v1 y)
module F1 = functor(X:Sa)struct type U =

int
val vs = 0; val v1 = A.vs end
module M1 = A : S_a
end : Sr

While both Fb and F produce a structure with signature Sr, the argument of Fb

conforms to the signature Sb not the signature Sa, which seals the binding vs

whereas Sb does not. Without the stamp checking mechanism the A+I context
could break the abstractions of ModuleML by passing a module produced by
applying F to the entry point for Fb.F1 as the implementation of Fb.F1 exposes
the value binding A.vs, as highlighted in gray in the listing for Fb.

The entry points for F.F1 and F.M1 stamp their result with a stamp Σ2

and Σ3 respectively. This further specialization of the stamps within the inner
modules is necessary to prevent similar attacks.

Marshall
functor(Xi:S)→S

′

c . Our compilation scheme enables the A+I context to
supply its own functors as arguments to the functor application entry point.
These foreign functors are marshalled into ModuleML functors by a function

Marshall
functor(Xi :S)→S

′

c : Ins[functor(Xi : S) → S
′
] → (functor(Xi : S) → S

′
),

that takes in a reference to an A+I function f and wraps that function into a
new function that performs the following steps, whenever the foreign functor is
applied to a ModuleML module M, within the securely compiled module.

1. a = MarshallSo (M)
2. Apply f to a. Store the result in r.
3. Return MarshallS

′
c (r)

4 Compiler Reflection

Denote the result of compiling the module M down to A+I as M↓. Compiler reflec-
tion is formally expressed as.

M1 � M2 ⇒ M↓
1 � M↓

2

A Secure Compiler for ML Modules 45

It states that the equivalences of the modules M1 and M2 are preserved through
the secure compilation scheme in the A+I context. To prove this statement we
will prove the contra-positive: M↓

1
� M↓
2 ⇒ M1
� M2. This contra-positive can be

stated as: whenever an A+I context can distinguish between two compiled mod-
ules, there exists a ModuleML context that can distinguish between the original
modules. As detailed in Sect. 2.2 we do not directly reason about contextual
equivalence for A+I programs but instead rely on trace equivalence. As such we
can redefine compiler reflection as follows.

Theorem 1 (Module Differentation). Any two ModuleML modules M1 and
M2 whose compilation results produce two different low-level traces γ1 and γ2 are
not contextually equivalent. Formally: Traces(M1

↓)
= Traces(M2
↓) ⇒ M1
� M2.

To prove the theorem we adopt the established proof technique [8,16] of devel-
oping an algorithm that given two ModuleML modules M1 and M2 and their
differing A+I traces γ1 and γ2 can produce a “witness” ModuleML context C
that can distinguish between M1 and M2 .

We have implemented exactly such a witness building algorithm in Ocaml1.
The algorithm analyses the labels of the low-level traces γ1 and γ2 that detail the
interactions between an unknown A+I context (it’s a black box) and the modules
M1 and M2. For the algorithm to be correct, it must detect the first two labels γ
in the traces that differ. Assuming the first differening labels are at position i,
the algorithm produces an ModuleML module that will replicate the first i − 1
labels of the traces and at the i-th step will diverge for M1 and terminate for M2,
distinguishing them as required. The resulting module must thus keep track of
the number of interactions it has with the unknown A+I context, which is done
through the use of the ModuleML locations. A full explanation of the inner
workings of the algorithm is provided in the accompanying technical report [10].

5 Implementation and Experimental Results

We have developped a compiler2 that compiles ModuleML modules using either
the secure compilation scheme detailed in this paper or through a naive and inse-
cure compilation scheme that features none of the security checks. The compiler
targets the Fides implementation of PMA [19]. Fides implements PMA through
use of a hypervisor that runs two virtual machines: one that handles the secure
memory module and one handles the outside memory. One consequence of this
architecture is that, as the low-level context interacts with the compiled module,
the Fides hypervisor will be forced to switch between the two virtual machines
for each call and callback between the context and the module.

The security checks described in this paper are only triggered when execution
crosses the boundary between protected and unprotected memory. As such we
benchmark five scenarios (included with the source code of the compiler) that

1 https://github.com/sylvarant/moduleml-witness-algorithm.
2 https://github.com/sylvarant/secure-ml-compiler.

https://github.com/sylvarant/moduleml-witness-algorithm
https://github.com/sylvarant/secure-ml-compiler

46 A. Larmuseau et al.

involve boundary crossings. In the first scenario (Value) the A+I context retrieves
a value binding by calling the appropriate entry point. In the second scenario
(Closure Application) the A+I context applies a secure closure to another secure
closure using the closure application entry point. In the third scenario (Callback)
the atacker applies a secure closure to a function of the A+I context. In the next
scenario (Functor Application) the A+I context applies a functor to a module of
the A+I context using the functor application entry point. In the final scenario
(Dynamic Value) the A+I context accesses the value binding of a structure that
results from applying a functor at run-time. We have timed the performance of
each of these five scenarios, as denoted in Table 1.

The tests were performed on a Dell Latitude with a 2.67 GHz Intel Core i5 and
4GB of DDR3 RAM. The difference between rows “Insecure” and “Insecure +
Fides” shows the high overhead of the Fides architecture. It is especially notable
in the call back and functor application scenarios which transition between the
protected and unprotected memory twice. The security checks of the functor
application scenario have by far the biggest performance impact. This is due
to the fact that this scenario involves both the dynamic type checking of the
structure input by the A+I context as well as the creation of a new module,
two computationally intensive operations. The additional performance impact
of the security checks in the other scenarios is small, peaking at about 4% when
securing the value binding of a dynamically obtained structure.

Table 1. The average execution time for each test scenario.

Insecure Insecure + Fides Secure + Fides
Value Binding 0.18µs 17.59µs 17.86µs
Closure Application 0.32µs 17.68 µs 18.09µs
Callback 0.31µs 36.59µs 36.97µs
Functor Application 0.57µs 37.14µs 106.50µs
Dynamic Value Binding 0.26µs 17.73µs 18.41µs

6 Related Work

Secure (fully abstract) compilation was first introduced by Abadi [1] as a criti-
cism of the way in which Java was translated into the Java bytecode language.
Secure compilation schemes have since been introduced for many different source
language and target languages. Closely related to this work is the secure compi-
lation scheme for ML to JavaScript by Fournet et al. [5]. Their definition of ML,
however, does not feature a module system. Their Javascript attacker model is
also more high-level than our untyped assembly contexts with low-level code
execution privileges. Another related compilation scheme is the secure compi-
lation scheme for the λμhashref-calculus to a machine model with adress space
layout randomisation by Jagadeesan et al. [7]. Like the ModuleML used in this
work the λμhashref-calculus features dynamic memory allocation. In contrast to

A Secure Compiler for ML Modules 47

ModuleML, locations in λμhashref are observable through a hash operation. The
attacker model differs as well. Whereas the attacker in this work is unable to
read the memory of the securely compiled program, due to the PMA mechanism,
the attacker considered by Jagadeesan et al. can probe the memory.

Verified compilation, is a broad research topic that aims to provide compil-
ers that are proven to be correct [2,12]. The resulting compilers thus come with
proofs for the preservation property that we have assumed (Sect. 1). Many estab-
lished verified compilation results hold only for closed world assumptions, but
recently, verified compilers have appeared for partial programs as well. Related
to this work is a verified compositional compiler for an ML language, that fea-
tures references and recursive types, to assembly by Hur and Dreyer [6]. Their
compiler preserves the equivalences of ML programs for well-behaved assembly
contexts, but does not consider the threats posed by possibly malicious contexts.

Throughout the secure compilation scheme we make use of our previously
developed interaction counting masking system [9] to securely share the values
of security relevant abstractions. Alternatively, we could have applied the sealing
mechanism of Matthews et al. [14], to achieve the same result.

7 Conclusions

This paper presented a secure compiler for ModuleML: a light-weight ML lan-
guage with higher-order functions, references and a module system. This secure
compilation scheme compiles ModuleML to untyped assembly code enhanced
with a memory isolation mechanism, known as the Protected Module Architec-
ture, in a way that reflects the equivalences of ModuleML. This security property
is proven through the implementation of a witness building algorithm.

References

1. Abadi, M.: Protection in programming-language translations. In: Vitek, J., Jensen,
C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603, pp. 19–34. Springer,
Heidelberg (1999)

2. Chlipala, A.: A certified type-preserving compiler from lambda calculus to assembly
language. In: PLDI 2007, pp. 54–65. ACM, New York, NY, USA (2007)

3. Codognet, P., Diaz, D.: WAMCC: Compiling Prolog to C. In: ICLP, pp. 317–331.
MIT PRess (1995)

4. Dreyer, D.: Understanding and evolving the ML module system. PhD thesis,
Carnegie Mellon, May 2005

5. Fournet, C., Swamy, N., Chen, J., Dagand, P.-E., Strub, P.-Y., Livshits, B.: Fully
abstract compilation to javascript. In: POPL, pp. 371–38 (2013)

6. Hur, C.-K., Dreyer, D.: A Kripke logical relation between ML and assembly. In:
POPL 2011, pp. 133–146. ACM (2011)

7. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: CSF 2011, pp. 161–174. IEEE (2011)

8. Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent
objects. Theor. Comput. Sci. 338(1–3), 17–63 (2005)

48 A. Larmuseau et al.

9. Larmuseau, A., Clarke, D.: Formalizing a secure foreign function interface. In:
Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 215–230.
Springer, Heidelberg (2015)

10. Larmuseau, A., Patrignani, M., Clarke, D.: A secure compiler for ml modules -
extended version. Technical Report 2015–028, Uppsala University, September 2015

11. Leroy, X.: Manifest types, modules, and separate compilation. In: POPL 1994, pp.
109–122. ACM, New York, NY, USA (1994)

12. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
13. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vôuillon, J.: The Objective Caml

system, release 4.02. Technical report, INRIA, August 2014
14. Matthews, J., Ahmed, A.: Parametric polymorphism through run-time sealing or,

theorems for low, low prices!. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol.
4960, pp. 16–31. Springer, Heidelberg (2008)

15. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: HASP 2013, ACM (2013)

16. Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. TOPLAS 37(2), 6:1–6:50 (2015)

17. Patrignani, M., Clarke, D.: Fully abstract trace semantics of low-level isolation
mechanisms. In: SAC 2014, pp. 1562–1569. ACM (2014)

18. Queinnec, C.: Lisp in Small Pieces. Cambridge University Press, Cambridge (2003)
19. Strackx, R., Piessens, F.: Fides: selectively hardening software application compo-

nents against kernel-level or process-level malware. In: CCS, pp. 2–13 (2012)

Detection of Redundant Expressions:
A Complete and Polynomial-Time Algorithm

in SSA

Rekha R. Pai(B)

National Institute of Technology Calicut, Calicut, Kerala, India
rekharamapai@nitc.ac.in

Abstract. Detection of redundant expressions in a program based on
values is a well researched problem done with a view to eliminate the
redundancies so as to improve the run-time efficiency of the program.
The problem entails the detection of equivalent expressions in a program.
Here we present an iterative data-flow analysis algorithm to detect equiv-
alent expressions in SSA for the purpose of detection of redundancies.
The central challenge in this static analysis is to define a “join” operation
to detect all equivalences at a join point such that any later occurrences
of redundant expressions are detected in polynomial time. We achieve
this by introducing the notion of value φ-function. We claim the algo-
rithm is complete and takes only polynomial time. We implemented the
algorithm in LLVM and demonstrated its performance.

Keywords: Equivalence detection · Global value numbering · Redun-
dancy detection · Value φ-function

1 Introduction

Elimination of redundant expressions in a program, based on values, is an impor-
tant code optimization done with a view to improve run-time efficiency of a pro-
gram. The fundamental problem here is the detection of equivalent expressions
in the program. The detection of all equivalences in a program is undecidable
and hence we focus only on the detection of Herbrand equivalences [8], as is
done traditionally. Two expressions are Herbrand equivalent if they have the
same operator and corresponding operands are Herbrand equivalent.

Equivalences are detected by assigning value numbers to each expression.
The value number vi is assigned to two expressions if they are detected to be
equivalent [3]. Global Value Numbering (GVN) is the problem of assigning value
numbers to expressions to detect equivalences in whole programs. Efforts in the
literature have been to propose a GVN algorithm which is both complete and
efficient. A GVN algorithm is “complete” if it detects all Herbrand equivalences
such that all associated total redundancies are detected.

Current GVN algorithms are either complete [5] or take only polynomial time
[2–4,6,8–10], but not both, in the context of detection of redundancies. As in a
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 49–65, 2015.
DOI: 10.1007/978-3-319-26529-2 4

50 R.R. Pai

data-flow analysis, the central challenge in GVN is to define a “join” operation
to detect equivalences at a join point. Though the detection of all equivalences
at a join point makes a GVN algorithm complete, it blows up the size of partition
of equivalent expressions thus making the algorithm inefficient [5].

In order to make a GVN algorithm polynomial, a solution is to detect only
those equivalences at a point p′ that may be used later at a point p where an
expression, say e, appears. Here, we view the solution from a different perspec-
tive. Instead of detecting equivalences that may be used later, we propose that
given an expression e at a point p in the program, detect whether e is equivalent
to some expression(s) e′ that appear in paths to e. For this we use semantics
of φ-function in Static Single Assignment (SSA) form and introduce the new
concept of value φ-function which is a set of equivalent φ-functions. We then
propose an iterative data-flow analysis algorithm to detect equivalences in SSA
form of programs which is complete and takes only polynomial time. We later
prove the soundness and completeness of the algorithm.

We implemented the proposed algorithm and the algorithms by Kildall [5]
and Gulwani [4] in LLVM to substantiate our claims on completeness and effi-
ciency. The SPEC2006 programs were analyzed using the three algorithms and
experimental results demonstrate that the proposed algorithm is complete as it
detects same number of redundancies as the complete algorithm by Kildall. The
proposed algorithm is also efficient compared to the widely accepted Gulwani’s
polynomial time algorithm since it takes less time to analyze the SPEC2006
programs.

The rest of the paper is organized as follows: in Sect. 2 we analyze two classic
GVN algorithms to get a clarity on the problems in global value numbering.
The terms used in this paper are given in Sect. 3. Value φ-function and the
new algorithm are described in Sect. 4. The algorithm is formally defined in
Sect. 5 and an experimental comparison of our algorithm with Kildall’s [5] and
Gulwani’s [4] is made in Sect. 6. In Sect. 7 we review some of the algorithms in
the literature. Section 8 concludes the work.

2 Motivation

In this section we analyze the classic works by Kildall [5] and Gulwani [4] to under-
stand the problems in the detection of equivalent expressions. The algorithm by
Kildall is complete and the one by Gulwani takes only polynomial time.

2.1 Kildall’s Algorithm

The iterative data-flow analysis algorithm by Kildall detects equivalences at each
point in the program. The equivalences are represented as a partition of expres-
sions into equivalence classes, known as expression pool. The algorithm uses a
powerful concept known as “structuring” in its transfer function. When a new
equivalence class is created in an expression pool corresponding to an expression
e in the program, the algorithm structures the partition by the construction

Detection of Redundant Expressions 51

and addition of all expressions (Herbrand) equivalent to e in the new class. This
ensures detection of all redundant expressions which means that the algorithm
is complete. But this leads to an exponential growth in the size of an equivalence
class. The use of value numbers, as given in ‘Implementation Notes’ section in
[5], avoids this problem. Kildall uses value expression, a compact representation
for a set of equivalent expressions [5,9] to make the size of an equivalence class
linear. But the problem of exponential growth in the size of expression pools
(expressed in terms of number of equivalence classes) persists due to the defini-
tion of join operation as shown by [4]. This is because the join operation applied
on nj input pools may result in an expression pool whose size is exponential in
the size of the input pools [4].

2.2 Gulwani’s Algorithm

This algorithm works similar to that of Kildall’s with equivalence information
represented as a directed graph known as Strong Equivalence DAG (SED). The
SED provides a compact representation of equivalence classes in a partition. The
algorithm detects equivalences among all expressions of size at most s, where
s is the size of program expression. This reduces the number of equivalence
classes in a partition computed by join operation (compared with Kildall’s) which
makes it take only polynomial time. The join operation as defined in Gulwani
(see Sect. 3.5, Join algorithm, lines 3–5 in [4]) intersects classes only if they have
at least one variable in common. This leads to missing in the detection of some
equivalences that will be useful in detecting redundancies [9].

2.3 Our View

The central problem in GVN is to define a join operation to detect equivalences
at a join point. Detecting all equivalent expressions at a point makes the algo-
rithm exponential. A solution, to overcome this problem, is to detect only those
equivalent expressions at a point that are used to detect later occurrences of
a redundant expression. To the best of our knowledge, currently there are no
methods to precisely predict whether such redundant expressions might appear
or not. Here we propose to view the problem from a completely different per-
spective. Instead of detecting equivalent expressions at a join point j that is used
later, we postpone detection of such equivalences till a point where an expression
actually occurs.

3 Terminology

Program Representation. The program in SSA is represented as a Control Flow
Graph (CFG) [1] that has an empty entry and exit block. Other blocks contain
assignment statements of the form x = e, where e is an expression. We assume
a block can have at most two predecessors and a block with exactly two prede-
cessors is called join block. The input and output points of a block are called in
and out points, respectively, of the block.

52 R.R. Pai

Expression. An expression can be either a constant, a variable, or of the form
x⊕y where x and y are constants or variables and ⊕ is a generic binary operator.
An expression can also be of the form φk(x, y) where x and y are variables and k
is the join block in which it appears. Such expressions are φ-functions. We may
omit the subscript k when the join block is clear from the context. In the CFGs
we draw, φ-functions appear in join blocks. But for the sake of clarity, we assume
φ-functions are transformed to copy statements1 and appended to appropriate
predecessors of the join block.

Equivalence. Two expressions e1 and e2 are Herbrand equivalent, denoted
e1 ≡ e2, if they have the same operator and corresponding operands are Her-
brand equivalent. Two expressions e1 and e2 in a path P are said to be equivalent
in the path, denoted e1 ≡P e2, if they are Herbrand equivalent in that path.

Value Expression. A value expression vi⊕vj represents an operation between two
equivalent classes where vi and vj are the value numbers of the two equivalent
classes. vi ⊕ vj = {x ⊕ y;x ∈ Ci, equivalent class with value number vi and y ∈
Cj , equivalent class with value number vj}. A value expression is a representa-
tive expression of the set of equivalent expressions. Value expression of an expres-
sion x ⊕ y is constructed by replacing the operands with their value numbers.

4 Basic Concept

Our goal is to develop a complete and polynomial time algorithm for redundancy
detection. The cause of redundancy is the equivalence of expressions in a program
and hence detection of redundancies can be stated as a problem of computation
of equivalence classes of expressions at each point in the CFG. The problem can
be formally stated as: given an expression e at a point p detect whether there
are expressions e′ in each path to p such that e′ and e are equivalent in that
path. Here the concept of value φ-function is introduced for the purpose. In this
section we first explain value φ-function and then propose our method to detect
redundancies.

4.1 Value φ-function

Consider the code segment in Fig. 1. Depending on the path taken expression
x3 + 1 is equivalent to either x1 + 1 or x2 + 1. In other words, depending on
the path taken, variable w3 is equivalent to one of variables y1 and z2. That
is, w3 can be viewed as equivalent to the “merge of different variables” – y1
and z2 – at the join point, denoted φ(y1, z2). This kind of a “merge of different
variables” can be seen as an extended form of the φ-function in the literature2.
We use this extended notion of φ-function or “merge of different variables” to
1 A copy statement is an assignment statement of the form x = y, where y is a variable.
2 In the literature, a φ-function restricts its operands to different subscripted versions

of the same non-SSA variable, say φ(x1, x2).

Detection of Redundant Expressions 53

Fig. 1. Program with branches

express equivalences in such cases. Similar to the concept of value expression,
we define the concept of value φ-function as an abstraction of a set of equivalent
φ-functions.

Partition. A partition at a point represents equivalences that hold in the paths to
the point. An equivalence class in the partition has a value number and elements
like variables, constant, and value expression. It is also annotated with a value
φ-function when necessary. For example, in a partition {· · · |vr, x1, y1|vs, z1, vr +
1|vm, xn : φk(vi, vj)| · · · } at a point p the class with value number vr represents
equivalence among variables x1 and y1. The class with value number vs represents
equivalence among expressions represented by value expression vr + 1, that is
x1 + 1 and y1 + 1. The expressions are also equivalent to variable z1. From
the class with value number vm we can infer that variable xn is equivalent to
expressions with value number vi in the path to point p through left edge to join
block k. Also, xn is equivalent to expressions with value number vj in the path to
p through right edge to the join block. Note that the value φ-function φk(vi, vj)
appears as the last element in the class and is separated from the rest of the
elements by “:” symbol to indicate that the value φ-function is an annotation of
the class.

4.2 Proposed Method

Using the concept of value φ-function we propose an iterative data-flow analysis
algorithm to compute equivalences at each point in the program. The two main
components of this algorithm are join operation and transfer function.

Join Operation. A join operation detects equivalences that are common in all
paths to the join point. Since in SSA there is only one definition for a variable,
equivalences that hold at a point p, which dominates3 join point j, hold at the
join point. These equivalences are detected at the join point by doing a simple
class-wise intersection of partitions. However, the detection of some common
equivalences that are generated in branches require extra processing and we
illustrate the latter. For clarity we separate the cases of detection of equivalences
among variables from those among expressions-with-operators.
3 Point p in a CFG dominates point p′ if all paths from entry point to p′ go through p.

54 R.R. Pai

Fig. 2. Detecting equivalence of variables

Equivalence of Variables. Consider the code segment in Fig. 2. In the left path
to the join point, variables x1 and y1, defined in the left branch, are equivalent.
Similarly, x2 and y2, defined in the right branch, are equivalent in right path.
By the use of φ-functions that appears in the join block we can detect that x1

is equivalent to x3 in the left path and x2 is equivalent to x3 in the right path.
Similarly, y1 is equivalent to y3 in the left path and y2 is equivalent to y3 in the
right path. By transitivity of equivalence relation, we conclude that x3 and y3
are equivalent at the join point.

In other words, our join operation merge different variables (corresponding
to the same non-SSA variable) defined in different branches - x1 with x2 and y1
with y2 - to obtain x3 and y3, respectively, at the join point. We then conclude
variables x3 and y3 are equivalent at the join point; in addition, they are equiv-
alent to φ-functions φ(x1, x2) and φ(y1, y2). The detection of such equivalences
are done by the transformation of φ-functions to copy statements which are then
appended to appropriate predecessors of the join block.

Equivalence of Expressions-with-Operators. Now consider the code segment in
Fig. 3. The expressions x1 + 1 and x2 + 1, that appear in different branches are
merged4 to obtain x3 + 1 at the join point. By doing this “merge” we detect the
equivalence of x1 + 1 (and x2 + 1) with x3 + 1 if it appears at a point in some
path from join point. However, this merge can be avoided if x3 + 1 (or some
expression equivalent to it) does not appear.

Fig. 3. Detecting equivalence of expressions-with-operators

4 Merge of expressions can be viewed as an extended notion of merge of variables.
“Merge of expressions” ei1 + ei2 and ej1 + ej2 is the expression ei + ej such that ei
is the merge of ei1 and ej1. Similarly, ej is the merge of ei2 and ej2.

Detection of Redundant Expressions 55

As discussed in Sect. 2 the question is whether to merge different expressions
at join points to detect equivalences. Here we take a completely different app-
roach and the join operation does not merge the expressions at the join point.
Instead merge operation is deferred till the occurrence of x3 +1 (or some expres-
sion equivalent to it). This is discussed when the concept of transfer function is
explained.

Example. Consider the case of application of join on partitions P1 = {v1, x1, x3|v2,
y1, y3, v1 + 1|v3, z1, z3} and P2 = {v4, x2, x3|v5, y2, y3|v6, z2, z3, v4 + 1}. In the
classes with value numbers v1 in P1 and v4 in P2 there is only one common variable
x3 and it appears in a class in the resulting partition P3. Since the two classes in
P1 and P2 have different value numbers v1 and v4, respectively, we can infer that
x3 is actually a merge of variables. Hence the resulting class is annotated with
value φ-function φ(v1, v4). The class is assigned a new value number, say v7. The
resulting class is |v7, x3 : φ(v1, v4)|.

Now consider the classes with value numbers v2 in P1 and v6 in P2. There
are no obvious common equivalences in the classes; however we can infer from
the partitions that the different value expressions v1 + 1 in P1 and v4 + 1 in P2

actually represent common equivalences of x3 + 1, which is a merge of different
expressions5 x1 +1 and x2 +1. But as stated above the different expressions (or
different value expressions to be precise) are not merged now and hence no new
class is created in the resulting partition P3.

Similar strategies are adopted to detect common equivalences in other pairs
of classes one each from P1 and P2. The resulting partition P3 is {v7, x3 :
φ(v1, v4)|v8, y3 : φ(v2, v5)|v9, z3 : φ(v3, v6)}.

Transfer Function. Based on the equivalences that hold at in point of a
statement s : x = e, transfer function for the statement defines the equivalences
that hold at its out point. This involves detection of whether the expression
e is equivalent to expression e′ in each path to it. Accordingly, the transfer
function computes partition at out point, denoted POUTs (from that at in
point, denoted PINs) by updating an existing class or creating a new class. The
transfer function we define here is similar to the ones in the literature except that
it uses value φ-function to detect equivalences in each path to e. The first step
is to check partition PINs for existence of value expression of e. If not found,
the transfer function proceeds to check whether expression e could be expressed
as a “merge of different expressions”. This is illustrated below using the code
segment in Fig. 4.

Consider processing the last statement w3 = x3 + 1. Since value expression
v7 + 1 of expression x3 + 1 does not appear in PIN3, the transfer function
proceeds to check whether x3 + 1 could be expressed as a merge of expressions
as follows:
5 Since x3 is a merge of variables x1 and x2, expression x3 + 1 is a merge of x1 + 1

and x2 + 1.

56 R.R. Pai

Fig. 4. Concept of transfer function

x3 + 1 ≡ v7 + 1 // value expression of x3 + 1 computed using PIN3

≡ φ(v1, v4) + 1 // class with v7 in PIN3 is annotated with φ(v1, v4)

≡ φ(v1 + 1, v4 + 1) // using semantics of value φ-function

≡ φ(v2, v6) // v1 + 1 ∈ POUT1 having v2, where block 1 is left

predecessor of join block and v4 + 1 ∈ POUT2

having v6, where block 2 is the right predecessor.

Thus using value φ-function we detect that x3 + 1 is actually equivalent to
expression(s) with value number v2, when the left path is considered in isolation.
Similarly, x3 + 1 is equivalent to expression(s) with value number v6, when the
right path is considered in isolation. That is, x3 + 1 is a “merge of expressions”,
here x1 + 1 and x2 + 1. In terms of variables, w3 is merge of different variables,
here y1 and z2.

Since neither value expression v7 +1 nor value φ-function φ(v2, v6) is present
in PIN3, the transfer function creates a new class in POUT3 with new value
number, say v10, and add w3 and v7 + 1 to it. The class is also annotated with
value φ-function φ(v2, v6). The classes in PIN3 are added as such to POUT3.
The resulting partition POUT3 is {v7, x3 : φ(v1, v4)|v8, y3 : φ(v2, v5)|v9, z3 :
φ(v3, v6)|v10, w3, v7 + 1 : φ(v2, v6)}.

Detection of Redundancies. Expression e in statement x = e is redundant if
there exists expression e′ equivalent to e in each path to the statement. In terms
of variables, this implies x is equivalent to some variable y irrespective of path
taken or to the merge of different variables. Given partition POUT at out of
statement x = e, expression e is redundant if there exists a variable in the class
of x in POUT , other than x, or the class of x in POUT is annotated with value
φ-function.

In the example code in Fig. 4, redundancy of expression x3 + 1 in the last
statement w3 = x3 + 1 is detected since the class of w3 in POUT3 (computed in
the previous subsection) is annotated with a value φ-function.

Detection of Redundant Expressions 57

5 Algorithm

Here we formally present the iterative data-flow analysis algorithm to detect
equivalences at each point in the program. The two main components of this
algorithm are join operation and transfer function which are defined below. The
algorithm to detect redundancies is trivial and is not written here.

5.1 Join

The algorithm Join given below defines the join operation. Before the join opera-
tion is performed, the φ-functions in a join block are transformed to copy state-
ments and appended to appropriate predecessors of the join block. Transfer
function is then applied on these copies.

Join(P1, P2)
P = {}
for each pair of classes Ci ∈ P1 and Cj ∈ P2

Ck = Intersect(Ci, Cj)
P = P ∪ Ck // Ignore when Ck is empty

return P

Intersect(Ci, Cj)
Ck = Ci ∩ Cj // set intersection

if Ck �= {} and Ck does not have value number
thenCk = Ck ∪ {vk} // vk is new value number

Ck = (Ck − {vpf}) ∪ {φb(vi, vj)}
// vpf is value φ-function in Ck, vi ∈ Ci, vj ∈ Cj , b is join block

return Ck

Lemma 1. If e1 ≡ e2 at a point p and the point p dominates join point j then
e1 ≡ e2 at j iff the Join algorithm detects their equivalence.

Lemma 2. If variable x ≡ y in each path to join point j then x ≡ y at j iff the
Join algorithm detects their equivalence.

5.2 Transfer Function

Given a partition PINs at in of a statement s, the transfer function for the
statement6 computes the partition POUTs at its out point and is defined below.
The transfer function uses the function valueExpr which accepts an expression
e and returns value expression of e, if e is of the form x ⊕ y, otherwise returns e
itself. The function valuePhiFunc accepts value expression and a partition and
returns value φ-function if the expressions represented by the value expression
6 Transfer function for a block is the composition of transfer function of each statement

in the block [1].

58 R.R. Pai

are a merge of expressions. Otherwise it returns NULL. This function assumes
partitions at out of each block are accessible to it. The concept of this function
is given below and the detailed algorithm is in the appendix.

transferFunction(x = e, PINs)
POUTs = PINs

if x is in a class Ci in POUTs

thenCi = Ci − {x}
ve = valueExpr(e)
vpf = valuePhiFunc(ve, PINs) // can be NULL

if ve or vpf is in a class Ci in POUTs // ignore vpf when NULL

thenCi = Ci ∪ {x, ve} // set union

else POUTs = POUTs ∪ {vn, x, ve : vpf } // vn is new value number

return POUTs

valuePhiFunc(ve, P)
if ve is of the form φk(vi1, vj1) ⊕ φk(vi2, vj2)

then vi = getVN(POUTkl , vi1 ⊕ vi2)
if (vi == NULL)

then vi = valuePhiFunc(vi1 ⊕ vi2, POUTkl)
vj = getVN(POUTkr , vj1 ⊕ vj2)
if (vj == NULL)

then vj = valuePhiFunc(vj1 ⊕ vj2, POUTkr)
return φk(vi, vj) // vi, vj are non-NULL

Lemma 3. Let x = e be a statement at a point p in the program and there exist
expressions ei at points pi in each path to p such that at least one of the pi’s
does not dominate p. Then expression e has a value φ-function, as computed by
valuePhiFunc algorithm, iff expressions ei and e are equivalent in respective
paths.

Lemma 4. Let x = e be a statement at a point p in the program and there exist
expressions ei in each path to p. Expressions ei and e are equivalent in their
respective paths iff the transferFunction algorithm detects the equivalences.

5.3 The Iterative Algorithm

The algorithm detectEquivalences given below analyzes the program
(represented as a CFG G) and computes partitions of equivalent expressions
at each point in the program. The iterative analysis method is adapted from [1].
The algorithm initializes out point of each statement (except first statement)
with partition � (top). � is a special partition with the property Join(P,�) =
P = Join(�, P). The algorithm iteratively computes partitions at each point till
there are no changes in the equivalences detected (from the previous iteration).

Detection of Redundant Expressions 59

detectEquivalences(G)
PIN1 = {} // “1” is the first statement in the program
POUT1 = transferFunction(PIN1)
for each statement s other than the first statement in the program

POUTs = �
while changes to any POUT occur // i.e. changes in equivalences

for each statement s other than the first statement in the program
if s appears in block b that has two predecessors

thenPINs = Join(POUTs′ , POUTs′′)a

else PINs = POUTs′

POUTs = transferFunction(PINs)b

a s′ and s′′ are last statements in respective predecessors.
b s′ is the statement just before s.

Theorem 1 (Soundness and Completeness). Let P be a partition at a point
p computed by the iterative data-flow analysis algorithm. Two expressions are
equivalent at p iff the algorithm detects their equivalence.

An outline of the correctness proofs of the algorithms are given in appendix.

5.4 Complexity Analysis

Let there be n number of expressions in a program. By definitions of Join
and transferFunction a partition can have O(n) classes with each class of
O(v) size, where v is the number of variables and constants in the program.
The join operation is class-wise intersection of partitions. With efficient data
structure that supports lookup, intersection of each class takes O(v) time. With
a total of n2 such intersections, a join takes O(n2.v) time. If there are j join
points, the total time taken by all the join operations in an iteration is O(n2.v.j).
The transfer function involves construction and lookup of value expression or
value φ-function in the input partition. A value expression is computed and
searched for in O(n) time. Computation of value φ-function for an expression
x+y essentially involves lookup of value expressions, recursively, in partitions at
left and right predecessors of a join block. If a lookup table is maintained to map
value expressions to value φ-functions (or NULL when a value expression does
not have a value φ-function), then computation of a value φ-function can be done
in O(n.j) time. Thus transfer function of a statement x = e takes O(n.j) time.
In a program with n expressions total time taken by all the transfer functions
in an iteration is O(n2.j). Thus the time taken by all the joins and transfer
functions in an iteration is O(n2.v.j). As shown in [4], in the worst case the
iterative analysis takes n iterations and hence the total time taken by the analysis
is O(n3.v.j).

6 Implementation and Results

In this section we compare the new algorithm with the algorithms by Kildall [5]
and Gulwani [4]. We chose Kildall’s algorithm since it is complete and the widely

60 R.R. Pai

accepted Gulwani’s algorithm was chosen since it takes only polynomial time.
The three iterative data-flow analysis algorithms compute equivalence informa-
tion at each point in the program. We implemented the algorithms in LLVMv3.4
compiler with clang as front end. The implementations consider all arithmetic
operations, conversion operations, vector operations and aggregate operations,
while to simplify the implementations, memory and branch operations were
ignored. The implementations uses the llvm::DenseMap, llvm::SmallPtrSet and
llvm::SmallVector classes to define the partitions, equivalence classes and value
expressions. Instances of partitions are associated with in and out points of each
instruction. The input to the implementations are in SSA form of LLVM-IR.
Since Kildall’s and Gulwani’s algorithm work on non-SSA form of programs, we
modified the algorithms to process φ-functions. φ-functions are transformed to
copy statements and appended to predecessors of the join blocks. The implemen-
tations were compared using SPEC2006 programs and the results were obtained
on 2 GHz Intel Xeon processor with 8 GB RAM running Ubuntu 12.04.

Table 1. Number of redundancies detected by Gulwani, Kildall, and our algorithm

CINT2006 Gulwani Kildall Proposed Improvement(%)

mcf 32 36 36 12.5

astar 130 153 153 17.7

libquantum 210 259 259 23.3

bzip2 580 691 691 19.1

sjeng 1141 1265 1265 10.9

hmmer 3810 4204 4204 10.3

gobmk 8907 10005 10005 12.3

h264ref 8982 10216 10216 13.7

gcc 19837 23300 23300 17.5

CFP2006 Gulwani Kildall Proposed Improvement(%)

milc 775 867 867 11.9

sphinx3 827 919 919 11.1

lbm 1085 1169 1169 07.7

soplex 2685 3022 3022 12.6

povray 3319 3623 3623 09.2

Table 1 shows the number of redundancies detected in SPEC2006 CINT and
CFP C/C++ programs using Gulwani, Kildall, and the new algorithm. The
table also gives the percentage improvement made by the new algorithm in
detecting redundancies over Gulwani. The results show that the proposed algo-
rithm detects same number of redundancies as the complete algorithm by Kildall
thus demonstrating completeness. Also both these algorithms detect more redun-
dancies when compared to Gulwani’s with an average improvement of 14.2 %.

Detection of Redundant Expressions 61

The figures indicate that there can be statements, say of the form z = x ⊕ y, in
real programs such that variable z is equivalent to different variables in different
paths to the statement. Detection of redundancy of x ⊕ y is missed by Gulwani
while both Kildall and the new algorithm could capture it.

Table 2. Time taken (in seconds) to analyze the input SPEC2006 programs along with
their size (when converted to LLVM-IR SSA form)

CINT2006 Size of program Time for analysis

#joins #instructions Kildall Gulwani Proposed

mcf 171 1815 2.5961 0.8520 0.4917

libquantum 277 5045 7.5244 1.8921 1.1035

astar 450 6586 13.7687 4.1121 2.0936

bzip2 814 13346 66.4680 9.3012 6.3841

sjeng 1874 18658 119.0993 15.7408 9.5835

hmmer 3279 48387 203.3485 34.6138 30.2571

gobmk 9754 105994 361.5141 49.1068 45.5976

h264ref 6804 116253 358.3743 70.6684 67.6074

gcc 45861 605303 750.6864 110.2226 98.3966

CFP2006 #joins #instructions Kildall Gulwani Proposed

lbm 55 3773 7.6245 3.9202 1.4973

milc 1103 18867 30.4560 8.7964 5.5625

sphinx3 1836 22929 62.6717 22.4852 18.4850

soplex 3206 48513 136.0443 25.3210 21.4148

povray 8349 128305 320.8518 79.0802 74.7350

To show the efficiency of our algorithm, we measured the CPU time taken to
perform the analyses during compilation of the SPEC2006 programs. The times
were measured using -ftime-report option of clang. Table 2 gives the time taken
(in seconds) by the implementations to analyze the SPEC programs. The table
also gives the number of join blocks and instructions considered to indicate the
number of join operation and transfer functions being applied on the partitions.

Table 2 shows that the new algorithm takes less time to analyze the SPEC
programs than Gulwani’s polynomial time algorithm. This we believe is because
Gulwani recursively intersects equivalence classes (that has at least one variable
in common) to detect equivalent expressions at a join point (see Sect. 3.5, Join
algorithm, Lines 3–5 in [4]). However, the proposed algorithm does only a sim-
ple intersection of equivalence classes. Equivalences in paths to an expression
is detected only when needed by computing value φ-function. Both these algo-
rithms take considerably less time than Kildall’s exponential time algorithm.
The join operation in Kildall is similar to that in Gulwani except that, in
Kildall’s, the join operation recursively intersects equivalence classes even if there

62 R.R. Pai

are no common variables in the classes which makes it least efficient among the
three algorithms.

The results in the tables clearly demonstrate that the proposed algorithm
is complete as it detects the same number of redundancies as the complete
algorithm by Kildall. Also the algorithm is efficient when compared to the poly-
nomial time algorithm by Gulwani as it takes less time. Since more redundan-
cies can be detected by the proposed algorithm in comparatively less time, the
algorithm may be used in redundancy elimination algorithms that aid in the
generation of faster code.

7 Related Work

The seminal work on GVN by Kildall [5] detects equivalences at each point in
the program using an iterative data-flow analysis algorithm. This algorithm uses
“structuring” of partitions of equivalent expressions, which makes it complete.
However, structuring of partitions blows up its size and hence affects efficiency
of the algorithm. The strive to improve efficiency in the detection of equivalences
motivated the algorithm by Alpern and others (referred to as AWZ algorithm) [2]
which works on Static Single Assignment (SSA) form of programs and uses the
concept of congruence. The algorithm though efficient is less precise than Kildall’s,
one of the reasons being that it does not interpret φ-functions. Rüthing, Knoop,
and Steffen [8] improves on AWZ in terms of the number of equivalences detected
by using normalization rules. These normalization rules essentially interpret the
φ-functions. The algorithm is efficient but not complete, as proved by Gulwani [4].
The Dominator-based value numbering algorithm by Briggs and others [3]
works on SSA form. The algorithm is not complete as it makes pessimistic assump-
tions about loops in programs. The SCC-based Value Numbering algorithm by
Simpson [10] considers semantics of operators to improve on AWZ. However the
algorithm has similar issues as AWZ since it does not interpret φ-functions. The
GVN algorithms in SSA by VanDrunen [11] and Odaira [7] detect and eliminate
a broader class of partial redundancies and not just total redundancies. The poly-
nomial time algorithm by Gulwani and Necula [4] is claimed to detect all equiva-
lences among expressions of a particular size. However, some of the redundancies
could not be detected using this GVN algorithm [9]. Nie proposed an SSA version
of Gulwani’s algorithm [6]. In general, the algorithms are either complete or take
only polynomial time but not both.

8 Conclusion

Detection of equivalent expressions in a program is a static analysis aimed at elimi-
nation of redundant expressions. The fundamental problem here is the detection of
equivalences at each point in the program such that all redundancies are detected in
polynomial time. For this we introduced the novel concept of value φ-function. We
then presented an iterative data-flow analysis algorithm which uses value
φ-function to detect equivalences. We showed that the algorithm is complete and

Detection of Redundant Expressions 63

takes only polynomial time. Moreover, we implemented our algorithm and com-
pared it with two widely accepted GVN algorithms in the literature. The experi-
mental results demonstrate that the proposed algorithm is complete and efficient.

Acknowledgements. We thank Vineeth Paleri, Muralikrishnan K, Vinith R, and the
anonymous reviewers for their insightful comments.

A Appendix

A.1 VALUEPHIFUNC

This recursive function computes value φ-function of a given value expression.
The function assumes partitions at out of each block is available to it. The func-
tion uses equiVE to replace operands of a given value expression with equivalent
value φ-functions, whenever possible. Else it returns the value expression as such.
The getVN function used here takes a partition at out of either the left or right
predecessor of a join block k. It searches for the input value expression in the
partition and returns its value number, if present. If the partition was searched
for previously then the function returns a new value number. This case can arise
with loops in the program.

valuePhiFunc(ve, P)

vi = vj = vpf = NULL
ve′ = equiVE(ve, P)
if ve′ is of the form φk(vi1, vj1) + φk(vi2, vj2)

then vi = getVN(POUTkl , vi1 + vi2)
vj = getVN(POUTkr , vj1 + vj2)
if vi == NULL

then vi = valuePhiFunc(vi1 + vi2, POUTkl)
if vj == NULL

then vj = valuePhiFunc(vj1 + vj2, POUTkr)
elseif ve′ is of the form φk(vi1, vj1) + vma

then vi = getVN(POUTkl , vi1 + vm)
vj = getVN(POUTkr , vj1 + vm)
if vi == NULL

then vi = valuePhiFunc(vi1 + vm, POUTkl)
if vj == NULL

then vj = valuePhiFunc(vj1 + vm, POUTkr)
elseif ve′ is of the form vm + φk(vi2, vj2)

then vi = getVN(POUTkl , vm + vi2)
vj = getVN(POUTkr , vm + vj2)
if vi == NULL

then vi = valuePhiFunc(vm + vi2, POUTkl)
if vj == NULL

then vj = valuePhiFunc(vm + vj2, POUTkr)
if vi ∧ vj // both are non-NULL

then vpf = φk(vi, vj)
return vpf

a class with value number vm does not have value φ-function or has φr(vs, vt) such
that block r dominates k.

64 R.R. Pai

A.2 Proof

Correctness of Join Algorithm

Lemma 1. If e1 ≡ e2 at a point p and the point p dominates join point j then
e1 ≡ e2 at j iff the algorithm detects their equivalence.

Proof. Let expressions e1 and e2 be equivalent at a point p such that p dominates
join point j. Since a variable is defined only once in SSA the expressions are
equivalent in each path to j. Line 1 in the algorithm Intersect ensures such
common equivalences are detected at the join point. 	

Lemma 2. If variable x ≡ y in each path to join point j then x ≡ y at j iff the
algorithm detects their equivalence.

Proof. Let two variables x and y be equivalent in each path to join point j. Then
by suitably transforming the φ-functions in the join block j and by line 1 of the
Intersect algorithm such equivalences could also be detected. 	

Let there be expressions ei in each path to an expression e and ei ≡ e in respec-
tive paths. The equivalences are detected by the transferFunction algorithm
which is proved below.

Correctness of transferFunction Algorithm

Lemma 3. Let x = e be a statement at a point p in the program and there exist
expressions ei at points pi in each path to p such that at least one of the pi’s
does not dominate p. Then expression e has a value φ-function, as computed by
valuePhiFunc algorithm, iff expressions ei and e are equivalent in respective
paths.

Proof. This can be proved by induction on the number of join points in paths
with the base case similar to that in Fig. 4. 	

Lemma 4. Let x = e be a statement at a point p in the program and there exists
expressions ei in each path to p. Expressions ei and e are equivalent in respective
paths iff the transferFunction algorithm detects the equivalences.

Proof. Let the expression(s) ei appear at point p′ such that p′ dominate p. Then
an equivalence class for ei with its value expression will appear in the partition
at p′ (ensured by lines 7 and 8 in the algorithm). Since a variable is defined only
once in SSA the partition at in point of the statement x = e will have a class
with the value expression of ei. Then line 6 in the algorithm ensures equivalence
of ei and e is detected.

Now consider the case where an expression ei appear at a point p′ such that
p′ does not dominate p. In this case computation of value φ-function in line 5
(Lemma 3) and subsequent check for its existence in line 6 ensures detection of
equivalences of ei and e in respective paths. 	

Detection of Redundant Expressions 65

Correctness of Iterative Data-Flow Analysis Algorithm

Theorem 1 (Soundness and Completeness). Let P be a partition at a
point p computed by the iterative data-flow analysis algorithm. Two expressions
are equivalent at p iff the algorithm detects their equivalence.

Proof This follows from Lemmas 1, 2, and 4. 	

Correctness of Algorithm for Detection of Redundancies

Theorem 2 (Soundness and Completeness). Let s : z = x + y be a state-
ment at a point p. The expression x+ y is redundant iff the algorithm detects its
redundancy.

Proof This follows from Theorem 1. 	

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison Wesley, Boston (2006)

2. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 1988, pp. 1–11. ACM, New York (1988)

3. Briggs, P., Cooper, K., Simpson, L.: Value numbering. Software: Practice and Expe-
rience 27(6), 701–724 (1997)

4. Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value number-
ing. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 212–227. Springer,
Heidelberg (2004)

5. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 1973, pp. 194–206. ACM, New York (1973)

6. Nie, J.-T., Cheng, X.: An efficient SSA-based algorithm for complete global value
numbering. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 319–334. Springer,
Heidelberg (2007)

7. Odaira, R., Hiraki, K.: Partial value number redundancy elimination. In:
Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602, pp. 409–
423. Springer, Heidelberg (2005)

8. Rüthing, O., Knoop, J., Steffen, B.: Detecting equalities of variables: combining
efficiency with precision. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 232–247. Springer, Heidelberg (1999)

9. Saleena, N., Paleri, V.: Global value numbering for redundancy detection: a simple
and efficient algorithm. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC 2014, pp. 1609–1611. ACM, New York (2014)

10. Simpson, L.T.: Value-driven redundancy elimination. Ph.D. thesis, Rice University,
Houston, TX, USA (1996)

11. VanDrunen, T., Hosking, A.L.: Value-based partial redundancy elimination. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 167–184. Springer, Heidelberg
(2004)

Separation Logic

Separation Logic with Monadic Inductive
Definitions and Implicit Existentials

Makoto Tatsuta1(B) and Daisuke Kimura2

1 National Institute of Informatics, Sokendai, Tokyo, Japan
tatsuta@nii.ac.jp

2 Toho University, Chiba, Japan

Abstract. This paper proves the decidability of entailments in separa-
tion logic with monadic inductive definitions and implicit existentials.
This system is obtained from the bounded-treewidth separation logic
SLRDbtw of Iosif et al. in 2013 by adding implicit existential vari-
ables and restricting inductive definitions to monadic ones. The sys-
tem proposed in this paper is a decidable system where one can use
general recursive data structures with pointers as data, such as lists of
pointers. The key idea is to reduce the problem to the decidability of
SLRDbtw, by assigning local addresses or some distingu ished address to
implicit existential variables so that the resulting definition clauses sat-
isfy the establishment condition of SLRDbtw. This paper also proves the
undecidability of the entailments when one adds implicit existentials to
SLRDbtw. This shows that the implicit existentials are critical for the
decidability.

1 Introduction

The theoretical foundations of software verification are important. Among them
it is really necessary to obtain a feasible and powerful system for finding memory
errors and verifying that software does not have any memory errors. Separation
logic made it possible to solve this problem [2,3]. One of the key theoretical prop-
erties that supports their framework is the decidability of the truth of entailments
of symbolic heaps.

A symbolic-heap system with recursive data structures was first proposed
in [2,3]. Their system had a decision procedure of the truth of entailments.
However it contained only the inductively defined predicates for list segments
and trees. They wanted to extend it to general inductive definitions while keeping
its decidability.

The symbolic heap is a conjunction of equalities and disequalities, and a
separating conjunction of the empty heap predicate, the points-to predicate,
and inductive predicates. In this setting, the expressive power of a system is
determined mostly by its inductive predicates.

So far two decidable systems of symbolic heaps with general inductive
definitions are known [9,10]. These systems cover complicated recursive data
structures such as doubly-linked lists. However, they do not cover the two
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 69–89, 2015.
DOI: 10.1007/978-3-319-26529-2 5

70 M. Tatsuta and D. Kimura

predicates given in [2,3] for the following reason. In the system of [2,3], they
allow field names which can be implicit, for example, E �→ [f1 : x] means
∃y(E �→ [f1 : x, f2 : y]). This implicit field y is formalized by an implicit exis-
tential variable. Since the system in [9] do not have implicit existentials, it does
not cover the predicates used in [2,3]. Since the list segment predicate used in
[2,3] uses disequality, the system in [10] does not cover this predicate.

An implicit existential is an existentially quantified variable such that the
variable occurs only once in a given formula. So its value is not related to other
values. An implicit existential is often denoted by the underscore for this reason.
Implicit existentials are necessary for keeping data in each node in recursive data
structure such as a list of pointers.

It is one of important goals to find the union of these two systems [3,9] where
we can use general inductive definitions as well as implicit existentials. In this
paper, we first prove that the union becomes undecidable. Namely the truth
of entailments in the system obtained from [9] by adding implicit existentials
is shown to be undecidable. Hence it is a challenging problem to find certain
conditions that allow implicit existentials and show the decidability of the truth
of entailments of symbolic heaps with general inductive definitions under the
conditions.

We answer this problem by proposing the system Sep obtained from the sys-
tem SLRDbtw in [9] by adding implicit existentials and restricting every induc-
tively defined predicate to essentially unary one. We call this restriction the
monadicity condition. This restriction disallows some data structures such as
doubly-linked lists, but allows several commonly used data structures such as
list segments and trees. Then our system Sep contains the system given in [3].
Our system contains a fragment of the system SLRDbtw with the restriction that
inductive definitions are monadic.

Our main idea is to introduce some distinguished address ∞ and transform
the heap into another heap such that implicit existentials point to local addresses
or ∞. Then the resulting definition clauses satisfy the establishment condition
of SLRDbtw. Moreover this transformation does not change the truth of given
inductively defined predicates. This solves the difficulty discussed by [9] that
implicit existentials may give a heap of arbitrary large treewidth.

Our monadicity condition allows global parameters to weaken the unary-
predicate restriction. For example, Sep can inductively define the list segment
predicate ls(x, y) since y is counted as a global parameter and ls is treated as
unary for x. It is possible because y is unchanged throughout recursive calls
of the predicate, and only the first argument x of the predicate ls(x, y) can be
changed.

Our proof uses two translations. In the first translation, we translate a given
inductively defined predicate in Sep into that in the separation logic Sep∞ with
the distinguished address ∞. We transform a given heap into an extended heap
which may have the address ∞, but it does not have any dangling, looping, shar-
ing pointers except those to local values or global constants. Then the definition
clauses after the translation satisfy the establishment condition. In the second
translation, we translate Sep∞ into the system SLRDbtw by [9]. Finally we apply
the decidability of the system SLRDbtw.

Separation Logic with Monadic Inductive Definitions 71

Section 2 defines separation logic Sep with monadic inductive definitions, and
explains related work and our main ideas. Section 3 studies our translation from
Sep into Sep∞. Section 4 discusses our translation from Sep∞ into a monadic
version of SLRDbtw. Section 5 gives our main theorems of the decidability of
Sep. Section 6 proves the undecidability of the system SLRDbtw with implicit
existentials. Section 7 concludes.

2 Separation Logic with Inductive Definitions

In this section, we first define our separation logic Sep, next we discuss related
work, and then we explain our main ideas.

2.1 Symbolic Heaps with Inductive Definitions

This subsection defines the separation logic G with inductive definitions, in order
to define our system Sep later. This subsection also gives the definition of the
system SLRDbtw by Iosif et al. given in [9].

We will use vector notations x to denote a sequence x1, . . . , xk for simplicity.
|x| denotes the length of the sequence. Sometimes we will also use a notation of a
sequence to denote a set for simplicity when it is not ambiguous from a context.
We will also write x = y to denote xi = yi for all i, and f(x) for the sequence
f(x1), . . . , f(xk). We write ≡ for the syntactical equivalence. N denotes the set
of natural numbers.

Before defining the language of our system Sep, we begin with a general
framework G of symbolic heaps with inductive definitions.

The language of G is defined as follows. We have first-order variables
Vars ::= x, y, z, w, . . . and inductively defined predicate symbols P ::= P1, P2,
Terms t are defined by t ::= x | nil. We define the following syntax:

Pure formulas Π ::= t = t | t �= t | Π ∧ Π,
Spatial formulas Σ ::= Emp | t �→ (t1, . . . , tn) | P (t) | Σ ∗ Σ,
Symbolic Heaps φ ::= Π ∧ Σ,
Entailments φ1
 φ2.

In G, each cell has n elements. Later a cell will be interpreted by Nn. We write
the (m)i for i-th element mi of m in Nn. We assume ∗ is more tightly connected
than ∧. We sometimes write ∗kAk for a sequence of separating conjunctions such
as A1 ∗ A2 ∗ A3.

G has an inductive definition system, which is a finite set of inductive defin-
itions given as follows.

Inductive Definitions Pi(x) =def
∨

j

Rij(x).

Definition Clauses, which are defined as

Rij(x) ≡ ∃zij(Πij ∧ ∗kwijk �→ (uijk
1 , . . . , uijk

n) ∗ ∗lPf(i,j,l)(tijl)),

where f : N3 → N . We write [t] for the equivalence class containing t by the
equalities in Πij .

72 M. Tatsuta and D. Kimura

We want a decidable system for software verification. However, the truth of
entailments in the system G is known to be undecidable [1]. So some decidable
fragments of this system have been proposed, by imposing some restrictions.

The condition progress is that each definition clause has exactly one points-
to predicate. For an inductively defined predicate P (x), i is said to be a cell
argument place of P if every definition clause R(x) of P has xi �→ (t) for some t.
The condition connectivity is that in every definition clause R(x) and every
inductively defined predicate P , if P (t) is in R(x), then P has some cell argument
place i, and R(x) has some w �→ (u) such that ti ∈ [u].

For an inductively defined predicate P , i is said to be an allocated argument
place of P if the following holds for each definition clause R(x) of P :

1. it has xi �→ (t) for some t, or
2. it has some Pl(t) such that j is an allocated argument place of Pl and xi ∈ [tj].

For a definition clause R(x) and a variable z existentially quantified in R(x),
z is said to be allocated, if

1. R(x) has z �→ (t) for some t, or
2. R(x) has some P (t) such that i is an allocated argument place of P and

z ∈ [ti].

The condition establishment is that in every definition clause and every exis-
tentially quantified variable z in it, z is allocated.

We discuss some known decidable fragments of G with some restrictions.
The first one is the system by Berdine et al. [2,3]. The restriction is to have

only the predicate for list segments and that for trees. Namely a general form of
inductive definitions is not available in their system. Their list segment predicate
ls for the n = 2 case is defined as follows

ls(x, y) =def (x = y ∧ Emp) ∨ (x �= y ∧ ∃zw(x �→ (z, w) ∗ ls(z, y))). (1)

The second one is the system SLRDbtw by Iosif et al. in 2013 [9]. Their
restrictions are the conditions progress, connectivity, and establishment.

The third one is the system by Iosif et al. in 2014 [10]. We do not discuss
details of the definitions of their conditions because of page limitation, but we
can say their system allows implicit existentials, which is defined in the next
subsection, and does not have disequalities.

2.2 Implicit Existential

This subsection discusses implicit existentials.
For a definition clause R(x) and a variable z existentially quantified in R(x),

z is said to be implicit, if R(x) has some w �→ (t) such that z ≡ ti for some i,
and z appears only once in R(x).

An example of an implicit existential variable is w in (1). Sometimes one uses
the underscore for the notation of an implicit existential variable, since it can

Separation Logic with Monadic Inductive Definitions 73

take an arbitrary value not related to other values. We will sometimes also use
this notation. With this notation, (1) can be written as

ls(x, y) =def (x = y ∧ Emp) ∨ (x �= y ∧ ∃z(x �→ (z,) ∗ ls(z, y))).

Implicit existential variables are necessary to keep arbitrary data in each node
of recursive data structures such as lists and trees.

Implicit existentials look like small notational difference. Surprisingly, how-
ever, it is not the case. Even if the system SLRDbtw is decidable, if we allow
implicit existentials in their system, the system becomes undecidable. We will
prove it in Sect. 6.

So far we do not know any decidable fragment such that a general framework
of inductive definitions is available, and it is generalization of the system by
Berdine et al. [3]. Hence it is a challenging problem to find certain conditions that
allow implicit existentials and show the decidability of the truth of entailments
of symbolic heaps with general inductive definitions under the conditions.

2.3 Separation Logic Sep

This subsection defines the separation logic Sep with monadic inductive defi-
nitions. This system is obtained from the system SLRDbtw by adding implicit
existential variables and restricting inductive definitions to monadic inductive
definitions.

The language of Sep is the same as that of G except the restriction on the
inductive definitions. Namely Sep has the same pure formulas, spatial formu-
las, symbolic heaps, and entailments. In order to define Sep, we define some
conditions for inductive definitions.

The condition weak establishment is that in every definition clause and every
existentially quantified variable z in it, z is allocated or implicit.

The condition monadicity is that for every inductively defined predicate
P (x,y) and every definition clause R(x,y) of P , if Pi(t) is in R(x,y), t is the
form t,y.

Monadicity essentially restricts every inductive defined predicate into a unary
predicate. Since we want to relax it to some extent, we allow global parameters y.
The variables y are unchanged throughout recursive calls of predicates, and only
the first argument x of each predicate can be changed.

The condition weak progress is that every definition clause R(x) has either

1. exactly one points-to predicate, or
2. no points-to predicates and we have x ∈ [y nil] where y are global parameters.

It is the syntax sugar of the progress condition, and we introduce this condition
for writing examples in an easier way.

We define Sep as the system obtained from G by imposing the following
restrictions:

1. weak progress,
2. connectivity,

74 M. Tatsuta and D. Kimura

3. weak establishment,
4. monadicity.

Since we can simplify the syntax according to the restrictions, we can define
the inductive definition system in Sep as follows.

Inductive Definitions Pi(x,y) =def
∨

j

Rij(x,y).

Definition Clauses, which are defined as

Rij(x,y) ≡ ∃zij(Πij ∧ Emp) and x ∈ [y nil],

or

Rij(x,y) ≡ ∃zij(Πij ∧ wij �→ (uij
1 , . . . , uij

n) ∗ ∗lPf(i,j,l)(t
ij
l ,y)),

where f : N3 → N , wij ∈ [x], tijl ∈ [uij], and for every z either z is in [tijl] for
some l or z appears only once in Rij .

We summarize these systems as follows (Table 1).

Table 1. Symbolic-Heap systems

Berdine
et al.

Iosif et al.
2013

Iosif et al.
2014

Iosif et al. 2013
with implicit
existentials

Sep

General inductive definitions No Yes Yes Yes Yes

Implicit existentials Yes No Yes Yes Yes

Disequalities Yes Yes No Yes Yes

Without monadicity restriction Yes Yes Yes Yes No

Decidable Yes Yes Yes No Yes

Example 1. The following ls and ls2 are list segment predicates in Sep. We
assume n = 1 and 2 for ls and ls2 respectively. ls2 works as the predicate of lists
of pointers, since a list specified by ls2 can hold some data at w in each cell.

ls(x, y) =def (x = y ∧ Emp) ∨ ∃z(x �= y ∧ x �→ (z) ∗ ls(z, y)),
ls2(x, y) =def (x = y ∧ Emp) ∨ ∃zw(x �= y ∧ x �→ (z, w) ∗ ls2(z, y)).

Note that ls2 is available in [3], but not available in [9] because of implicit
existentails, and not available in [10] because of disequalities.

Example 2. The following tree is a ternary tree predicate. We assume n = 4.
A tree specified by this predicate is a tree with pointers as data, since it can
hold some data at u in each cell.

tree(x) =def (x = nil ∧ Emp) ∨ ∃yzwu(x �→ (y, z, w, u) ∗ tree(y) ∗ tree(z) ∗ tree(w)).

Separation Logic with Monadic Inductive Definitions 75

Note that the predicate tree is available in [10], but not available in [9] because
of implicit existentails, and not available in [3] because their system has only the
list predicate and the binary tree predicate.

Example 3. The nested linked list nll(x, y) is available in Sep. We assume n = 3.
The following is taken from the competition SL-COMP 2014 (it is modified
so that it fits our syntax). According to the monadicity condition, we need a
dummy argument y in ls3(x, y, z). These two predicates have implicit existential
variables w.

ls3(x, y, z) =def ∃w(x �→ (z, w,nil))∨
∃uw(x �= z ∧ x �→ (u,w,nil) ∗ ls3(u, y, z)),

nll(x, y, z) =def (x = y ∧ Emp)∨
∃uvw(x �= y ∧ x �→ (u, v, w) ∗ ls3(v, y, z) ∗ nll(u, y, z)).

Note that the predicate nll is not available in [3] because their system has only
the list predicate and the tree predicate. It is not available either in [9] because
of implicit existentails. It is not available either in [10] because of disequalities.

Sep can express many useful data structures in the literature. It is because
inductive predicates used in the literature are often monadic. For example, Sep
can express more than half of benchmarks in the competition SL-COMP 2014.
On the other hand, according to the monadicity condition, Sep cannot express
some important data structures such as doubly-linked lists and skip lists, whose
definition clauses use references to nonlocal addresses.

2.4 Semantics

The semantics s, h |=Sep A of this logic is defined in a usual way by using
the following structure (for example, [15]). An inductively defined predicate is
interpreted by the least fixed point in a usual way [9].

Val = N, Locs = {x ∈ N | x > 0}, nil = 0,
Heaps = Locs →fin Valn,

Stores = Vars → Val.

We use s and h by assuming s ∈ Stores and h ∈ Heaps. Note that the interpre-
tation s(t) of the term t is defined as 0 for nil. We write φ1 |=Sep φ2 to denote
∀sh((s, h |=Sep φ1) → (s, h |=Sep φ2)).

2.5 Related Work

Known decision procedures for entailments in separation logic with some general
form of inductive definitions are only a system given in [9] and that given in [10],
according to our knowledge. In the system SLRDbtw in [9], the inductive defini-
tions need to satisfy the conditions of progress, connectivity, and establishment.

76 M. Tatsuta and D. Kimura

Their system covers a wide class of examples in the literature. Its decidability was
shown by reducing the entailment problem to the satisfiability problem of MSO
on graphs with bounded treewidth. The system given in [10] is obtained from
[9] by removing the progress and establishment conditions, disallowing disequal-
ities, and adding some locality condition. Its decidability is shown by reducing
the entailment problem to the language inclusion problem of tree automata.

Several semi-decision procedures of separation logic with some general form of
inductive definitions have been studied and implemented. For example, a system
with lemma mechanism for inductive predicates was proposed and implemented
in [11] and a system based on cyclic proofs was proposed and implemented in [4,5].

There are several decision procedures for entailments in separation logic with
hard-coded inductive predicates, for example, [2,3,6–8,12–14]. They often have
the hard-coded list predicate and tree predicate. Some of them could be gen-
eralized to some general form of inductive definitions. The first system among
such systems was that given in [2,3], which has implicit existentials, and they
showed the decidability by proof-theoretic approach. [6] shows the same decid-
ability with PTIME by graph-theoretic approach. The system in [7,8] also uses
graph-theoretic approach to show the decidability for more hard-coded inductive
predicates such as cyclic, nesting, and doubly-linked lists.

The system Sep proposed in this paper has a decision procedure for sepa-
ration logic with some general form of inductive definitions as well as implicit
existentials. The system SLRDbtw does not have implicit existentials, since they
imposed the establishment condition. As we will prove in Theorem 6.2, the truth
of the entailments in the system SLRDbtw becomes undecidable when we allow
implicit existentials. Our system Sep is obtained from the system SLRDbtw by
allowing implicit existentials and restricting inductively defined predicates into
essentially unary predicates. Then our system Sep includes the system in [2,3].
Our system Sep also includes a fragment of SLRDbtw with the restriction that
inductive definitions are monadic.

2.6 Main Ideas

Our main goal is to find certain conditions that allow implicit existentials and
show the decidability of the truth of entailments of symbolic heaps with general
inductive definitions under the conditions.

The difficulty comes from implicit existentials that may break the establish-
ment condition, which may lead to unbounded treewidth. For this reason, [9]
had to exclude implicit existentials. Since an implicit existential may take an
arbitrary value, the corresponding pointer may point to an arbitrary place, so
the treewidth of the graph of the heap may become unbounded.

Our observation is that monadicity gives locality. When we assume monadic-
ity, progress, and connectivity in a given definition clause, the formal parameter
of an inductively defined predicate has to point to the cell generated in the defi-
nition clause. Hence in the definition clause, global information of the other cells
is not available. Therefore a pointer to a nonlocal address is only given by an

Separation Logic with Monadic Inductive Definitions 77

dangling

sharing

loopingh T

Fig. 1. Heap transformation

implicit existential. Hence the resulting heap also satisfies the definition clause,
after we replace a pointer to the nonlocal address by an arbitrary value.

From this observation, our main idea is to transform a given heap h to another
heap T by replacing all the pointers to nonlocal addresses to the distinguished
address ∞. It is illustrated in the Fig. 1. This transformation keeps the truth
and decreases the treewidth of the heap. According to this heap transformation,
we will define the translation P∞(x,y) of a given inductively defined predicate
P (x,y).

We also introduce global parameters. The list segment predicate ls(x, y) has
two arguments, and is not unary. However y is a global parameter which is
unchanged in every recursive call of ls, and hence ls(x, y) is essentially a unary
inductive predicate for x. Our system Sep allows such y as global parameters
and we treat them in the same way as the constant nil.

The result of the translation is an inductive definition system that satisfies
the establishment condition. Hence we can apply the decidability result in [9] to
the result of the translation, in order to show the decidability.

3 Translation in Sep∞
We will show our translation of Sep into Sep∞. First we simplify a given induc-
tive definition system in Sep by two steps. Next we define our separation logic
Sep∞. Then we translate inductive predicates in Sep into those in Sep∞. Finally
we translate symbolic heaps in Sep into those in Sep∞.

3.1 Transformation of Weak Progress into Progress

First we eliminate definition clauses that do not satisfy the progress condition,
in order to obtain an inductive definition system that satisfies it. Since the weak
progress is the syntax sugar, this elimination is straightforwardly achieved by
expanding the definition clauses that do not satisfy the progress condition.

First we expand some inductive predicates by their definition clauses that do
not satisfy the progress condition, in a given definition clause Rpq that satisfies
the progress condition. For an inductively defined predicate Pi, and its definition

78 M. Tatsuta and D. Kimura

clauses Rij(x,y) of the form ∃zijΠij ∧ Emp, we expand some occurrences of Pi

in Rpq by the body ∃zijΠij ∧ Emp. Namely we transform

Rpq(x,y) ≡ ∃zpq(Πpq ∧ wpq �→ (upq) ∗ ∗lPf(p,q,l)(v
pq
l ,y) ∗ ∗kPi(t

pq
k ,y))

(f(p, q, l) may be i) into the prenex normal form obtained from

∃zpq(Πpq ∧
∧

k

(∃zijΠij)[x := tpq
k] ∧ wpq �→ (upq) ∗ ∗lPf(p,q,l)(v

pq
l ,y))

by moving ∃zij to the head. When the spatial part becomes empty, we put Emp.
We do this expansion of Rpq for each Pi, each Rij of this form, and each set

of the occurrences of Pi in Rpq, and let the results be Rpq1, . . . , Rpqr. Then for
each Rpq we replace the original Rpq in the original inductive definition system
S by Rpq1, . . . , Rpqr to obtain the new inductive definition system S′. Then S′

is equivalent to S as an inductive definition system, and satisfies the progress
condition.

Next we expand some inductive predicates in a given entailment φ
 ψ in
a similar way. For φ and ψ, we do the same expansion and let the results be
φ1, . . . , φl and ψ1, . . . , ψm respectively. Then the truth of the entailment φ
 ψ

under S is equivalent to
∧

i

∨

j

(φi
 ψj) under S′. Hence it is sufficient to check

the truth of φi
 ψj under S′ for all i, j.

Example. ls2 is transformed into the following ls2:

ls2(x, y) =def ∃w(x �= y ∧ x �→ (y, w)) ∨ ∃zw(x �= y ∧ x �→ (z, w) ∗ ls2(z, y)).

The entailment x �→ y ∗ ls2(y, z)
 ls2(x, z) is transformed into the following
entailments: ((y = z∧x �→ y
 x = z∧Emp)∨(y = z∧x �→ y
 ls2(x, z)))∧((x �→
y ∗ ls2(y, z)
 x = z ∧ Emp) ∨ (x �→ y ∗ ls2(y, z)
 ls2(x, z))).

From now on, we assume our inductive definition system in Sep satisfies the
progress condition.

3.2 Simplification of Definition Clauses

We simplify definition clauses keeping their expressive power. We need this sim-
plification for defining our main translation.

Suppose the definition clause

R(x,y) ≡ ∃z(Π ∧ w �→ (u) ∗ ∗lPf(l)(tl,y)).

For zi �≡ t, we eliminate zi = t in Π by substituting t for zi, and removing
zi from z. Namely we replace

∃z(Π ∧ w �→ (u) ∗ ∗lPf(l)(tl,y))

by

∃z′((Π ∧ w �→ (u) ∗ ∗lPf(l)(tl,y))[zi := t])

Separation Logic with Monadic Inductive Definitions 79

where z′ = z − zi.
We remove t = t in Π, since it is redundant.
We split z into z′ and z′′ such that z′′ = z ∩ t and z′ = z − z′′. We write z

for z′′ to save symbols.
Then we have the definition clause

∃zz′(Π ∧ x �→ (u) ∗ ∗lPf(l)(tl,y))

where

(1) all the equalities in Π do not contain zz′,
(2) z′

i appears only once, and z′ = u − xy nil t,
(3) z ⊆ t ⊆ yz.

From now on, we assume every definition clause has this form.

3.3 Separation Logic Sep∞
We will define our separation logic Sep∞.

Sep∞ is obtained from the separation logic Sep by adding the constant ∞.
Terms t ::= x|nil|∞.
For defining its semantics, we will use the following structure:

N1 = {−1} ∪ N, Val1 = N1, ∞ = −1.

We define the interpretation s(t) of the term t as 0 if t ≡ nil, and −1 if t ≡ ∞.
Extended heaps are defined by T : Locs →fin Valn1 .

Definition 3.1. We define s, T |=Sep∞ φ in the same way as |=Sep where s is
a store s : Vars → Val, and T is an extended heap.

3.4 Translation of Inductive Predicates in Sep∞
This subsection gives our translation of inductive predicates in Sep∞ and shows
the equivalence of the translation.

For a heap h and an extended heap T , we define h ∈ T by

(1) Dom(h) = Dom(T),
(2) if (T (x))i �= ∞, we have (h(x))i = (T (x))i.

For a heap h, an extended heap T , and a1, . . . , am ∈ Val, we define h �a T
by

(1) Dom(h) = Dom(T),
(2) (T (x))i = (h(x))i if (h(x))i ∈ Dom(T) ∪ {a,nil}, and
(3) (T (x))i = ∞ if (h(x))i �∈ Dom(T) ∪ {a,nil}.

80 M. Tatsuta and D. Kimura

For a heap h, we define x →i y by x, y ∈ Dom(h) and (h(x))i = y. We also
define x → y by x →i y for some i. We write →∗ for the reflexive transitive
closure of →.

Definition 3.2. For a ∈ Val, we call an extended heap T normal with a when

(1) there do not exist x ∈ Dom(T) and 1 ≤ i ≤ n such that (T (x))i �∈ Dom(T)∪
{nil,∞,a},

(2) there do not exist x, y ∈ Dom(T) such that x �= y, x → y, y →∗ x, and
x �∈ a, and [

(3) there do not exist x, y ∈ Dom(T) and 1 ≤ i, j ≤ n such that x �= y and
(T (x))i = (T (y))j ∈ Dom(T) − {x, y,a}.

We write Norm(a, T) when T is normal with a.

Norm(a, T) means that T does not have any dangling, looping, or sharing point-
ers, except for pointers to local addresses and a. Note that we exclude the local
looping x → x, the local sharing x →i y and x →j y for i �= j, x �= y, and
the local sharing x → x and y → x, since they do not necessarily use implicit
existential variables.

Definition 3.3. Suppose an inductive definition system

Pi(x,y) =def
∨

j

Rij(x,y),

Rij(x,y) ≡ ∃zijz′ij(Πij ∧ x �→ (uij) ∗ ∗lPf(i,j,l)(t
ij
l ,y)).

We define its translation as the following inductive definition system

P∞
i (x,y) =def

∨

j

R∞
ij (x,y),

R∞
ij (x,y) ≡

∨

α

∃zij(Πij ∧ x �→ (α(uij)) ∗ ∗lP
∞
f(i,j,l)(t

ij
l ,y)).

where α ranges over {α|α : z′ij → {x,y,nil, tij ,∞}}, and P∞
i is a new induc-

tively defined predicate symbol.

α assigns to z′ij
k some local addresses (that is, x, tij), or some global values

(that is, nil, y), or ∞. Note that z′ij do not appear in Πij .

Example. We transform ls2 in the example in Subsect. 3.1 into the following
ls2∞:

ls2∞(x, y) =def (x �= y ∧ x �→ (y, x)) ∨ (x �= y ∧ x �→ (y, y))∨
(x �= y ∧ x �→ (y,nil)) ∨ (x �= y ∧ x �→ (y,∞))∨
∃z(x �= y ∧ x �→ (z, x) ∗ ls2∞(z, y)) ∨ ∃z(x �= y ∧ x �→ (z, y) ∗ ls2∞(z, y))∨
∃z(x �= y ∧ x �→ (z, z) ∗ ls2∞(z, y)) ∨ ∃z(x �= y ∧ x �→ (z,nil) ∗ ls2∞(z, y))∨
∃z(x �= y ∧ x �→ (z,∞) ∗ ls2∞(z, y)).

The next lemma shows the equivalence between Sep and its translation for
inductive predicates.

Separation Logic with Monadic Inductive Definitions 81

Lemma 3.4. (1) s, h |=Sep P (x,y) ⇐⇒ ∃T (h ∈ T ∧ s, T |=Sep∞ P∞(x,y)).
(2) ∃h �s(y) T (Norm(s(y), T) ∧ s, h |=Sep P (x,y)) ⇐⇒ s, T |=Sep∞

P∞(x,y).

It is proved by induction on |Dom(h)| and |Dom(T)|.

3.5 Translation of Symbolic Heaps in Sep∞
We will translate symbolic heaps in Sep into those in Sep∞.

Definition 3.5. For a symbolic heap

φ(x) ≡ Π ∧ ∗k(wk �→ (uk)) ∗ ∗lPf(l)(tl, tl),

we define its translation as the following symbolic heap:

φ∞(x) ≡ Π ∧ ∗k(wk �→ (uk)) ∗ ∗lP
∞
f(l)(tl, t

l).

The next lemma shows the equivalence between a symbolic heap in Sep and
its translation in Sep∞.

Lemma 3.6. (1) s, h |=Sep φ(x) ⇐⇒ ∃T (h ∈ T ∧ s, T |=Sep∞ φ∞(x)).
(2) ∃h �s(x) T (Norm(s(x), T) ∧ s, h |=Sep φ(x)) ⇐⇒ s, T |=Sep∞ φ∞(x).

It is proved by using Lemma 3.4.

Theorem 3.7. We have φ1(x) |=Sep φ2(x) ⇐⇒ φ∞
1 (x) |=Sep∞ φ∞

2 (x).

It is proved by using Lemma 3.6.

4 Translation in Bounded-Treewidth Separation Logic

In this section, we reduce the entailments in Sep∞ into those in the bounded-
treewidth separation logic SLRDbtw given in [9]. Since the decidability of the
entailments in their system is known, we will obtain the decidability of those in
Sep by this reduction.

First we define a monadic version BTW of SLRDbtw in terms of this paper.
This is essentially the same as their original system except the inductive defin-
itions are restricted to monadic ones, since it is sufficient for our purpose. Our
semantics for BTW is an instance of theirs and is obtained from their semantics
for SLRDbtw in [9] by

1. taking PVar to be {nil,∞}, Loc to be N1, taking null to be 0,
2. replacing s : PVar → Loc by s : Vars → Locs and defining the interpretation

s(t) of the term t by s(nil) = 0 and s(∞) ∈ Loc,
3. replacing h : Loc − {0} →fin Sel →fin Loc by h : Loc − {0} →fin Locn,
4. taking LVarsl to be Vars, and Varsl to be the set of terms,
5. replacing ι by s : LVarsl → Loc.

82 M. Tatsuta and D. Kimura

Note that Locs is defined as {x ∈ N |x > 0} in Sect. 2.4.

Definition 4.1 (Bounded-Treewidth System). We define the bounded-
treewidth system BTW.

The symbolic heaps φ in BTW are the same as those in Sep∞ except the
following restrictions for the definition clauses:

– we exclude the definition clause of the first form Rij(x,y) ≡ ∃zijΠij ∧ Emp
(Namely we assume the progress condition),

– we require that for every z, z is in [tijl]. (Namely we exclude the case where z
appears only once in Rij .)

The store s is defined by s : Vars → Val1. The heap h is defined by h :
Locs ∪ {∞} →fin Valn1 . The interpretation s(t) of the term t is defined by
s(nil) = 0, s(∞) ∈ Val1. The semantics s, h |=BTW φ is defined in a usual way
by using the above s, h.

The decidability of the entailments in BTW is known.

Theorem 4.2 (Iosif et al. [9]). The truth of a given entailment φ1(x) |=BTW
φ2(x) is decidable.

The semantics of Sep∞ is a special case of that of BTW. Namely the seman-
tics of Sep∞ is obtained from that of BTW by imposing the following restrictions
for s, h: s(∞) = −1 and s : LVarsl → Loc − {−1}, and −1 �∈ Dom(h).

First we state a general lemma that holds for several systems of symbolic
heaps. Since the symbolic heaps were invented for characterizing shapes of heaps,
the truth is preserved by heap transformation that keeps the shape of heaps. In
order to state it, we introduce heap transformation η(s) and η(h) of s and h
respectively.

Definition 4.3. Let η : N1 − {0} → N1 − {0} be a bijection.
For s : Vars → Val1, we define η(s) : Vars → Val1 by η(s)(x) = η(s(x)).
For h : N1 − {0} →fin Valn1 , we define η(h) : N1 − {0} →fin Valn1 by

η(h)(x) = η(h(η−1(x))) where we write η((u1, . . . , un)) for (η(u1), . . . , η(un)).

Lemma 4.4. We have s, h |=BTW φ ⇐⇒ η(s), η(h) |=BTW φ.

Proof. We first show the claim for the case φ is some inductive predicate P (t).
This case is proved by induction on |Dom(h)|. Note that η preserves the truth
of equalities and the points-to predicate. Next we can prove the claim for φ by
using it. �
We define the translation of Sep∞ to BTW. The key to this translation is to add
both the pure formula nil �= ∞ and the pure formula w �= ∞ for every variable
w in a given symbolic heap. Then from nil �= ∞ we can choose s(∞) = −1 by
heap transformation. For every variable w occurring in the symbolic heap, from
w �= ∞, we have s(w) ∈ Val, so by replacing the values of the variables not
occurring in the symbolic heap by some dummy value such as nil, the range of
the resulting store becomes Val.

Separation Logic with Monadic Inductive Definitions 83

Definition 4.5 (Translation in BTW). We define the translation φ∞�=. First
we define the translation φ�=.

We write t �= ∞ for
∧

t∈t

t �= ∞. Let φ(x) be a symbolic heap of Sep∞. Note

that we assumed the progress condition for Sep and Sep∞.
Suppose an inductive definition system

Pi(x,y) =def
∨

j

Rij(x,y),

Rij(x,y) ≡ ∃zij(Πij ∧ x �→ (uij) ∗ ∗lPf(i,j,l)(t
ij
l ,y)).

We define its translation as the following inductive definition system:

P �=
i (x,y) =def

∨

j

R �=
ij(x,y),

R �=
ij(x,y) ≡ ∃zij(Πij ∧ xyz nil �= ∞ ∧ x �→ (uij) ∗ ∗lP

�=
f(i,j,l)(t

ij
l ,y)).

For a symbolic heap

φ(x) ≡ Π ∧ ∗k(wk �→ (uk)) ∗ ∗lPf(l)(tl, tl),

we define its translation by the following symbolic heap:

φ �=(x) ≡ Π ∧ x nil �= ∞ ∧ ∗k(wk �→ (uk)) ∗ ∗lP
�=
f(l)(tl, t

l),

We write φ∞�= for (φ∞)�= and this completes the definition of the translation.

Example. (x = y ∧ Emp)∞ is x = y ∧ Emp. (x = y ∧ Emp)∞�= is x = y ∧ x �=
∞ ∧ y �= ∞ ∧ nil �= ∞ ∧ Emp.

Since the translation φ∞ eliminates the implicit existential variables in a
given symbolic heap φ, φ∞ becomes a symbolic heap in BTW.

The next lemma tells us the relationship between a symbolic heap φ∞ and
its translation φ∞�=.

Definition 4.6. For a store s : Vars → Val1, we define s̃ : Vars → Val as
follows: s̃(x) = nil if s(x) = ∞, s̃(x) = s(x) otherwise.

For stores s, s′ and V ⊆ Vars, we write s =V s′ when s(x) = s′(x) for all
x ∈ V .

Lemma 4.7. (1) s, h |=BTW φ∞�=(x) and s(∞) = −1 iff s =x s̃ and
s̃, h |=Sep∞ φ∞(x).

(2) Let η be the permutation of s(∞) and −1. Then we have the following:
s, h |=BTW φ∞�=(x) iff η(s) =x η̃(s) and η̃(s), η(h) |=Sep∞ φ∞(x).

Proof. (1) We first show the claim for the case where φ is some inductive predicate
P (t). This case is proved by induction on |Dom(h)|. Note that for every variable

84 M. Tatsuta and D. Kimura

w in x, we have s(w) �= −1 from w �= ∞, and s(w) = s̃(w). Next we can prove
the claim for φ by using the case for inductive predicates.

(2) =⇒: Assume s, h |=BTW φ∞�=(x). We have s(∞) �= 0 from ∞ �= nil.
Then η is a bijection from N1 − {0} to N1 − {0}.

By Lemma 4.4, we have

s, h |=BTW φ∞�=(x) ⇐⇒ (η(s), η(h) |=BTW φ∞�=(x)) ∧ η(s)(∞) = −1.

By (1), it is equivalent to the righthand side of th claim.
⇐=: Assume that η(s) =x η̃(s) and η̃(s), η(h) |=Sep∞ φ∞(x). If s(∞) = 0

were true, then we would have η(s)(nil) = −1 by the definition of η, which
would contradict η̃(s)(nil) = 0, which comes from η̃(s), η(h) |=Sep∞ φ∞(x).
Hence s(∞) �= 0 and η is a bijection from N1 − {0} to N1 − {0}.

The rest is the same as the case of =⇒ above. �
The next theorem reduces the entailments in Sep∞ into those in BTW.

Theorem 4.8. We have φ∞
1 (x) |=Sep∞ φ∞

2 (x) ⇐⇒ φ∞�=
1 (x) |=BTW φ∞�=

2 (x).

Proof. Let η be the permutation of s(∞) and −1.
=⇒: Assume φ∞

1 (x) |=Sep∞ φ∞
2 (x) and s, h |=BTW φ∞�=

1 (x).
By Lemma 4.7 (2) =⇒, we have η̃(s), η(h) |=Sep∞ φ∞

1 (x). Hence

η̃(s), η(h) |=Sep∞ φ∞
2 (x). By Lemma 4.7 (2) ⇐=, we have s, h |=BTW φ∞�=

2 (x).

⇐=: Assume φ∞�=
1 (x) |=BTW φ∞�=

2 (x) and s, h |=Sep∞ φ∞
1 (x).

We have s(x) �= s(∞) and s(nil) �= s(∞) from s, h |=Sep∞ φ∞
1 (x). Hence

s, h |=BTW φ∞�=
1 (x). Then s, h |=BTW φ∞�=

2 (x). Since s : Vars → Val, we have
s, h |=Sep∞ φ∞

2 (x). �

5 Main Theorems

We will give our main theorems for the decidability of the entailments in Sep.

Theorem 5.1. We have φ1(x) |=Sep φ2(x) ⇐⇒ φ∞�=
1 (x) |=BTW φ∞�=

2 (x).

Proof. By Theorems 3.7 and 4.8. �

Theorem 5.2. The truth of a given entailment φ1(x) |=Sep φ2(x) is decidable.

Proof. By Theorems 5.1 and 4.2. �

6 Undecidability of SLRDbtw with Implicit Existentials

This section shows that the truth problem of entailments is undecidable in the
system SLRD+

btw obtained from SLRDbtw given in [9] by adding the implicit
existentials. (We allow the weak progress condition below, but SLRDbtw can
express all the definitions below, since the weak progress condition is the syntax

Separation Logic with Monadic Inductive Definitions 85

sugar of the progress condition.) The system SLRD+
btw is the same as the system

obtained from our system Sep by dropping the monadicity condition, namely
the system where we allow P (x,y) instead of P (x,y).

We will show this undecidability result by reducing it to the undecidability
of Post Corresponding Problem (PCP). Our proof is a refinement of the proof
given in [1], which shows that the entailment problem of separation logic with
general inductive predicates is undecidable. Some predicates used in their proof
do not satisfy the weak progress, the connectivity, or the establishment condi-
tions. In order to change their proof to a proof for the undecidability of the
system SLRD+

btw, we introduce two additional elements in each cell that keep
necessary link pointers, by which all the predicates used in the proof satisfy the
weak progress, the connectivity, and the establishment conditions.

Assume that K tiles (K ≥ 1) are given. The i-th tile contains two finite bit
sequences vi and wi. We will write vi(j) and wi(j) for the j-th bit of vi and wi

respectively.
In the following, we will use the global variables x0 and x1 that mean 0 and

1, respectively.
For 1 ≤ i ≤ K and 1 ≤ j ≤ |vi| + |wi|, the predicate Tilei,j(a, b) is given by

Tilei,k(a, b) =def ∃a′(a �→ (xvi(k), a
′, , a′) ∗ Tilei,k+1(a′, b)),

Tilei,|vi|(a, b) =def ∃a′(a �→ (xvi(|vi|), a
′, , b) ∗ Tilei,|vi|+1(a′, b)),

Tilei,|vi|+l(a, b) =def ∃b′(b �→ (xwi(l), b
′, , b′) ∗ Tilei,|vi|+l+1(a, b′)),

Tilei,|vi|+|wi|(a, b) =def ∃b′(b �→ (xwi(|wi|), b
′, , a) ∗ PCP(a, b′))

∨(a = nil ∧ b �→ (xwi(|wi|),nil, ,nil)),

where 1 ≤ k < |vi| and 1 ≤ l < |wi|. The predicate PCP(a, b) is defined by

PCP(a, b) =def Tile1,1(a, b) ∨ . . . ∨ TileK,1(a, b).

Recall that the symbol is an abbreviation of an implicit existential variable.
Hence (x �→ (. . . , , . . .) . . .) should be read as ∃z(x �→ (. . . , z, . . .) . . .).

In the above definition, each a points to a cell (x, a′, b′, c′). The first element
x is x0 or x1. We sometimes write ‘cell q’ (q is a bit) to denote a cell whose first
element is xq. We write ‘cell list of q1, . . . , qn’ to mean a list of cells q1, . . . , qn.
We also write ‘cell list of v1, . . . , vk’ (vi is a bit sequence) to mean a list of cells
v1(1), . . . , v1(|v1|), v2(1), . . . , vk(|vk|).

The elements other than the first element of a cell mean pointers for the
following three kinds of cell lists. We call the elements of the second (or third,
fourth) position of cells the first (or second, third) pointers. The first pointers
form a cell list vi(1), vi(2), . . . , vk(|vk|) or wi(1), wi(2), . . . , wk(|wk|). The second
pointers are intended to form a cell list vi(1), wi(1), vi(2), wi(2), Note that
the above definition of PCP(a, b) imposes no conditions on the second pointers.
Later we will define NCorList(a, b) in order to force the pointers (at the third
position of cells) to satisfy some conditions. The third pointers form a cell list
vi, wi, vj , wj ,

The intuitive meaning of PCP(a, b) is that a and b point to cell lists of
vf(1), vf(2), vf(3) . . . and wf(1), wf(2), wf(3) . . . for some function f , respectively.

86 M. Tatsuta and D. Kimura

We define NCorList(a, b) that means some second pointers point to unex-
pected cells.

NCorList1,1(a, b) =def ∃a′(a �→ (, a′, b,) ∗ NCorList1,2(a′, b)),
NCorList1,2(a, b) =def ∃b′(b �→ (, b′, a,) ∗ NCorList(a, b′)),
NCorList2,1(a, b) =def ∃a′(a �→ (, a′, b,) ∗ NCorList2,2(a′, b)),

NCorList2,2(a, b) =def ∃b′(b �→ (, b′, a,) ∗ NCorList2,3(a, b
′) ∗ True1(b′)),

NCorList2,3(a, b) =def ∃a′, c(c �= b ∧ a �→ (, a′, c,) ∗ True1(a′)),
NCorList3,1(a, b) =def ∃a′(a �→ (, a′, b,) ∗ NCorList3,2(a

′, b) ∗ True1(a′)),
NCorList3,2(a, b) =def ∃b′, c(a �= c ∧ b �→ (, b′, c,) ∗ True1(b′)),
NCorList4(a, b) =def ∃c, d(b �= c ∧ a �→ (, , c, d) ∗ True3(d)),

where True1(x) and True3(x) are defined by

True1(x) =def (x = nil ∧ Emp) ∨ ∃x′(x �→ (, x′, ,) ∗ True1(x′)),
True3(x) =def (x = nil ∧ Emp) ∨ ∃x′(x �→ (, , , x′) ∗ True3(x′)).

Then the predicate NCorList(a, b) is defined as follows:

NCorList(a, b) =def NCorList1,1(a, b) ∨ NCorList2,1(a, b)
∨NCorList3,1(a, b) ∨ NCorList4(a, b).

True1(x) means that the cells on the memory make a list whose first cell is
pointed by x, and are connected by the first pointers. True3(x) also means a list
of cells starting from x, but are connected by the third pointers. NCorList1,1(a, b)
means that a and b point to the cells that have correct second pointers, but there
will be a cell that has a wrong second pointer after the cells pointed by a and
b. The meaning of NCorList2,1(a, b) is that the cells pointed by a and b have
correct second pointers, and the cell pointed by a′ (the next one pointed by a
with respect to the first pointer) has a wrong second pointer. The meaning of
NCorList3,1(a, b) is that the cell pointed by a has a correct second pointer, but
the cell pointed by b has a wrong second pointer. NCorList4(a, b) means the cell
pointed by a has a wrong second pointer.

Next we define NEqPair(a, b), which means the cell lists connected by the
first pointers starting from a and b have different bit sequences.

NEqPair1,1(a, b) =def ∃a′(a �→ (, a′, b,) ∗ NEqPair1,2(a′, b)),
NEqPair1,2(a, b) =def ∃b′(b �→ (, b′, a,) ∗ NEqPair(a, b′)),
NEqPair2,1,i(a, b) =def ∃a′(a �→ (xq, a

′, b,) ∗ NEqPair2,2,i(b) ∗ True1(a′)),
NEqPair2,2,i(a, b) =def ∃b′(b �→ (xq, b

′, ,) ∗ True1(b′)),

where x0 is x1 and x1 is x0. The predicate NEqPair(a, b) is defined by

NEqPair(a, b) =def NEqPair1,1(a, b) ∨ NEqPair2,1,0(a, b) ∨ NEqPair2,1,1(a, b).

Intuitively, NEqPair1,1(a, b) means that the sequences starting from a′ and
b′ (the next of a and b with respect to the first pointer) have a different bit at

Separation Logic with Monadic Inductive Definitions 87

a certain position. The meaning of NEqPair2,1,i(a, b) is that the bits of the cells
pointed by a and b are different.

We define NEqLen(a, b), which means the lengths of the sequences (that is,
lists with respect to the first pointer) pointed by a and b are different.

NEqLen1,1,i(a, b) =def ∃a′(a �→ (xi, a
′, b,) ∗ NEqLen1,2,i(a′, b)),

NEqLen1,2,i(a, b) =def ∃b′(b �→ (xi, b
′, a,) ∗ NEqLen(a, b′)),

NEqLen2(a, b) =def ∃a′(b = nil ∧ a �→ (, a′ ,) ∗ True1(a′)),
NEqLen3,1(a, b) =def a �→ (,nil, b,) ∗ NEqLen3,2(b),
NEqLen3,2(b) =def ∃b′(b′ �= nil ∧ b �→ (, b′, ,) ∗ True1(b′)).

Then the predicate NEqLen(a, b) is defined by

NEqLen(a, b) =def NEqLen1,1,0(a, b) ∨ NEqLen1,1,1(a, b)
∨NEqLen2(a, b) ∨ NEqLen3,1(a, b).

Here, NEqLen1,1(a, b) means that a and b point to the cells which have the
same bit, but the sequences starting from a′ and b′ (the next of a and b with
respect to the first pointer) have different lengths. NEqLen2(a, b) means that the
sequence of b is finished, but the sequence of a has the next cell. The meaning
of NEqLen3,1(a, b) is that a points to the last cell of the sequence, but the cell
pointed by b is not the last one.

Finally, the predicate PCP(a, b) is defined by:

PCP(a, b) =def NCorList(a, b) ∨ NEqLen(a, b) ∨ NEqPair(a, b).

The meaning of PCP(a, b) is the cell lists starting from a and b are incorrect,
that is, the lists contain a cell that has unexpected second pointer, or the cell
lists connected by the first pointer have different bit sequences.

Note that the above definitions satisfy the conditions of weak progress, con-
nectivity, and weak establishment, but do not satisfy the monadicity condition.
The following proposition can be shown in a similar way to [1].

Proposition 6.1. The PCP with tiles v and w is solvable iff ∃s, h.(s, h |= x0 �=
x1 ∧ PCP(a, b) and s, h �|= PCP(a, b))

If we assume decidability of the entailment problem in SLRD+
btw, then

we decide the existence of a model (s, h) that satisfies both s, h |= x0 �=
x1 ∧ PCP(a, b) and s, h �|= PCP(a, b). If the model exists, from the former part,
there are two different elements s(x0) and s(x1) (say 0 and 1), and s(a) and s(b)
point to some sequences of 0 and 1 which are tilings of vi and wi. Moreover, these
sequences coincide from the latter part. That is, this model gives a solution of
PCP. If there is no solution, then there does not exist such a model. This contra-
dicts to the undecidability of PCP. Hence, we have the following undecidability
result:

Theorem 6.2. The entailment problem in the system Sep without the monadic-
ity condition is undecidable.

88 M. Tatsuta and D. Kimura

7 Conclusion

We have proved the decidability of the truth of entailments of symbolic heaps
in separation logic with monadic inductive definitions under the weak progress,
connectivity, and weak establishment conditions.

We have also proved the undecidability of the same system when we remove
the monadicity condition.

In this paper, we imposed the weak establishment condition and the monadic-
ity condition. We could remove the weak establishment condition by introducing
some fixed number of distinguished addresses ∞k. It could be future work. It
could be also future work to relax the monadicity condition by replacing it by
some locality condition.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 411–425.
Springer, Heidelberg (2014)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005)

4. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 131–146. Springer, Heidelberg (2011)

5. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012)

6. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

7. Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid
and nested linked lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 129–148. Springer, Heidelberg (2013)

8. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS 2014. LNCS,
vol. 8858, pp. 314–333. Springer, Heidelberg (2014)

9. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
21–38. Springer, Heidelberg (2013)

10. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201–218. Springer, Heidelberg (2014)

11. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

Separation Logic with Monadic Inductive Definitions 89

12. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013)

13. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Heidelberg (2014)

14. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013)

15. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS2002), pp. 55–74 (2002)

Tree-Like Grammars and Separation Logic

Christoph Matheja(B), Christina Jansen, and Thomas Noll

Software Modeling and Verification Group, RWTH Aachen University,
Aachen, Germany

matheja@cs.rwth-aachen.de

http://moves.rwth-aachen.de/

Abstract. Separation Logic with inductive predicate definitions (SL)
and hyperedge replacement grammars (HRG) are established formalisms
to describe the abstract shape of data structures maintained by heap-
manipulating programs. Fragments of both formalisms are known to
coincide, and neither the entailment problem for SL nor its counterpart
for HRGs, the inclusion problem, are decidable in general.

We introduce tree-like grammars (TLG), a fragment of HRGs with a
decidable inclusion problem. By the correspondence between HRGs and
SL, we simultaneously obtain an equivalent SL fragment (SLtl) featuring
some remarkable properties including a decidable entailment problem.

Keywords: Heap abstraction · Hyperedge replacement grammars · Sep-
aration logic · Entailment checking

1 Introduction

Symbolic execution of heap-manipulating programs builds upon abstractions to
obtain finite descriptions of dynamic data structures, like linked lists and trees.
Proposed abstraction approaches employ, amongst others, Separation Logic with
inductive predicate definitions (SL) [2,13,18] and hyperedge replacement gram-
mars (HRG) [9,12].

While these formalisms are intuitive and expressive, important problems are
undecidable. In particular, the entailment problem for SL [1], i.e. the question of
whether all models of a formula ϕ are also models of another formula ψ (written
ϕ |= ψ), as well as its graph-theoretical counterpart, the inclusion problem for
HRGs [9], are undecidable in general. Unfortunately, as stated by Brotherston,
Distefano and Peterson [4], “effective procedures for establishing entailments are
at the foundation of automatic verification based on Separation Logic”. Conse-
quently, SL-based verification tools, such as SLayer [3] and Predator [10],
often restrict themselves to the analysis of list-like data structures, where the
entailment problem is known to be decidable [2]. VeriFast [14] and Cyclist
[4] allow general user-specified predicates, but are incomplete and/or require
additional user interaction. The largest known fragment of SL featuring both
inductive predicate definitions and a decidable entailment problem is Separation
Logic with bounded tree width (SLbtw) [13].
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 90–108, 2015.
DOI: 10.1007/978-3-319-26529-2 6

Tree-Like Grammars and Separation Logic 91

Approaches based on graph grammars suffer from the undecidability of the
related inclusion problem: Lee et al. [16] propose the use of graph grammars
for shape analysis, but their approach is restricted to trees. The tool Juggr-
naut [12] allows the user to specify the shape of dynamic data structures by an
HRG, but relies on an approximation to check whether newly computed abstrac-
tions are subsumed by previously encountered ones. Hence, finding more general
fragments of SL and HRGs with good decidability properties is highly desirable.

This paper investigates fragments of HRGs with a decidable inclusion prob-
lem. In a nutshell, HRGs are a natural extension of context-free word grammars
specifying the replacement of nonterminal-labelled edges by graphs (cf. [11]).
Common notions and results for context-free word languages, e.g. decidability of
the emptiness problem and existence of derivation trees, can be lifted to HRGs
(cf. [19]) which justifies the alternative name “context-free graph grammars”.

Most of our results stand on two pillars. The first pillar is an extension of the
well-known fact that context-free word languages are closed under intersection
with regular word languages, which are, by Büchi’s famous theorem [5], exactly
the word languages definable in monadic second-order logic (MSO).

Lemma 1 (Courcelle [6]). For each HRG G and MSO2 sentence ϕ, one can
construct an HRG G′ such that L(G′) = L(G) ∩ L(ϕ) = {H ∈ L(G) | H |= ϕ}.

Here, MSO2 means MSO over graphs with quantification over nodes and edges
and H denotes the relational structure associated with the hypergraph H. L(G)
and L(ϕ) denote the language generated by the grammar G and the set of models
of the formula ϕ, respectively.

The second pillar is the close connection between a fragment of HRGs – called
data structure grammars (DSG) – and a fragment of SL studied by Dodds [8]
and Jansen et al. [15].

Lemma 2 (Jansen et al. [15]). Every SL formula can be translated into a
language-equivalent data structure grammar and vice versa.

The overall goal of this paper is to develop fragments of HRGs which can be
translated into MSO2. Then it directly follows from Lemma 1 that the resulting
classes of languages have a decidable inclusion problem and are closed under
union, intersection and difference as well as under intersection with general
context-free graph languages. By Lemma 2, we obtain analogous results for equiv-
alent SL fragments.

The largest fragment we propose are tree-like grammars (TLG). Intuitively,
every graph H generated by a TLG allows to reconstruct one of its derivation
trees by identifying certain nodes, the anchor nodes, with positions in a deriva-
tion tree. Furthermore, each edge of H is uniquely associated with one of these
anchor nodes. These properties allow for each graph H generated by a given
TLG G to first encode a derivation tree t in MSO2 and then to verify that H is
in fact the graph derived by G according to t. Our main result is that the two
informally stated properties from above guarantee MSO2-definability.

92 C. Matheja et al.

Theorem 1. For each TLG G, there exists an MSO2 sentence ϕG such that for
each hypergraph H, H ∈ L(G) if and only if H |= ϕG.

TLGs are introduced in detail in Sect. 4.
Furthermore, we study the fragment of tree-like Separation Logic (SLtl, cf.

Sect. 5) which is equivalent to TLGs generating heaps rather than arbitrary
graphs.

By Lemma 2, our results on TLGs also hold for SLtl. Thus, SLtl has the
following remarkable properties:

1. The satisfiability as well as the extended entailment problem, i.e. the question
of whether an arbitrary SL formula ϕ entails an SLtl formula ψ, are decidable.

2. Although negation and conjunction are restricted to pure formulae, SLtl is
closed under intersection and difference.

Regarding expressiveness, common data structures like (cyclic) lists, trees,
in-trees, n × k-grids for fixed k and combinations thereof are SLtl-definable.
In particular, we show that SLtl is strictly more expressive than SLbtw. The
same holds for an entirely syntactic fragment of TLGs, called Δ-DSGs, and a
corresponding fragment of SLtl.

The remainder of this paper is structured as follows. Section 2 very briefly
recapitulates standard definitions on SL and MSO, while Sect. 3 covers essen-
tial concepts of hypergraphs and HRGs. The fragment of TLGs and its MSO-
definability result is introduced in Sect. 4. Our results on TLGs are transferred
to SL and discussed in Sect. 5. Finally, Sect. 6 concludes.

Some technical details and proofs have been omitted due to lack of space,
but are available in a detailed technical report [17].

2 Preliminaries

This section introduces our notation and briefly recapitulates trees, graphs, MSO2,
and SL. On first reading, the well-informed reader might want to skip this part.

Notation. Given a set S, S� denotes all finite sequences over S. For s, s′ ∈ S�,
s.s′ denotes their concatenation, the i-th element of s is denoted by s(i) and
the set of all of its elements is denoted by �s�. A ranked alphabet is a finite
set S with ranking function rkS : S → N and maximal rank �(S). We write
{x1 �→ y1, . . . , xm �→ ym} to denote a finite (partial) function f with domain
dom(f) = {x1, . . . , xm} and co-domain {y1, . . . , ym} such that f(xi) = yi for
each i ∈ [m] = [1,m] = {1, 2, . . . ,m}. The operators 	 and +
 denote the disjoint
union of two sets and two functions, respectively.

Trees. Given a ranked alphabet S, a tree over S is a finite function t : dom(t) → S
such that ∅ �= dom(t) ⊆ N

�, dom(t) is prefix closed and for all x ∈ dom(t), {i ∈
N | x.i ∈ dom(t)} = [rkS(t(x))]. x ∈ dom(t) is a (proper) prefix of y ∈ dom(t),
written x ≺ y, if y = x.i.z for some i ∈ N and z ∈ N

�. The subtree of t with root

Tree-Like Grammars and Separation Logic 93

x ∈ dom(t) is given by t|x : {y | x.y ∈ dom(t)} → S : y �→ t(x.y). With each tree
t, we associate the relational structure t := (dom(t), (succi)i∈[�(S)], (tlbs)s∈S)
where succi := {(x, x.i) ∈ dom(t)×dom(t)} and tlbs := {x ∈ dom(t) | t(x) = s}.

Graphs. An edge-labelled graph over an alphabet S is a tuple H = (V,E) with
a finite set of nodes V and edge relation E ⊆ V × S × V . With each graph H
we associate the relational structure H = (V 	 E, src, tgt, (Es)s∈S) where src
and tgt are the binary source and target relations given by src := {(u, e) | e =
(u, s, v) ∈ E}, tgt := {(e, v) | e = (u, s, v) ∈ E}. For each s ∈ S, there is a unary
relation Es := {(u, s, v) ∈ E | u, v ∈ V } collecting all edges labelled with s.

Monadic Second-Order Logic over Graphs. Given a finite alphabet S, the syntax
of MSO2 is given by:

ϕ ::= Es(x) | src(x, y) | tgt(x, y) | X(x) | ϕ1 ∨ ϕ2 | ¬ϕ | ∃x : ϕ | ∃X : ϕ | x = y

where x, y are first-order variables, X is a second-order variable and s ∈ S. For a
graph H = (V,E), we write H, j |= ϕ iff H satisfies ϕ where j is an interpretation
mapping every free first-order variable to an element of V 	E and every second-
order variable to a subset of either V or E, respectively. The semantics of |=
is standard (cf. [7]). Note that the semantics of src, tgt and Es has been given
explicitly in the definition of H. We allow other operators like conjunction ∧,
implication → and universal quantification ∀ that can be obtained from the given
ones. To keep formulae readable in the remainder of this paper, we make use
of the following shortcuts which are rather straightforward to define in MSO2. If
W is a finite set of variables, ∃W : ϕ denotes the existential quantification of
all variables in W. ∃!x : ϕ(x) := ∃x : ϕ(x) ∧ ∀y : ϕ(y) → x = y denotes the
unique existential quantification of x and Π(X,Y1, . . . , Ym) denotes that the sets
Y1, . . . , Ym form a partition of X. The formulae V (x) and E(x) state that x is
a node or an edge, respectively, and inc(x, y) is satisfied if and only if x is an
edge incident to a node y. If X1, . . . , Xm are second order variables and I ⊆ [m],
XI(x) denotes the disjunction

∨
i∈I Xi(x). Finally, tree(X,x) means that the

nodes in X form the domain of a relational tree structure t with root x (cf. [13]
for a formal definition).

Heaps. Similarly to the typical RAM model, a heap is understood as a set of
locations Loc := N, whose values are interpreted as pointers to other locations.
Formally, we define a heap as a partial mapping h : Loc → Loc 	{null}. The set
of all heaps is denoted by Hp. Let Σ be a finite set of selectors equipped with an
injective ordering function cn : Σ → [0, |Σ| − 1]. We assume a heap to consist
of a single kind of objects with a fixed set of fields Σ which are modelled by
reserving exactly |Σ| successive locations.

Separation Logic with Recursive Definitions. We consider a fragment of Separa-
tion Logic, similar to Separation Logic with recursive definitions in [13,15], in

94 C. Matheja et al.

which negation ¬, true, and conjunction ∧ in spatial formulae are disallowed.
Let Pred be a set of predicate names. The syntax of SL is given by:

E ::= x | null
P ::= x = y | x �= y | P ∧ P pure formulae
F ::= emp | x.s �→ E | F ∗ F | ∃x : F | σ(x1, ..., xn) spatial formulae
S::= F | S ∨ S | S ∧ P SL formulae

where x, y, x1, ..., xn ∈ Var , s ∈ Σ and σ ∈ Pred . We call x.s �→ E a points-to
assertion, σ(x1, ..., xn) a predicate call.

Note that we do not require all selectors of a given variable to be defined by a
single points-to assertion. Furthermore, it is straightforward to add program vari-
ables to SL, which we omitted for the sake of simplicity. To improve readability,
we write x.(s1, . . . , sk) �→ (y1, . . . , yk) as a shortcut for x.s1 �→ y1∗. . .∗x.sk �→ yk.

Predicate calls are specified by means of predicate definitions. A predicate
definition for σ ∈ Pred is of the form σ(x1, ..., xn) := σ1∨...∨σm where m,n ∈ N,
σj is a formula of the form F ∧P , and x1, ..., xn ∈ Var are pairwise distinct and
exactly the free variables of σj for each j ∈ [m]. The disjunction σ1 ∨ ... ∨ σm is
called the body of the predicate. An environment is a set of predicate definitions.
Env denotes the set of all environments.

The semantics of a predicate call σ(x1, ..., xn), σ ∈ Pred , w.r.t. an environ-
ment Γ ∈ Env is given by the predicate interpretation ηΓ . It is defined as the
least set of location sequences instantiating the arguments x1, . . . , xn and heaps
that fulfil the unrolling of the predicate body. We refer to [15] for a formal
definition.

The semantics of the remaining SL constructs is determined by the standard
semantics of first-order logic and the following, where j is an interpretation of
variables as introduced for MSO2:

h, j, ηΓ |= x.s �→ null ⇔ dom(h) = {j(x) + cn(s)}, h(j(x) + cn(s)) = null

h, j, ηΓ |= x.s �→ y ⇔ dom(h) = {j(x) + cn(s)}, h(j(x) + cn(s)) = j(y)
h, j, ηΓ |= σ(x1, ..., xn) ⇔ ((j(x1), ..., j(xn)), h) ∈ ηΓ (σ)

h, j, ηΓ |= ϕ1 ∗ ϕ2 ⇔ ∃h1, h2 : h = h1 +
h2, h1, j, ηΓ |= ϕ1, h2, j, ηΓ |= ϕ2

A variable x ∈ Var is said to be allocated in a formula if it (or a variable y
with y = x) occurs on the left-hand side of a points-to assertion.

From now on, we assume that all existentially quantified variables are even-
tually allocated. This requirement is similar to the “establishment” condition in
[13]. With this assumption, the inequality operator for logical variables x �= y
is redundant with respect to the expressive power of the formalism, because
x.s �→ z ∗ y.s �→ z′ already implies that j(x) �= j(y) in all heaps satisfying the
formula. Thus, we assume that two existentially quantified variables refer to
different locations if not stated otherwise by a pure formula.

Tree-Like Grammars and Separation Logic 95

3 Context-Free Graph Grammars

This section introduces HRGs together with some of their properties relevant
for the remainder of this paper. For a comprehensive introduction, we refer to
[11,19].

Let ΣN := Σ 	 N be a ranked alphabet consisting of terminal symbols Σ
and nonterminal symbols N .

Definition 1 (Hypergraph). A labelled hypergraph (HG) over ΣN is a tuple
H = (V,E, att, lab, ext) where V and E are disjoint sets of nodes and hyperedges,
att : E → V � maps each hyperedge to a sequence of attached nodes such that
|att(e)| = rkΣN

(lab(e)), lab : E → ΣN is a labelling function, and ext ∈ V � a
sequence of external nodes. The set of all HGs over ΣN is denoted by HGΣN

.

Note that we allow attachments of hyperedges as well as the sequence of
external nodes to contain repetitions. Hyperedges with a label from Σ are called
terminal edges, nonterminal otherwise. The set of terminal (nonterminal) hyper-
edges of an HG H is denoted by EΣ

H (EN
H , respectively). In this paper, we assume

rkΣN
(s) = 2 for each s ∈ Σ. Moreover, a hyperedge e with lab(e) = s ∈ Σ and

att(e) = u.v is interpreted as a directed edge from u to v. The relational struc-
ture corresponding to H ∈ HGΣ is H := [H], where the (conventional) graph [H]
is defined as [H] = (VH , E), E := {(attH(e)(1), labH(e), attH(e)(2)) | e ∈ EH}.

Example 1. As an example, consider the HG illustrated in Fig. 1(a) (right). For
referencing purpose, we provide a unique index i ∈ [|V |] inside of each node ui

represented by a circle. External nodes are shaded. For simplicity, we assume
them to be ordered according to the provided index. Terminal edges are drawn
as directed, labelled edges and nonterminal edges as square boxes with their
label inside. The ordinals pictured next to the connections of a nonterminal
hyperedge denote the position of the attached nodes in the attachment sequence.
For example, if e is the leftmost nonterminal hyperedge in Fig. 1(a), att(e) =
u5.u1.u3.u7.

Two HGs H, H ′ are isomorphic, written H ∼= H ′, if they are identical up to
renaming of nodes and edges. In this paper, we will not distinguish between
isomorphic HGs. The disjoint union of H,H ′ ∈ HGΣN

is denoted by H 	 H ′.
The main concept to specify (infinite) sets of HGs in terms of context-free

graph grammars is the replacement of a nonterminal hyperedge by a finite HG.
Let K and H be HGs with disjoint sets of nodes and edges. Intuitively, a non-
terminal hyperedge e of K is replaced by H by first removing e, adding H to
K and identifying the nodes of K originally attached to e with the sequence of
external nodes of H. This is formally expressed by a quotient.

Definition 2 (Hypergraph Quotient). Let H ∈ HGΣN
, R ⊆ VH × VH be

an equivalence relation and [u]/R = {v ∈ VH | (u, v) ∈ R} the equivalence
class of u ∈ VH , which is canonically extended to sequences of nodes. The R-
quotient graph of H is [H]/R = (V,E, att, lab, ext), where V = {[u]/R | u ∈ VH},
E = EH , att = {e �→ [attH(e)]/R | e ∈ EH}, lab = labH , ext = [extH]/R.

96 C. Matheja et al.

Definition 3 (Hyperedge Replacement). Let H,K ∈ HGΣN
with dis-

joint nodes and hyperedges, e ∈ EN
H with rkΣN

(e) = k = |extK |. Let V =
VH 	 VK , and H,e ≈K ⊆ V × V be the least equivalence relation containing
{(attH(e)(i), extK(i)) | i ∈ [k]}. Then the HG obtained from replacing e by K
is H[e/K] := [(H \ {e} 	 K)]/ H,e≈K

where H \ {e} is the HG H in which e has
been removed. Moreover, two nodes u, v ∈ V are merged by H[e/K] if u �= v
and u H,e ≈K v.

S

production rule p1

(a)

2

1

5 6

S S

73 4

p

l r

1 1

3 4

2

3 4

2

production rule p2

(b)

2

1

3 5

4

p

l r
n

n

p p

derivation tree t

(c)

p1

ε

p2 p2

1 2

yield(t)

(d)

Fig. 1. HRG TLL with two production rules p1 and p2

We now formally introduce context-free graph grammars based on hyperedge
replacement.

Definition 4 (Hyperedge Replacement Grammar). An HRG is a 3-tuple
G = (ΣN , P, S) where ΣN is a ranked alphabet, S ∈ N is the initial symbol and
P ⊆ N ×HGΣN

is a finite set of production rules such that rkΣN
(X) = |extH | > 0

for each (X,H) ∈ P . The class of all HRGs is denoted by HRG and the maximal
number of nonterminal hyperedges in any production rule p ∈ P by k.

Given p = (X,H) ∈ P , we write lhs(p) and rhs(p) to denote X and H, respec-
tively. To improve readability, we write p instead of lhs(p) or rhs(p) whenever
the context is clear.

Example 2. The HRG TLL depicted in Fig. 1(a) and (b) will serve as a running
example. It consists of one nonterminal symbol S, four terminal symbols l, r, p, n
and two production rules p1, p2. The rule graph of p2 depicts a fully-branched
binary tree of height 1 with additional parent-pointers and two n-connected
leaves. Later we will see that the HRG describes arbitrary trees of the aforemen-
tioned structure.

A key feature of HRGs is that the order in which nonterminal hyperedges
are replaced is irrelevant, i.e. HRGs are confluent (cf. [11,19]). Thus, derivations
of HRGs can be described by derivation trees. Towards a formal definition, we
assume that the nonterminal hyperedges EN

p = {e1, ..., en} of each production
rule p = (X,H) are in some (arbitrary, but fixed) linear order, say e1, ..., en. For
HRG G,G[X] denotes the HRG (ΣN , PG,X).

Tree-Like Grammars and Separation Logic 97

Definition 5 (Derivation Tree). Let G = (ΣN , P, S) ∈ HRG. The set of
all derivation trees of G is the least set D(G) of trees t over the alphabet P with
ranking function rkP : P → N such that t(ε) = p for some p ∈ P with lhs(p) = S.
Moreover, if EN

p = {e1, . . . , em}, then rkP (p) = m and t|i ∈ D(G[labp(ei)]) for
each i ∈ [m]. The yield of a derivation tree is given by the HG

yield(t) = t(ε)[e1/yield(t|1), . . . , em/yield(t|m)].

We implicitly assume that the nodes and hyperedges of t(x) and t(y) are
disjoint if x �= y. The yield of a derivation tree is also called the derived HG
according to t.

Example 3. Figure 1(c) illustrates a derivation tree t of the HRG TLL in which
production rule p1 has been applied once, and production rule p2 twice. The
labels next to the circles provide the position in dom(t) while the labels inside
indicate the applied production rule. The graph on the right (d) illustrates the
shape of yield(t). For simplicity, node indices as well as edge labels are omitted.

The language generated by an HRG consists of all HGs without nonterminal
edges that can be derived from the initial nonterminal symbol.

Definition 6 (HR Language). The language generated by G ∈ HRG is the set
L(G) = {yield(t) | t ∈ D(G)}.
Example 4. The HRG TLL, provided in Fig. 1, generates the language of all
fully-branched binary trees in which the leaves are connected from left to right
and each node has an additional edge to its parent.

Two results for derivation trees are needed in the following. The first result
is directly lifted from analogous results for context-free word grammars (cf. [19]
below Theorem 3.10).

Lemma 3. For each G ∈ HRG, D(G) is a regular tree language. In particular,
the emptiness problem for HRGs is decidable in linear time.

Furthermore, we generalize the notion of merged nodes to multiple successive
applications of hyperedge replacement.

Definition 7 (Merged Nodes). Let G ∈ HRG, t ∈ D(G), x, y ∈ dom(t) such
that x ≺ y, i.e. y = x.i.z for some i ∈ N, z ∈ N

�, and let u ∈ Vt(x), v ∈ Vt(y).
We say that u and v are merged in t, written u ∼t v, if

– z = ε and u t(x),ei
≈t(x.i) v, or

– z �= ε and there exists w ∈ Vt(x.i) such that u t(x),ei
≈t(x.i) w and w ∼t v.

Example 5. Consider the derivation tree t shown in Fig. 1(c) again. In its yield,
the node u7 in t(ε) is merged with u4 in t(1) and with u3 in t(2). In yield(t),
this node represents the leftmost leaf of the right subtree.

98 C. Matheja et al.

The relation ∼t merges exactly the nodes that are identified with each other
by yield(t).

Lemma 4 (Merge Lemma). Given G ∈ HRG and t ∈ D(G), let �t denote the
least equivalence relation containing ∼t. Then

yield(t) ∼=
⎡

⎣
⊎

x∈dom(t)

rhs(t(x))

⎤

⎦

/�t

Proof. By complete induction over the height of derivation trees. �

4 Tree-Like Grammars

This section introduces tree-like grammars (TLG), a fragment of HRGs which
can be translated into MSO2. The main idea of TLGs is that every graph H
generated by a TLG G has two properties:

1. A derivation tree t of H is MSO2-definable in H, i.e. TLGs generate recognis-
able graph languages in the sense of Courcelle [6].

2. Every edge e ∈ EH can be uniquely associated in MSO2 with some x ∈ dom(t)
corresponding to the production rule t(x) which added e to H. We call EΣ

t(x)

the characteristic edges of x.

Hence, given some MSO2 formulae encoding t in H and defining EΣ
t(x) for

each x ∈ dom(t), one can easily obtain a formula ϕ ensuring that all edges in
every model of ϕ are edges introduced by the proper application of a production
rule. In particular, K =

⊎
x∈dom(t) rhs(t(x)) is a model of ϕ for each t ∈ D(G).

By Lemma 4, it is sufficient to extend ϕ to an MSO2 sentence ϕ′ such that only
graphs H with H ∼= [K]/�t

∼= yield(t), i.e. graphs that resulted from hyperedge
replacement steps where exactly the [K]/�t

-equivalent nodes were merged, are
models of ϕ′.

Some further notation is needed. Let H ∈ HGΣN
with EN

H = {e1, . . . , em}. We
call extH(1) the anchor node of H and denote it by |�H

. Moreover, the sequence
of context nodes of H is defined as ctxtH := attH(e1)(1) . . . attH(em)(1) and
the free nodes of H are all nodes attached to nonterminal hyperedges only, i.e.
free(H) := {u ∈ VH | ∀e ∈ EΣ

H : u /∈ �attH(e)�}.
We will see that TLGs are constructed such that every anchor node u repre-

sents an application of a production rule and thus a position in a derivation tree t.
The context nodes represent its children as they are merged with anchor nodes
after their corresponding nonterminal hyperedges have been replaced. Conse-
quently, by the characteristic edges of an anchor node u we refer to the charac-
teristic edges EΣ

t(x) of a position x ∈ dom(t) represented by u.
We consider a series of simple graph languages to narrow down the class of

TLGs step by step. The first example stems from the fact that every context-
free word language can be generated by an HRG [11] (if words are canonically
encoded by edge-labelled graphs).

Tree-Like Grammars and Separation Logic 99

S1 → 1 S1 S2 2
a 1 2 1 2

(b)

S1 → 1 S2 2
a 1 2

S2 → 1 2
b

S 1 S 2
a 1 2 b

(a)

S 1 2
a b

Fig. 2. Two HRGs generating the language {an.bn | n ≥ 1} of string-like graphs.

Example 6. The HRG G shown in Fig. 2(a) generates string-like graphs of the
form an.bn for each n ≥ 1. It is well known that the language L(G) is not MSO2-
definable. We observe that for arbitrary hypergraphs H ∈ L(G) it is not possible
to determine a node that is uniquely associated with all terminal edges in the
recursive, upper production rule of Fig. 2(a) (which is in accordance with the idea
behind TLGs formulated at the beginning of this section). This is caused by the
intermediate nonterminal hyperedge, which can be replaced by an arbitrarily
large HG. Thus, to ensure that TLGs generate MSO2-definable hypergraphs only,
we require that every non-free node (and thus every terminal edge) is reachable
from the anchor node using terminal edges only.

However, this requirement is insufficient. For instance, Fig. 2(b) depicts an
HRG G′ with L(G′) = L(G) which satisfies the condition from above. G′ is
obtained by transforming G into the well-known Greibach normal form. In a
derivation tree t, a position x ∈ dom(t) corresponding to an application of
the upper production rule has two children which represent the nonterminal
hyperedges labelled with S1 and S2, respectively. Since all nodes except for the
two leftmost ones are free in this production rule, the parent-child relationship
between anchor nodes and context nodes (or any other triple of nodes) cannot
be reconstructed in MSO2. Thus, we additionally require context nodes to be
non-free.

In the following we consider basic tree-like HGs, which form the building
blocks of which a tree-like HG is composed.

Definition 8 (Basic Tree-Like Hypergraphs). H ∈ HGΣN
is a basic tree-

like HG if |�H
∈ �attH(e)� for each e ∈ EΣ

H and �ctxtH� ∩ free(H) = ∅.
As a first condition on TLGs, we require right-hand sides of production rules

to be (basic) tree-like. In case of string-like graphs, this condition is sufficient to
capture exactly the regular word languages (if the direction of edges is ignored),
because every such grammar corresponds to a right-linear grammar. If arbitrary
graphs are considered, however, there are more subtle cases.

Example 7. Figure 3 (left) depicts an HRG G with three production rules p, q, r.
L(G) is the set of “doubly-linked even stars”, i.e. a single node u connected by
an incoming and an outgoing edge to each of 2n nodes for some n ≥ 0. An
HG H ∈ L(G) is illustrated in Fig. 3 (right). Again, L(G) is not MSO2-definable.
In particular, no derivation tree can be reconstructed from H by identifying
nodes (or edges) in H with positions in a derivation tree, because |VH | = 5 and

100 C. Matheja et al.

|EH | = 8, but |dom(t)| = 9. The problem emerges from the fact that all anchor
nodes are merged with the central node u. Hence, we additionally require that
anchor nodes are never merged with each other.

S1 →

1

2 3

S2 S2

1 1

2 2

p

1

q

S2 →

1

2

S1

1

r

p

r r

q p

rr

qq

t

u

H ∼= yield(t)

Fig. 3. An HRG G where production rules p, q, r map to tree-like HGs (left) and a
generated graph H ∈ L(G) (right)

Formally, for any X ∈ N , H ∈ L(G[X]) contains merged anchor nodes if for
some t ∈ D(G[X]) with H ∼= yield(t), there exist x, y ∈ dom(t), x �= y such that
|�t(x)

�t |�t(y)
. The set of all HGs in

⋃
X∈N L(G[X]) containing merged anchor

nodes is denoted by M(G).

Definition 9 (Tree-Like Grammar). G = (ΣN , P, S) ∈ HRG is a TLG if
M(G) = ∅ and for each p ∈ P , rhs(p) is a basic tree-like HG. The set of all
TLGs is denoted by TLG.

Remark 1. We call an HG H tree-like if it can be composed from basic tree-like
HGs, i.e. there exists a TLG G with L(G) = {H} (where nonterminals of H are
considered to be terminal). Although only basic tree-like HGs are considered in
all proofs, our results also hold for tree-like HGs. In particular, if all non-free
nodes of an HG H are reachable from the anchor node without visiting an exter-
nal node, a context node or a nonterminal hyperedge, H is tree-like. Intuitively,
the anchor nodes of corresponding TLG production rules are determined by a
spanning tree with the anchor of H as root. Since this construction is straight-
forward, but rather tedious, we skip it for space reasons. Analogously, the initial
nonterminal S may be mapped to an arbitrary HG provided that it never occurs
on the right-hand side of a production rule.

Example 8. According to the previous remark, the recurring example HRG TLL
illustrated in Fig. 1 is a TLG.

The condition M(G) = ∅ is, admittedly, not syntactic. However, it is possible
to automatically derive the largest subset of graphs generated by an HRG that
satisfies it.

Theorem 2. For each HRG G, one can construct a TLG G′ such that L(G′) =
L(G) \ M(G).

Tree-Like Grammars and Separation Logic 101

Our main result on TLGs is the following.

Theorem 1. For each TLG G, there exists an MSO2 sentence ϕG such that for
each hypergraph H, H ∈ HG, H ∈ L(G) if and only if H |= ϕG.

In order to prove this theorem, we have to encode derivation trees in graphs
generated by TLGs. We associate each terminal edge with a unique, charac-
teristic edge of some anchor node and use the constructed derivation tree t to
verify that two nodes are identical if and only if they have been merged due to
hyperedge replacement, i.e. are equivalent with respect to �t (see Lemma 4).

Before we present the main steps of the proof, we state two important con-
sequences of Theorem 1 and Lemma 1.

Theorem 3. The class of languages generated by TLGs is closed under union,
intersection and difference.

Theorem 4. Given G ∈ TLG and G′ ∈ HRG, it is decidable whether L(G′) ⊆
L(G). In particular, the inclusion problem for TLGs is decidable.

In the following constructions, we use two sets of second-order variables A
and S. Each set variable Ap ∈ A = {Ap | p ∈ P} collects all anchor nodes
corresponding to a position in a derivation tree labelled by p ∈ P . Each set
Se ∈ S collects all edges corresponding to the characteristic edge e ∈ EΣ

p of
positions labelled by p in a derivation tree. Formally, we introduce an extended
set of edge labels S := {Se | e ∈ EΣ

p , p ∈ P} together with functions : S → Σ :
Se �→ labp(e) and ρ : S → P : Se �→ p. Let W = A 	 S.

The first auxiliary lemma to prove Theorem 1 states that derivation trees can
be encoded in every graph generated by a TLG.

