
The Timed Decentralised Label Model

Martin Leth Pedersen1, Michael Hedegaard Sørensen1, Daniel Lux2,
Ulrik Nyman1, and René Rydhof Hansen1(B)

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
{mped10,mhso10}@student.aau.dk, {ulrik,rrh}@cs.aau.dk

2 Seluxit, Aalborg, Denmark
daniel@seluxit.com

1 Introduction

By some estimates, the number of devices connected through the so-called Inter-
net of Things (IoT) will reach the 50 billion mark in 20201. While forecasting
such numbers is not an exact science, it seems clear that in the near future, a
very large number of Internet connected devices will be deployed everywhere,
not least in our homes, e.g., in the form of smart meters, refrigerators, and other
household appliances, facilitating the “smart home” of the future. However, fill-
ing our homes with sensors and devices able to measure, monitor, and report on
all activities, immediately raises questions about how security and privacy can
be handled satisfactorily.

Of particular importance for security is the fundamental question of how
to model the security (and privacy) policies such a system must comply with:
the highly distributed and decentralised nature of the underlying system does
not fit well with the classic policy models, such as Bell-LaPadula [5] or Clark-
Wilson [8], nor with traditional MAC/DAC access control models. This is further
complicated by the fact that security and privacy policies in IoT systems must
be able to cope with time dependent elements, e.g., a smart meter may only
send (aggregate) measurements every 15 minutes in order to preserve privacy.
None of the classical models mentioned above incorporate timing constraints and
although a number of temporal aspects, in various security models, are discussed
in [17], focus is information release and they only indirectly deal with real-
time constraints on security policies. One possible solution would be to encode
temporal constraints/policies into the highly flexible formalism of Flow Locks [6,
7]. However, based on our experience in modelling, analysing, and verifying the
safety of systems that incorporate real-time timing constraints, we have found
that safety- and security-properties involving real-time clocks and constraints
are often subtle and counter-intuitive. We therefore believe it is important that
time is represented explicitly in security models for IoT.

In this paper we propose the Timed Decentralised Label Model (TDLM) as a
step towards a modelling formalism for IoT security policies and illustrate this
for a non-trivial smart meter system. As the name suggests, the TDLM is an
extension of the decentralised label model (DLM) with a time component [13,14],

1 http://www.brookings.edu/blogs/techtank/posts/2015/06/9-future-of-iot-part-2

c© Springer International Publishing Switzerland 2015
S. Buchegger and M. Dam (Eds.): NordSec 2015, LNCS 9417, pp. 27–43, 2015.
DOI: 10.1007/978-3-319-26502-5 3

http://www.brookings.edu/blogs/techtank/posts/2015/06/9-future-of-iot-part-2


28 M.L. Pedersen et al.

formalised here by timed automata [1]. Given the decentralised structure of typ-
ical IoT systems, as noted above, the DLM seems like a natural match with its
emphasis on local (decentralised) control; similarly timed automata have a long
history of modelling systems with time components. It bears mentioning, that
instead of the DLM, we could instead have extended the Flow Locks formal-
ism mentioned above with timed automata, potentially yielding a more flexible
approach. We leave this for future work.

To illustrate the features of the TDLM, we have chosen a smart meter use
case. Smart meters were chosen because the relevant security policies are quite
complex with a non-trivial time component. Furthermore, smart meters are
being introduced on a massive scale throughout the European Union and are
expected to replace “dumb” meters in the coming years. A smart meter is a
device responsible for monitoring power consumption in households and report-
ing this to electrical companies in order to ensure correct billing and to enable
“smart” use of power, e.g., by (automatically) postponing certain power con-
suming tasks to a time of day when prices are low, e.g., doing the laundry at
night. There are many security and privacy aspects to take into account when
designing and implementing a smart meter system: a major privacy concern,
which is also the main focus of this paper, is that power companies can build
highly detailed power consumption profiles for individual homes. To prevent this,
power companies are only allowed to access the measured power consumption
at certain time intervals [11]. For further smart meter security issues, see [2,3].

The work reported on in this paper, is a simplified and summarised version
of the work done in the master’s thesis of the two first authors [16].

