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Foreword

Complex, volatile, and uncertain—this is the new reality of our world today that
now causes us to rethink how we anticipate, manage, and shape desired outcomes
as, and preferably before, they happen. Where behaviors were once determined by
fixed and known outcomes or end-states, set far downstream, today’s behaviors
struggle to keep up with an ever-changing environment where the end-state or
destination is as obscured as the road and the journey ahead of it. The signs are less
clear and the choice of paths more than we can manage or possibly know. By all
accounts, we no longer enjoy the sanctity of what former U.S. Secretary of Defense
Donald Rumsfeld often referred to as the Known–Knowns, and have skipped clear
past the Known–Unknown domain, and landed squarely in Unknown–Unknown
territory, but not for the reasons one might think.

It is not that we lack the understanding or even the capacity to rationalize the
complex nature of the changing world around us. Rather much the opposite. We’ve
become very aware that the speed and the nature of change have now outstripped
our ability to manage it deliberately using the same orthodox methods. Take for
instance today’s highly charged information-driven environment. While it may
have brought the world closer together, and this is a good thing, the downside is
that we now live in a world where data overload makes the simplest bits of
information difficult to see even when placed directly in front of us. And when we
do see, we don’t truly know. The challenge we face in this new era will be in
methodically transforming the Unknown–Unknown space back to its more man-
ageable semi-state—the Known–Unknown—a state albeit fluid, but with more
predictable outcomes.

So how do we stay ahead of a constantly evolving landscape where not only will
we face a mountain of data coming at us from every source imaginable (and some
not so obvious), but we aren’t even sure where to begin, or how to interpret what
we find actually has relative value, or how quickly we should act before the value is
lost? And when we do act, how confident are we with the quality and reliability of
what governments and defense and security agencies often refer to as actionable
intelligence? The reality is that as much as there are noteworthy examples where
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actionable intelligence saved the day, there are just as many instances, if not more,
where it all went horribly wrong because we simply trusted that it was good
enough. Trust, but verify, as former US President Ronald Reagan used to say; and
in today’s fast-paced chaotic environment, a robust and highly intuitive verification
process is fundamental.

In much the same way a pilot flying today’s extraordinarily sophisticated air-
craft, who when encountering a complex flight dynamics problem, is trained to trust
his or her instruments when the natural sensory cues suggest he or she do otherwise,
dealing with today’s complex problems requires an equally robust and highly
federated system of inputs and validations to reduce the risks of making irreversible
or fatal mistakes. This isn’t a criticism on present-day piloting skills, but rather an
acknowledgment that flying these incredibly sophisticated machines is far easier to
do with the best decision-support tools at the pilot’s disposal. Our security envi-
ronment is no different.

Today’s security environments are so multifaceted that the simplest of errors in
judgment or a missing piece or an action out of sequence can have severe conse-
quences. Moreover, where there was once a clear demarcation both in time and
space between, for example, military and civilian objectives, present-day joint and
combined operations now include a variety of state-sponsored and independent
actors, each with specific requirements that further complicate the decision-making
process. The demands on near flawless evidence-based decision making are so
extraordinarily high that tolerance for getting it wrong is virtually zero. Even if
To err is human, forgiveness will surely not be divine when the stakes are so high.
Possessing the right intelligence tools at the right time and for the right circum-
stances is paramount.

Recent Advances in Computational Intelligence in Defense and Security offers a
very practical and intuitive glimpse into the leading-edge science of predicative
analysis in complex problem sets. Using the most advanced Computational
Intelligence (CI) tools and techniques ranging from game theory—to fuzzy logic—
to swarm intelligence (and much more), CI provides both the discipline and depth
to help us foresee and more effectively deal with many of today’s and tomorrow’s
seemingly intractable problems. It is the perfect marriage of art and science, much
in the same way early Artificial Intelligence was envisioned to be—a combination
of both the human experience and machine logic with highly intuitive and
multi-layered rule-based precision.

And finally, while the case studies used in this book may be focused, for the
most part, on Defense and Security, I encourage you to think of CI in a much
broader context. And don’t be fooled by the book’s technical flavor either. While it
may appear to be written by scientists for scientists, it is very much highly rec-
ommended reading for the person(s) who seek to better understand, manage, and
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shape the complex environments that surround them with the help of some of the
most powerful decision-support tools around today. So enjoy the book and see
firsthand the power of Computational Intelligence and begin to imagine the
applications and potential it has to offer in your world.

Rick Pitre
Brigadier-General (Retired)

Royal Canadian Air Force, CD
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Recent Advances in Computational
Intelligence in Defense and Security

Rami Abielmona, Rafael Falcon, Nur Zincir-Heywood
and Hussein Abbass

1 Introduction

Given the rapidly changing and increasingly complex nature of global security, we

continue to witness a remarkable interest within the defense and security commu-

nities in novel, adaptive and resilient techniques that can cope with the challenging

problems arising in this domain. These challenges are brought forth not only by the

overwhelming amount of data reported by a plethora of sensing and tracking modal-

ities, but also by the emergence of innovative classes of decentralized, mass-scale

communication protocols and connectivity frameworks such as cloud computing
[5], sensor and actuator networks [7], intelligent transportation systems [1], wear-
able computing [2] and the Internet of Things [6]. Realizing that traditional tech-

niques have left many important problems unsolved, and in some cases, not ade-

quately addressed, further efforts have to be undertaken in the quest for algorithms

and methodologies that can accurately detect and easily adapt to emerging threats.

Computational Intelligence (CI) [4] lies at the forefront of many algorithmic

breakthroughs that we are witnessing nowadays. This vibrant research discipline

offers a broad set of tools that can deal with the imprecision and uncertainty prevalent

in the real world and can effectively tackle ill-posed problems for which traditional

(i.e., hard computing) schemes do not provide either a feasible or an efficient solu-

tion. The term CI is not exclusive to a single methodology; rather, it acts as a large

umbrella under which several biologically and linguistically motivated techniques

have been developed [3]—some of them enjoying unprecedented popularity these

days [4]. CI has expanded its traditional foundation (pillared on artificial neural net-
works, fuzzy systems and evolutionary computation) to accommodate other related
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2 R. Abielmona et al.

problem-solving approaches that have recently emerged and also functionally pursue

the same goals of tractability, robustness and low solution cost [3, 4], including but

not withstanding: rough sets, multi-valued logic, connectionist systems, swarm intel-
ligence, artificial immune systems, granular computing, game theory, deep learning
and the hybridization of the aforementioned systems.

As a recognition of the influence CI algorithms are increasingly having upon the

security and defense realm, the IEEE Computational Intelligence Society (CIS) cre-

ated a Task Force on Security, Surveillance and Defense1
(SSD) in February 2010

to showcase recent and ongoing efforts in the application of CI methods to the SSD

domain. The flagship event organized by the Task Force, as a forum to exchange ideas

and contributions in these topics, is the IEEE Symposium on Computational Intel-
ligence for Security and Defense Applications (CISDA), which originated in 2007

and has been annually held since 2009. Other related initiatives are the Computa-
tional Intelligence for Security, Surveillance and Defense (CISSD) Special Session

held at WCCI 2010/2014 and at SSCI 2011/2013; the Soft Computing applied to
Security and Defense (SoCoSaD) Special Session organized under ECTA 2014; the

Workshop on Genetic and Evolutionary Computation in Defense, Security and Risk
Management held during GECCO 2014 and 2015; and the Canadian Tracking and

Fusion Group (CTFG) annual workshops since 2011.

This volume is another endeavour undertaken by the IEEE CIS SSD Task Force

and a step in the right direction of consolidating and disseminating the role of CI

techniques in the design, development and deployment of security and defense solu-

tions. The book serves as an excellent guide for surveying the state of the art in CI

employed within SSD projects or programs. The reader will find in its pages how

CI has contributed to solve a wide range of challenging problems, ranging from the

detection of buried explosive hazards in a battlefield to the control of unmanned

underwater vehicles, the delivery of superior video analytics for protecting criti-

cal infrastructures or the development of stronger intrusion detection systems and

the design of military surveillance networks, just to name a few. Defense scientists,

industry experts, academicians and practitioners alike (mostly in computer science,

computer engineering, applied mathematics or management information systems)

will all benefit from the wide spectrum of successful application domains compiled

in this volume. Senior undergraduate or graduate students may also discover in this

volume uncharted territory for their own research endeavors.

We received 53 initial submissions in November 2014 as a response to the Call

for Book Chapters, out of which 25 were accepted following the recommendations

emanating from the peer-review process conducted by the Technical Program Com-

mittee composed of 74 experts and researchers in the field from 22 countries. The 25

accepted chapters were co-authored by 75 contributors from the following countries:

Australia (2), Belgium (1), Canada (24), China (1), Cuba (3), India (5), Italy (9),

Saudi Arabia (1), Singapore (3), Spain (7), Thailand (3), Tunisia (1), UK (2) and

USA (13). It is important to note that 73 % of the contributors are affiliated with

academic institutions, 17 % with industry and the remaining 10 % with government.

1
http://www.ieeeottawa.ca/ci/ssdtf/.

http://www.ieeeottawa.ca/ci/ssdtf/


Recent Advances in Computational Intelligence in Defense and Security 3

1.1 Volume Organization

The book is structured into five major parts corresponding to the themes that natu-

rally emerged out of the accepted contributions, i.e., physical, cyber and biometric

security, situational/threat assessment and mission planning/resource optimization.

They are representative of five strategic areas within defense and security that evi-

dence the burgeoning interest of the CI community in developing cutting-edge solu-

tions to entangled problems therein.

Part I: Physical Security and Surveillance [4 chapters]
The problem of detecting buried explosive hazards using forward-looking infrared

and ground-penetrating radar sensors is described in Chap. 2 “Computational intel-
ligence methods in forward-looking explosive hazard detection”. The authors elabo-

rate on the prescreening phase (detection of candidate points in the image) and then

on the classification phase. They report the performance of different approaches in

the latter phase, ranging from kernel methods to more advanced algorithms like deep

belief and convolutional networks to learn new image space features and descriptors.

In the Chap. 3 entitled “Classification-driven video analytics for critical
infrastructure protection”, the authors are concerned with alleviating the burden of

an operator that constantly monitors several video feeds to detect suspicious activi-

ties around a secured critical infrastructure. The automated solution proposed in this

chapter extracts the objects of interest (i.e., car, person, bird, ship) from the image

using an iteratively updated background subtraction method, then the object is classi-

fied by an artificial neural network (ANN) coupled to a temporal Bayesian filter. The

next step is determining the behavior of the object, e.g., entering a restricted zone

or stopping and dropping an object. Relevant alerts are issued to the operator should

a suspicious event be identified. The authors tried their approach in the automated

monitoring of a dumpster, a doorway and a port.

A model-based event correlation framework for critical infrastructure surveil-

lance is put forward in Chap. 4 “Fuzzy decision fusion and multiformalism modeling
in physical security monitoring”. The framework named DETECT (DEcision Trig-

gering Event Composer & Tracker) stores detected threat scenarios using event trees

and then recognizes those scenarios in real time. A multiformalism approach for

the evaluation of fuzzy detection probabilities using fuzzy operators upon Bayesian

Networks and Generalized Stochastic Petri Nets is presented. The authors consid-

ered a threat scenario of a terrorist attack in a metro railway station to illustrate the

applicability of their methodology.

Chapter 5 “Intelligent radar signal recognition and classification” investigates a

classification problem for timely and reliable identification of radar signal emitters

by implementing and following an ANN-based approach. The idea is to determine

the type of radar given certain characteristics of its signal described by a group of

attributes (some of them having missing values). Two separate approaches were con-

sidered. In the first one, missing values are removed using listwise deletion and then

a feedforward neural network is used for classification. The other approach leans

on a multiple-imputation method to produce unbiased estimates of the missing data

http://dx.doi.org/10.1007/978-3-319-26450-9_2
http://dx.doi.org/10.1007/978-3-319-26450-9_3
http://dx.doi.org/10.1007/978-3-319-26450-9_4
http://dx.doi.org/10.1007/978-3-319-26450-9_5
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before it is passed to the ANN. In both cases, competitive classification accuracies

were obtained.

Part II: Cyber Security and Intrusion Detection Systems [5 chapters]
Chapter 6 “An improved decision system for URL accesses based on a rough fea-
ture selection technique” addresses corporate security; in particular, internal security

breaches caused by employees accessing dangerous Internet locations. The authors

propose a classification system that detects anomalous and potentially insecure sit-

uations by learning from existing white (allowed) and black (forbidden) URL lists.

It then decides whether an unseen new URL should be allowed or denied. The sys-

tem’s performance is boosted by the removal of irrelevant features (guided by rough

set theory) and handling class imbalances, with a reported classification accuracy

reaching about 97 %.

Chapter 7 “A granular intrusion detection system using rough cognitive net-
works”, the authors designed an intrusion detection system from a Granular Com-

puting angle to classify network traffic as either normal or abnormal. The proposed

methodology relies on rough cognitive networks (RCNs), a recently introduced gran-

ular system that combines the causal representation inherent to fuzzy cognitive maps

with the imprecision-handling abilities provided by rough set theory. The RCN para-

meters are learned from data using Harmony Search as the underlying optimization

engine. RCNs were evaluated against seven other traditional classifiers and were

found to be a competitive model that produces high detection rates and low false

alarm rates.

Chapter 8 “NNCS: randomization and informed search for novel naval cyber
strategies” argues that software security can be improved by providing adequate

degrees of redundancy and diversity to counter both hardware and software faults.

The proposed scheme relies on component rule bases written in a schema-based Very

High Level Language. Deviations from the constructed model are likely indicators

of a cyber attack. The authors illustrate the benefits of their proposal with a battle

management example.

Developing classifiers that can identify sophisticated types of cyber attacks is

the main goal of Chap. 9 “Semi-supervised classification system for the detection of
Advanced Persistent Threats”. The authors define an anomaly score metric to detect

the most anomalous subsets of traffic data. The human expert is then required to label

the instances within this set, after which a classifier is built based on both labeled and

unlabeled data. Genetic programming, decision trees and support vector machines

were independently used to construct the classifier.

Chapter 10 “A benchmarking study on stream network traffic analysis using active
learning” aims at comparing the performance of previously existing active learning

and query budgeting strategies as well as an adaptive ANN approach on streaming

network traffic to detect malicious network activity such as botnets. The analysis

revolves around two new metrics that account for class imbalance as well as the

traditional accuracy and detection rate measures. Results are quite encouraging and

confirm that the Hoeffding Tree classifier behaves particularly well on the data sets

under consideration.

http://dx.doi.org/10.1007/978-3-319-26450-9_6
http://dx.doi.org/10.1007/978-3-319-26450-9_7
http://dx.doi.org/10.1007/978-3-319-26450-9_8
http://dx.doi.org/10.1007/978-3-319-26450-9_9
http://dx.doi.org/10.1007/978-3-319-26450-9_10
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Part III: Biometric Security and Authentication Systems [5 chapters]
Handwritten signatures have long been used as an authentication system given that

they are intrinsically endowed with specificity related to an individual. In Chap. 11

“Visualization of handwritten signatures based on haptic information”, the authors

discuss how to integrate haptic technologies to capture other aspects like kinesthetic

and tactile feedback from the user. The study is centered around visualizing and

understanding the internal structure of the haptic data (position, force, torque and

orientation) in an unsupervised fashion. Special emphasis is made on several dimen-

sionality reduction methods, including CI-based ISOMAP and Genetic Program-

ming.

Reducing the number of false positives in a biometric identification system is at

the heart of Chap. 12 “Extended metacognitive neuro-fuzzy inference system for bio-
metric identification”. The authors introduce a neurofuzzy inference system along

with a sequential evolving learning algorithm as a cognitive component of an archi-

tecture that also features a metacognitive component. The latter is responsible for

actively regulating the learning of the cognitive component by deciding what, when

and how to learn from the available data. The proposed architecture is first bench-

marked on a set of medical datasets and then on two real-world biometric security

applications, namely signature verification and fingerprint recognition. The compar-

ison with four other authentication systems confirms that the proposed architecture

yields a superior performance.

Travel documentation at this time relies either on paper documents or on elec-

tronic systems requiring connectivity to core servers and databases for verification

purposes. Chapter 13 “Privacy, security and convenience: biometric encryption for
smartphone-based electronic travel documents” proposes a new paradigm for issu-

ing, storing and verifying travel documents. This smartphone-based approach enables

a new kind of biometric checkpoint to be placed at key points throughout the interna-

tional voyage that does not require storage of biometric information, which simplifies

things from a policy and privacy perspective. The authors expect their architecture

to enhance system security as well as the privacy and convenience of international

travelers.

Digital watermarking allows enforcing authenticity and integrity of an image,

which is a major security concern for many industries. The optimization of the

embedding parameters for a bi-tonal watermarking system is pursued in Chap. 14 “A
dual-purpose memory approach for dynamic particle swarm optimization of recur-
rent problems”. The authors propose a memory-based Dynamic Particle Swarm

Optimization method. This memory can operate in either generative or regression

mode and is implemented via a Gaussian Mixture Model of candidate solutions

estimated in the optimization space, which provides a compact representation of

previously found PSO solutions. Results indicate that the computational burden of

this watermarking problem is reduced by up to 90.4 % with negligible impact on

accuracy.

Chapter 15 “Risk assessment in authentication machines” presents an approach

for building a risk profiler for use in authentication machines. The proposed risk

profiler provides a risk assessment at all phases of the authentication machine

http://dx.doi.org/10.1007/978-3-319-26450-9_11
http://dx.doi.org/10.1007/978-3-319-26450-9_12
http://dx.doi.org/10.1007/978-3-319-26450-9_13
http://dx.doi.org/10.1007/978-3-319-26450-9_14
http://dx.doi.org/10.1007/978-3-319-26450-9_15
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life-cycle. The key idea is to utilize the advantages of belief networks to solve large-

scale multi-source fusion problems. The authors have extended the abilities of belief

networks by incorporating Dempster-Shafer Theory measures. The main goal is to

increase the reliability of security risk assessment for authentication machines using

the computational-intelligence-based fusion of results from different models, met-

rics, and philosophies of decision-making under uncertainty.

Part IV: Situational Awareness and Threat Assessment [5 chapters]
To counter piracy attempts, maritime operators need to quickly and effectively

allocate some mobile resources (defender units) to assist a target given the avail-

able information about the attackers. In Chap. 16 “Game theoretical approach for
dynamic active patrolling in a counter-piracy framework”, the authors introduce a

decision support system (DSS) to that end. The DSS has been designed using Game

Theory in order to handle the attractiveness of targets and model strategies for attack-

ers and defenders. Game Theory has proved to be a robust tool to identify the best

strategy for the defenders given the information and capabilities of opponents. In

the proposed framework, the optimal strategy is modeled as the equilibrium of a

time-varying Bayesian-Stackelberg game.

A naval mine is an underwater explosive device meant to damage or destroy sur-

face ships or submarines. An influence mine is a type of naval mine that is trig-

gered by the influence of a vessel or submarine rather than requiring direct contact

with it. The ship classification unit (SCU) of an influence mine determines whether

the sensed vessel is a target or not, which will cause it to detonate accordingly. In

Chap. 17 “mspMEA: the microcones separation parallel multiobjective evolutionary
algorithm and its application to fuzzy rule-based ship classification”, the author uses

a parallel multiobjective evolutionary algorithm (MOEA) based on the concept of

microcones to speed up the optimization of the fuzzy rule-based classifiers used to

emulate the SCU contained in modern influence mines. A speedup factor of 16.58 %

was achieved over a cone-based MOEA algorithm.

Detecting a target in a Synthetic Aperture Radar (SAR) image is a challenging

issue since SAR images do not look similar to optical images at all. In Chap. 18

“Synthetic aperture radar (SAR) automatic target recognition (ATR) using fuzzy
co-occurrence matrix texture features”, the authors put forward a methodology for

detecting three types of military vehicles from SAR images without using any pre-

processing methods. The texture features generated from the fuzzy co-occurrence

matrix are passed on to a multi-class SVM and to a radial basis function (RBF) neural

network. The ensemble average is utilized as an information fusion tool. The classi-

fication results are superior to those obtained via gray level co-occurrence matrices.

Text mining techniques are important for security and defense applications since

they allow detecting possible threats to security and public safety (such as mentions

of terrorist activities or extremist/radical texts). Chapter 19 “Text mining in social
media for security threats” discusses information extraction techniques from social

media texts (Twitter in particular) and showcases two applications that make use of

these techniques: (1) extracting the locations mentioned in tweets and (2) inferring

the users’ location based on all the tweets generated by each user. The former task

http://dx.doi.org/10.1007/978-3-319-26450-9_16
http://dx.doi.org/10.1007/978-3-319-26450-9_17
http://dx.doi.org/10.1007/978-3-319-26450-9_18
http://dx.doi.org/10.1007/978-3-319-26450-9_19
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is accomplished via a sequence-based classifier followed by disambiguation rules

whereas the latter is tackled through deep neural networks.

The increasing worldwide use of mobile devices has also sparked a growing num-

ber of malware apps that should be automatically flagged and vetted by security

researchers. Chapter 20 “DroidAnalyst: synergic Android framework for static and
dynamic app analysis” features an automated web-based app vetting and malware

analysis framework for Android devices that integrates the synergy of static and

dynamic analysis to improve the accuracy and efficiency of the identification process.

DroidAnalyst generates a unified analysis model that combines the strengths of the

complementary approaches with multiple detection methods to boost the app code

analysis. Machine learning methods such as random forests are employed to gener-

ate a set of features with multiple detection methods based on the static and dynamic

module analysis.

Part V: Strategic/Mission Planning and Resource Management
[6 chapters]
Chapter 21 “Design and development of intelligent military training systems and
wargames” elaborates on an architectural approach for designing composable, multi-

service and joint wargames that can meet the requirements of several military estab-

lishments. This architecture is realized by the design and development of common

components that are reused across applications and variable components that are

customizable to different training establishments’ training simulators. Some of the

important CI techniques (such as fuzzy cognitive maps, game trees, case-based rea-

soning, genetic algorithms and fuzzy rule-based systems) that are used to design

these wargame components are explained with suitable examples, followed by their

applications to two specific cases of Joint Warfare Simulation System and an Inte-

grated Air Defence Simulation System for air-land battles.

Due to operational requirements, helicopters are now being frequently used for

missions beyond what their original design permits. There is thus the need to moni-

tor their usage and more accurately determine the life of its critical components. The

methodology outlined in Chap. 22 “Improving load signal and fatigue life estimation
for helicopter components using computational intelligence techniques” enables the

prediction of the load signals (i.e., the time-varying measurement of the load) on the

helicopter components using existing flight data and avoiding the installation of addi-

tional sensors. The prediction is performed by means of CI techniques (e.g., fuzzy

sets, neural networks, evolutionary algorithms) and statistical techniques (e.g., resid-

ual variance analysis). The predicted load signals then form the basis for estimating

the fatigue life of the component, i.e., the length of time that the component can be

safely operated with minimal or acceptable risk of failure. The presented techniques

certainly attained a more accurate prediction of the peak values in the load signal.

Defense and security organizations rely on the use of scenarios for a wide range of

activities. Scenarios normally take the form of linguistic stories, whereby a picture of

a context is painted using storytelling principles. In Chap. 23 “Evolving narrations of
strategic defense and security scenarios for computational scenario planning”, the

authors illustrate how evolutionary computation techniques can be used to evolve

http://dx.doi.org/10.1007/978-3-319-26450-9_20
http://dx.doi.org/10.1007/978-3-319-26450-9_21
http://dx.doi.org/10.1007/978-3-319-26450-9_22
http://dx.doi.org/10.1007/978-3-319-26450-9_23
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different narrations of a strategic story. A representation of a story is put forth that

allows evolution to operate on it in a simple manner. Through a set of linguistic

constraints and transformations, it is guaranteed that any random chromosome gets

transformed into a unique coherent and causally consistent story. The same repre-

sentation could be used to design simulation models that evaluate these stories. The

proposed approach paves the way for automating the evaluation process of defense

and security scenarios on multiple levels of resolution, starting from a grand strategic

level down to a tactical level.

Chapter 24 “A review of the use of computational intelligence in the design of
military surveillance networks” surveys the state of the art in the application of CI

methods to design various types of sensor networks, including wireless/fixed sensor,

mobile ad hoc and cellular networks, as these constitute the backbone for realiz-

ing Intelligence, Surveillance and Reconnaissance (ISR) military operations. The

authors also list important defense and security applications of these networked sys-

tems, review the CI methods and their usage and outline a number of research chal-

lenges and future directions.

Given the prolific number of sensing modalities available nowadays, determin-

ing on which platform a sensor should be mounted to collect measurements dur-

ing the next observation period is far from being a trivial task. Chapter 25 “Sensor
resource management: intelligent multi-objective modularized optimization method-
ology and models” proposes a new sensor tasking framework named OPTIMA that

aims at solving this problem. OPTIMA features a Sensor Resource Analyzer mod-

ule and a Sensor Tasking Algorithm (Tasker) module. The latter leans on multiob-

jective evolutionary optimization methods to consider timing constraints, resolution

and geometric differences among the sensors with the goal of fulfilling some tasking

requirements related to maximizing the available sensor resources for search, opti-

mizing sensor resources for tracking and better defending the high-priority assets.

Chapter 26 entitled “Bio-inspired topology control mechanism for unmanned
underwater vehicles” addresses the problem of having a group of unmanned under-

water vehicles (UUVs) cooperatively self-organize in order to protect valued assets

in unknown 3D underwater spaces. The topology control mechanism is rooted in

particle swarm optimization and employs Yao-graph-inspired metrics to craft its

fitness function. The self-organization protocol only requires neigborhood-limited

UUV information to collectively guide the UUVs to make movement decisions in

these unknown 3D spaces. The algorithm is able to provide a user-defined level of

protection for different maritime vessel applications. The proposed methodology is

illustrated with three examples: (1) uniform coverage of the underside of a mar-

itime vessel; (2) plane formation to cover a given dimension in the 3D space and

(3) forming a sphere around a given asset such as a fully submerged submarine while

maintaining connectivity.

Our hope is that the wealth of technical contributions gathered in this book helps

create further momentum and drive forward many other theoretical and practical

aspects of the fascinating synergy between CI methods and the defense and security

problem spaces. Enjoy the reading!

http://dx.doi.org/10.1007/978-3-319-26450-9_24
http://dx.doi.org/10.1007/978-3-319-26450-9_25
http://dx.doi.org/10.1007/978-3-319-26450-9_26
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Computational Intelligence Methods
in Forward-Looking Explosive Hazard
Detection

Timothy C. Havens, Derek T. Anderson, Kevin Stone, John Becker
and Anthony J. Pinar

Abstract This chapter discusses several methods for forward-looking (FL) explo-
sive hazard detection (EHD) using FL infrared (FLIR) and FL ground penetrating
radar (FLGPR). The challenge in detecting explosive hazards with FL sensors is

that there are multiple types of targets buried at different depths in a highly-cluttered

environment. A wide array of target and clutter signatures exist, which makes detec-

tion algorithm design difficult. Recent work in this application has focused on fusion

methods, including fusion of multiple modalities of sensors (e.g., GPR and IR),

fusion of multiple frequency sub-band images in FLGPR, and feature-level fusion

using multiple kernel and iECO learning. For this chapter, we will demonstrate

several types of EHD techniques, including kernel methods such as support vec-
tor machines (SVMs), multiple kernel learning MKL, and feature learning methods,

including deep learners and iECO learning. We demonstrate the performance of sev-

eral algorithms using FLGPR and FLIR data collected at a US Army test site. The

summary of this work is that deep belief networks and evolutionary approaches to

feature learning were shown to be very effective both for FLGPR and FLIR based

EHD.
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1 Introduction

An important goal for the U.S. Army is remediating the threats of explosive haz-

ards as these devices cause uncountable deaths and injuries to both Civilians and

Soldiers throughout the world. Since 2008, explosive hazard attacks in Afghanistan

have wounded or killed nearly 10,000 U.S. Soldiers; worldwide, explosive devices on

average cause 310 deaths and 833 wounded per month [25]. Systems that detect these

threats have included ground-penetrating-radar (GPR), infrared (IR) and visible-

spectrum cameras, and acoustic technologies [9, 10, 37]. Past research has exam-

ined both handheld and vehicle-mounted systems and much progress has been made

in increasing detection capabilities [7, 14]. Forward-looking (FL) systems are an

especially attractive technology because of their ability to detect hazards before

they are encountered; standoff distances can range from a few to tens of meters.

A drawback of forward-looking systems is that they are not only sensitive to explo-

sive devices, unexploded ordnance (UXO), and landmines, but also to other objects,

both above and below the ground. Because these sensors are standoff sensors, the

area being examined for targets is much larger than with downward-looking sys-

tems. Thus, clutter is a serious concern. Furthermore, the explosive hazard threat is

very diverse—they are made from many different materials, including wood, plastic,

and metal, and come in many different shapes and sizes—and this threat continues to

evolve. This means that it is nearly impossible to detect explosive hazards solely by a

modeling-based approach, and, hence, computational intelligence (CI) methods are

very appropriate. Previous work has shown that if forward-looking infrared (FLIR)

or visible-spectrum imagery is combined with L-band FLGPR, false alarm (FA)

rates can be reduced significantly [2, 16, 18, 19, 44, 45]. Hence, we focus on CI

methods for sensor-fused forward-looking detection of explosive threats, comparing

CI to other machine learning approaches.

The structure of the remainder of this study is as follows. Section 2.2 describes

the preprocessing of the sensor data into a format that is ready for prescreening

and feature extraction. The prescreener algorithms are described in Sect. 2.3, and

the feature extraction is detailed in Sect. 2.4. In Sect. 3 we describe kernel learning

methods, including support vector machine (SVM)-based methods, multiple kernel
(MK) methods, and a fuzzy integral-based MK learner. Methods that learn the fea-

tures implicitly, such as deep belief networks (DBNs), convolutional neural networks
(CNNs), and iECO feature learning, are described in Sect. 4. Results for the various

learning algorithms will be presented in the respective parts of Sects. 3 and 4. We

summarize in Sect. 5. Table 1 contains the acronyms used in this chapter. Next, we

describe the sensing technologies used to demonstrate the various EHD algorithms

in this chapter.
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Table 1 Acronyms

UXO Unexploded ordnance EHD Explosive hazard detection

GPR Ground-penetrating radar IR Infrared

FL forward looking DL Downward looking

LW long-wave MW Mid-wave

UTM Universal traverse mercator CI Computational intelligence

FA False alarm ROC Receiver operating characteristic

MK Multiple kernel SK Single kernel

MKLGL MK learning-group lasso SVM Support vector machine

FIMKL Fuzzy integral MKL CNN Convolutional neural network

RBM Restricted Boltzmann machine DBN Deep belief network

CFAR Constant false-alarm rate NAUC Normalized area under the curve

iECO Improved evolution constructed CLAHE Contrast-limited adaptive histogram

equalization

HOG Histogram of oriented gradients LBP Local binary patterns

MSER Maximally stable extramal regions GMM Gaussian mixture models

SIFT Scale-invariant feature transform AOI Area of interest

2 Explosive Hazard Detection: Background Knowledge

2.1 Sensing Technologies for FLEHD

FLGPR GPR has long been an interest to the U.S. Army for EHD, and downward-
looking (DL) systems have been shown to be very effective in operational scenarios.