Lemma 5. For each TLG G = (ΣN , P, S), a set of derivation trees of G is
MSO2-definable with parameters W in every H ∈ HGΣ, i.e. there exists a def-
inition scheme (ψ, (succi)i∈[k], (tlbp)p∈P) such that for each H ∈ HGΣ with
H, j |= ψ(W), t := (dom, (j(succi))i∈[k], (j(tlbp))p∈P) is a relational tree struc-
ture representing a tree t ∈ D(G), where dom is given by the union of all nodes
satisfying exactly one of the formulae tlbp, p ∈ P .

In particular, for each H ∈ L(G), W can be chosen such that a derivation tree
t ∈ D(G) with yield(t) ∼= H is defined in H. This is formalised in the following.

Definition 10. Let G = (ΣN , P , S) be a TLG, p ∈ P and Ep,i := {Se ∈ S | e ∈
EΣ

p , ctxtp(i) ∈ �attp(e)�} be the set of all extended labels of edges incident to the
i-th context node of p.

A derivation tree t ∈ D(G) is contained in H ∈ L(G) if there exists a set
T ⊆ VH and a bijection f : T → dom(t) such that for each u ∈ T either
f(u) = ε or f(u) = x.i, x ∈ dom(t), i ∈ N and Et(x),i = {Se ∈ S | f−1(x) e−→ u}.
Lemma 6 For each TLG G = (ΣN , P, S), H ∈ L(G) and t ∈ D(G) with
yield(t) ∼= H, t is contained in H.

102 C. Matheja et al.

We need one more ingredient before proving Theorem1: How to use a deriva-
tion tree t to check whether two nodes are identical with respect to �t?

Let t ∈ D(G). Obviously, each pair of positions x, y ∈ dom(t), where y ≺ x,
defines a unique (bottom-up) path path(x, y) := x1 . . . xm in t where x1 = x, xm =
y and xi = xi+1.ji for ji ∈ N, i ∈ [1,m − 1]. Its corresponding trace is given
by trace(x1 . . . xm) := (j1, t(x1)) . . . (jm−1, t(xm−1))(j, t(xm)), where j = 0 if
xm = ε. We define a finite (word) automaton running on traces of derivation trees
to check whether two given nodes – the i-th external node in t(x1) and the node
att(ej)(k) in t(xm) – are merged. In particular, this merge automaton depends on
the HRG G and the indices i, j, k only, but not on a specific derivation tree.

Definition 11 (Merge Automaton). Let G = (ΣN , P, S) ∈ HRG, i, j ∈
[�(G)] and k ∈ [k]. The merge automaton Ai,j,k = (Q,Γ, 1, δ, F) running on
traces of derivation trees of G is given by the set of states Q := {1} 	 ({1, 0} ×
[�(G)] × [k]), input alphabet Γ = [0,�(G)] × P , initial state q0, final states
F := {(0, j, k)} and the partial transition function δ : Q × Γ → Q, defined by:

δ(1, (x, p)) = (1, i, x) if x > 0,

δ(1, (0, p)) = (0, i, j) if lhs(p) = S,EN
p = ∅ and i = j,

δ((1, x, y), (z, p)) = (1, x′, z) if attp(ey)(x) = extp(x′),
δ((1, x, y), (z, p)) = (0, j, k) if u := attp(ey)(x) = attp(ej)(k)

and (z = 0 or u /∈ �extp�).

Intuitively, the automaton records the indices i, j, k in its state space and
updates them according to the rules of hyperedge replacement while moving
through a derivation tree.

Lemma 7 Let G = (ΣN , P, S) ∈ HRG, t ∈ D(G) and x, y ∈ dom(t) such that
y ≺ x. Furthermore, let u = extt(x)(i) and v = attt(y)(ej)(k). Then, u ∼t v if
and only if Ai,j,k accepts trace(path(x, y)).

Proof. By complete induction over the length of trace(path(x, y)). �

We now turn to the proof of Theorem1, in which the automaton from above

is used to verify whether two nodes are merged with each other. To improve read-
ability in the following constructions, we introduce an auxiliary formula which
takes three variables x, y, z and is satisfied iff x corresponds to a characteristic
edge e ∈ EΣ

p of anchor node y and is additionally attached to z. Formally, let
e ∈ EΣ

p and chare(x, y, z) := E�(Se)(x) ∧ Se(x) ∧ Aρ(e)(y) ∧ src(y, x) ∧ tgt(x, z) if
|�p

= attp(e)(1) (|�p
= attp(e)(2) with y and z swapped in src and tgt).

Proof (of Theorem 1). Let G = (ΣN , P, S) ∈ TLG. W.l.o.g., we make two assump-
tions in order to reduce the technical effort. First, we assume that every produc-
tion rule is “well-formed”, i.e. for each production rule p, all nodes in extp and
attp(e), e ∈ EN

p , are distinct. It is a classical result that each HRG can be trans-
formed into an equivalent one satisfying this condition (cf. [11], Theorem 4.6).

Tree-Like Grammars and Separation Logic 103

In particular, this transformation does not change tree-likeness of an HRG. Sec-
ond, we assume for each p ∈ P that rhs(p) does not contain inner nodes, i.e.
nodes which are neither external nor attached to any nonterminal hyperedge.
Otherwise, we introduce a new nonterminal symbol X /∈ ΣN with rkΣN

(X) = 1
and a single production rule mapping X to a single external node. Then, we
attach a new nonterminal hyperedge labelled X to each inner node.

We have to define an MSO2 sentence ϕG such that H ∈ L(G) iff H |= ϕG.
In order to construct ϕG, a set of derivation trees is encoded in H using the
definition scheme (ψ, (succi)1≤i≤k, (tlbp)p∈P) from Lemma 5. Recall that this
definition scheme depends on a set of parameters W = A 	 S. An evaluation
of the parameters W determines a fixed derivation tree t. Due to Lemma 6, the
values of W can be chosen such that yield(t) ∼= H if H ∈ L(G). Then, ϕG is
given by

ϕG := conn ∧ ∃W : ψ(W) ∧ edges(W) ∧ anchors(W) ∧ mergeNodes(W), (1)

where all subformulae except for ψ(W) are needed to assert yield(t) ∼= H. In the
following, we explain the components of ϕG in more detail.

1. All nodes of H are incident to at least one edge. Together with the conditions
on edges provided in (2), this ensures that every model of ϕG is a connected
graph. Formally, conn := ∀x∃y : inc(x, y).

2. Every edge corresponds to exactly one characteristic edge of an anchor node.
In particular, S forms a partition of all edges E of H.

edges(W) := Π(E,S) ∧
∧

Se∈S
∀x : Se(x) → ∃y, z : chare(x, y, z) (2)

3. Every anchor node u ∈ tlbp has exactly the characteristic edges EΣ
p . Further-

more, if two edges e, e′ ∈ EΣ
p are attached to the same nodes in rhs(p), then

the same holds for the corresponding two edges of u:

anchors(W) :=
∧

p∈P

∀x : tlbp(x,W) → αp(x,W) (3)

αp(x,W) :=
∧

u∈Vp\free(p)
βu

p (x,W) ∧
∧

e/∈EΣ
p

∀y, z : ¬chare(y, x, z)

βu
p (x,W) := ∃y :

∧

e∈EΣ
p

|�p

e−→u

∃!z : chare(z, x, y) ∧
∧

e∈EΣ
p

¬ |�p

e−→u

∀z : ¬chare(z, x, y)

4. Two nodes u ∈ Vt(x), v ∈ Vt(y), where x �= y, represent the same node in
VH iff they are merged according to the rules of hyperedge replacement (see
Lemma 4). Since G is well-formed and every node is either external or attached
to some nonterminal hyperedge, this is the case iff u, v are merged with the
same non-external node. In this setting, external nodes of t(ε) are a corner
case and can be considered non-external.

104 C. Matheja et al.

Given an anchor node x ∈ dom(t), an inspection of the characteristic
edges of x allows us to verify whether a node corresponds to extt(x)(i) or
attt(x)(ej)(k), where i, j, k ∈ N.

Furthermore, given two anchor nodes x, y, a merge automaton Ai,j,k run-
ning on trace(path(x, y)) accepts iff the i-th external node of t(x) is merged
with the k-th node attached to the j-th nonterminal hyperedge of t(y) (see
Lemma 7). Applying Büchi’s Theorem [5] yields a corresponding MSO2 for-
mula for each automaton Ai,j,k. By Ai,j,k(x, y,W), we denote an MSO2 formula
which is satisfied iff the run of the respective merge automaton on the unique
path from x to y in the encoded derivation tree is accepting.

The MSO2 formula mergeNodes(W) then requires for each pair u, v of nodes
that u = v iff both represent the same external node of t(ε) or there exists an
anchor node w ∈ Ap, p ∈ P , such thatAi,j,k(v, w,W) as well as Ai′,j,k(v, w,W)
holds for some i, i′, k ∈ �(G) and j ∈ k.

The construction of mergeNodes(W) requires several technical auxiliary con-
structions to identify external and attached nodes. Moreover, some special cases
have to be taken into account (the non-external node in question might be free).
For lack of space we omit a formal construction. Its correctness is shown by
complete induction over the height of encoded derivation trees. �

5 Tree-Like Separation Logic

The close relationship between SL and HRGs leads to portability of the obtained
TLG results to analogous SL results. As SL is tailored to reason about heaps,
we restrict ourselves to data structure grammars (DSG), i.e. HRGs generating
heaps only.

Definition 12. H ∈ HGΣN
is a heap configuration (HC) if rkΣ(s) = 2 for all

s ∈ Σ and for all e, e′ ∈ EΣ
H with lab(e) = lab(e′), att(e)(1) �= att(e′)(1). We

denote the set of all HCs over ΣN by HCΣN
. G ∈ HRG is called a DSG if it

generates HCs only, i.e. for all X ∈ N , L(G[X]) ⊆ HCΣ. The class of all DSGs
is denoted by DSG.

Theorem 5. For every G ∈ HRG, an HRG G′ can be constructed such that
L(G′) = L(G) ∩ HCΣ.

Lemma 2 (Jansen et al. [15]). There exists a translation env�.� : DSG →
SL × Env, such that G and ϕ defined over Γ are language-equivalent1 for each
G ∈ DSG with env�G� = (ϕ, Γ). Conversely, there exists a translation hrg�.� :
SL × Env → DSG such that ϕ and hrg�ϕ, Γ � are language-equivalent for each
Γ ∈ Env and ϕ ∈ SL.

The largest SL fragment considered in this paper is SLtl, which is obtained
from applying Lemma 2 to tree-like DSGs.
1 Intuitively, G and ϕ are language-equivalent if L(G) equals the set of all graphs
corresponding to models of ϕ.

Tree-Like Grammars and Separation Logic 105

Definition 13. An SLtl formula is an SL formula ϕ(x1, ..., xn), n ≥ 1, meeting
the following conditions:

– Anchoredness: All points-to assertions y.s �→ z occurring in ϕ contain the first
parameter x1 of ϕ, either on their left-hand or right-hand side, i.e. x1 = y or
x1 = z.

– Connectedness: The first parameter of every predicate call in ϕ occurs in some
points-to assertion of ϕ.

– Distinctness: x1 is unequal to the first parameter of every predicate call occur-
ring in Γ .

An SLtl environment is an SL environment Γ where every disjunct of every
predicate definition is an SLtl formula.

Theorem 6. For every SLtl formula ϕ defined over an SLtl environment Γ
there exists a language-equivalent tree-like DSG G with L(G) = L(hrg�ϕ, Γ �) ∩
HCΣ and vice versa.

Proof (Sketch). Applying the translation hrg�ϕ, Γ � from Lemma 2 to ϕ and Γ ,
one observes that every disjunct of every predicate definition is translated into
production rules mapping to (basic) tree-like HGs. In particular, the first para-
meter of every translated predicate definition corresponds to an anchor node
in each of these HGs. Thus, by the distinctness condition of SLtl, it is guar-
anteed that two anchor nodes of the resulting DSG are never merged. Hence,
the obtained DSG is tree-like. The converse direction is obtained analogously by
applying env�.� to a tree-like DSG. �

As a consequence, our results shown for TLGs presented in Sect. 4 also apply
to SLtl. Other fragments of TLGs presented in this paper are transferred to
corresponding SL fragments analogously. We omit a formal proof of Theorem6
for lack of space and provide an example of an SLtl formula corresponding to
the DSG of our running example instead.

Example 9. Consider the SLtl formula ϕ := σ(x1, x2, x3, x4) defined over an
environment Γ consisting of the following predicate definitions.

σ(x1, x2, x3, x4) := [∃x5, x6, x7 : x1.(p, l, r) �→ (x2, x5, x6) ∗ σ(x5, x1, x3, x7)
∗ σ(x6, x1, x7, x4)] ∨ [∃x5 : x1.(p, l, r) �→ (x2, x3, x5)
∗ x3.p �→ x1 ∗ x5.p �→ x1 ∗ γ(x5, x3, x4)]

γ(x1, x2, x3) := x2.n �→ x1 ∗ x1.n �→ x3

Applying the translation hrg�ϕ, Γ � yields a tree-like DSG generating the same
language as the HRG TLL shown in Fig. 1. In particular, the first disjunct of
σ(x1, x2, x3, x4) directly corresponds to the production rule in Fig. 1(a), where
variable names match with node indices. The other two disjuncts, split across
two predicates, translate into basic tree-like HGs and correspond to the second
production rule.

106 C. Matheja et al.

We can exploit the additional requirements for DSGs to obtain a simple, yet
expressive, purely syntactical fragment of TLGs.

Definition 14 (Δ-DSGs). Let Δ ⊆ Σ be a nonempty set of terminal symbols.
Then G = (ΣN , P, S) ∈ DSG is a Δ-DSG if for each p ∈ P , rhs(p) is a tree-like
hypergraph and |�p

has an outgoing edge labelled δ for each δ ∈ Δ.

Example 10. Our example HRG TLL shown in Fig. 1 is a {p, l, r}-DSG.

Lemma 8. Every Δ-DSG with ∅ �= Δ ⊆ Σ is a TLG.

Proof. If two anchor nodes of a Δ-DSG G are merged, there exists t ∈ D(G),
δ ∈ Δ and u ∈ Vyield(t) such that u has two outgoing edges labelled with δ, i.e.
G /∈ DSG. �

A corresponding SL fragment is defined analogously to SLtl except that the
distinctness condition is replaced by a new condition: There exists at least one
selector s ∈ Σ such that every disjunct of every predicate definition contains an
assertion x1.s �→ y, where x1 is the first paramter of the predicate and y is an
arbitrary variable. In terms of expressiveness, we may compare Δ-DSGs to SLbtw
[13], which is, to the best of our knowledge, the largest known fragment of SL
with a decidable entailment problem.

Theorem 7. Δ-DSGs are strictly more expressive than SLbtw, i.e. for every
SLbtw formula there exists a language-equivalent Δ-DSG, but not vice versa.

S

1

3 42

S S

p h p

1 12 2

1

2
h

Fig. 4. Tree-like DSG

Proof (Sketch). Every SLbtw environment over a set of
selectors Σ can be normalized such that predicates
are connected by their first parameter. Then, applying
the translation hrg�.� from SL to DSGs (see Lemma 2)
yields a language-equivalent Σ-DSG G (see Theorem 5,
Lemma 2 and Remark 1).

Conversely, the {h}-DSG G depicted in Fig. 4 gen-
erates reversed binary trees with an additional pointer
to the head of another data structure. Obviously, L(G)
is SLtl-definable but not SLbtw-definable, because the number of allocated loca-
tions from which the whole heap is reachable is fixed a priori for every SLbtw
formula and a corresponding environment. �

6 Conclusion

SL and DSGs are established formalisms to describe the abstract shape of
dynamic data structures. A substantial fragment of SL is known to coincide with
the class DSG. However, the entailment problem or, equivalently, the inclusion
problem is undecidable.

Tree-Like Grammars and Separation Logic 107

SLRD HRG MSO2

TLGDSG

SL TL − DSGSLtl

SLbtw Δ − DSG

Fig. 5. Fragments of HRG

and SL

We introduced the class TLG of tree-like grammars
and showed that every TLG is MSO2-definable. From
this, some remarkable properties, like decidability of
the inclusion problem and closure under intersection,
directly follow from previous work on context-free
and recognisable graph languages [7]. Moreover, the
close correspondence between HRGs and SL yields
several fragments of SL, in particular SLtl, where
an extended entailment problem is decidable. The
resulting fragments are more expressive than SLbtw,

the largest fragment of SL with a decidable entailment problem known so far.
Figure 5 depicts an overview of the SL and HRG fragments considered in this

paper, where an edge from formalism F1 to formalism F2 denotes that the class
of languages realizable by F2 is included in the class of languages realizable by
F1. All of these inclusion relations are strict. For completeness, we also added the
class SLRD of Separation Logic with inductive predicate definitions (cf. [1,13]).

With regard to future research, investigating decision procedures and their
tractability for the entailment problem for (fragments of) SLtl is of great interest.
Although the entailment and inclusion problem is effectively decidable for the
fragments presented in this paper, our reliance on Courcelle’s theorem does not
lead to efficient algorithms. We hope that a combined approach – studying SL
as well as HRGs – will lead to further improvements in this area.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 411–425.
Springer, Heidelberg (2014)

2. Berdine, J., Calcagno, C., W.O’Hearn, P.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

4. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 131–146. Springer, Heidelberg (2011)

5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Logic Quart.
6(1–6), 66–92 (1960)

6. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge
(2012)

8. Dodds, M.: From separation logic to hyperedge replacement and back. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214.
Springer, Heidelberg (2008)

108 C. Matheja et al.

9. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In: Handbook of Graph Grammars and Computing by Graph Transformation, pp.
95–162 (1997)

10. Dudka, K., Peringer, P., Vojnar, T.: Predator: a practical tool for checking manip-
ulation of dynamic data structures using separation logic. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 372–378. Springer, Heidelberg
(2011)

11. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

12. Heinen, J., Noll, T., Rieger, S.: Juggrnaut: graph grammar abstraction for
unbounded heap structures. ENTCS 266, 93–107 (2010)

13. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
21–38. Springer, Heidelberg (2013)

14. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

15. Jansen, C., Göbe, F., Noll, T.: Generating inductive predicates for symbolic execu-
tion of pointer-manipulating programs. In: Giese, H., König, B. (eds.) ICGT 2014.
LNCS, vol. 8571, pp. 65–80. Springer, Heidelberg (2014)

16. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using
grammar-based shape analysis. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 124–140. Springer, Heidelberg (2005)

17. Matheja, C., Jansen, C., Noll, T.: Tree-like grammars and separation logic. Tech-
nical Report 2015–12, RWTH Aachen University (2015)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

19. Salomaa, A., Rozenberg, G.: Beyond Words, vol. 3. Springer, Heidelberg (1997)

Static Analysis and Abstract
Interpretation

Randomized Resource-Aware Path-Sensitive
Static Analysis

Tomasz Dudziak(B)

International Max Planck Research School for Computer Science,
Saarland University, Saarbrücken, Germany

tdudziak@mpi-inf.mpg.de

Abstract. Many interesting properties of programs can only be proved
by a path-sensitive analysis. However, path sensitivity may drastically
increase analysis time and memory consumption. For existing approaches,
the amount of required resources is hard to predict in advance. As a con-
sequence, in a particular analysis run available resources may either be
wasted or turn out to be insufficient.

In this paper, we propose a resource-aware approach to path-sensitive
analysis that allows to control the maximal amount of required memory.
It employs randomly-drawn hash functions to decide which paths to dis-
tinguish. Due to randomization, two analysis runs of the same program
may yield different results. We show how to use this feature to trade
analysis time for space.

Keywords: Static program analysis · Path-sensitive analysis · Abstract
interpretation · Software verification · Hashing

1 Introduction

For program analyses formalized in the framework of Abstract Interpretation,
it is possible to design generic techniques that augment the precision of any
analysis. One such technique is the idea of path-sensitive analysis—an analysis
that considers program control flow paths in separation. In contrast, classical
data-flow analysis usually abstracts from control flow paths and gives invariants
about sets of reachable states at each program point.

1.1 Motivating Examples

Figure 1 contains a simple program that computes the sign—either +1 or −1—
of an integer variable x whose value is unknown. If analyzed with an interval
domain [4, 9.2], the analyzer will discover the following invariants in this function.

– sign ∈ [−1,−1] after line 4
– sign ∈ [1, 1] after line 6
– sign ∈ [−1,−1] � [1, 1] = [−1, 1] before the assertion in line 8

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 111–126, 2015.
DOI: 10.1007/978-3-319-26529-2 7

112 T. Dudziak

1 int sign ;
2
3 if (x < 0)
4 sign = −1;
5 else
6 sign = 1;
7
8 assert (sign != 0);

Fig. 1. Program computing the sign of
an integer (example from [20])

1 int x = 0, y = 0;
2 while(true)
3 {
4 if (x <= 50)
5 y++;
6 else
7 y−−;
8 if (y == 0)
9 break;

10 x++;
11 }
12 assert (x == 101);

Fig. 2. A complex loop with multiple
phases (example from [10])

Due to the precision loss in the join operator (�), the analysis is not able to
prove that the assertion always holds. This is also true for more complex abstract
domains such as polyhedra [6], octagons [14], or in fact any domain based on
convex sets of numbers.

One possible way of dealing with this problem is to abandon the model in
which we consider the properties to be associated with program locations and
instead express invariants in the context of some control flow history. Such a path-
sensitive analysis, even when equipped with a convex abstract domain, would be
able to prove the assertion in this problem. Path-sensitivity can be considered a
generic technique that augments the precision of an analyzer in places where it
might be required. Such situations can often be surprising, as demonstrated by
the example in Fig. 2.

The loop in this program increments x in every iteration but y can be either
incremented or decremented depending on the value of x. For the first 50 loop
iterations y will be incremented, then it will be decremented until it drops to
zero and the loop exits. Standard numerical analyses are not capable of proving
the assertion in line (12) but this particular loop can be handled with tech-
niques dedicated specifically to handling loops with phases, such as lookahead
widening [9] or an instance of the guided static analysis framework [10, 4.1].

A static analyzer based on Abstract Interpretation works by discovering prop-
erties represented by elements of some abstract domain. This approach can only
be successful if the loop invariant can be expressed using an element of this
domain.

For example, if by a program state we mean the valuation of its variables, the
interval analysis will represent program states using intervals. Similarly, polyhe-
dral analysis will use polyhedra.

A good way of getting some insight into what sort of analysis is necessary to
solve a particular verification task, is to manually look at the needed properties
and invariants. A typical human given the task of formally proving the assertion
from Fig. 2 would probably come up with a loop invariant similar to the following.

Randomized Resource-Aware Path-Sensitive Static Analysis 113

x ≥ 0 ∧ y =
{

x if x ≤ 50
102 − x if x > 50 (1)

Figure 3 shows the set of all (x, y) pairs fulfilling the invariant (1). Any sound
analysis will provide a loop invariant including this set of points.

In particular, a polyhedral analysis can do no better than approximate it
with a triangle with vertices vertices (0, 0), (51, 51), and (101, 1). Note that, for
example, the point (100, 1) is within that triangle but its corresponding state
(x = 100, y = 1) is never reached during this program’s execution—and if it
were reachable, the assertion in line (12) would no longer hold.

Initially, it might not seem like the problem we are facing has anything to
do with path sensitivity. To see why this is the case, consider these two separate
invariants instead of a single one.

I1 : x > 0 ∧ x = y

I2 : x ≥ 0 ∧ y > 0 ∧ x + y = 102

I1 holds if the previous execution of the loop body included statement in line
(5). Similarly, I2 is true if the statement in line (7) was executed.

Both I1 and I2 can be represented using common relational domains like
octagons [14]. A path-sensitive analyzer that keeps different abstract values
depending on the outcome of the if condition in line (4) will be able to prove
the correctness of this program.

A naive alternative would be to consider each statement in context of the
last k control flow points for some fixed parameter k. Given sufficiently large k,
this brute-force approach would be able to prove the assertions in both programs
from Figs. 1 and 2.

Although such a brute-force technique turned out to perform surprisingly
well, it has major drawbacks. With increasing k the number of different traces
that an analyzer has to track grows exponentially. Both analysis time and mem-
ory consumption become hard to predict and control. Even though we discover
occasional path-sensitive properties, we need to pay for that with huge overall
slowdown.

x

y

51

51

101

1

Fig. 3. Set of points representing the loop invariant in the program from Fig. 2

114 T. Dudziak

1.2 Trace Hashing

As we have seen in the previous section, the major drawback of the brute-force
approach to path sensitivity is its huge and unpredictable memory consumption.
The overhead caused by keeping an exponential number of abstract values most
of the time is completely in vain, as path-sensitive properties do not occur that
frequently. Moreover, the penalty for exceeding the available amount of memory
is quite big—it either causes the analyzer to terminate prematurely (and thus all
time spent on the analysis is wasted) or causes excessive paging (which increases
the analyzer’s execution time by several orders of magnitude).

The model checking community encountered similar problems with exponen-
tial state explosion. This led to the development of resource-aware [23] verifi-
cation algorithms that take, as an additional input, an integer M . During its
execution, the algorithm can keep no more than M states at the same time. An
analogous approach for path-sensitive analysis would be to similarly bound the
number of simultaneously existing abstract values.

Our approach is based on allocating exactly M buckets, each capable of
holding at most one abstract value. A hash function is then used to hash program
paths into this space of buckets. The abstract value located in the ith bucket
will represent all program states corresponding to a path with hash value i. This
can be also viewed as a kind of hash table where conflicts are resolved using the
abstract domain’s join operator �.

For example, there are exactly 172 paths of length k = 50 in the compiled
version of the program from Fig. 2. Thus, a naive path-sensitive analysis would
need to keep track of 172 abstract values. Our approach would allow a smaller,
directly parameterized number of abstract values corresponding to the buckets
of the hash table. Thus, the number of abstract values can be decided at run-
time depending on available memory. However, we obviously cannot distinguish
between all the 172 paths any longer. Depending on how the paths are assigned
to hash cells, we may or may not succeed in proving the given assertion.

Our prototype, given an array size of M = 128 buckets, will prove the asser-
tion about 30% of the time. In case of failure, it can be run again—it is expected
to succeed within 3-4 trials. It uses less memory than the explicit representa-
tion and is, on average, 14 times faster. Therefore, even with multiple retries,
this strategy might turn out to be faster. It is also trivially parallelizable with
basically no communication between instances (and thus suitable for clustered
environments, for example).

Static analysis can be also viewed as a constraint solving problem. In this
view, the resource-aware approach corresponds to having a limit M on the num-
ber of variables of the constraint system. In trace hashing, the variables are
indexed with numbers from 0 to M − 1 and each one will in the end describe
program states in which some recent part of the control flow history hashes to
this variable’s index. The main challenge then lies in constructing this system of
constraints efficiently—that is, in particular, without enumerating an exponen-
tial number of control flow paths.

Randomized Resource-Aware Path-Sensitive Static Analysis 115

1.3 Paper Structure and Contributions

The two main contributions of this paper are: the technique of trace partitioning
and a hash function that enables an efficient implementation of this technique.

The rest of the paper starts with the formalization of our approach in the
abstract interpretation framework (Sect. 2) which provides some insights about
the assumptions required for the approach to be sound and efficient. In Sect. 3 we
propose a hash function and show how to fulfill all these requirements. Section 4
describes our prototype implementation and some empirical results. We conclude
in Sect. 6 by discussing limitations of the technique and future directions.

2 Trace Hashing as Abstract Interpretation

2.1 Basic Definitions and Concrete Semantics

We will work on a graph with a finite set of locations (vertices) Loc and edges
Edge ⊆ Loc×Loc. In an intraprocedural setting, this will be a control flow graph
of a procedure. A single entry node entry ∈ Loc is chosen as the starting point
of program execution. We will abstract from the semantics of the underlying
language or program representation by assuming some set Env of program exe-
cution environments. The execution state of the program shall be fully described
by a pair from Loc × Env. Environment is meant to describe the aspects of the
state that are not related to the flow of control, such as concrete values of vari-
ables or state of the memory store. Each edge (l, l′) ∈ Edge is labeled with a
concrete transfer function Tl,l′ : Env → Env that describes how the environment
is transformed when control passes from location l to l′.

Throughout the paper we will use the following sets to describe CFG paths
and execution traces.

Definition 1 (paths and traces)

Path = {l1 . . . li : l1 = entry ∧ ∀i ∈ {1, . . . , i − 1}. (li, li+1) ∈ Edge}
Trace = {(l1, x1) . . . (li, xi) ∈ (Loc × Env)∗ : (l1 . . . li) ∈ Path}

To describe the analysis we will use the framework of Abstract Interpretation [4].
As the concrete domain we will use finite trace semantics [3]. For a program
given by Loc and Edge, by its semantics we will understand a set of traces
[[Loc,Edge]] ⊆ Trace defined to be the least fixed point of the following func-
tional Φ.

Definition 2 (program functional)

Φ : P(Trace) → P(Trace)
Φ(X) = Init ∪ {ω(l, x)(l′, x′) ∈ Trace :

ω ∈ Trace ∧ ω(l, x) ∈ X

∧ (l, l′) ∈ Edge ∧ x′ = Tl,l′(x)}
where Init = {entry} × Env is the set of all possible initial states.

116 T. Dudziak

2.2 Assumptions About Underlying Analysis

We will describe our technique as a general-purpose construct that can extend
any static analysis expressible in the framework of abstract interpretation. Thus,
we assume an arbitrary abstract domain A and an abstraction of environments
in the form of a Galois connection P(Env) −−−−→←−−−−

αE

γE

A. Each concrete transfer

function Tl,l′ needs to have a corresponding abstract equivalent T̂l,l′ : A → A

such that T̂l,l′ � αE ◦ Tl,l′ ◦ γE .

2.3 Path-Sensitive Abstract Domain

Our approach to path sensitivity will employ a hash function h : Path → ZM

where ZM = {0, . . . , M − 1}. In this section, we will describe a family of hash
functions suitable for use in trace hashing. In the implementation of our tech-
nique the function h is drawn at random from this family. Since the main abstract
domain is constructed in terms of h, this means that the abstract domain is ran-
domized and the result of the analysis is a random variable.

For the sake of brevity, we will use [f] to denote a function f “lifted” to sets
of values.

Definition 3 (lifting functions to sets). If f : A → B, then

[f] : P(A) → P(B)
[f](X) ={f(x) : x ∈ X}

Figure 4 shows the general setting in terms of Galois connections. Our main
abstract domain will be ZM → A, connected to the concrete domain with
α and γ, as defined below. The environment abstraction αE is connected to
the concrete domain with an implicit abstraction from P(Trace) to P(Env) that
disregards everything apart from the final environment in each trace. [h], the
hash function lifted to sets, is an abstraction of sets of CFG paths obtained from
the concrete semantics domain by dropping the environment part of each state.

Definition 4 (abstraction and concretization functions)

α(X) = λn. αE({xm : (l1, x1) . . . (lm, xm) ∈ X ∧ h(l1 . . . lm) = n})
γ(f) = {(l1, x1) . . . (lm, xm) ∈ Trace : xm ∈ (γE ◦ f ◦ h)(l1 . . . lm)}

It is perhaps worth noting that α and γ can be defined as an instance of other,
more general, constructions existing in the abstract interpretation literature. The
reduced relative power [8] of the value abstraction (from P(Trace) to A) to the
control flow abstraction (from P(Trace) to P(ZM)) is isomorphic to our abstract
domain ZM → A.

Randomized Resource-Aware Path-Sensitive Static Analysis 117

Fig. 4. Abstractions used and defined in the paper

2.4 Hash Update

In contrast to commonly-used hash maps, in our construction the hash function
h is not really explicitly evaluated—apart from the initial value h(entry). The
hash map will store a value for every path from Path, of which there might be an
infinite amount. Instead of enumerating this infinite set, we will derive a (finite)
system of constraints on values in the buckets of this hash map.

Fig. 5. Concept of a hash function update

Figure 5 shows an example. Knowing the value of h(ωl5) = n we would like to
compute possible values m of h(ωl5l6) given (l5, l6) ∈ Edge. We will use U

(h)
l5,l6

(n)
to describe these possible values.

Definition 5. For a hash function h : Path → ZM by an update function we
will understand the following function U .

U (h) : Edge → (ZM → P(ZM))

U
(h)
l,l′ (n) = {h(l1 . . . lill

′) : (l1 . . . lill
′) ∈ Path ∧ h(l1 . . . lil) = n}

Theorem 1. If (αE , γE) is aGalois connection, then (α, γ) is aGalois connection.

118 T. Dudziak

Theorem 2. If (αE , γE) is a Galois insertion, then (α, γ) is a Galois insertion.

The above definition uniquely determines the most precise update function.
However, if a less precise but more efficient implementation is available, the
analysis must still provide a sound result—as long as the supplied update returns
all results of the precise update.

Formally, our analysis corresponds to a fixed-point computation of the fol-
lowing functional Φ̂h,Û .

Definition 6. If Û : Edge → (ZM → P(ZM)) overapproximates hash update
U , i.e.

∀l1 . . . lili+1 ∈ Path. h(l1 . . . li+1) ∈ Ûli,li+1(h(l1 . . . li)) (2)

then we define

Φ̂h,Û (f)(n′) = α(Init)(n′) �
⊔

{T̂l,l′(f(n)) : n ∈ ZM ∧ (l, l′) ∈ Edge ∧ n′ ∈ Ûl,l′(n)}

Note that α(Init) is simply

α(Init)(n) =
{� ifn = h(entry)

⊥ otherwise (3)

If the abstract transfer and hash update functions are precise enough, then Φ̂
defined here corresponds to the best transformer for our abstract domain. In a
more general case, we only require transfer functions to be sound and Φ̂ will
overapproximate the best transformer.

Theorem 3. If T̂l,l′ = (αE ◦ [Tl,l′] ◦ γE) is the best abstract transformer for our
concrete transfer functions and Ûl,l′ = Ul,l′ , then

Φ̂ = α ◦ Φ ◦ γ (4)

Theorem 4. If T̂l,l′ � (αE ◦ [Tl,l′] ◦ γE) is a valid transformer for transfer
functions and Ûl,l′(n) ⊇ Ul,l′(n), then

Φ̂ � α ◦ Φ ◦ γ (5)

The actual analysis is performed by solving a set of constraints on M variables
using a fixpoint iteration algorithm. The abstract transformer from Definition 6
gives rise to the following set of constraints.

Xh(entry) � �
Xn′ � T̂l,l′(Xn) for (l, l′) ∈ Edge, n′ ∈ Ûl,l′(n)

The number of constraints, which is directly related to the running time of
worklist algorithms [18], depends on the precision of the Ûl,l′ operator. The hash
function must be chosen carefully such that an efficient and precise implemen-
tation of Ûl,l′ exists.

Randomized Resource-Aware Path-Sensitive Static Analysis 119

3 The Hash Function Family

The update operation that we need to construct the system of constraints can
be implemented for a class of hash functions called recursive hash functions [2].
The one that we employ here is based on a well-known polynomial string hash,
originally used in the Karp-Rabin string search algorithm [12]. This function
considers a window of the last k locations, based on a parameter k.

Definition 7. Assuming a prehash function g : Loc → ZM the k-sensitive
hash function family Hk,M is defined as

Hk,M = {h
(k)
A : A ∈ ZM} (6)

where each individual hash function h
(k)
A : Path → ZM is defined as

h
(k)
A (ωl1 . . . lk) =

(
k∑

i=1

g(lk−i+1)Ai

)
mod M for any ω ∈ Path

h
(k)
A (l1 . . . lm) =

(
m∑

i=1

g(lm−i+1)Ai

)
mod M for m < k

Since we also need to support paths shorter than k, the standard polynomial
hash function is applied in reversed order. Conceptually, this is equivalent to
having an infinite number of dummy CFG locations before the entry node and
assuming a prehash value of 0 on each of these locations.

Fig. 6. Updating the k-sensitive hash

Figure 6 demonstrates a useful property of this hash function. The hash value
for a path ending in l6 can be computed from the hash value for the path ending
in l5 as long as g(l2) is known. This property will be the basis for an update
function for this hash and is formalized by Theorems 5 and 6.

Theorem 5. For any (l1 . . . lklk+1) ∈ Path

h
(k)
A (l2 . . . lklk+1) = (h(k)

A (l1 . . . lk) − Akg(l1)) · A + Ag(lk+1) (7)

120 T. Dudziak

Theorem 6. For a path (l1 . . . lm) ∈ Path shorter than k elements (m < k)

h
(k)
A (l1 . . . lmlm+1) = A · (h(k)

A (l1 . . . lm) + g(lm+1)) (8)

To compute the precise update Ul,l′ we need to keep track of k-step reachability
information in the control flow graph together with possible hash values for each
path connecting its locations. This is done with a precomputed mapping Prevk

defined as follows.

Definition 8. For fixed parameters A and M we will consider a function Prevk

of type
Prevk : (Loc × ZM) → P(Loc ∪ { }) (9)

defined by the following rules.

1. ls ∈ Prevk(l, n) iff there is a CFG path from ls to l of length exactly k with
hash value n

2. ∈ Prevk(l, n) iff there is a path of length smaller than k from entry node to
l with hash value n

Theorem 7. Based on Prevk, the update function can be computed as:

Ul,l′(n) = {A · (n + g(l′) − Akg(l1)) ∈ ZM : n ∈ ZM ∧ l1 ∈ Prevk(l, n)} (10)

The mapping Prevk can be constructed iteratively, for increasing k, and with-
out the need to ever enumerate all possible paths of length k. Thus, we can avoid
the exponential blowup that is present when trying to represent paths explicitly.

The idea of incremental calculation of Prevk is depicted in Fig. 7. Since S ∈
Prev5(B,n), we know that there is a path of length 5 from S to B (either
SBCSB or SACSB) that has a hash n. This means that for paths of length 6
we need to consider all edges from B — in this case a single edge to C — and
update n with each new location. Note that here we are updating from hashes on
5 locations to hashes on 6 locations so there is no need to subtract the “starting”
location like in Theorems 5 and 6. Since S is the entry node in this control flow
graph, Prev6 will also contain a “blank” value to indicate a path of length 5
from S to B. Algorithm 1 describe the general case of computing Prevk.

An alternative to explicit calculation of Prevk would be to employ a self-
annihilating hash function [2, 2.5] that would no longer require subtracting the
term for the location being removed from the hashed path. However, we found
that the calculation of Prevk contributes very little to the overall execution time
of the analyzer and existing self-annihilating hash functions have less desirable
statistical properties as well as certain limitations (the path length would need
to be a power of two, for example).

4 Implementation and Experimental Results

The technique was prototyped as a numerical value analysis on the LLVM inter-
mediate representation [13]. The aim of such analysis is to determine possible

Randomized Resource-Aware Path-Sensitive Static Analysis 121

S

A B

C

entry

exit

S ∈ Prev5(B,n)

S ∈ Prev6(C,A · (n + g(C)))
∈ Prev6(B,n)

Fig. 7. Idea of incremental computation of Prevk

Algorithm 1.Constructing Prevk

// initialize Prev as Prev1

Prev ← fresh empty map (Loc × ZM) → P(Loc ∪ { })
for l ∈ Loc do

Prev[l, A · g(l)] ← {l}
end for

// construct Prev2,Prev3, . . . ,Prevk

for i = 2, 3, . . . , k do
Prev′ ← fresh empty map (Loc × ZM) → P(Loc ∪ { })
for (l, n) ∈ domain(Prev) do

if l = entry then
Prev′[l, n] ← Prev′[l, n] ∪ { }

end if
for l′ such that (l, l′) ∈ Edge do

n′ ← A · (n + g(l′))
Prev′[l′, n′] ← Prev′[l′, n′] ∪ Prev[l, n]

end for
end for
Prev ← Prev′

end for

values of numerical variables in the program. Multiple abstract domains are
supported via the APRON library [11] which includes intervals, polyhedra and
octagons.

The analyzer is capable of proving assertions in programs using the standard
C assert macro, like the ones in Figs. 1 and 2. The C preprocess expands these

122 T. Dudziak

assertions into an if statement checking the condition dynamically and calling a
failure function if it doesn’t hold. Proving the assertion can be done by proving
the unreachability of this call. In a path-sensitive static analyzer, this can be
accomplished by deriving a bottom abstract value for every path ending with
the corresponding basic block.

4.1 Benchmarking Methodology

The prototype was evaluated on a collection of microbenchmarks gathered from
the literature on path-sensitive analysis. Benchmark sign is the program from
Fig. 1. Figure 2 corresponds to the benchmark called phased loop. Benchmark
loop noskip was inspired by a C� program from [7, Fig. 7] and is shown in Fig. 8.

Since the technique is randomized, the measurement was performed multi-
ple times to assess the probability of success (defined as proving all the asser-
tions contained in the program) as well as the distribution of analysis time and
resource usage. The benchmarks were evaluated using the abstract domain of
octagons. A standard deterministic path-sensitive analysis that simply considers
all paths of length k was used as a baseline for comparison.

The path length parameter k for both the trace hashing approach and base-
line was chosen to be 50. For trace hashing, the array size M can be set based on
available memory, assuming some fixed heuristic cost per single abstract value.
For the benchmarks, its value was M = 200063.

4.2 Results

Table 1 shows, for each benchmark, the ratio of runs in which the analyzer have
managed to prove the assertion in that benchmark. As we can see, the trace
hashing approach succeeds most of the time. The success rate depends on the
complexity of the benchmark, with phased loop having the lowest probability
of success (71 %).

Table 2 shows observed memory usage and analysis time for trace hashing
(TH) and the baseline approach (B) as well as the breakdown of successful and

Fig. 8. The loop noskip benchmark

Table 1. Success rates

Benchmark № Runs Success rate

sign 400 100 %

phased loop 400 71 %

loop noskip 400 100 %

overall 1200 90 %

Randomized Resource-Aware Path-Sensitive Static Analysis 123

Table 2. Analyzer memory consumption and execution time. B=baseline, TH=trace
hashing, THS=successful runs of trace hashing, THF=failed runs of trace hashing.
Columns p5, p50, and p95 contain, respectively, the 5th, 50th, and 95th percentile.

Benchmark Variant № runs Memory usage [MiB] Analysis time [s]

p5 p50 p95 p5 p50 p95

sign THS 400 106 106 125 0.10 0.10 0.10

THF 0 - - - - - -

TH 400 106 106 125 0.10 0.10 0.10

B 400 178 178 215 0.00 0.00 0.00

phased loop THS 284 141 141 160 4.97 4.97 5.29

THF 116 151 151 1442 5.13 5.13 159.01

TH 400 142 142 1402 5.01 5.01 147.28

B 400 292 292 326 13.61 13.61 13.74

loop noskip THS 400 97 97 123 0.11 0.11 0.15

THF 0 - - - - - -

TH 400 97 97 123 0.11 0.11 0.15

B 400 179 179 216 0.09 0.09 0.09

overall THS 1084 109 109 151 0.11 0.11 5.16

THF 116 151 151 1442 5.13 5.13 159.01

TH 1200 113 113 157 0.11 0.11 5.31

B 1200 195 195 317 0.09 0.09 13.62

Fig. 9. Distribution of analyzer memory usage

124 T. Dudziak

unsuccessful runs of trace hashing. The box-and-whiskers plot in Fig. 9 shows
the distribution of memory consumption.

There is a noticeable disparity between successful and unsuccessful runs of
trace hashing with successful runs significantly outperforming the baseline app-
roach. In some cases, failure to prove the assertion was combined with very
high memory consumption. This is the result of an unfortunate combination of
hash collisions which propagate and lead to runaway memory consumption and
analysis time.

5 Related Work

Since path-sensitive analysis aims to partially prevent the loss of precision that
occurs during joins, one alternative to performing it is to have a distributive
domain. Disjunctive completion [5, 9.2] of an abstract domain A is the smallest
abstract domain containing A that does not lose information in joins. How-
ever, even for relatively simple domains like the constant propagation lattice,
the disjunctive completion approach becomes essentially equivalent to explicitly
representing all possible sets of values.

Trace partitioning [20] provides a very general formalization of path-sensitive
abstract domains. The abstraction described in Definition 4 could be also derived
as an instance of the trace partitioning framework. The corresponding partition-
ing δ : ZM → P(Path) would be:

δ(n) = {p ∈ Path : h(p) = n} (11)

The practical implementation of the general trace partitioning framework is
restricted to only certain classes of partitionings and, in particular, merges traces
at the ends of loops [20, 5.1]. This means that properties like the one on Fig. 2
cannot be proved. An instance of the Guided Static Analysis framework [10] can
handle loops with multiple phases, like the one on Fig. 2, although it seems to
require them to be manually identified.

The only prior application of randomization in static program analysis we
have been able to find is the points-to analysis using multi-dimensional Bloom
filter [17]. Bloom filters can be generalized to arbitrary lattices [1], although [17]
does not apply such generalization. Our approach bears some resemblance to the
generalized Bloom filter, although we employ only a single hash function.

A different way of implementing path-sensitivity would be to maintain a
small (non-exponential) number of abstract values in some abstraction points,
while exploring a possibly exponential number of paths between these points.
Such an analysis would have the same expressiveness as the non-path-sensitive
variant but possibly greater precision. A benefit of this approach is that paths
can be described symbolically, like in path focusing [16] which describes control
flow paths with SMT formulas. Another way of getting a similar outcome would
be to to compute the abstract transformer for a whole acyclic subgraph of the
CFG as opposed to individual instructions. There are techniques for automatic
derivation of abstract transformers that can be used to that purpose [19,21,22].

Randomized Resource-Aware Path-Sensitive Static Analysis 125

6 Extensions and Future Work

Although the work presented in this paper was mostly focused on path-sensitive
intraprocedural analysis, there is a potential for applying a similar hashing
approach to calling contexts. Context-sensitive interprocedural analysis is often
implemented using explicitly-represented call strings of bounded length. In prac-
tice, this bound is small—between 1-3—and ideas from this paper can be applied
to enable the use of bigger contexts. This can be accomplished by substituting
the CFG by a function call graph in the definitions in Sect. 2.

The approach to path-sensitivity presented in this paper is what [20] classi-
fies as a static partitioning—the decision about which parts of the control flow
history are distinguished is made prior to the analysis. A dynamic partitioning
scheme could be also adapted as a resource-aware algorithm if a hard limit on
the number of partitions is imposed. When the number of partitions grows close
to the limit, they can be merged according to some heuristic.

The hash function presented in Sect. 3 relies on the parameter k which cor-
responds to the number of past CFG locations that are taken into account. One
could imagine an alternative hash function that does not have this fixed cutoff
point but gradually “forgets” history. More formally, for two control flow paths
the collision probability of such a hash function would depend on the similarity
of these paths—paths sharing a very long common suffix would be mapped into
the same hash bucket with high probability. We have briefly experimented with
self-designed hash functions having this property but this concept still requires
more work.

Acknowledgments. The author would like to thank Jan Reineke and Reinhard
Wilhelm of Saarland University for their advice and moral support and all the anony-
mous reviewers for their constructive comments. This work was partially supported by
the Saarbrücken Graduate School of Computer Science which receives funding from the
DFG as part of the Excellence Initiative of the German Federal and State Governments.

References

1. Boldi, P., Vigna, S.: Mutable strings in java: design, implementation and light-
weight text-search algorithms. Sci. Comput. Program. 54(1), 3–23 (2005)

2. Cohen, J.D.: Recursive hashing functions for n-grams. ACM Trans. Inf. Syst. 15(3),
291–320 (1997)

3. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1–2), 47–103 (2002)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM, New York (1977)

5. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: POPL, pp. 178–190 (2002)

126 T. Dudziak

6. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, Tucson, Arizona, USA, pp. 84–96, January
1978. http://doi.acm.org/10.1145/512760.512770

7. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

8. Giacobazzi, R., Ranzato, F.: The reduced relative power operation on abstract
domains. Theor. Comput. Sci. 216(1–2), 159–211 (1999)

9. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

10. Gopan, D., Reps, T.: Guided static analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

11. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

13. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
2004, p. 75. IEEE Computer Society, Washington, DC (2004)

14. Miné, A.: The octagon abstract domain. CoRR abs/cs/0703084 (2007).
http://arxiv.org/abs/cs/0703084

15. Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460. Springer, Heidelberg
(2012)

16. Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint itera-
tions. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 369–385. Springer,
Heidelberg (2011)

17. Nasre, R., Rajan, K., Govindarajan, R., Khedker, U.P.: Scalable context-sensitive
points-to analysis using multi-dimensional bloom filters. In: Hu, Z. (ed.) APLAS
2009. LNCS, vol. 5904, pp. 47–62. Springer, Heidelberg (2009)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(2005)

19. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004)

20. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (2007). http://doi.acm.org/10.1145/1275497.1275501

21. Thakur, A.V., Elder, M., Reps, T.W.: Bilateral algorithms for symbolic abstrac-
tion. In: Miné and Schmidt [15], pp. 111–128

22. Thakur, A.V., Reps, T.W.: A generalization of St̊almarck’s method. In: Miné and
Schmidt [15], pp. 334–351

23. Tripakis, S.: What is resource-aware verification? (2008). http://www-verimag.
imag.fr/∼tripakis/papers/what-is.pdf

http://doi.acm.org/10.1145/512760.512770
http://arxiv.org/abs/cs/0703084
http://doi.acm.org/10.1145/1275497.1275501
http://www-verimag.imag.fr/~tripakis/papers/what-is.pdf
http://www-verimag.imag.fr/~tripakis/papers/what-is.pdf

Quadratic Zonotopes

An Extension of Zonotopes to Quadratic Arithmetics

Assalé Adjé1,2, Pierre-Löıc Garoche1,2(B), and Alexis Werey1,2

1 Onera, the French Aerospace Lab, Toulouse, France
2 Université de Toulouse, Onera, Toulouse, France

pierre-loic.garoche@onera.fr

Abstract. Affine forms are a common way to represent convex sets of R
using a base of error terms ε ∈ [−1, 1]m. Quadratic forms are an extension
of affine forms enabling the use of quadratic error terms εiεj .

In static analysis, the zonotope domain, a relational abstract domain
based on affine forms has been used in a wide range of settings, e.g. set-
based simulation for hybrid systems, or floating point analysis, providing
relational abstraction of functions with a cost linear in the number of
errors terms.

In this paper, we propose a quadratic version of zonotopes. We also
present a new algorithm based on semi-definite programming to project
a quadratic zonotope, and therefore quadratic forms, to intervals. All
presented material has been implemented and applied on representative
examples.

Keywords: Affine form · Quadratic form · Affine vectors · Quadratic
vectors · Zonotopes · Static analysis

1 Affine Arithmetics and Static Analysis

Context. Affine arithmetics was introduced in the 90 s by Comba and Stolfi [CS93]
as an alternative to interval arithmetics, allowing to avoid some pessimistic com-
putation like the cancellation:

x − x = [a, b] −I [a, b] = [a − b, b − a] �= [0, 0]

It relies on a representation of convex subsets of R keeping dependencies between
variables: e.g. x ∈ [−1, 1] will represented as 0 + 1 ∗ ε1 while another variable
y ∈ [−1, 1] will be represented by another ε term: y = 0 + 1 ∗ ε2. Therefore x − x
will be precisely computed as ε1 − ε1 = 0 while x − y will result in ε1 − ε2, i.e.
denoting the interval [−2, 2].

In static analysis, affine forms lifted to abstract environments, as vectors of
affine forms, are an interesting alternative to costly relational domains. They pro-
vide cheap and scalable relational abstractions: their complexity is linear in the

This work has been partially supported by an RTRA/STAE BRIEFCASE project
grant, the ANR projects INS-2012-007 CAFEIN, and ASTRID VORACE.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 127–145, 2015.
DOI: 10.1007/978-3-319-26529-2 8

128 A. Adjé et al.

number of error terms – the εi – while most relational abstract domains have
a complexity at least cubic. Since their geometric concretization characterizes
a zonotope, i.e. a symmetric convex polytope, they are commonly known as
zonotopic abstract domains.

However since zonotopes do not have with lattice structure, their use in pure
abstract interpretation using a Kleene iteration schema is not common. The def-
inition of an abstract domain based on affine forms requires the definition of an
upper bound and lower bound operators since no least upper bound and great-
est lower bound exist in general. Choices vary from the computation of a precise
minimal upper bound to a coarser upper bound that tries to maintain relation-
ship among variables and error terms. For example, the choices of [GGP09] try
to compute such bounds while preserving the error terms of the operands, as
much as possible, providing a precise way to approximate a functional.

Related Works. Affine arithmetics and variants of it have been studied in the area
of applied mathematics community and global optimization. In global optimiza-
tion, the objective is to precisely compute the minimum or maximum of a non
convex function1, typically using branch and bound algorithms. In most settings
the objective function codomain is R and interval or affine arithmetics allow to
compute such bounds. Bisection, i.e. branch and bound algorithm, improves the
precision by considering subcases. The work of [MT06] introduced a quadratic
extension of affine forms allowing to express terms in εiεj .

In static analysis, an interval or an affine form is assigned to each variable in
an environment. This characterizes the domains of boxes and zonotopes. Zono-
topes are mainly used in static analysis to support the formal verification of
critical systems performing floating point computation, e.g. aircraft controllers.
One can mention a first line of works in which zonotopes are used to precisely
over-approximate set of values: 1. hybrid system simulation, for example recent
Bouissou et al. set-based simulation [BMC12] or earlier Girard work [Gir05]; 2.
or floating point error propagation, eg. Goubault et al. [Gou13]. In all those
cases, a join operator is not necessarily needed nor a partial order check.

A second line of work tries to rely on this representation to perform classic
abstract interpretation. Zonotopes are then fitted with a computable partial
order and a join, for example in [GGP12,GPV12]. The more complex approach
of [GGP09] combines affine abstraction with linear relationship between error
terms, and is available in the open-source library APRON [JM09].

As opposed to intervals and their lift to environments as boxes, affine forms
and their lift as zonotopes are not well suited for fixed point computation. The
absence of a lattice structure imposes the use of an imprecise join which makes
the computation of a post fixpoint difficult. In the second line of work mentioned
above, either the code analyzed is loop-less or the loops are unrolled a large
number of times to improve the precision before computing the join.

1 When the function or the set of constraints is convex, e.g. conic problems, numerical
solvers can be used to efficiently compute a solution. For example, the cases of LP,
QP, SOCP, or SDP programming.

Quadratic Zonotopes 129

Contributions. In the paper, we ambition at using zonotopes based on this
quadratic arithmetics. We propose an abstraction based on an extension of zono-
topic abstract domains to quadratic arithmetic. Our approach fully handles float-
ing point computations and performs the necessary rounding to obtain a sound
result. Furthermore, while keeping the complexity reasonable, i.e. quadratic
instead of linear error terms, quadratic forms are best suited to represent non lin-
ear computations such as multiplication. Interestingly, the geometric concretiza-
tion a set of quadratic forms characterizes a non convex, non symmetric subset
of Rn, while still being fitted with an algebraic structure.

According to Messine and Touhami, whom defined them in [MT06], quadratic
forms were used in reliable computing (global optimization) but never in a com-
parable setting: Rn with shared error terms instead of R, set-based interpretation
(the concretization) with join and meet operators, and iterative fixpoint compu-
tation with the abstract interpretation kleene iteration scheme.

Paper Structure. A first section presents quadratic forms as introduced in
[MT06]. Then Sect. 3 presents our extension of zonotopes to quadratic arith-
metics. Section 4 motivates our floating point implementation. Section 5 proposes
a more precise way to project quadratic zonotopes to intervals using semi-definite
programming (SDP) solvers. Finally Sect. 6 addresses our implementation and
the evaluation of the approach with respect to existing domains (intervals, affine
zonotopes variants).

2 Affine and Quadratic Arithmetics

We formally introduce here some definitions from [MT06] defining quadratic
forms. We refer the interested reader to this publication for a wider comparison
in a global optimization setting.

Quadratic Forms. A (not so) recent extension of affine arithmetics is quadratic
arithmetics [MT06]. It is a comparable representation of values fitted with similar
arithmetics operators but quadratic forms also considers products of two errors
terms εiεj . A quadratic form is also parametrized by additional error terms used
to encode non linear errors: ε± ∈ [−1, 1], ε+ ∈ [0, 1] and ε− ∈ [−1, 0]. Let us
define the set Cm � [−1, 1]m × [−1, 1] × [0, 1] × [−1, 0]. A quadratic form on m
noise symbols is a function q from Cm to R defined for all t = (ε, ε±, ε+, ε−) ∈ Cm

by q(t) = c + bᵀε + εᵀAε + c±ε± + c−ε− + c+ε+. The A term will generate the
quadratic expressions in εiεj . A quadratic form is thus characterized by a 6-tuple
(c, (b)m, (A)m2 , c±, c+, c−) ∈ R × R

m × R
m×m × R+ × R+ × R+. Without loss

of generality, the matrix A can be assumed symmetric. To simplify, we will use
the terminology quadratic form for both the function defined on Cm and the
6-tuple. Let Qm denote the set of quadratic forms.

130 A. Adjé et al.

Geometric Interpretation. Let q ∈ Qm. Since q is continuous, the image of
Cm by q is a closed bounded interval. In our context, the image of Cm by q
defines its geometric interpretation.

Definition 1 (Concretization of quadratic forms). The concretization map
of a quadratic form γQ : Qm → ℘(R) is defined by:

γQ(q) = {x ∈ R |∃ t ∈ Cm s. t. x = q(t)}
Remark 1. We can have γQ(q) = γQ(q′) with q �= q′ e.g. q = ε21 and q′ = ε22.
Therefore γQ could not characterize a antisymmetric relation on Qm and there-
fore not a partial order. We could consider equivalence classes instead to get an
order but we would loose the information that q1 and q2 are not correlated.

The projection PQ : Q → I of q to intervals consists in computing the
infimum and the supremum of q over Cm i.e. the values:

bq � inf{q(x) | x ∈ Cm} and Bq � sup{q(x) | x ∈ Cm} . (1)

Computing bq and Bq is reduced to solving a non-convex quadratic prob-
lem which is NP-hard [Vav90]. The approach described in [MT06] uses simple
inequalities to give a safe over-approximation of γQ(q). The interval provided by
this approach is [bq

MT ,Bq
MT] which is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bq
MT � c −

m∑

i=1

|bi| −
∑

i,j=1,...,m
j �=i

|Aij | +
m∑

i=1

[Aii]− − c− − c±

Bq
MT � c +

m∑

i=1

|bi| +
∑

i,j=1,...,m
j �=i

|Aij | +
m∑

i=1

[Aii]+ + c+ + c±

(2)

where for all x ∈ R, [x]+ = x if x > 0 and 0 otherwise and [x]− = x if x < 0 and
0 otherwise.

In practice, we use the interval projection operator PMT
Q (q) � [bq

MT ,Bq
MT]

instead of γQ(q), since γQ(q) ⊆ γI
(PMT

Q (q)
)

where γI denotes the concretization
of intervals. In Sect. 5, we will present a tighter over-approximation of γQ(q) using
SDP.

We will need a reverse map to the concretization map γQ: qn abstraction
map which associates a quadratic form to an interval. Note that the abstraction
map produces a fresh noise symbol.

First, we introduce some notations for intervals. Let I be the set of closed
bounded real intervals i.e. {[a, b] | a, b ∈ R, a ≤ b} and I its unbounded extension,
i.e. a ∈ R∪{−∞}, b ∈ R∪{+∞}. ∀[a, b] ∈ I, we define two functions lg([a, b]) =
(b − a)/2 and mid([a, b]) = (b + a)/2. Let �I be the classic join of I that is
[a, b] �I [c, d] � [min(a, c),max(b, d)]. Let I be the classic meet of intervals.

Definition 2 (Abstraction). The abstraction map αQ : I → Q1 is defined by:

αQ([a1, a2]) = (c, (b)1, (0)1, 0, 0, 0) where c = mid ([a1, a2]) and b = lg ([a1, a2]).

Quadratic Zonotopes 131

where the vector (b) of size 1 is associated to a fresh symbol ε. Ie, αQ([a1, a2]) =
c + b1ε.

Property 1 (Concretization of abstraction). γQ (αQ ([a1, a2])) ⊇ [a1, a2].

Arithmetic Operators. Quadratic forms are equipped with arithmetic oper-
ators whose complexity is quadratic in the number of error terms. We give here
the definitions of the arithmetics operators:

Definition 3 (Arithmetics operator in Q). Addition, negation, multiplica-
tion by scalar are defined by:

(c, (b)m, (A)m2 , c±, c+, c−) +Q (c′, (b′)m, (A′)m2 , c′
±, c′

+, c′
−) =

(c + c′, (b + b′)m, (A + A′)m2 , c± + c′
±, c+ + c′

+, c− + c′
−)

−Q (c, (b)m, (A)m2 , c±, c+, c−) = (−c, (−b)m, (−A)m2 , c±, c−, c+)
λ ∗Q (c, (b)m, (A)m2 , c±, c+, c−) = (λc, λ(b)m, λ(A)m2 , |λ|c±, |λ|c+, |λ|c−)

The multiplication is more complex since it introduces additional errors.

(c, (b)m, (A)m2 , c±, c+, c−) ×Q (c′, (b′)m, (A′)m2 , c′
±, c′

+, c′
−) ={

(cc′, c′(b)m + c(b′)m, c′(A)m2 + c(A′)m2 + (b)m(b′)ᵀ
m, c′′

±, c′′
+, c′′

−) with
c′′
x = c′′

x1
+ c′′

x2
+ c′′

x3
+ c′′

x4
,∀x ∈ {+,−,±}

Each c′′
xi

accounts for multiplicative errors with more than quadratic degree,
obtained in the following four sub terms: (1) εᵀAε × εᵀA′ε (2) bᵀε × εᵀA′ε and
b′ᵀε × εᵀAε (3) multiplication of a matrix element in A, A′ times an error term
in ±,+,− (4) multiplication between error terms or with constant c, c′. Their
precise definition can be found in [MT06, Sect. 3].

3 Quadratic Zonotopes: A Zonotopic Extension
of Quadratic Forms to Environments

Quadratic vectors are the lift to environments of quadratic forms. They provide
a p-dimensional environment in which each dimension/variable is associated to a
quadratic form. As for the affine sets used in zonotopic domains [GP09], the dif-
ferent variables share (some) error terms, this characterizes a set of relationships
between variables, when varying the values of ε within [−1, 1]m. The geometric
interpretation of quadratic vectors are non convex non symmetric subsets of Rp.
In the current paper, we call them Quadratic Zonotopes to preserve the analogy
with affine sets and zonotopes.

Example 1 (quadratic vector). Let us consider the following quadratic vector q:

q =

{
x = −1 + ε1 − ε2 − ε1,1

y = 1 + 2ε2 + ε1,2

132 A. Adjé et al.

Here, εi denotes the linear dependency with εi while εi,j denotes the quadratic
one εi × εj . Note that it corresponds to the following vector of tuples defined
over the sequence (ε1, ε2) of error terms:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x =

(
−1, (1,−1)ᵀ,

(
−1 0
0 0

)
, 0, 0, 0

)

y =

(
1, (0, 2)ᵀ,

(
0 1/2

1/2 0

)
, 0, 0, 0

)

Figure 1 represents its associated geometric interpretation, a quadratic zonotope.

Fig. 1. Zonotopic concretization of
the quadratic vector q ∈ Zp

Qm of
Example 1: γZQ (q)

Let Zp
Qm be the set of quadratic vec-

tors of dimension p: (qp) ∈ Zp
Qm =(

cp, (b)pm, (A)pm2 , c
p
±, cp+, cp−

) ∈ R
p ×

R
p×m × R

p×m×m × R
p
+ × R

p
+ × R

p
+.

The Zonotope domain is then a para-
metric relational abstract domain, para-
metrized by the vector of m error terms.
In practice, its definition mimics a non
relational domain based on an abstrac-
tion Zp

Qm of ℘(Rp). Operators are (i)
assignment of a variable of the zonotope
to a new value defined by an arithmetic
expression, using the semantics evaluation
of expressions in Q and the substitution
in the quadratic vector; (ii) guard evalua-
tion, i.e. constraint over a zonotope, using
the classical combination of forward and
backward evaluations of expressions [Min04, Sect. 2.4.4].

Geometric Interpretation and Box Projection. One can consider the geo-
metric interpretation as the concretization of a quadratic vector to a quadratic
zonotope.

From now on, for all n ∈ N, [n] denotes the set of integers {1, . . . , n}.

Definition 4 (Concretization in Zp
Qm). The concretization map γZQ :

Zp
Qm �→ ℘ (Rp) is defined for all q = (q1, . . . , qp) ∈ Zp

Qm by:

γZQ (q) = {x ∈ R
p |∃ t ∈ Cm s. t. ∀ k ∈ [p], xk = qk(t)} .

Remark 2. Characterizing such subset of Rp explicitly as a set of constraints is
not easy. A classical (affine) zonotope is the image of a polyhedron (hypercube)
by an affine map, hence it is a polyhedron and can be represented by a con-
junction of affine inequalities. For quadratic vectors a representation in terms
of conjunction of quadratic or at most polynomial inequalities is not proven
to exist. This makes the concretization of a quadratic set difficult to compute
precisely.

Quadratic Zonotopes 133

To ease the latter interpretation of computed values, we rely on a naive
projection to boxes: each quadratic form of the quadratic vector is concretized
as an interval using PQ : Q → I.

Preorder Structure. We equip quadratic vectors with a preorder relying on
the geometric inclusion provided by the map γZQ .

Definition 5 (Preorder in Zp
Qm). The preorder �ZQ over Zp

Qm is defined by:

x �ZQ y ⇐⇒ γZQ (x) ⊆ γZQ (y).

Remark 3. Since γZQ is not computable, x �ZQ y is not decidable. Note also
that, from Remark 1, the binary relation �ZQ cannot be antisymmetric and thus
cannot be an order.

Remark 4. The least upper bound of Z ⊆ Zp
Qm i.e. an element z′ s.t.(∀z ∈ Z, z �ZQ z′ ∧ ∀z′′ ∈ Zp

Qm ,∀z ∈ Z, z �ZQ z′′) =⇒ z′ �ZQ z′′ does not
necessarily exists.

Related work [GP09,GGP09,GGP10,GGP12,GPV12] addressed this issue by
providing various flavors of join operator computing a safe upper bound or a
minimal upper bound. Classical Kleene iteration scheme was adapted2 to fit this
loose framework without (efficient) least upper bound computation. Note that,
in general, the aforementioned zonotopic domains do not rely on the geometric
interpretation as the concretization to ℘(R).

We now detail a join operator used in our implementation. It is the lifting
of the operator proposed in [GP09] to quadratic vectors. The motivation of this
operator is to provide an upper bound while minimizing the set of error terms
lost in the computation.

First we introduce two functions: a projection function to extract a quadratic
form associated to a variable (dimension) in a quadratic vector; and an extension
function to introduce new empty error symbols in a quadratic form.

We also need the projection map which selects a specific coordinate of a
quadratic vector.

Definition 6 (Projection). ∀ k ∈ [p], the family of projection maps πk :
Zp

Qm → Qm is defined by: ∀ q = (q1, . . . , qp) ∈ Zp
Qm , πk(q) = qk.

When a quadratic form q is defined before a new noise symbol is created, we
have to extend q to take into account this fresh noise symbol. We introduce an
extension map operator that extend the size of the error term vector considered.
Informally, exti,j(q) adds i null error terms at the beginning of the error term
vector and j at its tail, while keeping the existing symbols in the middle.

2 Typically this involves a large number of loop unrolling, trying to minimize the
number of actual uses of join/meet.

134 A. Adjé et al.

Definition 7 (Extension). Let i, j ∈ N. The extension map exti,j : Qm →
Qi+j+m is defined by: ∀ q = (c, (b)m, (A)m2 , c±, c+, c−) ∈ Qm, exti,j(q) =
(c, (b′)i+j+m, (A′)(i+j+m)2 , c±, c+, c−) ∈ Qi+j+m where b′

k = bk−i if i + 1 ≤
k ≤ m + i and 0 otherwise and A′

k,l = Ak−i,l−i if i + 1 ≤ k, l ≤ m + i and 0
otherwise.

Property 2 (Extension properties). Let i, j ∈ N.

1. Let (ε, ε±, ε+, ε−) ∈ Cm and (ε′, ε±, ε+, ε−) ∈ Cm+i+j s. t. ∀ i+1 ≤ k ≤ m+ i,
ε′
k = εk−i. Then q(ε′, ε±, ε+, ε−) = exti,j(q)(ε, ε±, ε+, ε−).

2. For all q ∈ Qm, PQ(q) = PQ(exti,j(q)).

Last, in the following, we rely on the argmin function over reals defined as
argmin(a, b) = sgn(a)min(|a|, |b|).

Now, we can give a formal definition of the upper bound of two quadratic
vectors.

Definition 8 (�ZQ : Upper bound computation in Zp
Qm). The upper bound

�ZQ : Zp
Qm × Zp

Qm → Zp
Qm+p is defined, for all q = (c, b, A, c±, c+, c−) , q′ =(

c′, b′, A′, c′
±, c′

+, c′
−

) ∈ Zp
Qm by:

q �ZQ q′ = (ext0,p(q′′
k))k∈[p] + qe ∈ Zp

Qm+p

where q′′ = (c′′, (b′′)pm, (A′′)pm2 , c
′′p
± , c′′p

+ , c′′p
−) ∈ Zp

Qm with, for all k ∈ [p]:

– (c′′)k = mid(PQ(πk(q)) ∪I PQ(πk(q′)));
– ∀ t ∈ {±,+,−}, c′′

t,k = argmin(ct,k, c′
t,k);

– ∀ i ∈ [m], (b′′)k,i = argmin(bk,i, b′
k,i);

– ∀ i, j ∈ [m], (A′′)k,i,j = argmin(Ak,i,j , A
′
k,i,j);

and ∀ k ∈ [p], qek = ext(m+k−1),(p−k) (αQ (Ck �I C ′
k)) with Ck = PQ(πk(q) −

πk(q′′)) and C ′
k = PQ(πk(q′) − πk(q′′)).

Let us denote the Minkowski sum and the Cartesian product of sets, respec-
tively, by D1 ⊕ D2 = {d1 + d2 | d1 ∈ D1, d2 ∈ D2} and

∏n
i Di = {(d1, . . . , dn) |

∀ i ∈ [n], di ∈ Di}. We have the nice characterization of the concretization of
the upper bound given by Lemma1.

Lemma 1. By construction of q′′ and qe previously defined:

γZQ

(
(ext0,p(q′′

k))k∈[p] + qe
)

= γZQ (q′′) ⊕
p∏

k=1

γQm+p(qek)

Proof. See Appendix.

Now, we state in Theorem 1 that the �ZQ operator computes an upper bound
of its operands with respect to the preorder �ZQ .

Theorem 1 (Soundness of the upper bound operator). For all q, q′ ∈
Zp

Qm , q �ZQ q �ZQ q′ and q′ �ZQ q �ZQ q′.

Quadratic Zonotopes 135

Proof. See Appendix.

Example 2. Let Q and Q′ be two quadratic vectors:

Q =

{
x = −1 + ε1 − ε2 − ε1,1

y = 1 + 2ε2 + ε1,2
Q′ =

{
x = −2ε2 − ε1,1 + ε+

y = 1 + ε1 + ε2 + ε1,2

The resulted quadratic vector Q′′ = Q �ZQ Q′ is

Q′′ =

{
x = −ε2 − ε1,1 + 2ε3

y = 1 + ε2 + ε1,2 + ε4

Transfer Functions. The two operators guard and assign over the expressions
RelExpr and Expr are defined like in a non relational abstract domain, as
described in [Min04, Sect. 2.4.4]. Each operator relies on the forward semantics
of numerical expressions, computed within arithmetics operators in Q: (Fig. 2)

Definition 9 (Semantics of expressions). Let V be a finite set of variables.
Let �·�Q(V → Q) → Q be the semantics evaluation of an expression in an
environment mapping variables to quadratic forms.

�v�Q(Env) = πk(Env) where k ∈ [p] is the index of v ∈ V in Env
�e1 bop e2�Q(Env) = �e1�Q(Env) bopQ �e2�Q(Env)

�uop e�Q(Env) = uopQ�e�Q(Env)

Fig. 2. Zonotopic concretization of operations on Quadratic Zonotopes (Color figure
online)

136 A. Adjé et al.

Guards, i.e. tests, are enforced through the classical combination of forward
and backward operators. Backward operators are the usual fallback operators,
e.g. �x + y�← = (x Q (�x + y� −Q y), y Q (�x + y� −Q x)) where Q denotes
the meet of quadratic forms. As for upper bound computation, no best lower
bound exists and such meet operator in Q has to compute a safe but imprecise
upper bound of maximal lower bounds.

The meet over Qm works as follows: it projects each argument to intervals
using PQ, (i) performs the meet computation and (ii) reinjects the resulting
closed bounded interval to Q using αQ, (iii) introducing it through a fresh noise
symbol. For the time being the operator PQ used is PMT

Q . It is will later enhanced
in Sect. 5.

The meet over Zp
Qm is defined as the lift of Qm meet to quadratic vectors.

Formally:

Definition 10 (Q,ZQ : Approximations of maximal lower bounds).
The meet Q : Qm × Qm → Q1 is defined by:

∀x, y ∈ Qm, x Q y � αQ (PQ(x) I PQ(y)) .

The meet ZQ : Zp
Qm × Zp

Qm → Zp
Qp is defined, for all x, y ∈ Zp

Qm by
z = x ZQ y ∈ Zp

Qp where:

∀i ∈ [p], zi = πi(x) Q πi(y) when πi(x) �= πi(y), πi(x) otherwise.

Example 3. Let Q be the following quadratic vector. The meet with the con-
straint x + 1 ≥ 0 produces the resulting quadratic vector Q′:

Q =

{
x = −1 + ε1 − ε2 − ε1,1

y = 1 + 2ε2 + ε1,2
Q′ =

{
x = − 3

8 + 5
8ε3

y = 1 + 2ε2 + ε1,2

Proof. Guard(Q,x + 1 ≥ 0) = Q ZQ (αQ (PQ(x +Q 1) I [0,+∞[) −Q 1). We
use the more precise concretization over-approximation map PSDP

Q that will be
introduced in Sect. 5: PSDP

Q (ε1 − ε2 − ε1,1) = [−3, 1.25]. We focus on x since the
meet is performed component-wise and αQ (PQ(ε1 − ε2 − ε1,1) I [0,+∞[) −Q
1 = αQ ([−3, 1.25] I [0,+∞[)−Q 1 = αQ ([0, 1.25])−Q 1 = (5/8+5/8ε3)−Q 1 =
−3/8 + 5/8ε3 where ε3 is a fresh error term introduced by αQ.

4 Floating Point Computations

All the operators presentation above assumed a real semantics. As usual when
analyzing programs, the domain has to be adapted to deal with floating point
arithmetics.

We recall that our use of quadratic zonotopes is to precisely over-approximate
reachable reals values. We relied on the approach proposed by Stolfi and De
Figueiro [SDF97], creating a new error term for each operation. Other approaches
such as generalized intervals [Han75] are typically used in Fluctuat [Gou13].

Quadratic Zonotopes 137

Their definition in the quadratic setting is given in [MT06]. However, according
to [SDF97] the approach with error terms instead of interval arithmetics is more
precise but can generate a significative number of error terms.

In the specific case of quadratic forms, the term in ε± is used to accumulate
floating point errors: the number of error terms does not increase due to float-
ing point computation. The generalization to zonotopes is straightforward since
numerical operations are evaluated at form level.

We illustrate here these principles on the addition and external multiplication
operators.

To summarize, all arithmetic operation are provided in Messine and Touhami
[MT06]. Our implementation with floating point semantics gathers the additive
and multiplicative errors of each operator and accumulate them in ε± terms,
following [SDF97] methodology.

Addition. According to Knuth [Knu97, Sect. 4.2.2], the exact computation of
u + v with floating point arithmetics is u + v + e where e = (u − ((u + v) − v)) +
(v − ((u + v) − u)) with all operations performed in floating point arithmetics.
Let e+(u, v) be such additive error e.

We consider the addition of two quadratic forms x = (x0, (xi), (xij), x±,
x+, x−) and y = (y0, (yi), (yij), y±, y+, y−). The addition of x and y is modified
to consider these generated errors:

(x0, (xi), (xij), x±, x+, x−) +Q (y0, (yi), (yij), y±, y+, y−) =
(x0 + y0, (xi + yi), (xij + yij), x± + y± + r err, x+ + y+, x− + y−)

where

– r err = max(|rup(err)|, | − rup(−err)|)
– rup denotes the rounding up;

– err =
n∑

i,j=1

e+(xij , yij)+
n∑

i=0

e+(xi, yi)+e+(x±, y±)+e+(x+, y+)+e+(x−, y−).

External Multiplication. Similarly, the algorithm of Dekker and Veltkamp char-
acterizes the multiplicative error obtained when computing u × v. It relies
on a constant C depending on the precision used. For single precision floats,
C = 227 + 1. We denote by e×(u, v) such multiplicative error. A more complete
presentation is given by Dekker [Dek71].

The operator ∗Q is modified to account such multiplicative errors:

λ∗Q (x0, (xi), (xij), x±, x+, x−) = (λx0, λ(xi), λ(xij), |λ|x± +r err, |λ|x+, |λ|x−)

where

– r err = max(|rup(err)|, | − rup(−err)|).
– err =

n∑
i=1

e×(λ, xi) +
n∑

i,j=1

e×(λ, xij) + e×(λ, x±) + e×(λ, x−) + e×(λ, x+).

All other operators behave similarly: each operation computing an addition
or a product generates an additive and a multiplicative error, respectively, accu-
mulated in the x± term.

138 A. Adjé et al.

5 Improving Concretization Using SDP

In this part, we propose a method based on semi-definite programming to
compute an over-approximation of the interval concretization of a quadratic
form. This method provides tighter bounds than bq

MT and Bq
MT defined at

Eq. (2).
Let us consider a quadratic form q = (cq, (bq)m, (Aq)m, cq±, cq+, cq−) ∈ Qm.

Recall that Cm = [−1, 1]m × [−1, 1] × [0, 1] × [−1, 0] ⊆ R
m+3, and that the

concretization of q is the interval defined [bq,Bq] where bq = inf{q(x) | x ∈ Cm}
and Bq = sup{q(x) | x ∈ Cm}.

In general, a standard quadratic form r from R
m+3 to R is defined by x �→

r(x) = xᵀArx+brᵀx+cr with a (m+3)×(m+3) symmetric matrix Ar, a vector
of Rm+3, br and a scalar cr. We can cast q into a standard quadratic form rq,
leading to rq(x) = q(x) for all x ∈ Cm. Indeed, it suffices to take the following
data:

Arq =
(

Ã 0m×3

03×(m+3)

)
with Ã =

Aq + Aqᵀ

2
, brqᵀ =

(
bqᵀ, cq±, cq+, cq−

)
and crq = cq

Let tr be the trace function that computes the sum of the elements on the
diagonal of a matrix and let x ∈ R

m+3. Then rq can be rewritten as

rq(x) = tr (MrqX) where Mrq =
(

Arq 1
2brq

1
2brqᵀ crq

)
and X =

(
x
1

)(
x
1

)ᵀ
.

In order to manipulate only matrices, we have to translate the constraints on
the vector x into constraints on the matrix X. Let us introduce the set Cm of
(m + 4) × (m + 4) symmetric matrices Y such that:

∀ i, j ∈ [m + 3], i < j, Yi,j ∈ [− 1, 1] (3a)
∀ i ∈ [m + 1], Yi,(m+4) ∈ [− 1, 1] (3b)

∀ i ∈ [m + 3], Yi,i ∈ [0, 1] (3c)

Y(m+2),(m+3) ∈ [− 1, 0] (3d)
Y(m+2),(m+4) ∈ [0, 1] (3e)

Y(m+3),(m+4) ∈ [− 1, 0] (3f)
Y(m+4),(m+4) = 1 (3g)

Note by symmetry of Y , for all i, j ∈ [m + 3], i < j, Yj,i ∈ [−1, 1]; for all
i ∈ [m + 1], Y(m+4),i ∈ [−1, 1]; Y(m+4),(m+3) ∈ [− 1, 0] and Y(m+4),(m+2) ∈ [0, 1].
Thus Y can be rewritten as follows:

where ∩ denotes interval meet: each element of the right handside matrix is
intersected with [−1, 1].

Quadratic Zonotopes 139

Let S+n be the set of semi-definite positive matrices of size n×n i.e. the n×n
symmetric matrices M such that for all y ∈ R

n, yᵀMy ≥ 0. Recall that the rank
of a matrix M is the number of linearly independent rows (or columns), which
we denote by rk(M).

Lemma 2 (Constraint translation). The following statement holds:

{
X ∈ S

+
m+4 | rk(X) = 1, X ∈ Cm}=

{
X ∈ S

+
m+4 | ∃ x ∈ Cm s. t. X =

(
x
1

)(
x
1

)ᵀ}
.

Proof. See Appendix.

Lemma 2 allows to conclude that optimizing rq over Cm and optimizing X �→
tr(MrqX) over {X ∈ S

+
m+4 | rk(x) = 1, X ∈ Cm} is the same. However, the rank

one constraint on X leads to a non-convex problem which makes it difficult to
solve. A natural and a commonly used relaxation is to remove the rank constraint
to get a linear problem over semi-definite positive matrices. This discussion is
formulated as Proposition 1.

Proposition 1. The interval bounds of the concretization of q can be computed
from the two following non-convex semi-definite programs:

bq = inf tr(MrqX)

s. t.

⎧
⎨

⎩

X ∈ Cm

X ∈ S
+
m+4

rk(X) = 1

and

Bq = sup tr(MrqX)

s. t.

⎧
⎨

⎩

X ∈ Cm

X ∈ S
+
m+4

rk(X) = 1

By removing the rank constraint the problem is relaxed into a convex problem.
Its resolution becomes feasible with SDP solvers but leads to more conservative
bounds.

bq
SDP = inf tr(MrqX) ≤ bq

s. t.
{

X ∈ Cm

X ∈ S
+
m+4

and
Bq

SDP = sup tr(MrqX) ≥ Bq

s. t.
{

X ∈ Cm

X ∈ S
+
m+4

Finally, the interval bounds of the concretization are safely approximated by
using bq

SDP and Bq
SDP and we write PSDP

Q (q) � [bq
SDP ,Bq

SDP]. Moreover, those
bounds improve the ones provides by [MT06].

Theorem 2 (Bounds improvements). Let q ∈ Qm. The following inequali-
ties hold:

γQ(q) ⊆ γI ◦ PSDP
Q (q) ⊆ γI ◦ PMT

Q (q)

where γI : I �→ ℘(Rn) denotes the interval concretization.
i.e. bq

MT ≤ bq
SDP ≤ bq ∧ Bq ≤ Bq

SDP ≤ Bq
MT

Proof. See Appendix.

140 A. Adjé et al.

Fig. 3. Projection to intervals

In term of complexity, SDP problems can be solved in polynomial time to an
arbitrary prescribed precision by the ellipsoid method [GLS88]. More precisely,
let α > 0 be a given rational, suppose that the input data of a semi-definite
program are rational and suppose that an integer N is known, such that the
feasible set lies inside the ball of the radius N around zero. Then a feasible
solution – the value of which is at most at a distance α from the optimal value
– can be found in a time that is polynomial in the number of bits of the input
data and in −log(α). This latter feasible solution can be found in polynomial
time by interior point methods [NN94] if a strictly feasible solution is available.
The advantage of interior methods is that they are very efficient in practice. We
refer the reader to [RP96] for more information.

Corollary 1. The reals bq
SDP and Bq

SDP can be computed in polynomial time.

The Fig. 3 illustrates such concretization on the quadratic zonotopes defined in
Example 1.

In terms of related works, the use of semidefinite programming to compute
interval concretisation of nonlinear operation for affine forms already appeared
in [Gho11, Proposition 5.1.2]. This approach appears to be the dual version of
the semidefinite programs that we presented in this paper.

6 Experimentation

All presented materials has been implemented in an open-source tool written in
OCaml3. This tool is used for teaching purpose and only consider simple imper-
ative programs without function calls. It implements interval analysis, affine
and quadratic zonotopes. The reduced concretization we proposed is integrated
through the use of the CSDP or Mosek SDP solvers. Due to the increase cost in

3 Tool and experiments available at https://cavale.enseeiht.fr/QuadZonotopes/.

https://cavale.enseeiht.fr/QuadZonotopes/

Quadratic Zonotopes 141

terms of computation time, various options enable its use on each call to interval
concretization, on some specific calls or disable it.

The quadratic zonotope domain has been evaluated on examples bundled in
APRON library, or Fluctuat distribution, as well as simple iterative schemes. We
present here the results obtained on an arctan function, the example of [CS93]
and the Householder function analyzed in [GGP09].

Let us first consider the arctan function defined in Fig. 4 and the analysis
results in Table 1. We can see the dramatic increase in precision obtained with
our quadratic extension. This is particularly visible on this example which relies
widely on multiplication and division. As a reference the maximal theoretical
value for x ∈ [−1, 1] is π/4. Intervals or Affine Zonotopes compute a value 144%
bigger while Quadratic Zonotopes obtain a 20% imprecision.

Fig. 4. Arctan program

Table 1. Arctan program analysis results

x ∈ [−1, 1] x ∈ [−10, 10]

Domain Bounds Bounds

Interval [-1.919149, 1.919149] [-1.919149, 1.919149]

Affine Zonotopes [-1.919149, 1.919149] [-2.364846, 2.364846]

Quadratic Zonotopes [-1.002866, 1.002866] [-1.597501, 1.591769]

In [CS93], Stolfi et al. considered the function
√

(x2 + x − 1/2)/
√

(x2 + 1/2)
and the precision obtained using affine arithmetics while evaluating the function
on a partition of the input range as sub-intervals. This is the classical bisec-
tion or branch-and-bound approach to improve precision. Figure 5a compares
the obtained results for subdivision from 1 to 14 partitions. The global error
represents the width of the interval obtained and is represented in a log scale.
Higher partition divisions (eg. 500) converge in terms of precision and are not
shown on the picture. The Table 2 presents the computed values.

142 A. Adjé et al.

Fig. 5. Relative precision obtained with different analysis in the experiments (log scale
for errors)

Table 2. Stolfi example [CS93] and Householder numerical results

Best method is highlighted. Results are shown with two decimal digit precision.

Quadratic zonotopes shows here to be a good alternative to interval or affine
zonotopes abstractions. Both in terms of precision and runtime. Interestingly for
this example the expected additional cost due to the quadratic error terms is

Quadratic Zonotopes 143

not exhibited. This may be explained by a more direct expression of quadratic
terms within our quadratic zonotopes.

Another example analyzed is the Householder function; this dynamical sys-
tem converges towards 1/

√
A:

x0 = 2−4

xn+1 = xn(1 + 1
2 (1 − Ax2

n) + 3
8 (1 − Ax2

n)2)

In our experiments the algorithm was computed with a while loop and a finite
bound N on the number of iterations. We analyzed it using loop unrolling with
A ∈ [16, 20] and compared the global errors obtained at the i − th iterate,
that is, the difference between the max and min values. Analyzing such system
with interval diverges startgin from the 7th iterates while Affine and Quadratic
Zonotopes are more stable. The Fig. 5b presents the precision obtained with a
variant of the algorithm were A ∈ [16, 20] is randomly choosen at each loop
iteration. While this program is meaningless, its analysis is interesting in terms
of precision: intervals diverges from the 7th iteration, affine zonotopes from the
11th and quadratic ones from the 17th. Quadratic zonotopes here provides again
better bounds than affine or interval analysis and shows to scale better than all
other analyses. The Table 2 presents a selection of iterates computed values.

Most computation are performed within 30 ms. Only the Stolfi example with
a large number of partitions shows a much longer time for Affine and Quadratic
Zonotopes (about 1 s) than intervals (91 ms).

We do not present here a comparison with existing domains such as the T1P
(Taylor 1 plus) abstract domain [GGP09] which is not a pure affine abstract
domain. We recall that this domain is not just based on affine arithmetics but
also embed linear relationships between error terms in the zonotope. Our moti-
vation here is to show that the quadratic extension of affine zotonopes is feasible
and lead to more precise result than the classical case while preserving the com-
putation cost low.

Finally a disappointing result is the cost of the optimized concretization.
This algorithm can potentially be used when converting a quadratic form to
intervals and impact the computation of meet and join operators. However since
meet operators are widely used in backward semantics [Min04], the accumulated
overhead of calling an SDP solver impacts widely the overall timing results.
Moreover, in most cases the precision is not considerably improved.

7 Conclusion

Zonotopic abstractions are currently the more promising domains when it comes
to the formal verification of floating point computations such as the ones found in
aircraft controllers. The presented analysis seems to be an interesting alternative
to affine zonotopes, increasing precision while keeping the complexity quadratic
in the number of error terms. Quadratic zonotopes seems more suited than linear
abstractions when analyzing non linear functions such as multiplications. Among
the zoo of abstract domains, they belong to the small set of algebraic domains

144 A. Adjé et al.

able to synthesize non convex and non symmetric states. This may be later of
great impact, e.g. when considering properties involving positivity of products
of negative error terms.

Perspectives. On the theoretical side, it would be interesting to compare the
abstraction generated by quadratic form with respect to the classical zonotopes,
generated by affine forms. While geometrically speaking quadratic zonotopes
seem to be strictly included in their affine counterpart, the existence of a Galois
connection between the two abstractions is non trivial to exhibit, if ever it exists.

On the application side, our comparison with affine zonotopes in the bench-
marks gives overall precision increase with a reasonable cost overhead. In the
literature, the work of [GGP09] proposes to combine affine zonotopes with lin-
ear constraints to obtain a better precision when computing intersection. A sim-
ilar extension for our quadratic extension of zonotopes would be interesting in
practice.

Finally, both affine and quadratic arithmetics can be seen, respectively, as a
first and second order Taylor polynomial abstractions. It would be interesting
to evaluate how this approach can be extended and how it combines with other
methods aiming at regaining precision such as branch-and-bound algorithms.

References

[BMC12] Bouissou, O., Mimram, S., Chapoutot, A.: Hyson: set-based simulation of
hybrid systems. In: RSP, pp. 79–85. IEEE (2012)

[CS93] Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer
graphics (1993)

[Dek71] Dekker, T.J.: A floating-point technique for extending the available precision.
Numerische Mathematik 18(3), 224–242 (1971)

[GGP09] Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Tay-
lor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
627–633. Springer, Heidelberg (2009)

[GGP10] Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope
intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 212–226. Springer, Heidelberg (2010)

[GGP12] Goubault, E., Le Gall, T., Putot, S.: An accurate join for zonotopes, pre-
serving affine input/output relations. ENTCS 287, 65–76 (2012)

[Gho11] Ghorbal, K.: Static analysis of numerical programs: constrained affine sets
abstract domain. Theses, Ecole Polytechnique X (2011)

[Gir05] Girard, A.: Reachability of uncertain linear systems using zonotopes. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305.
Springer, Heidelberg (2005)

[GLS88] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combi-
natorial Optimization. Algorithms and Combinatorics. Springer, Heidelberg
(1988)

[Gou13] Goubault, E.: Static analysis by abstract interpretation of numerical pro-
grams and systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds.)
Static Analysis. LNCS, vol. 7935, pp. 1–3. Springer, Heidelberg (2013)

Quadratic Zonotopes 145

[GP09] Goubault, E., Putot, S.: A zonotopic framework for functional abstractions.
In: CoRR, abs/0910.1763 (2009)

[GPV12] Goubault, E., Putot, S., Védrine, F.: Modular static analysis with zonotopes.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 24–40.
Springer, Heidelberg (2012)

[Han75] Hansen, E.R.: A generalized interval arithmetic. In: Nickel, K. (ed.) Interval
Mathematics. LNCS, vol. 29, pp. 7–18. Springer, Heidelberg (1975)

[JM09] Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 661–667. Springer, Heidelberg (2009)

[Knu97] Knuth, D.E.: Art of Computer Programming: Seminumerical Algorithms,
vol. 2. Addison-Wesley Professional, New York (1997)

[Min04] Miné, A.: Weakly relational numerical abstract domains. Ph.D. thesis, École
Polytechnique, December 2004

[MT06] Messine, F., Touhami, A.: A general reliable quadratic form: an extension of
affine arithmetic. Reliable Comput. 12(3), 171–192 (2006)

[NN94] Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Con-
vex Programming, vol. 13. SIAM, Philadelphia (1994)

[RP96] Ramana, M.V., Pardalos, P.M.: Semidefinite programming. In: Terlaky, T.
(ed.) Interior Point Methods of Mathematical Programming. Applied Opti-
mization, vol. 5, pp. 369–398. Springer, Heidelberg (1996)

[SDF97] Stolfi, J., De Figueiredo, L.H.: Self-validated numerical methods and appli-
cations. In: Brazilian Mathematics Colloquium monograph, IMPA, Rio de
Janeiro, Brazil (1997)

[Vav90] Vavasis, S.A.: Quadratic programming is in NP. Inf. Process. Lett. 36(2),
73–77 (1990)

Abstraction of Optional Numerical Values

Jiangchao Liu(B) and Xavier Rival

INRIA, ENS, CNRS, PSL*, Paris, France
{jliu,rival}@di.ens.fr

Abstract. We propose a technique to describe properties of numerical
stores with optional values, that is, where some variables may have no
value. Properties of interest include numerical equalities and inequalities.
Our approach lifts common linear inequality based numerical abstract
domains into abstract domains describing stores with optional values.
This abstraction can be used in order to analyze languages with some
form of option scalar type. It can also be applied to the construction of
abstract domains to describe complex memory properties that introduce
symbolic variables, e.g., in order to summarize unbounded sets of pro-
gram variables, and where these symbolic variables may be undefined, as
in some array or shape analyses. We describe the general form of abstract
states, and propose sound and automatic static analysis algorithms. We
evaluate our construction in the case of an array abstract domain.

1 Introduction

The abstraction of sets of stores is a common problem in static analysis. At a
high level, it boils down to identifying a set of predicates over functions that map
variables into values. In particular, when the set of variables X is of fixed and
finite size N and the values are scalars (typically, machine integers or floating
point numbers), concrete stores are functions of the form σ : X → V (where V
stands for the set of values), and can equivalently be described by finite vec-
tors of scalar values σ ∈ VN . Then, an abstract state describes a set of finite
scalar vectors. Typical sorts of abstract states consist of conjunctions of equality
constraints [11] or inequality constraints [3,5,13] over variables.

Optional Values. Many programming languages feature possibly empty memory
locations. For instance, OCaml and Scala have an option type. This type can
be defined by type ’a option = None | Some of ’a, which means a value of
type int option may either be an integer, or undefined, represented by None.
Similarly, spreadsheet environments feature empty cells as well as an empty
type. When each variable either contains a scalar or no value, then the set of
stores is P(X → {�}�V) where � stands for “no value”. The conventional
abstract domains mentioned above fail to describe such sets, as they require
each dimension in the abstract domain to correspond to one concrete memory
location, i.e., concrete stores should be of the form −→σ ∈ VN . Therefore, they
would need to be extended with support for empty values in order to deal with
optional values.
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 146–166, 2015.
DOI: 10.1007/978-3-319-26529-2 9

Abstraction of Optional Numerical Values 147

Packing Memory Locations. Another situation where support for optional val-
ues would be needed occurs when designing abstract domains for complex data-
structures. Indeed, a common technique packs sets of memory locations together,
so that a single abstract constraint describes the values stored in a group of
memory locations. For instance, array analyses often rely on array partition-
ing techniques, that divide an array into groups of cells. Then, the values of
the cells of a group are described by a single abstract dimension. Many array
analyses do not allow empty groups or treat them in a specific way [4,8,9]. In
this case, summarizing dimensions [8] can be used in the abstract domain, so as
to describe groups of several concrete locations. However, other analyses such
as [12] allow empty groups. Then, considering an abstract state, a given abstract
dimension may describe an empty set of values, even though the abstract state
itself describes a non empty set of stores. A similar situation arises in some shape
analyses [18]. Again, the aforementioned numerical domains do not support such
an abstraction relation.

Abstraction of Stores in Presence of Possibly Empty Locations. In the previous
two paragraphs, we have shown several cases where abstractions for stores with
optional numerical values are needed. A first approach relies on disjunctions so
as to partition a set of stores S into several sets S0, . . . , Sp, such that, each Si

corresponds to a fixed set of defined variables. However, when k variables may
be empty or not, this would lead to an exponential factor of complexity. Another
solution consists in adding a flag fx for each variable x, such that fx = 1 if x is
defined and fx = 0 otherwise [16]. While this technique nicely describes relations
of the form “x is defined if and only if y is defined”, it is less adapted to infer
that a variable is undefined from a set of constraints that show no value can
be found for x thus it is undefined. The latter situation is common in array
analyses like [12] and where the emptiness of a group of cells may follow from
the numerical constraints over the values of these cells. To alleviate this issue,
[6,12] deploy one relational abstract value per possibly empty zone, which is
overly costly and limits the relations that can be expressed.

In this paper, we take a radically different approach, where constraints over a
variable x may prove that no value is admissible for x, hence it is undefined. Yet,
the concretizations of the existing numerical abstract domains do not cope with
one dimension describing the empty set while the others are still defined. There-
fore, we let a variable x that may be undefined be described by a group of avatars
x0, . . . , xk, and assume that x can be defined if and only if all its avatars may be
defined to a common value. For instance, constraints x0 < 10∧ x1 > 20 cannot
be satisfied with a value assignment that maps x0 and x1 to the same value, hence
this pair of constraints describes states where x is necessarily undefined. This prin-
ciple can be applied to any numerical abstract domain where abstract values are
finite conjunctions of constraints (the vast majority of numerical abstract domains
are of that form). We propose an abstract domain functor for linear inequalities
abstractions, called the Maya functor1. We present the following contributions:

1 Mayas are among the civilizations believed to have independently invented number
“zero”.

148 J. Liu and X. Rival

– we define a concrete model for optional values (Sect. 3);
– we set up a general functor lifting a numerical abstract domain without

optional dimensions into a domain with optional dimensions (Sect. 4);
– we define sound transfer functions and lattice operators for the automatic

analysis of programs with optional variables, with linear inequalities (Sect. 5);
– we handle possibly empty summary dimensions (Sect. 6);
– we evaluate an implementation of the Maya functor (Sect. 7).

2 Overview

In this section, we demonstrate the principle of our abstraction, with a numeric
analysis on a program involving optional variables and a basic array analysis
applied to an initialization routine.

Abstraction of Optional Variables. We first consider the code fragment shown
in Fig. 1. It is written in a C-like language extended with optional variables. An
optional variable (as int option y in line 1) could be either no value (represented
by None) or one value (represented by Some vy where vy is an integer). The
statements in line 2 and 3 constrain vy to be between 20 and the value of x
(20 ≤ vy ≤ x) if optional variable y stores an integer vy. The test in line 4
constrains variable x to be smaller or equal than 10 (x ≤ 10). This implies that,
if y stores an integer vy, then vy is greater or equal than 20 and smaller or equal
than 10 (20 ≤ vy ≤ 10). There exists no such integer, thus, y may only store
None, and the assertion in line 5 never fails. To prove this assertion by static
analysis, we first need to represent all numerical properties using a numerical
abstract domain. All the numeric constraints in this example are of the form
±x ± y ≤ c and can thus be described in the octagons abstract domain [13].
However, an octagon describes either the empty set of stores, or a set containing
at least one store, that maps each variable, including y, into a value. Thus, this
abstract domain cannot express that y stores None, while the other variables
hold a value. Siegel et al. [16] add a flag variable fy to indicate whether y stores
one value or no value. However, solving the problem using this approach requires
to precisely capture the property that 20 ≤ vy ≤ x when fy = 1 and y = None
when fy = 0. This property cannot be expressed in a single octagon. Hence, the
approach of [16] would require a stronger, more ad hoc abstract domain (most
likely, using a disjunction of octagons).

1. int option y; int x;
2. if(y == Some vy)
3. assume(vy ≤ x && vy ≥ 20);
4. if(x ≤ 10)
5. assert(y == None);

Fig. 1. A routine involving optional variables

Abstraction of Optional Numerical Values 149

Abstraction of Possibly Empty Sets of Values. The key idea of our method is
to represent a single variable using several instances called avatars, carrying
different constraints. This way, we ensure both that (1) the abstract domain
describes stores which map each variable to one value and (2) we can express
either that y must be empty (when it is not possible to find a value all its avatars
can be mapped to) or that it may store some value v (when all constraints are
satisfied when all the avatars of y are mapped to v). To implement this idea using
the octagons abstract domain, we simply distinguish, for a variable y that may
have an empty set of values, two sets of constraints: the constraints of the form
y±x ≤ c (resp., −y±x ≤ c) are carried out by its upper-bound avatar y+ (resp.,
lower-bound avatar y−). This means, that a (non-bottom) octagon containing
constraints y+ ≤ 0 and 1 ≤ y− expresses y is necessarily mapped to no value, as
there is no way to satisfy the constraints over its two avatars, while mapping them
to a common value. Applying this method to the example in Fig. 1, we associate
two avatars y− and y+ to the optional variable y (non-optional variable x is not
associated with distinct avatars). Three numeric relations (20 ≤ y− ∧ y+ ≤
x ∧ x ≤ 10) are observed before the assertion in line 5. According to the
constraints, y− may take any value greater than 20, whereas y+ may take any
value smaller than 10, so the concretization of this abstract state contains no
state that maps both avatars of y to a common value. Thus y stands for no
value, which proves the assertion in line 5. Unlike [16], the bi-avatar approach
allows constraints 20 ≤ y and y ≤ 10 to co-exist in a single abstract element,
that does not describe the empty set of states. The computation of abstract
post-conditions is quite standard, except that it needs to always associate upper
and lower constraints to the right avatar.

Fig. 2. An array initialization example

Packing Array Cells. Figure 2(a) shows a C code segment of array initializa-
tion. We consider an array analysis inspired by [12], which proceeds by forward
abstract interpretation [3] (note that the main emphasis of this section is not the
array analysis itself, but the abstraction of optional values). A store observed
after 4 iterations is shown in Fig. 2(b). We note the array can be divided into two
sets of cells, namely initialized cells and uninitialized cells. As in [12], we con-
sider an abstraction of the array, that partitions it into two groups of cells G0, G1

(where all cells in G0 are initialized to zero and cells in G1 may hold any value),
and we let two summary variables Idx0, Idx1 over-approximate the sets of indexes

150 J. Liu and X. Rival

corresponding to the cells of each group. Before the loop starts, Idx0 stands for
∅. In Fig. 2(b), Idx0 stands for set {0, 1, 2, 3}. Before the loop execution, group
G0 is empty. Actually, [12] will introduce it only during the first iteration of the
loop. At this point, the analysis infers that Idx0 = {0} (group G0 has a single
element at this point); moreover, it computes that 1 ≤ Idx1 ≤ 7. During the
loop execution, we observe the following constraints over group indexes form a
loop invariant:

0 ≤ Idx0 ≤ i − 1∧ i ≤ Idx1 ≤ 7

After the loop exit, 8 ≤ i, therefore the analysis will return 8 ≤ Idx1 ≤ 7.
Obviously no value satisfies this constraint. This actually means that group G1

is empty at this stage, thus, the analysis proves the whole array is initialized to
0. The representation of the numerical properties over group indexes suffers from
the same issue as for the optional values, in the analysis of the program of Fig. 1:
a non bottom octagon element cannot express 8 ≤ Idx1 ≤ 7. The solution used
in [12] describes each group with a separate octagon. In this layout, an empty
group is naturally described by a bottom octagon attached to its Idxi variable.
Yet, this prevents the analysis from inferring constraints across distinct groups.

Using our method, the analysis could describe symbolic variables associated
to the groups (that is, in our example, Idx0, Idx1) by a pair of avatars (while
program variables (like i) are not associated to distinct avatars in octagons). It
computes the following invariants:

Before the loop i = 0 ∧ 0 ≤ Idx−
1 ∧ Idx+

1 ≤ 7

end of the 1st iter i = 1 ∧ 0 ≤ Idx−
0 ∧ Idx+

0 ≤ 0 ∧ 1 ≤ Idx−
1 ∧ Idx+

1 ≤ 7

loop invariant 0 ≤ i ≤ 7 ∧ 0 ≤ Idx−
0 ∧ Idx+

0 ≤ i − 1 ∧ i ≤ Idx−
1 ∧ Idx+

1 ≤ 7

loop exit 8 ≤ i∧ 0 ≤ Idx−
0 ∧ Idx+

0 ≤ i − 1 ∧ i ≤ Idx−
1 ∧ Idx+

1 ≤ 7

When the loop terminates, we observe that the abstract state contains con-
straints 8 ≤ i, i ≤ Idx−

1 and Idx+
1 ≤ 7. Since Idx−

1 and Idx+
1 cannot be con-

cretized to a common value, Idx1 describes an empty set of values at this point,
thus group G1 is empty. In other words, all cells of the array are initialized at
this point.

3 A Language with Optional Values and Its Semantics

Before we can formalize the abstraction relation of our domain functor, we need
to specify a concrete semantics. To do that, we describe a basic imperative lan-
guage where some variables have an optional value. It models both languages
with an option type as well as the operations shape and array analyses with
empty groups require their base domain to provide. The semantics of this lan-
guage will serve as a basis to state the soundness properties of the transfer
functions defined in the functor for the abstraction of optional scalar values.

Abstraction of Optional Numerical Values 151

Fig. 3. A language with optional values: syntax

Syntax. The syntax is shown in Fig. 3. We distinguish the variables that may
be empty, called the optional variables from the standard variables, that must
store one value. We let X denote the set of standard variables, and we write Y for
the set of optional variables (we assume X∩Y = ∅). These two sets are assumed
to be fixed throughout the paper. We also let V stand for the set of values.
Values and variables all have scalar type (integer or floating point). Finally, we
let � 	∈ V denote the absence of value. Conditions include usual arithmetic tests
and the emptiness test of an optional variable. Statements include the usual
skip statement (that does nothing), assignments, sequences, condition tests and
loops.

Memory States. A concrete memory (or store) σ maps each standard variable
into a value and each optional variable to either a scalar value or to the � place-
holder, meaning that this variable is not defined. Therefore the set of stores is:

S
def.
:: = (X → V)�(Y → (V ∪ {�}))

Fig. 4. A language with optional values: concrete semantics

152 J. Liu and X. Rival

Semantics. The concrete semantics is formally defined in Fig. 4 (assume and
assert statements are classical and omitted). While the overall structure of this
semantics is standard, a few points should be noticed. The semantics �ex� of
expression ex evaluates it in a given store, and produces either a value or the no
value � element. It produces � whenever it reads an empty optional variable:
all operators are �-strict, i.e., they return � whenever one of their arguments is
equal to �, thus � always propagates. The semantics �cond� of condition cond
filters out the stores in which cond does not evaluate to TRUE, thus, it will also
include stores where the evaluation encounters �.

The semantics �s� of statement s takes a set of input stores and returns
the corresponding set of output stores, following an angelic denotational seman-
tics [2] (non terminating behaviors are not represented —this choice simplifies
the presentation, while it does not change anything to the core points of the
paper). Note that the semantics of an assignment x = ex where x ∈ X will
produce no output store when ex evaluates to �. Intuitively, we consider only
executions where the empty value is never assigned to a standard variable.

Example 1. We consider the program below, where X = {x} and Y = {y, z}:

if(x ≤ y){
if(y ≤ 6){

① z = y + 2;
② . . . ;

Assuming that all variables may take any value (including � for optional vari-
ables) at the beginning of the execution:

– at point ①, we can observe exactly the stores such that σ(x) ≤ σ(y) ≤ 6, and
the stores defined by σ(y) = �;

– at point ②, we can observe exactly the stores such that σ(x) ≤ σ(y) ≤
6∧ σ(z) = σ(y) + 2 and the stores where σ(y) = � or σ(z) = �.

4 Abstraction in Presence of Optional Numerical Values

In this section, we assume a numerical domain N� is fixed, where abstract values
correspond to conjunctions of constraints. For instance, linear equalities [11],
intervals [3], octagons [13] and polyhedra [5] fit into this category. An abstract
value N � ∈ N� describes constraints over a finite set of “abstract variables” that
we refer to as dimensions (so as to distinguish them from the “concrete” —
standard or optional— variables). Dimensions range over a countable set D, and
we write Dim(N �) for the dimensions of abstract value N � (Dim(N �) ⊆ D). We
let γN� : N� → P(D → V) denote its concretization function.

Abstract States. An abstract state of the Maya abstract domain over N� is defined
by an abstract value N � ∈ N� describing constraints over a set of dimensions
defined as follows:

Abstraction of Optional Numerical Values 153

– each standard variable x corresponds to exactly one dimension, also noted x;
– each optional variable y corresponds to a finite set of avatar dimensions (for

clarity, we always mark avatars with superscripts such as: y−, y+, y0, . . .).

Therefore, we attach a function A : Y → P(D) which describes the mapping of
optional variables into their set of avatars to numerical abstract value N �.

Definition 1 (Abstract state). An abstract state of the Maya abstract domain
over N� is a pair M � = (N �,A) such that:

Dim(N �) =
(⊎

{A(y) | y ∈ Y}
)

� X

We let M� denote the set of such states.

Note that the above definition implicitly asserts that distinct variables are rep-
resented by disjoint sets of dimensions.

Example 2. In this example, we assume N� is the octagon domain, and that
X = {x}, Y = {y}. Furthermore, as shown in Sect. 2, we let each optional variable
be described by two avatars. Thus, D = {x, y−, y+}. Moreover, an example
abstract state is M � = (N �,A), with:

N � =
{
0 ≤ x∧ x ≤ 10∧ 5 ≤ y− ∧ y+ ≤ x

} A : y �−→ {y−, y+}

Concretization. To express the meaning of an abstract state M � = (N �,A), we
use a valuation ν, that maps all dimensions to a value, as an intermediate step
towards the concrete stores. Then, we retain only the concrete stores, that can
be obtained by collapsing all avatars of each optional variable to a unique value.
This second step is described by a pair of consistency predicates, which state
when a store σ is compatible with ν:

Definition 2 (Concretization). Given abstract state M � = (N �,A), we define
the following consistency predicates:

PX(σ,M �, ν)
def.⇐⇒ ∀x ∈ X, σ(x) = ν(x)

PY(σ,M �, ν)
def.⇐⇒ ∀y ∈ Y, (∀d ∈ A(y), ν(d) = σ(y)) ∨σ(y) = �

Then, the concretization of M � = (N �,A) is defined by:

γM�(M �)
def.
:: =

{
σ ∈ S | ∃ν ∈ γN�(N �), PX(σ,M �, ν)∧ PY(σ,M �, ν)

}

Intuitively, consistency predicate PX asserts that the valuation and the concrete
store agree on the mapping of the standard variables, whereas consistency pred-
icate PY asserts that the valuation assigns all avatars of each optional variable
to the value of that variable in the store.

Example 3. We consider the abstract state shown in Example 2. Its concretiza-
tion consists of:

154 J. Liu and X. Rival

– the stores defined by σ(x) ∈ [5, 10], σ(y) ∈ [5, σ(x)] (the valuation is then fully
defined by the store since no variable stores �);

– the stores defined by σ(x) ∈ [0, 10], σ(y) = � (a possible valuation is defined
by ν(x) = σ(x), ν(y−) = 15, ν(y+) = ν(x)).

This example shows how our domain can distribute the constraints on an optional
variable y over several dimensions, so as to express the fact that y must store �.

Remark 1. In this example, we also observe that, given σ ∈ γM�(M �), and if
σ′ is such that, for all standard variable x, σ′(x) = σ(x), and for all optional
variable y, either σ′(y) = σ(y) or σ′(y) = �, then σ′ ∈ γM�(M �). In other words,
our functor cannot express that an optional variable must not store �. In the
context of array analyses such as [12], this is not a limitation: that analysis can
already express that a group cannot be empty (using size constraints). However,
our abstraction also allows to derive emptiness of a group via constraints over
multiple avatars of variables denoting its contents or indexes, which [12] does in
a rather ad hoc manner, at the expense of relations between groups.

Choice of Avatar Dimensions. The definition of abstract elements assumes noth-
ing about the number of avatar dimensions, and about the way the constraints
over an optional variable are distributed over its avatars. However, in practice,
the way avatar dimensions are managed has a great impact on the efficiency and
precision of the analysis. It is the role of the transfer functions and abstract lat-
tice operations to implement an efficient strategy to manage these dimensions.
In particular at certain stages, new avatars have to be introduced so as to avoid
a loss of precision.

Example 4. We discuss possible abstract invariants for the program shown in
Example 1, starting with the set of all stores as a pre-condition, described by
abstract state �. After test x ≤ y, the analysis should compute an abstraction of
the stores where, either y is mapped only to � or where the numerical constraint
is satisfied. Using the octagon abstract domain, and a single avatar y0 for y, this
boils down to abstract state (x−y0 ≤ 0, y �→ {y0}). After the second test, we get
the set of stores observed at point ①, that is such that, either σ(x) ≤ σ(y) ≤ 6 or
σ(y) = �. Note that this set of stores cannot be described exactly with octagons
using a single avatar. Indeed, this set contains stores such that σ(x) > 6 (when
σ(y) = �). Thus, using a single avatar to describe constraints over y would force
the analysis to drop either constraint y ≤ 6 or constraint x ≤ y. Keeping both
constraints would unsoundly assert x ≤ 6. Thus, adding a second avatar for y
at this point is necessary in order to maintain maximal precision. In particular,
the abstract state below describes exactly the stores that can be observed at
point ①:

(x ≤ y0 ∧ y1 ≤ 6, y �→ {y0, y1})

The above example demonstrates the need to introduce enough avatars so that all
constraints on optional variables can be maintained, without “over-constraining”
standard variables (which would result in an unsound analysis). Intuitively, each

Abstraction of Optional Numerical Values 155

avatar should not carry too much information: the base numerical domain can-
not express emptiness of a specific avatar; instead, only the conjunction of all
avatars of an optional variable y may express that y is empty. We formalize
this as a sufficient condition, that we call the independence property, and that
should be maintained by all abstract operators in the Maya domain. This prop-
erty states that dropping the constraints over an avatar dimension y0 associated
to variable y should have no impact on the variables other than y. To maintain
this property, transfer functions and abstract operators may either pay the cost
of adding new avatar dimensions or will have to drop constraints that cannot be
represented without adding more avatars. To formalize the independence prop-
erty, and given abstract value N � ∈ N� and dimension d, we note drop(N �, d) for
the abstract value obtained by removing from N � all the constraints that involve
d (this operation is well defined since we assumed elements of abstract domain
N� correspond to the finite conjunctions of all the constraints of a certain form).
Moreover, if ν is a valuation, we write ν|¬d for the restriction of ν to D \ {d}.

Definition 3 (Independence property). Let M � = (N �,A) be an abstract
state. We say M � satisfies the independence property if and only if

∀y ∈ Y, ∀d ∈ A(y), {ν|¬d | ν ∈ γN�(N �)} = {ν|¬d | ν ∈ γN�(drop(N �, d))}
Example 5. The abstract state given at the end of Example 4 satisfies the inde-
pendence property, using two avatars, that respectively carry the lower and upper
bound constraints over y. Section 5 generalizes this approach to lift any domain
based on linear inequalities.

Example 6. Intuitively, the independence property is likely to break when an
avatar dimension carries several constraints, the conjunction of which may be
unsatisfiable. Therefore, an alternate technique to achieve it consists in using one
avatar per constraint over each optional variable. As an example, we consider
the set of concrete states defined by X = {x} and Y = {y, z} and where the
optional variables are either undefined or satisfy the following conditions: x ≤
y∧ y ≤ 2x∧ y = z + 2. Then, assuming N� is the polyhedra abstract domain,
this multi-avatar strategy will construct the following abstract state:

N � =
{
x ≤ y0 ∧ y1 ≤ 2x∧ y2 ≤ z0 + 2∧ z1 + 2 ≤ y3

}

A : y �→ {y0, y1, y2, y3}, z �→ {z0, z1},

This strategy is general (it can be applied to, e.g., linear equalities [11]) but
costly.

5 Application to Numerical Domains Based on Linear
Inequalities

We now propose a strategy to manage avatar dimensions and design abstract
operations under the hypothesis that base abstract domain N� expresses linear
inequality constraints (which includes intervals, octagons, polyhedra, and their
variants).

156 J. Liu and X. Rival

5.1 The Bi-Avatar Strategy

Numerical constraints in the base domain are all of the form a0d0+. . .+andn ≤ c
(where a0, . . . , an, c are constants), thus a constraint involving di (i.e., where
ai 	= 0) is either specifying an upper bound for di (if ai > 0) or a lower bound (if
ai < 0). The bi-avatar strategy treats those two sets of constraints separately,
using two avatar dimensions per optional variable, as shown in Sect. 2:

Definition 4 (The bi-avatar strategy). Abstract state M � = (N �,A) fol-
lows the bi-avatar strategy if and only if A maps each optional variable y to a
pair of dimensions {y−, y+}, and is such that each “upper” avatar y+ (resp.,
“lower” avatar y−) carries only “upper bound constraints” (resp., “lower bound
constraints”).

In other words, the bi-avatar strategy fully determines A. In order to implement
this strategy, we need to ensure that all abstract operators preserve A, and
the property of lower and upper avatars. We define such abstract operations
in the next subsections. Interestingly, whenever an abstract state satisfies this
strategy, and if we drop all constraints over an (upper or lower) avatar of y, the
concretization restricted to the dimensions other than that avatar do not change.
This entails:
Theorem 1 (Independence property). All abstract values following the bi-
avatar strategy satisfy the independence property (Definition 3).
To express the emptiness of an optional variable, we simply need to let its avatars
carry a pair of constraints that would be unsatisfiable, if carried by a unique
dimension, such as 1 ≤ y− ∧ y+ ≤ 0.

Example 7. Let X = {x},Y = {y}, and let A specify the avatars defined by the
bi-avatar strategy. Then, the following numerical abstract values specify the sets
of concrete states below:

Abstract numerical state N � Concretization γM�(N �, A)

1 ≤ x∧ x ≤ 1 ∧ x ≤ y− ∧ y+ ≤ x {x �→ 1, y �→ 1}, {x �→ 1, y �→ �}
1 ≤ x∧ x ≤ 1 ∧ x ≤ y− ∧ y+ ≤ x − 1 {x �→ 1, y �→ �}

Preservation. The abstract operators described in the remainder of this section
either discard constraints violating the bi-avatar strategy (such as assignment,
in Sect. 5.4), or never apply operations of N� that would cause them to bound a
y+ (resp., y−) avatar below (resp., above). This implies straightforwardly that,
in the resulting domain, all abstract elements with a non empty concretization
follow the bi-avatar strategy (all y− dimensions are not bounded by above and all
y+ dimensions are not bounded by below). The only abstract operation that may
input an abstract state with non empty concretization and return an abstract
state with empty concretization is the abstract condition test testN� [.] (used in
Sect. 5.2) and requires an output check that no constraint violates the bi-avatar
strategy.

Abstraction of Optional Numerical Values 157

Expressiveness. Under the bi-avatar strategy, we can compare the expressiveness
of Maya domain M� with that of its base domain N�: if a set of stores S with no
optional variable containing � can be described exactly by N � ∈ N�, we can still
describe S in M�, up-to the change of any set of optional variable to �. Indeed,
if we let Sdef = (X�Y) → V, we have:

Theorem 2. If A follows the bi-avatar strategy, then:

∀N �
0 ∈ N�, Dim(N �

0) = X�Y =⇒
(
∃N �

1 ∈ M�, γN�(N �
0) = γM�(N �

1 ,A) ∩ Sdef

)

5.2 Condition Test

The concrete semantics of a condition test cond filters out stores for which
cond does not evaluate to TRUE. We assume N� provides a sound abstract func-
tion testN� [cond] : N� → N�, and build an abstract operator testM� [cond] :
M � → M �.

Optional Variable Emptiness Test. To evaluate condition testM� [is empty(y)],
and filter out stores that do not map y into �, we can simply add two constraints
on y− and y+ that would be unsatisfiable, if added on a same dimension, such
as 1 ≤ y− and y+ ≤ 0. This can be done using testN� [.].

Numerical Tests. We consider only conditions that are linear inequalities, as
non-linear conditions are often handled by linearization techniques [14], and a
linear equality is equivalent to a pair of inequalities.

Intuitively, testM� [.] should simply add a linear constraint to some abstract
state M � (with some approximation, as this constraint is in general not repre-
sentable exactly in N�). Given condition test a0x0 + . . . + anxn + b0y0 + . . . +
bmym ≤ c (where xi ∈ X and yi ∈ Y), we can produce another constraint that
involves only standard variables and avatar dimensions by replacing yi either
by y−

i or by y+i depending on the sign of bi. This constraint is compatible with
the bi-avatar strategy (Sect. 5.1), hence it can be represented precisely in the
numerical domain, even if it indirectly entails emptiness of some optional vari-
ables (in other words, not using the bi-avatar property would cause a severe
precision loss here). Thus, numerical condition test can be applied to this con-
straint. In turn, the absence of constraints violating the bi-avatar strategy needs
to be verified on the output of testN� [.]. Moreover, this constraint is equivalent to
the initial constraint up-to the γM� concretization function. Thus, this principle
defines a sound abstract transfer function for condition tests.

Theorem 3 (Soundness of condition test). The abstract transfer function
testM� [.] is sound in the sense that, for all linear inequality constraint cond and
for all abstract state M � satisfying the bi-avatar strategy:

�cond�(γM�(M �)) ⊆ γM�(testM� [cond](M �))

158 J. Liu and X. Rival

Example 8. In this example, we assume that N� is the octagon domain, and that
X = {x}, and Y = {y} (thus, A : y �→ {y−, y+}). We consider an abstract
pre-condition M � = (N �

0 ,A), where N �
0 = (5 ≤ x∧ x ≤ 5), and a condition

test y − x ≤ 3. Abstract test testM� [y − x ≤ 3](M �) first substitutes y+ for
y in (y − x ≤ 3), which generates condition y+ − x ≤ 3. Then, it computes
testN� [y+ − x ≤ 3](N �

0). Thus, we obtain the abstract post-condition (N �
1 ,A)

where N �
1 = (5 ≤ x∧ x ≤ 5∧ y+ − x ≤ 3).

5.3 Verifying the Satisfaction of a Constraint

To verify assertions, we need an operator satM� [cond] : M� → {TRUE, FALSE} such
that, if σ ∈ γM�(M �) and satM� [cond](M �) = TRUE, then �cond�(σ) = TRUE. The
case of numerical assertions is very similar to the case of numeric tests.

To test whether y can store only � in any store described by (N �,A), we
simply need to check whether constraint y− = y+ is unsatisfiable. This suggests
satM� [is empty(y)](N �,A) = is botN�(testN� [y− = y+](N �)), where is botN� :
N� → {TRUE, FALSE} is a sound emptiness test (if is botN�(N �) = TRUE, then
γN�(N �) = ∅).

5.4 Assignment

We now describe a transfer function assignM� that over-approximates the effect
of an assignment. We consider assignments with a linear right hand side expres-
sion (non linear assignment can be implemented using linearization [14]).

Emptiness Test. If the left-hand side x is a standard variable and optional vari-
able y appears in the right hand side, the concrete semantics produces no output
state when y takes no value. Therefore, given abstract pre-condition M � and
optional variable y appearing in the right hand side, if satM� [is empty(y)](M �)
(Sect. 5.3), assignM� can safely return ⊥. The computation of the abstract assign-
ment starts with this check for all optional variables in the right hand side.

Numerical Assignment. We first consider basic assignment y = y + z, where
Y = {y, z}, in order to give some intuition. If M � = (N �,A) is an abstract pre-
condition and σ ∈ γM�(M �) is such that σ(y) 	= � and σ(z) 	= �, there exists a
valuation ν ∈ γN�(N �) such that ν(y−) = ν(y+) = σ(y) and the same for z. After
the assignment evaluates, we obtain a store σ′ such that σ′(y) = σ(y)+σ(z) (and
is unchanged for all other variables). Therefore, we need to make sure that the
abstract post-condition will describe a valuation ν′ such that ν′(y−) = ν(y+) =
σ(y) + σ(z). We can achieve that by performing a pair of assignments to y−, y+

using any combination of avatars to represent y, z in the right hand side. For
instance, the following choices are sound:

{
y− = y− + z−;
y+ = y+ + z+;

{
y− = y− + z+;
y+ = y+ + z−;

Abstraction of Optional Numerical Values 159

Yet, not all choices are of optimal precision. To show this, we assume that the pre-
condition bounds both y and z from the above, for example with octagon N � =
{y+ ≤ 0∧ z+ ≤ 0}. Then, only the left choice will produce a precise upper bound
on y+. However, this approach may also produce constraints that violate the bi-
avatar strategy, such as y+−z+ ≤ 0, where z+ gets assigned a lower bound. Such
a lower bound can be removed by adding a temporary dimension t, assuming
that it is positive (using testM� [t ≥ 0]), and performing assignment z+ = z+−t.
To conclude, the analysis of assignment y =

∑n
i=0 aixi +

∑m
i=0 biyi + c proceeds

as follows:

1. assignM� performs in parallel [10] the two assignments y− = ex− || y+ = ex+,
where ex−, ex+ are obtained from the assignment right hand by substituting
yi with y−

i or y+i depending on the sign of the bis (see below);
2. then it forces the removal of constraints violating the bi-avatar property, using

the aforementioned method.

Expression ex+ is defined as
∑n

i=0 aixi +
∑m

i=0 biy
εi
i + c where avatar signs are

determined as follows (ex− uses the opposite avatar dimensions as ex+):

– if the assignment is not invertible (y does not appear in the right hand side),
then εi is the sign of bi;

– if the assignment is invertible and y is y0, then εi is the sign of the product
b0bi.

Finally, an assignment with a standard variable x as a left hand side can be
handled in a similar manner (after the emptiness test described earlier): it will
boil down to the introduction of a temporary dimension x′, the analysis of two
assignments x = ex+ and x′ = ex− with the above notations, the application
of testM� [x = x′], and finally the removal of x′. By contrast, doing a single
assignment would possibly cause relations between x and avatars be discarded.

The resulting abstract operator is sound in the following sense:

Theorem 4 (Soundness). If t ∈ X�Y and ex is a linear expression, then:

∀M � ∈ M�, �t = ex�(γM�(M �)) ⊆ γM�(assignM�(t, ex,M �))

Example 9. We assume X = {x}, Y = {y, z} and consider the abstract pre-
condition defined by octagon N � = {0 ≤ y− ∧ y+ ≤ 10∧ 0 ≤ z− ∧ z+ ≤ 1 + x}.

– non invertible assignment y = 1 − z boils down to parallel assignments y+ =
1 − z− || y− = 1 − z+ in Octagons [13] and produces numerical post-condition
{−x ≤ y− ∧ y+ ≤ 1∧ 0 ≤ z− ∧ z+ ≤ 1 + x};

– invertible assignment y = y+z boils down to parallel assignments y+ = y+ +
z+ || y− = y− + z−, and produces numerical post-condition {0 ≤ y− ∧ y+ ≤
11 + x∧ 0 ≤ z− ∧ z+ ≤ 1 + x}.

160 J. Liu and X. Rival

5.5 Inclusion Checking, Join and Widening

To analyze condition tests and loops, we also need abstract operations for join,
widening and inclusion test. Using the bi-avatar strategy, these operations can
be implemented in a straightforward manner, using the operations of the under-
lying domain, since avatars are the same for all abstract values. We write A
for the set of avatars defined by the bi-avatar strategy in X�Y. We let is leN� ,
joinN� , widenN� denote the abstract inclusion check, abstract join and abstract
widening of abstract domain N�, satisfying the following soundness conditions:

∀N �
0 , N

�
1 ∈ N�, is leN�(N �

0 , N
�
1) = TRUE =⇒ γN�(N �

0) ⊆ γN�(N �
1)

∀N �
0 , N

�
1 ∈ N�, γN�(N �

0)∪ γN�(N �
1) ⊆ γN�(joinN�(N �

0 , N
�
1))

∀N �
0 , N

�
1 ∈ N�, γN�(N �

0)∪ γN�(N �
1) ⊆ γN�(widenN�(N �

0 , N
�
1))

Furthermore, we assume that widenN� ensures convergence of any sequence of
abstract iterates [3].

Definition 5 (Inclusion checking, join and widening). We let the opera-
tors over M� be defined by:

is leM�((N �
0 ,A), (N �

1 ,A)) = is leN�(N �
0 , N

�
1)

joinM�((N �
0 ,A), (N �

1 ,A)) = (joinN�(N �
0 , N

�
1),A)

widenM�((N �
0 ,A), (N �

1 ,A)) = (widenN�(N �
0 , N

�
1),A)

These operators trivially inherit the properties of the operators of N�:

Theorem 5. Operations is leM� , joinM� and widenM� satisfy soundness condi-
tion of the same form as their underlying counterpart. In particular:

∀N �
0 , N

�
1 ∈ N�, γN�(N �

0)∪ γN�(N �
1) ⊆ γN�(joinN�(N �

0 , N
�
1))

Moreover, widenM� also ensures termination.