2 Preliminaries

In this section we briefly review the main theories underlying the work in this
paper: the decentralised label model (DLM) and timed automata.

2.1 The Decentralised Label Model

The fundamental idea of the DLM, is that every principal that contributes infor-
mation to a system, should be allowed to define a security policy for how the
contributed data can be used (in that system) [15]. Principals are the authority
entities, or actors, in a system, e.g., users, groups, or roles, between which data
can flow (through data channels).

In order to capture common access control idioms, such as individuals acting
for a group or vice versa, principals in the DLM are ordered into a hierarchy, the
so-called principal hierarchy, through the act-for relation. A principal a allowed
to act-for another principal b, denoted a � b, intuitively inherits all the privileges
of b, i.e., can access the same data as b. In practice, the act-for relation can be
specialised to more specific privilieges, e.g., reading a specific file. The act-for
relation is taken to be reflexive and transitive; an example principal hierarchy is
shown in Figure 1.



The Timed Decentralised Label Model 29

Fig. 1. Example principal hierarchy: a � a′, a′ � a′′, and a′ � b.

In the DLM, data (or rather data sources, sinks, and channels) can be anno-
tated with labels expressing the (security) policies that should hold for that data.
A label is composed of a set of security policies, where each security policy com-
prises an owner and a corresponding set of readers the owner wishes to permit
access to the labelled data. Formally:

Label = P(SecPol) SecPol = Owner × P(Reader)

In keeping with tradition, we write o : R for (o,R) ∈ SecPol. Intuitively, only
readers that are permitted by all owners (of a particular label) are permitted
to access data with that label. This set of readers is called the effective set of
readers and is formalised as follows (for L ∈ Label)

effectiveReaders(L) =
⋂

o∈owners(L)

readers�(readers(L, o))

where owners(L) = {o | (o,R) ∈ L}, readers(L, o) = {r | (o,R) ∈ L, r ∈ R}, and
readers�(R) = {p | ∃p′ ∈ R : p � p′ }. A policy with no owner and an empty
reader set is equivalent to allowing all principals in the system access [15].

In order to facilitate and reason about the flow of labelled data through
a system with varying labels, data can be relabelled either by restriction or
declassification. The latter is an intended and deliberate “leak” of data, while
the former allows data to flow to actors with a more strict security policy. A
relabelling from a label L1 to another label L2 is called safe, denoted L1 �
L2 if the relabelling is a restriction, i.e., if L2 is at least as restrictive as L1,
intuitively that means L2 has fewer readers and/or more owners. Taking the
principal hierarchy into account, we can formalise safe relabelling as follows

Definition 1 (Safe Relabelling). Let L1, L2 ∈ Label and I1, I2 ∈ SecPol and
define safe relabelling:

L1 � L2 ≡ ∀I1 ∈ L1 : ∃I2 ∈ L2 : I1 � I2

where I1 � I2 iff o2 � o1 and readers�(R2) ⊆ readers�(R1) for I1 = (o1, R1)
and I2 = (o2, R2).



30 M.L. Pedersen et al.

The above definition corresponds to the complete relabelling rule in [15]. For a
proof that the complete relabeling rule is both sound and complete with respect
to the formal semantics see [12]; meaning that the rule only allows safe relabelings
and allows all safe relabelings.

When executing a program within a system, values are often derived from
other values, for example a new value may be derived by multiplying two other
values. In the DLM a derived value v must have a label that enforces the policies
of the values used to derive v meaning that the label of v must be at least
as restrictive as the combined label of the operands. Formally if we have two
operands labeled with the labels L1 and L2 respectively the label for a derived
value would be a join of these two which in terms is the union of the labels
joined, as described in Definition 2.

Definition 2 (Label Join). Let L1, L2,∈ Label define label join:

L1 	 L2 = L1 ∪ L2

Intuitively, the label join produces the least label that restricts both L1 and L2.
The security policies mentioned so far have all been confidentiality policies

that only considers who can observe data. However, the DLM can also specify
integrity policies which considers who are able to modify the data protected
by the policies. The integrity policies are quality guarantees provided by the
owners of the policies that only the specified writers have modified the data.
The syntactical notation is similar to the notation for confidentiality policies but
instead of a reader set, a writer set is associated with the policies. An integrity
policy can also be relabelled in a manner similar to that of a confidentiality
policy [15]. We do not go into further details with integrity policies or the DLM
here, but refer instead to [12,15].

