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Abstract. This paper investigates what is the Hausdorff distance
between the set of Euler curves of a Lipschitz continuous differential
inclusion and the set of Euler curves for the corresponding convexified
differential inclusion. It is known that this distance can be estimated
by O(

√
h), where h is the Euler discretization step. It has been conjec-

tured that, in fact, an estimation O(h) holds. The paper presents results
in favor of the conjecture, which cover most of the practically relevant
cases. However, the conjecture remains unproven, in general.

1 Introduction

In this paper we address the problem of convexification of finite-difference inclu-
sions resulting from Euler discretization of the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0, t ∈ [0, 1], (1)

where x ∈ IRn, x0 ∈ IRn is given, and F : IRn ⇒ IRn is a set-valued mapping.
Standing assumptions will be that F is compact-valued, bounded (by a constant
denoted further by |F |) and Lipschitz continuous with a Lipschitz constant L
with respect to the Hausdorff metric.1

Denote by S the set of all solutions of (1), and by R := {x(1) : x(·) ∈ S}
the reachable set at t = 1. In parallel, we consider the convexified differential
inclusion

ẏ(t) ∈ co F (y(t)), y(0) = x0, t ∈ [0, 1], (2)

and denote by Sco and Rco the corresponding solution set and reachable set.
Now we consider the Euler discretizations of (1) and (2):

xk+1 ∈ xk + hF (xk), k = 0, . . . , N − 1, (3)

This research is supported by the Austrian Science Foundation (FWF) under grant
P 26640-N25.

1 In fact, the global boundedness and Lipschitz continuity can be replaced with local
ones if all solutions of (1) are contained in a bounded set. Then the formulations
of some of the claims in the paper should be somewhat modified. The standing
assumptions above are made simpler for more transparency.
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and
yk+1 ∈ yk + h co F (yk), k = 0, . . . , N − 1, y0 = x0, (4)

where N is a natural number and h = 1/N is the mesh size. Denote by Sh and
Sco
h the sets of (discrete) solutions of these inclusions, respectively, and by Rh

and Rco
h the corresponding reachable sets.

It is well known that Sco = cl S. This paper investigates what is the Hausdorff
distance between Sh and Sco

h , and also between Rh and Rco
h . The former is

defined as

H(Sh, Sco
h ) = sup

(y0,...yN )∈Sco
h

inf
(x0,...xN )∈Sh

max
i=0,...,N

|yi −xi| = sup
y∈Sco

h

inf
x∈Sh

‖x−y‖l∞ .

Results by Tz. Donchev [1] and G. Grammel [4] imply that H(Sh, Sco
h ) =

O(
√

h). The unpublished author’s report [9] contains the following

Conjecture: There exists a constant c such that for every natural number N

H(Sh, Sco
h ) ≤ ch. (5)

This conjecture has been proved in a number of special cases (see Sect. 3), but not
in general. It is important to clarify what the constant c depends on. A stronger
form of the conjecture is that c depends only on |F |, L, and the dimension of
the space, n. However, in some of the results presented below the constant c will
depend also on some geometric properties of F (x). Therefore we speak about
the weak and the strong form of the conjecture. We mention that there is an
even stronger form of the conjecture, where Lipschitz continuity is required for
co F instead of F . This case will be only partly discussed in Part 2 of Sect. 3.

Clearly, (5) implies the same estimation for H(Rh, Rco
h ), but the inverse impli-

cation does not need to be true. (Here, and at some places below we use the sym-
bol H also for the Hausdorff distance between compact subsets of IRn, which
will be clear from the context.)
The problems mentioned above are relevant for many engineering applications,
where switched systems [5] or mixed-integer control problems (see [6–8] and
the references therein) arise. The mixed-integer control problems can be formu-
lated as

min
u(·)

{
p(x(1)) +

∫ 1

0

q(x(t)) dt

}
(6)

ẋ(t) = ϕ(x(t), u(t)), x(0) = x0, u(t) ∈ U, t ∈ [0, 1], (7)

where some of the components of the control u are restricted in a convex set,
the remaining components take values in a discrete set. Thus the set U is non-
convex. The problem becomes combinatorial and due to the high dimension of its
discretized counterpart (obtained, say, by the Euler method with mesh size h) is
hard to be solved numerically. For this reason, in the above mentioned papers the
authors propose to solve the convexified version of the problem and then from the
numerically obtained optimal control to construct another, piecewise constant
one, that takes values in U only, and such that the loss of performance is small
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(relative to the discretization step h). It is easy to see that the loss of performance
(compared with the optimal performance of the convexified problem) can be
estimated by H(Sh, Sco

h ) + O(h), and in the case q = 0 by H(Rh, Rco
h ) + O(h),

provided that p and q are Lipschitz continuous. This gives one motivation for
the question formulated above.
In the next section we prove a result related to the problem posed above (but not
implying validity of the conjecture), while in Sect. 3 we present cases in which
the conjecture is proved under some additional conditions.