5.6 Analysis

We now propose a static analysis for the language of Sect. 3. We define the
abstract semantics of programs in Fig. 5. It uses the abstract operators defined
in the previous subsections and an abstract least fixpoint operator lfp#, which
performs abstract iterations with widening widenM� until convergence can be
checked using abstract inclusion test is leM� [3]. Operator lfp# ensures that,
when F : P(S) → P(S) is continuous and F# : M� → M� satisfies F ◦γM� ⊆ γM� ◦
F#, then lfpγM� (M�) ⊆ γM�(lfp#

M�F
#). The analysis of statement assert(cond)

(not shown in the figure) simply reports failure to prove the assertion cond if
satM� [cond] does not return TRUE.

The abstract semantics �s�# : M� → M� takes an abstract pre-condition and
returns an abstract post-condition. We can prove by induction over the syntax
of programs that this abstract semantics is sound:

Theorem 6 (Soundness). Given a program s and an abstract pre-condition
M �, the post-condition derived by the analysis is sound:

�s�(γM�(M �)) ⊆ γM�(�s�#(M �))

Abstraction of Optional Numerical Values 161

Fig. 5. Abstract semantics

6 Possibly Empty Summary Variables

While Sects. 3 to 5 studied the abstraction of stores where optional variables
may contain either one value or �, the array analysis shown in Sect. 2 makes use
of summary dimensions, which may take no value, one value, or many values.
We extend the analysis shown in the previous sections to handle such cases.
The construction of Gopan et al. [8] handles non empty summary dimensions
(the main feature of this abstraction is to perform weak updates when writing
into a summary dimension). We apply the same technique to the Maya functor,
and call the resulting abstract domain functor Maya+, that lifts an abstraction
of numerical vectors into an abstraction of sets of vectors of sets of numeri-
cal values. As the extension is fairly straightforward, we present only its novel
characteristics.

Concrete States and Abstraction. First, we extend the language of Sect. 3. We
now let Y denote summary dimensions, that may take zero, one or several values.
The concrete states are now defined by:

σ+ ∈ S+
def.
:: = (X → V)�(Y → P(V))

An abstract state M �
+ in the resulting Maya+ domain is a tuple composed

of a numeric abstract value N � and an avatar mapping function A, as in the
Maya domain. However, the concretization is different: Maya+ assumes a con-
cretization function γ+ of a numeric domain with summarized dimensions, which
returns sets of valuations ν+ which map each avatar dimensions into a set of
values.

Definition 6 (Concretization). Given an abstract state M �
+ = (N �,A), we

define the following consistency predicates:

PX(σ+,M �
+, ν+)

def.⇐⇒ ∀x ∈ X, σ+(x) = ν+(x)

PY(σ+,M �
+, ν+)

def.⇐⇒ ∀y ∈ Y, σ+(y) ⊆ ⋂
d∈A(y) ν+(d)

Then, the concretization of M �
+ = (N �,A) is defined by:

γM�
+
(M �

+)
def.
:: =

{
σ+ ∈ S | ∃ν+ ∈ γ+(N �), PX(σ+,M �

+, ν+)∧ PY(σ+,M �
+, ν+)

}

162 J. Liu and X. Rival

Example 10 (Concretization of Maya+). We assume X = {x}, Y = {y}, and
consider the abstract element (3 ≤ x∧ x ≤ 4∧ 0 ≤ y− ∧ y+ ≤ x − 3,A) where
A follows the bi-avatar strategy. These constraints define valid elements of both
Maya and Maya+ domains. However, the concretizations of this abstract element
in both domains are different as shown below:

Maya : ① x �→ 3 y �→ 0 Maya+: ① x �→ 3 y �→ {0}
② x �→ 3 y �→ � ② x �→ 3 y �→ ∅
③ x �→ 4 y �→ 1 ③ x �→ 4 y �→ {1}
④ x �→ 4 y �→ 0 ④ x �→ 4 y �→ {0}
⑤ x �→ 4 y �→ � ⑤ x �→ 4 y �→ ∅

⑥ x �→ 4 y �→ {0, 1}

Concrete Semantics. The extension of the concrete semantics is mostly straight-
forward. We describe its salient aspects below.

– The semantics of arithmetic expressions �ex� : S+ → P(V) evaluates each
expression into a set of values.

�c�(σ+) ∀x ∈ X, �x�(σ+) = {σ+(x)} ∀y ∈ Y, �y�(σ+) = σ+(y)

�ex0 ⊕ ex1�(σ+) =

{
∅, if ∃i, �exi�(σ+) = ∅
{c0 ⊕ c1 | ∀i, ci ∈ �exi�(σ+)}, otherwise

– Since the operands of a logical operator are sets of values, the evaluations of
logical expressions may also return a set of booleans, thus we can define two
semantics for conditions, that filter states where the condition must (resp.,
may) evaluate to true.

(1) Given S+ ⊆ S+, the strong condition semantics �cond�s(S+) : P(S+) →
P(S+) narrows S+ to stores that always make cond evaluate to TRUE:

�ex0 ⊗ ex1�s(S+) = {σ+ ∈ S+ | (∀ci ∈ �exi�(σ+), i ∈ {0, 1} c0 ⊗ c1 = TRUE)
∨�ex0�(σ+) = ∅∨�ex1�(σ+) = ∅}

(2) the weak condition semantics �cond�w(S+) narrows S+ to stores that may
make cond evaluate to TRUE:

�ex0 ⊗ ex1�w(S+) = {σ+ ∈ S+ | (∃ci ∈ �exi�(σ+), i ∈ {0, 1} c0 ⊗ c1 = TRUE)
∨�ex0�(σ+) = ∅∨�ex1�(σ+) = ∅}

– In assignment statement �x = ex� : P(S+) → P(S+), the evaluation of the
right hand side produces a set which may have several elements; in that case,
we leave the choice of the new value non-deterministic. Optional variables are
now summaries. Thus an assignment y = ex to an optional variable results in
a weak update.

if x ∈ X, �x = ex�(S+) = {σ+[x �→ c] | c ∈ �ex�(σ+)}
if y ∈ Y, �y = ex�(S+) = {σ+[y �→ σ+(y) ∪ �ex�(σ+)] | σ+ ∈ S+}

Abstraction of Optional Numerical Values 163

– We apply the strong semantics of test in the semantics of assume statements
and the weak one in semantics of if and while statements.

�assume((cond)s)�(S+) = �cond�s(S+)
�if(cond){s0}else{s1}�(S+) = �s0� ◦ �cond�w(S+)

∪ �s1� ◦ �cond == FALSE�w(S+)
�while(cond){s}�(S+) = �cond == FALSE�w(S′′

+)
where S′′

+ = lfp λS′
+ · S+ ∪ �s�(�cond�w(S′

+))

Analysis. The abstract interpretation of this semantics is straightforward, as it
simply combines the analysis in Sect. 5 and the classical technique for manipulat-
ing summarized dimensions [8]. It is worth noting that, while the abstract condi-
tion test described in Sect. 5.2 precisely over-approximates the strong semantics
of tests, another abstract transfer function needs to be defined for the weak
semantics. When applied to a condition that involves summaries, that function
checks whether the condition cannot be satisfied (by applying satM� [.] with the
opposite condition), and returns ⊥ if that is the case; otherwise, it leaves the
abstract state unchanged.

Theorem 7 (Soundness). We let �.�# represent the abstract semantics. Given
a program s and an abstract pre-condition M �

+, the post-condition derived by the
analysis is sound:

�s�(γM�
+
(M �

+)) ⊆ γM�
+
(�s�#(M �

+))

7 Implementation and Examples

We have implemented abstract domain functors Maya and Maya+ with the bi-
avatar strategy (so that they can be applied to numerical abstract domains rep-
resenting linear inequalities), as well as the analysis of the language of Fig. 3. To
assess its precision, we have encoded into this language the computations over
array indexes related to possibly empty groups encountered in [12] for a few
basic array analyses. This approach allows to assess the optional value analy-
sis, outside of the array analysis. We discuss in details the analysis of the array
initialization example shown in Sect. 2. In this analysis Y = {Idx0, Idx1}, (Idxi

over-approximates the set of indexes of cells in group Gi), and A is defined
according to the bi-avatar strategy (A(Idxi) = {Idx−

i , Idx+
i } —note these are

all summary dimensions, since a group of cells may span several indexes). The
resulting invariants are shown in Fig. 6. At point 0©, group G1 contains all the
elements of the array (uninitialized elements) and G0 is empty (initialized ele-
ments). The weak update Idx0 = i and statement assume(Idx1! = i) stem from
the assignment a[i] = 0 in the array program (Fig. 2(a)). They are analyzed by
assignM� and testM� [.], and effectively extend group G0 and shrink group G1 by
one cell. The loop exit invariant shown at point 5© defines stores where Idx1 is
mapped to no value, which indeed means that the group of uninitialized cells is
empty.

164 J. Liu and X. Rival

The analysis was run on a few similar programs encoding the steps that
[12] needs to achieve to verify array programs, and the results are shown in
Fig. 7. The columns show numbers of lines of codes, standard variables, summary
optional variables, runtime, total numbers of assertions and numbers of verified
assertions. Test case “array-init” is what we show in Fig. 6. Test cases “array-
random-access”, “array-traverse” and “array-compare” simulate the array analy-
sis on programs of corresponding algorithm. The analyses are performed with
Polyhedra as underlying domain. Runtimes are comparable to those observed
in [12] for the numerical domain part. All invariants needed for the verifica-
tion of array constraints are also verified. Last, the invariants produced express
relations between groups, even when those could be empty.

8 Related Works

Numerical abstract domains [1,3,5,7,11,13] describe constraints over sets of vec-
tors, where each dimension is mapped to one value. Our work aims at extending
such domains so as to abstract vectors of possibly empty sets of scalars.

Abstractions based on summary dimensions [8,17] extend basic numerical
domains to abstract vectors of non empty sets, so that one dimension may
describe an unbounded family of variables. Summaries are also used in shape
analysis [15], with a similar semantics. Empty summaries can be dealt with
using disjunctions.

Siegel and Simon [16] abstract dynamic stores, where the set of memory
cells is dynamic, and also utilize summary dimensions. In this work, a summary
variable may also denote an empty set of values. To abstract precisely which
dimension may be empty, a flag is associated to each summary variable, and

int i = 0;

0 0 ≤ i∧ i ≤ 0 ∧ 1 ≤ Idx−
0 ∧ Idx+

0 ≤ 0 ∧ 0 ≤ Idx−
1 ∧ Idx+

1 ≤ 7

while(i < 8){
1 0 ≤ i∧ i ≤ 7 ∧ 0 ≤ Idx−

0 ∧ Idx+
0 ≤ i − 1 ∧ i ≤ Idx−

1 ∧ Idx+
1 ≤ 7

Idx0 = i;

2 0 ≤ i∧ i ≤ 7 ∧ 0 ≤ Idx−
0 ∧ Idx+

0 ≤ i∧ i ≤ Idx−
1 ∧ Idx+

1 ≤ 7

assume(Idx1! = i);

3 0 ≤ i∧ i ≤ 7 ∧ 0 ≤ Idx−
0 ∧ Idx+

0 ≤ i∧ i + 1 ≤ Idx−
1 ∧ Idx+

1 ≤ 7

i = i + 1;

4 0 ≤ i∧ i ≤ 7 ∧ 0 ≤ Idx−
0 ∧ Idx+

0 ≤ i − 1 ∧ i ≤ Idx−
1 ∧ Idx+

1 ≤ 7

}
5 8 ≤ i∧ 0 ≤ Idx−

0 ∧ Idx+
0 ≤ i − 1 ∧ i ≤ Idx−

1 ∧ Idx+
1 ≤ 7

Fig. 6. Analysis of the array initialization example: invariants over group indexes

Abstraction of Optional Numerical Values 165

Fig. 7. Analysis results

it is true if and only if the variable is defined to at least one value. This app-
roach allows to express relations between the emptiness of distinct variables.
However, it does not allow to infer that a variable is undefined from conflict-
ing constraints over its value (as needed in, e.g., [12]). This approach is thus
orthogonal to ours, and both techniques could actually be combined. Another
technique [6,12] uses a conjunction of numerical abstract elements N �

0 , . . . , N
�
p

such that a group of variables that should either all be empty or all be defined
are constrained together in a same N �

i . While this approach tracks emptiness
precisely and without disjunctions, it is fairly ad hoc and expresses no relational
constraints across groups.

Last, we note that other works on numerical abstract domains use sev-
eral dimensions in the abstract domain so as to constrain a single variable.
For instance, the implementation of octagons on top of DBMs lets a variable
x be described in a DBM by dimensions x+ = x and x− = −x (so that
x = 1

2 (x+ − x−)) [13].

9 Conclusion

We have proposed the Maya functor to lift numerical abstract domains into
abstractions for sets of stores where some variables may be undefined, and a
functor Maya+ that performs the same task in presence of possibly empty sum-
mary dimensions. We have fully described the design of abstract operations using
a “bi-avatar” strategy, that allows to cope with abstract domains based on linear
inequalities. Our construction can be applied either to analyze languages that
allow optional values, or as a back-end for static analyses that rely on groups
of locations to describe complex memories (such as array and shape analyses).
Future work should focus on additional strategies, for instance, based on the
multi-avatar strategy (Example 6), to accommodate other kinds of numerical
abstract domains. Moreover, it will also be interesting to integrate our functors
in array or shape analyses.

References

1. Chen, L., Liu, J., Miné, A., Kapur, D., Wang, J.: An abstract domain to infer
octagonal constraints with absolute value. In: Müller-Olm, M., Seidl, H. (eds.)
Static Analysis. LNCS, vol. 8723, pp. 101–117. Springer, Heidelberg (2014)

166 J. Liu and X. Rival

2. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. ENTS 6, 77–102 (1997)

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

4. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL (2011)

5. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

6. Cox, A., Chang, B.-Y.E., Sankaranarayanan, S.: QUIC graphs: relational invariant
generation for containers. In: VMCAI (2015)

7. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut
domains: efficient non-convex domains for abstract interpretation. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer,
Heidelberg (2012)

8. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with sum-
marized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol.
2988, pp. 512–529. Springer, Heidelberg (2004)

9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI (2008)

10. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

11. Karr, M.: Affine relationships among the variables of a program. Acta Informatica
6(2), 133–151 (1976)

12. Liu, J., Rival, X.: Abstraction of arrays based on non contiguous partitions. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 282–
299. Springer, Heidelberg (2015)

13. Miné, A.: The octagon abstract domain. HOSC 19(1), 31–100 (2006)
14. Miné, A.: Relational domains for the detection of floating point run-time errors.

In: ESOP (2004)
15. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In:

POPL (1999)
16. Siegel, H., Mihaila, B., Simon, A.: The undefined domain: precise relational infor-

mation for entities that do not exist. In: Shan, C. (ed.) APLAS 2013. LNCS, vol.
8301, pp. 74–89. Springer, Heidelberg (2013)

17. Siegel, H., Simon, A.: Summarized dimensions revisited. In: NSAD (2012)
18. Siegel, H., Simon, A.: FESA: fold- and expand-based shape analysis. In: Jhala, R.,

Bosschere, K. (eds.) Compiler Construction. LNCS, vol. 7791, pp. 82–101. Springer,
Heidelberg (2013)

Hoare Logic and Types

Fault-Tolerant Resource Reasoning

Gian Ntzik(B), Pedro da Rocha Pinto, and Philippa Gardner

Imperial College London, London, UK
{gn408,pmd09,pg}@doc.ic.ac.uk

Abstract. Separation logic has been successful at verifying that pro-
grams do not crash due to illegal use of resources. The underlying
assumption, however, is that machines do not fail. In practice, machines
can fail unpredictably for various reasons, e.g. power loss, corrupting
resources. Critical software, e.g. file systems, employ recovery methods
to mitigate these effects. We introduce an extension of the Views frame-
work to reason about such methods. We use concurrent separation logic
as an instance of the framework to illustrate our reasoning, and explore
programs using write-ahead logging, e.g. an ARIES recovery algorithm.

1 Introduction

There are many ways that software can fail: either software itself can be the
cause of the failure (e.g. memory overflow or null pointer dereferencing); or the
failure can arise independently of the software. These unpredictable failures are
either transient faults, such as when a bit is flipped by cosmic radiation, or host
failures (also referred to as crashes). Host failures can be classified into soft, such
as those arising from power loss which can be fixed by rebooting the host, and
hard, such as permanent hardware failure.

Consider a simple transfer operation that moves money between bank
accounts. Assuming that bank accounts can have overdrafts, the transfer can be
regarded as a sequence of two steps: first, subtract the money from one bank
account; and then add the money to the other account. In the absence of host fail-
ures, the operation should succeed. However, if a host failure occurs in the middle
of the transfer, money is lost. Programmers employ various techniques to recover
some consistency after a crash, such as write-ahead logging (WAL) and associated
recovery code. In this paper, we develop the reasoning to verify programs that can
recover from host failures, assuming hard failures do not happen.

Resource reasoning, as introduced by separation logic [15], is a method for
verifying that programs do not fail. A triple {P }C {Q } is given a fault-avoiding,
partial correctness interpretation. This means that, assuming the precondition
P holds then, if program C terminates, it must be the case that C does not fail
and has all the resource necessary to yield a result which satisfies postcondition
Q. Such reasoning guarantees the correct behaviour of the program, ensuring
that the software does not crash itself due to bugs, e.g. invalid memory access.
However, it assumes that there are no other failures of any form. To reason about

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 169–188, 2015.
DOI: 10.1007/978-3-319-26529-2 10

170 G. Ntzik et al.

programs that can recover from host failures, we must change the underlying
assumptions of resource reasoning.

We swap the traditional resource models with one that distinguishes between
volatile and durable resource: the volatile resource (e.g. in RAM) does not survive
crashes; whereas the durable resource (e.g. on the hard drive) does. Recovery
operations use the durable state to repair any corruptions caused by the host
failure. We introduce fault-tolerant resource reasoning to reason about programs
in the presence of host failures and their associated recovery operations. We
introduce a new fault-tolerant Hoare triple judgement of the form:

S � {PV | PD }C {QV | QD }

which has a partial-correctness, resource fault-avoiding and host failing interpre-
tation. From the standard resource fault avoiding interpretation: assuming the
precondition PV | PD holds, where the volatile state satisfies PV and the durable
PD, then if C terminates and there is no host failure, the volatile and durable
resource will satisfyQV andQD respectively. From the host-failing interpretation:
when there is a host failure, the volatile state is lost, and after potential recovery
operations, the remaining durable state will satisfy the fault-condition S.

We extend the Views framework [3], which provides a general account of con-
current resource reasoning, with these fault-tolerant triples to provide a general
framework for fault-tolerant resource reasoning. We instantiate our framework to
give a fault-tolerant extension of concurrent separation logic [11] as an illustra-
tive example. We use this instantiation to verify the correctness of programs that
make use of recovery protocols to guarantee different levels of fault tolerance. In
particular, we study a simple bank transaction using write-ahead logging and a
simplified ARIES recovery algorithm [8], widely used in database systems.

2 Motivating Examples

We introduce fault-tolerant resource reasoning by showing how a simple bank
transfer can be implemented and verified to be robust against host failures.

2.1 Naive Bank Transfer

Consider a simple transfer operation that moves money between bank accounts.
Using a separation logic [15] triple, we can specify the transfer operation as:

�
{Account(from, v) ∗ Account(to, w)}

transfer(from, to, amount)
{Account(from, v − amount) ∗ Account(to, w + amount)}

The internal structure of the account is abstracted using the abstract predi-
cate [12], Account(x, v), which states that there is an account x with balance v.
The specification says that, with access to the accounts from and to, the

Fault-Tolerant Resource Reasoning 171

transfer will not fault. It will decrease the balance of account from by amount
and increase the balance of account to by the same value. We can implement
the transfer operation as follows:

function transfer(from, to, amount) {
widthdraw(from, amount); deposit(to, amount);

}
Using separation logic, it is possible to prove that this implementation satisfies
the specification, assuming no host failures. This implementation gives no guar-
antees in the presence of host failures. However, for this example, it is clearly
desirable for the implementation to be aware that host failures occur. In addi-
tion, the implementation should guarantee that in the event of a host failure the
operation is atomic : either it happened as a whole, or nothing happened. Note
that the word atomic is also used in concurrency literature to describe an oper-
ation that takes effect at a single, discrete instant in time. In Sect. 3 we combine
concurrency atomicity of concurrent separation logic with host failure atomicity:
if an operation is concurrently atomic then it is also host-failure atomic.

2.2 Fault-Tolerant Bank Transfer: Implementation

We want an implementation of transfer to be robust against host failures and
guarantee atomicity. One way to achieve this is to use write-ahead logging (WAL)
combined with a recovery operation. We assume a file-system module which pro-
vides standard atomic operations to create and delete files, test their existence,
and write to and read from files. Since file systems are critical, their operations
have associated internal recovery operations in the event of a host failure.

Given an arbitrary program C, we use [C] to identify that the program is
associated with a recovery. We can now rewrite the transfer operation, making
use of the file-system operations to implement a stylised WAL protocol as follows:

function transfer(from, to, amount) {
fromAmount := getAmount(from);
toAmount := getAmount(to);
[create(log)] ;
[write(log, (from, to, fromAmount, toAmount))] ;
setAmount(from, fromAmount − amount);
setAmount(to, toAmount + amount);
[delete(log)] ;

}
The operation works by first reading the amounts stored in each account. It
then creates a log file, log, where it stores the amounts for each account. It then
updates each account, and finally deletes the log file. If a host failure occurs the
log provides enough information to implement a recovery operation. In partic-
ular, its absence from the durable state means the transfer either happened or

172 G. Ntzik et al.

not, while its presence indicates the operation has not completed. In the latter
case, we restore the initial balance by reading the log. An example of a recovery
operation is the following:

function transferRecovery() {
b := [exists(log)] ;
if (b) {

(from, to, fromAmount, toAmount) := [read(log)] ;
if (from �= nil && to �= nil) {

setAmount(from, fromAmount); setAmount(to, toAmount);
}
[delete(log)] ;

}
}

The operation tests if the log file exists. If it does not, the recovery completes
immediately since the balance is already consistent. Otherwise, the values of the
accounts are reset to those stored in the log file which correspond to the initial
balance. While the recovery operation is running, a host failure may occur, which
means that upon reboot the recovery operation will run again. Eventually the
recovery operation completes, at which point the transfer either occurred or did
not. This guarantees that transfer is atomic with respect to host failures.

2.3 Fault-Tolerant Bank Transfer: Verification

We introduce the following new Hoare triple for specifying programs that run in
a machine where host failures can occur:

S � {PV | PD }C {QV | QD }
where PV , PD, QV , QD and S are assertions in the style of separation logic
and C is a program. PV and QV describe the volatile resource, and PD and
QD describe the durable resource. The judgement is read as a normal Hoare
triple when there are no host failures. The interpretation of the triples is partial
resource fault avoiding and host failing. Given an initial PV | PD, it is safe to
execute C without causing a resource fault. If no host failure occurs, and C

terminates, the resulting state will satisfy QV | QD. If a host failure occurs,
then the durable state will satisfy the fault-condition S.

Given the new judgement we can describe the resulting state after a host
failure. Protocols designed to make programs robust against host failures make
use of the durable resource to return to a consistent state after reboot. We must
be able to describe programs that have a recovery operation running after reboot.
We introduce the following triple:

R � {PV | PD } [C] {QV | QD }
The notation [C] is used to identify a program with an associated recovery. The
assertion R describes the durable resource after the recovery takes place.

Fault-Tolerant Resource Reasoning 173

emp ∨ file(name, []) � {
emp | emp

}
[create(name)]

{
emp | file(name, [])}

emp ∨ file(name, xs) � {
emp | file(name, xs)} [delete(name)]

{
emp | emp

}
emp � {

emp | emp
}

[exists(name)]
{
ret = false ∧ emp | emp

}
file(name, xs) � {

emp | file(name, xs)} [exists(name)]
{
ret = true ∧ emp | file(name, xs)}

file(name, xs) ∨ file(name, xs ++ [x]) �
{
emp | file(name, xs)}

[write(name, x)]{
emp | file(name, xs ++ [x])

}
file(name, []) � {

emp | file(name, [])} [read(name)]
{
ret = nil ∧ emp | file(name, [])}

file(name, [x] ++ xs) �
{
emp | file(name, [x] ++ xs)

}
[read(name)]{

ret = x ∧ emp | file(name, [x] ++ xs)
}

Fig. 1. Specification of a simplified journaling file system.

We can now use the new judgements to verify the write-ahead logging
transfer and its recovery. In their implementation, we use a simplified jour-
naling file system as the durable resource with the operations specified in Fig. 1.
We specify the write-ahead logging transfer with the following triple:

S �

{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v) ∗ Account(t, w)

}

transfer(from, to, amount){
from = f ∧ to = t ∧ amount = a ∧ emp
Account(f, v − a) ∗ Account(t, w + a)

}

where the fault-condition S describes all the possible durable states if a host
failure occurs:

S = (Account(f, v) ∗ Account(t, w))
∨ (Account(f, v) ∗ Account(t, w) ∗ file(log, []))
∨ (Account(f, v) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)]))
∨ (Account(f, v − a) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)]))
∨ (Account(f, v − a) ∗ Account(t, w + a) ∗ file(log, [(f, t, v, w)])
∨ (Account(f, v − a) ∗ Account(t, w + a))

A proof that the implementation satisfies the specification is shown in Fig. 2.
If there is a host failure, the current specification of transfer only guarantees
that the durable resource satisfies S. This includes the case where money is lost.
This is undesirable. What we want is a guarantee that the operation is atomic.
In order to add this guarantee, we must combine reasoning about the operation
with reasoning about its recovery to establish that undesirable states are fixed
after recovery. We formalise the combination of an operation and its recovery
in order to provide robustness guarantees against host failures in the recovery
abstraction rule:

174 G. Ntzik et al.

S �{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v) ∗ Account(t, w)

}

fromAmount := getAmount(from);
toAmount := getAmount(to);{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v) ∗ Account(t, w))

}

[create(log)] ;{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v) ∗ Account(t, w) ∗ file(log, [])

}

[write(log, (from, to, fromAmount, toAmount))] ;{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)])

}

setAmount(from, fromAmount − amount);{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v − a) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)])

}

setAmount(to, toAmount + amount);{
from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w ∧ emp

Account(f, v − a) ∗ Account(t, w + a) ∗ file(log, [(f, t, v, w)])

}

[delete(log)] ;{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v − a) ∗ Account(t, w + a)

}

Fig. 2. Proof of transfer operation using write-ahead logging.

CR recovers C

S � {PV | PD }C {QV | QD}
S � { emp | S }CR { true | R}
R � {PV | PD } [C] {QV | QD}

When implementing a new operation, we use the recovery abstraction rule to
establish the fault-condition R we wish to expose to the client. In the second
premiss we must first derive what the durable resource S will be immediately
after a host-failure. In the third premiss, we establish that given S, the associated
recovery operation will change the durable resource to the desired R. Note that
because the recovery CR runs immediately after the host failure, the volatile
resource of its precondition is empty. Furthermore, we require the fault-condition
of the recovery to be the same as the resource that is being recovered, since the
recovery operation itself may fail due to a host-failure; i.e. recovery operations
must be able to recover themselves.

We allow recovery abstraction to derive any fault-condition that is established
by the recovery operation. If that fault-condition is a disjunction between the
durable pre- and postconditions, PD ∨QD, then the operation [C] appears to be
atomic with respect to host failures. Either the operation’s (durable) resource
updates completely, or not at all. No intermediate states are visible to the client.

In order for transfer to be atomic, according to the recovery abstraction
rule, transferRecovery must satisfy the following specification:

Fault-Tolerant Resource Reasoning 175

S �

{
emp
S

}

transferRecovery(){
true

(Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a))

}

The proof that the implementation satisfies this specification is given in Fig. 3.
By applying the abstraction recovery rule we get the following specification for
transfer which guarantees atomicity in case of a host-failure:

R �

{
from = f ∧ to = t ∧ amount = a ∧ emp

Account(f, v) ∗ Account(t, w)

}

[transfer(from, to, amount)]{
from = f ∧ to = t ∧ amount = a ∧ emp
Account(f, v − a) ∗ Account(t, w + a)

}

where the fault-condition R describes the recovered durable state:

R = (Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a))

With this example, we have seen how to guarantee atomicity by logging the infor-
mation required to undo operations. Advanced WAL protocols also store informa-
tion allowing to redo operations and use concurrency control. We do not go into
depth on how to enforce concurrency control in our examples other than the exam-
ple shown in Sect. 3.1. It follows the common techniques used in concurrent sep-
aration logic.1 However, in Sect. 4 we show ARIES, an advanced algorithm that
uses write-ahead logging. A different style of write-ahead logging is used by file
systems called journaling [14], which we discuss in the technical report [10].

3 Program Logic

Until now, we have only seen how to reason about sequential programs. For
concurrent programs, we use resource invariants, in the style of concurrent sepa-
ration logic [11], that are updated by primitive atomic operations. Here primitive
atomic is used to mean that the operation takes effect at a single, discrete instant
in time, and that it is atomic with respect to host failures.

The general judgement that enables us to reason about host failing concurrent
programs is:

JV | JD ;S � {
PV | PD

}
C

{
QV | QD

}

Here, PV | PD and QV | QD are pre- and postconditions as usual and describe
the volatile and durable resource. S is a durable assertion, which we refer to
as the fault-condition, describing the durable resource of the program C after a
host failure and possible recovery. The interpretation of these triples is partial
1 For an introduction to concurrent separation logic see [18].

176 G. Ntzik et al.

S �{
emp

S

}

b := [exists(log)] ;⎧⎨
⎩

b = b ∧ emp

S ∧ (b =⇒ file(log, []) ∗ true ∨ file(log, [(f, t, v, w)]) ∗ true)
∧ (¬b =⇒ Account(f, v) ∗ Account(t, w) ∨ Account(f, v − a) ∗ Account(t, w + a))

⎫⎬
⎭

if (b) {{
b = b ∧ emp

S ∧ (file(log, []) ∗ true ∨ file(log, [(f, t, v, w)]) ∗ true)

}

(from, to, fromAmount, toAmount) := [read(log)] ;
if (from �= nil && to �= nil) {{

b = b ∧ from = f ∧ to = t ∧ fromAmount = v ∧ toAmount = w ∧ emp

S ∧ (file(log, [(f, t, v, w)]) ∗ true)

}

setAmount(from, fromAmount); setAmount(to, toAmount);⎧⎨
⎩
b = b ∧ from = f ∧ to = t ∧ fromAmount = v ∧ toAmount = w ∧ emp

S ∧ (file(log, [(f, t, v, w)]) ∗ true) ∧
(Account(f, v) ∗ Account(t, w) ∗ true)

⎫⎬
⎭

}⎧⎨
⎩

b = b ∧ emp

S ∧ ((file(log, []) ∗ true) ∨ (file(log, [(f, t, v, w)]) ∗ true)) ∧
(Account(f, v) ∗ Account(t, w) ∗ true)

⎫⎬
⎭

[delete(log)] ;{
b = b ∧ emp

Account(f, v) ∗ Account(t, w)

}

}{
b = b ∧ emp

Account(f, v) ∗ Account(t, w) ∨ Account(f, v − a) ∗ Account(t, w + a)

}

Fig. 3. Proof that the transfer recovery operation guarantees atomicity.

resource fault avoiding and host failing. Starting from an initial state satisfying
the precondition PV | PD, it is safe to execute C without causing a resource
fault. If no host failure occurs and C terminates, the resulting state will satisfy
the postcondition QV | QD. The shared resource invariant JV | JD is maintained
throughout the execution of C. If a host failure occurs, all volatile resource is
lost and the durable state will (after possible recoveries) satisfy S ∗ JD.

We give an overview of the key proof rules of Fault-tolerant Concurrent
Separation Logic (FTCSL) in Fig. 4. Here we do not formally define the syntax of
our assertions, although we describe the semantics in Sect. 5. In general, volatile
and durable assertions can be parameterised by any separation algebra.

The sequence rule allows us to combine two programs in sequence as long as
they have the same fault-condition and resource invariant. Typically, when the
fault-conditions differ, we can weaken them using the consequence rule, which
adds fault-condition weakening to the standard consequence rule of Hoare logic.
The frame rule, as in separation logic, allows us to extend the pre- and postcon-
ditions with the same unmodified resource RV ∗RD. However, here the durable
part, RD, is also added to the fault-condition.

Fault-Tolerant Resource Reasoning 177

sequence

JV | JD ;S � {
PV | PD

}
C1

{
RV | RD

}
JV | JD ;S � {

RV | RD

}
C2

{
QV | QD

}
JV | JD ;S � {

PV | PD

}
C1;C2

{
QV | QD

}
consequence

PV | PD =⇒ P ′
V | P ′

D Q′
V | Q′

D =⇒ QV | QD S′ =⇒ S

JV | JD ;S′ � {
P ′
V | P ′

D

}
C

{
Q′

V | Q′
D

}
JV | JD ;S � {

PV | PD

}
C

{
QV | QD

}
frame

JV | JD ;S � {
PV | PD

}
C

{
QV | QD

}
JV | JD ;S ∗ RD � {

PV ∗ RV | PD ∗ RD

}
C

{
QV ∗ RV | QD ∗ RD

}
atomic

emp | emp ; (PD ∗ JD ∨ QD ∗ JD) � {
PV ∗ JV | PD ∗ JD

}
C

{
QV ∗ JV | QD ∗ JD

}
JV | JD ; (PD ∨ QD) � {

PV | PD

} 〈C〉 {
QV | QD

}
share

JV ∗ RV | JD ∗ RD ;S � {
PV | PD

}
C

{
QV | QD

}
JV | JD ;S ∗ RD � {

PV ∗ RV | PD ∗ RD

}
C

{
QV ∗ RV | QD ∗ RD

}
parallel

JV | JD ;S1 � {
PV 1 | PD1

}
C1

{
QV 1 | QD1

}
JV | JD ;S2 � {

PV 2 | PD2

}
C2

{
QV 2 | QD2

}

JV | JD ; (S1 ∗ S2) ∨ (S1 ∗ QD2) ∨ (QD1 ∗ S2) �
{
PV 1 ∗ PV 2 | PD1 ∗ PD2

}
C1 || C2{

QV 1 ∗ QV 2 | QD1 ∗ QD2

}
recovery abstraction

CR recovers C

JV | JD ;S � {
PV | PD

}
C

{
QV | QD

}
emp | JD ;S � {

emp | S}
CR

{
true | R}

JV | JD ;R � {
PV | PD

}
[C]

{
QV | QD

}

Fig. 4. Selected proof rules of FTCSL

The atomic rule allows us to use the resource invariant JV | JD using a
primitive atomic operation. Since the operation executes in a single, discrete,
moment in time, we can think of the operation temporarily owning the resources
JV | JD. However, they must be reestablished at the end. This guarantees that
the every primitive atomic operation maintains the resource invariant. Note that

178 G. Ntzik et al.

the rule enforces atomicity with respect to host failures. The share rule allows
us to use local resources to extend the shared resource invariant.

The parallel rule, in terms of pre- and postconditions is as in concurrent sepa-
ration logic. However, the fault-condition describes the possible durable resources
that may result from a host failure while running C1 and C2 in parallel. In par-
ticular, a host-failure may occur while both C1 and C2 are running, in which
case the fault-condition is S1 ∗ S2, or when either one of C1, C2 has finished, in
which case the fault-condition is S1 ∗ QD2 and S2 ∗ QD1 respectively.

Finally, the recovery abstraction rule allows us to prove that a recovery oper-
ation CR establishes the fault-condition R we wish to expose to the client. The
first premiss requires operation CR to be the recovery of C, i.e. it is executed on
reboot after a host failure during execution of C. The second premiss guarantees
that in such case, the durable resources satisfy S and the shared resource invari-
ant satisfies JD, while the volatile state is lost after a host failure. The third
premiss, takes the resource after the reboot and runs the recovery operation in
order to establish R. Note that JD is an invariant, as there can be potentially
parallel recovery operations accessing it using primitive atomic operations. While
the recovery operation CR is running, there can be any number of host failures,
which restart the recovery. This means that the recovery operation must be able
to recover from itself. We allow recovery abstraction to derive any fault-condition
that is established by the recovery operation. If the fault-condition is a disjunc-
tion between the durable pre- and post-conditions, PV ∨QD, then the operation
[C] appears to be atomic with respect to host failures.

3.1 Example: Concurrent Bank Transfer

Consider two threads that both perform a transfer operation from account f
to account t as shown in Sect. 2. The parallel rule requires that each operation
acts on disjoint resources in the precondition. Since both threads update the
same accounts, we synchronise their use with the atomic blocks denoted by 〈 〉.
A possible specification for the program is the following:

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

〈[transfer(from, to, amount)]〉; ‖ 〈[transfer(from, to, amount2)]〉;{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

A sketch proof of this specification is given in Fig. 5. We first move the
shared resources of the two transfer operations to the shared invariant (share
rule). We then prove each thread independently by making use of the atomic
rule to gain temporary access to the shared invariant within the atomic block,
and reuse the specification given in Sect. 2.3. It is possible to get stronger post-
conditions, that maintain exact information about the amounts of each bank
account, using complementary approaches such as Owicki-Gries or other forms

Fault-Tolerant Resource Reasoning 179

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

sh
ar
e

emp | ∃v, w.Account(f, v) ∗ Account(t, w) ; emp �{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

emp

}
co
n
se
q
u
en
ce

;
p
ar
al
le
l

emp | ∃v, w.Account(f, v) ∗ Account(t, w) ; emp �{
from = f ∧ to = t ∧ amount = a ∧ emp

emp

}
at
o
m
ic

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount = a ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

[transfer(from, to, amount)] ;{
from = f ∧ to = t ∧ amount = a ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}
{
from = f ∧ to = t ∧ amount = a ∧ emp

emp

}

{
from = f ∧ to = t ∧ amount2 = b ∧ emp

emp

}

at
o
m
ic

emp | emp ; (∃v, w.Account(f, v) ∗ Account(t, w)) �{
from = f ∧ to = t ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

[transfer(from, to, amount2)] ;{
from = f ∧ to = t ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}
{
from = f ∧ to = t ∧ amount2 = b ∧ emp

emp

}
{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

emp

}
{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b ∧ emp

∃v, w.Account(f, v) ∗ Account(t, w)

}

Fig. 5. Sketch proof of two concurrent transfers over the same accounts.

of resource ownership [18]. The sequential examples in this paper can be adapted
to concurrent applications using these techniques.

4 Case Study: ARIES

In Sect. 2 we saw an example of a very simple transaction and its associated
recovery operation employing write-ahead logging. Relational databases support
concurrent execution of complex transactions following the established ACID
(Atomicity, Consistency, Isolation and Durability) set of properties. ARIES
(Algorithms for Recovery and Isolation Exploiting Semantics) [8], is a collection
of algorithms involving, concurrent execution, write-ahead-logging and failure
recovery of transactions, that is widely-used to establish ACID properties.

180 G. Ntzik et al.

It is beyond the scope of this paper to verify that the full set of ARIES
algorithms guarantees ACID properties. Instead, we focus on a stylised version of
the recovery algorithm of ARIES proving that: (a) it is idempotent with respect
to host failures, (b) after recovery, all transactions recorded in the write-ahead
log have either been completed, or were rolled-back.

Transactions update database records stored in durable memory, which for
the purposes of this discussion we assume to be a single file in a file system.
To increase performance, the database file is divided into fixed-size blocks,
called pages, containing multiple records. Thus input/output to the database
file, instead of records, is in terms of pages, which are also typically cached in
volatile memory. A single transaction may update multiple pages. In the event
of a host failure, there may be transactions that have not yet completed, or
have completed but their updated pages have not yet been written back to the
database file.

ARIES employs write-ahead logging for page updates performed by transac-
tions. The log is stored on a durable fault-tolerant medium. The recovery uses the
logged information in a sequence of three phases. First, the analysis phase, scans
the log to determine the (volatile) state, of any active transactions (committed
or not), at the point of host failure. Next, the redo phase, scans the log and redos
each logged page update, unless the associated page in the database file is already
updated. Finally, the undo phase, scans the log and undos each page update for
each uncommitted transaction. To cope with a possible host failure during the
ARIES recovery, each undo action is logged beforehand. Thus, in the event of a
host failure the undo actions will be retried as part of the redo phase.

In Fig. 6, we define the log and database model and describe the predicates
we use in our specifications and proofs. We refer the reader to our technical
report [10] for the formal definitions. We model the database state, db, as a
set of pages, where each page comprises the page identifier, the log sequence
number (defined later) of the last update performed on the page, and the page
data. The log, lg, is structured as a sequence of log records, ordered by a log
sequence number, lsn ∈ N, each of which records a particular action performed
by a transaction. The ordering follows the order in which transaction actions
are performed on the database. The logged action, U [tid, pid, op], records that
the transaction identifier tid, performs the update op : Data → Data on the
page identified by pid. We use op−1 to denote the operation undoing the update
op. B[tid], records the start of a new transaction with identifier tid, and C[tid],
records that the transaction with id tid is committed. The information from the
above actions is used to construct two auxiliary structures used by the recovery
to determine the state of transactions and pages at the point of a host failure.
The transaction table (TT), records the status of all active transactions (e.g.
updating, committed) and the latest log sequence number associated with the
transaction. The dirty page table (DPT), records which pages are modified but
yet unwritten to the database together with the first log sequence number of
the action that caused the first modification to each page. To avoid the cost of
scanning the entire log, implementations regularly log snapshots of the TT and

Fault-Tolerant Resource Reasoning 181

Model:

Database state db ⊆ N× N× Data, triples of pid, lsn, d
Logged actions act ::= U [tid, pid, op] | B[tid] | C[tid] | CHK[tt, dpt]
Log state lg ::= ∅ | (lsn, act) | lg ⊗ lg
Transaction table tt ⊆ N× N× {C,U} , triples of lsn, pid and transaction status
Dirty page table dpt ⊆ N× N, tuples of pid, lsn

Predicates:

log (lg) the state of the log is given by lg (abstract predicate)
db state (db) the state of the database is given by db (abstract predicate)
set (x, s) the set s identified by program variable x (abstract predicate)
log tt (lg, tt) log lg produces the TT entries in tt
log dpt (lg, dpt) log lg produces the DPT entries in dpt
log rl (lg, dpt, ops) given log lg and DPT dpt the list of redo updates is ops
ul undo (lg, tt, ops) given log lg and TT tt the list of undo updates is ops
log undos (ops, lg) given list of undos ops the additional log records are lg
db acts (db, ops, db′) given the list of updates ops, the database db is updated to db′

recovery log (lg, lg′) given log lg log records added by recovery are lg′

recovery db (db, lg, db) given database db and log lg the recovered database state is db′

Axioms:
log lg ⊗ lg′) ⇐⇒ log bseg (lg) ⊗ log fseg lg′)

Fig. 6. Abstract model of the database and ARIES log, and predicates.

DPT in checkpoints, CHK[tt, dpt]. For simplicity, we assume the log contains
exactly one checkpoint.

The high level overview of the recovery algorithm in terms of its analysis, redo
and undo phases is given in Fig. 7. The analysis phase first finds the checkpoint
and restores the TT and DPT. Then, it proceeds to scan the log forwards from
the checkpoint, updating the TT and DPT. Any new transaction is added to the
TT. For any commit log record we update the TT to record that the transaction
is committed. For any update log record, we add an entry for the associated page
to the DPT, also recording the log sequence number, unless an entry for the same
page is already in it. We give the following specification for the analysis phase:

log (lgi ⊗ (lsn, CHK[tt, dpt]) ⊗ lgc) �{
emp

log (lgi ⊗ (lsn, CHK[tt, dpt]) ⊗ lgc)

}

tt, dpt := aries analyse(){∃tt′, dpt′. log tt (lgc, tt
′) ∧ log dpt (lgc, dpt

′) ∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log (lgi ⊗ (−, CHK[tt, dpt]) ⊗ lgc)

}

The specification states that given the database log, the TT and DPT in the
log’s checkpoint are restored and updated according to the log records following
the checkpoint. The analysis does not modify any durable state.

182 G. Ntzik et al.

function aries recovery() {
//ANALYSIS PHASE: restore dirty page table, transaction table

//and undo list at point of host failure.

tt, dpt := aries analyse();
//REDO PHASE: repeat actions to restore database state at host failure.

aries redo(dpt);
//UNDO PHASE: Undo actions of uncommitted transactions.

aries undo(tt);
}

Fig. 7. ARIES recovery: high level structure.

The redo phase, follows analysis and repeats the logged updates. Specifically,
redo scans the log forward from the record with the lowest sequence number
in the DPT. This is the very first update that is logged, but (potentially) not
yet written to the database. The updates are redone unless the recorded page
associated with that update is not present in the DPT, or a more recent update
has modified it. We give the following specification to redo:

∃ops, ops′, ops′′. (ops = ops′ ⊗ ops′′) ∧ db acts (db, ops′, db′′)
∧ log fseg ((lsn, act) ⊗ lg) ∗ db state (db′′) �{

set (dpt, dpt) ∧ lsn = min(dpt↓2)
log fseg ((lsn, act) ⊗ lg) ∗ db state (db)

}

aries redo(dpt)⎧
⎨

⎩

set (dpt, dpt) ∧ lsn = min(dpt↓2)
log fseg ((lsn, act) ⊗ lg) ∗ db state (db′) ∧ db acts (db, ops, db′)

∧ log rl ((lsn, act) ⊗ lg, dpt, ops)

⎫
⎬

⎭

The specification states that the database is updated according to the logged
update records following the smallest log sequence number in the DPT. The
fault-condition specifies that after a host failure, all, some or none of the redos
have happened. Since redo does not log anything, the log is not affected.

The last phase is undo, which reverts the updates of any transaction that is
not committed. In particular, undo scans the log backwards from the log record
with the largest log sequence number in the TT. This is the log sequence number
of the very last update. For each update record scanned, if the transaction exists
in the TT and is not marked as committed, the update is reversed. However,
each reverting update is logged beforehand. This ensures, that undos will happen
even in case of host failure, since they will be re-done in the redo phase of the
subsequent recovery run. We give the following specification for the undo phase:

∃lg′, lg′′, lg′′′, ops, ops′, ops′′. lg′ = lg′′ ⊗ lg′′′ ∧ ops = ops′ ⊗ ops′′

∧ db acts (db, ops′, db′′) ∧ log bseg (lg ⊗ (lsn, act) ⊗ lg′′) ∗ db state (db′′) �{
set (tt, tt) ∧ lsn = max(tt↓2)

log bseg (lg ⊗ (lsn, act)) ∗ db state (db)

}

aries undo(tt)⎧
⎨

⎩

set (tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo (tt, lg ⊗ (lsn, act), ops)

log bseg (lg ⊗ (lsn, act) ⊗ lg′) ∧ log undos (ops, lg′)
∗ db state (db′) ∧ db acts (db, ops, db′)

⎫
⎬

⎭

Fault-Tolerant Resource Reasoning 183

The specification states that the database is updated with actions reverting
previous updates as obtained from the log. These undo actions are themselves
logged. In the event of a host failure the fault-condition specifies that all, some,
or none of the operations are undone and logged.

Using the specification for each phase and using our logic we can derive the
following specification for this ARIES recovery algorithm:

∃lg′, lg′′, db′. log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db) �{
emp

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db)

}

aries recovery()⎧
⎪⎪⎨

⎪⎪⎩

true

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ ⊗ lg′′)
∧ recovery log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, lg′′)

∗ db state (db′) ∧ recovery db (db, lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, db′)

⎫
⎪⎪⎬

⎪⎪⎭

The proof that the high level structure of the ARIES algorithm satisfies this
specification is given in Fig. 8. For the implementations of each phase and proofs
they meet their specifications we refer the reader to our technical report [10]. The
key property of the ARIES recovery specification is that the durable precondition
is the same as the fault-condition. This guarantees that the recovery is idem-
potent with respect to host failures. This is crucial for any recovery operation,
as witnessed in the recovery abstraction rule, guaranteeing that the recovery
itself is robust against crashes. Furthermore, the specification states that any
transaction logged as committed at the time of host failure, is committed after
recovery. Otherwise transactions are rolled back.

5 Semantics and Soundness

We give a brief overview of the semantics of our reasoning and the intuitions
behind its soundness. A detailed account is given in the technical report [10].

5.1 Fault-Tolerant Views

We define a general fault-tolerant reasoning framework using Hoare triples with
fault-conditions in the style of the Views framework [3]. Pre- and postcondi-
tion assertions are modelled as pairs of volatile and durable views (commutative
monoids). Fault-condition assertions are modelled as durable views2. Volatile and
durable views provide partial knowledge reified to concrete volatile and durable
program states respectively. Concrete volatile states include the distinguished
host-failed state

�

. The semantic interpretation of a primitive operation is given
as a state transformer function from concrete states to sets of concrete states.
2 We use “Views” to refer to the Views framework of Dinsdale-Young et al. [3], and

“views” to refer to the monoid structures used within it.

184 G. Ntzik et al.

∃lg′, lg′, db, rl′. log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db) �{
emp | log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db)

}
se
q
u
en
ce

fr
am

e

//ANALYSIS PHASE

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) �{
emp | log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′)

}
tt, dpt := aries analyse();⎧⎨
⎩

∃tt′, dpt′. log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)
∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)

log (lg ⊗ (−, CHK[tt, dpt]) ⊗ lg′)

⎫⎬
⎭⎧⎨

⎩
∃tt′, dpt′. log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)

∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log (lg ⊗ (−, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db)

⎫⎬
⎭

//REDO PHASE: repeat actions to restore database state at host failure.

co
n
se
q
u
en
ce

∃lgi, lgc, lg, lg′, db, db′, db′′, lsn≤, act, ops′, ops′′. (ops = ops′ ⊗ ops′′) ∧
log bseg (lgi) ∗ log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db′′) ∧ db acts (db, ops′, db′′)

�⎧⎪⎪⎨
⎪⎪⎩

∃tt′, dpt′. lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ = lgi ⊗ (lsn≤, act) ⊗ lgc
∧ lsn≤ = min((dpt � dpt′)↓2) ∧ log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)

∧ log ul (lg′, ul) ∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log bseg (lgi) ∗ log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db)

⎫⎪⎪⎬
⎪⎪⎭

fr
am

e

∃db′′, ops′, ops′′. (ops = ops′ ⊗ ops′′)
∧ log fseg ((lsn≤, act) ⊗ lg) ∗ db state (db′′) ∧ db acts (db, ops′, db′′)

�{
set (dpt, dptu) ∧ lsn≤ = min((dptu)↓2)
log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db)

}

aries redo(dpt);⎧⎨
⎩

set (dpt, dptu) ∧ lsn≤ = min((dptu)↓2)
log fseg ((lsn≤, act) ⊗ lgc) ∗ db state (db′)

∧ db acts (db, ops, db′) ∧ log rl ((lsn≤, act) ⊗ lgc, dptu, ops)

⎫⎬
⎭⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ = lgi ⊗ (lsn≤, act) ⊗ lgc
∧ lsn≤ = min((dpt � dpt′)↓2) ∧ log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′)
∧ log ul (lg′, ul) ∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′) ∗ ulist (ul, ul)

log bseg (lgi) ∗ log fseg ((lsn≤, act) ⊗ lgc)
∗ db state (db′) ∧ log rl ((lsn≤, act) ⊗ lgc, dptu, ops)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∃lgc, lsn≤. lg′ = − ⊗ (lsn≤, act) ⊗ lgc ∧ lsn≤ = min((dpt � dpt′)↓2)
∧ log tt (lg′, tt′) ∧ log dpt (lg′, dpt, dpt′) ∧ log ul (lg′, ul)

∧ set (tt, tt ⊕ tt′) ∗ set (dpt, dpt � dpt′)
log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′) ∗ db state (db′)

∧ db acts (db, ops, db′) ∧ log rl ((lsn≤, act) ⊗ lgc, dpt � dpt′, rl′)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

co
n
se
q
u
en
ce
,f
ra
m
e //UNDO PHASE: Undo actions of uncommitted transactions.

∃lg′, lg′′, lg′′′, ops, ops′, ops′′. lg′ = lg′′ ⊗ lg′′′ ∧ ops = ops′ ⊗ ops′′

∧ db acts (dbr, ops
′, db′′

r) ∧ log bseg (lg ⊗ (lsn, act) ⊗ lg′′) ∗ db state (db′′
r)

�{
set (tt, tt) ∧ lsn≥ = max(tt↓2) | log bseg (lg ⊗ (lsn, act)) ∗ db state (dbr)

}
aries undo(tt, dpt, ul);⎧⎨
⎩
set (tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo (tt, lg ⊗ (lsn, act), ops)

log bseg (lg ⊗ (lsn, act) ⊗ lg′) ∧ log undos (ops, lg′)
∗ db state (db′

r) ∧ db acts (dbr, ops, db
′
r)

⎫⎬
⎭⎧⎪⎪⎨

⎪⎪⎩

true

log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′ ⊗ lg′′)
∧ recovery log (lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, lg′′)

∗ db state (db′) ∧ recovery db (db, lg ⊗ (lsn, CHK[tt, dpt]) ⊗ lg′, db′)

⎫⎪⎪⎬
⎪⎪⎭

Fig. 8. Proof of the high level structure of ARIES recovery.

Fault-Tolerant Resource Reasoning 185

To prove soundness, we encode our Fault-tolerant Views (FTV) framework
into Views [3]. A judgement3 s � {(pv, pd)}C {(qv, qd)}, where s, pd, qd are
durable views and pv, qv are volatile views is encoded as the Views judgement:{
(pv, qd)

}
C

{
(qv, qd) ∨ (

�

, s)
}
, where volatile views are extended to include �

and ∨ is disjunction of views. For the general abstraction recovery rule we encode
[C] as a program which can test for host failures, beginning with C and followed
by as many iterations of the recovery CR as required in case of a host failure.

We require the following properties for a sound instance of the framework:

Host failure: For each primitive operation, its interpretation function must
transform non host-failed states to states including a host-failed state. This guar-
antees that each operation can be abruptly interrupted by a host failure.

Host failure propagation: For each primitive operation, its interpretation
function must leave all host-failed states intact. That is, when the state says
there is a host failure, it stays a host failure.

Axiom soundness: The axiom soundness property (property [G] of Views [3]).
The first two are required to justify the general FTV rules, while the final

property establishes soundness of the Views encoding itself. When all the para-
meters are instantiated and the above properties established then the instantia-
tion of the framework is sound.

5.2 Fault-Tolerant Concurrent Separation Logic

We justify the soundness of FTCSL by an encoding into the Fault-tolerant Views
framework discussed earlier. The encoding is similar to the concurrent separation
logic encoding into Views. We instantiate volatile and durable views as pairs of
local views and shared invariants.

The FTCSL judgement (jv, jd) ; s � {
(pv, pd)

}
C

{
(qv, qd)

}
is encoded as:

s � {((pv, jv), (pd, jd))}C {((qv, jv), (qd, jd))}

The proof rules in Fig. 4 are justified by soundness of the encoding and simple
application of FTV proof rules. Soundness of the encoding is established by
proving the properties stated in Sect. 5.1.

Theorem 1 (FTCSL Soundness). If the judgement JV | JD ;S �{
PV | PD

}
C

{
QV | QD

}
is derivable in the program logic, then if we run the

program C from state satisfying PV ∗ JV | PD ∗ JD, then C will either not ter-
minate, or terminate in state satisfying QV ∗ JV | QD ∗ JD, or a host failure
will occur destroying any volatile state and the remaining durable state (after
potential recoveries) will satisfy S ∗ JD. The resource invariant JV | JD holds
throughout the execution of C.
3 Note that judgements, such as those in Fig. 4, using assertions (capital P,Q, S) are

equivalent to judgements using views (models of assertions, little p, q, s).

186 G. Ntzik et al.

6 Related Work

There has been a significant amount of work in critical systems, such as file
systems and databases, to develop defensive methods against the types of failures
covered in this paper [1,8,14,19]. The verification of these techniques has mainly
been through testing [6,13] and model checking [21]. However, these techniques
have been based on building models that are specific to the particular application
and recovery strategy, and are difficult to reuse.

Program logics based on separation logic have been successful in reasoning
about file systems [5,9] and concurrent indexes [16] on which database and file
systems depend. However, as is typical with Hoare logics, their specifications
avoid host failures, assuming that if a precondition holds then associated opera-
tions will not fail. Faulty Logic [7] by Meola and Walker is an exception. Faulty
logic is designed to reason about transient faults, such as random bit flips due
to background radiation, which are different in nature from host failure.

Zengin and Vafeiadis propose a purely functional programming language with
an operational semantics providing tolerance against processor failures in parallel
programs [22]. Computations are check-pointed to durable storage before execu-
tion and, upon detection of a failure, the failed computations are restarted. In
general, this approach does not work for concurrent imperative programs which
mutate the durable store.

In independent work, Chen et al. introduced Crash Hoare Logic (CHL) to
reason about host failures and applied it to a substantial sequential journaling
file system (FSCQ) written in Coq [2]. CHL extends Hoare triples with fault-
conditions and provides highly automated reasoning about host failures. FSCQ
performs physical journaling, meaning it uses a write-ahead log for both data
and metadata, so that the recovery can guarantee atomicity with respect to host
failures. The authors use CHL to prove that this property is indeed true. The
resource stored in the disk is treated as durable. Since FSCQ is implemented
in the functional language of Coq, which lacks the traditional process heap, the
volatile state is stored in immutable variables.

The aim of FSCQ and CHL is to provide a verified implementation of a
sequential file system which tolerates host failures. In contrast, our aim is to
provide a general methodology for fault-tolerant resource reasoning about con-
current programs. We extend the Views framework [3] to provide a general con-
current framework for reasoning about host failure and recovery. Like CHL, we
extend Hoare triples with fault-conditions. We instantiate our framework to con-
current separation logic, and demonstrate that an ARIES recovery algorithm
uses the write-ahead log correctly to guarantee the atomicity of transactions.
In the technical report [10], we explore the differences in the specifications of
fault-tolerance guarantees in physical and logical journaling file systems.

As we are defining a framework, our reasoning of the durable and volatile
state (given by arbitrary view monoids) is general. In contrast, CHL reasoning is
specific to the durable state on the disk and the volatile state in the immutable
variable store. CHL is able to reason modularly about different layers of abstrac-
tion of a file-system implementation, using logical address spaces which give a

Fault-Tolerant Resource Reasoning 187

systematic pattern of use for standard predicates. We do not explore modular
reasoning about layers of abstractions in this paper, since it is orthogonal to rea-
soning about host failures, and examples have already been studied in instances
of the Views framework and other separation logic literature [4,12,17,18,20].

We can certainly benefit from the practical CHL approach to mechanisation
and proof automation. We also believe that future work on CHL, especially on
extending the reasoning to heap-manipulating concurrent programs, can benefit
from our general approach.

7 Conclusions and Future Work

We have developed fault-tolerant resource reasoning, extending the Views frame-
work [3] to reason about programs in the presence of host failures. We have
proved a general soundness result. For this paper, we have focused on fault-
tolerant concurrent separation logic, a particular instance of the framework. We
have demonstrated our reasoning by studying an ARIES recovery algorithm,
showing that it is idempotent and that it guarantees atomicity of database trans-
actions in the event of a host failure.

There has been recent work on concurrent program logics with the ability
to reason about abstract atomicity [17]. This involves proving that even though
the implementation of an operation takes multiple steps, from the client’s point
of view they can be seen as a single step. Currently, this is enforced by syntactic
primitive atomic blocks (〈 〉) in the programming language. In future, we want
to combine abstract atomicity from concurrency with host failure atomicity.

Another direction for future work involves extending existing specifications
for file systems [5,9] with our framework. This will allow both the verification of
interesting clients programs, such as fault-tolerant software installers or persisted
message queues, and the verification of fault-tolerant databases and file systems.

Acknowledgements. We thank Thomas Dinsdale-Young for discussions and useful
feedback. This research was supported by EPSRC Programme Grants EP/H008373/1
and EP/K008528/1. Supplementary material and proofs are available in the technical
report [10].

References

1. Bonwick, J., Ahrens, M., Henson, V., Maybee, M., Shellenbaum, M.: The zettabyte
file system. In: Proceedings of the 2nd Usenix Conference on File and Storage
Technologies (2003)

2. Chen, H., Ziegler, D., Chlipala, A., Kaashoek, M.F., Kohler, E., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: SOSP (2015)

3. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

188 G. Ntzik et al.

5. Gardner, P., Ntzik, G., Wright, A.: Local reasoning for the POSIX file system.
In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 169–188. Springer,
Heidelberg (2014)

6. Kropp, N., Koopman, P., Siewiorek, D.: Automated robustness testing of off-the-
shelf software components. In: 1998 Twenty-Eighth Annual International Sympo-
sium on Fault-Tolerant Computing. Digest of Papers, pp. 230–239 (1998)

7. Meola, M.L., Walker, D.: Faulty logic: reasoning about fault tolerant programs. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 468–487. Springer, Heidelberg
(2010)

8. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst. 17, 94–162 (1992)

9. Ntzik, G., Gardner, P.: Reasoning about the POSIX File System: Local Update
and Global Pathnames. In: OOPLSA (2015)

10. Ntzik, G., da Rocha Pinto, P., Gardner, P.: Fault-tolerant Resource Reasoning.
Technical report, Imperial College London (2015)

11. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

12. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–
258 (2005)

13. Prabhakaran, V., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: Model-based failure
analysis of journaling file systems. In: 2005 Proceedings of the International Con-
ference on Dependable Systems and Networks. DSN 2005, pp. 802–811, June 2005

14. Prabhakaran, V., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Analysis and evo-
lution of journaling file Systems. In: USENIX Annual Technical Conference, Gen-
eral Track (2005)

15. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings. 17th Annual IEEE Symposium on Logic in Computer Science, 2002. pp.
55–74 (2002)

16. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse, M.:
A simple abstraction for complex concurrent indexes. In: OOPSLA, pp. 845–864
(2011)

17. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014)

18. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Steps in modular specifica-
tions for concurrent modules. In: MFPS (2015)

19. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-
structured file system. ACM Trans. Comput. Syst. 10, 26–52 (1992)

20. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

21. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors. ACM Trans. Comput. Syst. 24(4), 393–423 (2006)

22. Zengin, M., Vafeiadis, V.: A Programming Language Approach to Fault Toler-
ance for Fork-Join Parallelism. In: 2013 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 105–112 (July 2013)

Shifting the Blame

A Blame Calculus with Delimited Control

Taro Sekiyama(B), Soichiro Ueda, and Atsushi Igarashi

Graduate School of Informatics, Kyoto University, Kyoto, Japan
t-sekiym@fos.kuis.kyoto-u.ac.jp

Abstract. We study integration of static and dynamic typing in the
presence of delimited-control operators. In a program where typed and
untyped parts coexist, the run-time system has to monitor the flow of
values between these parts and abort program execution if invalid values
are passed. However, control operators, which enable us to implement
useful control effects, make such monitoring tricky; in fact, it is known
that, with a standard approach, certain communications between typed
and untyped parts can be overlooked.

We propose a new cast-based mechanism to monitor all communi-
cations between typed and untyped parts for a language with control
operators shift and reset. We extend a blame calculus with shift/reset to
give its semantics (operational semantics and CPS transformation) and
prove two important correctness properties of the proposed mechanism:
Blame Theorem and soundness of the CPS transformation.

1 Introduction

Many programming languages support either static or dynamic typing. Static
typing makes early error detection and compilation to faster code possible while
dynamic typing makes flexible and rapid software development easier. To take
the best of both worlds, integration of static and dynamic typing has been inves-
tigated. Indeed, several practical programming languages—e.g., C�, TypeScript,
Typed Racket [28], Typed Clojure [4], Reticulated Python [29], Hack (an exten-
sion of PHP), etc.—allow typed and untyped parts to coexist in one program
and to communicate with each other.

In languages allowing such integration, casts [14,22,30] (or contracts [13,26,
27]) play an important role for monitoring the flow of values between typed
and untyped parts. A source program that contains typed and untyped parts is
compiled to an intermediate language such that casts are inserted in points where
typed and untyped code interacts. Casts are a run-time mechanism to check that
a program component satisfies a given type specification. For example, when
typed code imports a certain component from untyped code as integer, a cast is
inserted to check that it is actually an integer at run time. If it is detected that
a component did not follow the specification, an uncatchable exception, called

S. Ueda—Current affiliation: Works Applications Co., Ltd.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 189–207, 2015.
DOI: 10.1007/978-3-319-26529-2 11

190 T. Sekiyama et al.

blame, will be raised to notify that something unexpected has happened. Tobin-
Hochstadt and Felleisen [27] originated a blame calculus to study integration of
static and dynamic typing and Wadler and Findler [30] fined the theory of blame
on its variant.

We study integration of static and dynamic typing in the presence of
delimited-control operators. As is well known, various control effects—e.g, excep-
tion handling [25], backtracking [6], monads [12], generators [25], etc.—can be
expressed by using delimited continuations as first-class values. However, con-
trol operators make it tricky to monitor the borders between typed and untyped
parts; in fact, as is pointed out by Takikawa, Strickland, and Tobin-Hochstadt
[26], communications between the two parts via continuations captured by con-
trol operators can be overlooked under standard cast semantics.

Our Contributions. In this paper, we propose a blame calculus, based on Wadler
and Findler [30], with Danvy and Filinski’s delimited-control operators shift and
reset [6] and give a new cast-based mechanism to monitor all communications
between typed and untyped parts. The idea of the new cast comes from Danvy
and Filinski’s type system [5] for shift/reset, where type information about con-
texts is considered. Using types of contexts, our cast mechanism can monitor all
communications.

As a proof of correctness of our idea, we investigate two important properties.
One is Blame Theorem [27,30], which states that values that flow from typed
code never trigger run-time type errors. The other property is soundness of CPS
transformation: it preserves well-typedness and, for any two source terms such
that one reduces to the other, their transformation results are equivalent in the
target calculus. It turns out that we need a few axioms about casts in addition
to usual axioms, such as (call-by-value) β-reduction, for equality in the target
calculus.

The Organization of the Paper. In Sect. 2, we review the blame calculus and
the control operators shift/reset, explain why the standard cast does not work
when they are naively combined, and briefly describe our solution. Section 3
formalizes our calculus with an operational semantics and a type system, and
shows type soundness of the calculus. Section 4 shows a Blame Theorem in our
calculus and Sect. 5 introduces CPS transformation and shows its soundness.
Finally, discussing related work in Sect. 6, we conclude in Sect. 7. We omit proofs
from the paper; interested readers are referred to a full version of the paper
available at http://www.fos.kuis.kyoto-u.ac.jp/∼t-sekiym/papers/decon blame/
APLAS2015 decon blame full.pdf.

2 Blame Calculus with Shift and Reset

2.1 Blame Calculus

The blame calculus of Wadler and Findler [30] is a kind of typed lambda calcu-
lus for studying integration of static and dynamic typing. It is designed as an

http://www.fos.kuis.kyoto-u.ac.jp/~t-sekiym/papers/decon_blame/APLAS2015_decon_blame_full.pdf
http://www.fos.kuis.kyoto-u.ac.jp/~t-sekiym/papers/decon_blame/APLAS2015_decon_blame_full.pdf

Shifting the Blame 191

intermediate language for gradually typed languages [22], where a program at
an early stage is written in an untyped language and parts whose specifications
are stable can be gradually rewritten in a typed language, resulting in a program
with both typed and untyped parts. In blame calculi, untyped parts are repre-
sented as terms of the special, dynamic type (denoted by �), where any operation
is statically allowed at the risk of causing run-time errors. Blame calculi support
smooth interaction between typed and untyped parts—i.e., typed code can use
an untyped component and vice versa—via a type-directed mechanism, casts.

A cast, taking the form t : A ⇒p B , checks that term t of source type
A behaves as target type B at run time; p, called a blame label, is used to
identify the cast that has failed at run time. For example, using integer type int,
cast expression 1 : int ⇒p � injects integer 1 to the dynamic type; conversely,
t : � ⇒p int coerces untyped term t to int. A cast would fail if the coerced
value cannot behave as the target type of the cast. For example, cast expression
(1 : int ⇒p1 �) : � ⇒p2 bool, which coerces integer 1 to the dynamic type and
then its result to Boolean type bool, causes blame blame p2 at run time since the
coerced value 1 cannot behave as bool.

Using casts, in addition to fully typed and fully untyped programs, we can
write a program where typed and untyped parts are mixed. For example, suppose
that we first write an untyped program as follows:

let succ = λx . x + 1 in succ 1

where we color untyped parts gray.1 If the successor function is statically typed,
we rewrite the program so that it imports the typed successor function:

let succ = (λx . x + 1) : int → int ⇒p � in succ 1

where we color typed parts white. When the source and target types in a cast
are not important, as is often the case, we just surround a term by a frame
to indicate the existence of some appropriate cast. So, the program above is
presented as below:

let succ = λx . x + 1 in succ 1

Intuitively, a frame in programs in this style means that flows of values between
the typed and untyped parts are monitored by casts. Conversely, the absence of
a frame between the two parts indicates that the run-time system will overlook
their communications.

What happens when a value is coerced to the dynamic type rests on the
source type of the cast. If it is a first-order type such as int, the cast simply tags
the value with its type. If it is a function type, by contrast, the cast generates a
lambda abstraction that wraps the target function and then tags the wrapper.
The wrapper, a function over values of the dynamic type, checks, by using a
cast, that a given argument has the type expected by the wrapped function and
1 Precisely speaking, even untyped programs need casts to use values of the dynamic

type as functions, integers, etc., but we omit them to avoid the clutter.

192 T. Sekiyama et al.

coerces the return value of the wrapped function to the dynamic type, similarly
to function contracts [13]. For example, cast expression (λx :int. x + 1) : int →
int ⇒p � generates lambda abstraction λy : � . (((λx :int. x + 1) (y : � ⇒q int)) :
int ⇒p �). Here, blame label q is the negation of p, which we will discuss in
detail below. Using the notation introduced above, it is easy to understand that
all communications between typed and untyped parts are monitored because the
program above reduces to:

let succ = λy . (λx . x + 1) y in succ 1

As advocated by Findler and Felleisen [13], there are two kinds of blame—
positive blame and negative blame, which indicate that, when a cast fails, its
responsibility lies with the term contained in the cast and the context containing
the cast, respectively. Following Wadler and Findler, we introduce an involutive
operation ·̄ of negation on blame labels: for any blame label p, p̄ is its negation
and ¯̄p is the same as p. For a cast with blame label p in a program, blame p
and blame p̄ denotes positive blame and negative blame, respectively. A key
observation, so-called the Blame Theorem, in work on blame calculi is that a
cast failure is never caused by values from the more precisely typed side in the
cast—i.e., if the side of a term contained in a cast with p is more precisely typed,
a program including the cast never evaluates to blame p, while if the side of a
context containing the cast is, the program never evaluates to blame p̄.

2.2 Delimited-Control Operators: Shift and Reset

Shift and reset are delimited-control operators introduced by Danvy and
Filinski [6]. Shift captures the current continuation, like another control operator
call/cc, and reset delimits the continuation captured by shift. The captured con-
tinuation works as if it is a composable function, namely, unlike call/cc, control
is returned to a caller when the call to the captured continuation finishes.

As an example with shift and reset, let us consider the following program:

〈5 +Sk . ((k 1 + k 2) = 13)〉
Here, the shift operator is invoked by the subterm Sk . ((k 1 + k 2) = 13) and the
reset operator 〈...〉 encloses the whole term. To evaluate a reset operator, we
evaluate its body. Evaluation of the shift operator Sk . ((k 1 + k 2) = 13) proceeds
as follows. First, it captures the continuation up to the closest reset as a function.
Since the delimited continuation in this program is 5 + [] (here, [] means a hole
of the context), the captured continuation takes the form λx . 〈5 + x 〉 (note that
the body of the function is enclosed by reset). Next, variable k is bound to the
captured continuation. Finally, the body of the closest reset operator is replaced
with the body of the shift operator. Thus, the example program reduces to:

〈(((λx . 〈5 + x 〉) 1) + ((λx . 〈5 + x 〉) 2)) = 13〉.
Since reset returns the result of its body, it evaluates to true.

Shifting the Blame 193

Let us consider a more interesting example of function choice, a user of which
passes a tuple of integers and expects to return one of them. The caller tests the
returned integer by some Boolean expression and surrounds it by reset. Then,
the whole reset expression evaluates to the index (tagged with Some) to indicate
which integer satisfied the test, or None to indicate none of them satisfied. For
example, 〈prime? (choice (141, 197))〉 will evaluate to Some 2 because the second
argument 197 is a prime number. Using shift/reset, such a (two-argument version
of) choice function can be defined as follows:

choice = λ(x , y):int × int.Sk . if k x then Some 1 else if k y then Some 2 else None

It is important to observe k is bound to the predicate (in this case, λz . 〈prime? z 〉).
Since blame calculi support type-directed casts, it is crucial to consider type

discipline in the presence of shift/reset. This work adopts the type system pro-
posed by Danvy and Filinski [5]. Their type system introduces types, called
answer types, of contexts up to the closest reset to track modification of the
body of a reset operator—we have seen above that the body of a reset oper-
ator can be modified to the body of a shift operator at run time. In the type
system, using metavariables α and β for types, function types take the form
A/α → B/β, which means that a function of this type is one from A to B and,
when applied, it modifies the answer type α to β. For example, using a function
of type (int × int)/bool → int/(int option) (int option means integers tagged with
Some and None), its user, when passing a pair of integers, expects to return an
integer value and to modify the answer type bool to int option. Conversely, to
see how functions are given such a function type, let us consider choice, which is
typed at (int× int)/bool → int/(int option). It can be found from the type anno-
tation that it takes pairs of integers. The body captures a continuation and calls
it with the first and second components of the argument pair. Since a caller of
choice obtains a value passed to the continuation k , the return type is int. choice
demands the answer type of a context be bool because the captured continuation
is required to return a Boolean value in conditional expressions; and the shift
operator modifies the answer type to int option because the if-expression returns
an int option value.

2.3 Blame Calculus with Shift and Reset

We extend the blame calculus with shift/reset so that all value flows between
typed and untyped parts are monitored, following the type discipline discussed
above. The main question here is how we should give the semantics of casts
for function types, which now include answer type information. The standard
semantics discussed above does not suffice because it is ignorant of answer types.
In fact, it would fail to monitor value flows that occur due to manipulation of
delimited contiuations, as we see below. For example, let us consider the situation
that untyped code imports typed function choice via a cast (represented by a
frame):

let f = choice in 5 + 〈succ (f (141, 197))〉

194 T. Sekiyama et al.

This program contains two errors: first, subterm succ (f (141, 197)) within reset
returns an integer, though shift in choice expects it to return a Boolean value
since the continuation captured by the shift operator is used in conditional
expressions; second, as found in subterm 5 + 〈. . . 〉 , the computation result of
reset is expected to be an integer, though it should be an int option value coming
from the body of shift in choice. However, if the cast on choice behaved as a stan-
dard function cast we discussed in Sect. 2.1, these errors would not be detected
at run time on borders between typed and untyped parts. To see the reason, let
us reduce the program. First, since the choice is coerced to the dynamic type, a
wrapper that checks an argument and the return value is generated and then is
applied to (141, 197):

let f = choice in 5 + 〈succ (f (141, 197))〉 �−→∗ 5 + 〈succ (choice (141, 197))〉
The check for (141, 197) succeeds and so choice is applied to (141, 197), and then
the shift operator in choice is invoked.

· · · �−→∗ 5 + 〈succ Sk . if k 141 then Some 1 else if k 197 then Some 2 else None 〉
�−→∗ 5 + 〈 if (λx . 〈succ x 〉) 141 then Some 1 else if . . . then Some 2 else None〉

Here, there are one gray area and one white area, both without surrounding
frames. The former means that the value flow from the captured continuation
λx . 〈succ x 〉 to typed code will not be monitored, when it should be by the cast
from the dynamic type to bool. Similarly, the latter means that the value flow
from the result of the (typed) if-expression to untyped code will not be moni-
tored, either, when it should be by the cast from int option to the dynamic type.
The problem is that the standard function casts can monitor calls of functions
but does not capture and calls of delimited continuations.

Our cast mechanism can monitor such capture and calls of delimited con-
tinuations. A wrapper generated by a cast from A/α → B/β to the dynamic
type, when applied, ensures that the reset expression enclosing the application
returns a value of the dynamic type by inserting injection from β and that the
continuation captured during the call to the wrapped function returns a value of
α by the cast to α. In the above example of choice, our cast mechanism reduces
the original program to a term like:

5 + 〈 if (λx . 〈succ x 〉) 141 then Some 1 else if . . . then Some 2 else None 〉
where two casts are added: one to check that the return value of the continuation
has bool and the other to inject the result of the if-expression to the dynamic
type.

3 Language

In this section, we formally define a call-by-value blame calculus with delimited-
control operators shift and reset and show its type soundness. Our calculus is a
variant of the blame calculus by Ahmed et al. [1].

Shifting the Blame 195

variables x , y , k blame labels p, q constants c base types ι

ground types G,H ::= ι | � / � → � / �

types A,B , α, β, γ, δ ::= ι | � | A/α → B/β

values v ::= x | c | λx . t | v : G ⇒ �

terms s, t , u ::= x | c | op(ti
i
) | λx . t | s t |

s : A ⇒p B | s : G ⇒ � | blame p | 〈s〉 | Sk . s

Fig. 1. Syntax.

3.1 Syntax

Figure 1 presents the syntax, which is parameterized over base types, denoted
by ι, constants, denoted by c, and primitive operations over constants.

Types consist of base types, the dynamic type, and function types with
answer types. Unlike the blame calculus of Wadler and Findler, our calculus
does not include refinement types (a.k.a., subset types) for simplicity; we believe
that it is not hard to add refinement types if refinements are restricted to be
pure [2]. Ground types, denoted by G and H , classify kinds of values. If the
ground type is a base type, the values are constants of the base type, and if it is
a function type (constituted only of the dynamic type), the values are lambda
abstractions.

Values, denoted by v , consist of variables, constants, lambda abstractions,
and ground values. A lambda abstraction λx . s is standard; variable x is bound
in the body s. A ground value v : G ⇒ � is a value of the dynamic type; the
kind of v follows ground type G .

Terms, denoted by s and t , extend those in the simply typed blame calculus
with two forms, reset expressions and shift expressions. Using the notation ti

i

to denote a sequence t1, ..., tn of terms, we allow primitive operators to take
tuples of terms. A reset expression is written as 〈s〉 and a shift expression is as
Sk . s where k is bound in the body s. The syntax includes blame as a primitive
construct despite the fact that exceptions can be implemented by shift and reset
because blame is an uncatchable exception in a blame calculus. Note that ground
values, ground terms (s : G ⇒ �), and blame are supposed to be “run-time”
citizens that appear only during reduction and not in a source program.

In what follows, as usual, we write s [x := v] for capture-avoiding substitution
of v for variable x in s. As shorthand, we write s : G ⇒� ⇒p A and s : A ⇒p

G ⇒ � for (s : G ⇒ �) : � ⇒p A and (s : A ⇒p G) : G ⇒ �, respectively.

3.2 Semantics

The semantics of our calculus is given in a small-step style by using two relations
over terms: reduction relation −→, which represents basic computation such as
β-reduction, and evaluation relation �−→, in which subterms are reduced.

The reduction rules, shown at the top of Fig. 2, are standard or similar to the
previous calculi except (R Wrap), which is the key of our work. In (R Op), to

196 T. Sekiyama et al.

s −→ t Reduction rules

op(vi
i) −→ ζ (op, vi

i) R Op

(λx . s) v −→ s [x := v] R Beta

〈v〉 −→ v R Reset

〈F [Sk . s]〉 −→ 〈s [k := λx . 〈F [x]〉]〉 where x /∈ fv (F) R Shift

v : ι ⇒p ι −→ v R Base

v : � ⇒p � −→ v R Dyn

v : A/α → B/β ⇒p A′/α′ → B ′/β′ −→
λx . Sk . (〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′) R Wrap

v : A ⇒p � −→ v : A ⇒p G ⇒ � if A ∼ G and A �= � R Ground
v : G ⇒� ⇒p A −→ v : G ⇒p A if G ∼ A and A �= � R Collapse

v : G ⇒� ⇒p A −→ blame p if G �∼ A R Conflict

s →−	 t Evaluation rules

s −→ t

E [s] →−	 E [t]
E Step

E �= []

E [blame p] →−	 blame p
E Abort

Fig. 2. Reduction and evaluation.

reduce a call to a primitive operator, we assume that there is a function ζ which
returns an appropriate value when taking an operator name and arguments to it.
The rule (R Shift) presents that the shift operator captures the continuation up
to the closest reset operator. In the rule, the captured continuation is represented
by pure evaluation contexts, denoted by F , which are evaluation contexts [11]
where the hole does not occur in bodies of reset operators. Pure evaluation
contexts are defined as follows:

F ::= [] | op(vi i ,F , tj
j) | F s | v F | F : A ⇒p B | F : G ⇒ �

As mentioned earlier, the body of the function representing the captured con-
tinuation is enclosed by reset.

There are six reduction rules for cast expressions. The rule (R Base) and
(R Dyn) means that casts between the same base type and between the dynamic
type perform no checks. We find (R Dyn), which does not appear in Ahmed
et al. [1], matches well with CPS transformation. The rule (R Ground), applied
when the target type is the dynamic type but the source type is not, turns a
cast expression to a ground term by inserting a cast to the ground type G that
represents the kind of the value v . The relation ∼, called compatibility, over
two types is defined as the least compatible relation closed under A ∼ � and
� ∼ B . It intuitively means that a cast from A to B (and vice versa) can succeed;
in other words, A �∼ B means that a cast will fail. One interesting fact about
compatibility is that, for any nondynamic type A, we can find exactly one ground
type that is compatible with A: If A is a base type, then G is equal to A and, if

Shifting the Blame 197

A is a function type, then G is � / � → � / �. As a result, G in (R Ground) is
uniquely determined. The rules (R Collapse) and (R Conflict) are applied
when a target value is a ground value. When the kind G of the underlying value v
is not compatible with the target type of the cast, the cast is blamed with blame
label p by (R Conflict). Otherwise, the underlying value is coerced from the
ground type of the ground value to the target type of the cast by (R Collapse).

The reduction rule (R Wrap), applied to casts between function types, is
the most involved. The rule means that the cast expression reduces to a lambda
abstraction that wraps the target value v . Since the wrapper function works as a
value of type A′/α′ → B ′/β′, it takes a value of A′. Like function contracts [13],
in the wrapper, the argument denoted by x is coerced to argument type A of the
source type to apply v to it and the return value of v is coerced to return type B ′

of the target type. Furthermore, to call the target function in a context of answer
type α, the wrapper captures the continuation in which the wrapper is applied by
using shift, applies the captured continuation to the result of the target function,
and then coerces the result of the captured continuation to α. Since the wrapper
is applied in a context of answer type α′, the captured continuation returns a
value of α′. By enclosing the cast to α with reset, a continuation captured during
the call to v returns a value of α. Finally, the wrapper coerces the result of the
reset operator from β to β′ because the call to the target function modifies the
answer type of the context to β, and so the reset expression returns a value of β,
and the wrapper is expected to modify the answer type to β′. The rule (R Wrap)
reverses blame labels for casts from A′ to A and from α′ to α because target
values for those casts originate from the context side.

We illustrate how (R Wrap) makes monitoring of capture and calls of con-
tinuations possible, using choice in Sect. 2.3. By (R Ground), the cast from
(int× int)/bool → int/(int option) to the dynamic type reduces to that to � / � →
� / �. By (R Wrap), the cast generates a wrapper.

let f = choice in . . . �−→ let f = λx .Sk ′. 〈 k ′ (choice x) 〉 in . . .

The check for the argument succeeds, and so the evaluation proceeds as follows:

· · · �−→∗ 5 + 〈succ (Sk ′. 〈 k ′ (Sk . if k 141 then Some 1 else . . .) 〉)〉

�−→ 5 + 〈 〈 (λx . 〈succ x 〉) (Sk . if k 141 then Some 1 else . . .) 〉 〉

�−→ 5 + 〈 〈if v 141 then Some 1 else if v 197 then Some 2 else None〉 〉

where v = λy . 〈 (λx . 〈succ x 〉) y 〉. We can observe that all borders in the last
term are monitored by casts.

Evaluation rules, presented at the bottom of Fig. 2, are standard: (E Step)
reduces a subterm that is a redex in a program and (E Abort) halts evaluation

198 T. Sekiyama et al.

of a program at blame when cast failure happens. To determine a redex in a
program, we use evaluation contexts [11], which are defined as follows.

E ::= [] | op(vi i ,E , tj
j) | E s | v E | 〈E 〉 | E : A ⇒p B | E : G ⇒ �

This definition means that terms are evaluated from left to right. Unlike pure
evaluation contexts, evaluation contexts include a context where the hole is put
in the body of a reset operator.

3.3 Type System

This section presents a type system of our calculus. It is defined as a combination
of that of Danvy and Filinski and that of Wadler and Findler. As usual, we use
typing contexts, denoted by Γ , to denote a mapping of variables to types:

Γ ::= ∅ | Γ, x :A

Typing judgments in our type system take the form Γ ;α
 s : A;β, which
means that term s is typed at type A under typing context Γ and it modifies
answer type α to β when evaluated. Perhaps, it may be easier to understand what
the typing judgment means when its CPS transformation is considered. When
we write [[·]] for the CPS transformation, the typing judgment Γ ;α
 s : A;β
is translated into the form [[Γ]]
 [[s]] : ([[A]] → [[α]]) → [[β]] in the simply typed
blame calculus (without shift/reset). That is, type A of term s and type α are
the argument type and the return type of a continuation, respectively, and type
β is the type of the whole computation result when the continuation is passed.

Figure 3 shows typing rules for deriving typing judgments. Typing rules for
shift operators, reset operators, and terms from the lambda calculus are the

Γ ; α
 t : A; β Typing rules

Γ ; α
 c : ty (c); α
T Const

ty (op) = ιi
i → ι Γ ; αi
 ti : ιi ; αi−1

i

Γ ; αn
 op(ti
i
) : ι; α0

T Op

Γ ; α
 blame p : A; β
T Blame

Γ, x :A; β
 t : B ; γ

Γ ; α
 λx . t : A/β → B/γ; α
T Abs

x :A ∈ Γ

Γ ; α
 x : A; α
T Var

Γ ; γ
 t : A/α → B/β; δ Γ ; β
 s : A; γ

Γ ; α
 t s : B ; δ
T App

Γ ; α
 s : A; β A ∼ B

Γ ; α
 (s : A ⇒p B) : B ; β
T Cast

Γ ; α
 s : G; β

Γ ; α
 (s : G ⇒ �) : �; β
T Ground

Γ, k :A/γ → α/γ; δ
 s : δ; β

Γ ; α
 Sk . s : A; β
T Shift

Γ ; β
 s : β;A

Γ ; α
 〈s〉 : A; α
T Reset

Fig. 3. Typing rules.

Shifting the Blame 199

same as Danvy and Filinski’s type system. In (T Op), we use function ty from
primitive operator names to their (first-order) types. Typing rules for terms from
the blame calculus are changed to follow Danvy and Filinski’s type system. In
(T Cast), following previous work on the blame calculus, we restrict casts in well
typed programs to be ones between compatible types. In other words, (T Cast)
rules out casts that will always fail. The typing rule (T Blame) seems to allow
blame to modify answer types to any type though blame does not invoke shift
operator; this causes no problems (and is necessary for type soundness) because
blame halts a program.

3.4 Type Soundness

We show type soundness of our calculus in the standard way: Preservation and
Progress [31]. In the presence of the dynamic type, we can write a divergent
term easily, and blame is a legitimate state of program evaluation. Thus, type
soundness in this paper means that any well typed program (a closed term
enclosed by reset) evaluates to a well typed value, diverges, or raises blame. In
what follows, we write �−→∗ for the reflexive and transitive closure of �−→.

Theorem 1 (Type Soundness). If ∅;α
 〈s〉 : A;α, then one of the follow-
ings holds:

– there is an infinite evaluation sequence from 〈s〉;
– 〈s〉 �−→∗ blame p for some p; or
– 〈s〉 �−→∗ v for some v such that ∅;α
 v : A;α.

The outermost reset is assumed to exclude terms stuck at a shift operator with-
out a surrounding reset. The statement of Progress shown after Preservation,
however, has to take into account such a possibility for proof by induction to
work.

Lemma 1 (Preservation). If ∅;α
 s : A;β and s �−→ t, then ∅;α
 t : A;β.

Proof. By induction on the typing derivation with case analysis on the reduc-
tion/evaluation rule applied to s. In the case for (R Shift), we follow the proof
in the previous work on shift/reset [3].

Lemma 2 (Progress). If ∅;α
 s : A;β, then one of the followings holds:

– s �−→ s ′ for some s ′;
– s is a value;
– s = blame p for some p; or
– s = F [Sk . t] for some F, k and t.

Proof. Straightforward by induction on the typing derivation.

Proof (Theorem 1). By Progress and Preservation. Note that the evaluation from
〈s〉 to F [Sk . t] as stated in Progress does not happen since s is enclosed by reset
and reset does not appear in F .

200 T. Sekiyama et al.

4 Blame Theorem

Blame Theorem intuitively states that values from the typed code will never
be sources of cast failure at run time and, more specifically, clarifies conditions
under which some blame never happens. Following the original work [30], we
formalize such conditions using a few, different subtyping relations. Our proof
is based on that in Ahmed et al.’s work [1], which defined a safety relation for
terms and showed Blame Preservation and Blame Progress like preservation and
progress for type soundness.

4.1 Subtyping

To state a Blame Theorem, we introduce naive subtyping <:n, which formalizes
the notion of being “more precisely typed.” Roughly speaking, type A is a naive
subtype of B when A is obtained by substituting some types for occurrences of
the dynamic type in B . For example, int <:n � and int/int → int/int <:n �/int →
int/�. Note that argument types are covariant here. The Blame Theorem states
that if type A is a naive subtype of type B , then the side of A is never blamed,
that is, a cast s : A ⇒p B does not cause blame p and s : B ⇒p A does not
blame p̄.

To prove the Blame Theorem, we introduce positive and negative subtyping.
Intuitively, that type A is a positive (resp. negative) subtype of B expresses
that positive (resp. negative) blame never happens for a cast from A to B .
It turns out that naive subtyping can be expressed in terms of positive and
negative subtyping, from which the Blame Theorem easily follows. In addition,
a cast from an ordinary subtype—where argument types of function types are
contravariant—to a supertype is shown not to raise blame.

Subtyping relations—ordinary subtyping <:, naive subtyping <:n, positive
subtyping <:+, and negative subtyping <:−—are reflexive relations satisfying
subtyping rules presented in Fig. 4. The idea shared across all subtyping rules
for function types is that function type A/α → B/β is interpreted as if it takes
the CPS-transformation form A → (B → α) → β. In this form, A and α occur
at negative positions while B and β occur at positive positions.

We write A <: B to denote that A is a subtype of B . The rule (S Dyn)
means that any (nondynamic) type is a subtype of the dynamic type if it is a
subtype of the (unique) ground type compatible to it. The premise is needed for
cases that the subtype is higher order. Function types are covariant at positive
positions and contravariant at negative positions as usual.

As mentioned before, type A is a naive subtype of B when A is obtained by
putting some types in occurrences of the dynamic type in B . The rule (SN Dyn)
means that the dynamic type is least precise. In the rule (SN Fun), function
types for naive subtyping are covariant in both positive and negative positions.

The definitions of positive and negative subtyping are mutually recursive.
The rule (S+ Dyn) means that positive blame never happens when any value
is coerced to the dynamic type. Similarly to ordinary subtyping, in (S+ Fun),
function types are covariant at positive positions and contravariant at negative

Shifting the Blame 201

A <: B Subtype

A <: G

A <: �
S Dyn

A′ <: A B <: B ′ α′ <: α β <: β′

A/α → B/β <: A′/α′ → B ′/β′ S Fun

A <:n B Naive Subtype

A <:n �
SN Dyn

A <:n A′ B <:n B ′ α <:n α′ β <:n β′

A/α → B/β <:n A′/α′ → B ′/β′ SN Fun

A <:+ B Positive Subtype

A <:+ �
S+ Dyn

A′ <:− A B <:+ B ′ α′ <:− α β <:+ β′

A/α → B/β <:+ A′/α′ → B ′/β′ S+ Fun

A <:− B Negative Subtype

� <:− A
S− Dyn

A <:− G

A <:− B
S− Any

A′ <:+ A B <:− B ′ α′ <:+ α β <:− β′

A/α → B/β <:− A′/α′ → B ′/β′ S− Fun

Fig. 4. Subtyping rules.

positions. Negative subtyping is a reversed version of positive subtyping except
for addition of (S− Any), which is a combination of (S− Dyn) and the fact
that a cast from type A to the dynamic type never gives rise to negative blame
when A is a negative subtype of its ground type. The rule (S− Any) follows from
Ahmed et al.’s work [1] and represents a relaxed form of the system of Wadler and
Findler [30]. Notice that polarity of subtyping is reversed at negative positions.

As mentioned above, we show that naive subtyping (and ordinary subtyping)
can be expressed in terms of positive and negative subtyping.

Lemma 3. A <:n B iff A <:+ B and B <:− A.

Lemma 4. A <: B iff A <:+ B and A <:− B.

The proofs of the direction from left to right are straightforward by induction
on the derivations of A <:n B and A <: B . The other direction is shown by
structural induction on A.

4.2 Blame Theorem

The proof of the Blame Theorem is similar to preservation and progress for type
soundness. Instead of a type system, we introduce a safety relation using positive
and negative subtyping and show Blame Preservation, which states safety is

202 T. Sekiyama et al.

s sf p A <:+ B

s : A ⇒p B sf p

s sf p A <:− B

s : A ⇒p̄ B sf p c sf p

∀i . ti sf p
op(ti

i
) sf p x sf p

s sf p

λx . s sf p

s sf p t sf p

s t sf p

q �= p q �= q̄ s sf p

s : A ⇒q B sf p

s sf p

s : G ⇒ � sf p
q �= p

blame q sf p

s sf p

Sk . s sf p

s sf p

〈s〉 sf p

Fig. 5. Safety rules.

preserved by evaluation, and Blame Progress, which states that a safe term does
not give rise to blame. In this section, we focus only on whether a term gives
rise to blame or not and not on whether a term gets stuck or not.

A term s is safe for blame label p, written as s sf p, if every cast with blame
label p in s is from a type to its positive supertype and every cast with p̄ is
from a type to its negative supertype. We present inference rules for the safety
relation in Fig. 5. From the definition, it is observed that a term safe for p does
not contain blame with p; this does not restrict a source program written by a
programmer because it should not contain any blame.

Blame Preservation and Blame Progress show that, if s sf p, term s never
gives rise to blame with label p. We write s ��−→ t and s ��−→∗ t to denote
that term s does not reduce to term t in a single step and in multiple steps,
respectively.

Lemma 5 (Blame Preservation). If s sf p and s �−→ t, then t sf p.

Lemma 6 (Blame Progress). If s sf p, then s ��−→ blame p.

Finally, we show the Blame Theorem—values that flow from the more pre-
cisely typed side never cause blame—and, furthermore, that casts from one type
to its supertype never give rise to blame.

Theorem 2 (Blame Theorem). Let s be a term with a subterm t : A ⇒p B
where cast is labeled by the only occurrence of p in s. Moreover, suppose that p̄
does not appear in s.

1. If A <:+ B, then s ��−→∗ blame p.
2. If A <:− B, then s ��−→∗ blame p̄.
3. If A <:n B, then s ��−→∗ blame p; if B <:n A, then s ��−→∗ blame p̄.
4. If A <: B, then s ��−→∗ blame p and s ��−→∗ blame p̄.

Proof. The first and second cases are shown by Blame Preservation and Blame
Progress because s sf p in the first case and s sf p̄ in the second case. The third
case (resp. the fourth case) follows from the first and second cases and Lemma 3
(resp. Lemma 4).

Shifting the Blame 203

5 CPS Transformation

The semantics of programming languages with control operators has often been
established by transformation of programs with control operators to continuation
passing style (CPS), a programming style where continuations appear in a pro-
gram as arguments of functions. For example, programs with Reynolds’s escape
operator [19], call/cc in Scheme, shift/reset [6], and so on can be transformed to
CPS form.

As a proof of correctness of our approach, we define a CPS transformation
from terms in our calculus to those in the simply typed blame calculus of Ahmed
et al. [1] and show that a well typed source term is transformed to a well typed
target term and, for any source terms such that one reduces to the other, their
CPS-transformation results are equivalent in the target calculus. The equational
system is based on call-by-value axioms [20] due to blame, which is effectful.

Our CPS transformation [[·]], shown in Fig. 6, is standard except for the case
for ground values v : G ⇒ �; if G is the ground function type � / � → � / �, a
ground value is transformed to a value with a cast (the reason is detailed later).
To assign a blame label to the cast, we modify the syntax and the reduction rule
(R Ground) of our calculus. Formally, the syntax is changed as follows:

v ::= ... | v : G ⇒p � s ::= ... | s : G ⇒p �

Blame labels in ground terms and values are given as subscripts for ease of
distinction from casts. The reduction rule (R Ground) takes the following form:

v : A ⇒p � −→ (v : A ⇒p G) : G ⇒p � (if A ∼ G and A �= �) R Ground

Our CPS transformation, which mostly follows Danvy and Filinski [6], is
shown in Fig. 6 in three parts: transformation for types, values, and terms. We
use variable κ to denote continuations. The CPS transformation for types is
standard. A function of type A/α → B/β takes an argument of A, would pass
a value of B to a continuation that returns α, and results in a value of β as
the computation result. The CPS transformation for values maps values in our
calculus to those in the blame calculus without shift/reset. The definition shown
in Fig. 6 is easy to understand except for ground values where the ground type is
a function type. We might expect that the CPS-transformation result of ground
value v : G ⇒p � can be defined as v∗ : [[G]] ⇒ �. However, that form
would not be a valid term in the target calculus if the ground type G is a
function type, because the ground function type in the target calculus takes
only the form � → � but [[�/� → �/�]] = � → (� → �) → �. Expecting a
value will be translated to a value in the target calculus, we set a ground value
v : � / � → � / � ⇒p � to be mapped to a value to which v∗ : [[G]] ⇒p �
reduces, instead. (Notice the super-script on ⇒. A term v∗ : [[G]] ⇒p � is a cast
and always valid.) In the result, we omit the trivial cast x : � ⇒p̄ �. The CPS
transformation for terms is self-explanatory.

It is straightforward to show that well typed source terms are transformed to
well typed target terms. For any typing context Γ , we write [[Γ]] for the typing
context obtained by applying the CPS transformation to types mapped by Γ .

204 T. Sekiyama et al.

[[A]] CPS Transformation (Types)

[[ι]] = ι [[�]] = � [[A/α → B/β]] = [[A]] → ([[B]] → [[α]]) → [[β]]

v∗ CPS Transformation (Values)

x∗ = x c∗ = c (λx . s)∗ = λx . [[s]] (v : ι ⇒ �)∗ = v∗ : ι ⇒ �

(v : � / � → � / � ⇒p �)∗ = (λx . (v∗ x) : (� → �) → � ⇒p �) : � → � ⇒ �

[[s]] CPS Transformation (Terms)

[[v]] = λκ. κ v∗

[[op(ti
i
)]] = λκ. [[t1]] (λx1. . . . [[tn]] (λxn . κ op(xi

i)) . . .)

[[s t]] = λκ. [[s]] (λx . [[t]] (λy . x y κ))

[[〈s〉]] = λκ. κ ([[s]] (λx . x))

[[Sk . s]] = λκ. ([[s]] (λx . x)) [k := λx . λκ′. κ′ (κ x)]

[[s : A ⇒p B]] = λκ. [[s]] (λx . κ (x : [[A]] ⇒p [[B]]))

[[s : G ⇒ �]] = λκ. [[s]] (λx . κ (x : G ⇒ �)∗)
[[blame p]] = λκ. blame p

Fig. 6. CPS transformation.

Theorem 3 (Preservation of Type). If Γ ;α
 s : A;β, then [[Γ]]
 [[s]] :
([[A]] → [[α]]) → [[β]].

Next, we define an equational system in the target calculus. The system
consists of axioms about casts as well as usual call-by-value axioms [20]. In
what follows, we use metavariables e, v, E, and A (and B) to denote terms,
values, evaluation contexts, and types in the target calculus, respectively, and
write fv (v) and fv (E) for the sets of free variables in v and E, respectively. In
addition, let the relation =⇒ be the evaluation relation in the target calculus.

Definition 1 (Term Equality). The relation ≈ is the least congruence that
contains the following axioms:

e1 =⇒ e2

e1 ≈ e2

x /∈ fv (v)
λx .v x ≈ v

x /∈ fv (E)
(λx .E[x]) e ≈ E[e]

e : � ⇒p � ≈ e e : � ⇒p � → � ⇒p
A → B ≈ e : � ⇒p

A → B

We think that the last two axioms about casts are reasonable. The former,
which skips the trivial cast, is found in another blame calculus [24]. This axiom
is introduced mainly to ignore redundant casts that often happen in CPS-
transformation results. The latter axiom, which collapses two casts into one,
is used to show terms reduced by (R Collapse) are equivalent after CPS trans-
formation.

Shifting the Blame 205

Now, we show that the relationship between our semantics in direct-style and
the CPS transformation.

Theorem 4 (Preservation of Equality). If s �−→ t, then [[s]] ≈ [[t]].

6 Related Work

Gradual Typing and Blame Theorem. Blame calculi are variants of lambda cal-
culi for gradual typing by Siek and Taha [22], a mechanism to integrate static
and dynamic typing. Since the seminal work by Siek and Taha, the notion of
gradual typing has spread over various programming constructs—e.g., higher-
order functions [22], objects [23], mutable references [16], polymorphism [1], etc.
The property that values that flow from typed code never trigger cast failure
was studied first in the context of contract checking [27]. Wadler and Findler [30]
adopted blame of finer forms (positive and negative blame), following Findler
and Felleisen’s work [13], and investigated conditions under which blame does
not happen. They discovered that the notion of being “more precisely typed”
can be formalized as naive subtyping.

Delimited-Control Operators. Roughly speaking, there have been two major fam-
ilies of delimited-control operators: so-called “static” control operators, including
shift/reset [5,6], and so-called “dynamic” control operators, including control/
prompt [10,15]. In this work, we choose shift/reset because their type system and
CPS transformation are well studied. In fact, CPS transformation for shift/reset
has served as a guide to designing our cast mechanism. Given recent studies
on relationship of control/prompt to their CPS transformation [7,9,21] and a
type system for control/prompt [18], we leave an extension of blame calculi to
control/prompt for interesting future work.

Gradual Typing with Delimited-Control Operators. Most closely related work is
Takikawa et al. [26]; they have also studied integration of static and dynamic typ-
ing in the presence of control operators. They proposed a contract system for pro-
grams with control operators in Racket [15] and showed that values from typed
parts never trigger blame (in the sense of Tobin-Hochstadt and Felleisen [27])
through the complete monitoring property [8]. Aside from an obvious difference
in the choice of control operators, our calculus has finer-grained control over
how typed and untyped parts can be mixed: e.g., a function of type int → �
cannot be expressed in Takikawa et al. because there are only fully typed and
fully untyped modules. We also define a CPS transformation for our calculus,
and investigate the relationship between our calculus and the CPS transforma-
tion. Although shift and reset can be implemented by using control operators in
Racket [15], it is not very clear whether their contract system can simulate our
casts for function types with answer types naturally.

206 T. Sekiyama et al.

7 Conclusion

We have proposed a new cast-based mechanism to monitor all communications
between typed and untyped code in the presence of shift/reset. It is inspired by
Danvy and Filinski’s type system. To justify the design of our cast semantics, we
have defined a simply typed blame calculus with shift/reset and shown the Blame
Theorem and soundness of the CPS transformation. We have found additional
axioms for the equational system in the target language in proving the soundness.

There are many directions for future work. First is an extension of our blame
calculus with refinement types. Effects in refinements are obviously problem-
atic. One possible solution would be to restrict refinements to be pure. It is
interesting to investigate how such purity restriction can be relaxed. Second is
to apply succeeding work about blame calculi, such as space-efficiency [16] and
parametricity [1], to our calculus. In particular, an extension with parametric-
ity would be challenging because it is not clear how control operators and the
ν-operator interact with each other. Finally, we would like to develop a contract
system corresponding to our calculus and to inspect more detailed relationship
to the contract system of Takikawa et al.

Acknowledgments. We would like to thank Matthias Felleisen, Robby Findler, Philip
Wadler, and anonymous reviewers of APLAS 2015 for valuable comments. This work
was supported in part by Grant-in-Aid for Scientific Research (B) No. 25280024 from
MEXT of Japan. The title is derived from that of a paper by Kameyama, Kiselyov,
and Shan [17].

References

1. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: Proceedings of
ACM POPL, pp. 201–214 (2011)

2. Asai, K., Kameyama, Y.: Polymorphic delimited continuations. In: Shao, Z. (ed.)
APLAS 2007. LNCS, vol. 4807, pp. 239–254. Springer, Heidelberg (2007)

3. Asai, K., Kameyama, Y.: Polymorphic delimited continuations. CS-TR-07-10,
Department of Computer Science, University of Tsukuba (2007)

4. Bonnaire-Sargeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for Clojure (unpublishded draft)

5. Danvy, O., Filinski, A.: A functional abstraction of typed contexts. 89/12, DIKU,
University of Copenhagen (1989)

6. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Program-
ming, pp. 151–160 (1990)

7. Dariusz Biernacki, O.D., Millikin, K.: A dynamic continuation-passing style for
dynamic delimited continuations. Research Series RS-06-15, BRICS, DAIMI (2006)

8. Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.: Complete monitors for behavioral
contracts. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 214–233. Springer, Heidelberg (2012)

9. Dybvig, R.K., Jones, S.L.P., Sabry, A.: A monadic framework for delimited con-
tinuations. J. Funct. Program. 17(6), 687–730 (2007)

Shifting the Blame 207

10. Felleisen, M.: The theory and practice of first-class prompts. In: Proceedings of
ACM POPL, pp. 180–190 (1988)

11. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Sci. 103(2), 235–271 (1992)

12. Filinski, A.: Representing monads. In: Proceedings of ACM POPL, pp. 446–457
(1994)

13. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of ACM ICFP, pp. 48–59 (2002)

14. Flanagan, C.: Hybrid type checking. In: Proceedings of ACM POPL, pp. 245–256
(2006)

15. Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding delimited and composable
control to a production programming environment. In: Proceedings of ACM ICFP,
pp. 165–176 (2007)

16. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. In: Trends in
Functional Programming (2007)

17. Kameyama, Y., Kiselyov, O., Shan, C.: Shifting the stage: staging with delimited
control. In: Proceedings of ACM PEPM, pp. 111–120 (2009)

18. Kameyama, Y., Yonezawa, T.: Typed dynamic control operators for delimited con-
tinuations. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol.
4989, pp. 239–254. Springer, Heidelberg (2008)

19. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of ACM Annual Conference, pp. 717–740 (1972)

20. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
Lisp Symbolic Comput. 6(3–4), 289–360 (1993)

21. Shan, C.: Shift to control. In: Scheme and Functional Programming Workshop, pp.
99–107 (2004)

22. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop, pp. 81–92 (2006)

23. Siek, J.G., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

24. Siek, J.G., Wadler, P.: Threesomes, with and without blame. In: Proceedings of
ACM POPL, pp. 365–376 (2010)

25. Sitaram, D.: Handling control. In: Proceedings of ACM PLDI, pp. 147–155 (1993)
26. Takikawa, A., Strickland, T.S., Tobin-Hochstadt, S.: Constraining delimited con-

trol with contracts. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 229–248. Springer, Heidelberg (2013)

27. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to pro-
grams. In: Dynamic Language Symposium, pp. 964–974 (2006)

28. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
scheme. In: Proceedings of ACM POPL, pp. 395–406 (2008)

29. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Dynamic Language Symposium, pp. 45–56 (2014)

30. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)

31. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

Aliasing Control in an Imperative Pure Calculus

Marco Servetto1(B) and Elena Zucca2

1 Victoria University of Wellington, Wellington, New Zealand
marco.servetto@ecs.vuw.ac.nz

2 DIBRIS, Università di Genova, Genoa, Italy
elena.zucca@unige.it

Abstract. We present an imperative object calculus where types are
annotated with two modifiers for aliasing control. The lent modifier pre-
vents objects to be aliased, whereas the capsule modifier characterizes
expressions that will reduce to isolated portions of store. There are two
key novelties w.r.t. similar proposals. First, the expressivity of the type
system is greatly enhanced by promotion and swapping rules. The former
recognizes as capsule an expression which only uses external references
as lent. The latter allows a lent reference to be freely aliased, if all the
other references are regarded as lent. Second, execution is modeled in
a pure setting, where it is simpler to understand alias control. That is,
properties of modifiers can be directly expressed on source terms, rather
than as invariants on an auxiliary structure which mimics physical mem-
ory. Formally, this is achieved by the block construct, introducing local
variable declarations, which play the role of store when evaluated.

1 Introduction

In mainstream languages with state and explicit mutations, unwanted aliasing
relations are common bugs. This is exasperated by concurrency mechanisms,
since unpredicted aliasing can induce unplanned/unsafe communication points
between threads.

For this reasons, in the recent years a massive amount of research has been
devoted to make programming with side-effects easier to maintain and under-
stand, notably using type modifiers to control object mutation. Here we focus
on two type modifiers: lent (preventing objects to be aliased) and capsule
(characterizing expressions that will reduce to isolated portions of store) which
have been previously introduced in the literature. However, original proposals
[1,10] were not flexible enough, and later variations [12,19] sacrificed a part of
safety allowing programmers to relax the constraints on different object sub-
graph branches.

The type system proposed in this paper, instead, sticks to full safety: our
modifiers constrain the full reachable object graph, allowing simpler reason-
ing. On the other hand, we avoid the rigidity of original approaches and achieve

This work has been partially supported by MIUR CINA -Compositionality, Interac-
tion, Negotiation, Autonomicity for the future ICT society.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 208–228, 2015.
DOI: 10.1007/978-3-319-26529-2 12

Aliasing Control in an Imperative Pure Calculus 209

expressiveness by promotion and swapping rules. The former recognizes as
capsule an expression which only uses external references as lent. The lat-
ter allows a lent reference to be freely aliased, if all the other references are
regarded as lent. The idea of promotion is similar to the idea of recovery in [9],
while the idea of swapping is novel and greatly boosts the expressiveness of
promotion/recovery.

Moreover, we differ from former works on type modifiers since they rely on
a conventional encoding of a program state as an expression coupled with a
flat auxiliary structure called store or memory. In this model, typing the store
is crucial to show the correctness of the approach. However, when modularly
typechecking a subterm of an expression, the information about how the whole
expression and the store interact is lost. That is, it is hard to know whether
a certain memory location is used only locally in the currently typechecked
subterm or is aliased somewhere else.

To avoid this problem, we have introduced an innovative model for imperative
languages [5,16], which, differently from traditional execution models, is a pure
calculus. That is, execution is modeled by just rewriting source code terms, in
the same way lambda calculus models functional languages.

The main idea is to use local variable declarations, as in the let construct, to
directly represent memory. For instance, in the following code, where we assume
a class B with a field of type B:

B x= new B(y) B y= new B(x) y

the two declarations can be seen as a store where x denotes an object of class B

whose field is y, and conversely. Moreover, store is hierarchical, rather than flat
as it usually happens in models of imperative languages. This is shown in the
example below, where we assume a class D with an integer field, and a class A

with two fields of type B and D, respectively.

D z= new D(0)

A w= (B x= new B(y) B y= new B(x) A u= new A(x,z) u)

w

Here, the store associates to w a block introducing local declarations, that is, in
turn a store1. The advantage of this representation is that it models in a simple
and natural way constraints about aliasing among objects, notably:

– the fact that an object is not referenced from outside some enclosing object is
directly modeled by the block construct: for instance, the object denoted by
y can only be reached through w

– conversely, the fact that an object does not refer to the outside is modeled by
the fact that the corresponding block is closed (that is, has no free variables):
for instance, the object denoted by w is not closed, since it refers to the external
object z.

In other words, our calculus smoothly integrates memory representation with
shadowing and α-conversion.
1 In the examples, we omit for readability the brackets of the outermost block.

210 M. Servetto and E. Zucca

In this paper, we propose, on top of the calculus, a simple, yet powerful,
type system for aliasing control, where types are possibly decorated by the two
modifiers mentioned in the beginning.

The lent modifier prevents (any subcomponent of) an object to be assigned
to external object’s fields, and conversely. In other words, no alias to an object
can be introduced by using a lent reference, which, however, does not prevent
the object from being mutated.2 The capsule modifier characterizes expressions
that will reduce to isolated portions of store. In order to preserve this property,
a capsule reference can be used only once. That is, uniqueness is guaranteed by
linearity, rather than by destructive reads as in [4,9]. The type system achieves
expressivity by the promotion and swapping rules mentioned above. The fact
that object graph topologies are directly formalized in syntactic way allows a
simple statement and proof of the capsule property.

The rest of the paper is organized as follows: we provide syntax and type
system in Sect. 2, examples in Sect. 3, reduction rules in Sect. 4, results in Sect. 5,
comparison with related work in Sect. 6, and some conclusion and pointer to
further work in Sect. 7.

2 Syntax and Type System

Syntax, types, and type contexts are given in Fig. 1. We assume sets of variables
x, y, z, . . . , class names C, field names f, and method names m. We adopt
the convention that a metavariable which ends by s is implicitly defined as a
(possibly empty) sequence, for example, xs is defined by xs ::= ε | x xs and xss
is defined by xss ::= ε | xs xss, where ε denotes the empty string.

cd ::= class C {fds mds} class declaration
fd ::= C f field declaration
md ::= T m μ (T1 x1, . . . ,Tn xn) {return e} method declaration
e ::= x | e.f | e.m(es) | e.f = e′ | new C(es) | (ds e) expression
d ::= T x =e variable declaration
dv ::= T x =rv evaluated declaration
rv ::= new C(xs) | (dvs v) right value
v ::= x | rv value (object)
T ::= μC type
μ ::= capsule | lent | ε optional type modifier
Δ ::= Γ ; xss type context
Γ ::= T1 x1 . . .Tn xn type assignment

Fig. 1. Syntax, types, and type contexts

2 More precisely, lent references can be temporarily aliased, e.g., when passed as
parameter of a method, but cannot be stored within other objects. That is, aliasing
here means static aliasing in the sense of [10].

Aliasing Control in an Imperative Pure Calculus 211

The syntax mostly follows Java and Featherweight Java (FJ) [11]. A class
table cds is a sequence of class declarations, each one consisting of a class name,
a sequence of field declarations and a sequence of method declarations. A field
declaration consists of a class name and a field name. A method declaration
consists, as in FJ, of a return type, a method name, a list of parameter names
with their types, and a body which is an expression. However, there is an addi-
tional optional component: the type modifier for this, which, if present, is placed
before the method name. As in FJ, we assume for each class a canonical con-
structor whose parameter list exactly corresponds to the class fields. We assume
no multiple declarations of classes in a class table, fields and methods in a class
declaration.

An expression can be a variable (including the special variable this denoting
the receiver in a method body), a field access, a method invocation, a field
assignment, a constructor invocation and a block consisting of a sequence of
variable declarations and a body. A variable declaration consists of a type, a
variable and an initialization expression. We assume no multiple declarations
for variables in a block, that is, ds can be seen as a map from variables into
declarations, and we use the notation dom(ds) and ds(x).

A sequence dvs of evaluated declarations plays the role of the store in con-
ventional models of imperative languages, that is, each dv can be seen as an
association of a right value to a variable. Right values can be either object states,
of shape new C(xs), or block values, that is, blocks where all declarations have
been evaluated, and the body is (recursively) a value. The latter case allows the
store to be hierarchical.

A value is the final result of the reduction of an expression3, and is either a
variable (a reference to an object), or an object state, or a block value. A closed
expression is expected to reduce to a closed value.

An object state new C(xs) represents an elementary allocation unit, and can
be considered as a shorter form4 for a block (C x =new C(xs) x). Hence, a block
value has shape (dvs1 (. . . (dvsn x) . . .)), for n ≥ 0. We call x the root of the
value, and we assume that in well-formed block values it is bound in some dvsi.

There are two important well-formedness constraints on expressions:

1. In a block (T1 x1 =e1 . . .Tn xn =en e), forward references, that is, occurrences
of xj in ei for j ≥ i, are only allowed if the declaration of xj is evaluated,
that is, of shape Tj xj =rv. Hence, mutual recursion is only allowed among
evaluated declarations, e.g., (C x= new C(x) x) is allowed, whereas (C x= x.f

x), (C x= (x) x) and (C x= x.m() x) are not. Allowing general recursion
would require a sophisticated type system5, as in [17], but this is not the
focus of this paper.

2. Variables of capsule types can occur at most once in their scope. Indeed,
a capsule variable is a temporary reference, to be used once and for all to

3 Reduction rules will be given in Sect. 4.
4 As will be formalized by congruence rule (new) in Sect. 4.
5 To avoid access to objects not initialized yet as in the example.

212 M. Servetto and E. Zucca

“move” a capsule object (an isolated portion of store) to another location in
the store, as will be formalized in Sect. 4.6

A type consists in a class name possibly decorated by a type modifier which
can be either capsule or lent. A capsule expression is expected to reduce
to a capsule object, that is, an object with no references from/to the outside7,
whereas a lent expression cannot be used in an assignment, or as constructor
argument. A type consisting of a class name with no modifier is called a standard
type. Note that fields have standard types.8

A type context consists of a usual assignment of types to variables Γ , and an
additional component xss = xs1 . . . xsn which models aliasing constraints, as will
be detailed below. We assume that Γ , xss, and each xsi are sets (that is, order
and repetitions are immaterial), and we use ∅ for the empty set. Moreover, as
usual, Γ is a partial function from variables to types (that is, no variable occurs
more than once). Finally, the sets xs1 . . . xsn are disjoint, and their elements are
variables of standard type in the domain of Γ , hence they describe a partition
of such variables in n + 1 sets, called groups, one being the set of those not
belonging to any xsi, called the current group. To simplify typing rules, type
contexts are identified modulo the following equivalence: a type context with a
lent variable in the domain of Γ is equivalent to one where such variable has
the corresponding standard type in Γ and is contained in a singleton set in xss.

The subtyping relation is the reflexive and transitive relation on types
induced by

capsuleC ≤ C ≤ lentC

However, the (t-capsule) rule can be used to move the type of an expression
against the subtype hierarchy, that is, to promote an expression of standard type
to the corresponding capsule type.

Information extracted from the class table is modeled, as usual, by the fol-
lowing functions:

– fields(C) gives, for each declared class C, the sequence of its fields declarations
– mbody(C,m) gives, for each method m declared in class C, the pair 〈x1 . . . xn, e〉

consisting of the sequence of its parameters, and its body9

– mtype(C,m) gives, for each method m declared in class C, the triple
〈T, μ,T1 . . .Tn〉 consisting of its return type, type modifier for this, and
parameter types.

6 See rule (capsule-elim). Note that, correspondingly, the association of a right value
to a capsule variable is not kept in the store, formally there is no such case in the
production for dv.

7 This notion will be formalized in Sect. 4.
8 It is not straightforward to soundly apply capsule and lent on fields. We plan to

present such extensions in future work, whereas the current paper is focused on
promotion and swapping.

9 This function will be used in Sect. 4.

Aliasing Control in an Imperative Pure Calculus 213

Of course, we assume a well-typed class table, that is, method bodies are expected
to be well-typed w.r.t. the corresponding method type. Formally, if mtype(C,m) =
〈T, μ,T1 . . .Tn〉, then it should be

mbody(C,m) = 〈x1 . . . xn, e〉, and Γ ; ∅ � e : T, with
Γ = μC this T1 x1 . . .Tn xn.

The typing judgment has shape Γ ; xss � e : T, meaning that expression e has
type T under the type assignment Γ , and introduces no alias between (portions
of store reachable from) the groups described by xss. More precisely, variables
in the current group can be freely used, whereas variables in other groups are
lent-locked, that is, can only be used as lent. A group of lent-locked variables is
introduced by applying the promotion rule (t-capsule), and can be unlocked,
becoming the current group, by applying the swapping rule (t-swap), as will be
explained in detail in the sequel. Typing rules are given in Fig. 2.

(t-capsule)
Γ ; xss (xs\xss) � e : C

Γ ; xss � e : capsuleC
domstd(Γ) = xs

(t-swap)
Γ ; xss (xs′\xss\xs) � e : μC

Γ ; xss xs � e : μ′ C

domstd(Γ) = xs′

μ′ =

{
lent if μ = ε

μ otherwise

(t-sub)
Δ � e : T

Δ � e : T′ T ≤ T′
(t-var)

Γ ; xss � x : μ′ C

Γ (x) = μC

μ′ =

{
lent if x ∈ xss

μ otherwise

(t-field-access)
Δ � e : μC

Δ � e.f : μCi

fields(C) = C1 f1 . . .Cn fn
f = fi

(t-meth-call)
Δ � ei : Ti ∀i ∈ 0..n

Δ � e0.m(e1, . . . , en) : T

T0 = μC
mtype(C,m) = 〈T, μ,T1 . . .Tn〉

(t-field-assign)
Δ � e : C Δ � e′ : Ci

Δ � e.f = e′ : Ci

fields(C) = C1 f1 . . .Cn fn
f = fi

(t-new)
Δ � ei : Ci ∀i ∈ 1..n

Δ � new C(e1, . . . , en) : C
fields(C) = C1 f1 . . .Cn fn

(t-block)
Γ [Γ ′]; xss � ei : Ti ∀i ∈ 1..n Γ [Γ ′]; xss � e : T

Γ ; xss � (T1 x1 =e1 . . .Tn xn =en e) : T
Γ ′ = T1 x1 . . .Tn xn

Fig. 2. Typing rules

Rule (t-capsule) states that an expression can be promoted to capsule if
it can be typed by lent-locking all its free variables (which were not lent-locked

214 M. Servetto and E. Zucca

yet). Formally, a new group is added to xss. We denote by domstd(Γ) the set of
variables of standard type in Γ , and we write, by abuse of notation, xs\xss for
xs\xs1 . . . \xsn if xss = xs1 . . . xsn.

By rule (t-swap), a group xs of lent-locked variables becomes the current
group, by swapping this set with the current group, that is, the standard variables
(xs′) which are not lent-locked. The type obtained in this way is weakened to
lent, if it was standard.

Other rules are mostly standard, apart that they model the expected behav-
iour of type modifiers. Notably, in rule (t-var), the type modifier of a variable
is weakened to lent if the variable belongs to some set in xss. In rule (t-field-
access), the type modifier is propagated to fields. For instance, fields of a lent
object are lent as well. In rule (t-field-assign), neither the left-hand nor the
right-hand side expressions can be lent. In rule (t-new), analogously, expres-
sions assigned to fields cannot be lent.

In rule (t-block), we write Γ [Γ ′] for the concatenation of Γ and Γ ′ where,
for the variables occurring in both domains, Γ ′ takes precedence.

3 Examples

In this section we illustrate the type system by examples. We first provide some
simple examples showing, in particular, how promotion and swapping rules work.
Then, we present some more application oriented examples which motivate the
usefulness of our modifiers. Finally, we motivate the fact that lent-locked vari-
ables are organized in groups.

In the examples, for sake of readability, we feel free to use additional con-
structs, such as primitive types, static methods and while loops. Moreover, we
generally omit the brackets of the outermost block, and abbreviate (T x =e e′)
by e;e′ when x �∈ FV(e′), with FV(e) the set of the free variables of e.

Consider the following term:

D z= new D(0)

capsule C x= (D y= new D(z.f+1) new C(y,y))

x

The inner block (right-hand side of the declaration of x) can be typed capsule,
since the free variable z is only used in a field access, hence it can be seen as
lent. Formally, we can apply rule (t-capsule) with xs = z. Indeed, the block
reduces10 to (D y= new D(1) C x = new C(y,y) x) which is a capsule. As a
counterexample, consider the following term:

D z= new D(0)

capsule C x= (D y= z new C(y,y)) //ill -typed

x

Here the inner block cannot be typed capsule, since z is internally aliased.
Formally, we cannot apply (t-capsule) on the block, since we should typecheck

10 As will be formalized in Sect. 4.

Aliasing Control in an Imperative Pure Calculus 215

the block with z lent-locked, while (t-block) requires D as type of z. Indeed,
the block reduces to (new C(z,z)) which is not a capsule.

The rule (t-field-assign) requires both e and e′ to have standard type. So,
how is it possible to modify (the object denoted by) a lent reference? Consider
the following simple example:

lent D z= new D(0)

z.f=z.f+1

This is well-typed code, since it is possible to use rule (t-swap) to type the
expression z.f=z.f+1. Indeed, by the assumed equivalence on type contexts, z:
lent D , ∅ is just another representation for z: D, {z}. Hence, we can swap the
singleton group z of lent-locked variables with the empty set.

Moreover, swapping can be applied to achieve promotion. Consider the fol-
lowing variant of the first example:

D z= new D(0)

capsule C x= (D y= new D(z.f=z.f+1) new C(y,y))

x

As in the first example, the inner block can be typed capsule, by lent-locking
free variable z. However, now the execution modifies the content of z, and rule
(t-swap) is used to typecheck z.f=z.f+1.

The next example shows how a programmer can declare lent references to
achieve promotion. The class Reader below models reading information about
customers out of a text file formatted as shown in the example:

Bob

1 500 2 1300

Mark

42 8 99 100

That is, in even lines we have customer names and in odd lines we have a shop
history, that is, a sequence of product codes.

class Reader {

static capsule Customer readCustomer(lent Scanner s){

Customer c=new Customer(s.nextLine ())

while(s.hasNextNum ()){

c.addShopHistory(s.nextNum ())

}

return c //ok, capsule promotion here

}

}

The method readCustomer takes a lent Scanner, assumed to be a class similar
to the one in Java, for reading a file and extracting different kinds of data. A
Customer object is read from the file, and then its shop history is added. Since the
scanner is declared lent, and there are no other parameters, by promotion the
result can be declared capsule. Note that lent is essential here to express
the intention of not mixing the data of the scanner with the result. Previous

216 M. Servetto and E. Zucca

work offers cumbersome solutions requiring the programmer to manually handle
multiple initialization phases like “raw” and “cooked” [20].

Now we show how we can “open” capsules, modify their values and then recover
the original capsule guarantee. To do so, we show a method updateCustomer that
takes an old customer (as capsule) and a lent Scanner as before.

class Reader {...//as before

static capsule Customer updateCustomer(

capsule Customer old ,lent Scanner s){

Customer c=old//here we open the capsule ‘old’

while(s.hasNextNum ()){

c.addShopHistory(s.nextNum ())

}

return c //ok, capsule promotion here

}

}

Every method that does not take mutable parameters can use the pattern illus-
trated above: one (or many) capsule parameters are opened (that is, assigned to
mutable local variables) and, in the end, the result is guaranteed to be again a
capsule. This mechanism is not possible in [1,6,8] and relies on destructive reads
in [9].

Finally, we show the code of Scanner itself, and how swapping can be used
to update the fields of a lent scanner in a safe way.

class Scanner{

InputStream stream;

String nextLine (){...}

bool hasNextNum (){...}

int nextNum (){...}

}

lent Scanner s=...

InputStream stream1 =...

capsule InputStream stream2 = ...

//s.stream=stream1 //(a) wrong

s.stream=new InputStream("www. ...") //(b) ok, swapping

s.stream=stream2 //(c) ok, swapping

In our type system, a lent reference can be regarded as standard, if all the
standard references are regarded as lent, as formally modeled by rule (t-swap).
This mechanism is similar to viewpoint adaptation as in [8].

This can be trivially applied to the line (b), where s is the only free variable,
and to the line (c), where the other free variable is declared capsule. In the line
(a), instead, swapping would assign a lent type to stream1.

We conclude the section by an example showing that promotions can be
nested, hence lent-locked variables must be organized in groups. Consider the

Aliasing Control in an Imperative Pure Calculus 217

following code, where implementation of A is omitted to emphasize that only
type information provided by modifiers is significant.11

class A{...