2.2 Timed Automata

Finite automata are well known theoretical computation models used for describ-
ing logical program behavior based on transitions and states that a program can
be in. An extension of the finite automata formalism with time is called a timed
automaton, which adds a finite set of real-valued clocks to the finite automa-
ton [1]. The clocks are increased at the same rate and can be reset during a
transition if need be. The primary use of the clocks is to set up guards that can
prevent transitions from being executed or prevent the program from being in a
certain state.

A timed automaton is a tuple T = (Σ,L,L0, C,E) consisting of the following
components:

– Σ is the input alphabet accepted by the automaton.
– L is the set of possible finite locations that the automaton can be in.
– L0 is the set of start locations which is a subset of L; L0 ⊆ L
– C is a finite set of clocks



The Timed Decentralised Label Model 31

– E is the set of possible transitions in the automaton, formally defined as
E ⊆ L × L × [Σ ∪ {ε}] × 2C × Φ(C)

An edge in the timed automaton is then defined as 〈s, s′, σ, λ, δ〉, which represents
a transition from a program location s to another program location s′ on the
input σ. λ is then the set of clocks that will be reset with the transition, and δ
is the enabling condition (the guard). The automaton starts in one of the start
locations with all clocks set to zero. The clocks then increase to reflect time
elapsed and a transition may be taken when the guards of an edge is satisfied.

An example of a system that is ideally modelled with a timed automaton is
a simple smart meter system consisting of a smart meter and a power company.
The power company must be restricted to only being able to read the smart meter
data at certain time intervals. In Figure 2 this scenario is presented with a timed
automaton constructed in the Uppaal model checker [4]2. Uppaal is used to ver-
ify timed automata models, such as the model presented in Figure 2. The automa-
ton consists of two locations smd and ec, where smd is the smart meter data and
ec is the power company. The system can take the transition from ec to ec non-
deterministically while waiting for the clock x to be larger than 90 (days). When
the clock x is larger than or equal to 90, the transition guarded by the expression
x >= 90 can be taken thus modelling a read of smart meter data by going to the
location smd, where the only transition that can be taken resets the clock variable
to zero and leads back to ec. This simple example models an electrical company
that can read smart meter data of a single customer every 90 days.

Fig. 2. Simple smart meter example where an electrical company reads smart meter
data every 90 days. The location with the double circle is a start location.

However, the simple model also reveals some of the non-trivial issues encoun-
tered when formalising access control policies with a time element, e.g., for how
long time is access allowed (when can/does the timed automaton leave state
smd). In a later section, we show how the Uppaal model checker can be used
to answer such questions and validate the model.

2 http://uppaal.org

http://uppaal.org


32 M.L. Pedersen et al.

3 The Timed Decentralised Label Model

In the following we define and describe the timed decentralised label model. The
main idea is to extend DLM policies with time constraints formulated over clock
variables associated with underlying timed automata (see Section 2.2). In this
work we assume that clocks used by the system are controlled by the system;
this is similar to the assumption in “normal” DLM that the principal hierarchy
is under control by the system.

Note that this sidesteps the well-known thorny issue of how to synchronise
(real-time) clocks in a distributed system. In fact the TDLM, as explained later,
does not necessarily require clocks to be synchronised, but can in fact be used
to model systems with several (local) clocks. We leave it for future work to
investigate the consequences of this modelling assumption.

We start by discussing the new label constructs added to DLM and follow
that by a formalisation and semantics of the new constructs in terms of a network
of timed automata.