2 A Related Result

The next result deviates from the conjecture formulated in the introduction, but
has practical relevance in view of the control problem (6), (7).

Theorem 1. There exists a constant C such that for every natural number N
and for every y = (y0, y1, . . . , yN ) ∈ Sco

h there exist positive numbers h1, . . . hN

with
∑N

k=1 hk = 1 and a solution x = (x0, . . . xN ) of

xk+1 ∈ xk + hkF (xk), k = 0, . . . , N − 1, (8)

such that
‖x − y‖l∞ ≤ (4n + 1)|F |eL h.

Proof. Obviously coF is Lipschitz and bounded with the same constants as F .
Let y = (y0, y1, . . . , yN ) ∈ Sco

h . Then there exist ξi ∈ co F (yi) such that

yi+1 = yi + hξi, i = 0, . . . , N − 1. (9)

We split the points y0, . . . , yN into groups of n + 1 successive elements, the last
one containing possibly a smaller number of elements. Let m be the number of
groups, not counting the last one if it contains less than n+1 elements. Thus m
is the largest integer for which m(n + 1) ≤ N .

We shall define a trajectory (x0, x1, . . . , xN ) of (8) successively for each group
of indexes. Namely, since x0 is given and y0 = x0, we set Δ0 = |x0 − y0| = 0,
then we assume that xi(n+1) is already defined, together with the corresponding
steps hj , j = 0, . . . , i(n + 1). Denote Δi = |xi(n+1) − yi(n+1)|.

Due to (9) we have that for j = 0, . . . , n

ξi(n+1)+j ∈ co F (yi(n+1)+j) = coF

(
yi(n+1) + h

j−1∑
s=0

ξi(n+1)+s

)

⊂ co F (yi(n+1)) + hjL|F |B,

where B is the unit ball in IRn. Then there exist ξ̃i(n+1)+j ∈ co F (yi(n+1)) such
that

|ξ̃i(n+1)+j − ξi(n+1)+j | ≤ hjL|F |, j = 0, . . . , n, (10)
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where we have set ξ̃i(n+1) = ξi(n+1). Since ξ̃i(n+1)+j ∈ co F (yi(n+1)), we have
also that

1
n + 1

n∑
j=0

ξ̃i(n+1)+j ∈ co F (yi(n+1)).

According to the Carathéodory theorem, there exist η̃i(n+1)+j ∈ F (yi(n+1)) and
αj ≥ 0,

∑n
j=0 αj = 1, such that

n∑
j=0

αj η̃i(n+1)+j =
1

n + 1

n∑
j=0

ξ̃i(n+1)+j . (11)

Let us define hi(n+1)+j = h̄j := (n + 1)hαj . Due to the Lipschitz continuity of
F , there exists ηi(n+1) ∈ F (xi(n+1)) such that

|ηi(n+1) − η̃i(n+1)| ≤ LΔi.

To extend the trajectory x0, . . . , xi(n+1) we set

xi(n+1)+1 = xi(n+1) + h̄0ηi(n+1).

Since

H(F (xi(n+1)+1), F (yi(n+1))) ≤
H(F (xi(n+1)+1), F (xi(n+1))) + H(F (xi(n+1)), F (yi(n+1))) ≤ h̄0L|F | + LΔi,

there exists ηi(n+1)+1 ∈ F (xi(n+1)+1) such that

|ηi(n+1)+1 − η̃i(n+1)+1| ≤ h̄0L|F | + LΔi.

Then we define
xi(n+1)+2 = xi(n+1)+1 + h̄1ηi(n+1)+1.

