
Task-Based Parallel Sparse Matrix-Vector
Multiplication (SpMVM) with GPI-2

Dimitar Stoyanov(B), Rui Machado, and Franz-Josef Pfreundt

Fraunhofer ITWM, Kaiserslautern, Germany
{stoyanov,machado,pfreundt}@itwm.fraunhofer.de

http://www.itwm.fraunhofer.de

Abstract. We present a task-based implementation of SpMVM with
the PGAS communication library GPI-2. This computational kernel is
essential for the overall performance of the Krylov subspace solvers but
its proper hybrid parallel design is nowadays still a challenge on hier-
archical architectures consisting of multi- and many-core sockets and
nodes. The GPI-2 library allows, by default and in a natural way, a task-
based parallelization. Thus, our implementation is fully asynchronous
and it considerably differs from the standard hybrid approaches com-
bining MPI and threads/OpenMP. Here we briefly describe the GPI-2
library, our implementation of the SpMVM routine, and then we compare
the performance of our Jacobi preconditioned Richardson solver against
the PETSc-Richardson using Poisson BVP in a unit cube as a bench-
mark test. The comparison employs two types of domain decomposition
and demonstrates the preemptive performance and better scalability of
our task-based implementation.

Keywords: GASPI · GPI-2 · PGAS · Task-based hybrid paralleliza-
tion · Sparse matrix-vector multiplication · Krylov subspace solvers ·
Performance

1 Introduction and Motivation

The so called pure- or flat-MPI programming (one MPI-process per core) is
nowadays no longer the most appropriate approach on systems with multi-core
and multi-socket nodes. A hybrid parallelization is considered a natural choice
instead: it combines a coarser, inter-node distributed memory parallelization
with the more fine-grained, intra-node shared memory parallelization. Particu-
larly, a task-based parallelization, where inter-nodal exchange can be indepen-
dently performed by each thread from within thread-parallel regions, seems to
be the proper alternative to reveal and fully exploit the hierarchical parallelism
of such architectures.

The classical and most often used variant of hybrid parallelization is to
combine MPI and threads/OpenMP. Particularly with regards to SpMVM this
approach is followed for instance in [5,6]. But such a combination imposes
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 153–160, 2015.
DOI: 10.1007/978-3-319-26520-9 16

154 D. Stoyanov et al.

certain restrictions and performance issues with respect to thread-safety
[2–4]. For instance, the MPI 2.0 standard prescribes four interface levels of
threading support, one of them (MPI THREAD MULTIPLE) allowing a more
task-based parallelization. MPI 3.0 improves some aspects related to threading -
e.g., using MPI Probe when several threads share a rank, etc. But in general,
the hybrid parallelization based on MPI is still a challenge, it contains cer-
tain open issues (see e.g. [9], where also the new hybrid MPI+MPI approach
is discussed), and it is often the case that MPI implementations do not pro-
vide a high performance support for task-based multi-threading. Consequently,
applications aren’t usually developed for such support and hence there is a non-
optimal usage of resources - say, of the growing capabilities of high-performance
interconnects. Particularly, many numerical libraries still use flat-MPI, e.g. in
PETSc [11] threading has only recently appeared in the developers version.

Another point is that currently the trend in computer systems architecture is
to see an increasing number of cores per node, with Non-Uniform Memory Access
(NUMA) and with heterogenous resources. This not only puts pressure on multi-
threaded support but it creates a need for more dynamic and asynchronous
execution, to hide the latency of inter-node communication as well as that of
intra-node memory and synchronization operations.

The GASPI interface [8] was specified with the previous aspects in mind
and GPI-2 [7] was implemented to cope with them. The focus on asynchronous,
one-sided communication with multi-threaded support and weak synchroniza-
tion semantic creates an opportunity for new, more scalable implementations of
performance critical building blocks such as the SpMVM, which is crucial for
the case of Krylov solvers.

In this work, we present a task-based parallel implementation of SpMVM
that takes advantage of our communication library GPI-2. We demonstrate the
potential of our approach on the solution of a Poisson Boundary Value Problem
(BVP) in a unit cube and we compare the performance against PETSc using two
different types of Domain Decomposition (DD). The results show a significant
performance advantage and better scalability when using the appropriate DD
based on graph partitioning methods (METIS).