3.1 TDLM Constructs

To clarify the constructs TDLM adds to the DLM, an explanation of the indi-
vidual constructs is presented to give an intuitive understanding of the security
policies that can be expressed with these. We start with an example of of a
(timed) security policy, illustrating all the new constructs by extending a basic
DLM security ‘o : r’:

o(x[15; ?event ; 1] > 10 && y < 5) : r[!event ]

Informally, the above (timed) security policy states that the policy owner, o,
allows any stated readers (here only r) access to the labelled data whenever the
clock x has a value greater than 10 and the clock y has a value less than 5.
Furthermore, the clock x will be reset to 1, whenever it reaches the value of 15
or an event, named ‘event ’, is triggered. Finally, whenever the reader r accesses
the data, an event named ‘event ’ is triggered (thus resetting the x clock). Note
that, in order to be able to reason about time, e.g., how long is there between
any two reads of a variable, we have introduced events. This is a departure from
other formalisations of secure information flow where the exact time of a read is
implicit (or rather: irrelevant). In future work, we will investigate if it is possible
to move towards the more traditional approach.

We now discuss the individual constructs in more detail:

– Declaring clock variables. Clock variables are used to restrict access to
data based on time (x and y in the above example) and are declared within
a set of parentheses which is placed after a principal (owner or reader) to
restrict that principal’s access. If a clock is placed on an owner of a pol-
icy then all readers associated with this owner are restricted by the clock,
however if a clock is placed on a reader then only that specific reader is



The Timed Decentralised Label Model 33

restricted by it. A clock variable is identified by its unique name which can
be any combination of alphabetic characters and the value of a clock variable
can be any positive integer.

– Comparing clock values. Clock variables can be compared to other clock
variables and constant integers with the use of the usual binary comparison
operators. If that comparison evaluates to true then the clock variables allows
access to the entity it is associated with. The comparison is defined within
the parenthesis along with the declaration of the clock variable for example
(x > 10). The value the clock variable is compared to is called the comparison
value.

– Multiple comparisons. Multiple clock comparisons can be performed
within the same parenthesis by separating them with the logical && and
|| operators, which evaluates as expected for example (x > 10 && x < 15)
would evaluate to true when x is between ten and 15. A statement of clock
comparisons placed within a single set of parenthesis is called a clock expres-
sion and must evaluate to true before the associated principal(s) can gain
access to the data.

– Parameterised clock variables. Clock variables can be parameterised
with the use of square parentheses placed after the name of the clock vari-
able. However, if no parameters are defined on a clock variable then the
square parentheses may be omitted. Within the square parenthesis three
optional parameters can be declared. Parameters are separated with a semi-
colon and are identified in the order: upper limit, event, and reset value. If
only one parameter is declared and that parameter’s identifier starts with a
question mark then it is an event otherwise it would be an upper limit. A
parameterized clock variable would then be defined as (x[15; ?event ; 1] > 10).

– Upper limit. An upper limit is a constant used to define when a clock
variable should be reset. Upon reaching the upper limit the value of the
clock variable will instantly get reset.

– Reset value. The reset value is a constant used to define the value of a
clock variable when it resets. If omitted from a clock variable the reset value
is always zero.

– Events. Events are defined by a unique alphabetic name starting with a
question mark and can be placed as a parameter on a clock variable, which
indicates that when the event is triggered then the value of the clock variable
is reset.

– Event trigger. An event trigger can be specified on any principal, and
is placed immediately after a principal’s identifier. An event trigger starts
with the symbol ! followed by the name of the event to be triggered when the
corresponding principal successfully reads data. Several event triggers can be
placed on the same principal in the same security policy by separating the
event triggers with a comma, for example p[!event1 , !event2 ] would trigger
event1 and event2 when p reads the data. An event can only be triggered
from within the system by those principals that have an event trigger defined
on them in a given security policy.



34 M.L. Pedersen et al.

We now proceed to the formal definition of timed security policies and timed
labels.

3.2 Formal Definition

In the following, we assume without further specification, the existence of count-
ably infinite sets of clock variables ClockVar and events (or rather event names)
Event. Clock declarations are then defined to have the following form:

Υ ::= c | c[α;?β;γ]

where c ∈ ClockVar, α, γ ∈ ClockVal, and β ∈ Event. As discussed above, we allow
clock declarations to omit any and all of α, β, and γ in the above, indicating
that default values should be used (for α and γ) or that no reset events are
defined (for β). We can now define clock expressions as combinations of clock
declarations. A clock expression is of the form:

Φ ::= Υ | Υ � Υ | Φ && Φ | Φ || Φ

with �∈ {<,≤,==, ! =,≥, >} representing the standard comparators. As men-
tioned above, clock expressions Φ can be placed on any principal in a security
policy.