A mix(A a2){...}

//a1.mix(a2) inserts a2 in the reachable object graph

// of a1 and returns a1

capsule A clone lent (){...}

//a.clone () returns a capsule clone of a

static A parse (){...} //A.parse () reads an A from input

}

A a1= A.parse () // outside of promotions

capsule A outerA =(//outer promotion here

A a2= A.parse ()// inside outer promotion

capsule A nestedA =(// nested promotion here

A a3= A.parse()// inside nested promotion

A res= ???

res.mix(a3)//this is promoted and assigned to nestedA

)

nestedA.mix(a2)//this is promoted and assigned to outerA

)

...// program continues here , using outerA as capsule

The question is, what can we write instead of ???, and why. Clearly, (1) a3 is
allowed, while (2) a1 and a2 are not. However, (3) a1.clone() and a2.clone()

are allowed.
In the same way, (4) a2.mix(a2).clone() is allowed, as well as a1.mix(a1).

clone().
However, when we start mixing different variables, things become trickier. For

example, (5) a2.mix(a1).clone()) is not well-typed in our type system. Indeed,
even though, thanks to cloning, mixing a2 and a1 does not compromise the cap-
sule well-formedness of nestedA (that is, nested promotion can be safely applied),
the fact that a2 and a1 are mixed could compromise the capsule well-formedness
of outerA when outerA is computed (that is, outer promotion would be unsafe).

In summary, mixing as lent-locked for different promotions must be avoided.
Rule (t-swap) swaps one set with another, thus keeping them distinct.

This last example illustrates many of the differences w.r.t. the type system
proposed in [9], whose notion of recovery is similar to our promotion, but less
expressive. Their system allows (1), and rejects (2) and (5), as ours. However,
they conservatively rejects (3) and (4), since the flow is not tracked at a fine
enough granularity. Depending on the concrete application, programmers may
need to work around the limitations of [9] by reordering local variables, intro-
ducing stricter type modifiers or, in general, re-factoring their code. However,
there may be cases where there is no possible reordering.

11 Recall that, in the declaration of clone, lent is the modifier of the receiver, that is,
the method takes the receiver as lent.

218 M. Servetto and E. Zucca

4 Calculus

Evaluation contexts, expressing standard left-to-right evaluation, are defined in
Fig. 3, where we report values as well for reader’s convenience. We write FV(e)
and FV(ds) for the free variables of an expression and a sequence of declarations,
respectively (the standard formal definition is omitted).

dv ::= C x =rv evaluated declaration
rv ::= new C(xs) | (dvs v) right value
v ::= x | rv value (object)
E ::= [] | E .f | E .m(es) | x.m(xs, E , es) | E .f = e′ | x.f = E evaluation context

| new C(xs, E , es) | (dvs T x =E ds e) | (dvs E)

Fig. 3. Values and evaluation contexts

Semantics is defined by a congruence relation, which captures structural
equivalence, and a reduction relation, which models actual computation, sim-
ilarly to what happens, e.g., in π-calculus [13].

The congruence relation, denoted by ∼= , is defined as the smallest congruence
satisfying the axioms given in Fig. 4. Rule (alpha) is the usual α-conversion.
The condition x, y �∈ dom(ds ds′) is implicit by well-formedness of blocks.

By the following two rules we can manipulate the declarations in a block.
Rule (reorder) states that we can move evaluated declarations first, in an
arbitrary order. Informally, this is safe since they have no longer side effects. Rule
(garbage) states that we can remove (or, conversely, add) a useless sequence
of evaluated declarations from a block. Note that it is only possible to safely
remove/add declarations which are evaluated, since, otherwise, their evaluation
could have side effects.

By the following two rules we can eliminate and introduce blocks. Rule (elim)
states the obvious fact that a block with no declarations is equivalent to its
body. In rule (new), a constructor invocation can be seen as an elementary
block where a new object is allocated. Note that, differently from what happens
in traditional models with memory, x is an arbitrary variable, not required to
be fresh. However, if x is moved outside of the block by applying other congru-
ence rules, α-conversion is needed to avoid conflicts. Note also that the fields
refer to external objects, hence the new object is not a capsule, differently from
approaches providing shallow uniqueness, where freshly created objects have a
unique/fresh type [3]. In our approach, instead, capsule prevents aliasing of the
whole reachable object graph, and capsules are only obtained using promotions.

By the remaining rules we can move a sequence of declarations from a block
to the directly enclosing block, or conversely, as it happens with rules for scope
extension in the π-calculus [13].

In the first two rules, (body) and (rhs), the inner block is the body, or the
right-hand side of a declaration, respectively, of the enclosing block. The side

Aliasing Control in an Imperative Pure Calculus 219

(alpha)
(ds T x =e ds′ e′) ∼= (ds T y =e ds′ e′)[y/x]

(reorder)
(ds T x =rv ds′ e) ∼= (T x =rv ds ds′ e)

(garbage)
(dvs ds e) ∼= (ds e)

FV((ds e))∩dom(dvs) = ∅

(elim)
(e) ∼= e

(new)
new C(es) ∼= (C x =new C(es) x)

(body)
(ds (ds1 ds2 e)) ∼= (ds ds1 (ds2 e))

FV(ds1) ∩ dom(ds2) = ∅
FV(ds) ∩ dom(ds1) = ∅

(rhs)
(dsT x=(ds1 ds2 e) ds′ e′) ∼= (ds ds1 Tx=(ds2 e) ds

′ e′)
FV(ds1)∩dom(ds2) = ∅
FV(ds ds′)∩dom(ds1) = ∅

(field-access-rcv)
(ds e).f ∼= (ds e.f)

(invk-rcv)
(ds e).m(es) ∼= (ds e.m(es))

FV(es) ∩ dom(ds) = ∅

(invk-arg)
e.m(es, (dvs e′), es′) ∼= (dvs e.m(es, e′, es′))

FV(e, es, es′) ∩ dom(dvs) = ∅

(field-assign-left)
(ds e).f = e′ ∼= (ds e.f = e′)

FV(e′) ∩ dom(ds) = ∅

(field-assign-right)
e.f = (dvs e′) ∼= (dvs e.f = e′)

FV(e) ∩ dom(dvs) = ∅

(new-arg)
new C(es, (dvs e), es′) ∼= (dvs new C(es, e, es′))

FV(es, es′) ∩ dom(dvs) = ∅

Fig. 4. Congruence rules

conditions ensure that the declarations can be safely moved. More precisely:
the former prevents from moving outside a declaration which depends on local
variables of the inner block. Conversely, the latter prevents from moving inside a
declaration which is used by other declarations of the enclosing block. Note that
both these conditions cannot be obtained by α-conversion. Moreover, note that
the conditions dom(ds1)∩dom(ds2) = ∅ and dom(ds1)∩dom(ds) = ∅ (dom(ds1)∩
dom(ds ds′) = ∅ in the second rule) are implicit from well-formedness of blocks.

The other rules handle the cases when the inner block is a direct subterm
of a field access, method invocation, field assignment or constructor invoca-
tion. In all such cases, the action to be executed is propagated to the body
of the block, within the scope of the declarations. Hence, we must avoid cap-
ture of free variables, as specified by the side conditions of the rules, which
can be always obtained by α-renaming. Moreover, as in rules (reorder) and

220 M. Servetto and E. Zucca

(ctx)
e −→ e′

E [e] −→ E [e′]
(congr)

e1 −→ e

e2 −→ e

e1 ∼= e2
� e1 : T
� e2 : T

(field-access)
(dvs E [x.f]) −→ (dvs E [y])

dvs(x) = μC x =rv
x �∈ HB(E), y �∈ HB(E)
fields(C) = C1 f1 . . .Cn fn and f = fi
get(rv, i) = y and y ∈ FV(rv)

(invk)
(dvs E [x.m(xs)]) −→ (dvs E [e[x/this][xs/ys]])

dvs(x)=μC x =rv
x �∈ HB(E), xs ∩ HB(E)=∅
mbody(C,m)=〈ys, e〉

(field-assign)
(dvs E [x.f = y]) −→ (dvs[x=rv′] E [y])

dvs(x) = μC x =rv
x �∈ HB(E), y �∈ HB(E)
fields(C)=C1 f1 . . .Cn fn and f=fi
set(rv, i, y) = rv′

(dec)
(dvs e) −→ (dvs′ e′)

(dvs μC x =e ds e′′) −→ (dvs′ μC x =e′ ds e′′)

(alias-elim)
(dvs μC x =y ds e) −→ (dvs ds e)[y/x]

(capsule-elim)
(dvs capsuleC x =rv ds e) −→ (dvs ds e)[rv/x]

Fig. 5. Reduction rules

(garbage) above, we must preserve the evaluation order, hence in some cases
declarations are required to be evaluated, that is, to have no longer side effects.

Reduction rules are given in Fig. 5. We write e[e′/x] for the expression obtained
by replacing all (free) occurrences of x in e by e′, and HB(E) for the hole binders
of E , that is, the variables declared in blocks enclosing the context hole. The
standard formal definition is omitted.

The most interesting reduction rules are those for reading/assigning a field,
so we first illustrate these rules in detail, also providing examples, then explain
the others.

In rule (field-access), given a field access of shape x.f, the first enclosing
declaration for x is found (side condition x �∈ HB(E) ensures that it is the first),
and fields of the class C of x are retrieved from the class table. If f is actually
the name of a field of C, say, the i-th field, then the field access is reduced to
the reference y stored in this field. The function get returning the i-th field of a
right value is defined below (The auxiliary function auxGet also returns the root
of a value.)

– get(new C(x1, . . . , xn), i) = xi
– get((dvs v), i) = y if auxGet((dvs v), i) = 〈x, y〉

Aliasing Control in an Imperative Pure Calculus 221

– auxGet(x, i) = 〈x,⊥〉
– auxGet((dvs v), i) =

{
〈x, y〉 if auxGet(v, i) = 〈x,⊥〉, get(dvs(x), i) = y

auxGet(v, i) otherwise

The side condition y �∈ HB(E) ensures that there are no inner declarations
for y (otherwise y would be erroneously bound), and can be always obtained
by α-renaming. For instance, assuming a class table where class A has an int f

field, and class B has an A f field, the term

A a= new A(0) B b= new B(a) (A a= new A(1) b.f)

is reduced to

A a= new A(0) B b= new B(a) (A a1= new A(1) a)

Note that before the reduction the outer declaration of a is hidden in the inner
scope. Using α-conversion, we get two differently named local variables a and
a1 coexisting in the same scope. The same technique allows correct execution of
recursive methods with local variables.

The side condition y ∈ FV(rv), requiring that the reference y is not locally
declared in rv, prevents scope extrusion, and can always be guaranteed by con-
gruence, that is, by applying rule (congr). For instance, without this side con-
dition, the term

B x= (A y= new A(0) B z= new B(y) z) x.f

would reduce to

B x= (A y= new A(0) B z= new B(y) z) y

Instead, we can take the equivalent term

A y= new A(0) B x= (B z=new B(y) z) x.f

which correctly reduces to

A y= new A(0) B x= (B z=new B(y) z) y

In rule (field-assign), given a field assignment of shape x.f = y, the first enclos-
ing declaration for x is found (side condition x �∈ HB(E) ensures that it is the
first), and fields of the class C of x are retrieved from the class table. If f is actu-
ally the name of a field of C, say, the i-th, then the i-th field of the right value of
x is updated to y. We write dvs[x=rv′] for the sequence of evaluated declarations
obtained from dvs by replacing the right-hand side of the declaration of x by rv′

(the obvious formal definition is omitted).
The function set returning a right value where a field has been updated is

defined below (the auxiliary function auxSet also returns the root of a value).

– set(new C(x1, . . . , xn), i, y) = new C(x1, . . . , xi−1, y, xi+1, . . . , xn)
– set((dvs v), i, y) = rv if auxSet((dvs v), i, y) = 〈x, rv〉
– auxSet(x, i, y) = 〈x,⊥〉
– auxSet((dvs v), i, y)=

{
〈x, (dvs[x=set(rv, i, y)] v)〉 if auxSet(v, i, y)=〈x,⊥〉, dvs(x)=rv

auxSet(v, i, y) otherwise

222 M. Servetto and E. Zucca

The side condition y �∈ HB(E), requiring that there are no inner declarations
for the reference y, prevents scope extrusion, and can be always guaranteed by
congruence, that is, by applying rule (congr). For instance, without this side
condition, the term

B x=new B(...) (A y=new C(0) x.f=y)

would reduce to

B x=new B(y) (A y=new C(0) y)

Rule (ctx) is the usual contextual closure. Rule (congr) states that congruence
is preserved by reduction, and can be used, as shown above, to reduce a term
which otherwise would be stuck, as it happens for α-rule in lambda calculus.
The side condition, where � e : T abbreviates ∅; ∅ � e : T, restricts congruence
to preserve types. Otherwise, for instance, (garbage) could be used to insert
some ill-typed dvs, and (body) or (rhs) could be used to move some ds1 of a
block of capsule type at an outer level.

In rule (invk), given a method invocation of shape x.m(xs), the first enclosing
declaration for x is found (side condition x �∈ HB(E) ensures that it is the first),
and method m of the class C of x is retrieved from the class table, if actually
provided. In this case, the call is reduced to the method body where this has
been replaced by (the reference to) the receiver object, and parameters have been
replaced by arguments. The side condition xs∩HB(E)=∅ ensures that there are
no inner declarations for some argument (which, otherwise, would be erroneously
bound), and can be always obtained by α-renaming.

Rule (dec) avoids the need of duplicating the above rules for field access,
method invocation and field assignment, to handle the case where they occur
in the right-hand side of a declaration, rather than in the body, of the block
containing that of the receiver object.

In rule (alias-elim), a reference x which is initialized as an alias of another
reference y is eliminated by replacing all its occurrences. In rule (capsule-
elim), a capsule reference is eliminated by replacing its (unique by assumption)
occurrence by its right value.

5 Results

We use the abbreviations e −→ for e −→ e′ for some e′, � e : T for ∅; ∅ � e : T,
and � e for � e : T for some T.

The soundness theorem states that reduction of well-typed expressions with
no free variables does not get stuck.

Theorem 1 (Soundness). If � e, and e −→� e′, then either e′ is a value, or
e′ −→.

Soundness is obtained, as usual, as a consequence of progress and subject
reduction theorems. Note that, since our operational model is a pure calculus,
in the proofs we do not need invariants on auxiliary structures such as memory.

Theorem 2 (Progress). If � e, then either e is a value, or e −→.

Aliasing Control in an Imperative Pure Calculus 223

The progress theorem is obtained as an immediate corollary of extended
progress.

Theorem 3 (Extended Progress). If Γ ; xss � e : T, then one of the following
cases holds:

1. e is a value, with FV(e) ⊆ dom(Γ)
2. e −→
3. e = E [x.f], x �∈ HB(E), and x ∈ dom(Γ)
4. e = E [x.m(xs)], x �∈ HB(E), and x ∈ dom(Γ)
5. e = E [x.f = y], x �∈ HB(E), and x ∈ dom(Γ).

Theorem 4 (Subject reduction). If Δ � e : T, and e −→ e′, then Δ � e : T.

In addition to soundness, we state that the capsule modifier actually ensures
the expected behaviour. A nice consequence of our non standard operational
model is that this can be easily formally expressed and proved, as shown below,
since a capsule is simply a closed value.

Let typectx(E) be the type context extracted from a context E , whose trivial
definition is omitted. Moreover, to trace the reduction of an expression inside a
context, let us assume that in the result E [e] of filling the hole of a context, we
can still recover the subterm e (for instance, we can replace the hole by [e], with
square brackets immaterial for reduction rules).

Lemma 1. If � E [e], typectx(E); ∅ � e : T, and E [e] −→ E ′[e′], then � E ′[e′] and
typectx(E ′); ∅ � e′ : T.

Theorem 5 (Capsule). If � E [e], typectx(E); ∅ � e : capsuleC, and E [e] −→�

E ′[v], then either v is a variable having a capsule type in typectx(E ′), or v is
closed.

Proof. We know that typectx(E ′); ∅ � v : capsuleC by Lemma 1. Set Γ ′ =
typectx(E ′). By structural induction on v.

x We can assign a capsule type to x only by rule (t-capsule) or (t-var).
However, to apply rule (t-capsule) we should assign a standard type to
x in a type context where all standard variables are lent-locked, and this
is not possible. Hence, we have applied rule (t-var), and we have Γ ′(x) =
capsuleC.

newC (xs) We can assign a capsule type to new C(xs) only by rule (t-capsule).
However, we should assign a standard type to new C(xs) in a type con-
text where all standard variables are lent-locked, whereas variables in xs are
required to have standard type. Hence new C(xs) has no free variables, that
is, xs = ε.

(dvs v) We can assign a capsule type to a block only by rule (t-capsule) or
(t-block). If we have applied rule (t-capsule), then all free variables are
required to be lent-locked. Free variables in block values only occur as values
of fields (the root variable is necessarily bound), which cannot be lent,

224 M. Servetto and E. Zucca

hence the block has no free variables. If we have applied rule (t-block),
then v has a capsule type as well, hence by inductive hypothesis v is either
a variable x having a capsule type, or v is closed. In the former case, x is
necessarily bound in dvs by well-formedness of blocks, hence cannot have a
capsule type. Hence, the latter case holds, and (dvs v) is equivalent to v by
congruence rules (garbage) and (elim). ��

6 Related Work

Our type system combines in a novel and powerful way different features existing
in previous work. Notably, the capsule notion has many variants in the literature
(external uniqueness [6], balloon [1,18], island [8]). Our meaning is essentially
that introduced in [9], that is, a capsule is a reachable object subgraph where
all non immutable nodes cannot be reached from the outside. The fact that
aliasing can be controlled by using lent (borrowed) references is well-known [14].
Our promotion is inspired to recovery [9]. However, our promotion is much more
expressive, as illustrated by the last example in Sect. 3, since external references
are not forbidden once and for all, but only restricted, by means of the lent
notion. Moreover, uniqueness is guaranteed by linearity, that is, by allowing
at most one use of a capsule reference, rather than by destructive reads as
in [4,9].12 In our approach, the capsule modifier cannot be applied to fields.
Indeed, the “only once” use of capsule local variables, ensured by linear types,
makes no sense on fields. Other approaches support field properties similar to
our capsule using destructive reads, as for example isolated in [9]. This leads
to the style of programming outlined below:

a.f=c.doStuff(a.f) //style suggested by other authors

//during execution of doStuff, ‘a.f’ is null

The object referenced by a has an isolated field f containing an object b. This
object b is passed to a client c, which can use (potentially modifying) it. A typical
pattern is that the result of such computation is a reference to b, which a can
then recover. This approach allows isolated fields, as shown above, but has also
a serious drawback: an isolated field can become unexpectedly not available (in
the example, during execution of doStuff), hence any object contract involving
such field can be broken. Instead, we introduce the lent modifier, that removes
the need of destructive reads: mutable objects can be passed to clients as lent,
in order to control aliasing behaviour. Thus, previous code can be rewritten as
follows:

c.doStuff(a.f()) //our suggested style

//doStuff takes a lent parameter

//during execution of doStuff, ‘a.f()’ is still there

This simple usage pattern of lent, if combined with capsule, allows one to
control the ownership of a subgraph. Assume for example a graph with a list
12 See [3] for another alternative to destructive reads, in a work aiming to ensure shallow

uniqueness.

Aliasing Control in an Imperative Pure Calculus 225

of nodes, and a constructor taking in input such list. In Java, in order to be
sure to control/own the list of nodes, the graph object must clone the parameter
object, since it comes from an external client environment. This solution, called
defensive cloning [2], is very popular in the Java community, but inefficient,
since it requires to duplicate the reachable object graph of the parameter, until
immutable nodes are reached. Indeed, many programmers prefer to write unsafe
code instead of using defensive cloning for efficiency reasons.

The following code establishes the ownership invariant using capsule, and
ensures that it cannot be violated using lent. Here we assume private and static
members as in Java.

class Graph{

private final ListNode nodes;

private Graph(ListNode nodes){this.nodes=nodes;}

public static Graph factory(capsule ListNode nodes){

return new Graph(nodes);}

public lent ListNode getNodes (){ return nodes ;}

}

This approach is the specular opposite of that offered by many ownership
approaches (see an overview in [8]), where to guarantee that the ownership
invariant holds when an object is created the programmer is required to inter-
nally create the representation, that is, to use defensive cloning. This leads to an
unnatural initialization strategy: first the composite objects are created, then the
leaves are initialized during the initialization process of the composite object.
The capsule modifier allows the programmer to create composite objects in
the natural way: first the leaves are created and then the composite objects are
recursively initialized by simply initializing their fields.

The choice to allow dynamic aliases [10] for lent references, but to prevent
storage within other objects (static aliasing), allows Graph instances to release the
mutation control of their nodes without permanently loosing the alias control.13

7 Conclusion

We have presented an imperative object calculus where types are annotated
with lent and capsule modifiers. The type system includes a promotion rule
to type an expression as capsule, if it can be typed by lent-locking all its vari-
ables currently available of standard type. By multiple applications of this rule,
typechecking takes place in a context where there exist many sets of lent-locked
variables, and a set of variables with standard type. The swapping rule allows
one to swap the latter set with one of the sets of lent-locked variables.

The operational model of the language is given as a pure calculus, where
aliasing properties can be directly expressed at the syntax level. To illustrate
this advantage, let us consider typing rule (t-capsule) in Fig. 2. Here we want

13 In an hypothetical extension, we would need to prevent storage also within closures
or threads.

226 M. Servetto and E. Zucca

to express that an expression e, subterm of a program, can be typed capsule if it
can modify only its local objects. Objects which are reachable from other parts of
the program, instead, can only be used as lent. In our model, objects reachable
from other parts of the program are simply those denoted by free variables in
e, whereas local objects are those denoted by local variables declared in e. In
other terms, the portion of memory only reachable from e is encoded in e itself.
In a conventional model with global memory, to express the same property, we
should, first of all, type the memory locations as well, and add invariants on the
memory to prove subject reduction. Then, we should require to use only as lent
the locations which are reachable from other parts of the program. However, this
information is lost in the global memory. To be concrete, consider the following
example:
A a= new A(...) B b=(C c=new C() c.foo())

In the conventional model, this program is reduced by first adding to the memory
two new locations, say ιa and ιc, which are then used to replace variables a and
c, respectively. We then get to execute ιc.foo(). To type this expression, we
would use the following judgement: ∅; ιa:A, ιc:C � ιc.foo():B. Here, there is no
information about how ιc is used inside the rest of the program. For example ιc
could be reachable from ιa. In our approach C c=new C() is kept in place, and
we use the following judgment: a:A � (C c=new C() c.foo()):B.

This work is part of a larger project: the development of L42, a novel pro-
gramming language designed to support massive use of libraries. Description
and prototype for the full language (in progress) can be found at L42.is. The
current L42 prototype is important as proof-of-evidence that the type system
presented in this paper can be smoothly integrated with other features of a
realistic language.

On a more foundational side, we believe that the novel pure setting presented
in this paper has a great potential of really achieving a better understanding of
aliasing. Notably, in future work, we plan to extend the type system to express
and formally verify other properties of object graphs, e.g., immutability, and
others among those proposed in the wide literature about ownership, see, e.g., [7].
As a long term goal, we also plan to investigate (a form of) Hoare logic on
top of our model. We believe that the hierarchical structure of our memory
representation should help local reasoning, allowing specifications and proofs to
mention only the relevant portion, analogously to what is achieved by separation
logic [15].

We also plan to formally state and prove behavioural equivalence of the cal-
culus with conventional imperative models. A corollary of such theorem would
be that our calculus is confluent, since conventional imperative models are deter-
ministic.

Finally, it should be possible to use our approach to enforce safe parallelism,
on the lines of [9,18].

Acknowledgement. We thank the anonymous referees for their helpful comments,
and Matthew Parkinson (author of [9]) for his help in the comparison with our work.

Aliasing Control in an Imperative Pure Calculus 227

References

1. Almeida, P.S.: Balloon types: controlling sharing of state in data types. In: Akşit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 32–59. Springer,
Heidelberg (1997)

2. Bloch, J.: Effective Java (2Nd Edition) (The Java Series), 2nd edn. Prentice Hall
PTR, Upper Saddle River (2008)

3. Boyland, J.: Alias burying: Unique variables without destructive reads. Softw.
Pract. Exper. 31(6), 533–553 (2001)

4. Boyland, J.: Semantics of fractional permissions with nesting. ACM Trans. Pro-
gram. Lang. Syst. 32(6), 1–33 (2010)

5. Capriccioli, A., Servetto, M., Zucca, E.: An imperative pure calculus. In: ICTCS
2015 - Italian Conference on Theoretical Computer Science (2015)

6. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003)

7. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: ACM Symposium on Object-Oriented Programming: Systems, Languages and
Applications 1998, pp. 48–64 (1998)

8. Dietl, W., Drossopoulou, S., Müller, P.: Generic universe types. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 28–53. Springer, Heidelberg (2007)

9. Gordon, C.S., Parkinson, M.J., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness
and reference immutability for safe parallelism. In: ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA
2012), pp. 21–40. ACM Press (2012)

10. Hogg, J.: Islands: aliasing protection in object-oriented languages. In: ACM Sym-
posium on Object-Oriented Programming: Systems, Languages and Applications
1991, pp. 271–285. ACM Press (1991)

11. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

12. Li, P., Cameron, N., Noble, J.: Cloning in ownership. In: Proceedings of the
ACM International Conference Companion on Object Oriented Programming Sys-
tems Languages and Applications Companion, OOPSLA 2011, pp. 63–66. ACM,
New York (2011)

13. Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. Cambridge
University Press, Cambridge (1999)

14. Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K.: A type system for borrowing
permissions. In: ACM Symposium on Principles of Programming Languages 2012,
pp. 557–570. ACM Press (2012)

15. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the IEEE Symposium on Logic in Computer Science 2002, pp. 5–
74. IEEE Computer Society (2002)

16. Servetto, M., Groves, L.: True small-step reduction for imperative object-oriented
languages. IN: FTfJP 2013- Formal Techniques for Java-like Programs (2013)

17. Servetto, M., Mackay, J., Potanin, A., Noble, J.: The billion-dollar fix: safe modular
circular initialisation with placeholders and placeholder types. In: Castagna, G.
(ed.) ECOOP 2013. LNCS, vol. 7920, pp. 205–229. Springer, Heidelberg (2013)

18. Servetto, M., Pearce, D.J., Groves, L., Potanin, A.: Balloon types for safe paralleli-
sation over arbitrary object graphs. In: WODET 2014 - Workshop on Determinism
and Correctness in Parallel Programming (2013)

228 M. Servetto and E. Zucca

19. Tschantz, M.S., Ernst, M.D.: Javari: adding reference immutabilityto Java. In:
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
2005), San Diego, CA, USA, October 18–20, pp. 211–230 (2005)

20. Zibin, Y., Potanin, A., Li, P., Ali, M., Ernst, M.D.: Ownership and immutability in
generic Java. In: ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA 2010), pp. 598–617 (2010)

Functional Programming and Semantics

A Strong Distillery

Beniamino Accattoli1, Pablo Barenbaum2, and Damiano Mazza3(B)

1 LIX, Inria-École Polytechnique, Palaiseau, France
beniamino.accattoli@inria.fr

2 CONICET, University of Buenos Aires, Buenos Aires, Argentina
pbarenbaum@dc.uba.ar

3 LIPN, CNRS-Université Paris 13, Sorbonne Paris Cité,Villetaneuse, France
Damiano.Mazza@lipn.univ-paris13.fr

Abstract. Abstract machines for the strong evaluation of λ-terms (that
is, under abstractions) are a mostly neglected topic, despite their use in
the implementation of proof assistants and higher-order logic program-
ming languages. This paper introduces a machine for the simplest form of
strong evaluation, leftmost-outermost (call-by-name) evaluation to nor-
mal form, proving it correct, complete, and bounding its overhead. Such
a machine, deemed Strong Milner Abstract Machine, is a variant of the
KAM computing normal forms and using just one global environment. Its
properties are studied via a special form of decoding, called a distillation,
into the Linear Substitution Calculus, neatly reformulating the machine
as a standard micro-step strategy for explicit substitutions, namely linear
leftmost-outermost reduction, i.e. the extension to normal form of linear
head reduction. Additionally, the overhead of the machine is shown to
be linear both in the number of steps and in the size of the initial term,
validating its design. The study highlights two distinguished features of
strong machines, namely backtracking phases and their interactions with
abstractions and environments.

1 Introduction

The computational model behind functional programming is the weak λ-calculus,
where weakness is the fact that evaluation stops as soon as an abstraction is
obtained. Evaluation is usually defined in a small-step way, specifying a strategy
for the selection of weak β-redexes. Both the advantage and the drawback of
λ-calculus is the lack of a machine in the definition of the model. Unsurprisingly
implementations of functional languages have been explored for decades.

Implementation schemes are called abstract machines, and usually account
for two tasks. First, they switch from small-step to micro-step evaluation, delay-
ing the costly meta-level substitution used in small-step operational semantics
and replacing it with substitutions of one occurrence at a time, when required.
Second, they also search the next redex to reduce, walking through the program
according to some evaluation strategy. Abstract machines are machines because
they are deterministic and the complexity of their steps can easily be measured,

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 231–250, 2015.
DOI: 10.1007/978-3-319-26529-2 13

232 B. Accattoli et al.

and are abstract because they omit many details of a real implementation, like
the actual representation of terms and data-structures or the garbage collector.

Historically, the theory of λ-calculus and the implementation of functional
languages have followed orthogonal approaches. The former rather dealt with
strong evaluation, and it is only since the seminal work of Abramsky and Ong [1]
that the theory took weak evaluation seriously. Dually, practical studies mostly
ignored strong evaluation, with the notable exception of Crégut [13,14] (1990)
and, more recently, the semi-strong approach of Grégoire and Leroy [23] (2002)—
see also the related work paragraph below. Strong evaluation is nonetheless essen-
tial in the implementation of proof assistants or higher-order logic programming,
typically for type-checking in frameworks with dependent types as the Edinburgh
Logical Framework or the Calculus of Constructions, as well as for unification
modulo βη in simply typed frameworks like λ-prolog.

The aim of this paper is to move the first steps towards a systematic and
theoretical exploration of the implementation of strong evaluation. Here we deal
with the simplest possible case, call-by-name evaluation to strong normal form,
implemented by a variant of the Krivine Abstract Machine. The study is carried
out according to the distillation methodology, a new approach recently introduced
by the authors and previously applied only to weak evaluation [3].

Distilling Abstract Machines. Many abstract machines can be rephrased as
strategies in λ-calculi with explicit substitutions (ES for short), see at least
[9,10,14,15,24,25]. The Linear Substitution Calculus (LSC)—a variation over
a λ-calculus with ES by Robin Milner [27] developed by Accattoli and Kesner
[2,5]—provides more than a simple reformulation: it disentangles the two tasks
carried out by abstract machines, retaining the micro-step operational semantics
and omitting the search for the next redex. Such a neat disentangling, that we
prefer to call a distillation, is a decoding based on the following key points:

1. Partitioning : the machine transitions are split in two classes. Principal tran-
sitions are mapped to the rewriting rules of the calculus, while commutative
transitions—responsible for the search for the redex—are mapped on a notion
of structural equivalence, specific to the LSC.

2. Rewriting : structural equivalence accounts both for the search for the redex
and garbage collection, and commutes with evaluation. It can thus be post-
poned, isolating the micro-step strategy in the rewriting of the LSC.

3. Logic: the LSC itself has only two rules, corresponding to cut-elimination in
linear logic proof nets. A distillation then provides a logical reading of an
abstract machine (see [3] for more details).

4. Complexity : by design, a principal transition has to take linear time in the
input, while a commutative transition has to be constant.

A distillery is then given by a machine, a strategy, a structural equivalence,
and a decoding function satisfying the above points. In bilinear distilleries, the
number of commutative transitions is linear in both the number of principal
transitions and the size of the initial term. Bilinearity guarantees that distilling
away the commutative part by switching to the LSC preserves the asymptotical

A Strong Distillery 233

behavior, i.e. it does not forget too much. At the same time, the bound on the
commutative overhead justifies the design of the abstract machine, providing a
provably bounded implementation scheme.

A Strong Distillery. Our machine is a strong version of the Milner Abstract
Machine (MAM), a variant with just one global environment of the Krivine
Abstract Machine (KAM), introduced in [3].

The first result of the paper is the design of a distillery relating the Strong
MAM to linear leftmost-outermost reduction in the LSC [5,6]—that is at the
same time a refinement of leftmost-outermost (LO) β-reduction and an extension
of linear head reduction [2,16,26] to normal form—together with the proof of
correctness and completeness of the implementation. Moreover, the linear LO
strategy is standard and normalizing [5], and thus we provide an instance of
Plotkin’s approach of mapping abstract machines to such strategies [28].

The second result is the complexity analysis showing that the distillery is
bilinear, i.e. that the cost of the additional search for the next redex specific
to the machine is negligible. The analysis is simple, and yet subtle and robust.
It is subtle because it requires a global analysis of executions, and it is robust
because the overhead is bilinear for any evaluation sequence, not necessarily to
normal form, and even for diverging ones.

For the design of the Strong MAM we make various choices:

1. Global Environment : we employ a global environment, which is in opposition
to having closures (pairing subterms with local environments), and it mod-
els a store-based implementation scheme. The choice is motivated by future
extensions to more efficient strategies as call-by-need, where the global envi-
ronment allows to integrate sharing with a form of memoization [3,18].

2. Sequential Exploration and Backtracking : we fix a sequential exploration of
the term (according to the leftmost-outermost order), in opposition to the
parallel evaluation of the arguments (once a head normal form has been
reached). This choice internalizes the handling of the recursive iterations,
that would be otherwise left to the meta-level, providing a finer study of the
data-structures needed by a strong machine. On the other hand, it forces to
have backtracking transitions, activated when the current subterm has been
checked to be normal and evaluation needs to retrieve the next subterm on the
stack. Call-by-value machines usually have a similar but simpler backtracking
mechanism, realized via an additional component, the dump.

3. (Almost) No Garbage Collection: we focus on time complexity, and thus ignore
space issues, that is, our machine does not account for garbage collection. In
particular, we keep the global environment completely unstructured, similarly
to the (weak) MAM. Strong evaluation however is subtler, as to establish a
precise relationship between the machine and the calculus with ES, garbage
collection cannot be completely ignored. Our approach is to isolate it within
the meta-level: we use a system of parenthesized markers, to delimit subenvi-
ronments created under abstractions that could be garbage collected once the
machine backtracks outside those abstraction. These labels are not inspected

234 B. Accattoli et al.

by the transitions, and play a role only for the proof of the distillation theo-
rem. Garbage collection then is somewhat accounted for by the analysis, but
there are no dedicated transitions nor rewriting rules, it is rather encapsulated
in the decoding and in the structural equivalence.

Efficiency? It is known that LO evaluation is not efficient. Improvements are
possible along three axis: refining the strategy (by turning to strong call-by-
value/need, partially done in [8,14,23]), speeding up the substitution process
(by forbidding the substitution of variables, see [7,8]), and avoiding useless sub-
stitutions (by adding useful sharing, see [6,8]). These improvements however
require sophisticated machines, left to future work.

LO evaluation is nonetheless a good first case study, as it allows to isolate the
analysis of backtracking phases and their subtle interactions with abstractions
and environments. We expect that the mentioned optimizations can be added
in a quite modular way, as they have all been addressed in the complementary
study in [8], based on the same technology (i.e. LSC and distilleries).

(Scarce) Related Work. Beyond Crégut’s [13,14], we are aware of only two other
similar works on strong abstract machines, Garćıa-Pérez, Nogueira and Moreno-
Navarro’s [22] (2013), and Smith’s [30] (unpublished, 2014). Two further studies,
de Carvalho’s [12] and Ehrhard and Regnier’s [20], introduce strong versions of
the KAM but for theoretical purposes; in particular, their design choices are
not tuned towards implementations (e.g. rely on a näıve parallel exploration
of the term). Semi-strong machines for call-by-value (i.e. dealing with weak
evaluation but on open terms) are studied by Grégoire and Leroy [23] and in a
recent work by Accattoli and Sacerdoti Coen [8] (see [8] for a comparison with
[23]). More recent work by Dénès [19] and Boutiller [11] appeared in the context
of term evaluation in Coq. These works, which do offer the nice perspective of
concretely dealing with proof assistants, are focused on quite specific Coq-related
tasks (such as term simplification) and the difference in reduction strategy and
underlying motivations makes a comparison difficult.

Of all the above, the closest to ours is Crégut’s work, because it defines an
implementation-oriented strong KAM, thus also addressing leftmost-outermost
reduction. His machine uses local environments, sequential exploration and back-
tracking, scope markers akin to ours, and a calculus with ES to establish the
correctness of the implementation. His calculus, however, has no less than 13
rewriting rules, while ours just 2, and so our approach is simpler by an order of
magnitude. Moreover, we want to stress that our contribution does not lie in the
machine per se, or the chosen reduction strategy (as long as it is strong), but in
the combined presence of a robust and simple abstraction of the machine, pro-
vided by the LSC, and the complexity analysis showing that such an abstraction
does not miss too much. In this respect, none of the above works comes with
an analysis of the overhead of the machine nor with the logical and rewriting
perspective we provide. In fact, our approach offers general guidelines for the
design of (strong) abstract machines. The choice of leftmost-outermost reduc-
tion showcases the idea while keeping technicalities to a minimum, but it is by

A Strong Distillery 235

no means a limitation. The development of strong distilleries for call-by-value
or lazy strategies, which may be more attractive from a programming languages
perspective, are certainly possible and will be the object of future work (again,
an intermediary step has already been taken in [8]).

Global environments are explored by Fernández and Siafakas in [21], and used
in a minority of works, e.g. [18,29]. We introduced the distillation technique in
[3] to revisit the relationship between the KAM and weak linear head reduction
pointed out by Danos and Regnier [16]. Distilleries have also been used in [8]. The
idea to distinguish between operational content and search for the redex in an
abstract machine is not new, as it underlies in particular the refocusing semantics
of Danvy and Nielsen [17]. The LSC, with its roots in linear logic proof nets,
allows to see this distinction as an avatar of the principal/commutative divide
in cut-elimination, because machine transitions may be seen as cut-elimination
steps [3,9]. Hence, it is fair to say that distilleries bring an original refinement
where logic, rewriting, and complexity enlighten the picture, leading to formal
bounds on machine overheads.

Omitted proofs may be found in [4].

2 Linear Leftmost-Outermost Reduction

The language of the linear substitution calculus (LSC for short) is given by the
following term grammar:

LSC Terms t, u, w, r ::= x | λx.t | tu | t[x←u].

The constructor t[x←u] is called an explicit substitution, shortened ES (of
u for x in t). Both λx.t and t[x←u] bind x in t, and we silently work modulo
α-equivalence of these bound variables, e.g. (xy)[y←t]{x←y} = (yz)[z←t].

The operational semantics of the LSC is parametric in a notion of (one-hole)
context. General contexts, that simply extend the contexts for λ-terms with the
two cases for ES, and the special case of substitution contexts are defined by:

Contexts C,C ′ ::= 〈·〉 | λx.C | Ct | tC | C[x←t] | t[x←C];
Substitution Contexts L,L′ ::= 〈·〉 | L[x←t].

The plugging C〈t〉 of a term t into a context C is defined as 〈·〉〈t〉 := t,
(λx.C)〈t〉 := λx.(C〈t〉), and so on. As usual, plugging in a context can capture
variables, e.g. ((〈·〉y)[y←t])〈y〉 = (yy)[y←t]. The plugging C〈C ′〉 of a context C ′

into a context C is defined analogously.
We write C ≺p t if there is a term u s.t. C〈u〉 = t, call it the prefix relation.
The rewriting relation is →:=→m ∪ →e where →m and →e are the multiplica-

tive and exponential rules, defined by

Rule atTopLevel Contextual closure
Multiplicative L〈λx.t〉u �→m L〈t[x←u]〉 C〈t〉 →m C〈u〉 if t �→m u

Exponential C〈x〉[x←u] �→e C〈u〉[x←u] C〈t〉 →e C〈u〉 if t �→e u

236 B. Accattoli et al.

The rewriting rules are assumed to use on-the-fly α-equivalence to avoid variable
capture. For instance, (λx.t)[y←u]y →m t{y←z}[x←y][z←u] for z /∈ fv(t), and
(λy.(xy))[x←y] →e (λz.(yz))[x←y]. Moreover, in →e the context C is assumed
to not capture x, in order to have (λx.x)[x←y]
→e (λx.y)[x←y].

The above operational semantics ignores garbage collection. In the LSC, this
may be realized by an additional rule which may always be postponed, see [2].

Taking the external context into account, an exponential step has the form
C ′〈C〈x〉[x←u]〉 →e C ′〈C〈u〉[x←u]〉. We shall often use a compact form:

Exponential Rule in Compact Form
C ′′〈x〉 →e C ′′〈u〉 if C ′′ = C ′〈C[x←u]〉

Definition 1 (Redex Position). Given a →m-step C〈t〉 →m C〈u〉 with t �→m u
or a compact →e-step C〈x〉 →e C〈t〉, the position of the redex is the context C.

We identify a redex with its position, thus using C,C ′, C ′′ for redexes, and
use d : t →k u for derivations, i.e. for possibly empty sequences of rewriting
steps. We write |t|[·] for the number of substitutions in t, and use |d|, |d|m, and
|d|e for the number of steps, m-steps, and e-steps in d, respectively.

Linear Leftmost-Outermost Reduction, Two Definitions. We give two definitions
of linear LO reduction →LO, a traditional one based on ordering redexes and a
new contextual one not mentioning the order, apt to work with LSC and relate
it to abstract machines. We start by defining the LO order on contexts.

Definition 2 (LO Order). The outside-in order C ≺O C ′ is defined by

1. Root: 〈·〉 ≺O C for every context C
= 〈·〉;
2. Contextual closure: if C ≺O C ′ then C ′′〈C〉 ≺O C ′′〈C ′〉 for any context C ′′.

Note that ≺O can be seen as the prefix relation ≺p on contexts. The left-to-right
order C ≺L C ′ is defined by

1. Application: if C ≺p t and C ′ ≺p u then Cu ≺L tC ′;
2. Substitution: if C ≺p t and C ′ ≺p u then C[x←u] ≺L t[x←C ′];
3. Contextual closure: if C ≺L C ′ then C ′′〈C〉 ≺L C ′′〈C ′〉 for any context C ′′.

Last, the left-to-right outside-in order is defined by C ≺LO C ′ if C ≺O C ′ or
C ≺L C ′.

Two examples of the outside-in order are (λx.〈·〉)t ≺O (λx.(〈·〉[y←u]))t and
t[x←〈·〉] ≺O t[x←uC], and an example of the left-to-right order is t[x←C]u ≺L

t[x←w]〈·〉. The next immediate lemma guarantees that we defined a total order.

Lemma 1 (Totality of ≺LO). If C ≺p t and C ′ ≺p t then either C ≺LO C ′

or C ′ ≺LO C or C = C ′.

A Strong Distillery 237

Remember that we identify redexes with their position context and write
C ≺LO C ′. We can now define linear LO reduction, first considered in [5], where
it is proved that it is standard and normalizing, and then in [6], extending linear
head reduction [2,16,26] to normal form.

Definition 3 (Linear LO Reduction →LO). Let t be a term. C is the leftmost-
outermost (LO for short) redex of t if C ≺LO C ′ for every other redex C ′ of t. We
write t →LO u if a step reduces the LO redex.

We now define LO contexts and prove that the position of a linear LO step
is always a LO context. We need two notions.

Definition 4 (Neutral Term). A term is neutral if it is →-normal and it is
not of the form L〈λx.t〉.

Neutral terms are such that their plugging in a context cannot create a
multiplicative redex. We also need the notion of left free variable of a context,
i.e. of a variable occurring free at the left of the hole.

Definition 5 (Left Free Variables). The set lfv(C) of left free variables of
C is defined by:

lfv(〈·〉) := ∅ lfv(tC) := fv(t) ∪ lfv(C)
lfv(λx.C) := lfv(C) \ {x} lfv(C[x←t]) := lfv(C) \ {x}

lfv(Ct) := lfv(C) lfv(t[x←C]) := (fv(t) \ {x}) ∪ lfv(C)

Definition 6 (LO Contexts). A context C is LO if

1. Right Application: whenever C = C ′〈tC ′′〉 then t is neutral, and
2. Left Application: whenever C = C ′〈C ′′t〉 then C ′′
= L〈λx.C ′′′〉.
3. Substitution: whenever C = C ′〈C ′′[x←u]〉 then x /∈ lfv(C ′′).

Lemma 2 (LO Reduction and LO Contexts). Let t → u by reducing a
redex C. Then C is a →LO step iff C is LO.

Structural Equivalence. A peculiar trait of the LSC is that the rewriting rules do
not propagate ES. Therefore, evaluation is usually stable by structural equiva-
lences moving ES around. In this paper we use the following equivalence, includ-
ing garbage collection (≡gc), that we prove to be a strong bisimulation.

Definition 7 (Structural equivalence). The structural equivalence ≡ is the
symmetric, reflexive, transitive, and contextual closure of the following axioms:

(λx.t)[y←u] ≡λ λx.t[y←u] if x
∈ fv(u)
(t u)[x←w] ≡@l t[x←w]u if x
∈ fv(u)
(t u)[x←w] ≡@r t u[x←w] if x
∈ fv(t)

t[x←u][y←w] ≡com t[y←w][x←u] if y
∈ fv(u) and x
∈ fv(w)
t[x←u][y←w] ≡[·] t[x←u[y←w]] if y
∈ fv(t)

t[x←u] ≡gc t if x
∈ fv(t)
t[x←u] ≡dup t[y]x [x←u][y←u]

238 B. Accattoli et al.

In ≡dup, t[y]x denotes a term obtained from t by renaming some (possibly none)
occurrences of x as y, with y a fresh variable.

Proposition 1 (Structural Equivalence ≡ is a Strong Bisimulation).
If t ≡ u →LO w then exists r s.t. t →LO r ≡ w and the steps are either both
multiplicative or both exponential.

3 Distilleries

An abstract machine M is meant to implement a strategy � via a distillation, i.e.
a decoding function · . A machine has a state s, given by a code t, i.e. a λ-term
t without ES and not considered up to α-equivalence, and some data-structures
like stacks, dumps, environments, and heaps. The data-structures are used to
implement the search for the next �-redex and some form of substitution, and
they decode to evaluation contexts for �. Every state s decodes to a term s,
having the shape Cs〈t〉, where t is the code currently under evaluation and Cs

is the evaluation context given by the data-structures.
A machine computes using transitions, whose union is denoted by �, of two

types. The principal one, denoted by �p, corresponds to the firing of a rule defin-
ing �, up to structural equivalence ≡. The commutative transitions, denoted
by �c, only rearrange the data structures, and on the calculus are either invisi-
ble or mapped to ≡. The terminology reflects a proof-theoretic view, as machine
transitions can be seen as cut-elimination steps [3,9]. The transformation of eval-
uation contexts is formalized in the LSC as a structural equivalence ≡, which is
required to commute with evaluation �, i.e. to satisfy

t

u

r

≡ ⇒ ∃q s.t.
t

u

r

q
≡ ≡

for each of the rules of �, preserving the kind of rule. In fact, this means that
≡ is a strong bisimulation (i.e. one step to one step) with respect to �, that is
what we proved in Proposition 1 for the equivalence at work in this paper. Strong
bisimulations formalize transformations which are transparent with respect to
the behavior, even at the level of complexity, because they can be delayed without
affecting the length of evaluation:

Lemma 3 (Postponement of ≡). If ≡ is a strong bisimulation, t (� ∪ ≡)∗

u implies t �∗≡ u and the number and kind of steps of � in the two reduction
sequences is exactly the same.

We can finally introduce distilleries, i.e. systems where a strategy � simu-
lates a machine M up to structural equivalence ≡ via the decoding · .

Definition 8. A distillery D = (M,�,≡, ·) is given by:

A Strong Distillery 239

1. An abstract machine M, given by
(a) a deterministic labeled transition system (lts) � over states s, with labels

in {m, e, c}; the transitions labelled by m, e are called principal, the others
commutative;

(b) a distinguished class of states deemed initial, in bijection with closed
λ-terms; from these, the reachable states are obtained by applying �∗;

2. a deterministic strategy �, i.e., a deterministic lts over the terms of the LSC
induced by some strategy on its reduction rules, with labels in {m, e}.

3. a structural equivalence ≡ on terms which is a strong bisimulation with
respect to �;

4. a decoding function · from states to terms whose graph, when restricted to
reachable states, is a weak simulation up to ≡ (the commutative transitions
are considered as τ actions). More explicitly, for all reachable states:

– projection of principal transitions: s �p s′ implies s �p≡ s′ for all
p ∈ {m, e};

– distillation of commutative transitions: s �c s′ implies s ≡ s′.

The simulation property is a minimum requirement, but a stronger form of
relationship is usually desirable. Additional hypotheses are required in order to
obtain the converse simulation and provide complexity bounds.

Terminology: an execution ρ is a sequence of transitions from an initial state.
With |ρ|, |ρ|p and |ρ|c we denote respectively the length, the number of principal
and commutative transitions of ρ, whereas |t| denotes the size of a term t.

Definition 9 (Distillation Qualities). A distillery is

– Reflective when on reachable states:
• Termination: �c terminates;
• Progress: if s is final then s is a �-normal form.

– Bilinear when, given an execution ρ from an initial term t:
• Execution Length: the number of commutative steps |ρ|c is linear in both

|t| and |ρ|p, i.e. |ρ|c ≤ c·(1+|ρ|p)·|t| for some non-zero constant c (when
|ρ|p = 0, O(|t|) time is still needed to recognize that t is normal).

• Commutative: each commutative transition is implementable in O(1)
time on a RAM;

• Principal: each principal transition is implementable in O(|t|) time on a
RAM.

A reflective distillery is enough to obtain a weak bisimulation between the
strategy � and the machine M, up to structural equivalence ≡ (again, the weak-
ness is with respect to commutative transitions). With |ρ|m and |ρ|e we denote
respectively the number of multiplicative and exponential transitions of ρ.

Theorem 1 (Correctness and Completeness). Let D be a reflective dis-
tillery and s an initial state.

1. Simulation up to ≡: for every execution ρ : s �∗ s′ there is a derivation
d : s �∗≡ s′ s.t. |ρ|m = |d|m and |ρ|e = |d|e.

240 B. Accattoli et al.

2. Reverse Simulation up to ≡: for every derivation d : s �∗ t there is an
execution ρ : s �∗ s′ s.t. t ≡ s′ and |ρ|m = |d|m and |ρ|e = |d|e.
Bilinearity, instead, is crucial for the low-level theorem.

Theorem 2 (Low-Level Implementation Theorem). Let � be a strategy
on terms with ES s.t. there exists a bilinear reflective distillery D = (M,�,≡, ·).
Then a derivation d : t �∗ u is implementable on RAM machines in O((1 + |d|) ·
|t|) steps, i.e. bilinear in the size |t| of the initial term and the length |d| of the
derivation.

Proof. Given d : t �n u by Theorem 1.2 there is an execution ρ : s �∗ s′

s.t. u ≡ s′ and |ρ|p = |d|. The cost of implementing ρ is the sum of the costs
of implementing the commutative and the principal transitions. By bilinearity,
|ρ|c = O((1 + |ρ|p) · |t|) and so all the commutative transitions in ρ require
O((1 + |ρ|p) · |t|) steps, because a single one takes a constant number of steps.
Again by bilinearity, each principal one takes O(|t|), and so all the principal
transitions together require O(|ρ|p · |t|) steps. ��

4 Strengthening the MAM

The machine we are about to introduce implements leftmost-outermost reduction
and may therefore be seen as a strong version of the Krivine abstract machine
(KAM). However, it differs from the KAM in the fundamental point of using
global, as opposed to local, environments. It is therefore more appropriate to
say that it is a strong version of the machine we introduced in [3], which we
called MAM (Milner abstract machine). Let us briefly recall its definition:

Code Stack Env Code Stack Env

tu π E �c1 t u : π E
λx.t u : π E �m t π [x←u] : E
x π E �e t

α
π E if E(x) = t

Note that the stack and the environment of the MAM contain codes, not closures
as in the KAM. A global environment indeed circumvents the complex mutually
recursive notions of local environment and closure, at the price of the explicit α-
renaming t

α which is applied on the fly in �e. The price however is negligible, at
least theoretically, as the asymptotic complexity of the machine is not affected,
see [3] (the same can be said of variable names vs de Bruijn indexes/levels).

We know that the MAM performs weak head reduction, whose reduction
contexts are (informally) of the form 〈·〉π. This justifies the presence of the stack.
It is immediate to extend the MAM so that it performs full head reduction, i.e.,
so that the head redex is reduced even if it is under an abstraction. Since head
contexts are of the form Λ.〈·〉π (with Λ a list of abstractions), we simply add a
stack of abstractions Λ and augment the machine with the following transition:

Abs Code Stack Env Abs Code Stack Env

Λ λx.t ε E �c2 x : Λ t ε E

A Strong Distillery 241

The other transitions do not touch the Λ stack.
LO reduction is nothing but iterated head reduction. LO reduction contexts,

which we formally introduced in Definition 6, when restricted to the pure λ-
calculus (without ES) are of the form Λ.rCπ, where: Λ and π are as above; r,
if present, is a neutral term; and C is either 〈·〉 or, inductively, a LO context.
Then LO contexts may be represented by stacks of triples of the form (Λ, r, π),
where r is a neutral term. These stacks of triples will be called dumps.

The states of the machine for full LO reduction are as above but augmented
with a dump and a phase ϕ, indicating whether we are executing head reduction
(�) or whether we are backtracking to find the starting point of the next iteration
(�). To the above transitions (which do not touch the dump and are always in
the � phase), we add the following:

Abs Code Stack Env Dump Ph Abs Code Stack Env Dump Ph

Λ x π E D � �c3 Λ x π E D �
if E(x) = ⊥

x : Λ t ε E D � �c5 Λ λx.t ε E D �
ε u ε E (Λ, t, π) : D � �c7 Λ tu π E D �
Λ t u : π E D � �c6 ε u ε E (Λ, t, π) : D �

where E(x) = ⊥ means that the variable x is undefined in the environment E.
In the machine we actually use we join the dump and the Λ stack into the

frame F , to reduce the number of machine components (the analysis will however
somewhat reintroduce the distinction). In the sequel, the reader should bear in
mind that a state of the Strong MAM introduced below corresponds to a state
of the machine just discussed according to the following correspondence:1

Discussed Machine:
Abs Code Stack Env Dump Ph

Λ0 t π E (Λ1, t1, π1) : · · · : (Λn, tn, πn) ϕ
�

Strong MAM :
Frame Code Stack Env Ph

Λ0 : (t1, π1) : Λ1 : · · · : (tn, πn) : Λn t π E ϕ

5 The Strong Milner Abstract Machine

The components and the transitions of the Strong MAM are given by the
first two boxes in Fig. 1. As above, we use t, u, . . . to denote codes, i.e., terms not
containing ES and well-named, by which mean that distinct binders bind distinct
variables and that the sets of free and bound variables are disjoint (codes are not
considered up to α-equivalence). The Strong MAM has two phases: evaluation
(�) and backtracking (�).

1 Modulo the presence of markers of the form �x and �x in the environment, which
are needed for bookkeeping purposes and were omitted here.

242 B. Accattoli et al.

Frames F ::= ε | (t, π) : F | x : F Stacks π ::= ε | t : π
Environments E ::= ε | [x t] : E | x : E | x : E Phases ϕ ::= |

Frame Code Stack Env Ph Frame Code Stack Env Ph
F tu π E � c1 F t u : π E
F λx.t u : π E �m F t π [x u] : E
F λx.t ε E � c2 x : F t ε x : E
F x π E �e F t

α
π E

if E(x) = t
F x π E � c3 F x π E

if E(x) =
x : F t ε E � c4 F λx.t ε x : E

(t, π) : F u ε E � c5 F tu π E
F t u : π E � c6 (t, π) : F u ε E

Frames (Ordinary, Weak, Trunk)
F ::= Fw | Ft | Fw : Ft

Fw ::= ε | (t, π) : F
Ft ::= ε | x : F

Environments (Well-Formed, Weak, Trunk)
E ::= Ew | Et | Ew : Et

Ew ::= ε | [x t] : Ew | x : Ew : x : E′
w

Et ::= ε | x : E

Fig. 1. The strong MAM.

Initial States. The initial states of the Strong MAM are of the form ε | t | ε |
ε | �, where t is a closed code called the initial term. In the sequel, we abusively
say that a state is reachable from a term meaning that it is reachable from the
corresponding initial state.

Scope Markers. The two transitions to evaluate and backtrack on abstractions,
��c2 and ��c4 , add markers to delimit subenvironments associated to scopes.
The marker �x is introduced when the machine starts evaluating under an
abstraction λx, while �x marks the end of such a subenvironment.

Slight Notation Abuse. The data structures we are going to use are defined as
lists, using ε for the empty list and “:” for both the cons and append operation.
The overloading of : means that in the case of, e.g., an environment E we have
E : ε = E = ε : E, and in particular ε : ε = ε. Such an abuse will be used
thoughout the whole paper.

Weak and Trunk Frames. A frame F may be uniquely decomposed into F =
Fw : Ft, where Fw = (t1, π1) : · · · : (tn, πn) (with n possibly null) is a weak frame,
i.e. where no abstracted variable appear, and Ft is a trunk frame, i.e. not of the
form (t, π) : F ′ (it either starts a variable entry or it is empty). More precisely,
we rely on the alternative grammar in the third box of Fig. 1. We denote by
Λ(F) the set of variables in F , i.e. the set of x s.t. F = F ′ : x : F ′′.

A Strong Distillery 243

Weak, Trunk, and Well-Formed Environments. Similarly to the frame, the envi-
ronment of a reachable state has a weak/trunk structure. In contrast to frames,
however, not every environment can be seen this way, but only the well-formed
ones (reachable environments will be shown to be well-formed). A weak envi-
ronment Ew does not contain any open scope, i.e. whenever in Ew there is a
scope opener marker (�x) then one can also find the scope closer marker (�x),
and (globally) the closed scopes of Ew are well-parenthesized. A trunk environ-
ment Et may instead also contain open scopes that have no closing marker in
Et (but not unmatched closing markers �x). Formally, weak Ew, trunk Et, and
well-formed environments E (all the environments that we will consider will be
well-formed, that is why we note them E) are defined in the third box in Fig. 1.

Closed Scopes and Meta-level Garbage Collection. Fragments of the form �x :
Ew : �x within an environment will essentially be ignored; this is how a simple
form of garbage collection is encapsulated at the meta-level in the decoding. In
particular, for a well-formed environment E we define E(x) as:

ε(x) := ⊥ (�y : Ew : �y : E)(x) := E(x)
([x←t] : E)(x) := t (�x : E)(x) := �
([y←t] : E)(x) := E(x) (�y : E)(x) := E(x)

Note that the only potential source of non-determinism for the Strong MAM
is the choice among �e and ��c4 in the variable case. The operation E(x),
however, is a function, and so the machine is deterministic.

We write Λ(E) to denote the set of variables bound to � by an environment
E, i.e. those variables whose scope is not closed with �.

Lemma 4 (Weak Environments Contain only Closed Scopes). If Ew is
a weak environment then Λ(Ew) = ∅.
Compatibility. In the Strong MAM , both the frame and the environment record
information about the abstractions in which evaluation is currently taking place.
Clearly, such information has to be coherent, otherwise the decoding of a state
becomes impossible. The following compatibility predicate captures the correla-
tion between the structure of the frame and that of the environment.

Definition 10 (Compatibility F ∝ E). Compatibility F ∝ E between frames
and environments is defined by

1. Base: ε ∝ ε;
2. Weak Extension: (Fw : Ft) ∝ (Ew : Et) if Ft ∝ Et;
3. Abstraction: (x : F) ∝ (�x : E) if F ∝ E;

Lemma 5 (Properties of Compatibility).

1. Well-Formed Environments: if F and E are compatible then E is well-formed.
2. Factorization: every compatible pair F ∝ E can be written as (Fw : Ft) ∝

(Ew : Et) with Ft = x : F ′ iff Et = �x : E′;
3. Open Scopes Match: Λ(F) = Λ(E).
4. Compatibility and Weak Structures Commute: for all Fw and Ew, F ∝ E

iff (Fw : F) ∝ (Ew : E).

244 B. Accattoli et al.

Invariants. The properties of the machine that are needed to prove its correct-
ness and completeness are given by the following invariants.

Lemma 6 (Strong MAM Invariants). Let s = F | u | π | E | ϕ be a state
reachable from an initial term t0. Then:

1. Compatibility: F and E are compatible, i.e. F ∝ E.
2. Normal Form:

(1) Backtracking Code: if ϕ = �, then u is normal, and if π is non-empty,
then u is neutral;

(2) Frame: if F = F ′ : (w, π′) : F ′′, then w is neutral.
3. Backtracking Free Variables:

(1) Backtracking Code: if ϕ = � then fv(u) ⊆ Λ(F);
(2) Pairs in the Frame: if F = F ′ : (w, π′) : F ′′ then fv(w) ⊆ Λ(F ′′).

4. Name:
(1) Substitutions: if E = E′ : [x←t] : E′′ then x is fresh wrt t and E′′;
(2) Markers: if E = E′ : �x : E′′ and F = F ′ : x : F ′′ then x is fresh wrt

E′′ and F ′′, and E′(y) = ⊥ for any free variable y in F ′′;
(3) Abstractions: if λx.t is a subterm of F , u, π, or E then x may occur

only in t and in the closed subenvironment �x : Ew : �x of E, if it exists.
5. Closure:

(1) Environment: if E = E′ : [x←t] : E′′ then E′′(y)
= ⊥ for all y ∈ fv(t);
(2) Code, Stack, and Frame: E(x)
= ⊥ for any free variable in u and in any

code of π and F .

Since the statement of the invariants is rather technical, let us summarize
the dependencies (or lack thereof) of the various points and their use in the
distillation proof of the next section.

– The compatibility, normal form and backtracking free variables invariants are
independent of each other and of the subsequent invariants.

– The name invariant relies on the compatibility invariant only.
– The closure invariant relies on the compatibility, name and backtracking free

variable invariants only. It is crucial for the progress property (because in the
variable case at least one among �e and ��c4 applies).

The proof of every invariant is by induction on the number of transitions leading
to the reachable state. In this respect, the various points of the statement of each
invariant (e.g. points 5.1 and 5.2) are entangled, in the sense that each point
needs to use the induction hypothesis of one of the other points, and thus they
cannot be proved separately.

Implementing Environments. Note that substitutions in closed scopes are never
used by the machine, because the operation E(x) is defined by ignoring them.
Moreover, the name invariant guarantees that if E(x) = �x then E does not
contain a substitution on x. These two facts imply that the scope markers �x
and �x are not really needed in an actual implementation: the test E(x) = �x
in ��c3 can indeed be replaced—in the variant without markers (also redifining

A Strong Distillery 245

E(x) as simple look-up in E)—by a test of undefinedness. The markers are in fact
needed only for the analysis, as they structure the frame and the environment of
a reachable state into weak and trunk parts, allowing a simple decoding towards
terms with ES.

Moreover, variables are meant to be implemented as memory locations, so
that the environment is simply a store, and the list structure of environments
is not necessary either. Such an assumption allows to access the environment in
constant time on RAM, and will be essential for the proof of the bilinearity of
the distillery (to be defined).

Therefore, the structure of environments—given by the scope markers and
the list structure—is an artifice used to define the decoding and develop the
analysis, but it is not meant to be part of the actual implementation.

6 Distilling the Strong MAM

The definition of the decoding relies on the notion of compatible pair.

Definition 11 (Decoding). Let s = (F, t, π,E, ϕ) be a state s.t. F ∝ E is a
compatible pair. Then s decodes to a state context Cs and a term s as follows:�

�

�

�

Weak Environments: Compatible Pairs:
ε := 〈·〉 ε ∝ ε := 〈·〉

[x←u] : Ew := Ew〈〈·〉[x←u]〉 (Fw : Ft) ∝ (Ew : Et) := Ft ∝ Et〈Ew〈Fw〉〉
�x : Ew : �x : E′

w := E′
w (x : F) ∝ (�x : E) := F ∝ E〈λx.〈·〉〉

Weak Frames: Stacks: States:
ε := 〈·〉 ε := 〈·〉 Cs := F ∝ E〈π〉

(u, π) : Fw := Fw〈π〈u〈·〉〉〉 u : π := π〈〈·〉u〉 s := Cs〈t〉

The following lemmas sum up the properties of the decoding.

Lemma 7 (Closed Scopes Disappear). Let F ∝ E be a compatible pair.
Then F ∝ (�x : Ew : �x : E) = F ∝ E.

Lemma 8 (LO Decoding Invariant). Let s = F | u | π | E | ϕ be a reachable
state. Then F ∝ E and Cs are LO contexts.

Lemma 9 (Decoding and Structural Equivalence ≡)

1. Stacks and Substitutions Commute: if x does not occur free in π then
π〈t[x←u]〉 ≡ π〈t〉[x←u];

2. Compatible Pairs Absorb Substitutions: if x does not occur free in F then
F ∝ E〈t[x←u]〉 ≡ F ∝ ([x←u] : E)〈t〉.
The next theorem is our first main result. By the abstract approach presented

in Sect. 3 (Theorem 1), it implies that the Strong MAM is a correct and complete
implementation of linear LO evaluation to normal form.

246 B. Accattoli et al.

Theorem 3 (Distillation). (Strong MAM ,→LO,≡, ·) is an explicit and
reflective distillery. In particular:

1. Projection of Principal Transitions:
(a) Multiplicative: if s �m s′ then s →m≡ s′;
(b) Exponential: if s �e s′ then s →e s′, duplicating the same subterm.

2. Distillation of Commutative Transitions:
(a) Garbage Collection of Weak Environments: if s �c4 s′ then s ≡gc s′;
(b) Equality Cases: if s �c1,2,3,5,6 s′ then s = s′.

Proof. Recall, the decoding is defined as (F, t, π,E, ϕ) := F ∝ E〈π〈t〉〉. Deter-
minism of the machine follows by the deterministic definition of E(x), and that
of the strategy follows from the totality of the LO order (Lemma1). Transitions:

– Case s = (F, λx.t, u : π,E,�) �m (F, t, π, [x←u] : E,�) = s′. Note that
Cs′ = F ∝ E〈π〉 is LO by the LO decoding invariant (Lemma8). Moreover by
the closure invariant (Lemma 6.5) x does not occur in F nor π, justifying the
use of Lemma 9 in:

(F, λx.t, u : π,E,�) = F ∝ E〈u : π〈λx.t〉〉
= F ∝ E〈π〈(λx.t)u〉〉
→m F ∝ E〈π〈t[x←u]〉〉
≡L.9.1 F ∝ E〈π〈t〉[x←u]〉
≡L.9.2 F ∝ ([x←u] : E)〈π〈t〉〉 = (F, t, π, [x←u] : E,�)

– Case s = (F, x, π,E,�) �e (F, t
α
, π, E,�) = s′ with E(x) = t As before, Cs

is LO by Lemma 8. Moreover, E(x) = t guarantees that E, and thus Cs, have
a substitution binding x to t. Finally, Cs = Cs′ . Then

s = Cs〈x〉 →e Cs〈tα〉 = s′

– Case s = (x : F, t, ε, E,�) ��c4 (F, λx.t, ε,�x : E,�) = s′ By Lemma 6.1
x : F ∝ E, and by Lemma 5.2 E = Ew : �x : E′. Then

(x : F) ∝ E = (x : F) ∝ (Ew : �x : E′) = (x : F) ∝ (�x : E′)〈Ew〉

Since we are in a backtracking phase (�), the backtracking free variables
invariant (Lemma 6.3.1) and the open scopes matching property (Lemma 5.3)
give fv(t) ⊆L.6.3.1 Λ(F) =L.5.3 Λ(Ew : �x : E′) =L .4Λ(�x : E′), i.e. Ew does
not bind any variable in fv(t). Then Ew〈t〉 ≡∗

gc t, and

(x : F, t, ε, E,�) = (x : F) ∝ E〈t〉
= (x : F) ∝ (Ew : �x : E′)〈t〉
= (x : F) ∝ (�x : E′)〈Ew〈t〉〉
≡∗

gc (x : F) ∝ (�x : E′)〈t〉
= F ∝ E′〈λx.t〉
=L.7 F ∝ (�x : Ew : �x : E′)〈λx.t〉
= F ∝ (�x : E)〈λx.t〉 =(F, λx.t, ε,�x : E,�)

A Strong Distillery 247

– Case (F, tu, π,E,�) ��c1 (F, t, u : π,E,�).

(F, tu, π,E,�) = F ∝ E〈π〈tu〉〉 = F ∝ E〈u : π〈t〉〉 = (F, t, u : π,E,�)

– Case (F, λx.t, ε, E,�) ��c2 (x : F, t, ε,�x : E,�).

(F, λx.t, ε, E,�) = F ∝ E〈λx.t〉
= (x : F) ∝ (�x : E)〈t〉 = (x : F, t, ε,�x : E,�)

– Case (F, x, π,E,�) ��c3 (F, x, π,E,�).

(F, x, π,E,�) = F ∝ E〈π〈x〉〉 = (F, x, π,E,�)

– Case ((t, π) : F, u, ε, E,�) ��c5 (F, tu, π,E,�).

((t, π) : F, u, ε, E,�) = (t, π) : F ∝ E〈u〉 = F ∝ E〈π〈t u〉〉 = (F, tu, π,E,�)

– Case (F, t, u : π,E,�) ��c6 ((t, π) : F, u, ε, E,�).

(F, t, u : π,E,�) = F ∝ E〈u : π〈t〉〉
= F ∝ E〈π〈t u〉〉
= ((t, π) : F) ∝ E〈u〉 = ((t, π) : F, u, ε, E,�)

For what concerns reflectiveness, termination of commutative transitions is
subsumed by bilinearity (Theorem4 below). For progress, note that

1. the machine cannot get stuck during the evaluation phase: for applications
and abstractions it is evident and for variables one among �e and ��c3

always applies, because of the closure invariant (Lemma 6.5).
2. final states have the form (ε, t, ε, E,�), because

(a) by the previous consideration they are in a backtracking phase,
(b) if the stack is non-empty then ��c6 applies,
(c) otherwise if the frame is not empty then either ��c4 or ��c5 applies.

3. final states decode to normal terms: a final state s = (ε, t, ε, E,�) decodes to
s = E〈t〉 which is normal and closed by the normal form (Lemma 6.2.1) and
backtracking free variables (Lemma 6.3.1) invariants ��

7 Complexity Analysis

The complexity analysis requires a further invariant, bounding the size of the
duplicated subterms. For us, u is a subterm of t if it does so up to variable
names, both free and bound. More precisely: define t− as t in which all variables
(including those appearing in binders) are replaced by a fixed symbol ∗. Then,
we will consider u to be a subterm of t whenever u− is a subterm of t− in the
usual sense. The key property ensured by this definition is that the size |u| of u
is bounded by |t|.

248 B. Accattoli et al.

Lemma 10 (Subterm Invariant). Let ρ be an execution from an initial code
t. Every code duplicated along ρ using �e is a subterm of t.

Via the distillation theorem (Theorem 3), the invariant provides a new proof
of the subterm property of linear LO reduction (first proved in [6]).

Lemma 11 (Subterm Property for →LO). Let d be a →LO-derivation from
an initial term t. Every term duplicated along d using →e is a subterm of t.

The next theorem is our second main result, from which the low-level imple-
mentation theorem (Theorem 2) follows. Let us stress that, despite the simplicity
of the reasoning, the analysis is subtle as the length of backtracking phases (Point
2) can be bound only globally, by the whole previous evaluation work.

Theorem 4 (Bilinearity). The Strong MAM is bilinear, i.e. given an execu-
tion ρ : s �∗ s′ from an initial state of code t then:

1. Commutative Evaluation Steps are Bilinear: |ρ|�c ≤ (1 + |ρ|e) · |t|.
2. Commutative Evaluation Bounds Backtracking: |ρ|�c ≤ 2 · |ρ|�c.
3. Commutative Steps are Bilinear: |ρ|c ≤ 3 · (1 + |ρ|e) · |t|.
Proof. 1. We prove a slightly stronger statement, namely |ρ|�c + |ρ|m ≤ (1 +

|ρ|e) · |t|, by means of the following notion of size for stacks/frames/states:

|ε| := 0 |x : F | := |F |
|t : π| := |t| + |π| |(t, π) : F | := |π| + |F |

|(F, t, π,E,�)| := |F | + |π| + |t| |(F, t, π,E,�)| := |F | + |π|
By direct inspection of the rules of the machine it can be checked that:
– Exponentials Increase the Size: if s �e s′ is an exponential transition,

then |s′| ≤ |s| + |t| where |t| is the size of the initial term; this is a con-
sequence of the fact that exponential steps retrieve a piece of code from
the environment, which is a subterm of the initial term by Lemma10;

– Non-Exponential Evaluation Transitions Decrease the Size: if s �a s′

with a ∈ {m,�c1,�c2,�c3} then |s′| < |s|;
– Backtracking Transitions do not Change the Size: if s �a s′ with a ∈

{�c4,�c5,�c6} then |s′| = |s|.
Then a straightforward induction on |ρ| shows that

|s′| ≤ |s| + |ρ|e · |t| − |ρ|�c − |ρ|m
i.e. that |ρ|�c + |ρ|m ≤ |s| + |ρ|e · |t| − |s′|.

Now note that | · | is always non-negative and that since s is initial we have
|s| = |t|. We can then conclude with

|ρ|�c + |ρ|m ≤ |s| + |ρ|e · |t| − |s′|
≤ |s| + |ρ|e · |t| = |t| + |ρ|e · |t| = (1 + |ρ|e) · |t|

A Strong Distillery 249

2. We have to estimate |ρ|�c = |ρ|�c4 + |ρ|�c5 + |ρ|�c6 . Note that
(a) |ρ|�c4 ≤ |ρ|�c2 , as ��c4 pops variables from F , pushed only by ��c2 ;
(b) |ρ|�c5 ≤ |ρ|�c6 , as ��c5 pops pairs (t, π) from F , pushed only by ��c6 ;
(c) |ρ|�c6 ≤ |ρ|�c3 , as ��c6 ends backtracking phases, started only by ��c3 .
Then |ρ|�c ≤ |ρ|�c2 + 2|ρ|�c3 ≤ 2|ρ|�c.

3. We have |ρ|c = |ρ|�c + |ρ|�c ≤P.2 |ρ|�c + 2|ρ|�c =P.1 3 · (1 + |ρ|e) · |t|.
Last, every transition but �e takes a constant time on a RAM. The renaming

in a �e step is instead linear in |t|, by the subterm invariant (Lemma10). ��

Acknowledgments. This work was partially supported by projects Logoi ANR-
2010-BLAN-0213-02, Coquas ANR-12-JS02-006-01, Elica ANR-14-CE25-0005, the
Saint-Exupéry program funded by the French embassy and the Ministry of Education
in Argentina, and the French–Argentinian laboratory in Computer Science INFINIS.

References

1. Abramsky, S., Ong, C.L.: Full abstraction in the lazy lambda calculus. Inf. Comput.
105(2), 159–267 (1993)

2. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: RTA,
pp. 6–21 (2012)

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP,
pp. 363–376 (2014)

4. Accattoli, B., Barenbaum, P., Mazza, D.: A strong distillery. CoRR abs/1509.00996
(2015). http://arxiv.org/abs/1509.00996

5. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: POPL, pp. 659–670 (2014)

6. Accattoli, B., Dal Lago, U.: Beta Reduction is Invariant, Indeed. In: CSL-LICS, p.
8 (2014)

7. Accattoli, B., Sacerdoti Coen, C.: On the value of variables. In: Kohlenbach, U.,
Barceló, P., de Queiroz, R. (eds.) WoLLIC. LNCS, vol. 8652, pp. 36–50. Springer,
Heidelberg (2014)

8. Accattoli, B., Sacerdoti Coen, C.: On the relative usefulness of fireballs. In: LICS,
pp. 141–155 (2015)

9. Ariola, Z.M., Bohannon, A., Sabry, A.: Sequent calculi and abstract machines.
ACM Trans. Program. Lang. Syst. 31(4) (2009). Article No. 13

10. Biernacka, M., Danvy, O.: A concrete framework for environment machines. ACM
Trans. Comput. Log. 9(1) (2007). Article No. 6

11. Boutiller, P.: De nouveaus outils pour manipuler les inductif en Coq. Ph.D. thesis,
Université Paris Diderot - Paris 7 (2014)

12. de Carvalho, D.: Execution time of lambda-terms via denotational semantics and
intersection types. CoRR abs/0905.4251 (2009)

13. Crégut, P.: An abstract machine for lambda-terms normalization. In: LISP and
Functional Programming, pp. 333–340 (1990)

14. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. High.-Order
Symbolic Comput. 20(3), 209–230 (2007)

15. Curien, P.: An abstract framework for environment machines. Theor. Comput. Sci.
82(2), 389–402 (1991)

16. Danos, V., Regnier, L.: Head linear reduction (2004). (unpublished)

http://arxiv.org/abs/1509.00996

250 B. Accattoli et al.

17. Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Technical Report
RS-04-26, BRICS (2004)

18. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.
In: PPDP, pp. 97–108 (2013)

19. Dénès, M.: Étude formelle d’algorithmes efficaces en algèbre linéaire. Ph.D. thesis,
Université de Nice - Sophia Antipolis (2013)

20. Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s machine and the taylor expansion
of lambda-terms. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE
2006. LNCS, vol. 3988, pp. 186–197. Springer, Heidelberg (2006)

21. Fernández, M., Siafakas, N.: New developments in environment machines. Electr.
Notes Theor. Comput. Sci. 237, 57–73 (2009)

22. Garćıa-Pérez, Á., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
krivine machine from the small-step operational semantics of normal order. In:
PPDP, pp. 85–96 (2013)

23. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP,
pp. 235–246 (2002)

24. Hardin, T., Maranget, L.: Functional runtime systems within the lambda-sigma
calculus. J. Funct. Program. 8(2), 131–176 (1998)

25. Lang, F.: Explaining the lazy Krivine machine using explicit substitution and
addresses. High.-Order Symbolic Comput. 20(3), 257–270 (2007)

26. Mascari, G., Pedicini, M.: Head linear reduction and pure proof net extraction.
Theor. Comput. Sci. 135(1), 111–137 (1994)

27. Milner, R.: Local bigraphs and confluence: two conjectures. Electr. Notes Theor.
Comput. Sci. 175(3), 65–73 (2007)

28. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

29. Sands, D., Gustavsson, J., Moran, A.: Lambda calculi and linear speedups. In:
Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Compu-
tation. LNCS, vol. 2566, pp. 60–82. Springer, Heidelberg (2002)

30. Smith, C.: Abstract machines for higher-order term sharing, Presented at IFL 2014

From Call-by-Value to Interaction by Typed
Closure Conversion

Ulrich Schöpp(B)

LMU Munich, Munich, Germany
Ulrich.Schoepp@ifi.lmu.de

Abstract. We study the efficient implementation of call-by-value using
the structure of interactive computation models. This structure has been
useful in applications to resource-bounded compilation, but much of
the existing work in this area has focused on call-by-name program-
ming languages. This paper works towards the goal of a simple, efficient
treatment of call-by-value languages. In previous work we have studied
cps-translation as an approach to implementing call-by-value and have
observed that it needs to be refined in order to achieve efficient space
usage. In this paper we give an alternative presentation of the refined
translation, which is close to existing methods of typed closure conver-
sion. We show that a simple correctness proof following Benton and Hur
is possible for this formulation. Moreover, we extend previous work to
cover full recursion in the source language.

1 Introduction

Recent advances in compiler verification, resource-bounded compilation, and
resource usage certification underline the value of a good understanding of the
properties of low-level computation. Certifying correctness and resource usage of
compiled low-level programs makes it important to have a good understanding
of their structure. While individually low-level programs have little structure,
interesting structure appears when one considers them collectively and studies
how they can be constructed and composed. For example for separate compi-
lation and low-level program linking, perhaps of programs written in different
programming languages, one is interested in the possible ways of composing of
low-level programs. For resource-bounded compilation, one is interested in the
resource usage of compiled programs, e.g. with respect to memory usage or exe-
cution time. Resource usage is a property of low-level programs and it is desirable
to obtain a compositional understanding of such resource usage properties.

One line of investigation to identify useful mathematical structure of low-level
computation consists of applying ideas from interaction semantics to low-level
computation. Ideas from interaction semantics have been applied independently
in a number of contexts, mainly for applications where particular control of low-
level aspects is required. Examples include the interactive implementation of
functional programs [12], abstract machines [4], hardware synthesis from func-
tional programs [7], functional programming with logarithmic space [3], distrib-
uted programming [6], quantum programming languages [8], to mention just a
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 251–270, 2015.
DOI: 10.1007/978-3-319-26529-2 14

252 U. Schöpp

few. While much of the work in this area was concerned with call-by-name pro-
gramming languages, the success of the approach motivates an increasing inter-
est in applying these ideas to call-by-value computation. In addition to early
approaches [5], call-by-value has received more attention recently [10,11,17].

In this paper we study a decomposition of call-by-value into the structure
found in interactive models. This continues the work reported in [17,18] which
investigates an approach of factoring the translation from a call-by-value source
language to a first-order low-level language through a higher-order low-level cal-
culus int. This calculus is based on the structure of interactive computation
models and captures structure of low-level computation in terms of a higher-order
λ-calculus. Higher-order functions capture concepts of low-level code modules,
their interfaces and their composition, see [18] for details. Factoring the trans-
lation from call-by-value to a first-order low-level language through this higher-
order calculus allows one to use standard high-level proof techniques from seman-
tics to show correctness of the translation from call-by-value to the first-order
low-level language [17].

Here we develop the work reported in [17] on a decomposition of call-by-value
computation that is suitable for targeting a calculus of interactive computation,
such as int. The aim of this paper is first to simplify the translation from [17],
to formulate it in a direct style, close to other approaches to typed closure
conversion [1,13], and second to generalise the correctness argument to include
recursion in the source language.

The first contribution of this paper is to simplify the translation from [17],
which is defined as a cps-translation. It is observed in [17] that while it is pos-
sible to use a standard call-by-value cps-translation to translate a call-by-value
source language to int, this would lead to an implementation of call-by-value
with inefficient space usage. To address this, we propose in [17] a refined cps-
translation that makes the environment of all values explicit, so that unneeded
values may be discarded explicitly when they are not needed anymore. The idea
is to use a continuation “monad” of the form

(∀α. X(α) � ⊥α) � ⊥β , (1)

where � can be thought of as a function type that formalises module abstraction
and composition (similar to functors in ML) and where ⊥α denotes a standard
strict function space α → ⊥. Terms of the above type represent source programs
as follows. The type β should be thought of as a first-order type of the environ-
ments of the source program, e.g. the tuples of the values of its free variables,
and the type α is a first-order type whose values can encode the possible values
of the source term. To compute the source program, one throws its environment
into ⊥β . This forces the computation of the program value, whose code will be
returned to us by being thrown into ⊥α. That α is universally quantified means
that we must accept any possible encoding of the source value. In order to nev-
ertheless make use of such an encoding, we are also provided with an argument
of type X(α). This gives us an interface for making use of the value of type α
we were give as the code for a source value. In the case of functions, X(α) will
provide a way to apply any function given to us in the form of a code in α.

From Call-by-Value to Interaction 253

In this paper we simplify the translation by formulating it in a direct way.
Instead of the above type we use a type of the form

∃α.X(α) ⊗ (β → α), (2)

where ⊗ can be understood as a pairing operation on modules. This translation
can be explained just as above; it represents the above way of computing source
values more directly. The simplification makes it easier to define and hopefully
also to understand the translation. The result is a translation that is quite close
to existing methods of typed closure conversion [1,13], which allows us to connect
such techniques to work on the applications of interaction semantics [7,10].

We note that, when we use int as a target for the translation, then the
reformulation has no effect on the resulting first-order low-level programs. In int
(suitably extended with existential types) the types (∀α.X(α) � ⊥α) � ⊥β

and ∃α.X(α) × (β → α) lead to first-order low-level programs with the same
interface. The translations are such that the programs turn out to be the same
too. This establishes a formal connection between a cps-translation and a typed
closure conversion. In this paper, we use the term closure conversion to mean a
conversion that makes the representation and manipulation of function closures
fully explicit.

The second main contribution of this paper is to extend the correctness proof
of the translation to cover recursion in the source language. To do so we follow
the approach of Benton and Hur [2]. The resulting correctness proof uses a form
of ��-lifting and turns out to be pleasingly simple.

While the translation of call-by-value presented in this paper is intended to
target languages such as int, it is not necessary to explain the particular details
of int. We present the translation more generally as a translation from a call-
by-value source language to a variant of Idealized Algol [14]. Indeed, int can
be seen as variant of Idealized Algol with type annotations that make low-level
computation details explicit. The point of this paper is to present the translation
and its soundness proof. While the low-level details of the implementation of the
target Algol-like language are interesting for understanding the overall imple-
mentation of call-by-value, here we focus just on the step to such an Algol-like
language.

As a result we obtain a simple typed translation of call-by-value to the struc-
ture found in interaction semantics. The translation is quite similar to existing
typed closure conversion approaches, which makes the results from this work
available in the interactive context. While the translation presented in this paper
is close to existing methods of closure conversion, it is not exactly the same, and
it is not immediate to re-target the existing ones directly to Algol-like target
languages with a call-by-name semantics.

By targeting Algol-like languages, we hope to be able to apply the results
on call-by-value to resource-bounded situations. In particular, the Geometry of
Synthesis [7] and the logspace-fragment of int [3] are instances of Algol-like
languages that are based on interaction semantics and that are interesting to
study in further work.

254 U. Schöpp

An important feature of the translation in this paper is its compositionality.
Open terms of the source language are translated to target programs with a well-
specified interface. By composing the translation with an interpretation in int,
one obtains a well-defined interface of the low-level code arising from open source
terms. This may be used to define a low-level calling convention for call-by-value.

The interfaces are formulated so that the choice of closure representation
remains abstract. It is possible to translate parts of the same source terms using
different closure representations and combine the translated programs to obtain
a correct whole program. We believe that this is useful for studying separate
compilation and linking of programs that are written in different languages.

2 Source Language

Our source language is a variant of call-by-value pcf. In this section we begin
by fixing the details of this language. Its types and terms are defined as follows.

X,Y ::= N | X → Y

s, t ::= x | fn x ⇒ t | fun f x ⇒ t | s t

| zero | succ(s) | if0 s then t1 else t2

The term fun f x ⇒ t represents a recursive function definition with the intended
operational semantics (fun f x ⇒ t) v −→ t[(fun f x ⇒ t)/f, v/x]. We omit
type annotations on abstractions, as we will work with typing derivations, so
that such annotations are not important for our purposes.

The typing rules for the source language appear in Fig. 1. We make the
structural rules explicit, as this makes it clear where variable duplication is
needed later in the translation. The typing rule for if-then-else is restricted
to base types. This simplifies the technical development and allows us to focus
on the issues pertaining to recursion. We believe that the results in this paper
can be extended to an unrestricted instance of this rule. For the time being, one
may reduce case-distinction on function types to base-type case-distinction in
the source language, e.g. replacing if0 x then (fn y ⇒ t1) else (fn y ⇒ t2)
with fn y ⇒ if0 x then t1 else t2.

The aim in this paper is to give a correct implementation of this source
language. The proof of correctness proceeds by an argument close to that of
Benton and Hur [2]. It shows that the implementation correctly implements the
standard denotational semantics of the source language [19]. The semantics of
types is given by �N� = N and �X → Y � = �X� ⇒ �Y �⊥, where N is the discrete
cpo of the natural numbers, where (−)⊥ denotes the lifting operation, and where
D ⇒ E is the cpo of continuous functions from cpo D to cpo E. We write
�−	 : D → D⊥ for the injection of a cpo D into its lifting. The interpretation of
types is extended to contexts in the standard way, i.e. if Γ is x1:X1, . . . , xn:Xn,
then �Γ � is �X1� × · · · × �Xn�.

For each derivation Π of Γ
 t : X in the source language, one defines an
interpretation �Π� ∈ �Γ � ⇒ �X�⊥ in the usual way [19].

From Call-by-Value to Interaction 255

VAR
x:X � x : X

Γ � t : Y
WEAK

Γ, Δ � t : Y

Γ, y:Y, x:X, Δ � t : Z
EXCH

Γ, x:X, y:Y, Δ � t : Z

Γ, x:X, y:X, Δ � t : Y
CONTR

Γ, z:X, Δ � t[z/x, z/y] : Y
ZERO

Γ � zero :
Γ � t :

SUCC
Γ � succ(t) :

Γ, x:X � t : Y
ABS

Γ � fn x ⇒ t : X → Y
Γ � s : X → Y Δ � t : X

APP
Γ, Δ � s t : Y

Γ � s : Δ1 � t1 : Δ2 � t2 :
IF

Γ, Δ1, Δ2 � if0 s then t1 else t2 :

Γ, f :X → Y, x:X � t : Y
REC

Γ � fun f x ⇒ t : X → Y

Fig. 1. Source typing rules

3 Target Language

We translate the source language to a target language that is close in spirit to
Idealized Algol [14]. As outlined in the Introduction, this choice is motivated by
the development of the calculus int [16,18], which can be seen as an Algol-like
language with a type system that allows for the control of low-level aspects of
computation. By translating the source language to int, one obtains a fully spec-
ified translation to a simple first-order low-level language. Here, we concentrate
on the translation from the source language to Algol-like languages, as definition
of the translation and its correctness does not depend on the particular details
of int. This allows us to concentrate on the essential issues of the translation.

The core of the target language has the following types.

Value Types A,B ::= α | void | unit | nat | A × B

Types X,Y ::= exp(A,B) | X → Y | X × Y | ∀α.X | ∃α.X

The type exp(A,B) is meant to contain (strict) functions that map values of
type A to values of type B. This is a slight generalisation of Idealized Algol,
which only has a type exp(A) corresponding to exp(unit, A).

At first it may appear that this target language is of similar expressiveness
as the source language. However, note first that in the type exp(A,B), both A
and B are restricted to be value types. This means that call-by-value functions
are not available directly in this language. Of course, it is possible to repre-
sent call-by-value computation by means of a call-by-value cps-translation, for
example. However, we have observed in [17] that such a cps-translation would
generally not result in a space-efficient implementation of the source language.

In the target language, the terms of type exp(A,B) are our basic notion of
computation. We use the higher-order structure only to compose such computa-
tions and to organise them, much like in [18]. The reader should think of a term
of type exp(A,B) → exp(C,D) less as a function and more as a program that

256 U. Schöpp

expects to be connected with a module that contains a function from A to B
and that then provides a function from C to D. In OCaml notation this would
roughly amount to functor of the following type:

functor (X: sig val t: A -> B end) -> sig val t: C -> D end

Indeed, one could use a language with ML-style modules as a target language in
this paper. Notice, in particular, that the universal and existential quantification
in the target language are restricted to range over value types only. However, it
seems that a lambda-calculus is more convenient as a language for defining and
composing modules [15,18].

The terms of the target language are standard for all but the type exp(A,B).
For this type it is also possible to follow the standard approach for Idealized Algol
and define the terms of this type using suitable constants. In Idealized Algol one
finds constants like succ : exp(nat) → exp(nat) and a similar approach can be
taken for exp(A,B). A possible choice of constants for this type could include
constants such as the following:

proj : exp(A × B,B)
pair : exp(C,A) × exp(C,B) → exp(C,A × B)
seq : exp(C,A) × exp(C × A,B) → exp(C,B)

However, working with such constants is somewhat awkward syntactically.
We therefore define a slightly extended target calculus that allows a sim-

pler, more direct, definition of terms of type exp(A,B) as in [18]. It also con-
tains the type exp(A), which is familiar from Idealized Algol and corresponds to
exp(unit, A).

Value Types A,B ::= α | void | unit | nat | A × B

Types X,Y ::= exp(A) | exp(A,B) | X → Y | X × Y | ∀α.X | ∃α.X

We use the abbreviations I := exp(void, void) for a vacuous type with a single
inhabitant � := (fn v:void ⇒ return v). (Note that I is not isomorphic to
exp(unit, unit), which has two inhabitants, the function returning 〈〉 and the
non-terminating function.)

The terms are given by the grammar below, in which n ranges over natural
numbers.

Values v, w ::=x | 〈〉 | 〈v, w〉 | n

Terms s, t ::=x | return v | let x= s in t | if0 v s t | fn x:A ⇒ t | t(v)
| λx:X. t | s t | 〈s, t〉 | let 〈x, y〉= s in t

| Λα.t | t A | packX(A, t) | let pack(α, x)= s in t

| fixn
X | fixX

We write 〈t1, t2, . . . , tk〉 as an abbreviation for 〈. . . 〈t1, t2〉 . . . , tk〉, i.e. pairs
associate to the left. We will often omit type annotations, such as the X in
packX(A, t), for readability.

From Call-by-Value to Interaction 257

The terms include constructs that allow one to view the elements of type
exp(A,B) as functions. Terms of this type can be defined using an abstraction
fn x:A ⇒ t. In this term the body t must have type exp(B), which is why
we have included types of the form exp(B) in the language. Elements of type

Γ, x:A � x : A Γ � 〈〉 : unit Γ � n : N

Γ � v : A Γ � w : B
Γ � 〈v, w〉 : A × B

Γ � v : A × B Γ, x:A, y:B � w : C

Γ � let 〈x, y〉 = v in w : C

Fig. 2. Target language: Terms of value types

Γ | Δ, x:X � x : X

Γ � v : A
Γ | Δ � return v : exp(A)

Γ | Δ � s : exp(A) Γ, x:A | Δ � t : exp(B)

Γ | Δ � let x = s in t : exp(B)

Γ � v : N Γ | Δ � s : exp(A) Γ | Δ � t : exp(A)

Γ | Δ � if0 v then s else t : exp(A)

Γ, x:A | Δ � t : exp(B)

Γ | Δ � fn x:A ⇒ t : exp(A, B)

Γ | Δ � t : exp(A, B) Γ � v : A

Γ | Δ � t(v) : exp(B)

Γ | Δ, x:X � t : Y

Γ | Δ � λx:X. t : X → Y

Γ | Δ � s : X → Y Γ | Δ � t : X

Γ | Δ � s t : Y

Γ | Δ � s : X Γ | Δ � t : Y

Γ | Δ � 〈s, t〉 : X × Y

Γ | Δ � s : X × Y Γ | Δ, x:X, y:Y � t : Z

Γ | Δ � let 〈x, y〉 = s in t : Z

Γ | Δ � t : X
(∗)

Γ | Δ � Λα. t : ∀α. X

Γ | Δ � t : ∀α. X

Γ | Δ � t A : X[A/α]

Γ | Δ � t : X[A/α]

Γ | Δ � pack∃α. X(A, t) : ∃α. X

Γ | Δ � s : ∃α. X Γ | Δ, x:X � t : Z
(∗)

Γ | Δ � let pack(α, x)= s in t : Z

Γ | Δ � fixX : (X → X) → X Γ | Δ � fixi
X : (X → X) → X

(∗) — α not free in Γ, Δ

Fig. 3. Target language: Terms

258 U. Schöpp

exp(B) can be defined using return v, and the term let x= t1 in t2 can be
used to sequence computations t1 : exp(B1) and t2 : exp(B2). For a term t of type
exp(A,B), there is an application t(v). It is restricted to values as arguments,
which corresponds to the view of exp(A,B) as strict functions from values of
type A to values of type B.

The typing rules for the target calculus are given in Figs. 2 and 3. The typing
judgements have the form Γ
 t : A for value types A and Γ | Δ
 t : X for
types X, where Γ is a value context of the form x1:A1, . . . , xn:An (the Ai range
over value types) and Δ is a context y1:Y1, . . . , yn:Yn (the Yi range over types).
We identify these contexts up to reordering of variable declarations.

The value context is there to allow the formulation of the term constructs for
the types exp(A) and exp(A,B). If one were to prefer a formulation of the calcu-
lus with constants for exp(A,B), as mentioned above, then the value context Γ
could be replaced with a context of the form x1:exp(A1), . . . , xn:exp(An). We
prefer the version with two contexts, as it clarifies which terms can be assumed
to denote values.

3.1 Equational Theory

We assume a standard equational theory for the target language. Equations
are given in context, i.e. they are given by a judgement of the form Γ | Δ

s = t : X. For brevity, we state equations without typing contexts, but with the
understanding that the equations are subject to suitable typing constraints.

let 〈x, y〉= 〈s, t〉 in u = u[s/x, t/y] (×β)
let 〈x, y〉= s in t[〈x, y〉/z] = t[s/z] if x, y not free in t (×η)

(λx:X. s) t = s[t/x] (→ β)
λx:X. (t x) = t if x not free in t (→ η)

(Λα. t) A = t[A/α] (∀β)
Λα. t α = t if α not free in t (∀η)

let pack(α, x)= pack(A, s) in t = t[A/α, s/x] (∃β)
let pack(α, x)= s in t[pack(α, x)/y] = t[s/y] if α, x not free in t (∃η)

fixX t = t (fixX t) (fixβ)

fixi+1
X t = t (fixi

X t) (fixiβ)

Equation (×η) is formulated with t[〈x, y〉/z] instead of just 〈x, y〉, in order to
make commuting conversions derivable.

For the terms for the types exp(A) and exp(A,B) and for value types, we
assume the following equations.

(fn x:A ⇒ t)(v) = t[v/x] (expβ)
fn x:A ⇒ (t(x)) = t if x not free in t (expη)

let x= return v in t = t[v/x] (let1)

From Call-by-Value to Interaction 259

let x= (let y = s in t) in u = let y = s in let x= t in u (let2)
succ(n) = n + 1 (succ)

if0 0 then v else w = v (if1)
if0 n then v else w = w if n > 0 (if2)

(The equations for × also hold for terms of value types; we do not repeat them
here.) Finally, there are rules for reflexivity, symmetry, transitivity and there are
congruence rules that allow one to apply these equations in any context.

4 Translation

We are now ready to define the translation from source to target language.
It is compositional and identifies an interface in the target language for the
translation of each subterm of a source term.

For each source type X, we define a family C�X�A of value types and a family
I�X�A of types, both families being indexed by a value type A.

C�N�A := nat C�X → Y �A := A

I�N�A := I I�X → Y �A := ∀β. I�X�β → M�Y �A×C�X�β

where
M�X�A := ∃β. I�X�β × exp(A, C�X�β)

The intention is that a source language value of type X is represented by a target
language value c : C�X�A and a term a : I�X�A, where A may be any value type.
The type M�X�A corresponds to (2) in the Introduction.

For the type of natural numbers, the choice of C�N�A is such that we can
simply choose c to be the represented number. The term a is not important for
natural numbers, as all relevant information is already in c. Therefore, we choose
the type I�N�A to be vacuous.

Values of function type X → Y , are represented by a value c : A and a term a
of type ∀β. I�X�β → M�Y �A×C�X�β

, where A may be an arbitrary value type.
The idea is that c is a code value for the function, which may be encoded in any
way using an arbitrary value type A. Of course, if we allow an arbitrary encoding,
then we must explain how the code c can be used to apply the function. This is
what the term a does. Suppose cx : C�X�AX

and ax : I�X�AX
represent a value

of type X. Then a allows us to obtain a code for the result of the application
of the function encoded by c and a to the argument encoded by cx and ax.
Applying a to Ax and ax amounts to connecting the module ax to a. We obtain
a term a Ax ax of type ∃α. I�Y �α × exp(A × C�X�Ax

, C�Y �α). The function in
the second component takes a pair of type A × C�X�Ax

consisting of the code
for the function and the code for the argument. It returns a code for the result
of the function application. Since the type α is existentially quantified, the type
that is used to represent the result of the function application is abstract. The
first component I�Y �α allows us to make use of values encoded using α.

260 U. Schöpp

This application procedure is captured by the following application term.

app((A, a, c), (Ax, ax, cx)) : ∃α. I�Y �α × exp(unit, C�Y �α)
app((A, a, c), (Ax, ax, cx)) := let pack(αy, 〈ay, ey〉)= a Ax ax in

pack(αy, 〈ay, fn 〈〉 ⇒ ey(〈c, cx〉)〉)
Here, and in the rest of the paper, we allow ourselves some syntactic sugar for
pattern matching in fn-function and to avoid nested let-terms.

The translation from source to target language is defined by induction on
the typing derivation. To define it, we extend the definition of C�−� to source
contexts by:

C�empty� := unit C�Γ, x:X� �B,A := C�Γ � �B × C�X�A

A derivation Π of a source sequent Γ
 t : Y , where Γ is x1:X1, . . . , xk:Xk, is
then translated to a closed target term (|Π|) of type

∀α1 . . . αk. I�X1�α1 → · · · → I�Xk�αk
→ M�Y �C�Γ ��α

.

The definition of (|Π|) is given by induction on the derivation Π of Γ
 t : X.

– Case: Π is

var
x:X
 x : X

(|Π|) := Λα. λa : I�X�α. pack(α, 〈a, fn 〈〈〉, x〉 ⇒ return x〉)
– Case: Π ends with rule (weak), whose premise is derived by Πt.

weak
Γ
 t : Y

Γ,Δ
 t : Y

(|Π|) := Λ
α
β. λ
a
b. let pack(At, 〈at, et〉) = (|Πt|)
α
a in

pack(At, 〈at, fn (
x,
y) ⇒ et(
x)〉)

Here we use an informal pattern matching notation (
x,
y) that matches
x
against the code values for Γ and
y against the values for Δ.

We omit the similar cases for the other structural rules.
– Case: Π ends with rule (abs), whose premise is derived by Πt.

abs
Γ, x:X
 t : Y

Γ
 fn x ⇒ t : X → Y

(|Π|) := Λ�α. λ�x. pack(C�Γ ��α, 〈(Λβ. λx:I�X�β . (|Πt|) �α β �x x), fn c ⇒ return c〉)

From Call-by-Value to Interaction 261

In this definition we choose the type C�Γ ��α for the code type to represent the
function defined by the abstraction. The function fn c ⇒ return c gets as
argument the tuple of the values of the variables in Γ and returns the code
unchanged as the code for the function.

Notice that the term (|Πt|)
α β
x x has type M�Y �C�Γ, x:X��α,β
, which is

the same as M�Y �C�Γ ��α×C�X�β
. By our choice of C�Γ ��α as the code type, the

pair C�Γ ��α × C�X�β can be understood as the pair of the function code and
its argument, as is required for the translation of functions.

While we have chosen the tuple of the free variables for function codes here,
other choices are possible, and can be made differently on a case-by-case basis.

– Case: Π ends with rule (app), whose premises are derived by Πs and Πt.

app
Γ
 s : X → Y Δ
 t : X

Γ, Δ
 s t : Y

(|Π|) := Λ
α
β. λ
x. λ
y. let pack(ϕ, 〈f, ef 〉) = (|Πs|)
α
x in

let pack(ξ, 〈x, ex〉) = (|Πt|)
β
y in

let pack(ρ, 〈y, a〉)= f ξ x in

pack(ρ, 〈y, e〉)
where e is fn (
x,
y) ⇒ let vf = ef (
x) in let vx = ex(
y) in a(〈vf , vx〉).

– Case: Π ends with rule (zero).

zero
Γ
 zero : N

(|Π|) := Λ
α. λ
x. pack(unit, 〈�, fn g ⇒ return 0〉)
– Case: Π ends with rule (succ), whose premise is derived by Πt.

succ
Γ
 t : N

Γ
 succ(t) : N

(|Π|) := Λ
α. λ
x. let pack(αt, 〈at, et〉) = (|Πt|)
α
x in

pack(αt, 〈at, fn g ⇒ let y = et(g) in return succ(y)〉)
– Case: Π ends with rule (if) whose premises are derived by Πs, Πt1 and Πt2 .

if
Γ
 s : N Δ1
 t1 : N Δ2
 t2 : N
Γ,Δ1,Δ2
 if0 s then t1 else t2 : N

(|Π|) := Λ
α
β
γ. λ
x
y
z. let pack(αs, 〈as, es〉) = (|Πs|)
α
x in

let pack(α1, 〈a1, e1〉) = (|Πt1 |)
β
y in

let pack(α2, 〈a2, e2〉) = (|Πt2 |)
γ
z in

pack(unit, 〈�, e〉)
where e is (fn (
x,
y,
z) ⇒ let v = es
x in if0 v then e1(
y) else e2(
z)).

262 U. Schöpp

– Case: Π ends with rule (rec), whose premise is derived by Πt.

rec
Γ, f :X → Y, x:X
 t : Y

Γ
 fun f x ⇒ t : X → Y

Λ
α. λ
x. pack(C�Γ �, 〈fix step, fn g ⇒ return g〉)
where

step := λf.Λβ. λx. let pack(ρ, 〈a, e〉) = (|Πt|)
α C�Γ ��α β
x f x in

pack(ρ, 〈a, fn 〈c, x〉 ⇒ e(〈〈c, c〉, x〉)〉).
Here, c is the tuple of the values in the context Γ . This tuple is used as the
code for the recursive function f .

4.1 Examples

Let us spell out the translation of the following simple source term.

 (fn s ⇒ s zero) (fn x ⇒ succ(x)) : N

We spell out the non-trivial subterms:

– (|s:N → N
 s zero : N|) is defined to be

Λα. λs : I�N → N�α. let pack(ϕ, 〈f, ef 〉) = (|s:N → N
 s : N → N|) α s in

let pack(ξ, 〈x, ex〉) = (|
 0: N|) in

let pack(ρ, 〈y, a〉)= f ξ x in

pack(ρ, 〈y, e〉)
where e is fn 〈〈〉, cs〉 ⇒ let cf = ef (〈〈〉, cs〉) in let cx = ex(〈〉) in a(〈cf , cx〉).
Using the equational theory, this term may be simplified as follows:

(|s:N → N
 s zero : N|)
= Λα. λs : I�N → N�α. let pack(ρ, 〈y, a〉)= s unit � in

pack(ρ, 〈y, fn 〈〈〉, cs〉〉 ⇒ a(cs, 0)〉)
– (|
 fn s ⇒ s zero : N|) is then given by:

pack(unit, 〈(|s:N → N
 s zero : N|), fn g ⇒ return g〉)
– For the function argument, we get:

(|
 fn x:N ⇒ succ(x) : N → N|)
= pack(unit, 〈Λα. λx : I. pack(α, 〈x, fn 〈〈〉, cx〉 ⇒ return succ(cx)〉),

fn c ⇒ return c〉)

From Call-by-Value to Interaction 263

– Putting these terms together the translation of the whole term we can be
calculated and simplified as follows.

(|
 (fn s ⇒ s zero) (fn x ⇒ succ(x) : N|)
= let pack(ϕ, 〈f, ef 〉) = (|
 fn s ⇒ s zero|) in

let pack(ξ, 〈x, ex〉) = (|
 fn x ⇒ succ(x)|) in

let pack(ρ, 〈y, a〉)= f ξ x in

pack(ρ, 〈y, fn 〈〉 ⇒ let cf = ef (〈〉) in let cx = ex(〈〉) in a(〈cf , cx〉)〉)
= let pack(ξ, 〈x, ex〉) = (|
 fn x ⇒ succ(x)|) in

let pack(ρ, 〈y, a〉) = (|s zero|) ξ x in

pack(ρ, 〈y, fn 〈〉 ⇒ let cx = ex(〈〉) in a(〈〈〉, cx〉)〉)
= let pack(ρ, 〈y, a〉) = (|s zero|) unit (Λα. λx : I. pack(α, 〈x, e〉)) in

pack(ρ, 〈y, fn 〈〉 ⇒ a(〈〈〉, 〈〉〉)〉) where e is fn 〈〈〉, cx〉 ⇒ return succ(cx)

= let pack(ρ, 〈y, a〉)= pack(unit, 〈�, fn 〈〈〉, cf 〉 ⇒ 1〉) in

pack(ρ, 〈y, fn 〈〉 ⇒ a(〈〈〉, 〈〉〉)〉)
= pack(unit, 〈�, fn 〈〉 ⇒ 1〉)

While we have used the equational theory here to illustrate that the translation
produces the right result, we emphasise that computation is not intended to
be implemented by rewriting on target terms, but by a compilation of target
programs to low-level programs. Rewriting may be used for optimisation, of
course.

To illustrate that the translation correctly implements the call-by-value eval-
uation strategy, consider a function that takes a function as an argument and
applies it more than once:

fn s ⇒ if0 (s zero) then (s zero) else zero

The translation of the body of this function can be calculated as

(|s:N → N
 if0 (s zero) then (s zero) else zero : N|)
= Λα. λs : I�N → N�α. let pack(ρ, 〈y, a〉)= s unit � in

pack(unit, 〈�, fn 〈〈〉, cs〉〉 ⇒ e〉),
where e is let x= a(cs, zero) in if0 x then a(cs, zero) else return 0. Thus,
the function value cs is computed only once, but the function itself is invoked
twice, as would be expected from an implementation of call-by-value.

5 Correctness

In this section we show the correctness of the translation. The main result is
that a closed source term of base type N evaluates to a value n if and only if the
translated term for this term returns the code value n.

264 U. Schöpp

The basic idea for the correctness proof is to formalise the intuition when a
target term of type M�X�unit represents a source term of type X, as outlined
in Sect. 4 above. This naturally leads one to considering a realisability argument
using logical relations. In the simply-typed case, soundness can be shown using
a straightforward argument. With recursion, however, we must account for the
effect of non-termination. This naturally leads to an argument using ��-lifting.
It turns out that an argument very similar to that of Benton and Hur [2] suffices
to treat our translation.

5.1 Lower Bound

First we show that translated terms do not return wrong results.
In Sect. 4 we have outlined how c : C�X�A and a : I�X�A represent a source

value of type X. Here we make precise in which sense triples (A, a, e) represent
source values (or rather their domain-theoretic denotation). We extend this def-
inition to computations by means of a form of ��-lifting. To define it, we need
some notation.

Define a type of continuations for type X as follows.

K�X� := ∀α. I�X�α → exp(C�X�α, unit)

A continuation k : K�X� can be composed with any term of type p : M�X�unit
to give us a term p • k : exp(unit).

p • k := let pack(A, 〈a, e〉)= p in let c= e(〈〉) in (k A a)(c)

We say that a closed term t : exp(unit) terminates if the equation t = return 〈〉
is derivable and that it diverges otherwise.

↓XV := {k : K�X� | ∀(A, a, c) ∈ V. k A a c diverges}
⇑XK := {p : M�X�unit | ∀k ∈ K. p • k diverges }

The reader should think of ⇑X↓XV as the set of all terms that produce only
values – encoded as a triple (A, a, c) – that are indistinguishable from one in V .
It would be possible to make an intensional definition to this effect, but the
extensional definition using ⇑X and ↓X appears to be more natural and general.

For any source type X, we define a relation

(A, a, c) ≤X d

where A is a base type and
 a : I�X�A and
 c : C�X�A and d ∈ �X� (recall that
�X� is the denotational interpretation of X). This relation expresses that the
triple (A, a, c) implements only behaviour that is also found in d. It is defined
by induction on the type X:

From Call-by-Value to Interaction 265

– Base type: v ≤N n if and only if v is of the form (A, �, n) for some A.
– Function type: v ≤X→Y f if and only if:

∀w, x. w ≤X x =⇒ app(v, w) ∈ ⇑Y ↓Y {r | ∃d. f(x) = �d	 ∧ r ≤Y d}.

This approximation relation ≤X is extended to the interpretation of typing
sequents. For any source context Γ = x1:X1, . . . , xn:Xn, the relation p ≤Γ,X d
relates a term

p : ∀α1 . . . αk. I�X1�α1 → · · · → I�Xk�αk
→ M�Y �unit×C�X1�α1×···×C�Xk�αk

to a domain element d ∈ �X1� × · · · × �Xn� ⇒ �X�⊥. It is defined such that
p ≤Γ,Y f holds if and only if: Whenever vi ≤Xi xi for i = 1, . . . , n, then

inst(p, v1, . . . , vn) ∈ ⇑Y ↓Y {v | ∃d. f(x1, . . . , xn) = �d	 ∧ v ≤Y d}.

Here, inst is defined by:

inst(p, (A1, a1, c1), . . . , (An, an, cn))
:= let pack(αy, 〈ay, ey〉)= p A1 . . . An a1 . . . an in

pack(αy, ay, fn 〈〉 ⇒ ey 〈〈〉, c1, . . . , cn〉)

Lemma 1. If v ≤X d and d � e, then v ≤X e.

The proof is a straightforward induction on the type X.

Lemma 2. For any derivation Π of Γ
 t : X, we have (|Π|) ≤Γ,X �Π�.

Proof. The proof goes by induction on the derivation Π. We continue by case
distinction on the last rule in Π and show just the cases for application and
recursion.

– Case (app): Denote the derivations of the two premises by Πs and Πt.
Suppose Γ is x1:X1, . . . , xn:Xn and Δ is y1:Y1, . . . , ym:Ym. Assume vi ≤Xi

xi and wj ≤Yj yj for i = 1, . . . , n and j = 1, . . . , m. We have to show the
relation app((|Π|),
v,
w) ≤Y �s�(
x, �t�(
y)).

By induction hypothesis, we get app((|Πs|),
v) ∈⇑X→Y ↓X→Y {u |
u ≤X→Y �s�(
x)} and app((|Πt|),
w) ∈⇑X↓X {r | v ≤X �t�(
y)}. To show
app((|Πs|),
v)•k diverges, it therefore suffices to show that k Au au cu diverges
for all Au, au and cu with (Au, au, cu) ≤X→Y �s�(
x), and likewise for Πt.

This means that to show that

let pack(Au, 〈au, eu〉)= inst((|Πs|),
v) in

let cu = eu() in

let pack(Ar, 〈ar, er〉)= inst((|Πt|),
w) in

let cr = er() in

app((Au, au, cu), (Ar, ar, cr)) • k

266 U. Schöpp

diverges, it suffices to show that app((Au, au, cu), (Ar, ar, cr)) • k diverges for
any (Au, au, cu) ≤X→Y �s�(
x) and any (Ar, ar, cr) ≤X �t�(
y). The definition
of ≤X→Y gives us that this is true when k is in ↓Y {y | y ≤Y �s�(
x, �t�(
y))}.

But this means that to show app((|Π|),
v,
w) ∈ ⇑Y ↓Y {y | y ≤Y

�s�(
x, �t�(
y))}, it suffices to show that app((|Π|),
v,
w) is equal to the above
program. But this follows by unfolding the definitions and direct equational
reasoning.

– Case (Rec): Write Πt for the derivation of the premise of this rule. Suppose
Γ is x1:X1, . . . , xn:Xn. Assume (Ai, ai, ci) ≤Xi xi for i = 1, . . . , n.

Let f0 := ⊥ and fi := �Πt�(
x, fi−1) and f :=
⊔

i fi.
We have to show that

let pack(A, 〈a, e〉) = (|Π|) A1 . . . An a1 . . . an in

pack(A, a, fn 〈〉 ⇒ e(〈〈〉, c1, . . . , cn〉))

is in ⇑X→Y ↓X→Y {v | v ≤X→Y f}.
By definition of (|Π|), the above program equals

pack(C�Γ �, aΠ , fn 〈〉〉 ⇒ (〈〈〉, c1, . . . , cn〉)).
It therefore suffices to show (C�Γ �, aΠ , 〈〈〉, c1, . . . , cn〉) ≤X→Y f. By definition,
aΠ has the form fix(step). Let bi := fixi(step).

First we show ∀i. (C�Γ �, bi, 〈〈〉, c1, . . . , cn〉) ≤X→Y fi by a straightfor-
ward induction on i. This implies ∀i. (C�Γ �, bi, 〈〈〉, c1, . . . , cn〉) ≤X→Y f by
monotonicity.

From this we can conclude (C�Γ �, aΠ , fn 〈〉 ⇒ 〈〈〉, c1, . . . , cn〉) ≤X→Y f as
follows. Suppose (Ax, ax, cx) ≤X x. We have to show that

let pack(Ay, 〈ay, ey〉)= aΠ Ax ax in

pack(Ay, ay, fn 〈〉 ⇒ ey(〈〈〉, c1, . . . , cn, cx〉))

is in ⇑Y ↓Y {v | ∃d. f(x) = [d] ∧ v ≤Y d}. For this, we have to show that

let pack(Ay, 〈ay, ey〉)= aΠ Ax ax in

let cy = ey(〈〈〉, c1, . . . , cn, cx〉) in

k Ay ay cy

diverges, given that k diverges for all inputs v with ∃d. f(x) = [d] ∧ v ≤Y d.
But we know that, for any i, the program with bi in place of aΠ diverges. Thus,
if the program were to terminate, then it would already terminate with an
approximation of fix. But this would also mean that, for some i, the program
with bi in place of aΠ were to terminate, leading to a contradiction.

5.2 Upper Bound

It now remains to show that the translation produces target terms that compute
at least the information specified by the domain interpretation. To this end we

From Call-by-Value to Interaction 267

define a relation (A, a, c) ≥X d expressing that the triple (A, a, c) implements at
least the behaviour specified by d. The proof that the translation of each source
program is ≥-related to the domain-theoretic interpretation of the program also
follows [2].

As in [2], some care needs to be taken with recursion, in order to make the
definition of ≥ closed under taking the least upper bound in its second argument.
We therefore first define a relation ≥0 and then define ≥ from it by closing under
limits.

↓XV = {k : K�X� | ∀(A, a, c) ∈ V. k A a c terminates}
⇑XK = {p : M�X�unit | ∀k ∈ K. let (A, 〈a, c〉)= p in k A a c terminates}

Define ≥X
0 between triples (A, a, c) with a : I�X�A and c : C�X�A, and ele-

ments of �X� to be the least relation with the following properties:

– Base type: (A, �, n) ≥N

0 n
– Function type: v ≥X→Y

0 f if and only if:

∀w, x, d. w ≥X
0 x ∧ f(x) = �d	 =⇒ app(v, w) ∈ ⇑Y ↓Y {v | v ≥Y

0 d}

For a source context Γ = x1:X1, . . . , xn:Xn, we define p ≥Γ,Y
0 f to mean:

Whenever wi ≥Xi
0 xi for i = 1, . . . , n and f(x1, . . . , xn) = �d	, then also

inst(p,w1, . . . , wn) ∈ ⇑Y ↓Y {v | v ≥Y
0 d}.

This definition is then closed under least upper bounds, as in [2]:

v ≥X x ⇐⇒ for some ω-chain (xi)i≥0: x �
⊔

i

xi ∧ ∀i. v ≥X
0 xi

v ≥Γ,X x ⇐⇒ for some ω-chain (xi)i≥0: x �
⊔

i

xi ∧ ∀i. v ≥Γ,X
0 xi

Lemma 3. For any derivation Π of Γ
 t : X, we have (|Π|) ≥Γ,X �Π�.

Proof. With the explicit closure under limits, the case for recursion is straight-
forward this time, but we have to check that all operations are compatible with
closing under limits. For example, in the case of application we use continuity of
function application, i.e.

⊔
i fi(

⊔
i xi) =

⊔
i fi(xi). Using this equality it suffices

to show that v ≥X→Y
0 fi and w ≥X

0 xi implies app(v, w) ≥Y
0 fi(xi) for all i,

which follows using the same kind of reasoning as for the lower bound. ��
Theorem 1. Suppose Π derives
 t : N. Define the target term p : exp(nat) to
be let pack(α, 〈a, e〉) = (|Π|) in e(〈〉). Then the following are true.

1. If �Π� = ⊥, then p diverges.
2. If �Π� = �n	, then
 p = return n : N.

268 U. Schöpp

Proof. If �Π� = ⊥, then (|Π|) ∈ ⇑N↓N∅ by (|Π|) ≤empty,N �Π�. This means that
(|Π|) • k must diverge for any k, in particular also Λα. λx. fn m ⇒ return 〈〉.
Hence, (|Π|) cannot be equal to return m for any m.

By (|Π|) ≥empty,N �Π� and the fact that N⊥ is a flat cpo, we obtain that
(|Π|) is in ⇑N↓N{v | v ≥N

0 n}. This means that (|Π|) • k must terminate
for the continuation defined by the pseudo-code Λα. λx. fn m ⇒ if m =
n then return 〈〉 else diverge. But this can only be the case if (|Π|) returns n. ��

6 Conclusion and Further Work

We have defined a simple typed closure conversion from a call-by-value source
language to an Algol-like target language. The target language is modelled on the
structure of interactive models of computation. Overall, we have there arrived at
a simple implementation of call-by-value in models of interactive computation,
simplifying earlier work in this direction, in particular [17]. Moreover, the trans-
lation in this paper also covers recursion. The formulation should be general
enough to account for effects other than non-termination as well.

While the translation in this paper is similar to other typed closure conver-
sion methods [1,13], it does not appear to be exactly the same. In addition to
corresponding to the cps-translation from [17], we believe that the translation
here is also canonical in the sense that it is an implementation of call-by-value
game semantics [9]. This was observed in discussions with Nikos Tzevelekos.

Let us consider the definition of arenas in call-by-value games [9]. Arenas
are forests of labelled trees (with additional information) that explain which
sequences of moves are allowed as plays. For a source type X, define the labelled
forest M(X) as shown below, where C(N) is the set of natural numbers and
C(X → Y) = {∗}.

In call-by-value games, the semantics of a closed PCF term of type X is
explained in terms of plays on M(X). Such a play is a sequences of nodes
m1, . . . ,mn with the property (among others) that, for all i > 1 there exists
j < i such that mj is the parent node of mi in the forest M(X).

Now, consider an implementation of the target language in this paper which
records the trace of values that terms of type exp(A,B) receive as arguments
and that they return. The types I�X�A and M�X�A specify an ordering on
the traces that can appear at these types. Consider I�(N → N) → N�A, i.e.

From Call-by-Value to Interaction 269

∀β1. (∀β2. I × exp(β1 × nat, nat)) → ∃γ. I × exp(A × β1, nat). A trace of a term
of this type must start with a value of type A×β1 (invoking the function). This
can be followed by a message of type β1 × nat (invoking the argument function)
and then the corresponding return value of type nat. Such a call to the argument
function can be repeated until the final value of type nat is returned. If we spell
out the constraints on the traces in terms of forests as above, then we get the
following forests, in which type variables range over arbitrary types.

The trees from the game semantic arenas are obtained from these trees by
removing all values whose type is a type variable. In game semantic plays, this
removed information is not needed, as it can be recovered from the history. This
makes it reasonable to expect that the translation in this paper can be seen
as an efficient, history-free implementation of call-by-value game semantics. We
intend to make the relation precise in further work.

References

1. Ahmed, A., Blume, M.: Typed closure conversion preserves observational equiva-
lence. In: International Conference on Functional Programming, ICFP 2008, pp.
157–168 (2008)

2. Benton, N., Hur, C.: Biorthogonality, step-indexing and compiler correctness. In:
International Conference on Functional program ming, ICFP 2009, pp. 97–108
(2009)

3. Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010)

4. Danos, V., Herbelin, H., Regnier, L.: Game semantics and abstract machines. In:
Logic in Computer Science, LICS 1996, pp. 394–405. IEEE (1996)

5. Fernández, M., Mackie, I.: Call-by-value lambda-graph rewriting without rewrit-
ing. in: International Conference on Graph Transformation, ICGT 2002, pp. 75–89
(2002)

6. Fredriksson, O., Ghica, D.R.: Seamless distributed computing from the geometry
of interaction. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191,
pp. 34–48. Springer, Heidelberg (2013)

7. Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In:
Hofmann, M., Felleisen, M. (eds.) Principles of Programming Languages, POPL
2007, pp. 363–375. ACM (2007)

8. Hasuo, I., Hoshino, N.: Semantics of higher-order quantum computation via geom-
etry of interaction. In: Logic in Computer Science, LICS 2011, pp. 237–246. IEEE
(2011)

270 U. Schöpp

9. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation.
Theor. Comput. Sci. 221(1–2), 393–456 (1999)

10. Hoshino, N., Muroya, K., Hasuo, I.: Memoryful geometry of interaction: from coal-
gebraic components to algebraic effects. In: Computer Science Logic - Logic in
Computer Science, CSL-LICS 2014. ACM (2014)

11. Lago, U.D., Faggian, C., Hasuo, I., Yoshimizu, A.: The geometry of synchroniza-
tion. In: Computer Science Logic - Logic in Computer Science, CSL-LICS 2014,
pp. 35:1–35:10 (2014)

12. Mackie, I.: The geometry of interaction machine. In: Cytron, R.K., Lee, P. (eds.)
Principles of Programming Languages, POPL 1995, pp. 198–208. ACM (1995)

13. Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1996, St. Petersburg Beach, Florida, USA, pp. 271–283. ACM,
New York (1996). doi:10.1145/237721.237791

14. Reynolds, J.C.: The essence of ALGOL. In: O’Hearn, P.W., Tennent, R.D. (eds.)
ALGOL-like Languages, vol. 1, pp. 67–88. Birkhauser Boston Inc., Cambridge
(1997)

15. Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. J. Funct. Program. 24(5),
529–607 (2014)

16. Schöpp, U.: Computation-by-Interaction for Structuring Low-Level Computation.
Habilitation thesis, Ludwig-Maximilians-Universität München (2015)

17. Schöpp, U.: Call-by-value in a basic logic for interaction. In: Garrigue, J. (ed.)
APLAS 2014. LNCS, vol. 8858, pp. 428–448. Springer, Heidelberg (2014)

18. Schöpp, U.: Organising low-level programs using higher types. In: Principles and
Practice of Declarative Programming, PPDP 2014. ACM, New York, to appear
2014

19. Winskel, G.: The Formal Semantics of Programming Languages - An Introduction.
MIT Press, Cambridge (1993). ISBN: 0-262-23169-7

http://dx.doi.org/10.1145/237721.237791

Kripke Open Bisimulation

A Marriage of Game Semantics and Operational
Techniques

Guilhem Jaber1(B) and Nicolas Tabareau2

1 Queen Mary University, London, UK
2 Inria, Nantes, France
g.jaber@qmul.ac.uk

Abstract. Proving that two programs are contextually equivalent is
notoriously hard, particularly for functional languages with references
(i.e., local states). Many operational techniques have been designed to
prove such equivalences, and fully abstract denotational model, using
game semantics, have been built for such languages. In this work, we
marry ideas coming from trace semantics, an operational variant of game
semantics, and from Kripke logical relations, notably the notion of worlds
as transition systems of invariants, to define a new operational technique:
Kripke open bisimulations. It is the first framework whose completeness
does not rely on any closure by contexts.

1 Introduction

Many operational methods have been designed to reason about contextual equiv-
alence of stateful programs. This profusion comes mainly from the difficulty to
know exactly what kind of equivalence can be proven or not by a particular
method. Even if completeness have been stated for some of those methods, the
proof of completeness always relies on a notion of closure by contexts, which
prevents to conclude that all the proofs of equivalence can be performed. For
instance, Kripke logical relations (KLR), one of the most popular (and complete)
method, were in their first version insufficient to prove the equivalence of two
simple programs, dubbed at the time the “awkward example”. This is because
the notion of worlds as invariants introduced in the seminal paper of Pitts and
Stark [12] is too restricted. KLR have later been refined by Ahmed, Dreyer et al.
[1,2], where a transition system between such invariant is used to overcome this
restriction. A sibling relational method to reason about contextual equivalence
is given by bisimulations. Environmental [13,16] and Normal Form (a.k.a. Open)
Bisimulations [7,8,15] are (set of) relations on terms defined coinductively w.r.t.
the operational reduction. Their underlying idea is that contextual equivalence
can be seen as the greatest adequate bisimulation which is also a congruence.
The issue with this approach is that building a bisimulation is a complex task,
especially when contexts do not have control operators and thus are not powerful
enough to discriminate terms. Recently, Relation Transition Systems [3] (RTS)

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 271–291, 2015.
DOI: 10.1007/978-3-319-26529-2 15

272 G. Jaber and N. Tabareau

have been introduced to take the best of the two approaches. While in the work
on bisimulation, a class of bisimulation is defined and then shown to be a con-
gruence, RTS provide a single bisimulation, whose definition is parametrized by
a transition system—as it is done for KLR—plus a notion of global knowledge.
This means that when proving equivalence of two terms, only the transition sys-
tem of heap invariants and the global knowledge need to be constructed. Then it
just remains to show that the two terms are in the corresponding bisimulation.
But RTS are not known to be complete (the first version do not cover, e.g.,
η-equivalence).

On another line of work, fully-abstract denotational model of higher-order ref-
erences have been designed, in terms of trace semantics [6] or game semantics [9].
In theory, it is thus possible to prove equivalence of programs by computing their
denotation in such models, then prove that the denotations are equal. This is
however in general a really complex task. Algorithmic game semantics [10] has
been designed to perform automatically this task, using an automaton represen-
tation of the denotation of a term. However, this can be done only for fragments
of the language where the type of terms is restricted. Thus this methods cannot
be applied to unrestricted terms.