Continuing in the same way we define for every j = 0, . . . , n the vectors ηi(n+1)+j

and xi(n+1)+j+1 such that

ηi(n+1)+j ∈ F (xi(n+1)+j),
xi(n+1)+j+1 = xi(n+1)+j + h̄jηi(n+1)+j ,

|ηi(n+1)+j − η̃i(n+1)+j | ≤ L|F |
j−1∑
k=0

h̄k + LΔi. (12)

In this way the trajectory of (3) is extended to the discrete time (i + 1)(n + 1).
The next estimations follow from (10), (11), (12):
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Δi+1 = |x(i+1)(n+1) − y(i+1)(n+1)|

≤ |xi(n+1) − yi(n+1)| +

∣∣∣∣∣∣
n∑

j=0

h̄jηi(n+1)+j − h
n∑

j=0

ξi(n+1)+j

∣∣∣∣∣∣

≤ Δi +
n∑

j=0

h̄j

∣∣ηi(n+1)+j − η̃i(n+1)+j

∣∣ +

∣∣∣∣∣∣
n∑

j=0

h̄j η̃i(n+1)+j − h

n∑
j=0

ξ̃i(n+1)+j

∣∣∣∣∣∣
+h

n∑
j=1

∣∣∣ξ̃i(n+1)+j − ξi(n+1)+j

∣∣∣

≤ Δi +
n∑

j=0

h̄jLΔi + L|F |
n∑

j=1

h̄j

j−1∑
k=0

h̄k

+

∣∣∣∣∣∣(n + 1)h
n∑

j=1

αj η̃i(n+1)+j − h

n∑
j=1

ξ̃i(n+1)+j

∣∣∣∣∣∣ + h

n∑
j=0

hjL|F |

≤ (1 + (n + 1)Lh)Δi + (n + 1)2L|F |h2 +
n(n + 1)

2
L|F |h2

≤ (1 + (n + 1)Lh)Δi + (n + 1)(2n + 1)L|F |h2.

Since this holds for any i < m it implies in a standard way the inequality

Δi ≤ (2n + 1)|F |ei(n+1)Lhh ≤ (2n + 1)|F |em(n+1)Lhh ≤ (2n + 1)|F |eLh.

Then taking into account the errors that can be made within n intermediate
steps, or in the last N − m(n + 1) ≤ n steps we obtain for the above defined
solution of (8)

|xk − yk| ≤ (2n + 1)|F |eLh + 2n|F |h ∀k = 0, . . . , N.

The proof is complete. 
�
Obviously the above theorem does not give an answer to the main question in
this paper, since the time-steps in (8) need not be uniform. Although the total
number of jumps is N , there could be much smaller distance between the jumps,
which may be trouble for practical implementations. Moreover, as it is clear from
the proof, in the terms of the control problem (6)–(7), the choice of uk ∈ U at step
k depends on n future values of the optimal control of the convexified problem
(that is, it is anticipative). However, this is in line with the model predictive
control methodology used in practice. Moreover, the construction in the proof
of the theorem can be viewed as an alternative of the “adaptive control grid”
proposed in [7] where 2N jump points of the control are used (instead of N).

3 Cases in Which the Conjecture is Proved

The proofs of the results in this section are available in the Research Report
2015-10 at http://orcos.tuwien.ac.at/research/research reports/.

http://orcos.tuwien.ac.at/research/research_reports/
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Part 1. First we consider the case of a constant mapping F , that is, the inclusion

ẋ(t) ∈ V, x(0) = x0, t ∈ [0, 1], (13)

where V ⊂ IRn is compact. This case will be embodied later in more general
considerations.

We mention that conjecture (5) has not been proved even in this “simple”
case. However, for constant mappings F (x) = V it holds that

H(Rh, Rco
h ) ≤ ch,

where the constant c depends only on |V | and n. This can be proved (and
has been proved by several mathematicians in private communications with the
author: Z. Artstein, M. Brokate, E. Farkhi, T. Donchev) in different ways, the
simplest of which uses the Shapley-Folkmann theorem (see e.g. [3, Appendix 1]).
Now, we consider the case of a set V consisting of finite number of points:

V = {v1, . . . , vs}, vi ∈ IRn. (14)

The proof is given in the research report [9] and is somewhat modified below.

Proposition 1. For differential inclusion (13) with the constant mapping V
specified in (14) the estimation

H(Sh, Sco
h ) ≤ 2s|V |h,

holds for every h = 1/N , N ∈ IN .

The proof of the above proposition is constructive and the construction sim-
ilar to what is called in [7,8] Sum Up Rounding Strategy.

We mention that the constant c = 2s|V | in Proposition 1 depends on the
number of elements of V , that is, only the weaker form of Conjecture (5) is
proved (the constant c depends on the geometric properties of V ). In particular,
it does not help to deal with sets V for which the boundary of coV contains
curved pieces. The next result is capable to capture some such cases.

