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Abstract We discuss techniques for information extraction from texts, and present

two applications that use these techniques. We focus in particular on social media

texts (Twitter messages), which present challenges for the information extraction

techniques because they are noisy and short. The first application is extracting the

locations mentioned in Twitter messages, and the second one is detecting the location

of the users based on all the tweets written by each user. The same techniques can

be used for extracting other kinds of information from social media texts, with the

purpose of monitoring the topics, events, emotions, or locations of interest to security

and defence applications.

Keywords Information extraction ⋅ Natural language processing ⋅ Social media ⋅
Text mining ⋅Automatic text classification ⋅Conditional random fields ⋅Deep neural

networks

1 Introduction

There is a huge amount of user-generated content available over the Internet, in vari-

ous social media platforms. An important part of this content is in text form. Humans

can read only a small part of these texts, in order to detect possible threats to secu-

rity and public safety (such as mentions of terrorist activities or extremist/radical

texts). This is why text mining techniques are important for security and defence

applications. Therefore, we need to use automatic methods for extracting informa-

tion from texts and for detecting messages that should be flagged as possible threats

and forwarded to a human for further analysis.

Information extraction from text can target various pieces of information. The

task could be a simple key phrase search (with focus on key phrases that could be
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relevant for detecting terrorist threats) or a sophisticated topic detection task (i.e., to

classify a text as being about a terrorism-related topic or not). Topic detection was

studied by many researchers, while only a few focused on social media texts [32].

Emotion detection from social media texts could also be of interest to security appli-

cations, in particular anger detection. Messages that express anger at high intensity

levels could be flagged as possible terrorist threats. Combined with topic detection,

anger detection could lead to more accurate flagging of the potential threats. Emo-

tion classification was tested on social media messages, for example on a blog dataset

[14] and on the LiveJournal dataset [21].

Location detection from social media texts is the main focus of in chapter. There

are two types of locations: location entities mentioned in the text of a message and

the physical locations of the users. We present experiments that show that loca-

tion mentions can be extracted from Twitter messages: in particular, what cities,

states/provinces, or countries are mentioned in a tweet [20]. This is useful in order

to detect events or activities located in specific places that are mentioned by peo-

ple. For example, potential terrorist plots can target specific geographic areas. For

the second kind of locations, we present experiments that predict the physical loca-

tion of a Twitter user based on all the messages written by the user [26]. Only a

few users declare their location in their Twitter account profile. We used this data

(tweets annotated with user location) as training data for a classifier that can be used

to prediction the location of any user. The classifiers catch subtle differences in the

language (dialect) and the types of entities mentioned. User location can be of inter-

est to defence applications in cases when many disturbing messages are posted by a

user, in order to estimate the possible location of this user.

The first task discussed (called task 1 bellow) detects location mentioned and it

needs to extract spans of one or often several words. Another example of task that

extracts spans of text is risk detection. In particular, information about maritime

situation awareness, from textual reports (risk spans, type of risk, type of vessel,

location, etc.) was extracted using a similar technique [33].

The second task that we present in detail in this chapter (called task 2 bellow) is

detecting the location of the Twitter users based on their messages. This is a classi-

fication task in which the classifier needs to choose one of the possible locations for

which the classifier was trained. It is not a sequential classification task, this is why

we experimented with standard classifiers that choose one class for each text, as well

as with new models based on Deep Neural Networks.

The two tasks together would allow an intelligent system to analyze information

posted on Twitter in real time. It can analyze each tweet in order to spot locations

mentioned in it (task 1) and to visualize these locations on a map. If many tweets at

a given time mention a specific location, it might be the case that some event (such

as natural disaster or terrorist attack) just happened somewhere in the world. Or

the system can monitor only a region of interest. The system could also keep track

of individual users that might have a suspicious behaviour (for example possible

terrorist activities, or cyber bullying). If the user does not have a declared location

in his/her Twitter profile, the system can collect all the recent tweets from that user,

then apply our models from task 2 in order to compute the location of the user.
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The novelty of the computational intelligence methods proposed in this chapter

consists in the way we address task 1, via a sequence-based classifier followed by

disambiguation rules, and the way we address task 2, via Deep Neural Networks,

which were not applied yet to this task.

2 Proposed Computational Intelligence Solution

2.1 Extracting Expressions Using Conditional Random
Fields

Early information extraction techniques were based on identifying patterns that can

extract information of interest [7]. The patterns were often manually formulated,

though it is possible to automatically learn patterns. Modern methods of information

extraction are based on the latter idea, and even deeper on automatic text classifica-

tion [1]. In this chapter, we discuss on the latest advances in information extraction

from text, based on classifiers such as Support Vector Machines (SVM) [9], Deep

Neural Networks [5], and Conditional Random Fields (CRF) [22].

The first two classifiers are applied to a text as a whole and are able to predict

a class from a set of pre-determined classes. SVM classifiers were shown to obtain

high performance on text data, including the emotion classification tasks. The deep

neural networks were very recently applied on text data with high success rate [16].

The CRF classifiers were designed specifically for sequence classification. They

can be applied to detecting spans of text that are of interest, by classifying each word

into one of the following classes: beginning of a span, inside a span, and outside a

span. In this way, CRF learns spans of interested from the annotated training data,

and can be applied to detect similar spans in new test data. We used this technique for

location expressions detection, due to the sequential nature of the task (an expression

contains one or more words, and often a city name, followed by a state/province,

followed by a country name).

Before using these classification techniques, we applied Natural Language

Processing (NLP) techniques to pre-process the texts in order to extract the features

needed for the classification. Examples of features are: words, n-grams (sequences of

2, 3, or more words), part-of-speech tags (such as nouns, verbs, adjectives, adverbs),

and syntactic dependency relations.

Social media text is particularly difficult because the current NLP tools are trained

on carefully edited texts, such as newspaper texts. Therefore they need to be adapted

before being able to run on social media texts that are more informal, ungrammati-

cal, and full of abbreviations and jargon. There are two ways to adapt tools to social

media texts. One is to normalize the texts, which is rather difficult without loosing

useful information about the people who post messages on social media. The second

way, that we use here, was to train all the tools and methods on social media texts,

in addition to shallow forms of text normalization, which we used in order to extract
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better features for the classification tasks. We also added new types of features spe-

cific to social media texts, such as hashtags for Twitter messages, emoticons, etc.

