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Abstract. We propose a graph theoretical algorithm for image segmen-
tation which preserves both the volume and the connectivity of the solid
(non-void) phase of the image. The approach uses three stages. Each step
optimizes the approximation error between the image intensity vector
and piece-wise constant (indicator) vector characterizing the segmenta-
tion of the underlying image. The different norms in which this approxi-
mation can be measured give rise to different methods. The running time
of our algorithm is O(N logN) for an image with N voxels.

1 Introduction

We focus on the image segmentation problem, which is one of the challenging
problems in Computer Vision. Throughout the last three-four decades numerous
approaches have been proposed and developed in order to attack the problem.
In 1989, Mumford and Shah [18] minimized a certain energy functional in order
to compute the segmentation. The functional contains three terms: regularity
term on the length of the inter-phase contours, regularity term on the smooth-
ness of the intensity function v, and the data fidelity term which measures the
L2 distance between the input intensity u and the output intensity v. Since
the Mumford-Shah functional is non-convex and non-smooth, the optimization
problem is difficult to solve. Simplifications of the model, however, have been
proposed. Among these is the piecewise smooth convex relaxation by functional
lifting [19]. Another frequently applied strategy is to restrict v within the class of
piece-wise constant functions, so that the second regularity term in the original
functional is omitted. This piecewise constant model, combined with classical
gradient based active contour models lead to the Chan-Vese model ([8] for 2-
phase and [25] for multi-phase segmentation). There are many other approaches
for 2-phase image segmentation based on [8] and its convex relaxation [7], e.g.,
[4,9,29]. In [6], the regularity term in the Mumford-Shah functional is replaced
by the Rudin-Osher-Fatemi (ROF) functional [21]. A new multiphase segmenta-
tion model based on iteratively thresholding the minimizer of the ROF functional
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of a convex relaxation of the Mumford-Shah functional is presented and relation
between the solution in the 2-phase case and the one from the Chan-Vese model
is established.

Graph-based image segmentation has been another active research field for
the past 40 years. While the works we mentioned earlier use a continuous setup,
in the graph based approaches, one studies a suitably constructed graphs whose
vertices are the voxels describing the image. In [28], Zahn uses the minimum
spanning tree (MST) of a weighted graph to obtain the phases. The edge weights
are defined as the differences of the intensities of neighboring voxels. A “heavy”
MST edges are then cut out, leaving the different connected components to
be the different phases. Some shortcomings of the model have been overcome
in [24], where the weights are normalized. A segmentation method, based on
finding minimum cuts in a graph, is developed in [27]. The method appeared to
be biased more towards finding small components. A normalized cut criterion,
which takes into account self-similarity of regions, is developed in [22]. The latter
leads to an NP-hard problem and in [22] the authors propose several polynomial
approximating algorithms. The work of Weiss [26] relates such eigenvector-based
approximations to more standard (spectral) partitioning methods on graphs. An
efficient greedy algorithm for multiphase segmentation, based on edge detection,
is developed in [10]. Although the algorithm uses local optimization procedures
it runs in almost linear time with respect to the number of edges, and the output
segmentation satisfies global properties.

Other graph-Laplacian-based segmentation models [13,16,17,23] can be
viewed as an intersection of the general approaches we have just described. In
these works, the image voxels are again part of a graph structure, and the cor-
responding 2-Laplacian functional [1,5] is used as the data fidelity term in an
optimization problem. The data smoothing is not addressed via additional reg-
ularity terms in the functional, but by carefully choosing the edge weights.

The variety of segmentation techniques is huge and we cannot cover it all.
There are other approaches, some of them considered classical (e.g., the
K-means method and its modifications). We refer to [3,12], for the corresponding
techniques and review of the literature.

In this paper we consider a constraint 2-phase segmentation problem, where
one of the phases is simply connected and of fixed volume. The motivation comes
from industry and more precisely from Computer Tomography (CT). Porous
materials are of current interest within a wide range of applications and their
properties strongly depend on various measurements such as absolute porosity,
average pore size, size and shape of individual pores. Therefore, accurate seg-
mentation of the 3D industrial CT reconstruction of the corresponding specimen
is crucial for further numerical simulations. Due to the highly irregular structure
of the segmentation phases and the presence of noise in the image, the methods,
described earlier are not reliable and in some cases the results between different
algorithms may differ drastically (even in 50% of the voxels). To say the least,
such a task is nontrivial.
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An important constraint is the volume constraint. It is practical to assume
that: (1) the volume (e.g. the number of “solid” voxels) of the solid phase is
fixed (determined from the density and the weight of the material); and (2) the
specimen consists of only one material piece (connected component).