However, DL systems fail to provide a standoff range from the threat; the array is

located directly above the threat upon detection. Hence, there has been much focus on

improving standoff distances by using FL systems. FLGPR aims to improve standoff

by aiming the GPR array forward, often with the center of the beam aimed 10–15 m

in front of the vehicle. Since the angle of incidence at which the beam hits the ground

surface is important for penetration—the more orthogonal the beam is to the surface,

the better the ground penetration—the arrays are usually built on some type of boom

above the vehicle. Still, due to the geometry of the FL problem, much array energy is

lost to specular reflection from the ground surface. Hence, FLGPR signal-to-noise
ratios (SNRs) are not nearly as good as with DLGPR systems. Furthermore, the

index of refraction of the soil is significantly different than that of the air, which

causes a refraction—or bending—of the radar beam at the ground surface, further

complicating image formation. These, and other challenges, mean that FLGPR-based

EHD is not as simple as looking for local regions of high intensity; more complex

EHD strategies are necessary. We talk about several approaches in this chapter.
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(a) (b)

Fig. 1 FLGPRs under research and development for use in EHD. a ALARIC L-B and FLGPR.

b L/X-Band FLGPR

Many FLGPR systems have been designed specifically for EHD, including the

two shown in Fig. 1. View (a) shows the ALARIC system, which combines an L-

band FLGPR and a visible spectrum imaging system, while (b) shows an FLGPR that

combines L- and X-band radar arrays. The FLGPR results shown in this chapter will

focus on data recorded with the L/X-band system shown in Fig. 1b. The government-

furnished FLGPR data is composed of complex radar data as well as motion data of

the vehicle from several lanes at an arid U.S. Army test site.

FLIR While numerous frequency ranges in the infrared portion of the electromag-

netic spectrum have been investigated for EHD, e.g.,mid-wave IR (MWIR) and com-

binations of IR bands for “disturbed earth” detection, we focus on recent advance-

ments in anomaly detection in long-wave IR (LWIR). However, without loss of gen-

erality the vast majority of mathematics and algorithms discussed herein are natu-

rally applicable to both MWIR and LWIR imagery with little-to-no change. LWIR

or thermal imagers are passive (i.e., they do not require illuminators) and detect

infrared radiation in approximately the 8–14µm wavelength. Objects with a tem-

perature above absolute zero emit infrared radiation in this range at their surface.

The amount of emitted thermal radiation increases with temperature. The exact rela-

tionship between an object’s temperature and the amount of emitted thermal radia-

tion depends on the emissivity, a quantity representing a material’s ability to emit

thermal radiation that varies with wavelength. A thermal imager actually sees not

only the emitted radiation of the object, but also transmitted radiation, i.e., radia-

tion from an external source which passes through the object toward the imager,

and/or reflected radiation, i.e., radiation from an external source which reflects off

the object toward the imager. These factors complicate assigning absolute tempera-

ture values to objects. However, in EHD we can exploit the fact that buried objects

will likely possess a different thermal conductivity, thermal capacity, or density than

the surrounding soil, resulting in either a cooling or warming of the soil immediately

surrounding the object. This most often leads to a change in temperature at the sur-

face above the object and results in a measurable change in the amount of emitted
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Fig. 2 Example of thermal scarring in FLIR with targets of varying difficulty at a fixed vehicle

stand off distance. (left) NVESD FLEHD multi-sensor ground vehicle platform, (top row) LWIR

and (bottom row) MWIR imagery. Columns are different (center aligned) targets co-registered in

MWIR and LWIR. Note, the MWIR camera has a higher resolution (more pixels on target)

thermal radiation compared to areas of the ground free of such objects. Figure 2

shows this phenomenon, referred to in many circles as thermal scarring.

However, FLIR is not without flaw. One challenge is diurnal cross-over, the time-

period during which the buried object comes to near thermal equilibrium with its

surroundings making targets, for all intents, unidentifiable. Another factor is the dif-

ference in emitted radiance seen at the soil surface (even for the same soil compo-

sition and object) varies based on factors such as the amount of incident thermal

radiation, which is dependent on time of day, time of year, and current weather con-

ditions. These are just some of the factors that emphasize the need to include and

fuse different sensing technologies to solve this extremely challenging real-world

problem.

The FLIR data used in our experiments was collected from two cameras. The first

camera, called DVE, was uncooled and used the DRS Infrared Technologies U6000

microbolometer detector which has a spectral response of 8–14µm. The DVE cam-

era captured 8-bit single channel imagery with a resolution of 640 × 480, and hor-

izontal and vertical fields of view of 40 and 30
◦
, respectively. The second camera

was a SELEX L20, which produces a 16 bit single channel image with resolution

640 × 512. The SELEX camera had a spectral response of 8–10µm, and horizontal

and vertical fields of view of 15 and 12
◦
, respectively. Both cameras were mounted

on a mast at the back of the vehicle as shown in Fig. 2. The mast height was approxi-

mately 3.35 m and had a downward look angle of 6.3
◦
. An inertial navigation system

was mounted next to the cameras, and the time at which each image was captured

was recorded. This allowed precise georeferencing using the dense 3D scene recon-

struction technique described in [46].

The government-furnished data consists of numerous runs from three lanes at an

arid U.S. Army test site. The number of targets per lane varied from 44 to 79, and

the area of the lanes ranged from 3,600–4,200 square meters. Emplaced targets were

buried between 1–6 in. deep, and varied in metal content (some had no metal).
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2.2 Sensor Processing

FLGPR Preprocessing We use a backpropagation procedure to form the radar

images (see [15] for a detailed description of the imaging algorithm). In brief,

the radar images are formed by coherently summing successive backpropagation

images, accounting for platform motion effects on phase and beam pattern effects.

The images are formed on a 2.5 cm-spaced grid for each antenna polarization. We

also apply a phase correction to the L-band FLGPR to account for vehicle motion

during the swept-frequency transmission [4]. The end results of the FLGPR imaging

and preprocessing are complex images for each of the L- and X-band polarizations

on a rectangular grid coordinate system. In Sect. 2.3, we discuss how we take each

FLGPR image Ip(u, v) and indicate candidate detections.

FLIR Preprocessing Numerous algorithms have been applied to the government-

furnished FLIR data for preprocessing. However, these algorithms are not the subject

of investigation in this chapter as they are not focused on CI. The reader can refer

to [3, 42, 43, 46] for more details. In general, these preprocessing algorithms are

focused on deinterlacing, denoising, and global or local contrast enhancement. For

the DVE images, preprocessing typically consists of deinterlacing, denoising, and

contrast limited adaptive histogram equalization (CLAHE) [3]. For the SELEX, the

16-bit data was converted to 8-bit by contrast stretching, with saturation limits at

0.05 and 99.95 percent of the original pixel values, so the resulting values filled the

entire 16-bit range. After contrast stretching the pixel values were divided by 256
and CLAHE was run. Next we describe how the initial hit locations are determined.

2.3 Prescreeners

Prescreener is a term used for a weak detection scheme by which candidate detections

are found and passed on to stronger classification algorithms. The main ideas are to

(i) reduce the computational load of the classificaiton algorithms, and (ii) improve

classification accuracy by only training on target-like candidate detections.

FLGPR Prescreener The result of the radar preprocessing method described in the

Sect. 2.2 is a coherently integrated image Ip(u, v), where (u, v) are the image coordi-

nates: one image for each polarization of the L-band FLGPR (HH and VV polariza-

tions) and one image of the X-band FLGPR (VV polarization). It is well known that

penetration depth increases with wavelength; hence, the L-band will have a deeper

penetration than the X-band radar. Thus, we use the L-band radar as the detection

radar for the method proposed here; although, we will show results for X-band detec-

tion and classification too.

The prescreening detector is the first algorithm that indicates candidate detection

locations—a block diagram is shown in Fig. 3a. In [15], we proposed two meth-

ods to indicate the presence of a target, both of which could be considered to be
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Fig. 3 a Block diagram of prescreener detection algorithm. b Elliptical convolution kernels used

in prescreener. Detection is indicated by comparing the distribution of pixel intensities in inner

ellipse to the distribution of pixel intensities in outer halo [15]

a constant FA rate (CFAR) detector. The first prescreener indicates a hit by taking

the mean of the pixels in the inner ellipse and comparing that to the mean of the

pixels in the outer halo (as shown in Fig. 3b. Essentially, the prescreener identifies

regions that have values that are higher than the surrounding regions. The second

prescreener uses a signed Bhattacharyya distance between the distributions of the

pixel values in the center region and outer halo to indicate a hit. For a more detailed

description of these prescreeners, see [15]. In our experiments, we have determined

the following prescreener parameters to be good choices for this system: down-range

radius = 0.25m; cross-range radius = 0.5m; and halo width = 0.75m. These values

are related to the impulse-response of the FLGPR system and to expected target sizes.

Furthermore, for this chapter we will only present results for the difference-of-means

prescreener, which has been shown to be more effective than the Bhattacharyya pre-

screener for FLGPR data [15].

One could simply threshold the output of the prescreener to indicate a detection;

however, this can result in many detections in one local region. Hence, we use a max-

imum order-filter with a 3 m (cross-range) by 1m (down-range) rectangular kernel

to reduce the presence of closely grouped hits. The prescreeners are rough first-look

algorithms for indicating candidate detections—they merely indicate if a region of

pixels is different in intensity than the surrounding pixels. They do not, however,

consider higher-level features, such as texture or shape, that might indicate better

the difference between clutter and true detections. Hence, at each detection location,

we then extract a set of shape- or texture-based features, described in Sect. 2.4.
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FLIR Prescreener In [2], we outlined a FLIR prescreener for EHD which was later

extended to FLGPR in [46]. This prescreener consists of an ensemble of trainable

size-contrast (CFAR) filters, i.e., local dual sliding window detectors. Each size-

contrast filter has seven parameters: the inner window height and width, the pad

height and width (which determine the size of the outer window), a Bhattacharyya

distance threshold, a squared difference between the mean values threshold, and three

state parameters, referred to as DType (which determines whether the detector will

trigger only on bright on dark regions, dark on bright regions, or both). At each

pixel, the mean and variance of the inner and outer windows are computed, the

Bhattacharyya distance and squared difference between the mean values is calcu-

lated and these two values are compared against their corresponding threshold. If

both values are greater than their threshold, and the DType condition is met, then

the corresponding detector fires. When a detector fires, it projects the inner window

center pixel coordinate into UTM coordinates. Next, a clustering algorithm is run

on all UTM coordinates generated from individual frames. Specifically, mean-shift,

a mode seeking clustering algorithm, with an Epanechnikov kernel is used. Mean-

shift was chosen as the application requires a fast clustering algorithm (in the offline

training phase, the algorithm has to run hundreds of thousands of times on potentially

large data sets: 10,000+ points) that also does not require the user to set the number

of clusters. We have compare mean-shift results to the basic sequential algorithmic
scheme and did not see a significant different in performance. Herein, this clustering

step is referred to as spatial mean-shift, and it results in candidate hit locations. Next,

mean-shift is run a second time on the hit locations from the combination of multiple

frames (this is referred to as temporal mean-shift). Each mean-shift step requires two

parameters: the kernel bandwidth and the minimum number of points around a peak

in order to keep that cluster. Mean-shift works by performing gradient ascent on the

kernel density estimator,

̂f (x) =
N∑

i=1
K
(
xi − x

)
, K

(
xi − x

)
= k

(
‖xi − x‖2

)
, (1)

where K is the kernel function, N is the number of data points, and normalizing

constants have been omitted for brevity. Taking the gradient of this function with

respect to x and setting it to zero results in the following (well known) iterative update

equation:

xt+1 =
∑N

i=1 k
′ (‖xi − xt‖2

)
xi

∑N
i=1 k′

(
‖xi − xt‖2

) , (2)

where, k′ (x) denotes the derivative of k (x) with respect to x, and t denotes the itera-

tion. For the Epanechnikov kernel with bandwidth parameter h, the update equation

reduces to:

xt+1 =
∑

xi∈L xi
|L| , kepn(v) =

{
1 − v

h
0 ≤ v ≤ h

0 else
(3)
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Fig. 4 Illustration of FLIR prescreener, which uses an ensemble of detectors (trained under dif-

ferent criteria) and spatial and temporal weighted mean-shift

where L is the set of all points for which kepn is non-zero and | ⋅ | is cardinality.

Mean-shift is initialized at every hit location, and the update procedure is run until

convergence. For this application, convergence is defined as a change of less than

1 cm between updates (remember that the points are in UTM coordinates). Refer

to [46] for additional algorithm speedups. Figure 4 illustrates the proposed FLIR

prescreener.

A genetic algorithm (GA) is used to learn the detector parameters. To this end,

we explored two methodologies. The first, referred to as one-per-rate, trains a single

detector for each desired detection rate. The primary objective of the GA is to achieve

the desired detection rate with the secondary objective of minimizing the false alarm
rate (FAR). In [2], 19 detectors were trained at desired detection rates ranging from

0.05 to 0.95 in step sizes of 0.05. The idea behind training many detectors is that

the resulting ROC curve after fusion should be better than if a single detector were

trained and only its thresholds allowed to vary. The second method, referred to as

one-per-target, trains a single detector for each ground truth encounter in the train-

ing data. The primary objective of this GA is to detect the specific target with the

secondary objective of minimizing the FAR. For both cases, weighted mean-shift is

used to fuse the detectors (each trained with a different objective function). A weight

is learned for each detector using separable covariance matrix adaptation evolution
strategy such that the normalized area under the curve (NAUC) is maximized on the

training data. Reference [2] reports the learned detector parameters and aggregation

weights for a prior experiment.

In [46], a few improvements to the above FLIR prescreener were outlined. The

first improvement was allowing confidence information to be passed from the size-

contrast filter to the spatial mean-shift step and from the spatial mean-shift step to

the temporal mean-shift step. Previously, UTM coordinates resulting from a size-

contrast filter triggering were treated identically during spatial mean-shift. However,

this discards the Bhattacharyya distance and mean difference information which is



22 T.C. Havens et al.

useful for locating the strongest response, which generally corresponds to the center

of the object. Likewise, information about the peaks found during spatial mean-shift,

such as the number of points surrounding each peak, could be useful for the temporal

mean-shift step. To remedy this, mean-shift was replaced with weighted mean-shift

in both steps, and two new parameters were added to each detector to control whether

confidence information is passed on. This leaves it up to the GA to decide if the con-

fidence information is useful. The second improvement was the introduction of a dif-

ferent grouping algorithm as an alternative to weighted mean-shift. The alternative

method, also proposed in [46], is an ordered filter approach inspired by the MUFL

FLGPR prescreener introduced in [16]. Lastly, the separable CMA-ES optimization

for finding weights for the weighted mean-shift step which combines detectors was

eliminated as it tended to overfit the training data. Instead, three heuristics were used

to generate weights, and the set of weights which performs best in terms of NAUC

on the training data was chosen. The first method assigns equal weight to all detec-

tors; the second method assigns weights based on detection rate and the third method

assigns weights based on FAR.

2.4 Feature Extraction

While our FLIR and FLGPR prescreeners achieve relatively high positive detec-

tion rates, meaning they often do better than what an expert can identify visually,

they still suffer from an unacceptable FAR (relative to U.S. Army requirements). In

order to address this deficiency, we have explored, extended and created a number

of new image space features and descriptors, including convolutional neural net-
works (CNNs) [43], improved Evolution COnstructed (iECO) features [38], “soft”

(importance map weighted) features [42], histogram of cell-structured Gabor energy

filter and Shearlet filter bank responses [38, 46], histogram of gradients (HOG) [32]

and local binary pattern (LBP) [15, 17, 35] and “soft” edge histogram descriptor

features [2, 46]. In [2], additional anomaly evidence map features in FLIR were pro-

posed, which include features frommaximally stable extremal regions (MSERs) [33]

and Gaussian mixture models (GMMs) [41] for change detection. Unlike a CFAR

(or size-contrast) filter, which is often utilized as a local contrast feature, the above

image space features focus on texture and shape. In addition, we do not use features

“directly”, e.g., a single image gradient. Instead, high(er)-level image space descrip-

tors are formed by “pooling” features within a given spatial area of interest (AOI),

e.g., HOGs, LBPs, or edge descriptors. Furthermore, it is important to not just sim-

ply extract features and pool their values over a large spatial AOI as that often leads

to ambiguous configurations of patterns. Instead, we preserve the spatial properties

of image patterns by using a cell-structured (partially overlapping to allow patterns

to drift some in translation across detections) grid for a given AOI. It is usually of

great benefit to extract features at different scales in a given AOI, e.g., multi-scale

HOG. Convention is to concatenate these multi-scale and multi-cell features together

into a single long feature vector of high dimensionality and let a classifier (or fea-
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Fig. 5 Multiple cell-structured configurations for feature extraction at a single scale to preserve

the spatial context of features. Note that cells are not shown as overlapping for visual simplicity

ture selection algorithm) learn which are most relevant to a particular task at hand.

Figure 5 shows the use of multiple cells at a single scale.

The first feature introduced is the LBP. The LBP is a sort of texture or pattern

feature and it is calculated at each pixel according to

LBPn =
n∑

k=0
s
(
ik − ic

)
2k,

where LBPn is the LBP code, ic is the window center value, ik is the value of the

kth neighbor and function s(x) is 1 if x ≥ 0 and 0 otherwise. Ojala extended the

LBP for neighborhoods of different shapes and sizes [35]. The circular (radius r)
neighborhood version, LBPn,r includes bilinearly interpolating values at non-integer

image coordinates. Ojala also observed that there is a limited number of transitions

or discontinuities in the circular presentation of 3 × 3 texture patterns and that these

uniform patterns, LBPu
n,r, are fundamental properties of local image texture, meaning

they provide the vast majority of all patterns (accounting for 90 % at u = 2). The u
stands for no more than u 0–1 or 1–0 transitions, e.g., 00011110 has 2 transitions

and 00101001 has 5 transitions. Last, the LBP is turned into a descriptor by binning

the patterns into a histogram over an AOI. For example, for u = 2 there are only 59

patterns (thus histogram bins) for a neighborhood of size 8. In addition, Ojala put

forth a rotation robust version that consists of shifting the binary patterns until there

is a 1 in the first digit [35]. This reduces the number of patterns for a neighborhood

size of 8 to only 9. Last, most normalize the resultant histogram by its 𝓁1 or 𝓁2-norm.

Another feature is the famous HOG, popularized by David Lowe in the scale
invariant feature transform (SIFT); however it was first explored by Edelman in the

context of wet science and later popularized by Dalal-Triggs for HOG-based person

detection [11]. It is important to note that SIFT technically consists of keypoint detec-

tion, a feature descriptor and detection. The HOG (the feature descriptor in SIFT)

involves the extraction of a gradient vector per pixel in an image. For a given AOI,

one computes the magnitude of each gradient, ‖(𝜕I(x, y)∕𝜕x, 𝜕I(x, y)∕𝜕y)‖, and its

respective orientation. A histogram of B bins (a user defined or learned parameter)

is specified and each pixel’s gradient magnitude, per cell, is added to the bin with

respect to its orientation. For example, for 360
◦

and 8 bins each bin spans 45
◦

and for

a cell structured configuration of 4 × 4 we obtain a 128-length feature vector. Note,
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convention involves bilinearly interpolating each gradient magnitude for the closest

and next closest bin. Also, while SIFT identifies and then rotates the descriptor with

respect to its major orientation bin(s), this is an optional step that the user must deter-

mine relative to the given detection task at hand. In our FLEHD investigations, we

do not perform the rotation step.

In [46], we proposed a “soft” edge histogram descriptor feature. The edge his-

togram descriptor is inspired by the MPEG-7 edge histogram descriptor, which has

five simple convolution operators that represent vertical, horizontal, diagonal, anti-

diagonal and non-directional edge classes. The operators for the first four classes

closely resemble the standard Sobel and Prewitt edge operators. At each pixel, the

five operators are applied and the absolute value of the response to each is computed.

The pixel is assigned to the class of the operator generating the largest response. In

[46], we extended this feature to make it less sensitive to noise. We allow a pixel to

contribute to all classes by creating a histogram at each pixel location and we accu-

mulate the individual pixel histograms inside a window to form the final descriptor.

A pixel’s histogram is constructed by computing the absolute value of the response

to each of the edge convolution operators and then dividing each of those values by

the sum, i.e. taking the l1 norm. Linear interpolation is performed to distribute the

pixel’s contribution between the edge classes and the non-edge class by comparing

the sum of the absolute values of the operator responses to the edge threshold. If the

sum is greater than or equal to the edge threshold then the non-edge class is assigned

zero. Otherwise, the non-edge class is assigned one minus the fractional value of

the sum divided by the edge threshold, and that fractional value is multiplied to the

value of each of the edge classes in the histogram. We introduced a further change,

the addition of two new edge masks; making the total descriptor length seven. We

extract two edge histogram descriptors per cell using edge thresholds of 15 and 35.

Therefore, edge histogram descriptor gives 7 × 2 = 14 features per cell.

In [40, 42], we created a softened version of the HOG, LBP, and edge histogram

descriptor based on the extraction and utilization of an importance map. An impor-

tance map, one per each image, is simply a [0, 1]-valued image that is the same size

as the original image. Each pixel in an importance map informs us about the rele-

vance or significance of that pixel for a given task at hand. The importance map is

used to weight features, such as HOGs and LBPs, as they are added to a descriptor

like a histogram. The motivation for importance maps is that current image space

descriptors unfortunately extract both background (e.g., clutter, tire tracks, foliage,

etc.) and foreground (target) information. In many cases, the number of encountered

foreground features are extremely few relative to the background information and

their presence in the descriptor can be dwarfed. Most researchers ignore this fact

and pass the problem down the processing pipeline. That is, most extract all features

in an AOI and leave it up to the classifier or feature selection to determine what

is important. Instead, our goal is to extract feature-rich information in target areas

and more-or-less ignore extraneous information in other parts of an AOI. In [40],

Scott and Anderson used this philosophy and showed improvement in aircraft detec-

tion in remote satellite imagery across different parts of the world and times of the

year based on importance-weighted multi-scale texture and shape descriptors. Their
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importance maps were based on fuzzy integral-based fusion of differential morpho-

logical map profiles for soft object extraction. In [42], we extend this technique to

FLEHD, introducing a new way to derive an importance map for FLIR. In FLIR, we

are interested in detecting circular or elliptical (due to perspective deformation in FL

imagery) shapes for anomaly detection. Hence, we exploited this information and

created a frequency and orientation selective bank of Gabor energy filters, which we

later reduced down to a single Shearlet filter, to build an importance map. The real-

valued Gabor or Shearlet image is normalized between min and max across an AOI.

It is then blurred with a Gaussian kernel to spread out the filter response, as many

features reside at or around the edges of an object. The result is then re-normalized,

according to its min and max, back into [0, 1] (values that represent the relative worth

of different pixels in the AOI relative to the task at hand). The soft HOG, LBP, and

edge histogram descriptor features are calculated as before, however as these fea-

tures are being added to their respective bins in the histogram they are multiplied

by their corresponding per-pixel importance map weights E(x, y). The features that

we describe in this section can now be used to further reduce the number of FAs by

training classifiers to indicate prescreener hits as either FAs or true-positives. Next

we discuss kernel methods that can accomplish this task.

3 Kernel Methods for EHD

Consider some non-linear mapping function 𝜙 ∶ 𝐱 → 𝜙(𝐱) ∈ ℝDK , where DK is the

dimensionality of the transformed feature vector 𝐱. With kernel clustering, we do

not need to explicitly transform 𝐱, we simply need to represent the dot product 𝜙(𝐱) ⋅
𝜙(𝐱) = 𝜅(𝐱, 𝐱). The kernel function 𝜅 can take many forms, with the polynomial

𝜅(𝐱, 𝐲) = (𝐱T𝐲+1)p and radial-basis-function (RBF) 𝜅(𝐱, 𝐲) = exp(𝜎‖𝐱−𝐲‖2) being

two of the most well known. Given a set of n objects X, we can thus construct an n×n
kernel matrix K = [Kij = 𝜅(𝐱i, 𝐱j)]n×n. This kernel matrix K represents all pairwise

dot products of the feature vectors associated with n objects in the transformed high-

dimensional space—called the Reproducing Kernel Hilbert Space.

The main goal of kernel methods is to transform the feature vectors 𝐱 such that

the new representations, 𝜙(𝐱), are advantageous to the classification problem. We

present three methods for learning classifiers in kernel spaces, SVM, MKLGL, and

FIMKL, which we now describe.

3.1 Single Kernel

One of the most popular kernel methods for classification is the SVM. The SVM

attempts to find an optimal separating hyperplane between two classes of training

data; for the case of EHD, we use it to find a hyperplane between features that

describe FAs and those of true positives. For a detailed description of the SVM,
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see [8]. The single-kernel SVM (SKSVM) is defined as

max
𝛼

{
𝟏T𝛼 − 1

2
(𝛼 ◦ 𝐲)TK(𝛼 ◦ 𝐲)

}
, (4a)

subject to

0 ≤ 𝛼i ≤ C, i = 1,… , n; 𝛼T𝐲 = 0, (4b)

where 𝐲 is the vector of class labels, 𝟏 is the n-length vectors of 1s, K = [𝜅(𝐱i, 𝐱j)] ∈
ℝn×n

is the kernel matrix, and ◦ indicates the Hadamard product [5]. The value

C determines how many errors are allowed in the training process [8]. Note that

SKSVM reduces to the linear SVM for the kernel 𝜅(𝐱i, 𝐱j) = 𝐱Ti 𝐱j (which is simply

the Euclidean dot product).

One of the drawbacks of using the above SVM formulation is that it treats each

datum equally; hence, when there is an imbalance between the number of datum in

each class, then the SVM decision boundary is driven primarily by the data from

the class with more data points. This is a problem in explosive hazards detection as

there are typically many more FA detections than there are true positives—the true

positives only comprise a small overall area of the lane. To attack this issue, we use

a formulation of the SVM for imbalanced data which uses a different error cost for

positive (C+
) and negative (C−

) classes. Specifically, we change the constraints of

the kernel SVM formulation at (4) to

0 ≤ 𝛼i ≤ C+
,∀i|yi = +1; 0 ≤ 𝛼i ≤ C−

,∀i|yi = −1; 𝛼T𝐲 = 0; (5)

where C+
is the error constant applied to the positive class and C−

is the error

constant applied to the negative class. In our application, the positive class is true

positives and the negative class is FAs. We set C+ = n−∕n+ and C− = 1, where n−
is the number of objects in the negative class and n+ is the number of objects in the

positive class. This essentially allows for fewer errors in the true positive class.

We use LIBSVM to efficiently solve the SKSVM problem [6]. The output of LIB-

SVM is a classifier model that contains the vector 𝛼 and the bias b. A measured

feature vector 𝐱 can be classified by computing

y = sgn

[ n∑

i=1
𝛼iyi𝜅(𝐱i, 𝐱) − b

]
, (6)

where sgn is the signum function. We now show the application of SKSVM to our

FLEHD problem.

Application of SKSVM to FLGPR EHD Figure 6 shows selected results of train-

ing the SKSVM on FLGPR lanes A, B, and D, and testing on Lane C. The results are

compared to random performance, which is the ROC achieved by uniform random

selection of hit locations at given FA rates. View (a) shows the prescreener ROC
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Fig. 6 ROC curves showing testing performance of (a) FLGPR prescreener, and SKSVM classifier

with RBF kernel for (b) single HOG feature and (c) combination of HOG and LBP features. Percent

NAUC improvements are shown for each of the L-band (HH and VV polarizations) and X-band

FLGPRs. The performance of a uniform random detector is shown by the dotted line. a Prescreener.

b L-HH: 21 %; L-VV: 32 %; X: 64 %. c L-HH: 20 %; L-VV: 36 %; X: 7 %

curve for Lane C for the three FLGPR sensors, while views (b) and (c) show the

results of using the SKSVM classifier to reject FAs. The kernel used for this experi-

ment is the RBF kernel, which is well-known to be effective for most data. View (b)

shows the ROC curve using only the HOG feature, while view (c) shows the results

when combining the HOG and LBP features. As the figure illustrates, the SKSVM is

able to reduce the number of FAs significantly. Interestingly, the combination of fea-

tures is detrimental to SKSVM performance for the X-band FLGPR. This is because

the addition of the LBP feature to the SKSVM for the X-band radar results in over-

training (the training or resubstitution results are nearly perfect), which negatively

affects the test lane performance.

3.2 Multiple Kernel

MKL extends the idea of kernel classification by allowing the use of combinations

of multiple kernels. The kernel combination can be computed in many ways, as long

as the combination is a Mercer kernel [34]. In this chapter we assume that the kernel

K is composed of a weighted combination of pre-computed kernel matrices, i.e.,

K =
m∑

k=1
𝜎kKk, (7)

where there are m kernels and 𝜎k is the weight applied to the kth kernel. The com-

posite kernel can then be used in the chosen classifier model; we will use the SVM.

Thus, MKL SVM extends the SKSVM optimization at (4) by also optimizing over

the weights 𝜎k,
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min
𝜎∈𝛥

max
𝛼

{
𝟏T𝛼 − 1

2
(𝛼 ◦ 𝐲)T

( m∑

k=1
𝜎kKk

)
(𝛼 ◦ 𝐲)

}
, (8a)

subject to (typically)

0 ≤ 𝛼i ≤ C, i = 1,… , n; 𝛼T𝐲 = 0, (8b)

where 𝛥 is the domain of 𝜎. Note that this is the same problem as SKSVM if the

kernel weights are assumed constant [28]. This property has been used by many

researchers to propose alternating optimization procedures for solving the min-max

optimization problem. That is, solve the inner maximization for a constant kernel

K, and then update the weights 𝜎k to solve the outer minimization, and repeat until

convergence. We use the optimization procedure proposed by Xu et al. called MKL

group lasso (MKLGL) [47]. This method is efficient as it uses a closed-form (i.e.,

non-iterative) solution for solving the outer minimization in (8a);

𝜎k =
f 2∕(1+p)k

(∑m
k=1 f

2p∕(1+p)
k

)1∕p , k = 1,… ,m, (9a)

fk = 𝜎

2
k (𝛼 ⋅ 𝐲)TKk(𝛼 ⋅ 𝐲), (9b)

where p is the norm on the domain constraint, ‖𝜎‖p = 1, p > 1.

We further modify the MKLGL algorithm, as we did for SKSVM, to allow for

unbalanced classes—i.e., we apply the constraints C+
and C−

as shown at (5). The

MKLGL training algorithm is outlined in Algorithm 1. The MKLGL is simple to

implement and is efficient as the update equations for 𝜎k are closed-form. MKL can

be thought of as a classifier fusion algorithm. It can find the optimal kernel among a

set of candidates by automatically learning the weights on each kernel. The individ-

ual kernels can be computed in many ways—see our previous papers on this topic

for more discussion on the formation of the kernel matrices [15, 17].

Algorithm 1: MKLGL Classifier Training [47]

Data: (𝐱i, yi) - feature vector and label pairs; Kk - kernel matrices

Result: 𝛼, 𝜎k - MKLGL classifier solution

Initialize 𝜎k = 1∕m, k = 1,… ,m (equal kernel weights)

while not converged do
Solve unbalanced SKSVM for kernel matrix K =

∑m
k=1 𝜎kKk

Update kernel weights by Eq. (9)

Application of MKLGL to FLGPR EHD The MKLGL algorithm is applied in the

same way as the SKSVM—it acts to classify prescreener hits as either FAs or true

positives. Figure 7 shows results of the MKLGL classifier using an ensemble of RBF
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Fig. 7 ROC curves showing testing performance of (a) FLGPR prescreener, and MKLGL clas-

sifier for (b) single HOG feature and (c) combination of HOG and LBP features. Percent NAUC

improvements are shown for each of the L-band (HH and VV polarizations) and X-band FLGPRs.