Overall, transition systems constitute a central object in this area. One can
wonder whether they have been used for the same purpose. In trace semantics [6],
the interactive reduction which generates traces can be seen as a bipartite Labeled
Transition System (LTS) between player (i.e., the term) and opponent (i.e.,
contexts) configurations. Such LTSs carry a lot of information: the control flow
between the term and any context, on each transition the actions performed,
and on each state the configuration that the interactive reduction has reached.
In the work on KLR and RTS, the transition system is rather an abstraction
of the control flow, which is shared between two terms, and states only provide
invariants on heaps. But among these works, those that are complete all use a
notion of closure by context at one point in their definition. The only exception
is the work of Stovring and Lassen [15], but for an untyped λ-calculus with a
control operator (contexts having access to such operators, they can discriminate
more terms). It is interesting to notice that in [7], the completeness of their
bisimulation, once references are added to their language, was conjectured (albeit
for a continuation passing style calculus, where reasoning on divergence is easier).

In this paper, we propose Kripke Open Bisimulations (KOBs), which are
derived from bisimulations on configurations of the LTS generating traces, but
are rather defined directly on terms with the usual operational semantics. The
motto of KOBs could be:

“to prove equivalence of programs, only a transition system of invariants is
needed”

Indeed, its definitions can be carried on in a simple logic that does not make use
of quantification over λ-terms nor of a notion of closure. So once the transition
system of invariants on heaps has been provided, it is straightforward to conduct
the proof of equivalence, by simply reducing the terms operationally and checking
that we get synchronized behavior. Via the link to trace semantics, we prove

Kripke Open Bisimulation 273

full abstraction of KOBs, without relying on any kind of closure, which suggests
that all the reasoning principles necessary to reason about equivalence of stateful
programs are present in KOBs.

Reasoning Principles behind Kripke Open Bisimulations. When rea-
soning on contextual equivalence, the key notion is to determine what can be
observed by a context. This, of course, depends on the programming language in
which contexts are written. For example, when contexts have access to a mutable
memory, they can store how many times a function (or callback) provided to a
term is called. This means that two terms are equivalent only when they per-
form the same callbacks, e.g., λf.f(); f() is not equivalent in that case to λf.f().
Moreover, with such a memory, contexts can also keep track of the order in which
arguments are applied to callbacks. Thus, λf.(f 1) + (f 2) is not equivalent to
λf.(f 2)+(f 1) in this setting. To sum-up, when reasoning on a language with a
mutable memory, two terms are contextually equivalent only if the control flow
between the term and contexts are equal, such control flow taking into account
the functional values provided by a term to the context via callbacks. This idea
shows up in game semantics, where the intensional model is fully abstract for a
language with store, without considering a quotient of the model.

But in this setting, contexts can also observe memory cells created or modified
by a term. This is however only the case for languages with unrestricted mem-
ory management like C or assembly code, where pointer arithmetic is allowed.
This is not the case for languages like ML, where memory is implemented
with references, represented using locations, on which the typing system for-
bids any kind of arithmetic. Locations can yet be passed as arguments to func-
tions. This means that a disclosure process of locations can happen between a
term and the context. So part of the references created by a term can become
observable by the context, as soon as the corresponding locations are disclosed.
For example, let x = ref 0 in λy : (ref Int).x == y and λy : (ref Int).false are
equivalent. Indeed, the location stored in x has not been disclosed and remains
private to the term, so that contexts have no access to it and cannot pass it as
an argument to the λ-abstraction. This means that we need to keep track of such
disclosure process of locations to reason about equivalence of programs for lan-
guages like ML. But, we must also keep track of the way references that remain
private to a term evolve. Indeed, when a term recovers the control, after perform-
ing a callback or returning a higher-order value, its execution also depends on
its private part of the heap, and not only on the values provided by the context
(either directly as arguments or via the disclosed part of the heap).

Transition systems representing the control flow between a term and a con-
text, together with labels on transitions representing the invariants on heaps and
the disclosure of locations, are thus important pieces of information to reason
about equivalence of programs in the presence of a mutable memory. Following
the work on KLR [2], some states of transition systems are tagged as inconsistent
to deal with the so-called deferred divergence examples. This technique corre-
sponds to the restriction to complete plays in game semantics, and would not

274 G. Jaber and N. Tabareau

be necessary if the language we consider featured some simple notion of control
flow operator to abort the reduction.

The goal of this paper is to marry the notion of worlds as evolving invariants
of KLR to the direct style reasoning provided by open bisimulations to provide
a framework in which the transition system is the only external information
needed to decide the equivalence of two programs. The price to pay for this
unified framework is a complex proof of soundness and completeness as it can
no longer rely on a biorthogonality argument (because of direct-style reasoning)
nor on a generic notion of bisimulation (because bisimulations are restricted to
particular ones, specified by a relational transition system). The proof is per-
formed using ideas coming from nominal game semantics [9] and its connection
to trace semantics, an operational variant initiated by Laird [6].

All the detailed proofs appear in the technical Appendix [5].

2 RefML

The programming language considered in this paper is RefML, a typed call-
by-value functional language with nominal higher-order references, which is a
fragment of ML.

2.1 Syntax of RefML

The syntax of types τ , values u, terms M , contexts C and evaluation contexts K
of RefML is defined in Fig. 1. As usual, let x = N in M is defined as (λx.M)N
and M ;N is defined as (λx.N)M with x fresh in M . Evaluation contexts K are
particular kinds of contexts, the ones that start by reducing terms that fill their
hole •. For each type τ , we use a special term ⊥τ that always diverges.

Heaps h are defined as finite partial maps Loc ⇀ Val. The empty heap is
written ε. Adding a new element to a partial map h is written h · [l ↪→ v], and
is defined only if l /∈ dom(h). We also define h[l ↪→ v], for l ∈ dom(h), as the
partial function h′ which satisfies h′(l′) = h(l′) when l′ �= l, and h′(l) = u. The
restriction of a heap h to a set of locations L is written h|L. A heap is said to be
closed when, for all l ∈ dom(h), if h(l) is itself a location then h(l) ∈ dom(h).
Taking a set L of locations and a heap h, we define the image of L by h, written
h∗(L) as h∗(L)

def
= ∪j≥0 hj(L) where h0(L) = L and hj+1(L) = h(hj(L)) ∩ Loc.

τ, σ
def
= Unit | Bool | Int | ref τ | | τ × σ | τ → σ

u, u′ def
= () | true | false | n̂ | x | l | 〈u, u′〉 | λx.M (where n ∈ , x ∈ Var, l ∈ Loc)

M, M ′ def
= u | MM ′ | M + M ′ | M M ′ M ′′ | M == M ′ |

ref M | !M | M := M ′ | | 〈M, M ′〉 | π1(M) | π2(M) | ⊥τ

C
def
= • | λx.C | CM | MC | ref C | C := M | M := C | !C | C == M | . . .

K
def
= • | KM | uK | ref K | K := M | u := K | !K | K == M | u == K | . . .

Fig. 1. Definition of RefML

Kripke Open Bisimulation 275

Typing Rules. Typing judgments are of the form Σ;Γ � M : τ , where Σ and Γ
are respectively typing contexts for locations and variables. Such typing contexts
are partial maps between locations or variables to types. The typing rules of
RefML are standard, and given in Appendix A. We write Σ;Γ � C : τ � σ when
Σ;Γ, x : τ � C[x] : σ, with x /∈ Γ . Then, we write Γ � h : Σ if dom(h) = dom(Σ)
and Σ;Γ � h(l) : Σ(l).

2.2 Operational Semantics

The small-step operational semantics of RefML, written (M,h) 	→ (M ′, h′), is
defined in Fig. 21. We write M {v/x} to represent the (capture-free) substitution of
x by v in M. This reduction is deterministic, and in particular we suppose that the
reduction (K[ref v], h) 	→ (K[l], h · [l ↪→ v]) chooses a location l /∈ dom(h). Using
higher-order references, usual fixpoints fix f(x).M of type τ → σ can be defined
using the Landin’s Knot : let y = ref (λx.⊥σ) in y := (λx.let f =!y in M); !y.

In the following, we say that a pair (M,h) is irreducible, written irred(M,h),
if it cannot be reduced anymore. Taking an irreducible pair formed by a well-
typed term M and a closed well-typed heap, where all the free variables are of
functional types, we get that M is either equal to a value or to a callback, i.e., a
term of the form K[f v] with f a free variable and v a value.

Contextual (a.k.a. observational) equivalence is defined as:

Definition 1. Taking two terms M1,M2 of the same type τ in a context Σ,Γ , we
say that M1 and M2 are contextually equivalent, written Σ;Γ � M1
ctx M2 : τ ,
when ∀Σ′ ⊇ Σ.∀h : Σ′ closed. ∀C s.t. Σ′;Γ � C : τ � Unit. (C[M1], h) ⇓
iff (C[M2], h) ⇓, where (C[M1], h) ⇓ means (C[M1], h) 	→∗ ((), h′).

Using closed heaps containing Σ ensures that the reduction of (C[Mi], h) cannot
get stuck, i.e., either reduces to () or diverges.

(K[(λx.M)u], h) �→ (K[M {u/x}], h) (K[n̂ + m̂], h) �→ (K[n̂ + m], h)
(K[n̂ == n̂], h) �→ (K[true], h) (K[n̂ == m̂], h) �→ (K[false], h) (n �= m)
(K[l == l], h) �→ (K[true], h) (K[l == l′], h) �→ (K[false], h) (l �= l′)
(K[⊥τ], h) �→ (K[⊥τ], h) (K[!l], h) �→ (K[h(l)], h)
(K[ref u], h) �→ (K[l], h · [l ↪→ u]) (K[l := u], h) �→ (K[()], h[l ↪→ u])
(K[πi 〈M1, M2〉], h) �→ (K[Mi], h)
(K[b Mtrue Mfalse], h) �→ (K[Mb], h)

Fig. 2. Operational Semantics of RefML

1 We also consider the non-deterministic reduction �→nd, defined in the same way but
for the rule of allocation, which is defined as (K[ref v], h) �→nd (K[l], h · [l ↪→ v]) for
any l /∈ dom(h).

276 G. Jaber and N. Tabareau

2.3 Abstract Values and Nominal Reasoning

In the following, we represent functional values (i.e., λ-abstractions) using func-
tional names belonging to a set FN. Abstract values2 v are then defined as:

v, v′ def
= () | true | false | n̂ | f | l | 〈v, v′〉 with n ∈ Z, l ∈ Loc and f ∈ FN.

To each type τ , we associate a set [[τ]] formed by pairs (v, φ) of abstract values
and typing function for functional names.

[[Unit]]
def
= {((), ε)} [[σ → τ]]

def
= {(f, [f 	→ (σ → τ)]) | f ∈ FN}

[[Int]]
def
= {(n̂, ε) | n ∈ Z} [[θ1 × θ2]]

def
= {(〈v1, v2〉 , φ1 · φ2) | (vi, φi) ∈ [[θi]]}

[[Bool]]
def
= {(true, ε), (false, ε)} [[ref τ]]

def
= {(l, ε) | l ∈ Loc}

Taking a typing context Γ , we define [[Γ]] as the set of pairs of substitution
functions and typing function of functional names defined as

{(ρ, φ) | dom(ρ) = dom(Γ),∀(x, τ) ∈ Γ,∃φx.(ρ(x), φx) ∈ [[τ]], φ =
⊎

x∈dom(Γ)

φx}.

Then, we need to reason up-to permutations of both functional names and
locations. To do so, we use nominal sets, as introduced by Pitts [11]. Fixing a
set of names A, we consider the group of finite permutations Perm(A) of A, i.e.,
the bijections π of A s.t. the set {a ∈ A | π(a) �= a} is finite. Then an A-nominal
set is a set X equipped with a group action (noted ∗) on Perm(A). We omit to
indicate A when it is clear from the context. A subset S of A is said to support
an element t of a nominal set X when

∀π ∈ Perm(A). (∀a ∈ S. π(a) = a) ⇒ π ∗ t = t.

The smallest subset of A which supports t is called the support of t, written νA(t).
Terms and heaps of RefML can be seen as a nominal set over both Loc and FN.
Then, the support of a term is (i) its set of locations if it is seen as nominal over
Loc, or (ii) its set of free functional names if it is seen as nominal over FN.

Two elements t, u of a nominal set X are said to be nominally-equivalent,
written t ∼A u if there exists π in Perm(A) s.t. t = π ∗ u holds. We sometimes
need to be explicit in the permutation when working with two nominally equiv-
alent elements t, u of a nominal set X. However, when this is the case, it is more
convenient to work with (typed) spans rather than permutations because spans
are easier to extend than permutations. Spans, which are equivalent to permuta-
tions, have already been used by Stark to reason about locations, when defining
logical relations for the ν-calculus [14].

Definition 2. A span S : (A× Types) � (A× Types) is a pair of partial finite
injections (A × Types) ←↩ S ↪→ (A × Types) preserving types. We write Span

A

for the set of spans over A.
2 By seeing functional names as variables, the operational semantics of RefML can be

extended straightforwardly to abstract values.

Kripke Open Bisimulation 277

We write ε for the empty span. The image of a span S by the left (resp. right)
injection is written S1 (resp. S2). Such images can be seen as typing contexts.
Reciprocally, from a typing context Γ , we define the span Γ̂ as {(x, x, τ) | (x, τ) ∈
Γ}. The extension of a span S at type τ with (a1, a2) ∈ A is written S ·(a1, a2, τ),
when a1 /∈ S1 and a2 /∈ S2. We say that S ′ extends S, written S ′ � S, when S ′

is a span which includes S as a set. Two spans are disjoints, written S#S ′, when
both Si,S ′

i are disjoint sets. A span S induces a finite permutation πS : A → A,
using the so-called “Homogeneity Lemma” of [11] (Lemma 1.14). Then, we define
a restriction of the nominal equivalence ∼A with respect to a span S, written
X ∼S Y , if X = πS ∗ Y . We usually write Φ and D for spans respectively over
functional names and locations, and write x ∼D

Φ y for the nominal equivalence
induced by those spans on a nominal set over both FN and Loc.

3 Trace Semantics

This section presents a fully abstract model of RefML, based on a trace represen-
tation of game semantics which will be used to prove soundness and completeness
of Kripke open bisimulations and at the same time to shed light on the intuitions
coming from game semantics that have been used to define Kripke open bisim-
ulations. Rather than working with the fully abstract game model of RefML
defined by Murawski and Tzevelekos [9], it appears to be more convenient to
work with a typed variant [4] of the trace model introduced by Laird [6]. This is
because trace semantics, which provides as well a fully-abstract model of RefML,
has a strong operational flavor, since it is generated via an interactive reduction,
representing exactly all the possible interactions between terms and contexts.

3.1 Interactive Reduction

The denotation of terms is defined as set of traces, whose basic blocks are actions
a, of four kinds (following game semantics terminology, actions of terms and
contexts are respectively called Player and Opponent actions):

– a question of Player (resp. Opponent) via a functional name f with argument
an abstract value v, represented by the action f̄ 〈v〉 (resp. f 〈v〉);

– an answer by Player (resp. Opponent) with the abstract value v, represented
by the action 〈v̄〉 (resp. 〈v〉).

A trace is then defined as a sequence of actions-with-heap (a, h), where a is an
action and h is a closed abstract heap. An important point is that h represents
the disclosed part of the heap, common to the term and the context.

Traces are generated using an interactive reduction. This reduction is defined
on “evaluation stacks” S, which are either

– passive, (Kn[•σn
], τn) :: . . . :: (K1[•σ1], τ1), formed by typed evaluations con-

texts, for Opponent configurations,
– or active, (M, θ) :: S ′ formed by a term M of type θ and a passive stack S ′,

for Player configurations.

278 G. Jaber and N. Tabareau

The empty stack is simply written ♦. When Player provides a higher-order value
to Opponent, either via a callback (i.e., a question) or directly when reducing
to a λ-abstraction (i.e., an answer), it is stored in an environment γ, which is
a partial maps from FN to Val. Then Opponent can recover what is stored in
γ, by asking a question. We associate a type to every functional names using
a typing function φ : FN ⇀ Types, such that dom(γ) ⊆ dom(φ). Functional
names in dom(φ)\dom(γ) are the one provided by Opponent, which can then
be used by Player. To represent disclosure of locations, we use a typing function
D : Loc ⇀ Types, that we often see as a relation, which grows as the term or
the context discloses new locations.

Definition 3. The disclosed locations coming from a value v and a heap h and
already disclosed locations in D is computed using the fonction discl(v, h,D),
defined as a typing function D′ such that (l, τ) ∈ D′ iff l ∈ h∗(νLoc(v,D)) and
D′;φ � h(l) : τ .

The interactive reduction is defined in Fig. 3 as a bipartite LTS between Player
and Opponent configurations 〈S, γ, φ, h,D〉, where labels are actions-with-heap.
The basic idea is that if a term reduces:

– to a callback K[f u], the corresponding Player configuration performs a ques-
tion f̄ 〈v〉, reducing to an Opponent configuration with K on top of the eval-
uation stack,

– to a value u, the corresponding Player configuration performs an answers 〈v̄〉,
reducing to an Opponent configuration where the head of the evaluation stack
has been popped,

where v is an abstract values which, together with an environment γ′ mapping its
functional names to values, represents u. This γ′ is added to the player environ-
ment. An opponent configuration can perform a question f 〈v〉 by interrogating

Intern 〈(M, τ) :: S, γ, φ, h, D〉 −−−−−−→ 〈(M ′, τ) :: S, γ, φ, h′, D〉
(when (M,h) 	→nd (M ′, h′))

P-Ans 〈(u, τ) :: S, γ, φ, h, D〉 〈v̄〉,h′
|D′−−−−−→ 〈S, γ′, φ′, h[h′], D′〉

P-Quest 〈(K[f u], σ) :: S, γ, φ, h, D〉 f̄〈v〉,h′
|D′−−−−−−→ 〈(K[•τ ′], σ) :: S, γ′, φ′, h[h′], D′〉

(with φ(f) = τ → τ ′)
in all P-rules: (v, γv, φv) ∈ AValu(τ), D′ = discl(u, h,D),

(h′, γh, φh) ∈ AHeapD′(h′), γ′ = γ · γv · γh, φ′ = φ · φv · φh

O-Ans 〈(K[•τ], σ) :: S, γ, φ, h, D〉 〈v〉,h′
|D′−−−−−→ 〈(K[v], σ) :: S, γ, φ′, h[h′], D′〉

O-Quest 〈S, γ, φ, h, D〉 f〈v〉,h′
|D′−−−−−−→ 〈(u v, σ) :: S, γ, φ′, h[h′], D′〉

(with γ(f) = u)
in all O-Rules: (v, φv) ∈ τ , (h′, φh) ∈ D′ , φ′ = φ · φv · φh, D′ = discl(v, h, D)

Fig. 3. Definition of the interaction reduction

Kripke Open Bisimulation 279

a functional name f in γ, or, if its evaluation stack is non-empty, it can perform
an answer 〈v〉, filling the hole of the first context of the stack.

The representation of a value u of type τ as a triple (v, φ, γ) formed by an
abstract value, and two functions mapping its fresh functional names to values
and types, is defined via the following set AValu(τ):

AValv(ι)
def
= {(v, ε, ε)} for ι = Unit,Bool, Int, ref τ

AVal〈u1,u2〉(τ1 × τ2)
def
= {(〈v1, v2〉 , γ1 · γ2, φ1 · φ2) | (vi, γi, φi) ∈ AValui

(τi)}
AValu(τ → σ)

def
= {(f, [f 	→ u], [f 	→ (τ → σ)]) | f ∈ FN}

We also define a function AHeapD(h) to transform a heap h into a triple
(h′, γ, φ) formed by an abstract heap, and two functions mapping its fresh func-
tional names to values and types, defined, using the typing information on loca-
tions contains in D, as:

AHeapD(ε)
def
= {(ε, ε, ε)}

AHeapD(h · [l 	→ u])
def
= {(h′ · [l 	→ v], γ · γ′, φ · φ′) | (h′, γ′, φ′) ∈ AHeapD(h),

(v, γ, φ) ∈ AValu(τ) with (l, τ) ∈ D}

We write C
a=⇒ C ′ when, if C is a Player configuration then there exists a

Player configuration C ′′ such that C −→ C ′′ a−→ C ′, otherwise if C is an Opponent
configuration then C

a−→ C ′. A trace T is generated by a configuration C when
it can be written as a sequence a1 · · · an of actions-with-heap s.t. C

a1=⇒ C1
a2=⇒

. . .
an=⇒ Cn, in which case we write C

T=⇒ Cn. The set of traces generated by
C is written Tr(C). A trace T ∈ Tr(C) is said to be complete if the number
of answers occurring in the trace is greater than its number of questions plus
the length of the evaluation stack of C. They can also be seen as the traces for
which C reduces to a final Opponent configuration, that is one with an empty
stack. The set of complete traces of a configuration C is written comp(Tr(C)).
To define the denotation associated to an open term M , an extra action ? 〈v〉,
the initial Opponent question, is added to fix the choice of abstract values for
the free variables of M .

Definition 4. The set of complete traces generated by M , written [[Σ;Γ � M : τ]],
is

⋃
comp({? 〈codom(ρ)〉 · Tr(〈(ρ(M), τ), ε, φΓ · φΣ , h,Σ′〉 | (ρ, φΓ) ∈ [[Γ]],

Σ′ ⊇ Σ, (h, φΣ) ∈ [[Σ′]], νLoc(ρ) ⊆ dom(Σ′)}).

As proven by Laird in [6] for closed, and more generally for open terms in
[4], we get a full abstraction result:

Theorem 1. Σ;Γ � M1
ctx M2 : τ ⇔ [[Σ;Γ � M1 : τ]] = [[Σ;Γ � M2 : τ]].

280 G. Jaber and N. Tabareau

3.2 Nominal Equivalence of Traces

In the following, we decompose traces forming the denotation of terms, thus
loosing the initial Opponent question which fixes the choice of names. To overtake
this problem, we reason up to nominal equivalence of traces, with permutations
which fix these names via two spans Φ and D on Loc and FN. We write T
D

Φ T ′

if T = a1 · . . . · an, T ′ = a′
1 · . . . · a′

n and there exist two spans Φ′ � Φ and
D′ � D such that for all i, ai ∼D′

Φ′ a′
i. We then apply such nominal reasoning on

compatible configurations

Definition 5. Two configurations C1, C2 are compatible for Φ,D when, writing
Ci as 〈Si, γi, φi, hi,Di〉, we have Φi = φi, Di = Di, there exists a subspan
ΦP � Φ such that dom(γi) = Φi, and writing ni for the evaluation stack Si,
for all j ∈ {1, . . . ,min(n1, n2)}, the j-th elements of S1 and S2 are of the same
type, and n1 = 0 iff n2 = 0 (i.e., C1 is a final configuration iff C2 is).

Taking two compatible configurations C1, C2 for Φ,D, we write C1
D
Φ C2 when

for all T1 ∈ comp(Tr(C1)), there exists T2 ∈ comp(Tr(C2)) such that T1
D
Φ T2,

and for all T2 ∈ comp(Tr(C2)), there exists T1 ∈ comp(Tr(C1)) such that
T1
D

Φ T2.

Theorem 2. Suppose that Σ;Γ � M1,M2 : τ , then Σ;Γ � M1
ctx M2 : τ
if and only if for all (ρ, φΓ) ∈ [[Γ]], Σ′ ⊃ Σ and (h, φΣ) ∈ [[Σ′]] closed s.t.
νLoc(ρ) ⊆ dom(Σ′), we have C1
̂Σ′

̂φ
C2, where Ci = 〈(ρ(Mi), τ), ε, φ, h,Σ′〉

with φ = φΓ · φΣ.

3.3 A Simple Bisimulation on Traces

One can see the LTS that generates traces as a (possibly infinite) automaton,
where the final states correspond to opponent configurations with an empty
evaluation stack. Then, bisimulations on this automaton can be defined in a
standard way in order to capture the equality of the two languages recognized
from two states (i.e. two configurations).

Using the fact that the LTS is bipartite, deterministic, and that a Player
configuration can generate at most one action (up to nominal equivalence), we
introduce a notion of bisimilation on traces as a family of pairs of relations
(PΦ,D,OΦ,D) on compatible Player and Opponent configurations for Φ and D two
spans respectively on functional names and locations, whose mutual coinductive
definitions is given in Fig. 4. Its definition is somehow complicated by the fact
that the LTS is not complete, since for any configuration there exists some action
a such that C does not produce a. This is particularly the case of diverging
Player configurations, which simply do not produce any actions. We cannot
complete the LTS by adding a unique “garbage state”, since this state would
not be compatible with the other diverging states. So for an Opponent (non-
final) configuration C and two spans Φ,D, we consider the associated diverging
compatible state C�i

Φ,D defined as 〈S�i, γ�i, Φi, h,Di〉, where we write S�i for
the evaluation stack (λ .⊥τ)•σ, τ) such that the top element of the evaluation

Kripke Open Bisimulation 281

Fig. 4. Bisimulations on traces

stack of C is of type σ � τ and γ�1 is defined as {(f, λ : σ.⊥σ′) | ∃f ′ ∈
dom(C.γ).(f ′, f, σ → σ′) ∈ Φ} (the symmetric definitions applies for i = 2).

This notion of bisimulation captures equality of complete traces in the fol-
lowing sense (the proof can be found in Appendix B).

Theorem 3. Taking C1, C2 be two configurations of polarity X ∈ {O,P}, we
have C1
D

Φ C2 iff (C1, C2) ∈ XΦ,D.

4 Kripke Open Bisimulations

Bisimulations on traces can be somehow difficult to use as the LTS they are
defined on is in most cases infinite. Indeed, Opponent has always the possibil-
ity to question a function f in γ as many times as he wants. The interaction
generated by this question depends on both the value and the heap provided by
Opponent. It is possible to characterizes them by knowing what are the disclosed
locations (living in D) and the private part of the heap (hD), at any point after
the introduction of f . To do so, we use a notion of world w, formed by such
invariants on private heaps and a span on disclosed locations, and a transition
system A describing how these worlds evolve. One can check the equivalence of
two functional values disclosed by Player by checking their equivalence for any
“future” world. This is the basic reasoning principle of Kripke Open Bisimula-
tions, which is in fact taken from Kripke Logical Relations.

4.1 Transition Systems and Worlds

As in the work on RTS, we choose to work with “small” worlds, which only
states local invariants relevant to the terms we reason on, but nothing about
the invariants of the global contexts. But compared to the worlds used in RTS,
we choose to do not incorporate the transition system inside the definition of
worlds, but to use instead an external definition of transition system which
dictates the evolution of worlds. Doing so, we can see transitions as pairs of
pre- and post-conditions on heaps. We call them World Transition Systems

282 G. Jaber and N. Tabareau

(WTS, defined in Fig. 5), since they are simply transition functions between
worlds. Worlds w are tuples formed by a state s from an abstract set State, two
heaps (describing the private part of the heap) h1, h2, a typed span on locations
D and a boolean indicating if the world is inconsistent or not. We suppose that
for i ∈ {1, 2},dom(hi) ∩ Di = ∅. In practice, State can simply be taken as nat-
ural numbers. For a world w = (s, h1, h2,D, b) we define the predicates cons(w)
and incons(w) respectively as b = false and b = true. WTS are formed by a
pair (δ, δpub) respectively for private and public transitions, which are simply
relations between worlds. Since worlds do not fully specify the disclosed part of
heaps, there can be some branching on the values stored inside, which explains
the non-deterministic representation of transitions, rather than just using a par-
tial function. Private transitions represent transitions that only terms can take,
while public ones can be taken by both terms and contexts. This explains the
condition δpub ⊆ δ∗

priv. Moreover, private transitions cannot transform an incon-
sistent world into a consistent one.

Worlds specify heaps precisely, since there is no freedom on the private part
of the heap, while on the public part, the span is used to induce a nominal
equivalence. But depending on whether the disclosed part is an abstract heap or
a usual heap, we use two different predicates, defined in Fig. 5:

– PΦ(w), which characterizes tuples (h1, h2,D, Φ′) of heaps together with a span
on disclosed locations and a span on functional names Φ′ that extends Φ, and
which is used to collect the functional names used as abstract values on the
hi|Di

– QΦ(w), which characterizes tuples (h1, h2,D), where the hi|Di
can contain

λ-abstraction on which VA [[τ]]Φw, introduced in the next section, is used to
reason about (via a mutual definition).

Transitions of a WTS A are used to define private and public notions of future
worlds.

Definition 6. Let A be a WTS and w1, w2 two worlds. We say that w2 is a
future (w.r.t. A) of w1, written w2 � w1 if either w1 = w2 or δpriv(w1, w2).
Note that strictly speaking, � depends on A but it is not explicit in the notation
as A is always clear from context. Public futures (noted with �pub) are defined
similarly using δpub.

Because contexts may create fresh disclosed locations during execution, we
also introduce a notion of freshened extension F(w) of a world w which forces
the existence of a state creating an arbitrary number of fresh disclosed locations.
F(w) is defined as {(s, h1, h2,D) | s = w.s, h1 = w.h1, h2 = w.h2,∃D′.D =
D′ � w.D}. We then write w′ �F w (resp. w′ �F

pub w) when there exists w′′

such that w′′ � w (resp. w′′ �pub w) and w′ ∈ F(w′′). We write �F∗ and �F∗
pub

respectively for the transitive closure of �F and �F
pub.

Kripke Open Bisimulation 283

Fig. 5. Definition of Kripke Open Bisimulations for RefML.

4.2 Definition of KOBs

This section introduces Kripke open bisimulations. For space limitation, we have
illustrated in Appendix F, on well-known examples of the literature, how to use
direct-style reasoning, spans of names, WTSs and reasoning about divergence—
which constitute the main concepts of KOBs.

284 G. Jaber and N. Tabareau

Kripke open bisimulations, defined via a mutual coinduction in Fig. 5, are
a family of relations on values (VA [[τ]]Φw), evaluation contexts3 (KA [[τ, σ]]Φw)
and terms (EA [[τ]]Φw), that represents a particular kind of bisimulation, indexed
by a world w of the WTS A and by a span on functional names Φ.

Compared to the bisimulations on traces, here we do not reason anymore
on configurations, but simply on terms. The bisimulation on Player configura-
tions corresponds to EA [[τ]], while the bisimulation on Opponent configurations
corresponds to VA [[τ]]w for the questions, and KA [[σ, τ]] for the answers.

Forgetting a moment about the necessary predicative reasoning principle for
diverging terms, Kripke open bisimulations mainly guarantee that, once reducing
two terms with heaps satisfying the invariants of the current world w, they either
diverge, or there exists a future world w′ of w such that the heaps produced by
the reduction satisfy its invariants, and if the resulting terms are values, they are
related, otherwise the resulting terms are callbacks which are synchronized, with
the evaluation contexts surrounding them being related. The span on functional
names Φ is used to keep track of functional names given by the context to the
terms. Indeed, compared to logical relations, when τ is of functional type, the
definition of VA [[τ → σ]]Φw does not quantify over related values v1, v2 of type
τ , but uses instead fresh functional names f1, f2, remembering in Φ that they
are related.

The definition of EA [[τ]]Φ(w,w0) is indexed by an extra world w0, correspond-
ing to the initial world where the reduction of the two terms has been considered,
and which is thus freshened in the definition of VA [[τ → σ]]Φw. We enforce the
existence of a public transition between a future world w′ of w, and w0 when
terms have been reduced to values (but not callbacks). This corresponds to a
well-bracketed behavior, where the question, which happens in the world w0, is
answered in the world w′.

Finally, the “full” KOB Σ;Γf , Γg � M1
kob M2 : τ is defined for terms
with open ground variables, that must be substituted by ground values. All the
futures worlds of the initial world w0 used in its definition must be consistent.
The main difference with Kripke logical relations is that there is an existential
quantification over the WTS A which fixes the possible futures instead of a
universal over all possible world extensions.

Predicative Reasoning. When considering diverging terms, synchronization of
callbacks is no longer valid, since the two terms can diverge at different time dur-
ing the execution. This is taken into account by a predicative reasoning involving:

– Qi
φ(w) defined as {(h,D) | h = (w.hi) · hd ∧ D = (w.D)i ∧ dom(hd) = D ∧

∀(l, τ) ∈ D,h(l) ∈ Vi
A [[τ]]φw}

– V1
A [[ι]]Φw, defined as the set of closed values of type ι, for ι a ground type,

– V1
A [[τ → σ]]Φw, defined as the set of values

{v | ∃Φ ∈ SpanFN.Φ1 = φ ∧ (v, λx.⊥σ) ∈ VA [[τ → σ]]Φw},

3 Even if we use a relation KA [[σ, τ]] on evaluation contexts, our definition does not
make any use of biorthogonality.

Kripke Open Bisimulation 285

– K1
A [[τ, σ]]φ(w,w0), defined as the set of contexts

{K | ∃Φ ∈ SpanFN.Φ1 = φ ∧ (K, (λ .⊥σ)•) ∈ KA [[τ, σ]]Φ(w,w0)}
and V2

A [[τ]]Φw, K2
A [[τ, σ]]Φ(w,w0) defined in a symmetric way. Then, we use

inconsistent states to allow predicative reasoning, however this is not allowed
in a public future of the initial world used in the definition Σ;Γf , Γg � M1
kob

M2 : τ , to avoid having unrelated “final” answers. This condition is also present
in the definition of KLR [2].

4.3 An Example: Well-Bracketed State Change

We now see how KOBs work, using the WTS in Fig. 6. on the “well-bracketed
state change” example:

M1 = let x = ref 0 in λf.x := 0; f(); x := 1; f(); !x
M2 = λf.f(); f(); 1

w′.h1 = [lx ↪→ 0] w′.h1 = [lx ↪→ 1]

w′.h1 = [lx ↪→ 0]

Fig. 6. WTS for the well-bracketed state change example.

The transitions from the left to the middle state and from the middle to the
right state are public, so that both the term and contexts can take it. The other one
is only private to the term.Then, to prove the equivalence,we begin in the left state,
and we reduce (M1, ε) to (v1, h1) = (λf.lx := 0; f(); lx := 1; f(); !lx , [lx 	→ 0]).
Then, to prove the equivalence of v1 and M2, we must reason about all the future
state of the middle one. This correspond to the fact that such λ-abstractions can
be called at any point of the execution by the context, via nested calls.

Suppose we are in the right state. Then we know that lx ↪→ 1 and to prove
that the two λ-abstractions are equivalent in this state, we directly reason on the
corresponding open terms where the bindings of f have been removed. We reduce
them, and since lx is set to 0, we go back to the middle state, which is (privately)
accessible. They both perform the same callback with the same value (), so far
they are related. Then, we must prove that the two contexts •; lx := 1; f(); !lx
and •; f(); 1 are related. To do so, we can go to any state publicly accessible
from the current one. That is, we can be in the middle or right state as both are
publicly accessible. Moreover, the contexts we consider have a hole of type Unit,
so we just have to prove that the two terms (); lx := 1; f(); !lx and (); f(); 1
are related. Reducing them, the callbacks are again related, and we must find a

286 G. Jaber and N. Tabareau

state where the post-condition lx 	→ 1 is valid, i.e., we move to the right state.
Finally, we travel to any public future state from this one, so we stay in the
same place, to prove that the contexts •; !lx and •; 1 are equivalent, which is
straightforward since we know that lx points to 1. The reasoning for the state
where lx ↪→ 0 is similar. We see that the proof is done via a simple reasoning on
the transition system, reducing the terms step by step. We have not simplified
it in any way.

5 Soundness

We now prove a correspondence between bisimulations on traces and KOBs (the
complete proofs are given in Appendix D). To do so, since KOBs are defined using
the usual operational semantics, we need a lemma to validate the transformation
of values into abstract values and functional environments defined via AValu(τ)

Lemma 1. Let us consider (u1, u2)∈VA [[τ]]ΦO
w.Taking (v1, φ1, γ1) ∈ AValu1(τ)

and (v2, φ2, γ2) ∈ AValu2(τ) such that dom(φi) ∩ dom(ΦO,i) = ∅, there exists a
span ΦP satisfying ΦP,i = φi such that v1 ∼w.D

ΦP
v2 and (γ1, γ2) ∈ GA [[ΦP]]ΦO

w.

To relate the evaluation stacks of the two considered configurations, it is
necessary to relate their j-th elements at world wj corresponding to the invariant
when these evaluation stacks have been pushed.

Theorem 4. Let n ∈ N and n + 2 world wn+1 �F∗ wn �F∗ . . . �F∗ w0 such
that

– ∀w′ �∗
pub w0.cons(w′),

– (M1,M2) ∈ EA [[τ]]ΦO
(wn+1, wn),

– for all j ∈ {1, . . . , n}, (Kj
1 ,K

j
2) ∈ KA [[σj , τj]]ΦO

(wn+1, wj−1),
– (γ1, γ2) ∈ GA [[ΦP]]ΦO

wn+1.

Then for all (h1, h2,D, Φ′) ∈ PΦP ·ΦO
(wn+1), writing Si for (Kn

i [•σn
], τn) :: . . . ::

(K1
i [•σ1], τ1), (〈(M1, τ) ::S1, γ1, Φ

′
1, h1,D1〉, 〈(M2, τ) ::S2, γ2, Φ

′
2, h2,D2〉)∈PΦ′,D.

From Theorems 2, 3 and 4, we get the wanted result.

Corollary 1. Suppose thatΣ;Γ � M1
kob M2 : τ , thenΣ;Γ � M1
ctx M2 : τ .

6 Completeness

As opposed to KLR, completeness of KOBs can no longer be proven “for free”
using biorthogonality. The proof needs to be more constructive and relies cru-
cially on the connection to the fully-abstract trace semantics introduced in
Sect. 3. However, it is not possible to use directly bisimulations on traces as
they do not enforce the existence of a WTS A and a world w validating the
equivalence. We introduce instead a variant notion of bisimulation on traces—
faithful Kripke bisimulation on traces—whose definition is indexed by a WTS A

Kripke Open Bisimulation 287

Fig. 7. Faithful Kripke bisimulations

and a list of world L, and which satisfies the property that being related for these
new bisimulations implies being related for KOBs. We conclude by constructing
an exhaustive WTS associated to a pair of configurations in the bisimulation on
traces, which shows that two equivalent programs produce traces that are related
by a faithful Kripke bisimulation (the complete proofs are given in Appendix E).

6.1 Faithful Kripke Bisimulations on Traces

To prove completeness of KOBs, we introduce an intermediate notion—between
bisimulations on traces and KOBs: faithful Kripke bisimulations on traces,
defined in Fig. 7. They are pairs of relations (P A(Φ,L), O A(Φ,L)) on partial
configurations, that is pairs formed by an evaluation stack and a functional envi-
ronment, whose definitions is indexed by a span Φ on functional names and by
stack of worlds, of size those of the evaluation stacks plus two, L = wn :: . . . ::w1

such that wn �F∗ . . . �F∗ w1. Restriction to partial configurations is harmless
since we can always complete them using the span Φ and the top element of
L. Faithful Kripke bisimulations on traces are used to enforce two main proper-
ties on a WTS A: (i) the existence of accessible worlds validating the possible
heaps obtained from reachable configurations, (ii) from (C1, C2) ∈ OΦ,w and
w′ �∗ w, the existence of equivalent execution of C1, C2 to configurations which

288 G. Jaber and N. Tabareau

satisfies the invariants of w′. Their definition can be seen as a mix between the
bisimulations on traces introduced in Sect. 3.3, since they are defined on (par-
tial) configurations and use interactive reduction, and the KOBs, since they use
worlds and WTS to deduce and enforce invariants on heaps. However, there is a
crucial distinction in the use of the WTS, that is the enforcement of faithfulness
via the two predicates FaitfulΦ(L),Faitfulpub,Φ(L) respectively on private and
public transitions. Indeed, these predicates enforce that all the transition of the
WTS can be taken by some reduction of the LTS generating the traces (notice
that Faitfulpub,Φ(L) enforces a stronger condition that this reduction should
not change the stack of the configurations). These properties are not enforce by
the KOBs, and it is indeed possible to use them with some WTS where they
are not true. Thanks to those properties, faithful Kripke bisimulations on traces
implies KOBs in the following sense.

Theorem 5. Let M1,M2 two terms, w and w0 two worlds, Φ = ΦP · ΦO a span
on functional names such that (w.D)i;ΦO,i � Mi : τ , and γ1, γ2 two functional
environments with dom(γi) = ΦP,i. If (〈M1, γ1〉 , 〈M2, γ2〉) ∈ P A(Φ(w,w0)),
then (M1,M2) ∈ EA [[τ]]ΦO

(w,w0).

6.2 Exhaustive WTS

It remains to construct the exhaustive relational WTS, which can be seen as the
merge of two WTS coming from trace semantics. Its construction is obfuscated
by nominal reasoning and diverging terms and requires some basic operations
on WTSs:

– Add a private transition r: A priv⊕ r
def
= (δpriv ∪ {r}, δpub)

– Add a public transition r: A pub⊕ r
def
= (δpriv, δpub ∪ {r})

– Union of two transition systems: A1 � A2
def
= (δ1,priv · δ2,priv, δ1,pub · δ2,pub).

Fig. 8. The exhaustive relational WTS

Kripke Open Bisimulation 289

The exhaustive WTS (for terms) SEL
Φ is defined by mutual coinduction with its

corresponding WTS (for contexts) SKL
Φ, where L is a list of worlds whose head

corresponds to the current one, while its tail corresponds to the public transitions
that must be added once a value is reached in the interactive reduction. The
definition is given in Fig. 8.

The definition of SEw::L
Φ is done on Player evaluation stacks S1,S2. In the

definition, writing Ci for 〈Si, γi, Φ
′
i, hi,Di〉, we have Ci

ai=⇒ 〈S ′
i, γ

′
i, Φ

′′
i , h′

i,D′
i〉 and

w′ is equal to (s, h′
1|D′

1
, h′

2|D′
1
,D′′, w.b) with s a fresh state. L′ = w′::L′′ where, if

the ai are Player questions, then L′′ = L , otherwise, w0::L′′ = L. To deal with
divergence, we use the auxilliary definition SE�i,w::L to consider actions a such
that C

a=⇒ 〈S ′, γ′, φ′
1, h

′
1,D

′
1〉, In these case, w′ = (s, h′

1|D′
1
, w.h2,D′, true) with

D′ any span s.t. D′
i = D′

i. L′ = w′ ::L′′ such that, if a is a Player questions, then
L = L′′, otherwise, L = w0 ::L′. The definition of SKL

Φ is done on two Opponent
evaluation stacks, with Φ′ � Φ, w′ ∈ F(w) and both 〈Si, γi, Φ

′
i, hi, (w.D)i〉 ai=⇒

〈S ′
i, γ

′
i, Φ

′′
i , h′

i, (w
′.D)i〉. L′ = w′ ::L′′ and, if the ai are Opponent questions, L′′ =

w ::L, otherwise, L′′ = L.
Using the tree structure of the exhaustive WTS, we can prove the following

theorem, which, combined with Theorems 2, 3 and 5, allows to conclude on
completeness of KOBs.

Theorem 6. Let 〈S1, γ1〉 , 〈S2, γ2〉 be two Player reduced configuration such
that both S1,S2 have the same size n, Φ a spans on functional names, L
a list of n worlds whose top element is w, and (h1, h2,D, Φ) ∈ PΦ(w). Writing Ci

for 〈Si, γi, Φi, hi,Di〉, if (C1, C2) ∈ PΦ,D then (〈S1, γ1〉 〈S2, γ2〉) ∈
PSEL

Φ(〈S1,γ1〉〈S2,γ2〉)(ΦL).

7 Future Work

Toward Automation of Proofs of Equivalence. The ultimate goal of this
work is to reason automatically on contextual equivalence. That is, given two
terms M1,M2 and supposing that a WTS A is provided, we would like to prove
automatically that (M1,M2) ∈ EA [[τ]]ew0. This is why we have removed quan-
tification over “complex” objects in the definition of KOBs. By introducing a
symbolic execution for fragments of the language (without higher-order refer-
ences), one can automatically check whether two terms of these fragmets are in
EA [[τ]]ew0. This can be seen as model-checking equivalence of programs w.r.t. a
WTS. Going further, we want to study fragments of the language where some
WTS A, being of course a lot more compact than the exhaustive one, can be built
automatically. Doing so, we should be able to decide equivalence of programs. We
have begun to implement these ideas, using an SMT-solver. It gives promising
results, being able to decide automatically the (in)-equivalence of many exam-
ples from the literature. It would then be interesting to compare such results
from the one from algorithmic game semantics [10].

Semantic Cube. One of the most impressive result of game semantics is the
characterization of various imperative features via constraint on strategies (e.g.,

290 G. Jaber and N. Tabareau

first-order references = visibility condition), coined the “semantic cube” by
Abramsky. Following this idea, Dreyer et al. [2] give a characterization of such
imperative features via constraints on the shape of worlds and on the way we can
reason about them. The restriction to first-order references corresponds to the
possibility to backtrack in the world. In our framework, it should be possible to
modify the definition of EA [[τ]]e(w,w0) so that future worlds of successive call-
backs would be branching over w0 instead of being linearly related—branching
corresponds to backtracking. Finally, adding a control operator corresponds to
removing the distinction between private and public transitions (and inconsis-
tent states), since the restriction to complete traces is not necessary, which would
lead to an interesting comparison with the work of Støvring and Lassen [15].

Compositionality. Because we use “small worlds”, so that the frame rule is
not baked in the definitions of KOBs, we cannot get compositionality results
for free. It should however be possible to prove it, by defining a product A1 ⊗
A2 of two LTSs, with an associated weakening lemma on LTS stating that if
(M1,M2) ∈ EA1 [[τ]]Φw1, then (M1,M2) ∈ E(A1⊗A2) [[τ]]Φ(w1 ⊗ w2). The cru-
cial point is that we should only require discl(ui, h

′
i,Di) ⊆ D′

i in the defini-
tion of EA [[τ]]Φw, instead of equality. This should allow to prove the composi-
tion theorem: if (M1,M2) ∈ EA1 [[τ → σ]]Φw1 and (N1, N2) ∈ EA2 [[τ]]Φw2 then
(M1 N1,M2 N2) ∈ E(A1⊗A2) [[τ]]Φ(w1 ⊗ w2). Its proof should follows quite closely
the proof of compositionality for RTS [3].

References

1. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: Proceedings of POPL (2009)

2. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. J. Funct. Program. 22(9), 477–528 (2012)

3. Hur, C.-K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and
Kripke logical relations. Proc. of POPL 47, 59–72 (2012)

4. Jaber, G.: Operational nominal game semantics. In: Pitts, A. (ed.) FOSSACS 2015.
LNCS, vol. 9034, pp. 264–278. Springer, Heidelberg (2015)

5. Jaber, G., Tabareau, N.: Kripke open bisimulation, a marriage of game semantics
and operational techniques (2015). Technical Appendix http://guilhem.jaber.fr/
aplas2015-full.pdf

6. Laird, J.: A fully abstract trace semantics for general references. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
667–679. Springer, Heidelberg (2007)

7. Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: Duparc, J., Hen-
zinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 283–297. Springer, Heidelberg
(2007)

8. Lassen, S., Levy, P.: Typed normal form bisimulation for parametric polymorphism.
In: Proceedings of LICS, pp. 341–352. IEEE (2008)

9. Murawski, A., Tzevelekos, N.: Game semantics for good general references. In:
Proceedings of LICS, pp. 75–84. IEEE (2011)

10. Murawski, A.S., Tzevelekos, N.: Algorithmic games for full ground references. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II.
LNCS, vol. 7392, pp. 312–324. Springer, Heidelberg (2012)

http://guilhem.jaber.fr/aplas2015-full.pdf
http://guilhem.jaber.fr/aplas2015-full.pdf

Kripke Open Bisimulation 291

11. Pitts, A.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186(2), 165–193 (2003)

12. Pitts, A., Stark, I.: Operational reasoning for functions with local state. Higher
Order Operational Techniques in Semantics, pp. 227–273. CUP (1998)

13. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. ACM Trans. Program. Lang. Syst. (TOPLAS), 33 (2011)

14. Stark, I.: Names, equations, relations: practical ways to reason about new. Funda-
menta Informaticae 33(4), 369–396 (1998)

15. Støvring, K., Lassen, S.: A complete, co-inductive syntactic theory of sequential
control and state. In: Proceedings of POPL, pp. 161–172. ACM (2007)

16. Sumii, E.: A complete characterization of observational equivalence in polymorphic
λ-calculus with general references. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 455–469. Springer, Heidelberg (2009)

Model Checking

Automata-Based Abstraction for Automated
Verification of Higher-Order Tree-Processing

Programs

Yuma Matsumoto1, Naoki Kobayashi1(B), and Hiroshi Unno2

1 The University of Tokyo, Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

2 University of Tsukuba, Tsukuba, Japan

Abstract. Higher-order model checking has been recently applied to
automated verification of higher-order functional programs, but there
have been difficulties in dealing with algebraic data types such as lists and
trees. To remedy the problem, we propose an automata-based abstraction
of tree data, and a counterexample-guided refinement of the abstraction.
By combining them with higher-order model checking, we can construct
a fully-automated verification tool for higher-order, tree-processing func-
tional programs. We formalize the verification method, prove its correct-
ness, and report experimental results.

1 Introduction

Higher-order model checking [9,15], or the model checking of higher-order recur-
sion schemes (HORS), has been recently applied to automated verification of
functional programs [9,11,16,18,19]. Since a HORS is essentially a simply-typed
higher-order functional program with recursion and finite base types (such as
Booleans, not integers), the control structure of a (higher-order) functional pro-
gram can be precisely modeled and verified. Thus, with a suitable abstraction of
data, we can verify functional programs fully automatically by using higher-order
model checking. For example, Kobayashi et al. [11] used predicate abstraction
and CEGAR (counterexample-guided abstraction refinement) for abstracting
integers to Booleans, and constructed a fully automated verification tool MoCHi
for simply-typed higher-order functional programs with recursion and integers.

There have, however, been limitations in the treatment of algebraic data
types such as trees and lists. Sato et al. [18] extended MoCHi to deal with alge-
braic data types by encoding algebraic data into functions; for example, a list
may be encoded as a function that maps an index to the corresponding element.
That approach has not been so successful, because the encoding makes both pro-
grams and specifications complex. In another line of work, Kobayashi et al. [12]
proposed a verification method for HMTT, a kind of higher-order tree transduc-
ers. The HMTT model is however much more restricted than the usual functional
programs: there is a distinction between input and output trees, and input trees
are read-only, and output trees are write-only. Unno et al. [19] later extended
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 295–312, 2015.
DOI: 10.1007/978-3-319-26529-2 16

296 Y. Matsumoto et al.

HMTT to allow conversion between input and output trees so that the model is
as expressive as an ordinary functional language, but annotations are required
for the conversion. Ong and Ramsay [16] introduced a verification method for an
extension of HORS called pattern-matching recursion schemes (PMRS). PMRS
supports pattern matching on tree-structured data, but the verification method,
however, uses pattern-based abstraction, which is not powerful enough.

To remedy the situation above, we propose a new approach to using higher-
order model checking for automated verification of higher-order tree-processing
programs. As in [11], we apply abstraction to approximate a source program
by a higher-order functional program over finite base types, so that the latter
can be verified by higher-order model checking. Instead of using predicates on
integers, however, we use an automaton for abstracting tree data: each tree is
abstracted to a state of the automaton that accepts the tree. Using the automata-
based abstraction, we can transform a higher-order tree-processing program to
a higher-order functional program with finite data domains, so that the latter
overapproximates the behavior of the source program. Thus, verification prob-
lems for the former can be reduced to those for the latter, which can further be
reduced to higher-order model checking.

As an example, consider the following program.

double x = twice (add x) Z. twice f x = f(f x).
add x y = match x with Z => y | S x’ => add x’ (S y).

Here, Z and S are tree constructors. The program consists of two functions double
and add . The main function double takes a natural number x (in the unary tree
representation) and returns x + x. Suppose that we wish to verify that the
output of double is always even, i.e., a unary tree of the form (S)2nZ. We can
use a tree automaton that distinguishes (S)2nZ and (S)2n+1Z, consisting of two
states q0, from which trees of the form (S)2nZ is accepted, and q1, from which
trees of the form (S)2n+1Z is accepted. Using the automaton, the program above
is abstracted to:

main() = (double q0)�(double q1). double x = twice (add x) Z.

twice f x = f(f x). s x = match x with q0 => q1 | q1 => q0
add x y = match x with q0 => y�(add q1 (s y)) | q1 => add q0 (s y).

Here, � represents a non-deterministic choice, and s is now a function on
states. The new main function main non-deterministically invokes double q0 or
double q1; here, the argument of double is now a state of the automaton, instead
of a tree. The call double q0 (double q1, resp.) simulates the case where the input
is an even (odd, resp.) number. The case analysis on tree x in function add has
now been replaced by a case analysis on states. The case x = q0 models the case
where x is of the form (S)2n z in the source program; since both of the branches
are possible in the source program, the abstract program non-deterministically
evaluates (the abstract version of) them. On the other hand, the case x = q1
models the case where x is of the form (S)2n+1 Z; since only the second branch
of the source program is possible, the abstract program evaluates add q0 (s y)
deterministically. To check that the return value of the source program is always

Automata-Based Abstraction for Automated Verification 297

program

automata-based
abstraction

abstracted
program

higher-order
model checking

error
path feasibility check

constraints on
automata

automata
splitting

new
automata

Yes No (counterexample)

No

infeasible

Yes feasible

Fig. 1. Our method

even (given (S)nZ) as an input), it suffices to check that the return value of the
abstract program is always q0.

Figure 1 illustrates our overall method. As mentioned above, we apply an
automata-based abstraction to reduce a given verification problem to that on a
functional program with finite data domains. The latter problem can be decided
by a reduction to higher-order model checking [9]. If the abstract program has
no error path then we can conclude that the answer to the original verification
problem is “yes”. Otherwise, we inspect an error path returned by a higher-
order model checker. If a source program has a corresponding error path, we can
conclude that the answer to the original verification problem is “no”. Otherwise,
the abstraction was not precise enough, so the automaton used for abstraction is
refined, and the cycle is repeated until the answer is found. (Since the verification
problem is undecidable, the cycle may be repeated forever.)

A challenge arises on how to refine the automaton used for abstraction when a
spurious error path is found. Unlike the case for predicate abstraction for integer
values [11], we cannot use an interpolant-based method for predicate discovery.
Given an initial automaton for abstraction, we split each state of the automaton
to obtain a new automaton with an unknown transition function. From spurious
error paths, we accumulate constraints on the transition function, which repre-
sent necessary conditions for eliminating spurious error paths. Then by using an
SMT solver, we obtain a transition function that satisfies the constraints.This
refinement procedure is relatively complete, in the sense that if there exists an
automaton with which the abstract program can be proved to be safe, the pro-
cedure can eventually find such an automaton and the verification succeeds.
The rest of this paper is organized as follows. Section 2 reviews the definitions of
tree automata. Section 3 introduces our verification problem. Section 4 formalizes
the automata-based abstraction. Section 5 describes an abstraction refinement
method. Section 6 reports experimental results. Section 7 discusses related work,
and Sect. 8 concludes this paper.

298 Y. Matsumoto et al.

2 Preliminaries

In this section, we recall the standard notion of tree automata [4], which will be
used for program specification and also for abstraction.

A ranked alphabet, written Σ, is a map from a finite set of symbols to the
set of non-negative integers. An element C of dom(Σ) (the domain of Σ) may
be considered a tree constructor of arity Σ(C). The set TreesΣ of finite trees
is inductively defined by: T1, . . . , TΣ(C) ∈ TreesΣ ⇒ C T1 · · · TΣ(C) ∈ TreesΣ .
Note that Σ(C) may be 0 above, so C ∈ TreesΣ if Σ(C) = 0.

Definition 1 (tree automata).A (bottom-up) tree automatonM is a quadruple
(Σ,Q,Δ,F) where (i) Σ is a ranked alphabet. (ii) Q is a set of states. (iii) Δ, called
a transition function, is a subset of dom(Σ)×Q∗×Q such that (C, q1 · · · qn, q) ∈ Δ
implies n = Σ(C). (iv) F is a subset of Q. Elements of F are called final states.
We define the transition relation T −→M T ′ on TreesΣ∪{q �→0|q∈Q} by:

C q1 · · · qn −→M q if (C, q1 · · · qn, q) ∈ Δ.

A tree T ∈ TreesΣ is accepted by M if T −→∗
M q ∈ F for some q. The

language accepted by M, written L(M), is the set of trees accepted by M. We
often write ΣM, QM,ΔM, FM for the four components of M. We write L(M, q)
and L(M, Q) for L((ΣM, QM,ΔM, {q})) and L((ΣM, QM,ΔM, Q)) respec-
tively. An automaton (Σ,Q,Δ,F) is deterministic if for every C ∈ dom(Σ) and
q1 · · · qΣ(C) ∈ Q∗, there exists at most one q such that (C, q1 · · · qΣ(C), q) ∈ Δ. An
automaton (Σ,Q,Δ,F) is total if for every C ∈ dom(Σ) and q1 · · · qΣ(C) ∈ Q∗,
there exists at least one q such that (C, q1 · · · qΣ(C), q) ∈ Δ. When an automaton
M is deterministic and total, we write ΔM(C, q1 · · · qΣM(C)) for the state q such
that (C, q1 · · · qΣM(C), q) ∈ ΔM.

Example 1. Consider an automaton M = (Σ, {q1, q2, q3},Δ, {q1, q2}) where Σ =
{E �→ 0, A �→ 1, B �→ 1} and

Δ = {(E, ε, q1), (A, q1, q2), (A, q2, q2), (A, q3, q3), (B, q1, q1), (B, q2, q3), (B, q3, q3)}

The automaton M is total and deterministic, and L(M) = A∗B∗E. Here, we
have identified unary trees with words, and used a regular expression for a set
of unary trees. The regular expression A∗B∗E denotes

{A(· · · (A︸ ︷︷ ︸
m

(B(· · · (B︸ ︷︷ ︸
n

E))))) | m ≥ 0, n ≥ 0}.

We often use this kind of notation for a set of unary trees.

Henceforth, we consider only deterministic and total automata; this does not
lose generality, as we are considering bottom-up automata.

Automata-Based Abstraction for Automated Verification 299

3 The Verification Problem

This section introduces the language of tree processing programs, which is used
as the target of our verification, and defines the verification problem. The target
of verification is a higher-order, tree-processing functional program. We fix a
ranked alphabet Σ. We sometimes write {ei}n

i=1 for {e1, . . . , en}, and also write
{f(x)}x∈S for {f(x) | x ∈ S}.

Definition 2. The set of expressions, ranged over by e, is given by:

e ::= C | x | fail | e1 e2 | case eof{Ci ỹi ⇒ ei}n
i=1.

Here, C ranges over dom(Σ), and x ranges over the set of variables and function
symbols. A program P is a set of function definitions {f1 x̃1 = e1, . . . fm x̃m =
em} where fi is a function symbol, and x̃i is a sequence of variables. The set of
function symbols {f1, . . . , fm} must contain the main function symbol “main”.
We write arity (fi) for the length of the sequence x̃i.

The expression fail aborts the execution. The expression case eof{Ci ỹi ⇒
ei}n

i=1 evaluates e to a tree, and then evaluates [T̃ /ỹi]ei if the tree matches
Ci T̃ . We assume that the patterns of every case expression are exhaustive; if
not, we can insert a clause Ci ỹi ⇒ fail. We consider only programs that are
well-typed in the standard simple type system. The set of (simple) types, ranged
over by κ, is given by: κ ::= o | κ1 → κ2. Here, o is the type of trees, and κ1 → κ2

is the type of functions from κ1 to κ2. A type judgment is of the form K � e : κ,
where K is a map from a finite set of variables (which may include function
symbols) to the set of types. It is defined by the following rules.

K � C : o → · · · → o︸ ︷︷ ︸
Σ(C)

→ o K, x : κ � x : κ
K � e1 : κ1 → κ2 K � e2 : κ1

K � e1 e2 : κ2

K � fail : κ
K � e : o K, ỹi : õ � ei : κ(for each i ∈ {1, . . . , n})

K � case eof{Ci ỹi ⇒ ei}n
i=1 : κ

We write � P : K if: (i) P = {fi xi,1 · · · xi,ki
= ei}n

i=1; (ii) dom(K) =
{f1, . . . , fn}; (iii) K(fi) = κi,1 → · · · → κi,ki

→ o and K, xi,1 : κi,1, . . . , xi,ki
:

κi,ki
� ei : o for every i ∈ {1, . . . , n}; and (iv) K(main) = o → o. A program

P is well-typed if � P : K for some K. Henceforth, we consider only well-typed
programs.

The sets of evaluation contexts and values are defined respectively by:

E (evaluation contexts) ::= [] | E v | e E | case E of {Ci ỹi ⇒ ei}n
i=1

v (values) ::= f v1 · · · vn (n < arity(f)) | C v1 · · · vn (n ≤ Σ(C))

The reduction relation e −→P e′ is defined by: (i) E[fail] −→P fail;
(ii) E[f v1 · · · vn] −→P E[[v1 · · · vn/x1 · · · xn]e] if f x1 · · · xn = e ∈ P; and
(iii) E[case ak ṽ of {Ci ỹi ⇒ ei}n

i=1] −→P E[[ṽ/ỹk]ek]. We often omit the sub-
script P.

300 Y. Matsumoto et al.

Example 2. The program in Sect. 1 is expressed as:

P1 = {main x = twice (add x) Z, twice f x = f (f x),
add x y = case x of Z ⇒ y | S x′ ⇒ add x′ (S y)}

The expression main (S(Z)) is evaluated as follows.

main (S(Z)) −→ twice (add (S(Z))) Z −→ add (S(Z))(add (S(Z)) Z) −→∗ S(S(Z)).

Definition 3 (verification problem). Let MI and MO be tree automata.
We write |= (P,MI ,MO) if, for every T ∈ L(MI), main T 	−→∗

P fail and
main T −→∗

P t′ ∈ TreesΣ implies t′ ∈ L(MO). The verification problem
(P,MI ,MO) is the problem of deciding whether |= (P,MI ,MO) holds.

Intuitively, |= (P,MI ,MO) means that given a tree accepted by MI as an
input, P does not fail, and if it returns a (finite) tree, it is accepted by MO.

Example 3. Consider the verification problem (P1,M1,M2) where P1 is the
program given in Example 2, and

M1 = (Σ, {q1},Δ1, {q1}) Δ1 = {(Z, ε, q1), (S, q1, q1)}
M2 = (Σ, {q2, q3},Δ2, {q2}) Δ2 = {(Z, ε, q2), (S, q2, q3), (S, q3, q2)}

The languages accepted by M1 and M2 are (S)∗Z and (S S)∗Z respectively. The
answer to the verification problem (P1,M1,M2) is “yes”.

4 Automata-Based Abstraction

This section formalizes our automata-based abstraction method.

4.1 Abstract Programs

The target language of the automata-based abstraction has a finite enumeration
type as the base type, instead of tree types. The enumeration type consists of
the states of automata used for abstraction.

Definition 4 (abstract programs). The set of (abstract) expressions, ranged
over by t, is given by: t ::= q | x | t1 t2 | case tof{qi ⇒ ti}m

i=1 | t1 � t2 | fail.
Here, q ranges over the set {q1, . . . , qm} of values of the finite enumeration type
and x ranges over a set of variables (including defined function symbols fi’s). An
abstract program D is a set of function definitions {f1 x̃1 = t1, . . . , fn x̃n = tn},
where main ∈ {f1, . . . , fn}.
The expression case tof{qi ⇒ ti}m

i=1 is a case analysis on the finite enumeration
type; it first evaluates t, and evaluates ti if the value is qi. The expression t1 � t2
evaluates t1 or t2 in a non-deterministic manner. As for source programs, we
require that abstract programs are simply-typed. The set of types is given by:
τ ::= d | τ1 → τ2. Here, d is the finite enumeration type, consisting of values

Automata-Based Abstraction for Automated Verification 301

q1, . . . , qm. We show only the typing rules for q and case-expressions; the other
typing rules for expressions are essentially the same as those for source programs.

Θ � q : d
Θ � t : d Θ � ti : τ

Θ � case tof{qi ⇒ ti}m
i=1 : τ

We write � D : Θ if: (i) D = {fi xi,1 · · · xi,ki
= ti}n

i=1; (ii) dom(Θ) =
{f1, . . . , fn}; (iii) Θ(fi) = τi,1 → · · · → τi,ki

→ d and Θ, xi,1 :τi,1, . . . , xi,ki
:τi,ki

�
ti : d for every i ∈ {1, . . . , n}; and (iv) Θ(main) = d → d.

We define the call-by-value, small-step reduction relation below. The sets of
evaluation contexts and values, ranged over by E and v, are defined by:

E ::= [] | E v | t E | caseE of {qi ⇒ ti}m
i=1 v ::= f v1 · · · vn (n < arity(f)) | q

The relation t1 −→D t2 is defined by: (i) E[f v1 · · · vn] −→D E[[v1 · · · vn/x1 · · ·
xn]t] if f x1 · · · xn = t ∈ D; (ii) E[case qk of {qi ⇒ ti}m

i=1] −→D E[tk]; (iii)
E[fail] −→D fail; and (iv) E[t1 � t2] −→D E[ti] for i ∈ {1, 2}.

Definition 5 (safety problem). Let D be an abstracted program and FI and
FO be finite subsets of {q1, . . . , qm}. We write |= (D, FI , FO) if, for every q ∈ FI ,
(i) main q 	−→∗

Dfail; and (ii) main q −→∗
D q′ implies q′ ∈ FO. The safety problem

(D, FI , FO) is the problem of deciding whether |= (D, FI , FO) holds.

The safety problem above is decidable by a reduction to higher-order model
checking [9]. Furthermore, if |= (D, FI , FO) does not hold, we can obtain an error
reduction sequence main q −→∗

D fail or main q −→∗
D q′ 	∈ FO by using a higher-

order model checker [3,8]. The knowledge of higher-order model checking and
the reduction method is not required for understanding the rest of this paper;
an interested reader may wish to consult [9].

4.2 Abstraction Method

We now formalize the automata-based abstraction. In order to allow a differ-
ent automaton to be used for abstracting each expression of tree type, we use
abstraction types, which specify how each expression should be abstracted.

The set of abstraction types is defined by: σ ::= oM | σ1 → σ2. Here, M is a
(total, deterministic) automaton. Intuitively, oM describes trees that should be
abstracted by using the automaton M. The type σ1 → σ2 describes functions
whose argument should be abstracted according to σ1, and return value should
be abstracted according to σ2. For example, consider the automata M1 and M2

in Example 3. The type oM1 → oM2 describes a function whose input tree should
be abstracted using the automaton M1, and output tree should be abstracted
using the automaton M2. Using this type, the identity function λx.x would be
abstracted to λx. casexof q1 ⇒ (q2 � q3); the argument is abstracted to q1, and
since there is no information about whether the original value of x is even or
not, the function returns q2 (which is an abstraction of trees of the form s2nZ)
or q3 (which is an abstraction of trees of the form s2n+1Z) non-deterministically.
If the abstraction type was oM2 → oM2 , then λx.x would be abstracted to λx.x.

302 Y. Matsumoto et al.

The abstraction is formalized as a type-based program transformation rela-
tion Γ � e:σ � t, where Γ , called an abstraction type environment, is a map from
a finite set of variables to the set of abstraction types. Intuitively, Γ � e : σ � t
means that assuming that each variable x has been abstracted according to Γ (x),
the expression e should be abstracted to t according to the abstraction type σ.
How to obtain an appropriate abstraction type environment is discussed in [13]
The transformation relation is defined by the following rules.

Γ, x : σ � x : σ � x Γ � a : oM → · · · → oM︸ ︷︷ ︸
Σ(a)

→ oM � fa,M

Γ � e : oM � t Γ, ỹi : õM � ei : σ � ti (for each i ∈ {1, . . . , n})

Γ � case eof{Ci ỹi ⇒ ei}n
i=1 : σ � case tof{q ⇒ � {[q̃/ỹ�]t�}(C�,q̃,q)∈ΔM}q∈QM

Γ � e1 : σ1 → σ2 � t1 Γ � e2 : σ1 � t2

Γ � e1 e2 : σ2 � t1 t2 Γ � fail : σ � fail

Here, � {t1, . . . , tn} is an abbreviation of t1 � (t2 � · · · � (tn−1 � tn)). In the
rule for case-expressions, ỹi : õM abbreviates yi,1 : oM, . . . , yi,k : oM; note that
the type of yi,k is the same as that of e.

A variable is abstracted to itself. A tree constructor is transformed to a func-
tion fa,M defined below. A case expression is transformed to a case expression
on the states of M. If the value of t matches q, then the value T of the orig-
inal expression e is accepted by M from state q. So, T must be of the form
aT1 · · · Tk such that (a, q1 · · · qk, q) ∈ ΔM with Ti ∈ L(M, qi). Thus, the body
of the clause for q is a non-deterministic branch on such cases. For exam-
ple, consider the expression: casexof{Z ⇒ e1, S y ⇒ e2}, with the abstrac-
tion type x : oM2 (where M2 is that of Example 3). It is transformed to:
casexof{q2 ⇒ (t1 � [q3/y]t2), q3 ⇒ [q2/y]t2}, where x : oM2 � e1 : σ � t1
and x :oM2 , y :oM2 � e2 : σ � t2. The rule for applications transforms e1 and e2
in a compositional manner, but it ensures that the argument abstraction type
of e1 is equal to the abstraction type of e2, so that the abstraction is consistent.

A program is transformed by the following rule.

P = {fi x̃i = ei}n
i=1 D = {fi x̃i = ti}n

i=1 ∪ D′

Γ = {fi : σ̃i → oMi
}n

i=1 Γ, x̃i : σ̃i � ei : oMi
� ti (for each i)

D′ = {fC,M x1 · · · xΣ(C) = tC,M}C∈dom(Σ),M∈Automata(Γ)

� P : Γ � D (A-Prog)

Here, Automata(Γ) is the set of automata occurring in Γ , and tC,M is:

case (x1, . . . , xΣ(C))of{(q1, . . . , qΣ(C)) ⇒ q}(C,q1···qΣ(C),q)∈Δ.

We have used a case expression on tuples for clarity; it can be easily flattened
to case expressions on each of x1, . . . , xΣ(C). In the rule A-Prog , σ̃ → oM and
x̃ : σ̃ abbreviate σ1 → · · · → σk → oM and x1 : σ1, . . . , xk : σk respectively.

The soundness of the abstraction is stated as follows; see [13] for a proof.

Automata-Based Abstraction for Automated Verification 303

Theorem 1 (soundness). Let (P,MI ,MO) be a verification problem. If �
P : Γ � D and Γ (main) = oM′

I
→ oM′

O
with L(M′

I , FI) = L(MI) and
L(M′

O, FO) = L(MO), then |= (D, FI , FO) implies |= (P,MI ,MO).

Example 4. Consider the verification problem (P1,M1,M2) where P1 is defined
in Example 2 and the automata M1 and M2 are given in Example 3. Let Γ1 be:

{main : oM1 → oM2 , add : oM1 → oM2 → oM2 ,
twice : (oM2 → oM2) → oM2 → oM2}.

Then, � P1 : Γ1 � D1, where D1 consists of:

main x = twice (add x) q2 fS,M2 x = casexof q2 ⇒ q3 | q3 ⇒ q2
twice f x = f (f x) add x y = casexof q1 ⇒ y � (add q1 (fS,M2 y)).

The verification problem has been reduced to the safety problem (D1, {q1}, {q2}).
(|= (D1, {q1}, {q2}) does not hold, however, as shown in Sect. 5.1; we need to
refine the abstraction using the method described in Sect. 5.2.) ��

5 Abstraction Refinement

This section discusses how to refine the automata used for abstraction when they
are not precise enough. The pseudo code of our verification method is shown in
Fig. 2. Our method first infers the initial abstraction type environment, and
performs some initialization (line 2). The verification problem is reduced to a
safety problem as explained in Sect. 4.2 (line 4). The safety problem is solved by
an existing higher-order model checker (line 5). If the answer to the problem is
“no” (line 7), we inspect whether the abstract error path returned by the model
checker is feasible, i.e., the source program has a corresponding error path (lines
8–9). If the error path is feasible, the answer to the verification problem is “no”
(line 10). Otherwise, our method refines the abstraction by splitting each state
of the automaton for abstraction so that the spurious error path is eliminated
from the future abstraction (lines 12–17).

We explain below the feasibility checking (lines 8–9) and the abstraction
refinement (lines 12–17) in Sects. 5.1 and 5.2 respectively. The inference of the
initial abstraction type environment (line 2) is explained in the full version [13].

5.1 Feasibility Check

If the answer to a safety problem is “no”, a higher-order model checker [3,8]
outputs an error path of the abstract program. To check whether the source
program has a corresponding error execution path, we evaluate the source pro-
gram symbolically along the error path, and generate constraints on variables
(line 8). We then check the satisfiability of constraints (line 9).

304 Y. Matsumoto et al.

1: function verify(P, MI , MO)
2: Γ0 := infer abst tenv(P, MI , MO); Split := 1; CnstSet := ∅; Γ := Γ0;
3: loop
4: let (D, FI , FO) = abstract((P, MI , MO), Γ)
5: case check reachability(D, FI , FO) of
6: | Yes → return Yes;
7: | No(ep) →
8: let Cnst =gen cnst(ep, (P, MI , MO))
9: case solve cnst(Cnst) of

10: | Satisfiable(θ) → return No;
11: | Unsatisfiable →
12: CnstSet := CnstSet ∪ {Cnst};
13: loop
14: let cond =gensmt(CnstSet , Γ0,Split)
15: case smt solver(cond) of
16: | Satisfiable(sol) → Γ := refine(Γ0,Split , sol); break;
17: | Unsatisfiable → Split := Split + 1;}}

Fig. 2. Pseudo code of our method

For example, recall the safety problem (D1, {q1}, {q2}) in Example 4. The
answer to this safety problem is “no”, and one of the error paths output by a
model checker is as follows.

main q1 −→D1 twice (add q1) q2 −→D1 add q1 (add q1 q2)
−→∗

D1
add q1 (q2 � (add q1 (fS,M2 q2))) −→D1 add q1 q2

−→∗
D1

q2 � (add q1 (fS,M2 q2)) −→D1 add q1 (fS,M2 q2)
−→∗

D1
add q1 q3 −→∗

D1
q3 � (add q1 (fS,M2 q3)) −→D1 q3

We first prepare a concise version of the error path (of the abstract program),
which is just a sequence TR of the transition rules used for abstracting the
values inspected by each case expression. Here, we ignore the case-expressions
in the definition of fC,M, which have no corresponding case-expressions in the
source program. For the example above, TR = (Z, ε, q1)(S, q1, q1)(Z, ε, q1). The i-
th element (i ∈ {1, 2, 3}) corresponds to the evaluation of the i-th case expression
evaluated in the error path above. For example, the first element corresponds to
the first case expression; since the expression being evaluated to q1 means that
the corresponding value of the source program has been considered Z, and it was
abstracted to q1 by using the transition rule (Z, ε, q1).

Given a concise error sequence TR, we replace TR with a corresponding
concise transition sequence TR0 for the initial abstraction, which is obtained
by replacing each transition rule (C, q̃, q) with the corresponding transition rule
(C, q̃′, q′) of the automata occurring in the initial abstraction type environment
Γ0. This is always possible by the construction of the refinement procedure
described in Sect. 5.2; each state of an automaton in the current abstraction
type environment is of the form q(i), and we just need to replace q(i) with q.

Automata-Based Abstraction for Automated Verification 305

The symbolic evaluation of the original program is formalized as the rela-
tion (e,Cnst ,TR) −→P (e′,Cnst ′,TR′), where e is an expression of the original
program, Cnst is the set of constraints being accumulated, and TR is a concise
error sequence. The relation is defined by the following rules:

f x1 · · · xn = e ∈ P
(E[f v1 · · · vn],Cnst ,TR) −→P (E[[v1 · · · vn/x1 · · · xn]e],Cnst ,TR)

TR = (Ck, q̃, q) · TR′ Cnst ′ = {(v = Ck x̃), v : q, (x̃ : q̃)} ∪ Cnst (x̃ fresh)
(E[case v of {Ci ỹi ⇒ ek}m

i=1],Cnst ,TR) −→P (E[[x̃/ỹk]ek],Cnst ′,TR′)

The first rule is for a function call, which is a deterministic evaluation that
does not require information about the error path. The second rule is for case-
expressions, where the first element of TR is looked up (and consumed) to decide
which branch should be taken. The premise TR = (Ck, q̃, q). TR′ means that v
has been abstracted to q using the transition rule (Ck, q̃, q). So, the constraints
v = Ck x̃, v : q, and x̃ : q̃ are added. Here, v is a tree expression consisting of
variables and tree constructors; the latter constraint x̃ : q̃ is an abbreviation of
x1 : q1, . . . , xk : qk, which means that the value of xi should belong to L(M, qi).
(Here, the states of automata in Automata(Γ) are disjoint from each other; so M
is uniquely identified by qi.) By applying the rules above, we obtain a symbolic exe-
cution sequence: (main x, ∅,TR0) −→∗

P (e,Cnst , ε). We let Cnst be the output of
gen const on line 8 of Fig. 2. By the rules, it should be clear that if we instanti-
ate each variable in the symbolic evaluation sequence so thatCnst is satisfied, then
we get an actual error path of the source program. Therefore, Cnst is satisfiable
if and only if the source program has an error path corresponding to the abstract
error path TR0. The satisfiability of Cnst can be easily checked by first solving
equality constraints using a standard unification algorithm, and then checking the
remaining condition v : q based on the transition rules of the automaton.

Example 5. Recall the verification problem (D1, {q1}, {q2}) and the (concise)
abstract error path TR = (Z, ε, q1)(S, q1, q1)(Z, ε, q1) considered above. We have
the following symbolic execution sequence.

(main x1, ∅, (Z, ε, q1)(S, q1, q1)(Z, ε, q1))

−→∗(add x1 (casex1 of Z ⇒ Z | Sx′ ⇒ add x′(S Z)), ∅, (Z, ε, q1)(S, q1, q1)(Z, ε, q1))

−→ (add x1 Z, {x1 : q1, x1 = Z}, (S, q1, q1)(Z, ε, q1))

−→ (casex1 of Z ⇒ Z | Sx′ ⇒ add x′ (S Z)), {x1 : q1, x1 = Z}, (S, q1, q1)(Z, ε, q1))

−→ (add x2 (S Z), {x1 : q1, x1 = Z, x1 = S x2, x2 : q1}, (Z, ε, q1))

−→ (casex2 of Z ⇒ S Z | S x′ ⇒ add x′ (S (S Z)),

{x1 : q1, x1 = Z, x1 = S x2, x2 : q1}, (Z, ε, q1))

−→ (S Z, {x1 : q1, x1 = Z, x1 = S x2, x2 : q1, x2 = Z}, ε)

We therefore get constraints {x1 : q1, x1 = Z, x1 = S x2, x2 : q1, x2 = Z}. Because
the constraints are unsatisfiable (there are conflicting equalities x1 = Z and
x1 = S x2), the error path is infeasible. Note that the infeasible error path has

306 Y. Matsumoto et al.

been obtained because the variable x1 has been copied as add x1 (add x1 Z)
and instantiated differently (the first occurrence as S Z and the second as Z) due
to the imprecise abstraction, which abstracts both Z and S Z to the same state
q1. The procedure described in the next subsection refines the abstraction by
splitting the state q1 in order to avoid this confusion between Z and S Z.

5.2 Abstraction Refinement

As mentioned above, when the error path of the abstracted program is infeasi-
ble, our method refines the abstraction by splitting each automaton state q to
q(1), . . . , q(n), where n, called the split number, is kept in variable Split in Fig. 2.
It is set to 1 initially (line 2), and gradually increased.

We refine each automaton M ∈ Automata(Γ0) to M′, so that: (i) ∀q ∈
QM.L(M, q) = L(M′, {q(1), . . . , q(n)}); and (ii) the same error path (TR0 in
Sect. 5.1) never occurs again.

To guarantee the first condition, it suffices to guarantee that for each rule
(C, q1 · · · qk, q) ∈ ΔM,

∀i1, . . . , ik ∈ {1, . . . , n}.∃i ∈ {1, . . . , n}.(C, q
(i1)
1 · · · q(ik)

k , q(i)) ∈ ΔM′

holds. Thus, M′ is determined by a function g(C,q1···qk,q) ∈ {1, . . . ,Split}k →
{1, . . . ,Split} for each (C, q1 · · · qk, q) ∈ ΔM. We prepare an uninterpreted func-
tion symbol g(C,q1···qk,q) for representing the unknown function, and generate the
constraints on g(C,q1···qk,q)’s so that the second condition is guaranteed.

To guarantee the second condition, for each constraint Cnst in CnstSet
(which accumulates the set of constraints generated from spurious error paths
found so far), we generate the following SMT formula FCnst .

∀x1, . . . , x� ∈ {1, . . . ,Split}.
∨

v1=v2∈Cnst(state(v1) 	= state(v2)).

Here, state(v) is defined by: (i) state(x) = x; and (ii) state(C v1 · · · vk) =
g(C,q1··· qk,q)(state(v1), . . . , state(vk)) if Δ′(v1) = q1, . . . ,Δ

′(vk) = qk, and
Δ′(C v1, . . . vk) = q, where Δ′(v) is defined by:

Δ′(v) =

{
q (if v = x ∧ (x : q) ∈ Cnst)
Δ(C,Δ′(v1) · · · Δ′(vΣ(C))) (if v = C v1 · · · vΣ(C))

with Δ =
⋃{ΔM | M ∈ Automata(Γ0)} for the initial abstraction type

environment Γ0. Then, gensmt outputs the conjunction of the above formula∧
Cnst∈CnstSet FCnst . If it is satisfiable, then we obtain a refined abstraction type

environment Γ . Otherwise, we increase Split until the SMT constraint becomes
satisfiable.

Example 6. Recall the verification problem in Example 5 and suppose Split = 2.
The generated SMT formula is:

∀x1, x2 ∈ {1, 2}.x1 	= g(Z,ε,q1)() ∨ x1 	= g(S,q1,q1)(x2) ∨ x2 	= g(Z,ε,q1)()

Automata-Based Abstraction for Automated Verification 307

One of the solutions is g(Z,ε,q1) = 1, g(S,q1,q1)(1) = 2, g(S,q1,q1)(2) = 1. The transi-
tion function of the refined automaton is: {(Z, ε, q(1)1), (S, q(1)1 , q

(2)
1), (S, q(2)1 , q

(1)
1)}.

Using this automaton, the verification succeeds.

The following theorem ensures that if there is an appropriate abstraction type
environment with which the verification succeeds, then the algorithm eventually
find such an abstraction type environment. See [13] for a proof.

Theorem 2 (relative completeness). Let (P,MI ,MO) be a verification
problem. Suppose there exists Γ such that � P : Γ � D, |= (D, FI , FO), and
Γ (main) = oM′

I
→ oM′

O
with L(MI) = L(M′

I , FI) and L(MO) = L(M′
O, FO).

Then the algorithm eventually terminates and outputs “Yes”.

We say that check reachability in Fig. 2 is fair if every concise error path
is eventually generated; it is guaranteed if check reachability always returns
a shortest concise error path, for example. We can also guarantee:

Theorem 3 (completeness of refutation). Let (P,MI ,MO) be a verifica-
tion problem such that 	|= (P,MI ,MO). If check reachability is fair, then
the algorithm eventually terminates and outputs “No”.

6 Implementation and Experiments

We have implemented a verification tool based on our method, and evaluated
it through experiments. The experiments were conducted on a machine with
Intel(R) Xeon(R) CPU E5620 2.40 GHz and 3.73 GB memory. We used HorSat
[3] as the higher-order model checker (except for the program “homrep-rev” for
which we used [8] due to a problem of HorSat) and Z3 [5] as the SMT solver.

Table 1 shows the result of the experiments. The column “S” represents the
size of the programs. The size of a program is the number of occurrences of
constants and variables on the right side of the rules in the program. The column
“O” represents the order of the programs. The order of a program is the largest
order of the types of functions. Here, the order order(κ) of the type κ is defined
by: order(o) = 0, order(κ1 → κ2) = max{order(κ1)+1, order(κ2)}. The column
“R” represents the number of refinements in the verification. The column “T”
shows the running time (measured in seconds). We ran each program 3 times
and show the average running time. “TO” in the column “T” means a time-out,
where we set the time-out to 1000 seconds. For comparison, we have also run
the verification tools for HMTT [12] and EHMTT [19] and show their running
times in the columns “TH” and “TE” respectively. The “N/A” means that the
tool is inapplicable; that is the case for the HMTT verification tool, when trees
are repeatedly constructed and deconstructed inside the program. The EHMTT
verification tool is inapplicable when there is no appropriate annotation; see
the discussion below. We have also tried to compare our tool with the PMRS
verification tool [16], but unfortunately we could not obtain its source code.

The benchmark programs consist of three categories (separated by lines in
the table). The first category (the programs from “reverse” to “mincaml-k”)

308 Y. Matsumoto et al.

has been taken from the benchmark set for the EHMTT verification tool [19].
The original programs contain annotations required for EHMTT, and they have
been removed for the experiments on our new tool. The second category has
been taken from the benchmark set for the PMRS verification tool [16], avail-
able at http://mjolnir.cs.ox.ac.uk/cgi-bin/horsc/recheck-horsc/input. The third
category contains a new benchmark set. The program “double” is the verification
problem given in Example 3. The program “isort2” sorts a given list consisting
of “A” and “B” by the insertion sort algorithm. The specification asserts that
the result is a sorted list. The program “issorted” sorts a given list consisting of
“A” and “B” by the insertion sort, and then (inside the program) checks that
the result is a sorted list; if not, the program fails. The specification is that the
program does not fail. The program “mergesort2” is the same as “insertionsort”
except that the merge sort algorithm is used. The program “mapswsort” sorts
a given list and maps a function that swaps “A” and “B” on the list. In the
programs above, lists are encoded as trees constructed from cons, nil, A, and
B. The program “remove0” takes a list of integers (in the unary representation)
and removes 0 from the list.

Our tool could verify the benchmark programs, except “xmarkq1” and
“gapid”. For the program “xmarkq1”, the tool failed to construct the initial
abstraction. This is because the automata given as the specification of the pro-
gram is large, and the current tool naively applies a product construction to make
the automaton used for abstraction. For the program “gapid”, the abstraction
refinement loop did not terminate within the given time limit. This is because
the automaton required for abstracting intermediate trees is quite different from
the automata given as the input/output specification.

As for the comparison with the HMTT/EHMTT verification tools, the HMTT
tool is applicable to only a few of the benchmark programs. That is because
HMTT [12] classifies trees into input trees and output trees, and pattern match-
ing can be applied only to input trees, and tree constructors can be applied only
to output trees. Most of the programs in the benchmark set repeatedly construct
and deconstruct trees.

The EHMTT tool works for the first benchmark set, but it relies on user
annotations. Like HMTT, EHMTT also distinguishes between input and output
trees, but allows an explicit coercion of output trees to input trees. Each coercion
must be annotated with an invariant on the shape of trees that are coerced, and
that invariant is used for abstraction. Thus, since an appropriate abstraction
is given by hand, EHMTT is faster than our tool when it is applicable. For
the second and third categories, we have also added annotations for EHMTT,
when applicable. For many of the benchmark programs in the second and third
categories, however, there are no appropriate annotations that make the EHMTT
verification succeed. There are two main reasons for this. One reason, which is
somehow specific to the current implementation, is that the EHMTT tool allows
only deterministic top-down automata as output specifications. Since the class
of deterministic top-down tree automata is a strict subclass of deterministic
bottom-up tree automata, some of the specifications cannot be handled by the

http://mjolnir.cs.ox.ac.uk/cgi-bin/horsc/recheck-horsc/input

Automata-Based Abstraction for Automated Verification 309

EHMTT tool. The other reason is more fundamental. Consider the following
function “iszero”.

iszero x t f = casexof Z ⇒ t | S y ⇒ f.

If the first argument of the function “iszero” is an output tree, the argument
requires an annotation as follows.

iszero (coerceLe) et ef

Here, coerceLe converts an output tree constructed by e to an input tree, so
that pattern matching can be applied again. The annotation L is an invariant
on the value of e; in this case, L would be typically S∗Z (unless the value of e
can be statically determined). Given the annotation, the EHMTT converts the
body of iszero to a non-deterministic choice between t and f , ignoring the actual
value. Thus, if the property to be verified requires a case analysis on whether x
is Z or not, the EHMTT verification fails.

To summarize, compared with the HMTT/EHMTT verification tools, our
new tool works for a larger set of programs, requiring no special annotations,
although it may be slower when the previous tools are applicable. For the pro-
grams such as xmarkq1 and gapid, a compromise would be to allow users to
provide abstraction types as annotations. Such annotations do not suffer from
the problem of EHMTT annotations discussed above.

Table 1. Experimental results

Program S O R T TH TE Program S O R T TH TE

reverse 46 1 16 4.215 N/A 0.032 mkground 46 1 4 0.892 N/A 0.043

isort 29 1 0 0.103 N/A 0.022 filter-nz 31 2 1 0.472 N/A N/A

mergesort 173 2 0 1.711 N/A 0.303 safe-tail 100 2 9 11.48 N/A N/A

homrep-rev 97 4 14 2.338 N/A 0.043 maphead 53 2 5 2.489 N/A N/A

split2 108 2 53 589.3 N/A 0.089 risers 78 1 3 2.006 N/A 0.079

bib2html 103 2 1 3.568 N/A 0.376 safe-init 113 2 13 22.76 N/A N/A

xmarkq1 89 2 - TO N/A 0.767 checknz 8 1 0 0.018 0.011 0.009

xmarkq2 157 1 0 100.8 N/A 1.531 checkpairs 35 1 0 0.082 N/A N/A

gapid 393 3 14 TO N/A 0.148 double 12 1 0 0.041 0.040 N/A

jwig-cal 96 1 0 143.5 N/A 0.570 isort2 40 1 1 1.058 N/A N/A

jwig-guess 99 2 6 65.8 N/A 1.411 issorted 127 1 6 12.45 N/A N/A

mincaml-k 683 2 0 532.3 N/A 1.830 mapswsort 61 2 20 22.63 N/A N/A

last 20 1 1 0.129 N/A 0.027 mergesort2 96 1 0 3.178 N/A N/A

safe-head 67 2 1 0.888 N/A N/A remove0 32 1 1 0.409 0.015 0.012

310 Y. Matsumoto et al.

7 Related Work

As mentioned in Sect. 1, several approaches have been proposed for auto-
mated verification of functional programs based on higher-order model check-
ing. Kobayashi et al. [11] proposed predicate abstraction and CEGAR
(counterexample-guided abstraction refinement) for higher-order model check-
ing, but they used only predicates on integers for abstraction. They later sup-
ported some algebraic data structures by encoding them into functions on
integers. That encoding approach, however, complicates both programs and spec-
ifications. For example, since a list is encoded into a pair consisting of its length
and a function that maps an index to the corresponding element, the property of
a list: “1 occurs in the list” would be converted to a refinement type specification:

n : int × {f : int → int | ∃x.(0 ≤ x < n ∧ f(x) = 1)},

which would be simply represented by ∗1 ∗ with a regular language (or automa-
ton) specification. The above specification involves function variables and exis-
tential quantifiers, which cannot be handled even by the recent extension of
MoCHi [1]. Even if the encoding works, the resulting program and specification
tends to become too complex and large, making automated verification difficult;
in fact, the current implementation of MoCHi does not work for the benchmark
programs in Sect. 6. That said, a limitation of our new approach is that we can-
not verify some co-relation between arguments and return values, like “Function
f takes a list of length n, and returns a list of length 2 × n.” This is because
we use automata for abstracting information about each tree, which loses the
relationship between multiple trees. A possible remedy to this problem would
be to use tree automatic relations [2] for abstraction. Another approach would
be to integrate our new approach with that of MoCHi.

We have already discussed HMTT [12] and EHMTT [19] in Sect. 6. Although
HMTT also abstracts trees by using an automaton, the automaton used for the
abstraction is fixed to the one specified as the input automaton. EHMTT decom-
pose the verification problem to multiple HMTT verification problems, by using
annotations. Again, the abstraction relies on the automata given as specifica-
tions or annotations. There was no abstraction refinement loop mechanism in
the above work on HMTT/EHMTT verification. We have recently extended the
HMTT verification with abstraction refinement loops [14], but it was restricted
to HMTT (where there is a distinction between input/output trees), and the
relative completeness (cf. Theorem 2) was not guaranteed. In short, our new
method requires no annotations unlike EHMTT verification, and works (at least
in theory) for a strictly larger set of verification problems than our previous work
on HMTT/EHMTT verification.

Ong and Ramsay [16] introduced a verification method for tree-processing
programs called PMRS. Their method abstracts trees based on finite patterns,
so it cannot deal with general regular properties like “a tree contains an even
number of S”. For example, for the program P1 in Example 2: they abstract the
argument x of add based on the information about whether x matches Z or Sx′.

Automata-Based Abstraction for Automated Verification 311

If the verification fails, they expand patterns by unfolding functions; in the case
of the above example, the new set of patterns would be {Z, S Z, S (Sx)}. Thus,
their abstraction never captures properties like “x is an even number” (i.e., x is
of the form S2nZ). For the benchmark programs used in our experiments, PMRS
works for the second category (because it has been taken from the benchmark of
the PMRS tool), but it would not work for most of the benchmarks in the first
and third categories.

Automata-based abstraction has also been recently used for μHORS model
checking [10]. The μHORS model checking is an extension of higher-order model
checking, where HORS has been extended with recursive types. They abstract
the whole program configuration (which can be represented as applicative terms)
by using a tree automaton, and gradually refines the abstraction using a simi-
lar technique utilizing an SMT solver. Since μHORS is Turing complete, their
approach can in theory be applied to the verification problems considered in
the present paper, but our approach would scale much better for tree-processing
programs. They abstract both control and data structures using automata in a
monolithic way, whereas we abstract only tree data using automata, and pre-
cisely analyze control structures thanks to the decidability of higher-order model
checking.

Besides approaches based on higher-order model checking, there have been a
few other approaches to (semi-)automated verification of higher-order functional
programs that support algebraic data types. Liquid types [7,17,20] is a notable
approach based on refinement types, but it requires a user’s hints on the pred-
icates used in refinement types. Genet [6] applies a tree automata completion
technique for term rewriting systems to static analysis of functional programs.
His approach uses tree automata for modeling the whole program state (like
in the μHORS model checking mentioned above), while our approach uses tree
automata only for abstracting tree data. His method does not guarantee the
relative completeness in the sense of ours.

8 Conclusion

In this paper, we have introduced a new method for fully automated verifica-
tion of tree-processing, higher-order functional programs. We have introduced
automata-based abstraction, and combined it with higher-order model checking.
The automata-based abstraction is formalized as a type-based program trans-
formation, and the abstraction is gradually refined based on counterexamples.
Compared with the previous methods based on higher-order model checking, the
new method is more automated (requires no annotations), and can deal with a
larger class of programs. Future work includes improvement of the scalability of
the verification method, and an integration of the proposed technique with the
predicate abstraction approach of MoCHi [1,11,18].

Acknowledgments. We thank anonymous reviewers for useful comments. This work
was partially supported by JSPS Kakenhi 15H05706, 23220001, and 25730035.

312 Y. Matsumoto et al.

References

1. Asada, K., Sato, R., Kobayashi, N.: Verifying relational properties of functional
programs by first-order refinement. In: Proceedings of PEPM 2015, pp. 61–72
(2015)

2. Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of LICS 2000,
pp. 51–62 (2000)

3. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

4. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata

5. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Genet, T.: Towards static analysis of functional programs using tree automata
completion. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 147–161.
Springer, Heidelberg (2014)

7. Kawaguchi, M., Rondon, P., Jhala, R.: Type-based data structure verification. In:
Proceedings of PLDI 2009, pp. 304–315. ACM (2009)

8. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009. pp. 25–36 (2009)

9. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3), 20:1–20:62
(2013)

10. Kobayashi, N., Li, X.: Automata-based abstraction refinement for μHORS model
checking. In: Proceedings of LICS 2015 (2015)

11. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and cegar for higher-order
model checking. In: Proceedings of PLDI 2011, pp. 222–233 (2011)

12. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of POPL
2010, pp. 495–508. ACM (2010)

13. Matsumoto, Y., Kobayashi, N., Unno, H.: Automata-based abstraction for auto-
mated verification of higher-order tree-processing programs (2015). an extended
version, available from the second author’s web page

14. Matsumoto, Y., Kobayashi, N., Unno, H.: Counterexample finding and abstraction
refinement for automated verification of higher-order transducers. Comput. Softw.
31(1), 161–178 (2015). (in Japanese)

15. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS 2006, pp. 81–90. IEEE Computer Society (2006)

16. Ong, C.-H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: Proceedings of POPL 2011, pp. 587–
598. ACM (2011)

17. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI 2008, pp. 159–169
(2008)

18. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of PEPM 2013, pp. 53–62. ACM (2013)

19. Unno, H., Tabuchi, N., Kobayashi, N.: Verification of tree-processing programs via
higher-order model checking. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461,
pp. 312–327. Springer, Heidelberg (2010)

20. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Decision Algorithms for Checking Definability
of Order-2 Finitary PCF

Sadaaki Kawata(B), Kazuyuki Asada, and Naoki Kobayashi

The University of Tokyo, Tokyo, Japan
Kawata@kb.is.s.u-tokyo.ac.jp

Abstract. We consider a definability problem for finitary PCF, which
asks whether, given a function (as an element of a cpo), there exists a
term of finitary PCF whose interpretation is the function. The defin-
ability problem for finitary PCF is known to be decidable for types of
order at most 2. However, its complexity and practical algorithms have
not been well studied. In this paper, we give two algorithms for checking
definability: one based on Sieber’s sequentiality relation, which runs in
quadruply exponential time for the size of the type of the given function,
and the other based on a saturation method, which runs in triply expo-
nential time for the size. With the recent advance of higher-order model
checking, our result may be useful for implementing a tool for deciding
observational equivalence between finitary PCF terms of types of order
at most 3.

1 Introduction

Finitary PCF [11] (FPCF for short) is a simply typed λ-calculus with a single
ground type o of booleans and recursion. Any FPCF term can be interpreted as
a continuous function between finite cpos. However, some continuous functions
such as “parallel-or” cannot be represented by any FPCF term. The FPCF
definability is the problem of deciding whether a continuous function can be
represented by an FPCF term or not.

Loader [11] proved that definability is undecidable if the order of an input
function is greater than 2. He also mentioned that definability is decidable for
functions of order at most 2, which is an immediate consequence of Sieber’s
result [23]. Nevertheless, practical algorithms and the complexity of the defin-
ability problem have not been studied well. To our knowledge, the only exception
is Stoughton’s work [24], which gave an algorithm for the definability problem
of order at most 2 and its implementation.1 However, she did not discuss the
complexity of her algorithm.

In this paper, we give two algorithms for deciding the definability problem for
order-2 FPCF. We first introduce an algorithm for checking definability based on

Sieber’s result [23] and prove that the algorithm runs in O(
22

22
poly(m))

time where

1 We thank an anonymous reviewer for providing us the information of Stoughton’s
work.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 313–331, 2015.
DOI: 10.1007/978-3-319-26529-2 17

314 S. Kawata et al.

the type of an input function is (
m1︷ ︸︸ ︷

o → · · · → o → o) → · · · → (
mn︷ ︸︸ ︷

o → · · · → o →
o) → o, m = max(n,m1, . . . ,mn) and poly(m) is a polynomial of m. Then, we

give another algorithm based on a saturation method, which runs in O(
22

2poly(m))

time. Unlike the algorithm based on Sieber’s result, this saturation-based algo-
rithm can output a witness term M defining d, if d is indeed definable.

Decision algorithms for definability of order at most 2 can be used to decide
the observational equivalence between FPCF terms of types of order at most 3.
Since the interpretation �τ� of a type τ has only finitely many elements, and
since we can check definability of all the elements in �τ�, we can enumerate all
the definable elements of �τ�. Then, we can decide the observational equivalence
between closed terms M1 and M2 of type τ → o, by checking whether �M1�d =
�M2�d for every definable element d in �τ�. For computing �M�d, we can use
higher-order model checking [9,17]. Given a closed FPCF term N of type o
and a value V ∈ {T,F}, higher-order model checking can be used for deciding
whether N evaluates to V or not. Thus, given M and d, we can compute �M�d
by first preparing a term N such that �N� = d, and then invoking a higher-order
model checker (e.g. [4,9,21]) to compute the value of M N .

The rest of this paper is structured as follows. In Sect. 2, we recall finitary
PCF and define the definability problem and data representation for discussing
the complexities. In Sect. 3, we show the algorithm using Sieber’s result and
calculate its complexity. Section 4 describes the more efficient saturation-based
algorithm for checking definability. Section 5 discusses an application to equiva-
lence checking. Section 6 discusses related work, and Sect. 7 concludes this paper.

2 Preliminaries

2.1 Finitary PCF

FPCF is a call-by-name simply typed λ-calculus with a single ground type o as
defined below.

The set of types of FPCF (ranged over by τ, σ, . . .) is defined by

τ :: = o | τ1 → τ2.

The order of types is defined by

order(o) := 0
order(τ1 → τ2) := max(order(τ1) + 1,order(τ2)).

The set of terms of FPCF (ranged over by M,N, . . .) is defined as follows:

M :: = x | c | M1 M2 | λx : τ.M.

We sometimes omit the type annotation “: τ” of λx : τ.M for simplicity. The
metavariable c is used to denote constants and the set of constants (ranged over
by c) is given by:

c :: = T | F | if | Yτ .

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 315

T and F are ground type constants, if has type o → o → o → o,
and Yτ is a fixed-point operator of type (τ → τ) → τ . We often write
if M1 then M2 else M3 for if M1 M2 M3, and write Ωτ for the non-terminating
term Yτ (λx : τ. x).

We write Γ � M : τ when M has type τ under context Γ . Typing rules for
FPCF terms are given in the usual way for the simply-typed λ-calculus.

We give an operational semantics of FPCF by defining the binary relation ⇓
between closed FPCF terms and values. Note that a term is closed if the term
does not contain free variables. The set of values (ranged over by V) is given by

V :: = T | F | λx : τ.M

where λx : τ.M must be closed. The relation ⇓ is defined inductively by the
following rules:

V ⇓ V

M ⇓ λx : τ.M ′ M ′[N/x] ⇓ V

M N ⇓ V

M (Yτ M) ⇓ V

Yτ M ⇓ V

M1 ⇓ T M2 ⇓ V

if M1 then M2 else M3 ⇓ V

M1 ⇓ F M3 ⇓ V

if M1 then M2 else M3 ⇓ V

Next, let us recall the standard cpo semantics (e.g. [25]) for FPCF. A type τ
is interpreted as a pointed cpo Dτ , i.e., an ordered set with the least upper bound
(denoted by lub A) of any directed subset A and the least element (denoted by
⊥). The cpos Dτ are defined inductively by:

Do = ({T,F,⊥},≤o)
Dτ1→τ2 = ([Dτ1 → Dτ2],≤τ1→τ2).

Here, [D → D′] is the set of continuous2 functions from D to D′, and

x ≤o y
def⇐⇒ (x = y) ∨ (x = ⊥)

x ≤τ1→τ2 y
def⇐⇒ ∀z ∈ Dτ1 . x(z) ≤τ2 y(z).

We often identify a cpo D = (S,≤) with a set S. The least element ⊥τ for each
cpo Dτ is given inductively by:

⊥o = ⊥
⊥τ1→τ2 = λx : τ1.⊥τ2

The interpretation function �−� maps a term x1 : τ1, . . . , xn : τn � M : τ to a
function in Dτ1 ×· · ·×Dτn

→ Dτ .3 The definition of �x1 : τ1, . . . , xn : τn � M : τ�
is given inductively by:
2 A function f between pointed cpos is continuous if f is monotonic and preserves the
least upper bound of any directed subset. Note that, if f is a function between finite
cpos, f is continuous if and only if f is monotonic.

3 A cartesian product of two cpos D1 = (S1, ≤1) and D2 = (S2, ≤2) is a cpo (S1 ×
S2, ≤D1×D2) where (d1, d2) ≤D1×D2 (d′

1, d
′
2)

def⇐⇒ d1 ≤1 d′
1 ∧ d2 ≤2 d′

2.

316 S. Kawata et al.

�x1 : τ1, . . . , xn : τn � xi : τi�(d1, . . . , dn) := di

�Γ � (M N) : τ�(
−→
d) := �Γ � M :σ → τ�(

−→
d)(�Γ � N :σ�(

−→
d))

�Γ � (λx : τ. M) : τ → σ�(
−→
d)(d) := �Γ, x : τ � M :σ�(

−→
d , d)

�Γ � Yτ :(τ → τ) → τ�(
−→
d)(f) := lub{fn(⊥) | n ∈ N}

�Γ � T : o�(
−→
d) := T

�Γ � F : o�(
−→
d) := F

�Γ � if : o → o → o → o�(
−→
d)(v)(v′)(v′′) :=

⎧
⎪⎨

⎪⎩

v′ (if v = T)

v′′ (if v = F)

⊥ (if v = ⊥).

Here, f0(⊥) := ⊥, fn+1(⊥) := f(fn(⊥)), and
−→
d denotes a sequence d1, . . . , dn.

Note that the interpretation of Yτ is well-defined since ⊥ ≤ f(⊥) ≤ f2(⊥) ≤ . . .
always holds by the monotonicity of f . Also note that in the interpretation of
M N , the type σ is uniquely determined by the typing judgment Γ � (M N) : τ .
If M is closed, �� M : τ� is a function in {∗} → Dτ , and we often abbreviate
�� M : τ�(∗) to �M�.

Definition 1. An element d ∈ Dτ is definable if there exists a closed FPCF
term M such that �M� = d.

Note that not all the elements are definable. For example, an element por
(parallel-or) such that

porT⊥ = T por⊥T = T porFF = F

is not definable [18], as explained in Sect. 3.1.

2.2 FPCF Definability Problem

Let τ be a type of order at most 2. We define the FPCF definability problem for
type τ as follows: given an input d ∈ Dτ , output whether d is definable or not.

Here, we represent d ∈ Dτ as follows: Suppose that τ is of the form τ1 →
· · · → τn → o where τi is a type of the form

mi︷ ︸︸ ︷
o → · · · → o → o. Since a function

e ∈ Dτi
can be seen as a family (e v1 . . . vmi

)(v1,...vmi
)∈D

mi
o

of elements in Do,
we represent e as an array of the form:

(eT . . . TT, eT . . . TF, eT . . . T⊥, . . . , e⊥ . . . ⊥).

Here, the length of the array for e ∈ Dτi
is |Do|mi , and an index (v1, . . . , vmi

) of
the family is represented by the ternary representation of an index of the array.
For example, the parallel-or por is represented by

(porTT, porTF, porT⊥,

porFT, porFF, porF⊥,

por⊥T, por⊥F, por⊥⊥),

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 317

i.e.,
(T, T, T, T, F, ⊥, T, ⊥, ⊥).

Next, we represent a function d ∈ Dτ (⊆ Dτ1 × · · · × Dτn
→ Do) as its graph,

i.e. as a list [s1, . . . , sl] of elements, where each sj in (Dτ1 × · · · × Dτn
) × Do is

of the form:

((e1, . . . , en), d e1 . . . en)

and ei ∈ Dτi
is represented by an array as explained above. Here, we only list

(e1, . . . , en) such that each ei (i ∈ {1, . . . , n}) is continuous. The length of the
list d is therefore |Dτ1 × · · · × Dτn

|. We further assume that the list [s1, . . . , sl]
is sorted according to a certain linear order on Dτ1 × · · · × Dτn

. (Thus, the part
(e1, . . . , en) is actually redundant, but it does not matter for the order of the
input size.) We also assume that the input d represents a continuous function.
Note that the continuity, i.e., the monotonicity of d can be checked in time
polynomial in the length of d i.e., in time O(

33
poly(m))

(=O(
22

poly(m))
) where

m = max(n,m1, . . . ,mn). We often identify an element d in a cpo D with the
above representation of d.

3 Algorithm Using Sieber’s Relation

In this section, we give an algorithm for the FPCF definability using Sieber’s
sequentiality relations, and discuss its complexity.

3.1 Logical Relation

We first explain logical relations [19], which can be used to check definability.

Definition 2. For n ∈ N, an n-ary logical relation R is a type-indexed fam-
ily (Rτ)τ∈Types of relations Rτ ⊆ (Dτ)n such that for all types τ1, τ2 and
f1, . . . , fn ∈ Dτ1→τ2 ,

Rτ1→τ2 f1 . . . fn ⇐⇒ ∀d1, . . . , dn ∈ Dτ1 . (Rτ1 d1 . . . dn ⇒ Rτ2(f1 d1) . . . (fn dn)).

Note that R is uniquely determined by Ro.

Definition 3. Let R be a logical relation. An element d ∈ Dτ is invariant under
R if Rτ d . . . d. Also, a closed term M of type τ is invariant under R if so is �M�.

Theorem 1 (Basic Lemma [20]). Let R be a logical relation. If every con-
stant c is invariant under R, then every closed FPCF term M is invariant
under R.

This theorem can be used to prove the non-definability of some elements.
To prove the non-definability of d, it is sufficient to construct a logical relation
R such that all the PCF constants are invariant under R but d is not invariant

318 S. Kawata et al.

under R. A classical example for showing the non-definability of por is the logical
relation R defined by:

Ro x1 x2 x3
def⇐⇒ (x1 = ⊥) ∨ (x2 = ⊥) ∨ (x1 = x2 = x3). (1)

All the constants of FPCF are invariant under R; however, por is not invariant
under R, because Ro ⊥ T F and Ro T ⊥ F hold but

Ro (por⊥T) (porT⊥) (porFF), i.e., Ro T T F

does not hold.

3.2 Characterization of Definability

Sieber [23] gave a characterization of the logical relations under which all the
FPCF constants are invariant. The algorithm for the definability problem given
in Sect. 3.3 uses this characterization.

Definition 4. For n ≥ 0 and A ⊆ B ⊆ {1, . . . , n}, let Sn
A,B ⊆ (Do)n be a

relation defined by

Sn
A,B v1 . . . vn

def⇐⇒ (∃i ∈ A. vi = ⊥) ∨ (∀i, j ∈ B. vi = vj).

A logical relation R is a sequentiality relation R if Ro is an intersection of
relations of the form Sn

A,B.

Sieber proved that the sequentiality characterizes the logical relations under
which all the PCF constants are invariant [23]. The following is the FPCF version
of Sieber’s theorem, due to [3].

Theorem 2 ([3, Theorem 4.5.17]). A logical relation R is a sequentiality
relation if and only if all the FPCF constants are invariant under R.

The theorem below, again due to Sieber [23], is a key theorem for deriving
a decision algorithm for definability. We have slightly strengthened the origi-
nal statement, so that f is required to be invariant for sequentiality relations
of a fixed arity; in the original one, d was required to be invariant under all
sequentiality relations.

Theorem 3 ([23, Theorem 4.1]). Let τ = τ1 → · · · → τn → o be a type of
order at most 2, and let (ei1, . . . , ein) ∈ Dτ1 ×· · ·×Dτn

for every i ∈ {1, . . . , m}.
If f ∈ Dτ is invariant under all the sequentiality relations of arity m, then there
exists a closed PCF term M of type τ such that

∀i ∈ {1, . . . , m}. d ei1 · · · ein = �M� ei1 · · · ein.

Note that the theorem above is for PCF, and that terms and cpo’s are different
from those for FPCF given in Sect. 2.1. However, the same theorem also holds
for FPCF, as stated below. We omit the proof, since it is essentially the same
proof as that of [23, Theorem 4.1].

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 319

Theorem 4. Let τ = τ1 → · · · → τn → o be a type of order at most 2, and
(ei1, . . . , ein) ∈ Dτ1 × · · · × Dτn

for every i ∈ {1, . . . , m}. If d ∈ Dτ is invariant
under all the sequentiality relations of arity m, there exists a closed FPCF term
M of type τ such that

∀i ∈ {1, . . . , m}. d ei1 · · · ein = �M� ei1 · · · ein.

As a corollary of the above theorems, we obtain a decidable characterization
of definability for FPCF.

Corollary 1. Let τ = τ1 → · · · → τn → o be a type of order at most 2 and
K =

∏
i |Dτi

|. Then d ∈ Dτ is definable if and only if d is invariant under all
the sequentiality relations of arity K.

Proof. “only if”: Suppose that d is definable and that R is a sequentiality
relation of arity K. Then by Theorem 2, all the FPCF constants are invariant
under R. Therefore, by Theorem 1, d must be invariant under R.

“if”: Let t1 = (e11, . . . , e1n), . . . , tK = (eK1, . . . , eKn) be all the elements in∏
i Dτi

. By Theorem 4, there exists M such that

∀i ∈ {1, . . . ,K}. d ei1 . . . ein = �M� ei1 . . . ein

This means that d = �M�. Hence d is definable. ��

3.3 Algorithm

Using Corollary 1, we can solve the FPCF definability problem for a type τ =
τ1 → · · · → τn → o of order at most 2 by the following algorithm: Let d be a

given element in Dτ , and τi be of the form
mi︷ ︸︸ ︷

o → · · · → o → o.

1. Enumerate all the pairs (A,C) such that A,C ⊆ {1, . . . , K} and A ∩ C =
∅; each pair (A,C) is intended to be the representation of the SK

A,A∪C in
Definition 4.

2. Enumerate all the subsets of the pairs created in Step 1; each set {(A1, C1),
. . . , (Al, Cl)} is intended to be the representation of Ro = SK

A1,A1∪C1
∩ · · · ∩

SK
Al,Al∪Cl

, hence also the representation of the corresponding sequential rela-
tion R.

3. For each (representation of) sequentiality relation R enumerated in Step 2,
check whether d is invariant under R, as follows.
(a) Enumerate all the elements v = (v1, . . . , vK) ∈ Ro by first enumerating all

the elements of Do and then checking whether Ro v1 . . . vK holds. In order
to check this, first enumerate all the pair in L = {(A1, C1), . . . (Al, Cl)},
where L is a representation of R, and then check that for all (A,C) ∈ L,
SK

A,A∪C v1, . . . , vK holds by checking there exists i ∈ A such that vi = ⊥
or vi = vj holds for all i, j ∈ A ∪ C.

320 S. Kawata et al.

(b) For each i ∈ {1, . . . , n}, enumerate all the elements e = (e1, . . . , eK) ∈
Rτi

(⊆ DK
τi

) by first enumerating all the elements of DK
τi

, and then check-
ing whether

Ro (e1 v1
1 . . . vmi

1) . . . (eK v1
K . . . vmi

K)

holds for all (v1, . . . , vmi) ∈ Rmi
o (=

mi︷ ︸︸ ︷
Ro × · · · × Ro) where vj =

(vj
1, . . . , v

j
K).

(c) Check whether d is invariant under R by checking whether

Ro (d e11 . . . en
1) . . . (d e1K . . . en

K)

holds for all (e1, . . . , en) ∈ ∏
i Rτi

where ei = (ei
1, . . . , e

i
K).

4. If d is invariant under all the sequentiality relations of arity K, output “Yes”
(i.e., “definable”) and “No” otherwise.

3.4 Complexity

We show that the algorithm above runs in O(
22

22
poly(m))

time where m = max(n,
m1, . . . ,mn).

Before discussing the complexity of the algorithm, we first fix data represen-
tations and describe the complexity of some basic operations. Since the represen-
tation of e ∈ Dτi

is the array (eT . . .T, eT . . .F, . . .) of size 3mi as described
in Sect. 2.2, for v1, . . . , vmi

∈ Do, we can compute the value of e v1 . . . vmi
in

O(
poly(mi)

)
time by computing an appropriate index for e v1 . . . vmi

in the
array. Similarly, since the representation of d ∈ D is the sorted list [(−→e1 , d−→e1),
(−→e2 , d−→e2), . . .] of size O(

33
m)

for −→e ∈ ∏n
i=1 Dτi

, we can compute the value of
d −→e in O(

log(33
poly(m)

)
)

= O(
3poly(m)

)
time by finding −→e in the list using a

binary search. We can equip DK
o with some total order; therefore, we can rep-

resent Ro ⊆ DK
o as a self-balancing binary search tree consisting of elements

in DK
o . Note that K =

∏n
i=1 |Dτi

| = O(
22

poly(m))
since 2(2

mi) ≤ |Dτi
| ≤ 3(3

mi)

holds for each i ∈ {1, . . . , n}.
Now, we examine the complexity of the algorithm given in Sect. 3.3. The cost

of each step is estimated as follows:

1. Since there are 3K pairs (A,C) such that A,C ⊆ {1, . . . , K} and A ∩ C = ∅,
this step takes O(

3poly(K)
)

time.
2. Since there are 2(3K) subsets of the set of all the pairs created in Step 1, this

step costs O(
23

poly(K))
time.

3. (a) For each v ∈ DK
o , we can check whether v ∈ Ro holds in 3Kpoly(K) =

O(
3poly(K)

)
time, since poly(K) time is needed to check whether v ∈

SK
A,A∪C holds for each pair (A,C), and since a representation for R con-

tains at most 3K pairs. If v ∈ Ro, v is added to a self-balancing binary
search tree representing Ro. This addition takes O(

log(|Ro|)
)

time for
each v ∈ Ro. Hence this step costs

|DK
o | × O(

3poly(K)
)

+ |Ro| × O(
log(|Ro|)

)
= O(

3poly(K)
)

time.

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 321

(b) Since we created Ro as a self-balancing binary search tree, the membership
v ∈ Ro can be checked in O(

log(|Ro|)
)

time. Therefore, for each e =
(e1, . . . , eK) ∈ DK

τi
and (v1, . . . , vmi) ∈ Rmi

o where vj = (vj
1, . . . , v

j
K), the

time cost to check whether Ro (e1 v1
1 . . . vmi

1) . . . (eK v1
K . . . vmi

K) holds is

K × O(
poly(mi)

)
+ O(

log(|Ro|)
)

= poly(K),

where O(
poly(mi)

)
is the time cost to compute the value of ek v1

k . . . vmi

k

for each k ∈ {1, . . . , K}. We represent Rτi
(⊆ DK

τi
) simply as a list; thus

the insertion takes O(
1
)

time. Hence this step takes

n∑

i=1

(|DK
τi

| × (|Rmi
o | × poly(K) + O(

1
)))

= O(
3poly(K)

)

time.
(c) For each (e1, . . . , en) ∈ ∏n

i=1 Rτi
where ei = (ei

1, . . . , e
i
K), the time cost

to check whether Ro(d e11 . . . en
1) . . . (d e1K . . . en

K) holds is

K × O(
3poly(m)

)
+ O(

log(|Ro|)
)

= poly(K),

where O(
3poly(m)

)
is the time cost to compute the value of d e1k . . . vn

k

for each k ∈ {1, . . . , K}. Hence this step costs
(

n∏

i=1

|Rτi
|
)

× poly(K) = O(
3poly(K)

)

time.
Thus, for each sequentiality relation R, the time cost to check whether d ∈ R

is O(
3poly(K)

)
. Hence, Step 3 needs O(

2(3K)3poly(K)
)

time.

Therefore, the time cost of the whole algorithm is

O(
3poly(K) + 2(3poly(K)) + 2(3K)3poly(K)

)
,

which is doubly exponential in K; hence this algorithm runs in O(
22

22
poly(m))

time.

4 Saturation-Based Algorithm Using Finite Canonical
Forms

In this section, we introduce a more efficient algorithm for deciding definability,

which is saturation-based and runs in O(
22

2poly(m))
time.

We first give an overview of our algorithm. In this algorithm, the set of all
the definable elements is computed; thus, the definability problem is reduced
to checking whether an input is in the set. To compute the set, we use finite

322 S. Kawata et al.

canonical forms of FPCF which we will describe in Sect. 4.1. Any FPCF term
has an equivalent finite canonical form, and the set of finite canonical forms of
an FPCF type of order at most 2 can be defined inductively. By the inductive
definition, we have an increasing chain (F i(T0))i∈N of sets of finite canonical
forms, repeating the induction step F from the base case T0. In the algorithm,
we compute the image of this chain in the cpo model: ({�M� | M ∈ F i(T0)})i∈N.
Since the interpretation of an FPCF type is a finite set, the latter increasing
chain is saturated with all the definable elements at some step i ∈ N.

We give the detail of the above algorithm in Sect. 4.2 and discuss the com-
plexity of the algorithm in Sect. 4.3.

4.1 Finite Canonical Forms of FPCF

Hyland and Ong [8] and Abramsky et.al. [1] showed that the compact elements
in their (intensional) game models of PCF bijectively correspond to the finite
canonical forms. FPCF also has similar canonical forms:

Definition 5. The set FCF[f1 : τ1, . . . , fn : τn] of finite canonical forms with
free variables f1, . . . , fn is defined as the least set that satisfies the following
conditions:

1. Ωo,T,F ∈ FCF[f1 : τ1, . . . , fn : τn]
2. Let i ∈ {1, . . . , n}, τi = σ1 → · · · → σm → o and σj = σj1 → · · · → σjpj

→ o
for each j ∈ {1, . . . ,m}.

if fi (λg1 . . . gp1 . N1) . . . (λg1 . . . gpm
. Nm) then M1 else M2

∈ FCF[f1 : τ1, . . . , fn : τn]

if

Nj ∈ FCF[f1 : τ1, . . . , fn : τn, g1 :σj1, . . . , gpj
: σjpj

] for each j ∈ {1, . . . , m}
and M1,M2 ∈ FCF[f1 : τ1, . . . , fn : τn].

If the order of τ1 → · · · → τn → o is at most 2, the second item above can
be specialized to:

2’. Let i ∈ {1, . . . , n} and τi =
m︷ ︸︸ ︷

o → · · · → o → o.

if fi N1 . . . Nm then M1 else M2 ∈ FCF[f1 : τ1, . . . , fn : τn]

if

N1, . . . , Nm,M1,M2 ∈ FCF[f1 : τ1, . . . , fn : τn].

Note that the general definition for arbitrary order of types is a potentially
infinite simultaneous induction, since the definition of FCF[f1 : τ1, . . . , fn : τn]
refers to FCF[f1 : τ1, . . . , fn : τn, g1 : σj1, . . . , gpj

: σjpj
] where the number of the

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 323

contexts such as (f1 : τ1, . . . , fn : τn, g1 : σj1, . . . , gpj
: σjpj

) is unbounded, while in
the case of order at most 2, the definition with 2’ is a single inductive definition
only on FCF[f1, . . . , fn]. This finiteness is the key of the algorithm given in
Sect. 4.2.

The following theorem states that any closed FPCF term has an equivalent
canonical form. Here, we consider the equality in the cpo semantics, instead
of the observational equivalence. Note that the equality in the cpo semantics
implies the observational equivalence, so that it suffices for our purpose of enu-
merating all the elements up to the observational equivalence (possibly with
duplications).

Theorem 5. Let M be a closed FPCF term of type τ = τ1 → · · · → τn → o.
There exists a finite canonical form N ∈ FCF[f1 : τ1, . . . , fn : τn] such that

�M� = �λf1 : τ1. . . . λfn : τn. N�.

Proof sketch. We give an overview of the proof. We call a term Y-free if it contains
no Y but Ω (= Y(λx.x)).

First, we can obtain a Y-free term M ′ such that �M� = �M ′� as follows. For
some term C that does not contain Y, M =β CY. Then,

�M� = �C��Y� = �C�(lubn�λf.fn(Ω)�)
= lubn�C��λf.fn(Ω)� = lubn�Cλf.fn(Ω)�.

Since Dτ is a finite set, the ascending chain �Cλf.fn(Ω)� must be saturated
in Dτ , i.e., there exists some n such that �M� = �Cλf.fn(Ω)�. Thus, we have
obtained M ′ := Cλf.fn(Ω).

Next, a finite canonical form is a kind of βη-long normal form, and we
can normalize any Y-free term M ′ to some λf1 : τ1. . . . λfn : τn. N where N ∈
FCF[f1 : τ1, . . . , fn : τn]. Here, note that, in FPCF, variable f of type τ = σ1 →· · ·
→σm → o in M ′ (e.g., f in M ′ = λf.f) can be normalized by η-expansion of
function types and that of the boolean type (M −→ if M then T else F) to a
curried finite canonical form, Pf,τ , which is defined by induction on τ as follows:

Pf,τ := λx1 : σ1. . . . λxm : σm. if fPx1,σ1 . . . Pxm,σm
then T else F.

(On the other hand, in PCF we cannot normalize variables of infinite-
domain types to finite canonical forms.) The normalization consists
of η-expansions, β-reductions, commuting conversions, and Ω-reductions
(if Ω then M1 else M2 −→ Ω). Clearly, all these reductions are sound for
the cpo semantics; hence,

�M ′� = �λf1 : τ1. . . . λfn : τn. N�. ��

324 S. Kawata et al.

4.2 Algorithm

Let τ be a type of order at most 2 and d be an element of Dτ . Suppose that

τ = τ1 → · · · → τn → o, where τi =
mi︷ ︸︸ ︷

o → · · · → o → o.
The definability of d can be decided by the following algorithm.

1. Let P0 = {�λf1 . . . fn.T�, �λf1 . . . fn.F�, �Ωτ �} ⊆ Dτ

2. For P ⊆ Dτ , we define

F (P) := P ∪ {hi(d1, . . . , dmi+2) ∈ Dτ | i ∈ {1, . . . , n}, d1, . . . , dmi+2 ∈ P }
hi(d1, . . . , dmi+2)(−→e) := �if�

(
ei(d1−→e) . . . (dmi

−→e)
)(

dmi+1
−→e)(

dmi+2
−→e)

where −→e ∈ ∏n
i=1 Dτi

. Compute Pj+1 := F (Pj) ⊆ Dτ for j = 0, 1, . . . , until
Pj+1 = Pj holds. Let k be the least j such that Pj+1 = Pj .

3. Output “Yes” (i.e., “definable”) if d ∈ Pk, and “No” otherwise.

For example, for τ = ((o → o) → o) → o,

P1 = P0 ∪ {�λf. if (f v1) then v2 else v3� | v1, v2, v3 ∈ {T,F,Ω}},
P2 = P1 ∪ {�λf. (if (f (if (f v1) then v2 else v3))

then v4 else v5)� | v1, . . . , v5 ∈ {T,F,Ω}}
∪ {�λf. (if (f v1)

then (if (f v2) then v3 else v4)
else v5)� | v1, . . . , v5 ∈ {T,F,Ω}}

∪ {�λf. (if (f v1)
then v2

else (if (f v3) then v4 else v5))� | v1, . . . , v5 ∈ {T,F,Ω}}
∪ {�λf. (if (f v1)

then (if (f v2) then v3 else v4)
else (if (f v5) then v6 else v7))� | v1, . . . , v7 ∈ {T,F,Ω}}

∪ {�λf. (if (f (if (f v1) then v2 else v3))
then v4

else (if (f v5) then v6 else v7))� | v1, . . . , v7 ∈ {T,F,Ω}}
∪ {�λf. (if (f (if (f v1) then v2 else v3))

then (if (f v4) then v5 else v6)
else v7)� | v1, . . . , v7 ∈ {T,F,Ω}}

∪ {�λf. (if (f (if (f v1) then v2 else v3))
then (if (f v4) then v5 else v6)
else (if (f v7) then v8 else v9))� | v1, . . . , v9 ∈ {T,F,Ω}}.

Note that the above algorithm terminates since P0, P1, P2, . . . is an increasing
chain over the finite set 2Dτ .

We show that this algorithm is correct.

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 325

Theorem 6. In the above algorithm, d is definable iff d ∈ Pk.

Proof. In this proof, we often abbreviate FCF[f1 : τ1, . . . , fn : τn] as FCF[
−−−→
fi : τi].

Let us define Tj ⊆ FCF[
−−−→
fi : τi] (j = 0, 1, . . .) as

T0 := {T,F,Ωo}
Tj+1 := F ′(Tj)

where for T ⊆ FCF[
−−−→
fi : τi],

F ′(T) = T∪{if fi M1 . . . Mmi
then Mmi+1 else Mmi+2

| i ∈ {1, . . . , n},M1, . . . ,Mmi+2 ∈ T}.

Then, FCF[
−−−→
fi : τi] =

⋃
j Tj . Define [[−]]′ as follows:

[[M]]′ = �λf1 : τ1. . . . λfn : τn.M� (M ∈ FCF[
−−−→
fi : τi])

[[T]]′ = {[[M]]′|M ∈ T} (T ⊆ FCF[
−−−→
fi : τi])

We can easily show that [[T0]]′ = P0 and that [[T]]′ = P implies [[F ′(T)]]′ = F (P);
hence we get [[Tj]]′ = Pj for all j.

If d ∈ Pk, since Pk = [[Tk]]′, there exists M ∈ FCF[
−−−→
fi : τi] such that d =

�λf1 : τ1 . . . λfn : τn.M�. Hence d is definable.
If d /∈ Pk, there is no M ∈ FCF[

−−−→
fi : τi] such that d = [[M]]′, because

Pk = ∪jPj = [[∪jTj]]′ = [[FCF[
−−−→
fi : τi]]]′. By Theorem 5, this implies that there

is no closed FPCF term M of type τ such that d = �M�. That is, d is not
definable. ��
It is clear that the above algorithm can also find concrete terms that define
definable elements: For that purpose, we just need to modify the algorithm
slightly, so that each element d in Pj is associated with a representative element
M of [[Pj]]′ such that d = �M�.