A CRF is a undirected graphical model. In a CRF, or more specifically, a lin-

ear chain CRF, if we denote the input variables by X and the output labels Y , the

conditional probability distribution P(Y|X) obeys the Markov property:

P(yi|y1, y2,… , yi−1, yi+1,… , yn, x)
= P(yi, yi−1, yi+1, x) (1)

Given some specific sequence of input variables 𝐱, the conditional probability of

some sequence of output label 𝐲 is:

P(𝐲|𝐱) =
1

Z(𝐱)
exp(

∑

i,k
𝜆ktk(yi−1, yi, x, i) +

∑

i,l
𝜇lsl(yi, x, i)) (2)

where Z(𝐱) =
∑

y exp(
∑

i,k 𝜆ktk(yi−1, yi, x, i) +
∑

i,l 𝜇lsl(yi, x, i)) is the normalizing
constant, tk and sl are feature functions, 𝜆k and 𝜇l are the corresponding weights.

2.2 Classifying Texts Using Deep Neural Networks

In this section, we present the artificial neural network architectures that we will

employ in the task of detection user locations based on their tweets. The reason we

chose this technology is that other methods, such as SVM classifiers, were already

applied for this task in related work (that we will compare with).

A feedforward neural network usually has an input layer and an output layer. If the

input layer is directly connected to the output layer, such a model is called a single-
layer perceptron. A more powerful model has several layers between the input layer

and the output layer; these intermediate layers are called hidden layers; this type

of model is known as a multi-layer perceptron (MLP). In a perceptron, neurons are

interconnected, i.e., each neuron is connected to all neurons in the subsequent layer.

Neurons are also associated with activation functions, which transform the output of

each neuron; the transformed outputs are the inputs of the subsequent layer. Typical

choices of activation functions include the identity function, defined as y = x; the

hyperbolic tangent, defined as y = ex−e−x

ex+e−x
and the logistic sigmoid, defined as y =

1
1+e−x

. To train a MLP, the most commonly used technique is back-propagation [35].

Specifically, the errors in the output layer are back-propagated to preceding layers

and are used to update the weights of each layer.

An artificial neural network (ANN) with multiple hidden layers, also called a

Deep Neural Network (DNN), mimics the deep architecture in the brain and it is

believed to perform better than shallow architectures such as logistic regression mod-

els and ANNs without hidden units. The effective training of DNNs is, however, not
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achieved until the work of [5, 18]. In both cases, a procedure called unsupervised
pre-training is carried out before the final supervised fine-tuning. The pre-training

significantly decreases error rates of Deep Neural Networks on a number of ML

tasks such as object recognition and speech recognition. The details of DNNs are

beyond the scope of this chapter; interested readers can refer to [5, 18, 39] and the

introduction from [4].

Data representation is important for machine learning [11]. Many statistical NLP

tasks use hand-crafted features to represent language units such as words and doc-

uments; these features are fed as the input to machine learning models. One such

example is emotion or sentiment classification which uses external lexicons that

contain words with emotion or sentiment prior polarities [2, 15, 24, 28]. Despite

the usefulness of these hand-crafted features, designing them is time-consuming and

requires expertise. We also used hand-crafted features for task 1, while here, for task

2, we let the DNN choose the features automatically, since this in one of the advan-

tages of the method.

A number of researchers have implemented DNNs in the NLP domain, achieving

state-of-the-art performance without having to manually design any features. The

most relevant to ours is the work in [16], who developed a deep learning architecture

that consists of stacked denoising auto-encoders and apply it to sentiment classifica-

tion of Amazon reviews. Their stacked denoising auto-encoders can capture mean-

ingful representations from reviews and outperform state-of-the-art methods; due to

the unsupervised nature of the pre-training step, this method also performs domain

adaptation well.

In the social media domain, [38] extracted representations from Microblog text

data with Deep Belief Networks (DBNs) and used the learned representations for

emotion classification, outperforming representations based on Principal Compo-

nent Analysis and on Latent Dirichlet Allocation.

Huang and Yates [19] showed that representation learning also helps domain

adaptation of part-of-speech tagging, which is challenging because POS taggers

trained on one domain have a hard time dealing with unseen words in another

domain. They first learned a representation for each word, then fed the learned word-

level representations to the POS tagger; when applied to out-of-domain text, it can

reduce the error by 29 %.

3 Datasets

3.1 Location Expressions Data

Annotated data are required in order to train our supervised learning system. Our

work is a special case of the Named Entity Recognition task, with text being tweets
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and target Named Entities being specific kinds of locations. To our knowledge, a

corresponding corpus does not yet exist.
1

We used the Twitter API
2

to collect our own dataset. Our search queries were

limited to six major cell phone brands, namely iPhone, Android, Blackberry, Win-

dows Phone, HTC and Samsung. Twitter API allows its users to filter tweets based

on their languages, geographic origins, the time they were posted, etc. We utilized

such functionality to collect only tweets written in English. Their origins, however,

were not constrained, i.e., we collected tweets from all over the world. We ran the

crawler from June 2013 to November 2013, and eventually collected a total of over

20 million tweets.

The amount of data we collected is overwhelming for manual annotation, but

having annotated training data is essential for any supervised learning task for loca-

tion detection. We therefore randomly selected 1000 tweets from each subset (cor-

responding to each cellphone brand) of the data, and obtained 6000 tweets for the

manual annotation (more data would have taken too long to annotate).

We have defined annotation guidelines to facilitate the manual annotation task.

Mani et al. [27] defined spatialML: an annotation schema for marking up references

to places in natural language. Our annotation model is a sub-model of spatialML.

The process of manual annotation is described next.

A gazetteer is a list of proper names such as people, organizations, and locations.

Since we are interested only in locations, we only require a gazetteer of locations. We

obtained such a gazetteer from GeoNames,
3

which includes additional information

such as populations and higher level administrative districts of each location. We also

made several modifications, such as the removal of cities with populations smaller

than 1000 (because otherwise the size of the gazetteer would be very large, and there

are usually very few tweets in the low-populated areas) and removal of states and

provinces outside the U.S. and Canada; we also allowed the matching of alternative

names for locations. For instance, “ATL”, which is an alternative name for Atlanta,

will be matched as a city.

We then used GATE’s gazetteer matching module [10] to associate each entry

in our data with all potential locations it refers to, if any. Note that, in this step, the

only information we need from the gazetteer is the name and the type of each loca-

tion. GATE has its own gazetteer, but we replaced it with the GeoNames gazetteer

which serves our purpose better. The sizes of both gazetteers are listed in Table 1.
4

In addition to a larger size, the GeoNames contains information such as population,

administrative division, latitude and longitude, which will be useful later in Sect. 4.4.

1
[25] recently released a dataset of various kinds of social media data annotated with generic loca-

tion expressions, but not with cities, states/provinces, and countries.