The performance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH:

21 %; L-VV: 46 %; X: 67 %. c L-HH: 21 %; L-VV: 47 %; X: 67 %

kernels on the same training and testing lanes as shown for SKSVM in Fig. 6. The

NAUC results show that the MKLGL is able to match and sometimes improve upon

the results obtained using the SKSVM. The MKLGL improvement of the L-band

VV NAUC is especially noteworthy.

3.3 Fuzzy Integral-Based Multiple Kernel (FIMKL)

The Fuzzy Integral-based MK (FIMKL) [22, 23] extends MKL by using a non-linear

aggregation operator, the fuzzy integral (FI). The fusion of information using the

Sugeno or Choquet FI has a rich history; for a recent review, see [1]. Depending on

the problem domain, the input to the FI can be experts, sensors, features, similari-

ties, pattern recognition algorithms, etc. The FI is defined with respect to the fuzzy
measure (FM), a monotone and often normal capacity. With respect to a set of m
information sources, X = {x1,… , xm}, the FM encodes the (often subjective) worth
of each subset in 2X . For a finite set of sources, X, the FM is a set-valued function

g ∶ 2X → [0, 1] with the following conditions:

1. (Boundary condition) g(𝜙) = 0,

2. (Monotonicity) If A, B ⊆ X with A ⊆ B, then g(A) ≤ g(B).

Note, if X is an infinite set, there is a third condition guaranteeing continuity and

we often assume g(X) = 1 (although it is not necessary in general). Numerous FI

formulations have been proposed to date for generalizability, differentiability, and to

address different types of uncertain data [1]. In [22, 23], we investigated the Sugeno

and Choquet FIs for MKL. We proposed a solution based on sorting at the matrix
level. Assume each kernel matrix Kk has a numeric “quality.” This can be computed,

for example, by computing the classification accuracy of a base-learner that uses

kernel Kk (or by a learning algorithm like a GA). Let 𝜈k ∈ [0, 1] be the kth kernel’s

quality. These qualities can be sorted, 𝜈(1) ≥ 𝜈(2) ≥ … ≥ 𝜈(m). Given m base Mercer



30 T.C. Havens et al.

kernels,
{
𝜅1,… , 𝜅m

}
, FM g, and a sorting 𝜈(1) ≥ 𝜈(2) ≥ … ≥ 𝜈(m), the difference-in-

measure Choquet FI is computed by

ij =
m∑

k=1
(G

𝜋(k) − G
𝜋(k−1))(K𝜋(k))ij =

m∑

k=1
𝜔k(K𝜋(k))ij, i, j ∈ {1,… , n}, (10)

where 𝜔i =
(
G

𝜋(i) − G
𝜋(i−1)

)
, G

𝜋(i) = g
(
{x

𝜋(1),… , x
𝜋(i)}

)
, G

𝜋(0) = 0, and 𝜋(i) is a

sorting on X such that h(x
𝜋(1)) ≥ … ≥ h(x

𝜋(m)). The MK formulation at (10) pro-

duces a Mercer kernel as multiplication by positive scalar and addition are positive
semidefinite (PSD) preserving operations. Since (10) involves per-matrix sorting, it

can be compactly written in a simpler (linear algebra) form, i.e.,  =
∑m

k=1 𝜔kK𝜋(k).

Prior works in MKL rely on the relatively linear convex sum (LCS) formulation.

It is often desired due to its advantage in optimization, e.g., MKLGL. Both FIMK

and LCS MK are of type convex sum, i.e., wk ∈ ℜm
+ and

∑m
k=1 wk = 1. However,

one is linear, the other is not, and the weights are derived from the FM. The Cho-

quet FI is capable of representing a much larger class of aggregation operators. For

example, it is well known that the Choquet FI can produce, based on the selection

of FM, the maximum, minimum, ordered weighted average (OWA), order statistics,

etc. However, the machine learning LCS form is simply m weights anchored to the

individual inputs. The LCS is a subset (one of the aggregation operators) of the FI.

In [22, 23], we reported improved SVM accuracies and lower standard devia-

tions over the state-of-the-art MKLGL on publicly available benchmark data. We

proposed a GA, called FIGA, based on learning the densities for the Sugeno 𝜆-FM.

In that work we demonstrated that the GA approach is more effective than MKLGL,

even in light of the fact that our GA approach used far fewer component kernels.

In particular, the FIGA approach achieved a mean improvement of nearly 10% over

MKLGL on the Sonar data set. The performance of FIGA comes at a cost though,

as MKLGL is much faster in terms of actual running time than FIGA. We also saw

that FIGA using a combination of FM/FIs is somewhat more effective than the FIGA

LCS form. These findings are not surprising as our intuition tells us that the nonlin-

ear aggregation allowed by the FM/FI formulation is more flexible than just the LCS

aggregation; hence, these results reinforce our expectation. Overall, these results are

not surprising as different data sets require different solutions, and while an LCS may

be sufficient for a given problem, it may not be appropriate for a different problem.

Also, it should be noted that the FM/FI formulation includes LCS aggregation as a

subset of its possible solutions; hence, when LCS is appropriate the FM/FI aggrega-

tion can mimic the LCS. In summary, the learner (GA vs GL) appears to be the most

important improvement factor, followed by a slight improvement by using the non-

linear FM/FI aggregation versus LCS. While FIMKL has not been applied to date

for EHD, this computational intelligence method is reviewed as it is an improvement

to classical MKL and stands to be of relevance and benefit to EHD.
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4 Deep Learners and Feature Learning for EHD

Deep learning architectures were initially designed to mimic the human brain, more

specifically, the neocortex [36]. This part of the brain has been shown to have six lay-

ers and a forward-backward structure to classify image data collected by the eye [26].

In brief, deep learning architectures extend “shallow” neural networks by adding

multiple hidden layers—these additional layers act as generalized feature detectors.

Deep learning algorithms have been shown to perform very well on a variety of

classification tasks, such as facial recognition [29], document classification [30], and

speech recognition [39]. We will present results for two types of deep learning archi-

tectures: deep belief networks (DBNs) and convolutional neural networks (CNNs).

4.1 Deep Belief Networks

DBNs are a type of deep learning network formed by stacking Restricted Boltzmann
Machines (RBMs) in successive layers to reduce dimensionality, making a com-

pressed representation of the input. DBNs are trained layer by layer using greedy

algorithms and information from the previous layer. In this subsection, we will first

discuss RBMs and how to train them, then move on to training DBNs.

RBMs are simple binary learners that consist of two layers: one visible and one

hidden. The visible layer is the input layer and typically consists of an n-length vec-

tor of normalized values. The hidden layer is the feature representation layer. The

defining equation of the RBMs is the energy equation,

E(𝐯,𝐡) = −𝐛T𝐯 − 𝐜T𝐡 − 𝐯TW𝐡, (11)

where 𝐯 is the input vector, 𝐡 is the hidden feature vector, 𝐛 and 𝐜 are the visible and

hidden layer biases, respectively, and W is the weight matrix that connects the layers.

It should be noted that weights only exist between the hidden and visible layers, that

is to say, that the nodes in either layer are not interconnected. 𝐯 is the input and used

to train hidden layer 𝐡 as

𝐡 = 𝜎(𝐜 +WT𝐯). (12)

The hidden layer is then used to reconstruct the visible layer in the same manner,

𝐯recon = 𝜎(𝐛 +W𝐡). (13)

The reconstruction of the visible layer 𝐯recon is then used in (12) to form 𝐡recon and

then the weight update is calculated as
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Fig. 8 Illustration of DBN

training: numbers in

rectangles indicate the

number of neurons in each

layer. a Pretraining.

b Unrolling. c Fine tuning

(a)

(b)
(c)

𝛥W = 𝜖

([
𝐯𝐡T

]
data −

[
𝐯𝐡T

]
recon

)
, (14)

where 𝜖 is the learning rate. Iterated over several epochs, this weight update performs

a type of gradient descent called contrastive divergence [36].

To form a DBN, layers of RBMs are stacked as shown in Fig. 8a, where the hidden

layer of the lower RBM becomes the input/visible layer of the next RBM. Once the

input RBM is trained, its reconstructed hidden layer 𝐡recon is used to create the visible

layer of the next RBM by

𝐯n+1 = 𝜎(𝐜n +WT
n 𝐡recon,n) (15)

where n denotes the layer number. The (n+1)th RBM is now trained and this cycle is

repeated for the number of layers desired. After all layers have been trained, the DBN

is typically then mirrorred to make an encoder-decoder as shown in Fig. 8b [21]. An

input to the encoder-decoder thus produces a reconstruction of itself, where

encoder: 𝐱n+1 = Wn𝐱n; (16a)

decoder: 𝐱recon,n−1 = WT
n−1𝐱recon,n; (16b)

and x1 ∈ ℝd
is the input vector and xrecon,1 = xrecon ∈ ℝd

is the reconstruction.

Note that the final hidden layer in the encoder is the first layer in the decoder, 𝐱n+1 =
𝐱recon,n+1, where n is the number of RBMs in the DBN. Fine-tuning of the weight

matrices can be performed as shown in Fig. 8c. This fine-tuning is often done using

stochastic gradient descent (backpropagation) or Hinton’s up-down algorithm [20].

Note that this gives the DBN more flexibility as the weight matrices are adjusted for

each of the encoder and decoder.
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Application of DBNs to FLGPR EHD To apply DBNs to the FLEHD problem, we

take the extracted features from each prescreener hit location in the training data and

apply the DBN to learn the representation of the FAs; this is due to the imbalance

between the number of FA and target examples in the training data. The reconstruc-

tion root mean-square error (RMSE),

RMSE =

√√√√
d∑

i=1

(
xi − xrecon,i

)2
, (17)

of the DBN is thus a measure of how well an input feature vector matches to the

learned representation of the FAs—true positives ideally have high RMSE and false

positives ideally have low RMSE. Hence, the RMSE can be directly used as the

confidence of a true positive in the ROC curve. The DBNs for the results here are

trained on three lanes of data and then tested on a separate lane (in essence, 4-fold

cross-validation).

Since DBNs are flexible in their construction, we tested many different architec-

tures, learning rates, and epoch limits. The best DBN we found for overall EHD

performance was a network that uses two hidden layers of sizes 40 and 20, giving

a full encode-decode stack architecture of [𝐱 40 20 40 𝐱recon], where 𝐱 is the d × 1
input feature vector and 𝐱recon is the d × 1 reconstruction (see Fig. 8). The learning

rate is 0.9, and 30 epochs of contrastive divergence was used for RBM training.

Several combinations of features were tested with the DBN classifier. Figure 9

illustrates selected results from our comprehensive evaluation of DBNs for FLGPR

EHD. These ROC curves show the performance of the DBN classifier on Lane C

(training on Lanes A, B, and D). The percent NAUC improvements clearly show

that the DBN significantly improves NAUC, by up to 85 % for the case of the

X-band FLGPR using HOG & LBP features (note that the X-band FLGPR also has

the most room for improvement in this case).
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Fig. 9 ROC curves showing testing performance of a FLGPR prescreener, and DBN classifiers for

b single HOG feature and c combination of HOG and LBP features. Percent NAUC improvements

are shown for each of the L-band (HH and VV polarizations) and X-band FLGPRs. The perfor-

mance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH: 28 %;

L-VV: 52 %; X: 53 %. c L-HH: 23 %; L-VV: 52 %; X: 85 %
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Fig. 10 Illustration of a convolutional neural network [31, 36]

4.2 Feature Learning

Convolutional Neural Networks CNNs are a type of neural network with a unique

architecture. Inspired by the visual system, these networks consist of alternating

convolutional and sub-sampling layers. The convolutional layers generate feature

maps by convolving kernels over the data from the previous layers and then the sub-

sampling layers downsample the feature maps [36]. CNNs work directly on the 2D

data as opposed to most other forms of deep networks which reorganize the data into

1D feature vectors. Figure 10 illustrates a convolutional neural network.

The lth convolutional layer is generated from a jth feature map by

alj = 𝜎(blj +
∑

i∈Ml
j

al−1j ∗ klij), (18)

where 𝜎 is the activation function, usually hyperbolic tangent or sigmoid, blj is a

scalar bias, Ml
j is an index vector of feature maps i in layer l − 1, ∗ is the 2D convo-

lution operator and klij is the kernel used on map i in layer l − 1. A sub-sample layer

l is generated from a feature map j by

alj = down(al−1j ,Nl), (19)

where down is a down-sampling function, such as mean-sampling, that

down-samples by factor Nl
[36]. The output layer is then generated by

o = f (𝐛o +Wo𝐱v), (20)

where 𝐱v denotes a feature vector concatenated from the feature maps of the previous

layer, 𝐛o is a bias vector, and Wo
is a weight matrix. The parameters to be learned are

thus klij, b
l
j, 𝐛

o
and Wo

. Gradient descent is used to learn these parameters and this

can be efficiently performed through the use of convolutional backpropagation [36].
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Fig. 11 ROC curves showing testing performance of a FLGPR prescreener, and b CNN classifier

using the HOG feature. Percent NAUC improvements are shown for each of the L-band (HH and

VV polarizations) and X-band FLGPRs. The performance of a uniform random detector is shown

by the dotted line. a Prescreener. b L-HH: 13 %; L-VV: 1.4 %; X: 28 %

Application of CNNs to FLGPR EHD Unlike the SVM, MKLGL, and DBN, the

CNN operates on 2D feature maps. Fortunately, the HOG, LBP, and FFST are all

2D features and thus can be used as input for the CNN; we also used the raw image

data (imagelet) surrounding each prescreener hit as input to the CNN. The output of

the CNN is a 2-element vector—one element to indicate FA and one to indicate true

positive. As shown in Fig. 10, we use two convolutional layers and two subsampling

layers. The learning rate was 0.9 and 350 epochs were used for training, which were

shown to be good choice in a more comprehensive parameter study we performed.

Figure 11 shows selected results from our comprehensive evaluation of CNNs for

FLGPR EHD. These ROC curves show the performance of the CNN classifier on

Lane C (training Lanes A, B, and D). As is evidenced by the percent NAUC improve-

ment values, the CNN is the least effective of the classifiers that we have applied to

the FLGPR EHD. Furthermore, many of the results (which we do not show) that we

compiled using the CNN were very poor. Hence, we do not recommend the CNN at

this time for FLGPR EHD.

Application of CNNs to FLIREHD In [43], CNNs were evaluated for EHD in FLIR

imagery. Image chips extracted at prescreener alarm locations were fed directly as

input to a CNN. CNN classification results were compared to a baseline algorithm

which extracted five hand-engineered feature sets and performed classification using

a SVM. Due to the lack of training data for training a conventional deep CNN model,

two alternative CNN approaches were explored.

The first approach used a deep CNN model pre-trained on the ImageNet dataset

[12]. This model is referred to herein as DPT-CNN, and was made available through

the open source python package DeCAF [13]. DPT-CNN uses the architecture

proposed by Krizhevsky et al. in [27], which won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). The architecture consists of five convo-

lutional layers, some followed by Rectified Linear Unit (ReLU) activation, response

normalization, and max pooling, followed by three fully connected layers. The last

fully connected layer is fed to a 1000-way softmax function.
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DPT-CNN was trained on the ILSVRC2012 training data, which consisted of

more than 1.2 million training images from 1000 object classes. It was shown in

[13] that values from intermediate layers of this pre-trained network work well as

features for new vision tasks. Specifically, tasks with small amounts of training data,

where a deep CNN trained directly performed poorly. For our tests, the alarm image

chips were input to DPT-CNN, and intermediate values were saved at six stages.

These intermediate values were used to train a SVM which was evaluated the same

way as the baseline algorithm. The first two sets of intermediate values came from

the second and first fully connected layers after ReLU activation. These are referred

to as FC7-ReLU and FC6-ReLU, respectively. The ReLU activation takes the form

𝜙(v) = max(0, v). The next two intermediate values, POOL5 and CONV5, came

from the last convolutional layer. CONV5 is before max-pooling, and POOL5 is after

pooling. The last two sets, RNORM1 and POOL1, came from the first convolutional

layer. RNORM1 is after pooling and response normalization. POOL1 is after pooling

but before response normalization.

The fully connected layer outputs, which no longer convey spatial position, were

not expected to be useful for this EHD task since position in the image chip is

extremely important. The POOL5 and CONV5 features do retain some spatial infor-

mation. The RNORM1 and POOL1 features retain more, but since they are not deep

features they may not be as descriptive. Table 2 shows the NAUC results for the

DPT-CNN features, as well as for the baseline algorithm and the best individual

baseline feature, for a three lane leave-one-lane-out cross validation test using two

FLIR cameras.

As expected, the fully connected layer features did not perform well. Performance

improved significantly when moving to the POOL5 features, and again when moving

to the CONV5 features. The CONV5 features compared well with the top performing

hand-engineered image feature, multi-scale HOG, even outperforming it on Lane A.

Surprisingly, the POOL1 features scored better overall than the CONV5 features on

the DVE camera image chips, but show a pronounced drop on the SELEX image

chips.

Table 2 DPT-CNN: DVE/Selex cameras: NAUC at 0.01 FA∕m
2

Feature All lanes Lane A Lane B Lane C

FC7-ReLU 0.435/0.451 0.321/0.355 0.420/0.418 0.556/0.573

FC6-ReLU 0.479/0.469 0.353/0.365 0.480/0.454 0.598/0.582

POOL5 0.557/0.501 0.404/0.386 0.600/0.500 0.658/0.609

CONV5 0.615/0.566 0.471/0.423 0.655/0.604 0.712/0.662

RNORM1 0.623/0.525 0.454/0.389 0.709/0.553 0.699/0.624

POOL1 0.624/0.519 0.458/0.386 0.710/0.545 0.695/0.617

BASE: HOG 0.645/0.584 0.453/0.421 0.722/0.615 0.753/0.708

BASE: ALL 0.677/0.610 0.496/0.445 0.766/0.652 0.762/0.727
CONV5 + BASE 0.676/0.607 0.508/0.449 0.748/0.649 0.764/0.714

*Bold indicates best result for each camera and lane
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The DPT-CNN results indicated that a deep CNN model was not necessary to

achieve good performance on this FLIR EHD task. This was not particularly surpris-

ing since the task requires little in the way of translation, scale, or orientation invari-

ance. The primary difficulty is intra-class variation. Thus, a second CNN approach

using a shallow CNN trained directly using the image chips was pursued. The shal-

low architecture consists of a single convolutional layer followed by an output layer

containing a single neuron followed by the sigmoid activation function. The out-

put of the sigmoid was used as the alarm confidence value. For all experiments,

weights were learned using stochastic gradient descent (SGD) with momentum and

the cross entropy error function. To address class imbalance, for each training pat-

tern presentation an example was chosen randomly from either the true target class

or the false alarm class with equal probability. Evaluation was performed using the

same methodology as for DPT-CNN.

In [24], Jarrett et al. found that the single most important factor for recogni-

tion accuracy in a CNN model, considering architecture choices such as activation

function, sub-sampling type, and response normalization, was the use of a rectify-

ing non-linearity. While they used the absolute value function (AVF), the ReLU in

Krizhevskys architecture performs a similar operation. Therefore, the first exper-

iment evaluated performance when using either no non-linearity, ReLU, or AVF

following the convolutional layer. These results are presented in Table 3. Both acti-

vations improved performance. AVF performed better than ReLU, and was chosen

for further experiments.

We next investigated forcing the convolutional filters to have zero-mean and zero-

phase. The intuition being that only the non-dc frequency characteristics are impor-

tant, and that shifting of the output is meaningless for classification. To enforce

these characteristics, transformation functions were inserted before the variables in

question were used. The transformation functions modify their inputs to enforce

the desired constraint. During SGD learning, derivatives are propagated through

the transformations. For example, if the original convolutional layer is OUTPUT =
CONV(INPUT,X), to enforce zero-mean for the kernel X the expression becomes

OUTPUT = CONV(INPUT,G(X)), where G(X) modifies X to have the zero-mean

characteristic. No significant performance improvement was seen from enforcing

either constraint.

Table 3 Rectifying Nonlinearity: DVE Camera: NAUC at 0.01 FA∕m
2

Convolution

filter radius

None, # filters ReLU, # filters AVF # filters

4 8 16 4 8 16 4 8 16

3 0.492 0.482 0.503 0.519 0.517 0.499 0.555 0.573 0.566

5 0.508 0.510 0.509 0.550 0.552 0.565 0.600 0.602 0.603
7 0.487 0.483 0.475 0.555 0.545 0.537 0.596 0.580 0.592

*Bold indicates best result for each filter radius
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Table 4 Learning in freq domain: DVE camera: NAUC at 0.01 FA∕m
2

Convolution

filter radius

Spatial—# of filters Frequency—# of filters

4 8 16 4 8 16

3 0.555 0.573 0.566 0.636 0.636 0.640
5 0.600 0.602 0.603 0.617 0.619 0.618

7 0.596 0.580 0.592 0.614 0.613 0.619
*Bold indicates best result for each filter radius

We then experimented with learning the convolutional filters’ frequency domain

representations instead of their spatial domain representations. This was done by

using the inverse FFT as a transformation function. Table 4 shows the results for

learning the convolutional filters in the frequency domain versus the spatial domain.

Zero-mean and zero-phase were enforced in the frequency domain. A slight perfor-

mance improvement was seen across all combinations.

Based on these results, shallow CNN networks with eight zero-mean, zero-phase

filters learned in the frequency domain were scored on the DVE and SELEX data.

Table 5 shows the per lane results for various kernel radii, as well as the DPT-CNN

and baseline results for comparison. Overall, the shallow CNN results were very

similar to those of DPT-CNN. The shallow CNN achieved a slightly better overall

result on DVE, and a slightly worse overall result on SELEX when comparing to

the CONV5 features of DPT-CNN. When comparing to the POOL1 and RNORM1

features, the shallow CNN SELEX result is much better. The baseline algorithm,

which includes features that cannot be expressed via convolution, outperforms both

CNN approaches.

iECOFeature Learning In [38], the algorithm improved Evolutionary COnstructed
(iECO) feature descriptors (referred to hereafter as simply iECO) was put forth for

FLIR-based EHD. The iECO algorithm is a feature learning technique that looks to

Table 5 Shallow CNN: NAUC at 0.01 FA∕m
2

DVE camera SELEX camera

All lanes Lane A Lane B Lane C All lanes Lane A Lane B Lane C

CNN

radius 3

0.635 0.464 0.734 0.700 0.562 0.397 0.626 0.656

CNN

radius 5

0.616 0.478 0.694 0.670 0.559 0.413 0.611 0.645

CNN

radius 7

0.612 0.460 0.697 0.673 0.557 0.409 0.628 0.626

Pre-

trained

CNN

0.624 0.458 0.710 0.695 0.566 0.423 0.604 0.662

Baseline 0.677 0.496 0.766 0.762 0.610 0.445 0.652 0.727
*Bold indicates best result
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exploit important cues in data that often elude non-learned (often referred to as “hand

crafted”) features such as HOGs, LBPs and edge histogram descriptors. Each hand

crafted feature is ultimately an attempt to more-or-less sculpt (force) a signal/image

into some predisposed mathematical framework which may or may not reveal the

information that a user/system needs. Instead of coming to the table with a limited

set of tools and trying to make everything look like a nail, iECO learns the tool based

on the task at hand.

While the field of deep learning has demonstrated state-of-the-art performance,

the ECO (and iECO respectively) work of Lillywhite et al. has the advantage over

CNNs of interpretability (it is not a black box) and it does not predispose the solu-

tion to that of convolution. At its core, ECO is the GA-based learning and (ensemble-

based) use of a population of chromosomes that are compositions of functions (image

processing transformations). Each chromosome is of variable length and the goal is

to learn the image transformations and respective parameters relative to some task.

An advantage of this approach, versus CNNs, is that it makes use of a relatively wide

set of different heterogeneous image transformations to seek a new tailored solution.

In [38] we used 19 different image transformations which range from a Harris corner

detector to a square root, Hough circle, median blur, rank transform, LoG, mathe-

matical morphology and Shearlet and Gabor spatial frequency domain filtering, just

to name a few. In many cases, emergent behaviour arises and the chromosomes can

be manually examined and studied, potentially revealing additional domain informa-

tion such as what features or physics in IR or GPR are most important for a task like

EHD. Figure 12 shows the iECO process (not learning, but application of iECO to a

given AOI).

Fig. 12 iECO applied to a prescreener hit in FLIR. Learned iECO chromosomes, in different pop-

ulations, are applied to the input image. Finally, different descriptors are extracted relative to each

transformed image
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In iECO, we address a shortcoming of the ECO features– the so-called

“features” which are the unrolling of image pixels into a single vector. ECO suffers

from the curse of dimensionality and the naive unrolling does not intelligently take

into account various spatial and scale cues. In [38], we extract ECO features relative

to different high-level descriptors and cell-structured configurations. Specifically, we

explored the HOG, EHD and statistical features; which include the local mean, stan-

dard deviation, kurtosis, l2-norm, and the difference between the local values and

their corresponding global values. A separate GA population is maintained and a

separate search is conducted relative to each high-level descriptor. iECO, like CNN

learning is not a computationally trivial task. As a result, we have not yet attempted

to learn the different populations in a single simultaneous algorithm. Furthermore,

in [38] we showed that each descriptor learns/prefers different chromosomes that

have varying fitness values. With respect to classification, we experimented with

taking a single best chromosome per descriptor (highest fitness), taking the top 50%
of chromosomes relative to each descriptor, and the identification of the top 5 most

diverse chromosomes (which is currently a manual process). Our results indicate that

the concatenation of multiple chromosome features leads to improved performance.

Furthermore, we showed that if one pipeline is applied to a different descriptor than

it was learned for, then the result is a significant drop in performance (fitness). This

is interesting as it tells us that iECO appears to learn a tailored pre-processing of

imagery relative to each descriptor in order to better highlight salient information.

Figure 13 shows different learned iECO pipelines.

In [38], we introduced constraints on each individual’s chromosome to help pro-

mote population diversity and prevent infeasible solutions. This allows us to search

for quality solutions faster and it typically results in shorter length chromosomes

that are computationally simpler to realize (which is important for a real-time causal

EHD system). In ECO, there are no direct mechanisms incorporated into the GA,

Fig. 13 iECO on FL LWIR. a Average iECO output of four chromosomes across 50 different

buried targets. Each image is scaled to [0, 1] for visual display and they are shown in Matlab jetmap

color coding, where blue is 0 and red is 1. These images show that diversity exists across chro-

mosomes and different aspects of targets are learned, e.g., local contrast, orientation specific edge

information, etc. b Output of highest fitness chromosones for each descriptor for a single target.

These images show that each descriptor prefers a different iECO pipeline. a Average iECO output.

b Different iECO populations
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Fig. 14 Vertically averaged ROC curves with 95 % confidence intervals. aTesting lane 1. bTesting

lane 2

outside of mutation, to promote diversity in the population. In [38], we introduced

diversity promoting constraints that consider the uniqueness and complexity of the

ECO’s search space. We designed a set of diversity promoting constraints that define

what percentage of the population is allowed overlapping genes at each layer of the

individual’s gene segment. Next, we addressed the issue of the occurrence of the

same gene back-to-back. Such a scenario is undesirable, e.g., it does not typically

make sense to perform a rank transform back-to-back. In addition, this increases the

computational complexity of the system as a consequence of the unnecessary image

transforms. We combat this by collapsing consecutive uses of the same gene type,

i.e., if any gene occurs more than once consecutively then only the first occurrence

is retained. Elitism is used in iECO.

In summary, in [38] we showed that the above diversity promoting constraints

and the combination of high-level image descriptors leads to the discovery of sig-

nificantly higher quality solutions for EHD. We showed that iECO continuously

identifies higher performance solutions, i.e., an impressive drop in the FAR for a

given PDR, populations are more diverse, which was verified manually, and the

resultant chromosomes are significantly shorter and thus give rise to a simpler system

(computationally and memory utilization-wise) to realize. Figure 14 is ROC results

for iECO versus ECO features. iECO clearly outperforms ECO.

5 Conclusions

This chapter described the EHD problem and various methods for preprocessing,

prescreening, and false rejection for FLGPR and FLIR. The methods discussed for

FLGPR-based EHD were SKSVM, MKLGL, DBNs, and CNNs. The best overall

detection and classification method for the FLGPR was the DBN using a combination

of HOG and LBP features, showing up to 85 % improvement in NAUC. The weakest

FLGPR-based method was the CNN. In the future, we are going to investigate more

advanced CNN architectures and training methods for CNNs as applied to FLGPR
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EHD. Several EHD methods were discussed for FLIR-based detection, including

baseline SVM detection, CNNs, and iECO feature learning. Several CNN architec-

tures were tested. While the CNN architectures showed promise, especially those that

use frequency-domain AVF filters, the baseline SVM-based feature-fusion approach

outperformed the CNN. Lastly, iECO feature learning was demonstrated for FLIR-

based EHD. In the future, we aim to further apply our fuzzy integral-based multiple

kernels methods for EHD as FIMKL has been shown to be superior to MKLGL for

benchmark data sets. We also aim to extend the deep learning approaches for online

and active learning for EHD.
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Classification-Driven Video Analytics
for Critical Infrastructure Protection

Phillip Curtis, Moufid Harb, Rami Abielmona and Emil Petriu

Abstract At critical infrastructure sites, either large number of onsite personnel, or
many cameras are needed to keep all key access points under continuous obser-
vation. With the proliferation of inexpensive high quality video imaging devices,
and improving internet bandwidth, the deployment of large numbers of cameras
monitored from a central location have become a practical solution. Monitoring a
high number of critical infrastructure sites may cause the operator of the surveil-
lance system to become distracted from the many video feeds, possibly missing key
events, such as suspicious individuals approaching a door or leaving an object
behind. An automated monitoring system for these types of events within a video
feed alleviates some of the burden placed on the operator, thereby increasing the
overall reliability and performance of the system, as well as providing archival
capability for future investigations. In this work, a solution that uses a background
subtraction-based segmentation method to determine objects within the scene is
proposed. An artificial neural network classifier is then employed to determine the
class of each object detected in every frame. This classification is then temporally
filtered using Bayesian inference in order to minimize the effect of occasional
misclassifications. Based on the object’s classification and spatio-temporal prop-
erties, the behavior is then determined. If the object is considered of interest,
feedback is provided to the background subtraction segmentation technique for
background fading prevention reasons. Furthermore any undesirable behavior will
generate an alert, to spur operator action.
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1 Introduction

The use of video feeds within surveillance applications is becoming quite popular
due to the increased demand for ensuring the security of buildings and other
infrastructures, as well as the declining cost and increased precision of digital video
cameras. The increased usage of multiple video sources to cover a large perimeter
surrounding a critical infrastructure imposes a large burden on the system operators,
who cannot physically concentrate on simultaneously observing all the remotely
distributed video feeds. This leads to fatigued, stressed, and overworked operators
who end up possibly missing important events [1].

The increased processing power, and reduced costs, of current computing
technologies can be used to help solve this problem, mainly through the application
of computer vision (CV) and computational intelligence (CI) techniques. Video
analytics pairs CV with CI in order to understand the activities occurring and
behaviors exhibited by the various actors within video feeds. Using CV techniques,
objects can be detected and extracted from the video stream. These objects can then
be classified based on supervised learning techniques, and their behavior monitored
for undesirable events. Beyond this work, semantic analysis of the segmented
objects [2] can be applied in order to improve the prediction of intent and threat that
is imparted to the infrastructure.

The operator can then be alerted when these undesirable events occur through
the annotation of the video stream, as well as other alert mediums, to indicate this
fact so that a decision on the potential response can be made. By providing these
alerts to the operator, attention can be directed to specific events from a single video
feed among many, thereby improving operator response to undesirable events that
may be otherwise delayed or missed due to distractions or fatigue.