In our work, we aim to design algorithms that give accurate segmentation, but
also which respect the constraints given in (1) and (2). Recently, a promising step
in this direction was made in [11], where, based on the techniques from [13] algo-
rithms for accurate segmentation (with the volume constraint) were reported.
Here, we introduce a different approach, based on MST properties. We propose
a new class of algorithms, which give promising results and provide a framework
for future research on the constrained image segmentation. Our mathematical
model requires minimization of functionals measuring the approximation error
with piece-wise constant functions. For the theory, we consider a discrete version
of the fidelity term of the Chan-Vese model (called fitting energy) defined on the
characteristic functions χS of simply-connected subsets S ⊂ Ω of cardinality
|S| = M . Then, in the experimental part we add a regularity term to it for data
smoothing.

The rest of the paper is organized as follows. We give preliminary notation
and definitions in Sect. 2. Next, in Sect. 3 we formulate the problem relevant
to the 2-phase constrained image segmentation. In Sect. 4 we describe in more
detail the 3 stage algorithm and in Sect. 5 we test its performance.

2 Preliminaries

We introduce the notation needed to formulate a problem which we refer to in
what follows as the 2-phase image segmentation problem. We are given a volume
Ω in 3D (2D) which is split in nx × ny × nz cubes (squares in 2D case when
nz = 1). The cubes are called voxels. The total number of voxels is N = nxnynz,
and the set of voxels is V. We thus have

Ω =
⋃

K∈V
K.

We assume that we are given a piece-wise constant (with respect to the partition
of Ω in voxels) function called intensity u. Denoting by χS the characteristic
function of a set S, we have that

u =
∑

K∈V
uKχK .

Here, uK = u
∣∣
K

. Since the space of such piece-wise constant functions is iso-
morphic to R

N , we also denote by u the corresponding vector {uK}K∈V in R
N ,

hoping that there is no ambiguity in such notation.
The formulation of the 2-phase image segmentation problem involves topolog-

ical connectivity with respect to various graphs, thus we introduce the relevant



18 S. Harizanov et al.

notation next. We denote G1(V, E1) and G∞(V, E∞) to be the indirected graphs
with vertices the set of voxels and edge sets Ep, p = 1,∞ defined as follows:

Ep =
{
(i, j) ∈ V × V

∣∣ ‖i − j‖�p = 1
}

.

Since we only consider undirected graphs, (i, j) ∈ Ep implies that (j, i) ∈ Ep. The
neighborhood Np(i) of a voxel is defined as

Np(i) =
{
j ∈ V

∣∣ (i, j) ∈ Ep

}
.

For example, N1(i) consists of the 6 voxels that share a common face with i,
while N∞(i) consists of the 26 voxels that build the 3×3×3 cube, centered at i.

The graph G is called connected if and only if for every pair of voxels i and j,
there is a path formed by elements of E connecting them.

In the following definitions, we assume that we have fixed a connected graph
G = (V, E) whose set of vertices is the set of voxels.

Definition 1. Let S ⊂ V be a set of voxels. We call GS = (S, ES) the graph
induced by S if GS has as vertices the voxels in S and as edges all edges in E
for which both ends are in S.

Definition 2. Let S ⊂ V be a set of voxels. We call S a G-connected set if the
graph GS induced by S is connected.

When each edge e = (i, j) ∈ E has a weight ωij ≥ 0, the graph G is called
weighted. The weights may have various meanings when the graph is related to
real-life problems (e.g., gain, cost, penalty, etc.). In this paper, they will mea-
sure the dissimilarities between the edge endpoints (e.g., difference in intensities
or/and gradient values of the corresponding voxels), so wij ∼ 0 means that i ∼ j
in a given sense. Every connected weighted graph possesses a minimum spanning
tree. This tree is a computationally efficient way to store both connectivity and
similarity information, and it plays a central role in our algorithm. Therefore,
we briefly cover the MST theory we use in the paper. Let G = G∞(V, E).

Definition 3. We say that the graph T (VT , ET ) is a minimum spanning tree
(MST) of G, if VT = VG, T contains no cycles, and

∑

(i,j)∈ET

ωij → min.

