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Abstract. We deal with the problem of small time local attainabil-
ity (STLA) for nonlinear finite-dimensional time-continuous control sys-
tems. More precisely, given a nonlinear system ẋ(t) = f(t, x(t), u(t)),
u(t) ∈ U , possibly subjected to state constraints x(t) ∈ Ω and a closed
set S, our aim is to provide sufficient conditions to steer to S every point
of a suitable neighborhood of S along admissible trajectories of the sys-
tem, respecting the constraints, and giving also an upper estimate of the
minimum time needed for each point near S to reach S.
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1 Introduction

We consider a finite-dimensional control system
⎧
⎪⎨

⎪⎩

ẏ(t) = f(y(t), u(t)), for a.e. t > 0,

y(0) = x,

u(t) ∈ U, for a.e. t > 0.

(1)

where U is a given compact subset of Rm, x ∈ R
d, u(·) ∈ U := {v : [0,+∞[→

U such that v is measurable}, and f : Rd × U → R
d is continuous on R

d\S and
such that for every compact K ⊆ R

d\S there exists L = LK > 0 with

‖f(x, u) − f(y, u)‖ ≤ LK‖x − y‖, for all x, y ∈ K, u ∈ U.

Given a closed subset S ⊆ R
d, called the target set, the minimum time function

T : Rd → [0,+∞] is defined as follows:

T (x) := inf{T > 0 : ∃ y(·) solution of (1) satisfying y(0) = x, y(T ) ∈ S}, (2)

where we set inf ∅ = +∞ by convention.
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We are interested in the following property, called small-time local attain-
ability (STLA): given T > 0 there exists an open set U ⊆ R

d such that U ⊇ S
and T (x) ≤ T for all x ∈ U . This amounts to say that for every fixed time
T > 0 there is a neighborhood of the target whose points can be steered to the
target itself along admissible trajectories of the system in a time less than T .
STLA may be formulated also in this way: for every x̄ ∈ ∂S there exists δx̄ > 0
and a continuous function ωx̄ : [0,+∞[→ [0,+∞[ such that ω(r) → 0 as r → 0
and T (x) ≤ ωx̄(dS(x)) for all x ∈ B(x̄, δx̄), where dS(·) denotes the Euclidean
distance function from S.

STLA has been studied by several authors, and it turned out that estimates
of this type have consequences also in regularity property of the minimum time
function. One of the most important results on this line was found in [6], where it
was proved that a controllability condition known as Petrov’s condition yields an
estimate T (x) ≤ ωx̄(dS(x)) with ωx̄(r) = Cx̄r, for C > 0, and this is equivalent
to local Lipschitz continuity of T (·) in U\S for a suitable neighborhood U of S.

For a compact target S, Petrov’s condition can be formulated as follows:
there exist δ, μ > 0, such that for every x ∈ R

d\S whose distance dS(x) from S
is less than δ there exist u ∈ U and a point x̄ ∈ S with ‖x − x̄‖ = dS(x) and

〈x − x̄, f(x, u)〉 ≤ −μdS(x). (3)

From a geometric point of view, the underlying idea is the following: for every
point near to S, there is an admissible velocity pointing toward S sufficiently
fast, i.e., whose component in direction of S is sufficiently large. Since Petrov’s
condition involves only admissible velocities (i.e. first order term in the expansion
of the trajectories) we refer to it as a first-order condition for STLA.

If we assume that the distance is smooth around S, we can give also another
version of Petrov’s condition: for every x near to S we require the existence of

an admissible C1-trajectory γx(·) of (1) satisfying γx(0) = x and
d

dt
(dS ◦ γx)

(0) < −μ. Accordingly, due to the smoothness of γx and dS , we have also that

for t > 0 sufficiently small we have
d

dt
(dS ◦ γx)(t) < −μ. This formulation

enhances the infinitesimal decreasing properties of the distance along at least
one admissible trajectories contained in (3).

Natural steps toward the generalization of this condition are the following:

1. consider instead of the distance its square, since it is well known that the
square of the distance enjoys more regularity properties then the distance
itself.

2. take an integral version of the infinitesimal decreasing property, thus
obtaining

d2S(γx(t)) − d2S(x) < −μ

2
tdS(x) + o(t).

3. notice that instead of γx(t) we can consider any point yt ∈ Rx(t), where

Rx(t) := {z ∈ R
d : there exists a trajectory γ of (1) with

γ(0) = x, γ(t) = y}
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The crucial fact is that the map t �→ yt is no longer required to be necessarily
an admissible trajectory, even if yt ∈ Rx(t) for all t. Such kinds of curves will
be called A -trajectories starting from x.