The solution proposed in this work uses a background subtraction method of
extracting objects of interest, which is updated adaptively based on the classes
detected and observed behavior. After the objects have been extracted from the
scene, an artificial neural network (ANN) classifier combined with a temporal
Bayesian filter is used to classify the object. The behavior of the classified object,
such as entering a restricted zone, stopping, and abandoning another object, is
determined. Based on these behaviors, alerts and annotations to the video are
enacted (if necessary), and the information is fed back into the background sub-
traction model. This feedback of information is used to keep objects belonging to
classes of interest in the foreground model, even when the object becomes
stationary.

The proposed solution is capable of detecting several behaviors of interest in
surveillance activities, including restricted zone intrusion by objects of select
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classes (e.g. car, person, bird, or maritime vessel), abandoned object detection and
stopped object detection, while handling the issues of background fading inherent
in most background subtraction techniques. It is implemented using C++, in-part
using the open source OpenCV library [3].

The rest of this work is structured as follows. Section 2 briefly reviews relevant
works. Section 3 unveils the proposed behavior-driven classification methodology
and Sect. 4 illustrates its application within critical infrastructure protection. Sec-
tion 5 sheds light on the empirical evaluation before some final conclusions and
future directions are elaborated upon in Sect. 6.

2 Literature Review

The first subsection reviews a subset of classification techniques found in the
literature, while relevant computer vision techniques are discussed in the second
subsection.

2.1 Classification Techniques

Classifiers exist in two different flavors: unsupervised and supervised. Unsuper-
vised techniques extract knowledge from a scene without a priori knowledge, and
are typically used for clustering data and discovering interesting properties of the
input data. Supervised classifiers, however, involve training the classifier, through a
reinforcement machine learning technique, by introducing many labelled samples
of each class that is needed to be identified. For each class, the data is typically
processed by extracting a feature vector that is then fed into the classifier. There
are several supervised classification techniques that are commonly used for image
and video processing, with the most popular being the support vector machine
(SVM), boosted classifiers, k-nearest neighbor (kNN), and the artificial neural
network (ANN).

The SVM is a binary classifier that maps the feature vector into a multi-
dimensional vector space and defines a partition (the classification threshold) such
that the margin of classification between each class within the vector space is
maximal [4, 5]. By ensuring the distance between the feature vectors representing
classes is maximal, discrimination of features representing each class is made easier,
and determining which class an object belongs to becomes the detection of which
side of the hyper-planar class partition the feature vector lies. To form a multiclass
classifier using SVMs, several strategies are employed, such as using an ensemble
of binary SVMs in a one versus one or one versus all methods. In a one versus one
strategy, an SVM is trained to discriminate between each pair of classes, and a
voting strategy is used to decide on the outcome. In a one versus all strategy, there
is an SVM for each class used to determine membership to the class or not.
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The resulting class is the result with the dominant outcome. Finally, [6] introduces a
technique for optimizing the direct multiclass SVM, instead of having to decom-
pose the problem into many binary SVMs.

Boosted classifiers use many weak classifiers, such as a decision tree with only a
few branches that are only slightly better than random chance. These weak clas-
sifiers are then combined to produce a stronger result [7, 8]. These classifiers are
typically fast and simple to use, allowing for much parallelization, but at the cost of
longer training periods. An example of boosted classifiers within the field of
computer vision is the Voila Jones object detector [9]. This detector uses Haar
wavelet based features within the Adaboost framework to successfully detect faces,
and other objects, within images.

The kNN algorithm is perhaps one of the simplest to implement, as it classifies a
new data sample by assigning it the class of the most common class among its k
nearest neighbors. Some strategies may enforce weighting the contribution of each
neighbor according to its distance to the new data sample. With large high
dimensional datasets however, determining the kNN becomes computationally
expensive, and so techniques to approximate the kNN have been developed.
FLANN [10, 11] is one such technique that is commonly used to approximate the
kNN algorithm in computer vision problems.

ANNs are inspired from neural biology, and are quite flexible in modelling any
desired system [12, 13]. They consist of several inter-networked neurons. An
individual neuron accepts a weighted combination of input values that get pro-
cessed by a typically non-linear activation function to generate an output value; it is
the weights and biases for all the neurons in the network that get adapted during
training based on the desired output. The multi-layer perceptron (MLP) is a feed
forward type ANN that can be trained by back-propagation techniques, and it is
widely used for classification tasks due to its simple structure, computational effi-
ciency, and ability to approximate any function to within defined error bounds [14].

2.2 Computer Vision Techniques

Determining image content can occur in several different ways. One way is to
perform segmentation that selects regions of the image based on spatio-temporal
properties, followed by classification of the segments. Another way is to use a
windowing methodology with a detector in order to locate and classify objects that
are of interest.

Segmentation is the clustering of regions sharing similar spatio-temporal prop-
erties, such as color, texture, location, and motion that may be performed by
supervised, or unsupervised, methods. Image segmentation techniques, such as the
watershed algorithms [15] and k-means clustering [16, 17], only use spatial prop-
erties of a single image to perform the segmentation. While producing good results,
they tend to take an extensive amount of computational time, and are not directly
suitable for segmenting video streams. Moreover, they may result in an over
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segmentation (i.e. each object having one or more segments), or an under seg-
mentation (i.e. fewer segments than objects) depending on scene complexity and
parameters employed. On the other hand, video streams can take temporal prop-
erties into consideration, thereby using the additional information to minimize the
computational resources required for segmentation, while at the same time pro-
viding more information to mitigate over, and under, segmentation.

Some video segmentation techniques [18–20] rely on performing an accurate
segmentation based on the first frame using slower image-based techniques, and
then track the intra-frame changes, refining the segmentation in each subsequent
frame. These techniques work well in situations with minimal amounts of object
motion between frames, however, when there are significant changes, such as the
introduction of new objects, a reinitialization of the segmentation may be necessary,
due to a breakdown in the corresponding regions between frames. In situations
where this occurs frequently, the goal of reducing segmentation-related computa-
tional resources by tracking changes between frames is prevented.

Other methods, such as the GrabCut [21], CamShift [22], and MILTrack [23]
algorithms require a region to be selected that initializes the video segmenter model
to track this selected region within each frame of the video. The selected region is
identified in subsequent frames by applying the learned region model, which creates
a heat map of possible locations that the region may lay in the new frame. The
region is then extracted either through an application of maximum a posteriori
estimation or through traditional thresholding. These techniques work well at
tracking specific individual objects, but do not fare well at detecting, extracting and
tracking generalized classes of objects.

Feature point based techniques; such as SIFT [24], SURF [25], and ORB [26],
identify interesting features within a scene, and characterize them through their
local spatial properties. By comparing the properties of these features between
frames, it is possible to determine where each feature point has moved. In order to
detect objects, along with their classes and localizations, these feature points must
be combined with other techniques, such as a bag of visual words, a classification
algorithm, and a windowing technique [27]. These techniques require much com-
putational time to determine the vectors for each key point, and obtaining a precise
bounding box of the objects of interest may prove difficult, with the advantage
being that they simplify the feature correspondence problem between frames while
reducing the volume of data processed in subsequent analysis.

Other techniques model the scene stochastically, taking advantage of the
time dimension, such that when a new object is introduced, it can more easily
be detected. Mixture of Gaussians (MoG) belongs to such a class of techniques
[28–30]. The MoG algorithm works by modelling each pixel using a mixture of
Gaussian distributions, such that when a value for a particular pixel is observed that
does not match any of the existing Gaussians for that pixel; it is flagged as con-
taining something new, and belonging to the foreground. After a certain amount of
time, these foreground values are modelled as Gaussians in the background model.
This allows the background model to adapt to changing illumination or a dynamic
scene. While this integration of foreground objects into the background model may
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be beneficial in some situations, it becomes a problem when the object of interest
becomes part of the background when stationary, as this object may exhibit
behaviors that are being monitored. Additionally, these techniques tend to require a
relatively static scene, with any illumination variation occurring slowly, and using a
stationary camera. Some research has been made in providing methods to model
dynamic backgrounds [31] with illumination invariance [32, 33] characteristics.

Figure 1 demonstrates the fade to background problem. In Fig. 1a, the scene is
static containing no objects of interest. This becomes integrated into the background
model. Sometime later, a person enters the scene, shown in Fig. 1b. In Fig. 1c, the
person moves a little bit more and then stops; after some time, the person is fully
integrated into the background model, precluding their representation in the fore-
ground model in Fig. 1d. If persons are the class of interest in this scenario, then this

(a)

(b)

(c)

(d)

(e)

Fig. 1 Demonstrating fade to
background problem

50 P. Curtis et al.



is undesirable behavior, as once an object is integrated into the background model, it
is not extracted, and therefore is effectively invisible to the computer vision algo-
rithm. For objects belonging to classes of interest it is desirable to prevent this.
Figure 1e shows the person moving again, and hence the person appears in the
foreground model at locations where the person has not been previously observed.

3 Proposed Solution

The proposed solution is based on three interconnected modules (see Fig. 2) which
include an object extraction module, a classification module, and a behavior engine
that generates feedback to the object extraction module, as well as the annotated
output frame and any necessary system alerts. Sections 3.1, 3.2, and 3.3 discuss the
three respective modules of proposed solution.

3.1 Object Extraction

The object extraction technique that has been employed (see Fig. 3) uses a back-
ground subtraction based approach. This is followed by a dilating morphological
operation to fill in possible gaps, and then a standard 8-wise connected components
labelling algorithm is applied to the foreground model. A Kalman tracker combined
with a nearest neighbor matching technique is utilized to perform correspondence
of detected objects between frames.

The background subtraction based segmenter is the MoG technique [30]
previously described in Sect. 2.2 that models the variations of each pixel in the
scene over time by a mixture of Gaussian distributions. Any measurement that does
not fit into these distributions is considered as an anomaly, and labelled as
belonging to a foreground object. As there may be holes in the foreground model,
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Training Frame

Fig. 2 Block diagram illustrating the proposed solution
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due to the moving object being similar in color to the background model in some
locations, a dilation morphological operator is applied that fills in these smalls gaps,
following which each pixel in the resulting model is grouped together using an
8-wise connect components labelling algorithm, and a rectilinear bounding box is
then fitted for each labelled object. In order to prevent the background model from
incorporating objects that are of interest, the learning parameter is set to zero when
the video frame is first introduced, and then set back to its regular value when the
training image for that particular frame has been decided by the behavior engine, as
detailed in Sect. 3.3. The Kalman tracker is then used to predict the locations of
bounding boxes that previously detected objects will have in the current frame.
Corresponding matches between frames is performed by a greedy nearest neighbor
algorithm using the Euclidean distance of bounding boxes obtained from objects
extracted in the current frame and those predicted by the Kalman tracker.

3.2 Classification

The classifier architecture, as shown in Fig. 4, contains a feature extractor that
produces a feature vector based on the current appearance for each tracked object.
These feature vectors are then fed into a parallel bank of Multi-Layer Perceptron
(MLP) ANN binary classifiers. The final classification is chosen using a one versus
all strategy, where the highest activation level among the active classifiers is chosen
as the winner. If no classifiers reach the threshold of classification, then the object is
deemed as belonging to an unknown class. Using a parallel bank of MLPs allows
for the easy addition/removal/retraining of any particular class, at the expense of a
higher computational burden.

The output from the ANN classifier is then fed into a temporal Bayesian clas-
sification filter. As the Bayesian filter requires many positive classifications to
reinforce the belief in the resulting classification, this minimizes the impact of
temporary misclassifications; effectively minimizing the false positive and negative
classification rates produced by the overall system.

Background
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Tracked ObjectsTraining Frame
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Fig. 3 Block diagram illustrating the object extraction process
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The features that are provided to the ANN classifier are extracted from the
contents of a subimage defined by the object’s bounding box. The first feature is the
mean color corrected red, green and blue (RGB) values of the subimage. To gen-
erate the color corrected image, two factors are initially calculated using the mean
greyscale value,grey, the mean red channel value, red, and the mean green channel
value, green, as shown in (1). These factors are then applied to each r row and
c column pixel location in the red (Ired), green (Igreen), and blue (Iblue) channels of
the image to create the color corrected image, Icor, as shown in (2). The second
feature is a greyscale version of the subimage that has been rescaled to 4 × 4 pixels
in size, and the final feature is a black and white thresheld version of the greyscale
image using the OTSU algorithm [34], which is then resampled, with each pixel
representing the corresponding ratio of the positively thresheld pixels against the
total number of pixel represented by the new subsampled pixel. An example of the
extraction of these features is shown in Fig. 5. This results in a total feature vector
length of 35 elements. The latter are then normalized to be between −1 and 1, with
the normalization limits chosen based on the range observed for each parameter in
the dataset used for training.
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Temporal Bayesian
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Fig. 4 Block diagram illustrating the classification process

(b) (c) (d)

(a)

Fig. 5 Demonstrating the feature vectors extracted from a scene: a the subimage defined by a
detected objects bounding box, b the first feature, c the second feature, and d the third feature
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f1 , f2ð Þ= grey ⋅ 1 r̸ed, 1 g̸reen
� � ð1Þ

Icor r, cð Þ= Ired r, cð Þ*f1 Igreen r, cð Þ*f2 Iblue r, cð Þ*f1ð Þ ð2Þ

The ANN is a simple feed forward (FF) type MLP that has input, hidden, and
output layers. The output layer has 2 neurons with binary output values in the range
of 0–1 to indicate that the object belongs to the class for the first output neuron, and
similarly to indicate that the object does not belong to the class for the second
output neuron. Each classifier has a different number of hidden layer neurons that
was found via the training process. By using a short feature vector, the speed of the
classification is improved, at the cost of potentially higher misclassification rates.

The classes that are currently classified by the MLP classifier’s binary output are
bird, person, car, and maritime vessel. These classes were trained using a combi-
nation of the Visual Object Classes Challenge−Pattern Analysis, Statistical Mod-
elling, and Computational Learning (PASCAL) [35] dataset of 2007 and 2008, and
an internally maintained dataset of images for the targeted categories. While the
PASCAL dataset contains annotations for person, bird, cat, cow, dog, horse, sheep,
aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table,
potted plant, sofa, and monitor, the four aforementioned classes were chosen since
persons and cars are typically objects that are of interest for critical infrastructure
protection applications, while birds and maritime vessels are of concern within
maritime situational awareness applications.

Matlab’s scaled conjugate gradient back-propagation method [36] was used for
training since the dataset is quite large and this method can tackle such data with
low memory consumption. The trained configuration was then implemented in a
custom optimized C++ module. Table 1 shows the training and testing results of

Table 1 Results of training and testing for each of the NN classifiers
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Person 
Tr 12684 96.2 46.3 3.7 49.2 0.83 

Ts 14976 59.8 21.9 28.1 34.0 16.0 

Maritime 
Vessel 

Tr 12889 98.8 38.2 11.8 50.0 0.01 

Ts 14976 96.5 11.8 38.2 49.2 0.76 

Car 
Tr 6904 98.3 38.5 11.5 50.0 0.01 

Ts 6347 89.7 8.6 41.4 47.7 2.37 

Bird 
Tr 6904 98.6 44.3 5.7 50.0 0.03 

Ts 6347 89.5 13.2 36.8 46.3 3.7 

(Tr Training; Ts Testing; AC Accuracy; CC Correct classification; TP True positive; FN False
negative; TN True negative; FP False negative)
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the designed classifiers. The classifiers were capable of classifying a significant
number of images that contain an object of a targeted category. As shown in Fig. 6,
the person classifier had the highest false positive rate Xk, n, for the kth object, Ok, n,
at frame n being chosen based on the highest activation output of all the classifiers
being used, while ensuring that there is a sufficient delta, α, between the activation
levels. If there is no single class dominant or if the dominant class has an activation
level below a threshold, β, then the classification of the object is considered to be
unknown, as in (3).

Xk, n =
arg max

i
ANNi Ok, nð Þf g, iff

ANNi Ok, nð Þ> β,
ANNi Ok, nð Þ−ANNj Ok, nð Þ�� ��> α, i≠ j

unknown, otherwise

8<
: ð3Þ

To prevent the effect of temporary misclassifications in the form of false posi-
tives and false negatives, a Bayesian inference predictor, (4), has been implemented
to perform temporal filtering of the ANN classifier output, where P(Xn |On) is the
probability that the object belongs to class X at time n given the current observation
On, L(Xn|On) is the likelihood that the observation O results in the classification X
for the current observation at time n (which is determined by the normalized output
of the ANN classifier) and P(Xn-1|On-1) is the probability that the object belongs to
class X observation O at the previous instant in time, n−1.

P XnjOnð Þ= P Xn− 1jOn− 1ð Þ ⋅ L XnjOnð Þ
P Xn− 1jOn− 1ð Þ ⋅ L XnjOnð Þ+ 1−P Xn− 1jOn− 1ð Þð Þ ⋅ 1− L XnjOnð Þð Þ ð4Þ

The object’s current class is decided by the dominant probability out of all
classes, including the unknown object class. Note that when the output of the MLP
is unknown, the Bayesian temporal filter is not updated in order to prevent situa-
tions that the classifier does not recognize, such as uneven lighting or occlusion,
from suppressing the current classification of the object.

Fig. 6 TP, TN, FP, FN
Values of testing on unseen
images
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An example demonstrating the effectiveness that Bayesian filtering has on the
classification of an object is shown in Table 2. This scenario catalogs the classi-
fication of a person object for 7 successive instances in time, with the MLP clas-
sification output and the Bayesian classification filter output. As can be observed,
the object is first detected with an unknown classification. In the second frame, the
correct classification of person with a probability of 0.6 is produced from the MLP,
and similarly for the Bayesian filter. At frame 3, the person is misclassified as a car
with a probability of 0.75, the Bayesian filter output is car, but with a lower
probability due to dissimilar classes reducing the confidence of classification. At the
4th, 5th, and 6th instances of time, the MLP output class is person with a varying
probabilities, these repeated observations increase the confidence in the objects
class being a person within the Bayesian classification filter, resulting in an output
classification of person at 0.88 probability at time 6. At time 7, the MLP yields a
misclassification with the output being bird with probability of 0.6. This only
slightly lowers the Bayesian output of person slightly to 0.83. This example shows
that temporary misclassification from the MLP do not affect the long term classi-
fication of an object thanks to the Bayesian classification filter, as long as there have
been repeated measurements from the correct classification to reinforce the class
belief.

3.3 Behavior Engine

The behavior engine module, as shown in Fig. 7, consists of a behavior analysis
unit that looks for specific behavior from certain classes of tracked objects, fol-
lowed by an annotation unit that generates an operator output in the form of an
annotated video frame and alerts, as well as a unit that generates a training frame for
feedback into the object extractor module.

The behavior analyzers that are currently implemented include intrusion detec-
tion, abandoned object, and counting object analyzers. The intrusion detection
analyzer monitors for the intrusion of a restricted zone (e.g. a preselected subregion

Table 2 An example
demonstrating the
effectiveness of Bayesian
filtering on classification

# MLP classification
output

Bayesian filter output

Class Prob. Class Prob.

1 Unknown 0.50 Unknown 0.50
2 Person 0.60 Person 0.60
3 Car 0.75 Car 0.67
4 Person 0.68 Person 0.52
5 Person 0.75 Person 0.76
6 Person 0.69 Person 0.88
7 Bird 0.6 Person 0.83
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of the image bounded by a polygon) by an object from a selected class, or classes.
When objects of the selected class are detected within this zone, it triggers an alert.
The abandoned object analyzer monitors for the separation of a smaller object from
a larger parent object of a specific class, or classes, within a particular predefined
subregion of the image space that is defined by a polygon. When this smaller object
remains stationary for a period of time within the monitoring zone, and it is sep-
arated by the parent object of a particular class, an alert is triggered. The counting
object analyzer counts the number of objects from a particular class or classes that
has crossed a predefined subregion of the image space indicated by a bounding
polygon.

The annotation unit marks up the video stream, highlighting objects and classes
of interest, as well as providing alerts based on the behavior analysis. The training
frame creation unit generates the training frame based on the background model, the
current frame, and the objects of interest produced from the behavioral analysis
unit, such that the background subtraction will not integrate objects of interest into
the background module. For the case of maritime vessels, as the wake generated in
the water is also considered foreground and part of the maritime vessel object
segment by the object extraction module. For objects of this class, the wake is
filtered using a color based filter (as a wake is generally light gray to white), thereby
allowing the integration of the wake into the background model, limiting future
detections to only the maritime vessel itself, and not the wake, while still preventing
the vessel from fading into the background. The produced training frame is then fed
back into the object extraction module, and the background model is adjusted
appropriately.

4 Case Studies: Critical Infrastructure Protection

In this work, three scenarios are considered. The first scenario, shown in Fig. 8a,
consists of monitoring a pair of dumpsters for their unauthorized usage. The second
scenario, shown in Fig. 8b, consists of monitoring a doorway for unauthorized

Background
Model

Training Frame

Annotated Frame

Video Frame

Create
Training Frame

AnnotationBehavior Analysis

Classified
Tracked Objects

Alerts

Objects of Interest

Fig. 7 Block diagram illustrating the behavior engine
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access. The final scenario, shown in Fig. 8c, monitors the entrance way of a port for
maritime vessels. In each scenario, the region of interest for monitoring intrusion is
a polygon that is drawn on the images in blue.

4.1 Scenario 1: Monitoring of a Dumpster

In this scenario, the dumpster is located at the rear of a building that will have
infrequent vehicular traffic. The region around the dumpster will be monitored for
objects of type person intruding within that zone, as when this occurs there may be
somebody putting garbage in the dumpster. When the operator receives the alert,
they must make a decision as to whether the person is authorized to use the
dumpster. Furthermore, as there is vehicular traffic expected, cars should not cause
alerts, but they should be prevented from fading into background, as cars should not
be permanent residents of the scene.

This scenario commences when a car enters from the bottom left corner and
drives up to the dumpster. A person then exits the car, grabs a bag of garbage,
tosses it into the garbage bin, and then drives away to the right. The car should still
be detected and classified, but it should not cause an alert, nor should it fade into the
background model. Furthermore, a person by the dumpster indicates a condition
that should be handled by an operator to ensure the person is authorized to use that
resource, and as a result an alert will be sent under this situation. The alert will
cease once the condition is alleviated, which occurs when the person leaves the
intrusion zone; when he enters the car and drives away.

4.2 Scenario 2: Monitoring of a Doorway

In this scenario, a doorway is monitored for intrusion by objects of type person.
When an object of type person is detected within this zone, an alert will be sent to
the operator, as this may indicate a possible attempt to access the building by an

Fig. 8 Demonstrating the three considered scenarios of a monitoring of a dumpster, b monitoring
of a doorway for suspicious activities, and c monitoring of a port for maritime vessels
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unauthorized individual. Additionally, objects of class person will have their recent
tracking history kept, indicated by the path followed by the bounding box centroid,
annotated for the operator to view the direction that the person came from where
they have visited. Furthermore, the abandonment of suspicious objects by a person
within this zone will be monitored, as this may indicate a potential danger.

This scenario commences when a person walks in from the right. This person
stops at the door, drops a bag, and then proceeds to walks away towards the left of
the scene. An alert should be triggered when the person intrudes upon the moni-
tored zone, which will cease when the he leaves it. Furthermore, after a period of
time, the abandoned bag left by the door by the person should trigger an abandoned
object alert. Throughout the whole scenario, the tracking history of the person
should be displayed indicating the path followed, and as the bag does not belong to
a known class, its classification should remain unknown. Both the abandoned object
and the person should not be integrated into the background model.

4.3 Scenario 3: Monitoring of a Port

In this final scenario, a port is monitored for intrusion of maritime vessels. Maritime
vessels are the object of interest, and as a result they should not fade into the
background model. When maritime vessels enter the port region, this will trigger an
alert to the operator, who should follow up by making sure that they are authorized
to access this particular zone. Furthermore, as it may be of interest to the operator to
determine the path that maritime vessels follow and as such the recent tracking
history indicating the centroid of the bounding box is shown for each maritime
vessel detected. Finally, any wake included with the segmented maritime vessel
should be integrated into the background model.

This scenario commences with a maritime vessel coming from the right hand
side, and entering the port. When the vessel crosses into the intrusion zone, an alert
is generated. Furthermore, a recent track history is displayed for this maritime
vessel, indicating where it has recently been located within the video feed.

5 Experimental Results

The scenarios described in Sect. 4 were captured using three different cameras and
frame rates. The first camera is a Vivotek security camera, capturing at a variable
frame rate at a resolution of 640 × 480, which was used to acquire the video of
Scenario 1. The second camera is a Logitech webcam, capturing at 30 fps at a
resolution of 640 × 480, which was used to acquire the video of Scenario 2. The
video in Scenario 3 was acquired from archival footage, and has a resolution of
848 × 480 at 30 fps. Each video was saved in the MP4 video format, and subse-
quently processed offline to allow for the repeatability and thorough analysis of the
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results. This is not to state that the system can only operate offline; in fact the
proposed system is capable of operating online in real-time in a wide range of
situations. The video processing algorithm was implemented in optimized C++,
using a combination of OpenCV and in-house libraries. The first three subsections
detail the results obtained from each of the three scenarios.

5.1 Scenario 1

The key moments of the first scenario are shown in Fig. 9, where the first column
contains the frame number for the corresponding row, the second column contains
the annotated output video frames, the third column contains the detected objects,
and the fourth column contains the feedback training frames. The car comes into
view and is classified as unknown in frame 246. In frame 249, it is correctly classified
as a car; notice that it has not been introduced into the background model. The car
continues moving until frame 297, where it stops. Notice that the car crossing into
the intrusion polygon does not trigger an alert, hence highlighting that the behavioral
module correctly distinguishes between classes when processing behaviors. In frame
387, an object that has been correctly classified as a person has exited the car with a
garbage bag in hand and is about to toss it into the dumpster. In frame 390, an alert is
generated as an intrusion has been detected by an object classified as a person, which
causes the intrusion polygon to alternate between blue, green, and red. In frame 447,
the person has reentered the car, and drives away in frame 479. Notice that in the
training images, the regions of the image that correspond to unknown objects, cars,
and persons have not been introduced into the feedback training image, thereby
preventing objects of potential interest from being incorporated into the background
model, even with the car being stationary for over 42 s.

Table 3 provides key moments of the classifier performance of the car object in
Scenario 1. The first column is the frame number that the classification took place
in, the second column indicates the classification of the object from the previous
frame (unknown with a probability of 0.5 by default for new objects), the third
column indicates the output classification and probability of the MLP ANN clas-
sifier, the fourth column is the current classification after the temporal Bayesian
inference filter has been integrated with the MLP ANN observation. The object is
first detected at frame 245, when it is classified as unknown with probability of
1.0000 by the MLP ANN classifier. As previously mentioned, since the Bayesian
temporal filter is not updated upon an unknown classification, the resulting clas-
sification is still unknown with a probability of 0.5000. This situation remains
unchanged until frame 249, when the MLP ANN finally recognizes the object as a
car with a probability of 0.9997. The output to the Bayesian filter becomes car with
a probability of 0.9997. In the following frame (#250), the MLP ANN classifier
produces another classification of car with a probability of 0.9997. This results in
the reinforcement of the Bayesian belief that the object is a car, but now with a
probability of 1.0000. In frame 285, the MLP ANN classifier produces a
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387 
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479 

Fig. 9 Demonstrating the annotation, segmentation, and training images with their corresponding
video frame # of key moments that occurred during Scenario 1
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misclassification with the class being person with a probability of 0.9997. Due to
the high belief that the Bayesian temporal classification filter currently has, the
resulting probability is still car with probability of 1.0000, thereby preventing the
misclassification from affecting the culminating classification, and any potential
action based on that classification.

These are demonstrably the expected results based upon the description made of
the scenario in Sect. 4.1, as well as the expected system behavior, illustrates the
correct operation of the classification-driven video analytics system.

5.2 Scenario 2

The key moments of the second scenario are shown in Fig. 10, using the same
column order as previously defined for Fig. 9. In frame 239, a person enters the
frame from the right and is initially misclassified as a bird. By frame 244, this
individual is now mostly in the scene and is correctly classified as a person. In
frame 276, he enters the region by the door, triggering an intrusion alert, causing the
outlining polygon to alternate between blue, green, and red. In frame 326, the
individual stops for a bit, and drops a bag. By frame 401, he has walked away from
the door, but the bag has been identified as an unknown object, still triggering the
intrusion alert. In frame 459, this unknown object has been determined to be an
abandoned object, which has created yet another alert, indicated by the thicker red
boundary around the object with an ‘A’ drawn in the interior. At frame 459, the
person has completely left the scene and the abandoned object is still triggering
both the intrusion alert, as well as the abandoned object alert. Furthermore, a track
in green indicating the individual’s center of gravity over time has been traced
through the scene. Finally, all objects corresponding to the person and unknown
classes have not been fed back into the training image, while other classes have,
such as when the individual was misclassified as a bird in frame 239, due to the
interest being on persons and unknown objects. This keeps both of the monitored
objects, person and unknown, from being integrated into the background model,
thereby allowing the detection, tracking, and behavior analysis to take place for
objects of these classes in subsequent frames.

Table 3 Demonstrating key instances in the classification of the car object in Scenario 1

Frame # Previous classification MLP ANN classifier
classification

Current classification

Class Prob. Class Prob. Class Prob.

245 Unknown 0.5000 Unknown 1.0000 Unknown 0.5000
249 Unknown 0.5000 Car 0.9997 Car 0.9997
250 Car 0.9997 Car 0.9997 Car 1.0000
285 Car 1.0000 Person 0.9997 Car 1.0000
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Fig. 10 Demonstrating the annotation, segmentation, and training images with their corresponding
video frame # of key moments that occurred during Scenario 2
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Table 4 provides key moments of the classifier performance of the person object
in Scenario 2. The organization is identical to that previously described for Table 3.
In this scenario, the person object first enters the scene at frame 217, where it is
classified as unknown with a probability of 1.0000. However in frame 231, this
object is misclassified as bird with a probability of 0.7470 by the MLP ANN
classifier, resulting in the output classification of bird by the Bayesian temporal
filter. The following frame, the MLP ANN resumes its classification of the object as
unknown with a probability of 1.0000, but as previously discussed, the Bayesian
temporal classification filter is not updated when the MLP ANN classification is
unknown. In frame 244, the MLP ANN classifier finally correctly classifies the
output as a person with probability of 0.9310, which results in the output of the
Bayesian filter of person with a probability of 0.8206. In each of the two following
frames, number 245 and 246, the MLP ANN classifier produces a classification of
person with probabilities of 0.9271 and 0.9995 respectively. This reinforces the
Bayesian belief that the correct classification is person with the probabilities
evolving to 0.9831 and 1.0000 in those two successive frames. In frame 271, the
MLP ANN classifier produces a misclassification of bird with a probability of
0.8311, which does not affect the Bayesian belief that the object is a person with a
probability of 1.0000, thereby further demonstrating the benefit of the temporal
Bayesian classification filter.

Again, these results demonstrate the correct operation of the classification-driven
video analytics system by following the expected behavior as presented in Scenario
2 described in Sect. 4.2.

5.3 Scenario 3

As with Fig. 9 from Scenario 1, Fig. 11 illustrates the key moments in Scenario 3.
This scenario begins with a maritime vessel approaching from the right hand side of
the scene. The object extraction algorithm does not initially detect the object when

Table 4 Demonstrating key instances in the classification of the person object in Scenario 2

Frame # Previous classification MLP ANN classifier
classification

Current classification

Class Prob. Class Prob. Class Prob.