The rest of the paper is organized as follows: first we briefly describe the
features of GPI-2 and our task-based SpMVM implementation, which differs in
many aspects from the classical hybrid approach; then we formulate the model
problem and explain the DD used in the comparisons. Further, we present and
comment the performance results, and finally some conclusions are drawn.

2 GASPI/GPI-2 and Task-Based Parallelization

GPI-2 is the implementation of the GASPI standard, a relatively recent interface
specification which aims at providing a compact API for parallel computations. It
consists of one-sided communication routines, notifications-based synchroniza-
tion, passive communication, global atomics and collective operations. It also
defines groups (which are similar to MPI communicators and are used in collec-
tive operations) and the concept of segments. Segments are contiguous blocks

Task-Based Parallel Sparse Matrix-Vector Multiplication (SpMVM) 155

of memory and can be made accessible (to read and write) to all threads on all
ranks of a GASPI program.

GPI-2 is thus a communication library for C/C++ and Fortran based on
one-sided communication. It adopts a PGAS-like model where each rank owns
one or more memory segments which are globally accessible. Moreover, in GPI-2
all communication routines are thread-safe, allowing a more asynchronous and
fine-grained multi-threaded execution as opposed to a bulk-synchronous com-
munication with a single (master) thread, responsible for communication.

From an implementation point of view, GPI-2 aims at introducing a mini-
mal overhead by providing a very thin layer, close to and exploiting hardware
capabilities such as RDMA. One focus aspect is to provide truly asynchronous
communication, that progresses in parallel as soon as it is triggered. This allows
a better overlap of communication and computation, hiding the latency of com-
munication.

Our GPI-2 based SpMVM is implemented in a task-based fashion, where
a GPI-2 process (with the corresponding rank) is started per available NUMA
socket. Within each rank a pool of POSIX threads is then used. Each thread
dynamically polls for tasks to perform: this can be transferring data or com-
puting a locally available part. This ensures that all threads are busy and that
communication is overlapped and hidden behind the computation.

Note that such a task-based implementation is applicable to other kinds of
large-scale scientific computations. Although it often requires a re-formulation of
the algorithm, the attained benefits are considerable (as it will be demonstrated
here). Below we provide more details about how is this achieved for the SpMVM
kernel.

3 SpMVM with GPI-2

SpMVM is a memory–bounded routine; the SpMVM-kernels perform poorly,
achieving ∼ 10% from the theoretical peak performance [1], being far from
reaching the theoretical speedup even on SMP-architectures. The principal prob-
lems related to the SpMVM performance are known (see [1] and the references
therein): (i) restricted temporal locality as there is little data reuse, e.g. the
matrix elements are used once only; (ii) irregular access to the input vector; (iii)
large number of matrix rows of a very short row-length to multiply; (iv) indirect
memory access imposed by the sparse matrix storage formats; etc.

The numerical treatment of (systems of) PDEs on hybrid architectures usu-
ally uses hierarchical decomposition: the coarse grained parallelism is attained
by domain decomposition (DD), while the fine-grained parallelism on the node is
achieved by thread parallelization. Each subdomain (SD) is mapped to a compu-
tational node, in our case this is a GPI-2 rank associated with a NUMA socket.
The DD defines the distribution of the vector of unknowns (and of the rows of
the sparse matrix for row-wise distribution) over the SDs, also the disposition
of the discretization nodes at the subdomain interface which gives the topology
of the inter-nodal exchange in SpMVM within the Krylov solvers. The resulting

156 D. Stoyanov et al.

communication pattern depends on this topology (i.e., on the sparsity structure
of the matrix) and is entirely irregular and problem-dependent. Note, that it is
neither reasonable nor possible on each SD to keep a local replica of the full
SpMVM input vector. One should copy locally only the remote items of the
input vector needed on this SD, i.e. requested by the non-zero matrix elements,
distributed on this SD. Our solution of this issue is to gather this topological
information at the stages of mesh partitioning and discretization and to create,
for each SD, a set of buffers to be written (lists of indices of the mesh nodes at
the SD-interface). Then during execution, when the SpMVM routine is invoked,
these buffers are used to perform the transfer of the remote input vector items.

