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Preface

The 10th International Conference on Large-Scale Scientific Computations (LSSC
2015) was held in Sozopol, Bulgaria, June 8–12, 2015. The conference was organized
by the Institute of Information and Communication Technologies at the Bulgarian
Academy of Sciences in cooperation with Society for Industrial and Applied Mathe-
matics (SIAM) and Sozopol municipality.

The following plenary invited speakers and lectures were hosted:

– Thierry Coupez, “Implicit Boundary in Multiphase Flows and Anisotropic Adaptive
Meshing”

– David Keyes, “Algorithmic Adaptations to Extreme Scale”
– Johannes Kraus, “Combined Strategies in Algebraic Multilevel Preconditioning”
– Siegfried Selberherr, “Spin-Based CMOS-Compatible Devices”
– Ludmil Zikatanov, “Subspace Correction Methods: Theory, Practice, and

Robustness”

The success of the conference and the present volume are the outcome of the joint
efforts of many partners from various institutions and organizations. First, thanks to all
the members of the Scientific Committee for their valuable contribution forming the
scientific face of the conference, as well as for their help in reviewing contributed
papers. We especially thank the organizers of the special sessions. We are also grateful
to the staff involved in the local organization.

Traditionally, the purpose of the conference is to bring together scientists working
with large-scale computational models in natural sciences and environmental and
industrial applications, and specialists in the field of numerical methods and algorithms
for modern high-performance computers. The invited lectures reviewed some of the
most advanced achievements in the field of numerical methods and their efficient
applications. The conference talks were presented by researchers from academic insti-
tutions and practical industry engineers including applied mathematicians, numerical
analysts, and computer experts. The general theme of LSSC 2015 was “Large-Scale
Scientific Computing” with a particular focus on the organized special sessions.

The special sessions and organizers are as follows:

– “A Posteriori Error Control and Iterative Methods for Maxwell Type Problems” —
D. Pauly, J. Kraus

– “Multilevel Methods on Graphs” — P. Vassilevski, L. Zikatanov
– “Mathematical Modeling and Analysis of PDEs Describing Physical Problems” —

O. Iliev
– “Numerical Methods for Multiphysics Problems” — J. Adler, X. Hu, R. Lazarov
– “Control and Uncertain Systems” — M. Krastanov, V. Veliov
– “Enabling Exascale Computation” — O. Iliev, D. Keyes



– “Efficient Algorithms for Hybrid HPC Systems” — A. Karaivanova, E. Atanassov,
T. Gurov, M. Mascagni

– “Applications of Metaheuristics to Large-Scale Problems” — S. Fidanova,
G. Luque

– “Computational Microelectronics — From Monte Carlo to Deterministic Approa-
ches” — I. Dimov, M. Nedjalkov, J. Weinbub

– “Large-Scale Models: Numerical Methods, Paralel Computations and Applications”
— K. Georgiev, Z. Zlatev

More than 120 participants from all over the world attended the conference repre-
senting some of the strongest research groups in the field of advanced large-scale
scientific computing. This volume contains 49 papers by authors from 15 countries.

The next international LSSC conference will be organized in June 2017.

October 2015 Ivan Lirkov
Svetozar D. Margenov

Jerzy Waśniewski

VI Preface
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Preconditioners for Mixed FEM Solution
of Stationary and Nonstationary Porous

Media Flow Problems

Owe Axelsson, Radim Blaheta(B), and Tomáš Luber

Institute of Geonics AS CR,
Studentska 1768, 70800 Poruba, Ostrava, Czech Republic

blaheta@ugn.cas.cz

Abstract. The paper concerns porous media flow in rigid or deformable
matrix. It starts with stationary Darcy flow, but the main interest is
in extending Darcy problem to involve time dependent behaviour and
deformation of the matrix. The considered problems are discretized by
mixed FEM in space and stable time discretization methods as backward
Euler and second order Radau methods. The discretization leads to time
stepping methods which involve solution of a linear system within each
time step. The main focus of the paper is then devoted to the construction
of suitable preconditioners for these Euler and Radau systems. The paper
presents also numerical experiments for illustration of efficiency of the
suggested numerical algorithms.

Keywords: Darcy flow · Poroelasticity · Saddle point systems · Pre-
conditioners

1 Introduction

The porous media flow in rigid or deformable matrix are basically described by
Darcy flow and Biot poroelasticity models, respectively. The stationary Darcy
problem can be written in the form

K−1v +∇p = 0,
div(v) = Q

(1)

with two physical fields, the Darcy velocity v and the fluid (pore) pressure p,
which have to be determined in a domain Ω. Here v = φvf where φ is the porosity
and vf is the fluid velocity. The parameter K is the matrix of permeabilities
divided by fluid viscosity (effective permeability, Kij = κij/νf ) and Q stands for
the fluid source/sink term. The introduced Darcy flow model can be formulated
variationally and discretized by a mixed finite element method, which leads
to saddle point systems. The solution of these systems can be done by use of
iterative methods with preconditioners based on the natural block structure.
Efficient preconditioners can be based on regularization of the zero block and
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-26520-9 1



4 O. Axelsson et al.

subsequent formulation with augmented blocks. For stationary problems, the
regularization implies necessity of strong augmentation and possible difficulties
in solving the augmented block system.

The source term and accordingly also the velocity and pressure can be time
dependent. In this case the Darcy model usually involves a flow retardation
mechanism, which is provided by a small compressibility of fluid and/or defor-
mation of the porous matrix. The time dependent Darcy model then has the
following form

K−1v +∇p = 0,
div(v) +cpp

∂
∂tp = Q.

(2)

The time dependent Darcy model can be also discretized by the mixed finite
elements in space and a suitable method in time. For the time discretization,
we shall use stable methods such as the first order backward Euler or higher
order Radau methods. After discretization, we solve the evolution problems by
a time stepping procedure with solving saddle point systems within each time
step. Compared with the stationary Darcy systems, the backward Euler sys-
tems are naturally regularized by the time derivative term, which influence the
block preconditioners. For higher order Radau methods, we introduce additional
preconditioners, which involve the solution of backward Euler type systems.

The porous media flow can be coupled with deformation of the porous matrix.
The basic model in this respect is the Biot poroelasticity, which can be described
by the equations

−div(Cel : ε(u)) +cup∇p = f,
K−1v +∇p = 0,

cpu
∂
∂tdiv(u) +div(v) +cpp

∂
∂tp = Q.

(3)

There are three physical fields in the domain Ω entering the above model, besides
the velocity v and the fluid pressure p, it is the displacement u, which defines the
small strain tensor ε(u). Further, Cel is the elasticity tensor and cup = cpu = α
are Biot-Willis coefficients. For simplicity, we assume cup = cpu = 1.

The organization of the paper is as follows. The next Section concerns dis-
cretization of the described porous media flow problems. The space discretization
uses the lowest order Raviart-Thomas elements. The time dependent problems
are then solved by time stepping methods with the solution of Euler and Radau
systems in each step. The preconditioners for Euler and Radau systems are inves-
tigated in Sects. 3 and 4. Section 5 introduces a model problem and describes
numerical experiments which illustrate the efficiency of the preconditioners.

2 Space and Time Discretization

The introduced problems can be formulated variationally and discretized by
the Galerkin technique using proper function spaces. Namely, for Ω ⊂ Rd and
decomposition of the boundary ∂Ω corresponding to different boundary condi-
tions for flow ∂Ω = Γv,p ∪ Γv,v and for mechanical response ∂Ω = Γu,u ∪ Γu,σ,
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we take
uh ∈ Uh ⊂ U =

{
u ∈ [H1(Ω)]d, u = uD on Γu,u

}
,

where Uh corresponds to a finite element mesh division Th of Ω into system of
triangles for d = 2 or tetrahedra for d = 3. The functions from Uh are continuous
on Ω and piecewise linear on elements of Th. Further,

vh ∈ Vh ⊂ V = {w ∈ H(div, Ω), w · ν = qn on Γp,v} ,

where Vh contains the lowest order Raviart-Thomas finite elements on the same
division Th as used for elasticity. Finally,

ph ∈ Ph ⊂ P = L2(Ω),

where Ph contains functions piecewise constant on the same mesh Th.
After taking proper bases in Uh, Vh, Ph and establishing isomorphism

between finite element functions and algebraic vectors uh ↔ u, vh ↔ v and
ph ↔ p, we can introduce the finite element matrices,

〈Au, w〉 =
∫

Ω

Cε(uh) : ε(wh) dx ∀uh, wh ∈ Uh,

〈Mv, z〉 =
∫

Ω

K−1vh · zh dx ∀vh, zh ∈ Vh,

〈Mpp, q〉 =
∫

Ω

phqh dx ∀ph, qh ∈ Ph,

〈Buu, q〉 =
∫

Ω

div(uh)qh dx ∀uh ∈ Uh, qh ∈ Ph,

〈Bvv, q〉 =
∫

Ω

div(vh)qh dx ∀vh ∈ Vh, qh ∈ Ph.

Note that A, M, Mp are symmetric, C = cppMp, A is positive definite if the
displacement is prescribed on a part Γu,u ⊂ ∂Ω with a positive measure and
M, Mp are always positive definite.

The discretization of time dependent Darcy and poroelasticity problems by
mixed finite element methods results in a differential-algebraic (DAE) system of
a general form

A1
∂

∂t
U + A0U = F ,

where

A1 =
[

0 0
0 −C

]
, A0 =

[
M BT

B 0

]
, U =

[
v
p

]

for the time dependent Darcy problem and

A1 =

⎡

⎣
0 0 0
0 0 0

Bu 0 −C

⎤

⎦ , A0 =

⎡

⎣
A 0 BT

u

0 M BT

0 B 0

⎤

⎦ , U =

⎡

⎣
u
v
p

⎤

⎦
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for poroelasticity.
The time discretization is performed by a sequence of time steps

0 = t0 < t1 < . . . < tN ,

where τi = ti+1− ti are provided apriori or computed adaptively. To simplify the
presentation, we shall assume constant time steps, τi = τ . For each time interval
〈ti, ti+1〉, we have

ti+τ∫

ti

A1
∂

∂t
U dt +

ti+τ∫

ti

(A0U − F) dt = A1

(
U i+1 − U i

)
+

ti+τ∫

ti

(A0U − F) dt = 0.

The integration
∫ ti+τ

ti
(A0U − F) dt has to be performed by a suitable approxi-

mate integration scheme. The use of the simple right-hand rectangle approximate
integration provides the backward Euler method

AEU i+1 = (A1 + τA0) U i+1 = A1U i + τF i+1 ∀i = 0, . . . , N − 1. (4)

The backward Euler method is stable and suitable for the solution of stiff and
DAE problems, but has only a first order time discretization error. As an example
of higher order discretization methods, we use the third order L-stable method
based on the second order Radau integration (RADAU IIA), see e.g. [1]. It uses
two integration points ti+1/3 and ti+1 in the interval 〈ti, ti+1〉. The position of
ti+1/3 and the weights are determined from the condition that the integration
scheme should be exact for polynomials up to second order. It provides

ti+τ∫

ti

φ dx =
3
4
τφ(ti + τ/3) +

1
4
τφ(ti+1) ∀φ(t) =

2∑

i=0

αit
i.

The Radau method leads to the system

AR

[
U i+1/3

U i+1

]
=

[
A1 + 5τ

12A0 − τ
12A0

3τ
4 A0 A1 + τ

4A0

] [
U i+1/3

U i+1

]

=
[
A1U i + τ

12 (5F i+1/3 − F i+1)
A1U i + τ

4 (3F i+1/3 + F i+1)

]
. (5)

Elimination of U i+1/3 provides a reduced system

ARRU i+1 =
(

A1A−1
0 − 1

3
τ

)
A1U i +

τ

4
A1A−1

0

(
3F i+1/3 + F i+1

)
+

1
6
τ2F i+1

with the matrix
ARR =

1
6
τ2A0 +

2
3
τA1 + A1A−1

0 A1 . (6)

The space and time discretization provides possibility to solve the porous
media flow by time stepping algorithms which compute the vector of all
unknowns by solving the corresponding system in each time step. The systems
to be solved are (4), (5) and (6), depending on the chosen time discretization
technique.
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3 Preconditioners for the Euler Systems

The Euler system for the time dependent Darcy model has the form

AE = A1 + τA0 = τ

[
M BT

B − 1
τ C

]
,

which contains a regularization term in the (2,2) block. The regularization is
based on pressure mass matrix multiplied by compressibility parameter which
is typically constant in the whole domain. For the lowest order Raviart-Thomas
elements the pressure mass matrix is diagonal, which allows an easy inverse of
the matrix C. All these facts indicate that suitable preconditioners can be found
of the augmented type, i.e.

PET =
[

MC BT

− 1
τ C

]
, PED =

[
MC

− 1
τ C

]
, PEDP =

[
MC

1
τ C

]
.

In all cases MC = M + τBT C−1B is the augmented matrix. For the Raviart-
Thomas finite elements, MC can be assembled as a sparse matrix, which allows
to solve the inner system with MC by various direct or iterative solvers. Note
that small time steps improve conditioning, which is favourable.

As concerns the preconditioned systems, an analysis for both exact (the ideal
case) and inexact solution of subproblems can be found in the literature, see e.g.
[5–8]. Other applicable preconditioning techniques can be found e.g. in [4,8].

The Euler system for the poroelasticity problems has the form

AE = A1 + τA0 = τ

⎡

⎣
A 0 BT

u

0 M BT

1
τ Bu B − 1

τ C

⎤

⎦ .

AE is not symmetric but the corresponding system can be easily symmetrized
by row scaling which provides new system with the matrix ÃE ,

ÃE =

⎡

⎣
1
τ

1
1

⎤

⎦ AE =

⎡

⎣
A 0 BT

u

0 τM τBT

Bu τB −C

⎤

⎦

and suitable preconditioners for ÃE can be again found of the augmented type
form, i.e.

PET =
[

SC B̄T

−C

]
, PED =

[
SC

−C

]
, PEDP =

[
SC

C

]
,

where B̄ =
[
Bu B

]
and the pivot block has now a 2 × 2 structure

SC =
[

A + BT
u C−1Bu τBT

u C−1B
τBT C−1Bu τM + τ2BT C−1B

]
=

[
S11 S12

S21 S22

]
.

As SC is now more complicated, a question arises if it can be simplified by
considering its block diagonal or block triangular part.
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Proposition 1. There is a constant 0 ≤ γ < 1 such that

|〈S12v, u〉| ≤ γ
√

〈S11u, u〉
√

〈S22v, v〉 ∀u, v.

If cel is a positive constant such that

cel ‖div(uh)‖2L2
≤ 〈Au, u〉

then γ2 ≤ (1 + cppcel)
−1. For isotropic elasticity with Lamè constants λ and μ,

cel = λ. With the constant γ, we have the spectral equivalence

(1 − γ)
[

S11

S22

]
≤

[
S11 S12

S21 S22

]
≤ (1 + γ)

[
S11

S22

]

Proof. The proof is based on the strengthened Cauchy-Schwarz-Bunyakowski
constant γ. To show the estimate, we apply the CBS inequality to get

|〈S12v, u〉| =
∣
∣〈τBT

u C−1Bv, u
〉∣∣ =

∣
∣
∣
〈
τC−1/2Bv, C−1/2Buu

〉∣
∣
∣

≤
√

〈τ2BT C−1Bv, v〉
√

〈BT
u C−1Buu, u〉 .

Then

|〈S12v, u〉| ≤ γ
√

〈(τM + τ2BT C−1B)v, v〉
√

〈(A + BT
u C−1Bu)u, u〉

= γ
√

〈S11u, u〉
√

〈S22v, v〉 .

The estimate for γ comes from

〈Buu, C−1Buu〉 ≤ 1
celcpp

〈Au, u〉. (7)

Details can be found in [10]. �

Note that the constant γ and the spectral equivalence are independent on
discretization (represented by h and τ) and also does not depend on oscilla-
tions of permeability. On the other hand, γ depends on compressibility cpp and
mechanical stiffness of the porous matrix. A stiffer porous matrix will decrease
the coupling between flow and deformation and provide a smaller value of γ.

Note that the estimate of γ could be improved by taking into account the
contribution of M similarly as the contribution of A in (7). The contribution
of M can be significant if the permeability is small. On the other hand, the
qualitative result can be obtained without considering the contribution of M ,
which has two benefits - avoiding assumptions on oscillatory character of the
permeability coefficients and avoiding the fact, that we should use h dependent
inverse inequality to bound L2-norm of div(vh) by L2-norm of vh.

In the case of having a solver for the system M + τBT C−1B, which is robust
with respect to coefficient oscillations (see e.g. [9]), the spectral equivalence
above provide also a possibility to construct a robust solver for the poroelasticity
problem.
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4 Preconditioners for the Radau Systems

The more complex systems (5) and (6) arising from the Radau discretization of
both time dependent Darcy and poroelasticity problems can be solved iteratively
with very efficient preconditioners based on the solution of simpler Euler type
systems with matrices

A1 + τA0.

Proposition 2. Let ARR be the matrix of the reduced Radau system (6). Then
a suitable preconditioner is found in the form

PRR =
(

A1 +
1√
6
τA0

)
A−1

0

(
A1 +

1√
6
τA0

)
. (8)

The spectrum of the preconditioned matrix P−1
RRARR is real and lies in the interval〈

1 − 1
6+

√
24

, 1
〉
.

Proposition 3. Let AR be the matrix of the full Radau system (5). Then a
preconditioner can be taken in the triangular form

PR−T =
[

A1 + 5τ
12A0 0

3τ
4 A0 A1 + τ

4A0

]
. (9)

The spectrum of the preconditioned matrix P−1
R−T AR is real and lies in the inter-

val
〈
1, 8

5

〉
.

Proposition 4. Let AR be the matrix of the full Radau system (5). Then a
preconditioner can be taken in the diagonal form

PR−D =
[

A1 + 5τ
12A0 0

0 A1 + τ
4A0

]
. (10)

The spectrum of the preconditioned matrix P−1
R−DAR is complex and lies in the

interval
{

z ∈ C : Re(z) = 1 & |Im(z)| ≤
√

3/5
}
.

Proof. The proof of Proposition 2 can be found in [2]. We shall show the proof
of Proposition 3, the proof of Proposition 4 is similar.

A simple manipulation provides

P−1
R−T AR = I +

[
0 E12

0 E22

]
,

where

E12 =
(

A1 +
5τ

12
A0

)−1 (
− τ

12

)
A0 = −1

5

(
12
5τ

Ã1 + I

)−1

E22 = −
(
A1 +

τ

4
A0

)−1
(

3τ

4

)
A0E12 =

3
5

(
4
τ

Ã1 + I

)−1 (
12
5τ

Ã1 + I

)−1

.

Above Ã1 = A−1
0 A1.
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If μ ∈ σ(Ã1) then for the time dependent Darcy model there exists
z = (z1, z2)T such that

μMz1 +μBT z2 = 0
μBz1 = −Cz2

Thus μ = 0 is the eigenvalue with the eigenvector z = (z1, 0)T , z1 �= 0. Moreover,
if μ ∈ σ(Ã1) and μ �= 0 then z1 = −M−1BT z2 and μ fulfils μBM−1BT z2 = Cz2.
Therefore μ > 0. Similarly, it is possible to show that σ(Ã1) ⊂ 〈0, ∞) for
poroelasticity problem, see [2].

Consequently, σ(E22) ⊂
(
0, 3

5

〉
as λ ∈ σ(E22) if λ = 3

5 ( 4
τ μ+1)−1( 12

5τ μ+1)−1

for μ ∈ σ(Ã1), and μ ≥ 0. Finally,

σ
(
P−1

R−T AR

)
= 1 + ({0} ∪ σ(E22)) ⊂

〈
1,

8
5

〉
. �

5 Numerical Tests

The described preconditioners are tested on a poroelasticity model problem
defined in the square domain Ω = 〈 0, 1〉 × 〈 0, 1〉, see Fig. 1. We shall test
the following material properties

(a) effective permeability log k(x) ∈ N(0, σ̃), storativity cpp = 1 (fast flow
regime),

(b) effective permeability log 105k(x) ∈ N(0, σ̃), storativity cpp = 0.000165
(modest flow regime like in sand).

Here ξ ∈ N(μ, σ̃) denotes that the quantity ξ has a normal distribution with
mean μ and variance σ̃. For σ̃ �= 0, we can therefore model the flow problem in
heterogeneous porous medium, increasing σ̃ increases the contrast in coefficients.
In practice there is a high range of possible effective permeability values. In geo-
applications, k = κ/νf (permeability divided by viscosity) usually lies between
10−4 (highly fractured rock) and 10−16 (intact granite).

Other parameters are not oscillatory and we shall assume that they are con-
stant in the whole domain Ω. The tests are performed for very soft elastic mate-
rial Lamè constants λ = μ = 4 (E = 10 and Poisson’s ratio ν = 0.25) as well as
for stiffer material with λ = 103 and λ = 106 to confirm the behaviour described
in Proposition 1. The Biot-Willis coefficient is also held constant cup = cpu = 1
in Ω.

For the elastic and flow part we use zero volume force Fs = 0 and zero volume
source Q = 0. The boundary conditions are specified in Fig. 1. The problem uses
zero initial conditions

u(x1, x2, 0) = 0, p(x1, x2, 0) = 0 for (x1, x2) ∈ Ω.

The elastic part is discretized by a finite element method on a regular grid
Ωh created by a division of Ω into 1/h2 small congruent squares and subsequent
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Fig. 1. The model problem in square Ω. Boundary conditions for elasticity are shown
in the middle, boundary conditions for flow in the right square.

division of the squares into triangles. Then, the linear Courant elements are used.
The flow part is discretized by a mixed finite element method on the same
triangular grid with the lowest order Raviart-Thomas finite elements for the
velocity and piecewise constant finite elements for the pressure. In this paper,
we consider the time discretizations with fixed time steps, τ = 0.01. The value
of h is taken h = 1/50 in the reported experiments.

First, we test the efficiency of the iterative solution of the Euler system with
the preconditioner

PED =
[

SC

−C

]
,

where

SC =
[

A + BT
u C−1Bu τBT

u C−1B
τBT C−1Bu τM + τ2BT C−1B

]

or SC is replaced by its diagonal part S̃C ,

S̃C =
[

A + BT
u C−1Bu

τM + τ2BT C−1B

]
.

Table 1. Numbers of GMRES iterations for solving Euler system with AE using zero
initial guess and relative residual accuracy ε = 10−6. The numbers of iterations are
averaged from the first ten time steps. The Euler system is preconditioned by PED with
full and reduced Schur complements SC and S̃C , respectively. The systems with matri-
ces SC and S̃C are solved exactly. The model poroelasticity problem uses discretization
h = 1/50, τ = 0.01. The oscillations of effective permeability provide coefficient con-
trast 8.2 · 105 for σ̃ = 2 and 6.8 · 1011 for σ̃ = 4.

σ̃ = 0 σ̃ = 2 σ̃ = 4

λ 4 4 103 106 4 4 103 106 4 4 103 106

cpp 1 10−3 10−3 10−3 1 10−3 10−3 10−3 1 10−3 10−3 10−3

SC 17 5 5 5 18 5 5 5 19 7 9 9

S̃C 17 29 14 5 18 37 14 5 19 58 18 9
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Table 2. The average numbers of GMRES iterations per one time step for Radau
problem, block diagonal preconditioner PR−D, relative residual accuracy ε = 10−6. The
block systems are solved exactly. Column Z is for zero initial guess, P for initial guess
taken from the previous time step. The model poroelasticity problem uses discretization
h = 1/50, τ = 0.01 and oscillations of effective permeability due to σ̃ = 2.

log k ∈ N(0, σ̃)

σ̃ = 0 σ̃ = 2 σ̃ = 4
Z P Z P Z P
14 2.3 14 2.5 14 1.7

log 105k ∈ N(0, σ̃)

σ̃ = 0 σ̃ = 2 σ̃ = 4
Z P Z P Z P
12 2.6 13 2.6 13 2.5

Table 3. The average numbers of GMRES iterations per one time step for Radau
problem, block triangular preconditioner PR−T , relative residual accuracy ε = 10−6.
The block systems are solved exactly. Column Z is for zero initial guess, P for initial
guess taken from the previous time step. The model problem and its discretization is
the same as in Table 2.

log k ∈ N(0, σ̃)

σ̃ = 0 σ̃ = 2 σ̃ = 4
Z P Z P Z P
8 2.0 8 2.0 8 2.3

log 105k ∈ N(0, σ̃)

σ̃ = 0 σ̃ = 2 σ̃ = 4
Z P Z P Z P
7 2.3 7.3 2.2 7 2.2

Table 4. The average numbers of GMRES iterations per one time step for the reduced
Radau problem, preconditioner PRR, relative residual accuracy ε = 10−6. The block
systems are solved exactly. Column Z is for zero initial guess, P for initial guess taken
from the previous time step. The model problem and its discretization is the same as
in Table 2.

log k ∈ N(0, σ̃)

σ̃ = 0 σ̃ = 2 σ̃ = 4
Z P Z P Z P
5 1.4 5 1.5 5 1.7

log 105k ∈ N(0, σ̃)

σ̃ = 0 σ̃ = 2 σ̃ = 4
Z P Z P Z P
4 2.2 4 2.1 4 2.1

We shall also examine the efficiency of preconditioners PR−D, PR−T , PRR

within Radau time steps, when the arising systems with Euler type matrices
A1 + cτA0 are solved by a direct solution method (MATLAB backslash solver).
The iterations are tested in two variants - with zero initial guess and with initial
guess provided by the solution of system in the previous time step. As can
be seen, the latter provides a significant reduction of the number of iterations.
The case with zero initial guess somehow model the situation with adaptive
time stepping, when the number of iterations are less reduced when the solution
approaches the steady state. The results are summarized in Tables 2, 3 and 4.
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6 Conclusions

The porous media flow problems are important in many applications. The numer-
ical solution of these problems is not easy due to possible instabilities in the
case of improper discretization and due to high heterogeneity and high contrast
(oscillations) in the coefficients representing permeabilities, see also [3] and the
references therein.

In this paper, we address both of the above mentioned aspects. A construction
of preconditioner for Euler type systems in poroelasticity was shown, which is
robust with respect to permeability oscillations and which can provide a fully
robust and efficient solver if the subblock system corresponding to flow is solved
by an inner robust solver, like solvers considered in [9].

The second focus is on solving still more complex systems arising in appli-
cation of higher order Radau time integration method. It is shown that efficient
preconditioning procedures to these systems can be created if solvers for the
Euler systems are available. Preconditioning procedures can be applied to full
or reduced Radau systems. The application to reduced system provides better
convergence, the application to full systems brings more space for paralleliza-
tion, which can be used for the whole matrix-vector multiplication as well as for
the whole preconditioning in the case of diagonal PR−D preconditioner. In this
respect, we obtain efficiently preconditioned stable and accurate time discretiza-
tion method.

Acknowledgement. This work was supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (identification number
CZ.1.05/1.1.00/02.0070).
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Abstract. We propose a graph theoretical algorithm for image segmen-
tation which preserves both the volume and the connectivity of the solid
(non-void) phase of the image. The approach uses three stages. Each step
optimizes the approximation error between the image intensity vector
and piece-wise constant (indicator) vector characterizing the segmenta-
tion of the underlying image. The different norms in which this approxi-
mation can be measured give rise to different methods. The running time
of our algorithm is O(N logN) for an image with N voxels.

1 Introduction

We focus on the image segmentation problem, which is one of the challenging
problems in Computer Vision. Throughout the last three-four decades numerous
approaches have been proposed and developed in order to attack the problem.
In 1989, Mumford and Shah [18] minimized a certain energy functional in order
to compute the segmentation. The functional contains three terms: regularity
term on the length of the inter-phase contours, regularity term on the smooth-
ness of the intensity function v, and the data fidelity term which measures the
L2 distance between the input intensity u and the output intensity v. Since
the Mumford-Shah functional is non-convex and non-smooth, the optimization
problem is difficult to solve. Simplifications of the model, however, have been
proposed. Among these is the piecewise smooth convex relaxation by functional
lifting [19]. Another frequently applied strategy is to restrict v within the class of
piece-wise constant functions, so that the second regularity term in the original
functional is omitted. This piecewise constant model, combined with classical
gradient based active contour models lead to the Chan-Vese model ([8] for 2-
phase and [25] for multi-phase segmentation). There are many other approaches
for 2-phase image segmentation based on [8] and its convex relaxation [7], e.g.,
[4,9,29]. In [6], the regularity term in the Mumford-Shah functional is replaced
by the Rudin-Osher-Fatemi (ROF) functional [21]. A new multiphase segmenta-
tion model based on iteratively thresholding the minimizer of the ROF functional
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 15–29, 2015.
DOI: 10.1007/978-3-319-26520-9 2
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of a convex relaxation of the Mumford-Shah functional is presented and relation
between the solution in the 2-phase case and the one from the Chan-Vese model
is established.

Graph-based image segmentation has been another active research field for
the past 40 years. While the works we mentioned earlier use a continuous setup,
in the graph based approaches, one studies a suitably constructed graphs whose
vertices are the voxels describing the image. In [28], Zahn uses the minimum
spanning tree (MST) of a weighted graph to obtain the phases. The edge weights
are defined as the differences of the intensities of neighboring voxels. A “heavy”
MST edges are then cut out, leaving the different connected components to
be the different phases. Some shortcomings of the model have been overcome
in [24], where the weights are normalized. A segmentation method, based on
finding minimum cuts in a graph, is developed in [27]. The method appeared to
be biased more towards finding small components. A normalized cut criterion,
which takes into account self-similarity of regions, is developed in [22]. The latter
leads to an NP-hard problem and in [22] the authors propose several polynomial
approximating algorithms. The work of Weiss [26] relates such eigenvector-based
approximations to more standard (spectral) partitioning methods on graphs. An
efficient greedy algorithm for multiphase segmentation, based on edge detection,
is developed in [10]. Although the algorithm uses local optimization procedures
it runs in almost linear time with respect to the number of edges, and the output
segmentation satisfies global properties.

Other graph-Laplacian-based segmentation models [13,16,17,23] can be
viewed as an intersection of the general approaches we have just described. In
these works, the image voxels are again part of a graph structure, and the cor-
responding 2-Laplacian functional [1,5] is used as the data fidelity term in an
optimization problem. The data smoothing is not addressed via additional reg-
ularity terms in the functional, but by carefully choosing the edge weights.

The variety of segmentation techniques is huge and we cannot cover it all.
There are other approaches, some of them considered classical (e.g., the
K-means method and its modifications). We refer to [3,12], for the corresponding
techniques and review of the literature.

In this paper we consider a constraint 2-phase segmentation problem, where
one of the phases is simply connected and of fixed volume. The motivation comes
from industry and more precisely from Computer Tomography (CT). Porous
materials are of current interest within a wide range of applications and their
properties strongly depend on various measurements such as absolute porosity,
average pore size, size and shape of individual pores. Therefore, accurate seg-
mentation of the 3D industrial CT reconstruction of the corresponding specimen
is crucial for further numerical simulations. Due to the highly irregular structure
of the segmentation phases and the presence of noise in the image, the methods,
described earlier are not reliable and in some cases the results between different
algorithms may differ drastically (even in 50% of the voxels). To say the least,
such a task is nontrivial.
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An important constraint is the volume constraint. It is practical to assume
that: (1) the volume (e.g. the number of “solid” voxels) of the solid phase is
fixed (determined from the density and the weight of the material); and (2) the
specimen consists of only one material piece (connected component).

In our work, we aim to design algorithms that give accurate segmentation, but
also which respect the constraints given in (1) and (2). Recently, a promising step
in this direction was made in [11], where, based on the techniques from [13] algo-
rithms for accurate segmentation (with the volume constraint) were reported.
Here, we introduce a different approach, based on MST properties. We propose
a new class of algorithms, which give promising results and provide a framework
for future research on the constrained image segmentation. Our mathematical
model requires minimization of functionals measuring the approximation error
with piece-wise constant functions. For the theory, we consider a discrete version
of the fidelity term of the Chan-Vese model (called fitting energy) defined on the
characteristic functions χS of simply-connected subsets S ⊂ Ω of cardinality
|S| = M . Then, in the experimental part we add a regularity term to it for data
smoothing.

The rest of the paper is organized as follows. We give preliminary notation
and definitions in Sect. 2. Next, in Sect. 3 we formulate the problem relevant
to the 2-phase constrained image segmentation. In Sect. 4 we describe in more
detail the 3 stage algorithm and in Sect. 5 we test its performance.

2 Preliminaries

We introduce the notation needed to formulate a problem which we refer to in
what follows as the 2-phase image segmentation problem. We are given a volume
Ω in 3D (2D) which is split in nx × ny × nz cubes (squares in 2D case when
nz = 1). The cubes are called voxels. The total number of voxels is N = nxnynz,
and the set of voxels is V. We thus have

Ω =
⋃

K∈V
K.

We assume that we are given a piece-wise constant (with respect to the partition
of Ω in voxels) function called intensity u. Denoting by χS the characteristic
function of a set S, we have that

u =
∑

K∈V
uKχK .

Here, uK = u
∣
∣
K

. Since the space of such piece-wise constant functions is iso-
morphic to R

N , we also denote by u the corresponding vector {uK}K∈V in R
N ,

hoping that there is no ambiguity in such notation.
The formulation of the 2-phase image segmentation problem involves topolog-

ical connectivity with respect to various graphs, thus we introduce the relevant
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notation next. We denote G1(V, E1) and G∞(V, E∞) to be the indirected graphs
with vertices the set of voxels and edge sets Ep, p = 1,∞ defined as follows:

Ep =
{
(i, j) ∈ V × V

∣
∣ ‖i − j‖�p = 1

}
.

Since we only consider undirected graphs, (i, j) ∈ Ep implies that (j, i) ∈ Ep. The
neighborhood Np(i) of a voxel is defined as

Np(i) =
{
j ∈ V

∣
∣ (i, j) ∈ Ep

}
.

For example, N1(i) consists of the 6 voxels that share a common face with i,
while N∞(i) consists of the 26 voxels that build the 3×3×3 cube, centered at i.

The graph G is called connected if and only if for every pair of voxels i and j,
there is a path formed by elements of E connecting them.

In the following definitions, we assume that we have fixed a connected graph
G = (V, E) whose set of vertices is the set of voxels.

Definition 1. Let S ⊂ V be a set of voxels. We call GS = (S, ES) the graph
induced by S if GS has as vertices the voxels in S and as edges all edges in E
for which both ends are in S.

Definition 2. Let S ⊂ V be a set of voxels. We call S a G-connected set if the
graph GS induced by S is connected.

When each edge e = (i, j) ∈ E has a weight ωij ≥ 0, the graph G is called
weighted. The weights may have various meanings when the graph is related to
real-life problems (e.g., gain, cost, penalty, etc.). In this paper, they will mea-
sure the dissimilarities between the edge endpoints (e.g., difference in intensities
or/and gradient values of the corresponding voxels), so wij ∼ 0 means that i ∼ j
in a given sense. Every connected weighted graph possesses a minimum spanning
tree. This tree is a computationally efficient way to store both connectivity and
similarity information, and it plays a central role in our algorithm. Therefore,
we briefly cover the MST theory we use in the paper. Let G = G∞(V, E).

Definition 3. We say that the graph T (VT , ET ) is a minimum spanning tree
(MST) of G, if VT = VG, T contains no cycles, and

∑

(i,j)∈ET

ωij → min.

Important properties of T are stated below:

Cycle property: For any cycle C in G, if ē = argmaxe∈Cωe is unique, then
ē /∈ T .
Cut property: For any cut C in G, if ē = argmine∈Cωe is unique, then
ē ∈ T .
Contraction: If T ⊂ T is a tree, then we can contract it to a single vertex
and maintain the MST property for the factor graph.

Definition 4. We call LT := {i ∈ V : ∃!j ∈ V s.t. (i, j) ∈ ET } the set of leaves
of T . The heaviest leaf of T is lT := argmaxi∈LT

{ωij : (i, j) ∈ ET }.
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To construct the MST, we apply the Kruskal’s algorithm [15], which is lin-
ear in the number of edges (thus of O(N log N) complexity). Possible accelera-
tions using local techniques and parallel realizations (the so called approximate
Kruskal algorithm is found on pp.600–602 in Kraus [14]) are available, but since
the purpose of this paper is mainly to address the constraint segmentation prob-
lem, we do not pursue this avenue here, and we use the classical algorithm in [15].

3 Problem Formulation

Here we state in a precise fashion the mathematical problem for determining a
2-phase segmentation of an image with intensity u ∈ [0, 1]N .

We begin by giving the definition of an admissible 2-phase (image) segmen-
tation.

Definition 5. Given an intensity u and a graph G, we say that S is an admis-
sible 2-phase segmentation if the following properties are satisfied

– Connectedness Property (CP): S is G-connected.
– Approximate Dominating Property (ADP): There exists an intensity

v ≈ u which provides the same solution S and satisfies Dominating Property
(DP):

min
K∈S

uK > max
K∈S̄

uK S̄ = V \ S.

When u itself satisfies (DP), we call S (DP)-admissible. In such a case, the image
phases are well-separated and even direct segmentation methods such as hard
thresholding will do the job. In this paper, we consider noisy and blurry images,
where the boundary between S and S̄ is not that sharp. We note that the notion
of v ≈ u is a bit vague here. Intuitively, one may think of v as the original
(denoised and deblurred version of u) image intensity, while the ≈ sign implies
certain constraints on the magnitude of both the noise and blur levels of the
image.

We consider a 2-phase segmentation problem, where the solid phase is con-
nected and of fixed volume.

Problem 1. Given u and G, find 2-phase admissible segmentation S with a given
cardinality |S| = M > 1.

We introduce the following family of functionals J : 2V �→ R, where 2V is the
set of all subsets of the set of vertices V.

J(S) = ‖u − χS‖2, χS is the characteristic function of S. (1)

The values of the functional depend on the norm that we take, and we are going
to have two types of norm, thus two different functionals:

J0(S) = ‖u − χS‖2�2(V), J1(S) = ‖u − χS‖2�2(V) + λ‖∇ (u − χS) ‖2ω. (2)
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Here, λ > 0 is a parameter, ∇ : Rn �→ R
ne is the discrete gradient defined as

(∇v)e = δev = vi − vj , i < j, (i, j) = e ∈ E . (3)

(∇v,∇w)ω =
∑

e∈E
ωeδevδew. (4)

The non-negative weights {ωe}e∈E may depend on the intensity u, and will be
dealt with in Sect. 4. Finally, the weighted norm of the gradient is defined as

‖∇v‖2ω = (∇v,∇v)ω. (5)

Note that J0 can be seen as the discrete and simplified version of the 2D
Chan-Vese fitting energy [8]

F1(C) + F2(C) =
∫

inside(C)
|u − c0|2dxdy +

∫

outside(C)
|u − c1|2dxdy,

where C is a 2D curve. The 2-phase segmentation there is obtained via minimizing
the fitting energy with respect to C, c0, and c1 together with regularity terms on
the length of C and the area of its interior. Then, the interior and the exterior
of C are the two phases. Here, we set c0 = mini ui = 0, and c1 = maxi ui = 1.
We have no regularity terms, but impose two additional constraints: the interior
to be connected and of cardinality M . If no constraints are addressed, it is
straightforward to check that the minimizer of J0 corresponds to direct hard-
threshold segmentation (e.g., i ∈ S ⇔ ui ≥ 0.5). The functional J1 is J0,
penalized by a regularity term. The regularization depends on the choice of the
weights ω.

We now have the following definition.

Definition 6. We say that the set S provides an optimal 2-phase segmentation
for u if and only if S is an admissible 2-phase segmentation of cardinality M
and it minimizes the functional J(S), namely,

S = arg min
{
J(S)

∣
∣ |S| = M, S is connected

}
.

Such definition leads to a simple characterization of the minimizer for the
norm choices (2). Indeed we have for all S ∈ 2V

J0(S) =
∑

j∈S

(uj − 1)2 +
∑

j /∈S

u2
j = ‖u‖2�2 − 2

∑

j∈S

uj + ‖χS‖2�2

= −2
∑

j∈S

uj + ‖u‖2�2 + M.

Thus, minimizing J0(S) is equivalent to finding a G-connected S, such that

S = arg max J∗(S), J∗(S) :=
∑

j∈S

uj .
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Note that J∗(·) is a linear functional in u. Next, we look into the other norm.
Denote the set of edges connecting S with the complement of S, denoted here
by S by Ec (c stands for “cut”). We note that ∇χS = 0 for all edges interior to
S or S. We then compute

‖∇u − ∇χS‖2ω = ‖∇u‖2ω − 2
∑

e∈Ec

ωeδeu +
∑

e∈Ec

ωe = ‖∇u‖2ω +
∑

e∈Ec

(1 − 2δeu)ωe

Note that, from the definition of the gradient, the above formula is correct if we
have ordered first the vertices in S, so that δeχS ≥ 0. Thus, we can obtain an
optimal solution if we minimize

J∗∗(S) = −2
∑

j∈S

uj + λ
∑

e∈Ec

(1 − 2δeu)ωe

4 Constrained Segmentation

In this section, we propose a three stage segmentation algorithm. The steps are
as follows: (1) smoothing step which removes the local extrema in the intensity
vector; (2) Selecting M voxels and constructing a connected component in the
graph containing all of these voxels; (3) trimming the connected component so
that the approximation to the “solid” part of the image has exactly M voxels.

4.1 Step 1: Removing Local Maxima

For a fixed G, we say that u has a strict local maximum at K ∈ V if and only if

uK > max{uJ , J ∈ N (K)}.

Since by assumption we are looking for segmentation with |S| > 1, all strict
local maxima are due to image artefacts (e.g., noise). We can now modify the
intensity and remove them, still having an admissible solution S. We use the
following algorithm for removal of local maxima:

Algorithm 1. (Removal of local max) Input: u (a given intensity) and G
(a graph). Output: v (modified intensity).
For i = 1, . . . , N .

– If ui is a strict local maximum, then

vi = max{uj , j ∈ N (i)};

– else vi = ui.
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We have the following equivalence results about the segmentations corre-
sponding to intensities u and v whose proof is straightforward.

Lemma 1. Let v be obtained from u via Algorithm 1. Then

– If u satisfies (DP) then v also satisfies (DP).
– If S(u) is a 2-phase admissible segmentation solving Problem 1, so is S(v).

4.2 Defining Edge Weights

From now on, we assume that the underlying graph G is fixed and in what
follows, we take G = G∞. Furthermore, we assume u ∈ [0, 1]N .

We aim at solving constraint segmentation problems, where the cardinality
of the admissible 2-phase segmentation S is a priori known (i.e., |S| = M). For
this purpose, we split V into three subsets:

V1 :=
{
i ∈ V

∣
∣ ui ∼ 1 & f(∇ui) ≤ ε

}
,

V0 :=
{
i ∈ V

∣
∣ ui ∼ 0 & f(∇ui) ≤ ε

}
,

VU := V \ (V0 ∪ V1) .

Here, the maximal image intensity is 1 and the minimal is 0; ∇ui is the
G-gradient at i (i.e., (∇ui)j = uj − ui, ∀j ∈ N (i)), f : R26 → [0,+∞), and
ε is a small parameter, chosen by the user. The similarity relations ui ∼ 1 and
ui ∼ 0 also need to be specified for the image. They should depend on the
noise and blur levels. Typically, one uses ui ≥ 1 − η and ui ≤ η for a suitable
η ∈ (0, 1/2).

The idea is that V1 ⊂ S, V0 ⊂ S̄, while the origin of the voxels within
VU remains unclear and, depending on M , they should be distributed somehow
between the two phases S and S̄.

For the weights of the edges, we propose to add an “uncertainty penalizer”,
e.g.,

ωij := |ui − uj | + δg (f(∇ui), f(∇uj)) , ∀(i, j) ∈ E . (6)

Here g : [0,+∞)2 → [0,+∞), and δ is a small, positive parameter. Such weights
need to favorize edges between VU and V0 ∪ V1 and penalize edges within VU .
The latter will help us to “clarify” the origin of the unclear voxels, while in the
same time it decouples them and they don’t cluster. Hence, the elements of VU

can be treated individually, which is very important for our constraint problem.
To achieve that, we need to impose some assumptions on f, g:

Definition 7. We say that f, g are admissible if they satisfy the following:

– Symmetry: f (x1, . . . , x26) = f
(
xσ(1), . . . , xσ(26)

)
, resp. g(x1, x2) = g(x2, x1),

where σ : {1, . . . , 26} → {1, . . . , 26} is an arbitrary permutation.
– Positivity: f(x) = 0, g(x) = 0 ⇔ x = 0.
– 1-Homogeneity: f(λx) = λf(x), g(λx) = λg(x), ∀λ ≥ 0.
– Monotonicity: g(x1 + α, x2) ≥ g(x1, x2), ∀α > 0.

Examples: ‖ · ‖�p , ∀p ≥ 1, min(·), and many others.
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Lemma 2 (Properties of ωij from (6)). Let G = G∞(V, E), i ∈ V, j ∈ N (i),
f, g are admissible, and ωij is given by (6). Then

(i) G is undirected graph (wij = wji) and wij is invariant under rotations of
Ω.

(ii) ωij = 0 ⇔ u|N (i)∪N (j) = const. In particular, ωij ∼ 0 if {i, j} ⊂
V0 ∪ V1.

(iii) Let j ∈ V0 ∪ V1, k ∈ VU ∩ N (i), and ui = uj = uk. Then ωij ≤ ωik.
If f and g are strictly monotone, then ωij < ωik.

Proof. Since f is symmetric, G is Ω-rotation-invariant. Since g is symmetric,
ωij = ωji. Hence (i) is verified. Property (ii) follows from the positivity of f
and g. For (iii), w.l.o.g., let j ∈ V1. Then uj ∼ 1, thus uk ∼ 1, and k ∈ VU iff
f(∇uk) > ε ≥ f(∇uj). Finally,

ωik = δg (f(∇ui), f(∇uk)) ≥ δg (f(∇ui), f(∇uj)) = ωij ,

due to monotonicity of g. If g is strictly monotone, the inequality is also strict.

4.3 Stage 2: Connecting Different Components

We now focus on the second stage in the image segmentation algorithm. Let
S ⊂ V be the set of voxels whose intensities are the M largest components of
the intensity vector. Since such hard thresholding does not guarantee any con-
nectivity of S, we have several connected components S1 . . . Sk. Without loss of
generality we may assume that S1 has cardinality larger than the other com-
ponents. Let G̃ be the factor graph, where we consider two vertices equivalent
if they lie in one and the same connected component Sj . We perform a lexico-
graphical breadth first search (LBFS) [20] in G̃ and construct the corresponding
lexicographical BFS tree rooted at S1. For the lexicographical BFS we need to
introduce ordering of the vertices, which, in our case is by intensity values. This
is aimed at minimizing J0 (or alternatively maximizing J∗, because the BFS
tree contains edges between vertices with high intensity. The final step of the
algorithm connects each of Sj , j = 2, . . . , k with S1 via the tree branches.

Other algorithms for choosing paths between S1 and the rest of Sj , j =
2, . . . , k which maximizes J∗ can also be used in place of what we propose here.

4.4 Stage 3: Cutting Heavy Leaves

We now discuss some theoretical aspects of the third phase of the algorithm
aimed at trimming the connected component from the previous section in order
to obtain an image segmentation that satisfies the volume constraint.

Let u ∈ {0, 1}N be discrete, and S be the (DP) admissible 2-phase seg-
mentation with respect to u. The latter means that u|S = 1, and u|S̄ = 0.
Let f, g be admissible and strictly monotone, and the graph G = G∞ is build



24 S. Harizanov et al.

w.r.t. the weights (6). Let S be G-connected, T be a MST of GS , lT ∈ LT with
(lT , jT ) ∈ ET , and ωlT jT > 0. Then

lT ∈ ∂S :=
{

i ∈ S :
N (i) ∩ S �= ∅
N (i) ∩ S̄ �= ∅

}
= S ∩ VU . (7)

Indeed, first of all, V0 = int S̄, V1 = int S, thus the set equality in (7) holds true.
Now, assume the contrary, i.e., lT ∈ intS. Since lT ∈ LT ∩ int S, the MST

cut property, applied for (lT , S \ {lT }) gives rise to minj∈N (lT ) ωlT j = ωlT jT > 0,
and from Lemma 2(ii) it follows that N (lT ) ⊂ ∂S. For every j ∈ N (lT ) \ {jT },
(lT , j) /∈ ET , because lT ∈ LT . Due to the strict monotonicity of g and the
positivity of f , we have for each k ∈ N (j) ∩ (int S)c

ωjk = |uj − uk| + δg (f(∇uj), f(∇uk)) > δg (f(∇uj), 0) = ωjlT .

Applying again the MST cut property this time for (j, S \ {j}), we derive that
there exists kj ∈ N (j) ∩ int S, kj �= lT , and (j, kj) ∈ ET . Thus, we have a
3 × 3 × 3 cube N (lT ), centered at lT , all 26 boundary voxels of which are also
from the G-boundary of the G-connected set S, while at least 25 of them are
also G-connected to other interior points of S (different from lT !) within the
5 × 5 × 5 cube N 2(lT ), centered at lT . It is straightforward to show that there
should be at least 6 different external points (one for each 3×3 interior of a side
of the cube), and at least 5 internal points (on the side of jT there may not be
one) each two of them at a distance at least 2 in ‖ · ‖�∞ . This is impossible. The
rigorous proof of (7) is rather elaborate and is beyond the scope of the paper.
What we need is a corollary from this result, which we state now.

Proposition 1. Let u ∈ {0, 1}N be discrete, S be the admissible 2-phase seg-
mentation with respect to u, f, g be admissible and strictly monotone, and the
graph G = G∞ be build w.r.t. the weights (6). If S is G-connected, then for every
MST T of GS its heaviest leaf lT belongs to VU .

Proof. Let jT be as before. If ωlT jT > 0 the result follows from the arguments
above. Assume the contrary, i.e., lT ∈ int S. Thus ωlT jT = 0 and Lemma 2(ii)
implies jT ∈ int S, and LT ⊂ int S. Now we aggregate lT and jT into a new
(super) vertex/voxel l1T . We obtain S1 = S ∪ {l1T } \ {i ∪ j}, and ES1 can be
straightforwardly derived from ES , since lT and jT agree on all the “doubled”
edges (i.e., ωlT k = ωjT k, ∀k ∈ N (lT ) ∩ N (jT )). Due to the MST contraction
property, the graph GS1 is G-connected with MST T 1(S1, ET \ {(lT , jT )}. Thus,
all the leaves LT \{lT } remain leaves in T 1 and their weight is preserved as zero,
because ωlT jT = 0 was the heaviest leaf in T . l1T ∈ int S1 may or may not be a
leaf in T 1, but since

| int S1| = | int S| − 1 < | int S|,

after finitely many contractions m (m ≤ | int S|) we will end up with a fac-
tor graph GSm , where LTm ⊂ intSm and the heaviest leaf weight is strictly
positive. This leaf can appear only after aggregation, thus belongs to intSm.
Contradiction with the arguments above.



Fast Constrained Image Segmentation Using Optimal Spanning Trees 25

4.5 An Algorithm for Constrained Image Segmentation

The steps of the algorithm described above are formally written as follows.

Algorithm 2 (Constraint segmentation) Input: u (a given intensity), M
(volume constraint), f, g (strictly monotone admissible functions), and δ (weight
penalizer).
Output: S (admissible 2-phase segmentation w.r.t. u).

1. Stage 1: Compute G∞ w.r.t. u and remove local maxima and local minima
via Algorithm 1.

2. Sort the intensity vector u and take the M voxels of highest intensity to be
S.

3. Find the connected components of S. If S is G-connected, STOP.
4. Else Stage 2: Attach all of the connected components of S to the one with

largest cardinality as described in Sect. 4.3 until the union of Sj and the paths
between them become G-connected. We denote the union of Sk by S again
and move to the next step.

5. Stage 3: Calculate the weights for the graph GS, using (6) with f = g =
‖ · ‖�1 , and compute an MST TS for GS, using the Kruskal’s algorithm [15].

6. While |S| > M : Cut the heaviest leaf of TS.

4.6 Properties of the Algorithm

Let u be the input intensity (input image). Compute V0,V1,VU for it. Note that,
removing local maxima and local minima is just denoising, so for the recomputed
sets V̄0, V̄1, V̄U after stage 1 the following inclusions hold true V0 ⊆ V̄0, V1 ⊆ V̄1.
Denote by C1 the minimal G∞-connected set that contains V̄1. Let SM be the
set from step 3. We say that u is admissible, if N (V̄1) ⊆ SM , |N (V̄1)∪C1| ≤ M ,
and N (V̄0) ⊆ S̄M . If not, it is clear that either the parameter choices in V1 or
V0 were poor or the constraint parameter M approximates badly the solid phase
volume.

For admissible u, Proposition 1 implies that we cut only VU voxels in stage
3, thus V̄1 ⊆ S at every moment. Moreover, due to Lemma 2(ii) the heaviest
leaf weight is strictly positive. No i ∈ V̄0 belongs to any shortest path between
the S components, thus after stage 2 V̄0 ⊆ S̄. Since in step 6. We only cut, the
inclusion remains true for the output image, as well. Finally, since we always
cut out leaves from TS , after stage 2 till the end S is always G∞-connected. To
summarize:

Theorem 3. For any admissible input image u, Algorithm 2 terminates and
produces an output 2-phase segmentation S that is G∞-connected, has cardinal-
ity M , fully contains V1, and doesn’t intersect with V0. The complexity of the
algorithm is O(N log N).
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5 A Numerical Test

In this section we assess the performance of our Algorithm 2 on a part of
an image of a trabecular bone. The image is taken from [2], then convoluted
with a Gaussian kernel with σ = 2 (i.e., the image is blurred), and 10% white
(Gaussian) noise is added to derive the input image u. The bone part image has
size 64 × 64 × 64. 50604 of its voxels are bone material (porosity 80.7%), thus
M = 50604. Figure 1 summarizes the results. The most left image is of the orig-
inal discretized bone. The second one is the result of direct segmentation, where
the M voxels of highest intensity are taken as the solid phase. The third one is
the output of our Algorithm 2. The last one is the output of the segmentation
in [11], based on fully constrained convex �2-norm minimization.

Fig. 1. From left to right: Segmented bone part (binary image), direct M -segmentation
of the noisy and blurry version u, connected M -segmentation via Algorithm 2, segmen-
tation from [11].

The direct M -segmentation is quite noisy. It consists of lots of 1-element com-
ponents, as well as other larger ones. Unlike it, our segmentation is G-connected.
There are still some 1-voxel-wide branches, due to small noisy components in
the set S3 at step 3., which have been aggregated to the main component C0

in stage 2 (see Fig. 2). The result of the segmentation in [11] lacks any noise,
because of the smoothing role of the edge weights there, but is not G-connected
and consists of three different components, thus it is not admissible with respect
to Definition 5.

Fig. 2. From left to right: Segmented bone part (binary image), the set S after stage 2,
the set of cut leaves in stage 3, and the final result of Algorithm 2.

Note that none of the S3 connected components is of cardinality 1, due to
the removing of local maximums. During the leaf cutting, some of those noisy
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branches have been erased, but some of them remain in the result. The reason is
the usage of only voxels’ intensity values throughout steps 1–4 of the algorithm,
thus no regularization has been applied in the process, and the connected com-
ponents of S3 are not as “homogeneous” as they should be when the gradient
is taken into account in the expanding process. Minimizing the functional J1

instead of J0 in step 4 should improve the quality of the result and is a subject
of future work. We want to point out that out of 234 cut leaves in stage 3, only 5
of them belong to the actual bone, and the remaining 229 are indeed noise. The
�1 difference of our result with the original bone is 20 844, which is larger than
the 15 524 difference of the result in [11], but is by almost a thousand better
than the difference of the direct M -segmentation (which is 21 796, as computed
in [11]). The former means that there is plenty of room for improvement (e.g.,
possible combination of the two constraint algorithms, “thickening” the minimal
paths, “homogenizing” the connected components, etc.), while the latter indi-
cates that by simply removing local extrema and only replacing 234 candidate
voxels with another, better group of 234 voxels, we already gain a lot.

6 Conclusions and Future Work

We proposed and tested a class of algorithms for constrained image segmentation.
The algorithms are based on the minimization of suitable functionals measuring
the best approximation of the input image within the space of step functions.
For the output image, the approximate segmentation produced by the algorithm
has a connected solid phase with fixed volume. Such type of algorithms, and
especially multilevel versions of these algorithms, show potential to be robust
tools in the image analysis.
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Abstract. Fluid-Porous Structure Interaction, FPSI, problem is first
formulated and discussed in 3D in connection with modeling of flow
processes in pleated filters. Solving the 3D problem is computationally
expensive, therefore for a subclass of problems reduced model is con-
sidered, namely, the 3D poroelasticity problem is approximated by a
poroelastic shell. Because resolving the geometry of a pleat is very impor-
tant for obtaining accurate solution, interface fitted general quadrilateral
grid is introduced. It is difficult to generate good quality grid in such com-
plicated domains, therefore a discretization approach, which is robust on
rough grids is selected, namely, multipoint flux approximation method.
The coupled FPSI problem is solved with sequential approach, what
allows to reuse an existing flow solver. Results from numerical simula-
tions are presented and discussed.

Keywords: Fluid-porous structure interaction · Poroelasticity · Indus-
trial filtration problem · Pleated filter · Thin porous media · Deflection

1 Introduction and Motivation

Fluid-structure interaction, FSI, is considered to be an essential class of mul-
tiphysics problems, the latter in general requiring significant computational
resources and sophisticated algorithms. While a lot of research is dedicated in
the last decade to developing and analyzing algorithms for FSI problems in the
case of non-permeable structures, still very little is done in the case of porous
structures. In [1] Richer describes in details the different ways to solve the multi-
physics system of equations in the case of FSI. One of the main difficulties is that
a part of the equations is formulated in Lagrangian coordinate system, while the
other part is formulated in Eulerian one. Even if the equations describing the flow
and the displacements are linear, the FSI problem is nonlinear due to the fact
that the shape of the structure in the FSI problems is a part of the solution, and
is not given a priori. For small size problems one can write a monolithic scheme
and use a direct method at each iteration on nonlinearity. For larger problems
and for cases when the coupling is not very strong, partitioned (sequential) app-
roach might be preferable. One can in such a case reuse existing solvers for the
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 30–41, 2015.
DOI: 10.1007/978-3-319-26520-9 3
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Fig. 1. Industrial motor oil filter for a car

elastic and for the flow subproblems, and impose the interface conditions via
iterations between the subproblems. At the same time the sequential algorithms
in general do not inherit the robustness of the monolithic approach. In general,
the complexity of the FSI problems does not allow to develop algorithms which
are at the same time very efficient, and applicable to a wide class of FSI prob-
lems. In this situation, our approach is to concentrate on a class of FSI problems
and to develop a customized algorithm which will solve efficiently mathematical
models describing this class of problems.

Such a mathematically challenging and practically relevant class of problems
is filtration of solid particles out of fluid. Simulation of filtration processes helps
designers and manufacturers of filter elements (e.g., like the one on Fig. 1) in the
acceleration of the design process and in the optimization of the designed filters.
In the case of non-deformable porous media, filtration-adapted algorithms and
simulation software have proven its worth in industrial applications for years,
see e.g. [2] and references therein. However, in many cases the deflection of the
filtering medium can not be ignored.

Computer simulation of FPSI filtration problem requires the numerical solu-
tion of a complex multiphysics problem including flow through plain and porous
regions as well as deformation of a porous structure. In this article we deal with
simulation of pleated filters, in particular accounting for the pleat deflection.

2 Mathematical Model

Let us first discuss the 3D models for coupled fluid flow in a plain and in
deformable porous media, coupled with equations describing the deformation
of the porous media. Let us denote by Ωp the region occupied by the filtering
medium in non-deformed configuration, by Ωf the region occupied by the pure
fluid in non-deformed configuration, and by Ω̃p, Ω̃f the respective domains in
the deformed configuration. Further on, Ω = Ωp ∪ Ωf = Ω̃p ∪ Ω̃f is the total
computational domain (which remains unchanged in our case), and ∂Ω is its
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(external) boundary. Finally, ∂Ω̃pf stands for the interface between the plain
and the porous media in deformed configuration. In order to write the interface
conditions on ∂Ω̃pf we will use Ωf also as a reference domain. Further on, let
T : Ωf → Ω̃f be a C2 -diffeomorphism mapping Ωf to Ω̃f and F = ∇T .

In this paper we denote vectors with bold letters, unknowns defined in
Lagrangian coordinates with tilde, unknowns defined in Eulerian coordinates
without tilde. Unknowns defined in the plain fluid region and porous region are
equipped with subscripts f and p, respectively. The following assumptions hold
for the practical problem we are interested in, and are accounted for the model
selection. The flow is single phase, incompressible and steady state. The filter-
ing media is thin and it is an isotropic porous media (the permeability is just
a scalar and not a tensor). No contact problems (e.g., no change in the topol-
ogy of the computational domain) are considered at this stage. The so called
dead end filtration is considered. In this case all the fluid to be filtered goes
through the porous media (unlike the case of cross flow filtration when part of
the flow is parallel to the filtering medium and never crosses it). The pore size
is significantly smaller than the thickness of the media and thus homogenized
(macroscale) models can be used to describe the flow through the porous media
and its deformation. The flow is laminar and not very fast, so that Darcy law
holds for the flow through porous media.

Flow Through Plain Region. In the plain fluid region the incompressible
Navier-Stokes equations are used to describe the fluid motion. Because we are
looking for an equilibrium steady state solution of the considered FPSI problem,
the equations are written in deformed configuration.

(ṽf · ∇) ṽf − ∇ · (μ∇ṽf ) = −∇p̃f , ∇ · ṽf = 0 in Ω̃f . (1)

The notations ṽf and p̃f stand for the fluid velocity and pressure in the
region Ω̃f , respectively. With μ we denote the dynamic viscosity of the fluid.

Flow Through Rigid Porous Media. Before describing models for flow
through deformable media, we first describe models for flow through rigid porous
media (Ω̃p ≡ Ωp). Under the assumptions formulated above, the flow through
saturated porous media is usually described by the Darcy equation coupled with
continuity equation. In the case of highly porous filtering media and/or when
Dirichlet boundary conditions for the velocity have to be imposed, the Brinkman
system of equations (2) is used (for discussion on the Brinkman model in con-
junction with simulation of filtration problems see [3]).

− ∇ · (μ∇ṽp) + μK−1ṽp = −∇p̃p, ∇ · ṽp = 0 in Ω̃p ≡ Ωp, (2)

The notations ṽp and p̃p stand for the effective fluid velocity and effective
pressure in the porous media, respectively. Note, that in some cases a value μ̄
different from μ (the fluid viscosity) is used for the effective viscosity of the
fluid in the porous region. However our studies [3] show that the use of effective
viscosity μ̄ = μ is preferable for filtration problems. K stands for the permeability
of the porous media. It should be noted that the term μK−1 usually is very
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large (the permeability is often of order 10−10). Therefore the above Brinkman
equation (2) can be considered as a perturbation of the Darcy equation, where
the viscous terms are omitted.

Deformable Porous Media: Fluid Flow and Poroelasticity. Biot [4,5]
derived the consolidation theory of a poromechanics coupling linear elasticity
with the Darcy equations for a flow in a porous media. We have used this model in
simulation of deflection of flat filter media, and the comparison with experiments
has shown that it can be used (with certain attention) for simulation of filtration
processes [6]. The quasi steady state Biot equation reads

σp = 2μe (up) +
(
λ̂ div up − αpp

)
I, (3)

− div σp = −μ�up −
(
λ̂ + μ̂

)
∇ div up + α∇pp = 0 in Ωp, (4)

∂

∂t
(βpp + α div up) − K

μ
�pp = 0 in Ωp. (5)

We present here Biot equations in this form because often they appear in the
literature in this way. In the steady state case considered here the time derivatives
drop. It is important to note that this system describes the deformation in the
(porous) solid body due to the flow through it as well as the effects of the
movement of the solid structure to the fluid flow. With σp we denote the stress
tensor, up is the vector field of effective displacements in the porous region and
pp is the effective pore pressure, λ̂ and μ̂ are respectively the first and second
Lamé constants, α is the effective stress coefficient and β is the inverse of the
Biot’s modulus.

Interface Conditions. In order to ensure conservation of mass and conserva-
tion of momentum we impose as interface conditions continuity of the normal
components of the fluid velocity and of the stress tensor on the deformed inter-
face ∂Ω̃pf . In the case of rigid porous media we are using these conditions since
many years, see, e.g., [2,3] for details. As we consider dead end filtration in
media with very small permeability, the velocity near the interface is perpen-
dicular to the interface. Thus the fluid velocity on the interface is equal to its
normal component. Using the inverse of the mapping T we can write the inter-
face conditions in Lagrangian coordinates. We use the notations vf = T−1 (ṽf ),
pf = T−1 (p̃f ) and σf = T−1 (σ̃f ) to denote the fluid velocity, pressure and
stress tensor transformed in Lagrangian coordinates.

− K

μ
∇pp = vf on ∂Ωpf , (6)

σp · n = σf · n on ∂Ωpf . (7)

By n we denote the vector normal to ∂Ωpf in the direction of the porous
media. The fluid stress tensor in Lagrangian coordinates has the form

σf = pf I + μ
(
∇vfF−1 + F−T∇vf

T
)
. (8)
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Full 3D Model. To summarize, the full 3D model of the flow consist of the
Navier-Stokes equations (1) in the plain fluid region Ω̃f , the Biot system of
equations (4), (5) in the porous media Ωp, the interface conditions (6), (7) on
∂Ωpf and respective boundary conditions on ∂Ω.

3 Approximate Models

As we are interested in the equilibrium state of the system (i.e., the time deriv-
ative in (5) drops), we can analytically determine what type of function is the
effective pressure pp. To illustrate this let us assume that the porous media is
initially flat and horizontal in an orthonormal coordinate system Oxyz. As we
assume for the media to be thin, its z dimension is small. We denote this by
z = εz̄. We can then write the Eq. 5 in the following way

∂2pp
∂x2

+
∂2pp
∂y2

+
1
ε2

∂2pp
∂z̄2

= 0 in Ωp. (9)

In the asymptotic analysis we neglect all of the terms of order ε2 which leads
to pp being linear function in z-direction. In the general case pp is linear in
direction which is normal to the middle surface of the porous media. This can
be shown by rewriting Eq. (5) in local coordinates. Having the pp being linear
in the direction normal to its middle surface it could be analytically calculated
from the pressure pp on the interface ∂Ωpf , if the latter would be known. In any
case, this leads to decoupling of the flow and the elasticity parts in the Biot’s
equation. We use this decoupling to write an approximation of the full 3D model
which could be solved numerically significantly more efficient.

Flow in Plain and in Rigid Porous Media: Navier-Stokes-Brinkman
Model. As described above we use the incompressible Navier-Stokes system
of equations to describe the flow in the plain region Ω̃f . In the case of non-
deformable porous media and dead end filtration (which is considered here), for
slow flow and media with very low permeability, within the porous media the
flow is locally perpendicular to the midsurface of the porous media. In this case,
similarly to the consideration for Biot equation, we can show that the pressure
is a linear function along the normal to the midsurface. The easiest way to
conclude this is to drop the Brinkman terms and consider Darcy law. For this
reason instead of solving separately the Navier-Stokes system of equations in Ω̃f

and the pressure equation in Ωp we can use the Navier-Stokes-Brinkman model
to describe the flow problem in the full domain of interest Ω = Ω̃f ∪ Ω̃p. By
doing this we fully separate the flow from the elasticity in the full 3D system,
and the coupling remains on the interface only.

Poroelasticity: Shell Model. Solving the 3D Biot model requires significant
computational efforts. In many of the industrial oil and air filters the filtration
media is thin as on Fig. 1. Therefore the porous structure can be also modeled
as poroelastic plate or shell, thus substantially decreasing the required compu-
tational time. Heuristic derivation of poroelastic plate model can be found in
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[7,8]. Mathematically rigorous derivation of poroelastic plate model, based on
asymptotic homogenization method, can be found in [9]. In previous studies
we have validated the poroelastic plate model in comparison with an exper-
iment (see, e.g., [6]) and have used it in simulation of filtration processes in
the case of flat porous media. A rigorous derivation of poroelastic flexural three-
dimensional shell model from the Biot’s system through asymptotic analysis was
done recently by Mikelić and Tambača in [10].

However as we are interested in the equilibrium state of the system and
the elastic part from the Biot’s system decouples form the flow part, we are
free to choose a different type of shell model to represent the displacements in
the porous media. Instead of the flexural shell we use a Naghdi type of shell
described in details by Zang in [11]. This type of shell describes not just the
normal and tangential displacements w and u but also the rotation θ of the line
perpendicular to the middle surface. Without the Kirchoff hypothesis of small
rotation θ this model could be used for a wider area of applications. In [11] one
can find the weak formulation of the model. We use the strong form of the model
given by the following system of equations

ε2
(
−θ′′ − b′u′ − bu′′ + 2bb′w + b2w′) +

5
6

(θ + bu + w′) =
ε2

6μ̂
p20b

′, (10)

ε2
(
−b′θ′ − bθ′′ − 2bb′u′ − b2u′′ + 3b2b′w + b3w′) + 3 (−u′′ + b′w + bw′)

+
5
6

(
bθ + b2u + bw′) =

ε2

6μ̂

(
b′p2e + 2bb′p20

)
,

(11)

ε2
(
−b2θ′ − b3u′ + b4w

)
+ 3

(
−bu′ + b2w

)
+

5
6

(−θ′ − b′u − bu′ − w′′) =

=
1
μ̂

(
p20b

2
+ p2e − b2ε2p2e

6
− b3ε2p20

6

)
.

(12)

With b we denote the curvature of the middle surface of the porous media
and with ε its thickness. To define the boundary conditions for the poroelastic
displacements p20 and p2e we distinguish between the interfaces in the inlet and
outlet region ∂Ωpf = ∂Ωpf+∪∂Ωpf−. We use the notations σf+ = σf on ∂Ωpf+,
σf− = σf on ∂Ωpf−, n+ = n on ∂Ωpf+ and n− = n on ∂Ωpf−. Let t+ and t−
be unit vectors perpendicular to n+ and n− respectively. Also let the couples
n+, t+ and n−, t− be positively oriented such that they define a contravariant
basis. Let us write the normal component of the stress tensor in local coordinates
on the inlet and outlet interfaces.

σ+ · n+ = f+
n

1
1 − bε

n+ + f+
t

1
1 − bε

t+, (13)

σ− · n− = f−
n

1
1 + bε

n− + f−
t

1
1 + bε

t−. (14)
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Fig. 2. Initial state of a single pleat, deflection given by the shell model and deflection
given by the Biot’s system

Using the local coordinates we define p20 and p2e in the following way

p20 =
f+
n − f−

n

2
, p2e =

f+
n + f−

n

2ε
. (15)

Numerical Validation. The use of plate and shell models is only applicable
to geometries where one of the dimensions of the porous media is substantially
smaller comparing to the others. In order to test the limitations of the poroelastic
plate and shell models we have performed multiple numerical simulations testing
the shell model against the 3D Biot’s system for different values of the thickness
of the porous media. The results of these simulations show that as long as the
thickness of the porous media is under 4 % of the other physical dimensions, the
shell model gives solutions as accurate as the grid allows for. Using fine grid
one can achieve relative difference between the reduced (shell) and the full (3D)
models less then 10−6. On Fig. 2 we show a comparison between the shell model
and Biot’s system for one case of thin media.

4 Numerical Algorithm

As described above instead of solving the full coupled 3D system of the Navier-
Stoks system of equations, Biot’s system, the interface and boundary conditions,
we solve separately the Navier-Stokes-Brinkman system of equations and the
poroelastic shell model and couple them via the interface conditions (e.g., via the
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shape of the pleats). The interface conditions are imposed by iterating between
the two problems until convergence is achieved.

Solving the Coupled System. To describe more accurately the iterative algo-
rithm we make use of a simulation of a single pleat from a pleated filter cartridge
(Fig. 6). The blue and red colors represent respectively the plain fluid region Ωf

and the porous media region Ωp, respectively. The left edge of the rectangular
domain is an inlet and the right one is an outlet. On the top and bottom edges
symmetry conditions are imposed for the flow and no displacement for the porous
media. Starting with this initial shape we first freeze the porous media (i.e., con-
sider it rigid for a while) and calculate the fluid pressure (Fig. 7) and velocity
(Fig. 8) solving the Navier-Stokes-Brinkman system of equations (2). After this
first step we calculate the stress σf . As we are interested in dead-end filtration
with very low permeability of the porous media and relatively slow flow, the pres-
sure is in orders of magnitude larger than the velocity derivatives in (8) and the
stress tensor can be approximated by σf ≈ pf I. We set the normal component of
σf as force acting on the elastic body. After calculating the displacements on the
middle surface using the shell model (10), (11), (12), we reconstruct the porous
region after the deflection and update the plain fluid region and the porous media
region, Ω̃f and Ω̃p respectively (see Fig. 9). On the updated domain Ω̃f ∪ Ω̃p we
deform respectively the grid and repeat the described procedure. As mentioned
above, we are not interested in solving contact problems, and under our assump-
tions no topological changes in the computational domain occur. We continue
with obtaining the fluid flow and the pressure in the updated domain, calculate
the stress tensor, the elastic deformation and repeat this until convergence is
achieved.

Discretization. For the Navier-Stokes-Brinkman system of equations we use
the Finite Volume Method. To accurately capture the shape of the filtering
media in its initial state, as well as after the deformation, we use unstructured
quadrilateral grids which are fitted to the porous media. To ensure a robust
discretization of the equations with large jump of the permeability on complex
(rough) grids, we use multipoint flux-approximation method, MPFA, which was
originally proposed for a scalar equation (see, e.g., [12]) and which we adopted for
Stokes-Brinkman problem (see [13]). The discretized Navier-Stokes-Brinkman
problem is solved by a variant of the Chorin projection method. The linear
systems at each iteration are solved with a robust algebraic multigrid method
available in a commercial software.

To discretize the system of equations (10), (11) and (12) describing the shell
model, we use finite difference method. To solve the linear system of equations
we use a direct solver.

Computational Grids. Two issues are important in selecting a meshing app-
roach. The first one is the fact that in dead end filtration problems the main
pressure jump occurs within the porous media, therefore resolving accurately the
geometry of the filtering media is important. To tackle with this, as mentioned
above, we use quadrilateral grid fitted to the plain-porous media interface. The
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second issue is that the solution of FSI problems in many cases requires remesh-
ing the computational flow domain, what could take more computational time
than the solution of the discretized system. For the physical systems of interest
here, we have developed a very fast technique to update the computational grid
with no need of remeshing. It relies on the fact that no change in the topology
occurs for the regimes which we consider. Of course, the quality of the grid may
become worse during deformation, therefore we have selected a robust discretiza-
tion approach which works well on skewed and stretched grids.

5 Numerical Experiments

We have performed numerous simulations to ensure grid convergence for vari-
ety of physical parameters and different domains. We would like to focus on
one particularly interesting result of these studies. As we focus on media with
small permeability and slow flow, we are in Darcy regime. Therefore we can
then compare the numerically obtained pressure drop with the analytically pre-
dicted Darcy pressure drop. We do this for a case when the pleats are not very
narrow and the Darcy pressure drop dominates. For narrow pleats the pressure
drop along the channel can be comparable to the Darcy one. The use of the
multi-point flux approximation and interface capturing grids allows us to obtain
accurate solutions using very few grid elements. On Figs. 3, 4 and 5 we show
the numerically obtained solution for the pressure, starting with a grid having
200 grid elements along the straight part of a pleat, and using less and less grid
elements. Even for the case of only three elements along the straight side of the
pleat, the relative difference between the numerical simulations and the analyt-
ical solution is only 0.32 %. In this case we have used only 308 quadrilateral
elements to discretize the full domain. Numerical tests performed with another
software tool show that around 10 000 elements on uniform Cartesian grids are
needed in order to achieve the same accuracy.

Fig. 3. Pressure drop though single pleat when using 200 grid elements along the
straight part

For the case of initially flat porous media the numerical method was also
tested against physical experiments in [6]. The numerical simulations gave very
accurate predictions of the displacement of the porous media. This is another
evidence for the accuracy of the modeling and numerical techniques used here.

Deflection Effects. To demonstrate how even small deflection can significantly
change the flow within a filter element, we set a numerical simulation of the
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Fig. 4. Pressure drop though single pleat when using 20 grid elements along the straight
part

Fig. 5. Pressure drop though single pleat when using 3 grid elements along the straight
part

deflection of a single pleat (Fig. 6). For the pleat geometry we chose the length
of the straight part of the pleat to be 20 mm, the thickness of the pleat to be
0.5 mm and the distance between the two straight parts to be 0.8 mm. The left
edge of the domain is an inlet with prescribed fluid velocity of 300 mm/s in
horizontal direction for every point. The right edge of the domain is the outlet
with prescribed pressure of 0 Pa. On the top and bottom edges of the region we
set symmetry boundary conditions. For the dynamic viscosity of the fluid we set
μ = 3.31e−6 kg.mm−1.s−1. For the permeability of the porous region Ω̃p we use
K = 3.4e−5.

Fig. 6. Initial shape of a single pleat

As described in Sect. 4 we first calculate the pressure (Fig. 7) and velocities
(Fig. 8) in the initial shape of the porous media. Next we use the computed
pressure values to impose the forces acting on the porous region and to calculate
the deflection of the elastic body.

After we have calculated the displacements on the middle surface of the
porous media and the rotations θ, we can reconstruct the position and the shape
of the filtering media after the deflection (Fig. 9). At this stage we also update
the computational grid.

Having the updated computational grid we can now calculate the pressures
(Fig. 10) and velocities (Fig. 11) in Ω̃f and Ω̃s. On Figs. 8 and 11 we use the same
color ranges to represent the magnitude of the velocity. Due to the deflection
of the pleat, in some regions the fluid flow is now faster and in others - slower.
This illustrates how even small deflection of the porous material can lead to
significant changes in the fluid flow, and as a result, in the efficiency of a filter
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Fig. 7. Pressure in the initial state

Fig. 8. Velocity magnitude in the initial state

Fig. 9. The shape of the single pleat after displacement

Fig. 10. Pressure after displacement

Fig. 11. Velocity magnitude after displacement

element. In this particular case, however, the pressure drop through the porous
media does not change significantly after the deflection of the pleat. This leads
to very fast convergence of the iterative scheme used to solve the system of fluid
flow equations and elastic deformation equations.

6 Conclusion

The numerical results above show how the use of general quadrilateral grids,
advanced discretization techniques like the MPFA and advanced solvers like the
algebraic multigrid lead to robust and accurate solutions of the system of equa-
tions describing fluid interacting with a porous structure. The use of appropriate
approximated models, like the shell ellipticity model, instead of more general
models even further increases the efficiency of the simulation. By using the tech-
niques presented one can simulate not only the behavior of a single pleat, as
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demonstrated in the numerical experiments, but also deflection of wide variety
of thin filtering media during dead end filtration.
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Abstract. With CMOS feature size rapidly approaching scaling lim-
its the electron spin attracts attention as an alternative degree of free-
dom for low-power non-volatile devices. Silicon is perfectly suited for
spin-driven applications, because it is mostly composed of nuclei with-
out spin and is characterized by weak spin-orbit interaction. Elliot-Yafet
spin relaxation due to phonons’ mediated scattering is the main mech-
anism in bulk silicon at room temperature. Uniaxial stress dramatically
reduces the spin relaxation, particularly in thin silicon films. Lifting the
valley degeneracy completely in a controllable way by means of stan-
dard stress techniques represents a major breakthrough for spin-based
devices. Despite impressive progress regarding spin injection, the larger
than predicted signal amplitude is still heavily debated. In addition, the
absence of a viable concept of spin manipulation in the channel by elec-
trical means makes a practical realization of a device working similar to a
MOSFET difficult. An experimental demonstration of such a spin field-
effect transistor (SpinFET) is pending for 25 years now, which at present
is a strong motivation for researchers to look into the subject. Commer-
cially available CMOS compatible spin-transfer torque magnetic random
access memory (MRAM) built on magnetic tunnel junctions possesses all
properties characteristic to universal memory: fast operation, high den-
sity, and non-volatility. The critical current for magnetization switching
and the thermal stability are the main issues to be addressed. A substan-
tial reduction of the critical current density and a considerable increase
of the thermal stability are achieved in structures with a recording layer
between two vertically sandwiched layers, where the recording layer is
composed of two parts in the same plane next to each other. MRAM can
be used to build logic-in-memory architectures with non-volatile stor-
age elements on top of CMOS logic circuits. Non-volatility and reduced
interconnect losses guarantee low-power consumption. A novel concept
for non-volatile logic-in-memory circuits utilizing the same MRAM cells
to store and process information simultaneously is proposed.

1 Introduction

The breathtaking increase in density, speed, and performance of modern inte-
grated circuits has been supported by the continuous miniaturization of CMOS
devices. Numerous outstanding technological challenges have been resolved on
this exciting journey. However, even though the transistor size is scaled down,
the load capacitance per unit area of a circuit stops decreasing. This suggests
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 42–49, 2015.
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that the on-current must stay constant in order to maintain appropriate high
speed operation. Even more, in ultra-scaled MOSFETs with semi-ballistic trans-
port in the channel the conductance determined by the number of transversal
propagating modes ceases to depend on the channel length. This results in an
approximately constant power dissipation of a single MOSFET regardless of its
channel length, which would lead to a rapid increase of dissipated heat with the
transistor density further increased. An obvious saturation of MOSFET minia-
turization puts clear foreseeable limitations to the continuation of the increase
in the performance of integrated circuits. Thus, research for finding alternative
technologies and computational principles is paramount.

The principle of MOSFET operation is fundamentally based on the charge
degree of freedom of an electron: the electron charge interacts with the gate
induced electric field which can close the transistor by creating a potential bar-
rier. Another intrinsic electron property, the electron spin, attracts at present
much attention as a possible candidate for complementing or even replacing the
charge degree of freedom in future electron devices. It is characterized by two
possible projections on a given axis and can be potentially used in digital infor-
mation processing. In addition, only a small amount of energy is needed to alter
the spin orientation, which is necessary for low power applications. The electron
spin as a vector may be pointed not only up or down but rather in any direction
on a unit Bloch sphere. This opens the way to use the whole Bloch sphere of
states to process and store information by initializing, manipulating, and detect-
ing the spin orientation. A successful implementation of a quantum computer
utilizing the spin states on the Bloch sphere requires the possibility of efficient
spin initiation, coherent manipulation, and reliable read-out. Although encour-
aging results were achieved, the development of a robust two- and three-qubit
gate is a pressing challenge for proceeding to a larger computational network.

Silicon predominantly (92 %) consists of 28Si nuclei with zero magnetic spin.
The spin-orbit interaction is also weak in the silicon conduction band. Because
of these properties electron spin states of conduction electrons in silicon should
show better stability, lower decoherence and longer spin lifetime, which makes
silicon a perfect candidate for spin-driven device applications. Even though these
features are promising and silicon processing technology is well established the
demonstration of basic elements necessary for spin related applications, such
as injection of spin-polarized currents into silicon, spin transport, and detection,
were demonstrated only recently. Although it should be straightforward to inject
spin-polarized carriers into silicon from a ferromagnetic contact, due to a funda-
mental conductivity mismatch between a ferromagnetic metal contact and the
semiconductor, the problem was without solution for a long time. A special tech-
nique [1] based on the attenuation of hot electrons with spins anti-parallel to the
magnetization of the ferromagnetic film allows creating an imbalance between
the electrons with spin-up and spin-down in silicon thus injecting spin-polarized
current. The spin-coherent transport through the device was studied by applying
an external magnetic field causing precession of spins during their propagation
from source to drain. The detection is performed with a similar hot electron spin
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filter. Although the drain current is fairly small due to the carriers’ attenuation
in the source and drain filters, as compared to the current of injected spins,
the experimental set-up represents a first spin-driven device which can be envis-
aged working at room temperature. Contrary to the MOSFET, however, the
described structure is a two-terminal device. Nevertheless, the first demonstra-
tion of coherent spin transport through an undoped 350μm thick silicon wafer [2]
has triggered a systematic study of spin transport properties in silicon [3].

2 Silicon SpinFET

The SpinFET is a future semiconductor spintronic device with a superior per-
formance. A SpinFET is composed of ferromagnetic source and drain contacts,
linked by a non-magnetic semiconductor channel region [4]. The effective spin-
orbit interaction in the channel depends on the perpendicular electric field, so
that the spin of an electron injected from the source starts precessing. Only the
electrons with their spin aligned to the drain magnetization can leave the chan-
nel contributing to the current. The current modulation is achieved by tuning
the strength of the spin-orbit interaction by applying the gate voltage. In order
to realize the SpinFET, an efficient spin injection and detection, spin propa-
gation, and spin manipulation by purely electrical means must be achieved [5].
Spin injection in silicon from a ferromagnetic metal electrode is compromised
by an impedance mismatch problem [6]. A solution to this impedance mismatch
problem is the introduction of a potential barrier between the ferromagnetic
metal and the semiconductor [7]. An experimental demonstration of a signal
which should correspond to spin injection in doped silicon at room tempera-
ture was first performed in 2009 [8] using an Ni80Fe20/Al2O3 tunnel contact.
Electrical signals at temperatures as high as 500 K have been reported in [9].
Regardless of the success in demonstrating the signal which should correspond
to the spin injection at room temperature, the magnitude of the signal obtained
within the three-terminal measurement scheme is a several orders of magnitude
larger than the theoretical value [3]. The reasons for the discrepancies are heav-
ily debated [3,10]. A plausible explanation suggested recently [11] interprets the
large signal to be rather due to the trap assisted tunneling magnetoresistance.

When spin is injected, the possibility to transfer the excess spin injected from
the source to the drain electrode is essential. The excess spin is not a conserved
quantity. While diffusing, it gradually relaxes to its equilibrium value which
is zero in a non-magnetic semiconductor. An estimation for the spin lifetime
at room temperature obtained is ranging between 0.1 to 10ns [3], depending
on doping. This corresponds to the spin diffusion length l = 0.2-2μm. The spin
lifetime is determined by the spin-flip processes [12,13]. In silicon the spin relax-
ation due to the hyperfine interaction of spins with the magnetic moments of
the 29Si nuclei (the natural abundance is 4.7 %) is only important at low tem-
perature, while the spin relaxation by the Elliot-Yafet mechanism [12,13] due to
electron-phonon scattering is dominant at room temperature. The Elliot-Yafet
mechanism is mediated by the intrinsic interaction between the orbital motion of
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an electron and its spin and electron scattering. When the microscopic spin-orbit
interaction is taken into account, the Bloch function with a fixed spin projec-
tion is not an eigenfunction of the total Hamiltonian. Because the eigenfunction
contains a contribution with an opposite spin projection, even spin-independent
scattering with phonons generates a small probability of spin flips [14].

In bulk silicon the main contribution to spin relaxation is due to optical
phonon scattering between the valleys residing along different crystallographic
axis, or f -phonons scattering [15,16]. A relatively large spin relaxation reported
in electrically-gated lateral-channel silicon structures [17,18] indicates that the
extrinsic interface induced spin relaxation mechanism is important. This may
pose an obstacle in realizing spin-driven CMOS-compatible devices, and a deeper
understanding of the fundamental spin relaxation mechanisms in silicon inversion
layers, thin films, and fins is needed.

The theory of spin relaxation must account for the most relevant scattering
mechanisms in thin silicon-in-insulator films: electron-phonon interaction and
surface roughness scattering. In order to evaluate the corresponding spin relax-
ation matrix elements, the wave functions with opposite spin projections must be
found. We employ the Hamiltonian which takes into account the only relevant
valley pair along the [1]-axis [19]. The Hamiltonian must include confinement
and, most importantly, an effective spin-orbit interaction. Shear strain lifts the
degeneracy between the unprimed subbands [20]. The enhanced valley splitting
rapidly reduces the main contribution to spin relaxation due to inter-valley scat-
tering. This results in a giant spin lifetime enhancement shown in Fig. 1. Shear
strain used to enhance the performance of modern MOSFETs is extremely effi-
cient in enhancing the spin lifetime and the spin diffusion length in silicon thin
films.

Silicon is characterized by weak spin-orbit interaction and is not considered
as a candidate for a SpinFET channel material. In actual thin films the inversion
symmetry is broken, and a relatively large value for the spin-orbit coupling [21]
is predicted by atomistic calculation β ≈ 2μeVnm [22], in agreement with the
value reported experimentally [23]. The channel length needed to achieve a sub-
stantial tunneling magnetoresistance (TMR) modulation is close to a micron [24].

3 Spin-Transfer Torque Magnetic RAM

The basic element of magnetic random access memory (MRAM) is a magnetic
tunnel junction (MTJ). The three-layer MTJ represents a sandwich of two mag-
netic layers separated by a thin spacer which forms a tunnel barrier. While
the magnetization of the pinned layer is fixed, the magnetization orientation
of the recording layer can be switched between the two stable states parallel
and anti-parallel to the fixed magnetization direction. A memory cell based on
MTJs is scalable, exhibits relatively low operating voltages, low power consump-
tion, high operation speed, high endurance, and a simple structure. Switching
between the two states is induced by spin-polarized current flowing through
the MTJ [25,26]. The recording layer magnetization switching, by means of the
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Fig. 1. Dependence of spin lifetime on shear strain for T = 300 K in a film of 2.1 nm
thickness. The inter- and intra-valley contributions are also shown...

spin-transfer torque (STT), makes STT-MRAM a promising candidate for future
universal memory.

Because the spin-polarized current is only a fraction of the total charge cur-
rent passing through the cell, the reduction of the current density required for
switching and the increase of the switching speed are the most important chal-
lenges in STT-MRAM developments. We demonstrated by micromagnetic sim-
ulations that, if the recording layer is composed of two parts, a nearly three
time faster switching is achieved [27]. Thanks to the removal of the central part
in the recording layer the magnetization switching occurs in-plane. This use of
the composite structure of the recording layer allows to decrease the switching
energy while preserving the thermal stability [28,29].

4 STT-MRAM Based Logic-in-Memory

The introduction of non-volatile logic could help to reduce significantly the heat
generation, especially at stand-by, booting, and resuming stages. It is extremely
attractive to use the same elements as memory and latches to reduce the time
delay and energy waste while transferring data between CPU and memory
blocks. The MRAM technology is promising for building logic-in-memory con-
figurations which combine non-volatile memory cells and logic circuits [30,31].

It is even more attractive to use the memory arrays to carry logic operations.
In [32,33] MTJ-based reprogrammable logic gates realize the basic Boolean logic
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Fig. 2. The common STT-MRAM architecture based on the one-transistor/one-MTJ
(1T/1MTJ) structure.

operations AND, OR, NAND, NOR, and the Majority operation. A material
implication (IMP) logic gate [34] can be implemented by using any two MRAM
memory cells from an MRAM array (Fig. 2) to perform the Boolean IMP oper-
ation. A sequence of logical IMP supplemented with FALSE allows to perform
any given Boolean operation.

Compared to the TiO2 memristive switches [35], MRAM provides a higher
endurance. Furthermore, the bistable resistance state of the MRAM cell elimi-
nates the need for refreshing circuits. The logic implementation using MRAM
cells relies on a conditional switching of MTJs caused by the state-dependent cur-
rent modulation on the output (target) MTJ. The resistance modulation between
the high and low resistance states in the MTJ is proportional to the TMR ratio.
The error probability of MTJ-based operations decreases with increasing TMR
ratio which is thus the most important device parameter for the reliability [36].

5 Summary and Conclusion

Recent ground-breaking experimental and theoretical findings regarding spin
injection and transport in silicon make spin an attractive option to supple-
ment or to replace the charge degree of freedom for computations. Uniaxial
stress employed to enhance the electron mobility can also be used to boost the
spin lifetime significantly. CMOS-compatible STT-MRAM cells built on mag-
netic tunnel junctions with a composite recording layer demonstrate a three-fold
improvement of the switching time as compared to similar cells with a monolithic
layer. The realization of an intrinsic non-volatile logic-in-memory architecture
by using MRAM arrays is demonstrated.

Acknowledgements. This work is supported by the European Research Council
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Abstract. We develop an efficient parallel algorithm for answering
shortest-path queries in planar graphs and implement it on a multi-node
CPU-GPU clusters. The algorithm uses a divide-and-conquer approach
for decomposing the input graph into small and roughly equal subgraphs
and constructs a distributed data structure containing shortest distances
within each of those subgraphs and between their boundary vertices. For
a planar graph with n vertices, that data structure needs O(n) storage
per processor and allows queries to be answered in O(n1/4) time.

Keywords: Shortest path problems · Graph algorithms · Distributed
computing · GPU computing · Graph partitioning

1 Introduction

Finding shortest paths (SPs) in graphs has applications in transportation, social
network analysis, network routing, and robotics, among others. The problem asks
for a path of shortest length between one or more pairs of vertices. There are
many algorithms for solving SP problems sequentially. Dijkstra’s algorithm [2]
finds the distances between a source vertex v and all other vertices of the graph
in O(m log n) time, where n and m are the numbers of the vertices and edges
of the graph, respectively. It can also be used to find efficiently the distance
between a pair of vertices. This algorithm is nearly optimal (within a logarithmic
factor), but has irregular structure, which makes it hard to implement efficiently
in parallel. Floyd-Warshall’s algorithm, on the other hand, finds the distances
between all pairs of vertices of the graph in O(n3) time, which is efficient for dense
(m = Θ(n2)) graphs, has a regular structure good for parallel implementation,
but is inefficient for sparse (m = O(n)) graphs such as planar graphs.

In this paper we are considering the query version of the problem. It asks
to construct a data structure that will allow to answer any subsequent distance
query fast. A distance query asks, given an arbitrary pair of vertices v, w, to
compute dist(v, w). This problem has applications in web mapping services such
as MapQuest and Google Maps. There is a tradeoff between the size of the data
structure and the time for answering a query. For instance, Dijkstra’s algorithm
gives a trivial solution of the query version of the SP problem with (small)
O(n + m) space (for storing the input graph), but large O(m log n) query time
c© Springer International Publishing Switzerland 2015
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(for running Dijkstra’s algorithm with a source the first query vertex). On the
other end of the spectrum, Floyd-Warshall’s algorithm can be used to construct
a (large) O(n2) data structure (the distance matrix) allowing (short) O(1) query
time (retrieving the distance from the data base). However, for very large graphs,
the O(n2) space requirement is impractical. We are interested in an algorithm
that needs significantly less than O(n2) space, but will answer queries faster than
Disjkstra’s algorithm. Our algorithm will use the structure of planar graphs for
increased efficiency, as most road networks are planar or near-planar, and will
also be highly parallelizable, making use of the features available in modern
high-performance clusters and specialized processors such as the GPUs.

The query version for shortest path queries in planar graphs was proposed
in [3] and after that different aspects of the problem were studied by multi-
ple authors, e.g., [1,9]. Here we present the first distributed implementation for
solving the problem that is designed to make use of the potential for parallelism
offered by GPUs. Our solution makes use of the fast parallel algorithm for com-
puting shortest paths in planar graphs from [5], resulting in asymptotically faster
and also shown to be efficient in practice.

2 Preliminaries

Given a graph G with a weight wt(e) on each edge e, the length of a path p is
the sum of the weights of the edges of the path. The single-pair shortest path
problem (SPSP) is, given a pair v, w of vertices of G, to find a path between
v and w, called shortest path (SP), with minimum length. The length of that
path is called distance between v and w and is denoted as dist(v, w). For any
subgraph H of G, the distance between v and w in H is denoted as distH(v, w).
The single-source shortest path problem (SSSP) is to find SPs from a fixed vertex
v to all other vertices of G. Finally, the all-pairs shortest path problem (APSP)
is to find SPs between all pairs of vertices. There are distance versions of SPSP,
SSSP, and APSP, which are more commonly studied, where the objective is to
compute the corresponding distances instead of SPs. Most distance algorithms
allow the corresponding SPs to be retrieved in additional time proportional to
the number of the edges of the path. In this paper, by SPSP, SSSP, and APSP
we mean the distance versions of these problems.

A k-partition P of G is a set V1, . . . , Vk of subsets of V (G), the set of the
vertices of G, such that Vi ∩ Vj = ∅ if i �= j and

⋃k
i=1 Vi = V (G). We call the

subgraphs of G induced by Vi components of P. The boundary of the partition
consists of all vertices of G that have at least one neighbor in a different compo-
nent. We denote by BG(G) or simply by BG the subgraph of G whose vertices
are the boundary vertices of G and there is an edge between two vertices v and w
of BG iff there is an edge between them in G or if they belong to the same com-
ponent of P. In the next section we will assign appropriate weights on the edges
of BG and solve the APSP problem on it. For any C ∈ P, we denote by B(C) the
set of all boundary vertices that are from C. For any planar graph of n vertices
and bounded (O(1) as a function of n) vertex degree, one can find in O(n) time
a k-partition P with |B(C)| = O(

√
n/k) for each component C ∈ P [6].
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3 Algorithm Overview and Analysis

Our algorithm works in two modes: preprocessing mode, during which a data
structure is computed that allows efficient SP queries, and the query mode that
uses that data structure to compute the distance between a query pair of vertices.
We assume that the input is a planar graph G of n vertices and bounded vertex
degree and the cluster has p nodes.