4.3 Complexity

We show that the algorithm above runs in O(
22

2poly(m))
time where m = max(n,

m1, . . . ,mn).
We first fix the data representations and estimate the cost of basic oper-

ations. In Sect. 2.2, we have represented each d ∈ Dτ as a list of the form
[(−→e 1, d

−→e 1), (−→e 2, d
−→e 2), . . .]. In the algorithm, we actually represent it as a pair

of lists ([−→e 1,
−→e 2, . . .], [d−→e 1, d

−→e 2, . . .]). Since the part [−→e 1,
−→e 2, . . .] is common

among all the elements of Dτ , we actually need to keep only the second ele-
ment for each d. It can be viewed as a ternary number consisting of O(

22
poly(m))

ternary digits; we write n(d) for it. Each set Pj is then represented as a bit
vector having n(d) as an index. The membership d ∈ Pj can then be checked in

326 S. Kawata et al.

time O(
22

poly(m))
. For d ∈ Dτ and −→e ∈ Dτ1 ×· · ·×Dτn

, computing d−→e amounts
to finding the corresponding element in the list [d−→e 1, d

−→e 2, . . .], which can be
performed (e.g., using binary search) in time O(

2poly(m)
)
.

Now we estimate the cost for each step. First, we discuss the time cost needed
for Step 2. Since hi(d1, . . . , dmi+2)(−→e) can be computed in time O(

2poly(m)
)
, the

time cost to compute hi(d1, . . . , dmi+2) is:

|
n∏

i=1

Dτi
| × O(

2poly(m)
)

= O(
22

poly(m))
.

We can then add hi(d1, . . . , dmi+2) to Pj+1 in time O(
22

poly(m))
, as discussed

above. Since the number of tuples (d1, . . . , dmi+2) is O(
22

2poly(m))
, the total cost

needed for computing Pj+1 is also O(
22

2poly(m))× (O(
2poly(m)

)
+O(

22
poly(m))

) =

O(
22

2poly(m))
. Finally, since k is at most |Dτ | = O(

22
2poly(m))

, the overall time

cost for Step 2 is O(
22

2poly(m))
.

Checking whether d ∈ Pk in Step 3 costs O(
22

poly(m))
time. Therefore, the

whole algorithm runs in O(
22

2poly(m))
time.

5 Application to Program Equivalence Checking

As an application of the algorithms for the definability problem, we discuss
an automated method for deciding the observational equivalence of order-3
FPCF terms.

5.1 Observational Equivalence Problem

First, we define the notions of context and observational equivalence.

Definition 6. An FPCF term with one hole [] is called a context (ranged over
by C, . . .). We write C[M] for a term obtained by replacing [] in a context C
with a term M . If C[M] has type τ ′ for any term M of type τ , C is called a τ -τ ′

context.

In general, a context C may capture free variable in M when replacing a hole
[] in a context C with a term M , but we do not consider such context in this
paper.

Definition 7. Two closed FPCF terms M1 and M2 of a type τ are called obser-
vationally equivalent (denoted by M1 ≡ M2) if for any τ −o context C and value
V ∈ {T,F}, C[M1] ⇓ V ⇐⇒ C[M2] ⇓ V .

If M1 and M2 are observational equivalent, we can replace a subterm M1 of a
program with M2 without changing the output of the whole program.

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 327

We define the equivalence problem for FPCF as follows: given a type τ and
closed terms M1,M2 of type τ , output whether M1 and M2 are observationally
equivalent or not.

To prove the observational equivalence, we do not need to consider all con-
texts:

Theorem 7 (Context Lemma [12]). For closed FPCF terms M1 and M2 of
type τ = τ1 → · · · → τn → o, M1 ≡ M2 if and only if for all closed FPCF terms
N1, . . . , Nn (of types τ1, . . . , τn, respectively) and V ∈ {T,F},

M1 N1 . . . Nn ⇓ V ⇐⇒ M2 N1 . . . Nn ⇓ V.

The observational equivalence of order-3 FPCF terms is non-trivial. Let us
define ETestV (V = T,F) as follows.

ETestV := λe :(o→ o)→ o. if E then V else Ω

E := e(λx.if x thenTelseΩ) ∧ e(λx.if x thenΩelseT) ∧ ¬(e(λx.F)) .

This example is obtained by a simple modification to the well-known “por-test”
terms, which distinguish por from (F)PCF terms; we changed por to (a finitary
version of) Plotkin’s continuous existential quantifier [18], whose interpretation
∃∃ ∈ D(o→ o)→ o is defined by

∃∃(f) := T if f T = T or f F = T ,

∃∃(f) := F if f ⊥ = F ,

∃∃(f) := ⊥ otherwise.

Terms ETestT and ETestF are observationally equivalent but not equal in the
cpo model as explained below. First, since �E�(∃∃) = T and �ETestV �(∃∃) = �V �,
we have �ETestT� �= �ETestF�. Next, we show the observational equivalence. For
the logical relation R defined by (1) and for d ∈ D(o→ o)→ o such that �E� d = T,
we have

Ro→ o �λx.if x thenTelseΩ� �λx.if x thenΩelseT� �λx.F�,

d�λx.if x thenTelseΩ� = T,

d�λx.if x thenΩelseT� = T,

d�λx.F� = F,

but not Ro TTF; hence, d is not invariant under R and not definable. Therefore,
for any FPCF term M , ETestV M diverges, and so, by the context lemma above,
ETestT and ETestF are observationally equivalent.

5.2 Algorithm for the Equivalence Problem

As a trivial consequence of Theorem 7, we obtain the following algorithm for
deciding the equivalence of terms of an order-3 type. Let M1,M2 be given terms
of a type τ = τ1 → · · · → τl → o. Here, note that the order restriction applies
to only the interface; M1,M2 may internally use terms of order higher than 3.

328 S. Kawata et al.

1. For every i ∈ {1, . . . , l}, compute the set Qτi
of all the definable elements in

Dτi
, using one of the algorithms discussed in the previous sections.

2. Output “Yes” (i.e., “observationally equivalent”) if �M1�
−→
d = �M2�

−→
d for all−→

d ∈ ∏
i Qτi

, and “No” otherwise.

The correctness of this algorithm follows from Theorem 7 and the adequacy [25]
of the cpo semantics. (The adequacy says that, for all ground closed term M
and V ∈ {T,F}, �M� = �V � iff M ⇓ V .)

For example, we can check that ETestT and ETestF of type ((o→ o)→ o)→ o
are observationally equivalent by this algorithm. Continuous existential quanti-
fier ∃∃ is excluded from the set Q(o→ o)→ o of all the definable elements.

When input terms M1 and M2 are not equivalent, the above algorithm can
output a witness

−→
d ∈ ∏

i Qτi
such that �M1�

−→
d �= �M2�

−→
d . Further, if we

use the saturation-based algorithm, which can output a defining term N of a
definable element d, we obtain terms Ni of type τi such that �M1N1 . . . Nl� �=
�M2N1 . . . Nl�.

For example, so-called Kierstead terms K1 = λf : τ1. f(λx : o. f(λy : o. x)) and
K2 = λf : τ1. f(λx : o. f(λy : o. y)) where τ1 = (o→ o)→ o are not observational
equivalent, and the above algorithm based on the saturation-based algorithm
can find N such that �K1N� �= �K2N�. The following term may, for example,
be output as N :

λg. if (g T) then (if (g F) then F else T) else T.

To compute �Mi�
−→
d in the second step of the algorithm, we can use higher-

order model checking [9,17]. Higher-order model checking can decide a property
on the tree generated by a tree grammar called a higher-order recursion scheme.
Using the technique of [9,17], given a closed FPCF term K of type o, one can
construct a higher-order recursion scheme GK such that �K� = v if and only if
the tree generated by GK is a singleton tree consisting of v. Thus, to compute
�Mi�

−→
d , we just need to pick terms

−→
N = N1, . . . , Nl such that �

−→
N � =

−→
d (e.g.,

using the saturation-based algorithm in the previous section), apply the above
translation for K = Mi

−→
N , and invoke a higher-order model checker (e.g. [4,9,21])

to check whether G
Mi

−→
N

generates ⊥, T, or F. This is expected to run much faster

than semantically computing �Mi�
−→
d in a naive manner.

6 Related Work

As already mentioned, Loader proved that the definability problem for FPCF is
undecidable for order-3 types [10] and the equivalence problem for FPCF is unde-
cidable for order-4 types [11]. Loader [11] also mentioned that the definability
problem for FPCF types of order at most 2 is decidable from Sieber’s result [23].
We remark that the definability problem is trivial if FPCF is extended with
por: any element in Dτ is definable for FPCF+por [18]. As a consequence, the
equivalence problem for FPCF+por is also decidable for any order.

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 329

Stoughton [24] gave an explicit algorithm for the definability problem and
its implementation. Her algorithm is built on Sieber’s result [23], but does not
use Sieber’s sequentiality relation, unlike the algorithm discussed in Sect. 3. Her
algorithm is actually similar to the saturation-based algorithm introduced in
Sect. 4; all the β-η-long normal forms are enumerated (up to equivalence), until
the set of interpretations of terms is saturated with the set of all the definable
elements. We expect that our algorithm is more efficient than her algorithm,
because we enumerate only finite canonical forms instead of all the β-η-long
normal forms. Whilst she did not discuss the complexity of her algorithm, we
have analyzed the complexity of our saturation-based algorithm, and shown that
the saturation-based algorithm is exponentially faster than the naive algorithm
using Sieber’s sequentiality relation.

There are several pieces of work on the equivalence problem for functional
languages, but they are mainly for those with references. There is a series of
work [7,13,15,16] on Idealized Algol (IA for short) [22], the call-by-name sim-
ply typed λ-calculus extended with block-allocated references of ground types.
The observational equivalence is decidable for order-3 finitary IA with itera-
tion (while-loop) terms of order at most 3 is decidable, but it is undecidable
for order-2 finitary IA with recursion [16] or order-4 finitary IA without iter-
ation or recursion [13]. There is another series of work [5,6,14] on RML [2], a
call-by-value simply typed λ-calculus extended with dynamically allocated ref-
erences of ground types. The observational equivalence is decidable for terms
of a certain class of types [14]. Please note that for the decidability results on
IA and RML mentioned above, the restriction on types applies to all the sub-
terms. In contrast, in our method for equivalence checking of FPCF terms, the
order restriction applies to only the type of the terms being compared; arbitrary
recursion at any order is allowed inside the terms.

7 Conclusion

We have given two algorithms for deciding definability for FPCF; one is based
on Sieber’s result, and the other is a saturation-based algorithm using the finite
canonical forms of FPCF. The latter is exponentially faster than the former. As
discussed in Sect. 5, those algorithms for the definability problem can be used for
implementing a tool for deciding the equivalence between order-3 FPCF terms.

Acknowledgments. We thank anonymous reviewers for useful comments. This work
was partially supported by JSPS Kakenhi 15H05706, and 23220001.

330 S. Kawata et al.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

2. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997.
LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

3. Amadio, R.M., Curien, P.L.: Domains and Lambda-Calculi. Cambridge University
Press, Cambridge (1998)

4. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

5. Hopkins, D., Murawski, A.S., Ong, C.-H.L.: Hector: an equivalence checker for a
higher-order fragment of ML. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 774–780. Springer, Heidelberg (2012)

6. Hopkins, D., Murawski, A.S., Ong, C.-H.L.: A fragment of ML decidable by visibly
pushdown automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 149–161. Springer, Heidelberg (2011)

7. Hopkins, D., Ong, C.-H.L.: Homer: a higher-order observational equivalence model
checkER. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 654–
660. Springer, Heidelberg (2009)

8. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

9. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3), 1–62 (2013)
10. Loader, R.: The undecidability of lambda-definability. In: The Church Festschrift.

CSLI/University of Chicago Press (1994)
11. Loader, R.: Finitary PCF is not decidable. Theor. Comput. Sci. 266(1), 341–364

(2001)
12. Milner, R.: Fully abstract models of typed λ-calculi. Theor. Comput. Sci. 4(1),

1–22 (1977)
13. Murawski, A.S.: On program equivalence in languages with ground-type references.

In: Proceedings of LICS 2003, pp. 108–108. IEEE (2003)
14. Murawski, A.S.: Functions with local state: regularity and undecidability. Theor.

Comput. Sci. 338(1–3), 315–349 (2005)
15. Murawski, A.S., Walukiewicz, I.: Third-order Idealized Algol with iteration is

decidable. Theor. Comput. Sci. 390(2–3), 214–229 (2008)
16. Ong, C.-H.L.: Observational equivalence of 3rd-order Idealized Algol is decidable.

In: Proceedings of LICS 2002, pp. 245–256. IEEE (2002)
17. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion

schemes. In: Proceedings of LICS 2006, pp. 81–90. IEEE (2006)
18. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.

5(3), 223–255 (1977)
19. Plotkin, G.D.: Lambda-definability and logical relations. Technical report, SAI-

RM-4, School of Artificial Intelligence, University of Edinburgh (1973)
20. Plotkin, G.D.: Lambda-definability in the full type hierarchy. To HB Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, pp. 363–373 (1980)
21. Ramsay, S.J., Neatherway, R., Ong, C.-H.L.: An abstraction refinement approach

to higher-order model checking. In: Proceedings of POPL 2014, pp. 61–72. ACM
(2014)

22. Reynolds, J.C.: The essence of Algol. In: O’Hearn, P.W., Tennent, R.D. (eds.)
ALGOL-like Languages. Progress in Theoretical Computer Science, pp. 67–88.
Springer, Heidelberg (1997)

Decision Algorithms for Checking Definability of Order-2 Finitary PCF 331

23. Sieber, K.: Reasoning about sequential functions via logical relations. In: Appli-
cations of Categories in Computer Science. London Mathematical Society Lecture
Note Series, vol. 177, pp. 258–269. Cambridge University Press (1992)

24. Stoughton, A.: Mechanizing logical relations. In: Main, M.G., Melton, A.C.,
Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802,
pp. 359–377. Springer, Heidelberg (1994)

25. Winskel, G.: Formal Semantics of Programming Languages. The MIT Press,
Cambridge (1993)

Program Analysis - I

Uncovering JavaScript Performance
Code Smells Relevant to Type Mutations

Xiao Xiao1(B), Shi Han2, Charles Zhang1, and Dongmei Zhang2

1 The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
{richardxx,charlesz}@cse.ust.hk
2 Microsoft Research, Beijing, China
{shihan,dongmeiz}@microsoft.com

Abstract. In dynamic typing languages such as JavaScript, object types
can be mutated easily such as by adding a field to an object. How-
ever, compiler optimizations rely on a fixed set of types, unintentional
type mutations can invalidate the speculative code generated by the
type-feedback JIT and deteriorate the quality of compiler optimizations.
Since type mutations are invisible, finding and understanding the per-
formance issues relevant to type mutations can be an overwhelming task
to programmers. We develop a tool JSweeter to detect performance bugs
incurred by type mutations based on the type evolution graphs extracted
from program execution. We apply JSweeter to the Octane benchmark
suite and identify 46 performance issues, where 19 issues are successfully
fixed with the refactoring hints generated by JSweeter and the average
performance gain is 5.3 % (up to 23 %). The result is persuasive because
those issues are hidden in such well developed benchmark programs.

1 Introduction

JavaScript has become a pivotal building block for web and mobile applica-
tions. As a dynamically typed language, considerable academic and industrial
effort is invested to optimize its performance. One of the important techniques
that contributed to the dramatic improvement of the speed of JavaScript is
the type-feedback Just-in-time (JIT) compilation adopted by almost all modern
JavaScript engines. The type-feedback JIT is a speculative technique that lever-
ages the runtime information to generate fast code and use it in future executions
if types remain unchanged [15]. Therefore, unlike statically typed languages, pro-
grammers of dynamic languages such as JavaScript can significantly influence
the success rate of the speculations.

If the code conforms to some coding idioms such as asm.js [1] to restrict the
type generation and variation, the type-feedback speculations, along with all
dynamic optimization techniques, can be very effective. The underlying reason
is that JavaScript engines such as V8 employ two contradictory designs in deal-
ing with types: The fat type design and the type equality testing for validating
speculations. The spirit of fat type design is binding certain instance specific
information such as pointer to the prototype to the type. Thus, the JIT opti-
mizers can perform aggressive optimizations to generate type-specific and more
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 335–355, 2015.
DOI: 10.1007/978-3-319-26529-2 18

336 X. Xiao et al.

efficient code. However, a fat type is also fragile that programmers can easily
mutate it unconsciously, such as changing the prototype of a function. There-
fore, the failure rate of type equality testing, which is the key component to
validate speculative assumptions for JITed code, can be high.

Fig. 1. The “Foobar” Objects created at
Line 14 and Line 15 have different types
due to the method binding optimization for
test field.

Figure 1(a) extracted from V8’s
user group1 illustrates a case where
the two “Foobar” objects created at
Line 14 and Line 15 have differ-
ent types on Google’s V8 JavaScript
engine, even their allocation sites are
literally the same. The reason is that
the field assigned to a closure instance
such as test (Line 3) is stored in the
type descriptor rather than in the
object instance. This is called method
binding, because V8 recognizes that
a field referring to a closure rarely
changes [4]. When calling Foobar
again at Line 15, test is assigned to a
different closure instance and V8 can-
cels method binding for test. There-
fore, the type of the first “Foobar”
object is unequal to the type of the
second “Foobar” object. As a side
effect, the runTest function optimized

against the first “Foobar” object will be invalidated when it operates on the sec-
ond “Foobar” object. A quick solution is moving the field test to the prototype
of FooBar as shown in Fig. 1(b). This simple change gains 10× speedup.

In this paper, we present a technique that can automatically recognize the
performance code smells relevant to unintentional type mutations and generate
a sketched execution path for programmers to understand the smell. Moreover,
refactoring hints for programmers to eliminate the type mutations are also gen-
erated. For our goal, conventional profiling techniques offer insufficient help. One
could use timing functions to find the expensive code fragments. However, this
gives programmers a very coarse view of performance symptoms, which cannot
be used to distinguish the performance issues incurred by type mutations from
other causes. Since type is implicitly represented by the JavaScript engine, pro-
grammers need to link the clues from the engine logs of internal events, the
JITed code, and the source code, to understand how types are generated and
evolved. This bug hunting process is overwhelming for application programmers.
Moreover, the engine logs vary from one engine to another. These factors make
application programmers inhibitive to understand how type mutations impact
performance.

1 https://groups.google.com/forum/#!topic/v8-users/Ofc SmwDCUM.

https://groups.google.com/forum/#!topic/v8-users/Ofc_SmwDCUM

Uncovering JavaScript Performance Code Smells Relevant 337

InferAction 1
Action 2
Action 3
……..

promoFlds f1
ordFls f3, f4
useMixin o5
advFlds f5
movMap f6, f7

Trace
Model

Fig. 2. Workflow of our algorithm.

We employ program exe-
cution information other than
timing results to diagnose per-
formance issues. The workflow
of our technique is summarized
in Fig. 2. First, we trace the
operations that could change
the types of objects. Tracing is

performed at the engine side, where changes are not required for the traced
code. In the second step, we build the type evolution graphs (TEG), one for all
the objects that are created by the same constructor. In this way, precise type
evolution track for each object may be lost, but we gain the knowledge of how
the objects that could have the same usage evolve to different types. Third, for
each type equality testing failure, we study the path on TEG between the type
expected by the testing and the type being tested, and match it to one of our
predefined code patterns drawn from empirical study. If the pattern matching
succeeded, we generate a refactoring suggestion.

We implement our algorithm in a tool JSweeter and apply it to the Octane
benchmark suite. Our tool reports 46 performance issues relevant to type muta-
tions. By successfully fixing 19 issues, we improve the benchmark score by up to
23 %. Since the programs in Octane are all well tuned, finding performance bugs
for these programs is challenging and our results are worth mentioning. In sum-
mary, our contributions are:

1. We carefully examine V8 and Firefox bug repositories and identify five com-
mon ways to cause performance issues by type mutations. Meanwhile, we
identify six types of code smells that often mutate types unintentionally and
conclude seven refactoring approaches to eliminate these code smells.

2. We develop an algorithm to detect the performance issues incurred by type
mutations based on type evolution graph. Our approach also generates action-
able refactoring suggestions by matching execution patterns to six perfor-
mance issues.

3. We implement a tool JSweeter and apply it to the benchmark suite Octane.
We find 46 performance bugs and 19 of the 46 issues are successfully fixed.
The average speedup is 5.3 % and one has significant 23 % speedup.

2 Types in Type-Feedback JavaScript Engine

2.1 Type Collection

Due to lack of types, JavaScript programs cannot be compiled to fully optimized
binary code ahead of time. Type-feedback is a profiling technique that dynami-
cally collects type information for variables [16]. The type information is fed to
the JIT compiler for generating efficient speculative code. Type-feedback JITs
are pervasively used by all modern browsers such as Firefox and Chrome.

338 X. Xiao et al.

Fig. 3. Inline cache example. is str(s)
tests if s is a string. strcat concatenates
two strings. runtime plus is a runtime
function to interpret the “+” operator.

The first step for type-feedback
optimizations is type collection. Types
are needed for interpreting the opera-
tors that have multiple semantics. For
instance, the “+” operator could be
applied to both numbers and strings.
Inline cache (IC) is an effective way to
collect the types and speedup the exe-
cution of the operators whose seman-
tics depend on the types of their
arguments. IC dynamically weaves the
fast paths for observed types into the
binary code [14]. An example is in
Fig. 3(a), after the first call to test
is executed (Line 6), a fast path for
processing string is embedded into
the code. We show a proof-of-concept

implementation of IC in Fig. 3(b), where the if statement is called type guard.
When we call test again with string arguments, the fast path will be taken. If
“a” or “b” are integers next time, such as in Line 7 of 3(a), the else branch is
taken and the slower runtime function runtime plus is called. After processing
the integer arguments, a fast path for the integer type is also built, resulting in a
polymorphic IC (PIC). Types are collected in the way of continuously patching
the ICs and a JavaScript engine often provides sufficient warm-up time for type
collection.

2.2 Type Mutations

TD1 TD2

TD3

TD4

this.test = ...o2:{} {abc} {abc, test}

o1:{} {abc} {abc, test}

this.abc = 1

this.abc = 1 this.test = ...

A: new Foobar@L13

B: new Foobar@L14

Fig. 4. Type evolution graph. Dashed arrow points to
the type descriptor of corresponding object. Shadowed
area is the type evolution graph and the type mutation
that generates TD4 is highlighted.

Inside JavaScript engine,
every piece of memory,
such as an object, array,
string, and closure, is asso-
ciated to a type descriptor
(TD), which is also known
as hidden class in V8,
shape in IonMonkey, and
structure in JavaScript-
Core. A type descriptor
records certain informa-
tion for correctly inferring
the code behaviors such as
field access. For example, a
type for an object usually
contains fields descriptors
that describe the value type (e.g. integer or double) of each field and fields lay-
out that records the offset of each field.

Uncovering JavaScript Performance Code Smells Relevant 339

Type descriptor should be immutable to guarantee the deterministic behavior
for the code operated on. Therefore, a type mutation operation that changes any
information in the descriptor, such as adding a field to an object, derives a new
type descriptor. The set of type mutations from the same source type form a type
evolution graph. Figure 4 shows a type evolution graph for our running example
(Fig. 1), where the flows with labels A and B illustrate the “Foobar” objects o1
and o2, created at Lines 14 and 15, respectively. From the figure, we observe
that o1 and o2 share the first type mutation TD1 → TD2, since the statement
“this.abc = 1” has the same effect on the type mutations in both executions.
Later on, due to the binding of different closure instances to the same field “test”,
o1 and o2 are evolved to different types TD3 and TD4.

2.3 Why Type Mutations Impair Performance

Type mutations create new types. A large volume of types render the JavaScript
engine very difficult to generate a unique piece of code that works optimally on
all types. As such, programs are falling back to run with conservative runtime
strategies, which are summarized as follows.

Trigger Deoptimization. Unnecessary deoptimization is a major source of
performance degradation. If a hot function cannot constantly work with opti-
mized code, its performance can be orders of magnitude worse. Moreover, fre-
quent type changes can result in optimization-deoptimization churn and finally
disable the optimization opportunity for the type unstable functions.

Trigger IC Fallback. Every IC has limited slots for building fast paths, hence
saturating an IC forces some types (perhaps the frequently visited types) to be
permanently handled by runtime functions.

Reduce Optimization Strength. PICs are obstacles for JIT optimizers to
generate high quality code. For example, function inlining is precluded, which
is a very useful optimization to enlarge the scope of intra-procedural analy-
sis and optimizations to cross function boundary. PICs also prevent common
sub-expression elimination (CSE) and loop invariant code motion (LICM) to
eliminate redundant type guards.

Enter Dictionary Mode. Object and array are often used as a dictionary.
JavaScript engines adaptively change the backing storage of object and array to
hash table in order to optimize the dictionary usage scenario. However, dictio-
nary is manipulated by runtime functions instead of ICs, thus the fields read,
write, and iteration operations slowdown significantly.

Increase GC Pressure. Frequently creating and dropping small objects will
increase the garbage collection (GC) frequency. High GC pressure can signifi-
cantly slowdown the execution of program and increase the latency of each GC
invocation, which deteriorates the user experience of interactive programs.

340 X. Xiao et al.

Table 1. Bug patterns that induce type mutations and incur performance issues.

3 Type Mutation Code Patterns in Practice

In this section, we present our findings of learning real performance bugs from
V8 and Firefox bug repositories incurred by type mutations, denoted as V8 and
FF respectively. The results are summarized in Table 1. Each row contains a
buggy code pattern and several representative real bug cases labeled as FF ID
and V8 ID, where ID is the bug number in corresponding repository. We identify
six code patterns that mutate types and incur performance problems. For each
code pattern, we also give one or more refactoring approaches from Table 2 to
avoid the performance issues. These refactoring approaches are concluded from
the discussion by the programmers in the bug repository.

1. Frequent Closure Creation. Similar to our running example (Fig. 1), real
code often creates a new closure instance before calling that function, in order to
achieve better code encapsulation. However, these closure instances could result
in PICs for call-sites that impair the IC efficiency and preclude inlining (V8
2206), confuse JIT and miss code optimizations opportunities (V8 2673), and
increase the pressure of GC (FF 631911).

Table 2. Refactoring approaches and the short descriptions.

Approach Abbr Interpretation

promFlds(f1, . . . , fn) Move the fields f1, . . . , fn to its prototype
useMixin(o) Apply mixin pattern to construct object o

ordFlds(f1, . . . , fn) Add the fields f1, . . . , fn in a fixed order
movMap(f1, . . . , fn) Move the fields f1, . . . , fn to an ES6 map
advFlds(f1, . . . , fn) Add the fields f1, . . . , fn before use
initAry(a) Initialize the array a before use
factorOut(srcL) Factor out the code around the code at srcL

Uncovering JavaScript Performance Code Smells Relevant 341

Refactoring. We can promote the fields that hold closure instances to their
prototypes to avoid frequent closure creation, such as we did in Fig. 1. We call this
refactoring promFlds. If too many fields should be promoted, it is better to use
the mixin design pattern to construct objects [22]. We call this way useMixin
refactoring.

2. Inconsistent Field Ordering. JavaScript programs often have different
paths to construct an object (e.g. by taking different if-else branches), and these
paths add fields in different orders. For example, FF 813425 reports a real case
in pdf.js: A loop randomly adds fields to the objects created from the same place,
and thus, makes a hot function recompile for 11 times.

Refactoring. Guaranteeing the fields that are added in the same order can
avoid generating type inconsistent objects. We name this refactoring ordFlds.
The second suggestion is called movMap: Use a specialized ES6 Map [2] if an
object is intended to be used as a map.

3. Partially Initialized Objects. It is common that fields are gradually added
to an object during its lifetime. If the object is frequently used before fully con-
structed, every time the object transitioning to a new type always deoptimizes
the code generated by the previous types. A dual pattern is that code is opti-
mized against a fully constructed object. However, a partially initialized object
is occasionally used and it deoptimizes the code.

Refactoring. A good practice is fully constructing an object before using it,
such as adding all the fields in the constructor. We call this refactoring advFlds.
If a derived object would like to shadow certain fields in the prototype, try to
override the shadowed fields as early as possible.

4. Fat Object and Sparse Array. Adding too many fields to an object can
change its backing storage to dictionary, especially adding fields via the keyed
expression “p[f]” gives stronger hints than the named form “p.f” to enable the
dictionary mode (e.g. V8 2734). If the dictionary mode is unintended, the subse-
quent access to the object can slowdown significantly (e.g. V8 3313). For arrays,
the code such as “a=[]; a[x]=1;” creates a sparse array with a hole [0, x). If the
hole is large enough, the array is also changed to a dictionary (e.g. V8 2192).
Moreover, accessing to a hole element returns a undefined value and it can
invalidate ICs for operations such as “+” [7].

Refactoring. We can apply movMap to eliminate a fat object if most of the
fields are added outside constructors. The sparse arrays can be eliminated by
initializing the arrays (initAry). If writing to an element beyond the current
array boundary is needed, try to allocate a large array and initialize it.

5. Prototype Mutation. Prototype of an object can be replaced at runtime.
This behavior is popular in web libraries such as JQuery and Zepto. However,
changing prototype can disable many JIT optimizations, such as the optimization
for instanceof operator and inlining the methods in the prototype (i.e. FF
1041126). A more thorough discussion on this issue can be found in the bug
report FF 642500.

342 X. Xiao et al.

Refactoring. Applying the mixin design pattern (useMixin) to construct
objects is the best practice if the purpose of changing prototype is to inherit
functions from different objects.

6. Integer Overflow. JavaScript only supports double data type, but modern
JavaScript engines optimize the computations that only involve integer values.
When a value exceeds integer range, a much expensive double representation
such as boxed double used by V8 [10] is enabled (i.e. V8 2306). Moreover, if an
array element overflows, the data for all the array elements will be lifted to a
more general representations, as described by Bolz et al. [5].

Refactoring. If overflow will eventually happen, the best solution is isolating
the code that are tainted by the overflowed values to a new function, as suggested
by McCutchan [19]. We call this refactoring approach factorOut.

4 Finding Unintentional Type Mutations

We adopt a three-step approach based on program execution information to
detect the unintended type mutations and infer the refactoring suggestions. First,
we capture the type mutations by runtime monitoring and construct type evo-
lution graph. Second, we identify the unintentional type mutations by analyzing
the types that incur deoptimizations. Third, we infer the bug pattern of each
unintentional type mutation by analyzing the relevant part of the type evolution
graph. The refactoring suggestions are naturally derived from the guidelines for
refactoring the bug patterns in Sect. 3. More details of these steps are explained
in the following sections.

4.1 Modeling Type Evolutions

We instrument the JavaScript engine to collect the operational log, which con-
tains the type update operations for objects and deoptimization information.
Table 3 defines all the events recorded in the log. Every object event contains
the calling context information (ctxt) and the source code location (srcL) to
precisely locate the event triggering code. If the value v recorded in the events
NewField and UptField is a closure instance, we replace v with the unique ID
of the definition place of the closure. The most important event is DeoptCode,
which contains the types (T1, . . . , TK) collected at the deoptimized IC (id) and
the object (obj) that causes the deoptimization.

With the operational log, we build the type evolution graphs, one for each
allocation source, which is defined as follows:

Definition 1. The allocation source ASo for object o is:
• o = new ctor(...): ASo is the constructor “ctor”.
• o = {} or o = []: ASo is the global unique ID that represents this object

literal {} or [].

Uncovering JavaScript Performance Code Smells Relevant 343

Table 3. Definitions of the events in the operational log.

Event name Arguments Interpretation

Object events

NewObject ctxt, srcL, obj , t Create an object obj at line srcL under calling

context ctxt with initial type t

NewArray ctxt, srcL, ary, t Create an array ary at line srcL under calling

context ctxt with initial type t

ChgProto ctxt, srcL, obj , newProto, t Set the prototype of obj to newProto at line srcL
under calling context ctxt and change type to t

NewField ctxt, srcL, obj , f , v , md , t Insert field f to object obj with value v at line srcL
under calling context ctxt md=0: f is added via

obj .f md=1: f is added via obj [“f ”]

DelField ctxt, srcL, obj , f , t Delete field f of object obj at line srcL under calling

context ctxt and change type to t

UptField ctxt, srcL, obj , f , v , t Assign value v to field f of object obj at line srcL
under calling context ctxt and change type to t

AryWrite ctxt, srcL, ary, inx , t Writing to array ary index inx at line srcL under

calling context ctxt and change type to t

RepLift ctxt, srcL, obj , t The representation of the elements or properties in

obj is lifted by executing an operation at line

srcL under calling context ctxt [5]. The new

representation has type t

Function events

DeoptCode func, obj , t id , T1, . . . , TK The function func deoptimized at an IC id because

the type t of object obj is not previously

collected by the IC id . The expected types for

the IC are T1, . . . , TK .

We aggregate the objects by allocation source because objects created by the
same constructor or from the same literal likely to have the same usage scenarios,
and refactoring can be easily performed at the constructor level. In the rest of this
paper, we call the objects created at the same allocation source sibling objects.
The type evolution graph ψ for an object allocation source is defined as follows:

Definition 2. A type evolution graph (TEG) ψ is a 6-tuple (Ω,S, θ,Σ, δ, q0):
• Ω is a finite set of types.
• S is a finite set of states.
• θ: S → Ω is an injective mapping from a state s ∈ S to a type t ∈ Ω. We

name the reversed mapping as θ−1.
• Σ is a finite set of events.
• δ: S × Σ → S is a type transition function that describes a type update

operation.
• q0: the initial state.

The set of type evolution graphs are collectively represented by Γ . Since the
mapping between S and Ω is injective, we abuse the terms type and state in the
rest of the paper.

We scan the operational log to generate the type evolution graphs. For every
event in the log, we process it with Algorithm 1. The main idea of Algorithm 1
is first calling GetTEG to find or build the evolution graph for corresponding

344 X. Xiao et al.

Algorithm 1. UpdateTEG
Input: E = An event in the operational log

1 switch E.type do

2 case Object Event:

3 obj = E.obj;

4 newTy = E.t;

/* 1. Find or build an TEG */

5 teg = GetTEG(obj, newTy)

/* 2: Build type transition */

6 s = FindState(teg, obj);

7 AddTransition(s, newTy, E);

8 if newTy == Dictionary then

9 hint = ProcessDictObj (o);

10 EmitSuggests (hint);

11 end

12 end

13 case Function Event:

14 CheckDeopt(E.obj, [T1, T2, . . . , TK]);

15 end

16 endsw

Algorithm 2. ProcessDictObj
Input: o: The object in dictionary mode

1 if o is object then

2 if o has more than Kf fields then

3 if CountKeyedAddFlds (o) > 0

then

4 SetWatch (o)

5 end

6 else if o is array then

7 evt = last event for o;

8 if evt == AryWrite And evt.inx >

o.length then

9 if evt.inx ≤ 1,000,000 then

10 return initAry(o);

11 end

12 end

13 end

object. Then, it creates a state transition to reflect the type change. Other sub-
procedures appeared in Algorithm 1 are explained in below:

1. GetTEG(o, newTy): Obtain the TEG for the object o. If o is the first object
for its allocation source, build a new TEG with initial type newTy .

2. FindState(ψ, o): Locate the state in the evolution graph ψ that contains
the type of the object o at the moment.

3. AddTransition(s1, t, E): Create a labeled transition s1
E−→ s2 to reflect

the type change, where s2 is the state for type t.

The type evolution graphs created by Algorithm1 for our running example is
similar to that in Fig. 4. The structure of type evolution graph is a directed acyclic
graph (DAG), because type evolution cannot go back to an old type. However,
two different types can evolve to the same type. For example, all dictionary mode
objects have the same type.

If an object is changed to dictionary (Line 8), we infer whether or not the
dictionary backing storage is intentional with Algorithm2. First, we only con-
sider an object with more than Kf (e.g. Kf = 15) fields as a candidate of fat
object. Second, if there is at least one field of o added through the keyed expres-
sion such as “p[f]” (obtained by CountKeyedAddFlds), we mark the object o by
SetWatch. The reason is adding fields to an object through keyed expression
“p[f]” strongly implies that the field name “f” is only known at runtime. Hence,
o is very possibly to be a dictionary. However, this heuristic alone is not enough,
we need more evidence and hence we make decision in Algorithm 5. If the object
is an array, we emit an initAry suggestion if the last event is an out-of-bound
access and the array size is small enough. Access out-of-bound on a large array
is very likely to use the array as a dictionary.

Uncovering JavaScript Performance Code Smells Relevant 345

4.2 Checking Type Homogeneity

We define that type t1 is homogeneous to type t2 if they belong to the same TEG
ψ. We use homogeneity to identify the types that are evolved from the same
allocation source. In term of graph reachability, two types can be homogeneous
in three ways. Suppose Rψ is the reachability relation on ψ, where Rψ(x, y)
means there is a path x � y on ψ. Two types t1 and t2 are homogeneous iff:

• Rψ(t1, t2), or
• Rψ(t2, t1), or
• ∃t3 ∈ Ωψ, Rψ(t3, t1) and Rψ(t3, t2).

We implement the homogeneity testing in Algorithm3. The high level work-
flow, excluding the details in the if . . . else block from Line 11 to Line 21, is
checking the relationship between type to and type tc, where to is the type of
the object o at the time of causing deoptimization and tc ∈ [T1, T2, . . . , TK] is a
type needed by the IC at the deoptimization site. To decide how to is homoge-
neous to tc, we use two auxiliary procedures:

1. MapToState: It is exactly the θ−1 function (recall Definition 2). If the state
for tc is non-exist, tc and to is not homogeneous.

Algorithm 3. CheckDeopt
Input: o, to: object o with the type to

Input: id, [T1, T2, . . . , TK]: T1, · · · , Tk are the types collected by the IC id

1 nhomo = K;

2 Q = ∅;
3 so = MapToState (ψo, to);

4 for tc ∈ [T1, T2, . . . , TK] do

5 sc = MapToState (ψo, tc);

6 if sc is non-exist then // to is not homogeneous to tc

7 nhomo = nhomo − 1;

8 continue ;

9 end

// Get the path P and the path distance between to and tc on ψo

10 P, d = ComputePath(to, tc);

11 if d > 0 then // Rψ(to, tc)

12 Q = Q ∪ HandleFutureType(d, P);

13 else if d < 0 then // Rψ(tc, to)

14 Q = Q ∪ HandlePastType(−d, P);

15 else // Rψ(ts, to) and Rψ(ts, tc)

16 ts = FindLCA(to, tc);

17 Po = Pc = ∅;
18 SplitPaths (ts, P , Po, Pc);

19 Q = Q ∪ HandleSplitType(ts, Po, Pc);

20 end

21 end

22 if CountDeoptSite(id) > Ks then Q = Q ∪ factorOut(id);

23 if nhomo
K ≥ πh then EmitSuggests(Q);

346 X. Xiao et al.

2. ComputePath: It computes the shortest path P between to and tc on ψo.
If multiple paths exist, choose arbitrary one. The choice of the path does
not matter, because after the refactoring, we can run the analysis again to
study another path. The second return value d is the length of P . The sign
of d encodes the path direction: d > 0 indicates Rψ(to, tc). d < 0 represents
Rψ(tc, to). d = 0 means tc and to are reachable by an intermediate node ts.

We record how many types cached at the IC are homogeneous to to in the
variable nhomo. If the ratio nhomo

K exceeds the threshold πh, we decide to as an
unintentional type and output the refactoring suggestions.

4.3 Inferring the Reason of Deoptimization

The if . . . else branch from Line 11 to Line 21 in Algorithm3 infers bug patterns
from the path between to and tc on the type evolution graph. Since the path
only has three cases, our inference algorithm works in three ways:

Algorithm 4. HandleFutureType
Input: P , d: The shortest path P for

to � tc with distance d

1 E = ∅;
2 if d ≤ Kd then

3 foreach evt ∈ P do

4 if evt != NewField then

5 return

6 E = E ∪ evt;

7 end

8 end

9 return advFlds(E);

1. HandleFutureType(d, P): It
handles the case where tc might be
a type for object o in future. This
case is probably that o is used before
fully constructed compared to its sib-
ling objects, which is an instance of
partially initialized objects bug (pat-
tern 3). If d ≤ Kd and all the events
between tc and to are NewField, we
emit an advFlds suggestion. We typi-
cally choose a small value for Kd (e.g.
Kd = 3), because shorter path is more

likely to be exceptional. All events should be NewField because advancing the
UptField and DelField events are unsafe.

2. HandlePastType(d, P): This situation is object o or its sibling objects have
type tc in the past. We examine the evolution path tc � to to confirm the bug
pattern for o. First, if the backing storage of o is dictionary and o is watched at
Line 4 of Algorithm 2, we deem the object o has refactoring value and emit a
movMap suggestion. Second, if there is a ChgProto event on the path, we emit
a useMixin suggestion. Third, if integer overflows and changes the value repre-
sentation (e.g. int → double), we emit a factorOut suggestion if the object has
more than Ki fields or array elements. The objects with more fields are poten-
tially accessed in more places and thus, incur more IC failures and create higher
performance impact. Finally, same to Algorithm4, if all the events between tc
and to are NewField and d ≤ Kd, it could be a partially initialized objects case
and we emit a advFlds suggestion.

3. HandleSplitType(ts, Po, Pc): This case states that tc and to deviate to
different evolution paths at the state ts, which is the lowest common ances-
tor (LCA) for tc and to, computed by FindLCA. We first bisect the path into

Uncovering JavaScript Performance Code Smells Relevant 347

Algorithm 5. HandlePastType
Input: P , d: The shortest path P for tc � to with distance d

1 E = ∅, R = ∅;
2 hasOtherEvents = false;

3 if IsDictMode (o) And IsWatched (o) then

4 R = R ∪ movMap(o)

5 end

6 foreach evt ∈ P do

7 if evt != NewField then

8 if evt == ChgProto then R = R ∪ useMixin(o);

9 else if evt == RepLift And NumFields (o) > Ki then

10 R = R ∪ factorOut(srcL);

11 end

12 hasOtherEvents = true;

13 end

14 E = E ∪ evt;

15 end

16 if d ≤ Kd And hasOtherEvents == false then R = R ∪ advFlds(E);

17 return R;

Algorithm 6. HandleSplitType
Input: ts, Po, Pc: The paths Po: ts � to and Pc: ts � tc

// fpos, cls: Mapping from field name to path position and to closure ID

1 fpos = cls = ∅;
2 for i ← to len(Po) do

3 evt = Po[i] ; // Get ith event on the path Po

4 if evt == NewField Or evt == UptField then

5 v = evt.v;

6 if v is closure then cls[evt.f] = v;

7 if evt == NewField then fpos[evt.f] = i;

8 end

9 end

10 proF = ordF = ∅;
11 for i ← to len(Pc) do

12 evt = Po[i] ; // Get ith event on the path Pc

13 if evt == NewField Or evt == UptField then

14 f = evt.f; v = evt.v;

15 if v is closure instance And cls[f] == v then proF = proF ∪ f;

16 if evt == NewField And fpos[f] != i then ordF = ordF ∪ f;

17 end

18 end

19 R = ∅;
20 if |proF| > Kp then R = R ∪ useMixin(o);

21 else if |proF| > 0 then R = R ∪ promFlds(proF);

22 if |ordF| > 0 then R = R ∪ ordFlds(ordF);

23 return R;

ts � to and ts � tc two segments with SplitPaths in Algorithm 6. Then, we
scan the two paths and fill and collect the fields that are assigned to different
closure instances and the fields that are added in different order in the two paths.

348 X. Xiao et al.

The scan results are stored in proF and ordF. We emit a refactoring suggestion
useMixin if proF has more than Kp (e.g. Kp = 7) results, in which case using
mixin pattern is better than promoting many fields to the prototype. Otherwise,
if proF and ordF are non-empty, we give the promFlds and ordFlds refactoring
suggestions.

We also count the number of deoptimizations incurred by each deoptimization
site via CountDeoptSite at Line 22 of Algorithm 3. The counting result tells
us which IC is less stable than others. In case the deoptimization is hard to
be eliminated, we emit a factorOut refactoring suggestion, since factoring the
code around the problematic IC site to a new function can limit the performance
impact to a smaller scope. This is especially useful for performance problems
happened inside a hot loop [19].

5 Evaluation

We implement our algorithm in a tool JSweeter. Operational log collection is
performed on a modified version of V8. We apply JSweeter to Octane benchmark
suite Version 2. The reason to choose Octane is twofold. First, we only modify
V8, which is incapable to execute the JavaScript programs requiring external
facilities, such as DOM and AJAX. We did not manage to modify a full func-
tional JavaScript execution tool such as Chrome due to the excessive hacking
efforts. Second, compared to other popular JavaScript benchmark suites such
as Kraken and SunSpider, Octane has much larger programs modified from real
world applications (up to 33,000 LOC for pdfjs) that can prove the effectiveness
of our proposed algorithm for real sized programs. Our experiments are con-
ducted on a machine running 32-bit Ubuntu 12.04 with an Intel Core2 3.0GHz
CPU and 4GB RAM.

5.1 Overall Results Discussion

Table 4. The benchmark scores before and after fixing the
performance issues.

crypto splay box2d gbemu typescript pdfjs

#Total Issues 4 1 8 12 18 3

#Fixed Issues 3 1 3 5 5 2

Score Before fix 18840 9362 20347 38748 19590 13858

Score After fix 19495 11480 21125 40237 20394 14330

Speedup 3.5% 23.0% 3.8% 3.8% 4.1% 3.4%

We empirically choose
the parameters πh =
0.5, Kd = 3, Kp =
7, Ki = 25 and run
JSweeter. Our findings
are given in Table 4.
The subjects that only
have marginal improve-
ments, such as zlib.js,

datablue.js, and etc., are omitted. We totally report 46 performance issues, which
is surprising since these programs are well tuned. We successfully fix 19 of these
issues that are simple enough to fix in one hour following the refactoring sug-
gestions. The remaining 27 issues cannot be fixed in two reasons:

1. We are unable to understand 21 issues. The major reason is JSweeter only
records one level calling context information for type update events, which is

Uncovering JavaScript Performance Code Smells Relevant 349

insufficient to guide us to trace back to the source of bug introducing place,
especially we are not the authors of these programs. The benefit is that our
approach incurs low overhead for collecting execution information. A tool
such as that described by Feldthaus et al. [6] would be helpful and we will
explore it in future.

2. We are unable to apply 6 refactoring suggestions (false positives). This is
because our algorithm is a pure dynamic analysis without considering the
static program semantics. For example, an advFlds suggests adding a field
in the constructor, but the name of that field is extracted from user input
and it is unable to add such fields in advance. Even a field f whose name is
statically known, blindly adding f in the constructor can suppress the field
existence testing such as if (p.f == undefined) and possibly change the pro-
gram behaviour. Moreover, the initial value of the field is sometimes hard to
determine. In future work, we will consider using static information to weed
out infeasible fixes and guide the refactoring.

We measure the benefits of refactoring the programs by Octane score, which
is inversely proportional to execution time and the larger the better. The scores
are obtained by a fresh checkout of V8 (version 3.29.42). For each program, we
run it for five times and obtain its average score. All of the refactored programs
gain higher scores, where most of the programs only have 3 % – 4 % speedup and
one case splay.js is 23 % faster. The results are indicative and cost benefit, since
the JavaScript engine developers often tried hard and achieve the similar results.
It is valuable to mention that JSweeter also found the bug reported in FF 813425
bug case. This bug is one of our two findings of inconsistent field ordering bugs
in pdfjs. By adding the fields before use, we obtain 2.2 % speedup for this single
modification, very close to the 2.7 % speedup achieved by the pdfjs developers.

5.2 Case Studies for Octane

We select five issues from three programs for case study. These cases are selected
because each of them represents a different bug pattern. Also, these issues are
difficult to be observed by programmers, since the bug introducing place and
the symptom place are spatially far.

Case 1: splay.js. The splay.js program implements the splay tree data structure,
which is primarily designed for testing the performance of memory management.
JSweeter finds an obscured performance issue caused by the underscored state-
ments in function insert as shown in Fig. 5. There is an instance of the typi-
cal inconsistent field ordering problem, where the fields “left” and “right” are
added to the “SplayTree.Node” objects in different orders. As a consequence,
when these “SplayTree.Node” objects are accessed, they would generate PICs
and incur additional type checking overhead.

Even worse, these objects would deoptimize the remove function through
the IC site at Line 16. And the consequent performance degradation incurred
by using un-optimized version of remove would be prominent, because splay.js
frequently inserts and removes nodes from the splay tree. Simply adding the

350 X. Xiao et al.

Fig. 5. splay.js: The unordered addition of fields “left” and “right” in function insert

will deoptimize the function remove at Line 16.

fields “left” and “right” in the two conditional branches in the same order would
fix this problem. A better solution is proactively adding both “left” and “right”
in the constructor SplayTree.Node, which also avoids the problems caused by
the SplayTree.Node objects in other places. We obtain 23 % more scores from
this simple fix.

Case 2: box2d.js. The box2d.js program is a popular 2D physics engine. It
has nearly 9500 lines of deminified code. Since box2d.js is compiled from
Emscripten2, a C++ to JavaScript compiler, it is full of simply-named vari-
ables such as “a”, “Q”, and etc.. Thus, finding performance issues manually for
box2d.js is almost impossible even for an experienced programmer. With the help
of JSweeter, we successfully fix three performance bugs.

Among the three bugs, one would incur deoptimizations for seven functions
by adding a field “m toi”. This field addition operation is performed in function
h.SolveTOI. We show a simplified version of h.SolveTOI in Fig. 6, where we
highlight the two access sites for field “m toi”: Line 7 is a read site and Line 10
is a write site. Line 10 changes the type of the objects referenced by “b”, which
deoptimize quite a few functions, such as those in Fig. 7.

JSweeter outputs a addFlds hint to suggest adding the m toi field in an
early stage. In the bug report, JSweeter locates function Oa as the constructor of
the objects pointed by b and the corresponding “Oa” object is in the function
z.Create. However, our first attempt by directly adding the field m toi followed
by the creation of “Oa” object in z.Create does not eliminate the performance
issue. A further investigation with the calling context information shows that the
fields of object “Oa” fields are added in functions A.Reset and A.b2Contact.
At this place, JSweeter cannot offer more help. Based on our human study of
functions near to A.Reset, we realize A.Update is the best place to add the field
m toi. With this refactoring, all the seven deoptimizations are eliminated.

2 https://github.com/kripken/emscripten.

https://github.com/kripken/emscripten

Uncovering JavaScript Performance Code Smells Relevant 351

Fig. 6. The simplified code for adding
the field “m toi” in box2d.js.

Fig. 7. Functions that are deoptimized
by adding field “m toi” in h.SolveTOI.

Fig. 8. All places that write to “CPUCyclesTotal” and “CPUCyclesTotalCurrent”.

Case 3: gbemu.js. The gbemu.js program is a GameBoy emulator. Unlike
box2d.js, which allocates many empty objects and incrementally updates them,
gbemu.js uses a big monolithic data structure named gameboy to store the virtual
machine states. In this flat design, almost all the fields of gameboy are added by
the constructor GameBoyCore and most of these fields are integers.

One representative issue is caused by the integer overflow of two fields:
CPUCyclesTotal and CPUCyclesTotalCurrent. From their names, we guess these
fields store the number of CPU cycles elapsed on the emulated CPU. There
are only four places that write to CPUCyclesTotal and CPUCyclesTotalCurrent
other than the constructor, summarized in Fig. 8.

Taking CPUCyclesTotal as an example, its value can exceed 230 at Line 15
of Fig. 8, which is the upper bound for the small integer representation used by
V8. The integer overflow triggers a representation change to use double value
for CPUCyclesTotal. As a consequence, all fields in the object “gameboy” are
lifted to double representations [5], and all operations related to these fields are

352 X. Xiao et al.

Fig. 9. The unique place that writes to “mixerOutputCache”.

Fig. 10. The IC site (highlighted area)
that contributes most to the deopti-
mization of LINECONTROL.

Fig. 11. Isolate the deoptimization site
with other parts in LINECONTROL.

impacted. As suggested by the factorOut hint, we use a separate object to place
the CPUCyclesTotal and CPUCyclesTotalCurrent fields. In this way, all fields
are not mutually impacted.

The second issue is that the field mixerOutputCache occasionally gets NaN
via the computation as shown in Fig. 9. Since JSweeter does not track the value
flows, we cannot understand how mixerOutputCache becomes NaN. We simply
add a NaN checking before assigning the computation result to mixerOutput-
Cache.

JSweeter also outputs a factorOut suggestion for an anonymous closure
assigned to array “LINECONTROL”, which is responsible for screen rendering.
In this case, large volume of closure instances are created and they deoptimize
163 times, where 90.4 % of the deoptimizations are contributed by the field-access
site at Line 3 of Fig. 10. To factor out this problematic IC site, we take a two-step
solution. We first define function entry0 that only reads the field LCDTicks and
keep other statements in function processLT143. Second, we add a tail call to
processLT143 in entry0, as shown in Fig. 11. By this refactoring, we assign the
unique instance of entry0 to all the elements of array “LINECONTROL”, and
this frequent closures creation problem is solved.

Uncovering JavaScript Performance Code Smells Relevant 353

6 Related Work

JavaScript Performance Debugging. The most relevant work to us is Gong
et al.’s JITProf [9]. This work also performs a pattern matching based dynamic
analysis to locate the code that causes JIT failures and results in performance
degradation. However, JSweeter is more general and powerful than JITProf in
four ways:

1. Our 6 bug patterns are not ad-hoc: Type mutation is their coherent reason to
cause performance issues. This deep insight can guide programmers to find
new bug patterns easily. Moreover, we also performed an empirical study and
showed the pervasiveness of the proposed bug patterns. In contrast, JITProf
only lists 7 bug patterns without explaining where these patterns come from.

2. Central to our algorithm is the type evolution graph (TEG), which is a uni-
form representation for different pattern matching algorithms. In contrast,
JITProf designs individual pattern matching algorithm for each bug pattern,
which precludes adding new patterns easily.

3. TEG aggregates the type information for sibling objects while JITProf traces
the state for each individual object. TEG is superior for bug detection
because, by contrasting the behavior of an object to its sibling objects, a
deviated type evolution is more likely to be a real bug.

4. JSweeter is running offline and thus have more flexibility to run complicated
pattern matching algorithms without incurring runtime overhead. For exam-
ple, Algorithm 5 retrospects the historic type information to confirm the par-
tially initialized objects bug. In contrast, JITProf works totally online and
performs limited checks to decide a bug. Nevertheless, JITProf already incurs
18× runtime overhead even with events sampling.

Performance Debugging on Statically Typed Languages. Most of the works still
rely on function execution time profiling data and statistical algorithms [3,8,
13,18,20,23–25]. However, as we argued, type mutations cannot be captured by
time profiling results. The works Sherlog [26] and G2 [11] share similarity to ours.
Sherlog infers a possible control flow from program start to the symptom site.
The control flow information is useful for functional bugs, but it is unknown how
performance bugs can benefit from it. Instead, JSweeter generates an object cen-
tric view of the type update process that only contains the operations pertaining
to performance issues. The work G2 also models the log events as a graph and it
backwardly and forwardly to search the root cause. Compared to G2, JSweeter
goes further to generate refactoring suggestions by pattern matching the objects
evolution history to our empirical observations.

Avoid Type Instability with Type Prediction. Instead of preventing type muta-
tions, improving the type prediction successful rate can also speed up JavaScript
execution. Hackett et al. are the first to design a type-inference algorithm that
works for full JavaScript features [12], by performing type inference online with
the help of type-feedback. In contrast, Kedlaya et al. use the type-inference
to aid type-feedback to intelligently place type profiling hooks [17]. Santos
et al. [21] developed a technique to generate a specialized version of the function

354 X. Xiao et al.

for every combination of the parameter values for that function, which signifi-
cantly enforces the power of constant propagation and other optimizations. All
these works are orthogonal to ours, because our aim is involving programmers
to address the performance bugs with complex logics.

7 Conclusion and Future Work

In this paper, we propose a dynamic analysis to detect, infer, and refactor six
JavaScript performance issues incurred by type mutations. We first empirically
study the performance bug patterns common in real world programs. Based
on the study, we design a technique that analyzes the type evolution graph
to infer the occurrence of the predefined code smells and synthesize refactor-
ing suggestions. We implement a tool JSweeter and find nineteen performance
bugs in Octane benchmark suite. These bugs can be effectively fixed by follow-
ing JSweeter’s refactoring suggestions and the benchmark scores for bug fixed
programs can increase up to 23 %.

References

1. https://asmjs.org
2. https://people.mozilla.org/jorendorff/es6-draft.html
3. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-

formance debugging for distributed systems of black boxes. In: SOSP (2003)
4. Ahn, W., Choi, J., Shull, T., Garzarán, M.J., Torrellas, J.: Improving javascript

performance by deconstructing the type system. In: PLDI (2014)
5. Bolz, C.F., Diekmann, L., Tratt, L.: Storage strategies for collections in dynami-

cally typed languages. In: OOPSLA (2013)
6. Feldthaus, A., Millstein, T., Møller, A., Schäfer, M., Tip, F.: Tool-supported refac-

toring for javascript. In: OOPSLA (2011)
7. Flückiger, O.: Compiled Compiler Templates for V8. Master’s thesis (2014)
8. Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed

systems through unstructured log analysis. In: ICDM (2009)
9. Gong, L., Pradel, M., Sen, K.: JITprof: pinpointing JIT-unfriendly javascript code.

In: Proceedings of ESEC/FSE, pp. 357–368. ACM (2015)
10. Gudeman, D.: Representing type information in dynamically typed languages

(1993)
11. Guo, Z., Zhou, D., Lin, H., Yang, M., Long, F., Deng, C., Liu, C., Zhou, L.: G2:

a graph processing system for diagnosing distributed systems. In: USENIXATC
(2011)

12. Hackett, B., Guo, S.Y.: Fast and precise hybrid type inference for javascript. In:
PLDI (2012)

13. Han, S., Dang, Y., Ge, S., Zhang, D., Xie, T.: Performance debugging in the large
via mining millions of stack traces. In: ICSE (2012)

14. Hölzle, U., Chambers, C., Ungar, D.: Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In: ECOOP (1991)

15. Hölzle, U., Ungar, D.: Optimizing dynamically-dispatched calls with run-time type
feedback. In: PLDI (1994)

https://asmjs.org
https://people.mozilla.org/jorendorff/es6-draft.html

Uncovering JavaScript Performance Code Smells Relevant 355

16. Hölzle, U., Ungar, D.: A third-generation self implementation: reconciling respon-
siveness with performance. In: OOPSLA (1994)

17. Kedlaya, M.N., Roesch, J., Robatmili, B., Reshadi, M., Hardekopf, B.: Improved
type specialization for dynamic scripting languages. In: DLS (2013)

18. Liu, X., Mellor-Crummey, J.: Pinpointing data locality problems using data-centric
analysis. In: CGO (2011)

19. McCutchan, J.: Accelerating oz with v8: follow the yellow brick road to javascript
performance. In: Google I/O Conference (2013)

20. Nistor, A., Song, L., Marinov, D., Lu, S.: Toddler: detecting performance problems
via similar memory-access patterns. In: ICSE (2013)

21. Santos, H.N., Alves, P., Costa, I., Pereira, F.M.Q.: Just-in-time value specializa-
tion. In: CGO (2013)

22. Van Cutsem, T., Miller, M.S.: Traits.js: robust object composition and high-
integrity objects for ecmascript 5. In: PLASTIC (2011)

23. Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the flow:
profiling copies to find runtime bloat. In: PLDI (2009)

24. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: SOSP (2009)

25. Yan, D., Xu, G., Rountev, A.: Uncovering performance problems in java applica-
tions with reference propagation profiling. In: ICSE (2012)

26. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupathy, S.: Sherlog: error
diagnosis by connecting clues from run-time logs. In: ASPLOS XV (2010)

Analyzing Distributed Multi-platform Java
and Android Applications with ShadowVM

Haiyang Sun1(B), Yudi Zheng1, Lubomı́r Bulej1, Stephen Kell2,
and Walter Binder1

1 Faculty of Informatics, Università Della Svizzera Italiana (USI),
Lugano, Switzerland

{haiyang.sun,yudi.zheng,lubomir.bulej,walter.binder}@usi.ch
2 Computer Laboratory, University of Cambridge, Cambridge, UK

stephen.kell@cl.cam.ac.uk

Abstract. In this tool demonstration, we present ShadowVM, a
dynamic program analysis framework for Java and Android applications.
ShadowVM offers a high-level programming model for expressing analy-
ses, ensures complete bytecode coverage, and isolates the analysis from
the observed application to avoid unwanted interference. An analysis
implemented on top of ShadowVM can handle both Java and Android
applications. First, we present and evaluate a simple code-coverage analy-
sis implemented with ShadowVM. Second, we demonstrate the use of
ShadowVM to analyze a distributed application comprising a Java server
backend and an Android client frontend.

Keywords: Dynamic program analysis · Java · Android

1 Introduction

Dynamic program analyses, such as profiling, tracing and bug-finding tools,
are essential for software development. However, despite this importance, the
Java platform currently provides very limited support for creating these tools.
Shortcomings common both to existing Java Virtual Machines (JVMs) and
Android’s Dalvik Virtual Machine (DVM) include lack of high-level abstrac-
tions for expressing analyses, lack of support for complete code coverage, and
difficulty of avoiding interference between analysis and the underlying program.
Instead, dynamic program analysis tools must be implemented using low-level
mechanisms, such as the JVM Tool Interface (JVMTI) [19]—making for code
that is error-prone and difficult to maintain, and often supporting only a particu-
lar virtual machine. Bytecode instrumentation presents fundamental interference
and coverage difficulties, meaning that many analysis tools necessarily produce
output that is unsound or incomplete, in order to avoid crashing or corrupting
the application [11].

In this tool paper, we present our dynamic program analysis framework
ShadowVM, which offers a high-level programming model for comprehensive,
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 356–365, 2015.
DOI: 10.1007/978-3-319-26529-2 19

Analyzing Distributed Multi-platform Java 357

multi-platform analysis. ShadowVM ensures complete bytecode coverage and
isolates the execution of the analysis code from the observed program. With
our framework, the same implementation of an analysis can be applied to pro-
grams running on the JVM and on the DVM. ShadowVM offers dedicated sup-
port for analyzing distributed applications comprising multiple communicating
processes—fundamental for the analysis of Android applications, which are typ-
ically split into multiple components running in separate DVM processes.

This tool demonstration complements our previous publications on Shadow
VM. In [14] we presented our initial design of ShadowVM, which only sup-
ported the JVM. In [20] we described the challenges of enabling dynamic pro-
gram analysis on Android and presented an updated design of ShadowVM suited
for Android applications running in DVM processes. The corresponding software
release of ShadowVM for Android supported only Android SDK ARM emulator,
resulting in extremely slow analysis. This tool demonstration provides the first
complete presentation of the multi-platform analysis framework that has evolved
from these two pieces of work. Additionally, our framework now offers two new
deployment options: Android SDK x86 emulator and Android devices.

Section 2 gives an overview of the ShadowVM architecture. Section 3 illus-
trates how to implement a simple code-coverage analysis with ShadowVM and
evaluates its performance on Android. Section 4 shows a new demonstration sce-
nario, where we use ShadowVM to analyze a distributed application comprised of
a Java server backend and an Android client frontend. Section 5 discusses related
work and Sect. 6 summarizes the strengths and limitations of our framework.

2 ShadowVM Overview

Dynamic program analysis can be regarded as the processing of events that
are produced within an observed application. Depending on the purpose of the
analysis, different kinds of events are relevant, such as e.g. method call, method
entry/exit, field access, or object allocation and reclamation. Most of them cor-
respond to the execution of a specific location in the bytecode of the observed
application; such events can be produced using bytecode instrumentation, and
we call them instrumentation events. Other lifecycle events, such as e.g. object
reclamation or virtual machine termination, do not correspond to any specific
code location; they are produced by the framework using some internal mecha-
nism of the virtual machine (such as the JVMTI [19] on the JVM) [14]. Simi-
larly, special communication events are produced by the framework in the case of
inter-process communication in an Android application [20]. Events may carry
various context information, such e.g. an object reference or the name of an
accessed field.

An analysis implemented on top of ShadowVM consists of two parts, the
event producer and the event consumer. ShadowVM offers high-level program-
ming abstractions for implementing the event-producing and event-consuming
logic. Instrumentation events are expressed in the domain-specific aspect lan-
guage DiSL (DSL for Instrumentation) [13,15,24], whereas lifecycle and com-
munication events are automatically generated by the framework. ShadowVM

358 H. Sun et al.

Fig. 1. Overview of an analysis receiving events from multiple observed Java and
Android application components.

also includes a library of DiSL code for commonly used instrumentation events.
The event-consuming logic is expressed as Java methods that handle the required
events.

The deployment of an analysis consists of three components: the observed appli-
cation (running with instrumentation), an instrumentation server, and an analysis
server. The instrumentation server and the analysis server may be deployed within
the same JVM process. The observed application is always running in one (or in a
set of) separate JVM or DVM processes to avoid unwanted interferences between
the observed application and the instrumentation/analysis code [14]. Instrumenta-
tion is performed at class load time; any method that has a bytecode representation
can be instrumented (including those in the class library and in dynamically gen-
erated classes). For the DVM, a conversion between dex files and JVM class files
occurs before and after instrumentation, which allows the instrumentation server
(running DiSL) to only deal with Java class files.

The events produced in the observed application are sent to the analysis
server through sockets. For each received event, a corresponding method (defined
in an analysis class) is invoked by the framework’s event dispatcher. The pay-
load of the event can include primitives (passed by value) and object references;
the latter are exposed to the analysis as shadow objects. These preserve the
identity of the objects from the original program, and expose reflective meta-
data mirroring the class hierarchy of the observed application. Shadow objects
allow attaching and accessing arbitrary analysis state—perhaps analysis-specific
data (e.g. timestamps) or perhaps the real object’s contents (by observing field
writes). For convenience, shadow strings replicate the real strings’ contents.

Figure 1 illustrates multiple observed components of a distributed applica-
tion, all sending events to the same analysis server. The server-side components
of the application are running in JVM processes, whereas the client-side fron-
tend components are executing in DVM processes. The origin of a received event
is represented by a JVM/DVM context object. Thanks to ShadowVM, a single
implementation of the event-producing and event-consuming parts can observe
the entire distributed multi-platform deployment. For example, the analysis may
trace all communication between the distributed components. Section 4 demon-
strates such an analysis.

Analyzing Distributed Multi-platform Java 359

Fig. 2. Event producer and consumer of JaCoCo recast for ShadowVM.

3 Code Coverage Analysis with ShadowVM

To illustrate how to implement a simple analysis with ShadowVM, we recast the
popular code coverage tool JaCoCo [7].

Figure 2a shows the DiSL [13,15] instrumentation code producing branch
events. Figure 2b shows the plain Java analysis code which consumes these
branch events. The instrumentation assigns each branch a dedicated number
for indexing, and emits an event indicating which branch is taken (the event
marshalling code not shown here is in class CodeCoverageAnalysisProxy). In
DiSL, Java annotations mark a snippet (a static method) with places where it
should be inserted (here before and after branches). The extra “synthetic” local
boolean is inserted into each method body and used to select only the taken
branches. Although snippets appear as static methods within a Java class, along

360 H. Sun et al.

with auxiliary definitions (like the synthetic local), this is simply a convenient
container; it is never loaded nor instantiated, and is used only by the instrumen-
tation server. The snippet produces an event consisting of two strings and an
integer, uniquely identifying the branch. The analysis maintains a simple data
structure tracking taken branches, updated in reaction to the events received.

In [20] we compared the analysis results produced by our analysis and by the
original JaCoCo. Both tools support JVM and DVM, and produce equivalent
results for application classes. In contrast to the original JaCoCo, our tool is
also capable of analyzing code coverage in the class library.

Below we report some new results on source-code metrics and on perfor-
mance. The original JaCoCo (excluding report generation features) has 1959 log-
ical lines of code (LOC), whereas our recast has only 363 LOC for the same
functionality (including event producing and consuming logic). That is, with
ShadowVM we can express the same analysis in less than 19 % of the LOC of
the original tool.

Our current version of ShadowVM supports three deployment options for
Android 4.4: (a) Android SDK ARM emulator; (b) Android SDK x86 emulator;
(c) Android devices. Options (b) and (c) are new. Table 1 compares the perfor-
mance of JaCoCo and our recast for the three Android deployment options.1 We
use GrinderBench2 for the analysis. The reported metric is the elapsed wall time
from the start of a benchmark until completion of the analysis.

In general, our ShadowVM recast introduces more overhead than JaCoCo.
The slowdown is explained by event transmission overheads, whereas JaCoCo
collects the coverage data within the observed process. The ShadowVM recast
of JaCoCo offers greater flexibility—we can switch to different metrics, such as
basic block profiling, without redeploying the profiler onto the device, since the
instrumentation server runs separately. The option of deploying on the Android
x86 emulator greatly reduces overhead (down to a factor of 2, instead of 8.3) by
eliminating the cost of emulating a non-native instruction set architecture. We
note that even the higher overhead need not be prohibitive; tools with overheads
a factor of 10 or greater have gained acceptance among developers [17].

4 Fuzzing a Distributed Multi-platform Application

We will demonstrate ShadowVM with a trace validation tool for fuzzing a dis-
tributed application comprising a Java server and an Android device as frontend.
Fuzzing is an automatic testing technique that feeds random inputs to a program
to trigger exceptional behavior [3]. Monkey is a fuzzing tool generating Android
user-interface events; it has been applied to finding security bugs [12]. As Android
applications increasingly rely on server-side components, they increasingly suffer

1 We evaluated the emulator settings with 2GB RAM on a quadcore Intel Core i7
(2.5GHz, 16GB RAM), and the real device setting on a Nexus 5 with 2GB RAM.
The analysis and instrumentation servers were deployed on the same type of machine
as the emulator and ran under Java8.

2 http://www.grinderbench.com/.

http://www.grinderbench.com/

Analyzing Distributed Multi-platform Java 361

Table 1. Execution time (in seconds) of the Grinder benchmarks on ARM emulator,
x86 emulator or real device. Each deployment option is evaluated without instrumen-
tation (baseline), with JaCoCo, or with our ShadowVM recast.

ARM emulator x86 emulator Nexus 5

Baseline JaCoCo Recast Baseline JaCoCo Recast Baseline JaCoCo Recast

Parallel 2.25 2.42 16.67 1.32 1.39 1.93 1.42 1.51 3.25

kXML 2.64 3.00 22.58 1.34 1.43 2.70 1.55 1.55 2.96

PNG 2.28 2.67 19.42 1.34 1.40 2.37 1.42 1.49 2.59

Chess 2.20 2.49 30.75 1.32 1.41 2.88 1.39 1.45 3.48

Crypto 2.38 2.64 7.97 1.31 1.34 1.64 1.39 1.42 1.76

Sum 11.75 13.22 97.39 6.63 6.97 11.52 7.17 7.42 14.04

difficult-to-find bugs triggered only by proper coordination of the client and the
server. ShadowVM enables fuzzing these distributed multi-platform applications,
by analyzing the whole distributed application’s state at once. For example, we
can validate traces against a whole-application state machine; on failure, we
report to the developer the unexpected next state, the current state, and the
triggering input stream.

Figure 3 illustrates the state machine of a login routine. The login credentials
are collected by an Android application and validated by a Java server. To avoid
brute-force attacks, only three successive login attempts are allowed: the server
counts the number of unsuccessful attempts, and will block the account once it
exceeds three. During login, the user may also reset the password; the “Reset
Password” sub-routine should not change the “Login Attempts” state.

Suppose the implementation of the server-side component violates this spec-
ification, by accidentally resetting the “Login Attempts” state after resetting
the password. This would permit brute-force attacks by resetting the password
every two login attempts. Such a bug is difficult to detect when fuzzing only
client or server code in isolation. One must either “mock up” the remote party’s
interactions in a testing harness usable by the fuzzer or deal with the state-space
explosion that can result from overapproximating this behaviour. By contrast,
with ShadowVM we can easily fuzz the whole ensemble.

We will demonstrate fuzzing of the aforementioned distributed application
(driven by Monkey) using a ShadowVM-based trace validation tool. In the
observed virtual machines, events are produced for the login-related actions of
both client (DVM) and server (JVM). In the analysis server, a state machine
validates the event trace. The specification of the state machine is configurable
such that the trace validation tool can analyze different applications.

5 Related Work

The baseline approach on which ShadowVM improves is explicit bytecode instru-
mentation. Various systems offering services and simple abstractions for this have

362 H. Sun et al.

Login Attempts

Signed in

Account
Locked

Second
Attempt

Third
Attempt

Login Fail Login Fail Login Fail
Start

First
Attempt

H

Reset
Password

+

Click
Login

Click Reset password Login Succeed

Fig. 3. State machine illustrating all possible login sequences.

been described in the literature [4,6,9,23], but in all cases direct manipulation
of instructions, much lower-level than the aspect-oriented primitives proposed
in DiSL [15], on which ShadowVM is based, and lack our framework’s multi-
platform capability. RoadRunner [8] offers a pipeline abstraction, but is special-
ized to the specific analysis domain of dynamic data-race detection.

Other research addresses the dynamic analysis of distributed systems. Pin-
point [5] aims to identify components correlated with failed requests in multi-tier
JavaEE server systems, by tracking incoming requests using a unique identifier
propagated along a request execution path. ARM [22] (Application Response
Measurement) defines a standardized infrastructure for monitoring multi-tier
enterprise applications, using tags to associate system behavior with individual
requests. Magpie [2] allows analyzing server workloads and resource consump-
tion of individual requests, enabling the construction of workload models for
clusters of canonicalized requests. Aguilera et al. [1] use statistical methods to
infer dominant causal paths in a distributed system, using only message-level
traces.

The common denominator of these approaches is their use of events for the
analysis of the system behavior. None of them focuses on the task of instrumen-
tation and event production. In contrast, ShadowVM is primarily a framework
providing easy-to-use event-producer and event-consumer programming models
which can be used for implementing cross-platform distributed program analyses.

ShadowVMalso relates todistributedaspect-orientedprogramming [16,18,21],
which introduces the concept of a remote pointcut and allows deploying aspects
on a set of hosts. In contrast, ShadowVM is primarily tailored for the devel-
opment of dynamic analyses deployed on a single host, correlating events from
potentially many observed hosts.

Existing fuzzing or active testing systems such as CalFuzzer [10] have tack-
led scenarios similar to our demonstration, with some degree of extensibility, but
stop short of being general-purpose dynamic analysis frameworks. For example,
CalFuzzer provides a fixed set of instrumentation callbacks that cover only syn-
chronization and shared-memory operations.

6 Conclusions

We gave the first demonstration of our multi-platform dynamic program analy-
sis framework ShadowVM, which reconciles a high-level programming model,

Analyzing Distributed Multi-platform Java 363

expressiveness, complete bytecode coverage, and isolation of the analysis from
the observed application. ShadowVM offers seamless support for both the JVM
and the DVM; an analysis written for Java applications also supports Android
applications out-of-the-box. As demonstrated before, one analysis server can
handle the events of multiple observed JVM and DVM processes, enabling cen-
tralized analysis of distributed systems. Because the event consumer executes in
a separate analysis server, ShadowVM implicitly parallelizes the execution of the
observed application and the analysis. This approach also minimizes the extra
memory requirements on the observed virtual machine, crucial for deploying
heavyweight analyses on resource-constrained Android devices.

The design of ShadowVM also has some drawbacks. As shown in our perfor-
mance evaluation, the analysis overhead is often higher than with straightforward
analysis within the observed virtual machine. In particular, using Android SDK’s
ARM emulator results in excessive overhead. The newly supported deployment
options (Android SDK x86 emulator and Android devices) mitigate this over-
head. For the analysis of Android applications, a version-specific patch needs to
be applied to the DVM first. The implicit conversion between JVM and DVM
bytecode may introduce some bias in metrics related to individual bytecodes
or basic blocks of code. As events are processed remotely and asynchronously
by the analysis, ShadowVM is not suited for interactive debugging. Finally, our
system cannot observe execution in native code.

ShadowVM is available as part of the DiSL 2.1 open-source release (http://
disl.ow2.org/). DVM support is currently available as a prototype (http://dag.
inf.usi.ch/downloads/); it will be part of the forthcoming DiSL 3.0 open-source
release.

Acknowledgments. The research presented in this paper was supported by Oracle
(ERO project 1332), by the Swiss National Science Foundation (project CRSII2 136225
and project 200021 141002), and by the European Commission (contract ACP2-GA-
2013-605442).

References

1. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance debugging for distributed systems of black boxes. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles. pp. 74–89. SOSP
’03 (2003)

2. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for request extrac-
tion and workload modelling. In: Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation. OSDI’04, vol. 6, p. 18 (2004)

3. Bird, D., Munoz, C.: Automatic generation of random self-checking test cases. IBM
Syst. J. 22(3), 229–245 (1983)

4. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: a code manipulation tool to imple-
ment adaptable systems. In: Systémes á composants adaptables et extensibles
(2002)

http://disl.ow2.org/
http://disl.ow2.org/
http://dag.inf.usi.ch/downloads/
http://dag.inf.usi.ch/downloads/

364 H. Sun et al.

5. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem deter-
mination in large, dynamic internet services. In: Proceedings of the 2002 Interna-
tional Conference on Dependable Systems and Networks. DSN ’02 (2002)

6. Chiba, S.: Load-time structural reflection in java. In: Bertino, E. (ed.) ECOOP
2000. LNCS, vol. 1850, pp. 313–336. Springer, Heidelberg (2000)

7. EclEmma: JaCoCo Java Code Coverage Library. http://www.eclemma.org/
jacoco/

8. Flanagan, C., Freund, S.N.: The RoadRunner dynamic analysis framework for
concurrent programs. In: Proceedings of 9th Workshop on Program Analysis for
Software Tools and Engineering, pp. 1–8. ACM (2010)

9. IBM: Shrike Bytecode Instrumentation Library. http://wala.sourceforge.net/wiki/
index.php/Shrike technical overview

10. Joshi, P., Naik, M., Park, C.-S., Sen, K.: CalFuzzer: an extensible active testing
framework for concurrent programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 675–681. Springer, Heidelberg (2009)

11. Kell, S., Ansaloni, D., Binder, W., Marek, L.: The JVM is not observable enough
(and what to do about it). In: Proceedings of the Sixth ACM Workshop on Virtual
Machines and Intermediate Languages. VMIL ’12, pp. 33–38 (2012)

12. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue
Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)

13. Marek, L., Zheng, Y., Ansaloni, D., Sarimbekov, A., Binder, W., Tůma, P., Qi,
Z.: Java bytecode instrumentation made easy: the DiSL framework for dynamic
program analysis. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705,
pp. 256–263. Springer, Heidelberg (2012)

14. Marek, L., Kell, S., Zheng, Y., Bulej, L., Binder, W., Tůma, P., Ansaloni, D.,
Sarimbekov, A., Sewe, A.: ShadowVM: robust and comprehensive dynamic pro-
gram analysis for the java platform. In: Proceedings of the 12th International
Conference on Generative Programming: Concepts and Experiences. GPCE ’13,
pp. 105–114 (2013)

15. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: Proceedings of the 11th
Annual International Conference on Aspect-oriented Software Development. AOSD
’12, pp. 239–250 (2012)

16. Navarro, L.D.B., Südholt, M., Vanderperren, W., De Fraine, B., Suvée, D.: Explic-
itly distributed AOP using AWED. In: Proceedings of the 5th International Con-
ference on Aspect-oriented Software Development. AOSD ’06, pp. 51–62 (2006)

17. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 89–100. ACM, New York,
NY, USA (2007)

18. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote pointcut: a language construct for
distributed AOP. In: Proceedings of the 3rd International Conference on Aspect-
oriented Software Development. AOSD ’04, pp. 7–15 (2004)

19. Oracle: JVM Tool Interface (JVMTI) Version 1.2. http://docs.oracle.com/javase/
8/docs/platform/jvmti/jvmti.html

20. Sun, H., Zheng, Y., Bulej, L., Villazón, A., Qi, Z., Tůma, P., Binder, W.: A pro-
gramming model and framework for comprehensive dynamic analysis on Android.
In: Proceedings of the 14th International Conference on Modularity. MODULAR-
ITY ’15, pp. 133–145 (2015)

http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/
http://wala.sourceforge.net/wiki/index.php/Shrike_technical_overview
http://wala.sourceforge.net/wiki/index.php/Shrike_technical_overview
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

Analyzing Distributed Multi-platform Java 365

21. Tanter, É., Toledo, R.: A Versatile kernel for distributed AOP. In: Eliassen,
F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 316–331. Springer,
Heidelberg (2006)

22. The open group: Application Response Measurement (ARM), Issue 4.1 Version 1.
https://collaboration.opengroup.org/tech/management/arm/

23. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot: a
java bytecode optimization framework. In: Proceedings of the 1999 Conference of
the Centre for Advanced Studies on Collaborative Research. CASCON ’99. IBM
Press (1999)

24. Zheng, Y., Bulej, L., Binder, W.: Accurate profiling in the presence of dynamic
compilation. In: Object-Oriented Programming, Systems, Languages & Applica-
tions. OOPSLA ’15 (2015)

https://collaboration.opengroup.org/tech/management/arm/

Medley

Quasi-Linearizability is Undecidable

Chao Wang1,2(B), Yi Lv1, Gaoang Liu1,2, and Peng Wu1

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{wangch,lvyi,gaoang,wp}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Quasi-linearizability is a quantitative relaxation of lineariz-
ability. It preserves the intuition of the standard notion of linearizabil-
ity and permits more flexibility. The decidability of quasi-linearizability
has been remaining open in general for a bounded number of processes.
In this paper we show that the problem of whether a library is quasi-
linearizable with respect to a regular sequential specification is unde-
cidable for a bounded number of processes. This is proved by reduction
from the k-Z decision problem of a k-counter machine, a known undecid-
able problem. The key idea of the proof is to establish a correspondence
between the quasi-sequential specification of quasi-linearizability and the
set of all unadmitted runs of the k-counter machines.

1 Introduction

A concurrent library provides a collection of methods for accessing a concurrent
object. These methods can be invoked by multiple client processes concurrently.
Linearizability [11] is a de facto correctness condition for concurrent libraries. A
concurrent library is linearizable with respect to its sequential specification, if
during any of its executions, each method appears to take effect instantaneously
at some point between the invocation and the response of the method.

The standard notion of linearizability imposes a strong synchronization
requirement that, in many cases, leads to performance and scalability bottlenecks
and hence prevents effective utilization of increasingly parallel hardware. A rem-
edy to this problem is to relax this consistency condition. Although there already
exist other consistency conditions for concurrent libraries, such as sequential con-
sistency [12] and quiescent consistency [4], these consistency conditions are less
intuitive and allow unexpected behaviors. New relaxed consistency conditions
have been proposed recently, including quasi-linearizability [2] and a quantita-
tive relaxation framework [9]. These relaxed consistency conditions are essen-
tially based on linearizability, therefore preserving the intuition of the standard
linearizability while permitting more flexibility.

This work is partially supported by the National Natural Science Foundation
of China under Grants No.60721061, No.60833001, No.61272135, No.61700073,
No.61100069, No.61472405, and No.61161130530.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 369–386, 2015.
DOI: 10.1007/978-3-319-26529-2 20

370 C. Wang et al.

Quasi-linearizability is the first quantitative relaxation of linearizability. It
extends the standard linearizability by relaxing the sequential specification to
a Q-quasi-sequential specification. Such quantitative relaxation is guided by a
quasi-linearization factor Q. Each element in the Q-quasi-sequential specification
is a bounded distance away from a legal one. Therefore, the verification of quasi-
linearizability needs to deal with not only the subtle difficulty of linearizability,
but also that of the relaxed sequential specification.

It is well known that the problem of whether a library is linearizable with
respect to its regular sequential specification is decidable for a bounded number
of processes [3], but undecidable for an unbounded number of processes [5]. Since
the standard linearizability is a special case of quasi-linearizability, it can be eas-
ily seen that the problem of whether a library is quasi-linearizable with respect to
its regular sequential specification is also undecidable for an unbounded number
of processes. For the case with a bounded number of processes, [1,13] have pre-
sented model-checking algorithm and runtime tool respectively to check quasi-
linearizability with specific quasi-linearization factors. However, the problem of
whether a library is quasi-linearizable with respect to a regular sequential spec-
ification still remains open in general for a bounded number of processes.

The main result of this paper is to show that the problem of whether a library
is quasi-linearizable with respect to a regular sequential specification (quasi-
linearizability problem) is undecidable for a bounded number of processes. Our
proof can be divided into two parts.

In the first part we reduce the k-Z decision problem of a k-counter machine [3]
to the problem of whether a specific concurrent library is linearizable with respect
to its sequential specification (linearizability problem) for just one process. The
k-Z problem is to decide whether a k-counter machine has an admitted run.
This problem is known to be undecidable for k ≥ 3 [3]. As inspired by the
proof of Lemma 5 in [3], the k-Z decision problem can be reduced to a language
inclusion problem between two language R and S. R is a prefix-closed regular
language constructed from the k-counter machine. S is a non-regular language
and it contains all the unadmitted runs of k-counter machine, together with their
prefixes. A specific library LR can then be constructed to simulate sequentially
each sequence of R. Thus, the language inclusion problem can be reduced to the
linearizability problem of LR for just one process with respect to a non-regular
sequential specification constructed from S.

In the second part we prove that the above linearizability problem can then
be reduced to a quasi-linearizability problem of the same library for just one
process. The quasi-linearizability problem uses a regular sequential specification
and a proper quasi-linearization factor. Since the quasi-linearizability problem of
the specific library LR for one process is equivalent to that for a bounded number
of processes, the k-Z decision problem is further reduced to quasi-linearizability
problem with respect to a regular sequential specification for a bounded number
of processes.

Related Work. There are already several publications on the decidability of
linearizability and other consistency conditions [3,5,6,8], two of which are related
to our work.

Quasi-Linearizability is Undecidable 371

Bouajjani et al. [5] proved that the problem of whether a library is lineariz-
able with respect to its regular sequential specification is undecidable for an
unbounded number of processes. This was proved through a reduction from an
undecidable problem of a counter machine.

The closer work to ours is [3] by Alur et al., which proves that the lineariz-
ability of a regular history set with respect to a regular sequential specification
is decidable for a bounded number of processes, but its sequential consistency is
not. The proofs in [3] rely on the notion of the language closure over a depen-
dency relation. Given a binary dependency relation D over an alphabet Σ, the
closure of a language L ⊆ Σ∗ is the set of all sequences that are obtained from
a sequence l ∈ L by shuffling any adjacent symbols a and b in l such that
(a, b) �∈ D. It may sound possible to encode a dependency relation directly by a
quasi-linearization factor Q, which allows shuffling of adjacent independent sym-
bols within certain bound. In this way, the undecidability of quasi-linearizability
could be regarded as a corollary of Lemma 5 in [3].

However, unfortunately, there exists a dependency relation that can not
be characterized by any quasi-linearization factor, e.g., a dependency relation
for sequential consistency. This is because that sequential consistency permits
shuffling only symbols of different processes and hence does not allow any shuf-
fling when a history contains only one process. In contrast, relaxations of quasi-
linearizability are irrelevant to the number of processes a history may contain.
Thus, if a quasi-linearization factor Q permits shuffling symbols of more than
one process, it should also permit shuffling symbols of a single process. Based
on this observation, the undecidable result of Lemma 5 in [3] can not be directly
applied to establish the undecidability of quasi-linearizability.

Adhikari et al. [1] proposed a model-checking algorithm for verification of the
quasi-linearizability that uses a specific quasi-linearization factor. Zhang et al.
[13] developed a runtime tool to verify quasi-linearizability with respect to the
relaxed sequential specifications that are based on the strict out-of-order seman-
tics defined in [2,9]. Both works consider only decidable subclasses of the quasi-
linearizability problem.

2 Concurrent Systems

In this section, we present the notations of libraries, the most general clients and
concurrent systems. We then introduce their operational semantics.

2.1 Notations

A finite sequence on an alphabet Σ is denoted as l = α1 · α2 · . . . · αk, where ·
is the concatenation symbol and αi ∈ Σ for each 1 ≤ i ≤ k. For an alphabet
Σ′, let l ↑Σ′ denote the projection of l to Σ′. Given a set S of sequences, we use
Prefix (S) = {a1 · . . . · am|∃u and am+1, . . . , am+u, such that a1 · . . . · am+u ∈ S}
to denote the set of prefixes of sequences in S. Given a function f , let f [x : y]
be the function that shares the same value as f everywhere, except for x, where

372 C. Wang et al.

it has the value y. Given a function f : A → B, we use domain(f) to denote the
domain of f , which is A. We use for an item, of which the value is irrelevant.

A labelled transition system (LTS) is a tuple A = (Q,Σ,→, qinit), where Q
is a set of states, Σ is a set of transition labels, →⊆ Q × Σ × Q is a transition
relation and qinit is the initial state. A state of the LTS A can be refer to as a
configuration in the rest of the paper. A path of A is a finite transition sequence
qinit

β1−→ q1
β2−→ . . .

βk−→ qk for k ≥ 0 from the initial state qinit. A trace of
A is a finite sequence t = β1 · β2 · . . . · βk, where k ≥ 0 if there exists a path
qinit

β1−→ q1
β2−→ . . .

βk−→ qk of A.

2.2 Libraries and the Most General Clients

A library implementing a concurrent object that provides a set of methods for
external users to access the data structure. It may contain private memory loca-
tions for its own use. A client program is a program that interacts with libraries.
For simplicity, we assume that each method has just one parameter and one
return value if it returns. Furthermore, all the parameters and the return values
are passed via a specific register rf .

For a library, let X be a finite set of its memory locations, M be a finite
set of its method names, D be its finite data domain, R be a finite set of its
register names and RE be a finite set of its register expressions over R. Then, a
set PCom of primitive commands of the library includes:

– Register assign commands in the form of r = re ;
– Register reset commands in the form of havoc;
– Read commands in the form of read (x, r) ;
– Write commands in the form of write(r, x);
– Cas commands in the form of r1 =cas(x, r2, r3);
– Assume commands in the form of assume(r);
– Call commands in the form of call(m);

where r, r1, r2, r3 ∈ R, re ∈ RE , x ∈ X . Herein, the notations of registers and
register expressions are similar to those used in [7]. A cas command compresses
a read and a write commands into a single one, which is meant to be exe-
cuted atomically. It is often implemented with the compare-and-swap or load-
linked/store-conditional primitive at the level of multiprocessors. This type of
commands is widely used in concurrent libraries. A havoc command [7] assigns
arbitrary values to all registers in R.

A control-flow graph is a tuple CFG = (N,L, T, qi, qf), where N is a finite
set of program positions, L is a set of primitive commands, T ⊆ N × L × N
is a control-flow transition relation, qi is the initial position and qf is the final
position.

A library L can then be defined as a tuple L = (QL,→L, InitVL), such
that QL =

⋃
m∈M Qm is a finite set of program positions, where Qm is the

program positions of a method m of this library; →L=
⋃

m∈M →m is a control-
flow transition relation, where for each m ∈ M, (Qm,PCom,→m, im, fm) is a

Quasi-Linearizability is Undecidable 373

control-flow graph with a unique initial position im and a unique final position
fm; InitVL : X → D is an initial valuation for its memory locations.

The most general client of a library is a special client program that is used
to exhibit all possible behavior of the library. Formally, the most general client
MGC of library L is defined as a tuple ({qc, q

′
c},→c), where qc and q′

c are two
program positions, →c= {(qc, havoc, q′

c)}∪{(q′
c, call(m), qc)|m ∈ M} is a control-

flow transition relation and ({qc, q
′
c},PCom,→c, qc, qc) is a control-flow graph.

Intuitively, the most general client repeatedly calls an arbitrary method with an
arbitrary argument for arbitrarily many times.

2.3 Operational Semantics of Concurrent Systems

In this paper we consider a concurrent system consists of a bounded number of
processes, each of which runs the most general client program of a library on a
separate processor. Then, the operational semantics of a library can be defined
in the context of the concurrent system.

For a library L=(QL,→L, InitVL) and a positive integer n, its operational
semantics is defined as an LTS �L, n�cs = (Confcs, Σcs, →cs, InitConfcs), where
‘cs’ represents concurrent system, and Confcs, Σcs, →cs, InitConfcs are defined
as follows.

Each configuration of Confcs is a tuple (p, d, r), where

– p : {1, . . . , n} → {qc, q
′
c} ∪ QL represents control states of each process;

– d : X → D represents values at each memory location;
– r : {1, . . . , n} → (R → D) represents values of the registers of each process.

Σcs consists of the following subsets of actions as transition labels.

– Internal actions: {τ(i)|1 ≤ i ≤ n};
– Read actions: {read(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Write actions: {write(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Cas actions: {cas(i, x, a, b)| 1 ≤ i ≤ n, x ∈ X , a, b ∈ D};
– Call actions: {call(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};
– Return actions: {return(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};

The initial configuration InitConfcs ∈ Confcs is a tuple (pinit, InitVL, rinit),
where pinit(i) = qc and rinit(i)(r) = regVinit (a specific initial value of register)
for 1 ≤ i ≤ n, r ∈ R;

The transition relation →cs is the least relation satisfying the transition rules
shown in Fig. 1.

– Register-Assign rule: A function fre : (R → D) × RE → D is used to evaluate
register expression re under register valuation rv of current process, and its
value is assigned to register r1.

– Library-Havoc and MGC-Havoc rules: havoc commands are executed for
libraries and the most general clients respectively.

– Assume rule: If the value of register r1 is true, current process can execute
assume command. Otherwise, it must wait.

374 C. Wang et al.

– Read and Write rules: A read action to memory location x will take the value
of x in memory, and a write action to memory location x will change the value
of x in memory directly.

– Cas-Success and Cas-Fail rules: A successful cas command will change the
value of memory location x immediately. The result of whether this cas com-
mand succeeds is stored in register r1.

– Call and Return rules: To deal with call command, current process starts to
execute the initial position of method m. When the process comes to the final
position of method m it can launch a return action and start to execute the
most general client.

p(i) = q1, q1
r1=re−−−→Lq2, r(i) = rv, fre(rv, re) = a

(p, d, r)
τ(i)−−→cs(p[i : q2], d, r[i : rv[r1 : a]])

Register-Assign

p(i) = q1, q1
havoc−−−→Lq2, rv ∈ R → D

(p, d, r)
τ(i)−−→cs(p[i : q2], d, r[i : rv])

Library-Havoc

p(i) = qc, rv ∈ R → D
(p, d, r)

τ(i)−−→cs(p[i : q′
c], d, r[i : rv])

MGC-Havoc

p(i) = q1, q1
assume(r1)−−−−−−→Lq2, r(i)(r1) = true

(p, d, r)
τ(i)−−→cs(p[i : q2], d, r)

Assume

p(i) = q1, q1
read(x,r1)−−−−−−→Lq2, r(i) = rv, d(x) = a

(p, d, r)
read(i,x,a)−−−−−−→cs(p[i : q2], d, r[i : rv[r1 : a]])

Read

p(i) = q1, q1
write(r1,x)−−−−−−→Lq2, r(i)(r1) = a

(p, d, r)
write(i,x,a)−−−−−−→cs(p[i : q2], d[x : a], r)

Write

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = d(x) = a, rv(r3) = b

(p, d, r)
cas(i,x,a,b)−−−−−−−→cs(p[i : q2], d[x : b], r[i : rv[r1 : true]])

Cas-Success

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = a, rv(r3) = b, rv(r2) �= d(x)

(p, d, r)
cas(i,x,a,b)−−−−−−−→cs(p[i : q2], d, r[i : rv[r1 : false]])

Cas-Fail

p(i) = q′
c, r(i)(rf) = a

(p, d, r)
call(i,m,a)−−−−−−→cs(p[i : im], d, r)

Call

p(i) = fm, r(i)(rf) = a

(p, d, r)
return(i,m,a)−−−−−−−→cs(p[i : qc], d, r)

Return

Fig. 1. Transition rules of →cs

Quasi-Linearizability is Undecidable 375

3 Linearizability and Quasi-Linearizability

In this section, we introduce the definitions of linearizability and quasi-
linearizability.

3.1 Linearizability

Linearizability is a standard correctness condition for concurrent libraries.
According to [11], linearizability is a local property in the sense that a con-
current program that contains multiple concurrent libraries and client processes
does not violate linearizability if each individual library does not violate lineariz-
ability. Therefore, it is safe for us to introduce the definition of linearizability
using the operational semantics �L, n�cs, which consider the behavior of only one
library.

The behavior of a library is typically represented by histories of interactions
between library and the clients calling it (through call and return actions). Let
Σcal and Σret represent the sets of all call and return actions, respectively. Given
an LTS A = (QA, ΣA,→A, qA), a finite sequence h ∈ (Σcal ∪ Σret)∗ is a history
of A if there exists a trace t of A such that t ↑(Σcal∪Σret)= h. Let history(A)
denote all the histories of A.

In a history, a return action return(i1,m1, a1) matches a call action
call(i2,m2, a2), if i1 = i2∧m1 = m2. A history is sequential if it starts with a call
action and each call (respectively, return) action is immediately followed by a
matching return (respectively, a call) action unless it is the last action. A process
subhistory h|i is a history consisting of all and only the actions of process i. A
history h is well-formed, if each process subhistory h|i of h is sequential. All
histories considered in this paper are assumed to be well-formed. Two histories
h1 and h2 are equivalent, if for each process i, h1|i = h2|i. Given a history h,
complete(h) is the maximal subsequence of h consisting of all matching call and
return actions. An operation e in a history is a pair consisting of a call action,
inv(e), and the next matching return action, res(e).

A sequential specification of a library is a prefix closed set of sequential
histories. A history h is linearizable with respect to a sequential specification S,
if h can be extended (by appending zero or more return actions) to a history h′,
and there exists a sequential history s ∈ S, such that

– complete(h′) is equivalent to s.
– For each operations e1, e2 of h, if res(e1) precedes inv(e2) in h, then this also

holds in s.

Definition 1 (Linearizability [11]). A library L is linearizable with respect to
a sequential specification S for n processes, if each history of �L, n�cs is lineariz-
able with respect to S.

It is natural to assume that for a sequential history call(i1,m1, a1) ·return(i1,
m1, b1) · . . . · call(iu,mu, au) · return(iu,mu, bu) in a sequential specification,

376 C. Wang et al.

each process id ij (1 ≤ j ≤ u) is actually irrelevant. Thus we can substitute each
pair of a call action call(i,m, a) and its matching return action return(i,m, b)
with m(a, b). For a library L, let Σspec = {m(a, b)| m ∈ M, a, b ∈ D}, a sequen-
tial specification for L can also be given as a prefix closed subset of Σ∗

spec, as
shown in [2].

Then, the notion of linearizability can be accordingly redefined over Σ∗
spec.

A history h is linearizable with respect to a sequential specification S ⊆ Σ∗
spec,

if there exists m1(a1, b1) · . . . · mu(au, bu) ∈ S, h can be extended (by appending
zero or more return actions) to a history h′, and there is a sequential history
s = call(i1,m1, a1) · return(i1,m1, b1) · . . . · call(iu,mu, au) · return(iu,mu, bu),
such that

– complete(h′) is equivalent to s.
– For each operation e1, e2 of h, if res(e1) precedes inv(e2) in h, then this also

holds in s.

A library L is linearizable with respect to a sequential specification S ⊆ Σ∗
spec

for n processes, if each history of �L, n�cs is linearizable with respect to S. To
comply with the definitions in [2], all the sequential specifications in the rest
of this paper are prefix closed subsets of Σ∗

spec. Given a library L, a sequential
specification S and a positive integer n, the decision problem of linearizability
is to determine whether L is linearizable with respect to S for n processes.

3.2 Quasi-Linearizability

Quasi-Linearizability [2] is a quantitative relaxation of linearizability. Quasi-
linearizablity is also a local property [2]. Hence, as in the previous subsection, it is
safe for us to introduce the definition of quasi-linearizability using the operational
semantics �L, n�cs.

For each element α in a sequence l, we use l[α] to denote its index. Given two
sequences l1, l2 ∈ Σ∗

spec, where l1 is a permutation of l2, we use distance(l1, l2)
= max{l1[α] − l2[α]| α is in l1} to represent the distance between l1 and l2.
A quasi-linearization factor Q is a function defined as Q : D → N , where
D is a subset of the power set of Σspec. A quasi-linearization factor is used
to guide the relaxation of quasi-linearizability. Given a sequential specification
S ⊆ Σ∗

spec and a quasi-linearization factor Q, the Q-quasi-sequential specification
Q-spec(S) ⊆ Σ∗

spec is the relaxation of S guided by Q. A sequence h is in
Q-spec(S), if there exists a sequence s ∈ S and h′, such that h is a prefix of h′ and
for any d ∈ domain(Q), distance(h′ ↑d, s ↑d) ≤ Q(d). Each Q-quasi sequential
specification Q-spec(S) is also prefix closed. Given a quasi-linearization factor
Q, a history h is Q-quasi-linearizable with respect to a sequential specification
S, if there exists a sequential history s = call(i1,m1, a1) · return(i1,m1, b1) ·
. . . · call(iu,mu, au) · return(iu,mu, bu) (referred to as the quasi-linearization of
h), such that m1(a1, b1) · . . . · mu(au, bu) ∈ Q-spec(S), h can be extended (by
appending zero or more return actions) to a history h′, and

Quasi-Linearizability is Undecidable 377

– complete(h′) is equivalent to s.
– For each operation e1, e2 of h, if res(e1) precedes inv(e2) in h, then this also

holds in s.

Definition 2 (Q-quasi-linearizability [2]). A library L is Q-quasi-lineari-
zable with respect to a sequential specification S for n processes, if each history
of �L, n�cs is Q-quasi-linearizable with respect to S.

Let Qlin be a quasi-linearization factor, whose domain contains only the
element Σspec. Specially, it maps Σspec to 0. It is easy to see that Qlin-quasi-
linearizability is equivalent to the standard notion of linearizability. One feature
of Q-quasi-linearizability is that it allows specifying different deviations to dif-
ferent subsets of Σspec. For example, a Q-quasi-linearizable queue may have
accurate dequeue operations but inaccurate enqueue operations that can bypass
at most k preceding enqueue operations [2]. This feature captures the flexibility
of possible relaxations, but it also leads to the undecidability result that will be
proved in the later section. In the rest of this paper, Q-quasi-linearizability and
a Q-quasi-sequential specification are abbreviated as quasi-linearizability and a
quasi-sequential specification, respectively, if the context is clear. Given a library
L, a sequential specification S, a quasi-linearization factor Q and a positive inte-
ger n, the decision problem of quasi-linearizability is to determine whether L is
Q-quasi-linearizable with respect to S for n processes.

4 Undecidability of Quasi-Linearizability

As the main result of this paper, we show in this section that the quasi-
linearizability problem is undecidable with respect to a regular sequential spec-
ification for a bounded number of processes. We first reduce the k-Z decision
problem of a k-counter machine to a linearizability problem of a specific concur-
rent library for one process. Then, our main undecidability result follows from the
correspondence between the linearizability problem and the quasi-linearizability
problem of the same library for one process. Since the quasi-linearizability prob-
lem of the specific library for one process is equivalent to that for multiple
processes, the k-Z decision problem is finally reduced to the quasi-linearizability
problem for a bounded number of processes.

4.1 k-Counter Machine

The control of a k-counter machine is a finite state automaton, whose alphabet
is made up of increment, decrement and test operations to each counter [3]. Let
Σck = {Ij ,Dj , Zj |1 ≤ j ≤ k} be the set of operations for each counter, where
Ij , Dj and Zj respectively represent the operations for increasing the value of
counter j by 1, decreasing the value of counter j by 1 and testing whether the
value of counter j is 0. A k-counter machine is a finite state automaton CM
= (Qcm, qicm, Fcm, Σcm,→cm), where Qcm is a set of control states, qicm is the
initial state, Fcm is a set of final states, Σcm = Σck is a set of transition labels
and →cm⊆ Qcm × Σcm × Qcm is a transition relation.

378 C. Wang et al.

Given a finite sequence l ∈ Σ∗
ck, we use cl,j = |l ↑{Ij} | − |l ↑{Dj} | to denote

the difference between the numbers of increments and decrements to counter
j. We say that a sequence l ∈ Σ∗

ck is admitted, if for each j and each prefix
l′ · Zj (1 ≤ j ≤ k) of l, cl′,j = 0. Otherwise, this sequence is unadmitted. A k-
counter machine CM accepts a finite sequence α1 · . . . · αm, if there exists states
q1, . . . , qm, such that qm ∈ Fcm and qicm

α1−→cm q1
α2−→cm . . .

αm−→cm qm. Let
lang(CM) denotes the language of CM, that is, lang(CM) contains exactly all the
sequences that are accepted by CM. The k-Z decision problem is to determine,
for a given k-counter machine CM, whether there exists an admitted sequence
l ∈ lang(CM). According to [3], the k-Z decision problem is undecidable, as
stated in the following lemma.

Lemma 1 (Undecidability [3]). The k-Z decision problem is undecidable for
k ≥ 3.

4.2 Libraries for Prefix Closed Regular Languages

For a finite state automaton R that accepts a prefix closed regular language and
whose states are all final states, we can simulate R by the behavior of a specific
library LR that is constructed based on R.

Formally, given a finite state automaton R = (Qr, qir, Fr, Σr,→r), where Qr

is a set of states, qir is the initial state, Fr = Qr is a set of final states, Σr is a set
of transition labels and →r is a transition relation, the library LR is constructed
as follows:

– the data domain of LR is Qr ∪ Σr ∪ {0, 1, true, false, regVinit};
– LR has two private memory locations curState and flag. curState is used to

record the current control state of R, while flag is used to ensure mutual
exclusion accesses. The initial value of curState is qir and the initial value of
flag is 0;

– LR has one method M , of which the pseudo-code is shown in Method 1. The
if and while statements used in the pseudo-code can be easily implemented
with the assume commands and other commands in LR.

The critical section of method M is the region from a successful cas command
at Line 1 to the flag = 0 command at Line 5. M first waits until it enters the
critical section (Lines 1–2). If there exists one step of transition in R starting from
curState (Line 3), M changes the value of curState according to this transition,
leaves the critical section and returns the transition label (Lines 4–6). Otherwise,
M is blocked (Lines 7–9).

The pseudo-code in Lines 1–2, where a cas operation is used, together with
the pseudo-code at Line 5, ensure the mutual exclusion between invocations of
this method.1 We use lang(R) to denote the language of R.

1 Except the cas operation, other operations, such as filter lock [10] can also be used
herein to ensure mutual exclusion.

Quasi-Linearizability is Undecidable 379

Method 1. M
Input: an arbitrary argument
Output: transition label for one step in R

1 while cas(flag, 0, 1) fails do
2 ;

3 if there exists some q, α, such that curState
α−→r q then

4 curState = q;
5 flag = 0;
6 return α;

7 else
8 while true do
9 ;

4.3 Reducing a k-Z Decision Problem to a Linearizability Problem

In this subsection we show that the k-Z decision problem of a k-counter machine
can be reduced to the linearizability problem of a specific library for one process
with respect to a non-regular sequential specification. This reduction is achieved
with the aid of a language inclusion problem.

It is not hard to see that the set of all unadmitted sequences is far beyond the
scope of regular languages. Fortunately, according to [3], there is a regular set of
“templates” corresponding to the set of all unadmitted sequences. For instance,
the unadmitted sequence l = I1 ·I2 ·I1 ·I1 ·D1 ·D1 ·Z1 ·D2 ·Z2 contains a minimal
unadmitted prefix l′ = I1 · I2 · I1 · I1 · D1 · D1 · Z1. Let l′′ be the projection of
l′ to counter 1, i.e., l′′ = I1 · I1 · I1 · D1 · D1 · Z1. It can be seen that l′′ is also
unadmitted. The template for l can be constructed as the concatenation of two
parts. The first part, I1 · D1 · I1 · D1 · I1 · Z1, is constructed from l′′ by swapping
the locations of I1 and D1. Such swapping tries to pair as many matching I1
and D1 as possible in the beginning of the sequence, while ensuring that I1s and
D1s do not cross Z1. The second part, I2 · D2 · Z2, is the rest contents of l.

Formally, the regular set of templates for the set of all unadmitted sequences
of k-counter machines is

k⋃

j=1

(((Ij · Dj)∗ · Z∗
j)∗ · (Ij · Dj)∗ · (I+j + D+

j) · Zj · Σ∗
ck)

where
⋃k

j=1 Aj = A1 + . . . + Ak. Since this template set will be used later
to construct prefix closed sequential specifications, we further extended it to a
prefix closed regular language

k-US = Σ∗
ck +

k⋃

j=1

(((Ij · Dj)∗ · Z∗
j)∗ · (Ij · Dj)∗ · (I+j + D+

j) · Zj · Σ∗
ck · end)

where ‘US’ represents that this set can be considered as the specification for all
unadmitted sequences.

380 C. Wang et al.

The set Qk = {{Ij , Zj}, {Dj , Zj}|1 ≤ j ≤ k} ∪ {{end, act}|act ∈ Σck} will
be used to guide the relaxation to k-US, which ensures that each increment and
decrement operation can not cross a test operation to the same counter, and
each operation in Σck can not cross the end symbol. The relaxation to k-US
guided by Qk is the set Qk-set(k-US) = {l|∃l′ ∈ k-US,∀d ∈ Qk, l ↑d= l′ ↑d}.
Each element l of Qk-set(k-US) is either a sequence in Σ∗

ck or the concatenation
of an unadmitted sequence and the end symbol. Moreover, for each unadmitted
sequence l, l · end is a member of Qk-set(k-US).

Although the language of a k-counter machine may not be prefix closed, we
can construct a prefix closed regular language for a k-counter machine. Later, a
specific library will be constructed from this language (automaton) and used as
a bridge to connect a language inclusion problem and a linearizability problem.
Given a k-counter machine CM = (Qcm, qicm, Fcm, Σcm,→cm), we construct the
finite state automaton RCM = (Q, qi, F,Σ,→) as follows:

– Q = Qcm ∪ {qend} is the set of states, where qend is a new state not in Qcm.
– qi = qicm is the initial state.
– F = Q is the set of final states.
– Σ = Σcm ∪ {end} is the set of transition labels, where end is a new transition

label not in Σcm.
– →=→cm ∪{(qf , end, qend)|qf ∈ Fcm} is the transition relation.

Given a set S of sequences, let S · a = {l|∃l′ ∈ S, l = l′ · a} denote the set of
concatenations of sequences in S and a symbol a. It is not hard to see that the
language of RCM, denoted as lang(RCM), is the union of

– lang(CM) · end,
– {α1 · . . . · αm|∃q1, . . . , qm, qicm

α1−→cm q1
α2−→cm q2 . . .

αm−→cm qm}.

It can be seen that lang(RCM) is a prefix closed language.
Figure 2 shows an example RCM that is generated from a k-counter machine

CM. The counter machine CM has four states: q1, q2, q3, and q4, the last two of
which are final states. During the construction of this RCM, we add a new state
qend and two additional transitions from q3 and q4 to qend, and make all states
as final states.

q1start q2

q3

q4
I1

D1

Z1

Z2

D1

q1start q2

q3

q4

qend

I1

D1

Z1

Z2

D1 end

end

Fig. 2. Generation of RCM from a counter machine CM

Quasi-Linearizability is Undecidable 381

The following lemma reduces the k-Z decision problem of a k-counter machine
CM to the language inclusion problem between lang(RCM) and Qk-set(k-US).

Lemma 2. Given a k-counter machine CM, all the sequences in lang(CM) are
not admitted if and only if lang(RCM) ⊆ Qk-set(k-US).

Proof. To prove the if direction, for each sequence l ∈ lang(CM), it is easy to find
that l · end is in lang(RCM). By assumption, l · end also belongs to Qk-set(k-US).
It is obvious that each sequence ending with an end symbol in Qk-set(k-US)
is a concatenation of an unadmitted sequence and an end symbol, so l is not
admitted.

To prove the only if direction, given a counter machine CM = (Qcm, qicm,
Fcm, Σcm, →cm), then for each sequence l = α1 · . . . · αm ∈ lang(RCM), we can
observe that

– If αm �= end and there exists q1, . . . , qm, such that qicm
α1−→cm q1

α2−→cm

. . .
αm−→cm qm, then l ∈ Σ∗

ck. Thus it is an element of k-US, and furthermore
an element of Qk-set(k-US).

– If l ∈ lang(CM) · end, then α1 · . . . · αm-1 ∈ lang(CM) and αm = end. By
assumption α1 · . . . ·αm-1 is an unadmitted sequence, and it is easy to see that
l ∈ Qk-set(k-US).

In both situations, l ∈ Qk-set(k-US). This completes the proof. �
Given a set T of sequences over D, we can lift it to a sequential specification
MSeqSpec(T) = {M(, b1)·. . .·M(, bu)|b1·. . .·bu ∈ T} for the libraries constructed
in Subsect. 4.2. Given a set S ⊆ Σ∗

spec, we use seqHis(S, n) to denote all the
sequential histories that are generated from a sequence in S by substituting each
m(a, b) in the sequence with a pair of a call action call(i,m, a) and its matching
return action return(i,m, b) for some i, where 1 ≤ i ≤ n. The following lemma
reduces a language inclusion problem to a linearizability problem for one process.

Lemma 3. Given a sequential specification S and a finite state automaton R
that accepts a prefix closed language, LR is linearizable with respect to S for one
process if and only if MSeqSpec(lang(R)) ⊆ S.

Proof. The if direction is proved as follows. For each history h ∈ history
(�LR, 1�cs), since the critical sections of h are constructed according to tran-
sitions of R, as well as the fact that each return action returns a transition
label of a critical section, we have that h ∈ SeqHis(MSeqSpec(lang(R)), 1). By
assumption, it can be seen that h ∈ SeqHis(S, 1). Because h itself is a sequential
history, it is obvious that h is linearizable with respect to S.

The only if direction is proved by contradiction. Assume that LR is lin-
earizable with respect to S for one process but MSeqSpec(lang(R)) is not
a subset of S. Therefore there exists a sequence l = M(a1, b1) · . . . ·
M(am, bm) ∈ MSeqSpec(lang(R))−S. Let sequential history h′ = call(1,M, a1) ·
return(1,M, b1)·. . .·call(1,M, am)·return(1,M, bm). Because b1 ·. . .·bm ∈ lang(R)
and each return value of M is the transition label of one step transition of R,
sequential history h′ is a history of �LR, 1�cs and h′ can not be linearizable with
respect to S. But this contradicts the fact that LR is linearizable with respect
to S. �

382 C. Wang et al.

Given a k-counter machine CM, with Lemmas 2 and 3, we can reduce the problem
of whether all the sequences in lang(CM) are unadmitted to that of whether the
specific library LRCM

is linearizable with respect to the sequential specification
MSeqSpec(Qk-set(k-US)) for one process.

4.4 Undecidability of Quasi-Linearizability

In this subsection we reduce the problem of whether LRCM
is linearizable with

respect to the sequential specification MSeqSpec(Qk-set(k-US)) to the problem
of whether LRCM

is quasi-linearizable with respect to a regular sequential speci-
fication.

Recall that Qk-set(k-US) is the relaxation of k-US guided by Qk, and such
relaxation does not permit Ij and Dj to go across Zj for each counter j, and
does not permit operations in Σck to cross end. Correspondingly, a relaxed spec-
ification can be obtained by relaxing MSeqSpec(k-US) in a similar way as the
Qk relaxation does to k-US. The following lemma shows that the sequential
specification of the above linearizability problem can be precisely reproduced
by certain Q′

k-quasi-sequential specification, which is generated by relaxing
MSeqSpec(k-US) with the quasi-linearization factor Q′

k. In this way, the above
linearizability problem can be reduced to a quasi-linearizability problem. The
Quasi-linearization factor Q′

k maps every element in Dk to 0, where Dk is the
union of the following sets:

– {M(a, Ij),M(b, Zj)|a, b ∈ D}, where 1 ≤ j ≤ k.
– {M(a,Dj),M(b, Zj)| a, b ∈ D}, where 1 ≤ j ≤ k.
– {M(a, end),M(b, act)|a, b ∈ D}, where act ∈ Σck.

Lemma 4. A library L is linearizable with respect to MSeqSpec(Qk-set(k-US))
for one process if and only if L is Q′

k-quasi-linearizable with respect to
MSeqSpec(k- US) for one process.

Proof. The if direction is proved as follows. For each history h ∈ history
(�L, 1�cs), assume its quasi-linearization s = call(1,M, a1) · return(1,M, b1) ·
. . . · call(1,M, am) · return(1,M, bm). We can construct a sequence l1 =
M(a1, b1) · . . . · M(am, bm) from s. By definition of quasi-linearizability, l1 ∈
Q′

k-spec(MSeqSpec(k-US)). There exist sequences l2 = M(am+1, bm+1) · . . . ·
M(am+u, bm+u) and l3 = M(a′

1, b
′
1) · . . . · M(a′

m+u, b
′
m+u).

– l3 ∈ MSeqSpec(k-US).
– ∀d ∈ Dk, distance((l1 · l2) ↑d, l3 ↑d) = 0.

Thus we can find that ∀d′ ∈ Qk, (b1 · . . . · bm · bm+1 · . . . · bm+u) ↑d′=
(b′

1 · . . . · b′
m · b′

m+1 · . . . · b′
m+u) ↑d′ . Based on this fact, we immediately obtain

that b1 · . . . · bm · bm+1 · . . . · bm+u ∈ Qk-set(k-US), thus the sequence b1 · . . . · bm ∈
Prefix(Qk-set(k-US)). Because Qk-set(k-US) is prefix closed, b1 · . . . · bm ∈
Qk-set(k-US). Therefore, s belongs to SeqHis(MSeqSpec(Qk-set(k-US)), 1). It is
obvious that h is linearizable with respect to MSeqSpec(Qk-set(k-US)).

The only if direction can be proved in a similar way. �

Quasi-Linearizability is Undecidable 383

The following theorem shows that the quasi-linearizability problem is undecid-
able with respect to a regular sequential specification for one process.

Theorem 1. Given a library L, a regular sequential specification S and a quasi-
linearization factor Q, it is undecidable whether L is Q-quasi-linearizable with
respect to S for one process.

Proof. Given a k-counter machine CM, by Lemma 2, the problem of whether
all sequences in lang(CM) are unadmitted can be reduced to the language
inclusion problem between lang(RCM) and Qk-set(k-US). It can be seen that
the latter problem is equivalent to the language inclusion problem between
MSeqSpec(lang(RCM)) and MSeqSpec(Qk-set(k-US)). By Lemma 3, it can
be reduced to the problem of whether LRCM

is linearizable with respect to
MSeqSpec(Qk-set(k-US)) for one process. By Lemma 4, it can be further
reduced to the problem of whether LRCM

is Q′
k-quasi-linearizable with respect to

MSeqSpec(k-US) for one process. It is easy to see that MSeqSpec(k-US) is regular.
Recall that by Lemma 1 the k-Z decision problem is undecidable for k ≥ 3. This
completes the proof of this theorem. �
The specific library LR has the following property: for each positive integer n
and history h ∈ history(�LR, n�cs), we can construct a sequential history of
history(�LR, 1 �cs) according to the critical section accesses in h, in the way as
shown in Fig. 3. Assume history h ∈ history(�LR, n�) contains call actions ci

and return actions ri, where 1 ≤ i ≤ 3. In Fig. 3, the time axes run from left
to right, while each method is associated with a line interval. Additionally, the
time intervals of the critical section accesses are marked with the shadow regions
in Fig. 3. It is not hard to see that if we change the positions of each pair of a
call action and its matching return action to the nearest time point before and
after the corresponding critical section accesses, we get a sequential history h′ ∈
history(�LR, n�cs). Since h′ is sequential, we can construct another sequential
history h′′ ∈ history(�LR, 1�cs) of a single process by moving all actions of h′

to this process. It is obvious that h′′ contains exactly all the actions of h′ and
preserves exactly the sequential order of all the actions of h′.

Since the specific library LR runs in a sequential way, the following lemma
shows that the quasi-linearizability problem of LR for one process can be reduced
to the quasi-linearizability problem of the same library for more than one process.

c1 r1

c2 r2

c3 r3 c1 r1

c2 r2

c3 r3 c1 r1c2′ r2′ c3 r3

concurrent history h sequential history h′ sequential history h′′

Fig. 3. Construction of a sequential history of a unique process

Lemma 5. Given a sequential specification S, a finite state automaton R that
accepts a prefix closed language, a quasi-linearization factor Q and a positive

384 C. Wang et al.

integer n > 1, LR is Q-quasi-linearizable with respect to S for n processes if and
only if LR is Q-quasi-linearizable with respect to S for one process.

Proof. The only if direction is obvious since history(�LR, 1�cs) ⊆ history
(�LR, n�cs).

The if direction is proved by contradiction. Assume that LR is Q-quasi-
linearizable with respect to S for one process, but not for n processes. Then there
must be a history h ∈ history(�LR, n�cs) such that h is not Q-quasi-linearizable
with respect to S.

As shown in Fig. 3, we can construct a sequential history h′ of �LR, n�cs
from h by changing the positions of each pair of call and return actions to the
nearest time point before and after the corresponding critical section. During this
process, it is necessary to add some return actions for the case when a method
has completed its critical section but not returned yet, it is also necessary to
remove some call actions for the case when a method has not entered its critical
section. By assumption, it can be seen that h′ is not Q-quasi-linearizable with
respect to S.

Similarly, we can also construct a sequential history h′′ of �LR, 1�cs from h′

by moving all actions of h′ to the unique process. By assumption, it can be seen
that h′′ is not Q-quasi-linearizable with respect to S. But this contradicts the
assumption that LR is Q-quasi-linearizable with respect to S for one process. �
The following theorem states that the quasi-linearizability problem is undecid-
able with respect to a regular sequential specification for a bounded number
n ≥ 1 of processes. This is a direct consequence of Theorem 1 and Lemma 5.

Theorem 2. Given a library L, a regular sequential specification S, a quasi-
linearization factor Q and a positive integer n ≥ 1, it is undecidable whether L
is Q-quasi-linearizable with respect to S for n processes.

5 Conclusion and Future Work

We show in this paper that the quasi-linearizability problem with respect to a
regular sequential specification is undecidable for a bounded number of processes.
This is essentially proved by reduction from the k-Z problem of a k-counter
machine, a known undecidable problem. We prove that the k-Z problem can
be reduced to a language inclusion problem, which can be further reduced to a
linearizability problem of a specific library for just one process. The library is
constructed from the k-counter machine and can simulate its behavior. Then,
this linearizability problem can be reduced to a quasi-linearizability problem with
respect to a regular sequential specification for a bounded number of processes.

Note that although the sequential specification of the quasi-linearizability
problem is regular, its quasi-sequential counterpart is non-regular and rather
complex. Thus, a quasi-linearizability problem with respect to a regular sequen-
tial specification is equivalent to a linearizability problem with respect to a
non-regular sequential specification. Since quasi-linearizability is undecidable for

Quasi-Linearizability is Undecidable 385

just one process with respect to a regular sequential specification, the unde-
cidability of quasi-linearizability is not resulted from the interactions between
processes, but from the fact that no element in Dk is equal to Σspec. Actually,
if the domain of quasi-linearization factor contains only one element Σspec, then
quasi-linearizability problem with respect to regular sequential specification is
decidable for a bounded number of processes, as shown in [1]. Therefore, we
can conclude that the undecidability of quasi-linearizability is inherent from its
flexibility in quantitative relaxation.

Quasi-linearizability has been deprecated since its syntactic distance defini-
tion has been demonstrated broken [9]. Compared to the syntactic relaxation in
[2], the relaxation in [9] is based on library semantics, and it offers an accurate
and efficient way to relax linearizability. We conjecture that quasi-linearizability
is a special case of the quantitative relaxation framework presented in [9], of
which the decidability is still unknown. Thus, our undecidability work for quasi-
linearizability can be used as a gateway to this open problem. As future work
we would like to investigate the decision problem of this quantitative relaxation
framework for a bounded number of processes.

Acknowledgments. The authors of this paper would like to thank anonymous
reviewers for pointing out the connection between dependence relations in [3] and
quasi-linearization factors in [2].

References

1. Adhikari, K., Street, J., Wang, C., Liu, Y., Zhang, S.J.: Verifying a quantitative
relaxation of linearizability via refinement. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) SPIN 2013. LNCS, vol. 7976, pp. 24–42. Springer, Heidelberg (2013)

2. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for
improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010.
LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010)

3. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. In: LICS 1996, pp. 219–228. IEEE Computer Society (1996)

4. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5), 1020–1048
(1994)

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013)

6. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for
concurrent objects. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 651–662.
ACM (2015)

7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

8. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010)

386 C. Wang et al.

9. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. In: Giacobazzi, R., Cousot, R. (eds.)
POPL 2013, pp. 317–328. ACM (2013)

10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2008)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

12. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

13. Zhang, L., Chattopadhyay, A., Wang, C.: Round-up: Runtime checking quasi lin-
earizability of concurrent data structures. In: Denney, E., Bultan, T., Zeller, A.
(eds.) ASE 2013, pp. 4–14. IEEE (2013)

Objects in Polynomial Time

Emmanuel Hainry1,2,3(B) and Romain Péchoux1,2,3

1 Université de Lorraine, LORIA, UMR 7503, 54506 Vandœuvre-lès-Nancy, France
{hainry,pechoux}@loria.fr

2 Inria, 54600 Villers-lès-Nancy, France
3 CNRS, LORIA, UMR 7503, 54506 Vandœuvre-lès-Nancy, France

Abstract. A type system based on non-interference and data ramifi-
cation principles is introduced in order to capture the set of functions
computable in polynomial time on OO programs. The studied language
is general enough to capture most OO constructs and our characteri-
zation is quite expressive as it allows the analysis of a combination of
imperative loops and of data ramification scheme based on Bellantoni
and Cook’s safe recursion using function algebra.

Introduction

Motivations. This paper presents a first characterization of polynomial time
computable functions on the Object Oriented paradigm. This characterization
is obtained by mixing non-interference techniques à la Volpano et al. [16], for
secure flow analysis, with tiering [13] or safe recursion on notation [3] based
approaches, in order to capture complexity classes over function algebra.

The main idea is very simple: program data is divided in two classes (called
tier 0 and tier 1); while tier 0 data store computations that may increase, tier
1 data are used for the control flow and never increase. This is ensured by a
type system based on non-interference precluding data flows from 0 to 1 and
allowing only specific flows from 1 to 0 (when data are cloned). The type system
also ensures that data of tier 1 is never modified once initialized and voilà !
As the control flow is only based on tier 1, then either the program does not
terminate or it terminates in polynomial time as tier 1 variables may only point
to a number of distinct memory references bounded by the input size.

Though the idea is simple, its implementation is not. Analyzing the complex-
ity of OO programs faces a lot of hardships (complex object data structure, side
effects, recursive methods, ...) and one mistake in the application can make the
whole system collapse in a dominolike effect. This is the reason why the type
system presented in this paper is an original non-straightforward contribution.

There are plenty of works analyzing the complexity of OO programs from
a practical perspective in the literature. These works are interesting and some-
times better than the present paper wrt program expressivity. However they

This work was partially supported by ANR-14-CE25-0005 Elica: Expanding Logical
Ideas for Complexity Analysis.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 387–404, 2015.
DOI: 10.1007/978-3-319-26529-2 21

388 E. Hainry and R. Péchoux

suffer from some of the following gaps that our contribution tries to tackle:
first, the theoretical part can be lacking as some works focus on having effective
proofs of concept rather than providing characterizations; second, they usually
do not provide any completeness result; finally, many works analyze a bytecode
rather than the sourcecode itself, thus avoiding the treatment of complex con-
structs. This makes the analysis more precise but clearly less portable. Though
this choice may be better from a practical perspective, it is constrained by one
language implementation. In contrast, our work is more conceptual and forges
ties between various programming paradigms: the tiering methodology works
for functional programming [3], imperative programs [15], fork processes [10],
graph-based language [14]. We show in this paper that it also works in the
object paradigm.

The analysis presented in this paper is based on an abstract OO language.
Consequently, it can be applied both to impure OO languages (e.g. Java) and
to pure ones (e.g. SmallTalk or Ruby). It just suffices to forget rules about
primitive data types in the type system. Moreover, it does not depend on the
implementation of the language being compiled (ObjectiveC, OCaml, Scala, ...)
or interpreted (Python standard implementation, OCaml, ...). The only restric-
tion is that it does not handle pointer arithmetics. Hence languages such as C++
cannot be handled. However, it merges elegantly with the functional world as it
captures Safe Recursion on Notation by Bellantoni and Cook [3]. Consequently,
we can expect to handle OO higher-order (as in Scala or Java 1.8). A combi-
nation with type discipline for studying complexity for HO functional program
such as the ones based Light Linear Logics [2] would then be required.