2
https://dev.twitter.com.

3
http://www.geonames.org.

4
The number of countries is larger than 200 because alternative names are counted; the same for

states/provinces and cities.

https://dev.twitter.com
http://www.geonames.org
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Table 1 The sizes of the gazetteers

Gazetteer Number of countries Number of states and

provinces

Number of cities

GATE 465 1215 1989

GeoNames 756 129 163285

The first step is merely a coarse matching mechanism without any effort made

to disambiguate candidate locations. For example, the word “Georgia” would be

matched to both the state of Georgia and the country in Europe.

In the next phase, we arranged for two annotators, who are graduate students

with adequate knowledge of geography, to go through every entry matched to at

least one of locations in the gazetteer list. The annotators are required to identify,

first, whether this entry is a location; and second, what type of location this entry is.

In addition, they are also asked to mark all entities that are location entities, but not

detected by GATE due to misspelling, all capital letters, all small letters, or other

causes. Ultimately, from the 6000 tweets, we obtained 1270 countries, 772 states or

provinces, and 2327 cities.

We split the dataset so that each annotator was assigned one fraction. In addition,

both annotators annotated one subset of the data containing 1000 tweets, correspond-

ing to the search query of Android phone, in order to compute an inter-annotator

agreement, which turned out to be 88 %. The agreement by chance is very low, since

any span of text could be marked, therefore the kappa coefficient that compensates

for chance agreement is close to 0.88. The agreement between the manual annota-

tions and those of the initial GATE gazetteer matcher in the previous step was 0.56

and 0.47, respectively for each annotator. The fully-annotated dataset (as well as our

source code for task 1) can be obtained through this link.
5

Annotation of True Locations Up to this point, we have identified locations and

their types, i.e., geo/non-geo ambiguities are resolved, but geo/geo ambiguities still

exist. For example, we have annotated the token “Toronto” as a city, but it is not clear

whether it refers to “Toronto, Ontario, Canada” or “Toronto, Ohio, USA”. Therefore

we randomly choose 300 tweets from the dataset of 6000 tweets and further manu-

ally annotated the locations detected in these 300 tweets with their actual location.

The actual location is denoted by a numerical ID as the value of an attribute named

trueLoc within the XML tag. An example of annotated tweet is displayed in Table 2.

3.2 User Location Data

For the second task, we need data annotated with users’ locations. We choose two

publicly available datasets which have been used by several other researchers. The

5
https://github.com/rex911/locdet.

https://github.com/rex911/locdet
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Table 2 An example of annotation with the true location

Mon Jun 24 23:52:31 +0000 2013
<location locType=’city’, trueLoc=’22321’>Seguin </location>
<location locType=’SP’, trueLoc=’12’>Tx </location>
RT @himawari0127i: #RETWEET#TEAMFAIRYROSE #TMW #TFBJP
#500aday #ANDROID #JP #FF #Yes #No #RT #ipadgames #TAF #NEW
#TRU #TLA #THF 51

first one is from [13].
6

It includes about 380,000 tweets from 9,500 users from the

contiguous United States (i.e., the U.S. excluding Hawaii, Alaska and all off-shore

territories). The dataset also provides geographical coordinates of each user. The

second one is much larger and we obtained it from [34].
7

It contains 38 million tweets

from 449,694 users, all from North America. We regard each user’s set of tweets as

a training example (labelled with location), i.e., (x(i), y(i)) where x(i) represent all the

tweets from the ith user and y(i) is the location of the ith user. Meta-data like user’s

profile and time zone will not be used in our work.

4 Task 1: Detecting Location Expressions

For this subtask, we propose to use methods designed for sequential data, because the

nature of the problem is sequential. The different parts of a location such as country,

state/province and city in a tweet are related and often given in a sequential order,

so it seems appropriate to use sequential learning methods to automatically learn

the relations between these parts of locations. We decided to use CRF as our main

machine learning algorithm, because it achieved good results in similar information

extraction tasks.

4.1 Designing Features

Features that are good representations of the data are important to the performance

of a machine learning task. The features that we design for detecting locations are

listed below:

∙ Bag-of-Words: To start with, we defined a sparse binary feature vector to repre-

sent each training case, i.e., each token in a sequence of tokens; all values of the

feature vector are equal to 0 except one value corresponding to this token is set

6
http://www.ark.cs.cmu.edu/GeoTwitter.

7
https://github.com/utcompling/textgrounder/wiki/RollerEtAl_EMNLP2012.

http://www.ark.cs.cmu.edu/GeoTwitter
https://github.com/utcompling/textgrounder/wiki/RollerEtAl_EMNLP2012
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to 1. This feature representation is often referred to as Bag-of-Words or unigram

features. We will use Bag-of-Words Features or BOW features to denote them, and

the performance of the classifier that uses these features can be considered as the

baseline in this work.

∙ Part-of-Speech: The intuition for incorporating Part-of-Speech tags in a location

detection task is straightforward: a location can only be a noun or a proper noun.

Similarly, we define a binary feature vector, where the value of each element indi-

cates the activation of the corresponding POS tag. We later on denote these fea-

tures by POS features.
∙ Left/right: Another possible indicator of whether a token is a location is its adja-

cent tokens and POS tags. The intuitive justification for this features is that loca-

tions in text tend to have other locations as neighbours, i.e., “Los Angeles, Califor-

nia, USA”; and that locations in text tend to follow prepositions, as in the phrases

“live in Chicago”, “University of Toronto”. To make use of information like that,

we defined another set of features that represent the tokens on the left and right

side of the target token and their corresponding POS tags. These features are sim-

ilar to Bag-of-Words and POS features, but instead of representing the token itself

they represent the adjacent tokens. These features are later on denoted by Window
features or WIN features.

∙ Gazetteer: Finally, a token that appears in the gazetteer is not necessarily a loca-

tion; by comparison, a token that is truly a location must match one of the entries

in the gazetteer. Thus, we define another binary feature which indicates whether

a token is in the gazetteer. This feature is denoted by Gazetteer feature or GAZ

feature in the next sections.

In order to obtain BOW features and POS features, we preprocessed the dataset

by tokenizing and POS tagging all the tweets. This step was done using the Twitter

NLP and Part-of-Speech Tagging tool [29].

For experimental purposes, we would like to find out the impact each set of fea-

tures has on the performance of the model. Therefore, we test different combinations

of features and compare the accuracies of resulting models.