Important properties of T are stated below:

Cycle property: For any cycle C in G, if ē = argmaxe∈Cωe is unique, then
ē /∈ T .
Cut property: For any cut C in G, if ē = argmine∈Cωe is unique, then
ē ∈ T .
Contraction: If T ⊂ T is a tree, then we can contract it to a single vertex
and maintain the MST property for the factor graph.

Definition 4. We call LT := {i ∈ V : ∃!j ∈ V s.t. (i, j) ∈ ET } the set of leaves
of T . The heaviest leaf of T is lT := argmaxi∈LT

{ωij : (i, j) ∈ ET }.
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To construct the MST, we apply the Kruskal’s algorithm [15], which is lin-
ear in the number of edges (thus of O(N log N) complexity). Possible accelera-
tions using local techniques and parallel realizations (the so called approximate
Kruskal algorithm is found on pp.600–602 in Kraus [14]) are available, but since
the purpose of this paper is mainly to address the constraint segmentation prob-
lem, we do not pursue this avenue here, and we use the classical algorithm in [15].

3 Problem Formulation

Here we state in a precise fashion the mathematical problem for determining a
2-phase segmentation of an image with intensity u ∈ [0, 1]N .

We begin by giving the definition of an admissible 2-phase (image) segmen-
tation.

Definition 5. Given an intensity u and a graph G, we say that S is an admis-
sible 2-phase segmentation if the following properties are satisfied

– Connectedness Property (CP): S is G-connected.
– Approximate Dominating Property (ADP): There exists an intensity

v ≈ u which provides the same solution S and satisfies Dominating Property
(DP):

min
K∈S

uK > max
K∈S̄

uK S̄ = V \ S.

When u itself satisfies (DP), we call S (DP)-admissible. In such a case, the image
phases are well-separated and even direct segmentation methods such as hard
thresholding will do the job. In this paper, we consider noisy and blurry images,
where the boundary between S and S̄ is not that sharp. We note that the notion
of v ≈ u is a bit vague here. Intuitively, one may think of v as the original
(denoised and deblurred version of u) image intensity, while the ≈ sign implies
certain constraints on the magnitude of both the noise and blur levels of the
image.

We consider a 2-phase segmentation problem, where the solid phase is con-
nected and of fixed volume.

Problem 1. Given u and G, find 2-phase admissible segmentation S with a given
cardinality |S| = M > 1.

We introduce the following family of functionals J : 2V �→ R, where 2V is the
set of all subsets of the set of vertices V.

J(S) = ‖u − χS‖2, χS is the characteristic function of S. (1)

The values of the functional depend on the norm that we take, and we are going
to have two types of norm, thus two different functionals:

J0(S) = ‖u − χS‖2�2(V), J1(S) = ‖u − χS‖2�2(V) + λ‖∇ (u − χS) ‖2ω. (2)
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Here, λ > 0 is a parameter, ∇ : Rn �→ R
ne is the discrete gradient defined as

(∇v)e = δev = vi − vj , i < j, (i, j) = e ∈ E . (3)

(∇v,∇w)ω =
∑

e∈E
ωeδevδew. (4)

The non-negative weights {ωe}e∈E may depend on the intensity u, and will be
dealt with in Sect. 4. Finally, the weighted norm of the gradient is defined as

‖∇v‖2ω = (∇v,∇v)ω. (5)

Note that J0 can be seen as the discrete and simplified version of the 2D
Chan-Vese fitting energy [8]

F1(C) + F2(C) =
∫

inside(C)
|u − c0|2dxdy +

∫

outside(C)
|u − c1|2dxdy,

where C is a 2D curve. The 2-phase segmentation there is obtained via minimizing
the fitting energy with respect to C, c0, and c1 together with regularity terms on
the length of C and the area of its interior. Then, the interior and the exterior
of C are the two phases. Here, we set c0 = mini ui = 0, and c1 = maxi ui = 1.
We have no regularity terms, but impose two additional constraints: the interior
to be connected and of cardinality M . If no constraints are addressed, it is
straightforward to check that the minimizer of J0 corresponds to direct hard-
threshold segmentation (e.g., i ∈ S ⇔ ui ≥ 0.5). The functional J1 is J0,
penalized by a regularity term. The regularization depends on the choice of the
weights ω.

We now have the following definition.