3.1 Preprocessing Mode

The preprocessing algorithm (Algorithm 1) has three phases. During the first
phase (line 1), the graph is partitioned and each component is assigned to a
distinct cluster node. During the second phase (lines 2–5), the APSP problem is
solved for each component C independently and in parallel and the computed
distance matrix APSP(C) is stored at the same node. Finally, in the third phase
(lines 6–10), the boundary graph BG is constructed and the APSP is solved for
BG . That computation is done distributedly such that the distances from vertex
v ∈ BG to all other vertices of BG are computed at the node containing v, by
using Dijkstra’s algorithm [2]. The computed distance matrix is stored at the
node that has done the computations. Hence, at the end of the algorithm, the
node N(C) contains two matrices: one containing the SP distances in C and the
other containing all SP distances in BG with source a vertex in BG ∩ C.

One can think of BG as a compressed version of G where the non-boundary
vertices are removed, but are implicitly represented in BG by the information
encoded in its edge weights. Note however that the distances APSP(C) (and
the corresponding edge weights of BG) are not distances in G; the reason is
that a shortest path between two vertices v and w from C might pass through
vertices not in C. The next lemma is based on the observation that a shortest
path between two vertices of BG has structure p1, e1, p2, e2, . . . , es−1, ps, where
pi denotes a shortest path of vertices from the same component C (and hence
is a distance stored in APSP(C)) and ei denotes an edge joining vertices from
different components.

Lemma 1. [5] For any two vertices v, w ∈ BG the distance between v and w in
BG is equal to the distance between v and w in G.

We will next estimate the time and space (memory) required to run the
algorithm. As G is planar and of bounded vertex degree (as a function of n), it
can be divided in O(n) time into k parts so that each part has no more than
(n/k) vertices and O(

√
n/k) boundary vertices [7]. We will estimate the require-

ments of each phase. Since the maximum amount of coarse-grained parallelism
of Algorithm 1 is min{p, k}, we assume without loss of generalization that p ≤ k.

Phase 1 requires O(n) running time and O(n) space [7].
The complexity of Phase 2 is dominated by the time for computing dis-

tances in line 3. We assume that we are using the algorithm from [5] that can
be implemented efficiently on a GPU-accelerated architecture and has complex-
ity O(N9/4). Then Phase 2 requires O((k/p)(n/k)9/4) = O(n9/4/(pk5/4)) time
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and kO((n/k)
√

n/k) = O(n3/2/k1/2) total space. The space per processor is
kO((n/k)2) = O(n2/k).

For Phase 3, the number of the vertices of BG is k O(
√

n/k) = O(
√

nk)
and the number of the edges is k O((

√
n/k)2) = O(n). One execution

of line 8 (for one component C) takes (k/p)|BG ∩ C||E(BG)| log(|BG |) =
(k/p)O(

√
n/k)O(n log n) time and O(n) space. The space needed for one iter-

ation of Step 9 is |BG ∩ C||BG | = O(
√

n/k
√

nk) = O(n). Hence Phase 3
requires O((k/p)n3/2/k1/2 log n) = O(n3/2k1/2 log n/p) time and O(nk/p) space
per processor.

Summing up the requirements for Phases 1, 2, and 3, we get O(n9/4/(pk5/4)+
n3/2k1/2 log n/p)) time and O(n + n2/(pk) + nk/p) space per processor needed
for Algorithm 1. Assuming space is more important in this case than time (since
nodes have limited memory), we find that k = n1/2 minimizes the function
n2/k + nk. Hence we have the following result.

Lemma 2. With k = �n1/2	 and p ≤ k, Algorithm 1 runs in O(n7/4 log n/p)
time and uses O(n3/2/p) space per processor. With p = k, the time and space
are O(n5/4) and O(n), respectively.

The time bound of Lemma 2 is conservative as it doesn’t take into account
our use of fine-grain parallelism due to multi-threading, e.g., by the GPUs.

Algorithm 1. Preprocessing algorithm
Input: A planar graph G
Output: A data structure for efficient shortest path queries in G

/∗ Partitioning ∗/
1: Construct a k-partition P of G and assign each component C to a distinct node

N(C)
/∗ Solve the APSP problem for each component ∗/

2: for all components C ∈ P do in parallel
3: Solve APSP for C and save the distances in a table APSP(C)
4: For each pair of boundary vertices v, w ∈ C define edge (v, w), if not already in

G, and assign a weight wt(v, w) = distC(v, w)
5: end for

/∗ Solve the APSP problem for the boundary graph ∗/
6: Define a boundary graph BG with vertices all boundary vertices of G and edges as

defined in the previous step and store it at each node
7: for all components C ∈ P do in parallel
8: Solve SSSP in BG for each vertex of C ∩ BG
9: Store the distances from all vertices of C ∩ BG to all vertices of BG in a

table APSPBG(C)
10: end for

3.2 Query Mode

The query algorithm (Algorithm 2) is based on the fact that if C1 �= C2, then
any path between v1 and v2 should cross both B(C1) and B(C2). Let π be a
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shortest path between v1 and v2. Then π can be divided into three parts: from
v1 to a vertex b1 from B(C1), from b1 to a vertex b2 on p from B(C2), and from
b2 to v2. Vertices b1 and b2 minimizing the length of p are found as follows: in
the loop on lines 2–7, for each b2 an optimal b1 and dist(v1, b2) are found; in
lines 10–12 an optimal b2 is found.

Algorithm 2. Query algorithm
Input: Vertices v1, v2 of G, a k-partition P of G, tables APSP(C) and APSPBG(C)

for all C ∈ P
Output: dist(v1, v2)
1: Determine components C1 and C2 such that v1 ∈ C1, v2 ∈ C2

2: for all vertices b2 ∈ B(C2) do in parallel
/∗ Compute dist(v1, b2) ∗/

3: dist(v1, b2) = ∞
4: for all vertices b1 ∈ B(C1) do
5: dist(v1, b2) = min{dist(v1, b2), distC1(v1, b1) + distBG(b1, b2)}
6: end for
7: end for
8: If N(C1) �= N(C2) then transfer the column of SP(C2) corresponding to v2 from

N(C2) to N(C1).
/∗ Now we can compute dist(v1, v2) ∗/

9: dist(v1, v2) = ∞
10: for all vertices b2 ∈ B(C2) do
11: dist(v1, v2) = min{dist(v1, v2), dist(v1, b2) + distC2(b2, v2)}
12: end for
13: If C1 = C2 then dist(v1, v2) = min{dist(v1, v2), distC1(v1, v2)}, where the distance

distC1(v1, v2) is taken from APSP(C1).

Lemma 3. Algorithm 2 correctly computes dist(v1, v2) and its running time is
O(n1/4) with k = �n1/2	 and p ≥ �n1/4	.

Proof. Given in the extended version [4].

4 Implementation Details

In this section, we describe how the preprocessing and query modes are imple-
mented on a hybrid CPU-GPU cluster. We use a distance matrix to represented
both the input graph G and the output. Such a 2-dimensional matrix contains
in cell (i, j) the value of the distance from vertex i to vertex j. Initially, cell (i, j)
contains wt(i, j) if an edge (i, j) is present in G, or infinity otherwise. These
values are updated as the algorithm progresses. At the end of the algorithm, cell
(i, j) contains dist(i, j).

In phase 1 of the preprocessing mode, we construct a k-partition of G using
the METIS library [8]. Based on that partition, we reorder the vertices of G so
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Fig. 1. Vertices from the same com-
ponent are stored contiguously start-
ing with boundary vertices. In the two
bottom submatrices, dark-grey regions
(red in the color version) are part of the
boundary matrix. The light-grey region
of the bottom right submatrix is not
computed during preprocessing (Color
figure online).

Fig. 2. The distances required to com-
pute dist(v, w), shown in white, are
scattered in three submatrices: two
diagonal ones, for component I and for
component J , and a non-diagonal sub-
matrix (I, J) (Color figure online).

that vertices from the same component have consecutive indices and boundary
vertices of each components have the lowest indices – see Fig. 1.

In phase 2, we compute the shortest distances within each of the components.
For k components, this phase gives a total k independent tasks that can be
executed in parallel. Computations at this phase are already balanced across
nodes as components contain roughly the same number of vertices and the APSP
algorithm from [5] ensures the same O(N9/4) complexity with respect to the
number of nodes.

Finally, phase 3 consists in computing the shortest distances within the
boundary graph using Dijkstra’s algorithm. Computations at this phase may
be imbalanced between nodes for two reasons. First, the number of boundary
vertices in two components may differ and, second, the complexity of Dijkstra’s
algorithm does not solely depend on the number of vertices in the graph, but
also on the number of edges, which may vary even more than the number of
vertices between two components’ boundary graphs.

In the query mode, we are interested in finding dist(v, w), where v and w are
from components I and J , respectively. The required values for that computation
are scattered in three submatrices, as illustrated in Fig. 2. For such a query,
assuming k = p, node i, holding the required values from diagonal submatrix
I and non-diagonal submatrix (I, J), will be in charge of the computations.
Required values from diagonal submatrix J are held by node j and need to be
transfered to node i.
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Fig. 3. Preprocessing run times for a
fixed graph size of 256 k vertices and
increasing number of nodes.

Fig. 4. Peak memories and run times
for 10k queries for a fixed graph size of
256 k vertices and increasing number of
parts/processors.

5 Experimental Evaluation

In this section we describe experiments designed to test our algorithm and its
implementation. Specifically, we are going to test the strong scaling properties by
running our code on a fixed graph size and a varying number p of cluster nodes
and number k of components. All computations are run on a 300 node cluster.
Each cluster node is comprised of 2 × Eight-Core Intel Xeon model E5-2670 @
2.6 GHz and two GPGPU Nvidia Tesla M2090 cards connected to PCIe-2.0× 16
slots. In order to make full use of the available GPUs, each node is assigned at
least two graph components so that the two associated diagonal submatrices can
be computed simultaneously on the two GPUs.

For the strong-scaling experiment, the graph size is fixed to 256k vertices.
Preprocessing and queries are run with increasing numbers of nodes ranging from
4 to 64. Each node handles 2 components (one per available GPU); therefore the
number of components k ranges from 8 to 128.

Figure 3 shows the run times for the preprocessing mode. For low numbers
of nodes and thus low values of k, preprocessing time is dominated by step 2 -
the computation of the shortest distances within each component - since lower k
values means larger components. For higher numbers of nodes and thus higher
values of k, preprocessing time becomes dominated by step 3 - the computation
of the boundary graph - as more components mean higher numbers of incident
edges and thus larger boundary graphs. Note that while the figure seems to show
supralinear speedup, that is not the case (and similarly for the memory usage).
The reason is that, with increasing the number of processors p, the number k of
parts is increased too (as it is tied to p in this implementation) and hence the
complexity of the algorithm is also reduced.

Figure 4 shows the query times and peak memory usage per node. The run
times are given for 10, 000 queries from random sources to random targets. Note
that in the query mode only fine-grain (node-level) parallelism is used, while
multiple nodes are still needed for distributed storage and, optionally, to handle
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multiple queries in parallel (not implemented in the current version). For the
memory usage, the optimal value for k, theoretically expected to be

√
n – or 512

for this instance – is not reached in this experiment since k only goes up to 128.
We can however see that peak memory usage per node is still dropping with
increasing values of k up to 128. The query times in the figure vary from about 2
milliseconds per query for k = 8 to 0.25 milliseconds for k = 128. Compared with
the Boost library implementation of Dijkstra’s algorithm, our implementation
answers queries on the largest instances about 1000 times faster.

6 Conclusion

We developed and implemented a distributed algorithm for shortest path queries
in planar graphs with good scalability. It allows answering SP queries in O(n1/4)
time by using O(

√
n) processors with O(n) space per processor and O(n5/4)

preprocessing time. Our implementation on 300 node CPU-GPU cluster has
preprocessing time of less than 10 seconds using 32 or more nodes and 0.25
milliseconds per query using two nodes. Interesting tasks for future research is
implementing a version allowing parallel queries and reducing the query time of
the implementation to O(log n) by using properties of graph planarity.
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Abstract. In this paper we develop a parabolic-hyperbolic splitting
method for resolving the degeneracy of order γ, 0 < γ ≤ 2 in the
ultra-parabolic equation of path dependent Asian options. For the space
discretization of the parabolic subproblem we have used two approxima-
tions. The first one is the finite volume difference scheme of S. Wang
[11], while the second one is the monotone difference scheme of A.A.
Samarskii [9]. Some computation results and a comparison between the
two methods are presented.
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1 Introduction

An Asian option is a derivative product the payoff of which depends on the
average of an underlying asset price over some time period. The average is less
exposed to sudden crashes or rallies in stock price and over time is harder to
manipulate than a single stock price. Thus the Asian options are less expensive
than comparable plain vanilla options [3,12].

A number of techniques to price Asian options have been proposed: Monte-
Carlo method, analytical approximations, Laplace/Fourier transform approach,
modified binomial tree approach, PDE approach, etc., see e. g. [1,2,6–8,10,12,13]
and references there in. In this paper we discuss numerical methods for general
PDE models of path dependent options.

Let S̄ represent the underlying stock price. Then a path dependent option
in a constant elasticity variance environment can be modeled by the stochastic
differential equation given by

dS̄ = μγ S̄dt + σ1S̄
γdz, 0 < γ ≤ 2,

where μγ is the average option, μγ(S̄) = S̄ (arithmetic average options) or
μγ(S̄) = logS̄ (geometric average options) and σ1 is the volatility. Using standard

c© Springer International Publishing Switzerland 2015
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arguments [3,12], the value V of an option depending on x̄ = x̄(t) =
t∫

0

S̄(v)dv is

given by

∂V

∂τ
=

1
2
σ2

1S̄γ ∂2V

∂S̄2
+ rS̄

∂V

∂S̄
− μγ

∂V

∂x̄
− rV, τ = T − t, (1)

where (S̄, x̄, τ) ∈ (0,∞)×(0,∞)× [0, T ], r is the interest rate, t is the time and τ
is the time to maturity T . The difficulties that arise at the numerical treatment
of Asian options governed by ultra-parabolic Eq. (1) are: the degeneracy on the
boundary S̄ = 0; unbounded domain; non-smooth (even discontinuous) payoff
(initial) function; small volatility σ1 causes boundary layers, etc. In the case
of Black-Scholes operator (γ = 2) the exponential change S̄ = ex̄ removes the
degeneracy and is often used for construction of numerical methods [1,6–8,12].

Following [4,5] we take the initial and boundary conditions for the localized
problem:

V (S̄, x̄, 0) = max {X(x̄), 0} ≡ V0(S̄, x̄), (2)

V (0, x̄, τ) = e−rτ max {X(x̄), 0} ≡ V1(x̄, τ), (3)

V (Smax, x̄, τ) = max
{
e−rτX(x̄) + Smax

(
1 − e−rτ

)
/rT, 0

}
≡ V2(x̄, τ), (4)

V (S̄, 0, τ) = S̄
(
1 − e−rτ

)
/rT ≡ V3(S̄, τ), (5)

where (S̄, x̄, τ) ∈ [0, Smax] × [0, xmax] × [0, T ], X(x̄) = (xmax − x̄)/T − K and K
is the exercise strike price of the option.

Using the transformations S = S̄/xmax, x = x̄/xmax and the notations S0 =
Smax/xmax, σ = σ1(xmax)

γ−2
2 , the problem (1)–(5) can be written as

∂V

∂τ
=

1
2
σ2Sγ ∂2V

∂S2
+ rS

∂V

∂S
− μγ

∂V

∂x
− rV, (S, x, τ) ∈ (0, S0) × (0, 1) × (0, T ],

(6)

V (S, x, 0) = V0(S, x), (7)

V (0, x, τ) = V1(x, τ), V (S0, x, τ) = V2(x, τ), V (S, 0, τ) = V3(S, τ). (8)

The rest of the paper is organized as follows. In Sect. 2 we describe the splitting
method while in the next one we derive two difference schemes for the parabolic
subproblem. In Sect. 4 we construct the difference scheme for the hyperbolic
subproblem and present some theoretical results. Some of the computational
results obtained by the two numerical methods are presented and compared in
Sect. 5. Finally, Sect. 6 summarizes our conclusions.

2 The Splitting Method

We will describe a splitting method for the problem (6)–(8) into two subprob-
lems: the first with respect to (S, τ) and the second one - with respect to
(x, τ). Let us introduce the non-uniform mesh in time: 0 = τ1 < τ2 < · · · <
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τP+1 = T, �τn = τn+1 − τn. Starting with the initial condition (7), we solve
consequently two problems on each of the subintervals (τn, τn+1], n = 1, 2, . . . , P :

Parabolic Subproblem: For given V (S, x, τn), find the solution

u(S, x, τ), (S, x, τ) ∈ (0, S0) × (0, 1) × (τn, τn+1/2], x-fixed

of the problem

1
2

∂u

∂τ
=

1
2
σ2Sγ ∂2u

∂S2
+ rS

∂u

∂S
− ru, (9)

u(S, x, τn) = V (S, x, τn), (10)

u(0, x, τn+1/2) = V1(x, τn+1/2), (11)

u(S0, x, τn+1/2) = V2(x, τn+1/2); (12)

Hyperbolic Subproblem: For given u(S, x, τn+1/2) find the solution

V (S, x, τ), (S, x, τ) ∈ (0, S0) × (0, 1) × (τn+1/2, τn+1], S-fixed

of the problem

1
2

∂V

∂τ
+ μγ

∂V

∂x
= 0, (13)

V (S, 0, τn+1) = V3(S, τn+1), (14)

V (S, x, τn+1/2) = u(S, x, τn+1/2). (15)

Further on, we take advantage of the computational cost reduction yielded by
the use of the parabolic (9)–(12) and hyperbolic (13)–(15) problems splitting
and the robust difference schemes of S. Wang [11] and A.A. Samarskii [9] for the
degenerate parabolic Eq. (9).

3 Difference Approximations of the Parabolic
Subproblem

When a standard finite-difference method is applied to (9)–(12), one has to deal
with the degeneracy at S = 0, a possible small volatility σ, etc. Therefore, one
has to use an appropriate approximation to overcome these difficulties.

3.1 First Difference Approximation

First we will implement the S. Wang difference scheme [11]. Let us consider the
problem (9)–(12). We rewrite Eq. (9) in the divergent form

1
2

∂u

∂τ
=

∂

∂S

(
aS

∂u

∂S
+ bu

)
− cu, (16)
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where a(S) = 1
2σ2Sγ−1, b(S) = rS − γa(S), c(S) = 2r − 1

2γ(γ − 1)Sγ−2σ2. We
divide interval (0, S0) on N subintervals Ii = [Si, Si+1], i = 1, 2, . . . , N by nodes
0 = S1 < S2 < . . . < SN+1 = S0. Let hi = Si+1 − Si, i = 1, 2, . . . , N . Let
us introduce the secondary mesh Si−1/2 = 0.5(Si−1 + Si), i = 2, 3, . . . , N + 1,
Si+1/2 = 0.5(Si + Si+1), i = 2, 3, . . . , N .

We integrate Eq. (16) over the interval
[
Si−1/2, Si+1/2

]
, i = 2, 3, . . . , N and

apply the central rectangular formula to the integrals to get

1
2

∂u

∂τ

∣
∣
∣
∣
Si

�i = ρ(u)|Si+1/2
− ρ(u)|Si−1/2

− ciui�i, (17)

where �i = Si+1/2 − Si−1/2, ui = u(Si, x, τ), ci = c(Si), ρ(u) = aS ∂u
∂S + bu. In

order to obtain an approximation of the flux ρ(u) at Si+1/2, i = 2, 3, . . . , N for
fixed x and τ , we consider the boundary value problem

(
ai+1/2Sw′ + bi+1/2w

)′ = 0, ai+1/2 = a(Si+1/2), bi+1/2 = b(Si+1/2), (18)

w(Si) = ui, w(Si+1) = ui+1, S ∈ Ii. (19)

We solve the problem (18)–(19) for w and then find

ρi(u) = bi+1/2

Sαi
i+1ui+1 − Sαi

i ui

Sαi
i+1 − Sαi

i

, αi =
bi+1/2

ai+1/2
, (20)

that is an approximation of the flux at Si+1/2, i = 2, 3, . . . , N . For the flux at
Si−1/2 for i = 3, 4, . . . , N we have an analogical expression.

This analysis is not applicable on the interval I1 = [S1, S2] ≡ [0, S2], because
(18) degenerates. Instead of the problem (18)–(19) we consider the problem

(
a3/2Sw′ + b3/2w

)′ = C1, S ∈ I1, w(0) = u1, w(S2) = u2.

We solve this problem and find for ρ1(u)

ρ1(u) =
1
2

[(
a3/2 + b3/2

)
u2 −

(
a3/2 − b3/2

)
u1

]
. (21)

Now we insert the expressions of the flux (20), (21) into (17) to obtain at a fixed
x the expressions:

1
2

∂u

∂τ

∣
∣
∣
∣
S=S2

�2 = b5/2
Sα2

3 u3 − Sα2
2 u2

Sα2
3 − Sα2

2

− 1
2

[(
a3/2 + b3/2

)
u2 −

(
a3/2 − b3/2

)
u1

]

−�2c2u2,

1
2

∂u

∂τ

∣
∣
∣
∣
S=Si

�i = bi+1/2

Sαi
i+1ui+1 − Sαi

i ui

Sαi
i+1 − Sαi

i

− bi−1/2

S
αi−1
i ui − S

αi−1
i−1 ui−1

S
αi−1
i − S

αi−1
i−1

−�iciui, i = 3, 4, . . . , N.
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Let us introduce the non-uniform mesh 0 = x1 < x2 < . . . < xj < xj+1 < . . . <
xM+1 = 1, hx

j = xj+1 − xj . With respect to time we construct the fully implicit
scheme. Then we have:

ū2,j − u2,j

Δτn
�2 = b5/2

Sα2
3 ū3,j − Sα2

2 ū2,j

Sα2
3 − Sα2

2

−1
2
.
[(

a3/2 + b3/2

)
ū2,j −

(
a3/2 − b3/2

)
ū1,j

]
− �2c2ū2,j , j = 1, 2, . . . , M, (22)

ūi,j − ui,j

Δτn
�i = bi+1/2

Sαi
i+1ūi+1 − Sαi

i ūi

Sαi
i+1 − Sαi

i

− bi−1/2

S
αi−1
i ūi − S

αi−1
i−1 ūi−1

S
αi−1
i − S

αi−1
i−1

−�iciūi,j , i = 3, 4, . . . , N, j = 2, 3, , . . . ,M (23)

ui,j = V (Si, xj , τn), i = 1, 2, . . . , N + 1; j = 1, 2, . . . ,M + 1, n = 1, 2, . . . P,
(24)

V (Si, xj , 0) = V0(Si, xj), i = 1, 2, . . . , N + 1; j = 1, 2, . . . ,M + 1, (25)

ū1,j = V1(S1, xj), j = 1, 2, . . . ,M, (26)

ūN+1,j = V2(SN+1, xj), j = 1, 2, . . . ,M, (27)

where ū is the approximate solution on the n + 1/2-th time level and u is the
approximate solution on the n-th time level. The truncation error of the scheme
(22)–(27) is of order O(�τ + h), where h = max

1≤j≤M
hj , �τ = max

1≤n≤P
�τn. This

system has a three-diagonal matrix and its solution can be found by Thomas
procedure. Applying the discrete maximum principle [9] to (22)–(27) one can
prove the following assertion:

Lemma 1. Suppose that ui,j > 0, i = 1, 2, . . . , N + 1, j = 1, 2, . . . ,M + 1.
Then for sufficiently small �τn we have ui,j ≥ 0, i = 1, 2, . . . , N + 1, j =
1, 2, . . . ,M + 1.

3.2 Second Difference Approximation

Now we will construct the classical monotone scheme of A. A. Samarskii [9].
We rewrite Eq. (9) in the form

1
2

∂u

∂τ
=

∂

∂S

(
k(S)

∂u

∂S

)
+ p(S)

∂u

∂S
− ru, (28)

where
k(S) = 0.5σ2Sγ , p(S) = rS − 0.5γSγ−1σ2. (29)

The initial and boundary conditions are (10)–(12). Let us introduce the uniform
mesh

ω̄h = {Si = (i − 1)h, i = 1, 2, . . . , N + 1, h = S0/N} .
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For the problem (10)–(12), (28), (29) we derive the fully implicit monotone
difference scheme with local approximation error O(�τ + h2):

ūi,j − ui,j

�τn
= ρ̄i

1
h

[
ai+1

ūi+1,j − ūi,j

h
− ai

ūi,j − ūi−1,j

h

]
+ b+

i ai+1
ūi+1,j − ūi,j

h

+b−
i ai

ūi,j − ūi−1,j

h
− rūi,j , i = 2, 3, . . . , N, j = 1, 2, . . . ,M,

where ρ̄i = 1

1+ 1
2h

|p(Si)|
k(Si)

, ai = k(Si − h
2 ), b+

i = p+(Si)
k(Si)

, b−
i = p−(Si)

k(Si)
, p− = p−|p|

2 ,

p+ = p+|p|
2 . The approximations for the initial and boundary conditions are the

same as in the first method. This discrete problem has a three-diagonal matrix
too and also has the non-negativity property of Lemma1.

4 Full Discretization

We approximate the hyperbolic subproblem by implicit difference scheme. For
the boundary condition (14) we have

V̂i,1 = V3(Si, x1), i = 2, 3, . . . , N. (30)

The approximation for the initial condition is

V (Si, xj , τn+1/2) = u(Si, xj , τn+1/2). (31)

For Eq. (13) we construct an implicit backward difference scheme

V̂i,j − ūi,j

Δτn
+μγ,i

V̂i,j − V̂i,j−1

hx
j−1

= 0, i = 2, 3, . . . , N, j = 2, 3, . . . ,M +1. (32)

The truncation error of the scheme (30)–(32) is of order O(τ + h) and is uncon-
ditionally stable.

In view of Lemma 1 we have the following

Theorem 1. For sufficiently small τ the numerical solutions, obtained by the
two methods, are non-negative.

Next, let us discuss the convergence of the numerical methods. From the
discretization in Sect. 3.1, one can see that the consistency of the first difference
scheme lies on the consistency of the flux ρ(u) approximation. In a similar way
as it is been shown in [11] for the case γ = 2 the discretization (22)–(27) admits
a finite element formulation with special trial space Sh. Then in our case the
following analog of the estimate in Lemma 4.2 in [11] holds:

‖ρ(w) − ρh(w)‖∞,Ii
≤ C‖ρ′(w)‖∞,I , i = 1, 2, . . . , N,

where w is a sufficiently smooth function and wI is the Sh interpolant. Now,
using a technique similar to those in Sect. 4 of [11], one can obtain the following
convergence result:
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Theorem 2. Let V be the exact solution of (6)–(8) and {V n} be the numerical
solution of the difference scheme (22)–(27). Then, there exists a positive constant
C, independent of N,M and τ , such that the global error satisfies

‖V (tn)|Ωh
− V n‖∞ ≤ C(τ + h),

where V (tn)|Ωh
is the restriction of the exact solution on the product of the

meshes with respect to S and x.

5 Numerical Experiments

In order to observe the behaviour of the accuracy and the rate of convergrnce
for the two methods we use the analytical solution

Va(S, x, τ) = (2 − x) (S/S0)
2
e−rτ .

We choose this function because its character is similar to the character of the
exact solution of the problem under consideration when γ = 2 [2]. For all exam-
ples, presented in this paper, we use the following fixed values of the parame-
ters: S0 = 2, T = 1, K = 1, r = 0.05, σ = 0.4. Numerical experiments were
performed for the different values of γ ∈ (0, 2] and for μγ(S) = S. For every
one of the experiments the time-step decreases until establishment of the first
four significant digits of the relative C-norm of the error (RCN) at the last level
τ = T is reached. The rate of convergence (RC) is calculated using the double
mesh principle.

The results from the numerical investigations of the discretizations are the
following. The scheme, constructed in Sect. 3.1, works properly for γ ∈ [0.8, 2]
and in this interval, in general, it is more accurate and has higher rate of con-
vergence than the discretization from Sect. 3.2 (see Tables 1, 2 and 3). For the
values γ ∈ (0, 0.8) the dominator in (20) is equal to zero in the computer and the
discretization from Sect. 3.1 is not applicable. The discretization from Sect. 3.2
is applicable for all values γ ∈ (0, 2] (see Tables 1, 2 and 3). For the two dis-
cretizations the rate of convergence decreases, when γ decreases (Tables 1, 2, 3
and 4).

Table 1. γ = 1.5

Space steps 0.1 0.05 0.025 0.0125 0.00625

Discretization 3.1 RCN 1.440 E-4 3.836 E-5 9.986 E-6 2.563 E-6 6.489 E-7

RC - 1.91 1.94 1.96 1.98

Discretization 3.2 RCN 4.338 E-4 1.263 E-4 3.462 E-5 9.144 E-6 2.369 E-6

RC - 1.78 1.87 1.92 1.95
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Table 2. γ = 1

Space steps 0.1 0.05 0.025 0.0125 0.00625

Discretization 3.1 RCN 1.406 E-3 5.388 E-4 1.655 E-4 4.434 E-5 1.152 E-5

RC - 1.38 1.70 1.90 1.94

Discretization 3.2 RCN 1.472 E-3 6.354 E-4 2.468 E-4 8.485 E-5 2.467 E-5

RC - 1.21 1.36 1.55 1.78

Table 3. γ = 0.8

Space steps 0.1 0.05 0.025 0.0125 0.00625

Discretization 3.1 RCN 1.675 E-3 7.956 E-4 3.452 E-4 1.248 E-4 3.698 E-5

RC - 1.08 1.20 1.47 1.75

Discretization 3.2 RCN 1.496 E-3 7.190 E-4 3.231 E-4 1.338 E-4 4.967 E-5

RC - 1.06 1.16 1.27 1.43

Table 4. γ = 0.1, Discretization 3.2

Space steps 0.1 0.05 0.025 0.0125 0.00625

RCN 9.692 E-4 4.962 E-4 2.508 E-4 1.256 E-4 6.240 E-5

RC - 0.96 0.99 1.00 1.01

6 Conclusions

We derive and implement two splitting techniques to price path dependent Asian
options. At the first splitting we use a fitted finite volume method for the spatial
discretization of the one-dimensional parabolic subproblem, while the second
splitting is a Samarskii’s scheme. The numerical experiments confirm the pos-
itivity preserving of the numerical solutions and their efficiency in dependence
on the order of degeneracy γ.
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Abstract. In the study of difference schemes for time-dependent prob-
lems of mathematical physics, the general theory of stability (well-
posedness) for operator-difference schemes is in common use. At the
present time, the exact (matching necessary and sufficient) conditions
for stability are obtained for a wide class of two- and three-level differ-
ence schemes considered in finite-dimensional Hilbert spaces.

The main results of the theory of stability for operator-difference
schemes are obtained for problems with self-adjoint operators. In this
work, we consider difference schemes for numerical solution of the Cauchy
problem for first order evolution equation, where non-self-adjoint opera-
tor is represented as a product of two non-commuting self-adjoint oper-
ators. We construct unconditionally stable regularized schemes based on
the solution of a grid problem with a single operator multiplier on the
new time level.

1 Introduction

Samarskii’s theory of stability (well-posedness) for operator-difference schemes
[1,2] is the theoretical basis of the study of numerical methods for solving time-
dependent problems. In general, stability conditions for difference schemes with
self-adjoint operators can be formulated in a more simple way, compared to
the non self-adjoint case. Some important classes of two- and three-level dif-
ference schemes having non-self-adjoint operators are considered. In particular,
special attention should be paid to difference schemes with a subordinate skew-
symmetric part.

Difference schemes with weights have a special meaning for computational
practice. In some cases, weighting factors can be varying both in time and
space. These schemes have non-self-adjoint original operators, but they can
be transformed into schemes with symmetric operators, particularly, by a suit-
able choice of special norms. This symmetrization possibility allows us to study
these schemes on the basis of the general results of the theory of stability (well-
posedness) for operator-difference schemes [3].

The earlier considered schemes with factorized factors refer to problems,
where factorized structure is formed by a special approximation in space and/or
time. In some cases, it is of interest to highlight factorized structure of the
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 72–79, 2015.
DOI: 10.1007/978-3-319-26520-9 7
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main operator of problem. Here we investigate a new class of operator-difference
schemes with a factorized operator. We consider the Cauchy problem

du

dt
+ A1A2u = f(t), 0 < t ≤ T, (1)

u(0) = u0, (2)

with self-adjoint positive definite operators Aα, α = 1, 2. In the operator A =
A1A2 we separate the two multipliers A1 and A2, and on the basis of one of
these we easily construct implicit approximation, while for the second one we
focus on explicit approximation.

Unconditionally stable regularized schemes are constructed here. Their
numerical implementation involves only the operator A1. Such schemes, for
example, can be used to solve problems with anomalous diffusion, where A1

corresponds to the standard diffusion operator, whereas A2 is a fractional oper-
ator (A2 = (−�)−β , 0 < β < 1).

2 Cauchy Problem

Let H be the finite-dimensional Hilbert space, where the scalar product and
norm are (·, ·) and ‖ · ‖, respectively. We seek the solution u(t) of the first order
evolution Eq. (1). In (1) f(t) ∈ L2(0, T ;H) is given, and A1, A2 are linear and
time-independent operators from H to H (Aα : H → H, α = 1, 2). Eq. (1) is
supplemented with the initial condition (2).

We consider the Cauchy problem (1), (2) under the conditions that the oper-
ators A1 and A2 are self-adjoint and positive definite in H:

Aα = A∗
α ≥ δαE, δα > 0, α = 1, 2, (3)

where E is the identity operator in H. The peculiarity of the problem (1)–(3)
is that the operator A = A1A2 is non-self-adjoint since the operators A1 and
A2 are non-commuting. However, such problems can be easily symmetrized, for
example, by multiplying Eq. (1) by the operator A2.

First, we obtain the simplest a priori estimates for the solution of the Cauchy
problem (1)–(3), which will serve as a basis in the study of the operator-difference
schemes. For D = D∗ > 0 by HD we denote the space H with the scalar product
(y, w)D = (Dy,w) and norm ‖y‖D = (Dy, y)1/2.

We multiply, for example, Eq. (1) in H by A2
du

dt
and get

(
A2

du

dt
,
du

dt

)
+

1
2

d

dt
(A1A2u,A2u) =

(
f,A2

du

dt

)
.

Taking into account (3) and
(

f,A2
du

dt

)
≤

(
A2

du

dt
,
du

dt

)
+

1
4
(A2f, f),
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we obtain the inequality

d

dt
‖A2u‖2A1

≤ 1
2
‖f‖2A2

.

For it we get the desired a priori estimate

‖A2u(t)‖2A1
≤ ‖A2u0‖2A1

+
1
2

∫ t

0

‖f(θ)‖2A2
dθ, (4)

which ensures the stability of the solution of the problem (1)–(3) with respect
to the initial data and right-hand side.

Along with (4) we also present an a priori estimate in a more simple norm.
Multiplying Eq. (1) in H by A2u, we get

1
2

d

dt
(A2u, u) + (A1A2u,A2u) = (f,A2u).

Taking into account

(f,A2u) ≤ (A1A2u,A2u) +
1
4
(A−1

1 f, f),

we obtain
d

dt
‖u‖2A2

≤ 1
2
‖f‖2

A−1
1

.

This inequality implies the a priori estimate

‖u(t)‖2A2
≤ ‖u0‖2A2

+
1
2

∫ t

0

‖f(θ)‖2
A−1

1
dθ (5)

for the solution of the problem (1)–(3).
The symmetrization of Eq. (1) can be performed not only by multiplying by

the operator A2. The second approach is associated with multiplying by A−1
1 .

In this case from (1) we obtain the equation

A−1
1

du

dt
+ A2u = A−1

1 f(t), 0 < t ≤ T,

for which we can obtain a priori estimates slightly different from (4), (5).

3 Scheme with Weights

For the numerical solution of the differential-operator problem (1), (2) we use
the usual scheme with weights [1]. We define a uniform in time grid

ωτ = ωτ ∪ {T} = {tn = nτ, n = 0, 1, ..., N, τN = T}

with time step τ > 0 and denote yn = y(tn), tn = nτ . When using a two-level
scheme, Eq. (1) is approximated by the following difference equation

yn+1 − yn

τ
+ A1A2(σyn+1 + (1 − σ)yn) = ϕn, (6)
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where σ is a numerical parameter (weight), which usually satisfies 0 ≤ σ ≤ 1.
Concerning ϕn, one possibility is to set ϕn = f(σtn+1 + (1 − σ)tn). Taking into
account (2) we supplement (6) with the initial condition

y0 = u0. (7)

A detailed study of the two- and three-level schemes with weights (e.g., nec-
essary and sufficient conditions for stability, the choice of the norm) for problems
with self-adjoint operators was held in [2,3]. Taking into account the fact that, as
explained above, the Eq. (1) can be symmetrized, these results can be used also in
the analysis of difference schemes for the problem (1)–(3). Here, we restrict our-
selves to the simplest estimates of the stability of the operator-difference scheme
(6), (7). The estimates (4), (5) for the solution of the differential problem (1)–(3)
will be our starting point.

Theorem 1. For σ ≥ 1/2, the operator-difference scheme (6), (7) is uncondi-
tionally stable in HD, D = A2A1A2, Q, where

Q = A2 +
(

σ − 1
2

)
τA2A1A2,

and the solution satisfies the a priori estimates

‖A2y
n+1‖2A1

≤ ‖A2u0‖2A1
+

1
2

n∑

k=0

τ‖A2ϕ
k‖2Q−1 , (8)

‖yn+1‖2Q ≤ ‖u0‖2Q +
1
2

n∑

k=0

τ‖ϕk‖2
A−1

1
. (9)

After symmetrization, using the introduced notation, we can write the scheme
(6) as

Q
yn+1 − yn

τ
+ A2A1A2

yn+1 + yn

2
= A2ϕ

n. (10)

We multiply this equation in H by 2(yn+1 − yn) and obtain the equality

2τ

(
Q

yn+1 − yn

τ
,
yn+1 − yn

τ

)

+(A1A2y
n+1, A2y

n+1) − (A1A2y
n, A2y

n) = 2τ

(
A2ϕ

n,
yn+1 − yn

τ

)
.

Using the following inequality
(

A2ϕ
n,

yn+1 − yn

τ

)
≤

(
Q

yn+1 − yn

τ
,
yn+1 − yn

τ

)

+
1
4

(
Q−1A2ϕ

n, A2ϕ
n
)
,
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we get the estimate

‖A2y
n+1‖2A1

≤ ‖A2y
n‖2A1

+
τ

2
‖A2ϕ

n‖2Q−1 .

This inequality leads to the desired a priori estimate (8).
The estimate (9) is proved in a similar way. We multiply Eq. (10) in H by

τ(yn+1 + yn) and obtain

(Qyn+1, yn+1) − (Qyn, yn) +
τ

2
(A1A2(yn+1 + yn), A2(yn+1 + yn))

= τ(ϕn, A2(yn+1 + yn)).

For the right-hand side we have

(ϕn, A2(yn+1 + yn)) ≤ 1
2
(A1A2(yn+1 + yn), A2(yn+1 + yn)) +

1
2
(A−1

1 ϕn, ϕn).

Thus, at t = tn+1 we obtain the estimate

‖yn+1‖2Q ≤ ‖yn‖2Q +
τ

2
‖ϕn‖2

A−1
1

,

which implies (9).
The estimates (8), (9) are grid analogues of estimates (4), (5) and ensure

unconditional stability of difference scheme with weights (6), (7) under natural
restriction σ ≥ 1/2. Considering the corresponding problem for the error, we
make sure that the solution of the operator-difference problem (6), (7) converges
to the solution of the differential-difference problem (1), (2) in HD for σ ≥ 1/2
with O((2σ − 1)τ + τ2). For σ = 1/2 we get second order of convergence with
respect to τ , for the other values of σ we get first order convergence.

In the scheme with weights (6), (7) the transition to a new time level is
provided by solving the problem

(E + στA1A2)yn+1 = ψn, (11)

i.e. by inverting the operator E + στA1A2. This discrete problem, in general, is
much more complicated to solve, compare to

(E + στAα)yn+1 = ψn
α, (12)

where α = 1 or α = 2. The problem (11) is more difficult to solve, in particular,
because we have to invert a non-self-adjoint operator. In this situation a reason-
able task is to try to construct regularized schemes, based on solving the more
simple problem, (12).

4 Regularized Scheme

We are interested in a scheme, for which the implicit approximation is associated
with the operator A1 (α = 1 in (12)). In this case the operator A2 has to be
bounded.

A2 ≤ Δ2E. (13)



Operator-Difference Schemes with a Factorized Operator 77

In this particular case we suppose that the operator A1 in (1), (2) is the main
operator (and more easy to invert), while the operator A2 is more difficult to
invert.

For the numerical solution of the problem (1)–(3), (13) we use the scheme

(E + στA1)
yn+1 − yn

τ
+ A1A2y

n = ϕn. (14)

In this case we can only rely on the first order of convergence with respect to
time for any value of the weight σ.

The scheme (14) can be considered as a regularized scheme

yn+1 − yn

τ
+ (E + στA1)−1A1A2y

n = ϕn. (15)

In accordance with the principle of regularization of operator-difference schemes
[1] the stability is ensured by a multiplicative perturbation of the operator A1.
The main result of stability of this scheme is formulated in the following theorem.

Theorem 2. For σ ≥ Δ2/2 the operator-difference scheme (7), (13), (15) is
unconditionally stable in HD, D = Ã,Q, where

Ã = A2(E + στA1)−1A1A2, Q = A2 − 1
2
τÃ > 0.

At the same time the solution satisfies the a priori estimates

‖yn+1‖2
Ã

≤ ‖u0‖2Ã +
1
2

n∑

k=0

τ‖A2ϕ
k‖2Q−1 , (16)

‖yn+1‖2Q ≤ ‖u0‖2Q +
1
2

n∑

k=0

τ‖A2ϕ
k‖2

Ã−1 . (17)

The proof is similar to that of Theorem1. After symmetrization from (15)
we get

A2
yn+1 − yn

τ
+ A2(E + στA1)−1A1A2y

n = A2ϕ
n.

Taking into account the introduced notation, we write this scheme as

Q
yn+1 − yn

τ
+ Ã

yn+1 + yn

2
= A2ϕ

n. (18)

The most important element of our consideration is associated with the proof
of positive definiteness of the operator Q. We have

Q = A2 − 1
2
τÃ = A2 − 1

2
τA2(E + στA1)−1A1A2.

Taking into account that for the positive definite operator A1

(E + στA1)−1A1 <
1
στ

E,
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and (13) we obtain

Q > A2 − 1
2σ

A2
2 ≥

(
1 − Δ2

2σ

)
A2.

Thereby, for σ ≥ Δ2/2 we have Q > 0.
Multiplying Eq. (18) scalarly in H by 2(yn+1 − yn), we get

‖yn+1‖2
Ã

− ‖yn‖2
Ã

+ 2τ

∥
∥
∥
∥

yn+1 − yn

τ

∥
∥
∥
∥

2

Q

= 2τ

(
A2ϕ

n,
yn+1 − yn

τ

)
.

In the standard way we obtain the inequality

‖yn+1‖2
Ã

≤ ‖yn‖2
Ã

+
τ

2
‖A2ϕ

n‖2Q−1 ,

which implies the estimate (16).
Similarly, multiplying (18) scalarly in H by τ(yn+1 + yn), we get

‖yn+1‖2Q − ‖yn‖2Q +
τ

2
‖yn+1 + yn‖2

Ã
= τ(A2ϕ

n, yn+1 + yn).

Estimating the right-hand side in the standard way, we obtain the inequality

‖yn+1‖2Q ≤ ‖yn‖2Q +
τ

2
‖A2ϕ

n‖2
Ã−1 ,

which leads to the estimate (17).
Special attention should be paid to the case when the main operator is A2,

and for the operator A1 we have (see (13)) the inequality

A1 ≤ Δ1E. (19)

In this case, we focus on the regularization of the operator A2. Similar to (15),
we use regularized scheme:

yn+1 − yn

τ
+ A1(E + στA2)−1A2y

n = ϕn. (20)

The computational implementation of this scheme is based on the solution of
the problem (12) for α = 2. The following assertion holds.

Theorem 3. For σ ≥ Δ1/2 the operator-difference scheme (7), (19), (20) is
unconditionally stable in HD, D = Ã,Q, where

Ã = (E + στA2)−1A2, Q = A−1
1 − 1

2
τÃ > 0.

and the solution satisfies the a priori estimates

‖yn+1‖2
Ã

≤ ‖u0‖2Ã +
1
2

n∑

k=0

τ‖A−1
1 ϕk‖2Q−1 , (21)

‖yn+1‖2Q ≤ ‖u0‖2Q +
1
2

n∑

k=0

τ‖A−1
1 ϕk‖2

Ã−1 . (22)
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The proof is based on a slightly different symmetrization of scheme (20). We
multiply it by A−1

1 and pass from (20) to the scheme

A−1
1

yn+1 − yn

τ
+ (E + στA2)−1A2y

n = A−1
1 ϕn.

Using the new notation this scheme takes the form

Q
yn+1 − yn

τ
+ Ã

yn+1 + yn

2
= A−1

1 ϕn. (23)

For σ ≥ Δ1/2 we have Q > 0. For the scheme (23) the following inequality holds

‖yn+1‖2
Ã

≤ ‖yn‖2
Ã

+
τ

2
‖A−1

1 ϕn‖2Q−1 ,

‖yn+1‖2Q ≤ ‖yn‖2Q +
τ

2
‖A−1

1 ϕn‖2
Ã−1 .

This leads us to the estimates (21), (22) for the difference scheme (7), (19), (20).
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Computational Identification of the Right
Hand Side of the Parabolic Equations

in Problems of Filtration
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Abstract. In this paper, we will consider the right-hand side of a par-
abolic equation in a multidimensional domain, which depends only on
time. For the numerical solution of the initial boundary value problem, a
homogeneous implicit differential scheme is used. The problem at a par-
ticular time level is solved on the basis of a special decomposition into
two standard elliptic boundary value problems. We discuss the results of
numerical experiments for a model problem of filtration theory.

Keywords: Inverse problem · Identification of the coefficient · Parabolic
partial differential equation · Difference scheme

1 Introduction

In this paper, we consider the inverse problem of determination of dependence of
the parabolic equation right-hand side on time with known values of the solution
at an interior point in the entire range of time. The problem is solved by finite
difference method using an unconditionally stable homogeneous purely implicit
difference scheme.

The non-classical problem on the new time layer is solved using the solution
decomposition, which leads to the solution of two conventional elliptic problems.
The facilities of the proposed computational algorithm are illustrated by numeri-
cal experiments carried out on a model non-stationary problem of filtration with
a single well.

2 Problem Statement

We consider the two-dimensional problem for a parabolic equation defined in a
rectangular domain

Ω = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.

c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 80–87, 2015.
DOI: 10.1007/978-3-319-26520-9 8
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Let us formulate the direct problem as follows. We search function u(x, t), x ∈ Ω,
0 � t � T, T > 0, which satisfies the parabolic equation

∂u

∂t
= div(k(x)grad(u)) +

M∑

i=1

qi(t)fi(x), x ∈ Ω, 0 < t � T, (1)

and the initial and boundary conditions:

k(x)
∂u

∂n
= 0, x ∈ ∂Ω, 0 < t � T, (2)

u(x, 0) = u0(x), x ∈ Ω, (3)

where n is the outward normal to ∂Ω. Here, ∂Ω is the boundary of Ω. The for-
mulation (1)–(3) corresponds to a direct problem, in which all input parameters
are known, i.e., the functions k(x), u0(x), qi(t), fi(x), i = 1, ...,M are given.
Now, we consider the inverse problem in which the coefficients qi(t), i = 1, ...,M
in (1) must be determined. To find them we define additional conditions in the
form of

u(x∗
i , t) = pi(t), x∗

i ∈ Ω, i = 1, ...,M, 0 < t � T. (4)

Thus, we have formulated the inverse problem of finding the function u(x, t),
q(t)i, i = 1, ...,M , satisfying Eqs. (1)–(3) with additional conditions (4) and
there are reasons to consider this problem as well-posed.

The initial boundary value problem (1)–(4) is a mathematical model of the
flow of a weakly compressible liquid in an elastically deformable porous medium
with M wells, which are point sources/sinks with coordinates x∗

i , and given
functions

fi(x) = δ(x − x∗
i ), i = 1, ...,M,

where δ(x−x∗
i ) is the Dirac delta function. In this case, the values of bottom hole

pressures pi(t) for each well are given, and the well debits must be determined
qi(t), i = 1, ...,M . The undoubted advantage of this formulation of the problem
is the possibility of constructing homogeneous differential schemes.

In this work, we consider questions of construction of computational algo-
rithm for solution of the inverse problem and we formulate the conditions of
algorithm applicability. In addition, under more strict conditions on the para-
meters of the problem we obtain an estimate of stability of the approximate
solution, based on which, taking into account the linearity of the inverse prob-
lem, we show the convergence of the approximate solution to the exact solution
of the differential problem.

3 Algorithm for Solving the Direct Problem

Numerical solution of the parabolic problem (1)–(3) is carried out using the
finite-difference method. For this, in Ω we introduce the uniform rectangular
grid ω:

ωα =
{

xα = iαhα, iα = 1, 2, ..., Nα −1, Nαhα = lα

}
, α = 1, 2, ω = ω1 ×ω2.
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We introduce the Hilbert space of the grid functions y, v ∈ H = L2 (ω), in which
the inner product and the norm are defined as follows:

[y, w] ≡
∑

x∈ω

y (x) w (x) �1�2, ‖y‖ ≡
√

[y, y],

where �αi, α = 1, 2 are the grid steps in the corresponding directions:

�αi =

{
hα, i = 1, 2, ..., Nα − 1,

hα/2 i = 0, Nα.

For a grid analogue of the two-dimensional elliptic operator A we use the additive
representation:

A =
2∑

α=1

Aα, α = 1, 2, x ∈ ω, (5)

where Aα is a discrete analogue of the differential operator of the original prob-
lem (1)–(2) for α direction, where α = 1, 2.

Under the assumption of sufficient smoothness of the coefficient k(x) the grid
operator A1 in accordance with homogeneous Neumann boundary condition (2)
can be written as follows:

A1y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
h1

k(0.5h1, x2)
y(h1, x2) − y(0, x2)

h1
, x2 ∈ ω2,

1
h1

(
k(x1 + 0.5h1, x2)

y(x1 + h1, x2) − y(x1, x2)
h1

+k(x1 − 0.5h1, x2)
y(x1, x2) − y(x1 − h1, x2)

h1

)
, x ∈ ω,

2
h1

k(l1 − 0.5h1, x2)
y(l1, x2) − y(l1 − h1, x2)

h1
, x2 ∈ ω2.

(6)

Similarly, we construct the grid operator A2. The direct solutions show self-
adjointness and positive definition of operators Aα:

Aα = A∗
α � 0, α = 1, 2.

The grid operator A = A1 + A2 approximates the corresponding differential
operator with an accuracy of O

(
|h|2

)
, as in the differential case, are self-adjoint

and positive definite in H:
A = A∗ � 0. (7)

Taking into account (7), we obtain the corresponding a priori estimate for the
solution of the boundary value problem (1)–(3).

After the approximation in space of the problem (1)–(3) we come to the
Cauchy problem:

dy

dt
+ Ay =

M∑

i=1

qi(t)fi(x), 0 < t � T, (8)
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y(0) = u0. (9)

For the solution of the Cauchy problem (8), (9) we define the a priori estimate
that shows the stability of solutions according to the initial data and the right-
hand side

‖y(t)‖ � ‖u0‖ +
M∑

i=1

‖fi‖
t∫

0

|p(θ)|dθ. (10)

It should be noted that the estimate (10) holds also in the Banach space of grid
functions L∞(ω), in which

‖ · ‖ = ‖ · ‖∞, ‖y‖∞ ≡ max
x∈ω

|y|.

This fact can be established on the basis of the maximum principle for grid
functions and relevant comparison theorems, taking into account the non-strict
diagonal dominance of the matrix (operator) A. We will use a uniform grid in
time: tn = nτ, n = 0, 1, ..., N, τN = T and denote yn = y(tn), tn = nτ . Let’s
start the time discretization for the direct problem (8), (9). For the approximate
solution of the initial-boundary value problem for the parabolic Eq. (1) we use
an unconditionally stable purely implicit scheme

yn+1 − yn

τ
+ Ayn+1 =

M∑

i=1

qn+1
i fi, n = 0, 1, ..., N − 1. (11)

The initial condition (9) gives
y0 = u0. (12)

The grid solution of the problem (11), (12) satisfies the following evaluation in
a Banach space L∞(ω):

‖yn+1‖ � ‖yn‖ + τ
M∑

i=1

‖fi‖|qn+1
i |, n = 0, 1, ..., N − 1. (13)

The estimate (13) acts as a grid analogue of (11) for the solution of problem
(8)–(10). To prove (13) we can apply the maximum principle for the grid func-
tions. The second possibility of obtaining a priori estimates of stability (13) is
based on introducing the concept of logarithmic norm.

4 Algorithm for Solving the Inverse Problem

After a full discretization (in space and time) of the direct problem (1)–(3) we
can proceed to the identification of coefficients qi(t), i = 1, ...,M of the right-
hand side. Due to the additional conditions (4) in the internal nodes x∗

i ∈ ω we
have

yn+1(x∗
i ) = pn+1

i , i = 1, ...,M, n = 0, 1, ..., N − 1. (14)
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For approximate solution of the problem (11), (12), (14) at the new time
level we will use the decomposition proposed in [11]:

yn+1(x) = vn+1(x) +
M∑

i=1

qn+1
i wi(x), x ∈ ω. (15)

Another variant of the decomposition, which is applicable to a narrower class
of inverse problems, was considered earlier in works [8,9]. To determine vn+1(x)
the following homogeneous grid equation is solved

vn+1 − yn

τ
+ Avn+1 = 0, n = 0, 1, ..., N − 1. (16)

The grid functions wn+1
i (x) are determined by the operator equations (solving

boundary value problems for elliptic equations with finite right-hand sides)

1
τ

wi + Awi = fi, i = 1, ...,M. (17)

When using the decomposition (15)–(17) the Eq. (11) is solved at any pn+1
i ,

i = 1, ...,M . To determine them we involve additional conditions (14). Thus,
the substitution of (15) into (14) gives, in general, a system of linear algebraic
equations

M∑

i=1

qn+1
i wi(x∗

i ) = pn+1 − vn+1(x∗
i ), i = 1, ...,M. (18)

It should be noted that the solution of the operator Eq. (17), which is the second
boundary value problem for an inhomogeneous elliptic equation in the case of
problems of filtration theory, is a finite function in a small neighborhood of wells.
Therefore, neglecting the mutual influence of wells, we have explicit formulas for
determining well debits

qn+1
i =

pn+1 − vn+1(x∗
i )

wi(x∗
i )

, i = 1, ...,M. (19)

The fundamental point of applicability of this algorithm is associated with the
condition wn+1

i (x∗
i ) �= 0. The grid function wn+1

i (x∗
i ) is defined as solution of the

grid elliptic Eq. (17). The property of preservation sign wn+1
i (x∗

i ) is satisfied, in
particular, when the following condition is fulfilled

fi(x) � 0, x ∈ Ω, i = 0, 1, ...,M,

and we obtain
‖fi‖ > 0, i = 0, 1, ...,M.

In the case of filtration theory, these conditions are always satisfied, moreover

‖fi‖ = 1, i = 0, 1, ...,M.

Therefore, no doubts about applicability of the proposed computational algo-
rithm for filtration problems.
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5 Computational Experiments

To demonstrate the efficiency of the proposed computational algorithm for iden-
tification of the right-hand side of a parabolic equation, we consider a model
non-stationary problem of filtration of weakly compressible liquid in an elas-
tically deformable porous medium with a single well drilled in the center of
the domain. Below we present the results of solving the problem in a square
(l1 = l2 = 10). Assume, that

k(x) = 1, f(x) = δ(x − x∗), u0(x) ≡ 1, x ∈ Ω, x∗ = (l1/2, l2/2).

For the synthetic experiment the coefficient q(t) is taken in the form of

q(t) =
0.5 sin(πt)

1. + eg(t−0.6T )
, t ∈ (0, T ]. (20)

For large values of the parameter g the function q(t) is close to a discontinuous
function with discontinuity at t = 0.6 T . In the examples below we set T = 1. To
investigate the accuracy of the identification of well debit using a given bottom
hole pressure at each time steps, we first solve the direct problem, where we
determine the dependence of the bottom hole pressure p(t) from time with a
given debit q(t), t ∈ (0, T ].

The direct problem is solved using different spatial and time grids, the num-
ber of nodes varies as n = N1 = N2 = 50, 100, 200, 400; N = 50, 100, 200.
Figure 1 shows the dynamics of bottom hole pressure p(t) for various spatial
steps (h1 = h2 = 0.2, 0.1, 0.05, 0.025) and time steps (τ = 0.01, N = 100)
with g = 20 (left) and g = 1000 (right).

Fig. 1. The bottom hole pressure p(t) for different n

Since the direct problem is sufficiently difficult it is not possible to determine
the exact bottom hole pressure on such coarse spatial grids. It makes sense to
examine the accuracy of the identification of less smooth coefficients on the right-
hand side of parabolic equations. Within the framework of synthetic experiment
we investigate the inverse problem with g = 1000 (20).
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Fig. 2. The bottom hole pressure p(t) for different N

Thus, we simulate the situation of the approximate solution of the inverse
problem with a discontinuous coefficient. Figure 2 shows similar graphs of bottom
hole pressure for different time grids τ = 0.02, 0.01, 0.005, N = 50, 100, 200 and
the same spatial grid n = N1 = N2 = 200. From these graphs it is clear that
there is no significant effect of the time grid on the accuracy of the solution of
direct problems, even when the well debit q(t) is close to a discontinuous function
with a discontinuity at t = 0.6 T . The obtained values of bottom hole pressure
are used to verify the accuracy of the proposed computational algorithm.

Fig. 3. The solution error of inverse problem

Figure 3 shows results of the numerical identification of well debit q(t)
throughout the range of the time t ∈ (0, T ], using the proposed computational
algorithm for different values of the constants g = 20, 1000 with N1 = 100, N2 =
100, N = 100. It shows the error of determining the well debit at a given time
interval. This error is estimated as z(t) = qh(t)− q(t), where qh(t) is the approx-
imate solution, and q(t) is the exact value given by analytical formula (20). The
graphs show a very good identification accuracy of the proposed algorithm. It
should be noted that the decrease in half of the time step increases the accuracy
by one order.

The proposed computational algorithm (15)–(19) is well defined what is
justified by the fact that the right-hand side of Eq. (19) is nonsingular
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(the denominator is always different from zero by construction). The auxil-
iary function w(x) for different values of the time step τ = 0.02 (N = 50)
τ = 0.0025 (N = 400) on the spatial grid with N1 = N2 = 200 at the observa-
tion point w(x∗) is significantly different from zero, so the bottom hole pressure
q(t) is bounded above.
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Abstract. This work is devoted to the development and testing of
algebraic multigrid based preconditioners for the linearized coupled
fluid-structure interaction problem using low order finite element basis
functions, and the compressible and nearly incompressible elasticity sub-
problems in mixed displacement-pressure form using higher-order finite
element basis functions. The preconditioners prove to be robust with
respect to the mesh size, time step size, and other material parameters.

Keywords: Preconditioner · FSI · AMG · Taylor-Hood element

1 Introduction

The aim of this work is to construct and test efficient preconditioners for the
coupled fluid-structure interaction (FSI) problems, which turn out to be robust
with respect to discretization and material parameters. We use an approach
based on the LDU block factorization of the coupled system matrix, that follows
the blocks of multiphysics. Such a FSI preconditioner demands efficient solution
methods for sub-problems. For finite element equations using low (equal) order
basis functions, a class of algebraic multigrid (AMG) methods [3,10] used for
the discrete elliptic and saddle point sub-problems in FSI have been reported in
[6,11,13]. Using higher-order (and mixed-order) basis functions in FSI simulation
has advantages with respect to the inf-sup stable discretization [2]. Meanwhile,
it poses a number of challenges for the solution method to the discrete sub-
problems, that is reported in this work. The remainder of the paper is organized
as follows. In Sect. 2, we present the FSI system arising from the discretization
and linearization of the model FSI problem, and the saddle point system from
the discrete elasticity sub-problem for compressible and nearly incompressible
materials using the Taylor-Hood element. The FSI preconditioners and the AMG
preconditioner for the sub-problem are described in Sect. 3. In Sect. 4, we show
the performance of the preconditioners for both the coupled FSI and saddle point
systems. Finally, some conclusions are drawn in Sect. 5.

c© Springer International Publishing Switzerland 2015
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2 Preliminaries

2.1 The Coupled FSI System

We consider the coupled FSI system in strong form on the reference domain
Ω0 ⊂ R

3 composed of the fluid and structure sub-domains Ω̄0 = Ω̄0
f ∪ Ω̄0

s ,
Ω0

f ∩ Ω0
s = ∅: Find the fluid domain displacement df : Ω̄0

f �→ R
3, fluid velocity

u : Ω̄0
f �→ R

3, fluid pressure p : Ω̄0
f �→ R and structure displacement ds : Ω̄0

s �→ R
3

for t ∈ (0, T ] such that

− Δdf = 0 in Ω0
f ,(1a)

df = ds on Γ 0,(1b)
ρfJf∂tu + ρfJf ((u − wf ) · F−1

f ∇)u − ∇ · (Jfσf (u, p)F−T
f ) = 0 in Ω0

f , (1c)

∇ · (ρfJfF−1
f u) = 0 in Ω0

f ,(1d)

ρs∂ttds − ∇ · (FsS) = 0 in Ω0
s , (1e)

u = ∂tds, Jfσf (u, p)F−T
f nf + FsSns = 0 on Γ 0, (1f)

where Γ 0 = ∂Ω0
f ∩∂Ω0

s denotes the interface, Ff = I+∇df and Fs = I+∇ds the
fluid and structure deformation gradient tensor, respectively, Jf = detFf and
Js = detFs their corresponding determinants, ρf and ρs the fluid and structure
density, respectively, nf and ns the fluid and structure outerward unit normal
vector, respectively, σf (u, p) := μ(∇u+∇Tu)−pI the Cauchy stress tensor with
the dynamic viscosity term μ, S = λstr(Es)I +2μsEs the second Piola-Kirchhoff
stress tensor for the St. Venant - Kirchhoff material, with Es = 0.5(FT

s Fs − I)
representing the Green-Lagrange strain tensor with the Lamé constant λs and
the shear modulus μs. To complete the system, proper boundary and initial
conditions are needed; see more details in [5,7].

As in [5], for the linearization, we use Newton’s method. For the time
discretization, we use the first order implicit Euler scheme and a first order
Newmark-β scheme for the fluid and structure sub-problem, respectively. For
the space discretization, we use the stabilized P1 − P1 finite element discretiza-
tion with standard hat basis functions for both the fluid velocity and pressure
interpolations, and the P1 finite element discretization with the standard hat
function for both the fluid and structure displacement interpolations. After lin-
earization and discretization, we obtain the following linearized coupled FSI
system of finite element equations at each Newton iteration:

Kx = b, (2)

where

K =

⎡

⎣
Am Ams 0
0 As Asf

Afm Afs Af

⎤

⎦ , x =

⎡

⎣
xm

xs

xf

⎤

⎦ , b =

⎡

⎣
bm
bs
bf

⎤

⎦ , (3)

with the stiffness matrices Am, As and Af for the mesh movement, structure
and fluid sub-problems on the diagonal and the coupling on the off-diagonal,
xm, xs and xf being the corrections of the fluid domain displacement, structure
displacement, and the fluid velocity and pressure, respectively; see [5] for details.
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2.2 The Linear Elasticity Sub-problem in Mixed Form

To study the robustness and efficiency of the AMG preconditioner for the discrete
sub-problems using higher-order basis functions, we consider the (stationary)
linear elasticity sub-problem in the classical mixed displacement-pressure form:
Find the displacement ds : Ω̄0

s �→ R
3 and pressure ps : Ω̄0

s �→ R such that

− ∇ · (2με(ds)) + ∇ps = 0 in Ω0
s , (4a)

−∇ · ds − (1/λ)ps = 0 in Ω0
s , (4b)

with the boundary conditions ds = gD on ΓD and (2με(ds) − psI)n = gN on
ΓN , and ε(ds) = (∇ds + ∇T ds). In this mixed displacement-pressure form, the
displacement and pressure are associated by the relation ps = −λ∇ · us; see,
e.g., [1]. In the limit case λ → +∞, the system (4) goes to the Stokes case,
that somehow covers part of the fluid sub-problem. The application of such a
model to FSI has been reported in [11] for equal order mixed finite element
discretization. Here we consider robust and efficient AMG preconditioners for
the finite element equations using the classical Taylor-Hood element, that fulfills
the inf − sup stability condition; see, e.g., [2].

After discretization, the following saddle point system arises:

[
A BT

B −C

]

︸ ︷︷ ︸
=:K

[
u
p

]
=

⎡

⎣
Kll KT

ql BT
ll

Kql Kqq BT
lq

Bll Blq −Cll

⎤

⎦

⎡

⎣
ul

uq

p
l

⎤

⎦ =

⎡

⎢
⎣

f
l

f
q

g
l

⎤

⎥
⎦ =

[
f
g

]
. (5)

For convenience of presentation, as suggested in [12], we have reordered the
system according to the linear and quadratic degrees of freedom (DOF), where
the subscripts l and q denote the DOF associated to the linear and quadratic
basis functions, respectively.

3 Preconditioners

3.1 A Preconditioner for the FSI Problem

Based on the complete LDU factorization of the system matrix K, we propose
the following FSI preconditioner K̂ for (2):

K̂ = L̂D̂Û :=

⎡

⎣
I 0 0
0 I 0

AfmÂ−1
m

ˆ̃AfsÂ
−1
s I

⎤

⎦

⎡

⎣
Âm 0 0
0 Âs 0
0 0 Ŝ

⎤

⎦

⎡

⎣
I Â−1

m Ams 0
0 I Â−1

s Asf

0 0 I

⎤

⎦

=

⎡

⎢
⎣

Âm 0 0
0 Âs 0

Afm
ˆ̃Afs Ŝ

⎤

⎥
⎦

⎡

⎣
I Â−1

m Ams 0
0 I Â−1

s Asf

0 0 I

⎤

⎦ ,

(6)

where Âm, Âs and Ŝ are algebraic multigrid (AMG) preconditioners [4] for
the sub-problems of mesh movement Am, structure As and modified fluid
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S = Af − ˆ̃Afs
ˆ̂
A−1

s Asf , respectively. As in [7], the Schur complement S is

constructed by choosing ˆ̂
As = diag[As] and ˆ̃Afs = Afs − Afm

ˆ̂
A−1

m Ams with
ˆ̂
Am = diag[Am], where “diag” denotes the block diagonal of the correspond-
ing matrix. Since the system matrix K is unsymmetric and indefinite, we use
the preconditioned GMRES method [9] as outer iteration to solve (2). In each
preconditioning step, we have to evaluate r = K̂−1b for a given vector b, that
requires the action of the inverses of Âm and Âs and Ŝ to some vector that is
nothing but an AMG W-cycle with a zero initial guess. In particular, we use the
AMG [3] for the mesh movement and structure sub-problems, and the AMG [10]
for the fluid sub-problem, respectively.

3.2 An AMG Preconditioner for the Saddle Point Sub-problems

We construct an AMG preconditioner for the saddle point systems using the
classical Taylor-Hood element. In this AMG method, we propose a new strat-
egy for coarsening the linear and quadratic DOF which avoids mixing different
orders of DOF on coarse levels. The idea was inspired by [10], where a separation
coarsening strategy has been considered for the saddle point problem, in order
to avoid mixing of the velocity and pressure DOF on coarse levels. In our new
strategy, we further separate the linear and quadratic DOF of displacement. The
interpolation matrix is easy to construct: We first construct the graph connec-
tivity of the matrix, and then use the coarsening strategy [3] to construct the
interpolation matrices for the linear and quadratic DOF of the displacement, and
the linear DOF of the pressure. More precisely, we construct the prolongation
matrix P l

l+1 from the coarse level l + 1 to the next finer level l in form of

P l
l+1 =

⎡

⎣
I ll+1

J l
l+1

H l
l+1

⎤

⎦ , (7)

where the prolongation matrices, I ll+1 : (R3)nl+1 → (R3)nl and J l
l+1 :

(R3)ml+1 → (R3)ml are defined for the linear and quadratic displacement DOF,
respectively, with nl and ml being the number of linear and quadratic displace-
ment DOF on level l, respectively, H l

l+1 : Rkl+1 → R
kl for the pressure DOF,

with kl being the number of pressure DOF on level l. The restriction matrix
from the finer level l to the next coarser level l + 1 is constructed as (P l

l+1)
T .

The system matrix Kl+1 on the level l+1 is constructed by the Galerkin projec-
tion method, i.e.,Kl+1 = (P l

l+1)
TKlP

l
l+1. For the smoothing procedure, we have

used the Braess-Sarazin-type smoother [14]. To test the robustness of the AMG
preconditioner, we use the V-cycle preconditioned GMRES method.

4 Numerical Results

4.1 Numerical Results for a FSI Model Problem

The computational FSI domain is a channel with an obstacle inside, as illustrated
in Fig. 1. The x-, y- and z-coordinates represent the lateral, anterior-posterior,
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Fig. 1. The configuration of the geometry (left), the fluid mesh (middle) and the struc-
ture mesh (right).

and the vertical directions. respectively. The channel has the size [0, 12] cm,
[0, 2] cm and [0, 2] cm, in the x-, y- and z-direction, respectively. The obstacle
is composed of two quarter cylinders with radius 0.8 cm. When the flow goes
from the left to right in the lateral direction, the FSI interaction occurs on
the obstacle surface. We uses Netgen [8] to generate the finite element meshes
with the conforming grids on the interface; see a mesh example in Fig. 1. The
information of the number of nodes (#Nod), tetrahedral elements (#Tet), and
degrees of freedom (#Dof) on the coarse mesh (C), intermediate mesh (I), fine
mesh (F) and very fine mesh (V) is summarized in Table 1. In all the numerical
tests, we set the relative residual error 1.0e − 09 in corresponding norms as
stopping criteria. We use the nonlinear isotropic and homogeneous hyperelastic
model of the St. Venant - Kirchhoff material, where the elastic constants are
λs = 1.73e+06 dyne/cm2 and μs = 1.15e+06 dyne/cm2. The density of the
structure is ρs = 1 g/cm3. The fluid kinematic viscosity is ν = 0.035 cm2/s. We
set the fluid density ρf ∈ {1.146, 0.1146, 0.01146, 0.001146} g/cm3, that covers
a large range of flows, e.g., the water, blood and air flow. The structure is fixed
on the boundaries. The inflow boundary condition is u = 30 cm/s on Γin (the
left hand side of the channel). For the outflow on the right hand side of the
channel, we use the zero Neumann boundary condition. On the rest, we use
homogeneous Dirichlet boundary condition. We set the time step size Δt = 0.125
ms and 0.0625 ms. From the iteration numbers of the preconditioned GMRES
method (#It (Pre GMRES) ) in Tables 2 and 3, we observe the robustness of the
preconditioners with respect to the mesh size, time step size and the material
parameters, i.e., the iteration numbers stay in a similar range. In addition, the
computational CPU time (measured in seconds (s)) scales very well with respect
to the number of DOFs. For more detailed numerical study, we refer to [7].

Table 1. Four levels of finite element meshes.

#Nod #Tet #Dof

Coarse mesh (C) 1307 4880 5781

Intermediate mesh (I) 8347 39040 37295

Fine mesh (F) 59155 312320 265811

Very fine mesh (V) 444323 2498560 1667778
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Table 2. The iteration numbers of the preconditioned GMRES (#It (Pre GMRES))
and the CPU time in seconds (s) using Δt = 0.125 ms.

ρf Level

C I F V

1.146 3 (4.7 s) 3 (38.9 s) 3 (328.5 s) 3 (2644.4 s)

0.1146 3 (4.7 s) 2 (30.9 s) 3 (327.5 s) 3 (2640.2 s)

0.01146 2 (3.7 s) 2 (31.5 s) 2 (261.8 s) 2 (2109.2 s)

0.001146 2 (3.9 s) 2 (31.2 s) 2 (263.5 s) 2 (2115.2 s)

Table 3. The iteration numbers of the preconditioned GMRES (#It (Pre GMRES) )
and the CPU time in seconds (s) using Δt = 0.0625 ms.

ρf Level

C I F V

1.146 3 (4.7 s) 3 (39.2 s) 3 (332.5 s) 3 (2645.2 s)

0.1146 3 (4.7 s) 2 (31.3 s) 3 (332.0 s) 3 (2636.5 s)

0.01146 2 (3.8 s) 2 (31.4 s) 2 (263.7 s) 3 (2664.7 s)

0.001146 2 (3.7 s) 2 (31.0 s) 2 (262.6 s) 2 (2141.8 s)

4.2 Numerical Results for Compressible and Nearly Incompressible
Elasticity Model Problems

In order to test the robustness of our proposed AMG preconditioner for the sad-
dle point sub-problems in Sect. 3.2, we consider a unit cube (0, 1)3 as the compu-
tational domain for the linear elasticity problem. The domain is subdivided into
tetrahedra with four levels of mesh refinement L1 − L4. The number of tetrahe-
dron (#Tet) and nodes (#Nodes), and the total number of DOF of the saddle

Fig. 2. The visualization of the fluid velocity streamlines and the structure deformation
at different time level t = 3k ms, k = 1, 2, ..., 6 from up left to down right.
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Fig. 3. Numerical results of the displacement (left) and pressure (right) for the linear
elasticity problem in mixed form.

Table 4. Number of tetrahedron (#Tet) and nodes (#Nodes), and total number of
DOF for saddle point (#DOF) systems on four levels L1 − L4.

Level L1 L2 L3 L4

#Tet 64 512 4096 32768

#Nodes 125 729 4913 35937

#DOF 2312 15468 112724 859812

Table 5. Performance of the V-cycle preconditioned GMRES solver for the linear
elasticity problem in mixed form using one pre/post Braess-Sarazin smoother.

Level L1 L2 L3 L4

#It (ν = 0.3003, E = 2990800) 33 (11.7s) 33 (10.4s) 33 (51.4s) 32 (461.8s)

#It (ν = 0.49999, E = 2990800) 42 (15.1s) 39 (12.5s) 38 (58.5s) 37 (531.5s)

#It (ν = 0.499999999, E = 2990800) 42 (14.4s) 39 (12.1s) 38 (56.8s) 37 (532.4s)

point (#DOF) systems are shown in Table 4. We fix the bottom of the domain,
i.e., u = [0, 0, 0]T at z = 0, prescribe a Dirichlet data on the top, i.e., u = [0, 0, 1]T

at z = 1, and use zero Neumann condition on the rest of the boundaries. Using
color, we show the value ‖ds‖R3 and ps on the left and right plots in Fig. 3 as
an illustration, respectively. The elasticity deformation is scaled by a factor of
0.5. We set μ = 1.15e + 06, λ = 1.73e + 06 (corresponding to the Poisson ratio
ν = 0.3003, Young’s modulus E = 2990800) for the compressible material, and
μ = 9.9694e+05, λ = 4.9846e+10 and μ = 9.9693e+05, λ = 4.9847e+14 (cor-
responding to ν = 0.49999 , E = 2990800 and ν = 0.499999999, E = 2990800,
respectively) for the nearly incompressible material. We observe the robustness
with respect to the mesh size of the V-cycle preconditioned GMRES solver
using the Braess-Sarazin smoother; see iteration numbers of one V-cycle pre-
conditioned GMRES method and the computational CPU time in seconds (s)
in Table 5 for both the compressible ( #It (ν = 0.3003, E = 2990800) ) and
nearly incompressible material (#It (ν = 0.49999, E = 2990800) and #It
(ν = 0.499999999, E = 2990800)). From the iteration numbers of the V-cycle
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preconditioned GMRES solver in Table 5, we also observe the robustness of the
AMG preconditioner with respect to the near incompressibility.

5 Conclusions

We considered robust and efficient preconditioners for the linearized coupled FSI
system arising from lower-order finite element discretization. From the numer-
ical study, the preconditioned GMRES method has shown the robustness and
efficiency with respect to the mesh size, time step size and varying fluid density.
Furthermore, the AMG V-cycle preconditioned GMRES method for the saddle
point system of the elasticity sub-problem discretized with Taylor-Hood element
has demonstrated the robustness and efficiency with respect to the mesh size
and near incompressibility.
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Abstract. In this paper we study a nonlinear functional differential
model of a biological digestion process, involving two microbial popula-
tions and two substrates. We establish the global asymptotic stability of
the model solutions towards a previously chosen equilibrium point and
in the presence of two different discrete delays. Numerical simulation
results are also included.

1 Introduction

We consider a well-known anaerobic digestion model for biological treatment
of wastewater in a continuously stirred tank bioreactor (cf. for example [2,3]).
Here we include discrete time delays in the equations to model the delay in
the conversion of nutrient consumed by the viable biomass. For more detailed
motivation see [13,14] and the references therein. The model is described by the
following nonlinear differential equations:

d

dt
s1(t) = u(si

1 − s1(t)) − k1μ1(s1(t))x1(t)

d

dt
x1(t) = e−αuτ1μ1(s1(t − τ1))x1(t − τ1) − αux1(t)

d

dt
s2(t) = u(si

2 − s2(t)) + k2μ1(s1(t))x1(t) − k3μ2(s2(t))x2(t)

d

dt
x2(t) = e−αuτ2μ2(s2(t − τ2))x2(t − τ2) − αux2(t).

(1)

The state variables s1, s2 and x1, x2 denote substrate and biomass concen-
trations, respectively: s1 is the organic substrate, characterized by its chemical
oxygen demand (COD), s2 denotes the volatile fatty acids (VFA), x1 and x2 are
the acidogenic and methanogenic bacteria respectively; si

1 and si
2 are the input

substrate concentrations. The constants τj ≥ 0, j = 1, 2, stand for the time delay

This research has been partially supported by the Sofia University “St Kl. Ohridski”
under contract No. 08/26.03.2015.
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in conversion of the corresponding substrate to viable biomass for the jth bacte-
rial population. Here e−αuτjxj(t − τj), j = 1, 2, represents the biomass of those
microorganisms that consume nutrient τj units of time prior to time t and that
survive in the chemostat the τj units of time necessary to complete the process
of converting the nutrient to viable biomass at time t. The parameter α ∈ (0, 1)
represents the proportion of bacteria that are affected by the dilution rate u.
The constants k1, k2 and k3 are yield coefficients related to COD degradation,
VFA production and VFA consumption respectively. For biological evidence, si

1

and si
2 as well as all parameters in (1) are assumed to be positive.

The functions μ1(s1) and μ2(s2) model the specific growth rates of the bac-
teria. Following [9] we impose the following assumption on μ1 and μ2:

Assumption A1. For each j = 1, 2 the function μj(sj) is defined for sj ∈
[0,+∞), μj(0) = 0, and μj(sj) > 0 for each sj > 0; the function μj(sj) is
bounded and Lipschitz continuous for all sj ∈ [0,+∞).

The Eq. (1) with τ1 = τ2 = 0 have been already investigated by the authors;
thereby, global stabilizability via feedback control is proposed in [4], whereas [5]
considers the case of global stabilization of the solutions using constant dilution
rate u. This second approach is now extended to model (1) involving discrete
delays τj > 0, j = 1, 2. More precisely, in this paper we define a suitable positive
constant ub and prove that for any (admissible) value of the dilution rate u ∈
(0, ub) there exists an equilibrium point which is globally asymptotically stable
for system (1). To our knowledge, such investigations have not been carried out
for this model.

2 Global Asymptotic Stabilizability of the Model

We set ub = max
{
u : uαeαuτ1 ≤ μ1(si

1), uαeαuτ2 ≤ μ2(si
2)

}
and make the fol-

lowing

Assumption A2. For each point ū ∈ (0, ub) there exist points s1(ū) = s̄1 ∈(
0, si

1

)
and s2(ū) = s̄2 ∈

(
0, si

2

)
, such that the following equalities hold true

ū =
e−αūτ1

α
μ1(s̄1) =

e−αūτ2

α
μ2 (s̄2) .

A similar assumption is called in [7] regulability of the system.
Let s̄1 and s̄2 be determined according to Assumption A2. Compute further

x1(ū) = x̄1 =
si
1 − s̄1

αk1e
αūτ1

, x2(ū) = x̄2 =
si
2 − s̄2 + αk2x̄1

αk3e
αūτ2

. (2)

Then the point p(ū) = p̄ = (s̄1, x̄1, s̄2, x̄2) is a nontrivial (positive) equilibrium
point for system (1).

Assumption A3. There exist positive numbers ν1 and ν2 such that the following
inequalities hold true

μ1(s−
1 ) < μ1(s̄1) < μ1(s+1 ), μ2(s−

2 ) < μ2(s̄2) < μ2(s+2 )
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for each

s−
1 ∈ (0, s̄1), s+1 ∈ (s̄1, si

1 + ν1], s−
2 ∈ (0, s̄2) and s+2 ∈ (s̄2, si

2 + ν2].

Assumption A3 is always fulfilled when the functions μj(·), j = 1, 2, are
monotone increasing (like the Monod specific growth rate). If at least one func-
tion μj(·) is not monotone increasing (like the Haldane law) then the points s̄j

have to be chosen sufficiently small in order to satisfy Assumption A3.
Denote by R+ the set of all positive real numbers and by C+

τ – the nonnega-
tive cone of continuous functions ϕ : [−τ, 0] → R+, where τ = max{τ1, τ2}, and
set C4

τ := {ϕ = (ϕs1 , ϕx1 , ϕs2 , ϕx2) ∈ C+
τ × C+

τ × C+
τ × C+

τ }.
Let ū ∈ (0, ub) be chosen in such a way that Assumptions A2 and

A3 are satisfied. Denote by Σ the system obtained from (1) by substitut-
ing the parameter u by ū. Using the Schauder fixed-point theorem it is easy
to prove that for each ϕ ∈ C4

τ there exists � > 0 and a unique solution
Φ(t, ϕ) = (s1(t, ϕ), x1(t, ϕ), s2(t, ϕ), x2(t, ϕ)) of (1) defined on [−τ, �) such that
Φ(t, ϕ) = ϕ(t) for each t ∈ [−τ, 0] (cf. Theorem 2.1 in [8]).

We shall prove below that the equilibrium point p̄ is globally asymptotically
stable for system Σ.

Theorem 1. Let the Assumptions A1, A2 and A3 be fulfilled and let ϕ0 be an
arbitrary element of C4

τ . Then the corresponding solution Φ(t, ϕ0) is well defined
on [−τ,+∞) and converges asymptotically towards p̄.

Proof. We fix an arbitrary ϕ0 ∈ C4
τ . Then there exists � > 0 such that the cor-

responding solution Φ(t, ϕ0) of Σ (denoted by Φ(t) := (s1(t), x1(t), s2(t), x2(t))
for simplicity) is defined on [−τ, �). The proof uses some ideas from [13,14]. For
the reader’s convenience we subdivide the proof in five claims.

Claim 1. The components of Φ(t) take positive values for each t ∈ [−τ, �).

Proof of Claim 1. If s1(t) = 0 for some t ∈ [0, �), then ṡ1(t) > 0. This implies
that s1(t) > 0 for each t ∈ [−τ, �). Analogously one can obtain that s2(t) > 0
for each t ∈ [−τ, �). Since

xj(t) = ϕxj
(0)e−αūt +

∫ t

0

e−αū(t−σ)μj(sj(σ − τj))xj(σ − τj)dσ, j = 1, 2,

then xj(t) > 0 for each t ∈ [−τ, �). This completes the proof of Claim 1. ♦
Claim 2. The solution Φ(t) of Σ is defined for each t ∈ [−τ,+∞) and is bounded.

Proof of Claim 2. Denote

s(t) := k2e
−αūτ1s1(t) + k1e

−αūτ1s2(t) and si = k2e
−αūτ1si

1 + k1e
−αūτ1si

2.

Then s(t) satisfies the differential equation

ṡ(t) = ū(si − s(t)) − k1k3e
−αūτ1μ2(s2(t))x2(t).
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We set q1(t) := s(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2) − si/α and q2(t) := s(t) +

k1k3x2(t + τ2) − si. Then

q̇1(t) = ū
[
si − s(t) − αk1k3e

−αū(τ1−τ2)x2(t + τ2)
]

≤ ū
[
si − α

(
s(t) + k1k3e

−αū(τ1−τ2)x2(t + τ2)
)]

= −αūq1(t),

and hence
q1(t) ≤ q1(0) · e−αūt. (3)

The latter inequality shows that q1(t) is bounded. Using the fact that the values
of s1(t), s2(t) and x2(t) are positive, it follows that s1(t), s2(t) and x2(t) are
bounded as well. Analogously one can obtain that

q2(t) ≥ q2(0) · e−ūt. (4)

The estimates (3), (4) and the definition of s(·) imply that for each ε > 0 there
exists Tε > 0 such that for each t ≥ Tε the following inequalities hold true

si − ε < k2s1(t) + k1s2(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2) <

si

α
+ ε. (5)

It is easy to see (in the same way as the estimates (5)) that for each ε > 0 there
exists a finite time Tε > 0 such that for all t ≥ Tε the following inequalities hold

si
1 − ε < s1(t) + k1e

αūτ1x1(t + τ1) <
si
1

α
+ ε. (6)

The inequalities (6) imply that x1(t) is also bounded. Thus the trajectory Φ(t)
of Σ is well defined and bounded for all t ≥ −τ (cf. also Theorem 3.1 of [8]).
This completes the proof of Claim 2. ♦
Claim 3. There exists T0 > 0 such that s1(t) < si

1 and s2(t) < si
2 + k2s

i
1/k1 for

each t ≥ T0.

Proof of Claim 3. First let us assume that there exists t̄ > 0 such that s1(t) ≥
si
1 for all t ≥ t̄. Then we have

ṡ1(t) = ū(si
1 − s1(t)) − k1μ1(s1(t))x1(t) < 0.

Since s1(·) and x1(·) are bounded differentiable functions defined on [−τ,+∞),
then ṡ1(·) is an uniformly continuous function. Barbălat’s Lemma (cf. [6]) leads
to

0 = lim
t→∞ ṡ1(t) = lim

t→∞[ū(si
1 − s1(t)) − k1μ1(s1(t))x1(t)].

Because si
1 − s1(t) ≤ 0 and x1(t) > 0, the above equalities imply that s1(t) ↓ si

1

and x1(t) ↓ 0 as t ↑ ∞. On the other hand, if we set (cf. Lemma 2.2 of [14])

z1(t) := x1(t) +
∫ t

t−τ1

e−αūτ1μ1(s1(σ))x1(σ)dσ,
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we obtain according to Assumption 3 that

ż1(t) = x1(t)(e−αūτ1μ1(s1(t)) − αū) > 0 for all t ≥ t̄,

and so z1(t) ↑ z∗
1 > 0 as t ↑ ∞. But this is impossible according to the definition

of z1(·) and because we have already shown that x1(t) ↓ 0 as t ↑ ∞.
Hence, there exists a sufficiently large T0 > 0 with s1(T0) ≤ si

1. Moreover, if
the equality s1(t̄) = si

1 holds true for some t̄ ≥ T0, then we have

ṡ1(t̄) = ū(si
1 − s1(t̄)) − k1μ1(s1(t̄))x1(t̄) = −k1μ1(s1(t̄))x1(t̄) < 0.

The last inequality shows that s1(t) < si
1 for each t > T0.

Further with s(t) = k2e
−αūτ1s1(t) + k1e

−αūτ1s2(t) and si = k2e
−αūτ1si

1 +
k1e

−αūτ1si
2 we obtain

ṡ(t) = ū(si − s(t)) − k1k3e
−αūτ1μ2(s2(t))x2(t).

One can show in the same way as above that s(t) < si for each t ≥ T0 (if
necessary T0 can be enlarged), i. e. k2e

−αūτ1s1(t)+k1e
−αūτ1s2(t) ≤ k2e

−αūτ1si
1+

k1e
−αūτ1si

2. Since 0 < s1(t) < si
1, it follows that s2(t) ≤ si

2 + k2s
i
1/k1. This

establishes Claim 3. ♦
Claim 4. Denote

γj := lim supt↑∞ xj(t), δj := lim inft↑∞ xj(t), j = 1, 2

v1(t) := s1(t) + k1x1(t + τ1), v2(t) := k2s1(t) + k1s2(t) + k1k3x2(t + τ2),

αj := lim supt↑∞ vj(t), βj := lim inft↑∞ vj(t), j = 1, 2.

Then the following relations hold true: δ1 > 0, α1 = β1 and γ1 = δ1, α2 = β2

and γ2 = δ2.

Proof of Claim 4. Let us assume that δ1 = 0. Choose an arbitrary ε ∈ (0,
(si

1 − s̄1)/(1+ eαūτ1k1)). According to Claim 2 (see (6)) there exists Tε > 0 such
that for all t ≥ Tε the following inequalities hold true

si
1 − ε < s1(t − τ1) + k1e

αūτ1x1(t) <
si
1

α
+ ε. (7)

Since δ1 = 0 there exists t0 > max(Tε, T0) such that x1(t0) < ε. We set (cf.
Lemma 3.5 of [14])

σ := min{x1(t) : t ∈ [t0 − τ1, t0]}

t̄ := sup{t ≥ t0 − τ1 : x1(τ) ≥ σ for all τ ∈ [t0 − τ1, t]}.

Clearly σ ∈ (0, ε], t̄ ∈ [t0 − τ1,+∞), x1(t) ≥ σ for all t ∈ [t0 − τ1, t̄] and

x1(t̄) = σ, ẋ1(t̄) ≤ 0. (8)
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Taking into account (7) and the choice of ε, we obtain consecutively

si
1 > s1(t̄ − τ1) ≥ si

1 − k1e
αūτ1x1(t̄) − ε ≥

≥ si
1 − (1 + eαūτ1k1)ε > s̄1,

ẋ1(t̄) = e−αūτ1μ1(s1(t̄ − τ1))x1(t̄ − τ1) − αūx1(t̄) > αūσ − αūσ = 0.

The last inequality contradicts (8), which means that δ1 > 0.
The proof of the equalities αj = βj and γj = δj , j = 1, 2, is based on similar

ideas used in the proofs of Lemma 4.3 of [14] and Theorem 3.1 of [13], so we
omit it here due to the limited paper length. ♦
Claim 5. The equilibrium point p̄ is locally asymptotically stable for all values
of the delays τ1 ≥ 0 and τ2 ≥ 0.

Proof of Claim 5. Denote for simplicity a = k1μ
′
1(s̄1)x̄1 and b = k3μ

′
2(s̄2)x̄2. It

follows from Assumption A3 that a > 0 and b > 0 hold true. It is straightforward
to see that the characteristic equation of Σ corresponding to the equilibrium
point p̄ has the form

0 = P (λ; τ1, τ2) = P1(λ; τ1) × P2(λ; τ2),

where λ is a complex number and

P1(λ; τ1) = λ2 + (ū + a + αū)λ + αū(ū + a) − αū(ū + λ)e−λτ1 ,

P2(λ; τ2) = λ2 + (ū + b + αū)λ + αū(ū + b) − αū(ū + λ)e−λτ2 .

First it is straightforward to see that if τ1 = τ2 = 0 then there exist no roots
λ of P (λ; τ1, τ2) = 0 with Re(λ) ≥ 0. Let τ1 > 0 and τ2 > 0. We are looking
for purely imaginary roots λ = iω of Pj(λ; τj) = 0 with ω > 0, j = 1, 2. For
P1(iω; τ1) = 0 we obtain

−ω2 + (ū + a + αū)iω + αū(ū + a) − αū(ū + iω)e−iωτ1 = 0,

−ω2 + (ū + a + αū)iω + αū(ū + a) − αū(ū + iω)(cos(τ1ω) − i sin(τ1ω)) = 0.

Separating the real and the imaginary parts of the last equation implies

−ω2 + αū(ū + a) = αū2 cos(τ1ω) + αūω sin(ωτ1),

(ū + a + αū)ω = −αū2 sin(τ1ω) + αūω cos(ωτ1).
(9)

Squaring both sides of the Eq. (9) and adding leads to

ω4 + (ū + a)2ω2 + α2ū2a(2ū + a) = 0.

Obviously, the latter equation does not possess positive real roots since a > 0.
The same conclusion holds true for P2(iω; τ2) = 0. Therefore, P (λ; τ1, τ2) = 0
does not have purely imaginary roots for any τ1 > 0 and τ2 > 0. Applying Lemma
2 from [10] (see also [11,12] for similar results) to the exponential polynomial
P (λ; τ1, τ2) we obtain that the characteristic equation does not have roots with
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Fig. 1. Time evolution of s1(t), s2(t) (left) and x1(t), x2(t) (right)

nonnegative real parts. This means that for any τ1 ≥ 0 and τ2 ≥ 0 the equilibrium
p̄ is locally asymptotically stable. ♦

The local asymptotic stability of the equilibrium p̄ together with the conver-
gence of the solution Φ(t) and the attractivity of p̄, proved above throughout
Claims 1 to 4, imply that p̄ is globally asymptotically stable.

The proof of Theorem 1 is completed. �

3 Computer Simulation

Consider the following specific growth rate functions in the model (1), taken
from [1–3]:

μ1(s1) =
m1s1

ks1 + s1
(Monod law), μ2(s2) =

m2s2
ks2 + s2 + (s2/kI)2

(Haldane law).

In the simulation process we shall use the following numerical values for the
model coefficients, which are obtained by real experiments and given in [1]:

k1 = 10.53 k2 = 28.6 k3 = 1074 si
1 = 7.5 si

2 = 75 α = 0.5
m1 = 1.2 ks1 = 7.1 m2 = 0.74 ks2 = 9.28 kI = 16

As an example let us take τ1 = 2 and τ2 = 7. Within the above coefficient values
we compute the admissible upper bound ub = 0.646 for u, thus u ∈ (0, 0.646).

Consider ū = 0.25. Then the corresponding internal equilibrium is p̄ =
(1.096, 0.9472, 6.432, 0.06674). Using the initial conditions ϕs1(t) = 2, ϕx1(t) =
0.1 for t ∈ [−τ1, 0], and ϕs2(t) = 10, ϕx2(t) = 0.05 for t ∈ [−τ2, 0], the numerical
outputs are visualized in Fig. 1.

4 Conclusion

In this paper we investigate a bioreactor model for wastewater treatment by
anaerobic digestion. The model Eq. (1) involve discrete delays, describing the
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time delay in nutrient conversion to viable biomass. Using a properly chosen
admissible value for the dilution rate ū we prove the global convergence of the
solutions towards an equilibrium point, corresponding to ū. To authors’ knowl-
edge, such kind of investigations have not been yet fulfilled for this delay biore-
actor model. Numerical simulation is included to confirm the theoretical results.
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Abstract. We are going to define a time optimal control problem in the
space of probability measures. Our aim is to model situations in which the
initial position of a particle is not exactly known, even if the evolution is
assumed to be deterministic. We will study some natural generalization
of objects commonly used in control theory, proving some interesting
properties. In particular we will focus on a comparison result between
the classical minimum time function and its natural generalization to the
probability measures setting.

Keywords: Optimal transport · Differential inclusions · Time optimal
control

1 Introduction

Usual finite-dimensional time optimal control problem can be stated as follows:
given a set-valued map F : Rd ⇒ R

d satisfying some structural assumptions,
and a nonempty closed subset S ⊆ R

d, we consider the solutions of differential
inclusion starting from a given point x0 ∈ R

d, namely
⎧
⎪⎨

⎪⎩

ẋ(t) ∈ F (x(t)), t > 0,

x(0) = x0 ∈ R
d.

(1)

Then we can define the minimum time function T : Rd → [0,+∞] by setting for
every x0 ∈ R

d

T (x0) := inf{T > 0 : ∃x(·) solving (1) such that x(T ) ∈ S}. (2)

The study of the minimum time function and of its properties is a central topic
in control theory, and the related literature is huge.

The present work is motivated by a natural consideration: in many real-world
applications the starting position x0 of the moving particle is known only up to
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 109–116, 2015.
DOI: 10.1007/978-3-319-26520-9 11
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some uncertainties. For example it can be obtained only by an averaging of many
measurement processes. It is worth noticing that this situation can happen even
if we assume a pure deterministic evolution of the system.