In this way the problem is reduced to estimate the rate of decreasing of
the distance along A -trajectories. The first paper in which this point of view
was introduced is [1], where all the above generalization were performed. More
precisely, it is assumed that there exists μ > 0 such that for every x near to
S and t sufficiently small we can find an A -trajectory (in the original paper is
called R-trajectory) yt such that

yt = x + a(t;x) + tαA(x) + o(tα;x),

where

1. a(·), A(·) are smooth functions,
2. the reminder satisfies a uniform estimate ‖o(tα;x)‖ ≤ Ktα+β with K,β suit-

able positive constants independent of x,
3. ‖a(·)‖ is bounded from above by MtsdS(x) where M is a suitable constant,
4. there exists a point x̄ ∈ S with ‖x− x̄‖ = dS(x) and 〈x− x̄, A(x)〉 ≤ −μdS(x).

Roughly speaking, we require the infinitesimal decreasing property of Petrov’s
condition for the essential leading term of at least an A -trajectory which now
is a term of order α ≥ 1. The name “essential leading term”, introduced by [1],
is motivated by the fact that as long as x is taken near to S, we have that ‖a(·)‖
vanishes. By the equivalency between Petrov’s condition and local Lipschitz
continuity of T (·) we can not expect any more an estimate like T (x) ≤ CdS(x)
in the case α > 1, however it turns out that a similar estimate holds true,
yielding T (x) ≤ Cd

1/α
S (x). We refer to this conditions as higher order Petrov-

like conditions for STLA.
In [4] was treated the case in which the constant μ appearing in Petrov’s

condition is a function μ = μ(dS(x)) allowed to slowly vanish as dS(x) → 0. This
was not covered by [1], since there was assumed μ to be always constant. From
a geometric point of view, this means that we are allowed to arrive tangentially
to the target. There was obtained an estimate T (x) ≤ Cdβ

S(x) also involving
the dependency of μ(·) on dS(·), but under additional geometrical assumptions
on the target, which were removed in a later paper [2] by Krastanov, where
the results of [1,4] are subsumed in a unique formulation, but still under strong
smoothness hypothesis on the terms appearing in the expression of yt and taking
into account a decay of r �→ μ(r) only as suitable powers of r.

The recent paper [5] weakened some smoothness assumptions required in
[1,2] on the terms appearing in the expression of the A -trajectory t �→ yt, but
instead of them, the authors assumed more regularity on the target set than in
[2]. With even more regularity, in [5] is also defined a generalized curvature by
means of suitable generalized gradients of higher order of the distance function.
This allows to consider not only first-order expansion of the distance along an
A -trajectory, but also second-order effects, improving further STLA sufficient
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conditions. This was in the spirit of [1], in which was pointed out that STLA
cannot be reduced to attainability of the single points of the target, but needs
to take into account also the geometrical properties of the target.

We present here a STLA result removing the smoothness assumptions on
the terms appearing in the expression of the A -trajectory t �→ yt, as in [5],
but without any additional regularity hypothesis on the target set used in [5],
thus fully generalizing the results of [2] also in presence of the additional state
constraint y(t) ∈ Ω, where Ω is an open subset of Rd with Ω\S �= ∅.

In general a complete description of the set of A -trajectories, on which higher
order conditions must be checked, turns to be very difficult. For control affine
systems of the form

⎧
⎪⎨

⎪⎩

ẋ(t) = f0(x(t)) +
M∑

i=1

ui(t)fi(x(t)),

x(0) = x,

(4)

where fi(·) are smooth vector fields, and ui : [0,+∞[→ [−1, 1] are measurable,
additional information on A -trajectories can be obtained by the study of the Lie
algebra generated by {fi}i=1,...,M , as performed in various degree of generality
in the papers [1,2,4,5]. In the forthcoming paper [3] the analysis of such kind
of systems is performed also in presence of state constraints, in order to provide
explicit higher order conditions for STLA.

The paper is structured as follows: in Sect. 2 we formulate and prove the main
result on STLA, and in Sect. 3 we compare this result with some other similar
results from [2,5].