Definition 6. We say that the set S provides an optimal 2-phase segmentation
for u if and only if S is an admissible 2-phase segmentation of cardinality M
and it minimizes the functional J(S), namely,

S = arg min
{
J(S)

∣∣ |S| = M, S is connected
}
.

Such definition leads to a simple characterization of the minimizer for the
norm choices (2). Indeed we have for all S ∈ 2V

J0(S) =
∑

j∈S

(uj − 1)2 +
∑

j /∈S

u2
j = ‖u‖2�2 − 2

∑

j∈S

uj + ‖χS‖2�2

= −2
∑

j∈S

uj + ‖u‖2�2 + M.

Thus, minimizing J0(S) is equivalent to finding a G-connected S, such that

S = arg max J∗(S), J∗(S) :=
∑

j∈S

uj .
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Note that J∗(·) is a linear functional in u. Next, we look into the other norm.
Denote the set of edges connecting S with the complement of S, denoted here
by S by Ec (c stands for “cut”). We note that ∇χS = 0 for all edges interior to
S or S. We then compute

‖∇u − ∇χS‖2ω = ‖∇u‖2ω − 2
∑

e∈Ec

ωeδeu +
∑

e∈Ec

ωe = ‖∇u‖2ω +
∑

e∈Ec

(1 − 2δeu)ωe

Note that, from the definition of the gradient, the above formula is correct if we
have ordered first the vertices in S, so that δeχS ≥ 0. Thus, we can obtain an
optimal solution if we minimize

J∗∗(S) = −2
∑

j∈S

uj + λ
∑

e∈Ec

(1 − 2δeu)ωe

4 Constrained Segmentation

In this section, we propose a three stage segmentation algorithm. The steps are
as follows: (1) smoothing step which removes the local extrema in the intensity
vector; (2) Selecting M voxels and constructing a connected component in the
graph containing all of these voxels; (3) trimming the connected component so
that the approximation to the “solid” part of the image has exactly M voxels.

4.1 Step 1: Removing Local Maxima

For a fixed G, we say that u has a strict local maximum at K ∈ V if and only if

uK > max{uJ , J ∈ N (K)}.

Since by assumption we are looking for segmentation with |S| > 1, all strict
local maxima are due to image artefacts (e.g., noise). We can now modify the
intensity and remove them, still having an admissible solution S. We use the
following algorithm for removal of local maxima:

Algorithm 1. (Removal of local max) Input: u (a given intensity) and G
(a graph). Output: v (modified intensity).
For i = 1, . . . , N .

– If ui is a strict local maximum, then

vi = max{uj , j ∈ N (i)};

– else vi = ui.
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We have the following equivalence results about the segmentations corre-
sponding to intensities u and v whose proof is straightforward.

Lemma 1. Let v be obtained from u via Algorithm 1. Then

– If u satisfies (DP) then v also satisfies (DP).
– If S(u) is a 2-phase admissible segmentation solving Problem 1, so is S(v).

4.2 Defining Edge Weights

From now on, we assume that the underlying graph G is fixed and in what
follows, we take G = G∞. Furthermore, we assume u ∈ [0, 1]N .

We aim at solving constraint segmentation problems, where the cardinality
of the admissible 2-phase segmentation S is a priori known (i.e., |S| = M). For
this purpose, we split V into three subsets:

V1 :=
{
i ∈ V

∣∣ ui ∼ 1 & f(∇ui) ≤ ε
}
,

V0 :=
{
i ∈ V

∣∣ ui ∼ 0 & f(∇ui) ≤ ε
}
,

VU := V \ (V0 ∪ V1) .

Here, the maximal image intensity is 1 and the minimal is 0; ∇ui is the
G-gradient at i (i.e., (∇ui)j = uj − ui, ∀j ∈ N (i)), f : R26 → [0,+∞), and
ε is a small parameter, chosen by the user. The similarity relations ui ∼ 1 and
ui ∼ 0 also need to be specified for the image. They should depend on the
noise and blur levels. Typically, one uses ui ≥ 1 − η and ui ≤ η for a suitable
η ∈ (0, 1/2).

The idea is that V1 ⊂ S, V0 ⊂ S̄, while the origin of the voxels within
VU remains unclear and, depending on M , they should be distributed somehow
between the two phases S and S̄.