A natural choice to model our knowledge about the particle’s starting posi-
tion is to consider it as a probability measure μ0 ∈ P(Rd). The case in which
μ0 is a Dirac delta function concentrated at a point x0 corresponds of course to
the classical case in which perfect knowledge of the starting position is assumed.

This fact leads us to formulate directly our problem as regarding time-
dependent measures, i.e. curves in P(Rd). In this sense, the evolution of the
starting measure μ0 gives us a macroscopic point of view on the system, while
the single (classical) trajectory corresponds to a microscopic point of view.

A natural requirement for the evolving measure t �→ μt is that at every time

t ∈ [0, T ] we must have
∫

Rd

dμt = 1, since the probability to find somewhere the

classical particle must be always equal to 1. This leads us to consider the evolu-
tion of the measure ruled by the following continuity equation, to be understood
in the distributional sense

⎧
⎪⎨

⎪⎩

∂tμt + div(vtμt) = 0, t > 0,

μ|t=0 = μ0,

(3)

where vt(·) is a time-depending Borel vector field belonging to L1
μt

(Rd;Rd) for
a.e. t ∈ [0, T ].

It is well known that if vt(·) is Lipschitz continuous, we can consider the
characteristics system ⎧

⎪⎪⎨

⎪⎪⎩

d

dt
Tt(x) = vt(Tt(x)),

T0(x) = x,

(4)

and the unique solution of (3) can be expressed by the push-forward of the initial
measure μ0 by the time-depending vector field Tt(·) solving (4), i.e., μt = Tt�μ0,
where the push-forward X�μ of a measure μ by a Borel vector field X is defined as

∫

Rd

ϕ(x) d(X�μ) =
∫

Rd

ϕ ◦ X(x) dμ, ∀ϕ : Rd → R bounded Borel function.

However (3) has been proven to be well-posed even in situations in which
the regularity of the vector field vt is not sufficient to guarantee uniqueness of
the solutions of (4). Heuristically, this is due to the fact that the evolution of
the measure is not affected by singularities in a μt-negligible set. Following [2],
we recall that the integrability assumption ‖vt‖Lp

μ(Rd) ∈ L1([0, T ]) yields the
existence of a solution of (3) in the sense of a continuous curve t �→ μt in the
space of probability measures endowed with the weak∗ topology induced by the
duality with continuous and bounded functions ϕ ∈ C0

b (Rd) (i.e., a narrowly
continuous curve in the space of probability measures).
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In many cases, the solutions of (3) can be constructed as superpositions of
characteristics in the following sense: every probability measure η on the product
space Rd×ΓT , where ΓT is the space of continuous curves in R

d defined on [0, T ],
concentrated on the integral solutions of (4) (without assuming any uniqueness
of the latter), can be used to define a solution of (3). Conversely, also every
solution of (3) admits such a representation. We refer to [1,2] for such kind of
results (see also Theorem 5.8 in [3] and Theorem 8.2.1 in [2]).

In a control-theoretic framework, in order to find a proper generalization of
(1), it seems a natural choice to couple the dynamics (3) with the nonholonomic
constraint vt(x) ∈ F (x) for a.e. t ∈ [0, T ] and μt-a.e. x ∈ R

d, i.e., to ask that
the driving vector field for the time-dependent measure μt is a suitable Borel
selection of the set-valued map F . This is motivated also by the fact that in this
case for smooth vector field vt, the solutions of the characteristics system (4)
turns out to be admissible trajectories of (1).

The link between the solutions of (3) and (4) has been extensively studied
in the last years, we refer to [1] for a detailed presentation of the related issues.
In particular, sufficient conditions are provided in order to grant existence and
uniqueness in special classes of measures of the solutions of (3) also in cases where
the corresponding (4) fails to provide uniqueness of the solutions. Moreover, also
strict relationships between (3) and optimal transport theory have been already
studied by many authors, and we refer to [2,3,5] for further details.

If we focus our attention on the set Pp(Rd) of Borel probability measures
with finite p-moment, i.e. measures μ satisfying | · | ∈ Lp

μ(Rd), we can consider
also the metric structure induced by the p-Wasserstein distance Wp(·, ·) between
measures. We refer the reader to [2] for all the details on Wasserstein distance.

In order to state our time-optimal control problem, we need also a conve-
nient generalization of the target set S of the classical case. To introduce it, we
consider the following heuristic argument (closely related to some interpretation
of quantum mechanics), which follows the probabilistic motivation which led us
to consider the controlled continuity equation as a good replacement for the
differential inclusion.

Suppose to have an observer who makes some measurements on the system.
The only quantity which we can consider is an average of the results of the
measurements. From a mathematical point of view, we can model a measurement
as a continuous map φ ∈ C0(Rd), thus the average result of the measurement of
a system whose state is described by μ ∈ P(Rd) is given by the expected value

of φ, namely
∫

Rd

φ(x) dμ(x).

A natural choice for the target set is to fix a threshold for each measurement
and try to steer the system into states where the results of such measurements is
below that threshold. Without loss of generality, we can fix the threshold to be 0
for all the measurements in which we are interested, thus the generalized target
can be defined as follows: fix a subset Φ ⊆ C0(Rd;R) (which corresponds to the
measurements in which we are interested) and define the generalized target to be

S̃Φ :=
{

μ ∈ P(Rd) :
∫

Rd

φ(x) dμ(x) ≤ 0 for all φ ∈ Φ

}
.
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In general some additional requirements on Φ are needed in order to have a
good definition of the integral. We will deal mainly with the case in which for all
φ ∈ Φ there exist constants A,B > 0 and p ≥ 1 such that φ(x) ≥ A|x|p − B. An
important example of this situation is given by fixing S ⊆ R

d and considering
Φ = {dS(·)}, i.e., we are going to measure the average distance from S. With
this definition we have

S̃{dS} :=
{

μ ∈ P(Rd) :
∫

Rd

dS(x) dμ(x) ≤ 0
}

= {μ ∈ P(Rd) : suppμ ⊆ S}.

Another interpretation of our framework in this case can be given in terms of
pedestrian dynamics: suppose to have initially a crowd of people represented by
a (normalized) probability measure μ0 and to be able to identify a safety zone
S ⊆ R

d, while F (·) represents some (possible) nonholonomic constraints to the
motion. Then if our aim in case of danger is to steer all the crowd to the safety
zone in the minimum amount of time, we can choose Φ = {dS(·)}. In a more
realistic situation, it may not be possible to steer all the crowd to S. If we fix
α ∈ [0, 1] and choose Φ = {dS(·) − α}, we are still satisfied for example if the
ratio between the number of people in the safe zone and all the people is above
1 − α, or if we can take the people sufficiently near to the safe zone.

Having defined the set of admissible trajectories and the target set in the
space of probability measures, the definition of generalized minimum time func-
tion at a probability measure μ0 is the straigthforwardly generalization of the
classical one, i.e., the infimum of all the times T for which there exists an admis-
sible trajectory defined on [0, T ] and satisfying μT ∈ S̃Φ.

The paper is structured as follows: in Sect. 2 we introduce precise definitions
of the generalized objects we are going to study, together with some of their
properties. In Sect. 3 we prove the main results of the paper, finally in Sect. 4 we
give some insight into the current work.

2 Generalized Objects and Their Properties

Definition 1 (Standing Assumption). We will say that a set-valued function
F : Rd ⇒ R

d satisfies the assumption (Fj), j = 0, 1 if the following hold true

(F0) F (x) = ∅ is compact and convex for every x ∈ R
d, moreover F (·) is

continuous with respect to the Hausdorff metric, i.e. given x ∈ X, for every
ε > 0 there exists δ > 0 such that |y − x| ≤ δ implies F (y) ⊆ F (x) + B(0, ε)
and F (x) ⊆ F (y) + B(0, ε).

(F1) F (·) has linear growth, i.e. there exist nonnegative constants L1 and L2

such that F (x) ⊆ B(0, L1|x| + L2) for every x ∈ R
d.

Definition 2 (Generalized targets). Let p ≥ 1, Φ ⊆ C0(Rd,R) such that the
following property holds

(TE) there exists x0 ∈ R
d with φ(x0) ≤ 0 for all φ ∈ Φ.
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We define the generalized targets S̃Φ and S̃Φ
p as follows

S̃Φ :=
{

μ ∈ P(Rd) :
∫

Rd

φ(x) dμ(x) ≤ 0 for all φ ∈ Φ

}
,

S̃Φ
p :=S̃Φ ∩ Pp(Rd).

We define also the generalized distance from S̃Φ
p as d̃S̃Φ

p
(·) := inf

μ∈S̃Φ
p

Wp(·, μ).

For further use, we will say that Φ satisfies property (Tp) with p ≥ 0 if the
following holds true

(Tp) for all φ ∈ Φ there exist Aφ, Cφ > 0 such that φ(x) ≥ Aφ|x|p − Cφ.

The following proposition states some straightforward properties of the gen-
eralized targets. Its proof is immediate from the definition of generalized target.

Proposition 1 (Properties of the generalized targets). Let p ≥ 0 and
Φ ⊆ C0(Rd,R) be such that (TE) and (T0) hold. Then S̃Φ and S̃Φ

p are convex,
moreover S̃Φ is w∗-closed in P(Rd), while S̃Φ

p is closed in Pp(Rd) endowed with
the p-Wasserstein metric Wp(·, ·). If moreover (Tp) holds for some p ≥ 1, then
S̃Φ = S̃Φ

p is compact in the w∗-topology and in the Wp-topology.

Definition 3 (Admissible curves). Let F : Rd ⇒ R
d be a set-valued function,

I = [a, b] a compact interval of R, α, β ∈ P(Rd). We say that a Borel family of
probability measures μ = {μt}t∈I is an admissible trajectory (curve) defined in
I for the system joining α and β, if there exists a family of Borel vector fields
v = {vt(·)}t∈I such that

1. μ is a narrowly continuous solution in the distributional sense of the conti-
nuity equation ∂tμt + div(vtμt) = 0, with μ|t=a = α and μ|t=b = β.

2. JF (μ, v) < +∞, where JF (·) is defined as

JF (μ, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫

I

∫

Rd

(
1 + IF (x) (vt(x))

)
dµt(x) dt, if ‖vt‖L1

μt
∈ L1([0, T ]),

+∞, otherwise,

(5)

where IF (x) is the indicator function of the set F (x), i.e., IF (x)(ξ) = 0 for
all ξ ∈ F (x) and IF (x)(ξ) = +∞ for all ξ /∈ F (x).

In this case, we will also shortly say that μ is driven by v.

When JF (·) is finite, this value expresses the time needed by the system to
steer α to β along the trajectory μ with family of velocity vector fields v.

Definition 4 (Generalized minimum time). Let Φ ∈ C0(Rd;R) and S̃Φ,
S̃Φ

p (p ≥ 1) be the corresponding generalized targets defined in Definition 2. In



114 G. Cavagnari and A. Marigonda

analogy with the classical case, we define the generalized minimum time function
T̃Φ : P(Rd) → [0,+∞] by setting

T̃Φ(μ0) := inf {JF (μ, v) : μ is an admissible curve in [0, T ], (6)

driven by v, with μ|t=0 = μ0, μ|t=T ∈ S̃Φ
}

,

where, by convention, inf ∅ = +∞.
Given μ0 ∈ P(Rd), an admissible curve μ = {μt}t∈[0,T̃ Φ(μ0)]

⊆ P(Rd),
driven by a time depending Borel vector-field v = {vt}t∈[0,T̃ Φ(μ0)]

and satisfying
μ|t=0 = μ0 and μ|t=T̃ Φ(μ0)

∈ S̃Φ is optimal for μ0 if

T̃Φ(μ0) = JF (μ, v).

Given p ≥ 1, we define also a generalized minimum time function T̃Φ
p :

Pp(Rd) → [0,+∞] by replacing in the above definitions S̃Φ by S̃Φ
p and P(Rd)

by Pp(Rd). Since S̃p ⊆ S̃, it is clear that T̃Φ(μ0) ≤ T̃Φ
p (μ0).

3 Main Results

Theorem 1 (First comparison between T̃Φ and T ). Consider the general-
ized minimum time problem as in Definition 4 assuming (F0), (F1), and suppose
that there exists S ⊆ R

d such that S̃Φ = S̃{dS}. Then for all μ0 ∈ P(Rd) we
have

T̃Φ(μ0) ≥ ‖T‖L∞
μ0

,

where T : Rd → [0,+∞] is the classical minimum time function for the system
ẋ(t) ∈ F (x(t)) with target S.

Proof. For sake of clarity, in this proof we will simply write T̃ and S̃, thus
omitting Φ.

If T̃ (μ0) = +∞ there is nothing to prove, so assume T̃ (μ0) < +∞. Fix
ε > 0 and let μ = {μt}t∈[0,T ] ⊆ P(Rd) be an admissible curve starting from μ0,
driven by v = {vt}t∈[0,T ] such that T = JF (μ, v) < T̃ (μ0) + ε and μ|t=T ∈ S̃.
In particular, we have that vt(x) ∈ F (x) for μt-a.e. x ∈ R

d and a.e. t ∈ [0, T ],
hence |vt(x)| ≤ (L1 + L2)(1 + |x|) for μt-a.e x ∈ R

d. Accordingly,
∫ T

0

∫

Rd

|vt(x)|
1 + |x| dμt dt ≤ T (L1 + L2) < +∞.

By the superposition principle (Theorem 5.8 in [3] and Theorem 8.2.1 in [2]), we
have that there exists a probability measure η ∈ P(Rd × ΓT ) satisfying

1. η is concentrated on the pairs (x, γ) ∈ R
d × ΓT such that γ is absolutely

continuous and

γ(t) = x +
∫ t

0

vt(γ(s)) ds
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2. for all t ∈ [0, T ] and all ϕ ∈ C0
b (Rd)

∫

Rd

ϕ(x)dμt(x) =
∫∫

Rd×ΓT

ϕ(γ(t)) dη(x, γ).

Evaluating the above formula at t = 0, we have that if x /∈ suppμ0 or γ(0) = x,
then (x, γ) /∈ suppη.

Let {ψn}n∈N ∈ C∞
c (Rd; [0, 1]) with ψn(x) = 0 if x ∈ B(0, n+1) and ψn(x) = 1

if x ∈ B(0, n). By Monotone Convergence Theorem, since {ψn(·)dS(·)}n∈N ⊆
C0

b (Rd) is an increasing sequence of nonnegative functions pointwise convergent
to dS(·), we have for every t ∈ [0, T ]

∫∫

Rd×ΓT

dS(γ(t)) dη(x, γ) = lim
n→∞

∫∫

Rd×ΓT

ψn(γ(t))dS(γ(t)) dη(x, γ)

= lim
n→∞

∫

Rd

ψn(x)dS(x) dμt(x)

By taking t = T , we have that the last term vanishes because μ|t=T ∈ S̃ and so
suppμ|t=T ⊆ S, therefore

∫∫

Rd×ΓT

dS(γ(T )) dη(x, γ) = 0.

In particular, we necessarily have that γ(T ) ∈ S and γ(0) = x for η-a.e. (x, γ) ∈
P(Rd × ΓT ), whence T ≥ T (x) for μ0-a.e. x ∈ R

d, since T (x) is the infimum
of the times needed to steer x to S along trajectories of the system. Thus,
T̃ (μ0) + ε ≥ T (x) for μ0-a.e. x ∈ R

d and, by letting ε → 0, we conclude that
T̃ (μ0) ≥ ‖T‖L∞

μ0
. ��

It can be shown that the inequality appearing in Theorem1 may be strict
without further assumptions, however the following result states a relevant case
in which equality holds, justifying also the name of generalized minimum time
problem we gave.

Lemma 1 (Second comparison result). Assume the same hypotheses and
notation as in Theorem1. Then, for every x0 ∈ R

d we have T̃Φ(δx0) = T̃Φ
p (δx0) =

T (x0) for all p ≥ 1.

Proof. Let us use the same notation as before, thus omitting Φ.
By Theorem 1 we have T̃ (δx0) ≥ ‖T‖L∞

δx0
= T (x0). Conversely, let γε(·) be

a solution of ẋ(t) ∈ F (x(t)) such that γε(0) = x0 and γε(T (x0) + ε) ∈ S. Set
με

t = γε(t)�δx0 and με = {με
t}t∈[0,T (x0)+ε]. By Theorem 8.3.1 in [2], we have that

there exists a Borel vector field vε
t : [0, T ]×R

d → R
d such that ∂tμ

ε
t +div(vε

t μ
ε
t ) =

0. Moreover, by construction we have that γ̇ε(t) = vε
t (γε(t)) ∈ F (γε(t)), thus

vε
t (x) ∈ F (x), for με

t -a.e. x ∈ R
d and a.e. t ∈ [0, T ]. We conclude that με

t is an
admissible curve steering δx0 to S̃ in time T (x0) + ε, hence T̃ (δx0) ≤ T (x0) + ε.
By letting ε → 0+, we obtain the desired equality. ��
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4 Conclusion

The study of generalized minimum time function in the space of probability
measures is still largely in progress. In the forthcoming paper [4], more general
cases will be treated, together with a dynamic programming principle and a
result of existence of optimal trajectories in the space of probability measures.

We plan also to extend the definition of minimum time by possibly adding
some terms in the functional penalizing the concentration of the mass, in order
to treat more realistic problems coming from pedestrian dynamics.

Finally, the characterization of the generalized minimum time as solution
of a suitable infinite-dimensional Hamilton-Jacobi-Bellmann equation seems to
be quite hard, as well as to state a result comparable to Pontryagin Maximum
Principle for this kind of problems. In [6] a similar problem was addressed, trying
to characterize the infimum in the space of curves on P2(Rd) of an action-
like functional (without control) starting from a given measure. In the same
paper, they obtained that this value is a viscosity subsolution of a suitable HJB
equation, while the supersolution part was proved only in dimension 1 using a
special representation of the optimal transport map on R.
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Deterministic and Stochastics Models of Financial Markets with Transaction Costs.

References

1. Ambrosio, L.: The flow associated to weakly differentiable vector fields: recent
results and open problems. In: Bressan, A., Chen, G.-Q.G., Lewicka, M., Wang, D.
(eds.) Nonlinear Conservation Laws and Applications. The IMA Volumes in Math-
ematics and its Applications, vol. 153, pp. 181–193. Springer, New York (2011)
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Abstract. We deal with the problem of small time local attainabil-
ity (STLA) for nonlinear finite-dimensional time-continuous control sys-
tems. More precisely, given a nonlinear system ẋ(t) = f(t, x(t), u(t)),
u(t) ∈ U , possibly subjected to state constraints x(t) ∈ Ω and a closed
set S, our aim is to provide sufficient conditions to steer to S every point
of a suitable neighborhood of S along admissible trajectories of the sys-
tem, respecting the constraints, and giving also an upper estimate of the
minimum time needed for each point near S to reach S.

Keywords: Geometric control theory · Small-time local attainability ·
State constraints

1 Introduction

We consider a finite-dimensional control system
⎧
⎪⎨

⎪⎩

ẏ(t) = f(y(t), u(t)), for a.e. t > 0,

y(0) = x,

u(t) ∈ U, for a.e. t > 0.

(1)

where U is a given compact subset of Rm, x ∈ R
d, u(·) ∈ U := {v : [0,+∞[→

U such that v is measurable}, and f : Rd × U → R
d is continuous on R

d\S and
such that for every compact K ⊆ R

d\S there exists L = LK > 0 with

‖f(x, u) − f(y, u)‖ ≤ LK‖x − y‖, for all x, y ∈ K, u ∈ U.

Given a closed subset S ⊆ R
d, called the target set, the minimum time function

T : Rd → [0,+∞] is defined as follows:

T (x) := inf{T > 0 : ∃ y(·) solution of (1) satisfying y(0) = x, y(T ) ∈ S}, (2)

where we set inf ∅ = +∞ by convention.

c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 117–125, 2015.
DOI: 10.1007/978-3-319-26520-9 12
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We are interested in the following property, called small-time local attain-
ability (STLA): given T > 0 there exists an open set U ⊆ R

d such that U ⊇ S
and T (x) ≤ T for all x ∈ U . This amounts to say that for every fixed time
T > 0 there is a neighborhood of the target whose points can be steered to the
target itself along admissible trajectories of the system in a time less than T .
STLA may be formulated also in this way: for every x̄ ∈ ∂S there exists δx̄ > 0
and a continuous function ωx̄ : [0,+∞[→ [0,+∞[ such that ω(r) → 0 as r → 0
and T (x) ≤ ωx̄(dS(x)) for all x ∈ B(x̄, δx̄), where dS(·) denotes the Euclidean
distance function from S.

STLA has been studied by several authors, and it turned out that estimates
of this type have consequences also in regularity property of the minimum time
function. One of the most important results on this line was found in [6], where it
was proved that a controllability condition known as Petrov’s condition yields an
estimate T (x) ≤ ωx̄(dS(x)) with ωx̄(r) = Cx̄r, for C > 0, and this is equivalent
to local Lipschitz continuity of T (·) in U\S for a suitable neighborhood U of S.

For a compact target S, Petrov’s condition can be formulated as follows:
there exist δ, μ > 0, such that for every x ∈ R

d\S whose distance dS(x) from S
is less than δ there exist u ∈ U and a point x̄ ∈ S with ‖x − x̄‖ = dS(x) and

〈x − x̄, f(x, u)〉 ≤ −μdS(x). (3)

From a geometric point of view, the underlying idea is the following: for every
point near to S, there is an admissible velocity pointing toward S sufficiently
fast, i.e., whose component in direction of S is sufficiently large. Since Petrov’s
condition involves only admissible velocities (i.e. first order term in the expansion
of the trajectories) we refer to it as a first-order condition for STLA.

If we assume that the distance is smooth around S, we can give also another
version of Petrov’s condition: for every x near to S we require the existence of

an admissible C1-trajectory γx(·) of (1) satisfying γx(0) = x and
d

dt
(dS ◦ γx)

(0) < −μ. Accordingly, due to the smoothness of γx and dS , we have also that

for t > 0 sufficiently small we have
d

dt
(dS ◦ γx)(t) < −μ. This formulation

enhances the infinitesimal decreasing properties of the distance along at least
one admissible trajectories contained in (3).

Natural steps toward the generalization of this condition are the following:

1. consider instead of the distance its square, since it is well known that the
square of the distance enjoys more regularity properties then the distance
itself.

2. take an integral version of the infinitesimal decreasing property, thus
obtaining

d2S(γx(t)) − d2S(x) < −μ

2
tdS(x) + o(t).

3. notice that instead of γx(t) we can consider any point yt ∈ Rx(t), where

Rx(t) := {z ∈ R
d : there exists a trajectory γ of (1) with

γ(0) = x, γ(t) = y}
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The crucial fact is that the map t �→ yt is no longer required to be necessarily
an admissible trajectory, even if yt ∈ Rx(t) for all t. Such kinds of curves will
be called A -trajectories starting from x.

In this way the problem is reduced to estimate the rate of decreasing of
the distance along A -trajectories. The first paper in which this point of view
was introduced is [1], where all the above generalization were performed. More
precisely, it is assumed that there exists μ > 0 such that for every x near to
S and t sufficiently small we can find an A -trajectory (in the original paper is
called R-trajectory) yt such that

yt = x + a(t;x) + tαA(x) + o(tα;x),

where

1. a(·), A(·) are smooth functions,
2. the reminder satisfies a uniform estimate ‖o(tα;x)‖ ≤ Ktα+β with K,β suit-

able positive constants independent of x,
3. ‖a(·)‖ is bounded from above by MtsdS(x) where M is a suitable constant,
4. there exists a point x̄ ∈ S with ‖x− x̄‖ = dS(x) and 〈x− x̄, A(x)〉 ≤ −μdS(x).

Roughly speaking, we require the infinitesimal decreasing property of Petrov’s
condition for the essential leading term of at least an A -trajectory which now
is a term of order α ≥ 1. The name “essential leading term”, introduced by [1],
is motivated by the fact that as long as x is taken near to S, we have that ‖a(·)‖
vanishes. By the equivalency between Petrov’s condition and local Lipschitz
continuity of T (·) we can not expect any more an estimate like T (x) ≤ CdS(x)
in the case α > 1, however it turns out that a similar estimate holds true,
yielding T (x) ≤ Cd

1/α
S (x). We refer to this conditions as higher order Petrov-

like conditions for STLA.
In [4] was treated the case in which the constant μ appearing in Petrov’s

condition is a function μ = μ(dS(x)) allowed to slowly vanish as dS(x) → 0. This
was not covered by [1], since there was assumed μ to be always constant. From
a geometric point of view, this means that we are allowed to arrive tangentially
to the target. There was obtained an estimate T (x) ≤ Cdβ

S(x) also involving
the dependency of μ(·) on dS(·), but under additional geometrical assumptions
on the target, which were removed in a later paper [2] by Krastanov, where
the results of [1,4] are subsumed in a unique formulation, but still under strong
smoothness hypothesis on the terms appearing in the expression of yt and taking
into account a decay of r �→ μ(r) only as suitable powers of r.

The recent paper [5] weakened some smoothness assumptions required in
[1,2] on the terms appearing in the expression of the A -trajectory t �→ yt, but
instead of them, the authors assumed more regularity on the target set than in
[2]. With even more regularity, in [5] is also defined a generalized curvature by
means of suitable generalized gradients of higher order of the distance function.
This allows to consider not only first-order expansion of the distance along an
A -trajectory, but also second-order effects, improving further STLA sufficient
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conditions. This was in the spirit of [1], in which was pointed out that STLA
cannot be reduced to attainability of the single points of the target, but needs
to take into account also the geometrical properties of the target.

We present here a STLA result removing the smoothness assumptions on
the terms appearing in the expression of the A -trajectory t �→ yt, as in [5],
but without any additional regularity hypothesis on the target set used in [5],
thus fully generalizing the results of [2] also in presence of the additional state
constraint y(t) ∈ Ω, where Ω is an open subset of Rd with Ω\S �= ∅.

In general a complete description of the set of A -trajectories, on which higher
order conditions must be checked, turns to be very difficult. For control affine
systems of the form

⎧
⎪⎨

⎪⎩

ẋ(t) = f0(x(t)) +
M∑

i=1

ui(t)fi(x(t)),

x(0) = x,

(4)

where fi(·) are smooth vector fields, and ui : [0,+∞[→ [−1, 1] are measurable,
additional information on A -trajectories can be obtained by the study of the Lie
algebra generated by {fi}i=1,...,M , as performed in various degree of generality
in the papers [1,2,4,5]. In the forthcoming paper [3] the analysis of such kind
of systems is performed also in presence of state constraints, in order to provide
explicit higher order conditions for STLA.

The paper is structured as follows: in Sect. 2 we formulate and prove the main
result on STLA, and in Sect. 3 we compare this result with some other similar
results from [2,5].

2 A General Result on STLA

Throughout the paper, given a set Z ⊆ R
d and a positive number δ, we set

Zδ = {y ∈ R
d : dZ(y) ≤ δ}, moreover we denote by ∂P dS(x) the proxi-

mal superdifferential of dS at x. Given an open set Ω ⊆ R
d, we consider the

Ω-state constrained problem, i.e., we add to system (1) the condition x(t) ∈ Ω.
Consequently, we can define the state constrained reachable set from x0 ∈ Ω at
time τ ≥ 0:

RΩ
x0

(τ) :=
{

y(τ) : y(·)is a solution of (1) defined on [0, τ ] with y([0, τ ]) ⊆ Ω
}

.

The state constrained minimum time function from x0 ∈ Ω is

TΩ(x0) :=

{
+∞, if RΩ

x0
(τ) ∩ S = ∅ for all τ ≥ 0,

inf{τ ≥ 0 : RΩ
x0

(τ) ∩ S �= ∅}, otherwise.

Lemma 1. Let δ > 0 be a constant, λ : R
2 → R, θ : R → R be continuous

functions such that
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1. r �→ θ(r)r
λ(θ(r), r)

is bounded from above by a nonincreasing function β(·) ∈

L1(]0, δ[);
2. λ(θ(r), r) > 0 for 0 < r < δ, and λ(0, r) = 0 for r > 0 .

Consider any sequence {ri}i∈N in [0, δ] satisfying for all i ∈ N:

(S1) r2i+1 − r2i ≤ −λ(θ(ri), ri), (S2) θ(ri) �= 0 implies ri �= 0.

Then we have: a) ri → 0; b)
∞∑

i=0

θ(ri) ≤ 2
∫ r0

0

β(r) dr.

Proof. According to (S1), the sequence {ri}i∈N is monotone and bounded from
below, thus it admits a limit r∞ satisfying 0 ≤ r∞ < δ. Assume by contradiction
that r∞ > 0. By passing to the limit for i → +∞ in (S1), since λ(·, ·) ∈ C0 and
λ(θ(ri), ri) ≥ 0, we obtain that 0 = λ(θ(r∞), r∞) contradicting the assumptions

on λ, thus r∞ = 0. Since if θ(ri) �= 0 we have ri �= 0 and
r2i − r2i+1

λ(θ(ri), ri)
≥ 1, we

obtain
∞∑

i=0

θ(ri) =
∞∑

i=0
θ(ri) �=0

θ(ri) ≤
∞∑

i=0
θ(ri) �=0

θ(ri)

λ(θ(ri), ri)
(r2i − r2i+1)

≤
∞∑

i=0
θ(ri) �=0

θ(ri)

λ(θ(ri), ri)
(ri + ri+1)(ri − ri+1) ≤ 2

∞∑

i=0
θ(ri) �=0

θ(ri)ri

λ(θ(ri), ri)
(ri − ri+1)

≤ 2
∞∑

i=0
θ(ri) �=0

β(ri)(ri − ri+1) ≤ 2

∫ r0

0

β(r)dr,

recalling the monotonicity property of r �→ β(r).

Theorem 1 (General attainability). Consider the system (1). Let δ0 > 0
be a positive constant, σ, μ : [0,+∞[×[0,+∞[→ [0,+∞[, and τ, θ : [0,+∞[→
[0,+∞[ be continuous functions. Let Q : [0,+∞[×R

d → [0,+∞[ be a function
such that t �→ Q(t, x) is continuous for every x ∈ Sδ0\S.

We assume that:

(1) τ(r) = 0 iff r = 0, 0 < θ(r) ≤ τ(r) for every 0 < r < δ0;
(2) for any x ∈ (Sδ0 ∩ Ω)\S and 0 < t ≤ τ(dS(x)) the following holds

(2.a) RΩ
x (t) ∩ S2δ0 �= {x},

(2.b) if RΩ
x (t) ∩ S = ∅, there exists yt ∈ RΩ

x (t) ∩ B(x, χ(t, dS(x))) with

min
ζ∈∂P dS(x)

〈dS(x)ζ, yt − x〉 + ‖yt − x‖2 ≤ −μ(t, dS(x)) + σ(t, dS(x));

(2.c) if S is not compact, then
(
RΩ

x (t) ∩ S2δ0

)
\S ⊆ B(0, Q(t, x))

(3) the continuous function λ : [0,+∞[×[0,+∞[→ R, defined as λ(t, r) :=
2μ(t, r) − 2σ(t, r), satisfies the following properties:

(3.a) 0 < 2λ(θ(r), r) < r2, λ(0, r) = 0 for all 0 < r < δ0;
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(3.b) r �→ θ(r)r
λ(θ(r), r)

is bounded from above by a nonincreasing function β(·) ∈

L1(]0, δ0[).

Then, if we set ω(r0) := 2
∫ r0

0

β(r) dr, we have that TΩ(x) ≤ ω(dS(x)) for any

x ∈ Sδ0 ∩ Ω.

Before proving the result, we make some remarks on the assumptions.
Assumption (2.a) requires that from every x in the feasible set and suffi-
ciently near to S we can move remaining inside the feasible set and not too
far from S. Moreover, given a time t < T (x) (thus Rx(t) ∩ S = ∅), in (2.b)
we assume the existence of a yt in the reachable set, not too far from x (2.c),
such that the square of the distance from the target is decreased of at least
λ(t, dS(x))/2 = μ(t, dS(x)) − σ(t, dS(x)). Assumption (3) requires λ to satisfy
the requests of Lemma 1, thus concluding the proof.

Proof (of Theorem 1). We define a sequence of points and times {(xi, ti, ri)}i∈N

by induction as follows. We choose x0 ∈ (Sδ0 ∩ Ω)\S, and set r0 = dS(x0),
t0 = min{TΩ(x0), θ(r0)}. Suppose to have defined xi, ti, ri. We distinguish the
following cases:

1. if xi ∈ S, we define xi+1 = xi, ti+1 = 0, ri+1 = 0.
2. if xi /∈ S and ti ≥ TΩ(xi), in particular we have TΩ(xi) < +∞, thus we can

choose xi+1 ∈ RΩ
xi

(TΩ(xi)) ∩ S and define ri+1 = 0, ti+1 = 0.
3. if xi /∈ S and ti < TΩ(xi), we choose xi+1 ∈ RΩ

xi
(ti) such that

min
ζi∈∂P dS(xi)

〈riζi, xi+1 − xi〉 + ‖xi+1 − xi‖2 ≤ −μ(ti, ri) + σ(ti, ri),

and define ri+1 = dS(xi+1), ti+1 = min{TΩ(xi+1), θ(ri+1)}. According to
the semiconcavity of d2S(·) (with semiconcavity constant 2) and recalling that
ζx ∈ ∂P dS(x) iff 2ζxdS(x) ∈ ∂P dS(·), we have that there exists ζx ∈ ∂dS(x)
such that

r2i+1 − r2i ≤ 〈2ζiri, xi+1 − xi〉 + 2‖xi+1 − xi‖2 ≤ −λ(ti, ri). (5)

We notice that in this case xi+1 /∈ S since xi+1 ∈ RΩ
xi

(ti) and ti = θ(ri) <
TΩ(xi), thus ti+1 > 0 and ri+1 > 0.

The assumptions of Lemma 1) are satisfied:

1. r2i+1 − r2i ≤ −λ(θ(ri), ri),
2. it is obvious that θ(ri) �= 0 implies ri �= 0. Indeed, assume that ri = 0. Since

0 ≤ θ(r) ≤ τ(r), and τ(r) = 0 iff r = 0 , we have θ(0) = 0.

3. by assumption, there exists β ∈ L1(]0, δ0[) such that
θ(s)s

λ(θ(s), s)
≤ β(r).
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Applying Lemma 1, we have that a) ri → 0, b)
∞∑

i=0

θ(ri) ≤ 2
∫ r0

0

β(r) dr. Since

∞∑

i=0

ti ≤
∞∑

i=0

θ(si), we have
∞∑

i=0

ti ≤ 2
∫ r0

0

β(r) dr. If S is compact, since dS(xi) →

0, we have that {xi}i∈N is bounded. If S is not compact, for every j ∈ N,

we notice that xj ∈
(
S2δ0 ∩ RΩ

x0

(∑j
i=0 ti

))
\S ⊂ B

(
0, Q

(∑j
i=0 ti, x

))
. Since

∑j
i=0 ti converges, we have that there exists R > 0 such that Q

(
j∑

i=0

ti, x

)

≤ R

for all j ∈ N, thus also in this case {xi}i∈N is bounded. Up to subsequence, still
denoted by {xi}i∈N, we have that there exists x̄ ∈ R

d such that xi → x̄. Since

dS(xi) → 0, we have x̄ ∈ S and so TΩ(x0) ≤
∞∑

i=1

ti ≤ ω(dS(x0)), which concludes

the proof.

At this level the state constraints play no role, since their presence is hidden
in Assumption (2) of Theorem 1, which requires the knowledge of at least an
approximation of the reachable set in time t. In the control-affine case (4) this can
be obtained by studying the Lie algebra generated by the vector fields appear-
ing in the dynamics, since, as well known, noncommutativity of the flows of
such vector fields will generate further direction along which the system can
move, and so more A -trajectories. Indeed, up to an higher order error, such
A -trajectories can be described by mean of their generating Lie brackets at the
initial point, and so it is possible to impose the decreasing condition of Assump-
tion (2) of Theorem 1 directly on such Lie brackets. This gives a tool to check it
in many interesting cases. State constraints may reduce the number of feasible
A -trajectory generated by Lie bracket operations, since in order to construct
each of them we have to concatenate several flows, thus possibly exiting from
the feasible region after a certain time. This problem can be faced for instance
by imposing a sort of inward pointing conditions (see e.g. [3]) in order to prevent
such a situation, forcing all the flows involved the construction of the bracket
to remain inside the feasible region. Finally, we notice that the distance to the
boundary of the feasible region may be estimate by a semiconcavity inequality
similar to the one used to estimate the decreasing of the distance from the target,
thus at each step of the construction in the proof of Theorem1 it is possible to
estimate also the distance from the boundary of the feasible region.

3 Comparison with Other Results

Example 1. The ground space is R, and set S = {zk : k ∈ N} ∪ {0}. Since
S does not satisfy the internal sphere condition, the results of [5] cannot be
applied. Take U = [−1, 1] and define f(x, u) = u

log |x| for 0 < |x| < 1/2. We

have that f ∈ C1,1
loc (S1/2\S)× [−1, 1]) and w.l.o.g. we can extend it to a function

C1,1
loc ((R\S) × [−1, 1]), still denoted by f . Clearly, for any 0 < x̄ < 1/2 the



124 A. Marigonda and T.T. Le

optimal control corresponds to u(t) ≡ 1, and for −1/2 < x̄ < 0 the optimal
control is −1. We restrict our attention only to x > 0 due to the symmetry of
the system. Consider now any A -trajectory σx̄(·) starting from x̄ of the form
σx̄(t) = x̄ + a(t, x̄) + tαA(x̄) + o(tα, x̄), where A(·) is a Lipschitz continuous
map, ‖a(t, x)‖ ≤ tsc(x) for s > 0 and a Lipschitz map c(·) satisfying c(x) → 0
when dS(x) → 0, i.e. of the same structure as in [1,2]. If σx̄(t) > x̄ for all
t > τ0 the A -trajectory do not approach the target. Excluding this case, and
up to a time shift, we can restrict to A -trajectories satisfying 0 ≤ σx̄(t) ≤ x̄
for t > 0. In particular, we have that |σx̄(t) − x̄| ≤ 2t

| log x̄| since all trajectories
contained in [0, x̄] have modulus of speed which cannot exceed 1

| log x̄| . By letting
x̄ → 0+, we obtain for all t > 0 that ‖tαA(0) + o(tα, 0)‖ ≤ 0, thus, dividing by
tα and letting t → 0+ we obtain A(0) = 0 and thus by Lipschitz continuity of
A(·) we have |A(x)| ≤ C|x|. In particular, the results of [1] cannot be applied
because the essential leading term vanishes as we approach the target. Theorem

3.1, which is the main result of [2], requires the existence of 0 ≤ λ <
2α

2α − 1
for the A -trajectory σx̄(·) such that 〈x − πS(x), A(x)〉 ≤ −δdλ

S(x), where πS(x)
is the projection of x on S. For x ≥ 0, we obtain dS(x) = x and πS(x) = 0,

and together with |A(x)| ≤ C|x|, this implies λ ≥ 2, but
2α

2α − 1
≤ 2 since it is

assumed that α ≥ 1, thus also this result cannot be applied. We consider the
optimal solution γx̄(t) = x̄ + t

log x̄ + o(t) corresponding to the control u = 1.
Take yx̄(t) = x̄+ t

2 log x̄ . It can be easily proved that x̄ > yx̄(t) > γx̄(t), and from
this that yx̄(·) is an A -trajectory. Assumption of Theorem 1 are satisfied with
δ0 = 1/2, θ(r) = τ(r) = r| log r|, μ(t, r) = rt

2| log r| , σ = t2

4 log2 x
, β(r) = | log r|,

providing the estimate T (x) ≤ 4(x − x log x). Indeed, we can compute exactly
the minimum time function in this case, which turns out to be T (x) = x−x log x
for 0 < x < 1/2 (and in general T (x) = |x| − |x| log |x| for |x| < 1/2).
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Abstract. This paper analyzes and compares two versions of a mecha-
nism that aims at mitigating climate change through REDD (Reduced
Emissions from Deforestation and Forest Degradation). In this mech-
anism industrialised countries compensate countries with rainforests if
they reduce their deforestation, because it is more cost efficient than
restricting carbon emissions from domestic production. The initial ques-
tion is, which funding possibility yields the best environmental results
and is most beneficial for the involved parties. For this purpose, differ-
ential games are developed, in which industrialized countries and coun-
tries with rainforests denote the two players. Solutions are obtained by
applying Pontryagin’s Maximum Principle and the concept of Nash and
Stackelberg Equilibria. Due to the model assumptions, analytical solu-
tions can be found. It turns out that both versions of the mechanism can
be a valuable contribution in the battle against climate change. More-
over, most advantages and disadvantages of the two variants turn out to
be robust w.r.t. parameter changes and small modifications of the model.

Keywords: REDD · Climate policy · Differential game · Optimal
control

1 Introduction

In search of promising strategies to combat climate change, REDD is one of
the most debated proposals. The basic idea is to pay money to forest own-
ers so that they do not cut down their forest and hence avoid greenhouse gas
emissions [4].1 Rainforests are important CO2-sinks and deforestation causes
approximately 20 % of global CO2-emissions [10]. Therefore, the preservation of
rainforests within the scope of a REDD-mechanism can play a vital role in the
battle against climate change. Already in the Bali Roadmap 2007 the fundamen-
tal decision for the implementation of a REDD mechanism was written down,
1 The currently discussed REDD+ mechanism operates at a national level and does

not directly compensate individual forest owners.
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but up to now no agreement on the financing could be achieved. The discussion
there focuses on the choice between a market-based and a fund-based approach.
In both scenarios, the forest owners receive money if their deforestation is below
a certain reference rate. The reference rate should describe how much they would
have deforested in absence of a REDD mechanism. In a market-based scenario,
forest owners can generate certificates if their deforestation is below the reference
rate. That means that reduced deforestation is converted into reduced carbon
emissions and these certificates can be sold on an international certificate mar-
ket. Buyers who have a reduction obligation, imposed by the Kyoto Protocol or
a succeeding agreement, can use these certificates towards their emissions reduc-
tions compliance targets. That means, if the price of the certificate is lower than
the domestic carbon avoidance costs, the buyer can comply with her reduction
target in a cheaper way. A fund-based solution implies that a fund is implemented
into which everybody, in practice mainly industrial countries though, can pay
money. The thus arising sum will be distributed among rainforest countries,
according to their reduced deforestation. Donors with reduction obligations are
not allowed to count the emission reduction they financed as their own reduction.
The strongest advocate of a market-based solution is the Coalition for Rainfor-
est Nations. They argue that only in a market-solution with certificate trading,
industrial countries have a monetary incentive to invest into the preservation of
the rainforest and thus only in this approach sufficient money can be raised. On
the other hand, the largest rainforest country Brasil and the insular state Tuvalu
belong to the most vehement opponents of a market-based approach. Their main
point is that a market-solution only helps industrial countries to cheaply comply
with their reduction obligations but that it does not lead to additional emission
reductions [4]. However, both reasonings fall short, as REDD cannot be analysed
independently from the negotiations for new reduction obligations in the scope
of a successive treaty of the Kyoto Protocol. It can be assumed that industrial
countries will be willing to accept more stringent reduction targets if they are
able to fulfill them relatively cheaply with the help of certificate trading as part
of REDD. Which effect prevails, the increased willingness to transfer money to
the South if emission certificates are thereby generated and to accept low emis-
sion caps in a market-based approach, or the additional reductions beyond the
obligations in a fund-based solution is the starting point for this paper. To the
best of our knowledge, this is the first mathematical paper that focuses on this
specific topic.

2 The Model

2.1 The Baseline Scenario

To analyse this issue, two agents will be considered that interact in a finite period
[0, T ]. The first agent will be called north and represents industrial countries that
do not own forest. The second one, south, represents developing countries with
rainforests.
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The modelling of the south is similar to [7]. In the absence of an international
agreement, the south faces the following optimisation problem:

max
D(t)

∫ T

0

e−rst
{[

P − θD(t)
]
D(t) + Y

[
F0 − F (t)

]}
dt + e−rsTφF (T )

s.t. Ḟ (t) = −D(t), F (0) = F0.

(1)

It is here assumed that deforestation in the south D(t) yields two kinds
of income: Firstly, timber can be sold at a price that is linearly decreasing
in the amount sold. Then revenues through timber sale at time t amount to[
P − θD(t)

]
D(t), where P is the maximal market price obtained when D(t)

tends towards zero and θ is a positive parameter that determines the steepness
of the demand curve. Secondly, the deforested areas can be used for agricultural
production. Here, like in [7], it is assumed that the yield per cultivated land is
constant. Thereby agricultural income can be modelled as Y

[
F0 − F (t)

]
, where

F0 denotes the initial size of the rainforest and F (t) is the size of the rainforest
at time t.

Let D(t) be the function that optimizes problem (1) and serves as a reference
rate for the definition of reduced deforestation.

The economic utility of the north is modelled in a more schematic way. In
absence of an international agreement, the north faces the following optimisation
problem:

max
En(t)

∫ T

0

e−rnt
{

aEn(t) − bEn(t)2 − cn
[
S(t) − S

]2}
dt − e−rnTψS(T )

s.t. Ṡ(t) = En(t) + γD(t), S(0) = S0.

(2)

It is important here to reflect the two-edged role of greenhouse gas emissions
for the north: On the one hand, emissions are closely linked to production and
thereby economic welfare. On the other hand, excessive emissions of greenhouse
gases lead to climate change and all the negative impacts related to it.
Analogously to [1,3] it is assumed that production and greenhouse gas emis-
sions of the north En(t) grow proportionally and that the utility derived from
production is concave. Pinning down the economic utility of the north as
aEn(t)−bEn(t)2 fulfills both requirements. The last term in curly brackets in (2)
reflects the damage caused by the accumulated stock of greenhouse gases S(t).
As in [1–3] it is assumed that the damage caused by a certain concentration of
greenhouse gases is convex in the stock. As there has always been CO2 in the
atmosphere it is not the existence but the concentration above a threshold S that
causes damage. The damage function used here reflects those two observations,
and cn weights the damages, in comparison to economic utility.

The dynamic constraint in (2) describes the assumption that the accumulated
stock of greenhouse gases in the atmosphere increases linearly in the emissions
of the north, En(t), and those of the south, Es(t). In this model, the emissions
of the south solely stem from deforestation activities. Therefore, deforestation
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has to be converted into corresponding greenhouse gas emissions. The most
natural way to do so is to assume that a certain area of rainforest on average
stores a certain amount of CO2, which will be released after logging. This leads
to Es(t) = γD(t), the emissions of the south Es(t) are thus proportional to
deforestation.

2.2 A Market-Based Approach

As in [5], a two-stage game is considered. In the first stage, the north agrees
on emission caps. In the second stage, emission certificates are traded, or more
specifically, the north will buy emission certificates from the south in order to
fulfill its emission caps with less restrictions for domestic production.

As this problem will be solved using backwards induction, it is more intu-
itive to start the detailed description at the second stage. Let On(t) denote the
emission cap of the north at time t that results from the first stage. The north
can emit more than the cap On(t), but the transgression has to be compensated
through the purchase of emission certificates Zn(t), thus En(t) = On(t)+Zn(t).
Increasing emissions according to (2) result in increasing domestic production,
but the corresponding certificates have to be bought at market price pz(t). To
comply with the caps in the cheapest possible way the north faces the following
optimisation problem:

max
Zn(t)

∫ T

0

e−rnt
{

a
[
On(t) + Zn(t)

]
− b

[
On(t) + Zn(t)

]2 − pz(t)Zn(t)
}

dt.

Here, no terms for the damages caused by excessive pollution appear, as the
trading of emission certificates only redistributes emissions between traders but
does not change the overall sum of them. The total amount of pollution will thus
be discerned at the first stage, and the associated damage will be considered by
the north then.

If the south emits less than in the baseline scenario, it can sell certificates
Zs(t) = γ(D(t) − D(t)). The south now has to balance the utility derived from
deforestation (1) and the income from selling certificates:

max
D(t)

∫ T

0

e−rst
{[

P − θD(t)
]
D(t) + Y

[
F0 − F (t)

]
+ pz(t)γ

[
D(t) − D(t)

]}
dt

+ e−rsTφF (T )

s.t. Ḟ (t) = −D(t), F (0) = F0.

The equilibrium market price pz(t) is the price that leads to Zn(t) = Zs(t)
∀t ∈ [0, T ]. Let Z∗

n

[
On(t), t

]
, D∗[On(t), t

]
be the (Nash-Equilibrium-)solutions

of this game.
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Now the first stage can be considered. At the first stage, the trade-off between
economic utility and damage through emissions is optimized. The north faces:

max
On(t)

∫ T

0

e−rnt
{

a
{

On(t) + Z∗
n

[
On(t), t

]}
− b

{
On(t) + Z∗

n

[
On(t), t

]}2

− pz(t)Z∗
n

[
On(t), t

]
− cn

[
S(t) − S

]2}
dt − e−rnTψS(T )

s.t. Ṡ(t) = On(t) + γD(t), S(0) = S0.

The constraint results from the fact that trade only redistributes the emis-
sions between regions but does not directly change overall emissions, thus
En(t) + Es(t) = On(t) + Zn(t) + γD(t) − Zs(t) = On(t) + γD(t).

2.3 A Fund-Based Approach

For the modelling of a fund-based approach again two stages will be required. In
the first stage, the north agrees on emission caps and assigns a price to a certain
area of saved rainforest. As the north (Stackelberg leader) is able to foresee the
reaction of the south (follower) it thus also determines how much it is willing
to pay into the fund for the preservation of the rainforest. In the second stage,
the south optimizes deforestation according to the money in the fund and the
assigned price.

Just like in the market-based approach, it is more intuitive to start the
detailed description in the second stage, in which the emission caps On(t) and the
prices offered by the north pf (t) are already set. The south therefore considers
the following problem:

max
D(t)

∫ T

0

e−rst
{[

P − θD(t)
]
D(t) + Y

[
F0 − F (t)

]
+ pf (t)γ

[
D(t) − D(t)

]}
dt

+ e−rsTφF (T )

s.t. Ḟ (t) = −D(t), F (0) = F0.

Let D∗[On(t), pf (t), t
]

be the optimal path of deforestation.
Now, at the first stage, the north optimally chooses the emission caps and

the price offers. As in the market-based scenario, economic interests and the
avoidance of damages have to be balanced:

max
On(t),pf (t)

∫ T

0

e−rnt
{

aOn(t) − bOn(t)2 − pf (t)γ
{

D(t) − D∗[On(t), pf (t), t
]}

− cn
[
S(t) − S

]2}
dt − e−rnTψS(T )

s.t. Ṡ(t) = On(t) + γD∗[On(t), pf (t), t
]
, S(0) = S0.

As there is no carbon trading, reduced emissions from reduced deforestation
directly lead to decreased overall emissions. Thus it holds that En(t) + Es(t) =
On(t) + γD(t), which leads to the dynamic constraint above.
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Table 1. Parameter values used for the analysis

T P θ F0 Y rn rs γ φ ψ S S0 a b cn

10 120 0.1 3.9 · e9 11 0.05 0.05 6.66 10 10 2.2 · e6 3 · e6 300 0.05 5 · e−7

3 Results

For the presentation of results parameters were chosen as specified in Table 1.
Parameters either represent a real price or quantity or are chosen to fulfill
the following criterion. In the baseline scenario, north and south should emit
27,600 and 6,900 million tonnes of CO2, respectively. This criterion results from
[8,10]. The remaining freedom in the choice of parameters was used to ensure
interpretable behaviour of both players in the two REDD scenarios.

All optimisation problems from Sect. 2 can be solved analytically using the
Matlab toolbox Symbolic. However, the display of each of the closed-form formu-
lae would require more than 25, 000 characters and is therefore omitted, while
Fig. 1 reveals the most important information.

The upper left plot in Fig. 1 shows that the introduction of a market-based
as well as a fund-based REDD mechanism leads to a significant decline in defor-
estation. In the market-scenario, deforestation decreases on average by 30%. A
fund leads to approximately 25% less deforestation. It is in line with theory that
a market-based REDD mechanism leads to a sharper decline in deforestation,
because the north has more incentive to buy certificates than to donate money.

In the upper left plot in Fig. 1, it can be seen that actual emissions of the
north do not decrease in any of the REDD scenarios relative to the baseline. In
the market-based approach, the north agrees on lower emission caps than in the
fund or the baseline scenario. However, the north purchases large quantities of
certificates from the south, with the result that it actually emits more in the
market-based approach than in the fund or baseline scenario.

The remaining question, which of these contrary effects prevails, is answered
in the lower plot in Fig. 1. It shows that both REDD mechanisms can lead to
a decline in global total emissions. In detail, the fund-based approach is able to
reduce emissions more effectively than the market-based approach. The addi-
tional reductions beyond the obligations in the fund-based solution is thus more
substantial than the fact that more emissions through deforestation are avoided
in the market based approach.

These findings seem to be very stable with respect to the choice of parame-
ters. Sensitivity analyses have been carried out for all parameters. Regardless
of the considered combination of parameters, market-based REDD leads to less
deforestation while fund-based REDD results in less total global emissions. In a
longer version of this paper [9] it is shown that these key findings are also robust
w.r.t. small modifications of the model.

However, the chances that an agreement becomes implemented rather depend
on the benefit that the involved parties derive from it than on the benefit for the
environment. It can be shown that both regions benefit from the introduction
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Fig. 1. Deforestation (u.l.), emissions of the north (u.r.), total global emissions

of any REDD mechanism. For the south, the welfare gains are larger in the case
of market-based REDD. This reproduces the fact that most rainforest countries
favour financing of REDD through carbon trading [4]. For the north, fund-based
REDD results in a higher welfare gain. The EU officially does not prefer any of
the two mechanisms. However, Norway and Germany already started paying into
a REDD-like fund [6]. The reason for this result might be that in a fund-based
approach the north, as the donor, can set the price of reduced deforestation
whereas in a market scenario the price results from supply and demand.

This finding, however, is not independent of the choice of parameters. That
means, a fund only results in more profit gain for the north as long as environ-
mental awareness cn is below a threshold. For cn = 10−6 and above, market-
based REDD becomes more profitable. For the south it is the other way round.
If the north’s environmental awareness is relatively high (cn = 5 · 10−6), the
south changes its preference towards a fund.

4 Conclusion

The starting point of this paper is to analyse the main distinguishing features
of market-based and fund-based REDD. For that purpose, a model that repro-
duces the main ideas of both REDD mechanisms is developed and the results are
analyzed. It is shown that the introduction of any of the two mechanisms leads
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to less deforestation and less global emissions, and can thereby be a valuable
contribution in the battle against climate change. As widely believed in the real
discussion, also the model shows that market-based REDD can reduce deforesta-
tion more effectively and industrialized countries are willing to pay higher com-
pensation payments. However, also as assumed in public discussion, the there-
with avoided emissions are partly compensated by increasing emissions of the
industrialized countries. In fund-based REDD, industrialized countries hardly
increase their emissions, because it is not possible to use the avoided emissions
from avoided deforestation towards their own emissions-reduction compliance
targets. This effect is strong enough to offset the upside of the market-based
approach, and total global emissions are lower in the fund-based approach than
in the market-scenario. Therefore, given our current understanding, we would
advocate a fund-based mechanism. However, much more research can be done to
put suggestions of this sort on a sound scientific basis. A first future extension
of the model could be to add the damage caused by climate change to the utility
function of the south. This significantly raises the complexity of the model but
might yield further interesting results.
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Abstract. This paper investigates what is the Hausdorff distance
between the set of Euler curves of a Lipschitz continuous differential
inclusion and the set of Euler curves for the corresponding convexified
differential inclusion. It is known that this distance can be estimated
by O(

√
h), where h is the Euler discretization step. It has been conjec-

tured that, in fact, an estimation O(h) holds. The paper presents results
in favor of the conjecture, which cover most of the practically relevant
cases. However, the conjecture remains unproven, in general.

1 Introduction

In this paper we address the problem of convexification of finite-difference inclu-
sions resulting from Euler discretization of the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0, t ∈ [0, 1], (1)

where x ∈ IRn, x0 ∈ IRn is given, and F : IRn ⇒ IRn is a set-valued mapping.
Standing assumptions will be that F is compact-valued, bounded (by a constant
denoted further by |F |) and Lipschitz continuous with a Lipschitz constant L
with respect to the Hausdorff metric.1

Denote by S the set of all solutions of (1), and by R := {x(1) : x(·) ∈ S}
the reachable set at t = 1. In parallel, we consider the convexified differential
inclusion

ẏ(t) ∈ co F (y(t)), y(0) = x0, t ∈ [0, 1], (2)

and denote by Sco and Rco the corresponding solution set and reachable set.
Now we consider the Euler discretizations of (1) and (2):

xk+1 ∈ xk + hF (xk), k = 0, . . . , N − 1, (3)

This research is supported by the Austrian Science Foundation (FWF) under grant
P 26640-N25.

1 In fact, the global boundedness and Lipschitz continuity can be replaced with local
ones if all solutions of (1) are contained in a bounded set. Then the formulations
of some of the claims in the paper should be somewhat modified. The standing
assumptions above are made simpler for more transparency.
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and
yk+1 ∈ yk + h co F (yk), k = 0, . . . , N − 1, y0 = x0, (4)

where N is a natural number and h = 1/N is the mesh size. Denote by Sh and
Sco
h the sets of (discrete) solutions of these inclusions, respectively, and by Rh

and Rco
h the corresponding reachable sets.

It is well known that Sco = cl S. This paper investigates what is the Hausdorff
distance between Sh and Sco

h , and also between Rh and Rco
h . The former is

defined as

H(Sh, Sco
h ) = sup

(y0,...yN )∈Sco
h

inf
(x0,...xN )∈Sh

max
i=0,...,N

|yi −xi| = sup
y∈Sco

h

inf
x∈Sh

‖x−y‖l∞ .

Results by Tz. Donchev [1] and G. Grammel [4] imply that H(Sh, Sco
h ) =

O(
√

h). The unpublished author’s report [9] contains the following

Conjecture: There exists a constant c such that for every natural number N

H(Sh, Sco
h ) ≤ ch. (5)

This conjecture has been proved in a number of special cases (see Sect. 3), but not
in general. It is important to clarify what the constant c depends on. A stronger
form of the conjecture is that c depends only on |F |, L, and the dimension of
the space, n. However, in some of the results presented below the constant c will
depend also on some geometric properties of F (x). Therefore we speak about
the weak and the strong form of the conjecture. We mention that there is an
even stronger form of the conjecture, where Lipschitz continuity is required for
co F instead of F . This case will be only partly discussed in Part 2 of Sect. 3.

Clearly, (5) implies the same estimation for H(Rh, Rco
h ), but the inverse impli-

cation does not need to be true. (Here, and at some places below we use the sym-
bol H also for the Hausdorff distance between compact subsets of IRn, which
will be clear from the context.)
The problems mentioned above are relevant for many engineering applications,
where switched systems [5] or mixed-integer control problems (see [6–8] and
the references therein) arise. The mixed-integer control problems can be formu-
lated as

min
u(·)

{
p(x(1)) +

∫ 1

0

q(x(t)) dt

}
(6)

ẋ(t) = ϕ(x(t), u(t)), x(0) = x0, u(t) ∈ U, t ∈ [0, 1], (7)

where some of the components of the control u are restricted in a convex set,
the remaining components take values in a discrete set. Thus the set U is non-
convex. The problem becomes combinatorial and due to the high dimension of its
discretized counterpart (obtained, say, by the Euler method with mesh size h) is
hard to be solved numerically. For this reason, in the above mentioned papers the
authors propose to solve the convexified version of the problem and then from the
numerically obtained optimal control to construct another, piecewise constant
one, that takes values in U only, and such that the loss of performance is small
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(relative to the discretization step h). It is easy to see that the loss of performance
(compared with the optimal performance of the convexified problem) can be
estimated by H(Sh, Sco

h ) + O(h), and in the case q = 0 by H(Rh, Rco
h ) + O(h),

provided that p and q are Lipschitz continuous. This gives one motivation for
the question formulated above.
In the next section we prove a result related to the problem posed above (but not
implying validity of the conjecture), while in Sect. 3 we present cases in which
the conjecture is proved under some additional conditions.

2 A Related Result

The next result deviates from the conjecture formulated in the introduction, but
has practical relevance in view of the control problem (6), (7).

Theorem 1. There exists a constant C such that for every natural number N
and for every y = (y0, y1, . . . , yN ) ∈ Sco

h there exist positive numbers h1, . . . hN

with
∑N

k=1 hk = 1 and a solution x = (x0, . . . xN ) of

xk+1 ∈ xk + hkF (xk), k = 0, . . . , N − 1, (8)

such that
‖x − y‖l∞ ≤ (4n + 1)|F |eL h.

Proof. Obviously coF is Lipschitz and bounded with the same constants as F .
Let y = (y0, y1, . . . , yN ) ∈ Sco

h . Then there exist ξi ∈ co F (yi) such that

yi+1 = yi + hξi, i = 0, . . . , N − 1. (9)

We split the points y0, . . . , yN into groups of n + 1 successive elements, the last
one containing possibly a smaller number of elements. Let m be the number of
groups, not counting the last one if it contains less than n+1 elements. Thus m
is the largest integer for which m(n + 1) ≤ N .

We shall define a trajectory (x0, x1, . . . , xN ) of (8) successively for each group
of indexes. Namely, since x0 is given and y0 = x0, we set Δ0 = |x0 − y0| = 0,
then we assume that xi(n+1) is already defined, together with the corresponding
steps hj , j = 0, . . . , i(n + 1). Denote Δi = |xi(n+1) − yi(n+1)|.

Due to (9) we have that for j = 0, . . . , n

ξi(n+1)+j ∈ co F (yi(n+1)+j) = coF

(

yi(n+1) + h

j−1∑

s=0

ξi(n+1)+s

)

⊂ co F (yi(n+1)) + hjL|F |B,

where B is the unit ball in IRn. Then there exist ξ̃i(n+1)+j ∈ co F (yi(n+1)) such
that

|ξ̃i(n+1)+j − ξi(n+1)+j | ≤ hjL|F |, j = 0, . . . , n, (10)
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where we have set ξ̃i(n+1) = ξi(n+1). Since ξ̃i(n+1)+j ∈ co F (yi(n+1)), we have
also that

1
n + 1

n∑

j=0

ξ̃i(n+1)+j ∈ co F (yi(n+1)).

According to the Carathéodory theorem, there exist η̃i(n+1)+j ∈ F (yi(n+1)) and
αj ≥ 0,

∑n
j=0 αj = 1, such that

n∑

j=0

αj η̃i(n+1)+j =
1

n + 1

n∑

j=0

ξ̃i(n+1)+j . (11)

Let us define hi(n+1)+j = h̄j := (n + 1)hαj . Due to the Lipschitz continuity of
F , there exists ηi(n+1) ∈ F (xi(n+1)) such that

|ηi(n+1) − η̃i(n+1)| ≤ LΔi.

To extend the trajectory x0, . . . , xi(n+1) we set

xi(n+1)+1 = xi(n+1) + h̄0ηi(n+1).

Since

H(F (xi(n+1)+1), F (yi(n+1))) ≤
H(F (xi(n+1)+1), F (xi(n+1))) + H(F (xi(n+1)), F (yi(n+1))) ≤ h̄0L|F | + LΔi,

there exists ηi(n+1)+1 ∈ F (xi(n+1)+1) such that

|ηi(n+1)+1 − η̃i(n+1)+1| ≤ h̄0L|F | + LΔi.

Then we define
xi(n+1)+2 = xi(n+1)+1 + h̄1ηi(n+1)+1.

Continuing in the same way we define for every j = 0, . . . , n the vectors ηi(n+1)+j

and xi(n+1)+j+1 such that

ηi(n+1)+j ∈ F (xi(n+1)+j),
xi(n+1)+j+1 = xi(n+1)+j + h̄jηi(n+1)+j ,

|ηi(n+1)+j − η̃i(n+1)+j | ≤ L|F |
j−1∑

k=0

h̄k + LΔi. (12)

In this way the trajectory of (3) is extended to the discrete time (i + 1)(n + 1).
The next estimations follow from (10), (11), (12):
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Δi+1 = |x(i+1)(n+1) − y(i+1)(n+1)|

≤ |xi(n+1) − yi(n+1)| +

∣
∣
∣
∣
∣
∣

n∑

j=0

h̄jηi(n+1)+j − h
n∑

j=0

ξi(n+1)+j

∣
∣
∣
∣
∣
∣

≤ Δi +
n∑

j=0

h̄j

∣
∣ηi(n+1)+j − η̃i(n+1)+j

∣
∣ +

∣
∣
∣
∣
∣
∣

n∑

j=0

h̄j η̃i(n+1)+j − h

n∑

j=0

ξ̃i(n+1)+j

∣
∣
∣
∣
∣
∣

+h

n∑

j=1

∣
∣
∣ξ̃i(n+1)+j − ξi(n+1)+j

∣
∣
∣

≤ Δi +
n∑

j=0

h̄jLΔi + L|F |
n∑

j=1

h̄j

j−1∑

k=0

h̄k

+

∣
∣
∣
∣
∣
∣
(n + 1)h

n∑

j=1

αj η̃i(n+1)+j − h

n∑

j=1

ξ̃i(n+1)+j

∣
∣
∣
∣
∣
∣
+ h

n∑

j=0

hjL|F |

≤ (1 + (n + 1)Lh)Δi + (n + 1)2L|F |h2 +
n(n + 1)

2
L|F |h2

≤ (1 + (n + 1)Lh)Δi + (n + 1)(2n + 1)L|F |h2.

Since this holds for any i < m it implies in a standard way the inequality

Δi ≤ (2n + 1)|F |ei(n+1)Lhh ≤ (2n + 1)|F |em(n+1)Lhh ≤ (2n + 1)|F |eLh.

Then taking into account the errors that can be made within n intermediate
steps, or in the last N − m(n + 1) ≤ n steps we obtain for the above defined
solution of (8)

|xk − yk| ≤ (2n + 1)|F |eLh + 2n|F |h ∀k = 0, . . . , N.

The proof is complete. 
�
Obviously the above theorem does not give an answer to the main question in
this paper, since the time-steps in (8) need not be uniform. Although the total
number of jumps is N , there could be much smaller distance between the jumps,
which may be trouble for practical implementations. Moreover, as it is clear from
the proof, in the terms of the control problem (6)–(7), the choice of uk ∈ U at step
k depends on n future values of the optimal control of the convexified problem
(that is, it is anticipative). However, this is in line with the model predictive
control methodology used in practice. Moreover, the construction in the proof
of the theorem can be viewed as an alternative of the “adaptive control grid”
proposed in [7] where 2N jump points of the control are used (instead of N).

3 Cases in Which the Conjecture is Proved

The proofs of the results in this section are available in the Research Report
2015-10 at http://orcos.tuwien.ac.at/research/research reports/.

http://orcos.tuwien.ac.at/research/research_reports/
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Part 1. First we consider the case of a constant mapping F , that is, the inclusion

ẋ(t) ∈ V, x(0) = x0, t ∈ [0, 1], (13)

where V ⊂ IRn is compact. This case will be embodied later in more general
considerations.

We mention that conjecture (5) has not been proved even in this “simple”
case. However, for constant mappings F (x) = V it holds that

H(Rh, Rco
h ) ≤ ch,

where the constant c depends only on |V | and n. This can be proved (and
has been proved by several mathematicians in private communications with the
author: Z. Artstein, M. Brokate, E. Farkhi, T. Donchev) in different ways, the
simplest of which uses the Shapley-Folkmann theorem (see e.g. [3, Appendix 1]).
Now, we consider the case of a set V consisting of finite number of points:

V = {v1, . . . , vs}, vi ∈ IRn. (14)

The proof is given in the research report [9] and is somewhat modified below.

Proposition 1. For differential inclusion (13) with the constant mapping V
specified in (14) the estimation

H(Sh, Sco
h ) ≤ 2s|V |h,

holds for every h = 1/N , N ∈ IN .

The proof of the above proposition is constructive and the construction sim-
ilar to what is called in [7,8] Sum Up Rounding Strategy.

We mention that the constant c = 2s|V | in Proposition 1 depends on the
number of elements of V , that is, only the weaker form of Conjecture (5) is
proved (the constant c depends on the geometric properties of V ). In particular,
it does not help to deal with sets V for which the boundary of coV contains
curved pieces. The next result is capable to capture some such cases.

Part 2. In this part we consider the general inclusion (1), weakening a bit the
standing assumptions. Namely, instead of assuming Lipschitz continuity of F we
assume that co F is Lipschitz continuous.

Notice that all sequences in Sh and Sco
h are contained in the compact set

X := {x ∈ IRn : |x − x0| ≤ M}. Let there exist functions li : X → IRn,
i = 1, . . . , n such that:

(i) li are Lipschitz continuous;
(ii) the vectors li(x), i = 1, . . . , n, are linearly independent and |li(x)| = 1 for
every x ∈ X;
(iii) for every x ∈ X, every v̄ ∈ co F (x) and every σ1, . . . , σn ∈ {−1, 1} there
exists v ∈ F (x) such that

σiαi(x; v − v̄) ≤ 0, i = 1, . . . , n,
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where αi(x; z) is the i-th coordinate of z ∈ IRn in the basis {li(x)}.
Clearly, the numbers αi(x; z) are uniquely defined from

z =
n∑

i=1

αi(x; z) li(x). (15)

Proposition 2. Under the suppositions made in Part 2 there exists a constant
C such that

H(Sh, Sco
h ) ≤ Ch

for every h = 1/N , N ∈ IN .

The next is a simple consequence of the above proposition.

Corollary 1. Under the conditions of Proposition 2, let F satisfy

F (x) = ∂(coF (x)) ∀x ∈ IRn,

where ∂Y denotes the boundary of Y . Then the conclusion of Proposition 2 holds
true.

Indeed, we may take an arbitrary fixed orthonormed basis {li(x) = li}. Let
us take an arbitrary v̄ ∈ co F (x) and σi ∈ {−1, 1}. If v̄ ∈ ∂F (x), then moving
from v̄ along the vector −(σ1l1 + . . . + σnln) we shall reach a point v ∈ ∂F (x)
for which (iii) is obviously satisfied.
One example (that was considered as non-trivial) is the inclusion (13) with V
being the semi-circle in IR2 (a semi-sphere in IRn can be treated in the same
way):

V = {(v1, v2) : (v1)2 + (v2)2 = 1, v2 ≥ 0}.

The claim of the conjecture (5) for this example follows from Proposition 2.
Indeed, one may take li = ei – the standard basis in IR2. For any v̄ ∈ co V and
σ1, σ2 ∈ {−1, 1} define v2 = v̄2, v1 = −σ1

√
1 − v̄2

2 . Then σ1α1(v) = −
√

1 − v̄2
2 ≤

0 and σ2α2(v) = 0. Assumption (iii) of Proposition 2 is fulfilled.

Part 3. Now, we consider a differential inclusion of the form

ẋ(t) ∈ G(x)V, x(0) = x0, (16)

where G(x) is an (n × m)-matrix and V ⊂ IRm.

Proposition 3. Let V be compact and G(·) be Lipschitz continuous with con-
stant L > 0, and bounded by a constant M , both with respect to the operator
norm of G. Let (5) holds for the differential inclusion (13) with some constant
c. Then for the differential inclusion (16) the estimation

H(Sh, Sco
h ) ≤ cM(1 + L)eL|V |h,

holds for every h = 1/N , N ∈ IN .
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This proposition is an extension of [8, Theorem 2] where it is assumed that
G is differentiable and V is a box. The proof below is a discrete-time adoption
of that in [8].

Part 4. Following [8], one can use the above proposition to obtain an estimation
as in (5) for non-affine inclusions of the form

ẋ ∈ f(x,U), (17)

where U ∈ IRm consists of finite number of points; U = {u1, . . . , us}, and
f(·, ui) : IRn → IRn.

Proposition 4. Let the functions f(·, ui) be Lipschitz continuous with constant
L > 0, and bounded by a constant M . Then for the differential inclusion (17)
the estimation

H(Sh, Sco
h ) ≤ 2s3/2M(1 +

√
sL)e

√
sL h, (18)

holds for every h = 1/N , N ∈ IN .

This propositions extends [8] in that f(·, u) is not assumed differentiable. The
constant in (18) depends on the number of elements of U , which means that only
the weak form of Conjecture (5) is proved in the considered special case. On the
other hand, the proposition covers most of the practically interesting cases.

4 Conclusion

To the author’s knowledge, the conjecture that H(Sh, Sco
h ) = O(h) is still open

(both in its stronger and weaker form). We stress that the conjecture has not
been proved even in the case of a constant mapping F (x) = V ⊂ IRn. However,
the partial results in this paper cover most of the practically important cases.
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Abstract. Uncertainty quantification (UQ) for porous media flow is of
great importance for many societal, environmental and industrial prob-
lems. An obstacle for progress in this area is the extreme computational
effort needed for solving realistic problems. It is expected that exa-scale
computers will open the door for a significant progress in this area. We
demonstrate how new features of the Distributed and Unified Numerics
Environment DUNE [1] address these challenges. In the frame of the DFG
funded project EXA-DUNE the software has been extended by multi-
scale finite element methods (MsFEM) and by a parallel framework for
the multilevel Monte Carlo (MLMC) approach. This is a general concept
for computing expected values of simulation results depending on random
fields, e.g. the permeability of porous media. It belongs to the class of
variance reduction methods and overcomes the slow convergence of clas-
sical Monte Carlo by combining cheap/inexact and expensive/accurate
solutions in an optimal ratio.

Keywords: Uncertainty quantification · Multilevel Monte Carlo · Mul-
tiscale finite elements · Porous media · Random permeability · Exa-
scale · DUNE

1 Introduction

We demonstrate how newly developed DUNE modules for multilevel Monte Carlo,
multiscale finite elements, and for generating random permeability fields can be
combined to solve hard problems of uncertainty quantification in porous media
flow using large scale computer clusters.

2 Model Problem

A simple model problem which is still able to illustrate the combination of par-
allel MLMC, MsFEM, and efficient generation of random permeability fields is
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 145–152, 2015.
DOI: 10.1007/978-3-319-26520-9 15
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the stationary single phase flow through a cubic cell in non-dimensional form:

−∇ · [k(x, ω)∇p(x, ω)] = 0 for x ∈ D = (0, 1)d
, ω ∈ Ω

p
∣
∣
x1=0

= 1 , p
∣
∣
x1=1

= 0 ,
∂p

∂n
= 0 on other boundaries, (1)

with dimension d ∈ {2, 3}, real pressure p, real scalar permeability k, and random
vector ω. Let K(x, ω) = log k(x, ω) the logarithm of permeability. We assume
that its expected value and spacial covariance are shift invariant and satisfy

E [K(x, ·)] = 0, E [K(x, ·)K(y, ·)] = C(x − y) = C(y − x) for x, y ∈ D. (2)

The quantity of interest is the total flux through the unit cube

Q(ω) :=
∫

x1=0

k(x, ω)
∂

∂n
p(x, ω) dS(x). (3)

A dimensional problem on cube [0, L]d with input pressure p0 and reference
permeability k0 = exp (E [log k′(0, ·)]) may be converted into form (1)–(3) by
setting x = x′/L, p = p′/p0, k = k′/k0, and Q = Q′/

(
p0k0L

d−2
)
, where ′ marks

dimensional variables. In particular, the effective constant permeability, which
leads to the same flux as the random field, reads k′

eff(ω) = k0 Q(ω). Here, we
consider a practically relevant covariance of type (2) proposed in [2]:

C(h) = σ2 exp (−‖h‖2 /λ) , h ∈ [−1, 1]d (4)

with variance 1 ≤ σ2 ≤ 4 and correlation length 0.05 ≤ λ ≤ 0.3. The bounds are
not strict. However, for higher σ2 computing mean values of Q becomes irrele-
vant. In case of larger λ measurements may allow a deterministic reconstruction
of k and for smaller λ homogenization techniques should be applied.

3 Generation of Random Permeability Fields

Literature provides several ways of generating random permeability fields, most
of which cannot be applied to our setting. Factoring covariance functions
are assumed in [3], which is not true for (4). Methods based on truncated
Karhunen-Loève expansions [4] are inexact as eigenvalues do not decay rapidly.
Therefore, we have implemented a parallel version of the circulant embedding
algorithm introduced in [5], which is exact down to grid size, still fast, and
works for a wide class of covariance functions. The idea is as follows. Let N ∈ N,
J = {0, . . . , 2N−1}d,

{
ψk : J � n �→ exp

(
iπ k·n

N

)
| k ∈ J

}
the Fourier basis on

J , C̃ the 2-periodic continuation of the covariance function C to R
d, xn = n

N ,
n ∈ Z

d discrete grid points, and ck =
∑

n∈J C̃(xn)ψk(n) the Fourier coefficients
of C. As C is symmetric the ck are real. Under some additional conditions, which
are stated in [5] and which are satisfied by covariance (4) for sufficiently small
λ, the ck are also non-negative. Then we can construct

F (xn, ω) =
∑

k∈J

μk ωk ψk(n) with n ∈ J, μk =
√

(2N)−d
ck (5)
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Fig. 1. Creating random permeability fields by circulant embedding

and random numbers ω ∈ C
J satisfying wk = αk + i βk with independent stan-

dard normally distributed αk and βk. Finally, a simple calculation shows that
the (discrete) permeability fields k1 = log 	(F ) and k2 = log 
(F ) satisfy (2).
The following aspects of our implementation [6,7] are crucial:

1. The Fourier transform of C and the subsequent computation of the μk is
done only once during initialization. Creating a new pair of permeability
fields requires only one inverse Fourier transform, cf. Eq. (5).

2. The parallel FFTW3 package is used for Fourier transforms. As illustrated in
Fig. 1(b), this package does not scale properly. Rather, there are optimal
numbers of processors for a certain problem size, where local data can be
kept in fast memory, but communication is not dominant, yet.

Fig. 2. Pressure p and flux Q for different correlation lengths, same random ω.
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3. FFTW3 uses a one-dimensional domain decomposition and we have to redistrib-
ute data between processors to be consistent with the domain decomposition
used by the PDE solver (additional effort ∼ number of grid cells).

4. The μk plotted in Fig. 1(a) for d = 2 are about the roots of the eigenvalues
of the Karhunen-Loève expansion, which demonstrates their slow decay.

5. The permeability field generator can also be applied to measured covariances
satisfying Eq. (2), provided the ck turn out to be non-negative.

4 Multiscale Methods

Originally proposed by Hou and Wu in 1997 [8], the classical multiscale finite
element method (MsFEM) saw extension and generalization since, for which
[9] provides an overview. Calculating local correctors that carry fine-scale infor-
mation of k(x, ω) to enhance a coarse nodal basis is the core idea behind the
MsFEM. These updated basis functions are predicted to show superior approx-
imation qualities. We will concisely describe this process in three steps below.
There we will confine ourselves to consider only triangular meshes, but the gener-
alization to hexahedral/quadrilateral meshes is of course straightforward. Let us
now consider a regular triangulation TH of D and define VH := P1(TH)∩H1

0 (D).
With this in place we can summarize the classical MsFEM as follows:

1. A suitable choice for VH , the coarse finite element space is required, i.e. the
spaces’ dimensionality still allows for a cost-effective discretization of Eq. (1).

2. Then, for each coarse cell K ∈ TH , we incorporate fine scale information into
all coarse nodal basis functions that have support on K. Let Φi ∈ VH be one
of those basis functions. We then define the so called ‘corrected basis function’
by the following two properties:

Φms
i |∂K = Φi|∂K (6)

and ∫

K

k(x, ω)∇Φms
i |K · ∇φ = 0 ∀φ ∈ H1

0 (K). (7)

3. Lastly, we define as V MsFEM :=span{Φms
i | 1 ≤ i ≤ N} our multiscale finite

element space and in it look for the Galerkin approximation p as presented
by: find pMsFEM ∈ V MsFEM such that

∫

Ω

k(x, ω)∇pMsFEM · ∇v =
∫

Ω

fv ∀v ∈ V MsFEM. (8)

We shall call pMsFEM the MsFEM approximation of the solution p of the PDE
given in Eq. (1).

The boundary conditions (6) for the local problems (7) are prone to produce
rapid oscillations close to ∂K, which may greatly diminish the overall quality
of the MsFEM approximation. To rectify this we employ oversampling [10,11],
meaning we solve local problems on a slightly expanded domain U(K) ⊃ K, but



UQ for Porous Media Flow with MLMC 149

restrict the obtained solutions back to K and use only the information available
there to correct the coarse basis functions. The troublesome boundary layer is
thereby pushed to U(K) \ K and ignored, improving the MsFEM approxima-
tion at the cost of the discretization becoming non-conforming. For a detailed,
rigorous study of different oversampling strategies we refer the reader to [12].

Based on DUNE [1] in general and the DUNE Generic Discretization Toolbox
and DUNE Stuff modules [13,14] in particular, our implementation in the DUNE
Multiscale [15] module is available as open source1. First results on the parallel
scalability of the MsFEM implementation have been demonstrated in [16].

5 Multilevel Monte Carlo

In many problems of porous media flow the permeability field is unknown and we
can only guess its probability distribution from a few measurements. Usually, we
are interested in some macroscopic aggregate quantity, e.g. the total flux through
a given sector of the ground. As we do not know the exact permeability field
we can only deduce the distribution of this quantity from the distribution of
permeabilities. This kind of UQ is usually performed by MC methods due to the
high number of random parameters. However, standard MC methods converge
slowly and MLMC [4,17,18] can be used to improve performance by variance
reduction. More precisely, the same kind of problems are solved by both, accurate
but slow PDE solvers and inexact but fast ones. The variance of the aggregate
quantity is split into the variance of the coarse solution, which can be reduced
by many quick evaluations, and the variance of the difference of fine and coarse
solutions, which is typically small and requires only few realizations to be reduced
as needed.

In order to deal with a large variety of problems in UQ we have implemented
quite a general MLMC module using DUNE [7]. It expects classes providing the
aggregate quantity computed by a coarse solver and classes providing the differ-
ence of results by two methods of increasing accuracy for the same random field.
The distribution of sample problems to different processor groups and choosing
the optimal number of samples per level are done automatically. Before getting
into details we repeat the principle of MLMC.

Let ω be a random field characterizing the scalar permeability k(·, ω). Assume
we have L+1 different numerical methods available to approximate the flux Q(ω)
by values Ql(ω), l = 0, . . . , L. Let the methods be ordered by increasing accuracy
and cost. Then we can rewrite Q(ω) as telescoping sum:

Q(ω) = Q0(ω)
︸ ︷︷ ︸
Y0(ω)

+Q1(ω) − Q0(ω)
︸ ︷︷ ︸

Y1(ω)

+ · · · + QL(ω) − QL−1(ω)
︸ ︷︷ ︸

YL(ω)

+Q(ω) − QL(ω)
︸ ︷︷ ︸

ZL(ω)

.

Let ω be an n-dimensional vector of random fields ωi distributed like ω. Then

Yln(ω):= 1
n

∑n
i=1Yl(ωi) satisfies E [Yln] = E [Yl] , Var [Yln] = 1

nVar [Yl] .

1 https://github.com/wwu-numerik/DUNE-Multiscale/, BSD-2 licensed.

https://github.com/wwu-numerik/DUNE-Multiscale/
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Given nl realizations on level l we can construct the following estimator of E [Q]:

Q̂
(
ω0. . . ωL

)
=

L∑

l=0

Ylnl

(
ωl

)
with E

[
Q− Q̂

]
= E [ZL] , Var

[
Q̂

]
=

L∑

l=0

1
nl

Var [Yl].

Let method L be chosen so accurate that |E [ZL]| ≤ ε. Our goal is to have

E
[(

Q̂−E [Q]
)2]=Var

[
Q̂

]
+

(
E

[
Q̂−Q

])2 ≤ 2 ε2 following from
L∑

l=0

1
nl

Var [Yl] = ε2.

(9)
This condition may be achieved by different combinations of numbers nl and
we choose the one with minimal CPU time. Let vl = Var [Yl], tl the mean time
computing difference Yl once, and T =

∑L
l=0 nl tl the total time computing Q̂.

Minimizing T under constraint (9) and turning to integers gives

nl = ceil
[
α
√

vl/tl

]
with Lagrangian multiplier α = 1

ε2

∑L
l=0

√
vl tl . (10)

In practice, the nl are computed based on estimates of tl and vl. Obviously,
MLMC is well-suited for parallel computing as samples can be computed inde-
pendently. Turning to a parallel implementation we have to answer two main
questions: How many processors pl are used per sample on a given level? This is
mainly determined by the parallel performance of the permeability generator, cf.
Fig. 1(b). And further: How can we minimize communication estimating mean
times and variances? This is done by an outer loop i over a few breaks, e.g.
nb = 3, and an inner loop over the levels. Here, Yl are computed many times in
parallel by groups of pl processors until time T i

l when statistical moments are
exchanged between groups. At the beginning of a new outer loop we compute
optimal nl as in Eq. (10) and new stopping times as T i

l = (nl − n′
l) tl

pl

p
i

nb
, where

n′
l denotes the number of samples on level l created so far and p is the total

number of processors.

6 Numerical Results

In order to demonstrate the flexibility of the parallel MLMC framework we have
used it to implement a two-level scheme where MsFEM is used on level 0 and
a standard continuous Galerkin method on level 1. The two approximations of
a typical pressure field are compared in Fig. 3(a). The speedup of MLMC by
solving samples in parallel is illustrated for pl = 1, ε = 0.03 in Fig. 3(b).

Showing performance, we have set up a three-level scheme solving realizations
of the model problem in 3D (Yasp-grid, Q1 elements, AMG solver, cf. Fig. 2) on
the ITWM cluster for mesh sizes 2−k, k = 5, 6, 7 on 1, 4, and 32 processors,
respectively. MLMC is used on 1024 processors to compute the expected effec-
tive permeability (same as Q) for pairs (σ, λ) as illustrated in Fig. 4(a). The
accuracy is ε = 0.005 except for ε = 0.008 at (2, 0.25) and (2, 0.3). In the lat-
ter case, 220160, 31744, and 54944 samples are required on levels 0, 1, and 2,
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Fig. 3. Parallel two-level Monte Carlo with MsFEM as fast solver
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Fig. 4. Computing effective permeabilities by three-level MC.

respectively. Computing one Y2 takes about 7 s including 0.6 s for generating k.
Creating Fig. 4(a) took 27.7 h, which corresponds to 3.2 years on a single proces-
sor. Figure 4(b) illustrates superiority of MLMC over standard MC especially for
higher λ (σ = 1.5) and Fig. 4(c) the almost ideal speedup.

7 Conclusion

Combining new DUNE modules on MLMC, MsFEM, and random permeability
fields we have computed effective permeabilities for a practically relevant covari-
ance function over a wide range of correlation lengths and variances, which may
serve as a future benchmark. Our MLMC framework allows combining different
kinds of algorithms per level, in particular MsFEM as coarse solver. We put
emphasis on the fact that the permeability generator determines a moderate
optimal number of processors to be used per realization, which has influenced
our strategy for parallelizing MLMC.

Acknowledgements. This research was funded by the DFG SPP 1648 Software for
Exascale Computing.
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Abstract. We present a task-based implementation of SpMVM with
the PGAS communication library GPI-2. This computational kernel is
essential for the overall performance of the Krylov subspace solvers but
its proper hybrid parallel design is nowadays still a challenge on hier-
archical architectures consisting of multi- and many-core sockets and
nodes. The GPI-2 library allows, by default and in a natural way, a task-
based parallelization. Thus, our implementation is fully asynchronous
and it considerably differs from the standard hybrid approaches com-
bining MPI and threads/OpenMP. Here we briefly describe the GPI-2
library, our implementation of the SpMVM routine, and then we compare
the performance of our Jacobi preconditioned Richardson solver against
the PETSc-Richardson using Poisson BVP in a unit cube as a bench-
mark test. The comparison employs two types of domain decomposition
and demonstrates the preemptive performance and better scalability of
our task-based implementation.

Keywords: GASPI · GPI-2 · PGAS · Task-based hybrid paralleliza-
tion · Sparse matrix-vector multiplication · Krylov subspace solvers ·
Performance

1 Introduction and Motivation

The so called pure- or flat-MPI programming (one MPI-process per core) is
nowadays no longer the most appropriate approach on systems with multi-core
and multi-socket nodes. A hybrid parallelization is considered a natural choice
instead: it combines a coarser, inter-node distributed memory parallelization
with the more fine-grained, intra-node shared memory parallelization. Particu-
larly, a task-based parallelization, where inter-nodal exchange can be indepen-
dently performed by each thread from within thread-parallel regions, seems to
be the proper alternative to reveal and fully exploit the hierarchical parallelism
of such architectures.

The classical and most often used variant of hybrid parallelization is to
combine MPI and threads/OpenMP. Particularly with regards to SpMVM this
approach is followed for instance in [5,6]. But such a combination imposes
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 153–160, 2015.
DOI: 10.1007/978-3-319-26520-9 16
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certain restrictions and performance issues with respect to thread-safety
[2–4]. For instance, the MPI 2.0 standard prescribes four interface levels of
threading support, one of them (MPI THREAD MULTIPLE) allowing a more
task-based parallelization. MPI 3.0 improves some aspects related to threading -
e.g., using MPI Probe when several threads share a rank, etc. But in general,
the hybrid parallelization based on MPI is still a challenge, it contains cer-
tain open issues (see e.g. [9], where also the new hybrid MPI+MPI approach
is discussed), and it is often the case that MPI implementations do not pro-
vide a high performance support for task-based multi-threading. Consequently,
applications aren’t usually developed for such support and hence there is a non-
optimal usage of resources - say, of the growing capabilities of high-performance
interconnects. Particularly, many numerical libraries still use flat-MPI, e.g. in
PETSc [11] threading has only recently appeared in the developers version.

Another point is that currently the trend in computer systems architecture is
to see an increasing number of cores per node, with Non-Uniform Memory Access
(NUMA) and with heterogenous resources. This not only puts pressure on multi-
threaded support but it creates a need for more dynamic and asynchronous
execution, to hide the latency of inter-node communication as well as that of
intra-node memory and synchronization operations.

The GASPI interface [8] was specified with the previous aspects in mind
and GPI-2 [7] was implemented to cope with them. The focus on asynchronous,
one-sided communication with multi-threaded support and weak synchroniza-
tion semantic creates an opportunity for new, more scalable implementations of
performance critical building blocks such as the SpMVM, which is crucial for
the case of Krylov solvers.

In this work, we present a task-based parallel implementation of SpMVM
that takes advantage of our communication library GPI-2. We demonstrate the
potential of our approach on the solution of a Poisson Boundary Value Problem
(BVP) in a unit cube and we compare the performance against PETSc using two
different types of Domain Decomposition (DD). The results show a significant
performance advantage and better scalability when using the appropriate DD
based on graph partitioning methods (METIS).

The rest of the paper is organized as follows: first we briefly describe the
features of GPI-2 and our task-based SpMVM implementation, which differs in
many aspects from the classical hybrid approach; then we formulate the model
problem and explain the DD used in the comparisons. Further, we present and
comment the performance results, and finally some conclusions are drawn.

2 GASPI/GPI-2 and Task-Based Parallelization

GPI-2 is the implementation of the GASPI standard, a relatively recent interface
specification which aims at providing a compact API for parallel computations. It
consists of one-sided communication routines, notifications-based synchroniza-
tion, passive communication, global atomics and collective operations. It also
defines groups (which are similar to MPI communicators and are used in collec-
tive operations) and the concept of segments. Segments are contiguous blocks
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of memory and can be made accessible (to read and write) to all threads on all
ranks of a GASPI program.

GPI-2 is thus a communication library for C/C++ and Fortran based on
one-sided communication. It adopts a PGAS-like model where each rank owns
one or more memory segments which are globally accessible. Moreover, in GPI-2
all communication routines are thread-safe, allowing a more asynchronous and
fine-grained multi-threaded execution as opposed to a bulk-synchronous com-
munication with a single (master) thread, responsible for communication.

From an implementation point of view, GPI-2 aims at introducing a mini-
mal overhead by providing a very thin layer, close to and exploiting hardware
capabilities such as RDMA. One focus aspect is to provide truly asynchronous
communication, that progresses in parallel as soon as it is triggered. This allows
a better overlap of communication and computation, hiding the latency of com-
munication.

Our GPI-2 based SpMVM is implemented in a task-based fashion, where
a GPI-2 process (with the corresponding rank) is started per available NUMA
socket. Within each rank a pool of POSIX threads is then used. Each thread
dynamically polls for tasks to perform: this can be transferring data or com-
puting a locally available part. This ensures that all threads are busy and that
communication is overlapped and hidden behind the computation.

Note that such a task-based implementation is applicable to other kinds of
large-scale scientific computations. Although it often requires a re-formulation of
the algorithm, the attained benefits are considerable (as it will be demonstrated
here). Below we provide more details about how is this achieved for the SpMVM
kernel.

3 SpMVM with GPI-2

SpMVM is a memory–bounded routine; the SpMVM-kernels perform poorly,
achieving ∼ 10% from the theoretical peak performance [1], being far from
reaching the theoretical speedup even on SMP-architectures. The principal prob-
lems related to the SpMVM performance are known (see [1] and the references
therein): (i) restricted temporal locality as there is little data reuse, e.g. the
matrix elements are used once only; (ii) irregular access to the input vector; (iii)
large number of matrix rows of a very short row-length to multiply; (iv) indirect
memory access imposed by the sparse matrix storage formats; etc.

The numerical treatment of (systems of) PDEs on hybrid architectures usu-
ally uses hierarchical decomposition: the coarse grained parallelism is attained
by domain decomposition (DD), while the fine-grained parallelism on the node is
achieved by thread parallelization. Each subdomain (SD) is mapped to a compu-
tational node, in our case this is a GPI-2 rank associated with a NUMA socket.
The DD defines the distribution of the vector of unknowns (and of the rows of
the sparse matrix for row-wise distribution) over the SDs, also the disposition
of the discretization nodes at the subdomain interface which gives the topology
of the inter-nodal exchange in SpMVM within the Krylov solvers. The resulting
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communication pattern depends on this topology (i.e., on the sparsity structure
of the matrix) and is entirely irregular and problem-dependent. Note, that it is
neither reasonable nor possible on each SD to keep a local replica of the full
SpMVM input vector. One should copy locally only the remote items of the
input vector needed on this SD, i.e. requested by the non-zero matrix elements,
distributed on this SD. Our solution of this issue is to gather this topological
information at the stages of mesh partitioning and discretization and to create,
for each SD, a set of buffers to be written (lists of indices of the mesh nodes at
the SD-interface). Then during execution, when the SpMVM routine is invoked,
these buffers are used to perform the transfer of the remote input vector items.

Assuming a row-wise matrix and vector distribution, we designate the locally
distributed matrix rows as A, the full input vector as X, and the local part of
the output vector as Ylcl. Thus, the SpMVM should calculate the expression
Ylcl = A ∗X on each SD. A standard way to overlap communication and com-
putation in SpMVM (see e.g. [5]) is to decompose A into: (i) a local part Alcl,
which multiplies the local part Xlcl of the input vector X, and (ii) its comple-
mentary matrix-chunk Armt, containing elements which multiply the “remote”
part Xrmt of the input vector. The elements of Xrmt correspond to the mesh nodes
at the interface of the neighbour SDs and should be locally transferred. Formally
X = Xlcl + Xrmt holds and according to this decomposition the SpMVM opera-
tion can be written as:

Ylcl = Alcl ∗ Xlcl + Armt ∗ Xrmt (1)

The “standard” hybrid implementation of SpMVM usually uses a single “com-
munication thread” per socket or node which runs an MPI-process and performs
the inter-nodal exchange; the other threads are eventually “mapped” to it to
access MPI, otherwise performing local computations to overlap the communi-
cation [5,6]. Our GPI-based SpMVM kernel uses the same idea but is differently
organized; a brief sketch of it follows. Taking advantage of GPI-2, it uses task-
based parallel, one-sided RDMA transfer of Xrmt overlapped by computation:

(1) Some number of threads - say, as many as the number of neighbour SDs are -
start independently transferring Xrmt, each thread communicating with one
neigbour SD;

(2) All other threads start polling jobs to perform the local part Alcl ∗ Xlcl in
Eq. (1), where “job” means a subset of matrix rows to be multiplied. Note
that the jobs are independent from each other;

(3) When the transfer of Xrmt is over all threads start polling jobs from both the
local and remote parts of the multiplication;

(4) Locally synchronize all threads and then perform the addition in Eq. (1).

Distinguishing features of our approach are: (i) the transfer of Xrmt is task-
based thread parallel; (ii) the multiplication in both local and remote parts of
Eq. (1) is asynchronously parallel; (iii) independently on the matrix-sparsity pat-
tern, the job-polling mechanism provides presumably a quasi-optimal dynamic
load balancing, with no idle threads (but this feature should be further tested
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on different matrices); (iv) the threads are spawned in the beginning of the iter-
ative solver routine and are joined at its very end - i.e., we do not have the
usual thread fork/join overhead as in the MPI/OpenMP implementations. To
shortly summarize: our task-based parallelization allows for effective communi-
cation/computation overlapping leading to a better performance.