217 Unknown 0.5000 Unknown 1.0000 Unknown 0.5000
231 Unknown 0.5000 Bird 0.7470 Bird 0.7470
232 Bird 0.7470 Unknown 1.0000 Bird 0.7470
244 Bird 0.7470 Person 0.9310 Person 0.8206
245 Person 0.8206 Person 0.9271 Person 0.9831
246 Person 0.9831 Person 0.9995 Person 1.0000
271 Person 1.0000 Bird 0.8311 Person 1.0000
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it is introduced in frame 355, due to the object having much similarity with the
background, and what is not similar is small, and hence discarded as noise.
However on frame 496, the object is finally detected, and successfully classified as
a maritime vessel, where it is prevented from being integrated into the background
model, as shown in the corresponding training image. The vessel travels for a while,
and enters the intrusion zone about the port in frame 1052, thereby triggering an
alert. Furthermore, the tracking history is annotated, as indicated by the line that
follows the maritime vessel’s bounding box centroid. In frame 1281, the vessel is
part way through the intrusion zone, where the alert is still being raised, and the
tracking history is still being shown. In frame 1418, the vessel is almost out of the

# Annotated Frame Segmented Image Training Image 

355 

496 

1052

1281

1418

1621

Fig. 11 Demonstrating the annotation, segmentation, and training images with their corresponding
video frame # of key moments that occurred during Scenario 3

Classification-Driven Video Analytics … 65



intrusion zone, with the alert still being raised. By frame 1621, the vessel has
completely left the scene, and the alert has ceased. Furthermore the recent tracking
history for the vessel is still being displayed. Notice that the track does not intersect
with the edge of the scene, as the object becomes too small, and is dropped, before
it completely leaves the scene. Finally, during each instance shown, when the object
is classified as maritime vessel, the vessel is not integrated into the background
model, but the wake is introduced to the training frame, allowing for the possibility
of still monitoring it if it ceases motion and stops, while ignoring the wake.

Table 5 provides key moments of the classifier performance of the maritime
vessel object in Scenario 3, with the organization being identical to that previously
described for Table 3 from Scenario 1. As previously shown in Fig. 11, the object is
first detect in frame 496, and is assigned the maritime vessel class with probability
0.5671. Until frame 506, the belief in the maritime vessel class has been reinforced
to a level of 0.6872, when the MLP returns a classification of unknown with a level
of 0.5269. As previously described, unknown classification does not change the
values of the Bayesian classification filter; hence the classification is still maritime
vessel with the previous probability. By frame 612, the object has been completely
reinforced through repeated measurements to be of class maritime vessel with
probability of 1.0000, with no misclassifications, aside from the occasional
unknown, from occurring.

The results presented in this subsection indicate that the classification-driven
video analytics system is able to operate in both land-based and maritime-based
environments. Additionally, the expected outcome of Scenario 3 described is
Sect. 4.3 was met, further verifying the correct operation of the system.

6 Conclusion

The proposed classification-driven video analytics system correctly extracts inter-
esting objects from the scene. It then tracks, classifies, determines the behavior of
these objects. Finally, the system provides relevant alerts to the operator so that a
potential action can be determined and eventually enacted. The performance of the
proposed system was demonstrated in the three scenarios presented in Sect. 4 of this
work. Furthermore, the system was shown to operate effectively in different types of

Table 5 Demonstrating key instances in the classification of the maritime vessel object in
Scenario 3

Frame # Previous classification MLP ANN classifier
classification

Current classification

Class Prob. Class Prob. Class Prob.

496 Unknown 0.5000 Maritime vessel 0.5671 Maritime vessel 0.5671
506 Maritime vessel 0.6872 Unknown 0.5269 Maritime vessel 0.6872
612 Maritime vessel 0.9997 Maritime vessel 0.8485 Maritime vessel 1.0000
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operational environments, namely land based (Scenarios 1 and 2) and maritime
based (Scenario 3).

In the proposed object extraction module, objects of interest are extracted based
on the MoG background subtraction technique. A combination of Kalman tracking
and greedy nearest neighbor matching is then used to track these objects throughout
an image sequence, which is clearly demonstrated in the results where a track is
drawn that follows the motion of the person through the scene in Scenario 2, and a
track is drawn that follows the motion of the maritime vessel in Scenario 3. These
tracked objects are then classified. The proposed classification module contains four
accurate parallel ANN classifiers for the following classes: car, person, bird, and
maritime vessel in a one versus all configuration. In order mitigate the inevitable
small amounts of misclassification, and improve both the reliability and stability of
the end classification; a temporal Bayesian filter is applied to reduce the effect of
these occasional misclassifications. This was demonstrated in Scenario 1 where the
car was misclassified as a person in frame 285, but the output from the Bayesian
filter was still a car, and additionally demonstrated in Scenario 2 where the person
was initially considered a bird in frame 231, but later confirmed to be a person in
frame 244.

After the objects have been classified, they are processed by the proposed
behavior analysis module. In Scenario 1 that monitors the dumpster; cars do not
trigger an intrusion alert, but are still monitored. On the other hand, the person does
trigger the intrusion alert, thereby demonstrating that behavior can be determined
for each object on a per class basis. In Scenario 2, the person crosses into the
intrusion region, which triggers an alert. Furthermore, the person leaves a bag
behind, which continues the intrusion alert, while also producing an abandoned
object alert, further demonstrating the capability of the system to simultaneously
monitoring for different types of behaviors. In Scenario 3, the maritime vessel enters
the intrusion zone triggering an alert.

The knowledge of behaviors and object classes is fed back into the MoG seg-
menter by adjusting the training image to not contain objects that are of interest for
the particular monitoring application, and hence reducing the chance of forgetting,
or not observing, interesting objects that could be of highest importance for critical
infrastructure protection. Furthermore, in Scenario 3, the wake is introduced into
the background model, while preventing the vessel from being integrated,
demonstrating the efficacy of a color based filter for handling features with uniform
color profiles such as wake.

Future enhancements are being planned for the current system. Firstly, the
segmenter will be enhanced to handle more dynamic scenes with camera move-
ment, which will permit a greater range of applicable scenarios. Secondly, the
computer vision techniques will be made more illumination-invariant such that they
can handle greater light variation across the scene, which will improve performance
within a wider variety of uncontrolled environments. The classification module will
be enhanced to handle more classes of objects, as well as determine additional
properties of classes. Finally, the addition of further in-depth behavior analysis
capability will be developed, such as vandalism and fire detection.
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Fuzzy Decision Fusion and Multiformalism
Modelling in Physical Security Monitoring

Francesco Flammini, Stefano Marrone, Nicola Mazzocca
and Valeria Vittorini

Abstract Modern smart-surveillance applications are based on an increasingly
large number of heterogeneous sensors that greatly differ in size, cost and reliability.
System complexity poses issues in its design, operation and maintenance since a
large number of events needs to be managed by a limited number of operators.
However, it is rather intuitive that redundancy and diversity of sensors may be
advantageously leveraged to improve threat recognition and situation awareness.
That can be achieved by adopting appropriate model-based decision-fusion
approaches on sensor-generated events. In such a context, the challenges to be
addressed are the optimal correlation of sensor events, taking into account all the
sources of uncertainty, and how to measure situation recognition trustworthiness.
The aim of this chapter is twofold: it deals with uncertainty by enriching existing
model-based event recognition approaches with imperfect threat modelling and with
the use of different formalisms improving detection performance. To that aim, fuzzy
operators are defined using the probabilistic formalisms of Bayesian Networks and
Generalized Stochastic Petri Nets. The main original contributions span from sup-
port physical security system design choices to the demonstration of a multifor-
malism approach for event correlation. The applicability of the approach is
demonstrated on the case-study of a railway physical protection system.
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1 Introduction

In modern society, the assurance of a secure environment is of paramount impor-
tance due to the growing risk factors threatening critical infrastructures. For that
reason, the number and the diversity of sensors used in modern wide-area surveil-
lance are continuously increasing [1]. The types of sensors include environmental
probes (e.g., measuring temperature, humidity, light, smoke, pressure and acceler-
ation), intrusion sensors (e.g., magnetic contacts, infrared/microwave/ultrasound
motion detectors) Radio-Frequency Identifiers (RFID), geographical position
detectors, Smart-cameras and microphones with advanced audio-video analytics
capabilities and Chemical Biological Radiological Nuclear and explosive (CBRNe)
detectors.

Different types of sensing units are often integrated in smart-sensors that can be
part of a Wireless Sensor Networks (WSN); these sensors can also feature on-board
‘intelligence’ through programmable embedded devices with dedicated operating
systems, processors and memory [2, 3].

Such a wide range of sensors provides a large quantity of heterogeneous
information. The information supports Physical Security Information Management
(PSIM) operators by using pre-processing, integration and reasoning techniques. In
a contrary case, there is a serious risk of overwhelming the operators with
unnecessary warnings or alarms: they would not be able anymore to perform their
task and they could underestimate critical situations [4, 5].

In such a context, (semi-)automatic situation recognition becomes essential. The
reliability assurance of sensor networks has been dealt with several approaches, first
of them the sensor information fusion approach. There are many scientific works in
this field [6, 7, 8]; this notwithstanding, this chapter focuses on multiformalism
technique that, at the best of our knowledge, has received little attention by the
scientific community.

However, not much work has been done in the research literature to develop
frameworks and tools aiding surveillance operators to take advantage of recent
developments in sensor technology. In other words, most researchers seem to
ignore the apparent paradox according to which more complex is the sensing
system, more complex are the tasks required to manage and verify their alarms by
the operators.

The challenges to be addressed are the optimal correlation of sensor events,
taking into account all the sources of uncertainty (i.e. imperfect threat modelling,
sensor false alarm probability, etc.), and how to measure situation recognition
trustworthiness. Those challenges can only be addressed using fuzzy probabilistic
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modelling approaches since ‘exact’ modelling do not allow to represent those
uncertainties.

We have addressed the issue of automatic situation recognition by developing a
framework for model-based event correlation in infrastructure surveillance. The
framework—named DETECT (DEcision Triggering Event Composer & Tracker)—
is able to store in its knowledge base any number of threat scenarios described in
the form of Event Trees, and then recognize those scenarios in real-time, providing
early warnings to PSIM users [9, 10].

In this paper, we adopt a model-based evaluation approach supporting the
quantitative assessment of DETECT effectiveness in reducing the number of false
alarms and in increasing the overall trustworthiness of the surveillance system. The
evaluation is dependent on sensor technologies and scenario descriptions, and it is
based on stochastic modelling techniques. Some mappings are performed from
Event Trees to other formalisms like Fault Trees (FT), Bayesian Networks (BN),
Petri Nets (PN) and their extensions. Those formalisms are widespread in
dependability modelling and allow engineers to perform several useful analyses,
including ‘what if’ and ‘sensitivity’, accounting for false alarms and even sensor
hardware faults.

The choice of these formalisms relies on a comparison of their modelling power
and efficiency: a complete report about this comparison is in [11]. In brief, FTs are
very easy to build and analyse, but they have a limited modelling power. On the
other hand, PNs feature a great expressive power but they are limited by the
well-known state-space explosion problem. BNs represent a good trade-off between
those two extremes. The practice of multiformalism modelling, i.e. the integration
of different formal modelling languages into a single composed model, has proven
to be effective in several applications of dependability [12] and safety [13] evalu-
ation. This paper describes a multiformalism approach for the evaluation of
detection probabilities using Bayesian Networks and Generalized Stochastic Petri
Nets (GSPN).

Generally speaking, the method used for the analysis, which is the main original
contribution of this paper, allows to:

• Support design choices in terms of type and reliability of detectors, redundancy
configurations, scenario descriptions.

• Demonstrate the effectiveness of the overall approach in practical surveillance
scenarios, in terms of improved trustworthiness in threat detection with respect
to single sensors;

• Define fuzzy event-correlation operators able to detect threat events in noisy
environments;

• Define multiformalism approaches for event correlation allowing the combined
exploitation of modelling power and solution efficiency of different formalisms.

A threat scenario of a terrorist attack in a metro railway station is considered, to
show the practical application of the methodology.

The rest of this paper is structured as follows. Section 2 provides an overview of
the related literature on DETECT and trustworthiness evaluation of surveillance
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systems. Section 3 describes the general fuzzy process used for the analysis. Sec-
tion 4 customizes the general process to the Bayesian Networks modelling for-
malism as well as to Petri Nets (Sect. 5). Section 6 presents a multiformalism
approach exploiting the power of both BNs and GSPNs. Section 7 introduces the
case-study application using a metro-railway threat scenario. Section 8 summarizes
the results of the analyses and discusses the achievements. Finally, Sect. 9 provides
conclusions and hints about future developments.

2 Background

2.1 Related Works

The first concept of DETECT has been described in [9], where the overall archi-
tecture of the framework is presented: it includes the composite Event Description
Language (EDL), the modules for the management of detection models and the
scenario repository. In [10], an overall system including a middleware for the
integration of heterogeneous sensor networks is described and applied to railway
surveillance case-studies. Reference [14] discusses the integration of DETECT in a
PSIM system [15], presenting the reference scenario that will be also used in this
paper. To detect redundancies while updating the scenario repository (off-line issue)
and to increase the robustness of DETECT with respect to imperfect modelling
and/or missed detections (on-line issue), distance metrics between Event Trees are
introduced in [16].

A survey of state-of-the-art in physical security technologies and advanced
surveillance paradigms, including a section on PSIM systems, is provided in [17].
Contemporary remote surveillance systems for public safety are also discussed in
[18]. Technology and market-oriented considerations on PSIM can be also found in
[19, 20].

In [21] the authors address the issue of providing fault-tolerant solutions for
WSN, using event specification languages and voting schemes; however, no
model-based performance evaluation approach is provided. A similar issue is
addressed in [22], where the discussion focuses on different levels of
information/decision fusion on WSN event detection using appropriate classifiers
and reaching a consensus among them in order to enhance trustworthiness.
Reference [23] describes a method for evaluating the reliability of WSN using the
FT modelling formalism, but the analysis is limited to hardware faults (quantified
by the Mean Time Between Failures, MTBF) and homogenous devices (i.e. the
WSN motes). Performance evaluation aspects of distributed heterogeneous
surveillance systems are instead addressed in [24], which only lists the general
issues and some pointers to the related literature. Reference [25], about the trust-
worthiness analysis of sensor networks in cyber-physical system, is apparently one
of the most related to the topics of this paper, since it focuses on the reduction of
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false alarms by clustering sensors according to their locations and by building
appropriate object-alarm graphs; however, the approach is quite different from the
one of DETECT and furthermore it applies to homogeneous detectors. Another
general discussion on the importance of the evaluation of performance metrics and
human factors in distributed surveillance systems can be found in [26]; however, no
hints are provided in that paper about how to perform such an evaluation on real
systems.

Regarding the dependability modelling approach used in this paper, it is based
on the results of the comparison among formalisms (i.e. Fault Trees, Bayesian
Networks and Stochastic Petri Nets) in terms of modelling power and solving
efficiency that has been reported in [11], and also applied in [13] to a different
case-study using an approach known as ‘multiformalism’. Some applications to
physical security are in [27, 28] respectively exploiting GSPNs and BNs.

In recent years, the scientific community has also attempted to raise the
abstraction level of modelling approaches and to combine high-level modelling
with formal methods using model-driven techniques. These approaches rely on
meta-modelling and model-transformation techniques: UML-CI is proposed to
model critical infrastructures focusing on management aspects [29]; CIP_VAM is a
recent UML profile addressing the physical protection of critical infrastructures and
providing tool support for the automatic generation of vulnerability models based
on Bayesian Networks [30]; SecAM extends MARTE and MARTE-DAM in order
to allow security specification and modelling of critical infrastructures and to enable
survivability analysis [31].

2.2 Event Description Language

Threats scenarios are described in DETECT using a specific Event Description
Language (EDL) and stored in a Scenario Repository. In such a way, it is possible
to store permanently all scenarios using an interoperable format (i.e. XML).
A high-level architecture of the framework is depicted in Fig. 1.

A threat scenario expressed by EDL consists of a set of basic events detected by
the sensing devices. An event is a happening that occurs at some locations and at
some points in time. Events are of course related to sensor data (i.e. temperature

Fig. 1 The DETECT framework
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higher than a pre-set threshold). Events are classified as primitive events and
composite events.

A primitive event is a condition on a specific sensor that is associated with some
parameters (e.g., event identifier, time of occurrence). A composite event is a
combination of primitive events using specific operators. Each event is denoted by
an event expression, whose complexity grows with the number of involved events.
Given the expressions E1,E2, . . . ,En, each application on them through any
operator is still an expression. Event expressions are represented by Event Trees,
where primitive events are the leaves, and internal nodes represent EDL operators.

DETECT can support the composition of complex events in EDL through a
Scenario GUI (Graphical User Interface), used to draw threat scenarios using a
user-friendly interface. Furthermore, in the operational phase, a model manager
macro-module has the responsibility of performing queries on the Event History
database for the real-time feeding of detection models corresponding to threat
scenarios, according to predetermined policies. Those policies, namely parameter
contexts, are used to set a specific consumption mode of the occurrences of the
events collected in the database.

The EDL is based on the Snoop event algebra [32], considering the following
operators: OR, AND, ANY, SEQ. As an example, Fig. 2 shows a simple event tree
representing the scenario (E1 AND E2) OR E3.

The semantics of the Snoop operators are as follows:

• OR. Disjunction of two events E1 and E2, denoted (E1 OR E2). It occurs when at
least one of its components occurs.

• AND. Conjunction of two events E1 and E2, denoted (E1 AND E2). It occurs
when both events occur (the temporal sequence is ignored).

• ANY. A composite event, denoted ANYðm,E1,E2, . . . ,EnÞ, where m ≤ n. It
occurs when m out of n distinct events specified in the expression occur (the
temporal sequence is ignored).

• SEQ. Sequence of two events E1 and E2, denoted (E1 SEQ E2). It occurs when
E2 occurs provided that E1 has already occurred. This means that the time of
occurrence of E1 has to be less than the time of occurrence of E2.

Fig. 2 A simple event tree
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Furthermore, temporal constraints can be specified on operators, to restrict the
time validity of logic correlations. In order to take into account appropriate event
consumption modes and to set how the occurrences of primitive events are pro-
cessed, four parameter contexts are defined. Given the concepts of initiator (the first
constituent event whose occurrence starts the composite event detection) and ter-
minator (the constituent event that is responsible for terminating the composite
event detection), the four different contexts are described as follows: (1) Recent,
only the most recent occurrence of the initiator is considered; (2) Chronicle, the
(initiator, terminator) pair is unique. The oldest initiator is paired with the oldest
terminator; (3) Continuous, each initiator, starts the detection of the event; and
(4) Cumulative, all occurrences of primitive events are accumulated until the
composite event is detected.

The effect of the operators is then conditioned by the specific context in which
they are placed. When a composite event is recognized, the output of DETECT
consists of:

• the identifier(s) of the detected/suspected scenario(s)1;
• the temporal value related to the occurrence of the composite event (corre-

sponding to the event occurrence time of the last component primitive event,
given by the sensor timestamp);

• an alarm level (optional), associated with scenario evolution (used as a progress
indicator and set at design time);

• other information depending on the detection model (e.g., ‘likelihood’ or ‘dis-
tance’, in case of heuristic detection).

3 Fuzzy Decision Modelling Process

The advantage of the modelling and analysis activity is twofold. On one hand, it can
be used during the design phase since it allows to evaluate quantitatively different
design options for sensing and decision mechanisms allowing cost/effectiveness
trade-off in protection systems design. In fact, the sensing strategies can differ in the
number of sensors, in their reliability and/or their event detection performance;
decision options are related to the logics that can be applied for correlating primitive
events. On the other hand, the model can be used at run-time due to the possibility
of tuning the models using data collected in the operational phase (i.e. event history
log files merged with operator feedback about false negative/positive), allowing
incremental refinement of detection models.

1The difference between detected and suspected scenario depends on the partial or total matching
between the real-time event tree and the stored threat pattern.
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Figure 3 shows how the aforementioned objectives can be achieved in an
integrated process, in which both the monitored and monitoring systems are rep-
resented using probabilistic modelling formalisms.

Fuzzy model evaluation enables two possibilities:

• When used at design-time, the analyses can be used to compute the probability
of having an alarm and its confusion matrix (i.e. the false positive and false
negative probabilities). Such information can be used to improve the system by
using more accurate or redundant sensors.

• When used at run-time, the detected events can be used as the evidence in the
models. In such a way, the probability that the configuration of the primitive
events is representative of the composite event (i.e. the threat scenario) can
be dynamically adapted. Consequently, alarms can be generated only when the
confidence in the detection is greater than a certain threshold.

It is essential to develop an appropriate modelling methodology supporting the
design phase. In the context of surveillance systems trustworthiness evaluation,
models of interest can be structured in layers as depicted in Fig. 4.

The three layers of fuzzy models are:

• Event layer: this layer is devoted to modelling the actual cause-consequence
relations in real environments. It determines how complex situations can be
broken down into basic events. It is usually the output of physical security

Fig. 3 The modelling and analysis process
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surveys, vulnerability analysis and risk assessment. In its most trivial form, it is
constituted by the sequence of basic events associated with a threat scenario.

• Sensing layer: this layer models the sensors as objects with their characteristics
(e.g., event detection capabilities, hardware reliability, detection performance)
and the basic sensing actions with respect to the events identified in the lower
layer.

• Decision layer: this layer addresses the (probabilistic) combination of simple
events using EDL operators. It is important to notice that this layer is built on
top of the Sensing layer, since it does not deal with events occurring in the
reality but with the ones generated by the sensing system. Those events can be
different according to sensor types, deployment granularity, and detection
performance.

In this context, some general concepts can be refined. Let us define: A, the set of
the alarms associated to threat scenarios; S, the set of the sensors; E, the set of the
events that can occur in the real environment; a ∈ A, e ∈ E, s ∈ S.

4 Instantiating the Process with Bayesian Networks

In this Section, we instantiate the process schema shown in Fig. 5 using the BN
formalism, which is especially suited to be adopted in situation recognition sce-
narios like the one we are addressing in this paper.

Fig. 4 Fuzzy model layered
structure
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4.1 Process Customization

The customization of the process presented in Sect. 3 to the BN formalism is
provided in Fig. 5.

Three different indexes can be computed by solving the BN model [33]:

• Prior probability, P(a), that is the likelihood of occurrence of an alarm before
any evidence relevant to the alarm has been observed. This index is the prob-
ability that an alarm is raised and it may be used at the design time of a PSIM
system to predict the expected alarm rate, provided that the rate of primitive
events is known a priori (or somehow predictable).

• Posterior probability, P(a | e, s), that is the conditional probability that an alarm
is raised after some evidence is given. This index represents the probability of
having an alarm in specific conditions, e.g., when some events happen (e.g.,
intrusion) and some others are generated by the surveillance system (e.g., sensor
failure). It is useful at both design- and run- times. When used at design time it
can be used to evaluate the performance of the detection system (i.e. the con-
fusion matrix2). Also, the Posterior probability may be used to perform a

Fig. 5 Customization of the process to the BN formalism

2In this case of event detection, the confusion matrix accounts for binary events which can be true
(i.e. occurred) or false. In DETECT, the positive false probability is given by P(a = true | e = false)
while the negative false probability is P(a = false | e = true).
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‘what-if’ analysis to evaluate the performance degradation in case of sensor
failures. When used at run-time, a posterior analysis on the model fed with real
evidence of events and/or sensor failures may provide a surveillance operator
with alerts if probabilities are higher than a certain threshold.

• Likelihood, P(e | a, s), that is the probability of observing an element of E(real
threat scenario) given evidence in A and S. In practice, it can be used to
determine the probability that the alarm is trustworthy given that it has been
generated. This kind of analysis is useful at run-time since it can support the
decision making of the operators.

In the customization of the general process, prior-probability is used for
design-time analysis while likelihood and posterior analysis are used in the context
of run-time analysis.

4.2 Fuzzy BN Model Structure

The layered model presented in Sect. 3 is implemented by a Bayesian Network
where the BN nodes modelling the elements of the Event Layer are at the bottom,
the ones representing the Sensing Layer are in the middle, the ones translating EDL
operators in the Detection Layer are on the top.

The mapping between EDL and BN is based on the following rules.

BN_R1: for each event e ∈ E, a Boolean BN node N(e) is created: the variable is
‘true’ when the related attack event e occurs, ‘false’ otherwise. Let pr(e)
be the probability of occurrence of the event (computed by the ratio of
the occurrence period T(e) and the reference time unit), the Conditional
Probability Table (CPT) of this kind of node is represented in Table 1.

BN_R2: for each sensor s ∈ S, a ternary {true, false, unknown} BN node N(s) is
created: the variable is ‘true’ when the sensor s is working properly,
‘false’ otherwise. Assuming pr(e) is the probability that the sensor is
failed, the CPT of this kind of node is represented in Table 2. The value
of pr(e) is computed by the formula MTBF(s)/(MTBF(s) + MTTR(s))

Table 1 CPT of the node
translating event

N(e)
True False

pr(e) 1-pr(e)

Table 2 CPT of the node
translating sensors

N(s)
True False

1-pr(s) pr(s)
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where MTBF(s) is the Mean Time Between Failures and MTTR(s) is the
Mean Time To Repair of the sensor.

BN_R3: When a sensor s ∈ S is in charge of detecting an event e ∈ E, a ternary
{true, false, unknown} BN node ND(s, e) is created having as parents
both N(s) and N(e) as in Fig. 6. The variable is ‘true’ when the sensor
s detects the event, ‘false’ if it is detecting an event not occurring,
unknown if no information comes from the sensor. Assuming fnp(s) and
fpp(s) respectively the false negative and the false positive probabilities,
the CPT of this kind of node is represented in Table 3.

BN_R4: for each a∈ A, a ternary {true, false, unknown}BN node is generated,
namely N(a). The Parents and the CPT of these nodes are determined
according to the position of the operator inside the detection tree and to
the nature of the operator:

a. let PE(a) and PA(a) be the sets of the events and of the alarms on the
event tree preceding a. The set of the parents of N(a) is ND(s, x) ∪ N(y)
where x ∈ PE(a), s is in charge of detecting x, and y ∈ PA(a);

b. the CPTs are built according to the nature of the operator. Bayesian
Networks allow the definition of operators implementing either
‘sharp’ or ‘fuzzy’ logics, including AND (Table 4), ANY (Table 5),
noisy-AND (Table 6).

The DETECT framework allows associating a certain amount of uncertainty to
operators, implementing a sort of fuzzy event composition. This is easily modelled
with BN using the so-called ‘noisy logic gates’, in which the correlation of events is
affected by a ‘modelling confidence’ error:0 < k < 1. In case of error (with prob-
ability k), we suppose an equal probability distribution for all the other cases. As an
example, Table 6 describes the CPT for the noisy-AND operator.

Fig. 6 BN pattern for the
sensing layer

Table 3 CPT of ND(s,e) BN
node

N(e) N(s) ND(s,e)
True False Unknown

False Down 0 0 1
False Ok fpp(s) 1-fpp(s) 0
True Down 0 0 1
True Ok 1-fnp(s) fnp(s) 0
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Table 4 CPT of the AND
operator

E1 E2 AND
True False Unknown

False False 0 1 0
False True 0 1 0
False Unknown 0 1 0
True False 0 1 0
True True 1 0 0
True Unknown 0 0 1
Unknown False 0 1 0
Unknown True 0 0 1
Unknown Unknown 0 0 1

Table 5 CPT of the ANY
operator

E1 E2 E3 ANY
True False Unknown

True True True 1 0 0
True True False 1 0 0
True True Unknown 1 0 0
True False True 1 0 0
True False False 0 1 0
True False Unknown 0 0 1
True Unknown True 1 0 0
True Unknown False 0 0 1
True Unknown Unknown 0 0 1
False True True 1 0 0
False True False 0 1 0

False True Unknown 0 0 1
False False True 0 1 0
False False False 0 1 0
False False Unknown 0 1 0
False Unknown True 0 0 1
False Unknown False 0 1 0
False Unknown Unknown 0 0 1
Unknown True True 1 0 0
Unknown True False 0 0 1
Unknown True Unknown 0 0 1
Unknown False True 0 0 1
Unknown False False 0 1 0
Unknown False Unknown 0 0 1
Unknown Unknown True 0 0 1
Unknown Unknown False 0 0 1
Unknown Unknown Unknown 0 0 1
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Please note that, as combinatorial formalisms, Fault Trees and Bayesian Net-
works cannot precisely model the SEQ operator since they do not allow taking into
account state and time dependent properties. To overcome such a limitation, more
powerful formalisms are needed, like Dynamic Bayesian Networks or Petri Nets.
However, it is possible to approximate an SEQ operator by an AND. In fact, since
the SEQ requires the occurrence of events in a certain order, the set of cases in
which e.g., SEQ(E1, E2) is true is a subset of the set in which AND(E1, E2) is true.
Thus, by substituting the SEQ with AND in the trustworthiness model, we are
overestimating the false positive rate for the specific scenario.

5 Instantiating the Process with Petri Nets

In this Section we instantiate the process schema shown in Fig. 3 using the GSPN
formalism [34], which introduces a higher level of complexity but it is able to cope
with all cases of situation recognition, including the ones that can only be
approximated by BNs.

5.1 Process Customization

The customization of the process presented in Sect. 3 to the GSPN formalism is
provided in Fig. 7.

In the context of this work, analysing a GSPN means evaluating the steady-state
probability of threat detection. In particular, two different steady-state measures are
relevant and widespread in most GSPN applications: mean number of tokens in
places and throughput of transitions. These measures can be used for the scope of
this work in two different contexts:

Table 6 CPT of the
noisy-AND operator

E1 E2 Noisy-AND
True False Unknown

False False k/2 1−k k/2
False True k/2 1−k k/2
False Unknown k/2 1−k k/2
True False k/2 1−k k/2
True True 1−k k/2 k/2
True Unknown k/2 k/2 1−k
Unknown False k/2 1−k k/2
Unknown True k/2 k/2 1−k
Unknown Unknown k/2 k/2 1−k
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• @design-time, there is no observation of occurred events, the GSPN measures
computing P(a) are evaluated without an initial marking.

• @run-time, by setting the correct initial marking both P(a | e, s) and P(e| a, s)
probabilities can be computed.

5.2 Fuzzy GSPN Model Structure

The layered model presented in Sect. 3 is replaced by a GSPN model where the
GSPN subnets translating elements of the Event Layer are at the bottom, the ones
representing the Sensing Layer are in the middle, and the ones translating EDL
operators in the Detection Layer are on the top. The model structure is a simpli-
fication of the model introduced in [27].

The mapping between EDL and GSPN is based on the following rules.

GSPN_R1: for each event e ∈ E, a GSPN pattern is generated as shown in Fig. 8.
The pattern is constituted by a place Pl(e) and an exponentially dis-
tributed timed transition Tr(e) connected by two arcs (ordinary and
inhibitor). The rate of the transition is set to 1/T(e) (the inverse of the
occurrence period of e).

Fig. 7 Customization of the process using the GSPN formalism
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GSPN_R2: for each sensor s∈ S, a GSPN pattern is generated as shown in Fig. 9.
The rule generates the Net(s) subnet constituted by two places and two
timed stochastic transitions representing the classical up-down model
for components subject to failure and repair.

GSPN_R3: when a sensor s ∈ S is in charge of detecting an event e ∈ E, the subnet
Net(s,e) of Fig. 9 is used, that represents the appropriate pattern. This
subnet is connected to the one translating the Event layer using the
place Pl(e). In Net(s,e), only the false negative probability is shown to
keep the model simple. It is important to underline that the model
needs the specification of the time TD(s,e) for completing the detection
of the event e by sensor s: this value is the inverse of the rate of the
Detecting transition. The detection network ends with a place D(s,e),
containing a token if the event e is detected by the sensor s.