4.2 Experiments

Evaluation Metrics We compute the precision, recall and F-measure, which are the

most common evaluation measures used in most information retrieval tasks. Specif-

ically, the prediction of the model can have four different outcomes: true positive

(TP), false positive (FP), true negative (TN) and false negative (FN), as described

in Table 3 with respect to our task. We will present separate results for each type of

locations (cities, states/provinces, and countries).
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Table 3 Definitions of true positive, false positive, true negative and false negative

Model Ground truth

Location ¬ Location

predicted as location TP FP

predicted as ¬ location FN TN

Precision measures how correctly the model makes predictions; it is the propor-

tion of all positive predictions that are actually positive, computed by:

precision = TP
TP + FP

(3)

Recall measures the model’s capability of recognizing positive test example; it is the

proportion of all actually positive test examples that the model successfully predicts,

computed by:

recall = TP
TP + FN

(4)

Once precision and recall are computed, we can therefore calculate the F-measure by:

F = 1
𝛼

1
P
+ (1 − 𝛼) 1

R

(5)

where P is the precision and R is the recall; 𝛼 is the weighting coefficient. In this

work, we shall use a conventional value of 𝛼, which is 0.5; one can interpret it as

equally weighting precision and recall.

We report precision, recall and F-measure for the extracted location expressions,

at both the token and the span level, to evaluate the overall performance of the trained

classifiers. A token is a unit of tokenized text, usually a word; a span is a sequence

of consecutive tokens. The evaluation at the span level is stricter. In other words, if

a token belongs to the span and is tagged by the classifier the same as the location

label, we count it as a true positive; otherwise, we count it as false positive; the same

strategy is taken for the negative class. At the span level, we evaluate our method

based on the whole span; if our classifiers correctly detects the start point, the end

point and the length of the span, this will be counted as a true positive; however, if

even one of the three factors was not exact, we count it as a false positive. It is clear

that evaluation at the span level is stricter.

In our experiments, one classifier is trained and tested for each of the location

labels city, SP, and country. For the learning process, we need to separate training

and testing sets. We report results for 10-fold cross-validation, because a conven-

tional choice for n is 10. In addition, we report results for separate training and test

data (we chose 70 % for training and 30 % for testing). Because the data collection

took several months, it is likely that we have both new and old tweets in the dataset;
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therefore we performed a random permutation before splitting the dataset for training

and testing.

We would like to find out the contribution of each set of features in Sect. 4.1 to

the performance of the model. To achieve a comprehensive comparison, we tested

all possible combinations of features plus the BOW features. In addition, a baseline

model which simply predicts a token or a span as a location if it matches one of the

entries in the gazetteer.

We implemented the models using an NLP package named MinorThird [8] that

provides a CRF module [36] easy to use; the loss function is the log-likelihood and

the learning algorithm is the gradient ascent. The loss function is convex and the

learning algorithm converges fast.

4.3 Results for Location Expressions

The results are listed in the following tables. Table 4 shows the results for countries,

Table 5 for states/provinces and Table 6 for cities. To our knowledge, there is no

previous work that extracts locations at these three levels, thus comparisons with

other models are not feasible.

Discussion The results from Tables 4, 5 and 6 show that the task of identifying

cities is the most difficult, since the number of countries or states/provinces is by

far smaller. In our gazetteer, there are over 160,000 cities, but only 756 countries

and 129 states/provinces, as detailed in Table 1. A lager number of possible classes

generally indicates a larger search space, and consequently a more difficult task. We

also observe that the token level F-measure and the span level F-measure are quite

similar, likely due to the fact that most location names contain only one word.

Table 4 Performance of the classifiers trained on different features for countries

Features Token Span Separate train-test sets

P R F P R F Token F Span F

Baseline-Gazetteer

Matching

0.26 0.64 0.37 0.26 0.63 0.37 – –

Baseline-BOW 0.93 0.83 0.88 0.92 0.82 0.87 0.86 0.84

BOW+POS 0.93 0.84 0.88 0.91 0.83 0.87 0.84 0.85

BOW+GAZ 0.93 0.84 0.88 0.92 0.83 0.87 0.85 0.86

BOW+WIN 0.96 0.82 0.88 0.95 0.82 0.88 0.87 0.88

BOW+POS+GAZ 0.93 0.84 0.88 0.92 0.83 0.87 0.85 0.86

BOW+WIN+GAZ 0.95 0.85 0.90 0.95 0.85 0.89 0.90 0.90

BOW+POS+WIN 0.95 0.82 0.88 0.95 0.82 0.88 0.90 0.90

BOW+POS+WIN+GAZ 0.95 0.86 0.90 0.95 0.85 0.90 0.92 0.92

Column 2 to column 7 show the results from 10-fold cross validation; the last two columns show

the results from random split of the dataset where 70 % are the train set and 30 % are the test set.

(The same in Tables 5 and 6)
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Table 5 Performance of the classifiers trained on different features for SP

Features Token Span Separate train-test sets

P R F P R F Token F Span F

Baseline-Gazetteer

Matching

0.65 0.74 0.69 0.64 0.73 0.68 – –

Baseline-BOW 0.90 0.78 0.84 0.89 0.80 0.84 0.80 0.84

BOW+POS 0.90 0.79 0.84 0.89 0.81 0.85 0.82 0.84

BOW+GAZ 0.88 0.81 0.84 0.89 0.82 0.85 0.79 0.80

BOW+WIN 0.93 0.77 0.84 0.93 0.78 0.85 0.80 0.81

BOW+POS+GAZ 0.90 0.80 0.85 0.90 0.82 0.86 0.78 0.82

BOW+WIN+GAZ 0.91 0.79 0.84 0.91 0.79 0.85 0.83 0.84

BOW+POS+WIN 0.92 0.78 0.85 0.92 0.79 0.85 0.80 0.81

BOW+POS+WIN+GAZ 0.91 0.79 0.85 0.91 0.80 0.85 0.84 0.83

Table 6 Performance of the classifiers trained on different features for cities

Features Token Span Separate train-test sets

P R F P R F Token F Span F

Baseline-Gazetteer

Matching

0.14 0.71 0.23 0.13 0.68 0.22 – –

Baseline-BOW 0.91 0.59 0.71 0.87 0.56 0.68 0.70 0.68

BOW+POS 0.87 0.60 0.71 0.84 0.55 0.66 0.71 0.68

BOW+GAZ 0.84 0.77 0.80 0.81 0.75 0.78 0.78 0.75

BOW+WIN 0.87 0.71 0.78 0.85 0.69 0.76 0.77 0.77

BOW+POS+GAZ 0.85 0.78 0.81 0.82 0.75 0.78 0.79 0.77

BOW+WIN+GAZ 0.91 0.76 0.82 0.89 0.74 0.81 0.82 0.81

BOW+POS+WIN 0.82 0.76 0.79 0.80 0.75 0.77 0.80 0.79

BOW+POS+WIN+GAZ 0.89 0.77 0.83 0.87 0.75 0.81 0.81 0.82

We also include the results when one part of the dataset (70 %) is used as training

data and the rest (30 %) as test data. The results are slightly different to that of 10-

fold cross validation and tend to be lower in terms of f-measures, likely because less

data are used for training. However, similar trends are observed across feature sets.