4 Model Problem and Domain Decomposition

We solve a Boundary Value Problem (BVP) for the Poisson equation in a unit
cube which allows an (easily constructed) exact solution. The discretization is
on a regular rectangular mesh with second order finite differences. Then the
O(h2)-convergence of the numerical solution would indicate a correct implemen-
tation. If we discretize in the internal mesh-nodes only, the assembled matrix is
symmetric and positive definite (SPD), and the linear system can be solved with
the Conjugate Gradients (CG) method.

We apply two variants of Domain Decomposition (DD):

(i) Cutting planes approach (Z-slices): the cube is split via planes parallel to the
(x,y)-coordinate plane, i.e. the cube is cut into subdomains (SDs) or slices
perpendicular to the z-axis.

(ii) Graph partitioning using the METIS [10] library.

While METIS provides partitions of a quite high quality, the Z-slices app-
roach is far from being optimal, because when the number of SDs increases
(strong scaling) the thickness of each slice decreases and the communica-
tion/computation ratio gets higher, limiting scalability. On the other side, this
DD approach is illustrative and appropriate for benchmarking and comparing
different solvers.

5 Performance Results and Comments

The underlying architecture consist of computational nodes connected via FDR
Infiniband, each node being composed of two Intel Xeon E5-2680v2 (IvyBridge)
sockets, with 10 cores per socket and 64 GB RAM.

We compare our GPI-2 implementation vs. PETSc-3.4.4. linked against the
Intel MPI and MKL libraries. The domain partitioning is identical in PETSc
and in the GPI-2 cases: two SDs (with successive indices) are assigned to each
physical node, both in the case of the Z-slices and the METIS-partitioning. Fur-
thermore, in our case, when a SD is mapped to a GPI-2 rank, the discretization
nodes belonging to it, are uniformly distributed over the computing threads. The
distribution of the matrix rows over the GPI-2 ranks and then over the com-
puting threads matches exactly this nodal distribution. In the case of PETSc,
when two SDs have been assigned to a physical node, again all locally distrib-
uted mesh nodes are uniformly split over the MPI-processes running on this
computing node.
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Table 1. Problem Size 2573, ||exact− appr||C4000 itrs. = 5.129525e− 1

Physical nodes 1 2 4 8 16 32 60

GPI-nodes 2 4 8 16 32 64 120

Total cores/MPI-procs. 20 40 80 160 320 640 1200

DD-type: Z-sclices PETSc, exec. time [s] 359 184 95 52 30 20 15

GPI-2, exec. time [s] 214 109 55 27 16 12 10

DD-type: METIS PETSc, exec. time [s] 358 181 91 47 26 16 13

GPI-2, exec. time [s] 216 111 55 27 15 8 5

We use the CRS-formatted matrix storage. Our library contains several iter-
ative solvers (CG, BiCGstab, etc.), but we have chosen the Richardson method as
a benchmark: it allows for a fair comparison because the calculations performed
in the GPI-Richardson and PETSc-Richardson routines are identical - this can
be shown by monitoring the residual at each iteration. For the resulting linear
system of our model problem we have measured the execution time to perform
4000 Jacobi-preconditioned Richardson iterations. The initial approximation of
the solution is in both cases zero and after 4000 iterations in both solvers we
obtain identical values for the current residual L2-norm ||b − A ∗ x||L2 and for
the C-norm of the error ||exact − appr||C (i.e., the C-norm of the difference
between the exact and the numerical solutions).

We compare the execution times and the measured real speedup of GPI-2
based Richardson vs. PETSc-Richardson for two different problem sizes. The
timings for the size 2573 are presented in Table 1, while Fig. 1 depicts the
obtained speedup (along with the ideal one) for the two DD-techniques we use
and taking the execution on a single node as base.

Similarly, Table 2 contains the measurements for the size 3513, with the
obtained speedup presented in Fig. 2. On the finer mesh the convergence of

Fig. 1. Speedup GPI-2 vs. PETSc: Jacobi Preconditioned Richardson, 4000 itrs, size
2573, partitioning using Z-slices (left) and METIS (right)
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Table 2. Problem Size 3513, ||exact− appr||C4000 itrs. = 6.033188e− 1

Physical nodes 1 2 4 8 16 32 60

GPI-2 ranks 2 4 8 16 32 64 120

Total cores/MPI-procs. 20 40 80 160 320 640 1200

DD-type: Z-sclices PETSc, exec. time [s] 922 467 241 128 79 49 36

GPI-2, exec. time [s] 566 282 148 76 37 24 21

DD-type: METIS PETSc, exec. time [s] 918 460 233 117 61 33 22

GPI-2, exec. time [s] 564 289 153 81 36 19 11

Fig. 2. Speedup GPI-2 vs. PETSc: Jacobi Preconditioned Richardson, 4000 itrs, size
3513, partitioning using Z-slices (left) and METIS (right)

the Richardson method is slower and - after performing the same number of
iterations - the difference with the exact solution is bigger.

In both cases the comparison has been done separately for our two types
of DD. One easily sees that - independently of the type of partitioning - GPI-
Richardson clearly outperforms PETSc, it is about twice faster, despite the fact
that we use no hardware optimization (e.g. vectorization). Furthermore, although
the inefficient Z-slices partitioning produces almost the same speedup for the two
solvers, our GPI-2 version has shorter execution times.

About the partitioning one may say that compared to the Z-slices the METIS-
DD is certainly more appropriate: it produces faster execution times starting
from 8 (case 2573) or 16 (case 3513) physical nodes on. Using METIS-DD GPI-
Richardson is not only faster but also scales better than PETSc-Richardson.

6 Conclusion

From an application point of view, a distinguishing property when working with
GPI-2 is that it provides full freedom and flexibility to follow a task based
parallelization. In this sense, the GPI-2 model meets the requirements and the
challenges of the nowadays hierarchical architectures, proposing an alternative
to both pure-MPI programming and the standard hybrid approaches with MPI
and threads/OpenMP.
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We have briefly sketched our GPI-2 implementation of the SpMVM kernel,
which uses asynchronous communication and allows for fine-grained and better
communication/computation overlap. We have used this kernel in a small library
of Krylov subspace solvers. Using as a benchmark the Jacobi Preconditioned
Richardson method to iterate the linear system arising after the discretization
of a Poisson BVP in a unit cube, we have shown that our Richardson solver
outperforms the Richardson solver of PETSc. We have confirmed this behaviour
for two different types of domain decomposition: Z-slices-partitioning and graph
partitioning with the METIS library. In the latter case, our version is not only
faster than PETSc-Richardson but it also scales better.

As we noted, from a programming model point of view, conceptually similar
implementations could bring performance advantages not only in SpMVM but -
more generally - in the case of other DD-based parallelization approaches, e.g.
additive Schwartz, where a truly asynchronous communication scheme could
enable evident performance gains.
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Abstract. In this paper we present a quasi-Monte Carlo Sparse Approx-
imate Inverse (SPAI) preconditioner. In contrast to the standard deter-
ministic SPAI preconditioners that use the Frobenius norm, Monte Carlo
and quasi-Monte Carlo preconditioners rely on stochastic and hybrid
algorithms to compute a rough matrix inverse (MI). The behaviour of
the proposed algorithm is studied. Its performance is measured and
compared with the standard deterministic SPAI and MSPAI (parallel
SPAI) approaches and with the Monte Carlo approach. An analysis of
the results is also provided.

1 Introduction

Recently Monte Carlo parallel numerical methods have been widely used for
matrix computations due to their specific properties such as inherent parallelism,
allowing minimal communication (e.g. being communication avoiding by design),
high level of scalability as well as fault-tolerance and resilience in the parallel
case. The other reason for the recent interest in MCMs is that the methods have
evolved significantly since the early days. Much of the effort in the development
of Monte Carlo methods has been in the construction of variance reduction
techniques which speed up the computation by reducing the rate of convergence
of crude MCM, which is O(N−1/2). An alternative approach to acceleration is
to change the type of random sequence, and hence improve the behavior by N .
Quasi-Monte Carlo methods (QMCMs) use quasirandom (also known as low-
discrepancy) sequences instead of pseudorandom sequences, with the resulting
convergence rate for numerical integration being as good as O((log N)k)N−1).
Some results of using QMCMs for linear algebra problems can be found in [1].

Solving systems of linear equations is a well-known problem in engineering
and sciences. Using iterative or direct methods to solve these systems may be
a costly approach in both time and computational effort for certain classes of
problems. One option of reducing the effort of solving these systems is to apply
preconditioners before using an iterative method. Depending on the method used
to compute the preconditioner, the savings and end-results vary. A very sparse
preconditioner is computed quickly, but it is unlikely to improve the quality
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of the solution. On the other hand, computing a rather dense preconditioner
is computationally expensive and might be time or cost prohibitive. Therefore,
finding a good preconditioner that is computationally efficient, while still pro-
viding substantial improvement to the iterative solution process, is a worthwhile
research topic.

The next section gives and overview of related work. Monte Carlo and quasi-
Monte Carlo methods, and the specific matrix inversion algorithm that is dis-
cussed as a SPAI preconditioner, are presented in Sect. 3. Section 4 provides
information on results and findings from experiments with matrices of varying
sizes and sparsity. The last section concludes and gives an outlook on the future
work.

2 Related Work

Research efforts in the past have been directed towards optimizing the approach
of sparse approximate inverse preconditioners. Improvements to the Frobenius
norm have been proposed for example by concentrating on sparse pattern selec-
tion strategies [10], or building a symmetric preconditioner by averaging off-
diagonal entries [11]. Further, it has been shown that the sparse approximate
inverse preconditioning approach is also a viable course of action on large-scale
dense linear systems [2].

In the past there have been differing approaches and advances towards a
parallelisation of the SPAI preconditioner. The method that is used to compute
the preconditioner provides the opportunity to be implemented in a parallel
fashion. In recent years the class of Frobenius norm minimizations that has been
used in the original SPAI implementation [5] was modified and is provided in a
parallel SPAI software package. One implementation of it, by the original authors
of SPAI, is the Modified SParse Approximate Inverse (MSPAI [15]).

This version provides a class of modified preconditioners such as MILU (mod-
ified ILU), interface probing techniques and probing constraints to the original
SPAI, apart from a more efficient, parallel Frobenius norm minimization. Fur-
ther, this package also provides two novel optimization techniques. One option
is using a dictionary in order to avoid redundant calculations, and to serve as a
lookup table. The second possibility is using an option in the program to switch
to a less computational intensive, sparse QR decomposition whenever possible.
This optimized code runs in parallel, together with a dynamic load balancing.

Further discussion of additional advances, which are building upon the SPAI
software suite, will be presented in the next section.

2.1 SParse Approximate Inverse Preconditioner (SPAI)

The SPAI algorithm [13] is used to compute a sparse approximate inverse matrix
M for a given sparse input matrix B. This is done by minimizing ||BM − I|| in
the Frobenius norm. The algorithm explicitly computes the approximate inverse,
which is intended to be applied as a preconditioner of an iterative method.
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The SPAI application provides the option to fix the sparsity pattern of the
approximate inverse a priori or capture it automatically.

Since the introduction of the original SPAI in 1996, several advances, build-
ing upon the initial implementation, have been made. Two newer implementa-
tions are provided by the original authors, the before mentioned MSPAI, and
the highly scalable Factorized SParse Approximate Inverse (FSPAI [14]). The
intended use of both differs depending on the problem at hand.

Whereas MSPAI is used as a preconditioner for large sparse and ill-
conditioned systems of linear equations, FSPAI is applicable only to symmetric
positive definite systems of this kind. FSPAI is based around an inherently par-
allel implementation, generating the approximate inverse of the Cholesky fac-
torization for the input matrix. MSPAI on the other hand is using an extension
of the well-known Frobenius norm minimization that has been introduced in the
original SPAI.

2.2 Stochastic SParse Approximate Inverse Preconditioner

In [7] stochastic SPAI preconditioner has been presented and extensively studied.
It uses a Monte Carlo algorithm for approximate matrix inverse. In the general
case we proceed in the following way: Assume the general case where ‖B‖ > 1
and consider the splitting

B = B̂ − C, (1)

where the off-diagonal elements of B̂ are the same as those of B, and the diagonal
elements of B̂ are defined as b̂ii = bii + αi||B||, choosing in most cases αi > 1
for i = 1, 2, ..., n. For the simplicity of the algorithm it is often easier to fix α
rather than altering it over the rows of the matrix [6,8,12].

From (1) compute A = B−1
1 B2, which satisfies ‖A‖ < 1. Further, by careful

choice, of B̂, it is possible to make ‖A‖ < 1
2 , which gives faster convergence of

the MC. Then generate the inverse of B̂ by

m
(−1)
rr′ ≈ 1

N

N∑

s=1

⎡

⎣
∑

(j|sj=r′)

Wj

⎤

⎦, (2)

where (j|sj = r′) means that only

Wj =
ars1as1s2 . . . asj−1sj

prs1ps1s2 . . . psj−1sj

,

for which sj = r′ are included in the sum (2). Calculating ‖B‖ can be an
expensive operation and, so, any a priori information allowing for a reasonable
estimate here is useful. From this it is then necessary to work back and recover
B−1 from B̂−1. To do this recursive process (k = n − 1, n − 2, . . . , 0) is used on
B̂−1:

B−1
k = B−1

k+1 +
B−1

k+1Sk+1B
−1
k+1

1 − trace
(
B−1

k+1Sk+1

) , (3)
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where B−1
n = B̂−1 and Si is all zero except for the {ii}th component, which is

from the matrix S = B̂ − B. Then B−1
0 = B−1.

The make up of matrix S means that while (3) looks complicated it is, in
fact, reasonably simple. This means that it is not as computationally complex
and when transferred to code there are obvious simplifications possible to make
sure that many multiplications by zero are not performed. This method of split-
ting and recovery leads to the algorithm presented in [18], which details a MC
algorithm for inverting general matrices.

3 Quasi-Monte Carlo Approach

We recall some basic concepts of QMCMs, [9]. First, for a sequence of N points
{xn} in the d-dimensional half-open unit cube Id define

RN (J) =
1
N

#{xn ∈ J} − m(J)

where J is a rectangular set and m(J) is its volume. Then define star discrepancy

DN = supJ∈E |RN (J)|,

where E is the set of all rectangular subsets in Id and E� is the set of all
rectangular subsets in Id with one vertex at the origin.

The basis for analyzing QMC quadrature error is the Koksma-Hlawka
inequality:

Theorem (Koksma-Hlawka, [9]): For any sequence {xn} and any function
f of bounded variation (in the Hardy-Krause sense), the integration error is
bounded as follows

∣
∣
∣
∣
∣
1
N

N∑

n=1

f(xn) −
∫

Id

f(x) dx

∣
∣
∣
∣
∣
≤ V (f)D�

N . (4)

The star discrepancy of a point set of N truly random numbers in one dimen-
sion is O(N−1/2(log log N)1/2), while the discrepancy of N quasirandom numbers
in s dimensions can be as low as O(N−1(log N)s−1). Most notably there are the
constructions of Halton, Soból, Faure, and Niederreiter, and their modifications
for producing quasirandom numbers. Description of these can be found for exam-
ple in Niederreiter’s monograph [17]. Different kinds of quasi-random sequences
exist. The theoretical properties of these point sets look promising, but are only
valid asymptotically. Therefore, only when an “almost infnite” number of points
is used, can one rely on the theory to compare quasi-random point sets and
sequences. For smaller and more practical ranges of the number of points, there
can be side-effects and the results with quasi-random points may not always be
what the theory at infinity predicts.

Now recall that Monte Carlo methods for linear algebra problems are based
on computing matrix-vector products hT Aif (see [16]). But computing hT Aif
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is equivalent to computing an (i + 1)-dimensional integral. Thus we may ana-
lyze using QRNs with bounds from numerical integration. We do not know Ai

explicitly, but we do know A and we perform random walks on the elements of
the matrix to compute approximately hT Aif .

Let A be a general sparse matrix with di nonzero elements per row. The
following mapping procedure corresponds to importance sampling approach:

G = [0, 1)

Gi = [
∑i−1

k′=1 |aik′ |
∑n

k′=1 |aik′ | ,
∑i

k′=1 |aik′ |
∑n

k′=1 |aik′ | ), i = 1, . . . , n

and summation on k′ means summation only on nonzero elements:

a(x, y) = aij , x ∈ Gi, y ∈ Gj , i = 1, . . . , n, j = 1, . . . , d.

Often, the vectors f and h are chosen to be (1, 1, . . . , 1), so h(x) = 1, x ∈
G, f(x) = 1, x ∈ G.

In this case after similar calculation we prove that the bound on the error
(for non-normalized matrix) is given by:

|hT Af − 1
N

N∑

s=1

h(xs)a(xs, ys)f(ys)| ≤ (d|A|)lD∗
N ,

where d is the mean value of the nonzero elements per row, l is the length of the
Markov chain, D∗

N is the star discrepancy of the sequence used, and ‖A‖ < 1.
Let us remind that usually the average number d of nonzero entries per row

is much smaller than the size of the matrix n, d << n. Thus the order of the
above estimation is the order of D∗

N which is O((loglN)N−1).

Convergence and Complexity

In the Monte Carlo methods there are two kind of errors that controll the conver-
gence: systematic, which comes from the method, and stochastic, which comes
from the approximation of the mean value with an averaged sum. The complex-
ity of a Monte Carlo method is a product of the expected value of the length of
the corresponding walk (Markov chain), and a number of walks (chains).

For computing an element of the inverse matrix A−1 = C = {crr′} the
computational complexity is lN , where l is the length of the performed walks
(Markov chain) which for MCM is l = E [ls] , and for QMCM l the dimension
of the quasirandom sequence; l depends on the spectrum of the matrix A. Let
us note that first few steps of a random (quasirandom) walk tend to improve
results greatly, whereas many additional steps would be necessary to refine the
result to sufficient accuracy. We suggest to use these methods with relatively
small l for a quick rough estimation.

The convergence for MCM and QMCM in this case is O
(

||A||l||r(0)||
1−||A|| +

σN−1/2
)

and O
(

||A||l||r(0)||
1−||A|| + (loglN)N−1

)
correspondingly.
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Fig. 1. Scalability properties of hybrid Monte Carlo/BiCGSTAB compared to
MSPAI/BiCGSTAB for bcsstm13 and rdb2048.

4 Experiments

The aim in the present study is to compare the performance of the Monte Carlo
and quasi-Monte Carlo SPAI preconditioners for computing a rough matrix
inverse. To check the possible advantages of each of the approaches we tested
the quasi-Monte Carlo approach using scrambled Sobol [4] and modified Halton
sequences [3].

As an input for computing the preconditioners, two matrices from the Univer-
sity of Florida Sparse Matrix Collection [19] were used. The matrices we used are
the symmetric Si5H12 of size 19896 × 19896 and Si10H16 of size 17077 × 17077
from the PARSEC matrix group with 875 923 and 735 598 nonzeros entries
respectively and are sparse, indefinite with multiple and clustered eigenvalues.
Experiments were also run with real, non-symmetric and no positive definite
matrices (rdb2048) as well as real, symmetric, positive semidefinite (bcsstm13)
matrices from the matrix market (see Fig. 1).

Fig. 2. Scalability properties of hybrid Monte Carlo/BiCGSTAB compared to
MSPAI/BiCGSTAB for Si5H12.
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Fig. 3. Scalability properties for the
test matrix Si5H12 using pseudoran-
dom and Sobol quasirandom sequences.

Fig. 4. Scalability properties for the
test matrix Si5H12 using quasirandom
sequences.

Fig. 5. Scalability properties for the
test matrix Si10H16 using pseudoran-
dom and Sobol quasirandom sequences.

Fig. 6. Scalability properties for the
test matrix Si10H16 using quasirandom
sequences.

The numerical experiments have been executed on the MareNostrum III
supercomputer at the Barcelona Supercomputing Center (BSC). It currently
consists of 3056 compute nodes that are each equipped with 2 Intel Xeon 8-core
processors, 64 GB RAM and are connected via an InfiniBand FDR-10 commu-
nication network. The experiments have been run multiple times to account for
possible external influences on the results. The computation times for both the
preconditioner calculated by MSPAI, as well as our Monte Carlo based results,
have been noted. While conducting the experiments, the parameters for proba-
ble errors were configured to produce preconditioners with similar properties and
therefore producing residuals within similar ranges when used as preconditioners
for BiCGSTAB and GMRES. The experiments of hybrid parallel Monte Carlo
preconditioner with BiCGSTAB using pseudorandom sequences are depicted on
Figs. 1 and 2. The results show clearly the efficiency of the approach.

The numerical experiments have been also executed on the HPC Cluster
at IICT-BAS. The technical parameters of this supercomputing facility are the
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following: HP Cluster Platform Express 7000 enclosures with 36 blades BL 280c
with dual Intel Xeon X5560 @ 2.8 Ghz (total 576 cores), 24 GB RAM per blade,
8 controlling nodes HP DL 380 G6 with dual Intel X5560 @ 2.8 Ghz, 32 GB
RAM. The total storage capacity available in the three disk systems is 144 TB.

The performance of the Monte Carlo and quasi Monte Carlo SPAI precon-
ditioners with Halton and Sobol sequences is shown in the series of four figures.
Maximum number of processors used for the tests are 128. Figures 3 and 5 show
that increasing of the number of processors leads to decrease in the computa-
tional time for both stochastic and hybrid algorithms. In the case of the bigger
matrix (Si5H12) Monte Carlo with pseudorandom numbers performs better than
the quasi-Monte Carlo with scrambled Sobol achieving less than 150 seconds for
more than 32 processors. The quasi-Monte Carlo with scrambled Sobol outper-
forms the QMC with the modified Halton sequence (Figs. 4 and 6). But there
is very interesting behaviour of Halton QMC: fast decrease of computing time
with the increased number of CPUs used. With respect to the matrix size the
QMC with Halton sequences is much more sensitive than the one with scram-
bled Sobol showing more than seven times drop in the computational runtime
in dependence of the number of processors (Fig. 6).

5 Conclusions and Future Work

Numerical experiments of Monte Carlo and quasi-Monte Carlo with scrambled
Sobol and modified Halton sequences for SPAI preconditioning have been per-
formed. It is evident that the Sobol QMC performs better than the modified
Halton QMC, but still worse than the standard MC preconditioner. Tests with
other scrambled sequences have to be performed.

Additional tests on other supercomputing facilities could contribute signifi-
cantly in evaluating the preconditioning with stochastic and hybrid approaches.
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Abstract. The increasing demands of scientific applications and the
increasing capacity of modern computing systems lead to the need of
evaluating energy consumption and, consequently, to the development
of energy efficient algorithms. In this paper we study the energy per-
formance of a class of quasi-Monte Carlo algorithms on hybrid HPC
systems. These algorithms are applied to solve quantum kinetic integral
equations using Sobol and Halton sequences. The energy performance
results are compared on a CPU-based computer platform and computer
platforms with accelerators like GPU cards and Intel Xeon Phi coproces-
sors with respect to several metrics. Directions for future work are also
given.

Keywords: Quasi-Monte Carlo algorithms · Hybrid HPC systems ·
Energy efficiency

1 Introduction

The latest developments in the domain of HPC have lead to the deployment
of complex extreme-scale systems, based on diverse computing devices (CPU,
GPU, accelerators) and posed the question of scalability in the light not only
of parallel efficiency, but also in terms of energy consumption. Development of
energy-efficient algorithms is becoming more and more important with the grow-
ing size of the applied problems that need solution using the power of modern
computer systems [1,2]. The FLOPS/WATT (F/W) metric was introduced and
successfully used as the de facto standard in measuring the energy efficiency
of a computing system (see [13]). Considering the significant probability of an
error during a run, some authors [3,4] proposed the time to solution metric for
estimating the algorithm performance. In [6] a new metric has been introduced
in order to account also for the initial investment. In this paper we consider all
of these metrics in order to analyze the performance of a class of quasi-Monte
Carlo (QMC) algorithms with an awareness for their energy use.

Let us remind that a generic approach to improving the convergence of Monte
Carlo (MC) methods involved using highly uniform random numbers (called
quasirandom sequences - QRNs) in place of the usual pseudo-random numbers.
The methods based on QRNs, called QMC methods, are very popular not only
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 172–181, 2015.
DOI: 10.1007/978-3-319-26520-9 18
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for solving multidimensional integrals but also for various Markov chain based
applications.

The paper is organized as follows: the next section presents the metric and
related work, Sect. 3 describes the studied algorithms, Sect. 4 presents numerical
tests and our findings. At the end we present our conclusion.

2 Motivation

Our work has been motivated by the use-cases that we observed during the
establishment of a regional high-performance computing (HPC) infrastructure
for South-Eastern Europe, taking into account the specific requirements that
arise due to the economical and social conditions in the region.

We concentrate to the study energy efficiency of QMC algorithms for inte-
gral equations on extreme-scale parallel computing systems. The extreme-scale
parallel computing systems are HPC systems with low latency interconnec-
tion, equipped with GPGPU devices (manufactured by companies like NVIDIA)
and/or co-processors (e.g. those using Intel MIC technology) to speed up the cal-
culations that make use of thousands of processor cores in high-density deploy-
ment. Here we point out two important features:

(i) the extensive use of computational accelerators like GPU-computing cards;
(ii) the rapid evolution of hardware in HPC clusters, which leads to a fre-

quent necessity to upgrade in order to meet the challenges of contemporary
research.

These points motivate the inclusion of a substantial factor to account for the
purchasing price of the equipment, so that the individual optimization efforts at
the level of algorithms should lead to a global optimum in the sense of compu-
tational results achieved for a given yearly budget. Our experience shows that
although the hardware can be operational for a longer period, there is an effi-
cient lifetime for a cluster that lasts between 3 to 4 years. On the other hand the
x86-based HPC clusters can be upgraded in a more gradual way, presenting the
possibility to use savings from energy costs for hardware upgrading. We propose
to enhance the formula in [3] in the following way:

F (T ) × (E + nCT ), (1)

where C is the price of one core-hour, excluding energy, n is the number of cores
used by the algorithm, T is the time to solution and E is the cost of energy
consumed. The price C should be based mainly on the purchasing price of the
equipment, divided by the total number of cores and number of hours in the
efficient lifetime. Based on the substantial improvements in the computational
power of accelerators over time we can postulate the efficient lifetime to be equal
to 4 years, because experience shows that after 4 years the same computational
results can be achieved by several times less expensive equipment that uses much
less energy. We point out that cloud providers offer access to their equipment
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based on a single price-per-core number. However, a national computational
infrastructure provider has more flexibility and can stimulate the development
of algorithms that minimize the above function instead. Our formula is not any
harder to compute because the purchasing price is readily available.

3 Energy Efficiency Study for a Class of Quasi-Monte
Carlo Algorithms

As a case study we consider QMC algorithms for solving Wigner equation for
the nanometer and femtosecond transport regime. We use the formulation of the
Wigner equation in an inhomogeneous case (in quantum wire - more realistic
case) where the electron evolution depends on the energy and space coordinates
[10]. Particularly we consider a quantum wire, where the carriers are confined
in the plane normal to the wire by infinite potentials. The initial condition is
assumed both in energy and space coordinates.

The numerical results that we present for estimating the energy efficiency
metrics, are for the inhomogeneous case with applied electric field [10]. We recall
the integral form of the quantum-kinetic equation, [11]:
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Here, fw(z, kz, t) is the Wigner function described in the 2D phase space of the
carrier wave vector kz and the position z, and t is the evolution time. The kernel
S(k′

z, kz, t
′, t′′,q′

⊥) of the integral equation in (2) are well described in [10,11].
In the inhomogeneous case the wave vector (and respectively the energy) and

the density distributions are given by the integrals

f(kz, t) =
∫

dz

2π
fw(z, kz, t); n(z, t) =

∫
dkz

2π
fw(z, kz, t). (3)

In this work we investigate algorithms that estimate these quantities, as well
as the Wigner function (2), by using a QMC approach [7], where one point
of a low-discrepancy sequence is used to sample one numerical trajectory. The
computations were performed with both Sobol and modified Halton sequences.
The implementations of these sequences are given in [8,9,12].

Parallel Implementation
The QMC algorithms are perceived as computationally intensive, but nat-

urally parallel. Different strategies, based on either static or dynamic load-
balancing are possible. The so-called “master-slave” model is usable for dynamic
load-balancing, while static load-balancing is sufficient in the case when the
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variations in the computational load can be controlled. For example, by block-
ing together a constant amount of samples one achieves decreased variation in
the computational load by a factor of square-root of the number of samples in
the block. The blocking also decreases the required communication. The partial
results are collected and used to assemble an accumulated result with smaller
variance. To achieve maximum code re-use with QMC algorithms we follow the
same parallelisation approach. Our parallel implementation uses MPI for the
CPU-based and Xeon Phi-based computations as well as CUDA for the GPU-
based parallelisation. Since in the QMC computations one can not afford to lose
computations we use the blocking approach in the generation of the sequences,
combined with static load balancing.

Implementation using Hyper-Threading, and GPUs and Xeon Phi
For our test cluster we compared the CPU performance of the parallel code

with and without hyper-threading (HT). Although for some codes using hyper-
threading does not improve the overall speed of calculations, because the floating
point units of the processor are shared between the threads, in our experience
substantial gains may be achieved without any additional coding effort by simply
using logical instead of physical cores when sizing the launch of the MPI job.
For this particular application we observed about 30% improvement when HT
is turned on, which should be considered a good result and also shows that our
overall code is reasonably efficient.

For the GPGPU-based implementation we used CUDA for parallel computa-
tions. Parallel processing is based upon splitting the computations between grid
of threads. We use thread size of 256, which is optimal taking into account the
relatively large number of registers. Generators for the scrambled Sobol sequence
and modified Halton sequence have been developed and tested in our previous
works [8,9].

For the Xeon Phi-based implementation we again used generators that we
have developed before. In the case of Xeon Phi the issue of hyper-threading is
more interesting than in the case of CPUs. Without using hyper-threading one
can not achieve the best possible performance of the Xeon Phi cards, due to
some architectural peculiarities. That is why we performed tests with different
number of threads. While the number of physical cores of our Xeon Phi cards
is 60, we tested with 60, 120, 180 and 240 threads in order to see when the
maximum performance will be achieved and also in order to analyse the results
from the point of view of energy efficiency.

4 Numerical Results

The numerical results were obtained on the heterogeneous HPC system at the
Institute of Information and Communication Technologies, Bulgarian Academy
of Sciences [5].

The HPC system combines 3 different computing platforms: (i) HP Clus-
ter Platform Express 7000 enclosures with 36 blades BL 280c (Total 576 CPU
cores), 24 GB RAM per blade; 8 controlling nodes HP DL 380 G6 with dual Intel
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X5560 @ 2.8 GHz, 32 GB RAM (total 128 CPU cores); (Total CPU peak perfor-
mance 3.2Tflops); (ii) HP ProLiant SL390s G7 4U servers with 16 NVIDIA Tesla
M2090 graphic cards (total 8192 GPU cores with 10.64 Tflops in double preci-
sion); (iii) HP SL270s Gen8 4U server with 8 Intel Xeon Phi 5110P Coprocessors
(total 480 cores, 1920 threads, with 8.088 Tflops of double-precision peak per-
formance) (Table 1).

These 3 computing platforms are connected with 2 InfiniBand Switches and
use 3 storage file systems with a total of 132 TB storage;

Taking into account the purchasing price of our equipment, we obtained
the following: the cost of a CPU-core is 1.24 euro cents per hour; the cost of
1 GPU card NVIDIA M2090 is 11 euro cents per hour; the cost of 1 Intel Xeon
Phi Coprocessor 5110P card is 7 euro cents per hour. The price of energy is
assumed to be 8 euro cents per 1KWh. The energy consumption of n (CPU
nodes/Xeon Phi coprocessor) or GPU devices is denoted by W0 (without jobs
execution) while Wn denotes the energy consumption with running jobs. The
difference ΔWn = Wn − W0 is attributed to the computational workload being
run. The function F (T ) that penalizes the algorithms is chosen in the following
way: F (T ) = exp (a|T/T0 − 1|). Thus the full metric (1) minimizes the number
of blades, GPU cards or Xeon Phi co-processors necessary for the completion of
the task (running job) for a fixed time - T0, leaving the energy cost close to the
minimum. In our test T0 = 600s and a = 1. The constant a is chosen so that
the results are more easily comparable for all cases. The number of realization
of the quasirandom Sobol/Halton sequences is N = 10 million. In each table the
optimal setup in terms of the metrics is underlined. Looking at the results we
see that there is a difference between the Sobol and Halton sequences. For the
CPU-based computations we observe that by turning on the hyper-threading in
the case of Sobol’ sequence one can achieve the same metrics with just 2 blades

Table 1. Test results for the QMC algorithm with Sobol sequence (upper part of the
table) and Halton sequence (down part of the table) using CPU devices.

Blades/ CPU time (s) ΔWn Equipment Energy Total cost: Full metric

Cores/HT cost: nCT cost: E E+nCT F (T ) × (E + nCT )

1/8/2 1555.49 414 8.572 14.310 22.882 112.48

2/8/2 780.93 543 8.608 9.423 13.031 24.38

4/8/2 388.36 1081 8.561 9.329 17.890 25.46

8/8/2 195.33 1987 8.612 8.625 17.237 33.84

16/8/2 100.56 3689 8.867 8.244 17.111 39.33

1/8/2 1587.63 609 8.750 21.486 30.236 156.84

2/8/2 803.14 712 8.852 12.707 21.559 30.25

4/8/2 403.22 1130 8.889 10.125 19.014 26.39

8/8/2 222.39 1767 9.800 8.728 18.528 34.77

16/8/2 121.20 3624 10.687 9.761 20.448 45.42
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Table 2. Test results for the QMC algorithm with Sobol sequence (upper part of the
table) and Halton sequence (down part of the table) using CPU devices.

Blades/ CPU time (s) ΔWn Equipment Energy Total cost: Full metric

Cores cost: nCT cost: E E+nCT F (T ) × (E + nCT )

1/8 2401.52 272 6.62 14.52 21.14 415.48

2/8 1206.56 415 6.65 11.13 17.78 48.86

4/8 605.12 861 6.67 11.58 18.25 18.41

8/8 307.55 1624 6.78 11.10 17.88 29.11

16/8 160.12 3152 7.06 11.22 18.28 38.05

1/8 1587.63 372 6.89 20.66 27.55 652.73

2/8 803.14 435 6.92 12.13 19.05 56.74

4/8 403.22 951 6.96 13.35 20.31 21.41

8/8 222.39 1622 7.84 12.83 20.67 31.05

16/8 121.20 3073 7.93 12.28 20.21 40.71

Table 3. Test results for the QMC algorithm with Sobol sequence(upper part of the
table) and Halton sequence (down part of the table) using GPU devices.

NVIDIA Tesla GPGPU ΔWn Equipment Energy Total cost: Full metric

M2090 time (s) cost: nCT cost: E E+nCT F (T ) × (E + nCT )

1 893.24 156 2.73 3.10 5.83 9.50

2 456.32 316 2.79 3.20 5.99 7.61

4 246.15 638 3.01 3.49 6.50 11.72

8 155.88 1295 3.81 4.49 8.30 17.40

16 103.97 2419 5.08 5.59 10.67 24.39

1 803.85 158 2.46 2.82 5.28 7.42

2 411.01 307 2.51 2.80 5.31 7.29

4 228.86 614 2.80 3.12 5.92 10.99

8 142.07 1094 3.47 3.45 6.92 14.87

16 98.24 2494 4.80 5.44 10.24 23.65

instead of 4. For the Halton sequence in both cases 4 blades are to be used. The
improvement from using hyper-threading is larger in the case of Sobol sequence
and in general the Sobol sequence outperforms (Table 2).

In the case of GPGPU computations the optimal number of GPGPU devices
used is found to be 2 and the Halton sequence outperforms slightly. In the
case of Xeon Phi-based computations the best number of devices seems to be
4 and hyper-threading should be used with 120 threads (two times the number
of physical cores). The Sobol’s sequence outperforms slightly and the use of
180 threads (three times the number of physical cores) yields similar results
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Table 4. Test results with Sobol sequence using Intel Xeon Phi coprocessors.

Threads Xeon Phi CPU ΔWn Equipment Energy Total cost: Full metric

5110P time (s) cost: nCT cost: E E+nCT F (T ) × (E + nCT )

60 1 2488.86 40 4.84 2.21 7.05 164.21

2 1252.44 88 4.87 2.45 7.32 21.72

4 658.17 196 5.12 2.87 7.99 8.80

8 348.12 208 5.42 1.61 7.03 10.68

120 1 1703.87 56 3.31 2.12 5.43 34.18

2 855.62 120 3.33 2.28 5.61 8.59

4 462.58 196 3.60 2.01 5.61 7.05

8 290.92 372 4.53 2.40 6.93 11.60

180 1 1547.83 68 3.01 2.34 5.35 25.97

2 778.73 144 3.03 2.49 5.52 7.44

4 460.33 300 3.58 3.07 6.65 8.39

8 317.92 544 4.95 3.84 8.79 14.07

240 1 1579.59 72 3.07 2.53 5.60 28.66

2 848.10 164 3.30 3.09 6.39 9.66

4 501.91 328 3.90 3.66 7.56 8.90

8 360.89 596 5.61 4.78 10.39 15.48

Table 5. Test results with Halton sequence using Intel Xeon Phi coprocessors.

Threads Xeon Phi CPU ΔWn Equipment Energy Total cost: Full metric

5110P time (s) cost: nCT cost: E E+nCT F (T )× (E + nCT )

60 1 2591.70 48 5.04 2.76 7.80 215.64

2 1325.97 96 5.16 2.83 7.99 26.79

4 665.62 185 5.18 2.74 7.92 8.82

8 345.60 376 5.38 2.89 8.26 12.62

120 1 1840.95 60 3.58 2.45 6.03 47.70

2 928.91 120 3.61 2.48 6.09 10.54

4 476.91 268 3.71 2.84 6.55 8.04

8 270.69 508 4.21 3.06 7.27 12.59

180 1 1705.13 68 3.32 2.58 5.90 37.16

2 911.06 144 3.54 2.92 6.46 10.85

4 486.71 300 3.79 3.24 7.03 8.49

8 276.25 556 4.30 3.41 7.71 13.22

240 1 1998.41 76 3.89 3.38 7.27 74.67

2 1069.23 156 4.16 3.71 7.87 17.18

4 532.00 316 4.14 3.74 7.88 8.81

8 314.80 576 4.90 4.03 8.93 14.36
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Fig. 1. Comparing the energy costs using Sobol (left picture) and Halton (right picture)
sequences in the QMC algorithm on the Xeon Phi coprocessor platform.

Fig. 2. Comparing the energy costs using Sobol (left picture) and Halton (right picture)
sequences in the QMC algorithm on different computing platforms.

Fig. 3. Comparing the total costs using Sobol (left picture) and Halton (right picture)
sequences in the QMC algorithm on different computing platforms.

(Table 3). In all cases of accelerator-based computations (using GPGPU and
Xeon Phi) we notice that the use of all devices is not optimal. In part this
is due to the relatively high initial startup overhead for the CUDA and MPI
implementations. This strengthens the case for Grid computing on these devices,
in the sense that it looks beneficial to have a distribution of the computational
devices among more than one computational job for maximum efficiency. Figure 1
shows a comparison between energy costs for the Sobol and Halton sequences,
where one can evaluate the optimal number of threads to be used. It seems
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that 120 threads is the optimal number here. In Figs. 2 and 3 we show only the
cost function without the penalty, so that one can compare without taking into
account the desired computation time. In all cases the Xeon Phi coprocessors
seem to outperform. For the Halton sequence this difference is less prominent,
while for the Sobol’ sequence it is much larger. Of course, if newer generation of
graphics cards were used the situation may be different (Table 4).

5 Conclusion

The results of our study show the need of new metrics in order to demonstrate the
advantages of different HPC platforms (with GPU cards, Xeon Phi coprocessors,
etc.) Although the algorithms under consideration are not fully optimized for
the computing platforms, they demonstrate better energy and total efficiency
when we use accelerators like GPU cards and Intel Xeon Phi coprocessors. New
computing platforms lead to new challenges in programming. That is why it
is necessary to optimize codes (in some cases they should be rewritten) of the
existing algorithms in order to exploit the advantages of the computer hardware
with accelerators. More precise measurements should be performed in the future
and the algorithms describing the Sobol and Halton generators, that produce
quasirandom sequences, should be optimised for computing platforms with co-
processors (Table 5).
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Abstract. We present a general approach for the parallelization of the
interpolation with radial basis functions (RBF) on distributed memory
systems, which might use various shared memory hardware as accelerator
for the local subtasks involved. The calculation of an interpolant in gen-
eral requires a global dense system to be solved. Iterative methods need
appropriate preconditioning to achieve reasonable iteration counts. For
the shared memory approach we use a special Krylov subspace method,
namely the FGP algorithm. Addressing the distributed task we start
with a simple block-Jacobi iteration with each block solved in parallel.
Adding a coarse representation leads to a two-level block-Jacobi iteration
with much better iteration counts and a wider applicability.

1 Introduction

The numerical treatment of many simulation problems in science and industry
has to handle changing computational domains originating from the given PDE
(system) or from design variables in optimization and optimal control problems.
A re-meshing in case of a direct problem, i.e. the PDE, is possible but rather
inefficient because all mesh-dependent data have to be reallocated and recom-
puted. In the context of an optimization problem the re-meshing would destroy
the continuous differentiability of the objective functional and therefore we are
forced to apply a mesh deformation instead.

We use interpolation with radial basis functions (RBF interpolation) for mesh
deformation as proposed in [4]. In this paper we focus on the parallelization of
RBF interpolation with its application for mesh deformation in view. Within this
context parallelization covers shared memory and distributed memory parallel
computing.

Calculating an RBF interpolant requires the solution of a dense system of
linear equations. There have been several achievements to overcome the ill-
conditioning of the linear system [2,3,16]. Nevertheless a direct solution of the
system is inhibited, if the problem size exceeds certain limits, thus iterative
methods have to be used. Due to the ill-conditioning of the linear system, some
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 182–190, 2015.
DOI: 10.1007/978-3-319-26520-9 19



Towards RBF Interpolation on Heterogeneous HPC Systems 183

preconditioning has to be applied. One way is to use domain decomposition
methods [2,13,19]. We employ a Krylov-subspace method that uses approxi-
mate Lagrange functions as preconditioner, namely the Faul-Goodsell-Powell
(FGP) algorithm [9,10] for a shared memory solution. Our reasonable approach
to a distributed memory solution is applying well known domain decomposition
methods.

Due to our application of deforming given computational meshes our data
distribution is predetermined. In particular we work on distributed finite volume
discretizations with one cell-layer overlap.

The remaining paper is organized as follows. Section 2 gives a short intro-
duction to RBF interpolation. We feature the FGP algorithm and our approach
to an efficient shared memory implementation in Sect. 3. Section 4 covers the
distributed memory approach. We present some numerical results in Sect. 5 and
annotate some conclusions in Sect. 6.

2 Interpolation with Radial Basis Functions

This introduction to RBF interpolation closely follows [6]. Further analysis and
treatment of basis functions with compact support can be found in [18].

Given is a set of points X = {xi}N
i=1 in a domain Ω ⊆ R

d. A set of associated
real function values fi = f(xi) is assigned to these points. The function f is
usually unknown, but its existence is postulated for the reasonableness of the
interpolation task. Sought is an approximating function s : Ω → R by interpo-
lation. Restricted on the set X we request the interpolation condition

s|X = f |X . (1)

In the context of RBF interpolation we seek for an interpolant of the form

s(x) =
N∑

i=1

λiφ(‖x − xi‖) + p(x), λi ∈ R, p ∈ P
M . (2)

The polynomial term p is required for the existence and uniqueness of a
solution. The required degree M for the existence of a solution depends in the
choice of the basis function φ, see [6]. We choose φ =

√
r2 + c2, c ∈ R and M = 0

for our numerical examples in Sect. 5.
If the basis function requires a polynomial term (M≥ 0) then the given set

of points X has to be unisolvent w.r.t. polynomials of degree M , i.e., p|X = 0 ⇒
p ≡ 0 for polynomials p ∈ P

M .
Requiring the interpolation condition (1) in all given points and demanding

a side condition on the coefficients of the polynomial term leads to a system of
linear equations for the determination of the coefficients λ and π:
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N∑

i=1

λiφ(‖xi − xk‖) +
M∑

j=1

πjpj(xk) = f(xk), 1 ≤ k ≤ N,

N∑

i=1

λipl(xi) = 0, 1 ≤ l ≤ M, (3)

or, in short notation (
Φ Π

Π� 0

)(
λ
π

)
=

(
f
0

)
. (4)

3 Accelerated Computation of Interpolants

Analysis of the properties of the linear equations system (4) yields that a direct
solution is inhibited, if the number of interpolation points exceeds certain limits.
Therefore, we employ an iterative method [9,10] to solve (4).

The FGP algorithm is a Krylov-subspace method. The implemented version
of the algorithm can be applied to interpolations with basis functions where
constant polynomial terms are sufficient (M = 0).

Let X denote the functional space spanned by functions of the form (2). The
basis for the algorithm is the semi-inner product

〈s, t〉φ = −λ�Φμ for s, t ∈ X

with s(x) =
∑N

i=1 λiφ(‖x − xi‖)+α for λi, α ∈ R and t(x) =
∑N

i=1 μiφ(‖x − xi‖)
+β for μi, β ∈ R, induced by the radial basis function φ. Φ denotes the associated
kernel to φ. Other basis functions may require a different sign at the definition
of the semi-inner product. The semi-inner product 〈·, ·〉φ induces a semi-norm

|s|φ = 〈s, s〉1/2 =
(
−λ�Φλ

)1/2

.

The FGP algorithm uses a linear operator A : X → X. A is chosen such,
that for all iterations k the resulting searching direction lies in the subspace of
X that is spanned by the functions Als�, l = 1, . . . , k, where s� denotes the
sought interpolant. In addition to this A performs some preconditioning. A is an
approximation of the optimal preconditioning operator Aopt. The operator Aopt

can be derived from the interpolation tasks

ûj(x) =
N∑

i=1

ζj,iφ(x − xi) + β, for x ∈ Ω, j = 1, . . . , N,

due to the Lagrange conditions ûj(xi) = δij , i, j = 1, . . . , N, where δij denotes
the Kronecker-delta.

For the construction of A the functions ûj , j = 1, . . . , N are determined by
solving the interpolation tasks on subsets of X , that contain not more than q



Towards RBF Interpolation on Heterogeneous HPC Systems 185

interpolation centers. Generally the relation q  N holds. These subsets are
called L-sets.

The main computational costs of an implementation lie in the construction
of the L-sets and the calculation of matrix-vector products with dense matri-
ces. The authors in [11] show an efficient implementation including a modified
setup stage and an approximated matrix-vector product by using a fast multi-
pole method. We use an octree as spatial hierarchy to efficiently construct the
L-sets during the setup phase. We also use the same octree structure to employ
a multipole-method [1]. The far field series expansion for the multiquadric basis
function is described in [7].

Our approach to a shared memory parallelization of the matrix-vector prod-
uct on CPUs using the OpenMP API [15] applies task based parallelization on
octree box level.

We use a slightly different parallelization scheme for acceleration of the
matrix-vector product on graphics processors using the CUDA programming
model [8]. For the direct calculation of the matrix-vector multiplication the
boundary-condition nodes (bc nodes) are organized in blocks. A block of bc
nodes correspond to a thread-block on the GPU. Within each block the result
for each bc node is calculated by a single thread. Since the hierarchical structure
that is used for the multipole approximation is an octree, the far field series
expansion of each box in the ‘evaluation region’ (see [1]) of an octree box has to
be evaluated for each node within this box. The thread-blocks on the GPU cor-
respond to the octree boxes. Each thread on the GPU evaluates the polynomial
for one node within the box. All threads read the (common) series coefficients to
shared memory. If an octree box holds more nodes than the number of threads
that are started within a block the box is virtually split in boxes that do not
hold more nodes than threads-per-block each. After the completion of our work
we learned about the earlier results in [12].

4 Parallel Computation of Interpolants

The referred domain decomposition methods for the computation of RBF inter-
polants [2,13,19] can be seen as preconditioning methods according to the clas-
sification in [17]. Thereby the solution of a large system over the domain Ω is
subdivided into P smaller problems over the subdomains Ωs, s = 1, . . . , P . The
solutions of the smaller problems are used to construct a preconditioner for the
solution of the large system.

Our general approach is to use the subdivision predetermined by the applica-
tion and to apply the methods from Sect. 3 to solve the regarding subproblems.
Our given subdivision of the domain Ω consists of overlapping subdomains Ωs,
i.e., Ω =

⋃P
s=1 Ωs with Ωi ∩Ωj �= ∅, i �= j. Further let Ω̃s denote the appropriate

non-overlapping subdomains such that Ω =
⋃P

s=1 Ω̃s holds with Ωi ∩ Ωj = ∅,
i �= j.

Let Rs denote the restriction matrix projecting a vector x from domain Ω
onto a vector x s = Rsx on subdomain Ωs. Similarly R̃s denotes the restriction



186 G. Haase et al.

matrix which restricts a vector x from domain Ω onto a vector x s on subdo-
main Ω̃s. For the non-overlapping subdivision a vector over the domain Ω can
be composed by applying the transposed mapping operations R̃� on the local
vectors x s

x =
P∑

s=1

R̃�x s.

4.1 Block-Jacobi Iteration

The authors in [19] show the utilization of a Restricted Additive Schwarz method
(RASM) as preconditioner for the calculation of an RBF interpolant. The pro-
posed method is applicable for positive (negative) definite basis functions, thus
no polynomial term is required in (2).

The n-th iteration of the RASM to calculate the solution of (4) is

λ(n+1) = λ(n) +
P∑

i=1

R̃�
i Φ−1

i Ri

(
f − Φλ(n)

)
, (5)

where Φi denotes the system matrix of the subproblem restricted to the domain
Ωi. This can be extended to conditionally positive (negative) basis functions.
Let Πi denote the respective matrix blocks of the restricted system.

Algorithm 1. Block-Jacobi iteration

r
(n)
i ←− Ri

(
f − Φλ(n) + Ππ(n)

)

for all domains s do

Solve
(

Φs Πs

Π�
s 0

)(
λ̂s

πs

)
=

(
rs

0

)

λ̂
(n) ←−

∑P
s=1 R̃�λ̂s

Correct λ̂
(n)

such that it fulfills (3) −→ λ(n+1)

Compute π(n+1)

Depending on the size of the subproblem we either use a direct method or
employ the FGP algorithm to find a solution for the local subproblems. The
authors in [13] show that it is sufficient to calculate an approximative solution
of the local subproblem requiring an error relative to the current residual in each
iteration.

4.2 Two-Level Block-Jacobi Iteration

The authors in [2] sketched a simplified two-level domain decomposition method
for RBF interpolation fitting. The two-level algorithm represented on page 180
requires a coarse grid representation Y consisting of interpolation centers from
each subdomain Ω̃s. Let RY denote the restriction matrix that restricts a global



Towards RBF Interpolation on Heterogeneous HPC Systems 187

Algorithm 2. Two level block-Jacobi iteration

r
(n)
i ←− Ri

(
f − Φλ(n) + Ππ(n)

)

for all domains s do

Solve

(
Φs Πs

Π�
s 0

)(
λ̂s

πs

)

=

(
rs

0

)

λ̂
(n) ←−∑P

s=1 R̃�λ̂s

Correct λ̂
(n)

such that it fulfills (3) −→ λ̌
(n)

Evaluate the residual ρ
(n)
Y ←− RY

(
f − Φλ̌

(n)
)
.

Solve

(
ΦY ΠY
Π�

Y 0

)(
λY
πY

)

=

(
ρY
0

)

.

λ(n+1) ←− λ̌
(n)

+ R�
Y λY ,

π(n+1) ←− πY

vector to the coarse grid interpolation centers and indices Y denote restricted
vectors and matrices accordingly. We again use either a direct method or the
FGP algorithm to solve the subproblems.

5 Numerical Examples

In this section we present timing results for performance tests of the method
described in Sect. 3 and iteration counts for the parallel computation of inter-
polants described in Sect. 4.

The test system is equipped with two Intel Xeon E5-2450 processors with
8 cores each. The OpenMP parallelized C++ code uses 16 threads. The used
GPGPU accelerator is an Nvidia Tesla K20Xm. Table 1 lists timings for the
brute force computation and an approximation using a multipole method of a
single matrix-vector product.

Table 1. Timings for a single matrix-vector product in seconds.

# bc nodes Brute force Multipole method

CPU [s] GPU [s] CPU setup CPU eval GPU setup GPU eval

602 1.09E-02 5.61E-04 2.35E-02 2.67E-02 1.15E-02 2.97E-03

1562 9.01E-03 1.34E-03 2.03E-02 5.19E-02 1.31E-02 3.12E-03

3542 1.06E-02 2.42E-03 2.49E-02 1.43E-01 1.98E-02 3.40E-03

9902 7.03E-02 6.32E-03 2.30E-02 3.48E-01 3.42E-02 4.49E-03

39802 5.59E-01 7.40E-02 8.00E-02 5.54E-01 1.65E-01 2.39E-02

89702 2.84E+00 3.91E-01 1.71E-01 2.15E+00 3.44E-01 4.77E-02
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Table 2. Iteration count for the parallel test case.

Block-Jacobi Two-level block-Jacobi

|Y| = 200 |Y| ≈ N/8

# of domains # of domains # of domains

N 2 4 8 2 4 8 16 2 4 8 16

416 12 23 39 3 4 4 5 5 6 8 9

1832 36 178 – 5 6 7 8 5 6 7 8

7472 – – – 9 11 13 13 5 6 7 7

30080 – – – 30 29 40 39 5 5 6 6

The GPU version is faster by one order of magnitude at least for both meth-
ods and the multipole method becomes superior with increasing problem size.
Observing the multipole evaluation on the GPU for problem sizes below 10.000
nodes reveals the kernel invocation overhead. In contrast to the CPU implemen-
tation the octree boxes in the multipole method have to padded with additional
zeros in order to achieve coalesce memory access on the GPU. The fill rate of
these octree boxes changes with the tree depth and influences directly the run
time such that the observed speed-up varies. This can be seen in Table 1 for the
multipole evaluation wherein the GPU timings follow closely the expected run
time O(N log N) but the CPU performs even better, i.e., on 39802 nodes. The
double precision peak performance and memory bandwidth of the Tesla K20Xm
is 5 times better than those of the two Xeon processors. This factor is observed
for the brute force approach while the multipole evaluation on GPU is consid-
erably better vectorized than on CPU. A detailed discussion of the results can
be found in [14].

Table 2 compares the iteration counts for the block-Jacobi and the two-level
block-Jacobi preconditioning described in Sect. 4. We imposed test function F3
as in [5] as boundary conditions on N nodes distributed over a sphere. We test
the effect of a fixed-size coarse grid (|Y| = 200) versus an adjusted coarse grid size
(|Y| ≈ N/8), arising as the natural choice for a prospective multi-level precondi-
tioning based on an octree hierarchy. The iteration count indicates clearly that
the two-level method is superior even though the parallelization of the coarse grid
is still a future work. We expect that the coarse grid parallelization combined
with a further recursive coarsening will result in a fastest preconditioner.

6 Conclusion

We showed that an implementation of the FGP algorithm can be adapted to
exploit the massive parallelism of GPGPU accelerator cards. The FGP algo-
rithm evinces to be applicable as solution method for the arising sub-problems
when the original problem is distributed. Extending the resulting block-Jacobi
preconditioning with an additional coarse block results in a two-grid method
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with constant iteration count. The ideal coarsening factor N/8 indicates the
reasonableness of a further multilevel preconditioning for the RBF-interpolation
based on the (already existing) octree hierarchy in R

3.
This first application with the preconditioner in a simple iteration will be

extended to a Krylov subspace method as outer iteration in future. Therein
our preconditioner has to be adapted in order to fulfill the requirements of the
respective method.

Further research is to utilize a wider set of programming standards, such
as OpenACC and OpenMP 4.0, for many-core programming, which hold out
the prospect of an incomplex transition to different accelerator hardware (e.g.
Intel c©Xeon PhiTM).
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Abstract. Following the Barnett’s approach to gcd(a(x),b(x)) based
on the use of companion matrix we develop an extended algorithm
that gives effectively d(x), u(x), v(x), a1(x) and b1(x), where a1(x) =
a(x)/d(x), b1(x) = b(x)/d(x) and d(x) = u(x)a(x) + v(x)b(x). The algo-
rithm is suitable for parallel realization on GPU, FPGA, and smart cards.

Keywords: Greatest common divisor of polynomials · Reduced row ech-
elon form · Gauss elimination

1 Introduction

Let F be a field or a factorial ring (an integral domain, where each nonzero
element admits a unique decomposition into a product of irreducible elements).
Any two polynomials a(x), b(x) ∈ F[x] have a greatest common divisor (gcd):
d(x) = (a(x), b(x)), that is unique up to an invertible element of F. In the case
when F is a field d(x) is chosen to be a monic polynomial. For F field and for
some rings, like Z (the ideal (d) = (a) + (b)), the following relation of Bézout
holds:

u(x)a(x) + v(x)b(x) = d(x), (1.1)

where u(x), v(x), are uniquely determined if deg u(x) < deg b1(x), deg v(x) <
deg a1(x), a1(x) = a(x)/d(x), and b1(x) = b(x)/d(x).

Greatest common divisor and Bézout’s relation plays an important role in
many areas of mathematics as differential equations, linear multivariable con-
trol systems, solving algebraic equations (e.g. simple and multiple roots can be
separated by gcd(f(x), f ′(x)) and f1(x)), etc. For coding theory and cryptog-
raphy (e.g. Euclid algorithm for decoding cyclic codes and finding the minimal
linear generators of a sequence) polynomials u(x) and v(x) are sometimes more
interesting.

The classical approach to finding d(x), u(x) and v(x) is based on euclid-
ean polynomial division or on pseudo-division in the case of F integral domain.

This work was partially supported by the National Science Fund of Bulgaria under
Grant DFNI-I02/8.

c© Springer International Publishing Switzerland 2015
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Much more effectively d(x), u(x) and v(x) can be determined by transform-
ing (with elementary row operations) a suitable matrix to its reduced echelon
form. The relation between gcd and matrices dates back to Sylvester (1840),
but the Gaussian elimination approach is manly due to Stephen Barnett ([1,2]).
Of course many mathematicians have worked in this direction (MacDuffee [6],
Laidacker [3], Gonzales-Vega [4,5], etc.), but the results of Barnett and the oth-
ers have been mainly motivated by problems in linear control theory and other
areas, where the Bézout’s relation is not much interesting. However, more atten-
tion is payed to the polynomials u(x) and v(x) by some topics in algebra, coding
theory and cryptography.

The next section contains the necessary definitions and results. In Sect. 3 we
describe the algorithm, which is proved in the forth section. In the last section
we discuss realizations and further works.

2 Preliminaries

Let us first agree on notations. Matrices and vectors are denoted by bold capital
and small letters, respectively. In is the n × n identity (unit) matrix having 1’s
along its principle diagonal and zeros everywhere else. Fn denotes the matrix
obtained from In by flipping, i.e., having 1’s along its secondary diagonal. Polyno-
mials are represented by vectors of fixed length (e.g., n) whose rightmost element
is the constant term and the leftmost nonzero entry is the leading coefficient of
the polynomial.

Definition 1. Let a(x) = xn +a1x
n−1+ · · ·+an−1x+an ∈ F[x] be a polynomial

of the variable x with coefficients in F. The following n × n matrix:

Ca =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

is called companion matrix associated with a(x).

The companion matrix is the matrix of cyclic shifting in the factor ring F[x]/a(x),
i.e., the matrix corresponding to the map

χ : p(x) −→ x p(x) (mod a(x)),

in the basis {xn−1, xn−2, . . . , 1} (χ(p) = pCa, where p is the vector representing
p(x)).

The rank of Ca is n when an �= 0 and it is straightforward to check that its
characteristic polynomial is

fCa
(x) = det(Ca − xE) = (−1)na(x).
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Let b(x) = b0x
m + b1x

m−1 + · · · + bm−1x + bm ∈ F[x]. Recall that the value of
b(x) at A is the matrix

b(A) = b0Am + b1Am−1 + · · · + bm−1A + bmE

and according to the Cayley-Hamilton theorem a(Ca) = O.
In the case when F is not a field and a0 �= 1 the generalized companion

matrix (where 1’s are replaced by a0) is used instead (see [4]). In this paper we
restrict ourselves only to the case when F is a field.

Let
b = ( 0 . . . 0︸ ︷︷ ︸

n−m−1

b0 b1 . . . bm)

be the vector corresponding to the polynomial b(x). The multiplication of b by
Ca is equivalent to cyclic shift of b to the left, i.e.,

b(i) = bCi
a = ( 0 . . . 0︸ ︷︷ ︸

n−m−1−i

b0 b1 . . . bm 0 . . . 0︸ ︷︷ ︸
i

), i = 1, 2, . . . , n − m − 1

Let us denote

w(0) = w = b(n−m−1) = (b0 b1 . . . bm 0 . . . 0︸ ︷︷ ︸
n−m−1

),

w(k) = (w(k)
1 , w

(k)
2 , . . . , w(k)

n )
def
= wCk

a = w(k−1)Ca, k = 1, . . . , m.

Proposition 1 (Barnett [2]). If b(x) = b0x
m + b1x

m−1 + · · · + bm−1x + bm ∈
F[x], b0 �= 0, then

b(Ca) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w(m)

w(m−1)

...
w(1)

w
...
b(1)

b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

wCm
a

wCm−1
a
...

wCa

b0 b1 . . . bm 0 . . . 0
0 b0 . . . . . . bm . . . 0

...
...

0 0 . . . b0 . . . bm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.1)

and rank (b(Ca)) ≥ n − m.

The last n−m rows b,b(1), . . . ,b(n−m−1) = w of b(Ca) are cyclic shift of b.
Any of the first m rows can be obtained by n multiplications and n additions.
Hence the calculation of b(Ca) requires 2mn operations.

Theorem 1 (Barnett [1]). Let a(x) ∈ F[x] have degree n and Ca be its com-
panion matrix. The degree of the greatest common divisor d(x) = (a(x), b(x)) of
a(x) with an arbitrary polynomial b(x) ∈ F[x] is

deg d(x) = n − rank (b(Ca)).

The coefficients of d(x) appear as a row after suitable Gauss eliminations on
b(Ca).
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3 Description of the Algorithm

INPUT DATA: a(x) = xn + a1x
n−1 + · · · + an−1x + an ∈ F[x], and b(x) =

b0x
m + b1x

m−1 + · · · + bm ∈ F[x], where b0 �= 0, m � n − 1.
OUTPUT DATA: gcd(a(x), b(x)) = d(x) = xk + d1x

k−1 + · · · + dk,
u(x), v(x), a1(x), b1(x).

Step 1. Compute the n × n matrix

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0 . . . . . . . . . 0
...

. . .
...

...
...

...
...

0 . . . b0 b1 b2 . . . bm

w(1)

w(2)

...
w(m)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The matrix D differs from b(Ca) only in order of rows. As we mentioned in the
previous section only nm multiplications and nm additions are necessary for
computing D.

Step 2. Construct the m × m matrix

W = −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 b0

0 0 0 . . . b0 w
(1)
1

...
...

...
...

...
...

0 b0 w
(1)
1 . . . w

(m−3)
1 w

(m−2)
1

b0 w
(1)
1 w

(2)
1 . . . w

(m−2)
1 w

(m−1)
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where w
(k)
1 is the first coordinate of w(k) = (w(k)

1 , w
(k)
2 , . . . , w

(k)
n ).

No operations, only shifting is required in this step. Indeed W can be simulta-
neously constructed during the process of computing D in Step 1.

Step 3. Construct the n × (2n + m) matrix

R =

(

D
∣
∣
∣
O(n−m)×m

W

∣
∣
∣
O(n−m)×m En−m

Fm Om×(n−m)

)

(3.1)

Step 4. Carry out elementary row operations on R in order to transform D
into a row echelon form (trapezium shape), but without interchanging the rows.

Step 5. The last row having nonzero entries in the first n columns has the
form

(0 . . . 0︸ ︷︷ ︸
n−k−1

1 d1 . . . dk|u|v),
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where u and v represent u(x) and v(x), respectively.
The next row has the form

(0 . . . 0︸ ︷︷ ︸
n

| −b1 | a1)

The vector b1 represents b1(x) = b(x)/d(x), and a1 gives the coefficients of
a1(x) = a(x)/d(x).

Example 1. Let a(x) = x5+3x4+3x3+x2−−4x−4 and b(x) = 2x3+x2+3x−2.
Their greatest common divisor is d(x) = x2 + x + 2. The companion matrix of
a(x) is

Ca =

⎛

⎜
⎜
⎜
⎜
⎝

−3 −3 −1 4 4
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

, =⇒ b(Ca) =

⎛

⎜
⎜
⎜
⎜
⎝

−25 −23 −24 28 48
12 11 13 −12 −20
−5 −3 −4 8 8
2 1 3 −2 0
0 2 1 3 −2

⎞

⎟
⎟
⎟
⎟
⎠

.

Therefore

D =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 3 −2 0
0 2 1 3 −2

−5 −3 −4 8 8
12 11 13 −12 −20

−25 −23 −24 28 48

⎞

⎟
⎟
⎟
⎟
⎠

W = −

⎛

⎝
0 0 2
0 2 −5
2 −5 12

⎞

⎠.

In Step 3 we construct the matrix

R =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 3 −2 0 0 0 0 0 0 0 1 0
0 2 1 3 −2 0 0 0 0 0 0 0 1

−5 −3 −4 8 8 0 0 −2 0 0 1 0 0
12 11 13 −12 −20 0 −2 5 0 1 0 0 0

−25 −23 −24 28 48 −2 5 −12 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

In Step 4 we carry out elementary row operations on R in order to transform
D into echelon (trapezium shape) form. (To perform the operations in Z we first
multiply the third and fifth rows then third, forth and fifth rows by 2.)
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R ∼

⎛

⎜
⎜
⎜
⎜
⎝

2 1 3 −2 0 0 0 0 0 0 0 1 0
0 2 1 3 −2 0 0 0 0 0 0 0 1
0 −1 7 6 16 0 0 −4 0 0 2 5 0
0 5 −5 0 −20 0 −2 5 0 1 0 −6 0
0 −21 27 6 96 −4 10 −24 2 0 0 25 0

⎞

⎟
⎟
⎟
⎟
⎠

∼

⎛

⎜
⎜
⎜
⎜
⎝

2 1 3 −2 0 0 0 0 0 0 0 1 0
0 2 1 3 −2 0 0 0 0 0 0 0 1
0 0 15 15 30 0 0 −8 0 0 4 10 1
0 0 −15 −15 −30 0 −4 10 0 2 0 −12 −5
0 0 75 75 150 −8 20 −48 4 0 0 50 21

⎞

⎟
⎟
⎟
⎟
⎠

∼

⎛

⎜
⎜
⎜
⎜
⎝

2 1 3 −2 0 0 0 0 0 0 0 1 0
0 2 1 3 −2 0 0 0 0 0 0 0 1
0 0 15 15 30 0 0 −8 0 0 4 10 1
0 0 0 0 0 0 −4 2 0 2 4 −2 −4
0 0 0 0 0 −8 20 −8 4 0 −20 0 16

⎞

⎟
⎟
⎟
⎟
⎠

∼

⎛

⎜
⎜
⎜
⎜
⎝

2 1 3 −2 0 0 0 0 0 0 0 1 0
0 2 1 3 −2 0 0 0 0 0 0 0 1
0 0 1 1 2 0 0 −8/15 0 0 4/15 10/15 1/15
0 0 0 0 0 0 −2 1 0 1 2 −1 −2
0 0 0 0 0 −2 5 −2 1 0 −5 0 4

⎞

⎟
⎟
⎟
⎟
⎠

The third row shows that

d(x) = x2 + x + 2, u(x) = − 8
15

, v(x) =
1
15

(4x2 + 10x + 1).

The next (forth) row gives quotients

−b1(x) = −2x + 1, a1(x) = x3 + 2x2 − x − 2.

4 Proof of Correctness of the Algorithm

Lemma 1. Any linear combination of the rows of b(Ca) represents a polynomial
of the form

f(x)b(x) − g(x)a(x), (4.1)
where deg f(x) ≤ n − 1, deg g(x) ≤ m − 1.

Proof. Let w(k)(x) be the polynomial corresponding to w(k). Having in mind
the form of Ca it is easy to check that

w(1)(x) = w(x) − b0a(x) = xn−mb(x) − b0a(x),

w(2)(x) = xw(1) − w
(1)
1 a(x) = xn−m+1b(x) − (b0x + w

(1)
1 )a(x),

...
...

... (4.2)

w(m)(x) = xw(m−1) − w
(m−1)
1 a(x) =

= xn−1b(x) − (b0xm−1 + w
(1)
1 xm−2 + · · · + w

(m−1)
1 )a(x).
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Since the last rows of Ca represent the polynomials xn−m−1b(x), . . . , xb(x), b(x),
then any linear combination of the rows has the form (4.1). The multipliers at
a(x) have degree at most m− 1, and ones at b(x) have at most n− 1. Therefore,
deg f(x) ≤ n − 1, deg g(x) ≤ m − 1. 	


Theorem 2. Let gcd (a(x), b(x)) = d(x) = xk+d1x
k−1+· · ·+dk and u(x), v(x),

a1(x), and b1(x) are defined by (1.1). Then after carrying out the described in
the algorithm row operations the (n−k)th row of R (the last row having nonzero
entries in D) has the form (d | u | v),. The (n − k + 1)th row is (o | −b1 | a1).

Proof. Replacing x by Ca in (1.1) we get

v(Ca)b(Ca) = d(Ca).

According to Theorem 1 rank (b(Ca)) = rank (d(Ca)) = n − k, (v(Ca) is
nonsingular). Since the last row of v(Ca) is v = (0, . . . , 0, v0, . . . , vn−k−1), and
that of d(Ca) is d = (0, . . . , 0, d0, . . . , dk), then v (as a column) is a solution of

[b(Ca)]τ

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xn

⎞

⎟
⎟
⎟
⎠

= dτ . (4.3)

The last n−k rows of b(Ca), i.e., the last n−k columns of [b(Ca)]τ , are linear
independent. Hence x1, . . . , xk are free unknowns (parameters) and xk+1, . . . , xn

are determined by them. Setting x1 = · · · = xk = 0 we obtain a particular
solution, which is obviously v (the first k entries of v are zeros) The general
solution has the form

v + z,

where z is a solution of the homogeneous system corresponding to (4.3).
The described in Step 4 row operations carrying out up to down are equivalent

to such operations on b(Ca), but down to up and in order to make first k rows
only of zeros. Thus, the first m rows of the transformed b(Ca) are the flipped
last m rows of the submatrix D at the end of Step 4.

Let P be the triangle matrix (with zeros under the main diagonal), which
corresponds to the row operations carried out in Step 4, that is, Pb(Ca) is with
all zeros first k rows and the (k + 1)-th row is d. Matrix P has zeros under the
main diagonal since the operations are done down to up. If pi is the i-th row of
P, then

pk+1b(Ca) = d.

Therefore pk+1 is a solution of (4.3) and its first k entries are zeros. Thus

pk+1 = v.

Now let us look at the positions corresponding to matrix W, i.e., from (n +
1)st to (n+m)th column. Lemma 1 and its proof give that the vector d has also
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to represent the polynomial v(x)b(x) − g(x)a(x) and the vector in the (n + 1)st
to (n + m)th positions has to be −g(x). Hence

−g(x) = u(x).

The k-th row pk satisfies pkb(Ca) = o, thus, it is a solution of the homo-
geneous system. On the other hand a1(Ca)b(Ca) = a(Ca)b1(Ca) = O shows
that the vector a1 corresponding to a1(x) is a solution of the same homoge-
neous system. But both pk and a1 have zeros in the first k − 1 positions (i.e.,
x1 = · · · = xk−1 = 0,). Hence they are proportional and if they are normalized

pk = a1.

Similarly, according to Lemma 1 a1(x)b(x) − g(x)a(x) = 0. Taking into
account the degree of g(x), we can conclude that the vector in the (n + 1)st
to (n + m)th positions has to be −b1.

Remark. If we do not reduce the matrix R in prescribed way (e.g., interchanging
rows) we will obtained instead a1(x) a polynomial congruent with it modulo b(x)
(it will be of a higher degree). The same is true about b1(x). 	


5 Conclusion

In terms of O-notation there is no essential difference in the number of the
required operations in F, but the described algorithm is much faster in practice.

Also, it is naturally parallelizable. This is important especially in the case
when coefficients of polynomials belong to a large finite field (which we are
interested in), Z, or special types of fields or factorial rings.

We realized the algorithm on GPUs. To each thread it is assigned a column
of the matrix and it carries out all operations with elements in this column.

An important application of the algorithm is its modification to an algorithm
for decoding cyclic codes.

The described algorithm can be generalized for the case when F is a factorial
ring and for finding gcd of several polynomials, but such generalizations are out
of the focus of this paper.
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Abstract. Distributed evolutionary algorithms are implemented on het-
erogeneous computing nodes. In a distributed environment it is usual
these nodes to differ in operating system and hardware. Such an envi-
ronment has major problems related to network latency. Some of the
evolutionary optimization algorithms are very suitable for distributed
computing implementation, because of their high level of parallel scala-
bility. In most cases only fitness function calculation is distributed syn-
chronously (or asynchronously). In this case the population is presented
only in the master node. In the next case each separate node has part of
the distributed population (it is called island model). The last common
model is based on shared memory and each computing node has access to
the whole population (it is called fine-grained model). All other models
are some hybridization. In the island model there is a common parame-
ter related to migration strategy. The most often used node topology is
the ring topology. On a regular basis each node sends its best individual
to the next node in the ring. In this paper, a hybrid model, based on
incident node participation in star topology, is proposed.

Keywords: Distributed computing · Evolutionary algorithms · Migra-
tion strategies

1 Introduction

Evolutionary Algorithms (EAs) are efficient search methods based on principles
of natural selection and recombination. They have been applied successfully to
find acceptable solutions to problems in business, engineering, and science [1,15].
By using EAs good solutions can be found in reasonable amount of time. When
the problem is relatively small, a single computing node can be used. When the
problems are bigger or harder, the time to find adequate solutions increases.
With the increasing popularity of parallel computations it becomes a promising
choice for EAs speed-up. Some distributed evolutionary algorithms (DEAs) are
using a single population, while others split the population into several relatively
independent subpopulations. A strict classification can be found into the litera-
ture [2–4]. In the case of distributed computing, migration strategy is one of the
most important aspects of DEAs implementation.
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 203–209, 2015.
DOI: 10.1007/978-3-319-26520-9 21
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In the cases when EA’s population is distributed among many different com-
puting nodes, each node has a fraction of the population called subpopulation.
In such a case, recombination and fitness function evaluation is done locally. For
better optimization convergence, the computing nodes are exchanging individu-
als. This exchange is called migration. The process of migration is controlled by
several parameters and it forms a strategy for information interchange in DEAs.
The first parameter is related to traveler selection and corresponds to the strat-
egy of choosing which individual of the subpopulation to be sent. In most of
the cases the best individual is selected. The second important parameter is the
migration frequency and it determines how often the selected individuals will
travel across subpopulations. This parameter is problem specific and usually it
is adjusted experimentally. The third and maybe the most important parameter
is related to the migration destination. Migration destination means how nodes
are organized, as topology, and how each individual will travel in this topology.
One option for this parameter is individual broadcasting when each node receives
a copy of others nodes selected travelers. Another option is a ring topology where
each traveler migrates one neighbor ahead. Grid topology is also possible [5,16],
where each node has four neighbors. Many other topologies are also possible as
hierarchical, 3D based, hybrid and etc.

In this paper distribution strategy is proposed, based on incident node par-
ticipation (volunteers are expected to join the project and contribute computing
power). Computing nodes are organized as star topology and island model [6,17]
for DEAs is applied.

The rest of this paper is organized as follows: Sect. 2 presents the model pro-
posed. Section 3 describes distribution parameters in details. Section 4 is devoted
to some experiments and results. Final Sect. 5 concludes and present some ideas
for further research.

Fig. 1. Incident node participation
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2 The Model Proposed

The model proposed in this paper is provoked by the implementation used
in VitoshaTrade project [7]. The project is an open source volunteer distrib-
uted computing system, which uses EAs for artificial neural networks (ANNs)
training. ANNs in VitoshaTrade are used for financial time series forecasting.
The goal of optimization is ANN’s weights adjustment in order for better fore-
casting to be achieved. Training of ANN with EAs can be very computation-
ally intensive, because (depending of the ANN topology) it can has more than
400 weights. Because of the time consuming nature of EA based ANN training,
the computing nodes in the project are relatively autonomous. The distributed
system is organized as star topology with lightweight central node (server) and
heavy-loaded remote computing nodes (clients). As DEA implementation, island
model is used. There is a global EA population, located in the central node, and
many local EA populations distributed on the remote computing nodes. Each
remote computing node can join the system and leave the system at any moment
of time, asynchronously (Fig. 1). For each joining client the central node sends
a subset of the global population. After that there is no more communication
between the central node and the remote node. The remote node evolves the
local EA population as sequential EA.

The communication between the remote node and the central node is initiated
again only if there is a better solution, found on the remote node, which should
be reported to the central node. By such organization of the calculation process,
each remote node may work for hours, weeks or months before having a need to
report something to the central node. In practice, failure of the central node will
not affect the performance of the remote nodes. Even in the central node failure
situation, the remote nodes will report their results when the central node is
available again.

The distribution of the individuals is done only during the remote node join-
ing process. Local best found solutions are reported to the central node and
eventually they will migrate to the next remote node that joins. EA based train-
ing of ANNs is so slow that such distribution strategy is very efficient. Also the
training set in financial time series forecasting is constantly changing, because
new data are constantly coming out. In this way the objective function, which
should be optimized (ANN’s total error), is constantly changed. That is why
continuous ANN training should be applied.

3 Distribution Parameters

Distribution is the operator responsible for the exchange of individuals between
the nodes in DEA. In relation to distribution, a group of parameters are relevant
(such as distribution gap, distribution rate, selection/replacement, topology and
heterogeneity). In the case of Distribution Strategy by Incident Node Participa-
tion (DSINP) some of these parameters can be applied, but others do not have
reasonable meaning. In this section distribution parameters will be discussed
according to their applicability to the proposed model.
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3.1 Distribution Gap

In the model proposed it is very difficult to define such a parameter as distribu-
tion gap. There are two popular approaches described in the literature. The first
one is distribution gap on a regular basis (given number of steps) and the second
one is probabilistic, on each generation with probability Pm [8–10]. The distrib-
ution gap is closer to the probabilistic model. As it was described in the previous
sections, distribution is done only once when the computing node joins to the
system. In this aspect, distribution gap is probabilistic with exponential distri-
bution. In the model proposed there is no no-effect problem or super-individual
problem, because the distribution is relatively rare.

3.2 Distribution Rate

The distribution rate is a problem specific parameter. It determines how many
individuals will travel across the local populations. Usually it is expressed as
percentage of the population or as absolute value. There are different suggestions
how this parameter to be estimated, but the general approach is experimentally
[6,11,12]. In the model proposed, this parameter is percentage (a fraction) of
the global population (population kept on the central node). As absolute values
it is equal to the size of the local population (the size of the population on the
remote node).

3.3 Selection and Replacement

There are two general ways to select migrants. The first way is to select the best
individuals, the second way is to select random individuals. Of course many other
selection operators can be applied similar to those used in genetic algorithms
(GAs) [13,18]. In the model proposed, selection is done on the central node. In
VitoshaTrade project random selection is used. The number of selected migrants
is the same as the size of the remote subpopulation. Practically there is no
replacement procedure, because distribution is done only once from the central
node to the remote node. In the opposite direction (remote to central), a lot
of reported individuals can be sent, but they will participate in other remote
subpopulations, according to node joining process.

3.4 Topology

DEAs are divided in two common models (stepping-stone and island). This divi-
sion depends on whether individuals can freely migrate to any local population
or if they are restricted to migrating to geographically nearby islands. Many
works exists trying to decide the best topology for a DEA and in most of the
cases the most preferred topologies are ring and hyper-cube [2–4,12]. In most
of the cases there are problems (parallelization and scalability) with the fully-
connected and centralized topologies due to the tight connectivity. In the model
proposed, the best suited topology is a star topology with centralized node and
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relatively independent remote computing nodes. EA based ANN training is a
slow process and the remote computing nodes can spend relatively long time
without need to communicate with the central node. For this reason the central
node is not s risky part of the distributed system. Even more, losing the con-
nection with the central node does not affect local optimization process. Failure
of the central node will affect only new nodes trying to join the system. Even
with these disadvantages, the model proposed has very high degree of scalability,
because the lightweight central node. In the VitoshaTrade project, the central
node is presented as PHP based web server.

3.5 Heterogeneity

The model proposed is perfectly suited for heterogeneity. On each remote com-
puting node, a different optimization algorithm can be applied. In this way, a
much better balance can be achieved between exploration and exploitation (a
well-known trade-off decision in EAs). This parameter is problem dependant. In
the case of ANN’s weights distribution, it can be implemented very efficiently in
such distributed system, because there are very effective gradient based training
algorithms.

4 Experiments and Results

DSINP was compared with Ring Topology for the problem of Artificial Neural
Network (ANN) training, based on Differential Evolution (DE) weights opti-
mization. All experiments were done in local computer network. As central node,

Fig. 2. Artificial Neural Network trained with Differential Evolution for Time Series
Forecasting. X - number of evaluated individuals. Y - MSE of ANN. Dotted line is for
the ring topology. Solid line is for the Incident Node Participation Strategy (INPS).
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Linux (Ubuntu Server 12.04.5 LTS) desktop machine with a 2.33 GHz Intel Core
2 Duo CPU and a 1.95 GB RAM. On the central XAMPP package were used for
Apache web server and MySQL database. As computing nodes, four identical
Windows 7 Home Premium 64 bits based laptops were used (Acer, CPU Intel
U4100 1.30GHz, 4GB RAM).

Because ring topology is pretty different organization, compared with inci-
dent node participation strategy, as progress of the computation done (X -
axis), number of evaluated individuals was selected (Fig. 2). Respectively, on the
Y - axis, ANN Mean Square Error (MSE) is measured. As it can be seen in Fig. 2,
DSINP outperforms Ring Topology migration in some stages of the optimization
process (around 134 and 486 on X-axis).

5 Conclusions

The model presented suggests efficient distribution strategy in the field of dis-
tributed evolutionary algorithms. Current implementation is concentrated on EA
based ANN training for financial forecasting. The approach is innovative because
the training itself is continuous with constantly changing objective function. In
such a distributed computing system it is expected for remote computing nodes
to often join and disjoin. Because of all facts presented, incident node participa-
tion is the natural way for individuals to migrate.

As further work, it will be interesting hybrid algorithms to be tested. For
example, DE based ANN training in combination with Particle Swarm Optimiza-
tion, Ant Colony Optimization, Simulated Annealing and etc. Also, as described
in [14], PicoBlaze FPGAs can be researched for remote computations.
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Abstract. It is possible to solve slot machine RTP optimization prob-
lem by using evolutionary algorithms. In practice this optimization is
done by hand adjustment of the symbols placed on the game reels. By
arranging symbols positions, it is possible to achieve optimal return to
player percentage (RTP). Equalization of the prizes distribution, gener-
ated by different win combinations, can be optimized also. In this paper
a DE based RTP optimization and prizes equalization is proposed. DE
is used in its discrete variation, because the problem of optimal sym-
bols distribution on the reels is in the discrete domain. DE is selected
as an alternative to genetic algorithms (GA) because of its faster con-
vergence. The convergence is a key factor in such optimizations, because
each fitness value is calculated based on intensive Monte-Carlo simula-
tions. The scope of this paper is focused on the symbols distribution
placed on the machine reels in such a way that two common goals to be
satisfied - desired RTP and keeping relatively equal levels of the prizes
(prizes expressed as amount of money won from combinations with each
particular symbol), with relatively good symbol diversity on the reels.

Keywords: Slot machine · Gambling · Discrete Differential Evolution ·
Return to player · Optimization

1 Introduction

Slot machines are electronic gambling devices, which are popular all over the
world. The most popular slot machines consists of five reels. The reels start
spinning when the button is pushed. Nowadays slot machines are computer-
ized with PRNG embedded in them. In 1984 Inge Telnaes received a patent for
a device titled, “Electronic Gaming Device Utilizing a Random Number Gen-
erator for Selecting the Reel Stop Positions” (US Patent 4448419) [1]. In the
beginning slot machines have been mechanical. They have had a lever on the
side of the machine (because of this lever, machines were known as one armed
bandits), which have been used for reels spinning activation. The machine pays
c© Springer International Publishing Switzerland 2015
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off according to symbol patterns, visible on the screen, when the reels stop. Slot
machines are the most popular gambling method in casinos and constitute about
70 percent of the average US casino income [2].

A gambler playing a slot machine has credit inserted - cash, by printed ticket
or loaded by the attendant. The machine is activated by means of a lever (or a
button), or by pressing a touchscreen. The objective of the game is to win money
from the machine, which usually involves matching symbols on reels (mechanical
or virtual) that spin and stop to reveal one or several symbols. Most games have
a variety of winning combinations of symbols. If a player matches a combination
according to the given patterns, the slot machine rewards the player.

Each machine has a table that lists the number of credits the player will
receive if the symbols listed on the pay table line up on the pay line of the
machine. Some symbols are wild and can represent many (or all) of the other
symbols to complete a winning line [3]. Symbols are statistically distributed on
the reels. Some symbols show up more often than others. Some symbols pay more
than others, according to the pay table. Slot machines are usually adjusted to
pay out as winnings 75 to 98 percent of the money that is wagered by players.
It is known as theoretical payout percentage or RTP (return to player). The
minimum RTP varies among jurisdictions and it is subject of law regulations.

The motivation for this research is our previous work related to GA based
optimization of slot machine RTP. In this work RTP is optimized again, but
prizes equalization is also included, as s second criteria. As third, less important
criteria, symbols diversity on the reels is also controlled. The source code, used
for this research, is available as open-source project in Github global repository
[4]. The rest of this paper is organized as follows: Sect. 2 presents the model
proposed. Section 3 is devoted to some experiments and results. Final Sect. 4
concludes and present some ideas for further research.

2 The Model Proposed

The model proposed is based on Discrete Differential Evolution (DDE). DDE
is applied over RTP, prizes equalization and symbol diversity, as multi-criteria
optimization.

2.1 RTP Optimization

Modern slot machines are computerized. They have virtual reels with symbols
distributed on them. Stops of the virtual reels are selected by PRNGs. RTP of
the game is directly dependent from symbols distribution on the reels. Usually
symbols (and their positions) are selected manually by the mathematicians. In
practice, slot machine reels are discrete distribution of symbols. Such distribution
can be achieved by discrete optimization, according given constraints like desired
RTP, prizes equalization and symbols diversity. From these three criteria, symbol
diversity is easily calculated without simulation, but RTP and prizes equalization
need Monte-Carlo simulations in order to participate in DDE cost function.
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Multi-criteria cost function is converted in single criteria by linear transformation
and coefficients given for each of the criteria. Coefficients are selected by the
decision maker, according his/her personal preferences. In this research 1 were
selected for symbols diversity, 100 for RTP and 10 for prizes equalization. These
numbers are selected in correlation with the importance of each criteria. Symbol
diversity is a parameter related to how many symbols of the same kind are
next to each other in a single reel. Symbol diversity is easily achievable with
simple swaps of symbols which are in inappropriate order. Slot machine reels
are represented as individuals in the DDE optimization. Symbol diversity can
be controlled even before the Monte-Carlo simulation to be executed. The cost
function is preferred for this criteria in order to make solution space exploration
easier.

2.2 Discrete Differential Evolution

DE is one of the stochastic optimization algorithms. It is used for the following
search problem: Minimize an objective function which is a mapping from a para-
meter vector x in n dimensional real values space into to one dimensional real
values space. DE has self-organization for mutation, crossover and selection, but
strategy parameters are selected empirically [5]. DE was proposed by Storn and
Price [6].

DE shares similarities with traditional evolutionary algorithms. However it
does not use binary encoding as a simple genetic algorithm [7] and it does not
use a probability density function to self-adapt its parameters as an Evolution
Strategy [8]. DE differs in its mutation. Mutation is performed based on the
distribution of the solutions in the population. In this way, search directions and
possible stepsizes depend on the location of the individuals selected to calculate
the mutation values. The most popular model is called DE/rand/1/bin, where
DE means Differential Evolution, rand indicates that individuals selected to
compute the mutation values are chosen at random, 1 is the number of pairs of
solutions chosen and finally bin means that a binomial recombination is used [9].

Similar to other EAs, DE can not deal with constrained optimization. In this
research there is a strict constraint which states that slot machine reels should
be valid. Slot machine reels validity depends on the game rules. For example, the
reels should consists only of valid symbols. This constraint is manually guaran-
teed after each new individual reproduction. Each invalid symbols is replaced by
a randomly selected valid symbol. This correction can be accepted as addition
to the mutation operation.

This work uses DDE for the optimization goals. The original DE is modified
in such way that weighted difference vector is calculated with discrete values.
Instead of regular difference, normalized discrete difference vector is used. This
difference vectors consists of three common values (minus one, zero and plus
one), as it can been seen at [4].
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2.3 Implementation

DDE individuals are presented as 2D arrays of symbols (reels). All symbols are
presented as integer numbers. Each DDE individual is a point into solution space
(discrete finite space). To be valid each reel should have only integer numbers
from the listed (Table 1). In this research symbols used are from 3 to 12. Symbols
from 0 to 2 are usually reserved for special symbols called wilds. Symbols between
14 and 16 are usually reserved for special symbols called scatters. The currently
presented model of a slot machine does not have wild or scatter symbols.

Table 1. Slot machine pay table. Each column represents the winning of one particular
symbol (10 possible symbols in this game). Each row shows the winning of the symbols
when the combination is of 3, 4 or 5 symbols.

SYM03 SYM04 SYM05 SYM06 SYM07 SYM08 SYM09 SYM10 SYM11 SYM12

3 of 250 100 75 50 25 15 9 6 3 1

4 of 500 250 100 75 50 25 15 10 7 3

5 of 750 500 250 150 100 75 50 30 20 10

Free spins were not presented in the model, but a simple bonus game was
added. The bonus game imitates a bingo game. There is a bonus prize for bingo
line and another bonus prize for bingo.

Initialization of the population is done by manually constructed reels. Some
of the individuals are shuffled inside for initial population diversity. The size
of the population is a subject of experimental estimation and may vary from
several individuals to hundreds or thousands of individuals.

The first step of DDE optimization is selecting a target vector, base vector
and two other vectors to be used for weighted difference vector. All of the four
vectors are selected randomly (slightly different than original DE algorithm). As
a second step, a discrete difference vector is calculated. The only valid values
for the discrete difference vector are minus one, zero and plus one. In the third
step, a mutation is done. The mutation sums of the difference vector with the
base vector. Invalid symbol numbers (in this case 2 or 13) are randomly replaced
with valid ones (from 3 to 12). The fourth step is crossover between the base
vector and mutated vector. For this operation binomial crossover is used. The
final fifth step is related to fitness value calculation and decision which vector to
be kept for the next generation (the target vector or the newly recombined one).

This is a multi-criteria problem. By giving weights of the three criteria they
are used as linear equation and the problem is converted to a single-criteria
problem. The decision maker is responsible for the coefficients selection for each
criteria. In this research 1 is used for symbol diversity, 100 for target RTP and
10 for prizes equalization. Monte-Carlo simulation is used for the target RTP
and prizes equalization estimation. Symbols diversity is calculated directly from
the reels. For better accuracy in Monte-Carlo simulations, 10 times by 1000000
separate slot game runs are executed.
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The maximum number of recombinations is used as an optimization termi-
nation criteria. Manual observation/termination of the process is also possible.
The final solution, found by DDE, is an integer matrix. This matrix is directly
applicable as slot machine reels strips. For example, if there is a slot game with
5 reels (visible on the screen as 5 columns and 3 rows), and each reel consists of
63 symbols, the final DDE solution would be an integer matrix of 5× 63 values
(refer to [4] for more details).

3 Experiments and Results

All experiments have been done on an open-source slot machine simulator [4]
(5× 3 screen) with a particular pay table (Table 1) and nine winning lines
(Table 2).

All winning combinations are paid from left to right. The lowest winning is
1 - for a combination of 3 symbols SYM12 (Table 1). The highest winning is
750 - for a combination of 5 symbols SYM03 (Table 1). There are 10 symbols,
which form winning patterns on the screen.

Table 2. Slot machine winning lines. There are nine possible lines. On each of these
lines (from left to right) win patterns can appear. Win patterns are formed by 3, 4 or
5 symbols.

* * * * *
* * * * *

* * * * *

* * * * *
* * * * *

* * * * *

* * * *
* * * * * * *

* * * *

All experiments are done with natural elitism rule embedded in DE, pop-
ulation size of 17, maximum number of recombinations 100, and one million
separate simulation game runs, accomplished in ten separate sessions for the
fitness value estimation. The DDE strategy is DE/rand/1/bin. Initial solutions
use handpicked reels.

Two target RTP were selected for the experiments. Fist set of experiments
was done for target RTP of 90, which is the lower legal value for the Bulgarian
gambling market. Three independent runs of the algorithm were done and it is
visible that fast convergence was achieved in the beginning (4–7 generations).
Between 40–80 generations finer convergence was obtained (Fig. 1). In the second
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Fig. 1. DDE convergence for target RTP of 90 percent. On the axes: x - number of
generations, y - cost function value.

Fig. 2. DDE convergence for target RTP of 98 percent. On the axes: x - number of
generations, y - cost function value.
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set of experiments, fast convergence can be seen between 4–25 generations and
finer convergence between 64–91 generations (Fig. 2). It is visible that DDE con-
vergence is faster in first set of experiments (Fig. 1), because initial handpicked
reels are closer to RTP of 90 than 98 (Fig. 2). Because of the discrete nature of
the process, the optimization is done in separate stairs like steps.

The results were compared with results presented in NMA14 Borovets [11],
which is related to slot machine RTP optimization by GA. DDE convergence is
a little bit faster than convergence achieved by GA. There are differences in slot
machine models, but the general optimization idea is similar. In the case of this
research the cost function is more complex than the cost function used in GA
implementation.

4 Conclusions

Experiments show that using DDE may be very efficient and improve the slot
games development by better adjustment of RTP, prizes equalization and symbol
diversity. Optimization convergence is related to the probabilistic nature of DDE.
Even thought, DDE converge faster than other heuristics (like GA), slot RTP
estimation is time consuming and slows down the optimization process. Because
of the limited scope of this research, multi-objective approach was not tested.

As further research, it could be interesting for DDE to be implemented as
distributed computing algorithm. Such distributed implementation is efficiently
applicable for the class of evolutionary algorithms between which is DDE. Also,
as described in [10], PicoBlaze FPGAs can be researched for faster Mote-Carlo
simulations.
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putational Problems and DFNI 02/5 InterCriteria Analysis A New Approach to Deci-
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Abstract. The aim of the image edge detection is to find the points, in
a digital image, at which the brightness level changes sharply. Normally
they are curved lines called edges. Edge detection is a fundamental tool
in image processing, machine vision and computer vision, particularly in
the areas of feature detection and feature extraction. Edge detection may
lead to finding the boundaries of objects. It is one of the fundamental
steps in image analysis. Edge detection is a hard computational problem.
In this paper we apply a multiagent system. The idea comes from ant
colony optimization. We use the swarm intelligence of the ants to search
the image edges.