For the weights of the edges, we propose to add an “uncertainty penalizer”,
e.g.,

ωij := |ui − uj | + δg (f(∇ui), f(∇uj)) , ∀(i, j) ∈ E . (6)

Here g : [0,+∞)2 → [0,+∞), and δ is a small, positive parameter. Such weights
need to favorize edges between VU and V0 ∪ V1 and penalize edges within VU .
The latter will help us to “clarify” the origin of the unclear voxels, while in the
same time it decouples them and they don’t cluster. Hence, the elements of VU

can be treated individually, which is very important for our constraint problem.
To achieve that, we need to impose some assumptions on f, g:

Definition 7. We say that f, g are admissible if they satisfy the following:

– Symmetry: f (x1, . . . , x26) = f
(
xσ(1), . . . , xσ(26)

)
, resp. g(x1, x2) = g(x2, x1),

where σ : {1, . . . , 26} → {1, . . . , 26} is an arbitrary permutation.
– Positivity: f(x) = 0, g(x) = 0 ⇔ x = 0.
– 1-Homogeneity: f(λx) = λf(x), g(λx) = λg(x), ∀λ ≥ 0.
– Monotonicity: g(x1 + α, x2) ≥ g(x1, x2), ∀α > 0.

Examples: ‖ · ‖�p , ∀p ≥ 1, min(·), and many others.
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Lemma 2 (Properties of ωij from (6)). Let G = G∞(V, E), i ∈ V, j ∈ N (i),
f, g are admissible, and ωij is given by (6). Then

(i) G is undirected graph (wij = wji) and wij is invariant under rotations of
Ω.

(ii) ωij = 0 ⇔ u|N (i)∪N (j) = const. In particular, ωij ∼ 0 if {i, j} ⊂
V0 ∪ V1.

(iii) Let j ∈ V0 ∪ V1, k ∈ VU ∩ N (i), and ui = uj = uk. Then ωij ≤ ωik.
If f and g are strictly monotone, then ωij < ωik.

Proof. Since f is symmetric, G is Ω-rotation-invariant. Since g is symmetric,
ωij = ωji. Hence (i) is verified. Property (ii) follows from the positivity of f
and g. For (iii), w.l.o.g., let j ∈ V1. Then uj ∼ 1, thus uk ∼ 1, and k ∈ VU iff
f(∇uk) > ε ≥ f(∇uj). Finally,

ωik = δg (f(∇ui), f(∇uk)) ≥ δg (f(∇ui), f(∇uj)) = ωij ,

due to monotonicity of g. If g is strictly monotone, the inequality is also strict.

4.3 Stage 2: Connecting Different Components

We now focus on the second stage in the image segmentation algorithm. Let
S ⊂ V be the set of voxels whose intensities are the M largest components of
the intensity vector. Since such hard thresholding does not guarantee any con-
nectivity of S, we have several connected components S1 . . . Sk. Without loss of
generality we may assume that S1 has cardinality larger than the other com-
ponents. Let G̃ be the factor graph, where we consider two vertices equivalent
if they lie in one and the same connected component Sj . We perform a lexico-
graphical breadth first search (LBFS) [20] in G̃ and construct the corresponding
lexicographical BFS tree rooted at S1. For the lexicographical BFS we need to
introduce ordering of the vertices, which, in our case is by intensity values. This
is aimed at minimizing J0 (or alternatively maximizing J∗, because the BFS
tree contains edges between vertices with high intensity. The final step of the
algorithm connects each of Sj , j = 2, . . . , k with S1 via the tree branches.

Other algorithms for choosing paths between S1 and the rest of Sj , j =
2, . . . , k which maximizes J∗ can also be used in place of what we propose here.

4.4 Stage 3: Cutting Heavy Leaves

We now discuss some theoretical aspects of the third phase of the algorithm
aimed at trimming the connected component from the previous section in order
to obtain an image segmentation that satisfies the volume constraint.

Let u ∈ {0, 1}N be discrete, and S be the (DP) admissible 2-phase seg-
mentation with respect to u. The latter means that u|S = 1, and u|S̄ = 0.
Let f, g be admissible and strictly monotone, and the graph G = G∞ is build
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w.r.t. the weights (6). Let S be G-connected, T be a MST of GS , lT ∈ LT with
(lT , jT ) ∈ ET , and ωlT jT > 0. Then

lT ∈ ∂S :=
{

i ∈ S :
N (i) ∩ S �= ∅
N (i) ∩ S̄ �= ∅

}
= S ∩ VU . (7)