GSPN_R4: for each a ∈ A, a GSPN subnet is generated:

a. let PE(a) and PA(a) respectively be the sets of the events and of the
alarms on the event tree that precede a. The GSPN subnet trans-
lating a is connected to the D(s,e) places of the nets translating
elements of PE(a) and to the D(a) places of the nets translating
elements of PA(a);

Fig. 8 Event GSPN pattern

Fig. 9 Sensor related
GSPN patterns
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b. the specific subnets implementing the EDL detecting operators in
GSPN are built according to the nature of the operators. Some
examples are: ordinary AND (Fig. 10), SEQ operator (Fig. 11), and
noisy-AND operator (Fig. 12). All the nets are built under the
hypothesis that the operator works on the event e1 and the result of
a1 (another detection operator).

To fully translate EDL into a GSPN models, further subnets are required to reset
properly the network. The details of such ‘control networks’ as well as the criteria
of analysis are discussed in reference [27].

Fig. 10 GSPN pattern for the
AND operator

Fig. 11 GSPN pattern for the
SEQ operator
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6 A Multiformalism Unifying Process

This section provides a possible approach based on a multiformalism paradigm.
Multiformalism is a technique in which more formal languages are jointly
employed to model a (typically complex) system. In the context of this work, two
different ways to translate EDL into BN and GSPN models have been presented,
each one with specific strengths and limitations.

By exploiting the advantages of both languages, it is possible to define a solution
process for EDL associating the most suitable formalism for each sub-tree. In
particular, we focus our attention on the following points: (1) BNs are easier to
analyze, scale better with respect to model size and are easier to analyze during
run-time; moreover, BN models allow easier modeling of false-positive detection
behaviors; (2) GSPNs are able to deal with time both in explicit (e.g., duration of
detection activities) and implicit (e.g., precise sequence of events) forms.

A simple exploitation of these criteria in the construction of a multiformalism
approach is based on the following solution steps:

1. Each minimal sub-tree st of the EDL tree model containing a SEQ operator, and
that is not contained in another sub-tree, is translated into a GSPN mode Net(st).

2. Each Net(st) is solved and the probability of detecting the sub-tree pr(st) is
evaluated.

3. The overall EDL model is translated into a BN where each st is translated into a
BN node N(st) having the CPT in the form described in Table 7.

4. The BN model is solved.

The translation and solution process described above is applied to the case-study
scenario in next Section.

Fig. 12 GSPN pattern of the
noisy AND

Table 7 CPT of the
SEQ-subtree

N(st)
True False

pr(st) 1-pr(st)
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7 Modelling Trustworthiness in a Specific Scenario

The effectiveness of the modelling approach described in the previous section is
demonstrated in this section using a case-study in the mass-transit domain. Mass
transit systems are vulnerable to many threats, including terrorist attacks. For this
reason, surveillance systems for mass-transit feature a growing number of hetero-
geneous sensing devices. In such a context, the quantitative evaluation of model
trustworthiness and sensitivity to sensor faults is very important. In fact, such a
model-based design allows to improve the robustness of surveillance systems and to
reduce the number of unnecessary alerts. In particular, at design time, the results of
the model analysis provide valuable information to assess the level of redundancy
and diversity required to the sensors. That allows designers to find the most
appropriate configuration complying with performance targets specified in client
requirements. In fact, feedbacks from the model evaluation suggest changes about
sensor dislocation and sensing technologies. An estimation of detection model
trustworthiness is also important during operation to define confidence thresholds
for triggering high-level warnings and even automatic response actions.

Let us consider a threat scenario similar to the chemical attack with Sarin agent
occurred in the Tokyo subway on March 20, 1995, which caused 12 fatalities and
5500 injured [35]. The technologies available to early detect and assess the threat
include intelligent cameras, audio sensors and specific standoff CWA (Chemical
Warfare Agents) detectors. For several reasons (inner technology, installation
environment, etc.), the single events reported by these sensing devices can feature
non-negligible levels of false alarms, and hence cannot be simply trusted. There-
fore, events detected by the sensors are correlated in a threat scenario representa-
tion, which has been already introduced in reference [14]. The current CWA
detection technologies include Ion Mobility Spectroscopy (IMS), Surface Acoustic
Wave (SAW), Infrared Radiation (IR), etc. They are employed in ad hoc standoff
detectors, characterized by different performances. One of the most accurate
devices, the automatic scanning, passive, and IR sensor can recognize a vapour
cloud from several kilometres with an 87 % detection rate. As already mentioned, it
is possible to combine heterogeneous sensors (e.g., IMS/SAW and IR) to detect the
same event, and to correlate their detections according to appropriate criteria, either
logical, temporal, and/or spatial.

The threat scenario is a CWA attack on a subway platform. Let us assume the
following set of events that are very likely to occur in such a scenario:

1. Attackers drop the CWA that spreads in the surrounding environment.
2. Contaminated passengers start to fall-down.
3. Around the contaminated area, other people scream and run away.

It is assumed that the subway station is equipped with smart-cameras (i.e. ‘in-
telligent’ cameras with video-analytics), microphones (i.e. audio sensors with audio
pattern recognition), plus both IMS/SAW and IR CWA detectors. The scenario can
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be formally described by means of the notation “sensor description (sensor ID) ::
event description (event ID)”:

• Intelligent Camera (S1) :: Fall of person (E1)
• Intelligent Camera (S1) :: Abnormal running (E2)
• Intelligent Camera (S2) :: Fall of person (E1)
• Intelligent Camera (S2) :: Abnormal running (E2)
• Audio sensor (S3) :: Scream (E3)
• IMS/SAW detector (S4) :: CWA detection (E4)
• IR detector (S5) :: CWA detection (E4)

The Event Tree model of the CWA threat scenario is depicted in Fig. 13.
The OR operators correlate the events “person falling” and “person running”,

detectable by two redundant intelligent cameras monitoring the platform. The other
child node (E3-S3)of the ANY operator represents the event “person screaming”
detectable by the intelligent microphone. When 2 out of these 3 events are detected
in a certain (limited) time frame, the situation can be reliably considered abnormal
so that a warning to the operator can be issued. The SEQ operator represents the
upward CWA spread detectable by two redundant CWA sensors, installed at dif-
ferent levels. Finally, the AND operator at the top of the tree represents the com-
posite event associated with the complete CWA threat scenario. In the following,
two different models are proposed and compared: a BN model generated according
to the rules described in Sect. 4 and a multiformalism model generated using the
algorithm presented in Sect. 6 as well as the transformation rules in Sects. 4 and 5.

Fig. 13 Event tree associated to the CWA threat scenario
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7.1 The BN Model

As described in the previous section, an event occurrence can be ‘true’ with a
probability p, or false with a probability 1-p. Each sensor can be available (i.e.
working properly) with a probability q, or unavailable (i.e. not working properly)
with a probability 1-q. Each event detected by a sensor can be ‘true’, ‘false’, or
‘unknown’ according to event occurrence and the availability of the sensor at the
time the event is occurring. Moreover each sensor, for each detected event, has a
couple of values fnp and fpp which are the sensor false-negative and false-positive
probabilities. For the sake of brevity, only the BN model is built and analysed
according to the modelling methodology described in the previous sections. The
three parts of the model are depicted in Figs. 14, 15 and 16.

The Event Layer (Fig. 14) is constituted by a node E that represents the actual
CWA attack, while E1, E2, E3 and E4 are the primitive events that can be detected
by the sensors.

The interface between the Event Layer and the Sensor Layer is the set of E1, E2,
E3 and E4 nodes. In the Sensor Layer (Fig. 15), there are five nodes (S1, S2, S3, S4
and S5) representing sensors, and seven nodes (E1_S1, E2_S1, E1_S2, E2_S2,
E3_S3, E4_S4 and E4_S5) representing the sensed events.

Finally, the overall BN model is represented in Fig. 17: as already stated, the
SEQ operator has been implemented by an AND operator, introducing a modeling
error.

Fig. 14 Event layer of the CWA Bayesian network

Fig. 15 Sensing layer of the CWA Bayesian network
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7.2 The Multiformalism Model

Since there is a single SEQ sub-tree, related to the SEQ operator and the E4-S4 and
E4-S5 nodes, the multiformalism model is obtained by replacing this sub-tree with
the GSPN depicted in Fig. 18.

A slightly different GSPN model is depicted with respect to the proposed pat-
terns, to make the model analysable by a steady-state construction of the tangible
state-space in case of an observed attack.

This model is solved by computing the throughputs of the transitions det and
nondet, representing the rates of detection and non-detection of the attack event
respectively. Let th(det) and th(nondet) be the values of these transitions. We are
interested in evaluating PT and PF that are respectively the posterior probability of

Fig. 16 Detecting layer of the CWA Bayesian network

Fig. 17 BN model of the CWA threat scenario
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detecting and not detecting by the SEQ operator. These indices are computed as
follows:

PT = thðdetÞ ̸ðthðnondetÞ+ thðdetÞÞ
PF = thðnondetÞ ̸ðthðnondetÞ+ thðdetÞÞ

Once the GSPN model is solved, the entire sub-tree may be collapsed into a BN
node. In other words, the st sub-model in the original BN network (Fig. 19)
becomes a single BN node as in Fig. 20.

In this last model, the SEQ_AND node is associated the CPT in Table 8, while
the AND node on top of the BN replaces—with respect to the full BN model—its
CPT with the one in Table 9 (GSPN do not easily support multi-value models).

8 Evaluation and Discussion of the Results

The model has been evaluated using the parameters summarized in Table 10, where
(non-conditional) probabilities refer to a standard time frame of 1 h. Parameters
have been assigned realistic pseudo-data, since exact values depend on risk
assessment results, specific sensor technology as well as operational reports from
the real environment. Some parameters apply only to the BN model, some only to
the multiformalism model, while others to both.

Fig. 18 GSPN model of the SEQ-AND sub-tree
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Fig. 19 Original CWA BN model

Fig. 20 Reduced CWA BN model
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Table 8 Reduced SEQ-AND
node CPT

E SEQ_AND
True False

True PT PF
False 0 1

Table 9 CPT of the top
event in the reduced model

SEQ_AND ANY AND
True False Unknown

False False 0 1 0
False True 0 1 0
False Unknown 0 1 0
True False 0 1 0
True True 1 0 0
True Unknown 0 0 1

Table 10 CWA model parameters

Name Description Model Node Value

attackProb Probability of having a CWA attack Both BN/E 10−6

running Probability of a running man in normal
conditions (not related to an attack)

Both BN/E1 4 × 10−1

falling Probability of a falling man in normal
conditions (not related to an attack)

Both BN/E2 10−3

screaming Probability of a scream in normal
conditions (not related to an attack)

Both BN/E3 5 × 10−3

U1 Unavailability of sensor 1 Both BN/S1 2 × 10−4

U2 Unavailability of sensor 2 Both BN/S2 2 × 10−4

U3 Unavailability of sensor 3 Both BN/S3 10−4

U4 Unavailability of sensor 4 BN BN/S4 2 × 10−5

U5 Unavailability of sensor 5 BN BN/S5 10−5

MTBF4 Mean time between failures of sensor
4

Multi GSPN/T4 199996 h

MTBF5 Mean time between failures of sensor
5

Multi GSPN/T6 399996 h

MTTR4,5 Mean time to repair of sensors 4 and 5 Multi GSPN/T3
GSPN/T5

4 h

TD4 Time of detection of sensor 4 Multi GSPN/T4 0.083 h
TD5 Time of detection of sensor 5 Multi GSPN/T4 0.014 h
Sfp11
Sfp12

Sensor false positive probability of
sensor 1 (resp. 2) when sensing event
1

Both

BN/E1_S1
BN/E1_S2

3 × 10−2

Sfn11
Sfn12

Sensor false negative probability of
sensor 1 (resp. 2) when sensing event
1

Both 2 × 10−2

(continued)
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8.1 CWA Scenario Analysis Using the BN Model

At design-time, the evaluation addresses both prior and posterior probabilities. The
distribution of prior probability of the model is reported in Table 11, that also
highlights the related meaning at the PSIM system level, regarding the specific
scenario. Posterior probability analysis has been performed to evaluate the confu-
sion matrix (see Table 12). The left column represents the evidence, that can be true
(CWA threat happening) or false. The other columns represent the probability of
CWA alarm being generated:

• ‘Alarm on’, which can be a true positive, tp, or false positive, fp, depending
whether the evidence is ‘true’ or ‘false’, respectively

• ‘Alarm off’, which can be a tp or a fp, depending whether the evidence is ‘false’
or ‘true’, respectively)

• Inactive, due to the unavailability of essential sensors.

The results show that the rate of alarms, in general, and the probability of fp and
fn in particular, are largely acceptable, according to recent ergonomics studies [5].

Table 11 Prior probability
distribution of the CWA
scenario

Value Meaning Probability

True Alarm on 2.273 × 10−5

False Alarm off 0.999977
Unknown Alarm inactive 2.7 × 10−7

Table 10 (continued)

Name Description Model Node Value

Sfp21
Sfp22

Sensor false positive probability of
sensor 1 (resp. 2) when sensing event
2

Both

BN/E2_S1
BN/E2_S2

2 × 10−2

Sfn21
Sfn22

Sensor false negative probability of
sensor 1 (resp. 2) when sensing event
2

Both 3 × 10−2

Sfp33 Sensor false positive probability of
sensor 3 when sensing event 3

Both

BN/E3_S3

2 × 10−2

Sfn33 Sensor false negative probability of
sensor 3 when sensing event 3

Both 1.2 × 10−2

Sfp44 Sensor false positive probability of
sensor 4 when sensing event 4

BN
BN/E4_S4
GSPN/t11
GSPN/t9

0.8 × 10−2

Sfn44 Sensor false negative probability of
sensor 4 when sensing event 4

Both 0.2 × 10−2

Sfp55 Sensor false positive probability of
sensor 5 when sensing event 5

BN
BN/E5_S5
GSPN/t12
GSPN/t10

0.7 × 10−2

Sfn55 Sensor false negative probability of
sensor 5 when sensing event 5

Both 0.3 × 10−2
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In particular, fp are much less than the ones generated by single sensors. The
evaluation of those parameters is essential to ensure system effectiveness and
usability in real environments. More sophisticated analyses can be performed on the
model to evaluate the robustness of the design. The first set of posterior probability
evaluations aims at computing the confusion matrices in presence of single sensor
failures; this is accomplished by setting S1-S5 evidences one by one in the BN
model to ‘false’ (i.e. sensor off). Table 13 summarizes the results of such analysis.

The second robustness analysis aims at validating the event tree with respect to
variations in threat patterns: specifically, we consider the case when some features
(E1, E2, E3) are not present and therefore we calculate fn when E1, E2, E3 events
are false. The results of such posterior probability analysis are reported in Table 14.

Table 12 Confusion matrix
of the CWA scenario

Evidence Alarm on Alarm off

True 0.995 (tp) 0.22 × 10−4 (fn)
False 0.5 × 10−2 (fp) 0.999978 (tp)

Table 13 Robustness with
respect to sensor availability

Sens. Event (E) Alarm on Alarm off

S1 True 0.982 0.62 × 10−5

False 0.005 0.99997
Unknown 0.013 2.38 × 10−5

S2 True 0.982 0.62 × 10−5

False 0.005 0.99997
Unknown 0.013 2.38 × 10−5

S3 True 0.994 0.257 × 10−5

False 0.004 0.99994
Unknown 0.002 3.43 × 10−5

S4 True 0 0
False 0.003 0.9972
Unknown 0.997 0.0028

S5 True 0 0
False 0.002 0.9969
Unknown 0.998 0.0031

Table 14 Robustness with
respect to scenario variations

Unobserved event Alarm on Alarm off

E1 0.9934 0.0066
E2 0.9941 0.0059
E3 0.9938 0.0062

Table 15 Confusion matrix
of the multiformalism model

Evidence Alarm on Alarm off

True 0.8589 (tp) 0.141 (fn)
False 0 (fp) 1 (tn)
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8.2 CWA Scenario Analysis Using the Multiformalism
Model

First, the PT and PF values of the GSPN model related to the st sub tree have been
computed: PT equals to 0.859, while PF is 0.141. These values are used in the CPT
of the substituting BN node. Table 15 reports the confusion matrix of the whole BN
model where the SEQ_AND sub-tree has collapsed into a single BN node.

The differences between the confusion matrix of Table 15 and the one reported
in Table 12 are due to the absence of false-positive effects of the GSPN, as well as
to the more realistic evaluation with the introduction of detection times and of the
exact SEQ operator model in the GSPN.

9 Conclusions and Future Work

In this paper, we have provided a structured trustworthiness modelling approach
especially suited to surveillance systems featuring situation recognition capabilities
based on Event Trees, which is the threat specification formalism used in the
DETECT framework.

The effectiveness of the approach described in this paper is twofold. At design
time, the results of the analysis provide a guide to support the choice and
deployment of sensors with respect to risk assessment results. At run-time, trust-
worthiness indices can be associated to detection models and hence to alarms
reported to the operators, accounting for sensor performance and reliability. Fur-
thermore, at run-time: sensor status (e.g., events detected, hardware failures, etc.)
can be used for the on-line updating of performance and reliability indices; the
feedback of the operators over a significant time period can be used to fine-tune
trustworthiness parameters: e.g., the fp probability can be estimated by counting the
average number of false alerts generated by single sensors or by DETECT and by
normalizing that number according to the reference time frame. Fuzzy correlation
operator and multiformalism technique address a greater modelling power and
solving efficiency.

Future developments will address the following issues: evaluation results are
going to be extended using further models and simulation campaigns, data coming
from on-the-field experimentations and long-term observations is going to be
integrated in the models and used to validate them.

98 F. Flammini et al.



References

1. Garcia, M.L.: The Design and Evaluation of Physical Protection Systems.
Butterworth-Heinemann, Boston (2001)

2. Flammini, F., Gaglione, A., Mazzocca, N., Moscato, V., Pragliola, C.: Wireless sensor data
fusion for critical infrastructure security. Adv. Intell. Soft Comput. 53, 92–99 (2009)

3. Flammini, F., Gaglione, A., Ottello, F., Pappalardo, A., Pragliola, C., Tedesco, A.: Towards
wireless sensor networks for railway infrastructure monitoring. In: Proceeding ESARS 2010,
pp. 1–6, Bologna, Italy (2010)

4. Zhu, Z., Huang, T.S.: Multimodal Surveillance: Sensors, Algorithms and Systems. Artech
House Publisher, Boston (2007)

5. Wickens, C., Dixon, S.: The benefits of imperfect diagnostic automation: a synthesis of the
literature. Theor. Issues Ergon. Sci. 8(3), 201–212 (2007)

6. Dong, M., He, D.: Hidden semi-Markov model-based methodology for multi-sensor
equipment health diagnosis and prognosis Eur. J. Oper. Res. 178(3), 858–878 (2007)

7. Guo, H., Shi, W., Deng, Y.: Evaluating sensor reliability in classification problems based on
evidence theory. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36(5), 970–981 (2006).
doi:10.1109/TSMCB.2006.872269

8. Luo, H., Tao, H., Ma, H., Das, S.K.: Data fusion with desired reliability in wireless sensor
networks. IEEE Trans. Parallel Distrib. Syst. 23(3), 501–513 (2012)

9. Flammini, F., Gaglione, A., Mazzocca, N., Pragliola, C.: DETECT: a novel framework for the
detection of attacks to critical infrastructures. In: Martorell, et al. (eds.) Safety, Reliability and
Risk Analysis: Theory, Methods and Applications, Proceedings of ESREL’08, pp. 105–112
(2008)

10. Flammini, F., Gaglione, A., Mazzocca, N., Moscato, V., Pragliola, C.: On-line integration and
reasoning of multi-sensor data to enhance infrastructure surveillance. J. Inf. Assur. Secur.
(JIAS) 4(2), 183–191 (2009)

11. Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R., Minichino, M., Portinale, L.:
Sequential application of heterogeneous models for the safety analysis of a control system: a
case study. RESS 81(3), 269–280 (2003)

12. Flammini, F., Marrone, S., Iacono, M., Mazzocca, N., Vittorini, V.: A Multiformalism Modular
Approach to ERTMS/ETCS Failure Modelling. Int. J. Reliab. Qual. Saf. Eng. Vol. 21(1)
450001 World Scientific Publishing Company (2014). doi:10.1142/S0218539314500016

13. Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.: A new modelling approach to the
safety evaluation of N-modular redundant computer systems in presence of imperfect
maintenance. RESS 94(9), 1422–1432 (2009)

14. Flammini, F., Mazzocca, N., Pappalardo, A., Pragliola, C., Vittorini, V.: Augmenting
surveillance system capabilities by exploiting event correlation and distributed attack
detection. In: Proceeding 2011 International Workshop on Security and Cognitive
Informatics for Homeland Defence (SeCIHD’11), LNCS 6908, pp. 191–204 (2011)

15. Bocchetti, G., Flammini, F., Pragliola, C., Pappalardo, A.: Dependable integrated surveillance
systems for the physical security of metro railways. In: IEEE Proceeding of 3rd ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC 2009), pp. 1–7 (2009)

16. Flammini, F., Pappalardo, A., Pragliola, C., Vittorini, V.: A robust approach for on-line and
off-line threat detection based on event tree similarity analysis. In: Proceeding of Workshop on
Multimedia Systems for Surveillance (MMSS), pp. 414–419 (2011)

17. Flammini, F., Pappalardo, A., Vittorini, V.: Challenges and emerging paradigms for
augmented surveillance. In: Effective Surveillance for Homeland Security: Combining
Technology and Social Issues. Taylor & Francis/CRC Press, Boca Raton (2013) To appear

18. Räty, T.D.: Survey on contemporary remote surveillance systems for public safety. IEEE
Trans. Sys. Man Cyber Part C, No. 40, 5, 493–515 (2010)

Fuzzy Decision Fusion and Multiformalism … 99

http://dx.doi.org/10.1109/TSMCB.2006.872269
http://dx.doi.org/10.1142/S0218539314500016


19. Hunt, S.: Physical security information management (PSIM): The basics. http://www.
csoonline.com/article/622321/physical-security-information-management-psim-the-basics
(2011)

20. Frost & Sullivan: Analysis of the Worldwide Physical Security Information Management
Market. http://www.cnlsoftware.com/media/reports/Analysis_Worldwide_Physical_Security_
Information_Management_Market.pdf (2012)

21. Ortmann, S., Langendoerfer, P: Enhancing reliability of sensor networks by fine tuning their
event observation behavior. In: Proceeding 2008 International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WOWMOM ‘08). IEEE (2008)

22. Bahrepour, M., Meratnia, N., Havinga, P.J.M.: Sensor fusion-based event detection in wireless
sensor networks. In: 6th Annual International Conference MobiQuitous 2009, 13–16 July
2009

23. Silva, I., Guedes, L.A., Portugal, P., Vasques, F.: Reliability and availability evaluation of
wireless sensor networks for industrial applications. Sensors 12(1), 806–838 (2012)

24. Legg, J.A.: Distributed multisensor fusion system specification and evaluation issues. Defence
Science and Technology Organisation, Edinburgh, South Australia 5111, Australia (2005)

25. Tang, L.-A., Yu, X., Kim, S., Han, J., Hung, C.-C., Peng, W.-C.: Tru-Alarm: Trustworthiness
analysis of sensor networks in cyber-physical systems. In: ICDM ‘10, IEEE Computer
Society, Washington, USA (2010)

26. Karimaa, A.: Efficient video surveillance: performance evaluation in distributed video
surveillance systems. In: Lin, W., (ed.) Video Surveillance, ISBN: 978-953-307-436-8, InTech
(2011)

27. Flammini, F., Gentile, U., Marrone, S., Nardone, R., Vittorini, V.: A petri net pattern-oriented
approach for the design of physical protection systems. In: proceedings of Computer Safety,
Reliability, and Security; LNCS 8666, 230–245 (2014)

28. Drago, A., Marrone, S., Mazzocca, N., Tedesco, A., Vittorini, V.: Model-Driven Estimation of
Distributed Vulnerability in Complex Railway Networks. In: Ubiquitous Intelligence and
Computing, 2013 IEEE 10th International Conference on Autonomic and Trusted Computing
(UIC/ATC), pp.380–387, 18–21 Dec. 2013 doi:10.1109/UIC-ATC.2013.78

29. Bagheri, E., Ghorbani, A.A.: UML-CI: a reference model for profiling critical infrastructure
systems. Inf. Syst. Frontiers 12(2), 115–139 (2010)

30. Marrone, S., Nardone, R., Tedesco, A., D’Amore, P., Vittorini, V., Setola, R., Cillis, F.D.,
Mazzocca, N.: Vulnerability modeling and analysis for critical infrastructure protection
applications. Int. J. Crit. Infrastruct. Prot. 6(34), 217–227 (2013). doi:http://dx.doi.org/

31. Rodrìguez, R.J., Merseguer, J., Bernardi, S.: Modelling security of critical infrastructures: a
survivability assessment. Comput. J. (2014). doi:10.1093/comjnl/BXU096

32. Chakravarthy, S., Mishra, D.: Snoop, an expressive event specification language for active
databases. Data Knowl. Eng. 14(1), 1–26 (1994)

33. Charniak, E.: Bayesian Networks without Tears, AI Magazine, 1991
34. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli S., Franceschinis, G.: Modelling with

Generalized Stochastic Petri Nets; Wiley Series in Parallel Computing. John Wiley and Sons,
New York ISBN: 0–471-93059-8 (1995)

35. National Consortium for the Study of Terrorism and Responses to Terrorism (START).:
Global Terrorism Database [199503200014] (2012). http://www.start.umd.edu/gtd

100 F. Flammini et al.

http://www.csoonline.com/article/622321/physical-security-information-management-psim-the-basics
http://www.csoonline.com/article/622321/physical-security-information-management-psim-the-basics
http://www.cnlsoftware.com/media/reports/Analysis_Worldwide_Physical_Security_Information_Management_Market.pdf
http://www.cnlsoftware.com/media/reports/Analysis_Worldwide_Physical_Security_Information_Management_Market.pdf
http://dx.doi.org/10.1109/UIC-ATC.2013.78
http://dx.doi.org/
http://dx.doi.org/10.1093/comjnl/BXU096
http://www.start.umd.edu/gtd


Intelligent Radar Signal Recognition
and Classification

Ivan Jordanov and Nedyalko Petrov

Abstract This chapter investigates a classification problem for timely and reliable
identification of radar signal emitters by implementing and following a neural net-
work (NN) based approach. A large data set of intercepted generic radar signals,
containing records of their pulse train characteristics (such as operational frequencies,
modulation types, pulse repetition intervals, scanning period, etc.), is used for this
research. Due to the nature of the available signals, the data entries consist of amixture
of continuous, discrete and categorical data, with a considerable number of records
containing missing values. To solve the classification problem, two separate
approaches are investigated, implemented, tested and validated on a number of case
studies. In the first approach, a listwise deletion is used to clean the data of samples
containing missing values and then feed-forward neural networks are employed for
the classification task. In the second one, a multiple imputation (MI) model-based
method for dealing with missing data (by producing confidence intervals for unbiased
estimates without loss of statistical power, i.e. by using all the available samples) is
investigated. Afterwards, a feedforward backpropagation neural network is trained to
solve the signal classification problem. Each of the approaches is tested and validated
on a number of case studies and the results are evaluated and critically compared. The
rest of the chapter is organised as follows: the next section (Introduction and Back-
ground) presents a review of related literature and relevant background knowledge on
the investigated topic. In Sect. 2 (Data Analysis), a broader formulation of the
problem is provided and a deeper analysis of the available data set is made. Different
statistical transformation techniques are discussed and a multiple imputation method
for dealing with missing data is introduced in Sect. 3 (Data Pre-Processing). Sev-
eral NN topologies, training parameters, input and output coding, and data trans-
formation techniques for facilitating the learning process are tested and evaluated on a
set of case studies in Sect. 4 (Results and Discussion). Finally, Sect. 5 (Conclusion)
summarises the results and provides ideas for further extension of this research.
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1 Introduction and Background

What an irony of fate when Robert Watson-Watt was pulled over in a RADAR
(RAdar Detection And Ranging) speed trap during his visit in Canada in the late
1950s. He joked that had he known radar would be used for speed traps, he would
never have invented it. Nowadays, this is what most people associate the radar with,
but when Watson-Watt invented his primitive radar system in the mid 1930s, it was
secretly developed for military purposes. Later, in 1940, it played a vital role in the
Battle of Britain, providing early warning of incoming Luftwaffe bombers. During
the World War II, USA scientists made the Watson-Watt’s radar a lot smaller, more
efficient and reliable. This made possible a compact radar unit to be used for
warning fighter pilots of enemy aircraft approaching from behind. Also, four of
these units were carried on each of the nuclear bombs dropped over Hiroshima and
Nagasaki to monitor the bomb distance to the ground, so that detonation could be
triggered at a pre-set altitude for maximum destruction. Vigorous development of
radar technology after the war led to a wide range of military applications for
detecting, locating, tracking, and identifying objects, for surveillance, navigation
and weapon guidance purposes for terrestrial, maritime, and airborne systems at
small to medium and large distances (from ballistic missile defence systems to fist
sized tactical missile seekers) [1].

Later, civilian applications emerged and became wide-spread. This began in air
traffic control systems to guide commercial aircrafts in the vicinity of the airports
and during their flight and in the sea navigation, used by ships in maritime collision
avoidance systems. Nowadays, radars are beginning to serve the same role for the
automobile and trucking industries in self-braking systems in cars, crash avoidance
and parking assist [2, 3].

Police traffic radar are used for enforcing speed limits; airborne radars are used
not only for weather forecast, large-scale weather monitoring, prediction and
atmospheric research, but also for environmental monitoring of forestry conditions
and land usage, water and ice conditions, pollution control, etc.; space-born (both
satellite and space shuttle) serve for space surveillance and planetary observation; in
sport they are used for measuring the speed of tennis and baseball serves [1].

A basic block-scheme of a radar system is shown in Fig. 1. Radars are con-
sidered to be “active” sensors, as they use their own source of illumination
(a transmitter) for locating targets. They transmit energy towards a target and then
catch the reflected signal to identify the target. The problem is that (especially for a
long range radars) a powerful transmitter and very sensitive receiver are needed
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because the energy spreads out on its way to the target, scatters on reflection and
further spreads out on its way back (in general, the decrease of the received signal is
proportional to the fourth power of the target distance). The radars range, resolution
and sensitivity are generally determined by their transmitter and waveform gener-
ator. Although the typical radar systems operate in the microwave region of the
electromagnetic spectrum with frequency range of about 200 MHz to about 95 GHz
(with corresponding wavelengths of 0.67 m to 3.16 mm), there are also radars that
function at frequencies as low as 2 MHz and as high as 300 GHz [4].

The application of the Doppler effect revolutionized the cosmology enabling
Doppler spectroscopy to become a powerful tool for finding extrasolar planets and
proving the expansion of the universe (the light spectrum of stars (or galaxies)
receding from us exhibits redshift (increased bandwidth and reduced frequencies),
and blueshift (higher frequencies and lower bandwidth) if they are moving towards
us), but also expanded dramatically the use of radiolocation radars. For the Doppler
radars, the reflection from an approaching target electromagnetic wave exhibits
higher frequency than the transmitted one and vice versa, a moving away target
returns lower frequency wave. The difference between the sent and received fre-
quencies can then be used to estimate the target speed. The problem is that this
difference is a very small one, e.g., an incoming target with a 100 km/h increases
the received frequency by less than 1e-6, which needs very precise circuits to
measure.