1 Introduction

Edge detection plays an important role in image processing. It is a main stage in
image segmentation, pattern recognition and scene analysis [6,7,11]. Edge detec-
tion refers to the process of identifying and locating sharp discontinuities in an
image. The discontinuities are abrupt changes in pixel intensity which charac-
terize boundaries of objects and textures in a scene. Classical methods of edge
detection involve convolving the image with an operator, a 2-D filter, which is
constructed to be sensitive to large gradients in the image while at the same
time returning values of zero in uniform regions. There is an extremely large
number of edge detection operators available, each designed to be sensitive to
certain types of edges. The variables involved in the selection of an edge detection
operator include: Edge orientation:(i) The geometry of the operator determines
a characteristic direction in which it is most sensitive to edges. Operators can
be optimized to look for horizontal, vertical, or diagonal edges; (ii) Noise envi-
ronment: Edge detection is difficult in noisy images, since both the noise and
the edges contain high-frequency content. Attempts to reduce the noise result in
blurred and distorted edges. Operators used on noisy images are typically larger
in scope, so they can average enough data to discount localized noisy pixels. This
results in a less accurate localization of the detected edges; (iii) Edge structure:
Not all edges involve a step change in intensity. Effects such as refraction or
poor focus can result in objects with boundaries defined by a gradual change
in intensity. The edge detection operator needs to be chosen to be responsive
c© Springer International Publishing Switzerland 2015
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to such a gradual change in those cases. There are many ways to perform edge
detection. However, the majority of different approaches may be grouped into
two categories [6,7,9,11]: Gradient based operators (First order edge detection):
The gradient approach detects edges by looking for the maximum or minimum
in the first derivative of the image. Laplacian based operators (Second-order
edge detection): The Laplacian approach searches for zero crossings in the sec-
ond derivative of the image to find edges. (i) Gradient based edge operators are
based on the use of a first order derivative. Roberts, Prewitts and Sobel are
classified as typical operators in [6,9]. The Roberts cross operator consists of a
pair of 2× 2 convolution kernels. One kernel is the other rotated by 90 deg. The
Prewitts and Sobel operators consist of a pair of 3× 3 convolution kernels as
one kernel is the other rotated by 90 deg. The two kernels of the three operators
are used for detecting vertical and horizontal edges. These classical operators
are easy to operate but highly sensitive to noise. (ii) Laplacian based operators
are based on the second order derivative, in particular, on the Laplacian. These
operators mark a pixel as an edge at a position where the second derivative
of the image function becomes zero [6,9]. The Laplacian of Gaussian (LoG) or
Marr-Hildreth edge detector uses both Gaussian and Laplacian operator so that
the Gaussian operator reduces the noise and the Laplacian operator detects the
sharp edges. The Marr-Hildreth operator, however, suffers from two main lim-
itations. It generates responses that do not correspond to edges, so-called false
edges, and its localization error may be rather serious at curved edges. In the
field of edge detection, the edge detector of Canny is of particular importance
[3]. The method was developed by John F. Canny in 1986. It is an optimal edge
detection technique as it provides good detection, clear response and good local-
ization. The process of the Canny edge detection algorithm can be broken down
into 5 different steps: 1. Apply Gaussian filter to smooth the image in order to
remove the noise; 2. Find the intensity gradients of the image; 3. Apply non-
maximum suppression as an edge thinning technique; 4. Apply double threshold
to determine potential edges; 5. Track edges by hysteresis: Finalize the detec-
tion of edges by suppressing all other edges that are weak and not connected to
strong edges. Some disadvantages of the edge detection algorithm of Canny and
some means to overcome them are presented in [13].

In our paper we apply multiagent system for image edge detection. The idea
comes from Ant Colony Optimization (ACO) methods. ACO approach is applied
to solve hard combinatorial optimization problems, which need huge amount of
computational resources. We use the swarm intelligence of the ant to look for
brightness change and to detect images. We simulate ant behavior, in a similar
way as in optimization applications.

The paper is organized as follows. In Sect. 2 we describe the traditional ACO.
In Sect. 3 we propose our ACO-based image edge detection algorithm. Exper-
imental results are shown in Sect. 4. In Sect. 5 we draw some conclusions and
directions for future work.
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2 Ant Colony Optimization Algorithm

The idea for ant algorithm comes from the real ant behavior. They put on
the ground chemical substance called pheromone, which help them to return
to their nest when they look for a food. The ants smell the pheromone and
follow the path with a stronger pheromone concentration. Thus they find shorter
path between the nest and the source of the food. The ACO algorithm uses a
colony of artificial ants that behave as cooperating agents. With the help of the
pheromone they try to construct better solutions and to find the optimal ones.
The problem is represented by a graph and the solution is represented by a path
in the graph or by tree in the graph. For the successes of the algorithm, it is very
important how the graph will be constructed. Ants start from random nodes of
the graph and construct feasible solutions. When all ants construct their solution
the pheromone values are updated. Ants compute a set of feasible moves and
select the best one, according to the transition probability rule. The transition
probability pij , to chose the node j when the current node is i, is based on the
heuristic information ηij and on the pheromone level τij of the move, where
i, j = 1, . . . , n. α and β show the importance of the pheromone and the heuristic
information respectively.

pij =
τα
ij ηβ

ij
∑

k∈{allowed}
τα
ik ηβ

ik

(1)

The heuristic information is problem dependent. It is appropriate combina-
tion of problem parameter and is very important for ants management. The
ant selects the move with highest probability. The initial pheromone is set to
a small positive value τ0 and then ants update this value after completing the
construction stage [2,4,5]. The search stops when pij = 0 for all values of i and
j.

The pheromone trail update rule is given by:

τij ← ρτij + Δτij , (2)

where Δτij is a new added pheromone and it depends of the quality of achieved
solution.

The pheromone is decreased with a parameter ρ ∈ [0; 1]. This parameter
models evaporation in the nature and decreases the influence of old informa-
tion in the search process. After that, we add the new pheromone, which is
proportional to the quality of the solution (value of the fitness function). There
are several variants of ACO algorithm. The main difference is the pheromone
updating.

3 Image Edge Detection Algorithm Inspired by ACO

The problem of Image edges detection is a problem to find pixels of the image
which correspond to edges. The two dimensional image is represented as N ×M
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matrix. The element (i, j) of the matrix corresponds to the pixel (i, j), and its
value is the pixel intensity. The graph of the problem is as follows. The nodes
of the graph corresponds to the pixels. The arcs of the graph connect adjacent
nodes. Every internal node has 8 adjacent nodes: up and down nodes, left and
right nodes and the four diagonal nodes. If the node (i, j) is internal node, the
set of its adjacent nodes is {(i − 1, j), (i − 1, j − 1), (i, j − 1), (i + 1, j − 1),
(i + 1, j), (i + 1, j + 1), (i, j + 1), (i − 1, j + 1)}.

The ants start to create the solution starting from random node. When the
ACO algorithm solve optimization problem, every ant create its own solution
and at the end of the iteration we compare them and choose the best one for the
current best solution. On the next iteration the ants try to find better solutions.
When we apply ant idea on image edge detection, the ants try to construct part
of the image edges and merging the edges detected by individual ant we construct
the image edges. In traditional ACO algorithm for optimization problems, ants
construct new solutions taking in to account the regions with good solutions
according their experience, marked by the pheromone. In our application in every
iteration the ants include new edges in current solution, thus they continue to
rebuild the image edges.

In our algorithm an ant start, to look for edges, from random internal node
(i, j), if the image matrix is N × M , 0 < i < N − 1 and 0 < j < M − 1. The ant
move to one of the adjacent nodes according transition probability rule:

pi,j = τij ∗ ηij (3)

where ηij = Vij

V max , V max is the maximal value of Vij for 0 < i < N − 1 and
0 < j < M − 1.

Vij = |Ii−1,j−1 − Ii+1,j+1| + |Ii−1,j − Ii+1,j |+
|Ii−1,j+1 − Ii+1,j−1| + |Ii,j−1, Ii,j+1|

(4)

An ant stops to add new pixels in the solution when pij < ε1, where ε1 is a
parameter. When all ants finish to create their edge we delete false edges, new
edges consisting only one node. At the end of every iteration, the pheromone of
the visited pixels is updated according the rule:

τij = ρ ∗ τij + (1 − ρ) ∗ (τinit + ε) (5)

where τinit is the initial pheromone value and ε is a small number close to 0.
At the next iterations ants again start from random nodes and add new edges

on current solution. The algorithm continue till no new edges are detected. The
end condition is:

|T (k − 1) − T (k)| < ε (6)

where T (k) is the sum of the pheromone of all pixels. If the pheromone of the
image is not changed, it means that new edge is not detected.
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Fig. 1. Lena

4 Experimental Results

In this section we show some experimental results. The experiments are on well
know image called Lena and which is used in image processing as a good example,
Fig. 1. The image has a size of 256 × 256 pixels. By the parameter ε1 we control
how detailed to be the edges. We can need different level of details for different
use of edge detection. On Fig. 2 the ε1 parameter is equal to 0.05 and to 0.25.
We run the algorithm on computer with Pentium processor 2.8 GHz. We find
the reported image edges for 4 seconds. When the value of parameter ε1 is small
the image edges are much more detailed than, when the value of the ε1 is higher.
We observe that our algorithm can find the image edges with big details.

The parameters of our algorithm are:

– τinit = 0.5 - initial pheromone
– ρ = 0.5 - evaporation parameter
– A = 50 - number of ants
– ε = 0.00001
– n = 1000 - number of iterations

The number of iterations is set to be 1000, but because the end condition,
the algorithm performs up to 300 iterations.

We compare our algorithm on other well known test images too as FRUIT-
Copy, Fruits, Mandrill and Peppers. We achieved very detailed image edges
without beforehand smoothing the image.

Let us compare the image edges achieved by our algorithm with this achieved
by ant algorithms, proposed by other authors. Our algorithm finds much more
detailed edges comparing with ant based algorithms proposed in [1,10,12]. The
image edges detected by the ant algorithm proposed in [8] are detailed as the
image edges detected by our algorithm, but their algorithm detects some false
edges too (Figs. 3, 4, 5 and 6). Other algorithms for images edge detection are
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Fig. 2. Detected edges when ε1=0.05 and ε1=0.25

Fig. 3. FRUIT-Copy

Fig. 4. Fruits

Fig. 5. Mandrill
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Fig. 6. Peppers

wavelet based algorithms [14]. They achieves similar or worst edges detection,
but the algorithm complexity is higher. These algorithms need smoothing of
the original image to find good result. The complexity of the wavelet based
algorithms is O(L × M × N), where M and N is the image size and L is the
length of the used filters. In ACO algorithm we fixed the number of ants to be
50 and every one of the ants starts from random pixel and adds new pixels, in
the edge set. Thus our algorithm do not need to perambulate all pixels. The
complexity of the proposed algorithm is A × n × L1, where A is the number of
used ants, n is the number of iterations and L1 is the number of added pixels
by one ant. Thus the algorithm complexity is O(N + M).

5 Conclusion

In this paper an ACO based algorithm for image edge detection is presented.
By parameters we can control the how detailed to be the edges. The algorithm
deletes the false edges. Experimental results show the feasibilities of achieved
results. Comparison with ACO algorithms proposed by other authors show that
our algorithm find more detailed image edges and less false edges. We can con-
clude that achieved results are very encouraging. Our algorithm is fast and
achieves good solutions.
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Abstract. In the present work we designed a neuro-fuzzy approach for
on-line optimal tuning of a Kalman filter of a gyroscope within a Micro
ElectroMechanical Sensor (MEMS) device. It consists of Adaptive Critic
Design (ACD) scheme in which the controller (a Fuzzy Rule Base (FRB)
designed to adapt the measurement noise covariance matrix of a Kalman
filter) is tuned using only information about the direction to which the
estimation error changes (increase or decrease). A novel fast training
dynamic neural network structure - Echo state network (ESN) - was
used in the role of the critic element. Application to data collected from
real MEMS demonstrated the ability of the proposed approach to tune
Kalman filter and improve the quality of its estimates in changing work-
ing conditions of the MEMS in real time.

Keywords: Adaptive Critic Design · Echo state network · Fuzzy rule
base · Kalman filter · Micro electromechanical sensors

1 Introduction

The Kalman filter is a commonly used tool for state estimation of micro electro-
mechanical sensors (MEMS) [15]. The main problem arising in practical appli-
cations is due to incomplete a priori information about the covariance matrices
of measurement noise and of the estimated process. Nowadays there are devel-
oped different intelligent approaches for their estimation. On one hand the fuzzy
logic is a powerful tool for description of accumulated knowledge how to tune
Kalman filter [5,12,18,19,23,24]. However experts information is too subjective.
Another adaptive approach exploits neural networks ability to be trained with-
out exact knowledge about the process model [1,6,13,14,20]. The disadvantage
of this technique is the need of big amount of experimental data to tune neural
network model as well as the need to re-train it in case of changes in working con-
ditions. Fortunately the application of adaptive algorithms of neural networks
for fine tuning of linguistically defined fuzzy rule bases offers a powerful tool
that overcomes disadvantages of both approaches [22].

The adaptation of Kalman filter covariance matrix of measurement noise
needs to account for MEMS working conditions in real time having minimum
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 226–233, 2015.
DOI: 10.1007/978-3-319-26520-9 24
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available information. Hence reinforcement learning (RL) algorithms are the
most proper tool adopted from neural networks [21]. In present study we pro-
posed to tune defined by experts FRB [15] for on-line adaptation of covariance
matrix using RL approach called Adaptive Critic Design [21]. In order to apply
ACD we need information about quality of estimations as reinforcement signal.
In [8–11] GPS signal was used for this aim. Since our device does not contain such
sensor we’ll use another kind of additional information coming from a camera
and assessment of its intentional movement.

The paper is organized as follows: next section describes briefly ACD algo-
rithm, FRB and Kalman filter design; section three describes our MEMS device
and experimental set-up; section four presents results and discussion followed by
concluding remarks.

2 Methods and Algorithms

2.1 Adaptive Critic Design

The main scheme of RL approach called ACD is shown on Fig. 1. It solves in
forward manner the following task: for the given discrete dynamical system with
state x(k) find a time profile of control actions Δσ(0) Δσ(1) . . . Δσ(N − 1)
that maximizes (minimizes) given utility function U(k) through all time steps
k = 1 ÷ N .

Fig. 1. Adaptive Critic Design scheme.

In our case utility function depends on the difference between predictions
of Kalman filter (that is system state x(k)) and reference signal xref (k) coming
from additional sensor (here we suppose that this could be movement assessment
from the camera) as follows:

U(k) =

⎧
⎨

⎩

−0.1 if x(k) − xref (k) ≤ −0.0001
0 if −0.0001 < x(k) − xref (k) < 0.0001

0.1 if x(k) − xref (k) ≥ 0.0001
(1)
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The RL algorithms and their gradient version ACD were created to cope with
the “curse of dimensionality” of above task. It consists of training of a model
(usually neural network) called “adaptive critic” or briefly critic that approxi-
mates Bellman’s equation [4]. Training of the critic is done by minimization of
the “temporal difference error” (TD error) [25]. Having adequately trained critic
allows solving of the above optimization task in forward manner in real time by
tuning of the “controller” (in our case it is the FRB that is used to tune Kalman
filter) using a gradient algorithm. Here as critic element we used a fast trainable
recurrent neural network called Echo state network (ESN). More details about
its structure, TD error training algorithm and gradient training of the controller
can be found in [16,17].

2.2 Fuzzy Rule Base

Our FRB is adopted from the idea proposed in [18]. It consists of the following
three fuzzy rules:

IF inn(k) is ZERROinn THEN Δσ(k) is ZERROΔσ

IF inn(k) is POSITIV Einn THEN Δσ(k) is NEGATIV EΔσ

IF inn(k) is NEGATIV Einn THEN Δσ(k) is POSITIV EΔσ

Here ZERO, NEGATIVE and POSITIVE denote the corresponding fuzzy
values of the two linguistic variables (Δσ(k) and inn(k)) that are fuzzy numbers
defined with triangular membership functions with increasing and decreasing
parts (denoted by indexes I and D respectively) as follows:

μI(var) =
var − p1
p2 − p1

, var ∈ [p1, p2] (2)

μD(var) =
p3 − var

p3 − p2
, var ∈ [p2, p3] (3)

Here p1, p2 and p3 are parameters defining universe of discourse of the cor-
responding fuzzy number and var denotes crisp value of the corresponding lin-
guistic variable. Variable inn is the innovation calculated by Kalman filter and
Δσ(k) is the “prescribed” by FRB change of the standard deviation of the mea-
surement noise.

Calculation of crisp output from our FRB is done using minimum as impli-
cation function and mean of maxima method for defuzzyfication [17].

Tuning of FRB parameters (these include all p1, p2 and p3 parameters of all
fuzzy values) is done by backpropagation of utility that is gradient algorithm as
follows:

pnew = pold − η
∂∗J
∂p

(4)



ACD with ESN for Tuning of MEMS Kalman Filter 229

Here 0 < η < 1 is learning rate and ∂∗J
∂p is ordered derivative of the predicted

by the critic discounted sum of future utilities with respect to the corresponding
vector of parameters:

p =
[
pZEROinn
1 , pZEROinn

2 , pZEROinn
3 , . . . , pZEROΔσ

1 , pZEROΔσ
2 , pZEROΔσ

3

]

More details about gradient algorithm and calculation of derivatives of J
with respect to FRB parameters can be found in [17].

2.3 Kalman Filter

The Kalman filter is a linear minimum variance unbiased estimator [2,3,7], used
here to filter gyroscope measurement noise. The state equation in its discrete
realization is:

x(k + 1) = Fx(k) + w(k) (5)

where k is discrete time; w approximates non-modeled dynamics and parameters
uncertainties; the state vector x = [ω ω̇ ω̈] consists of predicted rotation rate ω
and its first and second derivative; F is transition matrix as follows:

F =

⎛

⎝
1 Δt Δt2/2
0 1 Δt
0 0 1

⎞

⎠ (6)

Here Δt is constant sampling interval. The process noise can be approximated
or intuitively estimated. In our case a proper choice is:

Q = E
[
w(k)w(k)T

]
=

⎛

⎝
Δt5/20 Δt4/8 Δt3/6
Δt4/8 Δt3/6 Δt2/2
Δt3/6 Δt2/2 Δt

⎞

⎠ σw
2 (7)

Here σw is process noise standard deviation. The measurement equation is:

y(k + 1) = Hx(k) + v(k) (8)

where y = [ωmeasured 0 0]T and ωmeasured is received raw data from the gyro-
scope; the observation matrix H is:

H =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ (9)

and v is additive measurement noise estimated from stand-by mode of the system
or taken from catalog sensor data as follows:

R = E
[
v(k)v(k)T

]
=

⎛

⎝
1 0 0
0 10 0
0 0 100

⎞

⎠ σv
2 (10)
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where σv is the standard deviation of the measurement noise.
The recursive steps of the Kalman filter are as follows:

Prediction step: calculates predicted state and state prediction covariance
based on their estimates from previous update step:

x̂(k + 1|k) = F x̂(k|k)
P̂ (k + 1|k) = FP̂ (k|k)FT + Q

(11)

Update step (posteriori step): after receiving of new measurement from the
sensor at this step the predicted state and covariance matrix are corrected in
accordance with the received new information as follows:

S = HP̂ (k + 1|k)HT + R
ŷ(k + 1|k) = Hx̂(k + 1|k)
K = P̂ (k + 1|k)HT S−1

inn(k + 1) = y(k + 1) − ŷ(k + 1|k)
x̂(k + 1|k + 1) = x̂(k + 1|k) + Kinn(k + 1)
P̂ (k + 1|k + 1) = (I − KH)P̂ (k + 1|k)

(12)

3 Experimental Set-Up

The gyroscope is an inertial device, for measuring rotation rate. In our experi-
ment it is a part of MEMS that has one gyroscope as well as one accelerometer
at each axis in 3-dimensional space. The MEMS is incorporated into a mobile
phone. The integral of rotation rate gives the change of orientation of the system.

The raw data were collected during rotation of the mobile device around one
of its axes (in our case it was y axis). Since our MEMS has different time stamp
for gyroscopes and accelerometers, we preprocessed and approximated raw data
so as to have them with constant time step Δt at the same discrete moments in
time k.

Initial measurement noise standard deviation σv of our gyro sensor was cal-
culated based on the first 70 measured data. Then we apply the ACD scheme
from Fig. 1 to adjust σv as follows:

σv
new = σv

old − βΔσ(k) (13)

Since at this stage we do not have reference signal from the camera, we
replaced it with measurement data signal.

4 Results and Discussion

In present study we tested our algorithm to tune described above Kalman filter
for one of the three gyroscope sensors (placed on y axis) of our MEMS.
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Fig. 2. Predictions of Kalman filter before and after tuning in comparison with raw
data (left) and MSE trough training iterations (right).
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Fig. 3. Predicted by critic utility function (left) and tuned by FRB measurement noise
standard deviation (right).

Figure 2(left) represents predictions of Kalman filter before and after tuning
in comparison with reference signal. Figure 2(right) presents changes of the mean
square error (MSE) during training iterations that is calculated as follows:

MSE =
1
N

N∑

k=1

(x(k) − xref (k))2 (14)

We observed that after optimization of FRB the predictions of Kalman filter
become closer to the reference signal that is proved by the decrease of the MSE.

Figure 3(left) represents predictions J of the ESN critic in comparison with
the utility function U . It is observed that the critic copes well with the task
to predict on time increase or decrease of reinforcement signal. Figure 3(right)
represents initial prediction of measurement noise standard deviation σv by FRB
and assessed by trained FRB measurement noise standard deviation σv.

Figure 4 represents initial (solid lines) and tuned (dash lines) membership
functions of input (inn) and output (Δσ) linguistic variables of the FRB.
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Fig. 4. Initial (solid line) and tuned (dash line) membership functions of input (left)
and output (right) linguistic variable of the FRB.

5 Conclusions

Combination between fuzzy logic for description of expert information and rein-
forcement learning for fine adjusting of FRB demonstrated the power of the
proposed algorithm for optimal tuning of covariance matrix of the measurement
noise of the Kalman filter. Another parameter whose tuning is also subjective
is the covariance matrix of the estimated process. Hence it could be tuned in a
similar way. Our further investigations will upgrade the proposed algorithm to
simultaneous tuning of both matrices R and Q.
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Abstract. Distance geometry consists in embedding a simple weighted
undirected graph G = (V, E, d) in a K-dimensional space so that all
distances duv, which are the weights on the edges of G, are satisfied by
the positions assigned to its vertices. The search domain of this problem
is generally continuous, but it can be discretized under certain assump-
tions, that are strongly related to the order given to the vertices of G.
This paper formalizes the concept of optimal partial discretization order,
and adapts a previously proposed algorithm with the aim of finding dis-
cretization orders that are also able to optimize a given set of objectives.
The objectives are conceived for improving the structure of the discrete
search domain, for its exploration to become more efficient.

1 Introduction

Let G = (V,E, d) be a simple weighted undirected graph. The Distance Geom-
etry Problem (DGP) [10,16] asks whether an embedding σ : V −→ R

K of G
exists in an Euclidean space having dimension K > 0 so that all distances duv,
for each (u, v) ∈ E, are satisfied. The DGP is NP-hard [17], and its search
space is, in general, continuous. However, under particular assumptions, it can
be discretized, and reduced to a tree [11]. The discretization of the DGP does
not reduce the problem complexity (which is still NP-hard [7]), but it allows
for developing combinatorial algorithms performing a search on a tree [9]. The
discretization makes it possible to work with a discrete and finite search space,
which is continuous (and hence infinite) otherwise.

This paper focuses on the problem of finding a suitable order for the ver-
tices of G that allows for the discretization. The discretization assumptions,
in fact, strongly depend on the vertex order associated to the vertices of G
(see Sect. 2). Discretization orders can be either total or partial. In chronolog-
ical order, discretization orders were initially handcrafted for a particular class
of DGP instances related to protein conformations [3,8]. These handcrafted
orders are total orders. Subsequently, new methods for the identification of
discretization orders were proposed [5,6,12]: these methods are able to automat-
ically detect total and partial orders for any DGP, and they were used for con-
structing orders satisfying different properties for the protein backbones. More
recently, in [13], discretization orders were represented as sequences of overlap-
ping cliques of G.
c© Springer International Publishing Switzerland 2015
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In comparison with these previous works, the present paper attempts for the
first time to develop a theory for optimal discretization orders, which can be at
the basis of novel efficient methods. Depending on the desired additional prop-
erties for the searched discretization orders, the ordering problem can actually
be either NP-hard or solvable in polynomial time [2]. The use of heuristics might
therefore be necessary for finding orders satisfying particular properties. In this
work, the focus will be on orders that can be identified in polynomial time.

A discretization order is said to be optimal when it optimizes a given set
of objectives, which are supposed to be conceived for improving the structure
of the search tree, with the aim of making its exploration more efficient. These
objectives define multi-level optimization problems, whose solutions are subsets
of optimal vertices. An algorithm, that was previously presented in [6,12], is
adapted in this work for dealing with partial orders and with several objectives,
which imply the definition of several (small) multi-level optimization problems.

This paper is organized as follows. Partial discretization orders are briefly
discussed in Sect. 2, with some extended definitions that were previously given for
total orders. Section 3 formally introduces optimal partial discretization orders,
where a given set of objectives needs to be optimized, and proposes an algorithm
for the construction of optimal orders. Section 4 concludes the paper.

2 Partial Discretization Orders

Let G = (V,E, d) be a simple weighted undirected graph representing an instance
of the DGP. Let d : (u, v) ∈ E −→ [duv, d̄uv] ⊂ R+ be the function that associates
a weight to each edge (u, v) ∈ E. In general, each weight is a real-valued interval
providing the lower and the upper bound on the known distances. When this
interval is degenerate, i.e. duv = duv = d̄uv, then the distance duv is said to be
“exact”. Let E′ be the subset of E related to exact distances. Let S be the set
of all subsets s ⊆ V .

Definition 2.1. An ordered partition of V is a function r : N −→ S with length
|r| ∈ N (for which ri = ∅ for all i > |r|) such that, for each v ∈ V , there exist a
non-empty subset s ∈ S containing v and an index i ∈ N such that ri = s.

Since an ordered partition naturally induces a partial order, the function r
will be referred to as a partial order on V in the rest of the text. Moreover, the
function r also allows for the definition of partitions with repetitions, i.e. of orders
where the same vertex can appear more than once. In fact, in Definition 2.1, there
is no hypothesis on the intersection of pairs of subsets ri (which should always
be empty to guarantee the absence of repetitions). Repetitions can be necessary
for the optimization of some objectives (see for example [13]). However, the
possibility to allow repetitions in the orders implies the development of a more
complex theory, that cannot be included in this paper for lack of space. It is
here supposed therefore that repetitions are not allowed in the partial orders r
considered in this work.
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If no repetitions are allowed, the function r satisfies the typical properties of
partial orders, i.e. the reflexivity, the asymmetry and the transitivity. The indices
i ∈ N are the ranks of the partial order r. An order r is not total in general
because the same rank can be associated to more than one vertex (belonging to
the same subset ri such that |ri| > 1). The order becomes total if all subsets ri

have cardinality |ri| = 1.
Let r be a suitable partial order for the vertices of the graph G. For every

v ∈ ri, the two following sets are of intest:

Λα(ri, v) = {(u, v) ∈ E | ∃j < i : u ∈ rj},

Λβ(ri, v) = {(v, u) ∈ E | ∃j ≥ i : u ∈ rj}.

All edges in Λα(ri, v) are between the vertex v and other vertices that appear
earlier in the partial order (lower rank), and therefore suitable positions for
them can be supposed to be known when the computation of positions for v is
attempted [9]. For this reason, the edges in Λα(ri, v) are the reference distances
for v ∈ ri. The vertices u ∈ V such that (u, v) ∈ Λα(ri, v) are named reference
vertices. Inversely, the edges in Λβ(ri, v) represent distances that serve as a
reference for vertices having either the same or a greater rank. The cardinalities
of the two sets Λα and Λβ allow to define two important counters related to the
partial orders:

α(ri) = min
v∈ri

|Λα(ri, v)|, β(ri) = max
v∈ri

|Λβ(ri, v)|.

The choice of considering the minimal cardinality of Λα(ri, v) and the maximal
cardinality of Λβ(ri, v) will be evident in the following. In order to distinguish
between exact distances and nondegenerate distances (related to intervals), the
following two counters are also introduced:

αex(ri) = min
v∈ri

|Λα(ri, v) ∩ E′|, βex(ri) = max
v∈ri

|Λβ(ri, v) ∩ E′|.

Definition 2.2. A partial discretization order in dimension K is a partial order
r : N −→ S such that:

(a) G[r1, . . . , rK ] ≡ (C,EC) is a clique with |C| = K and EC ⊂ E′;
(b) ∀i ∈ {K + 1, . . . , |r|}, α(ri) ≥ K and αex(ri) ≥ K − 1.

where G[·] is the subgraph induced by a subset of vertices.

The assumptions in Definition 2.2 make it possible to discretize the search
domain of a given DGP represented by the graph G [4]. In fact, assumption (a)
allows to fix the positions of the first K vertices in the order r, avoiding this
way to consider DGP congruent solutions that can be obtained by rotations and
translations. For simplicity, it is supposed that reference vertices for a vertex
v ∈ ri never belong to ri (even if the counter β counts this kind of distances).
This implies the necessity to have a total ordering on the first K vertices, i.e. on
the ones that form the clique C. However, it is worth remarking that the internal
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order for this clique is not relevant, because every total order for the vertices of
the clique can be chosen.

Assumption (b) ensures that, for every vertex v that do not belong to the
initial clique C, at least K reference vertices exist for v, and that only one of them
is related to a distance represented by an interval. Under these assumptions, the
search space is reduced to a tree, which can be explored by employing branch-
and-prune algorithms [8,9,15]. Once the first K vertices have been positioned
by exploiting assumptions (a), the main idea is to explore (and generate) the
search tree recursively. New candidate positions for the vertices are computed by
using the distances that are ensured by assumptions (b). Additional distances
that might be available can be then considered for verifying the feasibility of
computed candidate positions. The identification of infeasible positions allows
for pruning parts of the search tree.

3 Finding Optimal Discretization Orders

Let G = (V,E, d) be a simple weighted undirected graph representing an instance
of the DGP. The simple result presented in [12] for total discretization orders
can be extended to partial orders r.

Proposition 3.1. Necessary condition for G to admit a partial discretization
order in dimension K is that, for every suitable order r on V ,

∀i ∈ {1, 2, . . . , |r|}, α(ri) + β(ri) ≥ K.

Proof. Suppose that there exists a rank i ∈ N, for a certain partial order r,
for which α(ri) + β(ri) < K. By definition, there exists v̂ ∈ ri such that the
cardinality of |Λα(ri, v̂)| is minimal and equal to α(ri). Since β(ri) is instead
a maximal cardinality, |Λβ(ri, v̂)| is at most equal to β(ri). Therefore, for the
vertex v̂, |Λα(ri, v̂)| + |Λβ(ri, v̂)| < K, which implies the absence of a sufficient
number of edges for this vertex for constructing a discretization order (i.e. no ri

containing v̂ can satisfy the two discretization assumptions). �

Notice that a similar necessary condition depends on the counters αex(ri) and
βex(ri): for every i ∈ {1, 2, . . . , |r|}, it is necessary that αex(ri)+βex(ri) ≥ K −1
in order to discretize.

The algorithm proposed in [6] for dealing with total discretization orders can
be extended to partial orders. Algorithm 1 gives a sketch of this algorithm in
the case no objectives are to be optimized. The algorithm starts with selecting
an initial clique (see assumption (a) in Definition 2.2), and to assign the first K
ranks to its vertices. All other sets ri are generated by removing, from the set of
not yet employed vertices (recall that repetitions are not allowed), all the ones
that do not satisfy the discretization assumption (b).

For every possible initial clique, Algorithm 1 constructs partial discretization
orders, when they exist. For every constructed partial order, a set of different
total orders can be defined. Moreover, other partial orders compatible with the
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Algorithm 1. An algorithm for finding partial discretization orders
1: Searching partial discretization orders in: G out: r
2: // initial clique
3: choose a K-clique (C, EC) in V with C = {u1, u2, . . . , uK} and EC ⊂ E′

4: set r1 = u1, r2 = u2, . . . , rK = uK

5: set A = C, i = K + 1
6: // constructing the rest of the order
7: while (A �= V ) do
8: ri = V \ A
9: while (α(ri) < K and ri �= ∅) do

10: ri = ri \ {u}, for all u = arg minv∈ri |Λα(ri, v)|
11: end while
12: while (αex(ri) < K − 1 and ri �= ∅) do
13: ri = ri \ {u}, for all u = arg minv∈ri |Λα(ri, v) ∩ E′|
14: end while
15: if (ri = ∅) then
16: break: no possible orders; choose another initial clique
17: else
18: let A = A ∪ ri, i = i + 1
19: end if
20: end while

initial orders found by Algorithm 1 can also be generated. It is important to
remark that Algorithm 1 places a given vertex v̂ in the subset ri because it
cannot be included in any other rj with j < i, because assumption (b) would
otherwise not be satisfied. However, suitable discretization orders may place this
vertex v̂ in subsets rj with j > i, as far as no other vertex with rank between i
and j strictly needs v̂ as a reference.

In this work, the aim is not only to find discretization orders, but rather
to identify orders that are also able to optimize a given set of objectives. Such
objectives are supposed to be conceived for having an impact on the structure
of the search tree obtained with the discretization. The main idea is to generate
search trees that can be explored in a more efficient way. The interest is in
selecting optimal partial orders from the initial orders obtained by Algorithm 1.

The considered objectives are functions f� : N −→ R that associate ranks of
a given order r (representing a subset ri of vertices in the partial order) to a real
number. The subscript � ∈ N is the label associated to every objective, which also
gives the priority order for the objective (lower-numbered labels correspond to
the objectives that are to be optimized first). The objectives are to be conceived
in a way that non-optimal vertices can be unequivocally identified. It is supposed,
without losing generality, that all objectives are to be maximized, as an objective
f� can be minimized by maximizing −f�.

Definition 3.2. Given a set of M > 0 objectives f�, with priority levels � ∈
{0, 1, . . . ,M−1}, an optimal partial discretization order is a partial discretization
order where every ri, with i > K, is solution of the multi-level optimization
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Algorithm 2. Code to be added to Algorithm 1 for performing the optimization
of the f�’s

for (each objective f�, with � = 0, 1, . . . , M − 1) do
ri = {v ∈ ri : f� is optimized}

end for

problem
max fM−1(xM−1)

s.t. xM−1 = arg max fM−2(xM−2)
s.t . . .

s.t. x1 = arg max f0(x0),

(1)

where x0 is the initial set of vertices such that α(x0) ≥ K and αex(x0) ≥ K − 1
(all vertices in x0 admit rank i).

Multi-level optimization is a class of difficult optimization problems (refer
for instance to robust optimization, a survey can be found in [1], while [14] is
an example of an application). However, the multi-level optimization problems
considered in this context have relatively small search domains (their maximal
cardinality is |V |), which are discrete and finite. These problems can be therefore
solved by a simple exhaustive search.

Suppose that Algorithm 1 is able to find a partial order for a given graph G.
Let xM be the solution to the multi-level problem (1) for a certain ri obtained by
Algorithm 1 (hence ri originally contains vertices that satisfy assumption (b)).
If xM �= ri, then not all vertices in ri optimize the objectives f�. In this case,
the vertices in ri \ xM need to be moved to subsequent subsets rj with j > i
(assumption (b) would not be satisfied if they were moved to lower-rank subsets).
Next step is therefore to include all these “rejected” vertices in ri+1, on which
another multi-level problem (1) can be defined and solved. It is evident therefore
how the optimization of the objectives can imply an increase on the total number
of ranks in the partial orders. The proof of Theorem 3.3 is based on this idea.

The optimization of the objectives can be performed during the execution
of Algorithm 1. To this purpose, the code in Algorithm 2 needs to be included
between line 17 and 18 of Algorithm 1. The resulting algorithm will be referred
to as Algorithms 1+2. In Algorithms 1+2, every set ri, obtained by removing
all vertices v that do not satisfy assumption (b), is progressively filtered by
applying the optimization of the objectives, in their priority levels. Notice that
the set ri cannot become empty during this optimization process.

The idea of optimizing the set of objectives during the search of discretization
orders was firstly proposed in [5]. The intuition to employ a greedy algorithm
comes instead from [6] (the inclusion of Algorithm 2 in Algorithm 1 makes in fact
the algorithm a greedy one). Algorithms 1+2 has polynomial complexity and a
quadratic worst-case complexity, achieved when the constructed order is actu-
ally total. No objectives f� having as definition domain the sets ri can increase
the complexity of the ordering problem, as far as they satisfy the hypotheses
above. For example, the consecutivity assumption (refer to [13]), which makes
the ordering problem NP-hard, can be seen as the combination of two objectives,
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where one of the two imposes the order to be total. When employing this latter
objective, however, the non-optimal vertices in every ri cannot be unequivocally
selected, which goes against the above hypotheses.

As already remarked, Algorithm 1 is able to construct partial discretization
orders, when they exist. Algorithm 1+2 does not consider anymore all possible
orders, but only the ones for which the objectives are optimized. The following
theorem proves that, if an order exists where the objectives are not optimized,
then an optimal order also exists. This theorem extends a previous result initially
presented in [6].

Theorem 3.3. Let G = (V,E, d) be a simple weighted undirected graph repre-
senting an instance of the DGP. When they exist, Algorithms 1+2 is able to
construct partial discretization orders for G, which are optimal.

Proof. By contradiction, consider that a partial discretization order exists for
G but this algorithm is not able to identify it. In this hypothesis, there must
exist a sequence of non-empty subsets ri that covers V , which can be found by
applying the original Algorithm 1. Therefore, the only reason why the algorithm
cannot find the existing order is related to the optimization of the objectives f�

for every ri with i > K.
By hypothesis, non-optimal vertices can be unequivocally identified in the

sets ri: let v̂ be a vertex belonging to the set ri with the smallest rank i for
which at least one objective f� is not optimized. Set ri = ri \ {v̂} (notice that ri

cannot become empty, as all objectives would be optimized in a set containing
only one vertex). Let k > i be the smallest rank for which rk contains a vertex
which strictly needs v̂ as a reference (in other words, assumption (b) would not
be satisfied if v̂ were included in sets having a rank greater than k). If such a k
does not exist, then k = ∞. Include then v̂ in the set rj , with i < j ≤ min(k, |r|),
such that v̂ ∈ xM when the corresponding multi-level problem is solved with
x0 = rj ∪ {v̂}. If no such an rj exists (all these multi-level problems “reject” the
vertex v̂), then add a new rank to the order: let rh+1 = rh, for all h ≥ k, and
set rk = {v̂}.

This procedure can be repeated until there are no longer vertices v̂ for which
some of the objectives are not optimized. This procedure is able therefore to
construct an optimal partial discretization order from a non-optimal one, and
it is based on the idea of filtering subsets ri by optimizing the set of given
objectives (see Alg 2). Thus, the obtained order can be found by Algorithms 1+2:
contradiction. �

Several objectives can be defined for improving the structure of DGP search trees
that are obtained with the discretization. Two objectives that were already con-
sidered in previous publications simply correspond to two of the counters that
were introduced in Sect. 2. The maximization of the counter αex, for every ri

that is not part of the initial clique, allows to anticipate the use of exact dis-
tances in the search tree, with the aim of reducing its width [5]. The maximiza-
tion of the counter α, instead, anticipates all kinds of distances (either exact or
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represented by an interval), which can be useful for pruning the search tree at
upper layers [5,6].

The structure of the search tree can be optimized by considering other addi-
tional criteria. For example, graph edges (known distances) that “cross” several
ranks in the partial order imply the late detection of infeasible candidate vertex
positions. It is desirable therefore to minimize the rank difference in edges rep-
resenting reference distances. Moreover, a light consecutivity assumption, which
does not impose the order to be total (see above), can be considered for max-
imizing the number of cliques consisting of reference vertices. The definition of
new objectives for these above mentioned criteria, as well as for other novel ones,
will be subject of future research.

4 Conclusions

Discretization orders for graphs representing instances of the DGP allow to
reduce the search space of the DGP to a discrete set having the structure of a
tree. This paper formalizes the concept of optimal partial discretization orders,
which are orders that do not only allow for the discretization, but also to opti-
mize a given set of objectives. An algorithm is proposed for constructing optimal
partial discretization orders.

Future works will mainly follow these directions: (i) the extension of the pre-
sented theory to partial orders admitting vertex repetitions; (ii) the conception
of new objectives, tailored to certain classes of the DGP (e.g. for molecular con-
formation determination [7,8]); (iii) the verification of the “best” orders for the
objectives’ priority levels, their impact on the search tree, and their relative com-
patibility; (iv) the integration of this methodology in a general branch-and-prune
framework for the DGP.

Acknowledgments. I am thankful to Douglas S. Gonçalves and Leo Liberti for the
fruitful discussions.
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Abstract. The use of volatile decentralized computational platforms
such as, e.g., peer-to-peer networks, is becoming an increasingly popular
option to gain access to vast computing resources. Making an effective
use of these resources requires algorithms adapted to such a changing
environment, being resilient to resource volatility. We consider the use
of a variant of evolutionary algorithms endowed with a classical fault-
tolerance technique, namely the creation of checkpoints in a safe external
storage. We analyze the sensitivity of this approach on different kind of
networks (scale-free and small-world) and under different volatility sce-
narios. We observe that while this strategy is robust under low volatil-
ity conditions, in cases of severe volatility performance degrades sharply
unless a high checkpoint frequency is used. This suggest that other fault-
tolerance strategies are required in these situations.

1 Introduction

Distributed computing platforms have been used for running population-based
metaheuristics for decades now. This is a direct consequence of the flexibility
and adaptability of these techniques whose functioning is intrinsically parallel.
Hence they can be naturally deployed on networked computers, cf. [1]. Numerous
research works have focused on different design aspects of these techniques and
how they affect performance in distributed environments – see, e.g., [2,6,25].
Exploiting efficiently distributed computing resources has become one of the
signature weapons of these techniques and is a major factor for boosting their
performance. In this sense, it is worth noting how technological advances are
reshaping both the underlying computational substrate and the very needs to
be addressed in computational terms. Regarding the latter, the problems and
their data are becoming increasingly larger and complex [22]. The term Big Data
[28] is nowadays a hot buzzword used to denote such large collections of data,
very much requiring vast computational power in order to harnessed.

While traditional supercomputing techniques (namely, dedicated systems
hosting a large array of processors and colossal memory banks) are certainly
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one of the lines of attack to Big Data problems, the preponderance of computing
resources permanently connected to the Internet has led to the emergence of
other computational environments such as peer-to-peer (P2P) networks [14] and
volunteer computing networks [23]. These are bound to play a key role in this
kind of endeavors since they allow the orchestration of enormous decentralized
collections of computational nodes. This comes at a cost though: these computa-
tional resources are unstable (they are typically contributed by volunteers during
their idle time) and this must be taken into account when deploying applications
on this kind of environments. Focusing specifically on applications (population-
based metaheuristics in our case) running natively on these environment (i.e.,
being aware of its dynamicity and dealing with it directly), they can either use
some fault-management policy for corrective purposes [12] or can self-adapt their
behavior/parameterization to cope with it. We aim our attention at the former
approach in this work. More precisely we analyze the performance of strategies
based on creating restoration checkpoints [16]. This is done within the context
of multimemetic algorithms [11], namely memetic algorithms which self-adapt
the local search procedure, cf. [21]. These are described next.

2 Fault-Tolerant Model in an Island-Based Multimemetic
Algorithm

As stated before we consider the use of multimemetic algorithms (MMAs) on
an unstable computational scenario. Our MMA is organized as an island-based
algorithm [24,29], that is, it has a population distributed over a collection of n
islands. Each of these islands comprises a panmictic (i.e., unstructured) subpopu-
lation and runs a basic steady-state MMA procedure. This procedure follows the
standard pattern of memetic algorithms, namely, selection, recombination, muta-
tion and local search [15] but has a distinctive feature: local search is not done
using a predefined strategy but using search patterns (memes) embedded in each
individual and evolving alongside the latter (note the connection with the con-
cept of memetic computing [20]). Inspired by the model by Smith [26,27], these
memes are expressed as variable-length pattern-based rewriting rules A → B
(i.e., find A in the genome and change it into B; both A,B ∈ Σ ∪ {#} where Σ
is the alphabet used for encoding solutions and # is a wildcard). They evolve
via mutation and are transferred from parent to offspring via local selection. We
refer to [18] for further details.

The islands are distributed over a network of nodes and perform migration
asynchronously (randomly picking an individual from an island and transferring
it to another one, where it replaces the worst individual [17]). Two factors define
this computational scenario: the interconnection topology and the dynamic
model of the network. Regarding the topology, we consider to possibilities:

– Scale-free networks (SF): these are characterized by the existence of a power-
law distribution in node degrees, and are often observed in many natural
processes. We use the Barabási-Albert (BA) model [3] to generate this kind of
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Fig. 1. Example networks for n = 32. The left figure is a SF network (m = 2) and the
right one is a SW network (M = 61).

SF networks. This model uses preferential attachment [4] to grow a network
by adding a new node at a time. A parameter m determines the number of
links each new node gets.

– Small-world networks (SW): these are characterized by very small average
distances between nodes (often O(log n) where n is the number of nodes). We
use a variant of the Barmpoutis-Murray (BM) model [5] to create ultra-SW
networks. This model takes as a parameter the total number of nodes n and
the total number of links M and uses a backtracking procedure to successively
build the largest clique that leaves enough links available to connect the rest
of the network. In our variant, each of these cliques are then connected using
random vertices in the first clique created so as to make the resulting network
more resilient.

Figure 1 shows an example of both kinds of network with the same number
of nodes and links.

As to the dynamics of the network, it is characterized by the availability
patterns of computing nodes. We use the model in [16]: all n nodes are initially
available and then their permanence in the system follows a Weibull distribu-
tion. This distribution is characterized by a shape parameter η that determines
whether failure probability increases with time (η > 1), decreases with time
(η < 1) or is time-independent (η = 1), and a scale parameter β determining
the mean lifetime for a given shape. Each node has an independent dynamics
and will contribute to the so-called churn phenomenon, namely the collective
effect on the network of computing nodes independently entering and leaving
it over time. Churn can have different effects on a distributed population-based
metaheuristic, the most obvious being that the current incumbent solution can
be lost [9]. Needless to say, the progress of the search will be also affected by the
disappearance of whole subpopulations. To tackle this in the context of corrective
fault-management policies, we consider two strategies [16]:

– rand: when a node becomes available again, it is initialized from scratch much
like in the initialization of the algorithm.
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– checkpoint: the algorithm uses some external safe storage in order to create
restoration checkpoints, namely periodical backups of the populate state that
are used to recover the last state of the population when a node becomes
available again.

It is clear that rand is a simpler strategy that has also the potential advantage
of reintroducing diversity in the search process. On the other hand, checkpoint
has the advantage of not wasting the previous progress of the search, being
more amenable to keep its momentum. The negative side of this latter strategy
is the requirement of this external safe storage and the associated overhead
(particularly if security and privacy concerns are important [13]) introduced by
the periodical backups. The latter effect can be somehow ameliorated by tuning
the period λ (measured in number of iterations) between checkpoints. The effect
of this parameter is studied next.

3 Experiments

We have done experiments using a distributed MMA with n = 32 islands. Each
island has a population size of μ = 16 individuals. Meme lengths evolve within
lmin = 3 and lmax = 9, mutating their length with probability pr = 1/9 following
[18]. We use crossover probability pX = 1.0 (one-point crossover), mutation
probability pM = 1/� (bit-flip mutation), where � is the genotype length, and
migration probability pmig = 1/80. In order to generate the network topology we
use m = 2 in the BA model of SF networks, and the corresponding value of M =
nm−m(m+1)/2 in the BM model of SW networks so that the number of links is
the same in both cases. As to node dynamics, we use the shape parameter η = 1.5
(and hence the probability of failure increases with time), and scale parameters
β = −1/ log p(k) for p(k) = 1 − (kn)−1, k ∈ {1, 2, 5, 10, 20}. By doing this,
the mean availability stint per node is about 90% · kn iterations. We therefore
obtain scenarios ranging from rather low (k = 20) churn up to extremely high
(k = 1) churn. To analyze the sensitivity of the checkpoint strategy we consider
values λ ∈ {μ, 10μ, 100μ} where μ is the island population size. For comparison
purposes we also consider in the experimentation the use of the rand strategy.
We have considered four test functions, namely Deb’s trap (TRAP) function [7],
Watson et al.’s Hierarchical-if-and-only-if (HIFF) and Hierarchical-Exclusive-OR
(HXOR) functions [30] and Goldberg et al.’s Massively Multimodal Deceptive
Problem (MMDP) [8]. We perform 25 simulations running for a total number
of 50 000 evaluations for each value of λ, churn scenario, problem and network
topology.

Figure 2 shows the results obtained in terms of deviation with respect to the
optimal solution (averaged for the four problems) as a function of the churn rate,
separately for each λ value and for each network topology. First of all, it is clear
that performance degrades for increasing churn rate. This fact notwithstand-
ing, we can observe that variants using checkpoint reactivation perform notably
better than random reactivation. This confirms previous research on this kind
of strategies [16] and validates its usefulness on different network topologies.
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Fig. 2. Deviation from the optimal solution as a function of the churn rate for (a) SF
and (b) SW.

Note however that there is a marked performance degradation when the check-
point frequency is increased. This degradation is shown to be statistically sig-
nificant according to Quade test (p-value ≈ 0) both globally and when SF and
SW are separately analyzed. Subsequently we used Holm test to do a post-hoc
analysis. The use of checkpoint with parameter λ = μ is shown to be statisti-
cally superior to the remaining techniques at α = 0.05 level – see Table 1. This
result suggests that less expensive strategies (in terms of requiring less frequent
state snapshots) are not capable of dealing with churn (this result also holds if
a separate analysis is conducted for SF and SW topologies). A more clear depic-
tion of the behavior of the MMAs is provided by Fig. 3 for low (k = 20), high
(k = 5) and extremely high (k = 1) churn. Note that in the most stable scenario
the algorithm performs robustly regardless of the frequency of the snapshots
(although as seen in Fig. 3f there is a noticeable difference in genetic diversity
when the period λ is large). However, as churn increases the difference in fitness
turns out to be remarkably higher in favor of λ = μ. As seen in Figs. 3d and f,
the MMA has convergence problems in these scenarios when λ is high. The less
frequent snapshots cannot keep the momentum of the search in such unstable
environments.

Table 1. Results of holm test (α = 0.05) using λ = 16 as control parameter.

i Strategy z-statistic p-value α/i

1 λ = 160 2.598e+00 4.687e–03 5.000e–02

2 λ = 1600 7.015e+00 1.151e–12 2.500e–02

3 Rand 8.747e+00 1.097e–18 1.667e–02



248 R. Nogueras and C. Cotta

1 2 3 4 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

(a)

1 2 3 4 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations
be

st
 fi

tn
es

s

(b)

1 2 3 4 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

(c)

1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

(d)

1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

(e)

1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

(f)

Fig. 3. Best fitness (top) and entropy (bottom) for TRAP with SF topology. From left
to right: k = 1, k = 5 and k = 20.

4 Conclusion

Any algorithm directly deployed on an unstable computational environment
must be resilient to the volatility of its substrate. Metaheuristics are no excep-
tion and, while they are intrinsically resilient to some extent [10], they must be
augmented with adequate policies in order to cope with the loss of information
associated to computing nodes that become inactive. A classical fault-tolerance
technique for this purpose is the creation of periodical backups of the state of
these nodes in order to recover from failures. We have performed a sensitivity
analysis of this strategy in the context of island-based multimemetic algorithms.
It turns out that this approach can be affordable in scenarios with low churn
rates. In such a situation, checkpoints need not to be frequent for the algorithm
to perform adequately. However, scenarios featuring large churn rates require
much more frequent backups in order to cope with node volatility. The addi-
tional overhead of such backups together with the need for having access to
persistent external storage makes this approach less appealing in such situa-
tions, suggesting other approaches –autonomous, self-adaptive and purely local–
can be more appropriate. Work is already in progress in this direction [19].
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Abstract. Various scientific and technological fields, such as design,
engineering, physics, chemistry, economics, business, and finance often
face multidimensional optimisation problems. Although substantial
research efforts have been directed in this area, key questions are still
waiting for answers, such as: What limits computer aided design sys-
tems on optimisation tasks with high variables number? How to improve
capabilities of modern search methods applied to multidimensional prob-
lems? What are software and hardware constraints? Approaching multi-
dimensional optimisation problems raises in addition new research ques-
tions, which cannot be seen or identified on low dimensional tasks, such
as: What time is required to resolve multidimensional task with accept-
able level of precision? How dimensionality reflects on the search space
complexity? How to establish search process orientation, within multi-
dimensional space? How task specific landscapes embarrass orientation?
This article presents an investigation on 300 dimensional heterogeneous
real-value numerical tests. The study aims to evaluate relation between
tasks’ dimensions’ number and required for achieving acceptable solu-
tion with non-zero probability number of objective function evaluations.
Experimental results are presented, analysed and compared to other pub-
lications.

Keywords: Free search · 300 dimensional optimisation

1 Introduction

Various scientific and technological fields, such as design, engineering, physics,
chemistry, economics, business, and finance often face multidimensional optimi-
sation problems [2]. Multidimensional optimisation problems, however, require
sufficient computational resources. In the same time natural life suggests that
capability to cope by finite and limited resources with infinite and unlimited
environment and problems can be considered as an advanced characteristic of
living systems. This article attempts to explore model of similar behaviour. It
presents an investigation on 300 dimensional scalable heterogeneous real-value
numerical tests optimisation. Due to a specific performance identified in earlier
publications [7], optimisation method explored in this study is Free Search (FS)
[6] only.
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 251–257, 2015.
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The aim of this investigation is to find answers of the questions: How to
improve capabilities of modern search methods applied to multidimensional
problems? What are software and hardware constraints? The study aims also
to investigate specific for multidimensional optimisation research questions such
as: What time is required to resolve multidimensional task with acceptable level
of precision? How dimensionality reflects on the search space complexity? How
to establish search process orientation, within multidimensional space? How task
specific landscapes embarrass orientation?

For this purpose five scalable numerical tests are used - Ackley [1], Griewank
[4], Michalewicz [5], Rosenbrock [9] and Step [3] test functions.

2 Test Problems

Criteria for tests selection are: - must be scalable for multidimensional format; -
must be with heterogeneous landscape. Chosen numerical test are scalable and
form different search spaces. All tests are transformed for maximisation.

2.1 Ackley Test

This test [1], know from the literature is widely used for search methods evalu-
ation.

f(x) = a exp

[
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(
1
n
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i

)]1/2

+ exp

(
1
n
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cos(cxi)

)

− a − exp(1) (1)

where a = 20, b = 0.2, c = 2π. The maximum is fmax = 0, for xi = 0, i =
1, . . . , n. The search space borders are defined by xi ∈ (−32, 32).

2.2 Griewank Test

The test [4], is given by the following analytical expression:
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(

1 +
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(

xi√
i

))

(2)

where xi ∈ [−600.0, 600.0]. The maximum is fmax = 0, for xi = 0, i = 1, . . . , n.

2.3 Michalewicz Test

Michalewicz test function is described [5] as global optimisation problem. Opti-
mal value is dependent on dimensions number.

f(x) =
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i=1

sin(xi)
(

sin
(

ix2
i

π

))2m

(3)

where search space is defined as xi ∈ [0, π], i = 1, ..., n. For 300 dimensions
maximum is unknown.
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2.4 Rosenbrock Test

This function landscape is smooth flat hill with one optimal solution [9]. The
test function is:

f(x) = −
n−1∑

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
(4)

where xi ∈ [−2, 2], i = 1, . . . , n. It has one maximum fmax = 0, for xi = 1,
i = 1, . . . , n.

2.5 Step Test

Step test [3] introduces plateaus to the topology. The search process cannot
rely on local correlation. Maximal are all locations, which belong to the plateau
xi ∈ [2.0, 2.5). The maximum is dependent on dimensions number. The test
function is:

f(xi) =
n∑

i=1

�xi� (5)

where xi ∈ [−2.5, 2.5]. For n = 300 maximum is fmax = 600, for xi ∈ [2.0, 2.5),
i = 1, . . . , n.

3 Optimization Method

Due to the abilities to produce acceptable results within feasible period of time
identified in earlier publications [7,8], optimisation method selected for this study
is Free Search (FS) [6] only.

3.1 Free Search

Free Search is adaptive heuristic method [6–8] for real coded optimisation. This
section refines the description of some of its essential properties, published ear-
lier. Optimisation process is organised in individual explorations within individ-
uals’ neighbour space [6]. In the beginning algorithm has no knowledge about
the search space. First exploration is initial trial, which generates knowledge
stored in a form of qualitative indicators related with evaluated locations. These
indicators facilitate further explorations. Individuals develop sense to the indi-
cators’ quality. This sense is an original peculiarity of Free Search, which has no
analogue in other methods. Individuals use their sense to locations quality for
orientation within the search space.

Although individuals’ sensibilities are highly uncertain a review of idealised
general states of distribution such as uniform, enhanced and reduced sensibility
related with locations’ qualities can clarify the search process self-regulation. On
initial stage locations quality and sensibility are uniformly distributed among
low, medium and high levels. Individuals with low level of sensibility can select
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for start position any marked location. The individuals with high sensibility
can select for start position marked locations with high quality and will ignore
locations with low quality.

When marked locations quality highly differs and stochastically generated
sensibility produces accidentally high values only, then the individuals will search
around the area of the highest quality solutions. Such situations appear naturally.
In this manner process converges to high quality locations. External addition of
a constant or a variable to the sensibility could lead to an enforced enhancement
of the sensibility. In this case all the individuals with enhanced sensibility will
select and can differentiate more precisely locations with high quality and will
ignore these with low quality. This could accelerate convergence to areas with
high quality locations.

Other situation which naturally appears is when marked locations qualities
are very similar and randomly generated sensibility is low. In this case individuals
can select low quality marked locations with high probability, which indirectly
will decrease the probability for selection of high quality marked locations. Sub-
traction of a constant or a variable from individuals’ sensibility could make an
enforced sensibility reduction. Individuals with reduced sensibility can select to
explore around locations marked with low quality. As far as locations quality is
independent on their position within the search space, similar quality locations
could be remotely distributed. This facilitates divergence across the entire search
space. Sensibility varies across all the individuals and during the optimisation
process.

One of the objectives of this study is to evaluate how this manner of orienta-
tion performs for multidimensional space. For presented experiments Free Search
operates with 10 individuals and explorations are 5 steps, for all experiments.
The sense is random in the highest 10 % of the sensibility, and the neighbouring
space varies from 0.5 to 1.5 with step 0.1 [6].

4 Experimental Methodology

Experimental Methodology aims to identify method’s performance and level of
precision for 300 dimensional tests limited to 3.108 objective functions evalua-
tions. Each test function is evaluated in one series of 320 experiments, with start
from random initial locations different for each experiment. Start locations are
defined as:

xi0 = Xmin + randomi(Xmax − Xmin) (6)

where Xmax and Xmin are search space borders and randomi(Xmax − Xmin)
generates random value between Xmax and Xmin, i = 1, . . . , n. All variables are
300 dimensional vectors.

Rosenbrock test only is evaluated additionally one more series of 320 exper-
iments limited to 3.109 objective functions evaluations.
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5 Experimental Results

Achieved results are analysed for maximal and mean values, standard deviation
and number of results with precision 0.01 from the maximal value.

On Tables 1, 2, and 3 FE denotes function evaluations number. Time periods
in Table 3 are measured on processor Intel i7 3960x at 4.6 GHz and memory G.
Skill Trident X at 1866 MHz, motherboard ASUS Rampage VI and solid state
disk - SanDisk Extreme SSD SATA III.

6 Discussion

Analysis of experimental results suggests that Ackley, Michalewicz and Step
tests can be resolved with 100 % probability with precision 0.001 for 3.108 func-
tion evaluations. Griewank test can be resolved with 82.81 % probability with
precision 0.001 for 3.108 function evaluations.

Rosenbrock test cannot be resolved with acceptable level of precision for
3.108 function evaluations. Rosenbrock test is evaluated additional for 3.109

function evaluations. Rosenbrock test can be resolved with 76.56 % probability
with precision 0.001 for 3.109 function evaluations, however the period of search
is longer.

Comparison of the periods of search for these 300 dimensional tests and 200
dimensional tests publishes earlier [8] suggest that time increases higher than

Table 1. Experimental results from 320 experiments

Test FE Maximal results Mean results Standard deviation

Ackley 3.108 -0.000329198000 -0.000688728 0.000216832

Griewank 3.108 -0.000000215366 -0.004886839 0.008172175

Michalewicz 3.108 299.603000000000 299.595365600 0.003252990

Rosenbrock 3.108 -0.001858470000 -112.786252900 72.692261520

Rosenbrock 3.109 -0.000030781900 -0.090739686 1.472556809

Step 3.108 600 600 0

Table 2. Number and percentage of the results with precision above 0.01

Test FE Successful results Successful results %

Ackley ≥ -0.00 3.108 320 100.00 %

Griewank ≥ -0.00 3.108 265 82.81 %

Michalewicz ≥ 299.59 3.108 320 100.00 %

Rosenbrock ≥ -0.00 3.108 4 0.39 %

Rosenbrock ≥ -0.00 3.109 245 76.56 %

Step = 600 3.108 320 100.00 %
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Table 3. Periods of time for 3.108 objective functions evaluations

Test FE Time

Ackley 3.108 31 min

Griewank 3.108 48 min

Michalewicz 3.108 185 min

Rosenbrock 3.108 15 min

Rosenbrock 3.109 148 min

Step 3.108 12 min

linearly and hardware and software speed appears as potential constraints. To
improve capabilities of modern search methods time consuming events should be
identified and optimised. For further investigation on high dimensional problems
hardware speed should be improved. Regarding the time required to resolve
multidimensional task with acceptable level of precision, presented on Table 2
results suggest that on used hardware configuration selected 300 dimensional
tests could be resolved with high probability for the range of 0.5 to 3.5 hours.
For more general conclusion additional experiments with 300 dimensional tests
should be done.

Comparison on 100 [7], 200 [8] and 300 dimensional tests performance indi-
cates that:

(1) Complexity of task specific landscapes varies among the tests and for same
dimensionality different number of functions evaluations could guarantee suc-
cessful results. This is illustrated with Tables 1, 2, and 3 with Rosenbrock
test function.

(2) Test complexity increases nonlinearly to test dimensionality and higher num-
ber of functions evaluations are required to reach the same level of precision
and standard deviation.

According to results published earlier on Michalewicz test for 100 dimensions
for 108 objective function evaluations Free Search reaches 0.00048003 standard
deviation [7], for 200 dimensions for 2.108 objective function evaluations Free
Search reaches 0.001784807 standard deviation [8]. In this investigation for 300
dimensions 3.108 objective function evaluations Free Search reaches 0.00325299
standard deviation (Table 4). The results suggests that although the number
of objective function evaluations is proportional to the number of dimensions,
achieved standard deviation tends to decrease. For higher precision additional
objective function evaluations are required.

In summary presented results suggest that search process orientation based
on heuristic trial and error could cope with multidimensional space. For more
general conclusion additional investigation should be done.
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Table 4. Performance on Michalewicz test for 100, 200 and 300 dimensions

Michalewicz test Function evaluations Maximal Mean Deviation

100 dimensions 100 000 000 99.6191 99.618175 0.000480030

200 dimensions 200 000 000 199.612 199.608409 0.001784807

300 dimensions 300 000 000 299.603 299.595365 0.003252990

7 Conclusion

This article presents experimental evaluation of Free Search on 300 dimensional
tests. Identified are specific issues related with multidimensional optimisation.
Experimental results are also summarized and analysed. Further investigation
could focus on evaluation and measure of the time and computational resources
sufficient for completion of other multidimensional tasks using parallel processing
systems or parallel implementation of the method, which uses several processor
cores in parallel or apply accelerated processing based on Graphics Processing
Unit (GPU). Algorithms analysis and improvement could be also subject of
future research.

Acknowledgements. I would like to thank to my students Adel Al Hamadan, Asim
Al Nashwan, Dimitrios Kalfas, Georgius Haritonidis, and Michael Borg for the design,
implementation and overclocking of desktop PC used for completion of the experiments
presented in this article.

References

1. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer, Boston
(1987)

2. Censor, Y.: Optimisation Methods, Encyclopedia of Computer Science. Nature Pub-
lishing Group, London (2000). pp. 1339–1341

3. De Jung, K.A.: An analysis of the behaviour of a class of genetic adaptive systems.
Ph.D thesis, University of Michigan, USA (1975)

4. Griewank, A.O.: Generalized decent for global optimization. J. Optim. Theor. Appl.
34, 11–31 (1981)

5. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Heidelberg (1992)

6. Penev, K.: Free search of real value or how to make computers think. St. Qu, UK
(2008). ISBN 978-0-9558948-0-0

7. Penev, K.: Free search – comparative analysis 100. Int. J. Metaheuristics 3(2),
118–132 (2014)

8. Penev, K.: Free search in multidimensional space II. In: Dimov, I., Fidanova, S.,
Lirkov, I. (eds.) NMA 2014. LNCS, vol. 8962, pp. 103–111. Springer, Heidelberg
(2015)

9. Rosenbrock, H.H.: An automate method for finding the greatest or least value of a
function. Comput. J 3, 175–184 (1960)



Speeding up Parallel Combinatorial
Optimization Algorithms with Las

Vegas Method

Bogdan Zavalnij(B)

Institute of Mathematics and Informatics, University of Pecs, Pecs, Hungary
bogdan@ttk.pte.hu

Abstract. In this paper we introduce a new method for speeding up
parallel run times of discrete optimization problems which can be used
for different problems. We propose that the variant of the Monte Carlo
method, the Las Vegas method can be used for overcoming some special
barriers that can occur in the course of dividing such problems. Especially
the problem of maximum clique and k-clique is examined, and the new
algorithm with the relevant measurements is presented.

Keywords: Las Vegas method · Parallel algorithms · Maximum clique

1 Introduction

There arise two major problems when one tries to create a parallel algorithm
for a combinatorial optimization problem. First, the search space for the divided
different subproblems differ in several magnitudes. This makes the scheduling
of the subproblems hard, and the resulting algorithm often inefficient. Second,
the problem of the equality of the sum of divided subproblems and the original
problem. Because of very specific heuristics used in the algorithm, solving the
subproblems sometimes tend to do much more, and sometimes much less work
than the original problem. The special effect of super linear speedup that can
be observed with some back tracking algorithms also related to this problem.

We would like to deal with this second problem, and propose a parallel ran-
domized method, that tends to reformulate the original problem into a simpler
one. The nice property of this method is, that it will result a reorganization
that could have been done without the randomization, if we would have been
given the information that comes out of the randomization. That means, that
the proposed method is robust and clear cut. Another nice result of this method
is, that it tends to produce more even distribution of the subproblems, thus also
addressing the first problem mentioned above.

The problem we concentrate on is the maximum clique problem, although
the concept described in this paper applies to other problems in the field of
discrete optimization as well. The maximum clique problem can be formulated
in the following way. Given a finite simple graph G = (V,E), where V represents
c© Springer International Publishing Switzerland 2015
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the nodes and E represents the edges. We call Δ a clique of G if the set of
vertices of Δ is subset of V ; Δ is an induced subgraph of G; and Δ is an all
connected graph, that is all its nodes connected to all the other nodes. We call
Δ a maximum clique if no other clique of G is bigger than that. The size of
Δ is called the clique number of the graph, and denoted by ω. The maximum
clique problem is a discrete optimization problem to find a maximum clique and
determine its size, and it is a well known NP-hard problem. A variation of this
problem is the k-clique problem, which is a problem in the NP-complete class.
This problem states the question that if given a graph G, and a positive integer
k, is there a clique of size k in the graph. To answer the question either we must
present a k-clique of the graph or prove that there is none in the graph.

While the maximum clique and the k-clique problems are related and similar,
there are important differences. One difference arises from the NP-completeness
of the k-clique problem. It is easy to show a ‘Yes’ answer if we can provide the
clique, but it is hard to state ‘No’. On the other hand the actual running times
of the maximum clique problem can vary greatly, depending on how fast we
can find an actual maximum clique, which will produce better bounds later [2].
While these problems are easy to understand and to present well, it is hard to
find a good example for showing actual results of a new algorithm. Because of
these problems we performed my tests for k-clique problem, where k was such
that it was larger by one as the size of a maximum clique. This question is the
hard part of the k-clique problem, and it eliminates the chance factor of finding
the maximum clique fast or slowly as in the maximum clique problem.

2 Background

Parallel Implementations of the Maximum Clique Problem. In the liter-
ature of discrete optimization there are several papers describing the possibility
of parallelization of such problems. In the field of maximum clique search [3]
and [2] among others made interesting contributions. It is important to note
that, alas, most works examine parallelization on small number of processors.
We would especially point out the latter work of McCreesh and Prosser. Their
contribution is important because they clearly pointed out the effect of possibil-
ity of super linear speedup for maximum clique search. This effect takes place
because there is a larger possibility for one thread to find an actual maximum
clique, and this helps the other threads, so they can use a better bound. This
paper describes the implementation of the k-clique problem, so since we do make
the search for k one too large, this effect is not considered my work.

Las Vegas Algorithms. The Las Vegas algorithms, first described by Babai
[1], is a variation of the Monte Carlo randomized algorithm. Formally, we call an
algorithm a Las Vegas algorithm if for a given problem instance the algorithm
terminates returning a solution, and this solution is guaranteed to be a correct
solution; and for any given problem instance, the run-time of the algorithm
applied to this problem is a random variable.
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The variance in the running time of a Las Vegas algorithm led Truchet,
Richoux and Codognet to implement an interesting way of parallelization of
the algorithms for some NP-complete discrete optimization problems [9]. The
authors note that the algorithm implementation for those problems heavily
depends on the “starting point” of the algorithm, as it starts from a random
incorrect solution and constantly changes it to find a real solution. Depending
on the incorrect starting solution the convergence of the algorithm may be very
fast or slow. The idea behind the Las Vegas parallel algorithm was to start sev-
eral instances of the sequential algorithm from different starting points and let
them run independently. The first instance that finds the solution shuts down
all the other instances and the parallel algorithm terminates. As the running
time of the different instances vary, some will terminate faster, thus ending the
procedure in shorter time. The article describes the connection of the variance
of the running times and the possible speedup when using k instances and found
that for some problems a linear speedup could be achieved.

Effect of Subproblem Sequence. We should point out one more effect of dis-
crete optimization problems. The usual Branch-and-Bound method is sensitive
to the sequence of subproblems in a branch. This was shown for SAT problems
[8], and could be shown for clique search problems as well. This effect will be
used by my algorithm, as it eventually finds a better sequence for solution, and
thus reduces the search space.

3 Parallel Las Vegas Algorithms

We choose, as an example algorithm, a parallel algorithm for k-clique problem
proposed by Szabo [6]. The basic step of this algorithm is the removing of an
edge from the graph. Given an edge vi, vj . If one can prove that this edge is not
part of any k-clique, then this edge can be freely deleted from the graph without
altering the answer to the k-clique question. The proof takes the subgraph of G
spanned by the nodes N(vi) ∩ N(vj), and examines whether there is a (k − 2)-
clique in it. (N(v) denotes the neighboring nodes of node v.) If the answer is
‘Yes’, then we found a ‘Yes’ answer for the original question. If the answer is
‘No’, then we can delete this edge, as it cannot be an edge of a k-clique.

The algorithm uses the concept of disturbing edges. Given some set of edges,
if we can delete them, then the original question can be answered by ‘No’, and
this answer is trivial. The actual algorithm enumerates disturbing edges by a
quasi coloring, and by deleting these edges we get a graph which can be colored
by k − 1 colors, thus there can be no k-clique in it. Actually this method of
reducing the graph by taking the neighbors of two nodes is closely related to the
two level branching detailed in [2].

The subproblems, which can be denoted by an edge, are independent, but
overlapping. In order to eliminate the overlapping parts let us consider a fixed
sequence of the disturbing edges. Should we solve the problems in a sequential
manner, then after solving the first one we can delete this edge from all the other
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problems to be solved. And so on for all the edges, one by one. The resulting
problems are free of overlapping. Because these problems can still be solved
independently, we can run them parallelly, deleting these edges a priory even
before solving the specific problem.

We propose two other methods. First, which we call the Las Vegas edge dele-
tion, starts the original overlapping problems without any edge deletion paral-
lelly. The problems will be of different complexity, thus some of them will run
fast, and others slowly. If one problem (a fast one) finishes, then the edge denoted
by this problem shall be deleted from all the other problems in the course they
are being solved. (Obviously this can be done only if the sequential program can
allow this.) This method will do some surplus calculation because of overlapping
search spaces, but can profit by reordering the sequence of edge deletion. As we
already pointed out previously the sequence in which the problems are solved
can affect the size of the search space. The structure of the program:

Master Slave

Get report / get request / asked for
deleted edges

Report / request for new task (edge)

IF found: exit Construct the task from edge

IF not found: delete the edge Solve the task

IF asked: give deleted edges (repeatedly ask for deleted edges)

IF requested: give new task (edge)

Second version, which we call the Las Vegas edge deletion with restart, do the
same as the previous one, but uses an other technique, as well. If no work left to
be given out (the number of subproblems fall below the number of processors),
then we give out an edge, which is already given out to another process, and so
two threads do the same calculation. It may seem redundant, but the restarting
process can start from scratch, and with some already deleted edges, can pro-
duce better preconditioning of the subproblem. This method is well known in
SAT solving community, but my proposal is somehow different, as given spare
processors we run the original, half solved subproblem, along with the newly
started. On the other hand, if the already long-running solver is near to the
finish, we do not need to throw it out.

As it will be seen from the evaluation, both methods are really strong. Also,
there is an interesting effect of reproducibility. While different runs will delete
edges in different order, one can save the actual order of a given run. It is clear,
that given this special order of edges we can run the original a priory edge
deletion algorithm with the same, or even better speed.

Morphology of the Proposed Algorithm. The method described in this
paper can be used for parallelization of different combinatorial optimization
problems such as SAT or set covering. In order to utilize the algorithm it is
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important, that the original problem can be divided into several independent
(and actually overlapping) subproblems. Also, the result of a subproblem should
be usable to help other subproblems – it will reduce the search tree by the
overlapping part.

The usage can be done in three different ways. First, the “help” can be given
a priory in a chosen sequence. In fact, this is the usual method for parallelizing
discrete optimization problems. Second, start the independent subproblems, and
if one finished give this information to all the other threads. This is my method of
Las Vegas edge deletion. Third, if some threads have no work to do, then restart
a subproblem, but with the information gained from the previous results. The
third algorithm uses this technique together with the edge deletion.

It is clear, that this method can be used, for example, in parallel implemen-
tation of a SAT problem.

4 Tests

We programmed the described algorithms in c++ and MPI, and performed several
tests on different graph sets. Table 1 below summarize the running times for
sequential and different parallel algorithms for k = ω + 1. The columns labeled
as follows. “N” denotes the size of the graph; “%” denotes the edge density; “ω”
denotes the size of the maximum clique. The “parts” indicates the number of
disturbing edges, thus the number of different subproblems that will be started.
The rest of the columns denote the number of processors we used, where “1”
means the sequential run time. The “seq” denotes the original algorithm where
the edges deleted in the given sequential order, a priori. The “lv” denotes the
Las Vegas method where the edge deletion is performed after a subproblem
was solved. The “rest” denotes that, apart from the Las Vegas edge deletion,
the problems also restarted when free processors were available, so the same
problem run on several processors. The running times are in seconds, and for
really big figures we used “k” for denoting thousand. All tests, including the
sequential runs, were performed on the same supercomputer.

The first set consists of random graphs, the second set is the DIMACS set
of graph problems [4], the third set is graphs of hard problems of monotonic
matrices [7] and of deletion code [5]. The data presented here is partial, as we
left only those instances, where the run-times are big enough to be of any interest.

The time limit for sequential and 16 processor runs was 12 hours, while for 64
and 512 processor runs 72 hours. The symbol “*” denotes run times exceeding
the time limit, and “-” means that we have not run the test.

5 Evaluation

The test runs lead to several conclusions. First, it is clear, that the original idea
of disturbing edges by Sandor Szabo enables quite good parallel speedups even
for large number of cores. Second, for some (harder) problems there is a limit for
the original algorithm. For other problems, such as random graphs, the speedup



Las Vegas Parallelization 263

Table 1. Test runs

N % ω parts 1 16 16 64 64 64 512 512 512

seq lv seq lv rest seq lv rest

rand 200p9 200 90 40 152 480 27 35 22 30 20 22 30 32

rand 300p8 300 80 29 540 754 41 45 13 16 17 12 19 19

rand 300p9 300 90 47 341 * * * * * * * 16k 14k

rand 500p6 500 60 17 2478 48 9 9 2 2 2 0 0 0

rand 500p7 500 70 22 2231 3069 167 179 40 45 46 9 15 15

rand 500p8 500 80 32 1664 * * * 15k 17k 17k 5703 3543 3377

rand 800p5 800 50 14 7296 71 26 26 6 7 7 1 1 1

rand 800p6 800 60 19 6345 2371 158 166 38 41 41 5 6 6

rand 800p7 800 70 25 5587 * * * 5999 6571 6578 830 968 967

rand 900p5 900 50 15 8729 132 40 41 10 10 10 3 2 2

rand 900p6 900 60 19 8215 6493 398 423 96 103 104 13 14 15

rand 1000p5 1000 50 15 10955 282 65 66 16 16 16 2 2 2

rand 1000p6 1000 60 20 9823 14k 798 847 192 206 207 25 30 29

brock800 3 800 65 25 4888 6383 357 373 86 91 91 12 14 15

brock800 4 800 65 26 4592 4899 280 291 68 71 71 9 11 11

latin sq 10 900 76 90 380 4053 91 121 40 61 59 40 55 54

keller5 776 75 27 420 4071 369 382 118 198 166 115 114 133

sanr200 0.9 200 90 42 128 297 15 25 14 33 33 14 29 28

sanr400 0.7 400 70 21 1408 351 22 23 5 6 6 1 2 2

p hat700-2 700 50 45 826 740 36 59 27 48 44 27 82 84

p hat300-3 300 74 36 297 198 9 15 7 14 14 7 15 15

p hat500-3 500 75 50 657 * * * 9645 6020 4960 9653 4328 2253

monoton-8 512 82 23 590 2123 367 266 367 165 145 367 154 114

monoton-9 729 84 28 932 * - - 137k 39k 23k 137k 27k 6377

deletion-9 512 93 52 375 * - - - - - * * 67k

Table 2. Test runs for monoton-9

N % ω parts 1 64 64 64 512 512 512

seq lv rest seq lv rest

monoton-9 729 84 28 932 ∼1150k 137k 39k 23k 137k 27k 6377

hours: ∼320h 38h 11h 6h 38h 8h 2h

speed-up: 1x 8x 30x 50x 8x 43x 180x

average run: 1232 1717 909

minimum run: 1 11 3

maximum run: 137k 27k 5k
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is nearly linear. Actually, in my opinion, this indicates not as much the goodness
of the algorithm, as it is rather shows the problem of testing with random graphs.

The Las Vegas methods are also performing well, and while being a bit behind
for smaller and easier problems, they make a big difference for bigger and harder
problems. Actually the lower performance for the easy problems are less inter-
esting: one would not use a supercomputer for those problems! The difference
between the simpler edge deletion Las Vegas algorithm and the restarting algo-
rithm is similar. For very small problems the second can be a little slower – it
takes time to shut down the threads that are not needed. For most problems
they run for the same time, and for really hard problems the restarting version
makes one more huge leap in performance.

We would point out the problems of monoton-9 and deletion-9 These prob-
lems are extremely hard, and only few achieved solving them with the aid of
reducing the problem by finding symmetries, and in the second case, with the
aid of semi definite programming. My method is using none of these.

Details of One Problem. Let us take a close look at one special problem, the
monoton-9. Table 2 presents the monoton-9, problem alone, and we indicated
also the running times in hours, the speedup and the average run time for the
subproblems as well. The sequential run time is calculated by summing up the
run times of the 512-seq subproblems. This is obviously not the same, as we
would run the sequential program, but it is as if the a priory edge deleted
problems would be run in sequential order. This figure, in my opinion, should
be close enough to the real one.

Evaluating the results, one can clearly see, that the a priory edge deletion
method is dominated by one subproblem, and that is why it cannot speed up
using more processors. The edge deletion Las Vegas method is much better,
but it also has some limits of speedup. The restarting Las Vegas method on
the other hand scales very well. A scale up is usually considered good if by
doubling the cores the running time reduced by a factor of 1.5. In case of this
hard combinatorial optimization problem we could achieve a better scale up
using 512 processors. This indicates that the method possibly can be scaled up
for several thousands processors.

Also, the average run times of the subproblems are quite interesting. The edge
deletion Las Vegas method has a bigger average run time than the a priory edge
deletion – and one would expect this, as this method is certainly making more
calculations in order to eliminate the dominating subproblem. More interesting is
that the average time of the restarting algorithm is less. That indicates, that this
method even possibly can achieve super linear speedups in some lucky problems
one day. Obviously then the whole question of super linearity should be examined
and rethinked, because it depends on which sequential algorithm we compare it
to. There certainly will be a faster sequential algorithm, but we cannot find it
without using the Las Vegas randomization method.

Finally, we would present the graphs of actual running times of the subprob-
lems. In the first graph on Fig. 1 we reordered the problems by the magnitude of
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Fig. 1. The sorted running times of the monoton-9 subproblems.

Fig. 2. The time sequence of running times of the monoton-9 subproblems.

the times. Be aware, that the time scale is logarithmic, so the actual differences
are of several magnitudes! In this graph one can see, that all three algorithms
are dominated by the longest subproblem, although the restarting Las Vegas
can smooth out this problem the best, reducing the variance of running times
by more than 2 magnitudes.

The second graph on Fig. 2 is the running times sorted by finishing times. To
the left the time passes while we run the parallel algorithm, and the finished sub-
problem times denoted on the x axis. The graph is smoothed, to have less ‘noise’
of big variance of running times. It could clearly be seen, that the restarting
Las Vegas algorithm helps at the very end by reducing the dominating problems
exactly where it needs it the most.
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Abstract. The development of novel nanoelectronic devices requires
methods capable to simulate quantum-mechanical effects in the carrier
transport processes. We present a deterministic method based on an inte-
gral formulation of the Wigner equation, which considers the evolution of
an initial condition as the superposition of the propagation of particular
fundamental contributions.

Major considerations are necessary, to overcome the memory and
time demands typical for any quantum transport method. An advan-
tage of our method is that it is perfectly suited for parallelization due
to the independence of each fundamental contribution. Furthermore, a
dramatic speed-up of the simulations has been achieved due to a precon-
ditioning of the resulting equation system.

To evaluate this deterministic approach, the simulation of a Resonant
Tunneling Diode, will be shown.

1 Introduction

To describe the carrier transport processes in novel nanoelectronic devices the
effects of quantum mechanics have to be considered. The Wigner formulation of
quantum mechanics challenges deterministic methods due to difficulties in the
discretization of the diffusion term in the differential equation. Even high-order
schemes show very different output characteristics because of rapid variations of
the Wigner function in the phase-space [1]. However, the high precision of this
methods makes them a desirable approach in cases where physical quantities
vary over many orders of magnitude. To overcome these problems, an adaptive
momentum discretization scheme has been proposed [2]. Alternatively, the devel-
oped approach, shown here, uses an integral formulation of the Wigner equation
so that the differentiation can be avoided.

We consider the evolution of an initial condition described by a phase-space
superposition of particular fundamental solutions. To calculate the distribution
at desired time-steps, the Wigner equation has to be solved for each such solution
and all “fundamental evolutions” have to be summated.

Unfortunately, the usual approach to solve at sequential time-steps is not
practical due to the huge memory consumption: during the time evolution the
complete history of all fundamental solutions in phase-space has to be stored in
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parallel. To overcome this drawback, the calculation order is modified in such a
way that for each solution its specific time evolution is calculated separately.

As the particular calculations are independent from each other, this method
is well suited for parallelization using MPI and OpenMP.

2 The Deterministic Approach

The Wigner equation [3,4]

∂ f(x, k, t)
∂t

− � k

m∗
∂ f(x, k, t)

∂x
=

∑

m

Vw(x, k − k′) f(x, k′, t), (1)

describes the evolution of the function f(x, k, t) under the action of the Wigner
potential Vw(x,Δk) which is obtained as a Wigner-Weyl-transform of the elec-
trostatic potential [5].

Our approach uses the integral formulation of the Wigner equation. The
integral form of (1) is obtained [6,7] by considering the characteristics of the
Liouville operator on the left-hand-side of the equation, which are the Newtonian
trajectories x(·, t) initialized with x′, k′, t′ [8]:

x(x′, k′, t′, t) = x′ +
�k′

m∗ (t − t′). (2)

A weak formulation of the numerical task is used

fΘ(τ) =

τ∫

0

dt

∫
dx

∑

m

fi(x, k) e− ∫ t
0 γ(xi(y))dy gΘ(xi(t), k, t), (3)

which calculates the mean value fΘ – the integral of the solution inside a partic-
ular domain with indicator Θ. τ is the evaluation time, fi the initial condition,
xi(t) is the trajectory, initialized by (x, k, 0), and gΘ is the forward solution of
the adjoint integral equation:

gΘ(x′, k′, t′) =Θ(x′, k′) δ(t′, τ)+

+

τ∫

t′

dt
∑

m

e− ∫ t
t′ γ(x(y))dy Γ(x(t), k, k′) gΘ(x(t), k, t).

(4)

Within (4) γ(x) =
∑

k

V +
w (x, k),

Γ(x, k, k′) = V +
w (x, k − k′) + V +

w (x, k′ − k) + γ(x) δ(k, k′),

and x(t) initialized by (x, k, t). The time integration in Eq. (3) can be carried
out, delivering the new equation system

fΘ(τ) =
∫

dx
∑

m

fi(x, k) pΘ(x, k, 0), (5)
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pΘ(x′, k′, t′) = e− ∫ τ
t′ γ(x′(y))dy Θ(x′(τ), k′)+

+

τ∫

t′

dt
∑

m

e− ∫ t
t′ γ(x′(y))dy Γ(x′(t), k, k′) pΘ(x′(t), k, t)

(6)

without time dependency in (5). The trajectories x′(y) are initialized by
(x′, k′, t′).

3 Discretization

The numerical procedure is developed by first discretizing the variables of the
equation by:

x = nΔx, n ∈ [0, N ]; k = mΔk, m ∈ [−M/2,M/2]; t = lΔt, l ∈ [0, L].

In the same way, the considered domains are discretized and correspond to a
point in phase-space (u, v). Also the trajectories x′(t) are replaced by a discrete
version, depicted by N ′(l), delivering the new equation system:

fu,v(lτ ) =
∑

n

∑

m

fi(n,m) qu,v,lτ (n,m, 0), (7)

qu,v,lτ (n′,m′, l′) = e
−

lτ∑

j=l′
γ(N ′(j))Δt ωj

δ(N ′(τ), u) δ(m, v)+

+
lτ∑

l=l′
Δt ωl

∑

m

e
−

l∑

j=l′
γ(N ′(j))Δt ωj

Γ(N ′(l),m,m′) qu,v,lτ (N ′(l),m, l)

(8)

with the discrete trajectory N ′(j) initialized by (n′,m′, l′).
The obtained discrete equation system brings several challenges in its imple-

mentation, which will be solved in the following.

Re-insertion of Old Values. At each time step lτ only the new values
q(n′,m′, 0) have to be calculated. The values for different l′ can be reused from
the previous calculations. In this case, the main computation time shifts from
solving the equation system to assembling the equation system. However, by
elimination of the time integration it is also possible to reinsert the already cal-
culated values as initial values for the new calculations. In this case the equation
system (8) changes to:

qu,v,lτ (n′,m′, 0) = e
−∑lτ

j=l′ γ(x′(j))Δt ωj qu,v,lτ (N ′(T ),m′, T )+

+
T∑

l=0

Δt
∑

m

e−∑l
j=l′ γ(N ′(j)) Δt ωj Γ(N ′(l),m,m′) qu,v,lτ (N ′(l),m, l) ωl, (9)

where qu,v,lτ (N ′(T ),m′, T ) is the solution T time-steps ago.
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Time Integration. The time integration from (6) has to be approximated by
numerical integration. This may be done by several methods, which is depicted
by the different weights ωj and ωl in equation (9). A detailed examination of the
summation shows that the first term with l = l′ contributes to the unknowns
q(n′,m′, 0) – the system matrix of the equation system. Left-handed or right-
handed approximations of the integration lead to a big under- or overestimation
of the results. The iteration may result in an unstable system behavior; at least
a trapezoidal approximation of the integration has to be performed.

Interpolation. The proper discretization of the trajectory presents a big chal-
lenge. As the space coordinate can only take discrete values, the trajectory may
be discretized by

N ′(n′,m′, l′, j) = n′ + int

[
�mΔkΔt

m∗Δx
(j − l′)

]
. (10)

For common device dimensions, the contribution in the int[. . .] expression stays
nearly constant for a long number of time-steps. Especially for low m the shifting
value is always 0, which results in a non-moving distribution. This aspect can
be accounted for by manipulation of the integer contribution depending on the
accumulated error of the trajectory discretization.

Another issue can be identified by examining the first part in Eq. (9)

qu,v,lτ (n′,m′, 0) = . . . qu,v,lτ (N ′(T ),m′, T ) + . . . , (11)

which shows a difficulty in the discretization of the initial condition. Even with
the proposed manipulation of the calculation of N ′, the discrete values of N ′ stay
constant for a wide range of lτ , which results in a stepwise moving wavefront. As a
consequence this stepwise movement may cause increasing amplifying oscillations
in the solution, especially near corners in the potential distribution.

A correction is introduced by interpolation of the initial conditions between
the left-side and right-side integer values N ′

left and N ′
right:

N ′
left ≤ N ′

left + ΔN ′ = N ′(n′,m′, 0, T ) ≤ N ′
left + 1 = N ′

right (12)

and insertion into (9)

qu,v,lτ (n′,m′, 0) = . . .
[
qu,v,lτ (N ′

left)(1 − ΔN ′) + qu,v,lτ (N ′
right)ΔN ′] + . . . .

(13)

4 Parallelization Issues

A direct implementation of the algorithm is to assemble and solve the equation
system (9) of rank N ·M (the number of points in phase-space) and then to
back-insert the solution into (7).

This requires

– the assembly of (9) with effort O(M ·T ·T ),
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Fig. 1. Used time for simulation runs in dependency of the number of parallel processes.
The values are compared to the theoretical limit without an overhead tused ∼ 1/n.

– solving a system with rank N ·M ,
– back-insertion in (7) with effort O(N ·M),
– the storage of all qu,v,lτ (n′,m′, l′), and
– the temporary storage for the equation system (9).

This equation system has to be computed for all time steps for each particular
indicator, leading to solve N ·M ·L times Eq. (9).

Concerning memory and computation time demands this offers special pos-
sibilities for parallelization purposes.

Fig. 2. The considered RTD device is specified as follows: x1 = 55 nm, x2 = 65 nm,
drift region from x=40 nm to 70 nm. The ramp height varies between 0 and 0.2 eV.

If the solution has no feedback to the Wigner potential, the different equa-
tion systems are independent from each other and, therefore, they are very well
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suited for parallelization. The different tasks for (u, v) can be split over the com-
putation nodes. Only the final results f(u, v, lτ ) have to be transmitted. An MPI
parallelization without communication can be used.

Also on a single node it seems feasible, not to parallelize the solver, but
to share the common resources to split the different tasks (u, v) in parallel by
OpenMP on the nodes, which also does not require synchronization. Even the
system matrix is common for all equation systems and may also be assembled
in parallel on the nodes.

In Fig. 1 the relation between execution times and number of parallel
processes is shown. They are compared to the theoretical limit. The differences to
this value at higher number of processes arises due to a nearly constant overhead
of calculating the Wigner potential, which is performed on each machine.

5 Preconditioning and Inversion of the System Matrix

Analyzing the computational costs of the method, it can be seen that the order
is higher than (N · M)2. Looking at the system matrix of the equation system,
which has to be solved,

A · q = b, (14)

the matrix A can be expressed as:

A(n′,m′, n′,m) =

{
1 − Δt γ(n′)ω0, m′ = m

Δt Γ(n′,m,m′)ω0, m′ �= m.
(15)

The matrix is sparse and, for sufficiently small Δt, of good dominance and
the solutions may be calculated iteratively. A main speedup is achieved by Jacobi
Over-relaxation Methods like

qi+1 = (I − εD−1A)qi + εD−1b (16)

with D the diagonal part of the matrix A and ε the over-relaxation factor.
For the resulting equation systems this method shows better performance than
common gradient based techniques. The simulation procedure implies solving
N · M · T times an equation system of rank N · M . The solving method (16) is
used for each calculation

A · qi = ei, (17)

with ei the i-th unit vector, obtaining the final solution vector

q =
∑

i

qi bi = QTb. (18)
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Fig. 3. The wave package evolving after 300fs for different bias voltages.

6 Application to a Resonant Tunneling Diode

As an application we consider a resonant tunneling diode (RTD) [2] schemati-
cally shown in Fig. 2. The device consists of two 3 nm wide 0.1eV high potential
barriers as described in the figure caption. Depending on the bias, the transmis-
sion of electrons through the barriers is influenced [9]. The transmitted part of
the packet has a maximum if its mean energy coincides with the resonant energy
of the structure.

Fig. 4. Wave package passing through a double barrier. The transmitted portion as
dependent on the bias potential demonstrates the typical for RTDs dipping region.
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The initial wave-packet is accelerated by the voltage drop [10]. The depen-
dency of the density distribution on the applied bias is shown in Fig. 3. To
calculate the amount of passed signal, the distribution in the right device area
with 200 nm length is integrated. The portion of the transmitted part as depend-
ing on the bias is shown in Fig. 4. The typical region for RTD devices can be
observed. This gives rise to negative differential resistance which can be utilized
as negative feedback in transistor circuits, like Terahertz oscillators.

7 Conclusion

In this paper the technique for a deterministic Wigner solver in its integral for-
mulation has been shown. A modified simulation approach was discussed regard-
ing scalability and the performance due to optimization was investigated. The
method is capable to correctly simulate physical effects of typically quantum
devices.
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Abstract. The control of coherent electrons is becoming relevant in
emerging devices as (semi-)ballistic transport is observed within nanome-
ter semiconductor structures at room temperature. The evolution of a
wave packet – representing an electron in a semiconductor – can be
manipulated using specially shaped potential profiles with convex or
concave features, similar to refractive lenses used in optics. Such elec-
trostatic lenses offer the possibility, for instance, to concentrate a single
wave packet which has been invoked by a laser pulse, or split it up into
several wave packets. Moreover, the shape of the potential profile can be
dynamically changed by an externally applied potential, depending on
the desired behaviour. The evolution of a wave packet under the influence
of a two-dimensional potential – the electrostatic lens – is investigated by
computing the physical densities using the Wigner function. The latter
is obtained by using the signed-particle Wigner Monte Carlo method.

1 Introduction

Analogies often serve as a source of inspiration to advance research in science and
technology. An example is the electrostatic lens, inspired by concepts from geo-
metrical optics, which can be used to steer and control coherent electrons. The
term electrostatic lens refers to a specially shaped potential with convex/concave
features, as found in optical lenses, used to steer electron waves. The concept
was first demonstrated experimentally in 1990 in [1,2], in low-temperature, high-
mobility semiconductors, which ensured that the coherent electrons had a suffi-
ciently long mean free path to conduct experiments with structures made with
the lithographic capabilities at the time. The astounding decrease of the feature
sizes in semiconductor devices, along with novel materials like graphene, has
made (semi-)ballistic electron transport applicable at room temperatures [3].
This has sparked new interest in applying concepts from optics in semiconduc-
tors: electrons can be guided in a channel using total internal reflection as in
optical fibres [4] or focused towards the centre of nanowires, using electrostatic
lenses, to increase their mobility by avoiding rough interfaces [5].

Scanning probe microscopy allows the flow of coherent electrons in semicon-
ductor structures to be measured and visualized with a subnanometer resolu-
tion [6,7], however, a concurrent temporal resolution to visualize dynamics on
the femtosecond time scale still remains out of reach [8]. Computer simulations
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 277–284, 2015.
DOI: 10.1007/978-3-319-26520-9 30
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can provide insight into the temporal dynamics of wave packets, which cap-
ture the physics of single electrons in mesoscopic structures. Here, we apply the
two-dimensional (2D) Wigner Monte Carlo method to demonstrate its suitabil-
ity as a simulation tool to investigate wave packet dynamics in the context of
electrostatic lenses (and beyond).

The Wigner formalism [9] has re-emerged in recent times as a convenient
formalism to consider quantum mechanical phenomena on the mesoscopic scale,
since semi-classical transport models can be augmented to the coherent quan-
tum evolution. Multi-dimensional simulations have been made computationally
feasible by the signed-particle Wigner Monte Carlo method, as described in
Sect. 2. Section 3 shows examples of electrostatic lenses, and their influence on
the behaviour of wave packets.

2 Wigner Monte Carlo Method

The Wigner formalism expresses quantum mechanics, normally formulated with
the help of wave functions and operators, in terms of functions and variables
defined in the phase-space. This reformulation in the phase-space facilitates the
reuse of many classical concepts and notions.