2 A General Result on STLA

Throughout the paper, given a set Z ⊆ R
d and a positive number δ, we set

Zδ = {y ∈ R
d : dZ(y) ≤ δ}, moreover we denote by ∂P dS(x) the proxi-

mal superdifferential of dS at x. Given an open set Ω ⊆ R
d, we consider the

Ω-state constrained problem, i.e., we add to system (1) the condition x(t) ∈ Ω.
Consequently, we can define the state constrained reachable set from x0 ∈ Ω at
time τ ≥ 0:

RΩ
x0

(τ) :=
{

y(τ) : y(·)is a solution of (1) defined on [0, τ ] with y([0, τ ]) ⊆ Ω
}

.

The state constrained minimum time function from x0 ∈ Ω is

TΩ(x0) :=

{
+∞, if RΩ

x0
(τ) ∩ S = ∅ for all τ ≥ 0,

inf{τ ≥ 0 : RΩ
x0

(τ) ∩ S �= ∅}, otherwise.

Lemma 1. Let δ > 0 be a constant, λ : R
2 → R, θ : R → R be continuous

functions such that
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1. r �→ θ(r)r
λ(θ(r), r)

is bounded from above by a nonincreasing function β(·) ∈
L1(]0, δ[);

2. λ(θ(r), r) > 0 for 0 < r < δ, and λ(0, r) = 0 for r > 0 .

Consider any sequence {ri}i∈N in [0, δ] satisfying for all i ∈ N:

(S1) r2i+1 − r2i ≤ −λ(θ(ri), ri), (S2) θ(ri) �= 0 implies ri �= 0.

Then we have: a) ri → 0; b)
∞∑

i=0

θ(ri) ≤ 2
∫ r0

0

β(r) dr.

Proof. According to (S1), the sequence {ri}i∈N is monotone and bounded from
below, thus it admits a limit r∞ satisfying 0 ≤ r∞ < δ. Assume by contradiction
that r∞ > 0. By passing to the limit for i → +∞ in (S1), since λ(·, ·) ∈ C0 and
λ(θ(ri), ri) ≥ 0, we obtain that 0 = λ(θ(r∞), r∞) contradicting the assumptions

on λ, thus r∞ = 0. Since if θ(ri) �= 0 we have ri �= 0 and
r2i − r2i+1

λ(θ(ri), ri)
≥ 1, we

obtain
∞∑

i=0

θ(ri) =
∞∑

i=0
θ(ri) �=0

θ(ri) ≤
∞∑

i=0
θ(ri) �=0

θ(ri)

λ(θ(ri), ri)
(r2i − r2i+1)

≤
∞∑

i=0
θ(ri) �=0

θ(ri)

λ(θ(ri), ri)
(ri + ri+1)(ri − ri+1) ≤ 2

∞∑

i=0
θ(ri) �=0

θ(ri)ri

λ(θ(ri), ri)
(ri − ri+1)

≤ 2
∞∑

i=0
θ(ri) �=0

β(ri)(ri − ri+1) ≤ 2

∫ r0

0

β(r)dr,

recalling the monotonicity property of r �→ β(r).

Theorem 1 (General attainability). Consider the system (1). Let δ0 > 0
be a positive constant, σ, μ : [0,+∞[×[0,+∞[→ [0,+∞[, and τ, θ : [0,+∞[→
[0,+∞[ be continuous functions. Let Q : [0,+∞[×R

d → [0,+∞[ be a function
such that t �→ Q(t, x) is continuous for every x ∈ Sδ0\S.

We assume that:

(1) τ(r) = 0 iff r = 0, 0 < θ(r) ≤ τ(r) for every 0 < r < δ0;
(2) for any x ∈ (Sδ0 ∩ Ω)\S and 0 < t ≤ τ(dS(x)) the following holds

(2.a) RΩ
x (t) ∩ S2δ0 �= {x},

(2.b) if RΩ
x (t) ∩ S = ∅, there exists yt ∈ RΩ

x (t) ∩ B(x, χ(t, dS(x))) with

min
ζ∈∂P dS(x)

〈dS(x)ζ, yt − x〉 + ‖yt − x‖2 ≤ −μ(t, dS(x)) + σ(t, dS(x));

(2.c) if S is not compact, then
(
RΩ

x (t) ∩ S2δ0

) \S ⊆ B(0, Q(t, x))
(3) the continuous function λ : [0,+∞[×[0,+∞[→ R, defined as λ(t, r) :=

2μ(t, r) − 2σ(t, r), satisfies the following properties:
(3.a) 0 < 2λ(θ(r), r) < r2, λ(0, r) = 0 for all 0 < r < δ0;
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(3.b) r �→ θ(r)r
λ(θ(r), r)

is bounded from above by a nonincreasing function β(·) ∈
L1(]0, δ0[).