The baseline model not surprisingly produces the lowest precision, recall and f-

measure; it suffers specifically from a dramatically low precision, since it will predict

everything contained in the gazetteer to be a location. By comparing the performance

of different combinations of features, we find out that the differences are most sig-

nificant for the classification of cities, and least significant for the classification of

states/provinces, which is consistent with the number of classes for these two types of

locations. We also observe that the simplest features, namely BOW features, always

produce the worst performance at both token level and span level in all three tasks;

on the other hand, the combination of all features produces the best performance in
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every task, except for the prediction of states/provinces at span level. These results

are not surprising.

We conducted t-tests on the results of models trained on all combinations of fea-

tures listed in Tables 4, 5 and 6. We found that in SP classification, no pair of feature

combinations yields statistically significant difference. In city classification, using

only BOW features produces significantly worse results than any other feature com-

binations at a 99.9 % level of confidence, except BOW+POS features, while using

all features produces significantly better results than any other feature combinations

at a 99 % level of confidence, except BOW+GAZ+WIN features. In country clas-

sification, the differences are less significant; where using all features and using

BOW+GAZ+WIN features both yield significantly better results than 4 of 6 other

feature combinations at a 95 % level of confidence, while the difference between

them is not significant; unlike in city classification, the results obtained by using only

BOW features is significantly worse merely than the two best feature combinations

mentioned above.

We further looked at the t-tests results of city classification to analyze what impact

each feature set has on the final results. When adding POS features to a feature com-

bination, the results might improve, but never statistically significantly; by contrast,

they always significantly improve when GAZ features or WIN features are added.

These are consistent with our previous observations.

Error Analysis Some of the predictions errors were due to partial detection of some

names, for example “Korea” was predicted as a country, instead of “South Korea”.

Another source of errors was due to misspellings and to non-standard nicknames that

were not in our gazetteers. We went through the predictions made by the location

entity detection model, picked some typical errors made by it, and looked into the

possible causes of these errors.

Example 1:

Mon Jul 01 14:46:09 +0000 2013

Seoul

yellow cell phones family in South Korea #phone #mobile #yellow #samsung

http://t.co/lpsLgepcCW

Example 2:

Sun Sep 08 06:28:50 +0000 2013

minnesnowta.

So I think Steve Jobs’ ghost saw me admiring the Samsung Galaxy 4 and now

is messing with my phone. Stupid Steve Jobs. #iphone

http://t.co/lpsLgepcCW
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In Example 1, the model predicted “Korea” as a country, instead of “South

Korea”. A possible explanation is that in the training data there are several cases con-

taining “Korea” alone, which leads the model to favour “Korea” over “South Korea”.

In Example 2, the token “minnesnowta” is quite clearly a reference to “Minnesota”,

which the model failed to predict. Despite the fact that we allow the model to recog-

nize nicknames of locations, these nicknames come from the GeoNames gazetteer;

any other nicknames will not be known to the model. On the other hand, if we treat

“minnesnowta” as a misspelled “Minnesota”, it shows that we can resolve the issue

of unknown nicknames by handling misspellings in a better way.

4.4 Location Disambiguation

In the previous section, we have identified the locations in Twitter messages and

their types; however, the information about these locations is still ambiguous. In this

section, we describe the heuristics that we use to identify the unique actual location

referred to by an ambiguous location name. These heuristics rely on information

about the type, geographic hierarchy, latitude and longitude, and population of a cer-

tain location, which we obtained from the GeoNames Gazetteer. The disambiguation

process is divided into 5 steps, as follows:

1. Retrieving candidates. A list of locations whose names are matched by the loca-

tion name we intend to disambiguate are selected from the gazetteer. We call these

locations candidates. After step 1, if no candidates are found, disambiguation is

terminated; otherwise we continue to step 2.

2. Type filtering. The actual location’s type must agree with the type that is tagged

in the previous step where we apply the location detection model; therefore, we

remove any candidates whose types differ from the tagged type from the list of

candidates. E.g., if the location we wish to disambiguate is “Ontario” tagged as

a city, then “Ontario” as a province of Canada is removed from the list of candi-

dates, because its type SP differs from our target type. After step 2, if no candi-

dates remain in the list, disambiguation is terminated; if there is only one candi-

date left, this location is returned as the actual location; otherwise we continue to

step 3.

3. Checking adjacent locations. It is common for users to put related locations

together in a hierarchical way, e.g., “Los Angeles, California, USA”. We check

adjacent tokens of the target location name; if a candidate’s geographic hierarchy

matches any adjacent tokens, this candidate is added to a temporary list. After step

3, if the temporary list contains only one candidate, this candidate is returned as

the actual location. Otherwise we continue to step 4 with the list of candidates

reset.

4. Checking global context. Locations mentioned in a document are geographically

correlated [23]. In this step, we first look for other tokens tagged as a location

in the Twitter message; if none is found, we continue to step 5; otherwise, we
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disambiguate these context locations. After we obtain a list of locations from the

context, we calculate the sum of their distances to a candidate location and return

the candidate with minimal sum of distances.

5. Default sense. If none of the previous steps can decide a unique location, we

return the candidate with largest population (based on the assumption that most

tweets talk about large urban areas).

4.5 Experiments and Results for Actual Locations

We ran the location disambiguation algorithm described above. In order to evaluate

how each step (more specifically, step 3 and 4, since other steps are mandatory)

contributes to the disambiguation accuracy, we also deactivated optional steps and

compared the results.

Example 3:

Fri Jul 19 16:35:29 +0000 2013

NYC and San Francisco

You Have to See this LEOPARD phone HTC 1 case RT PLS http://t.co/

Ml6zH3Yp2b

The results of different location disambiguation configurations are displayed in

Table 7, where we evaluate the performance of the model by accuracy, which is

defined as the proportion of correctly disambiguated locations. By analyzing them,

we can see that when going through all steps, we get an accuracy of 95.5 %, while

by simply making sure the type of the candidate is correct and choosing the default

location with the largest population, we achieve a better accuracy. The best result

is obtained by using the adjacent locations, which turns out to be 98.2 % accurate.