The Wigner transform of the density matrix operator yields the Wigner func-
tion, fw (x, p), which is often called a quasi-probability function as it retains
certain properties of classical statistics, but the negative values which appear
demand a different interpretation than the classical probability [10]. The associ-
ated evolution equation for the Wigner function follows from the von Neumann
equation for the density matrix, which for the illustrative, one-dimensional case
is written as

∂fw

∂t
+

p

m∗
∂fw

∂x
=

ˆ
dp′Vw (x, p − p′) fw (x, p′, t) . (1)

If a finite coherence length is considered, the implications and interpretation
of which is discussed in [11,12], the semi-discrete Wigner equation result, the
momentum values are quantized by Δk = π

L , and the integral is replaced by
a summation. Henceforth, the index q refers to the quantized momentum, i.e.
p = � (qΔk).

Equation (1) is reformulated as an adjoint integral equation (Fredholm equa-
tion of the second kind) and is solved stochastically using the particle-sign
method [13]. The latter associates a + or a − sign to each particle, which carries
the quantum information of the particle. Furthermore, the term on the right-
hand side of (2) gives rise to a particle generation term in the integral equation;
the statistics governing the particle generation are given by the Wigner potential
(i.e. the kernel of the Fredholm equation), which is defined here as

Vw (x, q) ≡ 1
i�L

ˆ L
2

−L
2

ds e−i2qΔk·s {V (x + s) − V (x − s)} . (2)
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A generation event entails the creation of two additional particles with com-
plementary signs and momentum offsets q′ and q′′, with respect to the momen-
tum q of the generating particle. The two momentum offsets, q′ and q′′, are
determined by sampling the probability distributions V +

w (x, q) and V −
w (x, q),

dictated by the positive and negative values of the Wigner potential in (2),
respectively:

V +
w (x, q) ≡ max (0, Vw) ; (3)

V −
w (x, q) ≡ min (0, Vw) . (4)

The generation events occur at a rate given by

γ (x) =
∑

q

V +
w (x, q) , (5)

which typically lies in the order of 1015 s−1 in numerical experiments where
potential differences in the order of 100meV are encountered. This rapid increase
in the number of particles makes the associated numerical burden become com-
putationally debilitating, even for simulation times in the order of femtoseconds.

The notion of particle annihilation is used to counteract the exponential
increase in the number of particles, due to particle generation [14]. This concept
entails a division of the phase space into many cells – each representing a volume
(ΔxΔk) of the phase space – within which particles of opposite sign annihilate
each other. This is justified since particles of opposite sign, within the same cell,
have the same probabilistic future – their contribution to the calculation of any
physical quantity would be equal in magnitude, yet opposite in sign.

3 Electrostatic Lenses

The following experiments consider a minimum-uncertainty wave packet, which
captures both the particle- and wave-like physical characteristics of an electron.
The associated Wigner function representing this initial condition is given by

fw (x,q) = N e− (x−x0)2

σ2 e−(qΔk−k0)2σ2
, (6)

where x0 and k0 are two-dimensional vector quantities representing the mean
position and the mean wavevector, respectively; σ is the standard spatial devi-
ation and N represents a normalization constant. The wave packet travels in a
two-dimensional plane towards a potential barrier, which forms the electrostatic
lens. This setup is representative of a physical system where a 2D electron gas
is formed at the interface between two semiconductors, e.g. GaAs/AlGaAs; the
potential barrier can be induced by an appropriately shaped gate contact at the
surface of the semiconductor (parallel to the interface).

A law of refraction, equivalent to Snell’s law in optics, can be derived for
electrostatic lenses by considering the principle of energy conservation. A particle
with a wavevector k has a kinetic energy

Ek =
�

2 |k|2

2m∗ , (7)
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which is reduced as the particle transverses the potential step, while its potential
energy increases. The change in kinetic energy is attributed only to a change of
the momentum component normal to the interface; the momentum component
parallel to the lens interface (potential step) is maintained, therefore

|k| sin θ = |k′| sin θ′, (8)

where θ (θ′) is the angle of incidence (transmission) with respect to the normal
(of the interface) and k’ is the wavevector of the particle within the lens region.
The law of refraction follows:

sin θ′

sin θ
=

|k|
|k′| =

√
Ek√
E′

k

. (9)

Therefore, the square root of the kinetic energy of a particle is analogous to the
refractive index used in geometrical optics.

The interaction of a wave packet with two different electrostatic lens shapes
will be investigated in the following.

3.1 Wave Packet Focusing with a Double-Concave Lens

Optical lenses typically operate in a medium (air) with a lower refractive
index, where the familiar double-convex shaped lens is used to focus light.
A positive potential step is used here, however, making the refractive index
of the electrostatic lens lower than the surrounding regions (due to a decrease in
kinetic energy). Therefore, a double-concave shaped profile is needed to form a
converging lens for focusing the wave packet. The potential shape used to form
the electrostatic lens is shown in Fig. 1 along with the corresponding genera-
tion rate. The free evolution of a wave package is compared to the case where
it interacts with the proposed lens in Fig. 2. The electrostatic lens has a peak
potential of 0.04 eV and the wave packet is initialized with a kinetic energy of
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Fig. 1. Two-dimensional potential (represented in black) with a double-concave shape
forming a converging electrostatic lens for electrons propagating in the y-direction.
The potential value of the lens is constant; it has no three-dimensional features. The
corresponding particle generation rate γ is shown on the right.
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Fig. 2. Wave packet evolving freely (top sequence) and interacting with a double con-
cave electrostatic lens (bottom sequence); the time steps (from left to right) correspond
to 40 fs, 100 fs and 150 fs.

0.18 eV, moving upwards. The electrostatic lens clearly focuses the wave packet
(density) after 150 fs of evolution, compared to the case without a lens. If such a
lens is added within a quantum wire (say), the focused wave packet suffers less
from the surface roughness at the boundaries when compared to the spread-out
wave packet in the case without a lens.

The refractive index of the lens, and thereby its focal length, can be modified
by varying the magnitude of the potential with which it is formed. Figure 3
compares the effect of different potential values: It can be clearly seen that the
higher potential focuses the wave packet more sharply (at the distance observed
at the time instance shown). The applied potential can thereby control, when
and at which distance, a wave packet is focused (on a detector, for instance).
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Fig. 3. Comparison of the density of a wave packet evolved for 135 fs in the presence
of an electrostatic lens (Fig. 1) at various potential values to show different focussing.

Fig. 4. Two-dimensional potential (left) with rhomboid-like shape and concave-shaped
rear edges, forming an electrostatic lens to scatter an electron wave packet in various
directions. The potential value of the lens is constant; it has no three-dimensional
features. The corresponding particle generation rate γ is shown on the right.

3.2 Wave Packet Splitting with a Rhomboid-Like Potential

An electrostatic lens can also be used to split a wave packet into parts. Figure 4
shows a rhomboid-like potential, along with the corresponding generation rate,
which forms a lens to perform such a splitting. Figure 5 illustrates the effect of
the lens at different potential values. It should be noted that the electron is not
split; it is a single electron in an entangled state. The density peaks indicate
regions with a higher probability to find an electron. In Fig. 5a (peak potential
70meV) the wave packet is almost fully transmitted and split into two parts.
The same lens shape, but with a potential of 120meV, splits the wave packet into
four parts (Fig. 5b): The front edges splits off a portion of the wave packet by
reflection, while the concave-shaped rear edges focus the transmitted parts again.
In the first case, with two peaks (the most-probable components of the state),
the y-component of the wavevector remains positive, whereas for the second case,
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Fig. 5. Wave packet is split either (a) into two or (b) into four parts, after 90 fs evolu-
tion, by a rhomboid-like potential profile with concave rear edges with a peak potential
of 70 meV and 120 meV, respectively.

at a higher potential, the wavevector of the scattered state also has a negative y-
component. This example clearly illustrates how specially shaped potentials can
be used to influence the scattering pattern of an electron wave packet. By varying
the potential the electron can be guided in a certain direction with a controllable
probability. This can be of use in the field of quantum computing to generate a
(modifiable) entangled state and direct it to other computing elements.

4 Conclusion

It has been shown that 2D Wigner Monte Carlo simulations, using the signed-
particle method, can be applied to investigate the dynamics of wave packets
interacting with electrostatic lenses formed in mesoscopic semiconductor struc-
tures. The concept of electrostatic lenses enables the control of coherent electrons
by focusing or splitting wave packets in a controllable fashion. This ability can
be utilized in emerging mesoscopic semiconductor devices, where (semi-)ballistic
transport at room temperature becomes feasible.
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Abstract. Silicon, the prominent material of microelectronics, is per-
fectly suited for spin-driven applications because of the weak spin-orbit
interaction resulting in long spin lifetime. However, additional spin relax-
ation on rough interfaces and acoustic phonons may strongly decrease
the spin lifetime in modern silicon-on-insulator and trigate transistors.
Because of the need to perform numerical calculation and appropriate
averaging of the strongly scattering momenta depending spin relaxation
rates, an evaluation of the spin lifetime in thin silicon films becomes
prohibitively computationally expensive. We use a highly parallelized
approach to calculate the spin lifetime in silicon films. Our scheme is
based on a hybrid parallelization approach, using the message passing
interface MPI and OpenMP. The algorithm precalculates wave functions
and energies, and temporarily stores the results in a file-based cache to
reduce memory consumption. Using the precalculated data for the spin
relaxation rate calculations drastically reduces the demand on compu-
tational time. We show that our approach offers an excellent parallel
speedup, and we demonstrate that the spin lifetime in strained silicon
films is enhanced by several orders of magnitude.

1 Introduction

For almost half a century Moore’s law has successfully predicted the persis-
tent miniaturization of semiconductor devices, such as the transistor feature size
in microprocessors and unit cell in magnetic storage disks and random access
memories. However, as devices are scaled down to the nano-scale, fundamen-
tal physical limitations will hinder further improvements in device performances
in the upcoming years. Employing spin as an additional degree of freedom is
promising for boosting the efficiency of future low-power integrated electronic
circuits. Silicon is characterized by a weak spin-orbit interaction and long spin
lifetime. It is therefore an attractive material for spin-driven applications. A long
spin transfer distance of conduction electrons has been shown experimentally [1].
However, a large experimentally observed spin relaxation in electrically-gated sil-
icon films could become an obstacle in realizing spin-driven devices [2]. Hence-
forth, a deeper understanding of the fundamental spin relaxation mechanism in
silicon MOSFETs is required. We consider the surface roughness (SR) and the
c© Springer International Publishing Switzerland 2015
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longitudinal (LA) and transversal (TA) acoustic phonons to cause the promi-
nent spin relaxation mechanisms. In (001) silicon films the conduction electrons
are positioned close to the minima of the pair of valleys near the edges of the
Brillouin zone along the axis. Each state is described by the subband index,
the in-plane wave vector k, and the spin orientation (spin-up and spin-down)
on a chosen axis. The subband wave functions and the rates are obtained by
the perturbative k · p model [3]. The spin relaxation time is calculated from the
obtained rates by thermal averaging [4,5]:

1
τ

=

∫
1

τ(K1)
· f(E)(1 − f(E))dK1
∫

f(E)dK1
, (1)

f(E) =
1

1 + exp(E−EF

KBT )
,

∫
dK1 =

∫ 2π

0

dφ ·
∫ ∞

0

|K1(φ,E)|
|∂E(K1)

∂K1
|

dE (2)

E is the electron energy, K1 is the in-plane after-scattering wave vector, KB is
the Boltzmann constant, T is the temperature, and EF is the Fermi level.

The SR-limited spin relaxation rate is expressed as:

1
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K2 and K1 are the in-plane wave vectors before and after scattering, φ is the
angle between K1 and K2, ε is the dielectric permittivity, L is the autocorrelation
length, � is the mean square value of the SR-fluctuations, ψiK1σ

and ψjK2σ
are

the wave functions, σ = ±1 is the spin projection to the [001] axis, and ml is the
longitudinal effective mass. The TA-phonon induced intravalley spin relaxation
rate can be written as:
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ρ = 2329 kg/m3 is the silicon density, νTA = 5300m/s is , t is the film thickness,
(qx, qy)=K1 − K2, and M written in the two valley plus two spin projection

basis is (D = 14 eV: shear deformation potential)
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The intravalley spin relaxation rate due to LA-phonons is:
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νLA = 8700m/s is the longitudinal phonon velocity.

The intervalley spin relaxation rate due to acoustic phonons contains Elliot
and Yafet contributions and is calculated as:
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D′ = 12 eV, DSO = 15meV/k0 (k0=0.15 2π
a , a being silicon lattice constant).

2 Simulations

In order to evaluate the spin relaxation time, a multi-dimensional integral (2)
over the energy E and angle φ must be computed. The spin relaxation matrix
elements are characterized by very narrow and sharp peaks (so-called spin hot
spots [6]). To resolve these sharp features, the mesh in the K space has to be
precise. In our application we have determined that the energy step value �E
should be upper-bounded by 0.5meV. The lower limit of the integral over E is
zero, and we have also identified that it is sufficient to set the corresponding
upper limit to be 0.7eV. This particular simulation setup requires almost 1400
points. The lower and the upper limits of the integral over φ are 0◦ and 360◦

respectively. The step value for φ, or �φ, is set to be smaller than 0.5◦. Hence, the
inner integral over φ on before- and after-scattering directions at fixed energies
require almost 1000 points each. Thus, the scattering matrix elements and the
Jacobians (the derivative of the dispersion energy over the wave vector) must
be calculated numerically for almost 1,400,000 times. To compute the matrix
elements, the eigenfunction problems for the 4× 4 Hamiltonian matrix must be
solved for the two wave vectors before and after scattering for a broad range
of parameters, which makes the numerical spin relaxation time calculation pro-
hibitively expensive: When utilizing a standard adaptive integration technique,
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we found that a month of calculations on 20 cores, or 15000 core-hours total,
was required to evaluate a single data point of τ as a function of stress εxy. In
order to improve the calculation time, we have divided the entire computation
into two levels. The first level calculates and archives all static wave functions
and energy data to a binary file (a file-based cache technique), and the second
level performs the spin lifetime calculations by loading those data in memory.
Both of these levels individually perform the calculations in parallel by using the
message passing interface MPI and OpenMP.

2.1 Parallelization Algorithm for Spin Relaxation Rate Calculations

In the following our two-level computation algorithm is outlined.
Level 1

– (1) Divide the range of angle φ into sub-domains for each MPI process.
– (1.1) Divide the range of energy E into sub-domains for each OpenMP thread.
– (1.1.1) Calculate the derivatives at the interface (dψ

dz )z=± t
2
, and |K|

| ∂E(K)
∂K | in

parallel (MPI, OpenMP).
– (2) Collect all the cached values at the master MPI process.
– (3) Archive the cache to a binary file.

Level 2

– (4) Load archived cache by the master MPI process.
– (5) Divide the range of φ into sub-domains for each MPI process.
– (5.1) Divide the range of E into sub-domains for each OpenMP thread.
– (5.1.1) Calculate (1) for a given range of values in parallel (MPI, OpenMP).
– (6) Collect all calculated relaxation rates into the final relaxation rate.

The performance is measured on the Vienna Scientific Cluster (VSC-2) [7],
which consists of 1285 nodes with 2 processors each (AMD Opteron 6132 HE,
2.2 GHz and 8 cores) and 32 GB main memory on each node. We investigate
the calculation time, memory consumption, and utilization of computational
resources for each level.

In the first level we scrutinize the limitations of our file-based cache calcula-
tion technique. We have examined different configurations of MPI and OpenMP
with a fixed number of cores 96 (i.e. number of nodes is 6). Using our discretiza-
tion scheme, we have found that the memory consumption increases by a factor
of around three by using a pure MPI approach, compared to a hybrid MPI-
OpenMP (i.e. 6 MPI processes, each using 16 threads) configuration. However,
even very accurate calculations with a pure MPI approach require less than 10
GB of memory per node, hence memory limitations are not an issue considering
a modern supercomputer and this particular simulation setup. In contrast, we
find that the total calculation time is reduced by 30 % with a pure MPI configu-
ration, compared to a hybrid MPI-OpenMP scheme. The performance decrease
of the hybrid approach is due to data locality issues arising in shared-memory
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Fig. 1. Dependence of the total calculation time on total cores for a fixed number of
threads. 1, 2, 3, and 4 nodes are used respectively. For 16(8)-threaded application, we
use one(two) MPI job(s)/node.

techniques. Therefore, we conclude that our cache approach is most efficient for
a pure MPI configuration.

In the second level, we compute τ by using the archived data in parallel. For
our discretization parameters, the size of the archived cache is up to 3 GB. The
even smaller energy steps (�E = 0.2meV) improve the computational accuracy
but increase the required cache size to more than 7.5 GB. This archived data
is to be loaded into the memory while calculating τ by each MPI job, and
thus the number of parallel MPI jobs on a single node becomes strictly limited.
Theoretically only three processes can work together on a single node on our
supercomputer, thus leading to a significant loss of computational resources.
Under these conditions, it becomes inevitable to use a hybrid MPI-OpenMP
configuration, albeit its execution performance limitations. Figure 1 shows the
dependence of the total calculation time on the number of cores and the number
of threads. This confirms that increasing the total number of cores at a fixed
number of threads decreases the demand on computing time, which is further
reduced when the number of threads is increased. This approach was tested
with 416 cores and requires only around 40 min for a single relaxation time data
point (around 280 core-hours). Hence, we conclude that our suggested two-level
computation technique tremendously reduces the overall computational time.

3 Results

First we assume that the spin is injected along the perpendicular OZ-direction,
and we investigate the dependence of τ on shear strain εxy. It is observed in
Fig. 2 that the spin relaxation rate with εxy is dramatically reduced, and the
corresponding τ is increased by orders of magnitude. The figure confirms that
at higher temperature the phonon scattering rate increases to reduce τ as com-
pared to that at lower temperature, for all values of εxy. Figure 2 also describes
the inter- and intravalley scattering spin relaxation components, and we notice
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Fig. 2. Total spin relaxation time with components at two distinct temperatures. t =
1.36 nm, NS = 1012 cm−2.

that at low to intermediate strain the major contribution to spin relaxation
comes from the intersubband processes, whereas at higher stress the intrasub-
band component becomes significant. The physical reason for the spin lifetime
enhancement by shear strain lies in the ability to completely remove the degen-
eracy between the two [001] valleys in a confined electron systems by εxy (inset
of Fig. 2). The enhanced valley splitting makes the intervalley spin relaxation
much less pronounced which results in a giant spin lifetime enhancement.

Next we study the spin lifetime dependence on the spin injection orientation.
The surface roughness scattering matrix elements (MSR), taken to be propor-
tional to the product of the subband wave function derivatives at the interface,
are shown in Fig. 3 for several injection orientations, when the additional val-
ley splitting in unstrained films [6] is included. The spin injection orientation is
described by the polar angle θ measured from the perpendicular OZ-axis towards
the XY -plane. We find that, when θ increases, MSR decreases (Fig. 3 inset). The
dependence of MSR on θ can be expressed as:

M2
SR(θ) ∝ 1 + cos2 θ · (

px

py
)2 (7)

(px, py) is the in-plane momentum.
Figure 4 describes the variation of τ with εxy. Contrary to Fig. 2 we find that

the increase of τ with εxy becomes less pronounced, but even in this case τ is
boosted by almost two orders of magnitude. In accordance with Fig. 3 we also
find in Fig. 4 that the spin relaxation rate (time) decreases (increases), when
θ increases, thus τ reaches its minimum (maximum) value for an in-plane spin
injection. The inset of Fig. 4 highlights the variation of τ with θ at a fixed stress
point (εxy = 0.5%). We note that the ratio of τ computed for two different
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Fig. 3. Variation of intersubband spin relaxation matrix elements with εxy, t =
1.36 nm, kx = 0.5 nm−1, ky = 0.8 nm−1. The inset shows the ratio.

Fig. 4. Variation of τ with εxy with the spin injection orientation (θ) as parameter.
t = 1.36 nm, NS = 1012 cm−2, T = 300 K. The inset shows the ratio, dots are simulation
points.

injection directions at the same stress value does not depend on shear strain. An
analytical expression describing the variation of τ with θ for a fixed εxy can be
deduced from (7) by averaging M2

SR over the in-plane momentum direction, and
can be expressed as, 1

τ(θ) ∝ 1 + cos2 θ. The simulated results and the analytical
expression show a perfect agreement. We point out that a similar dependence
of spin lifetime on the injection direction was also reported in bulk silicon [8],
indicating that the spin lifetime only depends on the spin injection orientation
relative to the valley orientation it is injected to. We conclude that the spin
lifetime can be further increased, when spin is injected in-plane.
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4 Summary

We have described a two-level parallelization scheme to calculate the spin life-
time in silicon. The proposed algorithm precalculates wave functions and ener-
gies (first level), and computes the spin relaxation rate by using the precalcu-
lated data (second level). These calculations are performed in parallel. We have
analyzed the memory and computation time requirements for different paral-
lelization configurations (pure MPI, hybrid MPI-OpenMP), and found that the
precalculation step is best performed through a pure MPI scheme, whereas the
spin relaxation calculations are efficiently performed by a hybrid approach due
to memory demands. Finally, we have depicted that shear strain can boost the
spin lifetime by orders of magnitude in thin silicon films. The spin lifetime is
further enhanced, once spin is injected in-plane.

Acknowledgements. This work is supported by the European Research Council
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Abstract. Device geometries in technology computer-aided design
processes are often generated using parametric solid modeling computer-
aided design tools. However, geometries generated with these tools often
lack geometric properties, like being intersection-free, which are required
for volumetric mesh generation as well as discretization methods. Con-
tributing to this problem is the fact, that device geometries often have
multiple regions, used for, e.g., assigning different material parameters.
Therefore, a healing process of the geometry is required, which detects
the errors and repairs them. In this paper, we identify errors in multi-
region device geometries created using computer-aided design tools. A
robust algorithm pipeline for healing these errors is presented, which has
been implemented in ViennaMesh. This algorithm pipeline is applied on
complex device geometries. We show, that our approach robustly heals
device geometries created with computer-aided design tools and is even
able to handle certain modeling inaccuracies.

1 Introduction

Many commercial parametric solid modeling computer-aided design (CAD)
tools, like AutoCAD [1], are available and also various free open source tools, like
FreeCAD [2], are used in many applications. Some technology computer-aided
design (TCAD) simulation suites have modules for CAD processing, but these
modules are usually not as powerful as their standalone counterparts. For exam-
ple, Synopsys Sentaurus TCAD provides a structure editor for modeling device
geometries [3]. In contrast, many free open source TCAD tools, like DEVSIM [4],
lack the CAD processing module and, therefore, they require a ready-to-simulate
input mesh representing the device geometry.

Regardless of the utilized CAD tools, the task of generating a ready-to-
simulate mesh based on a CAD-based geometry is challenging. The finite differ-
ence method is particularly attractive whenever the domain can be represented
c© Springer International Publishing Switzerland 2015
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well with a structured grid, possibly taking additional smooth geometric trans-
formations into account to allow for more complicated domains [5]. In other
cases, the finite element method or the finite volume method are popular choices.
However, these methods require the mesh to be conforming and valid [6]. Addi-
tionally, simulations often require the mesh to be partitioned into several regions,
which can, for example, be used to locally assign material properties.

To generate a volumetric mesh which can be used in a simulation, the device
geometry created with the CAD tool has to be exported. Usually, a widely
supported geometry representation is chosen for this export in order to have
a high degree of freedom when selecting the volumetric mesh generation tool.
Popular geometry representation formats, like the standard for the exchange of
product model data (STEP, ISO 10303) [7], provide a rich feature set, but they
are not supported by a variety of popular open source mesh generation tools,
like Tetgen [8]. On the other hand, triangular hull geometry representations, like
StereoLithography (STL) [9], do not provide a high level of flexibility, but are
supported by a large number of mesh generation tools. Triangular hull geometry
representations, however, might have topological issues like duplicate elements,
or geometrical errors like self-intersections, gaps, or holes. These errors have to
be healed before a mesh generation can be performed. Additionally, STL and
similar geometry representations lack support for multiple mesh regions.

In this work we present an algorithm pipeline which robustly heals errors in
multi-region triangular hull geometries of complex device structures exported by
CAD tools. Section 2 discusses possible errors in triangular hull geometry repre-
sentations and provides an overview of research in mesh healing. The algorithm
pipeline for healing the triangular hull geometry and generating a mesh is pre-
sented in Sect. 3. This algorithm pipeline is implemented in the free open source
meshing tool ViennaMesh [10]. The pipeline is applied to example devices cre-
ated with FreeCAD in Sects. 4 and 5 summarizes the work and gives an outlook
for future work.

2 Background and Related Work

When CAD tools export geometries as triangular hulls, a discretization of the
geometry has to be performed for the non-planar surfaces. Due to inaccuracies
during the modeling process or different discretizations of interfaces, the resulting
triangular hull might have topological or geometrical errors. Relevant triangular
hull errors are listed below and visualized in Fig. 1 [11,12].

– Duplicate vertices and elements are vertices or elements which occur
more than once in the mesh.

– Isolated and dangling elements are vertices and lines which are not edges
or vertices of any hull triangle.

– Singular edges occur, when an edge is shared by more than two triangles.
– Singular vertices occur, when a vertex is shared by two unrelated sets of

triangles.
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Fig. 1. Visualization of all triangular hull mesh errors except duplicate vertices and
elements.

– Inconsistent orientation occurs, when two neighboring triangles have dif-
ferent vertex orientations.

– Nearly degenerated elements are triangles which are degenerated or
nearly degenerated, meaning their surface area is very small compared to
their edge lengths.

– Holes occur, when a hull is not fully closed.
– Gaps occur, when two different hulls are not topologically connected to each

other.
– Intersections occur, when a triangle intersects another triangle.

Duplicate vertices can be healed by merging them and duplicate elements
can safely be removed. Isolated and dangling elements can be identified and
removed using topological operations. In many file formats, like STL, isolated
and dangling vertices and lines cannot occur because vertices and lines are not
stored explicitly. Due to the fact that many mesh healing algorithms originate in
the field of computer graphics, the definition of a valid healed mesh is different to
the definition of a healed mesh for volumetric ready-to-simulate mesh generation.
In particular, a singular edge might be valid for multi-region geometries, because
it can be an interface edge between two different mesh regions. Similarly, a
singular vertex might also be valid, but can lead to numerical issues during
the simulation. Therefore, singular vertices must be detected using topological
operations and split up into multiple new vertices, one for each triangle set. If
the volumetric mesh generation algorithm requires consistent orientations, like
most advancing front mesh generation algorithms [13] do, they can be fixed by
vertex index swapping of triangles with wrong orientation. Degenerated or nearly
degenerated triangles can be fixed by either performing an edge collapse [14], if
two vertices are close to each other, or re-meshing the area of the degenerated
triangle and its three neighbors.

The other three types of errors, being holes, gaps, and intersections, are much
more challenging to heal. Many different algorithms have been developed, which
address these types of errors [11,12,15]. Several open and closed source mesh
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Fig. 2. Each region of a device (represented by one arrow) is exported individually by
the CAD tools to a triangular hull and healed (cf. Sect. 3.1). A multi-material marching
cubes algorithm re-samples these healed triangular hulls (cf. Sect. 3.2) and creates a
valid multi-region hull. After a post-processing step, a volumetric mesh is generated
based on the re-sampled geometry (cf. Sect. 3.3).

healing tools, implementing some of these algorithms, are freely availably [16].
However, most of the algorithms originate in the field of computer graphics
and are therefore not able to handle multiple regions properly, which is highly
relevant for the field of TCAD.

3 Mesh Healing and Generation Pipeline

In this section, a mesh healing and generation pipeline is presented, an overview
of which is given in Fig. 2. The pipeline consists of three parts as described in
the following subsections.

3.1 CAD Interface and Triangular Hull Healing

After modeling the device in a CAD tool, each region is exported on its own
using a triangular hull representation. These triangular region hulls will only be
used in the re-sampling step to test if a point is inside the region hull. Therefore,
region interfaces do not need to be compatible and each region hull can be
treated individually. To ensure stable point inclusion tests, triangular hull errors
are healed using the mesh healing tool Polymender [17].

3.2 Re-Sampling

After healing the region hulls, a volumetric re-sampling is performed by cre-
ating a regular three-dimensional grid covering the entire device geometry.
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Fig. 3. A re-sampled triangular hull geometry before and after the smoothing process.

For each grid point the corresponding region is determined by using a point-
in-hull test on each healed region hull. Due to possibly different geometry dis-
cretizations at interfaces, regions might intersect or form holes. If a grid point is
in more than one mesh region, a user-created priority list resolves the ambiguity.
Afterwards, a three-dimensional version of a dilatation and an erosion operation
avoids holes in the re-sampled geometry [18]. This regular grid is then used by
the multi-material marching cubes algorithm [19] in order to create a triangular
hull with multiple regions and valid region interfaces. The entire re-sampling
step has been implemented in ViennaMesh.

3.3 Post Processing and Volumetric Mesh Generation

Due to the nature of the marching cubes algorithm, the re-sampled triangu-
lar hull has a stair-stepped characteristic. A modified version of the Laplacian
smoothing algorithm is applied to mitigate these characteristics [19]. Figure 3
visualizes the re-sampled triangular hull before and after Laplacian smoothing.
Like the re-sampling step, the Laplacian smoothing algorithm has also been
implemented in ViennaMesh. Depending on the application, chosen grid reso-
lution during the re-sampling step, and required volumetric mesh resolution, a
refinement or coarsening algorithm suitable for multi-region triangular hulls is
applied on the smoothed mesh. Finally, a mesh generation software, like Tetgen,
is used to create a volumetric ready-to-simulate mesh based on the resulting
triangular hull.

4 Examples

In this section we apply our algorithm to a bulk silicon trigate transistor [20]
and a FlexFET [21], which have been modeled with the free open source CAD
tool FreeCAD.

The exported geometry of the bulk silicon trigate transistor has 22 volumet-
ric holes and 24 intersections, visualized in Fig. 4. By applying our algorithm
pipeline, we obtain a valid multi-region triangular hull geometry, where all errors
of the exported input geometry have been successfully eliminated.



298 F. Rudolf et al.

Fig. 4. Hole (marked green) and intersection errors (marked blue) in the bulk silicon
trigate transistor due to different discretizations of neighboring regions. The green area
on the left indicates the areas, where these errors occur (color figure online).

Fig. 5. The bulk silicon trigate transistor: The original geometry modeled in FreeCAD
(left) and a clipped visualization of the generated volumetric mesh (right).

Fig. 6. A hole in the exported FlexFET geometry (visualized in green) which stems
from modeling inaccuracies (color figure online).
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Fig. 7. The FlexFET: The original geometry modeled in FreeCAD (left) and a clipped
visualization of the generated volumetric mesh (right).

This healed triangular hull geometry is used by ViennaMesh’s Tetgen module
to create a volumetric ready-to-simulate mesh. The modeled device geometry and
the volumetric mesh are visualized in Fig. 5.

The exported FlexFET geometry has a total of 39 errors, being 21 volumet-
ric holes and 18 intersections. In contrast to holes caused by different surface
discretizations, the FlexFET geometry has a hole which stems from modeling
inaccuracies (cf. Fig. 6). Again, applying our algorithm pipeline successfully heals
all errors and generates a valid multi-region triangular hull geometry. If, in case
of a high re-sampling resolution, holes are not closed, the kernel size of the three-
dimensional dilatation and erosion operation during the re-sampling step has to
be increased. ViennaMesh’s Tetgen module is used to create a volumetric ready-
to-simulate mesh based on the healed triangular hull. The modeled FlexFET
geometry and the volumetric mesh is shown in Fig. 7.

5 Summary and Future Work

We presented an algorithm pipeline for automatic and robust healing of CAD
geometries for further processing by volumetric mesh generation tools. In con-
trast to mesh and geometry healing algorithms used in the field of computer
graphics, our approach supports meshes with multiple regions. We show, that
our algorithm pipeline reliably generates volumetric ready-to-simulate meshes
based on geometries of complex semiconductor devices modeled in CAD tools.

To further improve the stability for handling big holes which are not closed
by dilatation and erosion operations, other filling algorithms, like the flood fill
algorithm [18], should be investigated in the future.
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Abstract. Thermoelectric materials can convert waste heat into usable
power and thus have great potential as an energy technology. However,
the thermoelectric efficiency of a material is quantified by its figure
of merit, which has historically remained stubbornly low. One possi-
ble avenue towards increasing the figure of merit is through the use
of low-dimensional nanograined materials. In such a system scattering,
tunnelling through barriers and other low-dimensional effects all play
a crucial role and thus a quantum mechanical treatment of transport is
essential. This work presents a one-dimensional exploration of the physics
of this system using the Non-Equilibrium Green’s Function (NEGF)
numerical method and include carrier scattering from both acoustic and
optical phonons. This entirely quantum mechanical treatment of scatter-
ing greatly increases the computational burden but provides important
insights into the physics of the system. Thus, we explore the relative
importance of nanograin size, shape and asymmetry in maximizing ther-
moelectric efficiency.

1 Introduction

Waste heat is created everywhere; in manufacturing, in the engine of an automo-
bile, in the production of power, in the operation of computer chips, and so forth.
A thermoelectric material is able to drive a current when an external tempera-
ture gradient is applied. Thus, such materials have great potential in turning our
abundant heat losses into energy gains. However, the field of thermoelectrics lies
on a sort of precipice; although many theoretical schemes for engineering effi-
cient thermoelectrics exist, commercially available thermoelectrics are still too
inefficient for most applications.

The efficiency of a thermoelectric material can be effectively encapsulated
within a simple quantity, the figure of merit:

ZT =
S2G

κ
T

c© Springer International Publishing Switzerland 2015
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where T is the temperature, G is the conductance, S is the Seebeck coefficient,
to be described later, and κ is the total heat conductivity, having both electron,
κe, and lattice, κL, components. A material with a high figure of merit is a good
thermoelectric. The state of the art in terms of commercial thermoelectrics lies
at around ∼ 1 with research devices lying in the range 1.5–1.8 [1]. However,
it’s generally accepted that for thermoelectric technology to find application
in places beyond niche industries like arctic and space exploration, values of
ZT > 2 are required [1]. Thus, current methods for increasing the figure of
merit are insufficient should thermoelectric technology ever hope to reach its
potential.

The figure of merit, ZT , can be decomposed into two crucial aspects, the
denominator, which is the thermal conductivity, and the numerator S2G which
is collectively called the power factor. Thus far, the bulk of improvements to ZT
have resulted from schemes which minimize the conductivity of phonons, κL,
without overly harming the electrical conductivity. This approach then seeks to
minimize the denominator of the ZT function. It is much rarer to find schemes
which seek to maximize the power factor. The reason for this is that the Seebeck
coefficient S and the conductance G are highly interdependent and inversely
related, and generally when one improves one they tend to erode the other.
However, this need not always be the case.

The Seebeck coefficient is defined as S = −ΔV/ΔT and thus intuitively
encapsulates the ability of a material to separate charge given a certain temper-
ature gradient. Within linearized transport theory it can be written as

S =
∫ (

−∂fFD(E, T )
∂E

)
T (E)

(
E − εF
kBT

)
dE

where fFD is the Fermi-Dirac distribution, T is a conductance or transmission
function which is also related to the density of states and εF is the Fermi level.
Similarly, the conductance is defined as

G =
∫ (

−∂fFD(E, T )
∂E

)
T (E)dE.

Thus, the key difference between the two components of the power factor
is only the factor of (E − εF )/kBT . This factor means that symmetric trans-
mission above and below the Fermi level acts to cancel each other out and
produce a Seebeck coefficient of zero. Thus, to enhance the power factor one
seeks to maximize conductance at energies above the Fermi level but minimize
conductance at energies below it. In light of this it was generally considered
that insulators/semiconductors with asymmetric valence and conduction bands
and a Fermi level lying between them were good materials for thermoelectric
applications. Similarly, a typical band in three dimensions has a density of state
whose shape is approximately ∝

√
E − E0 where E0 is the band edge, thus met-

als whose Fermi level lies deep in a band where the density of states, and thus
the transmission, is effectively constant/flat, were deemed to be poor thermo-
electrics.
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Contrary to this initial assessment, it has been argued [4,5] that a metal can
be made a good thermoelectric if a sequence of potential barriers can be added.
If the system has a series of potential barriers whose height is near the height of
the Fermi level above the conduction band (or below the valence band) then the
material will have a high conductivity, as it is a metal, for energies above the
Fermi level, and for energies below the Fermi level transport is effectively blocked
by the barriers. Further work along this line [7] would argue that scattering
with optical and acoustic phonons, which allowed carriers to mix energy and
momentum in the regions between barriers, would further heighten this filtering
effect.

This system of barrier filtering is not just an abstract contrivance but does
indeed occur in real systems. Two prime examples of this are superlattices,
where layer-by-layer varying material properties can create a series of transport
barriers, and nanograined systems (i.e. polycrystalline systems where the grain
size is on the order of nanometers) where grain boundaries can act as poten-
tial barriers [6]. However in terms of modelling and theory, such systems offer
considerable challenges. As potential barriers and scattering play a large role in
the physics, both quantum tunnelling and phonon scattering must be included
if any physical model is to be accurate. The standard method for numerically
describing quantum transport is the non-equilibrium Green’s function method
(NEGF). However, the inclusion of electron-phonon scattering within this model
results in a substantial computational burden. Thus, the implementation of such
a method is necessarily an exercise in high-performance algorithm design.

The issue of ideal barrier shape has been addressed before by authors of
this paper, though at the semi-classical level in a system where ionized impu-
rity scattering was the primary source of scattering [6]. An NEGF calculation
taking into account scattering to the issue of energy filtering has also been done
before [3] with an eye for optimal barrier spacing and height. In this work we
consider a fully quantum mechanical study of the effect of barrier shape on the
thermoelectric power factor.

The purpose of this work is to use an NEGF algorithm with electron-phonon
scattering incorporated to study the effect of barrier height, width and shape on
the power factor. A plausible potential barrier shape will be posited and their
forms generalized. The ideal barrier shape will be determined as well as the
potential loss for non-ideal shapes quantified.

2 Methods

The NEGF method is a robust and accurate method for simulating quantum
transport [2]. The numerical crux of the method involves an inversion of a matrix
of the form

G(E) = [E ± iε − H − Σ(E,E′)]−1

where H is the systems Hamiltonian and Σ is a matrix which accounts for
both the effect of the contacts and for electron-phonon scattering. The
Green’s function must be evaluated for every value of the energy considered
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(typical ∼ 1000 values). If scattering is not considered then the Green’s func-
tions at each energy are independent. In such a case the computation can be
parallelized in energy provided each processing node has sufficient memory to
hold both the Hamiltonian (which is sparse) and two versions of the Green’s
function; the retarded Green’s function GR which holds static information and
the greater-than Green’s function G> which holds dynamic information (see [2]).

When scattering is included into the NEGF method then the Σ matrix
acquires a dependence on other energies. This is because the process of inelastic
scattering causes a carrier and a phonon with an energy E and E′ to scatter and
end with energies of E′′ and E′′′ where E + E′ = E′′ + E′′′. It is important to
note that only the energy of the carrier, and not the phonon, is tracked. Thus
carriers can scatter between energies and the Green’s functions are no longer
independent. This means that all Green’s functions must then be determined
self-consistently. The parallelization of the NEGF method then becomes less
straightforward. However, optical phonon energies are often approximated to be
constant (E = �ω) and thus the mixing of energy only occurs between ener-
gies that are ±�ω. This allows one to still parallelize in energy space with only
minimal communication between nodes.

The simulations performed in this paper were done using the effective mass
model with meff = m0, a lattice constant of 0.5 nm and a channel length of
120 nm. The channel contained six barriers with a 20 nm separation between
each. The optical and acoustic phonon coupling strengths are taken to be the
same with a value of 1.6 × 10−3eV2. The Fermi level was chosen to maximize
ballistic conductance and was fixed at 0.14eV above the conduction band. These
parameters, though plausible for a silicon-like structure, are effectively arbitrary
and though quantitative behaviour will be dependent on them it is believed that
qualitative insights will be general.

3 Results

The type of barrier explored in this work is an exponentially decaying square
barrier. Such a barrier profile may realistically appear in structures where a
square barrier is intended but some level of diffusion, possibly due to annealing,
has occurred and thus are a good prototypical shape. In a reality a perfectly
square barrier cannot be obtained and such tails are thus a more natural shape.
The first part of the considered barrier shape is a square barrier of height hb

and width wb. At the edges of the square portion the potential then decays
exponentially according to the function

f(x) = exp (−Cbx)

where Cb is the curvature of the exponential decay. A sample set of barriers
can be seen in Fig. 1. In addition to the properties of the barrier one must also
specify the separation between barriers. A cursory exploration of both barrier
separation and barrier height found that the optimal values for an entirely square
barrier were determined to be 20 nm and 0.17 eV respectively. The fact that the
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Fig. 1. A schematic diagram of an exponentially decaying square well. The parameter
which describes the overall shape is the curvature, Cb. A small Cb corresponds to a
very broad, bowl-like, structure (see black line) where a very large CB corresponds to a
square well (see blue line). For reference the curve in red has a curvature of 25.0 (color
figure online).

optimal barrier separation corresponds to the specified mean free path suggests
the approach taken here is valid.

With the barrier separation and height fixed the power factor dependence
on barrier width and curvature were explored. Figure 2 shows the dependence
of barrier width on power factor for various curvatures. It is clear that there
is a pronounced peak in the power factor at a value of 3 nm. However, the
value of the peak is merely an artifact of the chosen system parameters, of
greater interest is the loss in power factor associated with deviation from the
ideal. For barriers thinner than 3 nm the power factor can be reduced by up to
∼ 31%. The reason for this is fairly intuitive, as the barriers become thinner
the amount of tunnelling through the barriers increases. If the purpose of the
barriers is to maximize the power factor by blocking conductance through the
barrier than tunnelling erodes the power factor gains resulting from this blockage.
It is also interesting to note that barriers thicker than the ideal can cause losses
of approximately ∼ 15% if one ignores the red and black data (curvatures of 5
and 10), a point to be discussed later. Though this loss is less than the previous
case it is still significant. This loss likely results from the poor conductivity of the
barrier regions themselves. Since a barrier height of 0.17eV is above the Fermi
level of 0.14eV the barrier region is approximately an insulating region. Thus,
the thicker the barriers the greater the fraction of the total system volume is
comprised of “insulating” material. Thus, conductance drops.
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Fig. 2. Power Factors (S2G) vs. Barrier Width wb: The above reflects a barrier height
of 0.17 eV and separation of 20 nm. There is a clear and pronounced peak at a width
of 3 nm with deviations from the ideal causing a loss of ∼ 30 % in the power factor.
Additionally, for curvatures greater than ∼ 15.0 the affect on power factor is minimal.

Fig. 3. Power Factor (S2G) vs. Curvature: The above reflects a barrier height of 0.17
eV and separation of 20 nm. Power factor can be seen to plateau at high curvatures.
Lower curvatures have power factors of approximately ∼ 18 % lower. The inset shows
the power factor of a barrier of ideal width, 3 nm, for curvatures tending towards
infinity.
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Looking at Fig. 2 it is clear that the low curvature data (the red and black
lines) has much worse thermoelectric behaviour than the higher curvature data.
A plot of power factor versus curvature can be found in Fig. 3. Looking at this
figure it is important to stress that higher values of the curvature reflect increas-
ingly square like wells with an infinite curvature being a square well. Thus, the
black line in Fig. 3 represent a barrier of width 1 nm and confirms the earlier
statement about tunnelling eroding transport with larger curvatures resulting in
thinner barriers. However, for all other widths it is clear that overly curved well
shapes have worse power factors than square wells, the difference being ∼ 18%.
At curvatures (Cb) of approximately 15.0 it appears that the power factor effec-
tively saturates. From this it can be concluded that the square barrier is the
ideal barrier shape.

4 Conclusions

In this work an NEGF study including electron-phonon scattering of the effect
of barrier shape and width on the thermoelectric power factor was explored. It
was determined that a square barrier of optimized width is ideal for maximizing
energy filtering. Furthermore, it was determined that deviations from ideal width
can erode the power factor by ∼ 31% and deviations from ideal shape can erode
by ∼ 18%.
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Abstract. A parallelization approach for two-dimensional Wigner
Monte Carlo quantum simulations using the signed particle method is
introduced. The approach is based on a domain decomposition technique,
effectually reducing the memory requirements of each parallel computa-
tional unit. We depict design and implementation specifics for a message
passing interface-based implementation, used in the Wigner Ensemble
Monte Carlo simulator, part of the free open source ViennaWD simula-
tion package. Benchmark and simulation results are presented for a time-
dependent, two-dimensional problem using five randomly placed point
charges. Although additional communication is required, our method
offers excellent parallel efficiency for large-scale high-performance com-
puting platforms. Our approach significantly increases the feasibility of
computationally highly intricate two-dimensional Wigner Monte Carlo
investigations of quantum electron transport in nanostructures.

1 Introduction

The Wigner formalism [11] provides an attractive alternative to the non-equi-
librium Green’s function formalism, as it provides a reformulation of quantum
mechanics - usually defined through operators and wave functions - in the phase
space using functions and variables [6]. Thereby, the Wigner formalism provides
a more intuitive description which also facilitates the reuse of many classical
concepts and notions. Several methods have been applied to solve the Wigner
equation of which the stochastic Wigner Monte Carlo method, using the signed-
particle technique [4,5], has emerged as probably the most promising approach:
it has made multi-dimensional Wigner simulations viable for the first time [8].
An efficient distributed parallel computation approach is the next crucial step
to facilitate the use of Wigner simulations to investigate actual devices.

Wigner Monte Carlo simulations have been made computationally feasible
by the annihilation step, required to counterbalance the continuous generation of
particles [7]. However, the memory demand of the annihilation algorithm itself is
proportional to the dimensionality and resolution of the phase space represented
in the simulation, which can lead to exorbitant requirements.

All in all, Wigner Monte Carlo quantum simulations suffer not just from
compute intensive operations but also from vast memory demands; the latter

c© Springer International Publishing Switzerland 2015
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is much more severe, as more realistic simulations are beyond reach on single
workstations with their limited memory.

Conventional parallelization approaches for Monte Carlo methods, using
domain replication, are embarrassingly parallel [1]. The particle ensemble is
split amongst computational units, where each sub-ensemble is treated com-
pletely independently. This necessitates domain replication, when working in a
distributed-memory context (as is the de facto standard for large-scale paral-
lel computations) to avoid additional communication. Such an approach offers
excellent parallel efficiency, however, domain replication is not feasible for the
Wigner Monte Carlo method due to the huge memory demands associated with
the annihilation algorithm, quickly exceeding the typically available memory on
a single computational unit. Further contributing to the challenge of implement-
ing scalable Wigner Monte Carlo simulations is the fact that particle annihilation
must be performed in unison across the global simulation domain [2]; a synchro-
nization step between each individual time step is required, impeding parallel
efficiency.

We present a message passing interface (MPI)-based domain decomposition
approach for two-dimensional problems, which avoids domain replications and
thus drastically reduces the memory requirements for each parallel computa-
tional unit. This work extends previous investigations of one-dimensional prob-
lems [2] to two-dimensional scenarios. Our approach to partition the simulation
domain and to accelerate the overall simulation process is discussed for the
Wigner Ensemble Monte Carlo simulator, which is part of the free open source
ViennaWD simulation package [10]. The parallel efficiency is evaluated based
on the execution times of a representative time-dependent, two-dimensional
example using randomly placed point charges. With our approach we not only
tackle the challenge of reducing simulation times, but much more importantly,
we enable to conduct highly memory-intensive Wigner Monte Carlo quantum
simulations in the first place.

2 Parallel Algorithm for Two-Dimensional Problems

The parallelization strategy for two-dimensional problems is based on previous
investigations regarding one-dimensional problems [2]. The domain decomposi-
tion approach entails splitting up the spatial domain amongst processes. Each
process represents a subdomain (i.e. a part of the global domain) and only treats
particles, which fall within its own subdomain. Thereby, the memory require-
ments to represent the phase-space, and all other space-dependent quantities, are
scaled down with the number of processes (subdomains) used. As the particle
ensemble evolves, the particles travel between subdomains. This necessitates an
inter-MPI process communication layer, representing spatially neighboring sub-
domains; a centralized communication where all worker processes transfer data
via a single master process is avoided, which would significantly limit parallel
scalability.

The applied domain decomposition technique assigns each MPI process to a
unique subdomain by splitting the simulation domain uniformly, as illustrated
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Fig. 1. The simulation domain is splitted uniformly. Each subdomain is assigned to
a separate MPI process. If a particle (black circle) enters the overlap area (red), it is
transmitted to the neighboring subdomain (Color figure online).

in Fig. 1. A so-called slab or one-dimensional decompositioning method is used
to partition the simulation domain, meaning that one direction is partitioned,
whereas the second direction (in a two-dimensional setting) is kept untouched.
Although such a partitioning technique theoretically tends to limit the paral-
lelization efficiency (e.g. the maximum number of utilizable MPI processes is
limited to the number of grid elements in the direction of the partitioning, as
one MPI process has to be at least responsible for one grid element), the method
provides more than enough parallel processing potential for today’s relevant
problem scenarios (cf. Sect. 3). This is even more so, when the communication is
aligned with the partitioning, meaning that the majority of particles primarily
propagate in the unpartitioned direction, minimizing the need for communica-
tion which in itself further increases parallel scalability.

The subdomains are assigned to MPI processes in a sequential order,
inherently providing an MPI/subdomain neighbor-identification mechanism. The
primary MPI communication consists of non-blocking direct neighbor commu-
nication. After each time step a lightweight message is used to globally trigger
an annihilation step within each MPI process. The transfer (communication)
of particles between processes only occurs once at the end of each time-step.
This necessitates a small overlap between adjacent subdomains, which serves
a similar purpose as a ghost layer used in conventional domain decomposition
techniques [3]. The overlap is used to identify particles traveling towards a neigh-
boring subdomain, which ultimately get transferred to the respective neighbor
subdomain at the end of every time step. A larger overlap between subdomains
simplifies the transfer of particles between processes (as particles are required
to be transferred less often), however, this introduces a larger data redundancy,
which negatively affects parallel efficiency. The exact extent of the overlap is a
simulation parameter which it should consider the maximum distance a particle
can travel within the chosen time-step as well as its direction of travel.
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Fig. 2. The potential barrier profile V [eV] (left) and the corresponding particle gen-
eration rate γ [s−1] (right) is shown for the simulation domain (Color figure online).

3 Results

This section investigates a time-dependent, two-dimensional problem (rectangu-
lar simulation domain, spatial dimensions are 70 nm × 128 nm) with respect to
parallel execution performance. The total number of particles is limited to 32·107

particles; the simulation is initialized with 3 · 103 particles. Reflective boundary
conditions are used for all boundaries, meaning that no particles leave the sim-
ulation domain. The coherence length is 30 nm and the lattice temperature is
300K. The system is simulated for 200 fs using a 0.5 fs time step.

Five point charges are spread over the simulation domain, each giving rise
to particle generation, concentrated within half of the coherence length around
it (Fig. 2). The simulation is parallelized via 16, 32, 64, and 128 MPI processes
using the VSC-2 supercomputer [9]. One VSC-2 computational node provides
16 cores (two 8-core AMD Opteron Magny Cours 6132HE 2.2 GHz) and 32 GB
of system memory; the nodes are connected via an InfiniBand QDR network.

Figure 3 shows the parallel execution performance of our approach which
gives an almost perfect, linear parallel scalability. For this setup, a simulation
which would otherwise take around 9.3 h (extrapolated, assuming linear scaling
relative to 16 MPI processes), takes about 35 min when using 16 MPI processes
or around 5 min when using 128 MPI processes. This fact clearly shows the signif-
icance of our parallelization approach as it drastically accelerates the simulation
process, allowing to considerably increase the pace of research.

In comparison to earlier investigations regarding one-dimensional problems [2],
our domain decompositioning approach works even better for two-dimensional
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Fig. 3. The execution performance of our two-dimensional parallelization approach
(dashed, blue line), shown relative to ideal scalability (black line), offers an almost
perfect parallel scaling behavior (Color figure online).

cases and increased particle numbers. The workload per MPI process drastically
increases, outweighing any potential communication overhead. In our two-
dimensional investigations, we capped the total number of particles at 32 · 107

particles, as compared to 8 · 106, 16 · 106, and 32 · 106 particles in our previous
one-dimensional investigations. We, therefore, allow around an order of magni-
tude more particles to take part in the simulation. An increase in the number of
particles is also required in two dimensions to increase the statistical confidence,
since the phase space is bigger. We compute the maximum number of particles for
each MPI process by dividing the maximum size by the number of MPI processes.
Therefore, in the case of using 128 MPI processes each process is responsible for
at most 25 · 105 particles, which offers enough workload per process to outweigh
the communication overhead required after each time step. Also, the presence of
several point charges gives rise to a very high generation rate; the entire simulation
domain is rather quickly populated with particles, inherently increasing the load
balance over all MPI processes.

Figure 4 depicts the total number of particles (the sum of positively and
negatively signed particles) for different time steps as computed via a parallelized
simulation. Over time, the entire simulation domain is flooded with particles,
however, local maxima occur around the point charges. The maxima take on a
rectangular shape (spatial dimensions correspond to the coherence length) due to
the taken implementation of the Wigner potential calculation for a given point.
While the total number of particles gives an indication of the computational
load, the positive and negative particles compensate each other when calculating
physically meaningful quantities, like the density shown in Fig. 5.
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Fig. 4. Number of particles (positive+negative) for different time steps (a-d). The ini-
tial wave package (a) propagates upwards and slightly to the right. Reflecting boundary
conditions are used for all four boundaries. Black circles indicate point charges (Color
figure online).



Parallelization of the Two-Dimensional Wigner Monte Carlo Method 315

Fig. 5. Normalized density (expressed as a probability) for different time steps (a-d).
The initial wave package (a) propagates upwards and slightly to the right. Reflect-
ing boundary conditions are used for all four boundaries. Black circles indicate point
charges (Color figure online).
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4 Summary

Our approach for parallelizing computationally highly demanding time-
dependent, two-dimensional quantum Wigner Monte Carlo simulations has been
presented in the context of the MPI-based Wigner Ensemble Monte Carlo simu-
lator, part of the free open source ViennaWD simulation package. The approach
uses a domain decomposition technique to distribute the workload among the
MPI processes. The conceptual approach for the parallelization technique has
been discussed as well as the setup and results of a two-dimensional simulation
example. A benchmark depicting the parallel execution performance for 16, 32,
64, and 128 MPI processes shows an almost perfect, linear parallel scalability.
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Abstract. A splitting numerical method is proposed to study the effect
of gravitational settling velocity and chemical reaction on pollutants
emitted from a point source on the boundary of an urban area. The
governing ultra-parabolic equation degenerates on the part of the bound-
ary and we apply a fitted finite volume scheme in order to resolve the
degeneration and to preserve the positivity property of the solution (con-
centration of the pollutant). Computational experiments illustrate the
efficiency of our numerical method.

Keywords: Primary and secondary pollutant models · Ultra-parabolic
equation · Degeneracy · Finite volume method

1 Introduction

The basic governing equations of primary and secondary pollutants can be writ-
ten in a general form as [9]

∂c̄

∂t̄
+ūz

∂c̄

∂x̄
=

∂

∂z̄

(
k̄z

∂c̄

∂z̄

)
−w̄s

∂c̄

∂z̄
+ v̄gk̄c̄, (x̄, z̄, t̄) ∈ (0, X̄)×(0, H̄)×(0, T̄ ), (1)

where c̄ = c̄(x̄, z̄, t̄) is the ambient mean concentration of pollutant species, ūz

is the mean wind speed in x̄ - direction, k̄z is the turbulent eddy diffusivity in
z̄ - direction, w̄s is the gravitational settling velocity, v̄g is the mass ratio while
k̄ is the first order chemical reaction rate coefficient.

Typical meteorological expressions of K-eddy diffusivity are the following:

k̄z(z̄) = βūz̄e−4z̄/H̄ or k̄z(z̄) = βūz̄e−bη/(a + bz̄), (2)

where ū is the friction velocity and β, a, b, η are meteorological parameters.
The Eq. (1) equipped with one of the diffusion coefficients in (2) is an ultra-

parabolic equation with degeneration. A typical example of ultra-parabolic equa-
tions without degeneration is ut+xuy+uxx = f(x, y, t), introduced in the work of
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 319–326, 2015.
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A. N. Kolmogorov in 1934 for the description of non-isotropic processes. Later
equations of such type appeared in mechanics, physics, biology and in other
branches of science. One of the first papers on the existence and uniqueness
of solution for ultra-parabolic equations is [5]. The well-posedness in special
weighted Sobolev spaces of the problem in this paper can be investigated in a
similar way as it is done for the parabolic problem in [4]. Finite element and finite
difference approximations of ultra-parabolic equations without degeneration are
discussed in [1,2,11].

To write the problem under consideration in dimensionless variables, we intro-
duce the new variables x = x̄/H̄, z = z̄/H̄, h = h̄/H̄, l = l̄/H̄, ws = w̄s/uz,
u = ū/uz, vdp = v̄dp/uz, t = t̄uz/H, c = c̄uz/Q, k = k̄H/uz, Q1 = Q̄1/Q. Then,
in dimensionless variables, the problem under consideration is:

∂c

∂t
+

∂c

∂x
=

∂

∂z

(
kz

∂c

∂z

)
− ws

∂c

∂z
+ kvgc, x ∈ (0,X), z ∈ (0, 1), t ∈ (0, T ), (3)

kz(z) = βuze−4z,

c(x, z, 0) = 0, x ∈ (0,X), z ∈ (0, 1), (4)
c(0, z, t) = Q1δ(z − h), h < 1, z ∈ (0, 1), t ∈ (0, T ), (5)

kz
∂c

∂z

∣
∣
∣
∣
(x,0,t)

= vdpc(x, 0, t) − μ, μ =
{

1, 0 < x ≤ l,
0, l < x ≤ X,

t ∈ (0, T ), (6)

kz
∂c

∂z

∣
∣
∣
∣
(x,1,t)

= μ1, x ∈ (0,X), t ∈ (0, T ). (7)

Various numerical methods for air-pollution problems described by parabolic
equations are developed in [3,4,6–8]. The difficulties that arise at the numerical
treatment of the model are: 1-st order degeneracy of the ultra-parabolic equations
( 1) on the boundary z = 0, see (2); Dirac-delta point source; small diffusion or
convection domination that cause boundary layers, etc. In the next section, we
describe a hyperbolic-parabolic splitting. In Sect. 3 we construct an exponential
fitted finite volume difference scheme for the parabolic subproblems to remove
the degeneracy and possible boundary layers. Computational examples are pre-
sented in Sect. 4.

2 The Splitting Method

We introduce the non-uniform mesh in time 0 = t1 < t2 < . . . < tn < tn+1 <
. . . < tP+1 = T , τn = tn+1−tn, τ = max

1≤n≤P
τn. Starting from the initial condition

(4) we solve sequentially [10] on each subinterval (tn, tn+1], n = 1, 2, . . . , P :

Parabolic Problem: For given c(x, z, tn) find the solution

ψ(x, z, t), (x, z, t) ∈ (0,X) × (0, 1) × (tn, tn+1/2], x − fixed,
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of the problem

1
2

∂ψ

∂t
=

∂

∂z

(
p(z)z

∂ψ

∂z
+ q(z)ψ

)
+ r(z)ψ, (8)

p(z) = βu/e4z, q(z) = −ws, r(z) = vgk,

ψ(x, z, 0) = c(x, z, 0) = 0, ψ(x, z, tn) = c(x, z, tn), n = 2, 3, . . . , P, (9)

kz
∂ψ

∂z

∣
∣
∣
∣
(x,0,t)

= vdpψ(x, 0, t) − μ, μ =
{

1, 0 < x ≤ l,
0, l < x ≤ X,

t ∈ (0, T ), (10)

kz
∂ψ

∂z

∣
∣
∣
∣
(x,H,t)

= μ1, x ∈ (0,X), t ∈ (0, T ); (11)

Hyperbolic Problem: For given ψ(x, z, tn+1/2) find the solution

c(x, z, t), (x, z, t) ∈ (0,X) × (0, 1) × (tn+1/2, tn+1], z − fixed,

of the problem

1
2

∂c

∂t
+

∂c

∂x
= 0, (x, z, t) ∈ (0,X) × (0, 1) × (tn+1/2, tn+1], (12)

c(x, z, tn+1/2) = ψ(x, z, tn+1/2), (13)
c(0, z, t) = Q1δ(z − h), h < 1, z ∈ (0, 1), t ∈ (0, T ). (14)

3 Discretization

3.1 Parabolic Problem

We will implement the S. Wang difference scheme [12]. To write the space dis-
cretization, we divide the interval [0,X] into N subintervals Ix,i = [xi, xi+1],
i = 1, 2, . . . , N by the nodes 0 = x1 < x2 < . . . < xN < xN+1 = X. Next we
divide the interval by z [0, 1] into M subintervals Iz,j = [zj , zj+1], j = 1, 2, . . . , M
by the nodes 0 = z1 < z2 < . . . < < zD−1 < zD = h < zD+1 < . . . <
zM < zM+1 = 1. Let hx,i = xi+1 − xi for i = 1, 2, . . . , N , hx = max

1≤i≤N
hx,i,

hz,j = zj+1−zj for j = 1, 2, . . . ,M , hz = max
1≤j≤M

hz,j . We introduce the secondary

mesh zj−1/2 = 0.5 (zj−1 + zj), zj+1/2 = 0.5 (zj + zj+1) for each j = 2, 3, . . . , M .

A. Internal Grid Nodes. We integrate Eq. (8) on the interval [zj−1/2, zj+1/2],
j = 2, 3, . . . ,M to get

zj+1/2∫

zj−1/2

1
2

∂ψ

∂t
dz =

zj+1/2∫

zj−1/2

∂

∂z

(
p(z)z

∂ψ

∂z
+ q(z)ψ

)
dz +

zj+1/2∫

zj−1/2

r(z)ψdz. (15)



322 T. Chernogorova et al.

For all integrals except for the second one in (15) we use the quadrature formula
of the central rectangles:

1
2

∂ψ

∂t

∣
∣
∣
∣
(x,zj ,t)

�z,j =
(

p(z)z
∂ψ

∂z
+ q(z)ψ

)∣
∣
∣
∣
(x,zj+1/2,t)

−
(

p(z)z
∂ψ

∂z
+ q(z)ψ

)∣
∣
∣
∣
(x,zj−1/2,t)

+ �z,j r(z)ψ|(x,zj ,t) , (16)

where �z,j = zj+1/2 − zj−1/2. We rewrite Eq. (16) in the form

1
2

∂ψj

∂t
�z,j = ρi+1/2 − ρi−1/2 + �z,jrjψj , (17)

where

ρ (ψ) = p(z)z
∂ψ

∂z
+ q(z)ψ,

∂ψj

∂t
=

∂ψ

∂t

∣
∣
∣
∣
(x,zj ,t)

, ψj = ψ|(x,zj ,t) , rj = r|(x,zj ,t) .

In order to obtain an approximation of the flux ρ (ψ) at zj+1/2, j = 2, 3, . . . ,M
for fixed x and t, we consider the following auxiliary problem:

(
pj+1/2zv′ + qj+1/2v

)′ = 0, z ∈ Iz,j , (18)
v(zj) = ψj , v(zj+1) = ψj+1, (19)

where pj+1/2 = p(zj+1/2), qj+1/2 = q(zj+1/2).
An integration of (18) leads to the linear ODE of first order

pj+1/2zv′ + qj+1/2v = M1 = const.

The general solution of this equation is

v = M2z
−αj +

M1

qj+1/2
.

Using the boundary conditions (19) we get

ρj+1/2 = M1 = qi+1/2

z
αj

j+1ψj+1 − z
αj

j ψj

z
αj

j+1 − z
αj

j

, j = 2, 3, . . . ,M. (20)

In analogical way we approximate ρj−1/2 in (17) for j = 3, 4, . . . ,M :

ρj−1/2 = qj−1/2

z
αj−1
j ψj − z

αj−1
j−1 ψj−1

z
αj−1
j − z

αj−1
j−1

. (21)

In order to find an approximation of the flow flux at z3/2, we consider the problem

(
p3/2zv′ + q3/2v

)′ = M1, z ∈ Iz,1, v(z1) = ψ1, v(z2) = ψ2.
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In this case one gets

v = ψ1 +
ψ2 − ψ1

z2
z,

and the approximation for ρ3/2 is

ρ3/2 =
1
2

[(
p3/2 + q3/2

)
ψ2 −

(
p3/2 − q3/2

)
ψ1

]
. (22)

B. Boundary Grid Nodes. For the left vertical boundary we integrate Eq. (8)
over the interval [z1, z3/2] to get

1
2

∂ψ1

∂t

hz,1

2
= ρ3/2 − ρ1 +

hz,1

2
r1ψ1.

For ρ3/2 we have the approximation from (22). For ρ1 we have

ρ1 = p(z1)z1
∂ψ1

∂z
+ q(z1)ψ1 = vdpψ(x, 0, t) − μ + q(z1)ψ1 = ψ1 (vdp + q1) − μ.

For the right vertical boundary z = 1 we integrate Eq. (8) on the interval
[zM+1/2, zM+1] to get

1
2

∂ψM+1

∂t

hz,M

2
= ρM+1 − ρM+1/2 +

hz,M

2
rM+1ψM+1.

For ρM+1/2 we have the approximation (20) at j = M . For ρM+1 we have

ρM+1 = p(zM+1)zM+1
∂ψM+1

∂z
+ q(zM+1)ψM+1 = μ1 + qM+1ψM+1.

Taking all approximations above, we obtain the semi-discretization of the prob-
lem (8)–(11):

1
2

∂ψ1

∂t

hz,1

2
=

1
2

[(
p3/2 + q3/2

)
ψ2 −

(
p3/2 − q3/2

)
ψ1

]
− ψ1 (vdp + q1) + μ

+
hz,1

2
r1ψ1;

1
2

∂ψ2

∂t
�z,2 = q5/2

zα2
3 ψ3 − zα2

2 ψ2

zα2
3 − zα2

2

− 1
2

[(
p3/2 + q3/2

)
ψ2 −

(
p3/2 − q3/2

)
ψ1

]

+�z,2r2ψ2;

1
2

∂ψj

∂t
�z,j = qj+1/2

z
αj

j+1ψj+1 − z
αj

j ψj

z
αj

j+1 − z
αj

j

− qj−1/2

z
αj−1
j ψj − z

αj−1
j−1 ψj−1

z
αj−1
j − z

αj−1
j−1

+�z,jrjψj ; j = 3, 4, . . . ,M ;

1
2

∂ψM+1

∂t

hz,M

2
= μ1 + qM+1ψM+1 − qM+1/2

zαM

M+1ψM+1 − zαM

M ψM

zαM

M+1 − zαM

M

+
hz,M

2
rM+1ψM+1.
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With respect to time we construct an implicit scheme:

−
(

hz,1

2τk
+

1
2

(
p3/2 − q3/2

)
+ vdp + q1 − hz,1

2
r1

)
ψ̄1 +

(
1
2

(
p3/2 + q3/2

)
)

ψ̄2

= −hz,1

2τk
ψ1 − μ,

1
2

(
p3/2 − q3/2

)
ψ̄1 −

(
�z,2
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were ψ̄ is the approximate solution on the n + 1/2-th time level and ψ is the
approximate solution on the n-th time level. The truncation error of the con-
structed scheme is of order O(τ + hz).

3.2 Hyperbolic Problem

We first approximate the δ-function in the boundary condition, namely we
replace the δ-function by a δ-like with support 2Δ in the following way:

δΔ =
{

Δ−|z−z∗|
Δ2 , z ∈ [z∗ − Δ, z∗ + Δ] ,

0, z /∈ [z∗ − Δ, z∗ + Δ] .

Then we approximate (14) by c1 = Q1δΔ. For (12) we construct a backward
difference scheme:

ĉi − ψi

τn
+

ĉi − ĉi−1

hx,i−1
= 0, i = 2, 3, . . . , N.

This scheme is unconditionally stable and its truncation error is of order O(τ +
hx). For ĉi we get

ĉi =
hx,i−1ψi + τnĉi−1

hx,i−1 + τn
, i = 2, 3, . . . , N.



A Splitting Numerical Method for Primary and Secondary Pollutant Models 325

4 Numerical Experiments

In order to observe the error behaviour of the difference method we used the
analytical solution can = (x2 +z2)t and compared it with the numerical solution
when X = T = 1, β = 0.4, u = 10−2, ws = 8 · 10−5, vg = 1.5, k = 10−3,
τ = τn = 10−4. The space meshes are regular and the rate of convergence (RC)
is calculated using the double mesh principle. Results are presented in Table 1.

To show the efficiency and usefulness of the discretization method, various test
problems with different choices of parameters were solved. For all examples, pre-
sented in this paper, we use the following fixed values of the parameters: X̄ =
6000 m, H̄ = 600 m, T̄ = 10000 s, ūz = 5 m/s, Q̄ = 1 mg/m2s, β = 0.4, l̄ = X̄/2.

As a first example we perform numerical experiments for the following values
of the other parameters in the problem under consideration (they are at the
lower bound of the interval we investigate): ū = 0.05 m/s, w̄s = 4 · 10−4 m/s,
k̄ = 8.3 · 10−6 1/s, Q̄1 = 0 mg/m2s, v̄dp = 5 · 10−3 m/s, vg = 1.5. The graphics of
the numerical solution of the problem under consideration at t̄ = T̄ is presented
in Fig. 1.

For the second example we choose the values of the other parameters at the
upper bound of the interval we investigate: ū = 0.5 m/s, w̄s = 1 · 10−3 m/s,
k̄ = 2.2 · 10−5 1/s, Q̄1 = 0 mg/m2s, v̄dp = 7 · 10−3 m/s, vg = 4.43. The graphics
of the solution at t̄ = T̄ is presented in Fig. 2.

For the third example we use the values of the parameters from the second
example, but with Q̄1 = 0.2 mg/m2s and h̄1 = 60 m. The graphics of the solution
in this case at t̄ = T̄ is presented in Fig. 3.

From Figs. 1, 2 and 3 one can see the influence of the variable parameters of
the problem under consideration on the shape of the solution and its maximal
value at t̄ = T̄ .

Table 1. Rate of convergence

N×M 10× 10 20× 20 40× 40 80× 80 160× 160 320× 320

Relative C-norm
of the error

2.385 E-2 1.211 E-2 6.058 E-3 2.984 E-3 1.439 E-3 6.715 E-4

RC - 0.977 0.999 1.021 1.052 1.100

Fig. 1. Numerical solution at t̄ = T̄ . Fig. 2. Numerical solution at t̄ = T̄ .
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Fig. 3. Numerical solution at t̄ = T̄ .
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Abstract. Climate modelling, either global or regional, is usually
treated as a typical large-scale scientific computational problem. The
regional climate model RegCM, well-known within the meteorological
community, is applied in the study to estimate quantitatively the snow
water equivalent, which is the most consistent snow cover parameter.
Multiple runs for a time window of 14 consecutive winters with different
model configurations, in particular with various initial and boundary
conditions, have been performed, in an attempt to obtain most ade-
quate representation of the real snow cover. The results are compared
with stations’ measurements from the network of the National Institute
of Meteorology and Hydrology. Generally all runs yield similar results,
where the overall (i.e. over the whole time span) biases are acceptable,
but, however, with large discrepancies in the day-by-day comparisons,
which is typical for climate modelling studies.

Keywords: Regional climate modelling · RegCM4 · Snow water
equivalent · Verification

1 Introduction

The snow is a very important component of the climate system which controls
surface energy and water balances and is the largest transient feature of the land
surface [17]. It has an effect on atmospheric circulation through changes to the
surface albedo, thermal conductivity, heat capacity and aerodynamic roughness.
The snow properties of surface water storage control the availability of water
in many ecosystems and to a sixth of the world’s population [3]. Therefore it
is vital that snow is properly represented in geophysical models if we want to
understand and make predictions of weather, climate, the carbon cycle, flooding
and drought.

The various properties characterizing snow are highly variable and so have
to be determined as dynamically active components of climate. These include
the snow depth (hs) snow water equivalent (SWE), density, and snow cover
area (SCA). The snow water equivalent is a measure of the amount of water
contained in snow pack. It can be considered as the depth of water that would

c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 327–334, 2015.
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theoretically result if the whole snow pack instantaneously melts. SWE is the
product of snow depth and snow density. Unfortunately, from the four snow
metrics listed above, only extent (i.e., snow cover area (SCA)) is easily monitored
using satellites. SCA, however, is only an indirect measure of the world’s snow
water resources (e.g. [2]). To fully understand global snow water trends, the
most fundamental metric to assess is SWE, with hs a close second. However,
on large spatial scales the properties of snow are not easily quantified either
from modelling or observations. For example, station based snow measurements
often lack spatial representativeness, especially in regions where the topography,
vegetation and overlaying atmosphere produce considerable heterogeneity of the
snow-pack distribution [12].

Of the two fundamental parameters, depth is quicker and easier to mea-
sure than SWE. No detailed estimates of the total number of depth and SWE
measurements made worldwide is available, but what is available suggests that
considerably more depths are collected than SWE measurements. So, for exam-
ple, following the directives of the World Meteorological Organization (WMO),
hs is measured in every station of the network of the Bulgarian National Institute
of Meteorology and Hydrology every day, at 06 UTC and SWE - usually only
five times monthly. Thus, despite the weaknesses of the land surface models, the
quantitative assessment of the snow properties by the means of the numerical
simulation is reasonable approach for obtaining of spatial and temporal consis-
tent picture of the snow-pack distribution.

The paper aims to present some, preliminary indeed, results from multiple
runs with different model configurations, which are performed, in attempt to
obtain a most adequate representation of the real snow cover.

2 Concept and Methodology

Regional climate models (RCMs) have been developed and extensively applied
in the recent decade for dynamically downscaling coarse resolution information
from different sources, such as global circulation models (GCMs) and reanaly-
ses, for different purposes including past climate simulations, as in the presented
study and future climate projection. This widely used and productive approach
is used here. The main simulation tool is the freely and on-line available from
the web-site of the maintaining institute, the International Center of Theoretical
Physics in Italy (ICTP, http://gforge.ictp.it/gf/project/regcm/) newest version
4 of the Regional climate model RegCM. RegCM4 is a 3-dimensional, sigma-
coordinate, primitive equation RCM with dynamical core based (version 2 and
later) on the hydrostatic version of the NCAR-PSU Mesoscale Model 5 (MM5)
[8]. The radiative transfer package is taken from the Community Climate Model
v. 3 (CCM3) [11]. The large-scale cloud and precipitation computations are per-
formed by Subgrid Explicit Moisture Scheme (SUBEX, [15]) and the land surface
physics are according to the Biosphere-Atmosphere Transfer Scheme (BATS, [5]).
The adopted convective scheme for the RCM simulations in the present study is
the Grell scheme [7] with the Arakawa and Schubert [1] closure assumption.

http://gforge.ictp.it/gf/project/regcm/
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The model is flexible, portable and easy to use. It can be applied to any
region of the World, with grid spacing of up to about 10 km (hydrostatic limit),
and for a wide range of studies, from process studies to paleoclimate and future
climate simulation. There are a number of previous studies that evaluated the
model performance around the world ([6] and references therein).

Main manifestation of the flexibility of the modern RCM, including RegCM4,
is the possibility for selection among different initial and boundary conditions
datasets (ICBC), parameterization schemes/modules within the model, various
constants and closure assumptions, etc., combining them in practically count-
less model setups. Obviously the simulation output from such model setups will
differ from one another, and, more or less, from the “reality”. Investigation of
the influence of the changes of some parameter on the output, often considered
as “sensitive study” is out of the scope of our work. There is, however, overall
agreement that the ICBC plays the most important role for the model per-
formance. Although there are numerous tests with different reanalysis data,
which are considered as better ICBC compared to those produced by GCMs,
there is no single reanalysis data set yielding the best results in every region
and/or every season. We have performed simulations with the two most popular
and widely used reanalysis datasets - The ERA-Interim of the European Centre
for Medium-Range Weather Forecasts (ECMWF) [4] with horizontal resolution
1.5◦ × 1.5◦ for RegCM simulations, noted further as EIN15 and the reanalysis
2 of the USA National Centers for Environmental Predictions and the National
Center for Atmospheric Research (NCEP/NCAR) [10] with horizontal resolution
2.5◦ × 2.5◦, noted further as NNRP2. It is physically reasonable also to expect,
that the module, which describes the surface processes and the interactions with
the under- and overlaying soil and atmospheric layers, namely the land surface
model, plays relevant role especially in the numerical treatment of the snow
cover. A major addition to RegCM4 is the option to use the Community Land
Model (CLM), version 3.5. Compared to BATS, CLM is a more advanced package
(and as a result computationally heavier), which is described in detail in [13,14].
It uses a series of biogeophysically-based parameterizations to describe the land-
atmosphere exchanges of energy, momentum, water, and carbon.

3 Performed Computations and Results

The model domain is centered over Bulgaria, includes the whole Balkan penin-
sula, as shown in Fig. 1 and consists of 72× 77 20 km× 20 km gridcells. The
simulation period is from 1th November till 31th March (hereafter: winter) for
14 consecutive years between 2000 and 2014. Model output is the gridded dis-
tribution of the SWE on 6-hourly basis (i.e. at 00, 06, 12 and 18 UTC).

As in many similar studies, part of the difficulty in exploring the dynamic
downscaling ability issue is rooted in the lack of validation data for small scale
features and reliable measurements. Additionally, due to the shorter (in
comparison with higher latitudes) and discontinuous duration of the snow cover
in the region, the data series of the station measurements are sparse and also
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Fig. 1. Average SWE (unit: mm) for
February 2012

Fig. 2. Scatter plot for Haskovo (N = 75,
units: mm SWE) for EIN15/BATS (upper
left pane), NNRP2/BATS (upper right
pane), EIN15/CLM (lower left pane) and
NNRP2/CLM (lower right pane). The mea-
sured values are plotted along the abscis-
sas. The comparisons measured - nearest
gridnode value are marked with crosses and
the comparisons measured - interpolated
value - with circles.

relatively short. Specific feature of the snow cover is, due to practical absence of
horizontal mixture processes, the relatively high (in comparison to the
atmospheric lower-level parameters) heterogeneity. Thus, even on small distances,
considerable differences in the snow properties can be observed, respectively
modelled. In an attempt to compensate this, not only comparison between the
point observation and the nearest gridpoint, which is the most commonly used
approach, but also comparison between the point observation and the inter-
polated to this point from the four nearest surrounding gridpoints’ values, is
performed.

Observational time series with acceptable length for the period and domain
under consideration are available only for four Bulgarian stations, but only two of
them, Haskovo and Rasgrad, are located over relatively flat terrain. The selected
resolution of 20 km, and, more generally, the hydrostatic limit of 8–10 km, do not
allows to resolve smaller scale features and thus is not suitable over mountainous
orography, where the other stations are deployed. Station Rasgrad is located in
the northern, and station Haskovo - in the southern half of the country and
they can be roughly considered as representatives of these climatic regions. A
traditional way to contrast graphically the measured vs. modelled values is to
present them as scatter plot, as shown in Figs. 2 and 3.

The degree of agreement of the time series of the observed (measured) values of
SWE Oi and their modelled correspondents Mi, is estimated with the frequently
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Fig. 3. Same as Fig. 2, but for station Rasgrad (N = 124)

used statistical quantities, namely the root mean square error (RMSE), the corre-
lation coefficient (also termed the pearson correlation coefficient, R), the index of
agreement (IA) and the mean bias (BIAS). Explicit formulas for the first two will
not be given due to their popularity, and the last two are equal accordingly to:

IA = 1 −
∑N

i=1(Oi −Mi)2
∑N

i=1(
∣
∣Mi −O

∣
∣ +

∣
∣Oi −O

∣
∣)2

(1)

BIAS =
1
N

N∑

i=1

(Mi −Oi) (2)

The summation is along the time series length N and the overlines notes
time-averaging. The (dimensionless) index of agreement condenses the differ-
ences between modelled and observed values for a given time period into one
statistical quantity. It provides a measure of the match between the departure
of each prediction from the observed mean and the departure of each observa-
tion from the observed mean. IA has a theoretical range of 0 to 1, with a value
of 1 suggesting “perfect” agreement. The mean bias is simply the average bias
between the modelled and observed values.

The result of the statistical comparison is summarized in Table 1.
It is obvious that these observational data are too scarce, respectively the

calculated statistics insufficient, to obtain results about each models run perfor-
mance with satisfying representativeness and confidence. So far, however, some
basic facts seem clear.

Generally (and roughly) speaking, no model configuration, among the four,
performs significantly better than the others. For both stations, in terms of the
BIAS, the performance of the set NNRP2/CLM looks worst. Similar, at the first
site, a puzzling fact (due to the above mentioned theoretical superiority of CLM
over BATS) is found by Steiner et al. [16] in significantly deeper study of the
CLM applicability in the RegCM.
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Table 1. Statistical indexes for the comparison for Haskovo (upper half) and Rasgrad
(lower half). The first number in each cell is for the comparison measured - nearest
gridnode value and the second - for the comparison measured - interpolated value

RMSE (mm) R (corr. coeff.) IA BIAS (mm)

EIN15/BATS 31.97 31.84 0.17 0.11 0.54 0.51 −6.56 −8.34

NNRP2/BATS 31.89 32.77 0.15 0.09 0.48 0.45 −7.90 −10.26

EIN15/CLM 49.38 41.06 0.17 0.21 0.44 0.50 12.44 10.28

NNRP2/CLM 37.25 35.46 0.22 0.17 0.52 0.51 3.37 −0.65

EIN15/BATS 32.72 34.42 0.58 0.59 0.62 0.60 2.09 2.10

NNRP2/BATS 30.78 30.35 0.52 0.53 0.61 0.62 −1.59 −1.53

EIN15/CLM 50.80 48.77 0.57 0.58 0.48 0.49 23.73 21.45

NNRP2/CLM 31.67 33.51 0.55 0.55 0.61 0.60 3.90 6.13

The interpolation between the gridnodes to the point of the station does not
lead to any remarkable convergence of the computed values to the measured ones.
The weaknesses in the model physics, rather than the displacement between the
gridnode and the station point are the most natural explanation therefore.

As shown in Figs. 2 and 3 the disagreement in the individual pairs is relatively
high - up to a factor of 5, whose quantitative expression are the high
values of RMSE and low ones of the R and IA. The BIAS-es, however, except the
NNRP2/CLM-case, are “acceptably” small. Therefore, it can be concluded that
no systematic model under- or overestimation is detected. Keeping in mind also
that the BIAS is the difference between the time-averaged modelled and observa-
tional values, the model behaviour for the whole period can be estimated as good.

4 Comments and Conclusion

The obvious main reasons for the detected discrepancies between the model
results on the one hand and the measurements on the other, are the weaknesses
of the parameterization schemes and/or their combination in the selected model
setups. Other experiments with different settings have to be performed. Thus,
due to the expected minimal influence of the convection during most of the
winter season in the domain, the replacement of the standard large-scale (i.e.
non-convective) precipitation scheme SUBEX, with the Tompkins’s one, can be
the subject of further efforts.

As emphasized in many studies (see, for instance, [18]), the “climate down-
scaling” concept mainly refers to “climate” statistics based on averages (or sums
as shown in Fig. 1) of the climate system over periods of a month or more.
RCMs can and have been applied for various temporal scales, but as a whole,
in contrast to the weather prediction models, they are not intended to fore- or
hindcast the state for periods shorter than 1–2 weeks. Thus, strictly speaking,
such day-by-day comparisons and any judgments based upon them, are method-
ologically not correct. Nevertheless, however, such procedure is often treated in



Snow Cover Assessment with Regional Climate Model 333

similar numerical experiments as a necessary (first) step in verification/model
performance evaluation.

Satellite earth snow observation products have the needed spatial and tem-
poral consistency, which allows comparisons with model output over continuous
area and time frames. The absence of this consistency of the point measure-
ments is an inherent weakness of every statistical evaluation procedure based
upon them and thus utilizing satellite data is a significant step ahead in the
quantitative snow cover assessment. Although among the other products SWE
has proven more problematic [9], especially for wet snow and during melt, which
is a typical case in the region due to its climate, the common treatment of
SWE satellite data and model results is already a planned continuation of the
presented work.

The model RegCM is constantly developed and, respectively, its simulation
capabilities are steadily increasing. The expected in the near future transition
to a version with non-hydrostatic dynamical core will improve its downscaling
possibilities. Then it will be possible to perform simulations with resolutions
below 10 km, which is significant, for instance, for studies as the one presented
here, where the representation of the physical processes over the topographic
heterogeneous terrain of the Balkan peninsula in proper spatial scale is crucial.
This concerns even to a greater extent the snow pack assessment studies, due
to the fact that, at given geographical latitude, the mountainous snow covers
are, generally speaking, those with the longest duration and thickness, with all
hydrological, ecological and socio-economical consequences.

Acknowledgments. Deep gratitude to the organizations and institutes (ICTP,
ECMWF, NCEP-NCAR, Unidata, MPI-M and all others), which provides free of charge
software and data. Without their innovative data services and tools this study would
be not possible.
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Abstract. Since the year 2000 Bulgaria is facing progressive increase
of wildland fire occurrence. That is caused mainly because of human
mistakes in having fire camps or agricultural land processing after crop
harvesting. At the moment Bulgaria has no working mechanism to spot
such fires before they become a threat, however the team from Bulgarian
Academy of Sciences is working on fire behaviour modelling issues since
2007 and in this work the first attempts for Bulgarian forestry data clas-
sification will be presented according to the existing 53 Fire Behavior
Fuel Models (FBFMs), and estimations where custom fuels has to be
prepared for better representation of the potential fire spread. Calibra-
tions with FARSITE (Fire Area Simulator) runs have been performed
for the area of Zlatograd Forestry Department (Bulgaria) and the results
are compared with Harmanli (Bulgaria) WRF-Fire/S-Fire simulations.
The differences in the fire behaviour fuel models estimations reflect in
the final simulated burned area which is presented in the conclusions.
Fire behaviour fuel modeling based on both simulation approaches in
Zlatograd and Harmanli areas gives future application of the presented
work for Bulgarian test cases.

1 Introduction

FARSITE runs with the standard or custom Fire Behaviour Fuel Models in
Bulgaria has never been done until our first attempts for this on the test cases
selected randomly for the period 2011–2012 on the territory of Zlatograd Forestry
Department. In the previous works on Bulgarian test case nearby the area
of Harmanli town has been used CORINE categories [4,5]. The approach in
Harmanli test case gives CORINE species division adapted only to the thirteen
classes of Anderson [1]. However this approach has some weaknesses, because
fuel load parameters description with satellite images only is hard to be well jus-
tified. The current work present chronologically how the available forestry data

c© Springer International Publishing Switzerland 2015
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from the Zlatograd Forestry department is prepared for the FARSITE runs from
turning the list of biological species into FBFMs according to the FARSITE input
instructions. Most of the collected data has been provided as paper maps which
processing into digital GIS (Geographic Information Systems) layers had to meet
the requirements of FARSITE. The standard FBFMs [1,8] has been taken into
consideration with their parameters for fuel load (1-hr, 10-hr, 100-hr, live herba-
ceous and live woody), compared to the test cases according to the best collected
data. This work is giving both Harmanli and Zlatograd FBFMs methodologies
and how they have been implemented in the WRF-Fire/S-Fire and FARSITE
runs [3,5]. The conclusions give comparison on the achieved results with some
plans for future refinements.

2 Summary of Harmanli Test Case Data Preparation

In the Harmanli test case WRF-Fire/S-Fire computer based tool has been used,
which is a combination between the mesoscale atmospheric code WRF-ARW [9]
with a fire spread module, based on the Rothermel model [6] implemented by
the level set method.

The semi-empirical fire propagation model imposes the fire spread rate directly,
replaces the leading edge of the combustion wave by instantaneous ignition and
replaces the fuel depletion rate by an imposed one. We consider fire burning in
the domain Ω = Ω(t) in the (x,y) plane, with the boundary Γ = Γ (t) called the
fire line, and with outside normal −→n = −→n (x, y, t), (x, y) ∈ Γ (t). The time of igni-
tion ti(x, y) at a point (x, y) ∈ Ω(t) is defined as the time when the point (x,y)
is at the fire line, that is, (x, y) ∈ Γ (ti(x, y)). The fire-line propagation model
postulates that the fire line evolves with a given spread rate S = S(x, y, t) in
the normal direction. The spread rate S is a function of the fuel properties, the
wind −→v and the terrain gradient ∇z in the normal direction −→n to the fire line,
that is, S = S(−→v ·−→n ,∇z ·−→n ), and is given by the modified Rothermel’s formula

S =

⎧
⎨

⎩

0, if S̃ < 0,

Smax, if S̃ > Smax,

S̃, otherwise,
(1)

S̃ = min{B0, R0 + φW + φS},

where Smax is the maximum rate of fire spread, R0 is the spread rate in the absence
of wind, φW = a(−→v · −→n )b is the wind correction, φS = d∇z · −→n is the terrain
correction a, b and d are constants and B0 is the backing rate that is the minimal
fire spread rate even against the wind. A small backing rate of spread must be
specified, since fires are known to creep upwind on their upwind edge due to
radiation.

In the burning area, the model postulates that the fuel decreases exponen-
tially from the ignition time, that is,

F (x, y, t) =

{
F0(x, y)e− (t−ti(x,y))

W (x,y) , if (x, y) ∈ Ω(t)
F0(x, y), otherwise

(2)
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where F0(x, y) is the initial fuel supply and W (x, y) is the time constant of
the fuel. The heat flux from the fire to the atmosphere is determined from the
amount of fuel burned by

Φ = −A(x, y)
∂

∂(t)
F (x, y, t) (3)

which gives the modifications to the local weather conditions in the area where
the fire has occurred. The so called “fire weather” is accounted with this equation.
The coefficients B0, R0, Smax,a, b, d, W , and A, characterize the fuel load. The
fire model input data consists of the fuel category array, which is integrated in
the WRF input data and can be alternatively set from the namelist for testing.

A simulation with WRF-Fire/S-Fire requires input data from a variety of
sources from meteorological initial and boundary conditions to static surface
properties. For the meteorological inputs the U.S. National Center for Environ-
mental Protection (NCEP) gives an 1 degree resolution grid covering the entire
globe with 6 hour reanalysis cycle. The data is freely available and can be down-
loaded automatically over HTTP by using a simple script. Creating simulation
also requires a number of static data fields describing the surface properties
of the area. All such data is available as part of a standard global dataset for
WRF. The fields in this dataset are available at various resolutions ranging from
about 1 Km to 10 km, which is sufficient for most mesoscale weather modeling
purposes. Each field is stored in a unique format consisting of a series of simple
binary files described by a text file. A geogrid utility in the WRF preprocessor
(WPS) interpolates the data in these files onto the model grid and produces an
intermediate NetCDF file used in further preprocessing steps. While the stan-
dard geogrid dataset is sufficient for most weather forecasting applications, it
lacks two high resolutions fields. These fields are surface topography and fuel
information. Both are essential for modeling fire behavior because they directly
affect the rate of spread of the fire front inside the model. Topography at a res-
olution of about 90 m for the area of Harmanli is used from the Shuttle Radar
Topography Mission (SRTM) at http://eros.usgs.gov. The data received from
the server is a GIS raster format (DTED), which is processed and converted to
geogrid binary data format. The final piece of surface data needed for input into
geogrid is a categorical field describing the properties of the fuels. In the U.S.,
this data is readily available from the USGS, however, no such data exists for the
Harmanli or any other Bulgarian region. Instead data for this field is used from
the Corine Landcover Project (financed by the European Environment Agency
and the member states). This project provides landcover data for Bulgaria with
100 m resolution with a 25 ha minimum mapping unit http://www.eea.europa.
eu/data-and-maps/data/corine-land-cover-2006-raster.

The downloaded satellite data along with orthophoto data from the geoportal
of the Ministry of Regional Development (MRD) of Bulgaria can be used to
estimate the fuel types of the domain like conifer or deciduous woods. All rivers,
lakes, villages and forest areas can be vectorized using the orthophoto images
combined with CORINE2006 into a GIS vector shape file. The vectorized file
provides very high accuracy of representation for non burning areas like rivers

http://eros.usgs.gov
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
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Table 1. Fuel categories from satellite imagery and CORINE code (in parentheses).

and lakes. Table 1 is used for the areas with woods, where a description of the
fuel categories for the Harmanli simulation corresponds to the Anderson thirteen
classes [1] with additional one class for the non burning areas. This fuel level
data combined with the vectorized landcover areas gives us a final shape file with
attributes for each polygon fuel level. The resulting input files contain all the
standard WRF fields along with several additional variables generated from the
high resolution topography and fuel categories. However no fuel load description
about 1-hr, 10-hr, 100-hr, live herbaceous and live woody parameters can be
estimated with such approach. The problem here is that the satellite images from
CORINE project can not provide high resolution with all species information on
the land cover. The ortophotos can provide the canopy cover, but not the fuel
load description and in these cases the best solution is to find Bulgarian Forestry
department plans, which contain information that can be used for the fuel load
estimations and refinements in the Table 1 categories. Such approach is described
in the Zlatograd test case area.

3 Summary of Zlatograd Test Case Data Preparation

In the Zlatograd test case fifteen wildland fires have been taken into consid-
eration. They occur on the territory of Forestry Department Zlatograd, that
includes the municipal areas of Zlatograd, Madan and Nedelino towns. General
table with fire occurrence by territory, date and duration is given by Table 2.

The fires that are taken into consideration for calibration are only surface
fires. The modelling has been done through the FARSITE (Fire Area Simulator)
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Table 2. Fire information provided by the Zlatograd Forestry Department for the
period 2011–2012.

tool which combines fire behavior models in cases of surface and crown fires,
fire acceleration, spotting fires. The base of the surface fire modelling is the
Rothermel Rate Of Spread (ROS) equation, which presents in nominator the
Heat Source and in denominator the Heat sink for the fire propagation. The
equation representation is given by the formula:

R =
HeatSource

HeatSink
=

Ixig +
∫ 0

−∞
(

∂Iz
∂z

)

Zc

dx

ρbeQig
. (4)

where
R - is parameter for fire spread or the so called ROS (rate of spread),
Ixig - is the horizontal spread of the heat absorbed by the burning materials
evaporating their water content,
ρbe - is the density of the burning materials which are heated until the fire start,
Qig - is the absorbed energy by the burning materials while they are evaporating
their water content,
∂Iz
∂z

- is the gradient of vertical intensity in the plane, where the energy is released.

Horizontal and vertical coordinates are x and z [6]. All parameters are in
English system, where the spread rate is in ch/m, the fuels are in lb/ft3 and lb.
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The first step in preparing data to run spatial fire behaviour analyses was
to determine suitable fuel models for fire locations in the Zlatograd test area.
This was done by using BehavePlus [2]. BehavePlus is a point fire behaviour
prediction system that can be used to analyze fire growth and behaviour for
homogeneous vegetation with static weather data. Using a number of standard
fuel models developed for the United States [1,8], we evaluated which fuel models
were best able to produce estimates of fire behaviour and growth in BehavePlus
similar to those observed on each of the fifteen fires. In addition to fuel model,
BehavePlus requires inputs for weather, fuel moisture, slope, and duration of
the burning period. Weather data was obtained for each fire from TV Met, a
private company in Bulgaria, which provided calculated fine dead fuel moisture
values [7]. The weather stations in the area of interest are quite sparse and that
let to estimations for some of the zones of fires. Estimations on live herbaceous
and live woody fuel moisture values were based on the expected phrenological
stage for the time of year that the fire occurred. To estimate slope, we used
30 m resolution digital elevation model (DEM) from the National Institute of
Geophysics, Geodesy, and Geography in Bulgaria, then subsequently calculated
the average slope for each fire using standard geospatial processing in ArcGIS
(ESRI 2010). Burn period length for each fire was obtained from the Zlatograd
forestry department data. Based on initial BehavePlus results using standard fuel
models, custom fuel models were developed for some vegetation types not well
represented by the US fuel models. Custom fuel models were developed for native
durmast oak and grass as well as one of the Scotch pine sites by modifying fuel
loading parameters to better match local vegetation and reflect the lack of woody
debris in the understory, as it is collected as firewood by the local population.
The custom fuel model developed for grass has a much lower rate of spread and
flame length than any of the standard grass fuel models. Following evaluation of
fuel models with BehavePlus, we then performed analyses in FARSITE, a spatial
fire growth system that integrates fire spread models with a suite of spatial data
and tabular weather, wind and fuel moisture data to project fire growth and
behavior across a landscape. It was defined test landscapes using a 500 m buffer
zone around each of the fifteen Zlatograd fires in order to comprise the extent
of the spatial analysis for each individual wildfire. Input for FARSITE consists
of spatial topographic, vegetation, and fuels parameters compiled into a multi-
layered “landscape file” format. Topographic data required to run FARSITE
include elevation, slope, and aspect. Using the aforementioned 30 m DEM, we
calculated an aspect layer, and then clipped elevation, aspect, and slope rasters
to the extent of the fifteen test landscapes. Required vegetation data include fuel
model and canopy cover. Fuel models within the 500 m buffered analysis area for
each individual fire were assigned based on the BehavePlus analyses; fuel model
assignments were tied to the dominant vegetation for each polygon based on
the Zlatograd forestry departments vegetation data. Canopy cover values were
visually estimated from orthophoto images and verified with stand data from the
Zlatograd forestry department. Additional canopy variables (canopy base height,
canopy bulk density, and canopy height) that may be included in the landscape
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file were omitted, as these variables are most important for calculating crown
fire spread or the potential for a surface fire to transition to a crown fire. None of
the fifteen fires analyzed experienced crown fire. Tabular weather and wind files
for FARSITE were compiled using the weather and wind data from TV Met,
Bulgarian meteorological company that included hourly records. Tabular fuel
moisture files were created using the fine dead fuel moisture values (the wetness
in the grass, srubs and small branches, which are on the ground from previous
seasons or have been cut) calculated for the BehavePlus analyses for 1-hr timelag
fuels. The 10-hr fuel moisture value was estimated by adding 1 percent to the 1-
hr fuel moisture and the 100-hr fuel moisture was generally calculated by adding
3 percents to the 1-hr fuel moisture. The live fuel moisture (the wetness in the
grass, srubs and trees, which are alive from the current season) values previously
estimated for BehavePlus analyses were used to populate live herbaceous and
live woody moisture values. All simulations performed in FARSITE used metric
data for inputs and outputs. An adjustment value was not used to alter rate of
spread for standard fuel models, rather custom fuel models were created. Crown
fire, embers from torching trees, and growth from spot fires were not enabled.