Finally, by extending DLM security policies and labels with clock expressions,
we are able to give the formal definition of TDLM security policies and labels
(again using ⊥ to denote optional values):

SecPolT = Owner × Φ⊥ × Event⊥ × P(Reader × Φ⊥ × Event⊥)

Which leads to the following obvious definition of TDLM labels:

LabelT = P(SecPolT )

Having defined these, we next turn to the semantics of TDLM labels (and secu-
rity policies).

3.3 From Policies to Timed Automata

In the following we define the semantics of TDLM labels and security policies by
translating them into a network of timed automata. In essence, TDLM security
policies describe which principals can access protected data and when.

The behavior of security policies can be expressed via one or more timed
automata where each principal present in the security policy is associated to a
timed automaton describing their access restrictions. However if several prin-
cipals are allowed to access the data under the same conditions then a single
timed automaton might describe the access restrictions for multiple principals. A
timed automaton that describes the access restriction for a principal has its start
location labeled with the name of the principal that the automaton describes



The Timed Decentralised Label Model 35

as depicted in Figure 3, where rwi is the principal that the timed automaton
depicts the access possibility of. The location named data is used to describe
that when the timed automaton is in this location, the principal is allowed to
observe the data. Note however, that the location is committed (denoted with a
C) indicating that an edge going away from this location must be taken immedi-
ately to enforce the access restriction. The access restriction must be placed on
an ingoing edge to the data location thus modeling that the data is protected by
some time constraints Φ. If a policy contains events β that should be triggered by
certain principals then the timed automaton that describes the access behavior
of these principals must trigger the event on the edge going away from the data
location thus modeling reset only on successful read/write.

Fig. 3. General timed automaton that describes the access restrictions for the princi-
pal rwi restricted by the clock expression Φ and triggering the event β on successful
read/writes.

In addition to this, for each clock variable in a security policy, a timed
automaton is used to describe how this clock variable is incremented and who
can increment it. A timed automaton that describes a clock variable consists of
one location with up to three cyclic edges that describe incrementing the value
of the clock c, resetting the clock value upon reaching an upper limit α, and
resetting the clock value when an event β is triggered. Note that we use Uppaal
channels as a natural fit for modelling for events. The clock value is reset to the
reset value γ when an event is triggered or an upper limit is reached. When an
upper limit is present on a clock variable then a guard on the incrementation
edge must be placed to force a reset when reaching the upper limit. Figure 4
depicts a timed automaton that describes the behavior of the clock c which can
be incremented by the principal co.

As an example consider the following TDLM security policy:

{o (x[20; ?reset; 5] > 10 && y > 15) : r[!reset]} (1)

The timed automata in Figure 5 formalises this policy. The first timed automaton
labelled 1. describes the access restrictions for the owner o which is restricted
by the guard placed on the edge from the initial location to the data location



36 M.L. Pedersen et al.

Fig. 4. General timed automaton that describes a clock c that can be incremented by
the principal co.

meaning that the owner o may only observe the data when the conditions for
x and y are met. When o has successfully gained access to the data (the timed
automaton is in the location named data) the timed automaton immediately
goes to the initial location such that the restrictions placed on the data can be
enforced correctly.

Since o and r are restricted by the same clocks they should be modelled by
the same timed automata, however r triggers an event when successfully reading
the data and thus the access behavior for r must be modelled by a different
timed automaton. The timed automaton labeled 2. models the access behavior
of r and is equivalent to the timed automaton modeling o except for the event
(reset!) that is triggered when r has successfully gained access to the data.
Events are expressed by channel synchronization meaning that when a timed
automaton takes an edge marked with an event trigger such as reset! then all3

the corresponding timed automata in the system take any available matching
edges marked with the same event name such as reset?.