Thus we conclude that adjacent locations help disambiguation, while locations in

the global context do not. Therefore the assumption made by [23] that the locations

in the global context help the inference of a target location does not hold for Twitter

messages, mainly due to their short nature.

Error Analysis Similar to Sect. 4.3, this section presents an example of errors made

by the location disambiguation model in Example 3. In this example, the disambigua-

Table 7 Location

disambiguation results
Deactivated steps Accuracy (%)

None 95.5

Adjacent locations 93.7

Global context 98.2
Adjacent locations + context locations 96.4

http://t.co/Ml6zH3Yp2b
http://t.co/Ml6zH3Yp2b
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tion rules correctly predicted “NYC” as “New York City, New York, United States”;

however, “San Francisco” was predicted as “San Francisco, Atlantida, Honduras”,

which differs from the annotated ground truth. The error is caused by step 4 of the

disambiguation rules that uses contextual locations for prediction; San Francisco of

Honduras is 3055 km away from the contextual location New York City, while San

Francisco of California, which is the true location, is 4129 km away. This indicates

the fact that a more sophisticated way of dealing with the context in tweets is required

to decide how it impacts the true locations of the detected entities.

5 Task 2: Detecting User Locations

We define our work as follows: first, a classification task puts each user into one

geographical region (see Sect. 5.5 for details); next, a regression task predicts the

most likely location of each user in terms of geographical coordinates, i.e., a pair of

real numbers for latitude and longitude. We present one model for each task.

5.1 Models

Model 1 The first model consists of three layers of denoising auto-encoders. Each

code layer of denoising auto-encoders also serves as a hidden layer of a multiple-

layer feedforward neural network. In addition, the top code layer works as the input

layer of a logistic regression model whose output layer is a softmax layer.

Softmax Function
The softmax function is defined as:

softmaxi(𝐳) =
e𝐳i

∑J
j=1 e

𝐳j
(6)

where the numerator zi is the ith possible input to the softmax function and the

denominator is the summation over all possible inputs. The softmax function pro-

duces a normalized probability distribution over all possible output labels. This prop-

erty makes it suitable for multiclass classification tasks. Consequently, a softmax

layer has the same number of neurons as the number of possible output labels; the

value of each neuron can be interpreted as the probability the corresponding label

given the input. Usually, the label with the highest probability is returned as the pre-

diction made by the model.

In our model, mathematically, the probability of a label i given the input and the

weights is:
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P(Y = i|xN ,W (N+1)
, b(N+1))

= softmaxi(W (N+1)xN + b(N+1))

= eW
(N+1)
i xN+b(N+1)i

∑
j e

W (N+1)
j xN+b(N+1)j

(7)

where W (N+1)
is the weight matrix of the logistic regression layer and b(N+1) are its

biases. N is the number of hidden layers, in our case N = 3. xN is the output of the

code layer of the denoising auto-encoder on top. To calculate the output of ith hidden

layer (i = 1 . . .N), we have:

xi = s(W (i)xi−1 + b(i)) (8)

where s is the activation function, W (i)
and b(i) correspond to the weight matrix and

biases of the ith hidden layer. x0 is the raw input generated from text,
8

as specified

in Sect. 5.5. We return the label that maximizes Eq. (7) as the prediction, i.e.:

ipredict = argmax
i

P(Y = i|xN ,W (N+1)
, b(N+1)) (9)

We denote this model as SDA-1.

Model 2 In the second model, a multivariate linear regression layer replaces a logis-

tic regression layer on top. This produces two real numbers as output, which can be

interpreted as geographical coordinates. Therefore the output corresponds to loca-

tions on the surface of Earth. Specifically, the output of model 2 is:

yi = W (N+1)
i xN + b(N+1)i (10)

where i ∈ {1, 2}, W (N+1)
is the weight matrix of the linear regression layer and b(N+1)

are its biases, xN is the output of the code layer of the denoising auto-encoder on top.

The output of ith hidden layer (i = 1…N) is computed using Eq. (8), which is the

same as Model 1. The tuple (y1, y2) is then the pair of geographical coordinates pro-

duced by the model. We denote this model as SDA-2. Figure 1 shows the architecture

of both models.

5.2 Input Features

To learn better representations, a basic representation is required to start with. For

text data, a reasonable starting representation is achieved with the Bag-of-N-grams
features [4, 16].

8
Explained in Sect. 5.2.
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Fig. 1 Illustration of the two proposed models (with 3 hidden layers). The models differ only in the

output layers. The neurons are fully interconnected. A layer and its reconstruction and the next layer

together correspond to a denoising auto-encoder. For simplicity, we do not include the corrupted

layers in the diagram. Note that models 1 and 2 are not trained simultaneously, nor do they share

parameters

The input text of Twitter messages is preprocessed and transformed into a set of

Bag-of-N-grams frequency feature vectors. We did not use binary feature vectors

because we believe the frequency of n-grams is relevant to the task at hand. For

example, a user who tweets Senators 10 times is more likely to be from Ottawa than

another user who tweets it just once. (The latter is more likely to be someone from

Montreal who tweets Senators simply because the Canadiens happen to be defeated

by the Senators that time.) Due to computational limitations, we consider only the

5000 most frequent unigrams, bigrams and trigrams.
9

We tokenized the tweets using

the Twokenizer tool [29].

5.3 Statistical Noises for Denoising Auto-Encoders

An essential component of a DA is its statistical noise. Following [16], the statis-

tical noise we incorporate for the first layer of DA is the masking noise, i.e., each

active element has a probability to become inactive. For the remaining layers, we

apply Gaussian noise to each of them, i.e., a number independently sampled from

the Gaussian distribution  (0, 𝜎2) is added to each element of the input vector to

get the corrupted input vector. Note that the Gaussian distribution has a 0 mean. The

9
Not all of these 5000 n-grams are necessarily good location indicators, we don’t manually distin-

guish them; a machine learning model after training should be able to do so.
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standard deviation of the Gaussian distribution 𝜎 decides the degree of corruption;

we also use the term corruption level to refer to 𝜎.

5.4 Loss Functions

Pre-training In terms of training criteria for unsupervised pre-training, we use the

squared error loss function:

𝓁(x, r) = ||x − r||2 (11)

where x is the original input, r is the reconstruction. The squared error loss function

is a convex function, so we are guaranteed to find the global optimum once we find

the local optimum.

The pre-training is done by layers, i.e., we first minimize the loss function for the

first layer of denoising auto-encoder, then the second, then the third. We define the

decoder weight matrix as the transposition of the encoder weight matrix.