Indeed, first of all, V0 = int S̄, V1 = int S, thus the set equality in (7) holds true.
Now, assume the contrary, i.e., lT ∈ intS. Since lT ∈ LT ∩ int S, the MST

cut property, applied for (lT , S \ {lT }) gives rise to minj∈N (lT ) ωlT j = ωlT jT > 0,
and from Lemma 2(ii) it follows that N (lT ) ⊂ ∂S. For every j ∈ N (lT ) \ {jT },
(lT , j) /∈ ET , because lT ∈ LT . Due to the strict monotonicity of g and the
positivity of f , we have for each k ∈ N (j) ∩ (int S)c

ωjk = |uj − uk| + δg (f(∇uj), f(∇uk)) > δg (f(∇uj), 0) = ωjlT .

Applying again the MST cut property this time for (j, S \ {j}), we derive that
there exists kj ∈ N (j) ∩ int S, kj �= lT , and (j, kj) ∈ ET . Thus, we have a
3 × 3 × 3 cube N (lT ), centered at lT , all 26 boundary voxels of which are also
from the G-boundary of the G-connected set S, while at least 25 of them are
also G-connected to other interior points of S (different from lT !) within the
5 × 5 × 5 cube N 2(lT ), centered at lT . It is straightforward to show that there
should be at least 6 different external points (one for each 3×3 interior of a side
of the cube), and at least 5 internal points (on the side of jT there may not be
one) each two of them at a distance at least 2 in ‖ · ‖�∞ . This is impossible. The
rigorous proof of (7) is rather elaborate and is beyond the scope of the paper.
What we need is a corollary from this result, which we state now.

Proposition 1. Let u ∈ {0, 1}N be discrete, S be the admissible 2-phase seg-
mentation with respect to u, f, g be admissible and strictly monotone, and the
graph G = G∞ be build w.r.t. the weights (6). If S is G-connected, then for every
MST T of GS its heaviest leaf lT belongs to VU .

Proof. Let jT be as before. If ωlT jT > 0 the result follows from the arguments
above. Assume the contrary, i.e., lT ∈ int S. Thus ωlT jT = 0 and Lemma 2(ii)
implies jT ∈ int S, and LT ⊂ int S. Now we aggregate lT and jT into a new
(super) vertex/voxel l1T . We obtain S1 = S ∪ {l1T } \ {i ∪ j}, and ES1 can be
straightforwardly derived from ES , since lT and jT agree on all the “doubled”
edges (i.e., ωlT k = ωjT k, ∀k ∈ N (lT ) ∩ N (jT )). Due to the MST contraction
property, the graph GS1 is G-connected with MST T 1(S1, ET \ {(lT , jT )}. Thus,
all the leaves LT \{lT } remain leaves in T 1 and their weight is preserved as zero,
because ωlT jT = 0 was the heaviest leaf in T . l1T ∈ int S1 may or may not be a
leaf in T 1, but since

| int S1| = | int S| − 1 < | int S|,

after finitely many contractions m (m ≤ | int S|) we will end up with a fac-
tor graph GSm , where LTm ⊂ intSm and the heaviest leaf weight is strictly
positive. This leaf can appear only after aggregation, thus belongs to intSm.
Contradiction with the arguments above.
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4.5 An Algorithm for Constrained Image Segmentation

The steps of the algorithm described above are formally written as follows.

Algorithm 2 (Constraint segmentation) Input: u (a given intensity), M
(volume constraint), f, g (strictly monotone admissible functions), and δ (weight
penalizer).
Output: S (admissible 2-phase segmentation w.r.t. u).

1. Stage 1: Compute G∞ w.r.t. u and remove local maxima and local minima
via Algorithm 1.

2. Sort the intensity vector u and take the M voxels of highest intensity to be
S.

3. Find the connected components of S. If S is G-connected, STOP.
4. Else Stage 2: Attach all of the connected components of S to the one with

largest cardinality as described in Sect. 4.3 until the union of Sj and the paths
between them become G-connected. We denote the union of Sk by S again
and move to the next step.

5. Stage 3: Calculate the weights for the graph GS, using (6) with f = g =
‖ · ‖�1 , and compute an MST TS for GS, using the Kruskal’s algorithm [15].