Assuming a row-wise matrix and vector distribution, we designate the locally
distributed matrix rows as A, the full input vector as X, and the local part of
the output vector as Ylcl. Thus, the SpMVM should calculate the expression
Ylcl = A ∗X on each SD. A standard way to overlap communication and com-
putation in SpMVM (see e.g. [5]) is to decompose A into: (i) a local part Alcl,
which multiplies the local part Xlcl of the input vector X, and (ii) its comple-
mentary matrix-chunk Armt, containing elements which multiply the “remote”
part Xrmt of the input vector. The elements of Xrmt correspond to the mesh nodes
at the interface of the neighbour SDs and should be locally transferred. Formally
X = Xlcl + Xrmt holds and according to this decomposition the SpMVM opera-
tion can be written as:

Ylcl = Alcl ∗ Xlcl + Armt ∗ Xrmt (1)

The “standard” hybrid implementation of SpMVM usually uses a single “com-
munication thread” per socket or node which runs an MPI-process and performs
the inter-nodal exchange; the other threads are eventually “mapped” to it to
access MPI, otherwise performing local computations to overlap the communi-
cation [5,6]. Our GPI-based SpMVM kernel uses the same idea but is differently
organized; a brief sketch of it follows. Taking advantage of GPI-2, it uses task-
based parallel, one-sided RDMA transfer of Xrmt overlapped by computation:

(1) Some number of threads - say, as many as the number of neighbour SDs are -
start independently transferring Xrmt, each thread communicating with one
neigbour SD;

(2) All other threads start polling jobs to perform the local part Alcl ∗ Xlcl in
Eq. (1), where “job” means a subset of matrix rows to be multiplied. Note
that the jobs are independent from each other;

(3) When the transfer of Xrmt is over all threads start polling jobs from both the
local and remote parts of the multiplication;

(4) Locally synchronize all threads and then perform the addition in Eq. (1).

Distinguishing features of our approach are: (i) the transfer of Xrmt is task-
based thread parallel; (ii) the multiplication in both local and remote parts of
Eq. (1) is asynchronously parallel; (iii) independently on the matrix-sparsity pat-
tern, the job-polling mechanism provides presumably a quasi-optimal dynamic
load balancing, with no idle threads (but this feature should be further tested

Task-Based Parallel Sparse Matrix-Vector Multiplication (SpMVM) 157

on different matrices); (iv) the threads are spawned in the beginning of the iter-
ative solver routine and are joined at its very end - i.e., we do not have the
usual thread fork/join overhead as in the MPI/OpenMP implementations. To
shortly summarize: our task-based parallelization allows for effective communi-
cation/computation overlapping leading to a better performance.

4 Model Problem and Domain Decomposition

We solve a Boundary Value Problem (BVP) for the Poisson equation in a unit
cube which allows an (easily constructed) exact solution. The discretization is
on a regular rectangular mesh with second order finite differences. Then the
O(h2)-convergence of the numerical solution would indicate a correct implemen-
tation. If we discretize in the internal mesh-nodes only, the assembled matrix is
symmetric and positive definite (SPD), and the linear system can be solved with
the Conjugate Gradients (CG) method.

We apply two variants of Domain Decomposition (DD):

(i) Cutting planes approach (Z-slices): the cube is split via planes parallel to the
(x,y)-coordinate plane, i.e. the cube is cut into subdomains (SDs) or slices
perpendicular to the z-axis.

(ii) Graph partitioning using the METIS [10] library.

While METIS provides partitions of a quite high quality, the Z-slices app-
roach is far from being optimal, because when the number of SDs increases
(strong scaling) the thickness of each slice decreases and the communica-
tion/computation ratio gets higher, limiting scalability. On the other side, this
DD approach is illustrative and appropriate for benchmarking and comparing
different solvers.