A Doppler weather radar with a parabolic antenna situated within a large tiled
dome is shown in Fig. 2 [5]. A system with such a radar can measure the distance
and lateral speed of falling rain drops, hail particles, or snowflakes, allowing
forecasters to predict storms’ evolving locations. The presence of debris in the air is

Transmitting
Antenna

Receiving
Antenna

Transmitter Power Supply

Receiver
Signal

Processor

Database, Processing 
and Control

Detection, Classification, 
Tracking, Guidance, 
Imaging, Decision 

Fig. 1 A block diagram of a basic radar system. Radars operate by transmitting electromagnetic
energy toward targets and processing the observed echoes
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used in similar radar systems to detect tornadoes and define their location, velocity
and direction, allowing projections of their movement in real time.

The classical radar imaging uses its antenna to focus a radio frequency beam on
a target and capture its reflection to create the image. To work over a long-range it
requires powerful transmitters and sensitive receivers because of the way the
transmitted energy spreads out on its way to the target and then scatters on
reflection. Also, to achieve higher resolution of the image, it needs narrower beams
which means that the airborne or space-born platform will need much larger
antenna than it could carry. The application of a synthetic aperture technique solves
this problem by enabling the use of a smaller antenna through simulating a virtual
one with aperture defined by the travel distance of the physical antenna.

The use of the Doppler effect further enhanced the angular resolution in
synthetic-aperture radars (SAR) [6] enabling them to acquire surprisingly clear and
crisp images [7]. The SAR have been long used on planes and satellites (Fig. 3) for
military reconnaissance, mapping ground terrain with intelligence imagery,
revealing enemy facilities for enhancing situational awareness and all this in any
type of weather, in total darkness and through cloud cover and foliage [8, 69]. They
also proved to be very useful in diverse range of civil applications, e.g., in earth-
quake damage assessment [9], ice [10] and snow monitoring [11], oceanography,
polar ice caps and coastal regions imagery, oil pollution monitoring, solid earth
science, hydrology, ecology and planetary science [12, 13].

Fig. 2 A Doppler weather
radar (Photo Brownie
Harris/Corbis)
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Another type developed especially to look underground and through walls is the
Ground-penetrating radar (GPR), also known as surface-penetrating radar
(SPR) [14]. GPR has recently proved to be efficient non-invasive technology with
applications in archaeology [15, 16], mining–for both identifying underground rock
strata and monitoring instabilities [14, 17], and for optimal irrigation and pollution
monitoring [18, 19]. It has been also used for helping police, emergency response
and firefighters ‘to see’ through building walls to locate hostages or help people
trapped by fire or under a rubble of a collapsed building [20]. Its ability to see under
surface metallic and non-metallic objects makes it useful mapping tool for detection
and localisation of underground cables and pipes [21], and buried objects of his-
torical and archaeological importance [22].

The IEEE standard letter nomenclature for the common nominal radar bands is
given in Table 1, [23]. The millimetre wave band is sometimes further decomposed
into approximate sub-bands of 36–46 GHz (Q band), 46–56 GHz (V band), and
56–100 GHz (W band). The lower frequency bands are usually preferred for longer
range surveillance applications due to the low atmospheric attenuation and high
available power, and vice versa the higher frequencies tend to be used for shorter
range applications and higher resolution, due to the smaller achievable antenna
beam widths for a given antenna size, higher attenuation, and lower available power
[1]. The radars from the first category (considered a form of radar radiolocation) are
capable of covering distances of up to hundreds of kilometres (using high-power
transmitters concentrated in a relatively narrow radio bandwidth) and the second
group covers radar systems that operate at low power levels, over much smaller
distances.

Fig. 3 JAXA’s ALOS-2
Earth-observation radar sat
may help the Japanese navy
keep track of ship movements
in the region. Photo JAXA
Concept
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Based on their characteristics, features and application areas, radars can be
classified in terms of the following criteria [24]:

• purpose and function: surveillance, tracking, guidance, reconnaissance,
imaging, data link;

• frequency band: radar systems have been operating at frequencies as low as
2 MHz and as high as 300 GHz (see Table 1). Criteria for frequency selection
for surveillance radar can be found in [4, 25];

• waveform: continuous wave, pulsed wave, digital synthesis;
• beam scanning: fixed beam, mechanical scan (rotating, oscillating), mechanical

scan in azimuth, electronic scan (phase control, frequency control and mixed in
azimuth/elevation), mixed (electronic-mechanical) scan, multi-beam
configuration;

• location: terrestrial (stable, mobile), marine-borne, air-borne, space-borne;
• spectrum of collected data: range (delay time of echo), azimuth (antennae

beam pointing, amplitude of echoes), elevation (3D—radar, multifunctional,
tracking), height (derived by range and elevation), intensity (echo power), radar
cross section (RCS)—(derived by echo intensity and range), radial speed
(measurement of differential phase along the time on target due to the Doppler
effect—it requires a coherent radar), polarimetry (phase and amplitude of echo
in the polarisation channels: horizontally transmitted—HH, horizontally
received—HV, VH, VV), RCS profiles along range and azimuth (high resolu-
tion along range, imaging radar);

• configuration: monostatic (same antenna with co-located transmitter and
receiver), bi-static (two antennas), multistatic (one or more spatially dispersed
transmitters and receivers). Further detail on variety of radar configurations can
be found in [26];

• signal processing: coherent (Moving Target Detector/Pulse-Doppler/Super-
resolution Signal Processor/Synthetic Aperture Radars (SAR)), non-coherent
(integration of envelope signals, moving window, adaptive threshold (Constant
False Alarm Rate (CFAR)) and mixed [6];

Table 1 Letter nomenclature
for nominal radar frequency
bands (IEEE, 2003)

Band Frequencies Wavelengths

HF 3–30 MHz 100–10 m
VHF 30–300 MHz 10–1 m
UHF 300 MHz–1 GHz 1–0.3 m
L 1–2 GHz 0.3–0.15 m
S 2–4 GHz 15–7.5 cm
C 4–8 GHz 7.5–3.75 cm
X 8–12 GHz 3.75–2.5 cm
Ku 12–18 GHz 2.5–1.67 cm
K 18–27 GHz 16.7–11.1 mm
Ka 27–36 GHz 11.1–7.5 mm
Q, V, W 36–300 GHz 7.5–1 mm
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• transmitter and receiver technologies: antenna—reflector plus feed, array
(planar, conformal), corporate feed; transmitter—magnetron, klystron, wide-
band amplifiers (high-power travelling wave tubes (TWT)), solid state; and
receiver—analogue and digital technologies, base band, intermediate frequency
sampling, low-power TWT;

• area of application: large-scale weather forecast and monitoring, air traffic
control and guidance (terminal area, en route, collision avoidance, airport
apron); police traffic radar used for enforcing speed limits; air defence;
anti-theatre ballistic missile defence; vessel traffic surveillance; remote sensing
(application to crop evaluation, geodesy, astronomy, defence); environmental
monitoring of forestry conditions and land usage; pollution control; geology and
archaeology (ground penetrating radar); meteorology (hydrology, rain/hail
measurement); study of atmosphere (detection of micro-burst and gust,
wind profilers); space-born altimetry for measurement of sea surface height;
acquisition and tracking of satellites; monitoring of space debris; marine—
navigation and ship collision avoidance; others [5, 12–15].

Radar detection, classification and tracking of targets against a background of
clutter and interference are considered as “the general radar problem”. For military
purposes, the general radar problem includes searching for, interception, localisa-
tion, analysis and identification of radiated electromagnetic energy, which is
commonly known as radar Electronic Support Measures (ESM). They are consid-
ered to be a reliable source of valuable information regarding threat detection, threat
avoidance, and, in general, situation awareness for timely deployment of
counter-measures [27, 28]. A list of ESM abbreviations is given in Table 2.

A real-time identification of the radar emitter associated with each intercepted
pulse train is a very important function of the radar ESM. Typical approaches
include sorting incoming radar pulses into individual pulse trains [29], then com-
paring their characteristics with a library of parametric descriptions, in order to get
list of likely radar types. This can be very difficult task as there may be radar modes

Table 2 Commonly adopted
ESM abbreviations

Abbreviation Meaning

EW Electronic warfare
MOP Modulation on pulse
PA Pulse amplitude
PDW Pulse descriptor word
PPI Pulse-to-pulse interval
PRI Pulse repetition interval
PD Pulse duration
PW Pulse width
RF Radio frequency
TOA Time of arrival
ST Scanning type
SP Scan period
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for which there is no record in ESM library; overlaps of different radar type
parameters; increases in environment density (e.g., Doppler spectrum radars,
transmitting hundreds of thousands of pulses per second); agility of radar features,
such as radio frequency and scan, pulse repetition interval, etc.; multiplication and
dispersion of the modes for military radars; noise and propagation distortion that
lead to incomplete or erroneous signals [30].

1.1 Neural Networks in Radar Recognition Systems

There are wide variety of approaches and methods used for radar emitter recog-
nition and identification. For example, [31] investigate a specific emitter identifi-
cation technique applied to ESM data and by analysing the radar pulses try to
extract unique features for each radar, which can be later used for identification.
A wavelet transform is employed in [32] for the feature extraction phase in radar
signal recognition, as in [33], where they use it before employing probabilistic
support vector machines SVMs for the radar emitter recognition task. SVMs are
also used in [8, 34] for solving a similar problem. In [35] the authors focus their
research on the estimation of a common modulation from a group of intercepted
radar pulses and use it as a basis for specific emitter identification. A variety of
novel radar emitter recognition algorithms, incorporating clustering and competitive
learning, and investigating their advantages over the traditional methods are pro-
posed in [32, 36–42, 70–73].

Among those approaches, a considerable part of the research in the area
incorporates NN, due to their parallel architecture, fault tolerance and ability to
handle incomplete radar type descriptions and inconsistent and noisy data [43]. NN
techniques have previously been applied to several aspects of radar ESM processing
[28], including Pulse Descriptor Word (PDW) sorting [44, 45] and radar type
recognition [46]. More recently, many new radar recognition systems include NNs
as part of a clutter reduction system to improve the information managed by
automatic identification systems, such as the detection, positioning, and tracking of
surrounding ships [47], or as a key classifier [48–52]. Some examples of NN
architectures and topologies used for radar identification recognition and classifi-
cation based on ESM data include Multilayer Perceptron (MLP) [43], Radial Basis
Function (RBF) neural networks as a signal detector [46, 53], a vector neural
network [54], and a single parameter dynamic search neural network [50].

In many cases, the NNs are hybridised with other techniques, including fuzzy
systems [55], clustering algorithms [29, 56], wavelet packets [32, 57], or Kalman
filters [30]. When implementing their “What-and-Where fusion strategy” [30] use
an initial clustering algorithm to separate pulses from different emitters according to
position-specific parameters of the input pulse stream, and then apply fuzzy
ARTMAP (based on Adaptive Resonance Theory (ART) neural network) to clas-
sify streams of pulses according to radar type, using their functional parameters.
They also complete simulations with a data set that has missing input pattern
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components and missing training classes and then incorporate a bank of Kalman
filters to demonstrate high-level performance of their system on incomplete,
overlapping and complex radar data. In [48] higher order spectral analysis (HOSA)
techniques are used to extract information from low probability of intercept
(LPI) radar signals to produce 2D signatures, which are then fed to a NN classifier
for detecting and identifying the LPI radar signal. The work presented in [49]
investigates the potential of NNs (MLPs) when used in Forward Scattering Radar
(FSR) applications for target classification. The authors analyse collected radar
signal data and extract features, which are then used to train NN for target classi-
fication. They also apply K-Nearest Neighbour classifier to compare the results
from the two approaches and conclude that the NN solution is superior. In [58] an
approach combining rough sets (for data reduction) and NN as a classifier is pro-
posed for radar emitter recognition problem, while [59] combines wavelet packets
and neural networks for target classification.

The common denominator of all referenced approaches is that they use pre-
dominantly supervised NN learning. This means that there is an available data set
(or it is on-line collected), on which the NN can be trained and later used to
determine the type of the radar emitters detected in the environment. During the
training, the NN is presented with labelled samples from the available dataset and
the NN weights are adjusted in order to minimise the difference between the NN
output and the available target (supervised learning). This difference is expressed by
an error function that is minimised by adjusting the NN weights. One of the most
popular methods for training is backpropagation (BP), but, as it uses Newton and
quasy-Newton deterministic minimisation methods, it could become trapped in a
local minimum and in this way to converge to a suboptimal training. Another
drawback of the BP algorithm is that it can, sometimes, be slow and unstable. After
training, the NN is tested for its ability to generalise, in other words, its ability to
correctly classify samples that have not been shown during the learning process.

Among other considerations, the complexity of the training includes selecting
the way of showing the samples to the network (i.e. how the training data set is
organised and presented to the NN—‘batch mode’, ‘on-line mode’, etc.). Another
important question is when to stop the training—achieving a zero error function
does not always lead to an optimal training. The reality shows that at some point of
the learning process, the NN starts to memorise rather than to generalise—this
happens when the NN starts to overfit. In order to avoid the overfitting, an addi-
tional data subset (called validation subset), is used in parallel with the training set.
Initially, the errors on both sets will decrease, but at some point the validation error
will start to rise, while the training error will continue to decrease. This point is an
indication of overfitting and the training should be stopped, with the current weights
assumed to be optimal. This training approach is known as split sample training,
where the available dataset is split in training, validation and testing subsets. There
are also other training approaches, such as k-fold crossover, or bootstrapping, each
with their own specific advantages and drawbacks [43]. One advantage of the k-fold
crossover, for example, is that it can be applied when limited number of samples is
available for training.
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In addition, often before approaching training, the available data set needs to be
pre-processed, e.g., [60] use feature vector fusion before feeding the NN classifier.
Radar signal processing has specific features that differentiate it from most other
signal processing fields. Many modern radars are coherent, meaning that the
received signal, once demodulated to baseband, is complex-valued rather than
real-valued and as it can be seen from Table 2, many of the collected data is
categorical. Another specificity of the radar data sets is that there are usually many
missing or incomplete data. Therefore, the problems of representation and statistical
pre-processing of the available dataset are very important steps that need to be
considered, before starting the actual training. This may also include transformation
techniques, such as linear discriminant analysis and principal component analysis,
in order to reduce the dimensionality of the problem and dispose of redundant
information in the dataset.

1.2 Dealing with Missing Data

According to statistical analysis, the nature of missing data can be classified into
three main groups [61–63]: missing completely at random (MCAR), where the
probability that an observation is missing is unrelated to its value or to the value of
any other variables; missing at random (MAR)—that missingness does not depend
on the value of the observed variable, but on the extent of the missingness corre-
lation with other variables that are included in the analysis (in other words, the
cause of missingness is considered); and missing not at random (MNAR)—when
the data are not MCAR or MAR (missingness still depends on unobserved data).
The problem associated with MNAR is that it yields biased parameter estimates,
while MCAR and MAR analysis yield unbiased ones (at the same time the main
consequence of using MCAR is loss of statistical power), [63].

Dealing with missingness requires an analysis strategy leading to least biased
estimates, while not losing statistical power. The problem is these criteria are
contradictory and in order to use the information from the partial data in samples
with missing data (keeping up the statistical power), and substituting the missing
data samples with estimates, inevitably brings bias.

The most popular approaches in dealing with missing data generally fall in three
groups: Deletion methods; Single imputation methods; and Model-based methods
[62, 64, 65].

Deletion methods include pairwise and listwise deletion. The pairwise deletion
(also called “unwise” deletion) keeps as many samples as possible for each analysis
(and in this way uses all available information for it), resulting in incomparable
analysis, as each is based on different subsets of data, with different sample sizes
and different standard errors. The listwise deletion (also known as complete case
analysis) is a simple approach, in which all cases with missing data are omitted. The
advantages of this technique include comparability across the analyses and it leads
to unbiased parameter estimates (assuming the data is MCAR), while its main
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disadvantage is that there may be substantial loss of statistical power (because not
all information is used in the analysis, especially if a large number of cases is
excluded).

The single imputation methods include mean/mode substitution, dummy vari-
able method, and single regression. Mean/mode substitution is an old procedure,
currently rejected due to of its intrinsic problems, e.g., it adds no new information
(the overall mean stays the same), reduces the variability, and weakens the
covariance and correlation estimates (it ignores relationship between variables). The
dummy variable technique uses all available information about missing observa-
tion, but produces biased estimates. In the regression approach, linear regression is
used to predict what the missing value should be (based of the available other
variables) and then uses it as an actual value. The advantage of this technique is that
it uses information from the observed data, but overestimates the model fit and the
correlation estimates, and weakens the variance [62].

Most popular, “modern” model-based approaches, fall into two categories:
multiple imputation (MI) and maximum likelihood (ML) methods (often referred to
as full-information maximum likelihood), [63]. Their advantage is that they model
the missingness and give confidence intervals for estimates, rather than relying on a
single imputation. If the assumption for MAR holds, both groups of methods result
in unbiased estimates (i.e., tend to “preserve” means, variances, co-variances,
correlations and linear regression coefficients) without loss of statistical power.

ML identifies a set of parameter values that produces the highest (log) likelihood
and estimates the most likely value that would result in the observed data. It has the
advantage that both complete and incomplete cases are used, in other words, it
utilises all of the information and produces unbiased parameter estimates (with
MCAR/MAR data). The MI approach involves three distinct steps: first, sets of
plausible data for the missing observations are created and these sets are filled in
separately to create many ‘completed’ datasets; second, each of these datasets is
analysed using standard procedures for complete datasets; and thirdly, the results
from previous step are combined and pooled into one estimate for the inference.
The aim of the MI process is not just to fill in the missing values with plausible
estimates, but also to plug in multiple times these values by preserving important
characteristics of the whole dataset. As with most multiple regression prediction
models, the danger of overfitting the data is real and can lead to less generalisable
results than would have been possible with the original data [66].

The advantage of the MI technique is that it provides more accurate variability
by making multiple imputations for each missing value (it considers both variability
due to sampling and variability due to imputation) and its disadvantage is that it
depends on the correctly specified model. Also, it requires cumbersome coding, but
the latter is not an issue due to the existence of easy to use off-shelf software
packages. For the purpose of this investigation, a free, open source R statistical
software is used.
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2 Data Analysis

For the purpose of this research, a data set composed of 29,094 intercepted generic
data samples is used. Each of the captured signals is pre-classified by experts in one
of 26 categories, in regards to the platform that can carry the radar emitter (aircraft,
ship, missile, etc.) and in one of 142 categories, based on the functions it can
perform (3D surveillance, weather tracking, air traffic control, etc.).

Each data entry represents a list of 12 recorded pulse train characteristics (signal
frequencies, modulation type, pulse repetition intervals, etc. that will be considered
as input parameters), a category label (specifying the radar function and being
treated as system output) and a data entry identifier (for reference purposes only)
(Table 3).

A more comprehensive summary of the data distribution is presented in Table 4,
where an overview of the type, range and percentage of missing values for the
recorded signal characteristics is given. The collected data consists of both
numerical (integer and float) and categorical values, therefore coding of the cate-
gorical fields to numerical representations will be required during the data
pre-processing stage. Also, due to the large number of missing values for some of
the parameters, approaches for handling of missing data will be considered.

3 Data Pre-processing

The pre-processing of the available data is of a great importance for the subsequent
machine learning stage and usually can significantly affect the overall success or
failure of the application of a given classification algorithm. In this context, the
main objective of this stage is to analyse the available data for inconsistencies,
outliers and irrelevant entries and to transform it in a form that could facilitate the
underlying mathematical apparatus of the machine learning algorithm and lead to
an overall improvement of the classifier’s performance.

3.1 Data Cleaning and Imputation

Data cleaning (also known as data cleansing or scrubbing) deals with detecting and
removing errors and inconsistencies from data, in order to improve its quality [67].
The most important tasks carried out on this stage would include identification of
outliers (entries that are significantly different from the rest and could be a result of
an error), resolving of data inconsistencies (values that are not consistent with the
specifications or contradict expert knowledge), dealing with missing data (removing
the missing values, assigning those values to the attributes’ mean, using statistical
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algorithms to predict the missing values) or removing redundant data in different
representations.

At this stage of the pre-processing phase, two data sets are prepared. For the
purposes of the first two case studies (presented later in this chapter), a data set only
containing samples with complete data values is extracted, with the data that could
not have been fully intercepted and recognised removed by applying listwise
deletion. The second data set (used for the final case study) is received after
applying multiple imputation, performed as described below.

Table 4 Data description and percentage of missing values

Field Field description Type Categories Missing
(%)

ID Reference for the line of data I – –

FN Function performed by the radar (‘3D’—3D
surveillance, ‘AT’—airtraffic control,
‘SS’—surface search, ‘WT’—weather
tracker, etc.)

C 142 1.35

RFC Type of modulation used by the radar to
change the frequency of the radar from pulse
to pulse (‘A’—agile, ‘F’—fixed, etc.)

C 12 20.75

RFmin Min frequency that can be used by the radar R – 11.15
RFmax Max frequency that can be used by the radar R – 11.15
PRC Type of modulation used by the radar to

change the Pulse Repetition Interval
(PRI) of the radar from pulse to pulse
(‘F’—fixed, etc.)

C 15 15

PRImin Min PRI that can be used by the radar R – 46.70
PRImax Max PRI that can be used by the radar R – 46.70
PDC Type of modulation used by the radar to

change the pulse duration of the radar from
pulse to pulse (‘S’—stable)

C 5 12.92

PDmin Min pulse duration that can be used by the
radar

R – 46.05

PDmax Max pulse duration that can be used by the
radar

R – 46.05

ST Scanning type—method that the radar uses
to move the antenna beam (‘A’—circular,
‘B’—bidirectional, ‘W’—electronically
scanned, etc.)

C 28 11.33

SPmin Min scan period that can be used by the radar R – 59.35

SPmax Max scan period that can be used by the radar R – 59.35
In column “Type”: I—integer; C—categorical; R—real values
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3.2 Dealing with Missing Data—Data Imputation

To estimate the values of the missing multivariate data, a sequential imputation
algorithm, presented in [68] is used. According to it, if the available data set is
denoted with Y and the complete subset with Yc, the procedure starts from the
complete subset to estimate sequentially the missing values of an incomplete
observation Y*, by minimizing the covariance of the augmented data matrix
Y* = [Yc, x*]. Subsequently the data sample x* is added to the complete data
subset and the algorithm continues with the estimate of next data sample with
missing values.

Implementations in R of the original algorithm (available under the function
name “impSeq”) and two modifications of it (namely “impSeqRob” and
“impNorm”) are considered and tested. As the original algorithm uses the sample
mean and covariance matrix, it is vulnerable to the presence of outliers, but this can
be enhanced by including robust estimators of location and scatter (which is rea-
lised in the “impSeqRob” function). However, the outlyingness metric can be
computed for a complete dataset only, therefore the sequential imputation of the
missing data is done first and then the outlyingness measure is computed and used
to define whether the observation is an outlier or not. If the measure does not exceed
a predefined threshold, the observation is included in the next stage of the algo-
rithm. In our investigation, however, the use of modified “impSeqRob” and
“impNorm” versions did not produce better results when tested on complete dataset
(which may be simply due to the lack of outliers), so the “impSeq” function was
adopted.

After employing MI on the data samples with missing continuous values, a
second dataset of 15656 observations is received, which is more than double the
size of the first dataset. Table 5 shows the inputted values produced by the MI
algorithm for the sample subset, presented previously in Table 3.

3.3 Data Coding and Transformation

This stage of the pre-processing aims to transform the data into a form that is
appropriate for feeding to the selected classifier and would facilitate faster and more
accurate machine learning.

In particular, a transformation known as coding is applied to convert the cate-
gorical values presented in the data set into numerical ones. Three of the most
broadly applied coding techniques are investigated and evaluated—continuous,
binary and introduction of dummy variables.

For the first type of coding, each of the categorical values is substituted by a
natural number, e.g., the 12 categories for the RFC input are encoded with 12
ordinal numbers, the 15 PRC categories—with 15 ordinal numbers, etc. A sample
of data subset coded with continuous values is given in Table 6.
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Binary coding, wherein each non-numerical value is substituted by log2N (where
N is the number of categories taken by that variable) new binary variables (i.e.
taking value of either 0 or 1), is illustrated in Table 7 for 32 categories.

Finally, the non-numerical attributes are coded using dummy variables. In par-
ticular, every N levels of a categorical variable are represented by introducing
N dummy variables. An example of dummy coding for 32 categorical levels is
shown in Table 8.

Taking into account the large number of categories presented for the categorical
attributes in the input data set (Table 4), continuous and binary codings are con-
sidered for transforming the input variables. On the other hand, binary and dummy
variable codings are chosen for representing the output parameters.

Finally, in order to balance the impact of the different input parameters on the
training algorithm, data scaling is used. Correspondingly, each of the conducted
experiments in this chapter is evaluated using 3 forms of the input data set: the
original data (with no scaling); normalised data (scaled attribute values within [0, 1]
interval); and standardised data (i.e. scaling the attribute values to a zero mean and
unit variance). A sample binary coded and standardised data subset is given in
Table 9.

Table 7 Example of binary coding for 32-level categorical variable

Original category Encoded variables
Index Label B1 B2 B3 B4 B5

1 ‘2D’ 0 0 0 0 0
2 ‘3D’ 0 0 0 0 1
3 ‘AA’ 0 0 0 1 0
…

16 ‘CS’ 0 1 1 1 1
…

32 ‘ME’ 1 1 1 1 1

Table 8 Example of dummy coding for 32-level categorical variable

Original category Encoded variables
Index Label D1 D2 D3 D4 D5 … D16 … D32

1 ‘2D’ 1 0 0 0 0 … 0 … 0
2 ‘3D’ 0 1 0 0 0 … 0 … 0
3 ‘AA’ 0 0 1 0 0 … 0 … 0
…

16 ‘CS’ 0 0 0 0 0 … 1 … 0
…

32 ‘ME’ 0 0 0 0 0 … 0 … 1
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3.4 System Training

The investigated neural network topologies include one hidden layer, with fully
connected neurons in the adjacent layers and batch-mode training. For a given
experiment with P learning samples, the error function is presented as:

EP =
1
2
∑
P

p=1
∑
L

i=1
xpi − tpið Þ2, ð1Þ

where for each sample p = 1, …, P and each neuron of the output layer i = 1, …, L,
a pair (xi, ti) of NN output and target values, respectively, is defined.

4 Results and Discussion

A number of experiments are designed, implemented, executed and evaluated to
test and validate the performance of the proposed intelligent system for identifi-
cation and classification of radar signals. Two separate approaches are considered
and the related results are grouped and presented in the following two case studies.
MATLAB® and its Statistics, Neural Networks and Global Optimisation toolboxes
are used for coding and running of all the experiments.

4.1 Case Study 1—Listwise Deletion and Feedforward
Neural Networks

For the purposes of the first case study, samples that contain incomplete data (i.e.
data that was not fully intercepted or recorded) are removed from the considered
data set, resulting in a subset of 7693 complete data samples of radar signal values.

Subsequently, depending on the experiment to be performed, the samples are
sorted by experts in several groups of major interest according to their application.
In two classes for the first two experiments (“Civil” and “Military”), and in 11
classes for the purpose of the final one (4 from the “Civil” and 7 from the “Mili-
tary” application areas).

A randomly selected, no missing data sample subset (after listwise deletion) is
presented in Table 10. Its first column (the ID attribute) is retained for referencing
purposes only and it is not used during the classifier’s training.

Next, a coding transformation (as described in Sect. 3.2) is applied to convert the
categorical values in the data set to numerical ones. Taking into account the large
number of categories in the inputs (Table 4), continuous and binary codings are
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considered for transforming the input variables. On the other hand, binary and
dummy variable representations are used for transforming the output parameters.

In order to balance the impact of the different input parameters on the training
algorithm, data scaling is applied. Respectively, each of the experiments conducted
for the purposes of this case study is evaluated using three forms of the input data
set—the data itself (with no scaling), after normalisation (i.e., scaling the attribute
values to fall within a specific range, for example [0 1]), and after standardisation
(i.e. scaling the attribute values to a zero mean and unit variance). A sample binary
encoded and normalised data subset is given in Table 11.

The investigated NN topologies include one hidden layer, with fully connected
neurons in the adjacent layers and batch-mode training. For a given experiment
with P learning samples, the error function is given with Eq. 1. Supervised NN
learning with Levenberg-Marquardt algorithm and tangent sigmoid transfer func-
tion is used. A split-sample technique using randomly selected 70 % of the available
data for training, 15 % for validation and 15 % for testing, and mean squared error
(MSE) is adopted for evaluating the learning performance. The stopping criteria is
set to 500 training epochs, gradient reaching less than 1.0e-06 or if 6 consequent
validation checks fail, whichever occurs first.

For the purposes of the first experiment, the categorical attributes of the input
data are coded with consecutive integers. In this way a total of 12 input variables
are received (Table 6). Two neural network topologies are examined—12-10-1 (12
neurons in the input, 10 neurons in the hidden and 1 neuron in the output layers)
and 12-10-2, where the output parameter is coded as one binary neuron taking
values 0 (“Civil”) and 1 (“Military”) for the first topology and 2 binary neurons,
taking values 10 (“Civil”) and 01 (“Military”) for the second topology (Fig. 4).
The performance of each of the topologies is investigated, evaluated and compared
after training with the original, normalised and standardised data. The results are
summarised in Table 12 and Fig. 5.

The second experiment investigates two additional NN topologies: 22-22-1 and
22-22-2, where the output parameter is again coded by one binary neuron (0 for
“Civil” and 1 for “Military”) for the first topology and by two binary neurons for
the second one (10 for “Civil” and 01 for “Military”). Again, the performance of
each of the topologies is investigated, evaluated and compared using the original
data, after normalisation and after standardisation. The results are summarised in
Table 13.

Similarly to the first experiment, sample confusion matrices are presented in
Fig. 6 for a 22-22-2 NN classifier trained with standardised input data. A very high
accuracy of 84.3 % on the testing data set is achieved after 114 epochs and acti-
vation of the validation check stopping criteria (unsatisfactory performance on the
validation data set in six successive iterations).

The final experiment in this case study investigates a broader output space of 11
classes (4 from the “Civil” and 7 from the “Military” domain) and evaluates a
22-22-11 NN classifier with unscaled, normalised and standardised training data
using dummy variable coded outputs. Summary of the obtained results is presented
in Table 14 and a sample confusion matrix for the investigated classifier with
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Fig. 4 Investigated NN topologies for case study 1: 12 neurons in the input layer; 10 in the
hidden; and 1 (a), or 2 (b) neurons in the output layer

Table 12 Classification performance (over the testing set) for continuous input coding and
12-10-N topologies with no data scaling, after normalisation and after standardisation

NN topology Inputs scaling Classification accuracy (%)

12-10-1 No scaling 78.12
Normalisation 80.82
Standardisation 80.76

12-10-2 No scaling 80.14
Normalisation 81.60
Standardisation 82.18

Table 13 Classification performance (over the testing set) for binary input coding and 22-22-N
topologies with no data scaling, after normalisation and after standardisation

NN topology Inputs scaling Classification accuracy (%)

22-22-1 No scaling 81.90
Normalisation 83.34
Standardisation 83.01

22-22-2 No scaling 81.77
Normalisation 83.90
Standardisation 84.30
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standardised input training data is given in Fig. 7, where a good recognition rate of
67.49 % can be observed.