The timed automaton labeled 3. models the behavior of the clock variable x,
which can be incremented by the principal o (indicated by the name of the start
location) when the value of x is below 20 but upon reaching the value 20, o must
reset the clock to five before the clock can be incremented again thus modeling
the upper limit and reset value of x described by the policy. The edge marked
with reset? models the event that is triggered by r and resets the clock to its
reset value when the event is triggered.

The timed automaton labeled 4. models the behavior of the clock variable
y which also can be incremented by the principal o but this timed automaton
contains only one edge as there is no upper limit, reset value or event associated
with y.

3 This is the case as we use Uppaal’s broadcast channels in these models.



The Timed Decentralised Label Model 37

Fig. 5. Timed automata describing the security policy {o(x[20; ?reset; 5] > 10&& y >
15) : r[!reset]}

4 Smart Meters: A Case Study

To explore and illustrate the capabilities and expressiveness of the TDLM, a
case study of a real world scenario is presented here in some detail. The case
study involves a smart meter system which consists of multiple users (household
owners and residents), smart meters, power companies, distribution companies,
smart meter manufactures, third parties, a data hub and a government entity as
depicted in Figure 6. A definition of each entity in the smart meter system is as
follows:

– Users. Two types of users exist in the smart meter system - household own-
ers and residents. Household owners own one or more households, which each
have a smart meter installed, and may also be residents in the households
they own. Residents are permitted to live in a household by the household
owner.

– Smart meters. A smart meter is responsible for collecting electricity con-
sumption data for the household it is installed in. Furthermore, it also serves
as a platform for other devices to connect to and communicate with for exam-
ple for doing home automation.

– Power companies. A power company is responsible for delivering electric-
ity to one or more customers and billing the customers according to their
electricity consumption.

– Distribution companies. A distribution company is responsible for main-
taining the power distribution grid and keeping track of which electrical



38 M.L. Pedersen et al.

companies users are associated with. Furthermore, it is responsible for pro-
cessing raw smart meter data and making this data available to electrical
companies via a data hub.

– Data hub. The data hub serves as a storage center for processed smart
meter data which electrical companies or third parties can gain access to
when appropriate.

– Smart meter manufacturers. Smart meter manufacturers are responsible
for producing the smart meters and updating the firmware if need be.

– Third parties. Third parties are entities that might have an interest in the
data collected by the smart meters such as research companies.

– Government. The government is interested in obtaining power consump-
tion reports such that they can optimize the smart grid.

Fig. 6. Overview of the smart meter system with communication channels outlined.

The users can monitor their own power consumption by directly communi-
cating with the smart meter in their household, in order to identify how power
can be saved. However, the household owner is capable of granting and revoking
access to the smart meter, e.g., for residents living in the household. The distri-
bution companies request data from the smart meters they are associated with
and perform necessary processing of the data in order to protect the privacy of
the users. The processed data is delivered to a data hub which enforces which



The Timed Decentralised Label Model 39

entities that can gain access to the data, when they can gain access to the data,
for how long they may access the data, and the granularity of the data that
may be accessed. The government and potential third parties can access the
data they need through the data hub, however the permissions of each entity
may vary for example a research company may be able to access more fine-
grained data than the government. The power companies deliver electricity to
the users and bill them according to billing data obtained from the data hub and
as such an electrical company is implicitly associated with one or more smart
meters/users. Note that power companies are not able (or allowed) to access
the detailed usage statistics for a single household; depending on the particular
setup, such information may or may not be available to distribution companies.

4.1 Smart Meter Privacy Concerns and Access Rights

A smart meter system makes it possible to observe fine-grained electricity con-
sumption data of users associated with a smart meter. The system allows users
to observe their own power consumption down to the minute which opens up
the possibility of optimizing their usage patterns to lower overall power con-
sumption [11]. In addition to this, the smart meter system provides users with a
platform for home automation which can further lower their power consumption
by automatically turning off unused devices or starting devices based on electric-
ity prices [3]. However, the possibility of reading fine-grained power consumption
data also posses several privacy issues due to the possibility of deriving personal
behavior patterns from the power consumption data, for example it is possible
to figure out if a person is home during their sick leave or if they left late for
work by observing when they consume power [11]. As such it would be favorable
to regulate whom that has access to this data and in how fine a granularity the
data can be extracted in relation to the entity that wants to observe the data.