5 Performance Results and Comments

The underlying architecture consist of computational nodes connected via FDR
Infiniband, each node being composed of two Intel Xeon E5-2680v2 (IvyBridge)
sockets, with 10 cores per socket and 64 GB RAM.

We compare our GPI-2 implementation vs. PETSc-3.4.4. linked against the
Intel MPI and MKL libraries. The domain partitioning is identical in PETSc
and in the GPI-2 cases: two SDs (with successive indices) are assigned to each
physical node, both in the case of the Z-slices and the METIS-partitioning. Fur-
thermore, in our case, when a SD is mapped to a GPI-2 rank, the discretization
nodes belonging to it, are uniformly distributed over the computing threads. The
distribution of the matrix rows over the GPI-2 ranks and then over the com-
puting threads matches exactly this nodal distribution. In the case of PETSc,
when two SDs have been assigned to a physical node, again all locally distrib-
uted mesh nodes are uniformly split over the MPI-processes running on this
computing node.

158 D. Stoyanov et al.

Table 1. Problem Size 2573, ||exact− appr||C4000 itrs. = 5.129525e− 1

Physical nodes 1 2 4 8 16 32 60

GPI-nodes 2 4 8 16 32 64 120

Total cores/MPI-procs. 20 40 80 160 320 640 1200

DD-type: Z-sclices PETSc, exec. time [s] 359 184 95 52 30 20 15

GPI-2, exec. time [s] 214 109 55 27 16 12 10

DD-type: METIS PETSc, exec. time [s] 358 181 91 47 26 16 13

GPI-2, exec. time [s] 216 111 55 27 15 8 5

We use the CRS-formatted matrix storage. Our library contains several iter-
ative solvers (CG, BiCGstab, etc.), but we have chosen the Richardson method as
a benchmark: it allows for a fair comparison because the calculations performed
in the GPI-Richardson and PETSc-Richardson routines are identical - this can
be shown by monitoring the residual at each iteration. For the resulting linear
system of our model problem we have measured the execution time to perform
4000 Jacobi-preconditioned Richardson iterations. The initial approximation of
the solution is in both cases zero and after 4000 iterations in both solvers we
obtain identical values for the current residual L2-norm ||b − A ∗ x||L2 and for
the C-norm of the error ||exact − appr||C (i.e., the C-norm of the difference
between the exact and the numerical solutions).

We compare the execution times and the measured real speedup of GPI-2
based Richardson vs. PETSc-Richardson for two different problem sizes. The
timings for the size 2573 are presented in Table 1, while Fig. 1 depicts the
obtained speedup (along with the ideal one) for the two DD-techniques we use
and taking the execution on a single node as base.

Similarly, Table 2 contains the measurements for the size 3513, with the
obtained speedup presented in Fig. 2. On the finer mesh the convergence of

Fig. 1. Speedup GPI-2 vs. PETSc: Jacobi Preconditioned Richardson, 4000 itrs, size
2573, partitioning using Z-slices (left) and METIS (right)

Task-Based Parallel Sparse Matrix-Vector Multiplication (SpMVM) 159

Table 2. Problem Size 3513, ||exact− appr||C4000 itrs. = 6.033188e− 1

Physical nodes 1 2 4 8 16 32 60

GPI-2 ranks 2 4 8 16 32 64 120

Total cores/MPI-procs. 20 40 80 160 320 640 1200

DD-type: Z-sclices PETSc, exec. time [s] 922 467 241 128 79 49 36

GPI-2, exec. time [s] 566 282 148 76 37 24 21

DD-type: METIS PETSc, exec. time [s] 918 460 233 117 61 33 22

GPI-2, exec. time [s] 564 289 153 81 36 19 11

Fig. 2. Speedup GPI-2 vs. PETSc: Jacobi Preconditioned Richardson, 4000 itrs, size
3513, partitioning using Z-slices (left) and METIS (right)

the Richardson method is slower and - after performing the same number of
iterations - the difference with the exact solution is bigger.

In both cases the comparison has been done separately for our two types
of DD. One easily sees that - independently of the type of partitioning - GPI-
Richardson clearly outperforms PETSc, it is about twice faster, despite the fact
that we use no hardware optimization (e.g. vectorization). Furthermore, although
the inefficient Z-slices partitioning produces almost the same speedup for the two
solvers, our GPI-2 version has shorter execution times.