Then, if we set ω(r0) := 2
∫ r0

0

β(r) dr, we have that TΩ(x) ≤ ω(dS(x)) for any

x ∈ Sδ0 ∩ Ω.

Before proving the result, we make some remarks on the assumptions.
Assumption (2.a) requires that from every x in the feasible set and suffi-
ciently near to S we can move remaining inside the feasible set and not too
far from S. Moreover, given a time t < T (x) (thus Rx(t) ∩ S = ∅), in (2.b)
we assume the existence of a yt in the reachable set, not too far from x (2.c),
such that the square of the distance from the target is decreased of at least
λ(t, dS(x))/2 = μ(t, dS(x)) − σ(t, dS(x)). Assumption (3) requires λ to satisfy
the requests of Lemma 1, thus concluding the proof.

Proof (of Theorem 1). We define a sequence of points and times {(xi, ti, ri)}i∈N

by induction as follows. We choose x0 ∈ (Sδ0 ∩ Ω)\S, and set r0 = dS(x0),
t0 = min{TΩ(x0), θ(r0)}. Suppose to have defined xi, ti, ri. We distinguish the
following cases:

1. if xi ∈ S, we define xi+1 = xi, ti+1 = 0, ri+1 = 0.
2. if xi /∈ S and ti ≥ TΩ(xi), in particular we have TΩ(xi) < +∞, thus we can

choose xi+1 ∈ RΩ
xi

(TΩ(xi)) ∩ S and define ri+1 = 0, ti+1 = 0.
3. if xi /∈ S and ti < TΩ(xi), we choose xi+1 ∈ RΩ

xi
(ti) such that

min
ζi∈∂P dS(xi)

〈riζi, xi+1 − xi〉 + ‖xi+1 − xi‖2 ≤ −μ(ti, ri) + σ(ti, ri),

and define ri+1 = dS(xi+1), ti+1 = min{TΩ(xi+1), θ(ri+1)}. According to
the semiconcavity of d2S(·) (with semiconcavity constant 2) and recalling that
ζx ∈ ∂P dS(x) iff 2ζxdS(x) ∈ ∂P dS(·), we have that there exists ζx ∈ ∂dS(x)
such that

r2i+1 − r2i ≤ 〈2ζiri, xi+1 − xi〉 + 2‖xi+1 − xi‖2 ≤ −λ(ti, ri). (5)

We notice that in this case xi+1 /∈ S since xi+1 ∈ RΩ
xi

(ti) and ti = θ(ri) <
TΩ(xi), thus ti+1 > 0 and ri+1 > 0.

The assumptions of Lemma 1) are satisfied:

1. r2i+1 − r2i ≤ −λ(θ(ri), ri),
2. it is obvious that θ(ri) �= 0 implies ri �= 0. Indeed, assume that ri = 0. Since

0 ≤ θ(r) ≤ τ(r), and τ(r) = 0 iff r = 0 , we have θ(0) = 0.

3. by assumption, there exists β ∈ L1(]0, δ0[) such that
θ(s)s

λ(θ(s), s)
≤ β(r).
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Applying Lemma 1, we have that a) ri → 0, b)
∞∑

i=0

θ(ri) ≤ 2
∫ r0

0

β(r) dr. Since

∞∑

i=0

ti ≤
∞∑

i=0

θ(si), we have
∞∑

i=0

ti ≤ 2
∫ r0

0

β(r) dr. If S is compact, since dS(xi) →
0, we have that {xi}i∈N is bounded. If S is not compact, for every j ∈ N,

we notice that xj ∈
(
S2δ0 ∩ RΩ

x0

(∑j
i=0 ti

))
\S ⊂ B

(
0, Q

(∑j
i=0 ti, x

))
. Since

∑j
i=0 ti converges, we have that there exists R > 0 such that Q

(
j∑

i=0

ti, x

)

≤ R

for all j ∈ N, thus also in this case {xi}i∈N is bounded. Up to subsequence, still
denoted by {xi}i∈N, we have that there exists x̄ ∈ R

d such that xi → x̄. Since

dS(xi) → 0, we have x̄ ∈ S and so TΩ(x0) ≤
∞∑

i=1

ti ≤ ω(dS(x0)), which concludes

the proof.