6. While |S| > M : Cut the heaviest leaf of TS.

4.6 Properties of the Algorithm

Let u be the input intensity (input image). Compute V0,V1,VU for it. Note that,
removing local maxima and local minima is just denoising, so for the recomputed
sets V̄0, V̄1, V̄U after stage 1 the following inclusions hold true V0 ⊆ V̄0, V1 ⊆ V̄1.
Denote by C1 the minimal G∞-connected set that contains V̄1. Let SM be the
set from step 3. We say that u is admissible, if N (V̄1) ⊆ SM , |N (V̄1)∪C1| ≤ M ,
and N (V̄0) ⊆ S̄M . If not, it is clear that either the parameter choices in V1 or
V0 were poor or the constraint parameter M approximates badly the solid phase
volume.

For admissible u, Proposition 1 implies that we cut only VU voxels in stage
3, thus V̄1 ⊆ S at every moment. Moreover, due to Lemma 2(ii) the heaviest
leaf weight is strictly positive. No i ∈ V̄0 belongs to any shortest path between
the S components, thus after stage 2 V̄0 ⊆ S̄. Since in step 6. We only cut, the
inclusion remains true for the output image, as well. Finally, since we always
cut out leaves from TS , after stage 2 till the end S is always G∞-connected. To
summarize:

Theorem 3. For any admissible input image u, Algorithm 2 terminates and
produces an output 2-phase segmentation S that is G∞-connected, has cardinal-
ity M , fully contains V1, and doesn’t intersect with V0. The complexity of the
algorithm is O(N log N).
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5 A Numerical Test

In this section we assess the performance of our Algorithm 2 on a part of
an image of a trabecular bone. The image is taken from [2], then convoluted
with a Gaussian kernel with σ = 2 (i.e., the image is blurred), and 10% white
(Gaussian) noise is added to derive the input image u. The bone part image has
size 64 × 64 × 64. 50604 of its voxels are bone material (porosity 80.7%), thus
M = 50604. Figure 1 summarizes the results. The most left image is of the orig-
inal discretized bone. The second one is the result of direct segmentation, where
the M voxels of highest intensity are taken as the solid phase. The third one is
the output of our Algorithm 2. The last one is the output of the segmentation
in [11], based on fully constrained convex �2-norm minimization.

Fig. 1. From left to right: Segmented bone part (binary image), direct M -segmentation
of the noisy and blurry version u, connected M -segmentation via Algorithm 2, segmen-
tation from [11].

The direct M -segmentation is quite noisy. It consists of lots of 1-element com-
ponents, as well as other larger ones. Unlike it, our segmentation is G-connected.
There are still some 1-voxel-wide branches, due to small noisy components in
the set S3 at step 3., which have been aggregated to the main component C0

in stage 2 (see Fig. 2). The result of the segmentation in [11] lacks any noise,
because of the smoothing role of the edge weights there, but is not G-connected
and consists of three different components, thus it is not admissible with respect
to Definition 5.

Fig. 2. From left to right: Segmented bone part (binary image), the set S after stage 2,
the set of cut leaves in stage 3, and the final result of Algorithm 2.

Note that none of the S3 connected components is of cardinality 1, due to
the removing of local maximums. During the leaf cutting, some of those noisy
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branches have been erased, but some of them remain in the result. The reason is
the usage of only voxels’ intensity values throughout steps 1–4 of the algorithm,
thus no regularization has been applied in the process, and the connected com-
ponents of S3 are not as “homogeneous” as they should be when the gradient
is taken into account in the expanding process. Minimizing the functional J1

instead of J0 in step 4 should improve the quality of the result and is a subject
of future work. We want to point out that out of 234 cut leaves in stage 3, only 5
of them belong to the actual bone, and the remaining 229 are indeed noise. The
�1 difference of our result with the original bone is 20 844, which is larger than
the 15 524 difference of the result in [11], but is by almost a thousand better
than the difference of the direct M -segmentation (which is 21 796, as computed
in [11]). The former means that there is plenty of room for improvement (e.g.,
possible combination of the two constraint algorithms, “thickening” the minimal
paths, “homogenizing” the connected components, etc.), while the latter indi-
cates that by simply removing local extrema and only replacing 234 candidate
voxels with another, better group of 234 voxels, we already gain a lot.

6 Conclusions and Future Work

We proposed and tested a class of algorithms for constrained image segmentation.
The algorithms are based on the minimization of suitable functionals measuring
the best approximation of the input image within the space of step functions.
For the output image, the approximate segmentation produced by the algorithm
has a connected solid phase with fixed volume. Such type of algorithms, and
especially multilevel versions of these algorithms, show potential to be robust
tools in the image analysis.
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