About the partitioning one may say that compared to the Z-slices the METIS-
DD is certainly more appropriate: it produces faster execution times starting
from 8 (case 2573) or 16 (case 3513) physical nodes on. Using METIS-DD GPI-
Richardson is not only faster but also scales better than PETSc-Richardson.

6 Conclusion

From an application point of view, a distinguishing property when working with
GPI-2 is that it provides full freedom and flexibility to follow a task based
parallelization. In this sense, the GPI-2 model meets the requirements and the
challenges of the nowadays hierarchical architectures, proposing an alternative
to both pure-MPI programming and the standard hybrid approaches with MPI
and threads/OpenMP.

160 D. Stoyanov et al.

We have briefly sketched our GPI-2 implementation of the SpMVM kernel,
which uses asynchronous communication and allows for fine-grained and better
communication/computation overlap. We have used this kernel in a small library
of Krylov subspace solvers. Using as a benchmark the Jacobi Preconditioned
Richardson method to iterate the linear system arising after the discretization
of a Poisson BVP in a unit cube, we have shown that our Richardson solver
outperforms the Richardson solver of PETSc. We have confirmed this behaviour
for two different types of domain decomposition: Z-slices-partitioning and graph
partitioning with the METIS library. In the latter case, our version is not only
faster than PETSc-Richardson but it also scales better.

As we noted, from a programming model point of view, conceptually similar
implementations could bring performance advantages not only in SpMVM but -
more generally - in the case of other DD-based parallelization approaches, e.g.
additive Schwartz, where a truly asynchronous communication scheme could
enable evident performance gains.

References

1. Gormas, G., et al.: Performance evaluation of the sparse matrix-vector multiplica-
tion on modern architectures. J. Supercomput. 50, 36–77 (2009)

2. Gropp, W.D., Thakur, R.: Issues in developing a thread-safe MPI implementation.
In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS,
vol. 4192, pp. 12–21. Springer, Heidelberg (2006)

3. Balaji, P., Buntinas, D., Goodell, D., Gropp, W.D., Thakur, R.: Toward efficient
support for multithreaded MPI communication. In: Lastovetsky, A., Kechadi, T.,
Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 120–129. Springer,
Heidelberg (2008)

4. Hagger, G., Wellein, G.: Introduction to High Performance Computing for Scien-
tists and Engineers. CRC Press, Boca Raton (2010)

5. Lange, M., Gorman, G., Weiland, M., Mitchell, L., Southern, J.: Achieving efficient
strong scaling with PETSc using hybrid MPI/OpenMP optimisation. In: Kunkel,
J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp. 97–108.
Springer, Heidelberg (2013)

6. Schubert, G., Fehske, H., Hager, G., Wellein, G.G.: Hybrid-parallel sparse matrix-
vector multiplication with explicit communication overlap on current multicore-
based systems. Parallel Process. Lett. 21(3), 339–358 (2011)

7. http://www.gpi-site.com/gpi2/
8. http://www.gaspi.de/
9. http://openmp.org/wp/sc13-tutorial-hybrid-mpi-and-openmp-parallel-

programming/
10. http://www-users.cs.umn.edu/karypis/metis/
11. http://www.mcs.anl.gov/petsc/

http://www.gpi-site.com/gpi2/
http://www.gaspi.de/
http://openmp.org/wp/sc13-tutorial-hybrid-mpi-and-openmp-parallel-programming/
http://openmp.org/wp/sc13-tutorial-hybrid-mpi-and-openmp-parallel-programming/
http://www-users.cs.umn.edu/karypis/metis/
http://www.mcs.anl.gov/petsc/

	Task-Based Parallel Sparse Matrix-Vector Multiplication (SpMVM) with GPI-2
	1 Introduction and Motivation
	2 GASPI/GPI-2 and Task-Based Parallelization
	3 SpMVM with GPI-2
	4 Model Problem and Domain Decomposition
	5 Performance Results and Comments
	6 Conclusion
	References