Fine-Tuning In the fine-tuning phase, the training criteria differ for model 1 and

model 2. It is a common practice to use the negative log-likelihood as the loss func-

tion of models that produce a probability distribution, which is the case for model 1.

The equation for the negative log-likelihood function is:

𝓁(𝜃 = {W, b}, (x, y))
= − log(P(Y = y|x,W, b)) (12)

where 𝜃 = {W, b} are the parameters of the model, x is the input and y is the

ground truth label. To minimize the loss in Eq. (12), the conditional probability

P(Y = y|x,W, b) must be maximized, which means the model must learn to make the

correct prediction with the highest confidence possible. Training a supervised clas-

sifier using the negative log-likelihood loss function can be therefore interpreted as

maximizing the likelihood of the probability distribution of labels in the training set.

On the other hand, model 2 produces for every input a location ŷ( ̂lat, ̂lon), which is

associated with the actual location of this user, denoted by y(lat, lon). Given latitudes

and longitudes of two locations, their great-circle distance can be computed by first

calculating an intermediate value 𝛥𝜎 with the Haversine formula [37]:

𝛥𝜎 = arctan

⎛
⎜
⎜
⎜
⎝

√
(
cos𝜙2 sin𝛥𝜆

)2 +
(
cos𝜙1 sin𝜙2 − sin𝜙1 cos𝜙2 cos𝛥𝜆

)2

sin𝜙1 sin𝜙2 + cos𝜙1 cos𝜙2 cos𝛥𝜆

⎞
⎟
⎟
⎟
⎠

(13)

Next, calculate the actual distance:
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d((𝜙1, 𝜆1), (𝜙2, 𝜆2)) = r𝛥𝜎 (14)

where 𝜙1, 𝜆1 and 𝜙2, 𝜆2 are latitudes and longitudes of two locations, 𝛥𝜆 = 𝜆1 − 𝜆2,

r is the radius of the Earth. Because d is a continuously differentiable function with

respect to 𝜙1 and 𝜆1 (if we consider (𝜙1, 𝜆1) as the predicted location, then (𝜙2, 𝜆2) is

the actual location), and minimizing d is exactly what model 2 is designed to do, we

define the loss function of model 2 as the great-circle distance between the estimated

location and the actual location:

𝓁(𝜃 = {W, b}, (x, y))
= d(Wx + b, y) (15)

where 𝜃 = {W, b} are the parameters of the model, x is the input and y is the actual

location.
10

Now that we have defined the loss functions for both models, we can train

them with back-propagation [35] and Stochastic Gradient Descent (SGD).

5.5 Experiments

Evaluation Metrics We train the stacked denoising auto-encoders to predict the

locations of users based on the tweets they post. To evaluate SDA-1, we follow [13]

and define a classification task where each user is classified as from one of the 48 con-

tiguous U.S. states or Washington D.C. The process of retrieving a human-readable

address including street, city, state and country from a pair of latitude and longi-

tude is known as reverse geocoding. We use MapQuest API
11

to reverse geocode

coordinates for each user. We also define a task with only four classes, the West,

Midwest, Northeast and South regions, as per the U.S. Census Bureau.
12

The metric

for comparison is the classification accuracy defined as the proportion of test exam-

ples that are correctly classified. We also implement two baseline models, namely a

Naive Bayes classifier and an SVM classifier (with the RBF kernel); both of them

take exactly the same input as the stacked denoising auto-encoders.

To evaluate SDA-2, the metric is simply the mean error distance in kilometres

from the actual location to the predicted location. Note that this is the distance on

the surface of the Earth, also known as the great-circle distance. See Eqs. (13)–(14)

for its computation. In Sect. 5.6, we applied two additional metrics, which are the

median error distance and the percentage of predictions less than 100 miles away

from the true locations, to comply with previous work. Similarly, we implement a

baseline model which is simply a multivariate linear regression layer on top of the

10
Alternatively, we also tried the loss function defined as the average squared error of output num-

bers, which is equivalent to the average Euclidean distance between the estimated location and the

true location; this alternative model did not perform well.

11
http://www.mapquest.com.

12
http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf.

http://www.mapquest.com
http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf
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input layer. This baseline model is equivalent to SDA-2 without hidden layers. We

denote this model as baseline-MLR. After we have obtained the performance of our

models, they will be compared against several existing models from previous work.

Early Stopping We define our loss functions without regularizing the weights; to

prevent overfitting, we adopt the early-stopping technique [41]; i.e., training stops

when the model’s performance on the validation set no longer improves [3].

To make the comparisons fair, we split the Eisenstein dataset in the same way as

[13] did, i.e., 60 % for training, 20 % for validation and 20 % for testing. The Roller

dataset was provided split, i.e., 429,694 users for training, 10,000 users for validation

and the rest 10,000 users for testing; this is the split we adopted.

Tuning Hyper-parameters One of the drawbacks of DNNs is a large number of

hyper-parameters to specify [3]. The activation function we adopt is the sigmoid

function y = 1
1+e−x

, which is a typical choice as the non-linear activation function. For

the size (the number of neurons) of each hidden layer, usually a larger size indicates

better performance but higher computational cost. Since we do not have access to

extensive computational power, we set this hyper-parameter to 5000, which is equal

to the size of the input layer. As for the corruption level, the masking noise probability

for the first layer is 0.3; the Gaussian noise standard deviation for other layers is 0.25.

These two values are chosen because they appear to work well in our experiments

based on the validation dataset. The Mini-batch size chosen for stochastic gradient

descent is 32, which is a reasonable default suggested by Bengio [3]. For the learning

rates, we explore different configurations in the set {0.00001, 0.0001, 0.001, 0.01,

0.1} for both pre-learning rate and fine-tuning learning rate. Lastly, the pre-training

stops after 25 epochs, which usually guarantees the convergence. Fine-tuning stops

after 1000 epochs; because of the early stopping technique described in Sect. 5.5,

this number is rarely reached.

Implementation Theano [6] is a scientific computing library written in Python.

It is mainly designed for numerical computation. A main feature of Theano is its

symbolic representation of mathematical formulas, which allows it to automati-

cally differentiate functions. We train our model with stochastic gradient descent

which requires the computation of gradients, either manually or automatically. Since

Theano does automatic differentiation, we no longer have to manually differentiate

complex functions like Eq. (13). We implemented SDA-1, SDA-2
13

and the base-

line multivariate linear regression model with Theano. Scikit-learn [30] is a machine

learning package written in Python. It includes most standard machine learning algo-

rithms. The two baseline models compared against SDA-1 (Naive Bayes and SVM)

are implemented using the Scikit-learn package.