Part 2. In this part we consider the general inclusion (1), weakening a bit the
standing assumptions. Namely, instead of assuming Lipschitz continuity of F we
assume that co F is Lipschitz continuous.

Notice that all sequences in Sh and Sco
h are contained in the compact set

X := {x ∈ IRn : |x − x0| ≤ M}. Let there exist functions li : X → IRn,
i = 1, . . . , n such that:

(i) li are Lipschitz continuous;
(ii) the vectors li(x), i = 1, . . . , n, are linearly independent and |li(x)| = 1 for
every x ∈ X;
(iii) for every x ∈ X, every v̄ ∈ co F (x) and every σ1, . . . , σn ∈ {−1, 1} there
exists v ∈ F (x) such that

σiαi(x; v − v̄) ≤ 0, i = 1, . . . , n,
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where αi(x; z) is the i-th coordinate of z ∈ IRn in the basis {li(x)}.
Clearly, the numbers αi(x; z) are uniquely defined from

z =
n∑

i=1

αi(x; z) li(x). (15)

Proposition 2. Under the suppositions made in Part 2 there exists a constant
C such that

H(Sh, Sco
h ) ≤ Ch

for every h = 1/N , N ∈ IN .

The next is a simple consequence of the above proposition.

Corollary 1. Under the conditions of Proposition 2, let F satisfy

F (x) = ∂(coF (x)) ∀x ∈ IRn,

where ∂Y denotes the boundary of Y . Then the conclusion of Proposition 2 holds
true.

Indeed, we may take an arbitrary fixed orthonormed basis {li(x) = li}. Let
us take an arbitrary v̄ ∈ co F (x) and σi ∈ {−1, 1}. If v̄ ∈ ∂F (x), then moving
from v̄ along the vector −(σ1l1 + . . . + σnln) we shall reach a point v ∈ ∂F (x)
for which (iii) is obviously satisfied.
One example (that was considered as non-trivial) is the inclusion (13) with V
being the semi-circle in IR2 (a semi-sphere in IRn can be treated in the same
way):

V = {(v1, v2) : (v1)2 + (v2)2 = 1, v2 ≥ 0}.

The claim of the conjecture (5) for this example follows from Proposition 2.
Indeed, one may take li = ei – the standard basis in IR2. For any v̄ ∈ co V and
σ1, σ2 ∈ {−1, 1} define v2 = v̄2, v1 = −σ1

√
1 − v̄2

2 . Then σ1α1(v) = −
√

1 − v̄2
2 ≤

0 and σ2α2(v) = 0. Assumption (iii) of Proposition 2 is fulfilled.

Part 3. Now, we consider a differential inclusion of the form

ẋ(t) ∈ G(x)V, x(0) = x0, (16)

where G(x) is an (n × m)-matrix and V ⊂ IRm.

Proposition 3. Let V be compact and G(·) be Lipschitz continuous with con-
stant L > 0, and bounded by a constant M , both with respect to the operator
norm of G. Let (5) holds for the differential inclusion (13) with some constant
c. Then for the differential inclusion (16) the estimation

H(Sh, Sco
h ) ≤ cM(1 + L)eL|V |h,

holds for every h = 1/N , N ∈ IN .
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This proposition is an extension of [8, Theorem 2] where it is assumed that
G is differentiable and V is a box. The proof below is a discrete-time adoption
of that in [8].

Part 4. Following [8], one can use the above proposition to obtain an estimation
as in (5) for non-affine inclusions of the form

ẋ ∈ f(x,U), (17)

where U ∈ IRm consists of finite number of points; U = {u1, . . . , us}, and
f(·, ui) : IRn → IRn.

Proposition 4. Let the functions f(·, ui) be Lipschitz continuous with constant
L > 0, and bounded by a constant M . Then for the differential inclusion (17)
the estimation

H(Sh, Sco
h ) ≤ 2s3/2M(1 +

√
sL)e

√
sL h, (18)

holds for every h = 1/N , N ∈ IN .

This propositions extends [8] in that f(·, u) is not assumed differentiable. The
constant in (18) depends on the number of elements of U , which means that only
the weak form of Conjecture (5) is proved in the considered special case. On the
other hand, the proposition covers most of the practically interesting cases.

4 Conclusion

To the author’s knowledge, the conjecture that H(Sh, Sco
h ) = O(h) is still open

(both in its stronger and weaker form). We stress that the conjecture has not
been proved even in the case of a constant mapping F (x) = V ⊂ IRn. However,
the partial results in this paper cover most of the practically important cases.
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