Related Works. This main idea of combining tiering and non-interference does
not appear ex nihilo: safe recursion was already a non-interference based result
(though the connection was not easy to see in the nineties as both domains
were emerging research topics). Two decades later Marion has presented a type
system [15] using this idea in order to capture polynomial time computable
functions on an imperative language. This idea was adapted to a graph based
language in [14]. The current paper tries to pursue this objective but on a distinct
paradigm: Object. Thus our results strictly extend the ones of [15] while they
are applied on a more concrete language than the ones in [14].

The works [1,5,12] are based on the analysis of heap-space and time con-
sumption of Java bytecode. The results from [1,12] make use of abstract inter-
pretations to infer efficiently symbolic upper bounds on resource consumption
of Java programs. A constraint-based static analysis is used in [5] and focuses
on certifying memory bounds for Java Card. Current analysis can be seen as
a complementary approach that is more expressive on the purely OO fragment
as it handles while loops guarded by a variable of reference type whereas most
of the aforementioned studies are based on invariants generation for primitive
types only.

In a similar vein, characterizing complexity classes below polynomial time is
studied in [11], which relies on a programming language, PURPLE, combining

Objects in Polynomial Time 389

imperative statements together with pointers on a fixed graph structure.
Although not directly related, our type system was strongly inspired by this
work.

Outline. In a first section, we present the syntax and semantics of an abstract
generic OO language. We also define the notion of input, input size and com-
putation of a program in this language. In Sect. 2, we introduce a type system
based on tiering techniques for controlling program complexity. This is the main
contribution of the paper. In Sect. 3, we define a Safety condition based on tiers
in order to restrict the allowed forms of recursion in a typed program. In Sect. 5,
we show that safe and terminating programs characterize the class of functions
computable in polynomial time. For the soundness, Theorem1 shows that such
a program terminates in time (number of executed base instructions) polyno-
mial in the input size. For the completeness, Theorem 2 shows that any Turing
Machine running in polynomial time can be simulated by a safe and terminating
program. Section 4 is devoted to examples illustrating the methodology. Finally,
we provide extensions and a conclusion in the last section.

1 Object Oriented Programs

In this section we define the syntax and semantics of an abstract OO program-
ming language. We claim that this language is generic enough so that the com-
plexity analysis performed by the type system presented in the next section can
be adapted to most of the well-known OO programs. We also provide a notion
of input and a notion of size of the heap and the stack in order to be able to
discuss the complexity of such programs.

1.1 Abstract Syntax

Expressions, instructions, methods and classes are defined by the following
grammar:

Expressions � e ::= x | n | null | this | true | false | op(e)
| new C(e) | e.m(e) | e.clone()

Instructions � I ::= ; | [τ] x:=e; | x++; | x−−; | I1 I2 | while(e){I}
| if(e){I1}else{I2} | e.m(e); | break;

Methods � mC ::= τ m(τ x){I[return x;]}
Classes � C ::= C [extends D] {τ x; C(τ x){x:=x} mC}

with n ∈ N, the set of integers, x ∈ V, the set of variables, op ∈ O, the set
of operators, C ∈ C, the set of class names and m ∈ M, the set of method
names. [e] denotes some optional syntactic element e and e denotes a sequence
of syntactic elements e1, . . . , en. The τs are type annotations ranging over C ∪
{void, boolean, int}. Each operator comes equipped with a signature of the

390 E. Hainry and R. Péchoux

shape op :: τ1 × · · · × τn → boolean. For simplicity, the signature is restricted
to operators with boolean outputs. It can be extended to general operators but
in this case a restricted typing discipline as in [10] is required for operators as
their computations might increase the data size. The abstract syntax does not
include a for instruction based on the premise that, as in Java, a for statement
can be simulated by a while statement. Let C.F = {x} to be the set of fields in
a class C {τ x; C(τ y){x:=y} mC} and F = ∪C∈CC.F ⊆ V be the set of all fields.
In a method or constructor, the arguments are called parameters. Each variable
declared in an assignment of the shape τ x:=e; is called a local variable. Given a
method τ m(τ1 x1, . . . , τn xn){I [return x;]} of C, its signature is τ mC(τ1, . . . , τn),
the notation mC denoting that m is declared in C. Also notice that there is no field
access in our syntax using the “.” operator. Consequently, all fields are implicitly
private. In contrast, methods and classes are all public. This is not a huge
restriction for an OO programmer since any field can be accessed and updated
in an outer class by writing the corresponding getter and setter. In the particular
case where C extends D, C(τ y){x:=y} is a constructor initializing both the fields
of C and the fields of D. Inheritance defines a partial order on classes denoted
by C � D. For readability, classes are assumed to have exactly one constructor
initializing all the class fields. The only considered primitive data are boolean
values true and false and integer constants. Other primitive data types such
as floats, doubles and characters could be considered and typed as integer values
are by the type system provided in Sect. 2. Notice that overload and override are
both allowed by our Syntax.

OO Programs. A program is a collection of classes together with exactly one
executable Exe{void main(){Init Comp}} with Init, Comp ∈ Instructions. The
instruction Init is called the initialization instruction. Its purpose is to compute
the program input, which is strongly needed in order to define the complexity of
an OO program (if there is no input, all terminating programs are constant time
programs). The instruction Comp is called the computational instruction. The
type system presented in this paper will analyze the complexity of this latter
instruction.

An important point to stress is that, given a program, the choice of initializa-
tion and computational instructions is left to the analyzer. This choice is crucial
for this analysis to be relevant. There are two particular cases:

– In the particular case where the initialization instruction is empty, there will
be no computation on reference type variables apart from constant time or
non-terminating ones, as we will see shortly. This behavior is highly expected
as it means that the program has no input. As there is no input, it means
that either the program does not terminate or it terminates in constant time.

– In the particular case where the computational instruction is empty (that is
“;”) then the program will trivially pass the complexity analysis.

Well-Formed Programs. Throughout the paper, only well-formed programs
satisfying the following conditions will be considered:

Objects in Polynomial Time 391

(i) For each class name C, there is exactly one class within the collection. Mul-
tiple inheritance and inner classes are prohibited.

(ii) A variable appearing in the collection of classes is either a local variable, a
field or a parameter. In order to prevent name clashes, programs are assumed
to be statically transformed up-to α-conversion. Each local variable x is both
declared and initialized exactly once by a τ x := e; instruction before its
first use.

(iii) Each method signature is unique. A method output type is void iff the
method has no return statement.

1.2 Informal Semantics

In this section, we provide an informal semantics of OO programs and introduce
data structures for representing the heap and the stack.

The heap H is represented by a a directed multigraph (V,A). The nodes
in V are references labeled by class names and the arrows in A are labeled
by field names. Given a heap H = (V,A), a stack frame sH = 〈s, p〉 is a pair
composed by a method signature s and a partial mapping p : V ∪ {this} 	→
V ∪ N ∪ {true, false} associating, either a reference in V to some variable in
V of reference type in C or to the current object this, or a primitive value in
N (resp. {true, false}) to some variable of primitive type int (resp. boolean).
Let dom(p) to be domain of p. By abuse of notation, given an expression e of
reference type, let p(e) be the reference of the object corresponding to e.

The stack SH is a LIFO structure of stack frames corresponding to the same
heap H.

The mappings of the stack frames map method’s parameters, current object
and local variables to the references of the arguments on which they are applied.

A memory configuration C is a pair 〈H,SH〉 consisting in a heap H and a
stack SH. The initial configuration C0 is a configuration whose heap only consists
in the null reference node null and whose stack only contains the stack frame
〈void mainExe(), p0〉 ; p0 being a mapping associating each local variable in the
main method to the null reference, whether it is of reference type, and to the
basic primitive value otherwise (true for boolean and 0 for int). The evaluation
of a new operator consists in adding a new node to the heap with arrows pointing
to its fields; thus implementing the dynamic binding principle. Calling a method
e.m(e) of the class C and shape τ m(τ x){. . .} consists in pushing a new stack
frame 〈τ mC(τ), p〉 on the stack with p such that p(this) = p(e) and p(xi) = p(ei).
A call to e.clone() consists in duplicating the subgraph of source p(e) in H. For
simplicity, we assume clone to be evaluated in constant time. Though it is a
deep-copy, this assumption is reasonable as it makes the analysis easier at a
small cost: the polynomial degree of Theorem 1 just differs by one constant as
this method is usually evaluated in linear time.

Example 1. Consider the code in Fig. 1. At line 1, the program starts on the
initial configuration C0. After executing line 4, it ends in a configuration C =
〈H,SH〉 with a heap H = (V,A) represented by nodes and arrows and with a

392 E. Hainry and R. Péchoux

stack S consisting in only one stack frame 〈void mainExe(), p〉 ; the mapping p
being represented by boxed nodes and snake arrows.

Fig. 1. Example of a pointer graph

1.3 Input and Size

Given a program of executable Exe{void main(){Init Comp}}, the input is the
memory configuration C obtained after executing the initialization instruction
Init on the initial memory configuration C0. Consequently, Init is assumed to
be a terminating instruction.
Definition 1 (Sizes). The size |H| of a heap H = (V,A) is defined to be
the number of nodes in V . The size of a mapping p is defined by |p| =∑

x∈dom(p) |p(x)| where the size of a boolean value is 1, the size of an integer
value is the value itself and the size of a memory reference is 1. The size of a
stack frame sH = 〈s, p〉 is defined by: |sH| = 1 + |p|. The size of a stack SH
is defined by |SH| =

∑
sH∈SH |sH|. Finally, the size of a memory configuration

C = 〈H,SH〉 is defined by |C| = |H| + |SH|.
The above definition is robust if we consider boolean values to be 8 (bits) values,
integer values to be 32 (bits) values, ... Indeed, in such a case integers will be
considered as constants so that the upper bounds presented in Theorem1 remain
valid. Notice that the out-degree of a node is bounded by a constant of the
program (the maximum number of fields in a class) and, consequently, bounding
the number of nodes is sufficient to obtain a big O bound on the heap size. The
size of a pointer stack is very close to the size of the usual OO Virtual Machine
stack since it counts the number of nested method calls (i.e. the number of
stack frames in the stack) and the size of primitive data in each frame (that are
duplicated during the pass-by-value evaluation).

2 Type System

The main contribution of the paper, a tier based type system for ensuring poly-
nomial time and polynomial space upper bounds on the size of a memory con-
figuration, is introduced in this section. We first define the notion of tiered types
inspired by tiering on function algebra and we define the notions of typing envi-
ronments and judgments. Then we present and explain the type system rules
and the notion of well-typedness. Finally, we exhibit the main properties of a
well-typed program.

Objects in Polynomial Time 393

2.1 Tiered Types

A tiered type is a pair τ(α) consisting of a type τ ∈ {void, boolean, int} ∪ C

together with a tier α ∈ {0,1}. Given a tiered type, the two projections π1 and
π2 are defined by π1(τ(α)) = τ and π2(τ(α)) = α. The order
 on tiers is such
that 0
 1. Let ∧ and ∨ be the induced min and max operators on set of tiers
and let α, β, . . . denote tier variables.

Given two sequences of types τ = τ1, . . . , τn and tiers α = α1, . . . , αn and a
tier α, let τ(α) denote τ1(α1), . . . , τn(αn), τ(α) denote τ1(α), . . . , τn(α) and 〈τ〉
(resp. 〈τ(α)〉) denote the cartesian product of types (resp. tiered types).

Intuition: Tiers will be used to separate data in two kinds as in Bellantoni and
Cook’s safe recursion scheme [3] where data are divided into “safe” and “normal”
data kinds. Referring to Danner and Royer [7], “normal data [are the data] that
drive recursions and safe data [are the data] over which recursions compute”. In
our setting, tier 1 will be an equivalent for normal data type, as it consists in
data that drive recursion and while loops. Tier 0 will be equivalent for safe data
type, as it consists in computational data storages.

2.2 Typing Environments and Judgments

For a given program, a method typing environment δ maps each variable v ∈ V to
a tiered type. For a given program, a typing environment Δ maps each method
signature τ mC(τ) to a method typing environment δ, i.e. Δ(τ mC(τ)) = δ.

A contextual typing environment Γ = (s,Δ) is a pair consisting of a method
signature and a typing environment. The method signature s in the contextual
typing environment (s,Δ) indicates under which context the fields should be
typed. ∀x ∈ V, define Γ (x) = Δ(s)(x). Also define Γ{x ← τ(α)} to be the
contextual typing environment Γ ′ such that ∀y �= x, Γ ′(y) = Γ (y) and Γ ′(x) =
τ(α).

Intuition: The main reason for defining typing environments this way is to allow
the programmer to type a field with distinct tiers depending on the considered
method. This is the reason why the presented type system has to keep informa-
tion on the context.

Given a contextual typing environment Γ , there are three kinds of typing
judgments:
– Γ � e : τ(α) for expressions, meaning that the expression e is of tier type

τ(α) under the environment Γ ,
– Γ � I : void(α) for instructions, meaning that the instruction I is of tier type
void(α) under the environment Γ ,

– Γ � s : C(β)×〈τ(α)〉 → τ(α) for method signatures, meaning that the method
m of signature s belongs to the class C (C(β) is the tiered type of the current
object this), has parameters of type 〈τ(α)〉 and a return variable of type τ(α),
with τ = void in the particular case where there is no return statement.

Given a sequence e = e1, . . . , en of expressions, a sequence of types τ = τ1, . . . , τn

and a sequence of tiers α = α1, . . . , αn, the notation Γ � e : τ(α) means that
Γ � ei : τi(αi) holds, for all i ∈ [1, n].

394 E. Hainry and R. Péchoux

2.3 Typing Rules

The typing rules for expressions, instructions and methods are provided in
Figs. 2, 3 and 4, respectively.

The intuition is as follows: keeping in mind, that tier 1 corresponds to while
loop guards data and that tier 0 corresponds to data storages (thus possibly
increasing data), the type system precludes flows from tier 0 data to tier 1 data.

Fig. 2. Type system for expressions

Fig. 3. Type system for instructions

Fig. 4. Type system for methods

Objects in Polynomial Time 395

Most of the rules are basic non-interference typing rules following Volpano
et al. type discipline: tiers in the rule premises (when there is one) are equal to
the tier in the rule conclusion so that there can be no information flow (in both
directions) using these rules. These rules can be divided into two categories:

– The unconstrained rules (Int), (Bool), (Null), (Var), (Op), (Self), (Pol), (VA),
(Skip), (Dec), (If), for which the tier is not constrained by the rule. They are
fairly standard and only a few of them need some deeper explanations:

• Primitive constants and the null reference can be given any tier as they
have no computational power (Rules (Int), (Bool) and (Null)). As in Java
and for polymorphic reasons, null can be considered of any class C.

• The rule (Self) makes explicit that the self reference this is of type C and
enforces the tier of the fields to be equal to the field of the current object,
thus preventing “flows by references” in the heap.

• The rule (VA) is the main non-interference rule. It forbids information
flows from a tier to another: it is only possible to assign an expression e
of tier α to a variable x of tier α.

• The rule (If) constrains the tier of the conditional guard e to match the
tiers of the branching instructions I1 and I2. Hence, it prevents assign-
ments of tier 1 variables to be controlled by a tier 0 expression.

– The constrained rules (New), (FA), (Inc), (Brk) and (Wh) for which the tier
is fixed by the rule, for some precise “complexity” purpose:

• The rule (New) checks that the constructor arguments and output all have
tier 0. The new instance has to be of tier 0 since its creation makes the
memory grow (a new reference node is added in the heap). The constructor
arguments have also to be of tier 0. Otherwise a flow from tier 0, the new
instance, to tier 1, one of its fields, might occur.

• In the case of a field assignment (Rule (FA)), all tiers are constrained to
be 0 in order to avoid changes inside the tier 1 graph.

• In rule (Inc), the tier is constrained to be 0 as the integer value increases.
• Rule (Brk) enforces the tier of a break instruction to be 1. This prevents

the programmer from writing conditionals of the shape:

while(x︸︷︷︸
1

){I1 if(y︸︷︷︸
0

){break;︸ ︷︷ ︸
0

} else{I2} I3}

that would break the non-interference property of tiers (see Rule (If)
above). Indeed, in the above example the number of iterations in the
while loop might depend on the value of the tier 0 variable y.

• Rule (Wh) constrains the guard of the loop e to be a boolean expression
of tier 1, thus preventing while loops from being controlled by tier 0
expressions.

Now there only remain some particular rules to discuss:

– The rule (Seq) shows that the tier of the sequence I1 I2 will be the maximum
of the tiers of I1 and I2. It can be read as “a sequence of instructions including

396 E. Hainry and R. Péchoux

at least one instruction that cannot be controlled by tier 0 cannot be controlled
by tier 0” and it preserves non-interference as it is a weakly monotonic typing
rule wrt tiers.

– The recovery is performed thanks to the Rule (ISub) that makes possible to
type an instruction of tier 0 by 1 (as tier 0 instruction use is less constrained
than tier 1 instruction use) without breaking the system non-interference
properties. Notice also that there is no counterpart for expressions as a sub-
typing rule from 1 to 0 would allow us to type x + +; with x of tier 1 while
a subtyping rule from 0 to 1 would allow the programmer to type programs
with tier 0 variables in the guards of while loops.

– Consequently, only a restricted form of subtyping is allowed for expressions.
This is the purpose of Rule (Cln) allowing the programmer to declassify infor-
mation from a tier 1 expression to a 0 expression through the use of the clone
method. Consequently, the tier 0 modifications on the copy will not affect the
original tier 1 object. Notice that the choice to include the clone method as
a primitive construct of the language has been made to make this subtyping
explicit. An alternative would have been to program this method as usual
in any class C and to check in a straightforward manner that the following
judgment can be derived Γ � C clone() : C(1) → C(0).

– Methods typing and polymorphism is handled by rules (Call), (Body) and
(OverR). Rule (Call) just checks a direct type correspondence between the
arguments types and the method type when a method is called. However this
rule is very important as it allows a polymorphic type discipline for fields.
Indeed the contextual environment is updated so that a field can be typed wrt
to the considered method. Rule (Body) shows how to type method definitions.
It updates the environment wrt to the parameters, current object and return
type in order to allow a polymorphic typing discipline for methods: while
typing a program, a method can be given distinct types depending on where
and how it is called. Rule (OverR) deals with overridden method, keeping
tiers preserved, thus allowing standard OO polymorphism.

2.4 Well-Typedness

Given a program of executable Exe{main(){Init Comp}} and a typing environ-
ment Δ, the judgment Δ � Exe : � means that the program is well-typed wrt Δ
and is defined by:

(void mainExe(),Δ) � Init : void (void mainExe(),Δ) � Comp : void(1)

Δ � Exe : �
where � is a judgment derived from the type system by removing all tiers and
tier based constraints in the typing rules. Since no tier constraint is checked in
the initialization instruction Init, the complexity of this latter instruction is not
under control ; as explained previously the main reason for this choice is that
this instruction is considered to be building the program input. In contrast, the
computational instruction Comp is considered to be the computational part of
the program and has to respect the tiering discipline.

Objects in Polynomial Time 397

2.5 Type System Non-Interference Properties

Now we sum up some of the most crucial properties of the presented type system:

Property 1. There is no information flows from tier 0 data to tier 1. The only
flows from tier 1 data to tier 0 is through cloning.

This is due to the non-interference nature of the type system (see Volpano
et al. [16] for more details). The only change imposed by the OO paradigm being
that the current object has the same tier as its fields (rule (Self) of Fig. 2). By
looking carefully at the rules of Fig. 2, we can check that Rule (Cln) is the only
rule allowing flows from 1 to 0. It does not break the property as the data flow
is on a freshly cloned part of the heap.

Property 2. Tier 1 data cannot be altered.

Object creation is restricted to tier 0 by rule (New) of Fig. 2. Moreover, tier
1 references cannot change as field assignments are restricted to tier 0 by rule
(FA) of Fig. 2.

Property 3. Given a program with no recursive method, execution time does not
depend on tier 0 data.

This is straightforward if we do not consider recursive methods as while loop
guards are restricted to be of tier 1 by rule (Wh) of Fig. 3. The next section will
be devoted to putting a restriction on recursive methods in order to extend this
property. Carefully notice that it does not prevent a tier 0 variable to appear in
the guard of a while loop but still the control flow will not depend on it.

3 Safe Recursion

In this section, a safety criterion is provided in order to allow the programmer
to use an admissible but restricted form of recursion. Indeed, Property 3 is valid
under the hypothesis that there is no recursive call. At the present time, a
recursive method might make a recursive call to be controlled by tier 0 data.
This is a highly unwanted behavior. Moreover, even assuming such a Property
to be satisfied, one would still be able to program a multiply recursive method
with an exponential number of recursive calls. The safety criterion eliminates
these two issues.

3.1 Level and Intricacy

Given two methods of signatures s and s′ and names m and m′, define the relation
� on method signatures by s � s′ if m′ is called in the body of m. This relation
is extended to inheritance by considering that overriding methods are called by
the overridden method. Let �+ be its transitive closure. A method of signature
s is recursive if s �+ s holds. Given two method signatures s and s′, s ≡ s′

398 E. Hainry and R. Péchoux

holds if both s �+ s′ and s′ �+ s hold. Given a signature s, the class [s] is
defined as usual by [s] = {s′ | s′ ≡ s}. Finally, we write if s �+ s′ holds
but not s′ �+ s.

We introduce the level and intricacy of instructions and extend them to
programs. The level bounds the number of recursive calls while the intricacy
corresponds to the number of nested while loops.

Definition 2 (Level). The level λ of a method signature is defined by:

– λ(s) = 0 if s /∈ [s] (i.e. the method is not recursive),
– otherwise, setting max(∅) = 0.

Let λ be the maximal level of a method in a given program.

Definition 3 (Intricacy). The intricacy ν of an instruction is defined by:

– ν([[τ] x:=e];) = 0
– ν(x++;) = 0
– ν(x−−;) = 0
– ν(break;) = 0
– ν(I1 I2) = max(ν(I1), ν(I2))
– ν(if(x){I1}else{I2}) = max(ν(I1), ν(I2))
– ν(while(x){I}) = 1 + ν(I)

Let ν be the maximal intricacy of an instruction within a given program.

Both intricacy and level are bounded by the size of their program.

3.2 Safety Restriction

Now some side restrictions on recursive methods are provided to ensure that their
flow is only controlled by tier 1 variables and to prevent exponential growth rate.

Definition 4 (Safety). A well-typed program wrt a typing environment Δ is
safe if for each recursive method τ m(τ x){I [return x;]}:
1. there is at most one call to some m′ ∈ [m] in the evaluation of I,
2. there is no while loop inside I, i.e. ν(I) = 0,
3. and (s,Δ) � τ mC(τ x) : C(1) × 〈τ(1)〉 → τ(α) can be derived and the call to

m is a 1 instruction.

Remark 1. Notice that safety is a generalization of the safe recursion on notation
(SRN) scheme by Bellantoni and Cook [3]. Indeed a function SRN function can
be defined (and typed) in our setting:
f(int x, τ y){

int res := 0 ;

if(x == 0){ res := g(y;)}

else{if(x%2 == i){res := hi(f(x/2,y)); }}

return res;

}

If f output is of tier 0 (i.e. computes something) then hi will not be able to
recurse on it. Clearly, the above program fullfills the above Definition for some
typing context Γ such that Γ (x) = Γ (y) = int(1).

Objects in Polynomial Time 399

4 Boolean Lists as an Illustrating Example

Consider the class BList encoding integers as linked lists of bits and including
a field value of type boolean and a field tail of type BList. Suppose that this
class comes with a getter and a setter:

BList getTail(){return tail;}
void setTail(BList q){tail := q;}

They can be typed by:

– Γ � BListgetTail() : BList(α) → Blist(α), α ∈ {0,1}, by Rules (Body)
and (Self). The tier of the current object has to match the tier of the tail
because of Rule (Self). However it still can be 0 or 1 depending on the object
on which the method is called. Recall that methods are polymorphic in our
typing discipline and two distinct calls can be sometimes given distinct tiers.

– Γ � void setTail(BListq) : BList(0) × Blist(0) → void(0) by Rules
(Body), (Self) and (FA). Here the tiers of the field and the parameter are
forced to be 0 by Rule (FA) and, consequently, the tier of the current object
is enforced to be the same by Rule (Body).

We can then type the methods concat and length below. We write eα (resp.
I : α) to denote that e (resp. I) is of tier α w.r.t. the environment Γ .

void concat(BList other) {

BList o1 := this1;

BList t0 := this.clone ()0;

while (o.getTail ()1 != null) {

o1 := o.getTail ()1;

t0 := t.getTail ()0;

}

t.setTail(other0);

}

int length () {

int res0 := 0;

if (tail1 != null) {

res0 := tail.length ()0; : 1 //using (Isub)

res ++; :0
} :1 //using (ISub)

else {;}

return res0;

}

Γ � voidconcat(BListother) : BList(1) × BList(0) → void(1).
Γ � intlength() : BList(1) → int(0).

The recursive method length satisfies conditions 1 and 2 of Definition 4. It
can be typed by BList(1) → int(0) and it is called in a tier 1 instruction.
Consequently, the program is safe. Moreover, the program obtained is clearly

400 E. Hainry and R. Péchoux

terminating. Its intricacy ν is equal to 0, since there is no nested while loops in
its methods, and its level λ is equal to 1, since there is one level of recursion in
the method length. Consequently, it terminates in time O(|C|) on input C by
Theorem 1 (see the next section).

5 Characterization of Polynomial Time

In this section, we show the main result of our paper: a characterization of the
class of functions computable in polynomial time by a Turing Machine, known
as FPtime, with respect to safe and terminating OO programs. We first show
the soundness by providing a polynomial upper bound on the time of such kind
of programs. Then we prove the completeness by simulating polynomial time
Turing Machines by safe and terminating programs. We conclude by showing
that type inference can performed in polynomial time.

5.1 Polynomial Time Soundness

Let n1 be the number of tier 1 variables in the whole program wrt the typing
environment under consideration.

Theorem 1 (Soundness). If a program is safe and terminates on input C then
it does terminate in time O(|C|n1(ν+λ)).

Proof. By Property 1 there is no information flow from tier 0 to tier 1. Con-
trol flow in while loops and recursive calls only depends on tier 1 variables by
Property 3 and by definition of safety. Moreover tier 1 variables cannot point
out of the initial pointer subgraph by Property 2. Consequently, if the program
terminates such a variable has at most |C| possible distinct values during the pro-
gram execution. Otherwise it contradicts the termination assumption. Indeed if
the same program pointer instruction is encountered during the execution of
one program with the same tier 1 values in the heap then an infinite loop is
reached as programs are deterministic. Consequently, there can be only |C|n1

distinct configurations restricted to tier 1 variable (by restricted we mean that
two configurations only differing on tier 0 variables are supposed to be equal).
Finally, the level λ, intricacy ν and constant n1 are used to compute the global
upper bound. Indeed, the unfolding of while and recursive calls can generate a
complexity in O((|C|n1)(ν+λ)).

5.2 Polynomial Time Completeness

We start to show that any polynomial can be computed by a safe and terminating
program. By abuse of notation, we will use the notation Δ(mC) in all the examples
when the method signature is clear from the context. Consider the following
method of some class C computing addition:

Objects in Polynomial Time 401

add(int x, int y){

while(x1 >0){

x1 --; : 1
y0++; : 0

}

return y0;

}

It can be typed by C(β) × int(1) × int(0) → int(0), for any tier β, under the
typing environment Δ such that Δ(addC)(x) = int(1) and Δ(addC)(y) = int(0).
Notice that x is enforced to be of tier 1, by typing rules (Wh) and (Op) as it
appears in the guard of a while loop (the operator > keeping the tier unchanged
in rule (Op)). Moreover y is enforced to be of tier 0, by typing rule (Inc).

Consider the below method encoding multiplication:

mult(int x, int y){

int z0 := 0;

while(x1 >0){

x1 --;

int u1 := y1;

while(u1 >0){

u1 --;

z0++;

}

}

return z0;

}

It can be typed by C(β) × int(1) × int(1) → int(0), for any tier β, under the
typing environment Δ such that Δ(multC)(x) = Δ(multC)(y) = Δ(multC)(u) =
int(1) and Δ(multC)(z) = int(0). Notice that x and u are enforced to be of
tier 1, by typing rules (Wh) and (Op). Moreover y is enforced to be of tier 1,
by typing rule (VA) applied to instruction intu = y;, u being of tier 1. Finally,
z is enforced to be of tier 0, by typing rule (Inc), as its stored value increases in
z++;.

Consequently, any polynomial can be computed by using a composition of
the two above methods.

Theorem 2 (Completeness). Each function computable in polynomial time
by a Turing Machine can be computed by a safe and terminating program.

Proof. We show that every polynomial time function over binary words, encoded
using the class BList, can be computed by a safe and terminating program.
Consider a Turing Machine TM , with one tape and one head, which computes
within nk steps for some constant k and where n is the input size. The tape
of TM is represented by two variables x and y which contain respectively the
reversed left side of the tape and the right side of the tape. States are encoded
by integer constants and the current state is stored in the variable state. We
assign to each of these three variables that hold a configuration of TM the tier 0.
A one step transition is simulated by a finite cascade of if-commands of the form:

402 E. Hainry and R. Péchoux

if(y.getHead()0){
if(state0 == 80){

state0 = 30; : 0
x0 =new BList(false, x0); : 0

y0 = y.getTail()0); : 0
}else{. . . : 0}

}

The above command expresses that if the current read symbol is true and
the state is 8, then the next state is 3, the head moves to the right and the
read symbol is replaced by false. The methods getTail() and getHead() can
be given the types (see the Example of Sect. 4 for more details) BList(0) →
BList(0) and BList(0) → boolean(0), respectively. Since each variable inside
the above command is of tier 0, the tier of the if-command is also 0. As shown
above, any polynomial can be computed by a safe and terminating program: we
have already provided the programs for addition and multiplication and we let
the reader check that it can be generalized to any polynomial.

5.3 Decidability of Type Inference

Theorem 3 (Decidability of type inference). Deciding if there exists a typ-
ing environment s.t. a program is well-typed can be done in polynomial time in
the size of the program.

Proof. The type inference problem can, be reduced to 2-SAT. Notice that the
number of distinct tiered types that can be given to a method is bounded by the
number of calls in the program and thus bounded by the program size. Indeed
the type checking is a static analysis performed on the code. Consequently, this
problem can be solved in linear time. Types can be checked in linear time in the
size of the program as typing mainly consists in checking type annotations with
respect to method signatures, operator signatures and attributes declarations.
We encode the tier of each attribute x within the method m of class C by a
boolean variable xmC that will be true if the variable is of tier 1, false if it is of
tier 0 in the context of mC. All local variables and parameters can be encoded by
a single variable as their tier is independent from the context. Each instruction
generates some constraints. For example, in the case of an assignment x := y;
in the context mC, we have to check π2(Δ(mC)(x))
 π2(Δ(mC)(y))), which can
be represented as (ymC ∨ ¬xmC). All these constraints generate a conjunction of
such clauses which are in number linear in the size of the program. As a result,
the type inference problem is reduced to 2-SAT and can be solved in polynomial
time.

6 Methodology of the Presented Analysis

The OO program complexity analysis presented in this paper can be summed up
by the above figure. In a first step, given a program P of a given OO programming

Objects in Polynomial Time 403

language, we first apply a transformation step in order to obtain the program P̃
of our abstract language. This transformation contains the following steps:

– convert syntactical constructs of the source language in P to constructs in the
abstract OO language. In particular, transform for into while.

– for all public fields of P , write the corresponding getter and setter in P̃
– for each constructor in P , write a corresponding factory in P̃ (and just keep

the basic constructor for object instantiation)
– α-rename the variables so that there is no name clashes in P̃ .

P P̃
Poly
cert.

Term.
cert.

transform safety

termination

All these steps can be performed in polynomial time and the program abstract
semantics is preserved. Consequently, P terminates iff P̃ terminates.

In a second step, we can perform in parallel a termination check and a safety
check. The termination certificate can be obtained using existing tools such
as [4,6,8,9] (as the semantics is preserved, the check can also be performed on
the original program P or on the compiled bytecode). If both succeed, Theorem 1
ensures polynomial time termination. In the safety check, a polynomial time type
inference (Theorem 3) is performed together with a criterion check on recursive
methods. This latter check is generally undecidable because of condition 1 of
Definition 4. However it is very easy to restrict syntactically this condition so
that the check becomes decidable (e.g. restrict a recursive call to appear at most
once in a conditional branching).

7 Expressivity and Open Issues

The expressivity of the presented analysis is good. Most polynomial programs
over inductive data types such as linked lists and trees are captured (in particular
BC’s Safe recursion on notation). It also handles while loops guarded by objects
and circular data structure. This is new.

Let us highlight that the expressivity of the method can be improved by a
compositional type check: even if an instruction I = I1 . . . In fails the safety
check, if each of the Ii passes the safety check then we can consider that I
succeeds. Indeed, a bounded composition of polynomials remains polynomial.

We could also add operators with outputs distinct from booleans. In such a
case, a restriction on the size of their computations is required (see [10] for more
details).

A characterization of polynomial space based on the same methodology and
OO threads is expected to be highly plausible.

404 E. Hainry and R. Péchoux

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoret. Comput. Sci. 413(1), 142–159 (2012)

2. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-
calculus. In: Logic in Computer Science, LICS, pp. 266–275 (2004)

3. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-
time functions. Comput. Complex. 2, 97–110 (1992)

4. Ben-Amram, A.M., Genaim, S., Masud, A.N.: On the termination of integer loops.
In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 72–87.
Springer, Heidelberg (2012)

5. Cachera, D., Jensen, T., Pichardie, D., Schneider, G.: Certified memory usage
analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol.
3582, pp. 91–106. Springer, Heidelberg (2005)

6. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

7. Danner, N., Royer, J.S.: Ramified structural recursion and corecursion. In: CoRR
abs/1201.4567 (2012). http://arxiv.org/abs/1201.4567

8. Gulwani, S.: SPEED: symbolic complexity bound analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009)

9. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static esti-
mation of program computational complexity. In: POPL 2009, pp. 127–139. ACM
(2009)

10. Hainry, E., Marion, J.-Y., Péchoux, R.: Type-based complexity analysis for fork
processes. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794,
pp. 305–320. Springer, Heidelberg (2013)

11. Hofmann, M., Schöpp, U.: Pure pointer programs with iteration. ACM Trans.
Comput. Log. 11(4), 26 (2010)

12. Kersten, R., Shkaravska, O., van Gastel, B., Montenegro, M., van Eekelen,
M.C.J.D.: Making resource analysis practical for real-time Java. In: JTRES, pp.
135–144 (2012)

13. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fun-
dam. Inf. 19(1/2), 167–184 (1993)

14. Leivant, D., Marion, J.-Y.: Evolving graph-structures and their implicit compu-
tational complexity. In: Fomin, F.V., Freivalds, R.U., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 349–360. Springer, Heidelberg
(2013)

15. Marion, J.Y.: A type system for complexity flow analysis. In: Logic in Computer
Science, LICS, pp. 123–132 (2011)

16. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2/3), 167–188 (1996)

http://arxiv.org/abs/

Programming Models

Programming Techniques for Reversible
Comparison Sorts

Holger Bock Axelsen1(B) and Tetsuo Yokoyama2

1 DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
funkstar@di.ku.dk

2 Department of Software Engineering, Nanzan University, Nagoya, Japan
tyokoyama@acm.org

Abstract. A common approach to reversible programming is to
reversibly simulate an irreversible program with the desired function-
ality, which in general puts additional pressure on the computational
resources (time, space.) If the same running time is required, ensuring a
minimal space overhead is a significant programming challenge.

We introduce criteria for the optimality of reversible simulation:
A reversible simulation is faithful if it incurs no asymptotic time overhead
and bounds the space overhead (the garbage) by some function g(n), and
hygienic if g is (asymptotically) optimal for faithful simulation.

We demonstrate the programming techniques used to develop faith-
ful and hygienic reversible simulations of several well-known comparison
sorts, e.g. insertion sort and quicksort, using representations of permu-
tations in both the output and intermediate additional space required.

1 Introduction

Reversible computing studies computation models that exhibit both forward and
backward determinism. This field has a long history, and although usually moti-
vated by the promise of lower energy consumption qua the thermodynamics of
computation, is now increasingly seen to be important in connection with quan-
tum computing, which e.g. relies on reversible computing methods for significant
parts of quantum circuit synthesis and design (e.g. as subroutines.)

A general task in reversible computation models is the simulation of irre-
versible functionality, and the key problem for simulation is dealing with erasure.
Any data erased in a simulated irreversible program must be collected and assem-
bled to preserve reversibility. This assembled garbage data takes up extra space
both during and after the computation, and minimizing garbage has been a sig-
nificant goal for reversible computation. General reversible simulation methods
have been extensively studied, especially in terms of time/space tradeoffs (see
e.g. [12] and references therein.) However, very little has been done in the field
of reversible programming, not even for specific algorithm families, despite the
importance of finding reversible algorithms that do not significantly deteriorate
the asymptotics (i.e. use excessive time or space) compared to the irreversible
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 407–426, 2015.
DOI: 10.1007/978-3-319-26529-2 22

408 H.B. Axelsen and T. Yokoyama

versions. The problem is well-recognized in other subfields, e.g. in reversible and
quantum logic synthesis and design, where minimizing the number of (output)
garbage lines and ancillae (temporary) lines is a central challenge [2,13].

In this paper we focus on developing a family of efficient reversible comparison
sorts with asymptotically optimal (minimal) garbage, while also keeping the
running times of the irreversible counterparts. Reversible sorts have numerous
applications, and analysis and programming techniques for reversible sorts are
effectively reusable elsewhere. A key point is that we want the auxiliary garbage
to be reusable between the various algorithms, to make the solutions as modular
as possible. Now, for sorting of an array of length n, it is not difficult to see
that Θ(n log n) bits (encoding a permutation) will suffice for the output garbage
(see e.g. [12, Chap. 15]), but the central problem is how to achieve, in practice,
efficient information storage and retrieval from minimized garbage at runtime.
Using a general reversible simulation method (history embedding, or the input-
copying compute-copy-uncompute method [3], see also below) will not work, as
the garbage size will often exceed the lower bound: these methods always use a
trace of the size of the running time, even when the optimal garbage is smaller.

Some prior work on reversible sorting exists: In MOQA quicksort uses rank
(a number in the range [0, n! − 1] representing the permutation) to ensure
injectivity, although not actual reversibility [6]. Yokoyama et al. used ranks
for generating a reversible insertion and merge sort [15]. Lutz and Derby used
direct representations of permutations for a pioneer attempt at reversible bub-
ble sort [9], although unfortunately their program does not work correctly. Hall
used factorial representation (also in array form) in an input-copying out-of-place
reversible insertion sort. Despite the worst case number of comparisons being
quadratic, the garbage size is in this way reduced to n�log2 n� (= Θ(n log n)) [7].
The Reverse C compiler [12, Chap. 10] generates reversible simulations of (a sub-
set of) C programs, and is applicable to sorting programs. However, this tool
defaults to using a history embedding in nearly all cases.

Based on this, we propose to use direct and factorial (factoradic) representa-
tions of permutations for both the intermediate and output garbage of reversible
comparison sorts, and show how this facilitates their programming. The tech-
niques apply to many different sorts, and the representations can be efficiently
converted into each other (or into ranks) if needed. Our main contributions are:

– The notions of faithful and hygienic reversible simulation are introduced: A
faithful simulation incurs no asymptotic time overhead, and bounds the space
overhead by some given function g(n). If g(n) cannot be lowered asymptoti-
cally, the simulation is called hygienic (Sect. 2.)

– New hygienic reversible versions of sorting programs are developed for in-place
insertion sort, bubble sort, and selection sort using factorial representation;
and merge sort and quicksort using direct representation (Sect. 3.)

– We uncover several unconventional relations among reversible sorts, where
garbage and code are shared in novel ways, including an identity permuta-
tion trick that yields a two-pass reversible simulation (with optimal output
garbage), for any comparison sort (Sect. 3.)

Programs can be run on the online interpreter at topps.diku.dk/pirc/sorts.

Programming Techniques for Reversible Comparison Sorts 409

2 Preliminaries

In ordinary programming languages, we usually write programs that lose infor-
mation during computation, and we have to do so when implementing many-
to-one functions. However, in reversible programming languages (e.g. [9,14]) the
information is preserved in each computation step, and so only injective functions
can be implemented. A language is said to be r-Turing-complete if all injective
computable functions are in range [1,3].

For any function f : X → Y , there exists injective functions f ′ : X → Y ×G
for some G such that for all x ∈ X, fst(f ′(x)) = f(x), where fst is the projection
fst(x, y) = x. We say that f ′ is an injectivization of f . The G output is only used
to make f ′ injective, and is in this sense irrelevant to the original Y output. In
reversible computing terms G is called output garbage.

2.1 Reversible Simulations

Let IR be an (irreversible) language and R be a reversible language. A reversible
R-program q is a reversible simulation of IR-program p iff fst([[q]]R(x)) = [[p]]IR(x)
for all x, i.e. [[q]]R is an injectivization of [[p]]IR. A reversible simulation q of p
is called clean if it produces only the original output of p, but no garbage, i.e.
[[q]]R : X → Y × 1 where 1 is the unit type.

Clearly, we can only have clean reversible simulations of programs that
compute injective functions. For non-injective functions, we need a concept to
describe that some reversible simulations behave better in terms of garbage than
others. We say that q is a faithful reversible simulation of p with garbage bound
g : N → N, if there is a constant c, which may depend on p (and R), but not on
the program input x, such that the following three conditions hold:

– bounded garbage output: |snd([[q]]R(x))| ≤ c · g(|x|) for all x,
– no asymptotic time overhead: timeRq(x) ≤ c · timeIRp (x) for all x,
– at most g extra space: spaceRq(x) ≤ c · (spaceIRp (x) + g(|x|)) for all x,

where |z| is the size of data z in the binary representation. Here, timeLp(d) rep-
resents the number of execution steps (or application of semantic rules or some
other reasonable measure of time) of a program p for an input d in a language
L, and spaceLp(d) represents the maximum space usage (e.g. the size of the heap
and stack) during the execution of a program p for an input d in a language L.

The first condition states that the garbage size is bounded by g(|x|). What
we want to emphasize here is that g depends only on the size of x but not the
content of x. The second condition states that the reversible simulation q has
the same time complexity as the irreversible counterpart p. The intuition of the
third condition is that any extra space is dedicated to garbage manipulation.

A faithful reversible simulation q of p is called hygienic with garbage bound
g if there is no q’ and h(n) = o(g(n)) such that q’ is a faithful reversible
simulation of p with garbage bound h. That is, a hygienic simulation is time-
wise the best we can hope for: it is (asymptotically) optimal in its garbage usage
and it does not violate the time complexity of the program it simulates.

410 H.B. Axelsen and T. Yokoyama

2.2 The Janus Reversible Programming Language

The reversible algorithms in this paper are implemented in an extended version
[14] of the reversible programming language Janus developed in 1982 [9]. Janus
is a simple imperative language, essentially C-style syntax with a few key differ-
ences to ensure reversibility. To make the text as self-contained as possible, we
here provide a brief introduction to the language.

As a concrete example, below is a Janus procedure to compute the factorial
function. Given a natural number n (≥ 0) and zero-cleared res (meaning res
is 0), the procedure factorial sets res to n! with n left unchanged:
1 procedure factorial(int n, int res)
2 res += 1
3 local int i = 0 // { res = 0! }
4 from i = 0 loop // After one loop { i �= 0 }
5 i += 1 // { res = (i − 1)! }
6 local int tmp = res * i // { res = (i − 1)!, tmp = i! }
7 res <=> tmp // { res = i!, tmp = (i − 1)! }
8 delocal int tmp = res / i // { res = i! }
9 until i = n // Exit with { res = n! }

10 delocal int i = n

The base types of Janus variables are integers, and arrays and stacks of integers.
The atomic statements (e.g. lines 2, 5, 7 above) are reversible updates of variables
relative to their existing content, rather than absolute assignment. For this, C’s
shorthand for compound assignment +=, -=, and =̂ is used. As an example, the
compound assignment x += y*3 is allowed, but the simple assignment x := 3
is not. We require that the left-hand assignment target does not occur in the
right-hand expression (or in the index expression if the left-hand side is an array
cell), to avoid otherwise irreversible updates like x -= x. The <=> statement
swaps variable values. Control flow operators in Janus use runtime assertions to
orthogonalize join points, and ensure reversibility. Thus, the conditional state-
ment if e1 then s1 else s2 fi e2 works almost like an ordinary if-then-else,
but the expression e2 must evaluate to true when exiting the then branch, and
false when exiting the else branch, and this is enforced at run-time. Similarly,
the reversible loop statement from e1 do s1 loop s2 until e2 requires the entry
assertion e1 to be true at the first entry to the loop, and false in every sub-
sequent iteration. The do-statement s1 is executed between testing the entry
and exit expressions, and the loop-statement s2 between exit and entry. Local
variables are declared using the local statement initializing a (fresh) variable
to the value of given expression. For reversibility, these are paired with delocal
(un)declarations, which remove variables from scope by zero-clearing them using
programmer-given expressions, the correctness of which is enforced at run-time
(see lines 3 & 10, and 4 & 6.) A call statement can be used for procedure calls
using pass-by-reference parameters. An unconventional feature of Janus is the
possibility of inverse procedure invocation with the uncall statement, which
runs the called procedure body backward.

Assume that factorial is invoked by a call. The initially zero-cleared res
is set to one at line 2. Each loop updates the value of res to res × i by using
temporary variable tmp, satisfying the invariant {res = i!}. The loop repeats

Programming Techniques for Reversible Comparison Sorts 411

until the index i reaches n. Then res is n!, and the local variable i is removed.
Input and output of procedures (the values of the parameters) are related by
the semantic function. For example, [[factorial]]Janus(5, 0) = (5, 120), although
keep in mind that parameters are still pass-by-reference.

For brevity, we shall employ a fair amount of syntactic sugar in this paper:
this includes declaring/removing multiple local variables simultaneously (e.g.
local int x = 0, int y = 1, ...). When the meaning of any further sugar
is not intuitively obvious, this will be explained in the text.

Since we are dealing with reversible simulations of irreversible programs, for
the base irreversible language we shall also use Janus, but with two small modi-
fications: we add the irreversible statement emit(x) which erases (zero-clears) x
and elide the uncall statement (as emits cannot be rolled back.) A central diffi-
culty when writing reversible Janus procedures is to invent the proper assertions
for conditionals and loops to specify which direction the control comes from, and
to find proper expressions to deallocate local variables. Generally, the invention of
assertions is known to be challenging (see [11], and references therein.) However,
if we can emit data, it is straightforward to implement irreversible programs.
An absolute assignment can be mimicked by initially zero-clearing the target
with emit. For control flow, a fresh variable can be used to temporarily store
where the control came from, and subsequently emitted afterwards. For example,
to implement an irreversible conditional if e1 then s1 else s2, we allocate a
fresh variable t before the reversible conditional, add the assignment t += 1 to
the then branch and use the assertion t = 1 to reversibly merge the branches.
Afterwards, we discard t’s value with emit(t) and deallocate. In similar fashion,
one can implement ordinary irreversible loops, deletion of variables, and other
irreversible behavior fairly easily by vigorous use of emit.

Code is written in typewriter font. Mathematical objects, semantic values
and metavariables are written in italic fonts. We use a[m..n] to indicate the
subarray of a[] with the n−m+1 elements between the m-th to n-th elements
(inclusive), if m ≤ n, and an empty array, otherwise. Array values are denoted
as italic fonts with subscripts; the value of a[i] is denoted as ai.

3 Comparison Sorts

We shall consider reversible comparison sorts that take an unordered array of
length n (≥ 1) and return an ordered array (together with garbage.) Our aim
is in all cases to implement reversible versions of existing comparison sorts such
that the reversible programs perform the same number of comparison/exchange
operations, on the same elements, and in the same order, as the irreversible
comparison sort would on the same input.

Sorting for an array of length two or greater is generally irreversible, in the
sense that multiple input arrays are transformed into the same ordered array. If
we have an array of distinct elements, the number of possible starting permuta-
tions is n!. To distinguish n! cases, in binary representation we need garbage of
at least �log2(n!)� bits (= Θ(n log n).)

412 H.B. Axelsen and T. Yokoyama

In this section we iteratively construct reversible simulations of major com-
parison sorts. We optimize intermediate and output garbage as low as the asymp-
totically optimal hygienic bound1 g(n) = Θ(n log n).

3.1 Bubble Sort

Table 1. The operation of bubble sort for
{2, 5, 4, 0, 3, 1}. The right table gives the fac-
torial representation used in bsort4.

Unsorted array
2 5 4 0 3 1
0 2 5 4 1 3
0 1 2 5 4 3
0 1 2 3 5 4
0 1 2 3 4 5
0 1 2 3 4 5

Sorted array

Zero cleared array
0 0 0 0 0 0
1 1 1 0 1 0
2 2 2 0 1 0
2 3 3 0 1 0
2 4 3 0 1 0
2 4 3 0 1 0

Factorial representation

Bubble sort rearranges the array
a[0..n-1] in place to be in order.
First, it compares the rear two val-
ues an−1 and an−2 and exchanges
the content of a[n-1] and a[n-2]
if they are out of order. This contin-
ues with the preceding entries a[n-2]
and a[n-3], a[n-3] and a[n-4], and
so on. In the process, the small-
est element is moved sequentially to
the front, until it is placed in a[0].
This whole process is repeated on the
(unordered) subarrays a[i..n-1] for i = 0, 1, . . . , n − 1. Each repetition moves
the proper minimal element to the first entry of the subarray a[i..n-1] so
eventually all the elements are ordered.

The left table of Table 1 shows how bubble sort works on a six element
array. The unsorted array at the top becomes a sorted one at the bottom. The
underlined elements are slided to the right by one element in each loop iteration.
The elements under the jagged line are known to be at the final position in the
array.

A straightforward program for (irreversible) bubble sort is obtained by
adding, to the ordinary bubble sort, assertions of reversible loops, reversible con-
ditionals, reversible deallocation of variables using emits as outlined in Sect. 2.
1 procedure bsort_irev(int a[], int n)
2 local int i = 0, int t1 = 1
3 from t1 = 1
4 do emit(t1)
5 loop local int j = n - 1, int t2 = 1, int t3 = 0
6 from t2 = 1
7 do emit(t2)
8 loop if a[j-1] > a[j] then
9 a[j-1] <=> a[j]; t3 ^= 1

10 fi t3 = 1
11 emit(t3); j -= 1
12 until j = i // { a[0..i] is ordered }
13 emit(j)
14 delocal int j = 0, int t2 = 0, int t3 = 0
15 i += 1
16 until i = n
17 emit(i)
18 delocal int i = 0, int t1 = 0

1 This bound can depend significantly on the data structures used. For list sorting,
which returns a redundant representation of the sorted array, no garbage is needed.

Programming Techniques for Reversible Comparison Sorts 413

The temporary variables t1–t3 are at least of size one, and i and j are at least
of size �log2 n� and �log2(n− 1)�. In the outer loop, t1 and j are emitted n+ 1
and n times. In the inner loop, t2 and t3 are emitted 1

2 (n2 + n) and 1
2 (n2 − n)

times. Variable i is emitted once. The amount of emitted bits is Ω(n2) and is
thus greater than asymptotic minimum Θ(n log n) discussed above.

Many of the emit statements and the use of local variables can be removed by
observations on the counter variables i and j. The outer loop increments counter
i from 0 to n, and the inner loop decrements counter j from n−1 to i. Therefore,
the assertions on the entries of the outer and inner loops can be replaced with
i=0 and j=n-1, respectively, and the final values of the counter variables at the
end of the loop execution can be used to deallocate the counter variables. This
obviates the preceding emit statements and the use of local variables t1 and t2,
but does not change the asymptotic complexity of the amount of emitted bits
because of the emission of the contents of t3. In what follows we shall use such
simple refinements without further explanation.

History Embedding. In comparison sorts we compare and, if necessary, swap a
pair of elements a, b. Since two precursor states (either a, b or b, a) are merged into
a single state (unless a = b), one bit of information is lost. Specifically, in , the use
of local variable t3 and the emission of its content cannot be obviated by local
analysis. A simple method to reversibly compensate for the lost information is to
add this bit to garbage data. If we collect the information from each comparison
as garbage, then garbage (and space) use of the reversible simulation are of size
1
2 (n2 − n). Using a stack gb for this yields the following code:

1 procedure bsort1(int a[], int n, stack gb)
2 local int i = 0
3 from i = 0
4 loop local int j = n - 1
5 from j = n - 1
6 loop if a[j] < a[j-1]
7 then a[j-1] <=> a[j]
8 push(1,gb) // push control garbage
9 else push(0,gb) // push control garbage

10 fi top(gb) = 1
11 j -= 1
12 until j = i // { a[0..i] is ordered }
13 delocal int j = i
14 i += 1
15 until i = n
16 delocal int i = n

such that bsort1 is a reversible simulation of , i.e., for all a and n,
fst([[bsort1]]Janus(a, n)) = [[]]Janus+Emit(a, n). The number of garbage bits accu-
mulated by bsort1 is 1

2 (n2 − n), provided that push only pushes one bit at a
time to stack gb. Note that the comparisons performed are exactly the same (and
in the same order) as that of , so the time complexity is unaffected, and thus
bsort1 is a faithful reversible simulation of with garbage Θ(n2). This technique
can be regarded as an instance of the Landauer embedding, cf. [1,3].

414 H.B. Axelsen and T. Yokoyama

Call-Uncall Convention. Such garbage can be reversibly canceled and
replaced with the original input by what is known as the Bennett trick [3].
In Janus, the uncomputation (or Lecerf reversal) of a procedure call is realized
by its inverse invocation (using an uncall) with the same parameters as the
original call [14]:
1 procedure bsort2(int a[], int n, int b[])
2 local stack gb = nil
3 call bsort1(a,n,gb)
4 call xcopyArray(a,b,n) // Copy a[] to zero cleared b[]
5 uncall bsort1(b,n,gb) // Clear gb and set original a[] to b[]
6 delocal stack gb = nil

Let k be the bit size of elements of the array a[]. The size of the output garbage
for bsort2 is always nk. Note that this does not produce a faithful simulation
with O(nk) garbage, as the intermediate space usage by gb is still Θ(n2).

The Identity Permutation Trick. A variant of the call-uncall convention can
return a (direct) permutation as garbage if it uncalls bubble sort bsort1 with
an identity permutation p[]:
1 procedure bsort3(int a[], int n, int p[]) // { pk = k for all k }
2 local stack gb = nil
3 call bsort1(a,n,gb)
4 uncall bsort1(p,n,gb)
5 delocal stack gb = nil

Since the sorted a[] and identity permutation p[] have the i-th smallest element
at index i the invocation of bsort1(p,n,gb) takes exactly the same path as the
inverse invocation of bsort1(a,n,gb) in the opposite direction. The size of
the elements in p[] need not be larger than �log2 n�, so the permutation can
be simply represented in n�log2 n� bits (= Θ(n log n)), which is asymptotically
optimal. We refer this programming technique as the identity permutation trick.

This observation provides a free source of a useful theorem: For any irre-
versible comparison sort, there is a reversible comparison sort that returns
garbage in the form of a permutation of the same length as the input, with
the same (asymptotic) running time for each input array.

Even though the garbage size at the end of this reversible simulation is asymp-
totically optimal, bsort3 has two shortcomings. First, bsort3 as well as bsort2
is a two pass program; bsort1 is both called and uncalled in the body, and
counting up and down of counter variables in bsort1 is performed twice, which
adds to the time overhead. Second, the reversible simulation is not hygienic. The
intermediate garbage size Θ(n2) is still asymptotically greater than the optimal
garbage size Θ(n log n). Still, this trick transforms intensional garbage related
explicitly to the inner workings of bubble sort into extensional garbage related
only to the functionality of sorting in general.

Programming Techniques for Reversible Comparison Sorts 415

bsort1

bsort4 bsort2
bsort3

outputinput

time

space

O(n)2

{nk}
{nk + n log n}
{2nk}

Fig. 1. Time/space of reversible bubble sorts.

Strictly speaking, before call-
ing bsort3(a,n,p) we need to
prepare an identity permutation of
length n to zero cleared p[]. How-
ever, this only requires time Θ(n)
and does not affect the asymptotic
behavior of the reversible simula-
tion. Thus, in the following discus-
sion on complexity we can ignore
the process.

Figure 1 provides a conceptual
view of the intermediate garbage
behavior of the reversible bubble
sorts in this paper. The maximum space used by bsort1–bsort3 is proportional
to the execution time. Procedures bsort2 and bsort3 have slightly different
peaks and different garbage size at the end. This is because they use differ-
ent garbage representation; in this particular diagram we assume that log2 n
is smaller than the bitsize k of the elements we sort. During the latter half of
computation bsort2 keeps an extra array of size nk for the output garbage,
while bsort3 keeps a permutation of size n�log2 n�. Later we shall see bsort4,
which has output garbage of same size as bsort3, but is a single-pass hygienic
algorithm with (intermediate) garbage Θ(n log n).

3.2 Insertion Sort

(Back-to-front) insertion sort maintains the ordered subarray a[j+1..n-1] and
in each iteration (for j = n − 1, . . . , 0) adds a[j] to the subarray, by compar-
ing and exchanging aj with aj+1, aj+2,. . ., until a[j..n-1] are ordered. In the
worst case insertion sort performs 1

2 (n2 − n) comparisons, but in the best case
just n−1. If we naively add a garbage bit for each comparison, i.e., apply the his-
tory embedding, then the (garbage) space complexity of the resulting reversible
simulation is O(n2) and Ω(n). We can then further apply the techniques of the
call-uncall convention, and the identity permutation trick (as described above
for bubble sort) to transform this reversible simulation into a program with a
more useful output garbage representation. (We omit the concrete programs from
this paper.) These reversible simulations are all faithful, but with (intermediate)
garbage bound g(n) = n2, so they are not hygienic.

To further optimize the intermediate garbage of reversible comparison sorts,
and in particular in order to obtain a hygienic solution, it appears that we have
to use both problem and algorithm specific knowledge.

Permutations as Intermediate Garbage. Our first attempt at a hygienic
insertion sort is to use permutations not just as output, but also for the interme-
diate garbage data structure. Let p[] be initialized to the identity permutation.
Every time we swap two elements in the input array a[], we swap the corre-
sponding entries with the same indices in the permutation array p[]:

416 H.B. Axelsen and T. Yokoyama

1 procedure isort1(int a[], int n, int p[]) // { pk = k for all k }
2 local int j = n-1
3 from j = n-1 loop // insert aj into the ordered subarray a[j+1..n-1],

{ pk = k for any k = 0, . . . , j }
4 local int i = j
5 from i = j
6 loop a[i] <=> a[i+1]
7 p[i] <=> p[i+1]
8 i += 1 // { pi = j }
9 until i = n-1 || a[i] <= a[i+1] // { a[j..n-1] is ordered }

10 // zero clear i // isort2 diff:
11 uncall min(i,p,j,n-1) //+ from p[i]=j loop i-=1 until i=j
12 delocal int i = 0 //+ delocal int i=j
13 j -= 1
14 until j = -1
15 delocal int j = -1

After each iteration of the inner loop2 of line 5–9, the element initially stored
at the j-th position is inserted at the index i of the ordered subarray a[j + 1..
n-1] where the elements of a[j + 1..i] has been shifted to the left by one
element. The auxiliary procedure min(i,p,l,r) sets (initially zero cleared) i to
the index k such that pk is the minimum in pl, . . . , pr, using O(r − l) time and
O(r − l) space. Therefore, the inverse invocation of min(i,p,l,r) zero clears
i if pi is the smallest element in pl, . . . , pr. Since min(i,p,j,n-1) traverses all
the elements in p[j..n-1] for any j, unfortunately isort1 takes Θ(n2) time.3

Because insertion sort can be sub-quadratic for some inputs, isort1 is not a
faithful reversible simulation of . Here again, we ignore the preprocess setting an
identity permutation to p[]. This is an example that manipulation of garbage
can affect the asymptotic behavior of reversible simulation.

However, we can improve on this by the following observation. Because the
inserted element is originally stored at the j-th position in a[] and pj = j, pi
must be j after the insertion. Without changing the meaning, we can replace
lines 11–12 with the statements in the comments. Call the resulting procedure
isort2. Then, for each outer loop iteration, the two inner loops have exactly
the same number of iterations. Therefore, isort2 takes Θ(n) time at best.

The intermediate and output garbage of the bubble sort, the permutation p[]
of length n, can be represented in Θ(n log n) space (which is the hygienic bound.)
Since the asymptotic time complexity of isort2 and is the same for each input
(a, n), there is some constant c such that timeJanusisort2(a, n) ≤ c ·timeJanus+Emitisort irev (a, n)
for any a and n. Therefore, reversible program isort2 is a hygienic reversible
simulation of . It should be noted that the notion of faithfulness is quite sensitive
to the time behaviour of the program it is a reversible simulation of. For instance,
although bsort3 is a faithful bubble sort, it is not a faithful reversible simulation
of insertion sort: even though both are O(n2), on some inputs insertion sort will
be linear, which breaks the condition that a faithful simulation must conserve
the time complexity on all inputs.
2 If i=n holds at line 9, the loop terminates without evaluating expression
a[i-1] <= a[i] with the out-of-bounds index n, by using short-circuit evaluation.

3 The non-variable actual argument n-1 is syntactic sugar for a fresh variable allocated
with value n − 1 before the call, and deallocated with value n − 1 afterwards.

Programming Techniques for Reversible Comparison Sorts 417

Unfortunately, we see that isort2 uses two inner loops to simulate a single
inner loop of in two passes. Next, we shall change the permutation representation
which leads to a one-pass inner loop.

Factorial Representation as Garbage. Hall observed that although the
worst-case number of comparisons is Θ(n2), the intermediate garbage size of
an input-copying reversible4 insertion sort can be reduced down to Θ(n log n),
since the outcome of the comparisons uniquely define a permutation in factorial
representation [7]. We apply this idea to an in-place reversible insertion sort:
1 procedure isort3(int a[], int n, int d[])
2 local int j = n - 1
3 from j = n - 1 do
4 local int i = j
5 from i = j
6 loop a[i-1] <=> a[i]; i += 1
7 until i = n || a[i-1] <= a[i] // {a[j-1..n-1] is ordered}
8 d[j-1] += i - j
9 delocal int i = d[j-1] + j

10 j -= 1
11 until j = 0
12 delocal int j = 0

Given an unordered array a and an initially zero cleared array d, procedure
isort3 returns an ordered array a together with garbage array d. For each i,
array element di represents how many times the element initially placed at the
index i of array a is moved to the right when it is inserted into the ordered array
a[i+1..n-1] (when i = n−1 the ordered subarray is empty and therefore dn−1

is always zero). That is, di is equal to the number of elements that are smaller
than ai in the initial subarray a[i + 1..n-1]. By this construction array d is a
(decreasing) factorial representation of the sorting permutation, with 0 ≤ di ≤
n − i − 1 for 0 ≤ i ≤ n − 1 [4], and has n! distinct values. If each element of d
is of size �log2 n�, the garbage size is the asymptotically optimal Θ(n log n). A
factorial representation can be efficiently transformed into an integer or rank of
the permutation, with the same number of bits [4].

Table 2 shows how insertion sort isort3 works on a six element array. In
the left table, the unordered array a at the top becomes an ordered array at
the bottom. The elements under the diagonal line are already known to be
sorted. In the right table, the zero cleared array d at the top becomes a factorial
representation at the bottom. The elements under the diagonal are known to
be the final values. Thus, in insertion sort, each element of d is set only once
and never changed. In the left table, the element just left of the line is inserted
into the ordered subarray on the right, where the underlined elements have been
moved once to the left by the previous insertion. Note how this corresponds
directly to the value to the right of the diagonal in d: at the m-th iteration, the
number of interchanged elements is stored in d[n − m − 1]. This value dn−m−1

is used to directly deallocate the counter variable i of the inner loop at line 9 in
4 We remark that Hall’s instruction set is only reversible when programmer discipline

is employed, and in fact contains a number of irreversible instructions.

418 H.B. Axelsen and T. Yokoyama

isort3. Intuitively, if we know how deep an element is inserted, we can uniquely
determine which element it is and what the previous ordered subarray was.

Table 2. The intermediate arrays and decreas-
ing factorial representation of insertion sort
isort3 for a sample array {2, 5, 4, 0, 3, 1}.

Unsorted array a
2 5 4 0 3 1
2 5 4 0 1 3
2 5 4 0 1 3
2 5 0 1 3 4
2 0 1 3 4 5
0 1 2 3 4 5

Sorted array a

Zero cleared array d
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 3 0 1 0
0 4 3 0 1 0
2 4 3 0 1 0

Factorial representation d

Thus, with optimal garbage,
and only constant overhead in
each loop iteration, the reversible
program isort3 is a hygienic
reversible simulation of the
irreversible insertion sort
.

A dual to the decreasing fac-
torial representation we use is
known as the inversion table,
whose i-th element contains the
number of elements to the left of
i that are greater than i in the original array. Inversion tables can be used for
analyzing properties of (conventional) sorting algorithms [8, Chap. 5].

3.3 Hygienic Bubble Sort

Building on the hygienic reversible insertion sort development we shall now define
a hygienic reversible bubble sort. The key to this is to consider the relation
between the two algorithms as sorting networks.

Insertion sort and bubble sort are identical when considered as parallel sort-
ing networks [8, Sect. 5.3.4]. Each vertical line in such a network contains an
array element, and each horizontal edge is a comparison/swap operation. An
unordered array is input at the top and a sorted result is obtained at the bot-
tom. Figure 2 shows the network (twice) in action on a sample array; horizontal
edges with arrowheads indicates that elements on the lines were swapped, and
edges without arrows indicates that they were not swapped. In Fig. 2(b) travers-
ing the (beige) boxes from the upper left to the lower right, and in each box
from upper right to lower left, gives the order of comparison/swap operations
exactly as done in a bubble sort. In Fig. 2(a) traversing the (gray) boxes from the
upper right to the lower left, and each box from upper left to lower right, leads
to an insertion sort. Our hygienic reversible insertion sorts count the number
of exchanges for each gray box in Fig. 2(a), and stores this in array d, which is
exactly the factorial representation at the end.

The factorial representation used in insertion sort contains exactly enough
information to compensate for the information lost by each comparison/swap
operation of bubble sort. In particular, note that the value of the intermediate
factorial representation for some specific comparison, will be the same, regardless
of whether we build the representation in the order of the gray boxes in Fig. 2(a)
or the beige boxes in Fig. 2(b). Thus, we can build the same factorial represen-
tation as in insertion sort, but in the order of the bubble sort comparisons, and
use this for the assertions we need.

We show the solution in form of the reversible program bsort4:

Programming Techniques for Reversible Comparison Sorts 419

2 5 4 0 3 1

0 1 2 3 4 5

Unordered array

Ordered array

Factorial
representation

1

0

3

4

2

0

(a) Insertion sort

2 5 4 0 3 1

0 1 2 3 4 5

Unordered array

Ordered array

(b) Bubble sort

Fig. 2. A parallel sorting network in action as both insertion sort and bubble sort.

1 procedure bsort4(int a[], int n, int d[])
2 local int i = 0
3 from i = 0
4 loop local int j = n-1
5 from j = n-1
6 loop if a[j] < a[j-1] then
7 a[j-1] <=> a[j]; d[j-i-1] += 1
8 fi d[j-i-1] = i + 1
9 j -= 1

10 until j = i // { a[0..i] is ordered }
11 delocal int j = i
12 i += 1
13 until i = n
14 delocal int i = n

Let us return to Table 1, which shows how bsort4 behaves. The underlined
elements in the left table are those slided to the right in each iteration, i.e. those
for which the horizontal edges in Fig. 2 have arrows. In the right table we see
how the corresponding factorial representation is iteratively built in the order
of the bubble sort comparisons, cf. the beige boxes in Fig. 2(b). As a subsidiary
result, this means that call isort1(a,n,d); uncall bsort4(a,n,d) will be
the identity, as the procedures generate exactly the same output garbage.

While it was not obvious how to compress the run-time space usage of a
reversible bubble sort, the connection to insertion sort provided the key insight
of using the factorial representation for this as well. The reversible program
bsort4 is a hygienic reversible simulation of .

3.4 Selection Sort

Another closely related sorting algorithm is selection sort. Selection sort repeat-
edly finds the greatest element of the remaining unordered subarray and lines

420 H.B. Axelsen and T. Yokoyama

them up in the ordered subarray, front to back. Using the programming tech-
niques developed above, it is not difficult to construct a hygienic reversible selec-
tion sort with garbage in the form of a permutation or factorial representation.
Here, we instead show a non-trivial relationship: the non-faithful reversible inser-
tion sort isort1 can be directly used to realize a (hygienic) reversible selection
sort, through code sharing.

In isort1, the initial p[] does not actually need not be the identity per-
mutation; the algorithm will still work if p[] is simply an ordered array.
Thus, given an unordered array a[] and identity permutation p[], call
isort1(a,n,p) is functionally equivalent to uncall isort1(p,n,a). Further, in
such an inverse invocation of isort1, the inverse procedure invocation uncall
min(i,p,j,n-1) in the inner loop in line 11 becomes call min(i,p,j,n-1),
which exactly identifies the minimum element pi of the remaining subarray
p[j..n-1]. The other inner loop of isort1 will move this element to pj . There-
fore, given the procedure isort1, we can realize a reversible selection sort sim-
ply by swapping a[] and (identity permutation) p[] and inverting the sorting
process:
1 procedure ssort(int a[], int n, int p[])
2 uncall isort1(p,n,a)

Thus, although isort1 was not even a faithful reversible insertion sort, this is
a hygienic reversible simulation of the corresponding irreversible selection sort.

Note that the intermediate garbage data of isort1 and ssort in forwards
direction are different, as procedure isort1 generates its ordered subarray
from back to front while ssort does this front to back. Moreover, if call
ssort(a,n,p) is stable, so is uncall ssort(p,n,a), and vice versa (where
min(i,p,j,n-1) sets i to the index of the leftmost minimum element.) This
is because elements of the same value are not interchanged by the loop in lines
5–9 in isort1.

3.5 Merge Sort

Merge sort follows the divide-and-conquer approach. It recursively divides the
array in the middle until we have arrays of length zero or one. Such subarrays
are already ordered and thus conquered. Then, it recursively merges two ordered
arrays into a single ordered array, until, eventually, the entire array is ordered.

Since merge sort is Θ(n log n) time, its history embedding reversible simu-
lation becomes hygienic. However, such garbage will depend on the algorithm
(and implementation), preventing us from reusing garbage across algorithms.
Further, the hidden constant of such a history embedding may be quite large.
In this subsection, we therefore construct a reversible (stable) merge sort, with
minimal garbage in the form of a permutation in direct representation.

The reversible procedure merge in Fig. 3 merges the ordered subarrays
a[l..m] and a[m+1..r] into ordered subarray a[l..r]. It takes a[l..r], per-
mutation p[l..r], and the middle index m between l and r as parameters. We

Programming Techniques for Reversible Comparison Sorts 421

Fig. 3. Merging two sorted subarrays.

allocate zero-cleared temporary arrays b[], c[], , and of length r+1 at line 2,5

and deallocate them at line 33. The first and second loops moves the elements
with index l, . . . ,m in the data array a[] and permutation p[] to b[] and ,
and those with index m + 1, . . . , r to c[] and . Line 16 sets sentinels (used to
avoid considering empty arrays) at the end of subarrays b[] and c[]; we assume
INF is greater than any other element in a[]. The loop in lines 19–29 iteratively
compares the heads of subarrays b[] and c[], and moves the smaller element
back to array a[]. Accordingly, the elements of permutations in and are moved
back to the original array p[]. Now, before the procedure call p[l..m] will con-
tain the (distinct) values {l, . . . ,m} and p[m+1..r] will contain {m+ 1, . . . , r},
although not necessarily in order. Thus, it is straightforward that line 27 is able
to disambiguate the incoming control flow correctly. Furthermore, after the pro-
cedure call p[l..r] contains the values {l, . . . , r}. When all the elements are
moved back to the original array a[l..r], now in order, the sentinels are zero
cleared at line 32.

We use the procedure to sort the elements in subarray a[l..r]:
1 procedure msort_sub(int a[], int l, int r, int p[])
2 if l < r then
3 call msort_sub(a,l,(l+r)/2,p)
4 call msort_sub(a,(l+r)/2+1,r,p)
5 call merge(a,l,(l+r)/2,r,p)
6 fi l < r

5 The size of the auxiliary arrays in merge is not optimized, in order to make the
indexing clearer in the presentation.

422 H.B. Axelsen and T. Yokoyama

If l < r, i.e., the subarray a[l..r] has two or more elements, the former half
and the latter half elemens are independently sorted by two procedure calls of .
The results are merged by procedure merge.

Finally, procedure msort is a wrapper procedure that passes the index of the
first element 0 and the last element n − 1 of arrays a[] and p[]:
1 procedure msort(int a[], int n, int p[])
2 call msort_sub(a,0,n-1,p)

where p[] is initially an identity permutation. (This means that the assertion
at line 27 of merge never fails.) msort is a hygienic reversible simulation of the
corresponding conventional irreversible merge sort.

3.6 Quicksort

Like merge sort, quicksort uses the divide-and-conquer method. We construct a
stable reversible quicksort based on simple pivot selection.

Procedure partition processes subarray a[l..r]. It uses the rightmost ele-
ment a[r] as a pivot, rearranges the subarray a[l..r] into a[l..q-1] whose
elements are smaller than or equal to the pivot and a[q+1..r] whose elements
are greater than the pivot, and moves the pivot to a[q]. The permutation array
p[] preserves the lost information of the division; during the dividing process, it
moves the elements of array p[], such that whenever a[i] is set, p[i] contains
the original position of the element placed there. p[l..r] is assumed to hold an
increasing subsequence on entry to partition, so in particular, the permuta-
tion element p[r] corresponding to the pivot element a[r] will be the maximum
value in p[l..r]. This will be important below. The procedure uses two auxil-
iary arrays for manipulating data t[] and . The original position of t[i] should
be equal to whenever t[i] is set.
1 procedure partition(int a[], int l, int r, int q, int p[])
2 local int t[r-l] = {0}, int p_t[r-l] = {0}
3 local int j = l
4 from j = l
5 loop if a[j] <= a[r] then // a[r] is the pivot
6 q += 1
7 a[q] <=> a[j] // move a[j] to a[q]
8 p[q] <=> p[j] // move p[j] to p[q]
9 else

10 t[j-q-1] <=> a[j] // move a[j] to t[j-q-1]
11 p_t[j-q-1] <=> p[j] // move p[j] to p_t[j-q-1]
12 fi (q >= l) && (j-q-1 = -1 || p[q] > p_t[j-q-1])
13 j += 1
14 until j = r + 1
15 delocal int j = r + 1
16

17 local int k = 0
18 from k = 0 // move t[0..r-q-1] to a[q+1..r]
19 loop a[q+1+k] <=> t[k] // move t[k] to a[q+1+k]
20 p[q+1+k] <=> p_t[k] // move p_t[k] to p[q+1+k]
21 k += 1
22 until k = r - q
23 delocal int k = r - q
24 delocal int t[r-l] = {0}, int p_t[r-l] = {0}

Programming Techniques for Reversible Comparison Sorts 423

The assertion at line 12 relies on short-circuit evaluation: If q >= l does not
hold (in case no element in the subarray turned out to be greater than pivot
a[r]), then j-q-1 = -1 and p[q] > p t[j-q-1] are never evaluated. Dually,
if j-q-1 = -1 holds, p[q] > p t[j-q-1] is never evaluated. Finally, in case we
did swap elements, then this is reflected in whether p[] or holds the larger index.

To guarantee that assertion at line 12 always holds, we rely on the assumption
that p[l..r] is in increasing order before the procedure call of partition. Note
that in particular then p[l..q] and p[q+1..r] will be increasing subarrays after
the procedure call, which we exploit recursively in the qsort procedure.

Procedure partition uses auxiliary arrays t[] and of size r−l+1, and runs
in Θ(r − l) time. Unfortunately, partition is not in-place, contrary to conven-
tional irreversible quicksort programs. Still, because p[q] holds the maximum
we can erase the pivot pointer q after each partition.

The following procedure implements reversible quicksort:
1 procedure qsort(int a[], int l, int r, int p[])
2 if l < r then
3 local int q = l - 1
4 call partition(a,l,r,q,p) // ends with pivot at a[q]
5 call qsort(a,l,q-1,p)
6 call qsort(a,q+1,r,p)
7 uncall max(q,p,l,r) // zero clear q
8 delocal int q = 0
9 fi l < r

The top-level call to quicksort is qsort(a,0,n-1,p) where p[] is an identity
permutation. Because of this and the pre- and post-condition of p[l..r] of
partition, the recursive calls to qsort each consider a subarray p[l..r] in
increasing order. Therefore, the assertions in partition never fail. The only
remainder after the recursive calls is the pivot pointer q, but by construction
this points to the largest permutation element (initially in p[r]), and is thus
easily identified and removed. For this we use the procedure max, which is com-
pletely analogous to the min procedure used in isort1. This provides us with a
hygienic faithful reversible simulation (although not in-place) of the correspond-
ing conventional irreversible quicksort (using the same choice of pivots.)

4 Concluding Remarks

In this paper we showed reversible programming techniques to enable reversible
comparison sort programs to be more efficient, in terms of both time and
space usage, than ones generated by general reversible simulation [3], even by
asymptotic orders of magnitude. This was facilitated by unique reversible pro-
gramming techniques such as efficient garbage representation and unconventional
code sharing. We developed a family of reversible comparison sorts with bet-
ter performance than previously known reversible sorts in terms of space usage,
number of passes, and/or garbage representation. The resulting programs include
several hygienic faithful reversible simulations of comparison sorts, i.e. reversible
implementations which have the same time complexity as their irreversible coun-
terparts, and optimal (minimal) space overhead.

424 H.B. Axelsen and T. Yokoyama

It turns out that certain garbage representations are more suitable for
programming some types of sorts than others; factorial permutation represen-
tation is suitable for reversible bubble sort and direct permutation represen-
tation is suitable for reversible quicksort, but the converse does not appear to
be the case. Furthermore, the direct and factorial representations can be easily
interpreted, which aids modularity between sorts, while other forms, such as
rank, usually cannot. Still, these garbage representations can be efficiently and
reversibly transformed to each other by clean reversible simulations of existing
translations (e.g. [4,5,10], see Appendix A.) Choosing between these garbage
representations is thus not essential from the viewpoint of asymptotic efficiency.

We believe the concepts identified here are also useful in other domains than
comparison sorts. The notion of faithfulness and hygienicity can be used as crite-
ria both for judging the efficiency of reversibilized programs, and using appropri-
ate garbage representations can facilitate and guide reversible programming in
general. However, this study also shows that reversible algorithmics cannot rely
on simply combining generic reversible computing techniques with irreversible
algorithms; domain analyses are required to get efficient solutions.

Acknowledgements. H.B. Axelsen was supported by the Danish Council for Inde-
pendent Research | Natural Sciences under the Foundations of Reversible Computing
project. T. Yokoyama was supported by MEXT KAKENHI 25730049.

A Converting Between Permutation Representations

Factorial Representation to Rank. Procedure decfac2rank takes a
decreasing factorial representation d[], its length n, and zero-cleared
rank as arguments, and returns the lexicographic rank (in rank) of the
decreasing factorial representation, with d[] zero-cleared (n is preserved):

Direct to Factorial Representation. Procedure perm2decfac is based on
an irreversible unranking algorithm by Bonet [4]. The procedure converts from
the direct permutation p[] of length n to decreasing factorial representation
d[] using an intermediate tree data structure (here in the form of the array

Programming Techniques for Reversible Comparison Sorts 425

t[] which is initially and finally zero cleared). The key idea of the algo-
rithm is to use the tree t[] to perform the count of how many elements
in p[i+1..n-1] are smaller than p[i] in a logarithmic number of updates:

We use syntactic sugar in the expressions: the power operator **, which we
assume to run in constant time for powers of two (e.g. as realized by left rota-
tion), and the function , which evaluates to �log2 n�. Executable versions are
available at topps.diku.dk/pirc/sorts.
The tree t[] has root t[1] and the left and right children of node t[i] are t[2i]
and t[2i+ 1] for any i (≥ 1). The call to (code not shown) at line 23 sets each
node in the tree to two to the power of its height (how many times it is visited.)
reversibly simulates the irreversible codelet [4]:

for i = 0 to �log2 n� do

for j = 1 to 2i do t[2i + j - 1] := 1 << (�log2 n� - i)

Rank to Direct Representation. The implementations decfac2rank and
perm2decfac above are reversible and in particular garbage-free, so each proce-
dure can cover conversion in both directions. For instance, the inverse invocation
uncall decfac2rank(d,n,r) converts the rank r to the length n factorial rep-
resentation d[] (initially zero-cleared), clearing r in the process. Further, we can
implement the remaining conversions between permutation and rank by subse-
quent calls to perm2decfac and decfac2rank.

References

1. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

426 H.B. Axelsen and T. Yokoyama

2. Axelsen, H.B., Thomsen, M.K.: Garbage-free reversible integer multiplication with
constants of the form 2k±2l±1. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 171–182. Springer, Heidelberg (2013)

3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

4. Bonet, B.: Efficient algorithms to rank and unrank permutations in lexicographic
order. In: Workshop on Search in Artificial Intelligence and Robotics. AAAI (2008)

5. Dijkstra, E.W.: Program inversion. In: Bauer, F.L., Broy, M. (eds.) Program
Construction: International Summer School. LNCS, vol. 69, pp. 54–57. Springer,
Heidelberg (1979)

6. Early, D., Gao, A., Schellekens, M.: Frugal encoding in reversible MOQA: a case
study for quicksort. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581,
pp. 85–96. Springer, Heidelberg (2013)

7. Hall, J.S.: A reversible instruction set architecture and algorithms. In: Proceedings
of Physics and Computation, pp. 128–134. IEEE Press, New York (1994)

8. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing, 2nd edn. Addison Wesley Longman Publishing Co. Inc., Boston (1998)

9. Lutz, C.: Janus: A time-reversible language. Letter to R. Landauer (1986)
10. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time. Inf.

Proc. Let. 79(6), 281–284 (2001)
11. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-

Schauß, M. (ed.) RTA. LIPIcs, vol. 10, pp. 283–298. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl (2011)

12. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2013)

13. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Heidelberg (2010)

14. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible program-
ming language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press,
New York (2008)

15. Yokoyama, T., Axelsen, H.B., Glück, R.: Minimizing garbage size by generating
reversible simulations. In: Proceedings of Networking and Computing, pp. 379–387.
IEEE Press, New York (2012)

Transactions on Mergeable Objects

Deepthi Devaki Akkoorath(B) and Annette Bieniusa

University of Kaiserslautern, Kaiserslautern, Germany
{akkoorath,bieniusa}@cs.uni-kl.de

Abstract. Destructible updates on shared objects require careful han-
dling of concurrent accesses in multi-threaded programs. Paradigms such
as Transactional Memory support the programmer in correctly synchro-
nizing access to mutable shared data by serializing the transactional
reads and writes. But under high contention, serializable transactions
incur frequent aborts and limit parallelism. This can lead to a severe
performance degradation.

In this paper, we propose mergeable transactions which provide a con-
sistency semantics that allows for more scalability even under contention.
Instead of aborting and re-executing, object versions from conflicting
updates on shared objects are merged using data-type specific semantics.
The evaluation of our prototype implementation in Haskell shows that
mergeable transactions outperform serializable transactions even under
low contention while providing a structured and type-safe interface.

Keywords: Concurrent programming · Transactional memory ·
Mergeable objects · Relaxed consistency

1 Introduction

In imperative programming languages, data structures are in general mutable,
and updates are executed in-place. Therefore, the effect of an update is immedi-
ately reflected on the data structure. If the data structure is shared between mul-
tiple threads, the programmer must synchronize potential concurrent accesses
to shared state to prevent memory corruption and often ensure progress by ren-
dering updates visible to all threads.

Data structures that implement an abstract data type are often called objects
(akin to objects in object-oriented programming). The correctness condition that
is traditionally applied to shared concurrent objects is linearizability [12]. An
object is linearizable if the result of concurrent operations is equivalent to some
legal sequential execution of these operations. For example, concurrent incre-
ments of a linearizable counter have to be executed in a sequential order to
prevent the loss of updates. This limits the inherent parallelism of an applica-
tion and imposes high cost due to synchronization.

In contrast, (purely) functional programming languages, such as Haskell’s
core language, employ referential transparency. Pure functions do not update
destructively. Thus, data structures are immutable by default. Though
c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 427–444, 2015.
DOI: 10.1007/978-3-319-26529-2 23

428 D.D. Akkoorath and A. Bieniusa

immutability implies thread-safety, it limits how concurrently running threads
can exchange information. To overcome this restriction, Haskell offers different
monadic interfaces supporting in-place updates and shared memory synchro-
nization, the most prominent being: IO references (IORef), mutable references
(MVars), and transactional variables (TVars).

For example, shared references to an (immutable) data item of type a can
be encapsulated as IO references IORef a. IO references are intialized when
created, and can be operated on using the following functions:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

In addition, the function atomicModifyIORef allows to atomically apply a func-
tion on the referenced object in a thread-safe way:

atomicModifyIORef :: IORef a -> (a -> (a,b)) -> IO b

All calls to atomicModifyIORef need to be serialized to achieve atomicity for
reading and modifiying the value. Haskell’s MVars impose even more synchro-
nization by blocking access to objects between calls to takeMVar and putMVar.

Transactional variables (TVars) provide a very similar interface, though their
access is restricted to memory transactions. Transactions in this context are
sequences of reads and writes that are transparently synchronized by the Soft-
ware Transactional Memory (STM) system [9]. All operations on TVars within a
transaction are executed atomically, and isolated from concurrent threads, thus
providing a consistent view of the state. Yet again, when transactions concur-
rently operate on the same TVar, with at least one thread updating the variable,
the operations conflict. Transactions thus fail their serializability certification
check and have to re-execute [21].

Semantically, serializability is unnecessarily strict for a multitude of applica-
tions. For example, Fig. 1 shows the code snippet for kmeans clustering from the
STAMP benchmark suite [16]. The K-means algorithm partitions n data points
into k clusters such that the total distance for the data point to their respective
cluster centre is minimized. Classical TMs serialize all transactions that access
the same cluster center. However, the only requirement for correctness of the
algorithm is that after all points are processed newcenter and numElems must
contain the sum of all points and the number of points that belong to that clus-
ter, respectively. Even with relaxed transactions [5,18,19], conflicts and hence
aborts can still arise when updates cannot be serialized.

To optimize the synchronization on shared mutable data structures, we intro-
duce mergeable objects. Instead of blocking or aborting updates to objects for
serializability, updates are first applied to thread-local object versions. Instead
of a get/set interface, mergeable objects therefore implement abstract data types
with type-specific read and update operations. When committing the locally per-
formed changes to shared memory, the different versions of an object are merged
based on the object’s semantics. Updates become visible to other threads only
after the merge operation is called.

Transactions on Mergeable Objects 429

Fig. 1. Kmeans: Computations by a thread using serializable transactions.

We propose Mergeable Transactional Memory (MTM) based on mergeable
objects with relaxed consistency semantics (Sect. 3). Similar to snapshot iso-
lation, MTM transactions read from a consistent snapshot and operate concur-
rently on shared objects. Instead of aborting and re-executing in case of conflicts,
transactions commit their changes by merging states of concurrently updated
objects. All updates from a transaction become visible together. An efficient
merge operation enables MTM to execute multiple updates in parallel to other
threads and execute the merge inside the critical section.

If newcenter and numElems in Fig. 1 are represented using mergeable coun-
ters (Sect. 2) instead of raw integers, transaction can commit by merging the
values, thus eliminating aborts. Moreover, we can rewrite the algorithm from
Fig. 1 to Fig. 2 where a transaction (represented by eventually) process all
points. MTM then executes it without synchronisation with other threads, thus
allowing more parallelism. With serializable transactions, this would result in
more conflicts and sequential execution of transactions.

Fig. 2. Kmeans: Larger transactions using MTM

The paper makes the following contributions:

– We introduce the notion of mergeable objects and propose a classification of
mergeability (Sect. 2).

– We introduce a programming model, MTM based on mergeable objects and
transactions, and describe an algorithm for implementing the model (Sect. 3).

430 D.D. Akkoorath and A. Bieniusa

– We present a prototype implementation of MTM in Haskell (Sect. 4) and eval-
uate several use cases (Sect. 5).

2 Mergeable Objects

Instead of a get/set interface, mergeable objects implement abstract data types
with type-specific operations. The update operations on mergeable object thus
differ from that of linearizable objects in imperative programming; the latter
provides in-place updates while operations on mergeable objects conceptually
modify a local copy of the object. The result of updates on mergeable objects
is visible to other threads only after the merge operation is called. Depending
on the actual data types, mergeability of objects can be achieved in two ways,
semantic mergeability and structural mergeability.

Semantic Mergeability: Exploiting object semantics to define the merge function
has been successfully applied in Conflict-free Replicated Data Types (CRDTs)
[23] in the context of distributed database systems. State-based CRDTs rely on
lattice-based monotonic data values where the merge computes the least upper
bound. Operation-based CRDTs re-execute updates that were issued on the
local object instance against the global object, therefore requiring commutativity
of concurrent updates to achieve consistency despite different orders of update
application at the different replicas.

Fig. 3. Linearizable Counter in (a) Java and (b) Haskell.

Fig. 4. Mergeable counter in Haskell.

As an example, consider a shared counter that can be incremented concur-
rently by different threads. Figure 3 shows implementations with explicit syn-
chronization in Java and in Haskell. For the mergeable counter in Fig. 4, the

Transactions on Mergeable Objects 431

increment operations are collected and combined locally into a variable v, while
a separate merge operation integrates the results of the local operations into the
global state.

The merge operation for the counter in this case is trivial as all update oper-
ations commute. In general, CRDTs employ a number of mechanisms to achieve
deterministic results for objects with non-commutative operations, e.g. main-
taining tombstones for sets where elements can be added and removed. While
CRDTs have been successful in avoiding costly synchronization in replicated
data stores, employing the known specifications of CRDTs in multi-/many-core
programs seems prohibitively expensive. In our work, we therefore focus on vari-
ants of CRDTs that are optimized for multi-/many-core programs.

Structural Mergeability: While the merge operation for the counter can be imple-
mented in a simple and efficient way, we have to employ different strategies for
larger, composed data structures such as lists and sets. We adopt techniques that
have been developed in the context of persistent data structure [7]. A persistent
data structure is a mutable data structure that offers accessibility to multiple
versions. This technique is widely used to implement purely functional data
structures efficiently, in particular linked data structures such as lists, trees etc.
When multiple threads modify the data structure, each thread executes updates
on a thread-local version of the object, without the need for copying the entire
data structure into thread-local storage. The merge operation is then reduced
to adjust pointers in the local and global version to incorporate the updates in
the global version; hence the name structural mergeability. The merge operation
must preserve the semantics of the abstract data type by resolving potential
semantic conflicts due to concurrent updates.

Fig. 5. Structural mergeability of bags.

As an example for structural mergeability, consider an add-only bag imple-
mented as a persistent linked list. A bag is a set data structure allowing duplicate
elements to be added. Here, threads can concurrently add elements without vio-
lating its semantical correctness. An implementation of a mergeable version of

432 D.D. Akkoorath and A. Bieniusa

the bag is illustrated in Fig. 5. The head points to the first node of the global
version accessible to all threads. Adding an element to the bag adds a new node
at the head of the linked list local to the thread. This results in a multi-headed
list. Figure 5a shows the bag after threads T1 and T2 have added two and three
elements, respectively, and before merging. The list pointed to by T1 represents
the view of the bag to thread T1, similarly for T2. Both versions share the nodes
of the elements that have been added before the threads started. When merging
T1, it updates the global head to point to T1 (Fig. 5b). When merging T2, it has
to update both the global head and the local tail of T2 to include changes of
T1 in the merge (Fig. 5c). The merge of an add-only bag is efficient because it
requires manipulation of only two pointers.

3 Mergeable Transactions

To leave the triggering of the merge to the programmer poses a number of issues.
For example, the programmer might forget to call the function at all. Merging
updates to different objects is not atomic, thus possibly violating invariants. We
therefore enhance the programming model for mergeable objects with a weak
form of transactions.

Mergeable Transactional Memory (MTM) allows to compose operations on
shared objects. Akin to STM, MTM guarantees atomicity, isolation and (weak)
consistency for dynamic transactions. In contrast to STM, conflicting updates
from concurrently executed transactions do not lead to aborts, but are merged
during commit.

MTM does not provide serializability. Instead it provides a weak consistency
described by the following properties:

– commits are totally ordered.
– reads and updates satisfies the program order.
– All reads from a transaction are guaranteed to observe a consistent prefix of

the committed updates, and preceding updates from the same transaction.
– The consistent prefix includes previously committed updates from the current

thread, thus obeying the program order.

3.1 Operational Semantics of MTM

To specify the consistency semantics of MTM transactions, we introduce a call-
by-need core calculus, Λmtm, with an operation semantics based on transition
rules. Figure 6 shows the syntax of Λmtm. It relies on disjoint sets of variables
(V ar) and references (Ref). A value is either a reference r, a mergeable value
m, a function, a monadic return, an integer i or unit ().

Expressions are given as values, variables, function application, monadic
bind, thread fork, MTM transactions, and arithmetic expressions. The expres-
sions marked in gray do not appear in source programs, but represent dynami-
cally generated locations and intermediate system states arising during commits.

Transactions on Mergeable Objects 433

Fig. 6. Syntax of Λmtm.

Fig. 7. State-related definitions.

A program state P ;Θ is a pair consisting of a thread pool P (partial map-
ping of thread identifiers to expressions) and a heap Θ (Fig. 7). A reference l
corresponds to an object allocated on the heap Θ. Dereferencing Θ(l) yields the
associated object, while a heap update Θ[l �→ e] returns a heap that is identical
to Θ, but maps l to e. Similarly, we denote updates in the thread pool P by
P{t �→ e}.

The evaluation of a program starts in an initial state {t0 �→ e}; ∅ with an
empty heap and a main thread t0. The evaluation stops when the program
reaches a final state of the form {t0 �→ v0, . . . , tn �→ vn};Θ. The reduction rules
in Fig. 8 define the semantics of the language constructs. Each global reduction
step � nondeterministically selects a thread from P , thus modeling an arbitrary
thread scheduling.

The IO Monad is the top-level evaluation context. Rule IO-Monad enables
the execution of reductions within the current context. Spawning a thread (rule
Spawn) adds a new entry with a fresh thread identifier to the thread pool and
returns unit to the parent thread. A transactional expression is evaluated against
a copy of the current heap (rule Txn), possibly using multiple transactional
transitions denoted by ⇒.

Within a transaction, reading an object returns the value referenced in the
heap (rule Read). Similarly, after applying the updates the resulting value is
written back to the heap (rule Write), replacing the previous value. When
allocating a new object, rule New ensures that the heap is extended using a
fresh reference (i.e. one that has not been used in the heap or in concurrently
running threads). The initial value of the object is then added to the transaction-
local heap instance under the new reference.

Finally, an evaluated transaction is represented as a commit record consisting
of the local heap copy, containing possible modifications, and the expression to
be returned. Rule Commit then applies atomically the heap modifications to
the globally shared heap and returns. The changes from the local heap copy Θ′

are propagated to the current globally shared heap Θ by merging the individual
entries with the thread-local ones. The function �::Heap×Heap → Heap defines
the heap merge:

434 D.D. Akkoorath and A. Bieniusa

(Θ � Θ′)(r) =

⎧
⎪⎨

⎪⎩

merge m n if Θ(r) = m,Θ′(r) = n

m if r /∈ dom(Θ), Θ′(r) = m

n if r /∈ dom(Θ′), Θ(r) = n

Fig. 8. Operational semantics for Λmtm.

3.2 Properties of MTM

Based on the operational semantics for Λmtm, we can now further characterize
MTM transactions.

Transactions on Mergeable Objects 435

MTM Allows Non-Serializable Transactions. By rule Txn, the heap-modifying
side-effects of a transaction eventually e are not immediately applied to the
shared global state, but deferred to another reduction step under rule Com-
mit. Depending on the scheduling, other transactions may also execute without
committing their changes yet. If there are read-write dependencies between the
transactions, it is not possible to construct a reduction sequence yielding the
same final state.

All Updates are Eventually Applied to the Shared State. The type specific merge
during the commit ensures that concurrent updates are merged deterministically
into a consistent state of the object.

All Updates Performed by a Transaction are Made Visible Atomically. By rule
Commit, all updates from a transaction are merged to the globally shared heap
in one step, which guarantees atomicity.

All Reads Performed by a Transaction Appear to be Executed at a Single Point
of Time. In addition to publishing the updates atomically, transactions are exe-
cuted on a consistent snapshot; i.e. a snapshot in which either all updates from
some transaction that committed before the snapshot time are visible or none.
All read operations within a transaction are guaranteed to see the state of objects
from a consistent snapshot taken at the time when the transaction started. Rule
Txn shows that all operations inside a transaction are executed against the
same state Θ. Although there could be concurrently executing transactions, their
updates are not globally visible.

3.3 Algorithm

An algorithm for implementing the semantics of MTM transactions is given in
Fig. 9. To guarantee that a transaction never tries to read an object that has
been modified by another transaction while executing (leading to a read-write
conflict), we apply a multi-versioning scheme for mergeable objects. As previ-
ous studies have shown [5,18,19], multi-versioning of objects can be efficiently
employed to achieve permissive transactions.

A shared mutable reference to a mergeable object which can be accessed in a
MTM transaction is represented by var. A var references a list of versions. Each
version contains a value of the object and its version identifier.

A transaction txn maintains a snapshot id sid in addition to a read and
write sets which are represented as maps. When the transaction starts, its sid is
assigned to be the current value of a globalclock. The operations of the transaction
are executed on the snapshot identified by this sid which includes updates from
all transactions committed before this time.

A var is accessed using the read and write methods. When reading, if the
write set or read set contains a local copy of var, it is returned. Otherwise,
the version corresponding to the transaction’s sid is obtained and inserted in
the read set. A new value of the object is written back to var using method
write, which inserts the value in the write set. Reading an object does not

436 D.D. Akkoorath and A. Bieniusa

Fig. 9. MTM algorithm

necessarily pass over the entire object. Depending on the actual representation
of the object, a read might only be reading a reference.

When committing, the transaction acquires a lock on all objects in its write
set. This ensures atomicity when two transactions tries to commit to same object.
To prevent deadlocks, locks are obtained in a predefined order. Next, a new
version id is generated from the current global clock value. The objects updated
in the transaction are then merged with the latest version available, using the
objects’ merge method, hereby creating new versions.

Figure 10 shows the versioned read and write functions. The function write-
NewVersion adds the new value with its vid to the head of list of versions.

Transactions on Mergeable Objects 437

Since globalclock is incremented during commit, the sid of a transaction always
denotes the version id of a committed transaction or a concurrently committing
transaction. When reading from the list of versions of a var, if the required ver-
sion is not available, a concurrent transaction might be committing that version.
Hence, it waits for the lock to be released before retrieving a version with an
id equal or smaller than its sid. If the lock is released, it means that there is
no other transaction which could potentially commit a version required by this
transaction. This guarantees that a transaction always reads from a consistent
snapshot identified by its sid.

4 MTM in Haskell

We implemented a prototype of MTM in Haskell. Harris et al. [9] have high-
lighted the benefits of Haskell’s monadic type system for composing STM actions
and restricting access to transactional variables to the STM monad. MTM is
implemented analogously to the STM monad, though with different semantics.

Fig. 10. Versioned read and write operations in MTM.

For the MTM programming model, we provide an MTM monad (Fig. 11). The
shared mergeable objects used in MTM transactions are of type CVar; CVar1

1 The name MVar for mergeable variables is already used in Haskell.

438 D.D. Akkoorath and A. Bieniusa

stands for convergent variables indicating that concurrent versions converge into
a consistent state. Every operation executed on a CVar must be an MTM action.
These actions can be sequentially combined using monadic bind. The function

eventually :: MTM a -> IO a

takes an MTM action, executes it, and returns the result. Using function
modifyCVar to update a CVar guarantees that the mergeable values does not
escape a transaction’s scope.

The type specification ensures that mergeable objects are accessed only inside
a MTM transaction. These objects must be of class Mergeable and define a
merge function. Figure 12 shows the implementation of two mergeable objects.
The Counter contains two integers, one representing the global value and the
other the thread-local increments. The merge adds the local increments to the
global value g and resets the local increments to 0. The LWWRegister implements
a last-writer-wins register, where the last merge overwrites the previous value.

Fig. 11. Interface for MTM in Haskell.

Fig. 12. Mergeable objects in Haskell.

Example. The following example shows how to program with CVars and the
MTM monad in Haskell.

addToBag :: Int -> CVar (Bag Int) -> CVar (Counter) -> MTM [Int]
addToBag e bag size = do {

; b <- modifyCVar bag (add e)

Transactions on Mergeable Objects 439

; s <- modifyCVar size (incrBy 1)
; return (toList b)

}

The function addToBag inserts an element to some bag and increments a counter
representing the size of the bag. It returns then the elements from the bag in
a list, including the added element e, but excluding elements that have been
concurrently added. When calling the function using eventually addToBag x

b s with some bag b and size counter s, the library guarantees that both shared
objects are atomically updated and have consistent values.

5 Evaluation

To evaluate the applicability of MTM we ran microbenchmarks, comparing our
MTM implementation as Haskell library with a library implementation of a
STM algorithm based on 2-phase-commit (2PC) (similar to TL2 [6]) and GHC’s
STM implementation. GHC’s STM is tightly integrated with the runtime system
and employs a number of optimization techniques with respect to GC interaction
and scheduling. To approximate the runtime overhead incurred by implementing
MTM as a library, we use the 2PC implemenation as another point of compar-
ison. All experiments were run on a Quad-core 2.4 GHz Intel Xeon processor
with two-way hyperthreading, under Linux 2.6.32-64-server Ubuntu x86 64 and
GHC version 7.8.3. The results given are the averages taken over 10 runs for
each benchmark.

Microbenchmarks: Counter and Bag In a first experiment, we compared the
performance of a shared counter and bag under high contention. The STM vari-
ants implement the counter as a TVar Int and TVar [Int], while MTM relies
on a mergeable counter and bag, as introduced in Sect. 3. For the experiment,
each thread repeatedly increments the same shared counter. In total, there were
2 × 106 increments distributed over the available number of threads.

As Fig. 13 shows, the performance of the library version of STM degrades
quickly while both MTM and GHC’s STM handle the contention more gracefully.

To evaluate the throughput, we chose a workload where each transaction
updates m randomly selected objects from a pool of n objects: the larger the
pool (n), the lower the probability of contention; the larger the transaction size
(m), the higher the probability of conflicts as it is more likely that transac-
tion executions overlap. For n = 8 and various transaction size, MTM yields
better performance than the STM implementations, even under low contention
(Fig. 14).

Application: K-means: To see how actual applications benefit from the MTM pro-
gramming model, we reimplemented the K-means benchmark from the STAMP
benchmark suite [16] in Haskell described in Sect. 1.

For the version running GHC’s STM and MTM a cluster centre is updated
inside a transaction after processing every data point (here: 106 points). We also

440 D.D. Akkoorath and A. Bieniusa

0

10

20

30

40

50

618421

T
im

e(
se
c)

No.of threads

GHC-Counter

2PC-Counter

MTM-Counter

GHC-Bag

2PC-Bag

MTM-Bag

Fig. 13. Every thread updates once the
same shared object in a transaction.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

1.1e+06

8421

T
h
ro
u
g
h
p
u
t(
o
p
s/
se
c)

No. of Objects per transaction

Fig. 14. Every thread updates M
objects in a transaction

derived an alternative implementation to exploit the semantics of MTM, MTM-
Opt, where all points assigned to some thread are processed together, and cluster
centers are updated atomically. This version runs longer transactions, but has
less frequent updates to cluster centers.

Both under high contention (Fig. 15) and low contention (Fig. 16), MTM-Opt
outperforms GHC and MTM. In particular, MTM-Opt is scalable even under
high contention in contrast to the other versions. The reason is that GHC’s
STM and MTM are blocking during commit, which prohibits scalability when the
number of concurrent transactions is high. In the optimized version, commits are
less frequent and transactions can run in parallel without the need for serializing
the updates to shared memory.

0

50

100

150

200

250

618421

T
im

e(
se
c)

No.of threads

GHC

2PC

MTM

MTMopt

Fig. 15. K-means: High contention.

20

40

60

80

100

120

140

160

180

200

618421

T
im

e(
se
c)

No.of threads

GHC

2PC

MTM

MTMopt

Fig. 16. K-means: Low Contention.

Transactions on Mergeable Objects 441

6 Related Work

Software Transactional Memory: Relaxing strong guarantees such as serializabil-
ity has been considered by different STMs. Multi-versioned STMs [5] and Snap-
shot Isolation in STMs [19] allow read-only transactions to proceed without any
conflicts. However, there may be aborts in case of write-write conflicts. Different
apporaches have been proposed to avoid abort or restarting of whole transac-
tions by delaying some computations [20] to commit time and re-executing parts
of transaction [5]. Twilight STM [1] allows transaction-specific conflict handling
when inconsistencies are detected in commit phase. MTM focuses on introducing
the conflict handling mechanisms at the object level.

Composable Memory Transactions [9] provide primitives for making serial-
izable transactions composable in Haskell. The authors describe the benefits of
Haskell’s type system and monads to achieve safety and composability of trans-
actions. We have adopted these techniques to implement the MTM monad. How-
ever, as MTM transactions do never abort, we restrain from providing additional
operations that support composability such as retry and orElse.

Transactional Boosting [11] is a method which allows operations on highly
concurrent linearizable objects to execute using concurrent transactions, without
the need for acquiring an exclusive lock on the object. A method’s abstract lock
issues a conflict only if two concurrent method invocations are non-commutative;
therefore, concurrent commutative operation on an object can execute without
aborting the transaction. Transactional boosting is a pessimistic approach by
eagerly acquiring locks on the objects. Optimistic Transactional Boosting [10] is
yet another methodology for transforming concurrent data structures to transac-
tional objects. Both approaches take commutativity of operations as the base for
detecting conflicts and thus achieving serializability. In contrast, MTM relies on
object specific conflict resolution which may allow non-commutative operations
to occur in parallel.

Burckhardt et al. [2,15] propose a programming model for concurrent pro-
grams using revisions and isolation types. Each revision is considered a unit of
concurrency. It executes operations on its local copy of the shared data concur-
rently to other threads. The modified data is visible to the main thread only after
the revision is explicitly joined. The conflicts occurring due to concurrent updates
are resolved using custom merge operation for cumulative types and joinee-wins
strategy for versioned types. Though MTM and the revisions model share similar
semantics in executing operations on consistent snapshots and merging conflict-
ing updates, they target different settings. The revisions programming model is
a fork-join model and is suitable for short-running threads that operate mostly
in isolation. MTM targets long running threads which need to periodically share
data with other threads using transactional semantics.

The Phase Reconciliation mechanism [17] detects high contention on data
items in in-memory databases. It then switches to a split phase where the trans-
actions update a local per-core copy of the contended data in parallel. After
the split phase, the per-core copies are merged and the transactions proceed
to execute using classical concurrency control techniques. Whether transactions

442 D.D. Akkoorath and A. Bieniusa

can be executed in the split phase, is decided based on the commutativity of
operations, thus preserving sequential consistency.

Monotonic and Mergeable Data Structures: Conflict Free Replicated Data Types
(CRDT) [22,23] are replicated data types with mergeable semantics used in
distributed database systems with eventual consistency. A state-based CRDT
takes its values from a semi-lattice. Two states of the same objects are merged
by taking the least upper bound in the semi-lattice. Op-based CRDTs, on the
other hand, exploit commutativity of updates to deterministically converge the
states of two replicas.

LVars [13,14] are lattice-based data structures used for deterministic parallel
programming in Haskell. The put operation changes an LVar’s state in such a
way that it monotonically increases in the lattice structure. Updates from concur-
rent threads on an LVar result in the same state, irrespective in which order they
occur, thus guaranteeing determinism. The merge function computes always the
least upper bound according to the lattice. LVars focus on deterministic and effi-
cient execution for parallel programming models to support producer/consumer
like application.

We believe that lattice-based data structures such as LVars and CRDTs are
beneficial for deterministic merging and verifying the correctness of applications.
However, it is not trivial how to construct efficient merge operation in order
to be useful in an optimistic transactional model to improve performance. In
this paper, we have discussed mergeable data structures which are not lattice
structures.

Confluent persistent data structures [7,8] allow operations on multiple ver-
sions of a data structure. These operations (e.g. concatenation, union) are con-
structed in a way such that previous versions are still accessible. Confluent per-
sistent data structures are designed to perform these operations efficiently, in
space and time. The applicability of these techniques in mergeable objects is an
interesting topic for future work.

Distributed Systems: Weak consistency models such as eventual consistency and
causal consistency are being widely researched and used in distributed systems.
SwiftCloud [24] is a system that supports client-side replication and uses CRDTs
to deterministically merge conflicting updates, while supporting Transactional
causal+ consistency. Burckhardt et al. [3] present the idea of eventually consis-
tent transactions and an implementation technique which provides these seman-
tics. Global Sequence Protocol [4] provides a programming model for replicated
data stores and a weak consistency model relying on a global total order of
updates. Though many recent works have studied eventual consistency in dis-
tributed database systems, few have addressed its applicability in multi-core
programs. In this paper, we have discussed a way to achieve weak consistency
in software transactions.

7 Conclusion

We have presented mergeable transactions as an alternative to the often too strict
semantics of serializable transactions. Using abstract data type specifications,

Transactions on Mergeable Objects 443

mergeable objects provide type-specific merge functions. We discussed semantic
and structural mergeability as design alternatives for efficient merge functions
and showed how to apply them to counters and bags. Our evaluation results
on a prototype implementation in Haskell underline that for many workloads,
especially on long running transactions, MTM outperforms standard STM, by
eliminating the necessity for rollback.

In future work, we plan to extend MTM with a broader variety of mergeable
objects and efficient implementation techniques. We also want to investigate
the applicability of the concept in other programming paradigms, where more
optimizations regarding the space and time complexity of mergeable objects are
possible than in Haskell. It will be further interesting to study the possibility
of co-existence of mergeable objects with non-mergeable objects in transaction,
where aborts should be only induced when non-mergeable objects conflict.

Acknowledgments. This research is supported in part by the European FP7 project
609 551 SyncFree.

References

1. Bieniusa, A., Middelkoop, A., Thiemann, P.: Brief announcement: actions in the
twilight - concurrent irrevocable transactions and inconsistency repair. In: Proceed-
ings of the 29th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2010, 25–28 July, 2010, Zurich, Switzerland, pp. 71–72 (2010)

2. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revi-
sions and isolation types. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA
2010, pp. 691–707 (2010)

3. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually consistent trans-
actions. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211,
pp. 67–86. Springer, Heidelberg (2012)

4. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence pro-
tocol: a robust abstraction for replicated shared state. In: Boyland, J.T. (ed.)
29th European Conference on Object-Oriented Programming (ECOOP 2015),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 37, pp. 568–590.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2015). http://drops.
dagstuhl.de/opus/volltexte/2015/5238

5. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63(2), 172–185 (2006). special issue on synchronization
and concurrency in object-oriented languages

6. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

7. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

8. Fiat, A., Kaplan, H.: Making data structures confluently persistent. In: Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2001, pp. 537–546. Society for Industrial and Applied Mathematics (2001)

http://drops.dagstuhl.de/opus/volltexte/2015/5238
http://drops.dagstuhl.de/opus/volltexte/2015/5238

444 D.D. Akkoorath and A. Bieniusa

9. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2005, pp. 48–60 (2005)

10. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In:
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 387–388. ACM (2014)

11. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-
concurrent transactional objects. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2008,
pp. 207–216 (2008)

12. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Kuper, L., Newton, R.R.: Lvars: Lattice-based data structures for deterministic
parallelism. In: Proceedings of the 2nd ACM SIGPLAN Workshop on Functional
High-Performance Computing, FHPC 2013, pp. 71–84 (2013)

14. Kuper, L., Turon, A., Krishnaswami, N.R., Newton, R.R.: Freeze after writing:
Quasi-deterministic parallel programming with lvars. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, pp. 257–270 (2014)

15. Leijen, D., Fahndrich, M., Burckhardt, S.: Prettier concurrency: Purely functional
concurrent revisions. In: Proceedings of the 4th ACM Symposium on Haskell,
Haskell 2011, pp. 83–94. ACM, New York (2011). http://doi.acm.org/10.1145/
2034675.2034686

16. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35–46, September 2008

17. Narula, N., Cutler, C., Kohler, E., Morris, R.: Phase reconciliation for contended
in-memory transactions. In: Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI 2014, pp. 511–524 (2014)

18. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in stm. In:
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, PODC 2010, pp. 16–25 (2010)

19. Riegel, T.: Snapshot isolation for software transactional memory. In: Proceedings
of the First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, TRANSACT 2006 (2006)

20. Ruan, W., Liu, Y., Spear, M.: Transactional read-modify-write without aborts.
ACM Trans. Archit. Code Optim. 11(4), 63:1–63:24 (2015). http://doi.acm.org/
10.1145/2688904

21. Scott, M.L.: Sequential specification of transactional memory semantics. In: Pro-
ceedings of the First ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, June 2006

22. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Rapport de recherche RR-
7506, INRIA, January 2011

23. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

24. Zawirski, M., Bieniusa, A., Balegas, V., Duarte, S., Baquero, C., Shapiro, M.,
Preguiça, N.: SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way
to the Client Machine. Research Report RR-8347, October 2013

http://doi.acm.org/10.1145/2034675.2034686
http://doi.acm.org/10.1145/2034675.2034686
http://doi.acm.org/10.1145/2688904
http://doi.acm.org/10.1145/2688904

A Sound Type System for Layer Subtyping
and Dynamically Activated First-Class Layers

Hiroaki Inoue(B) and Atsushi Igarashi

Graduate School of Informatics, Kyoto University, Kyoto, Japan
hinoue@fos.kuis.kyoto-u.ac.jp

Abstract. Key features of context-oriented programming (COP) are
layers—modules to describe context-dependent behavioral variations of
a software system—and their dynamic activation, which can modify the
behavior of multiple objects that have already been instantiated. Type-
checking programs written in a COP language is difficult because the
activation of a layer can even change objects’ interfaces. We formalize
a small COP language called ContextFJ<: with its operational seman-
tics and type system and show its soundness. The language features
(1) dynamically activated first-class layers, (2) inheritance of layer defi-
nitions, and (3) layer subtyping.

1 Introduction

Software is much more interactive than it used to be: it interacts with not only
users but also external resources such as network and sensors and changes its
behavior according to inputs from these resources. For example, an e-mail reader
may switch to a text-based mode when network throughput is low. Such external
information that affects the behavior of software is often referred to as contexts.
However, such context-dependent software is hard to develop and maintain,
because the description of context-dependent behavior, which we desire to be
modularized, often crosscuts with the dominating module structure. To address
such a problem from a programming-language perspective, Context-Oriented
Programming (COP) [9] has been proposed by Hirschfeld et al.

The main language constructs for COP are layers, which are modules to specify
context-dependent behavior, and their dynamic layer activation. A layer is basi-
cally a collection of what are called partial methods, which add new behavior to
existing objects or override existing methods. When a layer is activated at run time
byadesignatedconstruct, thepartialmethodsdefined in itbecomeeffective, chang-
ing the behavior of objects until the activation ends. Roughly speaking, a layer
abstracts a context and dynamic layer activation abstracts change of contexts.

JCop language [1] is an extension of Java with language constructs for COP.
It not only supports basic COP constructs described above, but also introduces
many advanced features such as inheritance of layer implementations and first-
class layers. However, typechecking implemented in the JCop compiler does not
take into account the fact that layer activation can change objects’ interface

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 445–462, 2015.
DOI: 10.1007/978-3-319-26529-2 24

446 H. Inoue and A. Igarashi

by partial methods that add new methods and, as a result, not all “method not
found” errors are prevented statically. In our previous work [14], we have studied
this problem, proposed a type-safe version of JCop (we call Safe JCop in this
paper) with informal discussions on how JCop can be made type-safe.

In this paper, we formalize most of the ideas proposed in the previous work
and show they really make the language sound. More concretely, we develop a
small COP language called ContextFJ<:, which extends ContextFJ by Igarashi,
Hirschfeld, and Masuhara [10,11] to layer inheritance, subtyping of layer types,
first-class layers and layer swapping; and we show type soundness of ContextFJ<:.
Main issues we have to deal with are (1) the semantics of layer inheritance, which
adds another “dimension” to method lookup, (2) sound subtyping for first-class
layers, which led us to two kinds of subtyping relation, and (3) (a limited form of)
type-safe deactivation, which we realize by layer swapping, first proposed in the
previous work [14]. We also have implemented a prototype of the proposed type
system by extending the JCop compiler.

The rest of the paper is organized as follows.After informally reviewing features
of Safe JCop in Sect. 2,we developContextFJ<: in Sect. 3 and state type soundness.
In Sect. 4, we discuss related work and then conclude in Sect. 5. We omit some rules
of ContextFJ<: and proofs for brevity; the full definitions and proofs can be found
in the full version of the paper. The implementation of the type system and the full
version are available at http://www.fos.kuis.kyoto-u.ac.jp/∼hinoue/.

2 Language Constructs of Safe JCop

In this section, we review language constructs of Safe JCop, first described in [14],
including first-class layers, layer inheritance/subtyping, and layer swapping along
informal discussions about the type system.

As a running example, we consider programming a graphical computer game
called RetroAdventure [2]. In this game, a player has a character “hero” that
wanders around the game world. Here, we introduce class Hero that represents
the hero, which has method move to walk around, and class World that represents
the game world.

public class Hero {

Position pos;

public void move(Direction dir){

pos = /* changes pos according to dir */;

}

}

public class World { ... }

2.1 Layers and Partial Methods

As mentioned already, a first distinctive feature of COP is layers—collections of
partial methods to modify the behavior of existing objects. A partial method is
syntactically similar to an ordinary method declared in a class, except that the

http://www.fos.kuis.kyoto-u.ac.jp/~hinoue/

A Sound Type System for First-Class Layers 447

name is given in a qualified form Hero.move(); this means the partial method
is going to override method move defined in Hero or (if it does not exist) add
to Hero. A layer can contain partial methods for different classes, so, when it is
activated, it can affect objects from various classes at once. Similarly to super
calls in Java, the body of a partial method can contain proceed calls to invoke
the original method overridden by this partial method.

Here, suppose that the hero’s behavior is influenced by weather conditions
in the game world. For example, in a rainy weather, the hero gets slow and, in
a stormy weather, the hero cannot move as he likes. Here are layers that denote
weathers of the game world.

public layer Rainy {

/* partial method */

public void Hero.move(Direction dir){

pos = /* the distance of move is smaller */;

}

}

public layer Stormy {

/* partial method */

public void Hero.move(Direction dir){

proceed(randomDirection(dir));

}

/* baseless partial method */

public Direction Hero.randomDirection(Direction dir){

return /* add randomness to dir */;

}

}

public layer Sunny { ... }

Rainy and Stormy have the definitions of Hero.move, which change the
behavior of the original definition in different ways. In particular, Hero.move
in Stormy uses proceed, replacing the arguments to calls to move. It also has
Hero.randomDirection, used to determine a new randomized direction to which
the hero is going to move.

Methods defined in classes are often referred to as base methods and par-
tial methods without corresponding base methods as baseless partial methods.
Notice that activating a layer with baseless partial methods extends object inter-
faces and proceed in a baseless method is unsafe unless another layer activation
provides a baseless method of the same signature.

2.2 Layer Activation and First-Class Layers

In Safe JCop, a layer can be activated by using a layer instance (created by a
new expression, just as an ordinary Java object, from a layer definition) in a
with statement. The following code snippet shows how Rainy can be activated.

with(new Rainy ()){

hero.move(); /* The hero will get slow by Rainy weather. */

}

448 H. Inoue and A. Igarashi

Inside the body of with, dynamic method dispatch is affected by the activated
layers so that partial methods are looked up first. So, movement of the hero will
be slow.

Layer activation has a dynamic extent in the sense that the behavior of
objects changes even in methods called from inside with. If more than one layer
is activated, a more recent activation has precedence and a proceed call in a more
recently activated layer may call another partial method (of the same name) in
another layer.

In Safe JCop, a layer instance is a first-class citizen and can be stored in a
variable, passed to, or returned from a method. A layer name can be used as
a type. Combining with layer subtyping discussed later, we can switch layers
to activate by a run-time condition. For example, suppose that the game has
difficulty levels, determined at run time according to some parameters, and each
level is represented by an instance of a sublayer of Difficulty. Then, we can
set the initial difficulty level by code like this:

Difficulty dif = /* an expression to compute difficulty */ ;

with(dif){...}

Moreover, a layer can declare fields (although we do not model fields in layers
in this paper). So, first-class layers significantly enhances expressiveness of the
language.

2.3 Dependencies Between Layers

Baseless partial methods and layer activation that has dynamic extent pose a
challenge on typechecking because activation of a layer including baseless par-
tial methods can change object interfaces. So, a method invocation, including a
proceed call, may or may not be safe depending on what layers are activated
at the program point. Safe JCop adopts requires clauses [11] for layer defini-
tions to express which layers should have been activated before activating each
layer (instance). The type system checks whether each activation satisfies the
requires clause associated to the activated layer and also uses requires clauses
to estimate interfaces of objects at every program point.

For example, consider another layer ThunderStorm, which expresses an event
in a game. It affects the way how the hero’s direction is randomized during a
storm and includes a baseless partial method with a proceed call. To prevent
ThunderStorm from being activated in a weather other than a storm, the layer
requires Stormy as follows:

public layer ThunderStorm requires Stormy {

public Direction Hero.randomDirection(Direction dir){

Direction tmpd = proceed(dir);

... /* change tmpd to speed up */

return tmpd;

}

}

A Sound Type System for First-Class Layers 449

An attempt at activating ThunderStorm without activating Stormy will be
rejected by the type system (unless the activation appears in a layer requiring
Stormy). Thanks to the requires clause, the type system knows the proceed call
will not fail. (It will call the partial method in Stormy or some other depending
on what layers are activated at run time.)

In general, a layer can require any number of layers.

2.4 Layer Inheritance

In Safe JCop, a layer can inherit definitions from another layer by using the
keyword extends and the extends relation between layers yields subtyping,
just like Java classes. If weather layers have many definitions in common, it is
a good idea to define a superlayer Weather and concrete weather layers as its
sublayers.

public abstract layer Weather {

public String World.getWorldText (){

..... + this.getWeatherInfo () +;

}

public abstract String World.getWeatherInfo ();

}

public layer Rainy extends Weather {

public String World.getWeatherInfo (){

return "rain";

}

}

public layer Stormy extends Weather {

public String World.getWeatherInfo (){

return "storm";

}

}

Here, Weather provides partial method getWorldText to retrieve the status of
the world. Although the implementation of World.getWeatherInfo is not given
here, concrete weather layers provide it by overriding.

Naturally, we expect an instance of a sublayer can be substituted for that of
its super-layer. However, substitutability is more subtle that one might expect
and we are led to distinguishing two kinds of substitutability and introducing
two kinds of subtyping relation, called weak and normal subtyping.

Since a sublayer defines more partial methods than its superlayer, an instance
of a sublayer can be used where a superlayer is required. For example, to
activate the following layer called Thunder, which requires Weather, it suffices
to activate Rainy, a sublayer of Weather, beforehand.

public layer Thunder requires Weather {

public String World.getWeatherInfo (){

return "thunder and " + proceed ();

}

}

450 H. Inoue and A. Igarashi

...

with(new Rainy ()){

with(new Thunder ()){...}

}

We will formalize substitutability about requires as weak subtyping, which is
the reflexive transitive closure of the extends relation between layer types. For
the weak subtyping to work, we require a sublayer declare what its superlayer
requires because partial methods inherited from the superlayer may depend
on them. We could relax this condition when a sublayer overrides all the partial
methods but such a case is expected to be rare.1 Therefore, we do not consider
the case.

This notion of subtyping is called weak because it does not guarantee safe sub-
stitutability for first-class layers. Consider layer Difficulty again and assume
that it requires no other layers and has sublayers Easy and Hard. In the following
code snippet

Difficulty dif = someCondition () ? new Easy() : new Hard();

with(dif){...}

activation of dif appears safe because its static type Difficulty does not
require any layer to have been activated. However, the case where Easy or Hard
requires some layers breaks the expected invariant that requires is satisfied at
run time. So, for assignments and parameter passing, we need one more condi-
tion for subtyping, namely, requires of a sublayer must be the same as that of
its superlayer. We call this strong notion of subtyping normal subtyping.

Just like Object in Java, there is Base, which is a superlayer of all layers, in
Safe JCop. If a layer omits the extends clause, it is implicitly assumed that the
layer extends Base.

2.5 Layer Swapping and Deactivation

The original JCop provides constructs to deactivate layers. However, only with
requires, it is not easy to guarantee that layer deactivation does not lead to
an error. For safe deactivation, it has to be checked that there is no layer that
requires the deactivated layer, but the type system is not designed to keep
track of absence of certain layers. Instead of general-purpose layer deactivation
mechanisms, Safe JCop introduces a special construct to express one important
idiom that uses deactivation, namely layer swapping to deactivate some layers
and activate a layer at once.

In Safe JCop, we can define a layer as swappable, which means that all its
sublayers can be swapped with each other, by adding the modifier swappable.
The swap statement for layer swapping is of the following form:

swap(activation layer, deactivation layer type){ ... }
1 Re-typechecking inherited methods under the new requires clause would be another

way to relax this condition but this is against modular checking.

A Sound Type System for First-Class Layers 451

The activation layer is an expression whose static type must be a sublayer of
deactivation layer type, which in turn has to be swappable. It deactivates all
instances of deactivation layer type (and its sublayers), and activates the acti-
vation layer.

Let’s consider Difficulty once again. We could define Difficulty as a
swappable layer and use swap to switch to another mode temporarily.

swappable layer Difficulty {...}

...

Difficulty dif = someCondition () ? new Easy() : new Hard();

with(dif){

...

swap(new Hard(), Difficulty){

// Enforce hard mode

}

}

As discussed in the previous work [14], the layer swapping mechanism also
requires no sublayers of a swappable layer to be required by other layers.

3 ContextFJ<:

In this section, we formalize a core functional subset of Safe JCop as ContextFJ<:,
give its syntax, operational semantics and type system, and show type sound-
ness. ContextFJ<:, a descendant of Featherweight Java (FJ) [13], extends Con-
textFJ [10,11] with layer inheritance, layer subtyping, first-class layers, and
swappable layers. Note that we omit some rules (especially when they are simi-
lar to those in ContextFJ [11]). The whole calculus is in the full version of this
paper. We also recommend that readers consult [11].

3.1 Syntax

Let metavariables C, D and E range over class names; L over layer names; f and
g over field names; m over method names; x and y over variables, which contains
special variable this. The abstract syntax of ContextFJ<: is given in Fig. 1.

Following FJ, we use overlines to denote sequences: so, f stands for a possi-
bly empty sequence f1, · · · , fn and similarly for T, x, e, and so on. The empty
sequence is denoted by •. Concatenation of sequences is often denoted by a
comma except for layer names, for which we use a semicolon. We also abbre-
viate pairs of sequences, writing “T f” for “T1 f1, · · · , Tn fn”, where n is the
length of T and f, and similarly “T f;” as shorthand for the sequence of declara-
tions “T1 f1;. . . Tn fn;” and “this.f=f;” for “this.f1= f1;. . . ; this.fn= fn;”.
Sequences of field declarations, parameter names, layer names, and method dec-
larations are assumed to contain no duplicate names.