At this level the state constraints play no role, since their presence is hidden
in Assumption (2) of Theorem 1, which requires the knowledge of at least an
approximation of the reachable set in time t. In the control-affine case (4) this can
be obtained by studying the Lie algebra generated by the vector fields appear-
ing in the dynamics, since, as well known, noncommutativity of the flows of
such vector fields will generate further direction along which the system can
move, and so more A -trajectories. Indeed, up to an higher order error, such
A -trajectories can be described by mean of their generating Lie brackets at the
initial point, and so it is possible to impose the decreasing condition of Assump-
tion (2) of Theorem 1 directly on such Lie brackets. This gives a tool to check it
in many interesting cases. State constraints may reduce the number of feasible
A -trajectory generated by Lie bracket operations, since in order to construct
each of them we have to concatenate several flows, thus possibly exiting from
the feasible region after a certain time. This problem can be faced for instance
by imposing a sort of inward pointing conditions (see e.g. [3]) in order to prevent
such a situation, forcing all the flows involved the construction of the bracket
to remain inside the feasible region. Finally, we notice that the distance to the
boundary of the feasible region may be estimate by a semiconcavity inequality
similar to the one used to estimate the decreasing of the distance from the target,
thus at each step of the construction in the proof of Theorem1 it is possible to
estimate also the distance from the boundary of the feasible region.

3 Comparison with Other Results

Example 1. The ground space is R, and set S = {zk : k ∈ N} ∪ {0}. Since
S does not satisfy the internal sphere condition, the results of [5] cannot be
applied. Take U = [−1, 1] and define f(x, u) = u

log |x| for 0 < |x| < 1/2. We

have that f ∈ C1,1
loc (S1/2\S)× [−1, 1]) and w.l.o.g. we can extend it to a function

C1,1
loc ((R\S) × [−1, 1]), still denoted by f . Clearly, for any 0 < x̄ < 1/2 the
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optimal control corresponds to u(t) ≡ 1, and for −1/2 < x̄ < 0 the optimal
control is −1. We restrict our attention only to x > 0 due to the symmetry of
the system. Consider now any A -trajectory σx̄(·) starting from x̄ of the form
σx̄(t) = x̄ + a(t, x̄) + tαA(x̄) + o(tα, x̄), where A(·) is a Lipschitz continuous
map, ‖a(t, x)‖ ≤ tsc(x) for s > 0 and a Lipschitz map c(·) satisfying c(x) → 0
when dS(x) → 0, i.e. of the same structure as in [1,2]. If σx̄(t) > x̄ for all
t > τ0 the A -trajectory do not approach the target. Excluding this case, and
up to a time shift, we can restrict to A -trajectories satisfying 0 ≤ σx̄(t) ≤ x̄
for t > 0. In particular, we have that |σx̄(t) − x̄| ≤ 2t

| log x̄| since all trajectories
contained in [0, x̄] have modulus of speed which cannot exceed 1

| log x̄| . By letting
x̄ → 0+, we obtain for all t > 0 that ‖tαA(0) + o(tα, 0)‖ ≤ 0, thus, dividing by
tα and letting t → 0+ we obtain A(0) = 0 and thus by Lipschitz continuity of
A(·) we have |A(x)| ≤ C|x|. In particular, the results of [1] cannot be applied
because the essential leading term vanishes as we approach the target. Theorem

3.1, which is the main result of [2], requires the existence of 0 ≤ λ <
2α

2α − 1
for the A -trajectory σx̄(·) such that 〈x − πS(x), A(x)〉 ≤ −δdλ

S(x), where πS(x)
is the projection of x on S. For x ≥ 0, we obtain dS(x) = x and πS(x) = 0,

and together with |A(x)| ≤ C|x|, this implies λ ≥ 2, but
2α

2α − 1
≤ 2 since it is

assumed that α ≥ 1, thus also this result cannot be applied. We consider the
optimal solution γx̄(t) = x̄ + t

log x̄ + o(t) corresponding to the control u = 1.
Take yx̄(t) = x̄+ t

2 log x̄ . It can be easily proved that x̄ > yx̄(t) > γx̄(t), and from
this that yx̄(·) is an A -trajectory. Assumption of Theorem 1 are satisfied with
δ0 = 1/2, θ(r) = τ(r) = r| log r|, μ(t, r) = rt

2| log r| , σ = t2

4 log2 x
, β(r) = | log r|,

providing the estimate T (x) ≤ 4(x − x log x). Indeed, we can compute exactly
the minimum time function in this case, which turns out to be T (x) = x−x log x
for 0 < x < 1/2 (and in general T (x) = |x| − |x| log |x| for |x| < 1/2).
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