As there are several privacy and security issues in regards to smart meters, it
should not be possible for all entities in- and outside the system to obtain data
collected by smart meters or data transferred internally between entities. The
smart meter collects data about the user’s electrical consumption and as such
the data collected by the smart meter are directly related to the user, meaning
that there is no need to restrict the user’s access to the data in any form. The
user is able to observe and analyze the data collected by the smart meter at any
time via for example a web interface.

4.2 Smart Meter System Modelled with the TDLM

The smart meter system cannot be described by the DLM alone as this model
lacks the possibility of defining time-based security policies, which are crucial in
regards to modeling smart meter security. However, the TDLM extends the DLM
with the required components for describing a smart meter system in regards to
secure information flow and access control.

The principal hierarchy in the smart meter system consists of all the users
(u), the smart meters (s) associated with those users, the power companies (e)



40 M.L. Pedersen et al.

associated with users, distribution companies (d) associated with smart meters,
the data hub (dh), smart meter manufactures (m) and the government (g). The
acts-for relationship between these principals is then given as d � s and s � u.

The smart meter data can be divided into three segments; the first contain-
ing the personal information about the user that is associated with the smart
meter at the current time, the second containing the real-time electrical read-
ings recorded by the smart meter, and the third being the smart meter firmware
which controls how the smart meter behaves. The first part of the data is owned
by the user as it is sensitive information about them, but the electrical com-
pany that is associated with the user at the current time is allowed to read the
data for billing purposes: {ui : ej}. In addition to this, the data should have an
integrity policy which expresses that the user is the owner of the data but trusts
the electrical company to change the data if needed. However, in this paper we
are only concerned with confidentiality properties and refer to [16] for the full
case study.

Fig. 7. The smart meter security policies modelled with four timed automata.

The second part of the smart meter data comprises the actual power con-
sumption readings saved by the smart meter every minute. Since this data could
reveal a user’s private behaviourl pattern, it should only be accessible to the
power company in aggregate form. To enforce this, the TDLM introduces time-
based security policies formalising that the power company only should have
access to the data once in a while, e.g., every quarter, which is the requirement
for quarterly billing. Formally, this is captured by the following TDLM policy:

{si : ui, ej(x[?reset : 1] > 90)[!reset]} (2)

The semantics of this security label is depicted by the four timed automata
shown in Figure 7.

Figure 8 gives an overview of the TDLM annotations needed for the entire
system. For lack of space we are unable to go into further details with the case
study here, but refer to [16] for the full case study. From the above discussion, it
seems that the TDLM is a good fit for modelling many of the security properties
relevant for smart meters, in particular those involving timing elements.



The Timed Decentralised Label Model 41

Fig. 8. Smart meter system with security labels as per the definition of TDLM. Arrows
depict information flow.

5 Automated Verification of Security Goals

A problem common to all security policy formalism is that once the policies
reaches a certain level of complexity, it becomes very difficult, if not impossible,
to verify that the security policies actually capture the relevant security prop-
erties. Since the TDLM is rooted in timed automata, it is possible to leverage
the strong tool support for verifying properties of models using timed automata,
mainly through [4] model checking. In the remainder of this section, we briefly
outline how the Uppaal model checker can be used to verify properties of a
(simple) TDLM policy.

As an example, we take a security goal that is similar to (a simplified version
of) the security goals for the smart meter: we wish to verify that certain data
can only be read every 15 time units. The security policy enforced by our system
is formulated as follows:

{c : reader(x[15] >= 15)}

Clearly, in this case it is trivial to verify manually that the policy satisfies the
goal, but in a real system with even a moderate number of non-trivial policies,
it quickly becomes infeasible. Instead we turn to the Uppaal model checker to
analyse the so-called window of opportunity for reading the labelled data, e.g.,
by an attacker or an insider. Figure 9 shows a partial screenshot of performing



42 M.L. Pedersen et al.

Fig. 9. Uppaal window of opportunity analysis where upper limit is set to 15.

this window of opportunity analysis using Uppaal. On the right hand side, the
logical formulae verified by the model checker are shown, e.g., A[] P.data imply
x >= 15 that checks that for all possible system states when in the location data
in the automaton P then the value of the clock x is larger than or equal to 15.
This property is verified to be true which is the intended behavior of the system.
For more details, we again refer to [16].