13
Our code is available at https://github.com/rex911/usrloc.

https://github.com/rex911/usrloc
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Table 8 Classification accuracy for SDA-1 and other models

Model Classif. Acc. (%)

Region (4-way) State (49-way)

Eisenstein et al. (2010) Geo topic model 58 24

Mixture of unigrams 53 19

Supervised LDA 39 4

Text regression 41 4

kNN 37 2

Our models SDA-1 61.1 34.8
Baseline-Naive Bayes 54.8 30.1

Baseline-SVM 56.4 27.5

5.6 Results for User Locations

Evaluation on the Eisenstein Dataset The SDA-1 model yields an accuracy of

61.1 % and 34.8 %, for region classification and state classification, respectively. The

results of all models are shown in Table 8. Among all previous works that use the

same dataset, only [13] report the classification accuracy of their models; to present

a comprehensive comparison, all models from their work, not just the best one, are

listed. Student’s t-tests suggest that the differences between SDA-1 and the baseline

models are statistically significant at a 99 % level of confidence.
14

It can be seen that our SDA-1 model performs best in both classification tasks.

It is surprising to find that the shallow architectures that we implemented, namely

SVM and Naive Bayes, perform reasonably well. They both outperform all models in

[13] in terms of state-wise classification. A possible explanation is that the features

we use (frequencies of n-grams with n = 1, 2, 3) are more indicative than theirs

(unigram term frequencies).

Table 9 shows the mean error distance for various models trained on the same

dataset. The difference between SDA-2 and the baseline model is statistically sig-

nificant at a level of confidence of 99.9 %.
15

Our model has the second best results

and performs better than four models from previous work. In addition, the fact that

SDA-2 outperforms the baseline model by a large margin shows the advantages of a

deep architecture and its ability to capture meaningful and useful abstractions from

input data.

Evaluation on the Roller Dataset Table 10 compares the results from various mod-

els on the Roller dataset. The model in [17], which included extensive feature engi-

neering, outperformed other models. In addition it achieves the best results by uti-

14
We are unable to conduct t-tests on the Eisenstein models, because of the unavailability of the

details of the results produced by these models.

15
We are unable to conduct t-tests on the other models, because of the unavailability of the details

of the results produced by these models.
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Table 9 Mean error distance of predictions for SDA-2 and models from previous work

Model Mean error distance (km)

Eisenstein [12] 845

SDA-2 855.9
Priedhorsky [31] 870

Roller [34] 897

Eisenstein [13] 900

Wing [40] 967

Baseline-MLR 1268

Table 10 Results from SDA-2 and the best models of previous work

Model Mean error (km) Median Acc. error (km)

Roller [34] 860 463 34.6

Han [17] NA 260 45

Han [17] using top 3 %

features (6420)

NA NA 10

SDA-2 733 377 24.2

NA indicates Not Available

lizing about 90 % of all 214,000 features; when using the top 3 % (6420) features,

the Accuracy was 10 %.
16

The SDA-2 model, despite the computational limitation,

achieved better results than [34] using just 5,000 features.

ErrorAnalysisThe datasets we used for this task do not have a balanced distribution.

Users are densely distributed in the West Coast and most part of the East, whereas

very few are located in the middle. Such label imbalance has a negative effect on

statistical classifiers, and adversely affects regression models because many target

values will never be sampled. This would explain some of the prediction errors made

by our models.

6 Conclusion and Future Work

In this chapter, we looked at techniques that allow us to extract information form

texts. This information can be useful ins security applications by allowing to moni-

toring od locations, topics, or emotions mentioned in texts. Of particular interest are

social media messages, which are more difficult to process than regular texts.

We examined two tasks in detail. The first task was extracting location entities

mentioned in tweets. We extracted different types of features for this task and did

experiments to measure their usefulness. We trained CRF classifiers that were able

to achieve a very good performance. We also defined disambiguation rules based on

a few heuristics which turned out to work well. In addition, the data we collected and

16
Only this metric was reported by the author in the top 3 % features configuration.
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annotated for task 1 is made available to other researchers to test their models and to

compare with ours.

We identify two main directions of future work. First, the simple rule-based

disambiguation approach does not handle issues like misspellings well, and can

be replaced by a machine learning approach, although this requires more anno-

tated training data. Second, since in the current model, we consider only states and

provinces in the United States and Canada, we need to extend the model to include

states, provinces, or regions in other countries as well.

For the second task, user location detection, we proposed models based on DNN.

Our experimental results show that our SDA-1 model outperformed other empirical

models; our SDA-2 model’s performance is reasonable. We demonstrate that a DNN

is capable of learning representations from raw input data that helps the inference of

location of users without having to design any hand-engineered features. The results

also show that deep learning models have the potential of being applied to solve

real business problems that require location detection, in addition to their recent

success in natural language processing tasks and to their well-established success in

computer vision and speech recognition.

We believe a better model can yet be built. For example, our exploration for hyper-

parameters is by no means exhaustive, especially for the mini-batch size and the cor-

ruption levels, due to the very high running time required. It would be interesting

to find out the optimal set of hyper-parameters. More computational capacity also

allows the construction of a more powerful DNN. For example, in our SDA the hid-

den layers have a size of 5000, which is equal to the size of input layer; however, a

hidden layer larger than the input layer learns better representations [4].

In terms of improvement in the future, we plan to collect a dataset uniformly dis-

tributed geographically, and the locations do not have to be limited to the contiguous

United States. Alternatively, one may notice that the distribution of users is similar

to that of the U.S. population, therefore it is possible to use the U.S. census data to

offset such skewed distribution of users. In addition, the input of our system con-

sists only of tweets, because we are mostly interested in recovering users’ location

from the language they produce; however, real applications require a higher accu-

racy. To achieve this, we could also incorporate information such as users’ profiles,

self-declared locations, time zones and interactions with other users. Another type

of stacked denoising auto-encoder is one that only does unsupervised pre-training,

then the output of the code layer is regarded as input into other classifiers such as

SVM [16]. It would be interesting to compare the performance of this architecture

and that of an SDA with supervised fine-tuning with respect to our task.

The most important direction of future work in regard to applications for security

and defence is to use the information extracted from texts, about topics, emotions,

and locations, in order to flag social media messages for possible security threats.

These pieces of information can be combined via a rule-based approach. Alterna-

tively, classification techniques, such as the ones we used for task 2, can be employed;

but annotated training data (marked with security threat labels) would be needed.
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