We briefly explain the syntax, focusing on COP-related constructs. A layer
definition LA consists of optional modifier swappable, its name, its superlayer
name, layers that it requires, and partial methods. A partial method is similar

452 H. Inoue and A. Igarashi

T,S ::= C | L (types)

CL ::= class C C { T f; K M } (classes)

LA ::= [swappable] layer L L req L { PM } (layers)

K ::= C(T f){ super(f); this.f = f; } (constructors)

M ::= T m(T x){ return e; } (methods)

PM ::= T C.m(T x){ return e; } (partial methods)
e,d ::= x | e.f | e.m(e) | new T(e) | with e e | swap (e,L) e (expressions)

| proceed(e) | super.m(e) | new C(v)<C,L,L>.m(e)
v,w ::= new C(v) | new L() (values)

Fig. 1. Syntax of ContextFJ<:. A phrase enclosed by [] is optional.

to a method but the former specifies which m to modify by qualifying the simple
method name with its class C. Instantiation can be a layer instance new L().
Note that arguments to the constructor are always empty because a layer has no
fields. In the expression with e1 e2, e1 stands for the layer to be activated and
e2 the body of with. In the expression swap (e1, L) e2, e1 means the layer
to be activated, L layers to deactivate, e2 the body. All instances of L and its
subclasses are deactivated. The expression new C(v)<D,L′,L>.m(e) is a special
run-time expression that is related to method invocation mechanism of COP,
and not supposed to appear in classes and layers. It basically means that m is
going to be invoked on new C(v). The annotation <D,L′,L> is used to model
super and proceed. L means activated layers in the method lookup and D and
L′ (which is assumed to be a prefix of L) stand for the location of a “cursor”
where the method lookup starts from.

Program. A ContextFJ<: program (CT,LT, e) consists of a class table CT, a
layer table LT and an expression e, which stands for the body of the main
function. CT maps a class name to a class definition and LT a layer name to
a layer definition. A layer definition can be regarded as a function that maps a
partial method name C.m to a partial method definition. So, we can view LT as
a Curried function, so we often write LT(L)(C.m) for the partial method C.m in L
in a program. We assume that the domains of CT and LT are finite. Precisely
speaking, the semantics and type system are parameterized over CT and LT but,
to lighten the notation, we assume them to be fixed and omit from judgments.

Given CT and LT , extends and requires clauses are considered relations,
written � and req, respectively, over class/layer names. As usual, we write R+ for
the transitive closure of relation R; similarly for R∗ for the reflexive transitive
closure of R. We write L swappable if LT(L) is defined with the swappable
modifier.

We assume the following sanity conditions are satisfied by a given program:

1. CT(C) = class C ... for any C ∈ dom(CT).
2. Object �∈ dom(CT).
3. For every class name C (except Object) appearing anywhere in CT, C ∈ dom

(CT).

A Sound Type System for First-Class Layers 453

4. LT(L) = ... layer L ... for any L ∈ dom(LT).
5. Base �∈ dom(LT).
6. For every layer name L (except Base) appearing anywhere in LT, L ∈ dom(LT).
7. Both for classes and layers, there are no cycles in the transitive closure of the

extends clauses.
8. LT(L)(C.m) = ... C.m(...){...} for any L ∈ dom(LT) and (C.m) ∈ dom

(LT(L)).
9. There are no cycles in req+.

10. A layer cannot require any superlayer of it, that is, L1 �+ L2 → ¬(L1 req+ L2).
11. L1 �+ L2 ∧ L2 swappable → ¬(∃L3.L3 req+ L1)

In the condition 6, like Object of classes, Base layer is defined as the root of
layer sub-typing tree. Conditions 7, 9 and 10 are very important for our formal
system, because they are used to ensure that proceed and super calls will not
fail. The final condition means that no sublayers of a swappable layer can be
required by other layers, as we mentioned earlier.

3.2 Operational Semantics

Lookup Functions. We need a few auxiliary lookup functions to define opera-
tional semantics. The function fields(C) (whose definition is omitted) returns a
sequence T f of pairs of a field name and its type by collecting all field declara-
tions from C and its superclasses. Other lookup functions are defined in Fig. 2.
The function pmbody(m, C, L) returns the parameters and body x.e of the par-
tial method C.m defined in layer L. If C.m is not found in L, the superlayer of L
is searched and so on. The function mbody(m, C, L1, L2) returns the parameters
and body x.e of method m in class C when the search starts from L1; the other
sequence L2 keeps track of the layers that are activated when the search initially
started. It also returns D and L′′ (which will be a prefix of L2), information on
where the method has been found. For example, since the rule MB-Layer means
that the method is found in class C and layer L0 (or its superlayers), which is the
rightmost layer of L1 = (L′; L0), mbody returns C and (L′; L0). Such information
will be used in reduction rules to deal with proceed and super. Readers familiar
with ContextFJ will notice that the rules for mbody are mostly the same as those
in ContextFJ, except that pmbody(m, C, L) is substituted for PT(m, C, L) to take
layer inheritance into account.

Operational Semantics. The operational semantics of ContextFJ<: is given by
a reduction relation of the form L � e −→ e′, read “expression e reduces to e′

under the activated layers L”. The sequence L of layer names stands for nesting
of with and the rightmost name stands for the most recently activated layer. L
do not contain duplicate names. Note that we put a sequence of layer names L
rather than layer instances because layer instances have no fields and new L()
and L can be identified. If we modelled fields in layer instances, we would have
to put instances for layer names.

454 H. Inoue and A. Igarashi

pmbody(m,C,L) = x.e

LT (L)(C.m) = T0 C.m(T x){ return e; }

pmbody(m,C,L) = x.e
(PMB-Layer)

LT (L)(C.m) undefined L LS pmbody(m,C,Ls) = x.e

pmbody(m,C,L) = x.e
(PMB-Super)

mbody(m,C,L ,L) = x.e in D,L

class C D { ... T0 m(T x){ return e; } ...}

mbody(m,C, •,L) = x.e in C, • (MB-Class)

pmbody(m,C,L0) = x.e

mbody(m,C, (L ;L0),L) = x.e in C, (L ;L0)
(MB-Layer)

class C D { .. M } m ∈ M mbody(m,D,L,L) = x.e in E,L

mbody(m,C, •,L) = x.e in E,L
(MB-Super)

pmbody(m,C,L0) undefined mbody(m,C,L ,L) = x.e in D,L

mbody(m,C, (L ;L0),L) = x.e in D,L
(MB-NextLayer)

Fig. 2. ContextFJ<:: Lookup functions.

Before giving reduction rules, we have to define two auxiliary functions,
with(L, L) and swap(L, Lsw, L) to manipulate activated layers.

with(L, L) = (L \ {L}); L swap(L, Lsw, L) = (L \ {L′ | L′�∗ Lsw}); L

The function with removes L (if exists) from layer sequence L and adds L to the
end of L and swap removes Lsw and all sublayers of Lsw from L, and adds L to
the end of L.

Main reduction rules are found in Fig. 3. The rules R-Invk and R-InvkP
for method invocation are essentially the same as ones in ContextFJ. R-Invk
initializes the cursor according to the currently activated layers L and R-InvkP
represents invocation of a partial method (the rule for base method invocation is
omitted). Note how this, proceed and super are replaced with the receiver with
different cursor locations. For proceed, the cursor moves one layer to the left and,
for super, the cursor moves one level up. The rules RC-With and RC-Swap
are related to layer activation and swapping, respectively. The rule RC-With
means that with (new L()) e executes e with L activated (as the first layer).
The rule RC-Swap is similar; it means that swap (new L(), Lsw) e executes
by deactivating all sublayers of Lsw and activating a layer L.

A Sound Type System for First-Class Layers 455

L e −→ e

L new C(v)<C,L,L>.m(w) −→ e

L new C(v).m(w) −→ e
(R-Invk)

mbody(m,C ,L ,L) = x.e0 in C , (L ;L0)
class C D{...}

L new C(v)<C ,L ,L >.m(w) −→⎡
⎢⎢⎣
new C(v) /this,
w /x,

new C(v)<C ,L ,L >.m/proceed,

new C(v)<D,L ,L > /super

⎤
⎥⎥⎦e0

(R-InvkP)

with(L,L) = L L e −→ e

L with new L() e −→ with new L() e
(RC-With)

swap(L,Lsw,L) = L L e −→ e

L swap (new L(),Lsw) e −→ swap (new L(),Lsw) e
(RC-Swap)

Fig. 3. ContextFJ<:: Reduction rules.

3.3 Type System

As usual, the role of a type system is to ensure the absence of a certain class of
run-time errors. Here, they are “field-not-found” and “method-not-found” errors,
including the failure of proceed or super calls.

As discussed in the last section, the type system takes information on acti-
vated layers at every program point into account. We approximate such infor-
mation by a set Λ of layer names, which mean that, for any element in Λ, an
instance of one of its sublayers has to be activated at run time. This set gives
underapproximation in the sense that other layers might be activated. Activated
layers are approximated by sets rather than sequences because the type system is
mainly concerned about access to fields and methods and the order of activated
layers does not influence which fields and methods are accessible.

In our type system, a type judgment for an expression is of the form L;Λ;Γ �
e : T, where Γ is a type environment, which records types of variables, and L
stands for where e appears, namely, a method in a class or a partial method in
a layer. For example, the body of the partial method World.getWeatherInfo()
in layer Thunder is typed as follows:

Thunder.World.getWeatherInfo; {Weather, Thunder}; •
� "thunder and " + proceed() : String

where • stands for the empty type environment. The layer name set {Weather,
Thunder} comes from the fact that Thunder requires Weather. Thunder is also
included because Thunder is obviously activated when a partial method defined
in this very layer is executed.

456 H. Inoue and A. Igarashi

We start with the definitions of two kinds of layer subtyping discussed in the
last section and proceed to functions to look up method types and typing rules.

Subtyping. We define subtyping C <: D for class types, weak subtyping L1 <:w L2
and normal subtyping L1 <: L2 for layer types by the rules in Fig. 4. Class sub-
typing C <: D (whose rules are omitted) is defined as the reflexive and transitive
closure of �, just as FJ. Weak layer subtyping is also the reflexive and transitive
closure of �. We extend it to the relation Λ1 <:w Λ2 between layer name sets by
LSS-Intro. It is used to check activated layers Λ1 satisfy requirement Λ2 given
by a requires clause in typechecking a layer activation. So, for every element
in Λ2, there must exist a sublayer of it in Λ1. Normal subtyping is almost the
reflexive and transitive closure of � but there is one additional condition: for
L1 to be a normal subtype of L2, the layers they require must be the same
(LS-Extends). The notation L req Λ means that L req L′ for any L′ ∈ Λ.

layer subtyping <:

L <: L
(LS-Refl)

L1 <: L2 L2 <: L3

L1 <: L3

(LS-Trans)

L Base L req ∅
L <: Base

(LS-Base)

L1 L2 L1 req Λ
L2 req Λ

L1 <: L2

(LS-Extends)

weak layer subtyping <:w

L <:w L
(LSw-Refl)

L1 <:w L2 L2 <:w L3

L1 <:w L3

(LSw-Trans)

L1 L2

L1 <:w L2

(LSw-Extends)

layer set subtyping

∀L2 ∈ Λ2.∃L1 ∈ Λ1 s.t. L1 <:w L2

Λ1 <:w Λ0

(LSS-Intro)

Fig. 4. ContextFJ<:: Subtyping relations.

Method Type Lookup. Similarly to pmbody and mbody, we define two auxiliary
functions pmtype and mtype to look up the signature T→ T0 (consisting of argu-
ment type T and a return type T0) of a (partial) method. pmtype(m, C, L) returns
the signature of C.m in L (or one of its superlayers); we omit its definition, which
is similar to pmbody. mtype(m, C, Λ1, Λ2), whose definition is essentially the same
(save layer inheritance) as that in ContextFJ but shown in Fig. 5, returns the
type of m in C under the assumption that Λ1 is activated. The other layer set Λ2

(⊇ Λ1) is used when the lookup goes to a superclass. If Λ1 and Λ2 are the same,
which is mostly the case, we write mtype(m, C, Λ1).

These rules by themselves do not define mtype as a function, because different
layers may contain partial methods of the same name with different signatures.
So, precisely speaking, it should rather be understood as a relation; in a well-
typed program, it will behave as a function, though.

A Sound Type System for First-Class Layers 457

mtype(m,C, Λ1, Λ2) = T→T0

class C D {... T0 m(T x){ return e; } ...}

mtype(m,C, Λ1, Λ2) = T→T0

(MT-Class)

L ∈ Λ1 pmtype(m,C,L) = T→T0

mtype(m,C, Λ1, Λ2) = T→T0

(MT-PMethod)

class C D {... M } m ∈ M
∀L ∈ Λ1.LT (L)(C.m) undefined mtype(m,D, Λ2, Λ2) = T→T0

mtype(m,C, Λ1, Λ2) = T→T0

(MT-Super)

Fig. 5. ContextFJ<:: Method type lookup functions.

Expression Typing. As mentioned already, the type judgment for expressions is
of the form L;Λ;Γ � e : T, read “e is given type T under context Γ , location
L and layer set Λ”. In addition to C.m and L.C.m, L can be •, which means the
top-level (i.e., under execution). Main typing rules are given in Fig. 6.

The rule T-Invk is straightforward: for the method signature T→T0, retrieved
from the receiver type C0, the types of the actual arguments must be their
subtypes. The whole expression is given the method return type. The rule
T-Proceed is similar, but the activated layer set Λ′ is taken from the requires
clause of the layer L in which this expression appears. The last argument to mtype
is Λ ∪ {L} because a proceed call can proceed to a partial method D.m (where
D is a superclass of C) defined in the same layer L. The rule T-With checks, by
Λ <:w Λ′, that the layers required by L—the layer type to be activated—are
already activated and that the body e0 is well typed under the assumption that

L; Λ; Γ e : T

L; Λ; Γ e0 : C0 mtype(m,C0, Λ) = T→T0 L; Λ; Γ e : S S <: T

L; Λ; Γ e0.m(e) : T0

(T-Invk)

L; Λ; Γ el : L L req Λ Λ <:w Λ L; Λ ∪ {L}; Γ e0 : T0

L; Λ; Γ with el e0 : T0

(T-With)

L; Λ; Γ el : L Lsw swappable L <:w Lsw L req Λ
Λrm = Λ \ {L | L <:w Lsw} Λrm <:w Λ L; Λrm ∪ {L}; Γ e0 : T0

L; Λ; Γ swap (el,Lsw)e0 : T0

(T-Swap)

L req Λ mtype(m,C, Λ , Λ ∪ {L}) = T→T0 L.C.m; Λ; Γ e : S S <: T

L.C.m; Λ; Γ proceed(e) : T0

(T-Proceed)

Fig. 6. ContextFJ<:: Expression typing.

458 H. Inoue and A. Igarashi

L is additionally activated. T-Swap is similar; the set Λrm stands for the set of
layers after deactivation and must be a weak subtype of the required set Λ′.

Other Typing Rules. For typing other entities, such as (partial) methods and
layers, we use the following judgments:

PM ok in L partial method PM is well formed in layer L
M ok in C base method M is well formed in class C
LA ok layer definition LA is well formed
CL ok class definition CL is well formed
override(CT,LT) method override is valid in CT and LT
� (CT,LT, e) : T program (CT,LT, e) is given type T

Representative typing rules are given in Fig. 7. The rule T-PMethod for a
partial method means that the method body e is typed under the layer set
required by this layer. The rule T-Layer demands that the requires clause of
the layer be covariant and all partial methods are well formed. A program is
typed if all classes and layers in CT and LT are well formed, the main expression
e is typed (at the top-level •), and override(CT,LT) holds.

The most involved is the rule to check valid method overriding. Note that,
unlike Java, checking valid method overriding requires a whole program (except
for the main expression) because a layer may add a new method to a base class,
one of whose subclass may accidentally define a method of the same name with-
out knowing of that layer. The first premise means that for two partial methods
of the same (qualified) name must have the same signature. The second premise
means that, for any partial method, the overridden method (base method in C
or partial methods for C’s superclass) must have the same signature. Finally, the
third premise means that a base method can override a (partial) method in its
superclass (or layers modifying it) with a covariant return type.

3.4 Type Soundness

We prove type soundness of ContextFJ<: via subject reduction and progress [17].
To prove subject reduction, we have to give a typing rule for run-time expressions
of the form new C(v)<D,L′,L>.m(e), which are not supposed to appear in a
class/layer table. The typing rule is given as follows:

fields(C0) = T f L;Λ;Γ � v : S S <: T
C0 <: D0 mtype(m, D0, {L′}, {L}) = T′ → T0

L;Λ;Γ � e : S′ S′ <: T′ {L} wf WP(m, D0, L′, L)
L;Λ;Γ � new C0(v)<D0,L′,L>.m(e) : T0

(T-InvkA)

Basically, it combines the typing rules for new and method invocation with a few
additional complications. The first three premises mean that the types of the
values v for fields f are subtypes of the declared. The method signature is taken
from the current location <D0,L′,L> of the cursor and the types of the actual
arguments e have to be subtypes of the formal argument types. We detail the
last two conditions below.

A Sound Type System for First-Class Layers 459

PM ok in L

L req Λ L.C.m; Λ ∪ {L};x : T,this : C e0 : S0 S0 <: T0

T0 C.m(T x) { return e0; } ok in L
(T-PMethod)

LA ok

L req Λ {L} <:w Λ PM ok in L

layer L req L L { PM } ok
(T-Layer)

override(CT ,LT)

∀m,C,L1,L2,T,T ,T0,T 0, if LT (L1)(C.m) = T0 m(T x){...} and

LT (L2)(C.m) = T 0 m(T y){...}, then T,T0 = T ,T 0

∀m,C,L,T,T ,T0,T 0, if LT (L)(C.m) = T0 C.m(T x){ return e; } and

mtype(m,C, •, dom(LT)) = T →T 0, then T = T and T0 = T 0

∀m,C,D,T,T ,T0,T 0, if class C D {... T0 m(T x){ ... } ...} and

mtype(m,D, dom(LT), dom(LT)) = T →T 0, then T = T and T0 <: T 0

override(CT ,LT)

(CT ,LT ,e) : T

∀C ∈ dom(CT).CT (C) ok ∀L ∈ dom(LT).LT (L) ok
•; ∅; e : T override(CT ,LT)

(CT ,LT ,e) : T
(T-Prog)

Fig. 7. ContextFJ<:: Method/class/layer/program typing.

The following two predicates Λ wf and WP(m, C, L′, L) are crucial to ensure
successful proceed and super calls in the presence of with.2 The condition
{L} wf, read “layer set {L} is well formed,” means that for every layer in the set,
there are layers that it requires in the same set. Formally, it is defined by the
following rule:

∀L ∈ Λ,∀L′ s.t, L req+ L′,∃L′′ ∈ Λ s.t, L′′ <:w L′

Λ wf
(LS-wf)

The last premise WP(m, D0, L′, L) intuitively means “a chain of proceed calls
from the given cursor location eventually reaches a (partial) method that does
not call proceed” and is defined by the following rules:

(∃L0 ∈ L1.proceed �∈ pmbody(m, C, L0)) or class C {.. C0 m(..){..} ..}

WP(m, C, L1, (L1;L2))
(WP-Layer)

2 The previous type system for ContextFJ [11] deals with ensure, an activation mech-
anism with a semantics slightly different from with, and T-InvkA is simpler. Further
discussions on making proceed and with typesafe can be found in [12].

460 H. Inoue and A. Igarashi

C � D WP(m, D, (L1;L2), (L1;L2))
WP(m, C, L1, (L1;L2))

(WP-Super)

Given the typing rule for run-time expressions, we can state the type sound-
ness theorem below.

Theorem 1 (Subject Reduction). Suppose given CT and LT are well-formed.
If •; {L};Γ � e : T and {L} wf and L � e −→ e′, then •; {L};Γ � e′ : S for some S
such that S <: T.

Theorem 2 (Progress). Suppose given CT and LT are well-formed. If •; {L}; • �
e : T and {L} wf, then e is a value or L � e −→ e′ for some e′.

Theorem 3 (Type Soundness). If � (CT,LT, e) : T and e reduces to a nor-
mal form under the empty set of layers, then the normal form is new S(v) for
some v and S such that S <: T.

4 Related Work

Our work is a direct descendant of Igarashi, Hirschfeld, and Masuhara [10,11],
where a tiny COP language ContextFJ is developed and its type system is proved
to be sound. ContextFJ is not equipped with layer inheritance, layer subtyping,
or first-class layers but allows baseless methods to be declared in the second type
system [11], in which requires declarations are first introduced into COP.

There are many type systems proposed for advanced composition mecha-
nisms such as mixins [4,8], traits [16], open classes (a.k.a. inter-type decla-
rations) [6], and revisers [5]. A common idea is to let programmers declare
dependency between modules as required interfaces; our requires declarations
basically follow it. In most work, however, composition is done at compile or link
time unlike COP languages. So, it is interesting that the same idea works even
for dynamic composition found in COP languages.

Kamina and Tamai [15] propose McJava, in which mixin-based composition
can be deferred to object instantiation. In fact, new expressions can specify a class
and mixins to instantiate an object. So, the type of an object also consists of a
class name and a sequence of mixin names. Whereas composition is per-instance
basis in McJava, it is global in ContextFJ<:. However, in McJava, composition
cannot be changed once an object is instantiated.

Drossopoulou et al. [7] proposed FickleII, a class-based object-oriented lan-
guage with dynamic reclassification, which allows an object to change its class
at run time. Their idea of root classes, which serve as interface, is similar to our
swappable layers; their restriction that state classes cannot be used as type for
fields is similar to ours that a sublayer of a swappable cannot be required by
any other layer.

Bettini et al. [3] developed a type system for dynamic trait replacement,
which allows methods in an object to be exchanged at run time. They introduce
the notion of replaceable to describe the signatures of replaceable methods; a

A Sound Type System for First-Class Layers 461

replaceable appears as part of the type of an object and the trait to replace
methods of the object has to provide the methods in that replaceable. The roles
of replaceables and traits are somewhat similar to those of swappable layers,
which provide interfaces common to swapped layers, and sublayers of swappable.

5 Concluding Remarks

We have developed a formal type system for a small COP language with layer
inheritance, layer subtyping, swappable layers, and first-class layers, and shown
that the type system is sound with respect to the operational semantics. As in
previous work, requires declarations are important to guarantee safety in the
presence of baseless methods. Subtyping for first-class layers is subtle because
there are two kinds of substitutability. We have introduced weak subtyping for
checking whether a requires clause is satisfied and normal subtyping for usual
substitutability.

We are working on implementing the type system on top of the existing JCop
compiler but there are many other features that are not modelled in our calculus.
We briefly discuss how our type system can be extended to these features.

In JCop, a layer definition can contain field and (ordinary) method declara-
tions so that a layer instance can act just like an ordinary object. Typechecking
accesses to these members of layer instances is the same as ordinary objects.
If we model fields of layer instances, we will have to modify the reduction rela-
tion so that the sequence of activated layers consists of layer instances (with
their field values) rather than layer names.

JCop provides special variable thislayer, which can be used in partial meth-
ods and is similar to this of classes. It represents the layer instance in which
the invoked partial method is found at run time and can be used to access fields
and methods of that layer instance. In operational semantics, the layer instance
would be substituted for thislayer, similarly to this. Typing thislayer is
also similar to this in the sense that it is given the name of the layer in which
it appears but thislayer cannot be used for layer activation because, at run
time, it may be bound to an instance of a weak subtype.

JCop also introduces superproceed() call, which can be used in a partial
method and invokes a superlayer’s partial method that is overridden by the par-
tial method. Similarly to super calls in Java, the destination of superproceed()
is known statically, so it is easy to typecheck.

We have not fully investigated the interaction between our type system with
other features in Java, such as concurrency, generics, and lambda, although we
expect most of them are orthogonal.

Acknowledgments. We thank Tomoyuki Aotani, Malte Appeltauer, Robert Hirsch-
feld, and Tetsuo Kamina for valuable discussions on the subject. We appreciate valuable
comments and suggestions from the anonymous reviewers. This work was supported in
part by Kyoto University Design School (Inoue) and MEXT KAKENHI Grant Number
23220001 (Igarashi).

462 H. Inoue and A. Igarashi

References

1. Appeltauer, M., Hirschfeld, R.: The JCop language specification: Version 1.0, April
2012. Number 59. Universitätsverlag Potsdam (2012)

2. Appeltauer, M., Hirschfeld, R., Lincke, J.: Declarative layer composition with the
JCop programming language. J. Object Technol. 12 (2013)

3. Bettini, L., Capecchi, S., Damiani, F.: On flexible dynamic trait replacement for
Java-like languages. Sci. Comput. Program. 78(7), 907–932 (2013)

4. Bono, V., Patel, A., Shmatikov, V.: A core calculus of classes and mixins. In:
Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 43–66. Springer, Heidelberg
(1999)

5. Chiba, S., Igarashi, A., Zakirov, S.: Mostly modular compilation of crosscutting
concerns by contextual predicate dispatch. In: Proceedings of the ACM OOPSLA,
pp. 539–554 (2010)

6. Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.: MultiJava: design rationale,
compiler implementation, and applications. ACM Trans. Prog. Lang. Syst. 28(3),
517–575 (2006)

7. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: More dynamic
object reclassification: FickleII. ACM Trans. Prog. Lang. Syst. 24(2), 153–191
(2002)

8. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Proceedings of
the ACM POPL, pp. 171–183. ACM (1998)

9. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)

10. Hirschfeld, R., Igarashi, A., Masuhara, H.: ContextFJ: a minimal core calculus for
context-oriented programming. In: Proceedings of Foundations of Aspect-Oriented
Languages (FOAL), March 2011

11. Igarashi, A., Hirschfeld, R., Masuhara, H.: A type system for dynamic layer com-
position. In: Proceedings of FOOL, October 2012

12. Igarashi, A., Inoue, H., Hirschfeld, R., Masuhara, H.: ContextFJ: a minimal cal-
culus for context-oriented programming (2015) (in preparation for submission)

13. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

14. Inoue, H., Igarashi, A., Appeltauer, M., Hirschfeld, R.: Towards type-safe JCop:
a type system for layer inheritance and first-class layers. In: Proceedings of the
Workshop on Context-Oriented Programming, pp. 7:1–7:6. ACM (2014)

15. Kamina, T., Tamai, T.: McJava – a design and implementation of Java with mixin-
types. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 398–414. Springer,
Heidelberg (2004)

16. Liquori, L., Spiwack, A.: FeatherTrait: a modest extension of Featherweight Java.
ACM Trans. Prog. Lang. Syst. 30(2), 11 (2008)

17. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

Program Analysis - II

Bottom-Up Context-Sensitive Pointer
Analysis for Java

Yu Feng(B), Xinyu Wang, Isil Dillig, and Thomas Dillig

UT Austin, Austin, USA
yufeng@cs.utexas.edu

Abstract. This paper describes a new bottom-up, subset-based, and
context-sensitive pointer analysis for Java. The main novelty of our tech-
nique is the constraint-based handling of virtual method calls and instan-
tiation of method summaries. Since our approach generates polymorphic
method summaries, it can be context-sensitive without reanalyzing the
same method multiple times. We have implemented this algorithm in
a tool called Scuba, and we compare it with k-CFA and k-obj algo-
rithms on Java applications from the DaCapo and Ashes benchmarks.
Our results show that the new algorithm achieves better or comparable
precision to k-CFA and k-obj analyses at only a fraction of the cost.

1 Introduction

Pointer analysis is a key enabling technology underlying many program analysis,
software engineering, and compiler optimization tasks. Given a pointer variable
p, pointer analysis statically determines the set of all heap objects that p may
point to. The result of such an analysis can be used to resolve important program
analysis questions, such as whether two pointers can be aliases or whether a heap
location may be referenced in a given piece of code.

While existing pointer analysis algorithms differ along many dimensions, a
key feature that determines the precision of an algorithm is context-sensitivity.
In particular, a context-sensitive analysis respects the call/return semantics of
procedure calls and does not yield spurious points-to facts that arise from inter-
procedurally unrealizable paths. Furthermore, a context-sensitive analysis dis-
tinguishes heap objects that are allocated at the same program location, but due
to different invocations of the same method. While more precise than context-
insensitive ones, context-sensitive algorithms are much harder to scale to real
programs, and many existing techniques use approximations of full context-
sensitivity. For instance, object-sensitive analyses [14,15,23] only distinguish
callsites where the receiver objects are different, and k-CFA analyses [12,22]
differentiate contexts by tracking callstrings up to some fixed length k.

This work is supported in part by the Air Force Research Laboratory under agree-
ment numbers FA8750-14-2-0270 and FA8750-15-2-0096 and in part by NSF Awards
#1453386.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 465–484, 2015.
DOI: 10.1007/978-3-319-26529-2 25

466 Y. Feng et al.

Fig. 1. Code example to illustrate our approach

Context-sensitivity can be achieved either by performing a top-down or
bottom-up interprocedural analysis. Top-down analyses start ethods of a pro-
gram and analyze callers before callees. In contrast, bottom-up analyses start at
leaf methods of the callgraph and analyze callees before callers. Since top-down
algorithms analyze every method in a known calling context, they are simpler
to design and implement, but they need to re-analyze the same method multi-
ple times under different contexts. In contrast, bottom-up analyses generate a
polymorphic method summary that may be used in any calling context to get
context-sensitive results. While generating a polymorphic points-to summary is
trickier than determining points-to information at a particular call site, bottom-
up analyses do not need to reanalyze the same method several times1 and have
the potential to scale better. In addition, the results of a bottom-up pointer
analysis are reusable: For instance, using a bottom-up pointer analysis, we can
analyze a library just once and reuse its summary for many different clients.

In this paper, we present a bottom-up context- and field-sensitive pointer
analysis algorithm for Java. A key novel feature of our approach is the constraint-
based treatment of virtual method calls. Similar to many other approaches, our
method starts with an imprecise callgraph and refines the callgraph as points-to
facts are discovered. However, we construct the callgraph in a purely bottom-
up fashion by predicating points-to facts on the possible dynamic types of the
receiver object. As method summaries are propagated up the call chain, these
dynamic types are resolved, thereby allowing the refutation of infeasible call
targets and spurious points-to facts in a context-sensitive manner.

Another salient feature of our approach is that it can generate polymorphic
method summaries without performing expensive case splits on possible aliasing
patterns at call sites. In particular, a key challenge in bottom-up pointer analysis
is how to generate method summaries that soundly capture the aggregate effect
of a call to method m under any possible aliasing relation at m’s call sites. Most
previous techniques deal with this difficulty either by performing case splits on
all possible aliasing patterns [3,6] (which can cause exponential blow-up) or by

1 Bottom-up algorithms only re-analyze methods that belong to SCCs in the callgraph.

Bottom-Up Context-Sensitive Pointer Analysis for Java 467

Fig. 2. Method summaries computed by our algorithm

using unification-based methods [10,13,27,28] (which are imprecise compared to
subset-based methods). A main advantage of our technique is that it is as precise
as subset-based methods despite modeling the unknown state of the heap in a
simple and uniform way. In particular, since our technique does not perform
strong updates2 to heap locations, it can soundly account for the callee’s side
effects by performing a fixed-point computation during summary instantiation.

We have implemented our algorithm in a tool called Scuba, and we compare
its scalability and precision with top-down pointer analysis algorithms imple-
mented in Chord [16]. Our experimental results on programs from the DaCapo
and Ashes benchmark suites indicate that Scuba achieves better or comparable
precision to k-CFA and k-object-sensitive algorithm at a fraction of the cost.

To summarize, this paper makes the following contributions:

– We present a bottom-up, subset-based, and context-sensitive pointer analysis
for Java. A key novelty of our approach is the handling of virtual method calls
using constraint-based techniques.

– We describe a new method for summarizing and instantiating points-to facts.
Unlike previous techniques, our approach does not case-split on aliasing pat-
terns and guarantees soundness by performing fixed-point computation during
summary instantiation.

– We describe an implementation of our algorithm and compare it with k-CFA
and k-obj algorithms on the DaCapo and Ashes benchmarks.

2 Example

This section illustrates our approach on an example that showcases virtual
method calls and the need for context-sensitivity. Consider the code shown in
Fig. 1, which defines classes X, Y, and A. Here, Y is a subclass of X and overrides
X’s bar method. Class A has two instance variables x and y of type X. For con-
creteness, suppose we want to know whether x.f and y.g can be aliases at the
end of a1 and a2.
2 A strong update to memory location o kills the existing points-to facts for o, while

a weak update does not.

468 Y. Feng et al.

Fig. 3. Dashed lines indicate points-to edges added after the foo call.

Our algorithm starts by analyzing X::bar and Y::bar, which are leaf pro-
cedures in the callgraph. The summaries for X::bar and Y::bar are shown in
Fig. 2(a) and (b). We depict both method summaries as well as local points-to
facts in the form of a graph, where nodes correspond to abstract heap objects
and directed edges denote may-point-to relations. Our method summaries only
include points-to edges that may be added due to an invocation of the summa-
rized method. In particular, method summaries do not include points-to relations
that already exist on method entry, and since our analysis does not apply strong
updates, no points-to edges can be removed as a result of analyzing a method.
Hence, the summary for a method m can be thought of as a bag of (symbolic)
points-to edges that are introduced due to an invocation of m.

Now, consider the summary for X::bar shown in Fig. 2(a). We use arg0 to
denote the this pointer, and arg1, arg2 to denote the first and second formal
parameters. For parameter i, we use argi.ε to denote the heap object pointed to
by argi on method entry. Hence, according to the summary in Fig. 2(a), X::bar
adds a points-to edge via field f from the object pointed to by the this pointer
to the object pointed to by X::bar’s first parameter. Note that, at a call site of
X::bar, parameter z may have multiple points-to targets, hence, the single edge
in X::bar’s summary may introduce multiple points-to edges at a call site. The
summary for Y::bar, which is shown in Fig. 2(b), is very similar.

Now consider method A::foo, whose summary is shown in Fig. 2(c). Since
x has type X, the call x.bar(a) could either invoke X::bar or Y::bar. Hence,
to analyze the method call, we instantiate the summaries of both X::bar and
Y::bar, but the points-to edges induced by instantiating method T::bar are
qualified by a constraint that stipulates that the dynamic type of x is T.

As an example, consider the potential target X::bar of the call x.bar(a).
Here, the only points-to edge in the summary for X::bar is from the f field of
arg0.ε to arg1.ε. Since arg0 of X::bar corresponds to this.x at the call site,
arg0.ε instantiates to arg0.ε.x, which denotes the memory location pointed to by
this.x. On the other hand, arg1 in X::bar corresponds to parameter z at the
call site, hence arg1.ε translates to a location with the same name, i.e., arg1.ε.

Bottom-Up Context-Sensitive Pointer Analysis for Java 469

Therefore, as shown in Fig. 2(c), instantiating the summary of X::bar for this
call site induces an edge from arg0.ε.x to arg1.ε, but this edge is qualified by
the constraint type(arg0.ε.x) = X.

Continuing with the method invocation y.bar(a) in the second line of
A::foo, we again instantiate the summaries of X::bar and Y::bar, since the
type of y is X. However, this time, the location named arg1.ε used in the sum-
maries of X::bar and Y::bar correspond to the location pointed to by this.y,
which is denoted by arg0.ε.y in method foo. Hence, as shown in Fig. 2(c), the
summary for foo includes points-to edges from the f and g fields of arg0.ε.y
to arg1.ε, again qualified by the appropriate type constraints. Observe that our
approach is context-sensitive because two different invocations of bar induce dif-
ferent points-to relations. Also, even though this.x and this.y may alias at
a call site of foo, we represent their points-to targets on method entry using
two separate locations called arg0.ε.x and arg0.ε.y. As we explain shortly, this
approach is sound as long as we do not perform strong updates.

Now consider method a1 defined in A. The solid black edges in Fig. 3(a)
denote points-to facts that hold right before the call to foo. In particular, the
location named arg0.ε denotes the object pointed to by the this pointer, and
both the x and y fields of arg0.ε point to a location called alloc(Y)@a1 : 1, which
corresponds to the memory allocated at the first line of method a1. Throughout
the paper, we use the notation alloc(T)@Ctx to denote heap objects of type T
that are allocated in context Ctx.

We now turn to the method invocation foo(z) in a1. Here, arg1.ε in foo’s sum-
mary corresponds to the location pointed to by z in a1, which is alloc(Z)@a1 : 3.
On the other hand, the locations named arg0.ε.x and arg0.ε.y in foo represent
the locations pointed to by this.x and this.y in a1 respectively. Following the
chain of points-to edges in Fig. 3(a), we see that arg0.ε.x and arg0.ε.y both corre-
spond to the location alloc(Y)@a1 : 1. Since this allocation is tagged with type Y,
the constraints type(arg0.ε.x) = X and type(arg0.ε.y) = X evaluate to false, while
type(arg0.ε.x) = Y and type(arg0.ε.y) = Y evaluate to true. Hence, instantiating
foo’s summary induces a single points-to edge from the g field of alloc(Y)@a1 : 1
to alloc(Z)@a1 : 3, which is shown with the dotted edge in Fig. 3(a). A similar
chain of reasoning allows us to obtain the points-to facts shown in Fig. 3(b) for
method a2.

As we can see from Fig. 3, the analysis determines that x.f and y.g are
not aliases in either a1 or a2. Observe that an analysis that is either context-
insensitive or based on an imprecise callgraph would conclude otherwise. Also,
even though there are two different calls to foo and four different calls to bar,
observe that our algorithm analyzes each method only once.

3 Conceptual Foundations

Before describing our analysis in detail, we first describe a conceptual framework
that lays the foundations of our algorithm. We describe the main ideas using a
may-points-to graph, which we refer to as an abstract heap:

470 Y. Feng et al.

Definition 1 (Abstract heap). An abstract heap H is a graph (N,E) where
N is a set of nodes corresponding to abstract memory locations, and E is a set
of directed edges between nodes labeled with field names or ε. An edge (o1, o2, f)
indicates that the f field of o1 may point to o2.

Here, an abstract memory location represents either the stack location of a
variable or a set of heap objects. The edge label ε is used to model points-to
relations from stack locations to heap objects. The root nodes of an abstract
heap denote locations of variables, and we write root(H) to indicate the set of
root nodes of H. Given two abstract heaps H1 and H2, H1 ∪ H2 represents the
abstract heap containing nodes and edges from both H1 and H2. Given a heap
H and edges E, we write H\E to denote the heap that contains all nodes and
edges in H except the set of edges E.

3.1 Normalization of Abstract Heaps

Given an abstract heap H, we define a normalization operation N(H), which
yields a normalized heap H∗ and a mapping ζ from nodes in H to nodes in H∗.

Definition 2 (Normal form). Given heap H = (N,E), N(H) yields normal-
ized heap H∗ = (N∗, E∗) and mapping ζ : N → 2N∗

such that:

1. If x ∈ root(H), then x ∈ N∗ and ζ(x) = {x}.
2. If (o, o′, f) ∈ E and o∗ ∈ ζ(o), then o∗.f ∈ N∗, o∗.f ∈ ζ(o′), and (o∗, o∗.f, f)

∈ E∗.

We use the notation N(H) = H∗ to indicate that H∗ is in normal form, and we
write Map(H,H∗) = ζ to indicate that ζ maps nodes of H to nodes in H∗.

Example 1. Consider the abstract heap H shown in Fig. 4(a) and its normal
form H∗ in Fig. 4(b). Here, Map(H,H∗) yields the following mapping ζ:

ζ(x) = {x} ζ(y) = {y} ζ(A) = {x.ε}
ζ(B) = {x.ε, y.ε} ζ(C) = {y.ε} ζ(D) = {x.ε.f}
ζ(E) = {x.ε.f, y.ε.f} ζ(F) = {x.ε.f, y.ε.f}

Fig. 4. An abstract heap and its normal form

Bottom-Up Context-Sensitive Pointer Analysis for Java 471

We use heap normal forms to model the heap on entry to a method. In
particular, H∗ corresponds to a “generic” heap representing the unknown points-
to targets of object o’s f field as o.f . While the mapping ζ from abstract heap H
to its normal form H∗ differs for each call site, the normalized heap for a method
m is the same irrespective of calling context. Observe that no pair of abstract
memory locations alias each other in a normalized heap, and every location has
exactly one points-to target for a given field.

Given an abstract heap H = (N,E) and its normal form H∗ = (N∗, E∗)
such that Map(H,H∗) = ζ, we define ζ−1 to be a mapping from N∗ to 2N such
that n ∈ ζ−1(n∗) iff n∗ ∈ ζ(n). In general, there is a many-to-many relationship
between the nodes of an abstract heap and its corresponding normal form.

Example 2. Consider the heap from Example 1. We have:

ζ−1(x) = {x} ζ−1(y) = {y} ζ−1(x.ε) = {A, B}
ζ−1(y.ε) = {B, C} ζ−1(x.ε.f) = {D, E, F} ζ−1(y.ε.f) = {E, F}

The mapping ζ−1 is important in summary-based analysis because it allows us
to instantiate a method summary to a particular abstract heap at a call site. We
use the notation ζ−1 to denote the extension of ζ−1 that maps any element that
is not in the domain of ζ−1 to itself. Given heap H∗ = (N∗, E∗), we also write
ζ−1(H∗) to denote a heap H = (N,E) where (o1, o2, f) ∈ E iff there exists an
edge (o∗

1, o
∗
2, f) ∈ E∗ such that o1 ∈ ζ−1(o∗

1) and o2 ∈ ζ−1(o∗
2).

Definition 3 (Default Edge). We say an edge (n, n′, f) is a default edge of
an abstract heap if n′ = n.f .

Given a heap H, we write default(H) to denote the set of default edges in H.

SumAnalyze(H, S, A):
input: abstract heap H, code S, intraprocedural analysis A
output: abstract heap H ′

(1) let H∗ = NormalForm(H)
(2) let H ′∗ = Analyze(H∗, S, A)
(3) let Δ = H ′∗\default(H ′∗)
(4) let ζ0 = Map(H, H∗)
(5) let H ′ = H; let ζ = ζ0
(6) do {
(7) ζ0 = ζ

(8) H ′ = ζ−1(Δ) ∪ H ′

(9) ζ = Map(H ′, H∗)
(10) }
(11) while(ζ �= ζ0)
(12) return H ′

Fig. 5. Basic structure of summary-based analysis

472 Y. Feng et al.

3.2 Summary-Based Pointer Analysis

We now explain the basic idea underlying our summary-based analysis, assum-
ing a family of pointer analyses that are sound and weakly-updating. Given
code snippet S, an abstract heap H, and pointer analysis A, we write H ′ =
Analyze(H,S,A) to indicate that, if statement S is executed in an environment
that satisfies abstract heap H, then analyzing code S using pointer analysis A
yields a heap H ′ which conservatively models the concrete heap after S.

The basic structure of our summary-based pointer analysis is shown in Fig. 5.
The algorithm SumAnalyze takes as input an abstract heap H, a code snip-
pet S, and a weakly-updating pointer analysis A, and works as follows. Line
(1) constructs the normalized heap H∗ representing the unknown state of the
heap before executing S, and line (2) analyzes S without making any assump-
tions about points-to facts that hold before S. Line (3) generates a polymorphic
points-to summary Δ which characterizes side effects of code S. Lines (4)–(11)
instantiate the summary Δ by performing a fixed-point computation. Finally,
H ′ at line (12) models the state of the heap after S when S is executed in an
environment satisfying H.

Before discussing details, let us first understand in what way this algorithm
is “summary-based”. Since H∗ can be constructed in a context-independent
manner, we can analyze S in isolation and compute its side effects without
knowing the points-to facts that hold before S. Hence, lines (1)–(3) in Fig. 5
correspond to summary generation. On the other hand, lines (4)–(11) perform
summary instantiation by computing the context-specific mapping ζ0 and by
adding all points-to edges that represent S’s side effects.

The most involved part of the above algorithm is the fixed-point computation
at lines (4)–(11). Intuitively, the algorithm maps each edge in the summary to
a set of edges at the callsite by using the mapping ζ−1 and adds these edges
to the initial abstract heap H. However, as new edges are added to H, the
mapping ζ must to be recomputed since locations used in the summary may
map to new additional locations after the summary has been applied. Hence, H ′

is recomputed until the mapping ζ from H ′ to H∗ stabilizes. It is easy to see
that SumAnalyze is sound because (i) the underlying pointer analysis does not
apply strong updates to memory locations, and (ii) the summary is applied to a

Program P := C+

ClassDecl C := class T1 [extends T2]? {F ∗; M∗}
FieldDecl F := T fld name;
MethodDecl M := m(T0 v0, . . . , Tk vk) = {V ∗; I; }
VarDecl V := T var name;
Instruction I := v1 = v2 | v1 = v2.f | v1.f = v2| v = newρ T

| if(∗) I1 else I2 | I1; I2| mρ@T (v1, . . . , vn) | v0.m
ρ(v1, . . . , vn)

Fig. 6. Core language used for our formalization

Bottom-Up Context-Sensitive Pointer Analysis for Java 473

fixed-point. In particular, observe that H ′ overapproximates H and {H ′}S{H ′}
is a valid Hoare triple [8].

The reader may wonder why it is necessary to re-apply the summary until
the mapping ζ reaches a fixed point in Fig. 5. This is necessary because our
summary Δ encodes all possible side effects of code snippet S, but not the order
in which they happen. Hence, while the fixed point computation is required for
soundness, an immediate corollary is that the procedure SumAnalyze can be
less precise than Analyze if the underlying pointer analysis A is flow-sensitive.

4 Formalization of Algorithm

While the previous section describes core ideas of the analysis, it omits many
important details. In this section, we describe our full algorithm using the core
object-oriented language of Fig. 6. Here, a program consists of one or more class
declarations C, which defines a class T1 with optional superclass T2. Instruc-
tions include assignments, loads, stores, heap allocations (marked with a unique
program point ρ), non-deterministic conditionals, sequences, static method calls
mρ@T (...) (also marked with program point ρ), and virtual method calls
v0.m

ρ(. . .). We assume that the first argument of a method is always the this
pointer, and if a class T inherits a method m from its superclass T ′, then T ′ also
contains a definition of m with the same implementation.

4.1 Abstract Domains

Figure 7 shows the abstract domains that we need for describing our algorithm.
Since our analysis is bottom-up, we differentiate between two kinds of heap
objects o: Access paths of the form ai.η represent (caller-allocated) unknown heap
objects reachable through the i’th argument, whereas objects named alloc(T)@ρ
represent heap objects of type T that are allocated either in the currently ana-
lyzed method or in a transitive callee. Specifically, ai.f1...fn denotes the unknown
locations reachable on method entry through a series of field accesses f1...fn from
the i’th argument. We use the notation ai.(f1...fn)� to denote all unknown loca-
tions reachable from ai through any combination of field selectors f1, ..., fn. For
instance, a0.(f.g)� represents the infinite set of access paths a0.f , a0.g, a0.f.f ,
a0.g.f and so on. As we will see in Sect. 4.3, access paths in our analysis corre-
spond to node labels of the normalized heap from Sect. 3.

Abstract memory locations π are either heap objects o or stack locations. In
particular, ai denotes the stack location of the i’th argument, and vi@ρ denotes
the location of local variable vi under context ρ. We represent calling contexts
using a sequence of program points ρ1, . . . , ρn, where each ρi corresponds to some
call or allocation site. For instance, a memory location named alloc(T)@ρ1ρ2 cor-
responds to a heap object allocated at program point ρ2 of some method m which
is invoked at call site ρ1. Similarly, v@ρ1 denotes the local variable v of some
method m when m is invoked at callsite ρ1. Since our analysis builds contexts
in a bottom-up way, local variables declared in the currently analyzed method

474 Y. Feng et al.

(Field selector) η : f | η.f | η�

(Heap obj) o : ai.η | alloc(T)@ρ
(Abstract loc) π : o | ai | vi@ρ
(Pts set) θ : o → φ
(Abstract heap) Γ : (π × f) → θ
(Summaries) Υ : (T × M) → Γ

Fig. 7. Abstract domains used in our analysis

m do not have any context information; hence, we abbreviate the locations of
locals in the current method as vi.

Definition 4 (Argument-Derived Location). We say location π is derived
from an argument, written arg(π), if it is either (i) ai representing the location
of the i’th argument or (ii) a heap object represented with an access path ai.η.

An abstract heap Γ maps each field f of location π to a points-to set. A
(guarded) points-to set θ is a set of pairs (o, φ) where o is a heap object and φ
is a constraint. As discussed in Sect. 2, we use constraints to predicate points-to
facts on dynamic types of receivers. Constraints φ belong to the theory of equality
with uninterpreted functions, defined according to the following grammar:

Function f := pts | alloc | ςi

Term t := c | v | f(t)
Formula φ := � | ⊥ | type(t) = T | φ1 ∧ φ2 | φ1 ∨ φ2

Here, terms include constants c, variables v, and function applications f(v)
where f is either the binary function pts, alloc, or an n-ary function drawn
from ς1, . . . , ςk. Formulas are composed of � (true), ⊥ (false), and conjunctions
and disjunctions of equality constraints of the form type(t) = T , where T is a
type constant. In addition to the usual function and equality axioms, the alloc
and type functions obey the additional axiom ∀x. type(alloc(T,ρ)) = T , which
states that the type of an allocation of type T is T .

Since we will convert heap objects to terms, we define an operation called
lift(π), abbreviated π, as follows:

ai = ai alloc(T)@ρ = alloc(T, ρ) π.f = pts(π, f) π.(f)� = ςi(π, f) (ςi fresh)

We also assume an operation lift−1(t) which is the inverse of lift(π). Given a
term t, lift−1(t) yields an abstract memory location representation of that term.

Example 3. The constraint type(a.ε.f) = A ∧ type(a.ε.f) = B is unsatis-
fiable since the dynamic type of a.ε.f cannot simultaneously be A and B.
But the constraint type(a.ε.g�) = A ∧ type(a.ε.g�) = B, which translates to
type(ς1(pts(a, ε), g)) = A ∧ type(ς2(pts(a, ε), g)) = B, is satisfiable because two
distinct occurrences of a.ε.g� may correspond to different objects (e.g., a.ε.g and
a.ε.g.g).

Bottom-Up Context-Sensitive Pointer Analysis for Java 475

We now define a function has type(θ,T) which generates a constraint that
evaluates to true if some element in points-to set θ can have dynamic type T :

Definition 5 has type(θ, T). Given a points-to set θ, the function
has type(θ, T) yields the following constraint:

∨

(πi,φi)∈θ

(((type)(πi) = T) ∧ φi)

Now, going back to Fig. 7, an environment Υ maps each method M in class
T to its corresponding summary, which is an abstract heap Γ summarizing M ’s
side effects. Applying the summary at a call site allows us to determine points-to
relations of the caller without having to reanalyze the callee. In addition, our
method summaries include points-to information for locals in the summarized
method. In particular, this design choice allows us to determine points-to sets
for all program variables without employing a separate top-down pass.

4.2 Operations on Abstract Domains

In this section, we describe some operations on abstract domains that simplify
the description of our algorithm. Since our algorithm constructs the initial heap
on method entry in a demand-driven way, we first define default targets for
argument-derived locations:

Definition 6 (Default Target). Given an argument-derived location π and a
field f , the default target of the f field of π, written def(π, f), is given as follows:

def(π, f) =

{
π if π = π′.(f)� and f ∈ f (1)
π′.(f.g)� if π = π′.f.g (2)
π.f otherwise (3)

In other words, if field f is not part of a recursive field cycle (line 3), then the
default target for field f of an argument derived location π is π.f , just like the
normal form heaps from Sect. 3. However, if f is part of a recursive field cycle,
then our analysis collapses this cycle into a single abstract memory location (lines
1–2). For example, def(a.next,next) = a.next� (line 2), and def(a.next�,next) =
a.next� (line 1). The summarization of recursive field cycles into access paths of
the form a.f� is needed to ensure termination of the fixed-point computation
performed by our algorithm.

Next, we define a field lookup operation on abstract heaps Γ :

Definition 7 (Field Look-up). Given heap Γ , field f , and location π, the field
lookup operation Γ [π, f] retrieves the points-to target for π’s f field:

Γ [π, f] =
{

Γ (π, f) ∪ {(def(π, f), �)} if arg(π)
Γ (π, f) otherwise

476 Y. Feng et al.

Since our algorithm does not explicitly add default edges to the abstract
heap, Γ [π, f] always yields x def (π, f) as part of the points-to set of π.f if π is
an argument derived location. Now, since our analysis performs weak updates,
we need to merge two points-to sets using the following join operator:

Definition 8 (Join 	 of points-to sets θ1, θ2)

(θ1 	 θ2)(o) =

{
θ1(o) ∨ θ2(o) if o ∈ dom(θ1) ∩ dom(θ2)
θ1(o) if o ∈ dom(θ1) and o �∈ dom(θ2)
θ2(o) if o ∈ dom(θ2) and o �∈ dom(θ1)

Observe that if an object o is in both points to sets θ1 and θ2, we take
the disjunction of the constraints associated with o. We also extend this join
operator to abstract heaps in the expected way. That is, for a location π and
field f , (Γ1 	 Γ2)(π, f) yields Γ1(π, f) 	 Γ2(π, f). In our analysis, we sometimes
need to predicate points-to information on constraints. For this purpose, an
operation θ ↓ φ conjoins φ with every constraint in θ:

Definition 9 (Projection of θ on φ). θ ↓ φ = {(πi, φi ∧ φ) | (πi, φi) ∈ θ}
Finally, we extend the field lookup operation on points-to sets as follows:

Definition 10 (Field lookup for pts-to set). Γ [θ, f] =
⊔

(πi,φi)∈θ Γ [πi, f] ↓ φi

That is, Γ [θ, f] includes the points-to target of every element in θ under the
appropriate constraints.

4.3 Intraprocedural Analysis

Figure 8 describes the intraprocedural analysis using judgements of the form
Υ, Γ � I : Γ ′. which indicates that, if statement I is executed in an environment
that satisfies summary environment Υ and abstract heap Γ , we obtain a new
heap Γ ′. Since the analysis is (partially) flow-sensitive, we distinguish between
heaps Γ, Γ ′ before and after executing I.

Rule (1) in Fig. 8 describes the analysis of assignments. Although our analysis
only performs weak updates to heap objects, it does apply strong updates to
variables. Hence, rule (1) updates the points-to set for (v1, ε) to be Γ [v2, ε], where
the lookup operation is defined in Sect. 4.2. Rule (2) for memory allocations
v = newρ T introduces a new abstract location named alloc(T)@ρ and assigns
v1 to this singleton.

Rule (3) concerns loads of the form v1 = v2.f . Here, we first look up the
points-to set θ of v2 and then use Γ [θ, f] to retrieve the targets of memory
locations in θ. Finally, since our analysis applies strong updates to variables, we
override v1’s existing targets and change its points-to set to Γ [θ, f].

Rule (4) analyzes stores v1.f = v2. First, we look up the points-to sets θ1 and
θ2 of v1 and v2. Now, the store operation will update every location oi such that
(oi, φi) ∈ θ1. However, since we apply only weak updates to heap objects, we
preserve the existing points-to targets Γ (oi, f) for each oi. Furthermore, since v1

Bottom-Up Context-Sensitive Pointer Analysis for Java 477

(1)
Γ ′ = Γ [(v1, ε) ← Γ [v2, ε]]

Υ, Γ v1 = v2 : Γ ′ (2)
Γ ′ = Γ [v ← {(alloc(T)@ρ, �)}]

Υ, Γ v = newρ T : Γ ′

(3)

θ = Γ [v2, ε]
Γ ′ = Γ [(v1, ε) ← Γ [θ, f]]

Υ, Γ v1 = v2.f : Γ ′

(4)

θ1 = Γ [v1, ε] θ2 = Γ [v2, ε]
Γ ′ = Γ [(oi, f) ← (Γ (oi, f) � (θ2 ↓ φi)) | (oi, φi) ∈ θ1]

Υ, Γ v1.f = v2 : Γ ′

(5)

Υ, Γ I1 : Γ1

Υ, Γ I2 : Γ2

Υ, Γ if(∗) I1 else I2 : Γ1 � Γ2
(6)

Υ, Γ I1 : Γ1

Υ, Γ1 I2 : Γ2

Υ, Γ I1; I2 : Γ2

Fig. 8. Rules for intraprocedural analysis

M, Γ, ρ inst loc(ai) : {M(ai), �}
M, Γ, ρ inst loc(π) : θ

M, Γ, ρ inst loc(π.f) : Γ [θ, f]

M, Γ, ρ inst loc(π) : θ0
θi =

⊔
1≤j≤n Γ [θi−1, fj]

M, Γ, ρ inst loc(π.(f1...fn)� :
⊔

i≥0 θi)

ρnew = new ctx(ρ, ρ)

M, Γ, ρ inst loc(v@ρ) : {(v@ρnew, �)}

ρnew = new ctx(ρ, ρ)

M, Γ, ρ inst loc(alloc(T)@ρ) : {(alloc(T)@ρnew, �)}

Fig. 9. Rules for instantiating memory locations

points to oi under constraint φi, oi points to elements in θ2 only when φi holds.
Hence, the new points-to set for oi is given by (θ2 ↓ φi) 	 Γ (oi, f) where the ↓
operation is given by Definition 9. Since rules (5) and (6) for if statements and
sequencing and are fairly standard, we do not describe them in detail.

4.4 Interprocedural Analysis

We now describe the instantiation of summaries at call sites. Since a key part
of summary instantiation is constructing the mapping from locations in the
summary to those at the call site, we first start with the rules in Fig. 9 which
describe the instantiation of memory locations. Informally, the rules of Fig. 9
construct the mapping ζ−1 from Sect. 3. More formally, they produce judgements
of the form M, Γ, ρ � inst loc(π) : θ where M maps formals to actuals, and
Γ and ρ are the abstract heap and program point associated with a call site
respectively. The meaning of the judgement is that, under M, Γ, ρ, location π
used in the summary maps to (guarded) location set θ.

478 Y. Feng et al.

The first rule Fig. 9 maps formal parameter ai to the actual M(ai). The
second rule instantiates argument-derived locations of the form π.f . For this
purpose, we first instantiate prefix π to location set θ, then retrieve the points-to
targets of the f field of locations in θ. The third rule instantiates access paths of
the form π.(f1 . . . fn)�. As in the previous rule, we first instantiate prefix π, which
yields θ0. Now, recall that the access path π.(f1 . . . fn)� describes the infinite set
of access paths given by the regular expression π.(f1 + . . . + fn)∗. Hence, to
instantiate π.(f1 . . . fn)�, we need to compute all locations that are reachable
from θ0 using any combination of field selectors f1, . . . , fn. The resulting set⊔

i≥0 θi is the reflexive transitive closure of θ0 with respect to fields f1, . . . , fn.
The last two rules in Fig. 9 describe the instantiation of allocations and local

variables. Both rules use a helper new ctx method defined as follows:

new ctx(ρ, ρ) =

{
ρ, ρ if |ρ| ≤ k
ρ otherwise

In other words, new ctx appends call site ρ to context ρ if the length of ρ
is less than some pre-determined threshold k. Hence, our analysis uses a k-CFA
style context-sensitive heap abstraction where the value of k is configurable.

We now turn to the instantiation of constraints, summarized in Fig. 10. To
translate a constraint type(t) = T , we map t to its corresponding location set
θ by using inst loc. The function has type(θ, T) then yields the condition under
which some element in θ has dynamic type T (recall Definition 5).

Using these ingredients, Fig. 11 shows how to instantiate an abstract heap Δ.
Given location πi and field fj from the callee heap, inst partial heap instantiates
all points-to edges from πi labeled with fj and yields instantiated partial heap
Δij . The instantiation of Δ is obtained by taking the join over all Δij ’s.

M, Γ, ρ inst loc(lift−1(t)) : θ
φ = has type(θ, T)

M, Γ, ρ instφ(type(t) = T) : φ

� ∈ {∧, ∨}
M, Γ, ρ instφ(φ1) : φ′

1

M, Γ, ρ instφ(φ2) : φ′
2

M, Γ, ρ instφ(φ1 � φ2) : φ′
1 � φ′

2

Fig. 10. Rules for instantiating constraints

M, Γ, ρ inst loc(π1) : θ1 . . . inst loc(πn) : θn

M, Γ, ρ instφ(φ1) : φ′
1 . . . instφ(πn) : φ′

n

M, Γ, ρ inst pts({(π1, φ1), . . . , (πn, φn)}) : �i(θi ↓ φi)

M, Γ, ρ inst loc(π) : θ′

M, Γ, ρ inst pts(θ) : θ′′

Δ = [(πi, f) ← (θ′′ ↓ φi) | (πi, φi) ∈ θ′]
M, Γ, ρ inst partial heap(π, f, θ) : Δ

Δ = {(π1, f11) �→ θ11, . . . , (πn, fnk) �→ θnk}
M, Γ, ρ inst partial heap(π1, f11, θ11) : Δ11

. . .
M, Γ, ρ inst partial heap(πn, fnk, θnk) : Δnk

M, Γ, ρ inst heap(Δ) : �ijΔij

Fig. 11. Rules for instantiating summaries

Bottom-Up Context-Sensitive Pointer Analysis for Java 479

Finally, Fig. 12 describes the analysis of method calls. First, consider a static
call to m with corresponding summary Δ (rule (1)). To analyze it, we construct
the formal-to-actual mapping M and perform a least fixed-point computation
that instantiates the summarized heap Δ until we obtain an overapproximation
of the set Δ′ of m’s side effects. The abstract heap after the method call is
obtained by taking the union of the existing heap Γ and the new “edges” Δ′.

The second rule of Fig. 12 describes the analysis of virtual calls. Here, we first
overapproximate the call’s targets and then use the previous rule for analyzing
static method calls to obtain heap Γi assuming the called method is Ti :: m.
Now, since the target of the virtual call is Ti :: m under the assumption that v0
has dynamic type Ti, we generate the constraint φi = has type(Γ (v0), Ti). Then,
the final abstract heap after the call is obtained as 	i(Γi ↓ φi).

(1)

Υ (T, m) = Δ
M = [a1 �→ v1, . . . , an �→ vn]

M, Γ � Δ′, ρ inst heap(Δ) : Δ′

Υ, Γ mρ@T (v1, . . . , vn) : Γ � Δ′ (2)

static type(v0) = T T1 <: T, . . . , Tn <: T
φi = has type(Γ (v0), Ti)

Υ, Γ mρ@T1(v0, . . . , vk) : Γ1

. . .
Υ, Γ mρ@Tn(v0, . . . , vk) : Γn

Υ, Γ v0.mρ(v1, . . . , vk) : �i(Γi ↓ φi)

Fig. 12. Analysis of method calls

5 Implementation and Extensions

We implemented the proposed algorithm in a tool called Scuba (http://www.

cs.utexas.edu/∼yufeng/scuba.html) which is built on top of Chord [16]. Scuba
performs analysis on the Quad representation of Joeq [25] and obtains an initial
callgraph by running the context-insensitive pointer analysis implemented in
Chord. It also uses the Z3 SMT solver [5] for checking satisfiability of constraints.

Our implementation performs several optimizations over the core algorithm
described here. One optimization is memoizing instantiation results. For exam-
ple, consider an access path a0.ε.f.g.h used in m’s summary. Since this access
path may be instantiated many times when analyzing a call site of m, our analy-
sis maintains a cache per callsite that records instantiation results. A second
optimization concerns constraint generation for virtual method calls. Consider
a call v.m(...) where the static type of v is T0. Further, suppose T0 has a large
number of subclasses T1, . . . , Tn all of which inherit T0’s m method except Tn.
Assuming v points to heap object o, we need to introduce constraints of the form∨

0≤i<n type(o) = Ti. Since such constraints can be very large, our implementa-
tion allows subtyping constraints and translates them to linear inequalities by
assigning integer identifiers to types in reverse topological order.

http://www.cs.utexas.edu/~yufeng/scuba.html
http://www.cs.utexas.edu/~yufeng/scuba.html

480 Y. Feng et al.

6 Evaluation

We evaluated Scuba on ten large Java applications from the DaCapo and Ashes
benchmark suites [1,2]. These applications range between 92615 and 227507 lines
of statements in the Quad IR and contain between 4634 and 9653 reachable
methods. To evaluate our algorithm, we compared Scuba against the k-CFA
and k-object-sensitive algorithms implemented in Chord [16]. All analyses are
Anderson-style flow-insensitive pointer analyses that allow customizing the value
of k. Chord also allows customizing the context-sensitivity associated with heap
objects using a value h. For example, a 2-obj-1-h analysis uses the abstract
allocation site of the receiver as a context up to depth 2, and it also differentiates
heap allocations with different contexts up to depth 2.

Table 1. Analysis time in seconds. Runs exceeding the time-limit of 3600 s are labeled
T/O.

Benchmark # methods # statements CIPA 2-CFA 2-obj Scuba-2 Scuba-3 Scuba-4

antlr 5411 112831 29 1380 355 30 37 50

hedc 4967 103066 25 1337 446 25 28 31

avrora 5230 104948 24 1328 336 53 55 59

polyglot 4634 92615 21 608 284 14 17 16

toba-s 4702 101501 24 930 299 15 18 17

weblech 5816 115937 27 1657 506 41 35 39

xalan 6405 131332 27 1100 3600 173 180 211

hsqldb 6767 137947 33 2474 1348 63 65 77

luindex 6157 127451 28 2525 532 93 147 315

sunflow 9653 227507 66 T/O T/O 411 405 521

Before describing the results, we first explain how our algorithm relates to k-
CFA and k-obj-sensitive analyses. Similar to k-CFA, Scuba uses call sites rather
than receiver objects as contexts. However, unlike k-CFA, we do not impose a
fixed value of k since our algorithm instantiates method summaries differently
for each call site. On the other hand, we can customize the context-sensitivity
associated with heap objects by varying the parameter k used in the new ctx
function from Sect. 4.4. Hence, for a given value of k in the new ctx function,
Scuba is roughly comparable to a ∞-CFA-k-h analysis. In what follows, we
write Scuba-k to refer to different configurations of Scuba for different values
of parameter k used in the new ctx function from Sect. 4.4.

Table 1 compares the running times of Scuba-k (for 2 ≤ k ≤ 4) against the
context-insensitive(CIPA), 2-CFA, and 2-obj-sensitive analyses using h value of
1. While we also tried comparing Scuba against k-CFA and k-obj-sensitive
analyses for k = 3 and k = 4, these analyses did not complete within an hour
for most of the benchmarks; hence, we do not include these results in Table 1.

Bottom-Up Context-Sensitive Pointer Analysis for Java 481

Table 2. May-alias results. The bigger the better.

Benchmark Alias pairs CIPA 2-CFA 2-obj Scuba-2 Scuba-3 Scuba-4

antlr 6839 0 1082 2785 3219 3231 3231

hedc 1728 0 725 962 1025 1055 1055

avrora 1182 0 406 687 738 741 745

polyglot 165 0 59 103 128 128 128

toba-s 5118 0 3354 3350 3589 3589 3595

weblech 1417 0 662 654 656 681 763

xalan 124 0 24 24 24 24 24

hsqldb 5254 0 2746 2724 3318 3318 3426

luindex 4649 0 1326 1420 1353 1400 1400

sunflow 4303 0 N/A N/A 339 339 339

We also note that the running times shown in Fig. 1 include the analysis time for
libraries (e.g., JDK, Swing, Sun Security) as well as the application code (i.e.,
we did not use manually provided stub methods for analyzing libraries). As the
results in Table 1 show, Scuba-k is significantly faster compared to k-CFA and
k-obj analyses.

To compare the precision of Scuba against k-CFA and k-obj analyses, we
used two typical pointer analysis clients, namely may-alias and downcast analy-
ses. Table 2 compares the precision of different analysis configurations in the
context of the may-alias client. The column labeled “Alias pairs” shows the
number of variable pairs that are queried by the may-alias client. To generate
these pairs, we first ran a context-insensitive pointer analysis to identify potential
may-alias in the application code. From these variables, we further filtered those
pairs that are “obviously” aliases (e.g., due to a direct assignment). Columns 3–
11 in Table 2 show the number of variables proven not to be aliases according to
each analysis configuration. Hence, a higher number indicates better precision.
Observe that every configuration of Scuba-k yields better precision on average
compared to 2-CFA and 2-obj analyses3.

Table 3 shows the precision of each analysis in the context of the downcast
client. Here, the second column labeled “# downcasts” shows the total number
of downcasts in the application, and the subsequent columns show the number of
downcasts that can be proven safe. The number of downcasts shown in Table 3
only include the downcasts performed in the application code rather than in
external libraries4. According to the results shown in Table 3, Scuba-k has better
precision on average compared to both 2-CFA and 2-obj.
3 We manually inspected a randomly selected subset of the may-alias queries that could

only be discharged by Scuba and confirmed that these are not false negatives.
4 Since most benchmarks use the same libraries, this strategy avoids double counting.

Furthermore, clients are typically interested in finding defects in the application.

482 Y. Feng et al.

Table 3. Downcast results. Bigger numbers indicate higher precision.

Benchmark # downcasts CIPA 2-CFA 2-obj Scuba-2 Scuba-3 Scuba-4

antlr 76 18 21 48 45 52 52

hedc 28 5 6 23 23 23 23

avrora 21 0 0 8 15 18 18

polyglot 13 2 3 9 13 13 13

toba-s 59 23 23 34 37 37 37

weblech 48 16 23 33 38 38 38

xalan 14 7 10 13 13 13 13

hsqldb 45 22 24 32 28 28 35

luindex 213 104 106 180 177 177 177

sunflow 81 19 N/A N/A 25 52 52

7 Related Work

Top-Down Pointer Analysis. Most existing context-sensitive pointer analysis
algorithms are top-down [7,12,14,24,26]. Generally speaking, top-down context-
sensitivity comes in two flavors: call-site sensitivity [22] (k-CFA) and k-object-
sensitivity [14]. Specifically, CFA-based algorithms use method call sites as the
context, while object-sensitive approaches use the receiver’s abstract allocation
site. The recent work described in [9] has proposed selectively combining k-CFA
and k-object sensitivity to achieve better precision. Several papers have used
BDD-based methods for top-down context-sensitive pointer analysis [11,26,31].
The use of BDDs exposes commonalities between different contexts and allows
the technique to scale better. The Chord framework [16] used in our experimental
evaluation also uses BDDs to exploit equivalences between calling contexts.

Bottom-Up Pointer Analysis. While not as widely-studied as top-down algo-
rithms, several papers propose bottom-up pointer analysis. However, many of
these approaches are unification-based [10,13,18]. The algorithm proposed in [28]
is also bottom-up but uses a combined equality- and subset-based approach. By
contrast, our algorithm is subset-based and therefore more precise.

The algorithm described in [4] presents a subset-based, partially bottom-
up pointer analysis for C. Unlike our approach, it incorporates both top-down
and bottom-up phases where the top-down phase is used for precise handling of
function pointers. Also unlike our approach, it tracks alias pairs as opposed to an
explicit heap model and is meant for C rather than Java. Another subset-based
pointer analysis for C that combines top-down and bottom-up phases is based
on the observation that context-insensitivity does not result in a loss of precision
if function side effects are accounted for [17]. In contrast to our approach, that
technique handles SCCs in a context-insensitive way and employs a top-down
phase that removes callee side effects. The algorithms described in [3,6] perform
bottom-up pointer analysis for C++ programs. Unlike the method presented

Bottom-Up Context-Sensitive Pointer Analysis for Java 483

in this paper, they perform case splits on possible aliasing patterns. Since the
approach of [6] performs strong updates, it is more precise but less scalable
compared to our technique.

Another related work is the algorithm described in [27], which describes a
compositional pointer and escape analysis for Java. While this analysis is flow-
sensitive and applies strong updates, it assumes that parameters do not alias
and generates a summary that is valid under this assumption. However, if this
assumption is violated at a call site, the analysis corrects the summary through
a complex mechanism that involves merging of memory locations. Another dif-
ference is that [27] does not precisely handle virtual method calls.

Summarization. Many papers describe general frameworks for interprocedural
analysis [19–21]. The work described in [29,30] compute polymorphic summaries
for dataflow problems but both rely on global points-to sets.

8 Conclusion

We described a new bottom-up, summary-based pointer analysis for Java. The
experimental evaluation demonstrates that our algorithm runs significantly faster
than top-down pointer analyses with comparable precision. We believe that
Scuba is able to scale better because the cost of instantiating a method sum-
mary is smaller compared to the cost of re-analyzing the function.

References

1. Ashesbenchmark suite. http://www.sable.mcgill.ca/software/#ashessuitecollection
2. Dacapo benchmarks. http://www.dacapobench.org/
3. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference (1999)
4. Cheng, B.-C., Hwu, W.-M.W.: Modular interprocedural pointer analysis using

access paths: design, implementation, and evaluation. In: PLDI (2000)
5. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure
summaries for heap manipulating programs. In: PLDI (2011)

7. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using
instantiation constraints. In: PLDI 2000 (2000)

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

9. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: PLDI, pp. 423–434 (2013)

10. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: PLDI (2007)

11. Lhoták, O.: Program analysis using binary decision diagrams. Ph.D. thesis, McGill
University (2006)

http://www.sable.mcgill.ca/software/
http://www.dacapobench.org/

484 Y. Feng et al.

12. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer,
Heidelberg (2006)

13. Liang, D., Harrold, M.J.: Efficient points-to analysis for whole-program analysis.
In: Wang, J., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol.
1687, p. 199. Springer, Heidelberg (1999)

14. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to and side-effect analyses for Java. In: ISSTA (2002)

15. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. TOSEM 4, 1–41 (2005)

16. Naik, M.: Chord framework. http://pag.gatech.edu/chord
17. Nystrom, E.M., Kim, H.-S., Hwu, W.W.: Bottom-up and top-down context-

sensitive summary-based pointer analysis. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 165–180. Springer, Heidelberg (2004)

18. O‘Callahan, R.: Generalized aliasing as a basis for program analysis tools. Ph.D.
thesis, Carnegie Mellon University (2001)

19. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

20. Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. In: TAPSOFT 1995 (1996)

21. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data Flow Analysis,
Chap. 7, pp. 189–234. Prentice-Hall, Englewood Cliffs (1981)

22. Shivers, O.: Control-flow analysis of higher-order languages. Technical report
(1991)

23. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. In POPL (2011)

24. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI, pp. 387–400 (2006)

25. Whaley, J.: Joeq: a virtual machine and compiler infrastructure. In: IVME, pp.
58–66. ACM (2003)

26. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131–144 (2004)

27. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: OOPSLA, pp. 187–206 (1999)

28. Xu, G., Rountev, A.: Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis. In ISSTA (2008)

29. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: POPL, pp. 221–234 (2008)

30. Zhang, X., Mangal, R., Naik, M., Yang, H.: Hybrid top-down and bottom-up inter-
procedural analysis. In: PLDI, p. 28 (2014)

31. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: PLDI (2004)

http://pag.gatech.edu/chord

More Sound Static Handling of Java Reflection

Yannis Smaragdakis1(B), George Balatsouras1, George Kastrinis1,
and Martin Bravenboer2

1 University of Athens, Athens, Greece
smaragd@di.uoa.gr

2 LogicBlox Inc., Atlanta, GA, USA

Abstract. Reflection is a highly dynamic language feature that poses
grave problems for static analyses. In the Java setting, reflection is ubiq-
uitous in large programs. Any handling of reflection will be approximate,
and overestimating its reach in a large codebase can be catastrophic for
precision and scalability. We present an approach for handling reflection
with improved empirical soundness (as measured against prior approaches
and dynamic information) in the context of a points-to analysis. Our app-
roach is based on the combination of string-flow and points-to analysis
from past literature augmented with (a) substring analysis and modeling
of partial string flow through string builder classes; (b) new techniques
for analyzing reflective entities based on information available at their use-
sites. In experimental comparisons with prior approaches, we demonstrate
a combination of both improved soundness (recovering the majority of
missing call-graph edges) and increased performance.

1 Introduction

Whole-program static analysis is the engine behind several modern programming
facilities for program development and understanding. Compilers, bug detectors,
security checkers, modern development environments (with automated refactor-
ings, slicing facilities, and auto-complete functionality), and a myriad other tools
routinely employ static analysis machinery. Even the seemingly simple effort of
computing a program’s call-graph (i.e., which program function can call which
other) requires sophisticated analysis in order to achieve precision.

Yet, static whole-program analysis suffers in the presence of common dynamic
features, especially reflection. When a Java program accesses a class by supply-
ing its name as a run-time string, via the Class.forName library call, the static
analysis needs to either conservatively over-approximate (e.g., assume that any
class can be accessed), or to perform a string analysis that will allow it to infer
the contents of the forName string argument. Both options can be detrimental to
the scalability of the analysis: the conservative over-approximation may never
become constrained enough by further instructions to be feasible in practice;
precise string analysis is impractical for programs of realistic size. It is telling

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 485–503, 2015.
DOI: 10.1007/978-3-319-26529-2 26

486 Y. Smaragdakis et al.

that no practical Java program analysis framework in existence handles reflection
soundly [19], although other language features are modeled soundly.1

Full soundness is not practically achievable, but it can still be approximated
for the well-behaved reflection patterns encountered in regular, non-adversarial
programs. Therefore, it makes sense to treat soundness as a continuous quan-
tity: something to improve on, even though we cannot perfectly reach. To avoid
confusion, we use the term empirical soundness for the quantification of how
much of the dynamic behavior the static analysis covers. Computable metrics of
empirical soundness can help quantify how close an analysis is to the fully sound
result. Based on such metrics, one can make comparisons (e.g., “more sound”)
to describe soundness improvements.

The second challenge of handling reflection in a static analysis is scalability.
The online documentation of the IBM Wala library [8] concisely summarizes
the current state of the practice, for points-to analysis in the Java setting.

Reflection usage and the size of modern libraries/frameworks make it
very difficult to scale flow-insensitive points-to analysis to modern Java
programs. For example, with default settings, Wala’s pointer analyses
cannot handle any program linked against the Java 6 standard libraries,
due to extensive reflection in the libraries.

In this paper, we describe an approach to analyzing reflection in the Java
points-to analysis setting. Our approach requires no manual configuration and
achieves significantly higher empirical soundness without sacrificing scalability,
for realistic benchmarks and libraries (DaCapo Bach and Java 7). In experimen-
tal comparisons with the recent Elf system [16] (itself improving over the reflec-
tion analysis of the Doop framework [6]), our algorithm discovers most of the
call-graph edges missing (relative to a dynamic analysis) from Elf’s reflection
analysis. This improvement in empirical soundness is accompanied by increased
performance relative to Elf, demonstrating that near-sound handling of reflec-
tion is often practically possible. Concretely, our work:

• introduces key techniques in static reflection handling that contribute greatly
to empirical soundness. The techniques generalize past work from an intra-
procedural to an inter-procedural setting and combine it with a string analysis;

• shows how scalability can be addressed with appropriate tuning of the above
generalized techniques;

• thoroughly quantifies the empirical soundness of a static points-to analysis,
compared to past approaches and to a dynamic analysis;

• is implemented and evaluated on top of an existing open framework (Doop [6]).

2 Background: Joint Reflection and Points-To Analysis

As necessary background, we next present an abstracted model of the inter-
related reflection and points-to analysis upon which our approach builds. The
1 In our context, sound = over-approximate, i.e., guaranteeing that all possible behav-

iors of reflection operations are modeled.

More Sound Static Handling of Java Reflection 487

model is a light reformulation of the analysis introduced by Livshits et al. [18,20].
The main insight of the Livshits et al. approach is that reflection analysis relies on
points-to information, because the different key elements of a reflective activity
may be dispersed throughout the program. A typical pattern of reflection usage
is with code such as:

String className = ... ;1

Class c = Class.forName(className);2

Object o = c.newInstance ();3

String methodName = ... ;4

Method m = c.getMethod(methodName , ...);5

m.invoke(o, ...);6

All of the above statements can occur in distant program locations, across
different methods, invoked through virtual calls from multiple sites, etc. Thus,
a whole-program analysis with an understanding of heap objects is required
to track reflection with any amount of precision. This suggest the idea that
reflection analysis can leverage points-to analysis—it is a client for points-to
information. At the same time, points-to analysis needs the results of reflec-
tion analysis—e.g., to determine which method gets invoked in the last line of
the above example, or what objects each of the example’s local variables point
to. Thus, under the Livshits et al. approach, reflection analysis and points-to
analysis become mutually recursive, or effectively a single analysis.

This mutual recursion introduces significant complexity. Fortunately, a large
amount of research in points-to analysis has focused on specifying analyses
declaratively [5,6,10,13–15,17,22,23,25,26], in the Datalog programming lan-
guage. Datalog is ideal for encoding mutually recursive logic—recursion is the
backbone of the language. Computation in Datalog consists of monotonic log-
ical inferences that apply to produce more facts until fixpoint. A Datalog rule
“C(z, x) ← A(x, y), B(y, z).” means that if A(x, y) and B(y, z) are both true,
then C(z, x) can be inferred. Livshits et al. expressed their joint reflection and
points-to analysis declaratively in Datalog, which is also a good vehicle for our
illustration and further changes.

We consider the core of the analysis algorithm, which is representative and
handles the most common features, illustrated in our above example: creating a
reflective object representing a class (a class object) given a name string (library
method Class.forName), creating a new object given a class object (library
method Class.newInstance), retrieving a reflective method object given a class
object and a signature (library method Class.getMethod), and reflectively call-
ing a virtual method on an object (library method Method.invoke). This treat-
ment ignores several other APIs, which are handled similarly. These include, for
instance, fields, constructors, other kinds of method invocations (static, special),
reflective access to arrays, other ways to get class objects, and more.

The domains of the analysis include: invocation sites, I; variables, V ; heap
object abstractions (i.e., allocation sites), H; method signatures, S; types, T ;
methods, M ; natural numbers, N , and strings. The analysis takes as input the
relations (i.e., tables filled with information from the program text) shown in
Fig. 1. Using these inputs, the Livshits et al. reflection analysis can be expressed

488 Y. Smaragdakis et al.

Fig. 1. Relations representing the input program and their informal meaning.

as a five-rule addition to any points-to analysis. The rest of the points-to analy-
sis (not shown here—see e.g., [10,14,25]) supplies more rules for computing a
relation VarPointsTo(v : V, h : H) and a relation CallGraphEdge(i : I,m : M).
Intuitively, the traditional points-to part of the joint analysis is responsible for
computing how heap objects flow intra- and inter-procedurally through the pro-
gram, while the added rules contribute only the reflection handling. We explain
the rules below.

ClassObject(i, t) ←
Call(i, "Class.forName"), ActualArg(i, 0, p),

VarPointsTo(p, c), ConstantForClass(c, t)

VarPointsTo(r, h) ←
ClassObject(i, t), ReifiedClass(t, h), AssignRetValue(i, r).

The first two rules, above, work jointly: they model a forName call, which returns
a class object given a string representing the class name. The first rule says that if
the first argument (0-th parameter, since forName is a static method) of a forName

call points to an object that is a string constant, then the type corresponding to
that constant is retrieved and associated with the invocation site in computed
relation ClassObject. The second rule then uses ClassObject: if the result of the
forName call at instruction i is assigned to a local variable r, and the reflection
object for the type associated with i is h, then r is inferred to point to h.

VarPointsTo(r, h) ←
Call(i, "Class.newInstance"), ActualArg(i, 0, v), VarPointsTo(v, hc),

ReifiedClass(t, hc), AssignRetValue(i, r), ReifiedHeapAllocation(i, t, h).

More Sound Static Handling of Java Reflection 489

The above rules could easily be combined into one. However, their split form is
more flexible. In later sections we will add more rules for producing ClassObject

facts—for instance, instead of constant strings we will have expressions that still
get inferred to resolve to an actual type.

The above rule reads: if the receiver object, hc, of a newInstance call is a class
object for class t, and the newInstance call is assigned to variable r, then make
r point to the special (i.e., invented) allocation site h that designates objects of
type t allocated at the newInstance call site.

VarPointsTo(r, hm) ←
Call(i, "Class.getMethod"), ActualArg(i, 0, b), ActualArg(i, 1, p),

AssignRetValue(i, r), VarPointsTo(b, hc), ReifiedClass(t, hc),

VarPointsTo(p, c), ConstantForMethod(c, s),

Lookup(t, s,), ReifiedMethod(s, hm).

The above rule gives semantics to getMethod calls. It states that if such a call
is made with receiver b (for “base”) and first argument p (the string encoding
the desired method’s signature), and if the analysis has already determined the
objects that b and p may point to, then, assuming p points to a string constant
encoding a signature, s, that exists inside the type that b points to (“ ” stands
for “any” value), the variable r holding the result of the getMethod call points to
the reflective object, hm, for this method signature.

CallGraphEdge(i,m) ←
Call(i, "Method.invoke"), ActualArg(i, 0, b), ActualArg(i, 1, p),

VarPointsTo(b, hm), ReifiedMethod(s, hm),

VarPointsTo(p, h), HeapType(h, t), Lookup(t, s,m).

Finally, all reflection information can contribute to inferring more call-graph
edges. The last rule encodes that a new edge can be inferred from the invocation
site, i, of a reflective invoke call to a method m, if the receiver, b, of the invoke

(0th parameter) points to a reflective object encoding a method signature, and
the argument, p, of the invoke (1st parameter) points to an object, h, of a class
in which the lookup of the signature produces the method m.

3 Techniques for Empirical Soundness

We next present our main techniques for higher empirical soundness.

3.1 Generalizing Reflection Inference via Substring Analysis

An important way of enhancing the empirical soundness of our analysis is via
richer string flow. The logic discussed in Sect. 2 only captures the case of entire

490 Y. Smaragdakis et al.

string constants used as parameters to a forName call. The parameter of forName

could be any string expression, however. It is interesting to attempt to deduce
whether such an expression can refer to a class name. Similarly, strings represent-
ing field and method names are used in reflective calls—we already encountered
the getMethod call in Sect. 2.

In order to estimate what classes, fields, or methods a string expression may
represent, we implement substring matching : all string constants in the program
text are tested for prefix and suffix matching against known class, method, and
field names. (We use tunable thresholds to limit the matches: e.g., member pre-
fixes, resp. suffixes, need to be at least 3, resp. 5, characters long.)

The strings that may refer to such entities are handled with more precision
than others during analysis. For instance, a points-to analysis (e.g., in the Doop
or Wala frameworks) will typically merge most strings into a single abstract
object—otherwise the analysis will incur an overwhelmingly high cost because of
tracking numerous string constants. Strings that may represent class/interface,
method, or field names are prevented from such merging. Furthermore, the flow
of such strings through factory objects is tracked.

String concatenation in Java is typically done through StringBuffer or String
Builder objects. The common concatenation operator, +, reduces to calls over
such factory objects. To evaluate whether reflection-related substrings may flow
into factory objects, we leverage the points-to analysis itself, pretending that an
object flow into an append method and out of a toString method is tantamount
to an assignment. A simplified version of the logic is in the rule below. (The rule
assumes we have already computed relation ReflectionObject(h : H), which
lists the string constants that partially match method, field, or class names, as
described above. It also takes an extra input relation StringFactoryVar(vf : V)
that captures which variables are of a string factory type.)

VarPointsTo(r, h) ←
Call(ia, "append"), ActualArg(ia, 0, vf), ActualArg(ia, 1, v),

StringFactoryVar(vf), Call(it, "toString"), AssignRetValue(it, r),

ActualArg(it, 0, uf), VarPointsTo(vf , hf), VarPointsTo(uf , hf),

VarPointsTo(v, h), ReflectionObject(h).

In words: if a call to append and a call to toString are over the same factory
object, hf , (accessed by different vars, vf and uf , at possibly disparate parts of
the program) then all the potentially reflection-related objects that are pointed
to by the parameter, v, of append are inferred to be pointed by the variable r
that accepts the result of the toString call.

In this way, the flow of partial string expressions through the program is
tracked. By then appropriately adjusting the ConstantForClass and Constant-

ForMethod predicates of Sect. 2 (to also map from partial strings to their match-
ing types) we can estimate which reflective entities can be returned at the site of

More Sound Static Handling of Java Reflection 491

a forName or getMethod call. In this way, the joint points-to and reflection analysis
is enhanced with substring reasoning without requiring any changes to the base
logic of Sect. 2. String flow through buffers becomes just an enhancement of the
points-to logic, which is already leveraged by reflection analysis.

An interesting aspect of the above approach is that it is easily configurable,
in commonly desirable ways. Our above rule for handling partial string flow
through string factory objects does not concern itself with how string factory
objects (hf) are represented inside the analysis. Indeed, string factory objects
are often as numerous as strings themselves, since they are implicitly allocated
on every use of the + operator over strings in a Java program. Therefore, a
pointer analysis will often merge string factory objects, with the appropriate
user-selectable flag.2 The rule for string flow through factories is unaffected by
this treatment. Although precision is lost if all string factory objects are merged
into one abstract object, the joint points-to and reflection analysis still computes
a fairly precise outcome: “does a partial string that matches some class/method-
/field name flow into some string factory’s append method, and does some string
factory’s toString result flow into a reflection operation?” If both conditions are
satisfied, the class/method/field name matched by the partial string is consid-
ered to flow into the reflection operation.

3.2 Use-Based Reflection Analysis

Our second technique for statically analyzing reflection calls is called use-based
reflection analysis and it integrates two sub-techniques: a back-propagation mech-
anism and a (forward) object invention mechanism.

Inter-Procedural Back-Propagation. An important observation regarding
reflection handling is that it is one of the few parts of a static analysis that are
typically under-approximate rather than over-approximate [19]. Our first use-
based reflection analysis technique back-propagates information from the use-site
of a reflective result to the original reflection call that got under-approximated.
Such an under-approximated call can be a Class.forName, Class.get[Declared]
Method, Class.get[Declared]Field, etc. call, which returns a dynamic represen-
tation of a class, method, or field, given a string name.

The example below, which we will refer to repeatedly in later sections, shows
how the use of a non-reflection object can inform a reflection call’s analysis:

Class c1 = Class.forName(className);1

... // c2 aliases c12

Object o1 = c2.newInstance ();3

... // o2 aliases o14

e = (Event) o2;5

Typically (e.g., when className does not point to a known constant) the
forName call will be under-approximated (rather than, e.g., assuming it will

2 E.g., SMUSH STRINGS in Wala [8] and MERGE STRING BUFFERS in Doop.

492 Y. Smaragdakis et al.

return any class in the system). The idea is to then treat the cast as a hint:
it suggests that the earlier forName call should have returned a class object for
Event. This reasoning, however, should be inter-procedural with an understand-
ing of heap behavior. The above statements could be in distant parts of the
program (separate methods) and aliasing is part of the conditions in the above
pattern. Further, note that the related objects are twice-removed: we see a cast
on an instance object and need to infer something about the forName site that
may have been used to create the class that got used to allocate that object.
This propagation should be as precise as possible: lack of precision will lead to
too many class objects returned at the forName call site, affecting scalability.

Therefore, we see again the need to employ points-to analysis, this time in
order to detect the relationship between cast sites and forName sites, so that the
latter can be better resolved and we can improve the points-to analysis itself—
a mutual recursion pattern. The high-level structure of our technique (for this
pattern) is as follows:

• At the site of a forName call, create a marker object (of type java.lang.Class),
to stand for all unknown objects that the invocation may return.

• The special object flows freely through the points-to analysis, taking full
advantage of inter-procedural reasoning facilities.

• At the site of a newInstance invocation, if the receiver is our special object,
the result of newInstance is also a special object (of type java.lang.Object

this time) that remembers its forName origins.
• This second special object also flows freely through the points-to analysis,

taking full advantage of inter-procedural reasoning facilities.
• If the second special object (of type java.lang.Object) reaches the site of a

cast, then the original forName invocation is retrieved and augmented to return
the cast type or its subtypes as class objects.

The algorithm for the above treatment can be elegantly expressed via rules
that are mutually recursive with the base points-to analysis. The rules for the
forName-newInstance-cast pattern are representative. We use extra input relations
ReifiedForName(i : I, h : H), and ReifiedNewInstance(i : I, h : H), analogous
to our earlier “Reified...” relations. The first relation gives, for each forName

invocation site, i, a special object, h, that identifies the invocation site. The
second relation gives a special object, h, that stands for all unknown objects
returned by a newInstance call, which was, in turn, performed on the special
object returned by a forName call, at invocation site i. The rules then become:

VarPointsTo(v, h) ←
Call(i, "Class.forName"), AssignRetValue(i, v), ReifiedForName(i, h).

In words: the variable that was assigned the result of a forName invocation points
to the special object representing all missing objects from this invocation site. In
this way, the special object can then propagate through the points-to analysis.

More Sound Static Handling of Java Reflection 493

VarPointsTo(r, hn) ←
Call(in, "Class.newInstance"), ActualArg(in, 0, v), VarPointsTo(v, h),

AssignRetValue(in, r), ReifiedForName(i, h), ReifiedNewInstance(i, hn).

According to this rule, when analyzing a newInstance call, if the receiver is a
special object that was produced by a forName invocation, i, then the result of
the newInstance will be another special object (of appropriate type—determined
by the contents of ReifiedNewInstance) that will identify the forName call.

The final rule uses input relation Cast(v′ : V, v : V, t : T) (with v′ being the
variable to which the cast result is stored and v the variable being cast) and
Subtype(t : T, u : T) with its expected meaning:

ClassObject(i, t′) ←
Cast(, v, t), Subtype(t′, t), VarPointsTo(v, hn), ReifiedNewInstance(i, hn).

The rule ties the logic together: if a cast to type t is found, where the cast variable
points to a special object, hn, then retrieve the object’s forName invocation site,
i, and infer that this invocation site returns a class object of type t′, where t′ is
a subtype of t.

Other Use-Cases. As seen above, the back-propagation logic involves the result
of several inter-procedural queries (e.g., points-to information at possibly dis-
tant call sites). In fact, there are use-based back-propagation patterns with even
longer chains of reasoning. In the case below, the cast of o2 informs the return
value of forName, three reflection calls back!

Class c1 = Class.forName(className);1

... // c2 aliases c12

Constructor [] cons1 = c2.getConstructors(types);3

... // cons2 aliases cons14

Object o1 = cons2[i]. newInstance(args);5

... // o2 aliases o16

e = (Event) o2;7

Interestingly, the back-propagation analysis can exploit not just cast informa-
tion but also strings (including partial strings, transparently, per our substring/
string-flow analysis of Sect. 3.1). When retrieving a member from a reflectively
discovered class, the string name supplied may contain enough information to
disambiguate what this class may be. Consider the pattern:

Class c1 = Class.forName(className);1

... // c2 aliases c12

Field f = c2.getField(fieldName);3

In this case, the value of the fieldName string can inform the analysis result for
the earlier forName call. We apply this idea to the 4 API calls Class.get[Declared]
Method and Class.get[Declared]Field.

494 Y. Smaragdakis et al.

Contrasting Approaches. Our back-propagating reflection analysis has some close
relatives in the literature. Livshits et al. [18,20] also examined using future casts
as hints for forName calls, as an alternative to regular string inference. Li et al. [16]
generalize the Livshits approach to many more reflection calls. There are, how-
ever, important ways in which our techniques differ:

• Our analysis generalizes the pattern significantly. In our earlier example,
from the beginning of this section, both the Li et al. and the Livshits et al.
approaches require for the cast to not only occur in the same method as the
newInstance call but also to post-dominate it! This restricts the pattern to an
intra-procedural and fairly specific setting, reducing its generality:

Class c1 = Class.forName(className);1

... // c2 aliases c12

e = (Event) c2.newInstance ();3

The result of such a restriction is that the potential for imprecision is dimin-
ished, yet the ability to achieve empirical soundness is also scaled back. There
are several cases where the cast will not post-dominate the intermediate reflec-
tion call, yet could yield useful information. This is precisely what Livshits et al.
encountered experimentally—a direct quote illustrates:

The high number of unresolved calls in the JDK is due to the fact that
reflection use in libraries tends to be highly generic and it is common to
have‘Class.newInstance wrappers’—methods that accept a class name
as a string and return an object of that class, which is later cast to an
appropriate type in the caller method. Since we rely on intraprocedural
post-dominance, resolving these calls is beyond our scope [20].

• We generalize back-propagation to string information and not just cast infor-
mation (i.e., we exploit the use of get[Declared]{Method,Field} calls to resolve
earlier forName calls). This feature also benefits from other elements of our
overall analysis, namely substring matching and substring flow analysis
(Sect. 3.1). For instance, by having more information on what are the pos-
sible strings passed to a getMethod call, we are more likely to determine the
return value of a getClass, on which the getMethod was called.

Inventing Objects. Our approach introduces an alternative use-based reflec-
tion analysis technique, which works as a forward propagation technique (in
contrast to the earlier back-propagation). It consists of inventing objects of the
appropriate type at the point of a cast operation that has received the result of
a reflection call. Consider again our usual forName-newInstance-cast example:

Class c1 = Class.forName(className);1

... // c2 aliases c12

Object o1 = c2.newInstance ();3

... // o2 aliases o14

e = (Event) o2;5

More Sound Static Handling of Java Reflection 495

A major issue with our earlier back-propagation technique is that its results
may adversely affect precision. The information will flow back to the site of the
forName call, and from there to multiple other program points—not just to the
point of the cast operation (line 5), or even to the point of the newInstance

operation (line 3) in the example.
The object invention technique offers the converse compromise. Whenever a

special, unknown reflective object flows to the point of a cast, instead of inform-
ing the result of forName, the technique invents a new, regular object of the right
type (Event, in this case) that starts its existence at the cast site. The “invented”
object does not necessarily abstract actual run-time objects. Instead, it exploits
the fact that a points-to analysis is fundamentally a may-analysis: it is designed
to possibly yield over-approximate results, in addition to those arising in real
executions. Thus, an invented value does not impact the correctness of the analy-
sis (since having extra values in points-to sets is acceptable), yet it will enable
it to explore possibilities that might not exist without the invented value. These
possibilities are, however, strongly hinted by the existence of a cast in the code,
over an object derived from reflection operations.

The algorithm for object invention in the analysis is again recursive with the
main points-to logic. We illustrate for the case of Class.newInstance, although
similar logic applies to reflection calls such as Constructor.newInstance, as well
as Method.invoke and Field.get.

As in the back-propagating analysis, we use special marker objects. These
are represented by input relations ReifiedMarkerNewInstance(i : I, h : H),
and ReifiedInventedObject(i : I, t : T, h : H). The first relation gives, for each
newInstance invocation site, i, a special object, h, that identifies the invoca-
tion site. The second relation gives an invented object, h of type t, for each
newInstance invocation site, i, and type t that appears in a cast. The algorithm
is captured by two rules:

VarPointsTo(v, h) ←
Call(i, "Class.newInstance"), AssignRetValue(i, v),

ReifiedMarkerNewInstance(i, h).

That is, the variable assigned the result of a newInstance invocation points to
a special object marking that it was produced by a reflection call. The marker
object can then propagate through the points-to analysis.

The key part of the algorithm is to then invent an object at a cast site.

VarPointsTo(r, h) ←
Cast(r, v, t), VarPointsTo(v, hm),

ReifiedMarkerNewInstance(i, hm), ReifiedInventedObject(i, t, h).

496 Y. Smaragdakis et al.

In words, if a variable, v, is cast to a type t and points to a marker object that
was produced by a newInstance call, then the variable, r, storing the result of
the cast, points to a newly invented object, with the right type, t.

Note that in terms of empirical soundness the object invention approach is
weaker than the back-propagation analysis: if a type is inferred to be produced
by an earlier forName call, it will flow down to the point of the cast, removing the
need for object invention. (Conversely, inventing objects at the cast site will not
catch all cases covered by back-propagation, since the special object of the back-
propagation analysis may never flow to a cast.) Nevertheless, back-propagation
is often less scalable. Thus, the benefit of object invention is that it allows to
selectively turn off back-propagation while still taking advantage of information
from a cast.

3.3 Balancing for Scalability

Consider again our inter-procedural back-propagating analysis technique relative
to prior, intra-procedural techniques. Our approach explicitly aims for empirical
soundness (i.e., to infer all potential results of a reflection call). At the same time,
however, the technique may suffer in precision, since the result of a reflection call
is deduced from far-away information, which may be highly over-approximate.
Conversely, our object invention technique is more precise (since the invented
object only starts existing at the point of the cast) but may suffer in terms of
soundness. Thus, it can be used to supplement back-propagation when the latter
is applied selectively.

To balance the soundness/precision tradeoff of the back-propagating analy-
sis, we employ precision thresholds. Namely, back-propagation is applied only
when it is reasonably precise in terms of type information. For instance, if a cast
is found, it is used to back-propagate reflective information only when there are
up to a constant, c, class types that can satisfy the cast (i.e., at most c subtypes
of the cast type). Intuitively, a cast of the form “(Event)” is much more infor-
mative when Event is a class with only a few subclasses, rather than when Event

is an interface that many tens of classes implement. Similarly, if string informa-
tion (e.g., a method name) is used to determine what class object could have
been returned by a Class.forName, the back-propagation takes place only when
the string name matches methods of at most d different types. This threshold
approach minimizes the potential for noise back-propagating and polluting all
subsequent program paths that depend on the original reflection call.

A second technique for employing back-propagation without sacrificing pre-
cision and scalability adjusts the flow of special objects (i.e., objects in Rei-

fiedForName or ReifiedNewInstance). Although we want such objects to flow
inter-procedurally, we can disallow their tracking through the heap (i.e., through
objects or arrays), allowing only their flow through local variables. This is consis-
tent with expected inter-procedural usage patterns of reflection results: although
such results will likely be returned from methods (cf. the quote from [20] in
Sect. 3.2), they are less likely to be stored in heap objects.

More Sound Static Handling of Java Reflection 497

We employ both of the above techniques by default in our analysis (with c =
d = 5). The user can configure their application through input options.

4 Evaluation

We implemented our techniques in the Doop framework [6], together with
numerous improvements (i.e., complete API support) to Doop’s reflection han-
dling. Following the Elf study [16], we perform the default joint points-to
and call-graph analysis of Doop, which is an Andersen-style context-insensitive
analysis, with full support for complex Java language features, such as class
initialization, exceptions, etc. Our techniques are orthogonal to the context-
sensitivity used, and can be applied to all analyses in the Doop framework.
In general, nothing in our modeling of reflection limits either context- or flow-
sensitivity.

Experimental Setup. Our evaluation setting uses the LogicBlox Datalog engine,
v.3.9.0, on a Xeon X5650 2.67 GHz machine with only one thread running at a
time and 24GB of RAM. We have used a JVMTI agent to construct a dynamic
call-graph for each analyzed program.

We analyze 10 benchmark programs from the DaCapo 9.12-Bach suite [3],
with their default inputs (for the purposes of the dynamic analysis). Other bench-
marks could not be executed or analyzed: tradebeans/tradesoap from 9.12-Bach
do not run with our instrumentation agent, hence no dynamic call-graphs can be
extracted for comparison. This is a known, independently documented, issue (see
http://sourceforge.net/p/dacapobench/bugs/70/). We have been unable to mean-
ingfully analyze fop and tomcat—significant entry points were missed. This sug-
gests either a packaging error (no application-library boundaries are provided by
the DaCapo suite), or the extensive use of dynamic loading, which needs further
special handling.

We use Oracle JDK 1.7.0 25 for the analysis. (For comparison, consider the
quote from [8] in the Introduction, refers to the smaller JDK 1.6.)

Empirical Soundness Metric. We quantify the empirical unsoundness of the
static analysis in terms of missing call-graph edges, compared to the dynamic
call-graph. Call-graph construction is one of the best-known clients of points-
to analysis [1,2,16] and has the added benefit of quantifying how much code
the analysis truly reaches. We compare the call-graph edges found by our sta-
tic analysis to a dynamic call-graph—a comparison also found in other recent
work [24]. For a sound static analysis, no edge should occur dynamically but not
predicted statically. However, this is not the case in practice, due to the unsound
handling of dynamic features, as discussed in the Introduction.

Results. Figure 2 plots the results of our experiments, combining both analy-
sis time and empirical unsoundness (in call-graph edges). Each chart plots the
missing dynamic call-graph edges that are not discovered by the correspond-
ing static analysis. We use separate bars for the application-to-application and

http://sourceforge.net/p/dacapobench/bugs/70/

498 Y. Smaragdakis et al.

Fig. 2. Unsoundness metrics (two bars: missing call-graph edges app-to-app and app-
to-lib) and analysis time (line) over the DaCapo benchmarks. Lower is better for all.
For missing bars (“n/a”), the analysis did not terminate in 90 mins.

More Sound Static Handling of Java Reflection 499

Fig. 3. Total static and dynamic call-graph edges for the DaCapo 9.12-Bach bench-
marks. These include only application-to-application and application-to-library edges.

application-to-library edges. Library-to-library edges are also computed but they
are not comparable in static vs. dynamic analysis due to native calls. We filter
out edges to implicit methods (static initializers, loadClass()) that are not sta-
tically modeled. We show five techniques:

1. Elf. This is the Elf reflection analysis [16], which also attempts to improve
reflection analysis for Java.

2. No substring. Our reflection analysis, with engineering enhancements over the
original Doop framework, but no analysis of partial strings or their flow.

3. Substring. The analysis integrates the substring and substring flow analysis
of Sect. 3.1.

4. +Invent. This analysis integrates substring analysis as well as the object
invention technique of Sect. 3.2.

5. +Backwards.3 This analysis integrates substring analysis as well as the back-
propagation technique of Sect. 3.2.

It is important to note that, by design, our techniques do not enhance the
precision of an analysis, only its empirical soundness. Thus, the techniques only
find more edges: they cover more of the program. This improvement appears as
a reduction in the figures (“lower is better”) only because the number plotted is
the difference in the missing edges compared to the dynamic analysis.

As can be seen, our techniques substantially increase the soundness of the
analysis. In most benchmarks, more than half (to nearly all) of the missing
application-to-application edges are recovered by at least one technique. The
application-to-library missing edges also decreased, although not as much. In fact,

3 The +Backwards and +Invent techniques are both additions to the substring analy-
sis, but neither includes the other.

500 Y. Smaragdakis et al.

the eclipse benchmark was hardly being analyzed in the past, since most of the
dynamic call-graph was missing.

Furthermore, although our approach emphasizes empirical soundness, it does
not sacrifice scalability. All four of our settings are faster than Elf for almost all
benchmarks. Aside from jython, for which only the Elf and no substring tech-
niques are able to terminate before timeout, in all other cases substring and at
least one of +invent or +backwards outperformed Elf, while in 7-of-10 bench-
marks all our techniques outperformed Elf. This is due to achieving scalability
using the threshold techniques of Sect. 3.3 instead of by sacrificing some empiri-
cal soundness, as Elf does. (A major design feature of Elf is that it explicitly
avoids inferring reflection call targets when it cannot fully disambiguate them.)

For completeness, we also show a sanity-checking metric over our analyses.
Empirical soundness could increase by computing a vastly imprecise call-graph.
This is not the case for our techniques. Figure 3 lists the total static and dynamic
edges being computed. On average, +backwards computes the most static edges
(about 4.5 times the number of dynamic edges). On the lower end of the spectrum
lies no substring, with a minimum of 3.4 times the number of dynamic edges
being computed.

In pragmatic terms, a user of our analysis should use flags to pick the tech-
nique that yields more soundness without sacrificing scalability, for the given
input program. This is a familiar approach—e.g., it also applies to picking the
exact flavor and depth of context-sensitivity.

5 Related Work

The traditional handling of reflection in static analysis has been through inte-
gration of user input or dynamic information. The Tamiflex tool [4] exemplifies
the state of the art. The tool observes the reflective calls in an actual execu-
tion of the program and rewrites the original code to produce a version without
reflection calls. Instead, all original reflection calls become calls that perform
identically to the observed execution. This is a practical approach, but results
in a blend of dynamic and static analysis. It is unrealistic to expect that uses of
reflection will always yield the same results in different dynamic executions—or
there would be little reason to have the reflection (as opposed to static code) in
the first place. Our approach attempts to restore the benefits of static analysis,
with reasonable empirical soundness.

An alternative approach is that of Hirzel et al. [11,12], where an online
pointer analysis is used to deal with reflection and dynamic loading by monitor-
ing their run-time occurrence, recording their results, and running the analysis
again, incrementally. This approach is quite interesting when applicable. How-
ever, maintaining and running a precise static analysis during program run time
is often not realistic (e.g., for expensive context-sensitive analyses). Furthermore,
the approach does not offer the off-line soundness guarantees one may expect
from static analysis: it is not possible to ask questions regarding all methods
that may ever be called via reflection, only the ones that have been called so far.

More Sound Static Handling of Java Reflection 501

Interesting work on static treatments of reflection is often in the context of
dynamic languages, where resolving reflective invocations is a necessity. Furr
et al. [9] offer an analysis of how dynamic features are used in the Ruby lan-
guage. Their observations are similar to ours: dynamic features (reflection in
our case) are often used either with sets of constant arguments or with known
prefixes/suffixes (e.g., to re-locate within the file system).

Madsen et al. [21] employ a use-based analysis technique in the context of
Javascript. When objects are retrieved from unknown code (typically libraries)
the analysis infers the object’s properties from the way it is used in the client. In
principle, this is a similar approach to our use-based techniques (both object
invention and back-propagation) although the technical specifics differ. The
conceptual precursor to both approaches is the work on reflection by Livshits
et al. [18,20], which has been extensively discussed and contrasted throughout
the paper (see Sects. 2 and 3.2).

Advanced techniques for string analysis have been presented by Christensen
et al. [7]. They analyze complex string expressions and abstract them via a
context-free grammar that is then widened to a regular language. Reflection is
one of their examples but they only apply it to small benchmarks.

Stancu et al. [24] empirically compare profiling data with a points-to static
analysis. However, they target only the most reflection-light benchmarks of the
DaCapo 9.12-Bach suite and patch the code to avoid reflection entirely.

6 Conclusions

Highly dynamic features, such as reflection and dynamic loading, are the bane
of static analysis. These features are not only hard to analyze well, but also
ubiquitous in practice, thus limiting the practical impact of static analysis. We
presented techniques for static reflection handling in Java program analysis. Our
techniques build on top of state-of-the-art handling of reflection in Java, by ele-
gantly extending declarative reasoning over reflection calls and inter-procedural
object flow. Our main emphasis has been in achieving higher empirical sound-
ness, i.e., in having the static analysis truly model observed dynamic behaviors.
Although full soundness is infeasible for a realistic analysis, it is possible to
produce general techniques that enhance the ability to analyze reflection calls.

Although our techniques improve on the problem of handling reflection, fur-
ther work is necessary to achieve good scalability and empirical soundness for
complex programs. Furthermore, our work has not addressed another major and
commonly used dynamic feature: dynamic loading. Continued work will hope-
fully make such language features a lot more feasible to analyze statically.

Acknowledgments. We gratefully acknowledge funding by the European Research
Council under grant 307334 (Spade).

502 Y. Smaragdakis et al.

References

1. Ali, K., Lhoták, O.: Application-only call graph construction. In: Noble, J. (ed.)
ECOOP 2012. LNCS, vol. 7313, pp. 688–712. Springer, Heidelberg (2012)

2. Ali, K., Lhoták, O.: Averroes: whole-program analysis without the whole pro-
gram. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 378–400. Springer,
Heidelberg (2013)

3. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications, OOPSLA
2006, pp. 169–190. ACM, New York (2006)

4. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In:
Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, pp. 241–250. ACM, New York (2011)

5. Bravenboer, M., Smaragdakis, Y.: Exception analysis and points-to analysis: Better
together. In: Proceedings of the 18th International Symposium on Software Testing
and Analysis, ISSTA 2009, pp. 1–12. ACM, New York (2009)

6. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proceedings of the 24th Annual ACM SIGPLAN Confer-
ence on Object Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2009. ACM, New York (2009)

7. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Proceedings of the 10th International Symposium on Static Analysis, SAS
2003, pp. 1–18. Springer (2003)

8. Fink, S.J., et al.: WALA UserGuide: PointerAnalysis. http://wala.sourceforge.net/
wiki/index.php/UserGuide:PointerAnalysis

9. Furr, M., An, J.D., Foster, J.S.: Profile-guided static typing for dynamic scripting
languages. In: Proceedings of the 24th Annual ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications, OOPSLA
2009, pp. 283–300. ACM, New York (2009)

10. Guarnieri, S., Livshits, B.: GateKeeper: mostly static enforcement of security and
reliability policies for Javascript code. In: Proceedings of the 18th USENIX Security
Symposium, SSYM 2009, pp. 151–168. USENIX Association, Berkeley (2009)

11. Hirzel, M., von Dincklage, D., Diwan, A., Hind, M.: Fast online pointer analysis.
ACM Trans. Program. Lang. Syst. 29(2), 11 (2007)

12. Hirzel, M., Diwan, A., Hind, M.: Pointer analysis in the presence of dynamic class
loading. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 96–122. Springer,
Heidelberg (2004)

13. Kastrinis, G., Smaragdakis, Y.: Efficient and effective handling of exceptions in java
points-to analysis. In: Jhala, R., De Bosschere, K. (eds.) Compiler Construction.
LNCS, vol. 7791, pp. 41–60. Springer, Heidelberg (2013)

14. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: Proceedings of the 2013 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013. ACM, New York (2013)

15. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel,
C.: Context-sensitive program analysis as database queries. In: Proceedings of the
24th Symposium on Principles of Database Systems, PODS 2005, pp. 1–12. ACM,
New York (2005)

http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis

More Sound Static Handling of Java Reflection 503

16. Li, Y., Tan, T., Sui, Y., Xue, J.: Self-inferencing reflection resolution for Java. In:
Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 27–53. Springer, Heidelberg
(2014)

17. Liang, P., Naik, M.: Scaling abstraction refinement via pruning. In: Proceedings
of the 2011 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, pp. 590–601. ACM, New York (2011)

18. Livshits, B.: Improving Software Security with Precise Static and Runtime Analy-
sis. Ph.D. thesis, Stanford University, December 2006

19. Livshits, B., et al.: In defense of soundiness: A manifesto. Commun. ACM 58(2),
44–46 (2015)

20. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

21. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript appli-
cations in the presence of frameworks and libraries. In: Proceedings of the ACM
SIGSOFT International Symposium on the Foundations of Software Engineering,
FSE 2013, pp. 499–509. ACM (2013)

22. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: Proceed-
ings of the 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2006, pp. 308–319. ACM, New York (2006)

23. Reps, T.W.: Demand interprocedural program analysis using logic databases. In:
Ramakrishnan, R. (ed.) Applications of Logic Databases, pp. 163–196. Kluwer
Academic Publishers, Boston (1994)

24. Stancu, C., Wimmer, C., Brunthaler, S., Larsen, P., Franz, M.: Comparing points-
to static analysis with runtime recorded profiling data. In: Proceedings of the 2014
International Conference on Principles and Practices of Programming on the Java
Platform Virtual Machines, Languages and Tools, PPPJ 2014, pp. 157–168. ACM
(2014)

25. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005)

26. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proceedings of the 2004 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2004, pp. 131–144.
ACM, New York (2004)

Author Index

Accattoli, Beniamino 231
Adjé, Assalé 127
Akkoorath, Deepthi Devaki 427
Asada, Kazuyuki 313
Axelsen, Holger Bock 407

Balatsouras, George 485
Barenbaum, Pablo 231
Bi, Xuan 11
Bieniusa, Annette 427
Binder, Walter 356
Bravenboer, Martin 485
Bulej, Lubomír 356

Clarke, Dave 29

da Rocha Pinto, Pedro 169
Dillig, Isil 465
Dillig, Thomas 465
Dudziak, Tomasz 111

Feng, Yu 465

Gardner, Philippa 169
Garoche, Pierre-Loïc 127

Hainry, Emmanuel 387
Han, Shi 335

Igarashi, Atsushi 189, 445
Inoue, Hiroaki 445

Jaber, Guilhem 271
Jansen, Christina 90

Kastrinis, George 485
Kawata, Sadaaki 313
Kell, Stephen 356
Kimura, Daisuke 69
Kobayashi, Naoki 295, 313

Larmuseau, Adriaan 29
Li, Huang 11

Liu, Gaoang 369
Liu, Jiangchao 146
Lv, Yi 369

Matheja, Christoph 90
Matsumoto, Yuma 295
Mazza, Damiano 231

Noll, Thomas 90
Ntzik, Gian 169

Oliveira, Bruno C.d.S. 11

Pai, Rekha R. 49
Patrignani, Marco 29
Péchoux, Romain 387

Rival, Xavier 146

Schöpp, Ulrich 251
Sekiyama, Taro 189
Servetto, Marco 208
Shi, Zhiyuan 11
Smaragdakis, Yannis 485
Sun, Haiyang 356

Tabareau, Nicolas 271
Tatsuta, Makoto 69
Tauber, Tomáš 11

Ueda, Soichiro 189
Unno, Hiroshi 295

Wang, Chao 369
Wang, Xinyu 465
Werey, Alexis 127
Wu, Peng 369

Xiao, Xiao 335

Yahav, Eran 3
Yokoyama, Tetsuo 407

Zhang, Charles 335
Zhang, Dongmei 335
Zhang, Weixin 11

Zhang, Zhenrui 11
Zheng, Yudi 356
Zucca, Elena 208

506 Author Index

	Preface
	Organization
	Invited Talks
	Programming with “Big Code”
	Analyzing JavaScript Web Applicationsin the Wild (Mostly) Statically
	Probabilistic Programming

	Contents
	Invited Talk
	Programming with ``Big Code''
	References

	Compilers
	Memory-Efficient Tail Calls in the JVM with Imperative Functional Objects
	1 Introduction
	2 FCore and IFOs, Informally
	2.1 Encoding Functions with IFOs
	2.2 Tail-Call Elimination

	3 Compiling FCore
	4 Tail-Call Elimination
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	A Secure Compiler for ML Modules
	1 Introduction
	2 Overview
	2.1 The Source Language ModuleML
	2.2 The Low-Level Target Language A+I
	2.3 The Attacker
	2.4 The Secure Abstract Data Type Pattern

	3 A Secure Compiler for ModuleML
	3.1 Booleans, Integers and Pairs
	3.2 Abstract Types
	3.3 Structures and Signatures
	3.4 Higher-Order Functions
	3.5 Locations
	3.6 Functors

	4 Compiler Reflection
	5 Implementation and Experimental Results
	6 Related Work
	7 Conclusions
	References

	Detection of Redundant Expressions: A Complete and Polynomial-Time Algorithm in SSA
	1 Introduction
	2 Motivation
	2.1 Kildall's Algorithm
	2.2 Gulwani's Algorithm
	2.3 Our View

	3 Terminology
	4 Basic Concept
	4.1 Value -function
	4.2 Proposed Method

	5 Algorithm
	5.1 Join
	5.2 Transfer Function
	5.3 The Iterative Algorithm
	5.4 Complexity Analysis

	6 Implementation and Results
	7 Related Work
	8 Conclusion
	References

	Separation Logic
	Separation Logic with Monadic Inductive Definitions and Implicit Existentials
	1 Introduction
	2 Separation Logic with Inductive Definitions
	2.1 Symbolic Heaps with Inductive Definitions
	2.2 Implicit Existential
	2.3 Separation Logic Sep
	2.4 Semantics
	2.5 Related Work
	2.6 Main Ideas

	3 Translation in Sep
	3.1 Transformation of Weak Progress into Progress
	3.2 Simplification of Definition Clauses
	3.3 Separation Logic Sep
	3.4 Translation of Inductive Predicates in Sep
	3.5 Translation of Symbolic Heaps in Sep

	4 Translation in Bounded-Treewidth Separation Logic
	5 Main Theorems
	6 Undecidability of SLRDbtw with Implicit Existentials
	7 Conclusion
	References

	Tree-Like Grammars and Separation Logic
	1 Introduction
	2 Preliminaries
	3 Context-Free Graph Grammars
	4 Tree-Like Grammars
	5 Tree-Like Separation Logic
	6 Conclusion
	References

	Static Analysis and Abstract Interpretation
	Randomized Resource-Aware Path-Sensitive Static Analysis
	1 Introduction
	1.1 Motivating Examples
	1.2 Trace Hashing
	1.3 Paper Structure and Contributions

	2 Trace Hashing as Abstract Interpretation
	2.1 Basic Definitions and Concrete Semantics
	2.2 Assumptions About Underlying Analysis
	2.3 Path-Sensitive Abstract Domain
	2.4 Hash Update

	3 The Hash Function Family
	4 Implementation and Experimental Results
	4.1 Benchmarking Methodology
	4.2 Results

	5 Related Work
	6 Extensions and Future Work
	References

	Quadratic Zonotopes
	1 Affine Arithmetics and Static Analysis
	2 Affine and Quadratic Arithmetics
	3 Quadratic Zonotopes: A Zonotopic Extension of Quadratic Forms to Environments
	4 Floating Point Computations
	5 Improving Concretization Using SDP
	6 Experimentation
	7 Conclusion
	References

	Abstraction of Optional Numerical Values
	1 Introduction
	2 Overview
	3 A Language with Optional Values and Its Semantics
	4 Abstraction in Presence of Optional Numerical Values
	5 Application to Numerical Domains Based on Linear Inequalities
	5.1 The Bi-Avatar Strategy
	5.2 Condition Test
	5.3 Verifying the Satisfaction of a Constraint
	5.4 Assignment
	5.5 Inclusion Checking, Join and Widening
	5.6 Analysis

	6 Possibly Empty Summary Variables
	7 Implementation and Examples
	8 Related Works
	9 Conclusion
	References

	Hoare Logic and Types
	Fault-Tolerant Resource Reasoning
	1 Introduction
	2 Motivating Examples
	2.1 Naive Bank Transfer
	2.2 Fault-Tolerant Bank Transfer: Implementation
	2.3 Fault-Tolerant Bank Transfer: Verification

	3 Program Logic
	3.1 Example: Concurrent Bank Transfer

	4 Case Study: ARIES
	5 Semantics and Soundness
	5.1 Fault-Tolerant Views
	5.2 Fault-Tolerant Concurrent Separation Logic

	6 Related Work
	7 Conclusions and Future Work
	References

	Shifting the Blame
	1 Introduction
	2 Blame Calculus with Shift and Reset
	2.1 Blame Calculus
	2.2 Delimited-Control Operators: Shift and Reset
	2.3 Blame Calculus with Shift and Reset

	3 Language
	3.1 Syntax
	3.2 Semantics
	3.3 Type System
	3.4 Type Soundness

	4 Blame Theorem
	4.1 Subtyping
	4.2 Blame Theorem

	5 CPS Transformation
	6 Related Work
	7 Conclusion
	References

	Aliasing Control in an Imperative Pure Calculus
	1 Introduction
	2 Syntax and Type System
	3 Examples
	4 Calculus
	5 Results
	6 Related Work
	7 Conclusion
	References

	Functional Programming and Semantics
	A Strong Distillery
	1 Introduction
	2 Linear Leftmost-Outermost Reduction
	3 Distilleries
	4 Strengthening the MAM
	5 The Strong Milner Abstract Machine
	6 Distilling the Strong MAM
	7 Complexity Analysis
	References

	From Call-by-Value to Interaction by Typed Closure Conversion
	1 Introduction
	2 Source Language
	3 Target Language
	3.1 Equational Theory

	4 Translation
	4.1 Examples

	5 Correctness
	5.1 Lower Bound
	5.2 Upper Bound

	6 Conclusion and Further Work
	References

	Kripke Open Bisimulation
	1 Introduction
	2 RefML
	2.1 Syntax of RefML
	2.2 Operational Semantics
	2.3 Abstract Values and Nominal Reasoning

	3 Trace Semantics
	3.1 Interactive Reduction
	3.2 Nominal Equivalence of Traces
	3.3 A Simple Bisimulation on Traces

	4 Kripke Open Bisimulations
	4.1 Transition Systems and Worlds
	4.2 Definition of KOBs
	4.3 An Example: Well-Bracketed State Change

	5 Soundness
	6 Completeness
	6.1 Faithful Kripke Bisimulations on Traces
	6.2 Exhaustive WTS

	7 Future Work
	References

	Model Checking
	Automata-Based Abstraction for Automated Verification of Higher-Order Tree-Processing Programs
	1 Introduction
	2 Preliminaries
	3 The Verification Problem
	4 Automata-Based Abstraction
	4.1 Abstract Programs
	4.2 Abstraction Method

	5 Abstraction Refinement
	5.1 Feasibility Check
	5.2 Abstraction Refinement

	6 Implementation and Experiments
	7 Related Work
	8 Conclusion
	References

	Decision Algorithms for Checking Definability of Order-2 Finitary PCF
	1 Introduction
	2 Preliminaries
	2.1 Finitary PCF
	2.2 FPCF Definability Problem

	3 Algorithm Using Sieber's Relation
	3.1 Logical Relation
	3.2 Characterization of Definability
	3.3 Algorithm
	3.4 Complexity

	4 Saturation-Based Algorithm Using Finite Canonical Forms
	4.1 Finite Canonical Forms of FPCF
	4.2 Algorithm
	4.3 Complexity

	5 Application to Program Equivalence Checking
	5.1 Observational Equivalence Problem
	5.2 Algorithm for the Equivalence Problem

	6 Related Work
	7 Conclusion
	References

	Program Analysis - I
	Uncovering JavaScript Performance Code Smells Relevant to Type Mutations
	1 Introduction
	2 Types in Type-Feedback JavaScript Engine
	2.1 Type Collection
	2.2 Type Mutations
	2.3 Why Type Mutations Impair Performance

	3 Type Mutation Code Patterns in Practice
	4 Finding Unintentional Type Mutations
	4.1 Modeling Type Evolutions
	4.2 Checking Type Homogeneity
	4.3 Inferring the Reason of Deoptimization

	5 Evaluation
	5.1 Overall Results Discussion
	5.2 Case Studies for Octane

	6 Related Work
	7 Conclusion and Future Work
	References

	Analyzing Distributed Multi-platform Java and Android Applications with ShadowVM
	1 Introduction
	2 ShadowVM Overview
	3 Code Coverage Analysis with ShadowVM
	4 Fuzzing a Distributed Multi-platform Application
	5 Related Work
	6 Conclusions
	References

	Medley
	Quasi-Linearizability is Undecidable
	1 Introduction
	2 Concurrent Systems
	2.1 Notations
	2.2 Libraries and the Most General Clients
	2.3 Operational Semantics of Concurrent Systems

	3 Linearizability and Quasi-Linearizability
	3.1 Linearizability
	3.2 Quasi-Linearizability

	4 Undecidability of Quasi-Linearizability
	4.1 k-Counter Machine
	4.2 Libraries for Prefix Closed Regular Languages
	4.3 Reducing a k-Z Decision Problem to a Linearizability Problem
	4.4 Undecidability of Quasi-Linearizability

	5 Conclusion and Future Work
	References

	Objects in Polynomial Time
	1 Object Oriented Programs
	1.1 Abstract Syntax
	1.2 Informal Semantics
	1.3 Input and Size

	2 Type System
	2.1 Tiered Types
	2.2 Typing Environments and Judgments
	2.3 Typing Rules
	2.4 Well-Typedness
	2.5 Type System Non-Interference Properties

	3 Safe Recursion
	3.1 Level and Intricacy
	3.2 Safety Restriction

	4 Boolean Lists as an Illustrating Example
	5 Characterization of Polynomial Time
	5.1 Polynomial Time Soundness
	5.2 Polynomial Time Completeness
	5.3 Decidability of Type Inference

	6 Methodology of the Presented Analysis
	7 Expressivity and Open Issues
	References

	Programming Models
	Programming Techniques for Reversible Comparison Sorts
	1 Introduction
	2 Preliminaries
	2.1 Reversible Simulations
	2.2 The Janus Reversible Programming Language

	3 Comparison Sorts
	3.1 Bubble Sort
	3.2 Insertion Sort
	3.3 Hygienic Bubble Sort
	3.4 Selection Sort
	3.5 Merge Sort
	3.6 Quicksort

	4 Concluding Remarks
	A Converting Between Permutation Representations
	References

	Transactions on Mergeable Objects
	1 Introduction
	2 Mergeable Objects
	3 Mergeable Transactions
	3.1 Operational Semantics of MTM
	3.2 Properties of MTM
	3.3 Algorithm

	4 MTM in Haskell
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	A Sound Type System for Layer Subtyping and Dynamically Activated First-Class Layers
	1 Introduction
	2 Language Constructs of Safe JCop
	2.1 Layers and Partial Methods
	2.2 Layer Activation and First-Class Layers
	2.3 Dependencies Between Layers
	2.4 Layer Inheritance
	2.5 Layer Swapping and Deactivation

	3 ContextFJ<:
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Type System
	3.4 Type Soundness

	4 Related Work
	5 Concluding Remarks
	References

	Program Analysis - II
	Bottom-Up Context-Sensitive Pointer Analysis for Java
	1 Introduction
	2 Example
	3 Conceptual Foundations
	3.1 Normalization of Abstract Heaps
	3.2 Summary-Based Pointer Analysis

	4 Formalization of Algorithm
	4.1 Abstract Domains
	4.2 Operations on Abstract Domains
	4.3 Intraprocedural Analysis
	4.4 Interprocedural Analysis

	5 Implementation and Extensions
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	More Sound Static Handling of Java Reflection
	1 Introduction
	2 Background: Joint Reflection and Points-To Analysis
	3 Techniques for Empirical Soundness
	3.1 Generalizing Reflection Inference via Substring Analysis
	3.2 Use-Based Reflection Analysis
	3.3 Balancing for Scalability

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Author Index