4 Conclusion

With the performed simulations we observed that when it comes to Fire Behav-
iour Fuel Modelling for Bulgarian vegetations the general assumptions which can
be taken are as follows:

1. In cases of Scots pine (Pinus sylvestris) the best proxis from the available
models from the thirteen of Anderson [1] and forty of Scott-Burgan [8] are
188 and modified 183 (these classes come from 2005 classification).

2. In cases of Black pine/Acacia (Pinus Nigra/Acacia)the best proxis from the
available models from the thirteen of Anderson [1] and forty of Scott-Burgan
[8] are 161 and 183 with modification (these classes come from 2005 classifi-
cation).

3. In cases of Beechwood (Fagus sylvatica) the best proxis from the available
models from the thirteen of Anderson [1] and forty of Scott-Burgan [8] are
182/186 in cases of dormant season fire and 161 in growing season fire (these
classes come from 2005 classification).

4. In cases of Durmast (Quercus dalechampii) the best proxis from the available
models from the thirteen of Anderson [1] and forty of Scott-Burgan [8] are
182/186 in cases of dormant season fire and 161 in growing season fire (these
classes come from 2005 classification)

5. In cases of Grasslands the best proxis from the available models from the
thirteen of Anderson [1] and forty of Scott-Burgan [8] are 101 in cases of grazed
pasture 102 in cases of ungrased pasture and Custom FBFMs with lower ROS
and fuel load than the 101 (these classes come from 2005 classification).

In rare cases also the available thirteen models from the classification done
by Anderson in 1982 are observed as good match, however the propagation of
the simulated runs was faster than expected.
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Abstract. Porous media segmentation is a nontrivial and often quite
inaccurate process, due to the highly irregular structure of the segmen-
tation phases and the huge interaction among them. In this paper we per-
form a 2-class segmentation of a gray-scale 3D image under the restriction
that the number of voxels within the phases are a priori fixed. Two par-
allel algorithms, based on the graph 2-Laplacian model [1] are proposed,
implemented, and numerically tested.

1 Introduction

Porous materials are of current interest within a wide range of applications,
where their properties strongly depend on various measurements such as absolute
porosity, average pore size, size and shape of individual pores. Therefore, accu-
rate segmentation of a 3D reconstruction image of the corresponding specimen
is crucial in practice. Due to the highly irregular structure of the segmentation
phases and the presence of noise in the image, such a task is nontrivial and
sometimes impossible, unless additional information on the data is provided. In
particular, the volume (thus, the cardinality) of the solid phase can be deter-
mined from its density and weight.

We consider a 2-phase segmentation that satisfies an equality solid phase
volume constraint. Graph 2-Laplacian is used for the mathematical model [1–4].
The derived constraint optimization problem is NP-hard [5]. Hence, we propose
two different relaxations of the problem that can be efficiently solved. The paper
is organized as follows. In Sect. 2, notation is fixed and the 2-Laplacian model is
introduced. The two relaxed modifications of the original optimization problem,
together with algorithms for solving them, are described in Sect. 3. In Sect. 4,
three numerical examples are considered and the different algorithms are com-
pared. Conclusions are drawn in Sect. 5.

2 Mathematical Formulation of the Problem

Let us first give some preliminary definitions and fix the notation. We consider
3D gray-scale images ū : Ω → [0, ν], where Ω is a discrete box domain of
dimensions n1, n2, and n3, respectively, while ν is the maximal intensity of
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 343–351, 2015.
DOI: 10.1007/978-3-319-26520-9 38
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the image. For a simpler matrix-vector notation, we assume the image to be
column-wise reshaped as a vector ū ∈ [0, ν]n, with n = card(Ω) = n1n2n3. We
keep the same notation ū for the vectorized image and it will be clear from the
context which representation we consider. We denote via In := {1, . . . ,n} the
voxel index set. The discrete segment membership vector v ∈ {0, 1}n is used for
image segmentation and for every i ∈ In, it indicates to which class the i-th voxel
belongs to (“air” if v(i) = 0 or “metal” if v(i) = 1). The index set is split into
two disjoint subsets In = L ∪ U of labeled and unlabeled points, respectively.
Without loss of generality (after re-numeration) we consider L = {1, . . . , 2�},
U = {2�+1, . . . ,n}, and we split v = (vL, vU )T . Furthermore, L = L0∪L1, where
L0 := {i ∈ L|vL(i) = 0} = {1, . . . , �}, L1 := {i ∈ L|vL(i) = 1} = {� + 1, . . . , 2�}.

The indicator function ιC of a nonempty set C is given by

ιC(x) =
{

0 if x ∈ C,
+∞ otherwise.

Finally, we denote by e the ones vector (1, . . . , 1)T of the appropriate dimension.

2.1 Graph 2-Laplacian Model

Starting with some labeled voxels (L �= ∅) we want to segment the unlabeled
ones, using their similarities/differences to the former and among themselves.
Following [1], we do so via minimizing

F (v) := 〈	v, v〉 =
1
2

n∑

i,j=1

wi,j

(
v(i) − v(j)

)2
,

with respect to vU , where 	 denotes the (graph) 2-Laplacian [6,7]

(	v)(i) =
n∑

j=1

wi,j (v(i) − v(j)) .

The weights are chosen similar to [1]. Let N geo
i = {j : ‖j − i‖1 = 1} be the

1-neighborhood of i ∈ U . Then, for j ∈ N geo
i we take wgeo

i,j = 1
6 . Our feature

function f is a weighted average of the intensities of the voxel i and its neighbors

f(i) =
1
12

(
6ū(i) +

∑

j∈Ngeo
i

ū(j)
)
.

We use it as a similarity measure to compute the other two types of weights

wpho
i,j :=

{
aie

−(f(i)−f(j))2 if j ∈ N pho
i ,

0 otherwise,
wlab

i,j :=
{

bie
−(f(i)−f(j))2 if j ∈ L,

0 otherwise.
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The constants ai, bi normalize the weights, so that they sum up to 1 within each
group. N pho

i consists of the 4 voxels j in the 5 × 5 × 5 cube ‖i − j‖∞ ≤ 2 that

minimize |f(i) − f(j)|. Finally, W = max
{

W̃ , W̃T
}

, where

W ∗ =
1

1 + νpho
W geo+

νpho

1 + νpho
W pho, W̃ = max

{
νlab

1 + νlab
W lab,

1
1 + νlab

W ∗
}

.

W is non-negative, symmetric. The parameters νpho, νlab are positive. Let

W :=
(

WLL WLU

WUL WUU

)
; D := diag(di)ni=1, di :=

n∑

j=1

wi,j , ∀i ∈ In.

Note that WUL = WLU due to symmetry and F (v) = 1
2vT (D − W )v. WUU

is sparse, and (almost) row-normalized via di ≈ 1, ∀i ∈ U . Since νlab > 0,∑
j∈L wi,j > 0, ∀i ∈ U , DUU − WUU is strictly diagonally dominant with non-

positive non-diagonal entries, thus an M-matrix, and the problem

argmin
0≤v≤1

F (v) subject to vL(i) =
{

0, i ∈ L0,
1, i ∈ L1,

(1)

admits a unique solution v̄, given by (see [1, Theorem 3.2.] for details)

(DUU − WUU )
︸ ︷︷ ︸

Q

v̄U = WULvL︸ ︷︷ ︸
q

. (2)

Since Q−1, q ≥ 0, 0 ≤ v̄ ≤ 1. To ensure v̄ ∈ {0, 1}n, hard thresholding with
respect to the middle value 0.5 is typically used.

Such segmentation methods work fine for well-separated, smooth phases, but
their performance is unclear in the presence of big interaction. In (homogeneous)
porous media, the “air” consists of multiple, non-structured, possibly not even
connected pores of various size and shape, that “cut” through the material. Com-
bined with the inevitable noise and blur the input image possesses, segmentation
(2) is often poor and unreliable. In this paper, we assume that the input is a 3D
reconstruction of a given specimen, which volume is a priori known. Thus, the
number of the solid phase voxels N is given and can be used as a constraint in
the mathematical model. We consider the following problem

argmin
v∈{0,1}n

F (v) subject to vL(i) =
{

0, i ∈ L0,
1, i ∈ L1;

‖v‖0 = N. (3)

The �0 pseudo-norm is non-convex and the problem (3) is NP-Hard [5]. In the
binary case, ‖v‖0 = ‖v‖1 = eT v, thus we rewrite the problem accordingly

argmin
v∈{0,1}n

F (v) subject to vL(i) =
{

0, i ∈ L0,
1, i ∈ L1;

eT v = N, (4)

and apply convex optimization techniques to this convex reformulation.
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3 Convex Optimization Algorithms

We propose 2 different algorithms for dealing with (4) - one direct, and one
iterative. Both algorithms does not solve (4) itself, but further modifications of
the problem. The algorithms’ results are compared on several different inputs.

3.1 Equality Constrained Quadratic Optimization

If we forget about v ∈ {0, 1}n, denote by N1 := N − �, and use the notation
from (2), we derive the equality constrained quadratic optimization problem

argmin
vU

1
2
vT

UQvU − qT vU subject to eT vU = N1. (5)

Thus, the minimizer v̄U of (5) is the solution of
(

Q e
eT 0

)(
v̄U

λ

)
=

(
q

N1

)
, (6)

where λ is Lagrange multiplier. If s := −eT Q−1e is the Schur complement, then
(6) can be rewritten as

(
Q
eT s

)(
I Q−1e

1

)(
v̄U

λ

)
=

(
q

N1

)
⇒

∣
∣
∣
∣
λ = (N1 − eT Q−1q)/s,
v̄U = Q−1q + λQ−1e.

The matrix Q is sparse and positive definite. We use conjugate gradient (CG)
method [8] for solving the linear systems Qx = q and Qy = e. For the segment
membership vector we take (vL, v̂U )T , where the N1 largest elements of v̄U are
set to 1 (in case of equality, randomness is applied), while the rest are set to 0.

Since (Qe)(i) =
∑

j∈L wi,j ≈ νlab

1+νlab (the value may slightly differ only for

close neighbors i ∈ U of L), we have that Q−1e ≈ 1+νlab

νlab e. Hence v̄U is basically
a shift of the solution of (1), and the segmentation based on (5) coincides with
the N -segmentation of (2).

We also consider a slight generalization of (6)
(

Q − 2μI e
eT 0

)(
v̄U

λ

)
=

(
q

N1

)
, (7)

that corresponds to the penalized version

argmin
vU ,λ

1
2
vT

UQvU − qT vU + λ(eT vU − N1) − μ(vT
UvU − N1)

of the Lagrange formulation of (5). The penalizer μ > 0 aims at sparsifying the
solution v̄U , because 0 ≤ vU ≤ 1, together with eT vU ≤ N1 and vT

UvU ≥ N1,
guarantee v ∈ {0, 1}n, eT v = N . In our experiments, we take μ = νpho/(3(1 +
νpho)) = 1

3 mini∈U

∑
j∈L wi,j to assure that Q − 2μI remains an M-matrix and

CG solver for (7) still converges (fast).
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3.2 Fully Constrained Convex �2-norm Minimization

Let n1 = n − 2�. As in (5), we start by projecting (4) onto U

argmin
vU∈{0,1}n1

1
2
vT

UQvU − qT vU subject to eT vU = N1.

For segment membership vectors v2
U = vU , and the problem is equivalent to

argmin
vU∈{0,1}n1

〈
(Q − 2diag(q))
︸ ︷︷ ︸

Q̄

vU , vU

〉
subject to eT vU = N1. (8)

Here diag(q) is the diagonal matrix, generated by q. Since

qi =
∑

j∈L

wi,juL(j) =
∑

j∈L1

wi,j =⇒ Q̄ = D̄UU − WUU .

D̄UU = diag(d̄), d̄(i) =
∑

j∈L

(−1)uL(j)wi,j +
∑

j∈U

wi,j , ∀i ∈ U.

We consider the following constrained �2-norm optimization problem:

argmin
vU∈{0,1}n1

‖Q̄vU‖22 subject to eT vU = N1. (9)

The relation between (8) and (9) is given by the Cauchy-Schwarz inequality.

〈Q̄vU , vU 〉 ≤ ‖Q̄vU‖2‖vU‖2 =
√

N1 ‖Q̄vU‖2.

For the equality, we used that if vU ∈ {0, 1}n1 , (vU − e)T vU = 0. Next, we relax
both the constraints in (9) so that the problem becomes convex

argmin
0≤vU≤1

‖Q̄vU‖22 subject to eT vU ≥ N1. (10)

If the halfspace H := {x ∈ R
n1 | eT x ≥ N1} does not contain any zeroes of Q̄,

the minimizer v̄U lies on its border and satisfies eT v̄U = N1. Similar conclusion
cannot be drawn for the box constraint, and once again we take the N1 largest
entries of v̄U to be “metal”, while the rest we set as “air”.

Following [10], we rewrite (10) into its equivalent form

argmin
vU∈Rn1 ,x∈R3n1

{
〈0, vU 〉 + ιH(x1) + ‖x2‖22 + ι[0,1]n1 (x3)

}
s.t.

⎛

⎝
I
Q̄
I

⎞

⎠ vU =

⎛

⎝
x1

x2

x3

⎞

⎠ ,

and apply the alternating direction methods of multipliers (ADMM).
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Algorithm (ADMM): Initialization: q
(0)
1,2,3 = 0, x

(0)
1,3 = e, x

(0)
2 = Q̄e, γ ∈ (0, 1).

For k = 0, 1, . . . repeat until a stopping criterion is reached

1. v
(k+1)
U = (Q̄T Q̄ + 2I)−1

((
x
(k)
1 − q

(k)
1

)
+ Q̄T (x

(k)
2 − q

(k)
2

)
+
(
x
(k)
3 − q

(k)
3

))

2. x
(k+1)
1 =

⎧
⎨

⎩

q
(k)
1 + v

(k+1)
U ,

(
q
(k)
1 + v

(k+1)
U

) ∈ H,

q
(k)
1 + v

(k+1)
U +

N1−eT (q
(k)
1 +v

(k+1)
U

)

n2
1

e, otherwise.

3. x
(k+1)
2 = γ

(
q
(k)
2 + Q̄v

(k+1)
U

)

4. x
(k+1)
3 = min

(
1, max

(
0, q

(k)
3 + v

(k+1)
U

))

5. q
(k+1)
i = q

(k)
i + v

(k+1)
U − x

(k+1)
i , i = 1, 3, q

(k+1)
2 = q

(k)
2 + Q̄v

(k+1)
U − x

(k+1)
2 .

Step 1 is solved (implicitly) via parallelized CG, since Q̄T Q̄ + 2I is sparse
and positive definite. Steps 3–5 are all componentwise, thus are parallelized, too.
The complete splitting of the constraints, due to the introduction of 〈0, vU 〉 in
the cost function, leads to fast convergence rate of the algorithm.

4 Numerical Examples

In this section, we demonstrate by numerical examples the performance of our
algorithms, implemented in C++. The code is parallelized using OpenMP [11].
The assembly of the matrix, matrix-vector, and vector operations is distributed
among the available threads. We have tested artificially polluted bone part,
based on [9]; a real 3D reconstruction of an Aluminum (AlSi10Mg) metal foam,
obtained via industrial CT scan; and a binary image of a sphere inside a unit
cube. We take � = 3, where L0 (L1) consists of the indices of the three voxels that
minimize (maximize) f . When computing the weights, we use mirror boundary
conditions. For the ADMM algorithm, we set γ = 0.3. In all the examples, the CG
method converges fast, so no preconditioning is needed/used. Different segment
vectors v1,2 ∈ {0, 1}n are compared via both their voxel difference ‖v1 − v2‖1
and their 2-sided Hausdorf distance, based on the 3D sup-norm ‖ · ‖∞.

The bone part image has size 64 × 64 × 64. 50604 of its voxels are bone
material (porosity 80.7%). The image was convoluted with a Gaussian kernel

Fig. 1. From left to right: Segmented bone part (binary image), noisy and blurry input
image ū, direct N -segmentation, segmentation based on (10).
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Fig. 2. 3 slices of the Aluminum foam reconstruction (left) and its segmentation via
(10) (right).

(σ = 2). Then, 10% white (Gaussian) noise was added to derive the input image
ū from Fig. 1. For the weight matrix W we used νpho = 10, νlab = 0.1.

As shown on Fig. 1 and in Table 1, simply taking the 50604 voxels of ū highest
intensity as the solid phase leads to poor segmentation, both visually and quan-
titatively. Our algorithms perfectly denoise ū, but are not able to completely
overcome its blur. This results in thickening parts of the bone structure at the
expense of loosing structure information elsewhere. Unlike the original image,
the segmented one is not connected.

The AlSi10Mg foam reconstruction has size 680 × 680 × 680 with sam-
pling distance (voxel size) 0.0272mm. The specimen has cylindrical shape with
diam=14.94mm and height=16.55mm (see Fig. 2). Its weight is 2.7070g and
ρ(AlSi10Mg) = 2.6687g/cm3. Porosity is computed to be 83.97 %, thus N =
50405948. Different segmentations are compared in Table 2. The ADMM algo-
rithm converges fast (less than 70 iterations as shown on Fig. 3) as well as the
CG solver within each step (less than 15 iterations per time).

With our last example (Fig. 4) we want to stress that our segmentation algo-
rithms may still produce meaningful results when N differs from the real porosity.
The input image is 64 × 64 × 64 big, and the centered sphere takes 28 % of its
volume. We execute our algorithms with N = 131072 (half the volume). All the
outputs are simply connected and visually resemble the original object.

Table 1. Comparison among the original bone, its direct segmentation, and our algo-
rithms. Above the diagonal: voxel difference, below: 2-sided Hausdorff distance.

hausd\#voxels Original Direct λ-QP (6) μλ-QP (7) �2-CP (10)

Original ∗ 21 796 16 048 16 156 15 524

Direct 25 547 ∗ 10 476 10 412 11 346

λ-QP (6) 19 417 14 218 ∗ 278 1 486

μλ-QP (7) 19 601 14 182 289 ∗ 1 722

�2-CP (10) 18 857 15 140 1 509 1 764 ∗
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Table 2. Comparison among different segmentations of the Aluminum metal foam.
Above the diagonal: voxel difference, below: 2-sided Hausdorff distance.

hausd\#voxels Direct λ-QP (6) μλ-QP (7) �2-CP (10)

Direct ∗ 2 789 328 2 850 756 2 659 200

λ-QP (6) 2 847 631 ∗ 128 492 378 686

μλ-QP (7) 2 917 305 130 926 ∗ 493 402

�2-CP (10) 2 702 613 384 633 503 522 ∗

5 Conclusions

Based on the 2-Lagrangian model in [1], we proposed two different relaxations for
2-phase image segmentation of a porous media of known porosity. The algorithms
are implemented in a parallel way, allowing us to work with large 3D images
of high resolution. The conducted numerical experiments showed significantly
improved results, compared to non-supervised N -constrained segmentation. The
outputs, based on (6), (7) and (10) are quite similar and there are no visible
differences among them. Assuring connectivity of the solid phase is not achieved
at this moment, and remains a task for future work.
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Fig. 3. Relation between (8) and (9): The graphs of

√

〈Q̄v
(k)
U , v

(k)
U 〉 and ‖Q̄v

(k)
U ‖2 from

the ADMM algorithm as functions of k. Left: Bone part. Right: Aluminum foam.

Fig. 4. From left to right: Original, segmented sphere inside a cube (volume = 28 %).
The output of (6), (7) and (10), respectively, for volume = 50 % of the cube’s.
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Abstract. In this article we consider a novel fast approach based on
wavelet transform for edge detection and simplified variant of active con-
tour method - active primitives for the image processing in the research
on dust emissions from industrial enterprises. The objective of the dust
emissions analysis is to determine their component composition and the
fine particle size distribution (PM10 and PM2.5). The scanning elec-
tronic microscope of high resolution was used to obtain the large-scale
images of dust particles. We use the images of particles in different scales
as the entire imagery data.

Keywords: Image segmentation · Active contour · Edge detection ·
Dust emissions · PM10 · PM2.5

1 Introduction

Dust emissions of industrial plants contain a considerable quantity of different
chemical components. These include ash, soot, smoke, sulfates, nitrates, oxides
of metals and other solid components. The size of dust particles emitted by
enterprises are defined by the process environment and the composition of raw
materials used. Particle fractions less than 10 microns (PM10) and less than 2.5
microns (PM2.5) can penetrate to the upper and lower respiratory tract. Both
short and long-term exposures of fine dust particles on human health leads to
respiratory and cardiovascular diseases [1–3].

Our research center uses the following equipment to study the fractional
composition of dusts: - laser particle analyzer Microtrac S3500 (covering the
particle size range from 20 nm to 2000 microns) to determine the distribution of
dust emissions. - scanning electronic microscope of high resolution (the degree of
increase - from 5 to 300 000 times) with X-ray fluorescence attachment S3400N
HITACHI for microscopy of dust to determine the particle shape and the com-
ponent composition of dust emission. Results of microscopy are obtained as a
series of images of dust specimen with different scales as shown on the Fig. 1.
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 352–359, 2015.
DOI: 10.1007/978-3-319-26520-9 39
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Fig. 1. Tiled microscope images of sample dust probe.

Automation of morphological analysis of dust particles and study of com-
ponent composition and distribution of dust emissions is the primary task of
our laboratory of environmental quality management. This analysis consists of
segmentation problem and feature extracting of imagery data. The image seg-
mentation is the basic task defining the quality of whole processing. Original
datasets can be large-scaled, so the efficient and fast image processing algo-
rithms required. There is a great amount of papers, methods and software on
the image recognition problem and many of them offers good approaches suit-
able for any particular case. In our research we tried to combine several methods
to operate in one toolchain for our subject: processing of dust particles images
in multiple scales. We tried to make this toolchain more efficient to operate with
large-scale images and made some enhancements resulting in a good computing
rate. We consider a fast image processing approach based on wavelet transform
for edge detection and novel simplified variant of active contour method (active
primitives) for objects enumeration on microscopy image set.

2 Image Analysis: Active Contour Model

Active contour methods have found application in a wide range of problems
including visual tracking and image segmentation. The basic idea is to allow
a contour (a snake) to evolve so as to minimize a given energy functional in
order to produce the desired segmentation. An initial model of active contour
was proposed by Kass et al. [7] and named snakes suitable to the appearance
of contour evolution. Solving the problem of snakes is to locate the contour C
that minimize the total energy term E with the certain set of weights α, β and
λ. Two main categories exist for active contours: edge-based and region-based.
The complete ‘state of art’ on active contours is given in [4] with explanation of
advantages and disadvantages of all encountered methods.

There are many advantages of region-based approaches when compared to
edge-based methods including robustness against initial curve placement and
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insensitivity to image noise [5]. However, techniques that attempt to model
regions using global statistics are usually not ideal for segmenting heterogeneous
objects. In cases where the object to be segmented cannot be easily distinguished
in terms of global statistics, region-based active contours may lead to erroneous
segmentations [6]. Consider the image in Fig. 1. Here, we see a situation when the
foreground and background are heterogeneous and share nearly the same statis-
tical model. The construction of this image causes it to be segmented improperly
by a standard region-based algorithm, but correctly by an edge-based algorithm.

Theory and practice of active contours. Snake parametric representation [7]:
v(s)=(x(s),y(s))

Esnake =
∫ 1

0

Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds (1)

Eint is internal energy due to bending. Serves to impose piecewise smoothness
constraint.

Eimage are image forces pushing the snake toward image features (edges).
Econ are external constraints responsible for putting the snake near the

desired local minimum. It may come from higher level interpretation, user inter-
action, etc.

Eint The snake is a controlled continuity spline

Eint = (α(s)|vs(s)|2 + β(s)|vss(s)|2)/2 (2)

Derivative vs(s) makes the spline act like a membrane (elasticity, Econt).
Derivative vss(s) makes it act like a thin-plate (rigidity,Ebal). α(s) and β(s)

controls the relative importance of membrane and thin-plate terms
Eimage Attracts the snake to features (data term)

Eimage = wlineEline + wedgeEedge + wtermEterm (3)

Fig. 2. Shake evolution: estimating Vi.
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Eline: in practice simplest functional is the image intensity: Eline = I(x, y)
Depending on the sign of wline, the snake will be attracted to the lightest or
darkest nearby contour

Edges attracts the snake to large intensity gradients: we can set Eedge =
−| � I(x, y)|

Eterm Attracts the snake toward termination of line segments and corners
Combining Eedge and Eterm, we can create a snake attracted to edges and

terminations. The shape of the snake between the edges and lines in the illusion
is completely determined by the spline smoothness term (Fig. 2).

In practice we apply the discrete curve approximation and use any of optimiza-
tion methods to estimate (1) using the equations shown in [8].

Each equation is evaluated on every iteration of contour evolution, leading to
long time durations of segmentation process. In the 3rd section we will consider
the novel approach of active contour definition and life cycle providing high-speed
processing of microscopy image sets of dust probes.

3 The Proposed Segmentation Method: Active Primitives

Our first ideas of active contour method modification were inspired by the arti-
cle of Yankowitz et al. [9]. This method was proposed in 1988; it provides good
results when we need to take into account spatial variations due to uneven back-
ground and illumination conditions, i.e. conditions as in our particular case, see
Fig. 1. The method uses the gradient map of the image to point at well-defined
portions of object boundaries in it. Both the location and gray levels at these
boundary points make them a good choice for local threshold. These point values
are then interpolated, yielding the threshold surface (see Fig. 3). This idea can be
adopted to be used in active contours processing. First of all we can significantly
reduce the computations by elimination of several terms in (1). We can use the
edge detection results or gradient maps to start the snake from and to stop on.
Also we can substitute the contour of varying shape with the series of indepen-
dently resizing fixed-shaped figures (primitives) with starting points, anchored
to edge curves. These shapes can be spirals or circles (bubbles) with growing
radius and fixed decay and segments number. Primitive shapes can grow only
in one direction according to edges map and the intense map. The initial size is
chosen to be two pixels, anchored to the edge line. The benefit is elimination of
Econt, Ebal and Eedge:

– Econt is the contour energy. The minimum value of the Econt(vi) elements
corresponds to the pjk(vi) closest to a perfect circle, passing through two
adjacent vertices vi−1 and vi+1. Assuming the elementary spiral (or bubble)
has constant shape, the significance of term Econt is obsolete;

– Ebal makes the contour grow in defined direction. Elementary shapes grow in
one direction, defined by normal to the edge line. So Ebal is insignificant;

– Eedge is the gradient energy matrix. Gradient map is undoubtedly useful, but
we already use it as the starting and termination points for our elementary
shapes.
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Fig. 3. Description of the process of determining the adaptive threshold surface: (top)
cross section in the original image, showing objects on an uneven backgroung, (middle)
cross section of the gradient magnitude image, (bottom) peak points in the gradient
point at interpolation values, that determine the threshold surface

Eline is the only matrix to take into account.

Imagery Data Preprocessing: Contrast Adjustment and Noise Reduction. Noise
reduction and smoothing of image set is performed by Gaussian filter. Gaussian
filter is a filter which impulse response is a Gaussian function (or an approxi-
mation to it). Gaussian filters do not overshoot to a step function input while
minimizing the rise and fall time. These methods were chosen and their para-
meters were adjusted after the series of experiments with the microscopy images
for our particular task. Other environments may require their own experimental
or theoretical justification.

Edge detection is performed using wavelet transform. If we keep the details of
the image obtained with simple Haar transform, remove the coarse-grained low
frequency component and perform image reconstruction, we obtain the edges of
the objects present in the image. The result is stored on separate image layer.
We recommend using sequential transform of original image and transform of
diagonally-oriented image (H3 and H4 high-pass blocks on Fig. 4(b)) and their
combination since the smooth diagonal edges are hidden otherwise. Also we
can use another wavelets such as LeGall 5/3 with fast wavelet transform due to



Analysis of Dust Emissions 357

Fig. 4. Wavelet-based edge detection: (a) every image in series is photo of the same
surface but with different scale; (b) low-pass and high-pass filtered image; (c) resulting
edge map.

elimination of floating-point multiplications as shown by Huing J.K. in A Parallel
Algorithm for the Biorthogonal Wavelet Transform Without Multiplication [10].

After the edge detection we can use the dilate/erode combination to produce
more continuous edges instead of dotted edge. All the images are ordered by
scale. Each image in series is processed starting with topmost and then combined
with the lowest (see Fig. 4(a)). Image with a highest resolution is a central tile of
lower resolution image, thus we can process them separately and then combine
the edge maps. Finally we obtain the edge map of the lowest image. We can
expect that at least edges in it’s center to be well handled.

Clusterization for pyramidal structure is perfomed in similar manner: from top-
most image down to low-quality image, combining the results. The resulting
image is used for edges classification and correction. We have to distinguish the
background clusters, the particle clusters and intermediate ones (gray shades
which belongs to both background or particles depending on unusual texture).
All the edges (or parts of the edge lines) have to be classified as internal, thresh-
olding or external, according to intense map: internal, when the particle points
are situated on both sides of the edge; external - if background is on both sides;
threshold - if background is on one side and particle points on another. If the
edge is not continuing we have to find nearest edge according to adjustable para-
meter of maximum gap. Also we have to use the adjustable parameter minimum
particle size to eliminate noise and textures influence.

Active primitives (Spiral contours) combines all the spirals owned by the closed
contour. Spiral shapes have different radius depending on particle size, the round-
ness of contour and texture features. As shown on Fig. 5. the shape grows in nor-
mal direction while the area under the spiral consists of points of particle (inside)
or intermediate clusters, and stops when it reaches the edge or outside clusters.
Finally we get the closed areas covered with spirals. Sometimes afterwards we
have to fill holes. If we use an image representation called the integral image,
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Fig. 5. Spiral evolution: starting from edge points growing until other edge is crossed.

Fig. 6. Segmentation results: Fragment of original image (a); masks obtained by Fiji
plugins (b) and (c); mask obtained by active primitives (d).

intense can be evaluated in constant time, and this will give a considerable speed
advantage.

The remaining processing: analysis of particle sizes distribution, particles
classification is performed using well-known algorithms with the obtained parti-
cle contours (masks) (Fig. 6).

4 Results

Test measurements have shown the better rate results compared with same
processing using Fiji toolboxes with satisfactory segmentation quality. The image
set of 4 grayscale photos 2950 × 1790 was segmented by our active primitives
method in 180 s median time, which is at least two times better in comparison
with active contours method. The quality of segmentation is the same (each
particle was found, 5–10 %% of particles were glued due to overlapping).

5 Conclusion

A fast image processing approach based on wavelet transform for edge detection
and novel simplified variant of active contour method for objects enumeration on
microscopy image set was considered. The fast segmentation method of active
primitives presented in this paper was tested to be successful. The model is not
based on single closed active contour (snake) but on sequence of growing spirals
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or circles - active primitives. This fact eliminates several terms in active contour
equations. Future work is to adopt this method to work with very smooth or
noisy images and to develop a strict mathematical model of this method.
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Abstract. We consider the numerical valuation of European options in
a market subject to liquidity shocks. Natural boundary conditions are
derived on the truncated boundary. We study the fully implicit scheme
for this market model, by use of different algorithms, based on the
Newton and the Picard iterations at each time step. To validate the
efficiency of the time-stepping and the theoretical results, various appro-
priate numerical experiments are performed.

1 Introduction

We are interested in implementation of implicit finite difference schemes for
solving the following system of coupled PDE and ODE which is suggested by
M. Ludkowski and Q. Shen [5] in European option pricing with liquidity shocks:

pt +
1
2
σ2S2pSS − ν01

γ

F1

F0
e−γ(q−p) +

d0 + ν01
γ

− 1
γ

F ′
0

F0
= 0,

qt − ν10
γ

F0

F1
e−γ(p−q) +

ν10
γ

− 1
γ

F ′
1

F1
= 0,

(1)

with terminal conditions

p(T, S) = q(T, S) = h(S), S > 0. (2)

Here p(t, S) and q(t, S) are indifference buyer’s prices and depend on the cur-
rent market of the underlying asset, S, and the remaining time t, 0 < t ≤ T ,
h(S) denotes the terminal payoff of a contingent claim, σ is the volatility of the
underlying, ν01, ν10 are transition intensities, d0 = μ2/2σ2 and μ is a drift rate.
The functions F0(t), F1(t) are given by

F0(t) = c1e
λ1t + c2e

λ2t,

F1(t) =
1

ν01

(
c1(d0 + ν01 − λ1)eλ1t + c2(d0 + ν01 − λ2)eλ2t

)
,

where λ1,2 =
1
2

(
d0 + ν01 + ν10 ±

√
(d0 + ν01 + ν10)2 − 4d0ν10

)
,

c1 =
λ2 − d0
λ2 − λ1

e−λ1T and c2 =
λ1 − d0
λ1 − λ2

e−λ2T .
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The presence of liquidity shocks is a source of non-traded risk and makes the
market uncomplete. M. Ludkowski and Q. Shen investigated expected utility
maximization with exponential utility function U(x) = e−γx, where γ is the
investor’s risk aversion parameter. Standard stochastic control methods and the
properties of the exponential utility function imply that the value functions Û i,
i = 1, 2 can be presented by

Û1(t,X, S) = e−γXe−γp(t,S)+lnF0(t), Û2(t,X, S) = e−γXe−γq(t,S)+lnF1(t),

where X is the wealth process [5].
The well-posedness of the problem (1)–(2) is discussed in [3]. Also, it is

proved a minimum principle for the Cauchy problem (1)–(2): the functions p(t,S)
and q(t,S) are non-negative if the payoff h(S) ≥ 0. Numerical solution of the
corresponding to (1)–(2) stochastic problem is discussed in [7]. Two implicit-
explicit (IMEX) schemes that reproduce the positivity of the differential problem
solution are constructed and analyzed in [8]. In the present paper we discuss a
fully implicit difference scheme for (1)–(2).

Our article is structured as follows: in Sect. 2, using changes of independent
and dependent variables, we obtain a simpler formulation of the main prob-
lem (1)–(2). The implicit difference scheme is detailed in Sect. 3. Newton’s and
Picard’s iterative procedure for the solution of the corresponding non-linear sys-
tem of algebraic equations are described in Sect. 4. To illustrate the applicability
of the implicit scheme and to compare the techniques for treating the exponen-
tial non-linearities, in Sect. 5 we present results of various experiments. Finally,
in the last section some conclusions are formulated.

2 The Auxiliary Differential Problem

By making the substitutions

τ = T − t, u = γp − ln F0(t), v = γq − ln F1(t), (3)

the system (1) becomes

Lp(u, v) ≡ uτ − 1
2
σ2S2uSS + aeue−v − b = 0,

L0(u, v) ≡ vτ + ceve−u − c = 0,
(4)

where a = ν01, b = d0 + ν01, c = ν10. According to (2) and (3), taking into
account that F0(T ) = F1(T ) = 1, we set the initial conditions

u(0, S) = γh(S) = u0(S), v(0, S) = γh(S) = v0(S). (5)

Denoting by E the exercise price, in the case of European Call option, the
following terminal condition is imposed

h(S) = max(S − E, 0). (6)
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The functions u(t, S) and v(t, S) can take negative values even the initial
data u0(S), v0(S) is prescribed to be non-negative. However, it is proved in [3]
that, if the terminal conditions p(T, S) and q(T, S) are non-negative, then the
prices p(t, S) and q(t, S) remain non-negative for 0 ≤ t ≤ T . Now, from the
comparison principle for (p, q), see Corollary 2.3 in [3], follows the comparison
principle for (u, v):

Proposition 1. Let (u, v), (u, v) ∈ C([0, T )× (0,+∞))∩C2,1((0, T )× (0,+∞))
be two pairs of classical solutions of (4)–(5) corresponding to the initial data
h = h and h = h and the following inequalities are fulfilled

Lp(u, v) ≥ Lp(u, v), L0(u, v) ≥ L0(u, v) and h ≥ h,

then u ≥ u, v ≥ v.

Further we develop fully implicit scheme to solve the coupled semi-linear
parabolic-ordinary problem (4)–(6).

We obtain the left boundary condition for u, taking S = 0 in the first equation
in (4). At right boundary, we use the linear (natural) conditions

u(τ, S) = u1(τ)S + u2(τ), v(τ, S) = v1(τ)S + v2(τ), (7)

applying the common financial assumption that pSS → 0, qSS → 0 and therefore
uSS → 0, vSS → 0 as S → ∞, see [6].

Note that from the payoff (5), (6) we have u1(0) = v1(0) = γ, u2(0) =
v2(0) = −γE for S → ∞. Next, substituting (7) into (4) and differentiating the
resulting equations two times with respect to S and then (after determination
u1 and v1) solving the ODE system of equations for u2 and v2 we get for S → ∞

u(τ, S) =γ(S − E) +bτ − aB

Q
ln |eQτ − D| − aA

Q
ln |1 − De−Qτ | + ln |1 − D|,

v(τ, S) =γ(S − E) +cτ − c

Q

(
ln |BeQτ + P |

B
− ln |B + Pe−Qτ |

A
+G ln |B + P |

)

,
(8)

where ρ = (c − b)/(2a), M = ρ2 +c/a, A =
√

M +ρ, B =
√

M −ρ, Q = 2a
√

M ,
D = (1 − B)/(1 + A), P = AD, G = (A + B)/(AB).

3 The Discrete Problem

In this section we present a second order accurate in space and first order accu-
rate in time fully implicit difference scheme for the problem discussed in Sect. 2.
There are many numerical schemes to solve non-linear parabolic equations, how-
ever, very few dealt with exponential non-linear term.

The problem (4)–(8) will be solved on truncated, large enough computational
interval [0, L], L > 0. We define uniform mesh in space and time ωSτ = ωS ×ωτ :

ωS = {Si = ih, i = 0, . . . , N, h = L/N} ,

ωτ = {τn = n
τ, n = 0, . . . , Nτ , 
τ = T/Nτ} .
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The numerical solutions of (4)–(8) at point (τn, Si) are denoted by Un
i =

U(τn, Si) and V n
i = V (τn, Si). For clarity of the exposition we use the notations

Ŵi := Wn+1
i , Wi := Wn

i , Wti = (Ŵi−Wi)/
τ , WSS,i = (Wi+1−2Wi+Wi−1)/h2

for the derivative approximations of the mesh function Wn
i [9]. On the dis-

crete domain ωSτ we approximate the problem by fully implicit finite difference
scheme

Lp(Ûi, V̂i) = Uti − 1
2
σ2S2

i ÛSS,i + aeÛie−V̂i − b = 0,

L0(Ûi, V̂i) = Vti + ce−ÛieV̂i − c = 0, i = 0, . . . , N − 1, n = 0, . . . , Nτ ,
U0

i = u0(Si), V 0
i = v0(Si), i = 0, . . . , N,

ÛN = u(τn+1, L), V̂N = v(τn+1, L) given by (8), n = 0, . . . , Nτ .

(9)

We have the following convergence result at the pointwise level:

Theorem 1 (Convergence). Let u, v ∈ C((0, L)×[0, T ))∩C4,2((0, L)×(0, T ))
are classical solutions of (4)–(6), (8) and U , V are solutions of (9). Then for
sufficiently small h and 
τ the following error estimate holds:

‖u − U‖∞ + ‖v − V ‖∞ ≤ C(
τ + h2),

where the constant C doesn’t depend on h and 
τ .

The following assertion is a discrete analog of Theorem 2.1 in [3]:

Theorem 2 (Comparison principle). Let the assumptions of Theorem 1 are
fulfilled, (U, V ), (U, V ) are grid functions, defined on wSτ and

Lp(U, V ) ≥ Lp(U, V ), L0(U, V ) ≥ L0(U, V ),

U
0

0 ≥ U0
0, V

0

i ≥ V 0
i , i = 0, . . . , N,

U
n

0 ≥ Un
0 , U

n

N ≥ Un
N , V

n

0 ≥ V n
0 , n = 0, . . . , Nτ .

Then for sufficiently small h and 
τ we have

U
n

i ≥ Un
i , V

n

i ≥ V n
i , i = 0, . . . , N, n = 0, . . . , Nτ .

4 Techniques for Treating the Non-linearities

In order to compute the numerical solution, we discuss different iteration meth-
ods for solving the system of non-linear algebraic equations (9).

Suppose that the solutions of (9) after k iterations are denoted by Û
(k)
i and

V̂
(k)
i , i = 0, . . . , N . To obtain Û

(k+1)
i = Û

(k)
i + 
(k+1)

Ui
and V̂

(k+1)
i = V̂

(k)
i +


(k+1)
Vi

, we apply Newton-like and Picard-like methods, presenting Lp(Ûi, V̂i)
and L0(Ûi, V̂i) in different manner.

Classical Newton method (NM):

Le(Ûi, V̂i) = Le(Û (k)
i , V̂

(k)
i ) +

∂Le

∂U
(Û (k)

i , V̂
(k)
i )
(k+1)

Ui
+

∂Le

∂V
(Û (k)

i , V̂
(k)
i )
(k+1)

Vi
,
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where e = {p, 0}. In this case we have to inverse a large matrix, say A, of size
2N × 2N . Moreover, A is a wide banded sparse matrix.

Newton-Decoupling Method (NDM). We follow the strategy, developed in [1,4]
to decouple the two equations from the system and to solve them separately, in
order to avoid a large matrix inversion. Now, we need to inverse one N ×N three-
diagonal matrices and the solution V̂i from the second equation L0(Ûi, V̂i) = 0
in (9) can be computed by explicit formula:

Lp(Ûi, V̂i) = Lp(Û (k)
i , V̂

(k)
i ) +

∂Lp

∂U
(Û (k)

i , V̂
(k)
i )
(k+1)

Ui
,

L0(Ûi, V̂i) = L0(Û (k+1)
i , V̂

(k)
i ) +

∂L0

∂V
(Û (k+1)

i , V̂
(k)
i )
(k+1)

Vi
.

Note that with Newton-like methods, the coefficient matrix A updates during
the iteration process and we perform the matrix inversion at each iteration.
Picard-Decoupling Method (PDM).

Lp(Ûi, V̂i) = U
(k+1)
ti − 1

2
σ2S2

i Û
(k+1)

SS,i
+ aeÛ

(k)
i e−V̂

(k)
i − b = 0,

L0(Ûi, V̂i) = V
(k+1)
ti + ce−Û

(k+1)
i eV̂

(k)
i − c = 0.

With this algorithm, just as for NDM, we solve both equations separately,
upgrading the value Û

(k+1)
i in the second equation L0(Ûi, V̂i) = 0. The coef-

ficient matrix A is one and the same at each iteration and we perform a matrix
inversion only ones for the whole computation process. Typically, Picard method
requires more iterations than Newton-like methods in order to achieve one and
the same precision.

The implementation of initial and boundary conditions in NM, NDM and
PDM is standard.

5 Numerical Experiments

The aim of this section is to verify the order of convergence and efficiency of
the presented methods NM, NDM and PDM. We provide experiments both with
exact and original solution. For exact solution test, we add residual terms in
the right-hand side of Eqs. (4),(8), incorporate appropriate initial conditions to
obtain exact solutions uex(x, τ) = eτ cos(πx) and vex(x, τ) = eτ/2 cos(πx).

Accuracy in maximal discrete norm (‖ · ‖∞) and convergence rate are com-
puted at final time T , using two consecutive meshes with formulas

CRW = log2
EW

N/2

EW
N

, where W = {U, V }, EU
N = ‖uex−U‖∞, EV

N = ‖vex−V ‖∞.

To test the order of convergence of the original system (4)–(8) at final time T , we
use the numerical solution WN := [W0, . . . , WN ]T at three consecutive meshes

CRW = log2
‖WN/2 − WN‖∞
‖WN − W2N‖∞

.
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Table 1. Results for EW
N , CRW and CPU time, T=0.5, Example 1

U V CPU

N EU
N CRU EV

N CRU NM NDM PDM

20 3.96355e-3 3.49357e-3 0.484 0.391 0.968

40 9.95449e-4 1.9934 8.76557e-4 1.9948 4.859 2.484 3.671

80 2.49283e-4 1.9976 2.19595e-4 1.9970 14.956 11.297 15.140

160 6.22588e-5 2.0014 5.48240e-5 2.0020 72.531 70.719 73.093

320 1.55645e-5 2.0000 1.37057e-5 2.0000 497.969 484.703 407.021

640 3.89120e-6 2.0000 3.42661e-6 1.9999 3 523.141 2 568.781 2 990.156

1280 9.72792e-7 2.0000 8.56635e-7 2.0000 26 791.103 22 154.631 19 179.441

Model parameters are: σ = 0.2, γ = 1, μ = 0.06, ν01 = 1, ν10 = 12 (i.e.
the liquidity shocks occur at a rate of once per year and last an average of one
month [5]).

The iteration process continue until the difference between two consecutive
iteration (in max discrete norm) become less than a given tolerance tol = 1.e−10.

Example 1 (Exact Solution Test). Let L = 2, 
τ = h2. The precision obtained
by NM, NDM and PDM with one and the same model and mesh parameters
differs insignificantly. In Tables 1, 2 we give the results (for both solutions U and
V ) from computations with exact solution: CPU time, errors and convergence
rates in maximal discrete norm for each method at time T = 0.5 and T = 2,
respectively. Tables 1, 2 illustrate second order convergence rate in space of the
numerical solutions U and V . For long time computations, starting with smooth
initial data, we observe better efficiency of PDM than NM and NDM.

Example 2 (Original Solution Test). Now we give the results from the compu-
tation of the difference scheme (9) with initial function (6). In Table 3 we list
convergence rates of the solutions U and V , computed by NDM in maximal
discrete norm, also solutions at strike S = E i.e. W (T,E), the corresponding
absolute value of the difference (diffW ) between the solutions W at consecutive
embedded meshes and convergence at strike point (CRW

E ) at final time T = 0.5

Table 2. Results for EW
N , CRW and CPU time, T = 2, Example 1

U V CPU

N EU
N CRU EV

N CRU NM NDM PDM

160 5.76624e-4 5.76154e-4 332.065 312.641 346.765

320 1.44180e-4 1.9998 1.44062e-4 1.9998 1 954.487 2 028.421 1 942.031

640 3.60435e-5 2.0001 3.60140e-5 2.0001 13 172.906 13 706. 680 13 074.935
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Table 3. Results for CRW , W (T, E), diffW , CRW
E , T=0.5, Example 2

Max. norm Results at strike point S = E

N CRU CRV U(T, E) diffU CRU
E V (T, E) diffV CRV

E

40 0.283350 0.251367

80 2.0617 2.0678 0.290271 6.9207e-3 2.0211 0.260459 9.0920e-3 2.0484

160 2.0129 2.0185 0.291929 1.6577e-3 2.0492 0.262628 2.1687e-3 2.0392

320 2.0031 2.0047 0.292340 4.1075e-4 2.0031 0.263163 5.3526e-4 2.0047

640 2.0008 2.0012 0.292442 1.0247e-4 2.0008 0.263296 1.3338e-4 2.0012

1280 2.0002 2.0003 0.292468 2.5603e-5 2.0002 0.263330 3.3317e-5 2.0003

2560 0.292474 6.4000e-6 0.263338 8.3276e-6

Table 4. CPU time for one and the same precision, obtained by NM, NDM, PDM at
different time levels, Example 2

T = 0.5 T = 2 T = 5

N NM NDM PDM NM NDM PDM NM NDM PDM

160 1.781 1.266 6.500 4.859 4.203 24.296 11.625 10.422 61.453

320 8.609 5.828 50.125 30.453 21.891 192.859 73.828 55.611 478.640

640 55.953 40.625 545.812 210.359 156.719 2 096.109 519.344 387.766 5 031.251
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Fig. 1. Numerical solutions p (left) and q (right), 0 ≤ t ≤ 1, Example 2

for L = 10, E = 5 and 
τ = h2. The results for other iteration methods -
NM and PDM are the same. Again, we observe second order convergence rate in
space. In Table 4 we show computer time, requited to obtain one and the same
precision of the numerical solution, computed by NM, NDM, PDM for different
time. It become clear that in the case, when the iteration process starts with
non-smooth initial data, NDM is more efficient than NM and PDM.
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On Fig. 1 we plot evolution graphics of numerical solutions p and q for
L = 100, E = 50, T = 1, N = 300, 
τ = h2, to illustrate the non-negativity of
the prices.

6 Conclusions

In this paper we developed second-order in space Newton-like and Picard-like
methods for solving the non-linear system of algebraic equations resulting from
fully implicit finite difference approximation of the parabolic-ODE system of
European options. Convergence and discrete comparison principle are estab-
lished.

Numerical tests show that when we deal with smooth initial data, for long
time computations, the more effective is PDM. So, if we smooth the initial func-
tion (it would be necessary if we construct high-order scheme, see [2]) the best
choice for the computations is PDM. In our case, we not need to smooth the
initial data, as we construct second-order scheme and the methods are effective
even for non-smooth initial function. Thus the best option for the computations
is NDM, because of its fast performance. The reason is that in this case, PDM
requires significant number of iterations, especially at first time levels, which
leads to delay in the computations and can not be compensated by the absence
of matrix inversion at each time level (which was pointed as a main advantage
of PDM).

We have solved numerically the option buyer’s price model (4.8) derived in
[5]. One can similarly consider the writer’s indifference price model (4.9) in [5].
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Abstract. Ticks are widespread ectoparasites. They feed on blood of
animals like birds and mammals, including humans. They are carriers
and transmitters of pathogens, which cause many diseases, including tick-
borne meningoencephalitis, lyme borreliosis, typhus to name few. The best
way to prevent infection is to remove the ticks from the host as soon as
possible. The removal usually is performed mechanically by pulling the
tick. This however is a risky process. Tick irritation or injury may result
in it vomiting infective fluids.

On a quest of creating of a portable device, which utilizes radio-
frequency alternating current for contact-less tick removal, we simulate
the thermo-electrical processes of the device application. We use the finite
element method, to obtain both the current density inside the host and
the tick, and the created temperature field. The computational domain
consists of the host’s skin, the tick, the electrodes, and air.

Experiments on nested grids are performed to ensure numerical cor-
rectness of the obtained solutions. Various electrode configurations are
investigated. The goal is to find suitable working parameters – applied
power, duration, position for the procedure.

1 Introduction

We are on a quest of developing a contact-less tick removal apparatus. Ticks
spread a wide variety of diseases and their removal without disturbance is of
a great importance. Ticks are not to be disturbed, because they could vomit
potentially contaminated fluids into their host.

The apparatus under development consists of two electrodes. They are applied
to the skin of the host, in the vicinity of the tick bite. Then radio-frequency alter-
nating current is started through the electrodes. It is expected that weak electro
and thermal stimulation can discomfort the tick and make it leave the host.

The rest of the paper is organized as follows: In Sect. 1 the model and its
mathematical treatment are presented. The setup and the results of the per-
formed numerical experiments are presented in Sect. 2. Some discussion and
concluding remarks are given at the end.
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 369–376, 2015.
DOI: 10.1007/978-3-319-26520-9 41
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2 The Model, Space, and Time Discretization

We consider the bio-heat equation in the following form [1]:

ρc
∂T

∂t
= ∇ · k∇T + J · E (1)

where the thermal energy arising from the current flow is described by J · E.
Here, a simplified model is considered, where metabolic heat production, and air
convection effects are ignored. The initial and boundary conditions which are
used in this approach are as follows:

T = 37◦C when t = 0 at Ωskin ∪ Ωtick ∪ Ωtick mouth (2a)
T = 20◦C when t = 0 at Ωair ∪ ΩEl1 ∪ ΩEl2, (2b)
T = 37◦C when t ≥ 0 at Γbottom, (2c)
T = 20◦C when t ≥ 0 at Γtop, (2d)

k∇T · n = 0 when t > 0 at Γside. (2e)

The notations which are used in (1) and (2) are given below:

• Ω – the entire domain of the model;
• ΩEl1, ΩEl2 – the domains of the two

electrodes;
• Ωtick, Ωtick mouth – the domains of

the body and mouth of the tick;
• Ωskin = Ωgel∪Ωepidermis∪Ωdermis∪

Ωsubcutis – the domains of various
skin tissues and the applied electro-
conducting gel;

• Γtop – the top boundary of Ωair;
• Γbottom – the bottom boundary of

Ωskin;

• Γside – The boundary on the side of
Ω;

• ρ – density [kg/m3];
• c – specific heat [J/kg K];
• k – thermal conductivity [W/m K];
• J – current density [A/m];
• E – electric field intensity [V/m];
• t – time [s];
• T – temperature [◦C];
• n – outward facing normal to the

boundary.

The computational domain Ω is sketched on Fig. 1. It consists of air, two steel
electrodes, electro-conducting gel, and several skin layers – epidermis, dermis,
and subcutis. Both tick’s mouth and body are present in the domain. The goal
is not to model the exact tick geometry, but rather to have a distinct domain in
the geometry (especially for the tick mouth) so we can analyze the temperature
field there. The outermost epidermis layer – stratum corneum has high electrical
impedance, which also varies a lot. To overcome this, we apply electro-conductive
gel on top of the skin. In the presented algorithm the bio-heat problem (1) is
solved in two steps (see [6] for more details):

1. Finding a steady state heat source J · E using that: (a) E = −∇V (V is the
electric potential in the computational domain Ω), and (b) J = σE, where σ
is the electric conductivity [S/m];



Thermoelectrical Tick Removal Process Modeling 371

Fig. 1. Computational geometry

2. Finding the temperature T by solving the heat transfer Eq. (1) using the heat
source J · E obtained in the first step.

At first step, in order to determine the heat source J · E, we have to find
the distribution of the electric potential V . It is known that we can neglect the
contribution from the magnetic field in Maxwell’s equation if the size of the
computational domain is much smaller than the wavelength. We use computer
simulation of the electromagnetic processes in a model domain which is a 5 cm ×
5 cm × 5 cm cube for the electric current with frequency up to 900 kHz. Comsol
Multiphysics module “AC/DC module — Electric and induction currents” (see
[11]) is applied to solve the Maxwell’s equation in the time-harmonic case. The
numerical results show that the dependency of the distribution of the electric
potential V on the magnetic field is unseen. Thus, the distribution of the electric
potential V is found by solving the Poisson’s equation:

∇ · σ∇V = 0, in Ω, (3)

with boundary conditions

∇V · n = 0 at ∂Ω \ ∂ΩEl1 \ ∂ΩEl2, (4a)
V = 0 at ∂ΩEl1 ∩ ∂Ω, (4b)
V = V0 at ∂ΩEl2 ∩ ∂Ω. (4c)

The following notations are used in the above equations:

– V – Electric potential in Ω;
– σ – electric conductivity [S/m];
– V0 – applied voltage;
– ∂ΩEl1 – boundary of electrode 1;

– ∂ΩEl2 – boundary of electrode 2;

– ∂Ω \ ∂ΩEl1 \ ∂ΩEl2 – the rest of the
domain surface.
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Fig. 2. Computational coarse mesh.

After determining the potential distribution, the electric field intensity and
the current density is computed from

E = −∇V, J = σE.

It is more useful to have the output power as an input parameter, than the
actual voltage. We have to find the potential V0 for the last boundary condition of
(3) that will yield a given electrical output power P [W]. To do this, the Poisson’s
equation is initially solved with an arbitrary nonzero boundary condition V = V ∗

0

at ∂ΩEl2. Then, E∗ and J∗ are obtained from the solution and the corresponding
electrical power P ∗ can be computed as P ∗ =

∫
Ω

E∗ · J∗dx. Since the solution
and all the components of E and J are proportional to the value of V0 we can
scale the obtained solution, instead of recomputing it, in the following way:

V0 = λV ∗
0 , E = λE∗, J = λJ∗, where λ =

√
P/P ∗.

Let us note that this adjustment is performed only once at the beginning of the
simulation. The obtained potential V0 remains constant during the procedure.

For the numerical solution of problems (1)–(2) and (3)–(4) the finite element
method in space is used [4]. We use linear conforming tetrahedral finite elements.
Our unstructured grid parallel solver [7] is adapted for this problem. The ele-
ment matrices are directly defined on the tetrahedrons of the used unstructured
mesh (see Fig. 2). The meshing is done with the Netgen mesher [8]. An algebraic
multigrid (AMG) preconditioner is used [3] in the PCG solution of the arising
linear systems. The PCG and multigrid implementation from the Hypre library
[2] are used. The time derivative can be discretized via finite differences and
both the backward Euler and the Crank-Nicolson schemes can be used [5]. Let
the matrices K and M be the stiffness and mass matrices from the finite element
discretization of (1):

K =
[∫

Ω

k∇Φi · ∇Φjdx
]N

i,j=1

, M =
[∫

Ω

ρcΦiΦjdx
]N

i,j=1

.
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The electric field intensity is given by:

F =
[∫

Ω

J · EΦidx
]N

i=1

, (5)

Then, the spatially discretized parabolic Eq. (1) can be written in matrix form
as:

M
∂T
∂t

+ KT = F. (6)

The time discretization for both backward Euler method and the Crank-
Nicolson one can be written in the form

(M + τnθK)Tn+1 = (M − τn(1 − θ)K)Tn + τnF, (7)

where the current (n-th) time-step is denoted with τn, the unknown solution at
the next time step – with Tn+1, and the solution at the current time step – with
Tn. If we set the parameter θ = 1, (7) gives a system for the backward Euler
discretization. When θ = 0.5 (7) becomes Crank-Nicolson one.

3 Experiments

The material properties of the skin are taken from [9,10]. The tick material
properties are chosen to be close to the ones of the skin. All material properties
used in the experiments are collected in Table 1. The entire domain is a cylinder
with diameter 100 mm and height 100 mm. The thickness of the air layer is
50 mm, the one of the gel layer—0.1 mm, all layers of the skin—49.9 mm. The
thickness of epidermis is 0.5 mm. The dermis is 2 mm thick. The rest of the tissue
is considered subcutis.

In all experiments the applied power P is set to 0.5 W. Four different geome-
tries with varying diameter of the electrodes � and distance between them l are
studied: � = 1.5 mm, l = 5 mm for Geometry 1; � = 1.0 mm, l = 5 mm for

Table 1. Thermal and Electrical Properties of the Materials

Material ρ (kg/m3) c (J/kg K) k (W/m K) σ (S/m)

Stainless steel 21 500 132 71 4 × 108

Gel 1 060 3 473.55 0.512 16

Epidermis 1 050 3 473.55 0.419 0.1

Dermis 1 050 3 473.55 0.314 0.6

Subcutis 1 050 3 473.55 0.209 0.6

Air 1 1 0.025 10−3

Tick’s body 1 050 3 473.55 0.512 1

Tick’s mouth 1 050 3 473.55 0.512 0.6
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Geometry 2; � = 1.5 mm, l = 7 mm for Geometry 3 and � = 1.0 mm, l = 7 mm
for Geometry 4. The meshes obtained from Netgen are refined uniformly by
dividing each tetrahedron into 8 smaller ones. This refinement process is per-
formed twice. We shall refer to the three different levels of refinement as coarse,
medium, and fine. The backward Euler method is used in all numerical exper-
iments. In the first set of experiments we are interested in numerical accuracy
and stability of the discretization of the problem. We performed experiments on
Geometry 2. On the coarse mesh time-step τ = 1 is used, on the medium mesh
– τ = 0.25, and on the fine mesh – τ = 0.0625. On Fig. 3, the averaged tem-
peratures at tick’s mouth T coarse for the coarse mesh, T for the medium mesh,
and T fine for the fine mesh are compared. As we can see, there is no significant
difference between the two finer meshes. Therefore, for the rest of the experi-
ments we use a time-step of 0.25 and the medium meshes. Then we performed
experiments with all four geometries. The averaged temperatures at tick’s mouth
are depicted on Fig. 4. Two cross-sections for the experiments on each mesh are

-0.3
 0

 0.3
 0.6
 0.9
 1.2
 1.5

 0  5  10  15  20  25  30

te
m

pe
ra

tu
re

  [
°C

]

time [s]

Tcoarse - Tfine

T - Tfine
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Geometry 1 YZ Geometry 1 XZ

Geometry 2 YZ Geometry 2 XZ

Geometry 3 YZ Geometry 3 XZ

Geometry 4 YZ Geometry 4 XZ

Fig. 5. Isolines of the temperature: T=40◦C, T=45◦C, T=50◦C at time t=30 s
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presented on Fig. 5. There, isolines connect points with temperatures T=40◦C,
T=45◦C, and T=50◦C.

4 Discussion and Concluding Remarks

It is readily seen from the performed experiments that the results vary strongly
depending on the distance between the electrodes. The thicker electrodes also
produce more heat but this effect becomes less significant with time. This leads
to the conclusion that the distance between electrodes in the actual apparatus
should be carefully designed. Nevertheless in all four geometries, the temperature
around tick’s mouth is above 45◦C. The applied power and/or procedure time
can also be decreased.

It is important to note that our solver is general and can handle any unstruc-
tured tetrahedral mesh. Moreover it is parallelized using MPI and can handle big
meshes – the finest mesh in these experiments has ≈ 144 million tetrahedrons.
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Abstract. The goal of this study is to develop, analyze, and implement
efficient numerical algorithms for equations of linear poroelasticity, a
macroscopically diphasic description of coupled flow and mechanics. We
suppose that the solid phase is governed by the linearized constitutive
relationship of Hooke’s law. Assuming in addition a quasi-steady regime
of the fluid structure interaction, the media is described by the Biot’s sys-
tem of equations for the unknown displacements and pressure (u, p). A
mixed Finite Element Method (FEM) is applied for discretization. Linear
conforming elements are used for the displacements. Following the app-
roach of Arnold-Brezzi, non-conforming FEM approximation is applied
for the pressure where bubble terms are added to guarantee a local mass
conservation. Block-diagonal preconditioners are used for iterative solu-
tion of the arising saddle-point linear algebraic system. The BiCGStab
and GMRES are the basic iterative schemes, while algebraic multigrid
(AMG) is utilized for approximation of the diagonal blocks. The HYPRE
implementations of BiCGStab, GMRES and AMG (BoomerAMG, [6])
are used in the presented numerical tests. The aim of the performance
analysis is to improve both: (i) the convergence rate of the solvers mea-
sured by the iteration counts, and (ii) the CPU time to solve the problem.
The reported results demonstrate some advantages of GMRES for the
considered real-life, large-scale, and strongly heterogeneous test prob-
lems. Significant improvement is observed due to tuning of the Boomer-
AMG settings.

1 Introduction

In classical linear poroelasticity it is assumed that the solid is governed by the
constitutive relationship σ = Le, where σ is the stress tensor, e(u) = 1

2 (∇u +
∇uT) is the strain tensor and L stands for the elasticity tensor. Then the media
is described by the Biot law (c.f. [4,9], see also [10]):

∇ · (Le(u) − Ap0) = 0, (1)

∇ · (K∇p) = ∇ · ∂u
∂t

+ A : e
(

∂u
∂t

)
+ β

∂p

∂t
. (2)

c© Springer International Publishing Switzerland 2015
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Here p and u are the unknown pressure and displacement vector. K stands for
the permeability tensor. The Biot coefficient (tensor) A takes into account the
contribution of the fluid pressure p into the momentum Eq. (1), as well as the
pore volume change term A : e

(
∂u
∂t

)
in the balance of mass (1), due to the

displacements u. The pore volume change in (2) due to p is captured by β, the
coefficient of apparent rock compressibility due macroscopic fluid pressure.

The mesh methods provide computational technology for efficient discretiza-
tion of the problem (1–2). Among others, we would mention the Galerkin finite
element method (FEM) and the mixed FEM. The choice of method depends on
the features of the considered class of problems. Here, conforming linear FEs are
applied for approximation of the displacements in the elasticity terms of (1–2).
For applications related to flows in highly heterogeneous porous media, the mixed
finite element methods have proven to be accurate and locally mass conserva-
tive. While applying the mixed FEM to fluid subproblem, the continuity of the
velocity normal to the boundary between two adjacent finite elements could
be enforced by Lagrange multipliers. The relationship between the mixed and
non-conforming FEM has been studied and simplified for various finite element
spaces (see, e.g. [2]). In [3] Arnold and Brezzi have demonstrated that after the
elimination of the unknowns representing the pressure and the velocity from the
algebraic system the resulting Schur system for the Lagrange multipliers is equiv-
alent to a discretization by Galerkin method using linear non-conforming finite
elements. Namely, in [3] it is shown that the lowest-order Raviart-Thomas mixed
finite element approximations are equivalent to the usual Crouzeix-Raviart non-
conforming linear finite element approximations when the non-conforming space
is augmented with quadratic bubbles. We use such kind of augmented Crouzeix-
Raviart linear elements for approximation of the pressure. Implicit backward
Euler method is applied for time discretization.

The rest of the paper is devoted to the solution of the linear algebraic sys-
tems arising at each time step. It is organized as follows. In Sect. 2, we consider
the preconditioning algorithms for the related saddle-point problems. Section 3
contains the key results. A performance analysis based on tuning of a set of pre-
conditioning parameters is presented here. Some concluding remarks are given
at the end.

2 Preconditioning

The saddle-point poroelasticity problem corresponding to a displacements-pres-
sure two by two block splitting (see Fig. 1(b)) is written in the form:

ABiot =
[

Auu Aup

Apu App

]

To get a symmetric matrix ABiot, the pressure Eq. (2) is multiplied by −1.
For large-scale FEM systems, the advantages of the iterative solution meth-

ods are well known. There are efficient Krylov subspace methods designed for
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Fig. 1. (a) Example of strongly anisotropic unstructured FEM mesh in reservoir sim-
ulation; (b) Structure of the nonzero entries of the saddle-point matrix ABiot

solving symmetric indefinite problems. In this study, the behaviour of the bicon-
jugate gradient stabilized method BiCGStab and the generalized minimal resid-
ual method GMRES are studied. The potentially increasing memory consump-
tion of GMRES is controlled with restarts.

A crucial ingredient for success of the Krylov subspace methods is the precon-
ditioning. In this work, we use a block-diagonal preconditioning. Some related
results for poroelasticity FEM systems are available in some recent papers (c.f.
e.g. [1,5] and the references there in), where the media is ether homogeneous or
not strongly heterogeneous. The robustness for heterogeneous problems of high-
contrast is a hot topic. The derivation of uniform inf-sup estimate with respect
to the coefficient jumps (c.f. e.g. [7]) is still a challenging issue for poroelasticity
FEM systems.

The BoomerAMG preconditioner [6] is used as approximation of the diagonal
blocks Auu and App. The resulting linear preconditioner of the Biot matrix is in
the form:

CBiot =
[

AAMG
uu

AAMG
pp

]

The following 3D Test Problems (TP) concerning simulation of flows in
deformable porous media as appear in petroleum engineering (see Fig. 1(a)) are
considered in the next section: (i) TP1: N = Nu+Np = 3×2 291+9 592 = 16 465;
the media is modestly heterogeneous; (ii) TP2: N = Nu + Np = 3 × 150 871 +
186 669 = 639 282; the media is strongly heterogeneous; the mesh is strongly
anisotropic. Here N stands for the total number of degrees of freedom, while Nu

and Np stand for the related numbers of displacements and pressures. Unstruc-
tured grids are used in both, TP1 and TP2.

The large condition number of TP2 is due to the following complementary
factors: the elasticity modulus range is E ∈ (0.5, 30) [GPa]; the Poisson ratio
range is ν ∈ (0.3, 0.48); the permeability variation is of order of 5 × 105; the
mesh anisotropy ratio of order of 6 × 103.

The distribution of nonzero entries of the matrix corresponding to TP2 is
presented in Fig. 1(b). The structure of ABiot corresponds to the following num-
bering: (i) pointwise ordering in Auu (we don’t assume separable displacements);
(ii) the unknowns corresponding to the bubbles in App are at the end.
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Table 1. Performance of BiCGStab iterative solver

TP1 TP2

ε NBiCG
it T[s] NBiCG

it T[s]

10−6 7 0.23 18 26.48

10−9 10 0.28 63 79.67

10−12 14 0.36 430 517.30

3 Performance Analysis: Tuning of the BoomerAMG
Parameters

The numerical tests are performed on a 3.4 GHz Intel Core i7 CPU. The following
notations are used: ε - relative stopping criteria for both BiCGStab and GMRES;
NBiCG

it - number of BiCGStab iterations; NGMRES
it - number of GMRES itera-

tions; T[s] - CPU time in seconds. The performance analysis is started with the
default settings of BoomerAMG: Falgout coarsening, hybrid symmetric Gauss-
Seidel relaxation. classical modified interpolation, and a Strong Threshold equal
to 0.75. The results for BiCGStab are given in Table 1.
The influence of the size of Krylov subspace before restart, Kdim, is examined
additionally when the GMRES performance is studied. In Table 2, we see how
the number of iterations NGMRES

it decreases with the increase of Kdim. The
CPU time is almost always smaller for largest values of Kdim. GMRES is faster,
even though the count of BiCG iterations is smaller.

In the following performance analysis, the numerical tests are only for the
larger problem TP2, where the heterogeneity and mesh anisotropy are

Table 2. Performance of GMRES iterative solver

TP ε Kdim 4 8 16 32 64 128 256 512

1 10−6 NGMRES
it 24 13 11

T[s] 0.38 0.25 0.22

1 10−9 NGMRES
it 39 21 16

T[s] 0.53 0.32 0.28

1 10−12 NGMRES
it 47 28 24 21

T[s] 0.62 0.40 0.35 0.31

2 10−6 NGMRES
it 62 44 28

T[s] 46.75 33.28 22.81

2 10−9 NGMRES
it 151 128 92 88 84

T[s] 105.94 86.84 63.37 61.69 60.44

2 10−12 NGMRES
it 893 617 468 372 362 351

T[s] 574.08 396.13 307.16 259.86 275.30 302.09
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Table 3. Tuning of the Coarsening: TP2, ε = 10−6, Kdim = 32; Relaxation - 1;
Interpolation - 0

BiCGStab GMRES

Coarsening Nit T[s] Nit T[s]

21 17 17.02 28 15.80

22 17 17.08 28 15.83

3 17 17.16 28 15.87

0 17 18.44 28 16.44

6 17 19.05 29 16.73

very strong. Comprehensive tests for BiCGStab (ε = 10−6) are performed at
the next step, varying the following parameters: (i) Coarsening: 0 - CLJP-
coarsening; 3 - Ruge-Stueben coarsening; 6 - Falgout coarsening; 21 - CGC
coarsening; 22 - CGC-E coarsening; (ii) Relaxation: 1 - Gauss-Seidel, sequen-
tial; 3 - hybrid Gauss-Seidel forward solve; 4 - hybrid Gauss-Seidel backward
solve; 5 - hybrid chaotic Gauss-Seidel; 6 - hybrid symmetric Gauss-Seidel; (iii)
Interpolation: 0 - classical modified interpolation; 4 - multipass interpolation;
6 - extended+i interpolation; 7 - extended+i (if no common C neighbor) inter-
polation; 8 - standard interpolation; 12 - FF interpolation; 13 - FF1 interpolation;
14 - extended interpolation. The best result is obtained for the setting: Coars-
ening - 21; Relaxation - 1; Interpolation - 0. This variant is selected as default
for the next parameter by parameter tunings. The comparative results for both,
BiCGStab and GMRES (Kdim = 32), are shown in Tables 3, 4, 5.

Now, we analyze the influence of the so called Strong Threshold which
(according to HYPRE documentation) is to be chosen in the interval (0, 1),
depending on the particular problem. The results are given in Table 6. What we
observe is the monotone increasing of the number of iterations, pursued with a
monotone decreasing of the time for both, BiCGStab and GMRES.

The last step of the presented performance analysis is devoted to tuning the
BoomerAMG parameters separately for each of the blocks Auu and App where

Table 4. Tuning of the Relaxation: TP2, ε = 10−6, Kdim = 32; Coarsening - 21;
Interpolation - 0

BiCGStab GMRES

Relaxation Nit T[s] Nit T[s]

5 17 17.05 28 15.87

3 17 17.15 28 15.98

1 17 17.21 28 15.85

4 17 19.16 28 17.57

6 18 25.98 27 21.86
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a stronger stopping criteria of ε = 10−12 is applied. Some selected best settings
are given in the Tables 7–8.

The final result of this experimental study is given in Table 9.

Table 5. Tuning of the Interpolation: TP2, ε = 10−6, Kdim = 32; Coarsening - 21;
Relaxation - 1

BiCGStab GMRES

Interpolation Nit T[s] Nit T[s]

7 17 16.98 28 15.90

4 17 17.05 28 15.95

12 17 17.08 28 15.94

0 17 17.09 28 15.77

13 17 17.16 28 15.87

14 17 17.29 28 16.01

6 20 19.52 28 15.98

8 21 20.35 28 16.14

Table 6. Tuning of the Strong Threshold: TP2, ε = 10−6, Kdim = 32; Coarsening -
21; Relaxation - 1

BiCGStab GMRES

ST Nit T[s] Nit T[s]

0.05 16 50.98 21 44.14

0.10 15 42.79 20 36.52

0.15 14 37.47 20 32.50

0.20 13 33.00 21 30.43

0.30 14 29.35 21 25.86

0.40 16 27.30 23 23.09

0.50 16 23.45 23 19.63

0.60 16 19.99 25 17.98

0.70 18 19.00 28 16.85

0.75 17 17.00 28 15.91

0.80 18 16.81 29 15.31

0.85 21 17.83 30 14.77

0.90 20 16.35 31 14.55

0.95 20 15.59 31 13.82
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Table 7. Tuning of the BoomerAMG parameters for the block Auu: TP2, ε = 10−12

Coarsening Relaxation Interpolation Nit T[s]

21 5 12 50 21.37

21 5 0 50 21.42

3 5 12 50 21.42

22 5 4 50 21.42

22 1 13 50 21.44

3 5 7 50 21.44

Table 8. Tuning of the BoomerAMG parameters for the block App: TP2, ε = 10−12

Coarsening Relaxation Interpolation Nit T[s]

0 6 13 789 33.37

6 6 6 794 33.39

6 6 12 794 33.39

6 6 0 794 33.39

6 6 14 794 33.40

0 6 12 789 33.43

Table 9. Behavior of the solvers of the coupled system after tuning the BoomerAMG
parameters: TP2, Kdim=32

BiCGStab GMRES

ε Nit T[s] Nit T[s]

10−6 14 15.91 22 13.94

10−9 54 45.27 68 34.56

10−12 279 213.36 282 170.98

4 Concluding Remarks

Block-diagonal preconditioning of the mixed FEM Biot system is studied. One
commonly used technique is based on inner iterations for the related elliptic
blocks. Let us note that the related preconditioners are not linear. Numeri-
cal tests illustrating the efficiency of this approach for modestly heterogeneous
problems can be found in [1,5]. Our study is focussed on problems with strong
heterogeneity and strong mesh anisotropy (see the related details for TP2). For
this class of problems, we don’t observe any advantages of inner iterations. This
is the reason to concentrate on linear preconditioners where AMG approximation
of the diagonal blocks is used. The presented results are of strongly expressed
experimental nature. The performance analysis shows a serious potential for
improvement of the computational efficiency. Due to tuning of the BoomerAMG
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parameters, the achieved decrease of the CPU times T[s] for TP2 for ε = 10−12

are as follows: (i) BiCGStab - from 517.30 to 213.36, that is a reduction factor
of 2.42; (ii) GMRES (Kdim=32) - from 396.13 to 170.98, or a reduction factor
of 2.32. The better performance of GMRES is clearly visible. In this respect we
have to remember that the required memory increases with Kdim which could
be a restriction for more large scale applications.
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Abstract. “Big” surfaces defined on domains that can not be modeled
on a single regular grid is typically made by joining several surfaces
together with the aid of fillet surfaces or by intersecting the surfaces and
joining them after trimming.

In computations on geometry and geometric modeling in general sur-
face modeling is a key issue. The most important type of surfaces are
tensor product spline surfaces. They are in general based on regular grid-
ing, i.e. knot vectors are the same for all “lines” or “columns”. Examples
are B-spline surfaces, Hermite-spline surfaces and Expo-rational B-spline
surfaces. Surfaces constructions that in some way handle “irregular grids”
has been developed. We find them in for example T-splines, LR B-splines,
Truncated Hierarchical B-splines and PHT-splines. In general, surfaces
based on irregular grids can be regarded as a collection of surfaces on
regular grids that are connected at the edges and the corners in a smooth,
but irregular way. This involves T-junctions and star-junctions.

To investigate a surface construction based on blending of local
“small” patches into a “big” surface with arbitrary topology also requires
that we can deal with T-junctions and star-junctions.

Here we investigate use of blending technique at T- and star-junctions.
We look at special blending surfaces between regular patches, and re-
parametrization to obtain a correct orientation and a better mapping in
the parameter plane. The focus is on smoothness of the resulting surface.

Keywords: Surface · Spline · Junction · Blending

1 Introduction

Boundary representation, abbreviated as B-rep, is a common method for describ-
ing objects. An object is described as a collection of contiguous surfaces that
represent boundaries of an object or boundaries between different materials. It
follows that it is important to be able to model complex surfaces, surfaces with
different genius and with varying degrees of complexity. This means that we
must be able to cope with “irregular” geometry. Today this is mainly done by
using trimmed surfaces with trimming curves that are computed using Boolean
operations and thus surface intersections. See [1] and [2].

An important reason to handle irregularities without using trimming is the
introduction of isogeometric analysis. This means to use a common function
c© Springer International Publishing Switzerland 2015
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space for both computation and shape description. It follows that the traditional
Finite Element function-spaces can be replaced by spline-spaces, see [3].

Both, T-splines, [4,5], LR-splines, [6] and PHT-splines [7] are surface descrip-
tions that modify B-splines to handle irregularities. Therefor, we introduce a
related solution for blending-splines surfaces, GERBS, described in [8] and [9].

The most flexible solution is to use non-regular connected triangular surfaces.
However, tensor product surfaces are the most used surface construction because
of the simple construction, the smoothness control and that they are well known
in industrial systems. Therefore, we are looking at tensor product surfaces that
are joined together in a smooth, but irregular way, see [10].

This imply investigating T-junctions and star-junctions, special blending sur-
faces divided in sub-surfaces, and re-parametrization.

2 Surfaces, Blending, and Grid

A tensor product B-spline surface is defined by

S(u, v) =
nu∑

i=1

nv∑

j=1

ci,j bdv,j(v)bdu,i(u),

where ci,j is the control points of the surface, bdv,j(v) and bdu,i(u) are defined by
the two knot-vectors, ū = {u0, u1, ..., unu+du

} and v̄ = {v0, v1, ..., vnv+dv
}, where

nu and nv are the number of basis-functions and du, dv are the polynomial degree
in respective u- and v-direction. The recursive definition of the basis functions
are:

bd,k(t) = wd,k(t) bd−1,k(t) + (1 − wd,k+1(t)) bd−1,k+1(t) (1)

where
wd,i(t) =

t − ti
ti+d − ti

, (2)

terminating with

b0,i(t) =
{

1; if ti ≤ t < ti+1;
0; otherwise, i = k, ..., k + d. (3)

The domain of a tensor product B-spline surface is closed and rectangular.
The two knot-vectors divide the domain in a regular net of sub-rectangles, and
the control polygon is organized in a regular net.

2.1 B-Functions for Blending

A B-function (blending function) is a smooth monotone permutation function,
B : [0, 1] → [0, 1]. An example of a B-function is the Expo-Rational B-function
inducing C∞-smoothness,

B(t) = Sd

t∫

0

φ(s) ds, t ∈ [0, 1] (4)
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B(t)
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Fig. 1. Six examples of B-functions. On the right side is the upper right corner of

the plot shown. At B(t) = 0.75 we can see from left to right, B2(t) = t3

(1−t)3+t3
,

B1(t) = t2

(1−t)2+t2
, B2(t) = 6t5 − 15t4 + 10t3, B∞(t) - ERBS, B1(t) = sin2 π

2
t and

B1(t) = 3t2 − 2t3. The index in the B-function Bj means it induces Cj-smoothness.

where φ(s) = e− (s− 1
2 )

2

s(1−s) and Sd =
[∫ 1

0
φ(s)ds

]−1

. A plot of B(t) from expres-
sion (4), together with five other examples of B-functions, can be seen in Fig. 1.
It follows that the Expo-Rational B-function has the following properties:

At start B(0) = 0, and all derivatives B(d)(0) = 0, d = 1, 2, 3, ...
At end B(1) = 1, and all derivatives B(d)(1) = 0, d = 1, 2, 3, ...

(5)

2.2 Blending Surfaces

If we adjust the formula (1) for B-splines with a B-function, we get:

Bd,k(t) = B ◦ wd,k(t) Bd−1,k(t) + (1 − B ◦ wd,k+1(t)) Bd−1,k+1(t), (6)

where B is a B-function, wd,i(t) is defined in (2) and B0,i = b0,i defined in (3).
A blending ERBS surface is a 1st degree tensor product B-spline surface

adjusted with an ERBS B-function as described in (6). It is defined by two
knot-vectors, ū = {u0, u1, ..., unu+1} and v̄ = {v0, v1, ..., vnv+1}, where nu and
nv is the number of basis-functions in respective u- and v-direction. The formula
is:

S(u, v) =
nu∑

i=1

nv∑

j=1

si,j(u, v) B1,j(v)B1,i(u),

where si,j(u, v) is a net of local patches.
Thus, tensor product ERBS blending surface is a surface that also can be

regarded to be constructed on a “regular grid”, where the grid is defined by the
net of local patches, see Fig. 2.
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s04

s22 s42

1 2

3 4

Fig. 2. On left hand side is an ERBS tensor product surface made by 5 × 5 “local
patches”. In the middle the parameter plane of the surface is illustrated as a grid.
Three examples of the domain of local patches are illustrated. In upper left corner we
see surface S04, in the center we see S22, and on the right edge S42 is shown. On right
hand side one partition is shown. Local patches, connected to each corner, are marked.

2.3 Sub-surfaces

A 1st degree B-spline and thus an ERBS tensor product basis function has
minimum support, over two knot intervals. The domain of an ERBS-surface is
partitioned by the knot vectors, see Fig. 2. The parameter lines are crossing
each other where the vertices of the surface are located. These vertices are the
points where the local patches interpolates the ERBS-surface. It follows that the
support of the local patch is the sub-partitions in the domain that is surrounding
the related vertex. For all internal vertices this is four squared partitions, for
vertices on the edges it is two partitions, and for vertices in the corners it is only
one partition. This is illustrated in Fig. 2.

On each partition we define sub-surfaces of the four local patches covering
the partition and thus also the ERBS-surface. It follows that because of the re-
parametrization in (6) we can regard the local domain of each sub-surface to be
the unit square [0, 1] × [0, 1].

3 Properties of Surface Blending

We now look at surfaces with domain [0, 1]×[0, 1], made by blending four patches
connected to the corners, see on right hand side in Fig. 2. The formula is:

S(u, v) = (1 − B(v))((1 − B(u))s1(u, v) + B(u)s2(u, v))
+B(v)((1 − B(u))s3(u, v) + B(u)s4(u, v)),

= s1(u, v) + B(u)(s2(u, v) − s1(u, v)) + B(v)(s3(u, v) − s1(u, v))
+B(u)B(v)(s4(u, v) − s3(u, v) − s2(u, v) + s1(u, v))

In the following we skip the parameters (u, v) for the surfaces in the expressions.

S = s1 + B(u)(s2 − s1) + B(v)(s3 − s1) + B(u)B(v)(s4 − s3 − s2 + s1) (7)

To investigate the behavior on the edges, we just look at the edge on the left
side. The other edges will have similar behavior. Thus, the function value is

S(0, v) = s1 + B(v)(s3 − s1), (8)
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Fig. 3. On left hand side is a T-junction and the two termination points marked. The
seven sub-surfaces involved in the irregular blending are marked with light gray. To the
right is a Star-junction and three termination points marked. The sub-surfaces involved
are, three marked dark gray and six marked light gray.

and the first and second order partial derivatives are

Su(0, v) = s1u + B(v)(s3u − s1u),
Sv(0, v) = s1v + B(v)(s3v − s1v) + B′(v)(s3 − s1),

Suu(0, v) = s1uu + B(v)(s3uu − s1uu),
Suv(0, v) = s1uv + B′(v)(s3u − s1u) + B(v)(s3uv − s1uv),
Svv(0, v) = s1vv + 2B′(v)(s3v − s1v) + B(v)(s3vv − s1vv).

(9)

The following lemma states the interpolation properties on the boundary of
the blending surfaces made by blending four surfaces connected to each corners.
Thus, the blended surface inherits some of its behavior from its “local patches”.

Lemma 1. At the four corners we get the following properties

Lower left corner S(0, 0) S ≡ s1 including all its derivatives

Lower right corner S(1, 0) S ≡ s2 including all its derivatives

Upper left corner S(0, 1) S ≡ s3 including all its derivatives

Upper right corner S(1, 1) S ≡ s4 including all its derivatives

At the four edges we get the following properties

Left edge S(0, v) = s1 + B(v)(s3 − s1) only depend on s1 and s3

Right edge S(1, v) = s2 + B(v)(s4 − s2) only depend on s2 and s4

Lower edge S(u, 0) = s1 + B(u)(s2 − s1) only depend on s1 and s2

Upper edge S(u, 1) = s3 + B(u)(s4 − s3) only depend on s3 and s4

Proof. The proof follows from B-function property (5) and (7), (8) and (9). ��

4 Surfaces on Irregular Grid

To connect several surfaces into one common surface, we use specialized local
patches. These local patches must cover the nearest neighborhood (according to
the grid) on all surfaces to be connected. In Fig. 3 there is on left hand side a
grid description of a T-junction, and on right hand side a grid description of a
Star-junction.

We also define points that ends irregular areas as termination points.
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Fig. 4. On left hand side is, for a Star-junction shown the parameter plane of a surface
and the sub-surfaces (tensor product surface or Bézier-triangle). In the middle we see
a control polygon of a Bézier patch used in the re-parametrization. To the right is a
Bézier triangle used. It is divided in 3 by re-parametrization using Bézier patches. In
addition is 3 surfaces based on Hermite blended curves connected to each edges.eps

4.1 T-Junctions

Here we define, that in an irregular grid a T-junction is a line ending on a
orthogonal line. In Fig. 3 this is illustrated. T-junctions typically occurs on the
edge between two surfaces when joining them to one surface. How to handle
T-junctions to achieve smooth surfaces, is given by the following theorem.

Theorem 1. To get a Ck-smooth (k > 0) blending on a T-junction or a collec-
tion of connected T-junctions, the local patches to these T-junctions and to the
termination points of this collection, must be parts of a common surface.

Proof. From Lemma 1 it follows that, at the vertices, the surface is identical to
the local patches connected to the respective vertices. If there is a T-junction,
the T-junction is a vertex on two neighboring sub-surfaces on a common local
patch. On the other side of the T-junction is another sub-surface from the same
local patch. On this sub-surface the T-junction is not a vertex. To interpolate a
local patch at an internal point on an edge (with all its derivatives), it follows
from Lemma 1 that the two patches connected to the two vertices defining the
edge must be parts of the same surface, and that the patch connected to the
T-junction also must be part of the same surface. ��

To the left in Fig. 3 a T-junction is highlighted in solid gray and two termi-
nation points marked with a black ring. The three local patches connected to
the marked vertices and covering the irregularities, are marked light gray and
are divided into seven sub-surfaces.

4.2 Star-Junctions

We define Star-junction as a point where several “parameter” lines meet in a
non-orthogonal way. An example of a Star-junction is given on the right hand
side in Fig. 3, where three grid-lines meet in one point. Star-junctions are difficult
to handle. Problems related to Star-junction appears clearly when we look at
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Fig. 3. Lines in the parameter plane where only one parameter varies get a kink
when they pass an edge on their way out of a Star-junction.

In the following theorem we show how to handle Star-junction in blending.

Theorem 2. To get a smooth surface over a Star-junction, the local patch con-
nected to the Star-junction point and the local patches connected to the termina-
tion points must be sub-surfaces of one common surface. The local patches may
be individually translated (not rotated, scaled,..).

The smoothness over the edges from the Star-junction to its termination
points will be C∞, but the smoothness over the edge orthogonal to the termi-
nation points (see Fig. 4) will depend on the re-parametrization that is used.

Proof. Because the local patches are parts of the same surface (only individually
translated), derivatives of all order are the same at an edge shared by two local
patches. It follows from Lemma 1 that the value and all derivatives on the
resulting surface must converge towards the same when we approach the edge
from either side. Thus, the edge between the Star-junction and its termination
points will be C∞-smooth. At the edges perpendicular to the star-junction lines
at the termination points (see Fig. 4), the smoothness will only depend on the
smoothness of the re-parametrization in the parameter plane of the local surface
that divide it into sub-surfaces. Thus, the resulting surface can only be as smooth
as the re-parametrization in the parameter plane (see Fig. 4). ��

On left hand side of Fig. 4 an example of a parameter plane to a surface that
covers an irregular T-junction area is shown. There are nine sub-surfaces (dark
and light gray), which together define four local patches. The upper figure in the
middle of Fig. 4 shows the local surface attached to the T-junction, below we
see one of the three local patches that are connected to the termination points.
Note that the upper part of the lower surface is the same as the lower part of
the upper surface.

In the upper figure in the middle of Fig. 4 the re-parametrization is done
using a Bézier map, ω : R2 → R

2. There are three sub-surfaces in the central
surface. They are each parameterized using a Bézier map of degree 2 in both
directions, with a 3 × 3 control polygon, in a “symmetric” way.

We then look at the right side of the sub-surface below and divide it in the
upper part and the lower part. The upper part is equal to the central local
patch. The lower part is a Bézier map of degree 2 in one direction and degree
3 in the other direction, i.e. a 3× 4 control polygon. If the control points, named
ci,j , i = 1, 2, 3 and j = 1, 2, ..., 6 are used by the upper patch ci,j , i = 1, 2, 3 and
j = 1, 2, 3 and the lower patch ci,j , i = 1, 2, 3 and j = 3, 4, 5, 6 then the local
patch is continuous. If in addition ci,4 − ci,3 = ci,3 − ci,2 then the local patch is
C1-smooth over the edge.

On right hand side of Fig. 4 it is used a Bézier triangular map expanded
by Hermite blended curves and vector valued functions connected to each of
the edges of the triangle. The curves on the other side can be arbitrary chosen.
The number of derivative functions used in the Hermite blending determines the
continuity.
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Fig. 5. A smooth surface with a Star-point. The normals on the edges are plotted and
on right hand side the three parts are separated. The surface is made by blending of
planar surfaces and one curved Bézier triangle expanded by Hermite blended curves.

5 Concluding Remarks

Figure 5 shows a surface with a Star-point, The map explained on the right
hand side in Fig. 4 is used in the construction. The Surface is C1-smooth, but
the smoothness can be increased. The two maps that are described on the left
hand side of Fig. 4 gave both the same result. Thus, the described methods
works.
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Abstract. Compact surfaces possessing a finite number of boundaries
are important to isogeometric analysis (IGA). Generalized expo-rational
B-Splines (GERBS) is a blending type spline construction where local
functions associated with each knot are blended by Ck-smooth basis func-
tions. Modeling of surfaces with custom-shaped boundaries, or holes, can
be achieved by using certain features and properties of the blending type
spline construction, including local refinement and insertion of multi-
ple inner knots. In this paper we investigate representation of arbitrary
inner boundaries on parametric surfaces by using the above mentioned
blending type spline construction.

Keywords: Isogeometric analysis · Splines · Blending methods ·
Boundary representations

1 Introduction

The field of isogeometric analysis (IGA), introduced by Hughes et al. in [11],
is attempting to integrate finite element analysis (FEA) and computer aided
design (CAD).

Polynomials on Bernstein form, B-splines in particular, are numerically more
stable than polynomials on monomial form [9]. They can provide exact repre-
sentations of elementary curves, surfaces and volumes. The non-uniform rational
B-splines (NURBS) have been incorporated into the initial graphics exchange
specification (IGES) and standard for the exchange of product model data
(STEP) industry standards used in CAD. Spline based methods is one of the cur-
rent approaches on IGA, attempting to bridge the gap from CAD to FEA. Some
notable variants of spline based IGA include T-splines [16], PHT-splines [7],
locally refined B-splines (LR B-splines) [8] and hierarchical B-splines [10,17].

This study constitutes one part in a series of attempts to explore the use of
blending type splines in construction and analysis of iso geometry. In this article
we address the use of tensor product boolean sum surfaces of Coons type [3]
as local surface patches for the spline construction. Our main motivation is to
c© Springer International Publishing Switzerland 2015
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explore how well we can control the shape of an internal hole, represented by a
boundary curve, in a Ck smooth surface.

The following sections provide a brief overview of the GERBS surface con-
struction, Coons patch and boolean sum surfaces followed by a description of our
method before we present our results and finally give our concluding remarks.

2 The Blending-Type Spline Construction

Expo-rational B-splines (ERBS) were first introduced under this name in [6,12].
The generalization of expo-rational B-splines (GERBS) appeared in [5]. Later,
in [13,14], the ERBS blending construction was presented in the framework of
the B-spline recursion formula associated with the knots (ti)k+d

i=0 :

Bd,k(t) = B ◦ ωd,k(t)Bd−1,k(t) + (1 − B ◦ ωd,k+1(t))Bd−1,k+1(t), (1)

where ωd,i(t) = t−ti
ti+d−ti

, B0,i(t) =
{

1; if ti ≤ t < ti+1.
0; otherwise. The degree d = 1 in

the case of GERBS; moreover, B is a Ck-smooth blending function possessing
the following set of properties:

1. B : I → I (I = [0, 1] ⊂ R),
2. B(0) = 0,
3. B(1) = 1,
4. B

′
(t) >= 0, t ∈ I.

5. B(t) + B(1 − t) = 1, t ∈ I.

The last property is optional and specifies point symmetry around the point
(0.5, 0.5), however, we assume this property in the present study.

In the present work we consider tensor product surfaces defined as

S(u, v) =
n∑

i=1

m∑

j=1

�i,j(u, v)B1,i(u)B1,j(v), (2)

where �i,j(u, v) are local surface patches which are blended together by the Ck-
smooth blending functions B1,i and B1,j .

Local refinement by knot insertion for the blending construction was
addressed in [2,4]. Splitting of the geometry, which can be achieved by using
multiple inner knots in this case, is one form of editing which was first investi-
gated in [1] as a technique for artistic editing where a method for creating holes
in the geometry was presented.

One consequence of splitting by using multiple knots is that affine trans-
forms can be applied to the local surface patches associated with the knots.
Separating two connected double knots gives a geometric G0 continuity of the
construction, in the corresponding parametric direction, while maintaining the
Ck mathematical smoothness. This follows as a consequence of the transfinite
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Fig. 1. A blending-type spline surface with multiple knots which are separated to
generate a split (to the left) and the parametric representation of the same surface (to
the right).

Hermite interpolation property at the knots, which in turn is due to the vanishing
derivatives of the basis function at the knots.

Figure 1 shows an example of how the blending construction can be splitted
by using multiple knots which are moved away from each other, and how the
parametric representation is still continuous. Using double knots in both para-
metric directions splits the surface into four equal pieces. Each quadrangle has
four local patches, pointing at a single patch, which is representing a corner in
the final surface. A geometric hole appears in the center of the surface since the
four local patches in the center is pointing to a respective patch in a corner.

3 Boolean Sum Surfaces

The Coons surface patch [3] is a surface segment bounded by four spatial curves
which it interpolates to. Coons proposed using blending surfaces in [3]. Two ruled
surfaces, where each of them interpolates two of the four boundary curves, are
added together with this construction. A slope correction surface is subtracted
to compensate for the curves which the ruled surfaces fail to interpolate.