6 Conclusion

In this paper we have defined and formalised the timed decentralised label model,
an extension of the decentralised label model with explicit handling of time
through the use of timed automata. We have further shown how this formalism
is well-suited for modelling and specifying the security policies for a smart meter
system. Finally, we taken the first steps towards using the Uppaal model checker
to automatically verify and validate that the security policies in a system do
indeed ensure the relevant security properties.

As future work we plan on investigating if the use of the modeling language
Timed Input/Output Automata [9] and the Ecdar [10] tool to more concisely
model the semantics of TDLM. As this tool uses a compositional verification
method it would potentially allow for checking the policies of much larger TDLM
models.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Anderson, R., Fuloria, S.: On the security economics of electricity metering. In:
Proceedings of the 9th Annual Workshop on the Economics of Information Security
(WEIS 2010), Cambridge, MA, USA, June 2010

3. Anderson, R., Fuloria, S.: Smart meter security: a survey. http://www.cl.cam.ac.
uk/rja14/Papers/JSAC-draft.pdf (2011)

http://www.cl.cam.ac.uk/rja14/Papers/JSAC-draft.pdf
http://www.cl.cam.ac.uk/rja14/Papers/JSAC-draft.pdf


The Timed Decentralised Label Model 43

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

5. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical founda-
tions. Tech. Rep. ESD-TR-73-278, ESD/AFSC, Hanscom AFB, Bedford, Mass,
November 1973

6. Broberg, N., Sands, D.: Flow locks: Towards a core calculus for dynamic flow
policies. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 180–196. Springer,
Heidelberg (2006)

7. Broberg, N., Sands, D.: Paralocks: role-based information flow control and beyond.
In: Proceedings of the 37th ACM Symposium on Principles of Programming
Languages (POPL 2010), Madrid, Spain, pp. 431–444, January 2010

8. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: Proc. of the IEEE Symposium on Security and Privacy (S&P
1987), pp. 184–194. IEEE (1987)

9. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed
I/O automata: a complete specification theory for real-time systems. In:
Johansson, K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Con-
ference on Hybrid Systems: Computation and Control, HSCC 2010, Stockholm,
Sweden, April 12–15, pp. 91–100. ACM (2010)

10. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: ECDAR: An
environment for compositional design and analysis of real time systems. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370.
Springer, Heidelberg (2010)

11. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs
of a smart meter. In: BuildSys 2010 (2010)

12. Myers, A.C.: Mostly-Static Decentralized Information Flow Control. Ph.D. thesis,
Massachusetts Institute of Technology, January 1999

13. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proc. of the 16th ACM Symposium on Operating Systems Principles (SOSP 1997),
pp. 129–142, October 1997

14. Myers, A.C., Liskov, B.: Complete, safe information flow with decentralized
labels. In: Proc. of the IEEE Symposium on Security and Privacy (S&P 1998),
pp. 186–197. IEEE, May 1998

15. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology (TOSEM) 9(4),
410–442 (2000)

16. Pedersen, M.L., Sørensen, M.H.: The Timed Decentralised Label Model. Master’s
thesis, Aalborg University (2015)

17. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In:
Proceedings of the 18th IEEE Workshop on Computer Security Foundations
(CSFW 2005), pp. 255–269. IEEE (2005)


	The Timed Decentralised Label Model
	1 Introduction
	2 Preliminaries
	2.1 The Decentralised Label Model
	2.2 Timed Automata

	3 The Timed Decentralised Label Model
	3.1 TDLM Constructs
	3.2 Formal Definition
	3.3 From Policies to Timed Automata

	4 Smart Meters: A Case Study
	4.1 Smart Meter Privacy Concerns and Access Rights
	4.2 Smart Meter System Modelled with the TDLM

	5 Automated Verification of Security Goals
	6 Conclusion
	References