Figure 2 illustrates the components of a bilinear Coons patch defined by the
boolean sum surface

�(u, v) = L1(u, v) + L2(u, v) − L3(u, v), (3)

where the ruled surface L1(u, v) interpolates the two boundary curves
c1(u), c2(u) but is linear along v, L2(u, v) interpolates g1(v), g2(v) but is lin-
ear along u, and L3(u, v) is a bilinear slope correction surface matching the
linear components of both L1(u, v) and L2(u, v).
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c2(u)

c1(u)
g2(v)

g1(v)

g2(v)

c2(u)

c1(u)

g1(v)

+ - =

Fig. 2. The surfaces involved in a bilinear Coons patch construction. The red lines
indicate linear segments between two nodes, and the black lines indicate the interpo-
lated curves. Adding two ruled surfaces and subtracting a bilinear one yields the final
Coons patch surface (right). From left to right: L1 + L2 − L3 = �

Fig. 3. The illustration shows the shaded version of the two example constructions.
The surface on the left has a circular inner boundary while the one on the right has
a free form ERBS-based inner boundary. Both inner boundary curves interpolate the
outer boundary on the middle of the four edges.

4 Coons Patches as Local Geometry

We propose using Coons patches as local surfaces in connection with double
knots to obtain splits, or holes, with arbitrary shape. The desired shape for
the inner boundary can be described by curves which are interpolated by the
Coons patch local surfaces. The only requirement for each quadrant is that they
interpolate in the parametric central knot of every edge.

The initial shape of the resulting surface (before separating the multiple
knots) will be preserved since the local patches which are blended together have
exactly the same shape and since the desired geometric hole is constructed using
the inner boundary curve.

As an experiment and proof of concept we provide two surfaces. They are
constructed from an inner and outer boundary curve. In both cases the outer
boundary curve is a closed parametric rectangular curve. Both examples have
uniform 3 × 3 knots vectors, where the middle knot is a double knot, in both
parametric directions.

In the first example, shown on the left in Fig. 3, the inner boundary is a
circular curve interpolating the outer boundary at the middle double knots.
In the second example, shown on the right in Fig. 3, the inner boundary is a
parametric ERBS-based free form blending-type spline curve interpolating the
outer boundary curve at the middle knots.
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Fig. 4. The illustration shows a shaded version of the two example surface construc-
tions, S(u, v) where u, v ∈ [0, 2], with a curve plotted in the parametric plane along v
for a fixed u = 0.5. The surface on the left has a circular inner boundary while the one
on the right has a free form ERBS-based inner boundary.

Fig. 5. The illustrations shows the tensor-product parameter grid distribution as wire-
frames of the two example constructions. The surface on the left has a circular inner
boundary while the one on the right has a free form ERBS-based inner boundary. Both
surfaces is sampled at 20 × 20 samples.

A curve evaluated on the boundary of the two example surfaces is shown in
Fig. 4 and a wireframe representation of the examples, showing the distribution
of the parametric domain, is provided in Fig. 5. On both surfaces, s(u, v) where
u, v ∈ [0, 2], the surface curve is evaluated along v for a fixed u = 0.5.

5 Concluding Remarks

In both examples the middle knots on the boundary is equally distanced from
both sides. We note that this is not a general requirement. Moreover, in both
examples, a compact Ck-smooth tensor-product blending-type spline surface
construction is created where the inner boundary curve limits a natural hole
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in the surface construction. Both constructions are exact constructions in the
sense that the inner and outer boundary curves are interpolated. The construc-
tion is Ck everywhere and at the knots the smoothness depends on the local
geometry. In the case where bilinear Coons patches is used as representation of
the local geometry the smoothness is C1. We note that in the case where bicu-
bic blending would be used the construction would be C2 at the knots. Further
exploration is a topic for future work. All the while the construction has a nat-
urally inner hole represented by the inner boundary curve and is therefore G0.
The construction is also evaluable everywhere on the tensor-product parametric
domain.

One expansion of this construction could be such that the inner and outer
boundary curves do not interpolate at the boundary knots. Another interesting
expansion could be to expand the construction into a three-tensor volumetric
representation where the inner boundary would be a parametric surface.
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10. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hier-
archical splines. Comput. Aided Geom. Des. 29(7), 485–498 (2012)

11. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech.
Eng. 194(39–41), 4135–4195 (2005). http://dx.doi.org/10.1016/j.cma.2004.10.008

12. Laks̊a, A., Bang, B., Dechevsky, L.T.: Exploring expo-rational B-splines for curves
and surfaces. In: Dæhlen, M., Mørken, K., Schumaker, L. (eds.) Mathematical
Methods for Curves and Surfaces, pp. 253–262. Nashboro Press, Brentwood (2005)

13. Laks̊a, A.: ERBS-surface construction on irregular grids. In: Pasheva, V., Venkov,
G. [15], pp. 113–120

http://dx.doi.org/10.1016/j.cam.2005.07.009
http://dx.doi.org/10.1016/j.cam.2005.07.009
http://www.sciencedirect.com/science/article/pii/S0167839613000113
http://www.sciencedirect.com/science/article/pii/S0167839613000113
http://dx.doi.org/10.1016/j.cma.2004.10.008


400 A. Pedersen et al.

14. Laks̊a, A.: Construction and properties of non-polynomial spline curves. In:
Sivasundaram, S. (ed.) ICNPAA 2014 World Congress: 10th International Con-
ference on Mathematical Problems in Engineering, Aerospace and Sciences. AIP
Conference Proceedings, vol. 1637, pp. 545–554. AIP Publishing (2014)

15. Pasheva, V., Venkov, G. (eds.): 39th International Conference Applications of
Mathematics in Engineering and Economics AMEE13, AIP Conference Proceed-
ings, vol. 1570. AIP Publishing (2013)

16. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. In:
ACM SIGGRAPH 2003 Papers, pp. 477–484. SIGGRAPH 2003, ACM, New York,
NY, USA (2003). http://doi.acm.org/10.1145/1201775.882295

17. Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to
adaptive local refinement in isogeometric analysis. Comput. Meth. Appl. Mech.
Eng. 200(49–52), 3554–3567 (2011)

http://doi.acm.org/10.1145/1201775.882295


Scalability of Shooting Method
for Nonlinear Dynamical Systems

Stanislav Stoykov(B) and Svetozar Margenov

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Acad. G. Bonchev Street,

Bl. 25A, 1113 Sofia, Bulgaria
{stoykov,margenov}@parallel.bas.bg

Abstract. The computation of periodic solutions of nonlinear dynam-
ical systems is essential step for their analysis. The variation of the
steady-state periodic responses of elastic structures with the frequency of
vibration or with the excitation frequency provides valuable information
about the dynamical behavior of the structure. Shooting method com-
putes iteratively the periodic solutions of dynamical systems. In the cur-
rent paper a parallel implementation of the shooting method is presented.
The nonlinear equation of motion of Bernoulli-Euler beam is used as a
model equation. Large-scale system of ordinary differential equations is
generated by applying the finite element method. The speedup and effi-
ciency of the method are studied and presented.

1 Introduction

In the last decades many researchers have been involved in development of
numerical methods and tools for investigating the dynamical characteristics of
nonlinear systems. The knowledge of the steady-state response of elastic struc-
tures due to external excitations with different frequencies presents valuable
information which is used by engineers for design and maintenance of the struc-
tures. The nonlinear frequency-response function, together with determination
of bifurcation points, secondary branches and stability provides such information
about the dynamics of the structure.

Shooting method is an iterative method for computing periodic responses
[6]. In a combination with the arc-length continuation method, it allows one to
compute complete branch of solutions from the bifurcation diagram [5].

Due to complexity of the structures three-dimensional finite elements become
more appropriate for space discretization [8]. This leads to systems with large
number of degrees of freedom. The complete dynamical analysis becomes compu-
tationally burdensome and time consuming process when it is applied to large-
scale systems. Thus, the parallel computation of the numerical methods used in
the analysis becomes unavoidable part when one investigates real-life structures.

In the present work, the nonlinear equation of motion of Bernoulli-Euler
beam is used for investigating the scalability of the shooting method. A parallel

c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 401–408, 2015.
DOI: 10.1007/978-3-319-26520-9 45
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implementation of the complete process of computing the nonlinear frequency-
response function is presented and its efficiency is studied. The process involves
algebraic operations of sparse and dense matrices and also solutions of linear
and nonlinear systems with both types of matrices. Appropriate libraries are
used for these operations and in a compliance with the parallel realization of the
method.

2 Nonlinear Equation of Motion of Bernoulli-Euler Beam

The nonlinear equation of motion of Bernoulli-Euler beam is used as a model
equation for investigating the efficiency of the parallel implementation of the
shooting method. The equation has the following form:

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)
∂x4

− 3
2
EA

(
∂w(x, t)

∂x

)2(
∂2w(x, t)

∂x2

)

= f(x, t) (1)

where w(x, t) is the transverse displacement of the beam, ρ is the density of the
beam, A is the cross sectional area, E is the elastic modulus, I is the second
moment of area and f(x, t) is the applied external force. The beam is assumed
to have length l, x ∈ [−l/2, l/2]. A clamped-clamped boundary conditions are
considered, that are given by:

w(−l/2, t) = 0,
∂w(x, t)

∂x

∣
∣
∣
∣
x=−l/2

= 0 (2)

w(l/2, t) = 0,
∂w(x, t)

∂x

∣
∣
∣
∣
x=l/2

= 0 (3)

Details about the derivation of the equation of motion are given in [6].
The equation of motion (1) is written in its variational form, integration by

parts is applied and using the boundary conditions (2) and (3), the following
weak formulation is obtained:

ρA

∫

Ω

∂2w(x, t)
∂t2

ψ(x)dx + EI

∫

Ω

∂2w(x, t)
∂x2

∂2ψ(x)
∂x2

dx

+
1
2
EA

∫

Ω

(
∂w(x, t)

∂x

)3
∂ψ(x)

∂x
dx =

∫

Ω

f(x, t)ψ(x)dx,

(4)

where ψi(x) are the trial functions. The transverse displacement is expressed by
shape functions and generalized coordinates in a local coordinate system:

we(ξ, t) = NT (ξ)qe(t) (5)

where N(ξ) is the vector of shape functions, Hermite cubic polynomial functions
are used (Fig. 1), qe(t) is the local vector of generalized coordinates and ξ is the
local coordinate, ξ ∈ [−1, 1].
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Fig. 1. Hermite cubic polynomial functions used as shape functions for the beam ele-
ments, ξ is the local coordinate.

The local mass and stiffness matrices are given in the following form:

Me = ρA
l

2

∫ 1

−1

N(ξ)NT (ξ)dξ (6)

KL
e = EI

(
2
l

)3 ∫ 1

−1

∂2N(ξ)
∂ξ2

∂2NT (ξ)
∂ξ2

dξ (7)

KNL
e(qe(t)) = EA

4
l3

∫ 1

−1

∂N(ξ)
∂ξ

∂NT (ξ)
∂ξ

(
∂NT (ξ)

∂ξ
qe(t)

)2

dξ (8)

Fe(t) =
l

2

∫ 1

−1

f(ξ, t)N(ξ)dξ (9)

where superscript e denotes the element matrix. M represents the mass matrix,
KL - the stiffness matrix of constant terms, KNL(q(t)) - the stiffness matrix
that depends on the transverse displacement w(ξ, t) and consequently on the
vector of generalized coordinates q(t), F(t) is the generalized vector of external
forces.

After assembling the matrices of the elements and introducing a damp-
ing matrix, the following nonlinear system of ordinary differential equations is
obtained:

Mq̈(t) + Cq̇(t) + KLq(t) + KNL(q(t))q(t) = F(t) (10)

where C is the damping matrix. It is proportional to the mass matrix and
depends on the frequency of vibration. The damping matrix is expressed as
C = 0.01ωl

2

ω M, where ωl is the fundamental natural frequency and ω is the
excitation frequency. The total number of degrees of freedom of system (10) is
denoted by N .

3 Computation of Periodic Responses by Parallel
Algorithms

Periodic responses are of interest, thus one needs to compute the initial con-
ditions which lead to periodic oscillations. At this point it is assumed that the
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period of vibration is T = 2π/ω. It is pointed that, because the system is nonlin-
ear, a period-multiplying bifurcation point can exist, and the period of vibration
T can become an integer multiplied by 2π/ω.

The response of the system depends on the time t but also on the initial
conditions, thus the response and velocity at time t due to initial conditions
q0 and q̇0 are written by q(t,q0, q̇0) and q̇(t,q0, q̇0). Dot is used to denote
time derivative. The initial conditions q0 and q̇0 are of interest, they satisfy the
equations:

q(T,q0, q̇0) = q0, (11)

q̇(T,q0, q̇0) = q̇0. (12)

Since the initial conditions that lead to periodic response are not known pre-
liminary, the shooting method computes them iteratively by predictor-corrector
scheme. Details of the shooting method for systems of second order ODE are
given in [7]. The main characteristics of the method and its parallel implemen-
tation are summarized here.

The corrections δq0 and δq̇0 of the initial conditions are obtained by solving
the linear system:

[
Qd(T ) − I Qv

Q̇d(T ) Q̇v(T ) − I

] {
δq0

δq̇0

}
=

{
q0 − q(T,q0, q̇0)
q̇0 − q̇(T,q0, q̇0)

}
(13)

where Qd(T ) and Q̇d(T ) are solutions at time T of system:

MQ̈(t) + CQ̇(t) + KLQ(t) + J(q(t))Q(t) = 0 (14)

due to initial conditions Qd(0) = I and Q̇d(0) = 0. Qv(T ) and Q̇v(T ) are
solutions at time T of the system (14) due to initial conditions Qv(0) = 0 and
Q̇v(0) = I. System (14) needs to be solved for 2N independent initial conditions.
J(q(t)) is the Jacobian of the nonlinear terms of the equation of motion (10),
i.e.

J(q(t)) =
∂KNL(q(t))q(t)

∂q(t)
(15)

When the Jacobian J(q(t)) is computed, (14) becomes a linear system of
ordinary differential equations. Thus, the solution vectors q(t) and q̇(t), and the
solution matrices Qd(t), Q̇d(t), Qv(t) and Q̇v(t) are computed simultaneously
on each time step by Newmarks’s method [2]. Newton-Raphson’s method [2] is
used for the resulting algebraic nonlinear system which is a consequence of the
application of Newmark’s method to system (10).

The parallel realization of the algorithm is presented here. It is noted that
system (14) presents 2N independent linear systems of ODE. The matrices Qd(t)
and Q̇d(t), Qv(t) and Q̇v(t) are dense matrices, consequently system (13) is
a dense linear system. The proposed parallel implementation of the method
consists of separation of the matrices Qd(t) and Q̇d(t), Qv(t) and Q̇v(t) into
blocks of vector-columns (Fig. 2). The solution in the time domain of each block
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of vector-columns is computed independently. Let Δt be the time integration
step, a0 = 1

βΔt2 , a1 = γ
βΔt , a2 = 1

βΔt , a3 = 1
2β −1, a4 = γ

β −1, and a5 = Δtγ
2β −1

are the constants of Newmark’s method, β and γ are parameters that can be
determined to obtain integration accuracy and stability. The UMFPACK library
[4], which is a direct solver, is used for solving the sparse systems (10) and
(14). ScaLAPACK [3] library, which is library of high-performance linear algebra
routines for parallel distributed memory machines, is used for solving the dense
system (13).

0 1 · · · n-1

Fig. 2. Partition of dense matrices among n processes.

The algorithm is summarized here by the following pseudo-code. The sub-
scripts t and t+Δt denote the values of the vectors and the matrices at these time
steps.

1. Define predictions to the initial conditions q0 and q̇0 for chosen excitation
frequency ω.

2. Start time integration from 0 to T . At time step t + Δt do
(a) Solve the nonlinear system(

a0M + a1C + KL + KNL(qt+Δt)
)
qt+Δt =

= Ft+Δt +
(
a0M + a1C

)
qt +

(
a2M + a4C

)
q̇t +

(
a3M + a5C

)
q̈t by

Newton-Raphson method and UMFPACK and compute J(qt+Δt).
(b) Compute the factorization of the matrix

ME = a0M + a1C + KL + J(qt+Δt)
(c) Compute matrix-matrix products and sums by parallel algorithms

RD = (a0M + a1C)Qdt
+ (a2M + a4C)Q̇dt

+ (a3M + a5C)Q̈dt

RV = (a0M + a1C)Qvt
+ (a2M + a4C)Q̇vt

+ (a3M + a5C)Q̈vt

(d) Solve the 2N systems by parallel algorithms and UMFPACK
MEQdt+Δt = RD

MEQvt+Δt = RV

3. Compute the corrections δq0 and δq̇0 of the initial conditions. Use parallel
solvers for the dense matrix - ScaLAPACK.[
Qd(T ) − I Qv

Q̇d(T ) Q̇v(T ) − I

] {
δq0

δq̇0

}
=

{
q0 − q(T )
q̇0 − q̇(T )

}

4. Check for convergence, i.e. if
‖q(T,q0 + δq0, q̇0 + δq̇0) − q0 − δq0‖ < ε
‖q̇(T,q0 + δq0, q̇0 + δq̇0) − q̇0 − δq̇0‖ < ε
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5. If convergence is achieved, define new prediction of q0, q̇0 and ω and compute
the next point from the frequency-response function, i.e. go to 1. Else, further
improve the initial conditions by repeating the process from step 2.

4 Scalability

The speedup and efficiency of the parallel implementation of the shooting method
applied to the nonlinear equation of motion of Bernoulli-Euler beam (1) is stud-
ied in this section. A mesh with 4097 finite elements is used for the numerical
experiments. The total number of degrees of freedom of the nonlinear system of
ODE (10) is 8192. The dimension of the dense matrix, used to correct the initial
conditions is 16384. The numerical computations are carried out on HPCG clus-
ter [1] located at IICT-BAS. The cluster has 576 computing cores (Intel Xeon
X5560 @ 2.8 GHz) organized in blade system with 36 blades BL 280c. Each blade
has 24 GB RAM. Non-blocking DDR interconnection via Voltaire Grid director
2004 with latency 2.5 μs and bandwidth 20 Gbps is used to connect the blades.

Table 1. Strong scalability of time integration part of shooting method (step 2).

P CPU (s) Speed up Efficiency %

4 3393.18 - -

8 1710.07 1.98 99.58

16 860.92 3.94 98.53

32 445.25 7.62 95.26

64 230.22 14.74 92.12

The process of a single shooting iteration is divided into two parts: the first
one presents the time integration, i.e. solving the nonlinear system (10) for the
time integration interval and computing the dense matrices which come from
(14). This part presents step 2 from the pseudo-code. The second part is the
gathering process of the dense matrices which define system (13), distributing
the dense matrix by performing two-dimensional block cyclic distribution and
computing its solution by ScaLAPACK. This part is denoted as step 3 from the
pseudo-code.

The speedup and efficiency of both parts are presented in Tables 1 and 2. Very
good efficiency of the parallel computations is achieved for the time integration
process. The most time consuming operations are the matrix-matrix products
and the solutions of the systems, i.e. steps 2c and d from the pseudo-code. These
operations are realized on parallel processors. Steps 2a and b from the pseudo-
code are not implemented for parallel computations. Parallel implementation of
these steps can be considered for future improvement of the method.

Subroutine PDGESV from ScaLAPACK library is used to solve the dense
system. Scalability of this subroutine was shown to perform reasonably well when
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Table 2. Strong scalability results of generating, distributing and solving the dense
system by ScaLAPACK (step 3).

P CPU (s) Speed up Efficiency %

4 478.16 - -

8 253.22 1.89 94.42

16 127.68 3.74 93.62

32 80.11 5.97 74.61

64 51.79 9.23 57.71

Table 3. Strong scalability results of one complete shooting iteration (steps 2–4).

P CPU (s) Speed up Efficiency %

4 3871.33 - -

8 1963.29 1.97 98.59

16 988.60 3.92 97.90

32 525.36 7.37 92.11

64 282.01 13.73 85.80

Fig. 3. (a) Variation of CPU time with the number of processors, (b) Scalability of
shooting method, −−− time integration part of shooting method, −·−·−·− distributing
the dense matrix and solving the dense system, –––complete shooting iteration, · · · · ·
optimal (linear) performance.

appropriate parameters are used [3]. The decrease of the efficiency, which can be
noted in Table 2, is due to the additional communications between the processors.
These communications gather the separate parts of the dense matrices Qd(T ),
Q̇d(T ), Qv(T ) and Q̇v(T ) and distribute the global dense matrix from (13)
among the processors by two-dimensional block cyclic distribution. Because of
these communications, the efficiency of the second part of the shooting method
differs from optimal.
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Scalability of the whole shooting iteration is presented in Table 3. The results
demonstrate that the most time consuming operations were successfully com-
puted by parallel algorithms. Figure 3 presents the CPU time versus processors
and the scalability of the parallel shooting method. The results confirm that
the shooting method was parallelized successfully and the scalability is close to
optimal.

5 Conclusion

The shooting method, used to compute periodic responses of elastic structures
and applied to systems of second order ordinary differential equations, was real-
ized by parallel algorithms for distributed memory machines. The method con-
sists of multiple computations of solutions of systems composed of sparse and
dense matrices, as well of algebraic operations between both types of matrices.
Its parallel realization simultaneously involves efficient algorithms for sparse and
dense matrices.

The scalability of the method was studied on the nonlinear equation of motion
of Bernoulli-Euler beam. The results show that the shooting method, imple-
mented for parallel computations, has the potential to be used for dynamical
analysis of engineering applications. The future work will consider its implemen-
tation of elastic structures discretized by three-dimensional finite elements.
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Abstract. Explicit Runge-Kutta methods can efficiently be used in the
numerical integration of initial value problems for non-stiff systems of
ordinary differential equations (ODEs). Let m and p be the number
of stages and the order of a given explicit Runge-Kutta method. We
have proved in a previous paper [8] that the combination of any explicit
Runge-Kutta method with m = p and the Richardson Extrapolation
leads always to a considerable improvement of the absolute stability prop-
erties. We have shown in [7] (talk presented at the NM&A14 conference
in Borovets, Bulgaria, August 2014) that the absolute stability regions
can be further increased when p < m is assumed. For two particular
cases, p = 3 ∧ m = 4 and p = 4 ∧ m = 6 it is demonstrated that

(a) the absolute stability regions of the new methods are larger than those
of the corresponding explicit Runge-Kutta methods with p = m, and

(b) these regions are becoming much bigger when the Richardson extrap-
olation is additionally applied.

The explicit Runge-Kutta methods, which have optimal absolute stabil-
ity regions, form two large classes of numerical algorithms (each member
of any of these classes having the same absolute stability region as all
the others). Rather complicated order conditions have to be derived and
used in the efforts to obtain some special methods within each of the two
classes.

We selected two particular methods within these two classes and
tested them by using appropriate numerical examples.

Keywords: Ordinary differential equations · Explicit Runge-Kutta
methods · Richardson extrapolation · Absolute stability regions · Order
conditions

1 Statement of the Problem

Consider the classical initial value problem for non-linear systems of ordinary
differential equations (ODEs) defined by:

dy

dt
= f(t, y), t ∈ [a, b], a < b, y ∈ Rs, s ≥ 1, f ∈ D ⊂ R × Rs, y(a) = η, (1)

c© Springer International Publishing Switzerland 2015
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An m-stage explicit Runge-Kutta method is based on the following formula:

yn = yn−1 + h
m∑

i=1

cik
n
i , (2)

The coefficients ci are given constants, while at time-step n the stages kn
i are

defined by

kn
1 = f(tn−1, yn−1),

kn
i = f

(
tn−1 + hai, yn−1 + h

∑i−1
j=1 bijk

n
j

)
, i = 2, 3, . . . ,m

ai =
∑i−1

j=1 bij , i = 2, 3, . . . ,m

(3)

where bij are some constants depending on the particular numerical method.
The order of accuracy of the approximation yn ≈ y(tn) will be denoted by p and
mainly the case p < m will be considered in this paper.

Assume that: (a) the order of method (2) and (3) is p and (b) two approx-
imations zn and wn are calculated by using the starting value yn−1 as well as
stepsizes h and 0.5h respectively. Then the following two relationships can be
obtained:

y(tn) − zn = hpK + O(hp+1), (4)
y(tn) − wn = (0.5h)pK + O(hp+1). (5)

The quantity K that participates in the right-hand-side of both (4) and (5)
depends on the numerical method applied in the calculation of zn and wn and
on the particular problem (1) that is handled. However, this quantity does not
depend on the time-stepsize h. Let us now eliminate K from (4) and (5). After
some obvious manipulations, the following relationship can be obtained:

y(tn) − 2pwn − zn

2p − 1
= O(hp+1) (6)

Let us introduce the notation:

yn =
2pwn − zn

2p − 1
. (7)

The following relationship can be obtained by applying (7) in (6):

y(tn) − yn = O(hp+1). (8)

The method for calculating the approximation (7) is called Richardson extrap-
olation, [4], and it is seen from (8) that its order of accuracy is p + 1, while each
of the approximations zn and wn is of order of accuracy p. This means that the
Richardson extrapolation can be used to increase the accuracy of the numerical
solution. It can also be shown that this device can be used to control the stepsize
too (see [6,7]). It should be emphasized, however, that the Richardson extrap-
olation is computationally more expensive. Moreover, sometimes it also affects
the stability of the computational process, [5].
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If the problem (1) is definitely non-stiff, then the application of the
Richardson extrapolation is very efficient. The same or even better accuracy can
be achieved by using larger stepsizes. This compensates the drawback caused by
the fact that the Richardson extrapolations is about three times more expensive
than the direct use of (2) and (3) if the same stepsize is used with both methods.
The situation changes drastically when the problem (1) is slightly stiff and even
more when it is moderately stiff, because the requirement for stability of the
computational process puts restrictions on the choice of larger stepsizes. There-
fore, it is necessary to design numerical methods for which the use of Richardson
extrapolation results in better stability properties. We shall present such meth-
ods in the remaining part of this paper.

2 Stability of the Computational Process

The stability of the calculations with the m-stage explicit Runge-Kutta methods
of order p is normally investigated, [2], by using the polynomial:

R(v) = 1+ν +
(ν)2

2!
+

(ν)3

3!
+ . . .+

(ν)p

p!
+

(ν)p+1

γ
(m,p)
p+1 (p + 1)!

+ . . .+
(ν)m

γ
(m,p)
p+1 (m)!

, (9)

which can be obtained when the scalar equation y′ = λy with λ ∈ C− is solved
instead of the non-linear system (1). This implies that ν = λh is a point in the
complex plane located to the left of the imaginary axis and it is said that the
method given by (2) and (3) is absolutely stable for a given value of ν ∈ C−

when |R(ν)| ≤ 1. All points ν ∈ C−, for which |R(ν)| ≤ 1 is satisfied, form the
absolute stability region of the method defined by (2) and (3). It is assumed in
this paper that p < m. This means that the parameters λ in the last m − p
terms in the right-hand-side of (9), are free parameters that could be used in
the efforts to improve the stability properties of the methods (note that all
these terms vanish when p = m and, thus, no optimization with regard to the
absolute stability can be achieved in this case). If the selected explicit Runge-
Kutta method is combined with the Richardson extrapolation, then the stability
polynomial R(ν) from (9) should be replaced by

R(ν) =
2p

[
R

(
ν
2

)]2 − R(ν)
2p − 1

. (10)

Two special cases were selected in this study: p = 3 ∧ m = 4 and p = 4 ∧ m = 6.
Numerical methods with optimal stability properties were found by applying an
optimization procedure. In the first case, the methods depend on parameter γ

(4,3)
4

and the best one was found when γ
(4,3)
4 = 2.4. In the second case, the search for

largest absolute stability regions depended on two parameters and the best choice
was found when γ

(6,4)
5 = 1.42 ∧ γ

(6,4)
6 = 4.86 were selected. Much more details

about the stability polynomials and the absolute stability regions can be found
in [2,6,7]. Some information about the lengths of the stability intervals along the
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Table 1. Lengths of the absolute stability intervals on the negative real axis of four
explicit Runge-Kutta methods and their combinations with the Richardson extrapola-
tion. It is clearly seen that the optimized methods have better stability properties than
the classical ones and, furthermore, the combinations with the Richardson extrapola-
tion are always giving better results.

Numerical method Direct implementation Combined with Richardson extrapolation

p = m = 3 2.51 4.02

p = 3 and m = 4 3.65 8.93

p = m = 4 2.70 6.40

p = 4 and m = 6 5.81 16.28

(a) (b)

Fig. 1. (a) Stability regions of any representative of the class of explicit third-order

four-stage Runge-Kutta(ERK43) methods with γ
(4,3)
4 and its combination with the

Richardson extrapolation; (b) Stability regions of any representative of the class of

explicit Runge-Kutta methods determined with p = 4, m = 6, γ
(6,4)
5 = 1.42 and

γ
(6,4)
6 = 4.86 together with its combination with the Richardson extrapolation

negative real axis is presented in Table 1 for four explicit Runge-Kutta methods
and their combinations with the Richardson extrapolation. The absolute stability
regions are shown in Fig. 1.

3 Selecting Appropriate Numerical Methods

The explicit Runge-Kutta methods with optimal absolute stability regions, which
were discussed in the previous section, are forming two large classes of numerical
algorithms. It is necessary to select appropriate particular representatives in each
of these classes. A rather complicated computation shows that the conditions
(mainly order conditions), which have to be satisfied, lead to the solution of a
non-linear algebraic system of 8 equations and 13 unknowns in the case p =
3∧m = 4. The case p = 4∧m = 6 is much more difficult. Very long calculations
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show that a six-stage method of order four can be obtained by solving a non-
linear system of 15 equations and 26 unknowns for the coefficients in (2) and (3).
Both the derivation of the order conditions and the calculations of the coefficients
needed for this study can be found on the web-site http://parallel.bas.bg/dpa/
EN/publications 2015.htm

4 Numerical Experiments

Consider the system of ordinary differential equations (ODEs) defined by:

dy

dt
= Ay, t ∈ [0, 13.1072] y = (y1, y2, y3)T , y(0) = (1, 0, 2)T , A ∈ R3×3, (11)

where A = (aij)
j=1,3
i=1,3 and

a11 = 741.4, a12 = 749.7, a13 = − 741.7, (12)
a21 = − 765.7, a22 = − 758.0, a23 = 757.7, (13)
a31 = 725.7, a32 = 741.7, a33 = − 734.0. (14)

The three components of the exact solution of the problem defined above)
are given by:

y1(t) = e−0.3t sin 8t + e−750t (15)
y2(t) = e−0.3t cos 8t − e−750t (16)
y3(t) = e−0.3t(sin 8t + cos 8t) + e−750t. (17)

The eigenvalues of matrix A from (11) are given by:

μ1 = −750, μ2 = −0.3i μ3 = −0.3 − 8i. (18)

The components of the solution of this example presented above are shown in
Fig. 2. Some results are given in Tables 2 and 3 bellow.

We can draw three main conclusions from the numerical experiments:

(a) the Richardson extrapolation is improving (by order one) the accuracy of
the calculated approximations (in many of the cases the results obtained by
the Richardson extrapolation are the most accurate),

(b) the optimized numerical methods derived in this study have better stability
properties than the classical methods and, therefore, can be used with larger
stepsizes (including also the case when the problem solved is moderately
stiff), and

(c) the speed of convergence (given in brackets in Tables 2 and 3) corresponds
precisely to the order of accuracy of the tested methods.

http://parallel.bas.bg/dpa/EN/publications_2015.htm
http://parallel.bas.bg/dpa/EN/publications_2015.htm
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Fig. 2. Plots of the three components of the solution of the system of ODEs defined
by (11)–(14).

Table 2. Comparison of the third-order four stages explicit Runge-Kutta (ERK43)
method and its combination with the Richardson extrapolation (ERK43+RE) with the
traditionally used third-order three-stages and fourth-order four-stages explicit Runge-
Kutta methods (ERK33 and ERK44). The largest errors made during the solution and
the speeds of convergence (in brackets) are listed in this table. “N.S” means that the
method is not stable (the computations are declared as unstable and stopped when the
norm of the calculated solution becomes greater than 1.0E+07).

Stepsize ERK33 ERK44 ERK43 ERK43+RE

0.02048 N.S N.S N.S N.S

0.01024 N.S N.S N.S N.S

0.00512 N.S N.S 8.43E-03 4.86E-08

0.00256 5.97E-06 2.46E-08 3.26E-06 3.04E-09(15.99)

0.00128 7.46E-07(8.00) 1.54E-09(15.97) 4.07E-07(8.01) 1.90E-10(16.00)

0.00064 9.33E-08(8.00) 9.62E-12(16.00) 5.09E-08(8.00) 1.19E-11(15.97)

0.00032 1.17E-08(7.97) 6.01E-12(16.01) 6.36E-09(8.00) 7.42E-13(16.04)

0.00016 1.46E-09(8.01) 3.76E-13(15.98) 7.95E-10(8.00) 4.64E-14(15.99)

0.00008 1.82E-10(8.02) 2.35E-14(16.00) 9.94E-11(8.00) 2.90E-15(16.00)

0.00004 2.28E-11(7.98) 1.47E-15(15.99) 1.24E-11(8.02) 1.81E-16(16.02)

0.00002 2.85E-12(8.00) 9.18E-17(16.01) 1.55E-12(8.00) 1.13E-17(16.02)

0.00001 3.56E-13(8.01) 5.74E-18(15.99) 1.94E-13(7.99) 7.08E-19(15.96)
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Table 3. Comparison of the first fourth-order six stages explicit Runge-Kutta (ERK64)
method and its combination with the Richardson extrapolation (ERK64+RE) with the
classical fourth-order four stages explicit Runge-Kutta (ERK44) method and the fifth-
order six stages (ERK65B and ERK65F) Runge-Kutta methods proposed respectively
by Butcher in [1] and by Fehlberg in [3]. The largest errors made during the solution
and the speeds of convergence (in brackets) are listed in this table. “N.S” means that
the method is not stable (the computations are declared as unstable and stopped when
the norm of the calculated solution becomes greater than 1.0E+07).

Stepsize ERK44 ERK65B ERK65F ERK64 ERK64+RE

0.02048 N.S. N.S. N.S. N.S. 9.00E-08

0.01024 N.S. N.S. N.S. N.S. 1.93E-04

0.00512 N.S. 1.18E-09 N.S. 1.16E-07 8.82E-11

0.00256 2.46E-08 3.69E-11(31.97) 5.51E-11 7.28E-09(15.93) 2.76E-12(31.96)

0.00128 1.54E-09(15.97) 1.15E-12(32.09) 1.72E-12(32.03) 4.55E-10(16.00) 8.62E-14(32.02)

0.00064 9.62E-11(16.00) 3.61E-14(31.86) 5.39E-14(31.91) 2.85E-11(15.96) 2.69E-15(32.04)

0.00032 6.01E-12(16.01) 1.13E-15(31.95) 1.68E-15(32.08) 1.78E-12(16.01) 8.42E-17(31.95)

0.00016 3.76E-13(15.98) 3.52E-17(32.10) 5.26E-17(31.94) 1.11E-13(16.04) 2.63E-18(32.01)

0.00008 2.35E-14(16.00) 1.10E-18(32.00) 1.64E-18(32.07) 6.95E-15(15.97) 8.22E-20(32.00)

0.00004 1.47E-15(15.99) 3.44E-20(31.98) 5.14E-20(31.91) 4.34E-16(16.01) 2.57E-21(31.98)

0.00002 9.18E-17(16.01) 9.18E-21(32.15) 1.61E-21(31.93) 2.71E-17(16.01) 8.03E-23(32.00)

0.00001 5.74E-18(15.99) 5.74E-23(31.85) 5.02E-23(32.07) 1.70E-18(15.94) 2.51E-24(31.99)

5 Plans for Future Research

It is necessary to carry out more numerical experiments, also by using non-linear
systems of ordinary differential equations.

The procedure of selecting particular explicit Runge-Kutta methods within
the classes with the same absolute stability regions can be improved (by imposing
an extra requirement to minimize the coefficients in the leading terms of the
truncation error).
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Abstract. Using the notion of the so-called spectral symbol in the Gen-
eralized Locally Toeplitz (GLT) setting, we derive the GLT symbol of
the sequence of matrices {An} approximating the elasticity equations.
Further, as the GLT class defines an algebra of matrix sequences and
Schur complements are obtained via elementary algebraic operation on
the blocks of An, we derive the symbol fS of the associated sequences
of Schur complements {Sn} and that of its element-wise approximation.

1 Introduction and Preliminaries

In this paper, the notions of (block)-Toeplitz matrices and related notations are
used in their broadly accepted conventional meaning. We refer to [5] for details
and include only some definitions for clarity and self-consistency of this paper.

Definition 1 (Generating function of Toeplitz sequences). Denote by f(θ1, · · · ,
θd) a d-variate complex-valued integrable function, defined over the domain Qd =
[−π, π]d, d ≥ 1. Denote by fk the Fourier coefficients of f ,

fk =
1

m{Qd}

∫

Qd

f(θ)e−i (k,θ) dθ, k = (k1, · · · , kd) ∈ Z
d, i2 = −1,

where (k, θ) =
∑d

j=1 kjθj, n = (n1, · · · , nd), and N(n) = n1 · · · nd. Following the
multi-index notation in [15], with each f we can associate a sequence of Toeplitz
matrices {Tn}, Tn = {fk−�}n

k,�=eT ∈ C
N(n)×N(n), e = [1, 1, · · · , 1] ∈ N

d.
The function f is referred to as the generating function (or the symbol of)

Tn. Using a more compact notation, we say that the function f is the generating
function of the whole sequence {Tn} and we write Tn = Tn(f).

Definition 2 (Spectral symbol of a matrix). Given a sequence {An}, An of size
n, we say that g is the (spectral) symbol of {An} if all the eigenvalues of An are
given, up to a small error and for large n, by an evaluation of g over a equispaced
grid in the definition set of g.

A noteworthy example is the Toepliz case where the spectral symbol of {Tn(f)}
is exactly the generating function f : in that case, for d = 1, the possible grid is
given by {x

(n)
j }, x

(n)
j = −π + 2πj

n , j = 1, . . . , n.
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 419–426, 2015.
DOI: 10.1007/978-3-319-26520-9 47



420 A. Dorostkar et al.

1.1 Toeplitz Matrices in the Context of Discrete PDEs

Consider a differential boundary value problem of the general form Lu = fon Ω,
complemented with proper boundary conditions, where L is a given differential
operator and Ω ⊂ R

d, d ≥ 1 is some open, bounded, connected domain.
The techniques to approximate partial differential equations (PDEs) by local

methods such as the Finite Element method (FEM) [4] lead to sequences of
matrices that admit a Toeplitz structure. When discretizing this problem for a
sequence of discretization parameters hn we obtain a corresponding sequence of
matrices {An} of size n that grows to infinity as the approximation error tends
to zero. The study of the spectrum of An for fixed dimension and its behavior
in an asymptotic sense is often a prerequisite for designing efficient solvers and
preconditioners.

Most often, the theoretical results in the related literature (as well as all
derivations in this paper) are done for PDEs with constant coefficients, square
domains and uniform grids. At first glance, the limitations on square domains,
uniform meshes, and constant coefficients seem quite strong. However, substan-
tial steps for overcoming these limiting factors to variable coefficients, domains of
arbitrary shape, nonequidistant discretization meshes, and preconditioning, have
been done by Tilli [14] and by the third author [12,13]. There, the definition of
Generalized Locally Toeplitz (GLT) sequences is introduced and characterized
as follows.

GLT1. Each GLT sequence has a symbol (f).
GLT2. The set of GLT sequences form a ∗-algebra that is close under linear com-

binations, conjugation, products, inversion. Hence, the sequence obtained via
algebraic operations on a finite set of GLT sequences is still a GLT sequence
and its symbol is obtained by the same algebraic manipulations on the cor-
responding symbols of the input GLT sequences.

GLT3. Every Toeplitz sequence generated by an L1 function f is a GLT sequence
and its symbol is f , possessing the properties from GLT1.

GLT4. The approximation of PDEs with non-constant coefficients, general
domains, nonuniform gridding by local methods (FDM, FEM, etc.), under
very mild assumptions leads also to GLT sequences (see [3,7,12–14].

The paper is organized as follows. Section 2 introduces the target problem,
its discrete formulation and a preconditioner of interest. In Sect. 3, we use the
GLT machinery to derive the corresponding symbols of the arising matrices, the
exact Schur complement and its approximation.

2 Target Problem, Preconditioning

We simulate the so-called Glacial Isostatic Adjustment (GIA) model. It describes
the response of the solid Earth to redistribution of mass due to alternating
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glaciation and deglaciation periods and is characterized by the coupled system

−∇ · (2με(u)) − ∇(u · b) + (∇ · u)c − μ∇p = f in Ω, (1a)

μ∇ · u − μ2

λ
p = 0 in Ω, (1b)

with u - the displacement vector, ε(u) = 1
2

(
∇u + ∇uT

)
, λ and μ - the Lamé

(material) coefficients. It is assumed that b = {bi}, c = {ci}, i = 1, 2 are some
given vectors, for simplicity with constant coefficients. We note that the Lamé
coefficients μ and λ depend on the material properties and can vary through
the domain. Remarkably, the GLT machinery works also in presence of variable
coefficients as already mentioned in GLT4 and all the results, derived here,
hold for variable problem parameters. System (1) is first formulated in vari-
ational terms and discretized with a stable pair of finite element spaces that
satisfy the Ladyzhenskaya-Babuška-Brezzi (LBB) stability condition. We con-
sider below the so-called Modified Taylor-Hood elements (Q1isoQ1, cf. [4]). The
target geometry of the problem is rectangular, therefore a discretization with
a square or a rectangular mesh is the natural choice. We use square grid and
a lexicographical ordering of the node points. The variational setting and the
discretization of (1) lead to the algebraic system of equations to be solved,

A
[
uh

ph

]
=

[
f
g

]
where A =

[
K BT

B −ρM

]
=

⎡

⎣
K11 K12 BT

1

K21 K22 BT
2

B1 B2 −ρM

⎤

⎦
}displ. in x
}displ. in y
}pressure

. (2)

Here M is the pressure mass matrix; ρ = μ2

λ �= 0 for compressible materials, ρ = 0
for purely incompressible materials and ρ → 0 in the nearly incompressible case.
The block K is symmetric and positive definite when b = c = 0, otherwise it
is nonsymmetric. The blocks B and BT correspond to discrete divergence and
gradient operators, correspondingly. Imposing separate displacement ordering
(SDO) for u, i.e., ordering first the displacements in x-direction and then the
displacements in y-direction, we induce a two-by-two block structure of the block
K and on B as B =

[
B1 B2

]
. The system matrix is depicted in (2), right.

To solve systems with A we consider preconditioned Krylov subspace iterative
solution methods for general matrices, that are suitable for variable precondi-

tioning schemes. We consider a preconditioner B =
[
A11 0
A21 S

]
, known to be very

efficient, provided that S is a high quality approximation of the exact Schur
complement SA of A, SA = A22 − A21A

−1
11 A12, cf. [2] and systems with A11 are

solved accurately enough.
Various studies have shown (cf. [1,8–11]) that one particular approximation of

SA, obtainable in the finite element context, is very efficient for the target prob-
lem, namely, the so-called element-wise Schur complement. To briefly describe
it, we assume that the spatial discretization is done by the FEM method on
some mesh with characteristic mesh-size h, denoted by Th = {τe

� }, 	 = 1, · · · , L,
where τe

� denote the individual elements (triangles, quadrilaterals, bricks etc.)
and L is the number of the finite (macro-)elements in the discretization mesh.
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It has been observed that the matrix A can be assembled based on local

matrices that have the same structure as A, namely, A =
L∑

�=1

R(�)T A(�)R(�),

A ∈ R
N×N , A(�) ∈ R

n×n, where

A(�) =

[
A

(�)
11 A

(�)
12

A
(�)
21 A

(�)
22

]
}n1

}n2
, S =

L∑

�=1

R
(�)
2

T
S(�)R

(�)
2 . (3)

Here n = n1 + n2, 	 = 1, · · · , L. The matrices R(�) ∈ R
n×N are the standard

Boolean matrices which provide the local-to-global correspondence of the num-
bering of the degrees of freedom.

Based on (3) (left) we can compute the local Schur complements exactly and
assemble those into a global matrix that is then used as an approximation of S

((3) (right)), where S(�) = A
(�)
22 − A

(�)
21 A

(�)
11

−1
A

(�)
12 and R

(�)
2 are the parts of R(�)

corresponding to the degrees of freedom in A22. The matrix S in (3) (right) is
referred to as the element-wise Schur complement approximation. Without loss
of generality we assume that all A

(�)
11 are invertible. Otherwise we add a diagonal

perturbation of order h2, where h is the characteristic discretization parameter.
For coupled systems of equations of the form (2) that are discretized with

mixed finite elements, the macroelement is tightly related to the choice of the
stable finite element pair of spaces we use. For the Q1isoQ1 case we have two
meshes, based on one consecutive regular refinement, characterized by a mesh
size H and h = H/2. Using Linear Algebra tools it is possible to explain the
experimentally observed high qualities of the element-wise Schur complement
for the case when A is symmetric and positive definite as well as when it is sym-
metric indefinite and A11 is positive semi-definite. Those tools and the available
results for Schur complements are not applicable for both definite or indefinite
nonsymmetric matrices. Therefore, to get a better insight in the above, we apply
the GLT framework.

3 The Symbols of A, SA and S
The matrix A in (2) can be seen as a generalized block Toeplitz matrix. Note
that here we deal with matrices which are Toeplitz up to low rank corrections
En, i.e., these can be written as Tn(f) + En for some function f , where En

is a low rank perturbation matrix. If the matrices are unilevel then rank(En)
is bounded by a constant independent of n. Therefore by GLT2, the whole
sequence {Tn(f) + En} is a GLT sequence with the same symbol as {Tn(f)}.
Hence, again by GLT2, we deduce that the symbol of {Tn(f) + En} is the
generating function of Toeplitz part i.e. the function f .

We next show the related symbols for the blocks and for the whole matrix in
(2). Under the lexicographical ordering, all matrix blocks can be seen as stencil-
based. All stencils and the detailed derivation of the symbols can be found in [5].



GLT Analysis of a Schur Complement Matrix 423

The mass matrix M is block-tridiagonal and each block has a tridiagonal
structure. The block-symbol of M , fM (θ1, θ2) is fM (θ1, θ2) = 4(2+cos(θ1))(2+
cos(θ2)), where θ1 and θ2 are generic angles between 0 and π.

Symbols of K , B and the Schur Complement for Q1isoQ1. The symbols
for K11, K22 and K12 read as follows:

fK11(θ1, θ2) = 4 − 2 cos(θ1)(1 + cos(θ2)),
fK22(θ1, θ2) = 4 − 2(1 + cos(θ1)) cos(θ2),
fK12(θ1, θ2) = 4 sin(θ1) sin(θ2).

(4)

Correspondingly, the symbol of the block K has the matrix form

fK = μ

[
4 − 2 cos(θ1)(1 + cos(θ2)) sin(θ1) sin(θ2)

sin(θ1) sin(θ2) 4 − 2(1 + cos(θ1)) cos(θ2)

]
. (5)

The derivation of the symbols of the blocks B1 and B2 deserves a special
attention as these blocks are rectangular. For the case of Q1isoQ1, the blocks
BT

� , 	 = 1, 2 are of size n2 × m2, where m and n are the number of mesh points
in one direction, on two consecutive meshes, i.e., n = 2(m − 1) + 1. As the
symbol can be related only to square matrices, in order to use the technique,
we represent B� as a result of downsampling of larger square matrices B̃� of
size n × n, namely, B�(n,m) = B̃�(n, n)H(n,m), where H has a particular
structure used in various contexts, including multigrid methods, cf., e.g., [6],
where it referred to as the cutting matrix. For the considered discretization
and ordering, B̃� are five-diagonal block matrices, where each block is itself
five-diagonal of size (n, n). The term downsampling describes a particular size
reduction of a square matrix (of odd size), obtained by deleting each second
column, deleting every second block column, or both. More details on how the
sampling matrices work can be found in [5]. The corresponding symbols of B̃ are
found to be f B̃1(θ1, θ2) = −4iφ(θ1)ψ(θ2), f B̃2(θ1, θ2) = −4iψ(θ1)φ(θ2), where
φ(θ) = 2 sin(θ) + sin(2θ) and ψ(θ) = 5 + 6 cos(θ) + cos(2θ).

Having constructed all the symbols, using symbolic computations, we com-
pute the symbol of B̃K−1B̃T as G = f B̃K−1B̃T

= v∗(fK)−1v with the vector v

such that v1 = f B̃1 and v2 = f B̃2 .
Finally we consider the effect of H and HT on the underlying symbol. The

symbol of the exact Schur fS is computed by the formula below

fS(θ1, θ2) = fM (θ1, θ2) +
1
4

(
1∑

l=0

1∑

m=0

G

(
θ1
2

+ lπ,
θ2
2

+ mπ

))

. (6)

As already mentioned, the detailed derivation is shown in [5].
Next we deal with the advection term in the 11-block of the matrix A. We

consider only a term of the form ∇(b · u), with an advection vector b = [b1, b2].
We denote the matrix, arising from the discretization of ∇(b · u) by A. Simi-
larly to K, SDO induces a two-by-two structure on A, where the blocks Ak,�,
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Fig. 1. The spectrum of the symmetric and nonsymmetric S (stars) vs sampling of
their symbols (circles) (Color figure online)

k, 	 = 1, 2 are block-tridiagonal and each block is also block tridiagonal. The
symbol of the block A is found to be

fA = −4 i

[
b1 sin(θ1)(2 + cos(θ2)) b2 sin(θ1)(2 + cos(θ2))
b1 sin(θ2)(2 + cos(θ1)) b2 sin(θ2)(2 + cos(θ1))

]
. (7)

In an analogous way we can derive the symbol of the matrix, arising from the
term (∇ · u) c with c = [c1, c2]. The symbol of the nonsymmetric Schur comple-
ment is obtained in the same way as in the symmetric case. To illustrates how
well the symbols describe the spectral properties of the corresponding matrices,
in Fig. 1 we show the spectrum of the exact symmetric and the nonsymmetric
(b = [0, 1]) Schur complements and the sampled symbols.

The Symbol of the Element-Wise Schur Complement Approximation.
Using exactly the same machinery, we derive the symbols of the elementwise
Schur complement approximation S, both in the symmetric and nonsymmetric
case. In contrast to the exact Schur complement, the symbol of S depends on h
as we add a diagonal perturbation of order h2 to A�

11 in order to invert them.
When constructing the symbol, we use the matrices, corresponding to seven
refinements (h = 0.002). The symbols read as follows

fSsym =
(
0.7145 + 0.3766 cos(θ1)

)
+ 2 cos(θ2)

(
0.1883 + 0.0996 cos(θ1)

)

fSnonsym =
(
0.7145 + 0.3765 cos(θ1) + 0.0001i sin(θ1)

)

+
(
0.1882 + 0.0996 cos(θ1)

)(
cos(θ2) + i sin(θ2)

)

+
(
0.7145 + 0.0995 cos(θ1) − i0.0001 sin(θ1)

)(
cos(θ2) − i sin(θ2)

)
.

The nonsymmetric case is illustrated in Fig. 2.
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4 Conclusions and Open Problems

In this work, using the notion of the so-called spectral symbol in the Generalized
Locally Toeplitz (GLT) setting, we identify the GLT symbol of the sequence of
matrices {An} approximating the elasticity equations. Further, by exploiting the
property that the GLT class defines an algebra of matrix sequences and the fact
that Schur complements are obtained via elementary operation on the blocks of
An, we derived the symbols gs of the associated sequences of Schur complements
{Sn}. As a consequence of the GLT theory, the eigenvalues of Sn for large n are
described by a sampling of gs on a uniform grid of its domain of definition.

We derive the symbols of An and Sn for the Q1isoQ1 stable FEM pair and
the corresponding symbols for the case where the PDE problem includes an
advection term and the corresponding system matrix, and respectively, the Schur
complement matrix are nonsymmetric. Further, we derive the symbol of the
elementwise Schur complement approximation and visually compare it with that
of the exact Schur complement. One unexpected result of the study is that
the elementwise Schur complement approximation for the considered problem
converges to a symmetric matrix when h → 0.

All numerical experiments show that, for the studied discrete problems, the
sampling of the symbol agrees very well with the computed spectrum even for a
relatively small-sized matrices.

Acknowledgements. The work of the third author is partly supported by Donation
KAW 2013.0341 from the Knut & Alice Wallenberg Foundation in collaboration with
the Royal Swedish Academy of Sciences, supporting Swedish research in mathematics.
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Abstract. We consider and investigate boundary value problems
(BVPs) for semi-linear elliptic equations with discontinuous coefficients
and solutions (with imperfect contact matching conditions). Finite dif-
ference approximations of these problems are constructed. An iterative
method for solving difference BVPs of contact for semi-linear elliptic
equations with iterations on the inner boundary where the coefficients
and solutions are discontinuous is constructed and validated. The con-
vergence rate of iterations (with calculated constants) is estimated.

Keywords: Semi-linear elliptic equations · Numerical method · Itera-
tive method · Operator

1 Introduction and Setting of the Problem

In this article we study boundary value problems (BVPs) for semi-linear elliptic
equations with variable coefficients in inhomogeneous anisotropic media, with
discontinuous coefficients and solutions (with imperfect contact matching condi-
tions) [1,2]. This kind of problems naturally appears in the mathematical model-
ing and solution to problems of heat transfer, diffusion, filtration, elasticity, etc.,
in a study of contact BVPs for equations of mathematical physics in multilayered
media.

Before solving such problems numerically, they have to be approximated by
problems of a simpler nature, specifically, by “finite-dimensional BVPs” (see
[3]). One of the most convenient, universal, and widespread techniques for finite-
dimensional approximation as applied to BVPs is the grid method [1,2,4–7].

This work can be considered as an extension of the results, obtained in
[8]. The aim of the work is to construct efficient, cost-effective, high-precision
approximate methods for solving contact problems for PDEs with discontinuous
coefficients and solutions, as well to develop and implement finite-dimensional
approximations of iterative problems at each iteration step.
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We develop and validate an iterative method for solving BVPs of contact for
semi-linear elliptic equations with discontinuous coefficients and solutions and
estimate the convergence rate of iterations (with calculated constants). Note also
that while proving the iterative process convergence, we develop an idea of the
work [9], where the linear setting of BVP is studied, and approximation issues
are not considered. As a result, the numerical solution of these problems can
be effectively implemented on the basis of the developed iterative method (with
iterations on the inner boundary where the coefficients and solutions are dis-
continuous) in combination, for example, with the difference method for solving
some already traditional “independent” BVPs arising in each contacting subdo-
main inside the composite integration domain.

Now consider the following problem. Let Ω =
{
r = (r1, r2) ∈ R2 : 0 ≤

rα ≤ lα, α = 1, 2
}

be a rectangle in R2 with a boundary ∂Ω = Γ. The domain
Ω is divided by the line r1 = ξ, where 0 < ξ < l1 (by the internal interface
S =

{
r1 = ξ, 0 ≤ r2 ≤ l2

}
, where 0 < ξ < l1) into the left Ω1 ≡ Ω− =

{
0 < r1 <

ξ, 0 < r2 < l2} and right Ω2 ≡ Ω+ =
{
ξ < r1 < l1, 0 < r2 < l2} subdomains

with boundaries ∂Ω1 ≡ ∂Ω− and ∂Ω2 ≡ ∂Ω+. Thus, Ω = Ω1 ∪ Ω2 ∪ S, while
∂Ω is the outer boundary of Ω. Let Γk denote the boundaries of Ωk without
S, k = 1, 2. Therefore ∂Ωk = Γk ∪ S, where Γk, k = 1, 2 are open nonempty
subsets of ∂Ωk, k = 1, 2; and Γ1 ∪ Γ2 = ∂Ω = Γ. Let nα, α = 1, 2 denote the
outward normal to the boundary ∂Ωα of Ωα, α = 1, 2. Let n = n(x) be a unit
normal to S at a point x ∈ S, directed, for example, so that n is the outward
normal on S with respect to Ω1; i.e., n is directed inside Ω2. While formulating
BVPs for states of control processes below, we assume that S is a straight line
across which the coefficients and solutions of the problems are discontinuous,
while being smooth within Ω1 and Ω2.

Assume that the conditions imposed on a controlled physical process are such
that it can be modeled in the domain Ω by the following Dirichlet problem for
a semi-linear elliptic equation with discontinuous coefficients and solution: Find
a function u(x), defined on Ω that satisfies in Ω1 and Ω2 the equations:

Lu(x) = −
2∑

α=1

∂

∂xα

(
kα(x)

∂u

∂xα

)
+ d(x)q(u) = f(x), x ∈ Ω1 ∪ Ω2, (1)

and the conditions u(x) = 0, x ∈ ∂Ω = Γ1 ∪ Γ2,

[
k1(x)

∂u

∂x1

]
= 0, G(x) =

(
k1(x)

∂u

∂x1

)
= θ(x2)[u], x ∈ S,

where u(x) =
{

u1(x), x ∈ Ω1;
u2(x), x ∈ Ω2,

q(ξ) =
{

q1(ξ1), ξ1 ∈ R;
q2(ξ2), ξ2 ∈ R,

kα(x), d(x), f(x) =

{
k

(1)
α (x), d1(x), f1(x), x ∈ Ω1;

k
(2)
α (x), d2(x), f2(x), x ∈ Ω2, α = 1, 2.

Here
[
u
]

= u2(x) − u1(x) is the jump in u(x) across S; kα(x), α = 1, 2, f(x),
d(x) are given functions that are defined variously in Ω1 and Ω2, and have a
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jump discontinuity on S; qα(ξα), α = 1, 2, are given functions defined for ξα ∈
R, α = 1, 2; θ(x2), x2 ∈ S, is a given function. The given functions are assumed
to satisfy the following conditions: kα(x) ∈ W 1

∞(Ω1)×W 1
∞(Ω2), α = 1, 2, d(x) ∈

L∞(Ω1)×L∞(Ω2), f(x) ∈ L2(Ω1)×L2(Ω2) θ(x2) ∈ L∞(S), 0 < ν ≤ kα(x) ≤ ν,
α = 1, 2, 0 ≤ d0 ≤ d(x) ≤ d0 for x ∈ Ω1 ∪Ω2 and 0 < θ0 ≤ θ(x2) ≤ θ0 for x ∈ S,
where ν, ν, d0, d0, θ0, θ0 are given constants; and the functions qα(ζα) satisfy the
conditions: qα(0) = 0, 0 < q0 ≤

(
qα(ζα) − qα(ζα)

)
/
(
ζα − ζα

)
≤ L < ∞, for all

ζα, ζα ∈ R, ζα �= ζα.

Let
◦
Γk be a portion of the boundary ∂Ωk. Denote by W 1

2

(
Ωk;

◦
Γk

)
the closed

subspace of W 1
2 (Ωk) in which the set of all functions from C1(Ωk) vanishing near

◦
Γk⊂ ∂Ωk, k = 1, 2 in a dense set. We introduce the space

◦
V Γ1,Γ2 (Ω(1,2)) of pairs

u = (u1, u2):
◦
V Γ1,Γ2 (Ω(1,2)) = {u = (u1, u2) ∈ W 1

2 (Ω1; Γ1) × W 1
2 (Ω2; Γ2)

}
with

the norm ‖u‖2
◦
V Γ1,Γ2

=
2∑

k=1

∫

Ωk

2∑

α=1

(
∂uk

∂xα

)2

dΩk +
∫

S

[u]2 dS.

We say that a function u(g) ∈
◦
V Γ1,Γ2 (Ω(1,2)) is a generalized solution to the

problem (1), satisfying the identity:

∫

Ω1∪Ω2

[ 2∑

α=1

kα(x)
∂u(x)
∂xα

∂ϑ(x)
∂xα

+ d(x) q(u)ϑ(x)
]
dΩ0

+
∫

S

θ(x)[u][ϑ]dS =
∫

Ω1∪Ω2

f(x)ϑ(x)dΩ0, for all ϑ ∈
◦
V Γ1,Γ2 (Ω(1,2)).

(2)

2 Difference Approximation of the BVP

For the numerical solution of boundary-value problems (1) we approximate them
based on the grid method [1,5]. We introduce one-dimensional nonuniform grids
in x1 and x2: ω̂α =

{
x

(iα)
α ∈ [0, lα] : iα = 0, Nα, x

(0)
α = 0, x

(Nα)
α = lα, hαiα

=
x

(iα)
α − x

(iα−1)
α , iα = 1, Nα

}
, α = 1, 2. Additionally, a nonuniform grid in x1

and x2 is introduced in Ω = Ω1 ∪ Ω2: ω̂ = ω̂1 × ω̂2. Obviously, we can always
construct a grid ω̂1 on [0, l1] such that the point x1 = ξ is one of its nodes. In
applications, it is reasonable to set uniform mesh sizes h

(1)
1 and h

(2)
1 in Ω1 and

Ω2, respectively. Then, based on the location of the point x1 = ξ, the number of
nodes is determined by the assumption h

(1)
1 ≈ h

(2)
1 . We set x

(i1)
1 −x

(i1−1)
1 = h1 for

i1 = 1, N1 and x
(i2)
2 −x

(i2−1)
2 = h2 for i2 = 1, N2. The value x1 at the point x1 = ξ

is denoted by xξ, and the corresponding node index is N1ξ, 1 < N1ξ < N1 − 1.
We introduce the following grids of nodes: ω

(1)
1 =

{
x

(i1)
1 = i1h1 ∈ [0, ξ] : i1 =

0, N1ξ, N1ξh1 = ξ
}
, ω

(2)
1 =

{
x

(i1)
1 = i1h1 ∈ [ξ, l1] : i1 = N1ξ, N1, N1h1 = l1

}
,

ω
(1)
1 = ω

(1)
1 \ {x1 = 0, x1 = ξ}, ω

(2)
1 = ω

(2)
1 \ {x1 = ξ, x1 = l1}; ω2 = {x

(i2)
2 =

i2h2 ∈ [0, l2] : i2 = 0, N2, N2h2 = l2}, ω2 = ω2 \ {x2 = 0, x2 = l2}; ω1 =
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ω
(1)
1 ∪ω

(2)
1 ; ω1 = ω

(1)
1 ∪ω

(2)
1 ; ω(1) = ω

(1)
1 ×ω2; ω(2) = ω

(2)
1 ×ω2; ω(1) = ω

(1)
1 ×ω2;

ω(2) = ω
(2)
1 × ω2; ω ≡ ω(1,2) = ω(1) ∪ ω(2) =

(
ω

(1)
1 ∪ ω

(2)
1

)
× ω2 =

{
x

(i1)
1 =

i1h1, i1 = 0, N1, N1ξh1 = ξ, (N1−N1ξ)h1 = l1−ξ, 1 < N1ξ < N1−1
}
×ω2, ω ≡

ω(1,2) = ω(1)×ω(2); ω
(1)+
1 = ω

(1)
1 ∩(0, ξ], ω

(1)−
1 = ω

(1)
1 ∩[0, ξ), ω

(2)−
1 = ω

(2)
1 ∩[ξ, l1),

ω(1)(+1) = ω
(1)+
1 × ω2; γS =

{
x1 = ξ, x2 = h2, 2h2, . . . , (N2 − 1)h2

}
=

{
x1 =

ξ, x
(i2)
2 = i2h2, i2 = 1, N2 − 1

}
; γ(k) = ∂ω(k) \ γS ; ω

(1)+
1 × ω2 = ω(1) ∪ γS =

ω(1) \ γ(1); and ∂ω(k) = ω(k) \ ω(k) is the set of boundary grid nodes of the grid
ω(k), k = 1, 2. In the sequel we need the inner products, norms, and seminorms of
grid functions defined on various grids (see [7]). Particularly, let W 1

2 (ω(k); γ(k))
denote the subspace of grid functions from W 1

2 (ω(k))that vanish on γ(k), k = 1, 2.

The spaces
◦
V γ(1)γ(2) (ω(1,2)) of pairs of grid functions y(x) = (y1(x), y2(x)) are

defined as:
◦
V γ(1)γ(2) (ω(1,2)) =

{
y = (y1, y2) ∈ W 1

2 (ω(1); γ(1)) × W 1
2 (ω(2); γ(2))

}
,

with the norm ‖y‖2
◦
V γ(1)γ(2)

= ‖∇yk‖2 + ‖
[
y
]
‖2

L2(γS).

BVP (1) is associated with the following difference BVP. Namely, the grid

function y ∈
◦
V γ(1)γ(2) (ω(1,2)), which is the solution of the difference BVP for

problem (1), satisfies, for ∀v ∈
◦
V γ(1)γ(2) (ω(1,2)), the summation identity

{ ∑

ω
(1)+
1

∑

ω2

a
(1)
1h y1x1v1x1h1h2 +

(∑

ω
(1)
1

∑

ω+
2

a
(1)
2h y1x2v1x2h1h2

+
1
2

∑

ω+
2

a
(1)
2h (ξ, x2)y1x2(ξ, x2)v1x2(ξ, x2)h1h2

)}

+
{ ∑

ω
(2)+
1

∑

ω2

a
(2)
1h y2x1v2x1h1h2 +

(∑

ω
(2)
1

∑

ω+
2

a
(2)
2h y2x2v2x2h1h2

+
1
2

∑

ω+
2

a
(2)
2h (ξ, x2)y2x2(ξ, x2)v2x2(ξ, x2)h1h2

)}

+
∑

ω2

θh(x2)
[
y
][

v
]
(ξ, x2)h2 +

{(∑

ω(1)

d1h(x)q1(y1) v1(x)h1h2

+
1
2

∑

ω2

d1h(ξ, x2)q1(y1(ξ, x2) v1(ξ, x2)h1h2

)

+
(∑

ω(2)

d2h(x)q2(y2(x)) v2(x)h1h2

+
1
2

∑

ω2

d2h(ξ, x2)q2(y2(ξ, x2))v2(ξ, x2)h1h2

)}

=

{(∑

ω(1)

Φ1h(x)v1(x)h1h2 +
1
2

∑

ω2

Φ1h(ξ, x2)v1(ξ, x2)h1h2

)

+
(∑

ω(2)

Φ2h(x)v2(x)h1h2 +
1
2

∑

ω2

Φ2h(ξ, x2)v2(ξ, x2)h1h2

)}

.

(3)
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Here, a
(1)
αh(x), a

(2)
αh(x), Φαh(x) and dαh(x), α = 1, 2, θh(x2), and u

(1)
0h (x) are grid

approximations of the functions k
(1)
α (r), k

(2)
α (r), fα(r) and dα(r), α = 1, 2, θ(r2),

and u
(1)
0 (r) defined via Steklov averages (see [6,7]).

Problem (3) is a grid analogue of the original problem for state (1) with
discontinuous coefficients and a discontinuous solution (state).

Now we explicitly write difference scheme (3) at nodes of the grid ω = ω1 ∪
ω2 = ω(1,2). The search for the solution of the difference problem is reduced
to the following problem: Find a function: y(x) = (y1(x), y2(x)), defined on
ω = ω1 ∪ω2 = ω(1,2), where y(x) = y1(x) for x ∈ ω(1), y(x) = y2(x) for x ∈ ω(2),
and the components y1(x) and y2(x) satisfy the following conditions:

(1) The grid function y1(x), x ∈ ω(1) = ω(1) ∪ ∂ω(1), satisfies the equation

−
(
a
(1)
1h (x)y1x1

)

x1

−
(
a
(1)
2h (x)y1x2

)

x2

+ d1h(x)q1(y1) = Φ1h(x), x ∈ ω(1), (4)

and, on the boundary γ(1) = ∂ω(1) \ γS , obeys the condition y1(x) = 0, x ∈ γ(1);
(2) The grid function y2(x), x ∈ ω(2) = ω(2) ∪ ∂ω(2), satisfies the equation

−
(
a
(2)
1h (x)y2x1

)

x1

−
(
a
(2)
2h (x)y2x2

)

x2

+ d2h(x)q2(y2) = Φ2h(x), x ∈ ω(2), (5)

and, on the boundary γ(2) = ∂ω(2) \ γS , obeys the condition y2(x) = 0, x ∈ γ(2);
(3) The sought functions y1(x) and y2(x) are related by additional matching

conditions on γS = {x1 = ξ, x2 ∈ ω2}, namely:

2
h1

[
a
(1)
1h (ξ, x2)y1x1(ξ, x2) + θh(x2)y1(ξ, x2)

]
+ d1h(ξ, x2)q1(y1(ξ, x2))

−
(
a
(1)
2h (ξ, x2)y1x2(ξ, x2)

)

x2

= Φ1h(ξ, x2) +
2
h1

θh(x2)y2(ξ, x2),
(6)

− 2
h1

[
a
(2)
1h (ξ + h1, x2)y2x1(ξ, x2) − θh(x2)y2(ξ, x2)

]
+ d2h(ξ, x2)q2(y2)

−
(
a
(2)
2h (ξ, x2)y2x2(ξ, x2)

)

x2

= Φ2h(ξ, x2) +
2
h1

θh(x2)y1(ξ, x2).
(7)

3 An Iterative Process and Its Convergence

The question we are going to discuss in this section is to construct an effec-
tive convergent iterative process (with calculated constants) for solving the grid
problem (4)−(7). The problem (4)−(7) is associated with the following iterative
process with iterations on the inner boundary γS = {x1 = ξ, x2 ∈ ω2}:

−
(
a
(1)
1h (x)yn

1x1

)

x1

−
(
a
(1)
2h (x)yn

1x2

)

x2

+ d1h(x)q1(yn
1 ) = Φ1h(x), x ∈ ω(1),

yn
1 (x) = 0, γ(1) = ∂ω(1) \ γS ;

(8)

2
h1

[
a
(1)
1h (ξ, x2)yn

1x1
(ξ, x2) + θh(x2)yn

1 (ξ, x2)
]

+ d1h(ξ, x2)q1(yn
1 (ξ, x2))

−
(
a
(1)
2h (ξ, x2)yn

1x2
(ξ, x2)

)

x2

= Φ1h(ξ, x2) +
2
h1

θh(x2)yn−1
2 (ξ, x2), x ∈ γS ,

(9)
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−
(
a
(2)
1h (x)yn

2x1

)

x1

−
(
a
(2)
2h (x)yn

2x2

)

x2

+ d2h(x)q2(yn
2 ) = Φ2h(x), x ∈ ω(2),

yn
2 (x) = 0, x ∈ γ(2) = ∂ω(2) \ γS ;

(10)

− 2
h1

[
a
(2)
1h (ξ + h1, x2)yn

2x1
(ξ, x2) − θh(x2)yn

2 (ξ, x2)
]

+ d2h(ξ, x2)q2(yn
2 (ξ, x2))

−
(
a
(2)
2h (ξ, x2)yn

2x2
(ξ, x2)

)

x2

= Φ2h(ξ, x2) +
2
h1

θh(x2)yn
1 (ξ, x2), x ∈ γS .

(11)
where n = 1, 2, ...; y0

2(x) is an initial approximation.
Thus, the iterative process (8)−(11) reduces the solution of the original BVP

(4)−(7) with discontinuous coefficients and solution to the solution of two BVPs
(8)−(9) and (10)−(11) in subdomains Ω1 and Ω2 at each iteration n, respectively.

In a generalized statement the iterative process with respect to functions yn
1

and yn
2 is to find a sequence of pairs of functions {yn} =

{
(yn

1 , yn
2 )

}∞
n=1

, such
that yn

k ∈ W 1
2 (ω(k); γk), k = 1, 2 and satisfy the summation identities:
∑

ω
(1)+
1

∑

ω2

a
(1)
1h yn

1x1
v1x1h1h2 +

∑

ω
(1)
1

∑

ω+
2

a
(1)
2h yn

1x2
v1x2h1h2

+
1
2

∑

ω+
2

a
(1)
2h (ξ, x2)yn

1x2
(ξ, x2)v1x2(ξ, x2)h1h2

+
∑

ω(1)

d1h(x) q1(yn
1 ) v1(x)h1h2 +

1
2

∑

ω2

d1h(ξ, x2) q1(yn
1 ) v1(ξ, x2)h1h2

+
∑

ω2

θh(x2)yn
1 (ξ, x2) v1(ξ, x2)h2 =

∑

ω(1)

Φ1h(x)v1(x)h1h2

+
1
2

∑

ω2

Φ1h(ξ, x2)v1(ξ, x2)h1h2 +
∑

ω2

θh(x2)yn−1
2 (ξ, x2) v1(ξ, x2)h2,

∀v1(x) ∈ W 1
2 (ω(1); γ(1));

(12)

∑

ω
(2)+
1

∑

ω2

a
(2)
1h yn

2x1
v2x1h1h2 +

∑

ω
(2)
1

∑

ω+
2

a
(2)
2h yn

2x2
v2x2h1h2

+
1
2

∑

ω+
2

a
(2)
2h (ξ, x2)yn

2x2
(ξ, x2)v2x2(ξ, x2)h1h2

+
∑

ω(2)

d2h(x) q2(yn
2 ) v2(x)h1h2 +

1
2

∑

ω2

d2h(ξ, x2) q2(yn
2 ) v2(ξ, x2)h1h2

+
∑

ω2

θh(x2)yn
2 (ξ, x2) v2(ξ, x2)h2 =

∑

ω(2)

Φ2h(x)v2(x)h1h2

+
1
2

∑

ω2

Φ2h(ξ, x2)v2(ξ, x2)h1h2 +
∑

ω2

θh(x2)yn
1 (ξ, x2) v2(ξ, x2)h2,

(13)

∀v2(x) ∈ W 1
2 (ω(2); γ(2)); n = 1, 2, . . .; y0

2(x) is an initial approximation.
For our further analysis, we use the following results.

Theorem 1. The problems of finding a solution to difference scheme (12)
and (13) with any fixed control Φαh ∈ Uαh, α = 1, 2 are equivalent to the
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operator equations Aαhyα = Fαh, α = 1, 2, where the difference operators
Aαh from W 1

2 (ω(α); γ(α)) to W 1
2 (ω(α); γ(α)), α = 1, 2, and the grid functions

Fαh ∈ W 1
2 (ω(α); γ(α)), α = 1, 2, are defined by the relations

(
Aαhyα, vα

)
W 1

2 (ω(α);γ(α))
= Qαh(yα, vα),

(
Fαh, vα

)
W 1

2 (ω(α);γ(α))
= lαh(vα),

∀yα, vα ∈ W 1
2 (ω(α); γ(α)), α = 1, 2.

Problems (difference schemes) (12) and (13) are uniquely solvable; moreover,

‖yα‖W 1
2 (ω(α);γ(α)) ≤ Mα‖Φαh‖L2(ω(α)∪γS), α = 1, 2.

Lemma 1. For any functions v1 ∈ W 1
2 (ω(1)) and v2 ∈ W 1

2 (ω(2)) the inequalities

‖v1‖2
L2(γS) ≤ 2

ξ
‖v1‖2

L2(ω(1)) + 2ξ ‖v1x1‖
2
L2(ω(1)+) ,

‖v2‖2
L2(γS) ≤ 2

l1 − ξ
‖v2‖2

L2(ω(2)) + 2(l1 − ξ) ‖v2x2‖
2
L2(ω(2)+) ,

are valid.

Lemma 2. For any functions v1 ∈ W 1
2 (ω(1); γ(1)) and v2 ∈ W 1

2 (ω(2); γ(2)) we
have the estimates

‖v1‖2
L2(ω(1)) ≤ max

{
ξ2; l22

} {
‖v1x1‖

2

L2(ω
(1)+
1 ×ω2)

+ ‖v1x2‖
2

L2(ω
(1)
1 ×ω+

2 )

}
,

‖v2‖2
L2(ω(2)) ≤ max

{
(l1 − ξ)2; l22

} {
‖v2x1‖

2

L2(ω
(2)+
1 ×ω2)

+ ‖v2x2‖
2

L2(ω
(2)
1 ×ω+

2 )

}
.

The following theorem proves the convergence of the iterative process (8)−(11)
(in a generalized statement the convergence of the iterative process (12), (13)).

Theorem 2. Suppose that the condition q = q1q2 < 1 holds true, where

q2
1 =

1
ν

‖θh‖L∞(γS)

(
l1 − ξ

2
+

M2
2

2(l1 − ξ)

)
, q2

2 =
1
ν

‖θh‖L∞(γS)

(
ξ

2
+

M2
1

2ξ

)
,

M2
1 = max

{
ξ2; l22

}
, M2

2 = max
{
(l1 − ξ)2; l22

}
.

Then the iterative process (8)−(11) converges in the norm

‖v‖2
◦
V γ1,γ2 (ω(1,2))

=
2∑

k=1

‖∇vk‖2 + ‖
[
v
]
‖2

L2(γS),

where ‖
[
v
]
‖2

L2(γS) =
∑

ω2

(v2(ξ, x2) − v1(ξ, x2))
2
h2;

‖∇vk‖2 = |vk|2W 1
2 (ω(k)) =

∑

ω
(k)+
1 ×ω2

v2
kx1

h1�2 +
∑

ω
(k)
1 ×ω+

2

v2
kx2

�1h2, k = 1, 2,

(and, therefore, in the norm ‖v‖V (ω(1,2)) =
2∑

k=1

‖vk‖2
W 1

2 (ω(k)) =
2∑

k=1

(
‖∇vk‖2 +

‖vk‖2
L2(ω(k))

)
, ‖vk‖2

L2(ω(k))
=

∑

ω(k)

v2
k(x)�1�2, because of their equivalence) to a
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unique solution of the problem (4)−(7) for any initial approximation y
(0)
2 ∈

W 1
2 (ω(2); γ(2)), and we have convergence rate estimates:

{
|z(n)

1 |W 1
2 (ω(1)) ≤ q1|z(n−1)

2 |W 1
2 (ω(2)), |z(n)

2 |W 1
2 (ω(2)) ≤ q2|z(n)

1 |W 1
2 (ω(1));

|z(n)
2 |W 1

2 (ω(2)) ≤ q1q2 |z(n−1)
2 |W 1

2 (ω(2)), n = 1, 2, . . . ;

⎧
⎪⎨

⎪⎩

|z(n)
2 |W 1

2 (ω(2)) ≤ qn|z(0)
2 |W 1

2 (ω(2)), |z(n)
1 |W 1

2 (ω(1)) ≤ q1q
n−1|z(0)

2 |W 1
2 (ω(2));

‖z
(n)
1 ‖L2(ω(1)) ≤ M1q1q

n−1|z(0)
2 |W 1

2 (ω(2)), |z(n)
2 |L2(ω(2)) ≤ M2q

n|z(0)
2 |W 1

2 (ω(2)),

n = 1, 2, . . . ;
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖z
(n)
1 ‖L2(γS) ≤

(
2
ξ
M2

1 + 2ξ

)1/2

q1q
n−1|z(0)

2 |W 1
2 (ω(2)), n = 1, 2, . . . ;

‖z
(n)
2 ‖L2(γS) ≤

(
2

l1 − ξ
M2

2 + 2(l1 − ξ)
)1/2

qn|z(0)
2 |W 1

2 (ω(2)), n = 1, 2, . . . ;

‖
[
z(n)

]
‖2

L2(γS) ≤ 2
{(

2
ξ1

M2
1 + 2ξ

)
(q1q

n−1)2 +
(

2
l1 − ξ

M2
2 +

+2(l1 − ξ)) (qn)2
}

|z(0)
2 |W 1

2 (ω(2)), n = 1, 2, . . . .
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Abstract. We consider the problem of extremal interpolation of convex
scattered data in R

3 and propose a feasible solution. Using our previous
work on edge convex minimum Lp-norm interpolation curve networks,
1 < p ≤ ∞, we construct a bivariate interpolant F with the following
properties:

(i) F is G1-continuous;
(ii) F consists of tensor product Bézier surfaces (patches) of degree (n, n)

where n ∈ N, n ≥ 4, is priorly chosen;
(iii) The boundary curves of each patch are convex;
(iv) Each Bézier patch satisfies the tetra-harmonic equation Δ4F = 0.

Hence F is an extremum to the corresponding energy functional.

1 Introduction

Scattered data interpolation is a fundamental problem in approximation theory
and finds applications in various areas including geology, meteorology, cartogra-
phy, medicine, computer graphics, geometric modeling, etc. Different methods for
solving this problem were applied and reported, excellent surveys are [4,5,8,9].

The problem can be formulated as follows: Given scattered data di =
(xi, yi, zi) ∈ R

3, i = 1, . . . , N , that is points vi = (xi, yi) are different and
non-collinear, find a bivariate function F defined in a certain domain D contain-
ing points vi, such that F possesses continuous partial derivatives up to a given
order and F (xi, yi) = zi. One of the possible approaches to solving the problem
is due to Nielson [14]. The method consists of the following three steps:

Step 1. Triangulation. Construct a triangulation T of vi, i = 1, . . . N .
Step 2. Minimum Norm Network (MNN). The interpolant F and its first

order partial derivatives are defined on the edges of T so as to satisfy an extremal
property.

Step 3. Interpolation Surface. The obtained network is extended to F by an
appropriate blending method.

In [1] Andersson et al. paid special attention to the second step of the above
method, i.e. the construction of the MNN. The authors applied a novel approach
and gave an alternative proof of Nielson’s result. Their method allows to con-
sider and handle the case where the data are convex and a convex interpolant
c© Springer International Publishing Switzerland 2015
I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 435–442, 2015.
DOI: 10.1007/978-3-319-26520-9 49
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is sought. Andersson et al. formulated the corresponding extremal constrained
interpolation problem of finding an MNN that is convex along the edges of the
triangulation. The extremal network was characterized as a solution to a non-
linear system of equations and a Newton-type algorithm for solving this type
of systems was proposed. The results from [1] are extended in [16] to the class
of Lp-norms for 1 < p ≤ ∞. The validity and convergence of the Newton-type
algorithm for 1 < p ≤ ∞ were studied further in [17]. We note that the edge con-
vex MNN may not be globally convex and hence a convex interpolation surface
may not exist at all. Moreover, even in the case where the edge convex MNN is
globally convex, Nielson’s blending method may produce non-convex surface.

In this paper we propose the following solution to the convex scattered inter-
polation problem. Instead of triangulation we construct a rectilinear quadrangu-
lation Q having points vi = (xi, yi), i = 1, . . . , N , as its vertices, see Fig. 1. We
define suitable z-values for different from vi vertices of Q (if any) and add the
new points to our data. Then we compute the edge convex minimum Lp-norm
network for p = n−1

n−2 where n ∈ N, n ≥ 3, is chosen in advance. Hereafter we
assume that n is part of our input data. The obtained edge convex MNN on
every edge of Q is either a polynomial of degree n or a C1-continuous spline
with one inner knot consisting of a linear function plus a polynomial of degree
n, see [16]. Moreover, the obtained network is not only edge convex but also
it is convex on every whole row or column of Q. This is one of the reasons we
use rectilinear quadrangulation instead of triangulation. Despite that, in general
the edge convex MNN still may not be globally convex. For that reason we are
seeking to construct an interpolation surface that is computationally simple and
minimizes some appropriately chosen energy functional. Surfaces with such prop-
erties tend to preserve convexity of the input data. Nielson’s blending method
[13,14] produces an interpolant which is a rational function on every triangle in
T and consecutively may have large values in terms of energy. So, our idea is as
follows. First, we slightly modify the edge-convex MNN on the edges where it
is a spline. The modified MNN is C1-continuous with the same tangent planes
at the vertices of Q, consists of edge convex Bézier curves of degree n, and is
convex on every row or column of Q. Next, we find a piecewise polynomial sur-
face that interpolates the modified MNN and minimizes an appropriate energy
functional. Although the modified MNN is C1-continuous at the vertices of T , it
is preferable and more appropriate to require G1-continuity for the interpolant
instead of C1-continuity since the latter is parametrization dependent. We recall
that two surfaces with a common boundary curve are G1-continuous if they have
a continuously varying tangent plane along that boundary curve.

Let D be the union of all quadrangles in Q. For simplicity we assume that D
contains no holes. We construct a surface F (u, v) defined on D that interpolates
the modified MNN and has the following properties:

(i) F consists of tensor product Bézier surfaces (patches) of degree (n, n). Each
patch is defined on a quadrangle of the mesh;

(ii) F is G1-continuous;
(iii) The boundary curves of each patch are convex;
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(iv) F satisfies the tetra-harmonic equation Δ4F = 0 a.e. for (u, v) ∈ D where
Δ = ∂2

∂u2 + ∂2

∂v2 is the Laplace operator. Hence F is a solution to the extremal
problem

argminx∈F

∫

D

‖Δ4x‖dudv, (1)

where F :=
{
x(u, v) : x(vi) = zi, i = 1, . . . , N, x ∈ W 8

2 (D)
}
, and W 8

2 (D)
is the corresponding Sobolev space. Then F is an extremum to the corre-
sponding energy functional.

The harmonic and bi-harmonic Bézier surfaces were studied by Monterde
and Ugail [11]. Their method was extended to general 4th-order PDE Bézier
surfaces in [12]. Here we use a result by Centella et al. [2] to generate tetra-
harmonic tensor product Bézier surfaces from given boundary curves and tangent
conditions along them. The corresponding unconstrained problem for scattered
data interpolation in R

3 is considered and solved in [18] using a rectangular
quadrangulation.

The paper is organised as follows. In Sect. 2 we introduce the notation, present
some related results from [1,16], and propose our Algorithm 1 for solving the con-
vex scattered data interpolation problem. In Sect. 3 we discuss the construction
of the surface F .

2 Preliminaries and Description of the Algorithm

Fig. 1. Rectilinear quadrangulation
of the projection points vi, i =
1, . . . , N , where • denotes old
(given) points, and × denotes new
(added) points.

A quadrangulation of given points in R
2 is a

collection of non-overlapping, non-degenerate
closed quadrangles such that the set of the
vertices of the quadrangles coincides with
the set of the points. We shall assume that
our points vi, i = 1, . . . , N , are vertices of a
quadrangulation Q that is homeomorphic to
a rectilinear quadrangulation where vertical
(horizontal) lines are not necessarily parallel.
Given set of points in a general position in R

2

one can not construct a rectilinear quadran-
gulation having these points as its vertices.
However, we can construct it so that all of
our points are among its vertices. The remaining vertices are added to the given
points, see Fig. 1. An obvious way is to draw vertical and horizontal lines through
each of our points. We can also choose appropriately two directions in the plane
and draw lines parallel to the chosen directions through each of vi, i = 1, . . . , N .
Clearly this approach does not lead to unique quadrangulation. It is an open
question to find the dependance of the input surface on the initial choice of
the quadrangulation. Furthermore, the above approach has a drawback that the
number of the new vertices is quadratic in terms of N . Our method works directly
in the case where Q is a rectilinear quadrangulation, see Fig. 1. The benefit of
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constructing a rectilinear quadrangulation so that points vi,, i = 1, . . . , N , are
its vertices is that the number of the new (added) vertices would be reduced
considerably although in the general case their number still would be quadratic
in terms of N . Given scattered data finding an optimal in terms of size rectilinear
quadrangulation is beyond the scope of this paper.

We define zi-values for the new points so that the data are in a convex
position. The latter is possible due to the following lemma from [1].

Lemma 1. ([1]) If the data are convex (strictly convex) then there exists a
convex (strictly convex) function ψ ∈ C∞(R2) interpolating the points di, i =
1, . . . , N .

The proof of Lemma 1 is constructive and the function ψ is constructed in a
polynomial time. We choose the zi-values for the new points di so that ψ(xi, yi) =
zi. Hereafter we suppose that our data are strictly convex.

The union of all quadrangles in Q is the domain D. The set of the edges of
the quadrangles in Q is denoted by E. If there is an edge between vi and vj in
E, it will be referred to by eij or simply by e if no ambiguity arises. A curve
network is a collection of real-valued univariate functions {fe}e∈E defined on the
edges in E. With any real-valued bivariate function F defined on D we naturally
associate the curve network defined as the restriction of F on the edges in E,
i.e. for e = eij ∈ E,

fe(t) := F

((
1 − t

‖e‖

)
xi +

t

‖e‖ xj ,

(
1 − t

‖e‖

)
yi +

t

‖e‖ yj

)
,

where 0 ≤ t ≤ ‖e‖ and ‖e‖ =
√

(xi − xj)2 + (yi − yj)2.
(2)

In our presentation, according to the context, F will denote either a real-
valued bivariate function or a curve network defined by (2). Let 1 < p < ∞. We
introduce the following class of functions defined on D

Fp :=
{
F (x, y) ∈ C1(D) : F (xi, yi) = zi, i = 1, . . . , N,

f ′
e ∈ AC[0, ‖e‖], f ′′

e ∈ Lp[0, ‖e‖], e ∈ E
}
,

and the corresponding class of smooth interpolation edge convex curve networks

Cp(E) :=
{
F |E = {fe}e∈E : F (x, y) ∈ Fp, f ′′

e ≥ 0, e ∈ E
}
.

For F ∈ Cp(E) we denote the curve network of second derivatives of F by
F ′′ := {f ′′

e }e∈E . The Lp-norm of F ′′ is defined by

‖F ′′‖p :=

(
∑

e∈E

∫ ‖e‖

0

|f ′′
e (t)|pdt

)1/p

.

We consider the following extremal problem.

(Pp) Find F ∗ ∈ Cp(E) such that ‖F ∗′′‖p = inf
F∈Cp(E)

‖F ′′‖p.
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The degree of all inner vertices in Q, i.e. the number of the edges in E
incident to each inner vertex, is four. Let {eii1 , . . . , eii4} be the edges incident
to the inner vertex vi listed in clockwise order around vi. A basic curve network
Bis is defined on E for s = 1, 2 as follows.

Bis :=

{
1 − t

‖eiis+r
‖ on eiis+r

, 0 ≤ t ≤ ‖eiis+r
‖, r = 0, 2,

0 on the other edges of E.

Note that basic curve networks are associated with vertices that have at least
two collinear edges incident to them. Thus, one basic curve network is associated
with each vertex on the boundary of Q except the four corner vertices. We denote
by NB the set of pairs of indices is for which a basic curve network is defined.
With each basic curve network Bis for is ∈ NB we associate a number dis defined
by dis = (zis − zi)/‖eiis‖ + (zis+2 − zi)/‖eiis+2‖.

The next theorem characterizes the solution to problem (Pp).

Theorem 1 ([1,16]). In the case of strictly convex data the problem (Pp), 1 <
p < ∞, has a unique solution F ∗. The second derivative of the solution F ∗′′ has
the form

F ∗′′ =

(
∑

is∈NB

αisBis

)q−1

+

where 1/p + 1/q = 1, (x)+ := max(x, 0) and the coefficients αis satisfy the fol-
lowing nonlinear system of equations

∫

E

(
∑

is∈NB

αisBis

)q−1

+

Bkldt = dkl, for kl ∈ NB . (3)

The basic curve networks Bis are the univariate basic B-splines defined along
every row and column of the quadrangulation Q and the numbers dis are the
univariate second-order divided differences. Our data are strictly convex which
guarantees that dis are strictly positive and therefore Theorem1 applies. The
solution to (Pp) decomposes to n1+n2 solutions to the problem in the univariate
case along every row and column of Q, where n1, n2 are the numbers of the
rows and columns of Q respectively, and n1n2 = N . In the univariate case the
problem of finding a convex function which interpolates given convex data and
minimises the energy functional is considered e.g. by Hornung [6] for p = 2, and
for 1 < p < ∞ by Iliev and Pollul [7], Micchelli et al. [10].

It follows from Theorem 1 that in the case where q ∈ N, q > 1, then F ∗

is a C1-continuous polynomial network and the degree of the polynomials is
n = q+1. Hence to obtain a polynomial solution to (Pp) of degree n we solve the
nonlinear system (3) for p = q

q−1 = n−1
n−2 using the Newton-type algorithm [17].

Note that although Theorem 1 holds for 1 < p < ∞, we apply it only for
1 < p ≤ 2 since n ≥ 3. Further on, we consider the polynomials in its Bézier
form and propose Algorithm 1 for solving the convex scattered data extremal
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interpolation problem. Step 5 and Step 6 of Algorithm 1 are similar to the
corresponding steps of the algorithm for the unconstrained case proposed in [18]
where they are considered in detail. In the next Sect. 3 we focus mainly on Step 4
- the construction of the modified edge convex MNN.

Algorithm 1. Extremal Convex Scattered Data Interpolation
Input: Strictly convex scattered data di = (xi, yi, zi) ∈ R

3, i = 1, . . . , N ;
n ∈ N, n ≥ 3

Output: Interpolation surface F with certain extremal property
Step 1. Construct quadrangulation Q of the projection points vi = (xi, yi),

i = 1, . . . , N , using straight lines through them
Step 2. Add new input points to the data if necessary
Step 3. Solve (Pp) for p = n−1

n−2

Step 4. Construct the modified edge convex MNN
4.1 Compute the control points of the modified curves (if any)
4.2 Degree elevate all curves to curves of degree n + 1

Step 5. For each quadrangle in Q find nearest to the boundary control points
that satisfy G1 continuity conditions

Step 6. Find the remaining inner control points so that the tensor product Bézier
surface for each quadrangle satisfies the tetra-harmonic equation Δ4F = 0

3 Construction of the Bézier Patches

Let B1 and B2 be tensor product Bézier patches whose common boundary is the
polynomial q(t) of degree n, n ∈ N. First, we consider sufficient conditions for G1

continuity between B1 and B2. Let q(t) =
∑n

i=0 qiB
n
i (t) where qi, i = 0, . . . , n,

are the control points of q(t), and Bn
i (t) :=

(
n
i

)
ti(1 − t)n−i, i = 0, . . . , n, are

the Bernstein polynomials defined for 0 ≤ t ≤ 1. We degree elevate q(t) to a
polynomial of degree n+1. Then q(t) =

∑n+1
i=0 q̂iB

n+1
i (t) where q̂i, i = 0, . . . , n+

1, are the degree elevated control points. Let pi and ri, i = 0, . . . , n, be nearest
to the boundary control points of B1 and B2, respectively. Farin [3] proposed
the following sufficient conditions for G1 continuity between B1 and B2:

i

n + 1
di,n+1 +

(
1 − i

n + 1

)
di,0 = 0, i = 0, . . . , n + 1, where (4)

di,0 = α0pi + (1 − α0)ri −
(
β0q̂i + (1 − β0)q̂i+1

)
,

di,n+1 = α1pi−1 + (1 − α1)ri−1 −
(
β1q̂i−1 + (1 − β1)q̂i

)
,

and 0 < α0, α1 < 1. The coefficients α0 and α1 are uniquely determined by
the intersection point of segments p0r0, q̂0q̂1, and pnrn, q̂nq̂n+1, respectively.
In [18] it is shown that in the case where α0 = α1, system (4) always has a
solution. The vertex enclosure problem is also solved since we use a rectilinear
quadrangulation, see [15,18] for details.
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a. b.

Fig. 2. Case n = 3: a. Convex C1-continuous spline with one inner knot and its control
polygon. The spline consists of a linear function plus a cubic function. b. The modified
cubic convex Bézier curve and its control polygon.

To construct an interpolating Bézier patch, the boundary curves need to be
polynomial curves. For that reason, we first modify the edge convex MNN so
that all edge curves comprising it are Bézier curves of degree n. In the case
where f∗

e for some e ∈ E is a spline (see Fig. 2a for n = 3) we modify it to the
Bézier curve of degree n whose Bézier polygon has the same graph as the Bézier
polygon of the spline, see Fig. 2b for n = 3. The modified curve is convex and
has the same tangents at the endpoints as the spline.

Fig. 3. Pair of cubic Bézier curves
defined on same line neighbouring
edges of Q. The right curve has
been modified. The modified curve
is shown dashed.

Next, consider a pair of Bézier curves
defined on same line neighbouring edges of
Q, see Fig. 3. Let di be their common point
and s1, s2 be the two segments of their Bézier
polygons with common endpoint di. By con-
struction s1 and s2 are collinear. We shorten
the longer segment by moving its endpoint
towards di so that the new segments s1 and
s2 become equal. Then we replace the cor-
responding Bézier polygon by the modified
one. In this way we ensure that α0 = α1 for
every edge of Q and hence system (4) can be solved. Then we compute nearest
to the boundary control points, see [18] for details.

To compute the rest of the control points for each tensor product Bézier
patch Bi we use a result by Centella et al. [2]. It states that given the boundary
control points and those adjacent to them of an (n+1)× (n+1) net there exists
a unique tetra-harmonic Bézier surface whose control net has those points as
boundary control points and those adjacent to them. Finally, using Algorithm1
we construct surface F (u, v) defined on D which consists of tensor product Bézier
patches of degree (n, n). The surface F interpolates the data since it interpolates
the modified edge convex MNN. The next theorem states main properties of F .

Theorem 2. The interpolant F (u, v) is G1-continuous and is a solution to the
extremal problem (1).
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