Although a straightforward comparison with radar classification studies reported
by other authors might be misleading, due to the different data sets, model
parameters and training methods used, the achieved results appeared to be strongly
competitive when compared to the ones reported in [30, 32, 48, 49, 60]. Further-
more, additional improvement is expected, if further statistical pre-processing
techniques, missing data handling routines, NN topologies or training algorithm
parameters are investigated (as shown in the next two case studies).

Fig. 5 Classification results for 12-10-2 NN classifier with normalised input data and a validation
stop after 118 epochs. The values in green specify the correctly classified samples for each class
(10—Civil, 01—Military)
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Fig. 6 Classification results for 22-22-2 NN classifier with normalised input data and a validation
stop after 114 epochs. The values in green specify the correctly classified samples for each class
(10—“Civil”, 01—“Military”)

Table 14 Classification performance (over the testing set) for binary input coding and 22-22-11
topology with no data scaling, after normalisation and after standardisation

NN topology Inputs scaling Classification accuracy (%)

22-22-11 No scaling 61.94
Normalisation 66.70
Standardisation 67.49
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4.2 Case Study 2—Multiple Imputation and Feedforward
Neural Networks

The second case study follows the same sequence of experiments and NN
topologies, as introduced in the first study, however, this time an extended dataset,
received after multiple imputation of the missing data values (as described in
Sect. 3) is used.

For the purposes of the first experiment in this study, the categorical attributes of
the input data are coded with consecutive integers. Two NN topologies are
examined—12-10-1 and 12-10-2, where the output parameter is coded as one
binary neuron taking values 0 (“Civil”) and 1 (“Military”) for the first topology
and 2 neurons, taking binary values 10 (“Civil”) and 01 (“Military”) for the second
one.

Fig. 7 Classification results for 22-22-11 NN classifier with standardised data on 7 military (M1
—“Multi-function”, M2—“Battlefield”, M3—“Aircraft”, M4—“Search”, M5—“Air Defense”,
M6—“Weapon” and M7—“Information”) and 4 civil classes (C1—“Maritime”, C2—“Airborne
Navigation”, C3—“Meteorological” and C4—“Air Traffic Control”)
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The performance of each of the topologies is investigated, evaluated and com-
pared using training with the original data (no pre-processing), and after normali-
sation and standardisation. The results are summarised in Table 15 showing up to
5 % accuracy improvement for the case introducing imputation.

Sample confusion matrices for a 12-10-2 NN classifier trained with normalised
input data and a validation stop activated after 106 epochs are given in Fig. 8. They
demonstrate improved accuracy rates (especially for the “Military” class) when
compared to the case studies using listwise deletion to cope with the incomplete
data samples (Fig. 5).

The second experiment in this study investigates two additional NN topologies
—22-22-1 and 22-22-2, where the output is again coded by one binary neuron
(0 for “Civil” and 1 for “Military”) for the first topology and by two binary
neurons for the second one (10 for “Civil” and 01 for “Military”).

The NN performance for each of the topologies is investigated, evaluated and
compared using the original, normalised and standardised data for both the cases—
with and without imputed values. The performance results are summarised in
Table 16, again showing improved NN performances for the cases with imputed
data.

The final experiment investigates a broader output space of 11 classes (4 “Civil”
and 7 “Military”) and evaluates 22-22-11 NN classifiers with the original, nor-
malised and standardised training data, and with dummy variable coded outputs.
Summary of the obtained results when training on data subsets with and without
imputation is presented in Table 17.

Sample confusion matrices for the imputed 22-22-11 NN case, trained with
standardised input data and a validation stop activated after 98 epochs are presented
in Fig. 9. Although the results seem slightly inferior to the listwise deletion case
(Fig. 7), they give higher statistical confidence because of the increased number of
samples.

It can also be seen from Fig. 9 that although the accuracy of the NN classifier is
relatively the same (compared to the NN trained after listwise deletion (Fig. 7)), the

Table 15 Classification performance (over the testing set) for continuous input coding and
12-10-N topologies with no data scaling, after normalisation and after standardisation

Topology Input data % Accuracy
No imputation With imputation

12-10-1 No scaling 78.1 83.3
Normalised 80.8 84.5
Standardised 80.8 85.2

12-10-2 No scaling 80.1 82.1
Normalised 81.6 83.6
Standardised 82.1 84.5

Comparison between NN training with data received after listwise deletion and after multiple
imputation
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number of hits is largely increased and with a better distribution. This is especially
evident for the ‘M7’ class, for which there were no hits in the case without
imputation. The best accuracy is again achieved for the ‘M4’ and ‘C1’ classes, but
the more important achievement as a result of the imputation is the uniform

Fig. 8 Classification results for imputed data case for 12-10-2 NN classifier with normalised input
data and a validation stop after 106 epochs. The values in green specify the correctly classified
samples for each class (10—“Civil”, 01—“Military”)

Table 16 Classification performance (over the testing set) for binary input coding and 22-22-N
topologies with no data scaling, after normalisation and after standardisation

Topology Input data % Accuracy
No imputation With imputation

22-22-1 No scaling 81.9 85.6
Normalised 83.3 87.3
Standardised 83.1 87.2

22-22-2 No scaling 81.8 84.8
Normalised 83.9 85.0
Standardised 84.3 86.8

Comparison between NN training with data received after listwise deletion and after multiple
imputation
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distribution of correctly classified samples. As illustrated in Fig. 7, the class
accuracy variance for the classification with no missing data is very high, from 0 to
87.9 %, whereas in the case using imputed data (Fig. 9), it is between 22.6 and
87.4 %. In other words, while keeping the best accuracy almost the same, the

Table 17 Classification performance (over the testing set) for binary input coding and 22-22-11
topology with no data scaling, after normalisation and after standardisation

Topology Input data % Accuracy
No imputation With imputation

22-22-11 No scaling 61.9 66.1
Normalised 66.7 66.4
Standardised 67.5 66.7

Comparison between NN training with data received after listwise deletion and after multiple
imputation

Fig. 9 Classification results for inputed data and 22-22-11 NN classifier with standardised data on
7 military (M1—“Multi-function”, M2—“Battlefield”, M3—“Aircraft”, M4—“Search”, M5
—“Air Defense”, M6—“Weapon” and M7—“Information”) and 4 civil classes (C1—“Mar-
itime”, C2—“Airborne Navigation”, C3—“Meteorological” and C4—“Air Traffic Control”)
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minimum accuracy is improved by more than 22 %. This should be attributed to the
greater number of available training and testing samples as a result of the impu-
tation, which increases the statistical power of the dataset and subsequently
improves the classification performance of the NN.

5 Conclusion

Reliable and real-time identification of radar signals is of crucial importance for
timely threat detection, threat avoidance, general situation awareness and timely
deployment of counter-measures. In this context, this chapter investigates the
potential application of NN-based approaches for timely and trustworthy identifi-
cation of radar types, associated with intercepted pulse trains.

A number of experiments are designed, implemented, executed and evaluated for
testing and validating the performance of the proposed intelligent systems for
solving the investigated classification tasks. The different experiments study a
variety of NN topologies, data transformation techniques and missing data handling
approaches.

The simulations are divided in two broad case studies, each of which conducts
several sub-experiments. In the first one, all the signals are pre-classified by experts
into between 2 and 11 classes, depending on the experiment, and then a listwise
deletion is used to clean the data from incomplete samples. As a result, very
competitive classification accuracy of about 81, 84 and 67 % is received for the
different recognition tasks.

In the second one, a study applying a multiple imputation model-based approach
for dealing with the large number of missing data (contained in the available radar
signals data set) is investigated. The experiments conducted for the purposes of the
first case study are repeated, but this time using the imputed data set for training of
the classifiers. An improved accuracy of up to 87.3 % is achieved. The results are
compared and critically analysed, showing overall improved accuracy when the NN
are trained on the larger subset with imputed values.

Although a straightforward comparison to radar classification studies, reported
by other authors might be misleading, due to the different data sets, model
parameters, data transformations, training and optimisation methods used, the
achieved results are strongly competitive to the ones reported in [30, 42, 48, 49,
52, 60].

Potential areas for further extension of this research include investigation of
additional statistical transformation techniques, such as Principal Component
Analysis (PCA), Non-Linear Principal Component Analysis (NLPCA), and Linear
Discriminant Analysis, for decreasing the dimensionality of the problem and
increasing the separability between the classes. In terms of classifiers, we presented
supervised learning and classification, but unsupervised learning techniques (such
as self-organising maps (SOM)) can also be considered, as well as varying other
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training parameters and exploring additional NN topologies. Finally, additional
classes can be introduced, in order to achieve more specific classification of the
intercepted radar data.
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An Improved Decision System
for URL Accesses Based on a Rough
Feature Selection Technique

P. de las Cuevas, Z. Chelly, A.M. Mora, J.J. Merelo
and A.I. Esparcia-Alcázar

Abstract Corporate security is usually one of the matters in which companies invest

more resources, since the loss of information directly translates into monetary losses.

Security issues might have an origin in external attacks or internal security failures,

but an important part of the security breaches is related to the lack of awareness

that the employees have with regard to the use of the Web. In this work we have

focused on the latter problem, describing the improvements to a system able to detect

anomalous and potentially insecure situations that could be dangerous for a com-

pany. This system was initially conceived as a better alternative to what are known

as black/white lists. These lists contain URLs whose access is banned or dangerous

(black list), or URLs to which the access is permitted or allowed (white list). In this

chapter, we propose a system that can initially learn from existing black/white lists

and then classify a new, unknown, URL request either as “should be allowed” or

“should be denied”. This system is described, as well as its results and the improve-

ments made by means of an initial data pre-processing step based on applying Rough

Set Theory for feature selection. We prove that high accuracies can be obtained even

without including a pre-processing step, reaching between 96 and 97 % of correctly

classified patterns. Furthermore, we also prove that including the use of Computa-
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tional Intelligence techniques for pre-processing the data enhances the system perfor-

mance, in terms of running time, while the accuracies remain close to 97 %. Indeed,

among the obtained results, we demonstrate that it is possible to obtain interest-

ing rules which are not based only on the URL string feature, for classifying new

unknown URLs access requests as allowed or as denied.

Keywords Computational intelligence ⋅Rough sets ⋅ Feature selection ⋅Corporate

security policies ⋅ Internet access control ⋅ Data mining ⋅ Blacklists and whitelists

1 Introduction

Security is an inclusive term that refers to a diversity of steps taken by individuals,

and companies, in order to protect computers or computer networks that are con-

nected to the Internet. The Internet was initially conceived as an open network facil-

itating the free exchange of information. However, data which is sent/received over

the Internet travel through a dynamic chain of computers and network links and, as a

consequence, the risk of intercepting and changing the data is high. In fact, it would

be virtually impossible to secure every computer connected to the Internet around

the world. So, there will likely always be weak links in the chain of data exchange

[7]. Yet, companies have to find out a way for their employees to safely interact with

customers, clients, and anyone who uses the Internet while protecting internal confi-

dential information. Companies have, also, to alert the employees from the Internet

misuse while doing their job.

Most of the time, employees have a misguided sense of security and believe that

it is an IT problem, a purely technical issue, and they naively believe that an incident

may never happen to them [36]. Actually, the employees’ web misuse is one of the

main causes of security breaches [3], so that making them security-conscious has

become a security challenge.

The reality is that every department must be involved in readiness planning and

establishing security policies and procedures to minimize their risks. Such strategies

are mainly handled by means of Corporate Security Policies (CSPs) which basically

are a set of security rules aiming at protecting company assets by defining permis-

sions to be considered for every different action to be performed inside the security

system [19].

The basic idea behind these CSPs is usually to include rules to either allow or

deny employees’ access to non-confident or non-certified websites, which are ref-

erenced by their URLs in this chapter. Moreover, several web pages might be also

controlled for productivity or suitability reasons, given the fact that the employees

who connect to these might have working purposes or not. In fact, some of the CSPs

usually define sets of allowed or denied web pages or websites that could be accessed

by the company employees. These sets are usually included in two main lists; a white

list (referring to “permitted”) and a black list (referring to “non-permitted”). Both

lists, the white and the black, act as a good and useful control tools for those URLs
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included in them, as well as for the complementary. For instance, the URLs which

are not included in a white list will automatically have a denial of access [24].

The aim of this paper is going beyond this traditional and simple decision mak-

ing process. By using black and/or white lists, we either allow or deny users’

requests/connection based, only, on the URLs provided in the lists. Yet, updating

these lists is a never ending task, as numerous malicious websites appear every day.

For instance, Netcraft reports from November of 2014 [30] showed that there are

about 950 million active websites. But McAfee reported [27] that, at the end of the

first quarter of 2014, there were more than 18 million new suspect URLs (2 million

associated domains), and also more than 250 thousand new phishing URLs (almost

150 thousand associated domains).

With this situation in mind, in this chapter, our aim is to define a tool for auto-

matically making allow or deny decisions with respect to URLs that are not included

in the aforementioned lists. This decision would be based on that made for similar

URL accesses (those with similar features), but instead of using only the URL strings

included in the lists, we will consider other parameters of the request/connection.

For this reason, the problem has been mapped to a classification problem in which

we start from a set of unlabelled patterns that model the connection properties from

a huge amount of actual1 URL accesses, known as sessions. After that, we assign a

label to many of them, considering a set of actual2 security rules (CSPs) defined by

the Chief Security Officer (CSO) in the company. This was the approach followed in

[28], and which we extend in this chapter.

In order to extract conclusions from the resulting studied dataset and to properly

apply a classification algorithm, a pre-processing step is needed. In fact, to obtain an

accurately trained classifier, there is a need to extract as much information as possi-

ble from the connections that the employees normally make throughout the workday.

This translates into high computational requirements, which is why we introduce in

this paper techniques for data reduction. More precisely, we aim to apply a feature

selection technique to extract the most important features from the data at hand.

Among the well known feature selection techniques proposed in literature, we pro-

pose to use a Computational Intelligence method: the Rough Set Theory (RST) [31].

RST has been experimentally evaluated with other leading feature selection tech-

niques, such as Relif-F and entropy-based approaches in [18], and has been shown

to outperform these in terms of resulting classification performance.

After pre-processing and based on the reduced dataset, we will apply several clas-

sification algorithms, testing them and selecting the most appropriate one for this

problem. The selected classifier should be capable of dealing with our data while

producing high accuracies and being lightweight in terms of running time. More-

over, as we want to further test the reliability of the results, in this work we propose

different experimental setups based on different data partitions. These partitions are

formed either by preserving the order of the data or by taking the patterns in a random

1
Taken from a log file released to us by a Spanish company.

2
The set of rules has been written by the same company, with respect to its employees.
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way. Finally, given that the used data presents unbalance, we aim to apply balancing

techniques [16] to further guarantee the fairness of our obtained results.

In this chapter, we want to improve the accuracies obtained in our previous work

[28], as well as see if the new incorporated method (namely Rough Sets) for feature

selection yields to better rules. This is meant to be done not only by applying RST

for feature selection, but also by improving the quality of the original data set, by

means of erasing information that may be redundant.

The rest of the paper is structured as follows. Next section describes the state of

the art related to Data Mining (DM), Machine Learning (ML), and Computational

Intelligence (CI) techniques applied to corporate security. Also, related works about

URL filtering will be reviewed. Data description is detailed in Sect. 3. Then, Sect. 4

describes the basic concepts of Rough Set Theory for feature selection which we have

used for data pre-processing. Section 5 gives an overview of the followed methodol-

ogy, as well as the improvements done after our first results obtained in [28]. Then

Sect. 6 depicts the results, and discusses the obtained rules which are different for

every used classifier. Finally, conclusions and future trends are given in Sect. 7.

2 State of the Art

Our work tries to obtain a URL classification tool for enhancing the security in the

client side, as at the end we want to get if a certain URL is secure or not, having as ref-

erence a set of rules (derived from a CSP) which allow or deny a set of known HTTP
requests. For this, different techniques belonging to Data Mining (DM), Machine

Learning (ML), and Computational Intelligence, have been applied. This section

gives an overview in a number of solutions given to protect the user, or the com-

pany, against insecure situations.

First, as we want to add a good pre-processing phase to our system, in order to

improve it, Sect. 2.1 gives an overview of the state of the art related to data analysis

and pre-processing. Then, in Sect. 2.2 we try to analyse similar systems, as well as

define which advantages our system provides.

2.1 Data Analysis and Pre-processing

Performing DM means analyzing the database we have [12] which in our case is a

log of HTTP requests. The work discussed in [45] presents an exhaustive review of

works which study database cleaning and their conclusion is that a database with

good quality is decisive when trying to obtain good accuracies; a fact which was

also demonstrated in [6]. To analyse the data that we have at hand, we have based

our work on two main processes: data pre-processing on the URL dataset and the

application of balancing techniques depending on the data.

While performing data pre-processing, we have focused first on the kind/type of

data included in the HTTP requests in the log file that is used as input file. We realised
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that many URL strings are redundant in the dataset and thus we aimed to eliminate

them which is seen a cleaning approach.

Many cleaning techniques have been proposed in literature [45] in order to guar-

antee the good quality of a given dataset. Most of these techniques are based on

updating a database by adding or deleting instances to optimize and reduce the ini-

tial database. These policies include different operations such as deleting the out-

dated, redundant, or inconsistent instances; merging groups of objects to eliminate

redundancy and improve reasoning power; re-describe objects to repair incoheren-

cies; check for signs of corruption in the database and controlling any abnormalities

in the database which might signal a problem. Working with a database which is

not cleaned can become sluggish and without accurate data users will make unin-

formed decisions. In this work, we have maintained the our HTTP request dataset by

focusing on a specific kind of data that should be eliminated: redundant URL strings.

Section 5.3.1 explains in detail the process that we have adopted to eliminate these

redundant data.

Still with the data pre-processing task, we have focused as a second step on check-

ing the importance of the set of features presented in the HTTP requests log file. Thus

we tried to select the most informative features from the initial feature set. At this

point, we have introduced an extra technique, a data reduction technique, that was

not included in our first work presented in [28]. Feature reduction is a main point

of interest across a wide variety of fields and focusing on this step is crucial as it

often presents a source of significant information loss. Many techniques were pro-

posed in literature to achieve the task of feature reduction and they can be categorized

into two main heads; techniques that transform the original meaning of the features,

called the “transformation-based approaches”, and the second category is a set of

semantic-preserving techniques known as the “selection-based approaches”.

Transformation based approaches, also called “feature extraction approaches”,

involve simplifying the amount of resources required to accurately describe a large

set of data. Feature extraction is a general term for methods that construct combina-

tions of variables to represent the original set of features but with new variables while

still describing the data with sufficient accuracy. The transformation based tech-

niques are employed in situations where the semantics of the original database will

not be needed by any future process. In contrast to the semantics-destroying dimen-

sionality reduction techniques, the semantics-preserving techniques, also called

“feature selection techniques”, attempt to retain the meaning of the original feature

set. The main aim of this kind of techniques is to determine a minimal feature subset

from a problem domain while retaining a suitably high accuracy in representing the

original features [23]. In this work, we mainly focus on the use of a feature selec-

tion technique, instead of a feature extraction technique, as it is crucial to preserve

the semantics of the features in the URL data that we dispose at hand, and among

them, select the most important/informative ones which nearly preserve the same

performance as the initial feature set.

Yet it is important to mention that most feature selection techniques proposed

in the literature suffer from some limitations. Most of these techniques involve the

user for the task of the algorithms parameterization and this is seen as a significant
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drawback. Some feature selectors require noise levels to be specified by the user

beforehand, some simply rank features leaving the user to choose their own subset.

There are those that require the user to state how many features are to be chosen, or

they must supply a threshold that determines when the algorithm should terminate.

All of these require the user to make a decision based on its own (possibly faulty)

judgment [17]. To overcome the shortcomings of the existing methods, it would

be interesting to look for a method that does not require any external or additional

information to function appropriately. Rough Set Theory (RST) [31], which will be

deeply explained in Sect. 4, can be used as such tool.

As previously stated and apart from applying a data pre-processing process, we

aim to apply balancing techniques, depending on the distribution of patterns per

class, in order to ensure the fairness of our results. This is due to the fact that using

“real data”
3

may yield to highly unbalanced data sets [5]. This is our case, as the log

file includes a set of URL accesses performed by humans, and indeed we obtained an

unbalanced dataset. In order to deal with this kind of data there exist several methods

in literature known as balancing techniques [5]. These methods can be categorized

into three main groups [16]:

∙ Undersampling the over-sized classes: This category aims at reducing the consid-

ered number of patterns for the classes with the majority.

∙ Oversampling the small classes: This category aims at introducing additional (nor-

mally synthetic) patterns in the classes with the minority.

∙ Modifying the cost associated to misclassifying the positive and the negative class:
This category aims at compensating the unbalance in the ratio of the two classes.

For example, if the imbalance ratio is 1:10 in favour of the negative class, the

penalty of misclassifying a positive example should be 10 times greater.

Techniques belonging to the first group have been applied to some works, fol-

lowing a random undersampling approach [14]. However, those techniques have the

problem of the loss of valuable information.

Techniques belonging to the second group have been so far the most widely used,

following different approaches, such as SMOTE (Synthetic Minority Oversampling

Technique) which is a method proposed in [4] for creating ‘artificial’ samples for the

minority class in order to balance the amount of them, with respect to the amount of

samples in the majority class. However this technique is based on numerical compu-

tations, considering different distance measures, in order to generate useful patterns

(i.e., realistic or similar to the existing ones).

The third group implies using a method in which a cost can be associated to the

classifier accuracy at every step. This was done for instance in [1], where a Genetic

Programming (GP) approach was used in which the fitness function was modified

in order to consider a penalty when the classifier makes a false negative (an element

from the minority class was classified as belonging to the majority class). However

almost all the approaches deal with numerical (real, integer) data.

3
Data which was gathered from the real world, and was not artificially generated.
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For our purposes, we will focus on techniques of the first and second group, as

we will use state-of-the-art classifiers. Details about the balancing techniques used

in our work will be explained in Sect. 5.2.

2.2 Related Work and Contribution

The works that we are interested in are those which scope is related with the users’

information and behaviour, and the management (and adaptation) of Information or

Corporate Security Policies (ISPs).

In this line, in [13] a combined biometrics signals with ML methods in order

to get a reliable user authentication in a computer system was proposed. In [20] a

method was presented named user-controllable policy learning in which the user

gives feedback to the system every time that a security policy is applied, so these

policies can be refined according to that feedback to be more accurate with respect

to the user’s needs.

On the other hand, policies could be created for enhancing user’s privacy, as pro-

posed in [9], where a system able to infer privacy-related restrictions by means of a

ML method applied in a social network environment was defined. The idea of infer-

ring policies can be also considered after our results, given the fact that we are able to

obtain new rules from the output of the classifiers, but in the scope of the company,

and focused on ISPs.

In the same line, in [21, 22] a system was proposed which evolves a set of com-

puter security policies by means of GP, taking again into account the user’s feedback.

Furthermore, the work presented in [37] took the same approach as the latter men-

tioned work, but also bringing event correlation into it. The two latter works are

interesting in our case, though they are not focused on company ISPs; for instance,

our case with the allowed or denied HTTP requests.

Furthermore, it is worth mentioning a tool developed in [15], taking the approach

of “greylisting”, and which temporarily rejects messages that come from senders

who are not in the black list or in the white list, so that the system does not know

if it is a spam message or not. And, like in our approach, it works trying to have a

minimal impact on the users.

Finally, a system named MUSES (from Multiplatform Usable Endpoint Security

System) [29] is being developed under the European Seventh Framework programme

(FP7). This system will include event treatment on the user actions inside a company,

DM techniques for applying the set of policies from the company ISP to the actions,

allowing or denying them, CI techniques for enhancing the system performance, and

ML techniques for improving the set of rules derived from these policies, according

to user’s feedback and behaviour after the system decisions [34]. The results of this

work could be applied in this system, by changing the pre-processing step, due to

the fact that the database is different. But overall, our conclusions can be escalated

to be included in such a system.

In the next Section, we will describe the problem we aim to solve, in addition to

the data from which the data sets are composed.
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3 Problem and Data Description

The problem to solve is related with the application of corporate security policies in

order to deal with potential URL accesses inside an enterprise. To this end a dataset

of URL sessions (requests and accesses) is analysed. These data are labelled with

the corresponding permission or denial for that access, following a set of rules. The

rules themselves act as a mix between a black list and a white list. The problem is

then transformed into a classification one, in which every new URL request will be

classified, and thus, a grant or deny action will be assigned to that pattern.

The analysed data come from an access.log of the Squid proxy application

[38], in a real Spanish company. This open source tool works as a proxy, but with

the advantage of storing a cache of recent transactions so future requests may be

answered without asking the origin server again [43].

Every pattern, namely an URL request, has ten associated variables. These pat-

terns are described in Table 1 in which we have indicated the type of each variable;

either if it is numeric or nominal/categorical. The table has, however, not only ten

but eleven described variables. This is due to the fact that we decided to consider the

‘Content Type’ of the requested web page as a whole, but also its Main Content Type

(MCT) separately. By adding more information through a new feature, we intended

to see if more general rules could be obtained by the classifiers, given that there are

less possible values for an MCT than for a whole ‘Content Type’.

Table 1 Independent variables corresponding to a URL request through HTTP
Variable name Description Type Rank

http_reply_code Status of the server response Categorical 20 values

http_method Desired action to be performed Categorical 6 values

duration_milliseconds Session duration Numerical integer in

[0,357170]

content_type Media type of the entity-body

sent to the recipient

Categorical 85 values

content_type_MCT Main Content Type of the

media type

Categorical 11 values

server_or_cache_
address

IP address Categorical 2343 values

time connection hour (in the day) Date 00:00:00 to

23:59:59

squid_hierarchy It indicates how the next-hop

cache was selected

Categorical 3 values

bytes Number of transferred bytes

during the session

Numerical integer in

[0,85135242]

client_address IP address Categorical 105 values

URL Core domain of the URL, not

taking TLD into account

Categorical 976 values

The URLs are parsed as detailed in Sect. 5.1
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The dependent variable or class is a label which inherently assigns a decision

(and so the following action) to every request. This can be: ALLOW if the access is

permitted according to the CSPs, or can be DENY, if the connection is not permitted.

These patterns are labelled using an ‘engine’ based in a set of security rules, that

specify the decision to make. This process is described in Sect. 5.1.

These data were gathered along a period of two hours, from 8.30 to 10.30 am

(30 min after the work started), monitoring the activity of all the employees in a

medium-size Spanish company (80–100 people), obtaining 100,000 patterns. We

consider this dataset as quite complete because it contains a very diverse amount of

connection patterns, going from personal to professional issues. Moreover, results

derived from the experiments and which are described in Sect. 6 show that this quan-

tity of data might be big enough, but a more accurate outcome would be given with,

for instance, a 24 h long log.

Later on, Sect. 5 will describe how the data coming from the proxy log is labelled

due to the application of the aforementioned rules, and the result will be an initial

URL dataset with 12 features. Then, at this stage and after describing the data, it

seems necessary to describe the technique that we have used for the URL data pre-

processing. Rough Set Theory for feature selection is depicted in the next Section.

4 Rough Set Based Approach for Feature Selection

As previously mentioned, it is important to perform data pre-processing on the initial

URL dataset. To do so, it seems necessary to think about a technique that can, on the

one hand, reduce data dimensionality using information contained within the dataset

and, on the other hand, be capable of preserving the meaning of the features. Rough

Set Theory (RST) [31] can be used as such a tool to discover data dependencies and

to reduce the number of attributes contained in the URL dataset using the data alone,

requiring no additional information [17]. In this Section, the basic concepts of RST

for feature selection are highlighted.

4.1 Preliminaries of Rough Set Theory

Data are represented as a table where each row represents an object and where each

column represents an attribute that can be measured for each object. Such table

is called an “Information System” (IS). Formally, an IS can be defined as a pair

IS = (U,A) where U = {x1, x2,… , xn} is a non-empty, finite set of objects called

the universe and A = {a1, a2,… , ak} is a non-empty, finite set of attributes. Each

attribute or feature a ∈ A is associated with a set Va of its value, called the domain
of a. We may partition the attribute set A into two subsets C and D, called condition
and decision attributes, respectively [31].
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Let P ⊂ A be a subset of attributes. The indiscernibility relation, denoted by

IND(P), is an equivalence relation defined as: IND(P) = {(x, y) ∈ U × U : ∀a ∈
P, a(x) = a(y)}, where a(x) denotes the value of feature a of object x. If (x, y) ∈
IND(P), x and y are said to be indiscernible with respect to P. The family of all equiv-

alence classes of IND(P) (Partition of U determined by P) is denoted by U∕IND(P).
Each element in U∕IND(P) is a set of indiscernible objects with respect to P. Equiv-

alence classes U∕IND(C) and U∕IND(D) are called condition and decision classes.

For any concept X ⊆ U and attribute subset R ⊆ A, X could be approximated by

the R-lower approximation and R-upper approximation using the knowledge of R.

The lower approximation of X is the set of objects of U that are surely in X, defined

as: R(X) =
⋃
{E ∈ U∕IND(R) ∶ E ⊆ X}. The upper approximation of X is the set of

objects of U that are possibly in X, defined as: R(X) =
⋃
{E ∈ U∕IND(R) ∶ E∩X ≠

∅}. The boundary region is defined as:

BNDR(X) = R(X) − R(X)

If the boundary region is empty, that is, R(X) = R(X), concept X is said to be

R-definable. Otherwise X is a rough set with respect to R.

The positive region of decision classes U∕IND(D) with respect to condition

attributes C is denoted by POSc(D) where:

POSc(D) =
⋃

R(X)

The positive region POSc(D) is a set of objects of U that can be classified with

certainty to classesU∕IND(D) employing attributes ofC. In other words, the positive

region POSc(D) indicates the union of all the equivalence classes defined by IND(P)
that each for sure can induce the decision class D.

4.2 Reduction Process

The aim of feature selection is to remove unnecessary features to the target concept.

It is the process of finding a smaller set of attributes, than the original one, with

the same or close classification power as the original set. Unnecessary features, in

an information system, can be classified into irrelevant features that do not affect

the target concept in any way and redundant (superfluous) features that do not add

anything new to the target concept.

RST for feature selection is based on the concept of discovering dependencies

between attributes. Intuitively, a set of attributes Q depends totally on a set of

attributes P, denoted P → Q, if all attribute values from Q can be uniquely deter-

mined by values of attributes from P. In particular, if there exists a functional depen-

dency between values of Q and P, then Q depends totally on P. Dependency can be

defined in the following way: ForP,Q ⊂ A,Q depends onP in a degree k (0 ≤ k ≤ 1),
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denoted P→k Q, if k = 𝛾P(Q) = |POSP(Q)|∕|U|; If k = 1 Q depends totally on P, if

k < 1 Q depends partially (in a degree k) on P, and if k = 0 Q does not depend on P.

RST performs the reduction of attributes by comparing equivalence relations gen-

erated by sets of attributes. Attributes are removed so that the reduced set, termed

“Reduct”, provides the same quality of classification as the original. A reduct is

defined as a subset R of the conditional attribute set C such that 𝛾R(D) = 𝛾C(D).
Thus, a given data set may have many attribute reduct sets. In RST, a reduct with

minimum cardinality is searched for; in other words an attempt is made to locate a

single element of the minimal reduct set. A basic way of achieving this is to gen-

erate all possible subsets and retrieve those with a maximum rough set dependency

degree. However, this is an expensive solution to the problem and is only practical for

very simple data sets. Most of the time, only one reduct is required as, typically, only

one subset of features is used to reduce a data set, so all the calculations involved

in discovering the rest are pointless. Another shortcoming of finding all possible

reducts using rough sets is to inquire about which is the best reduct for the classifi-

cation process. The solution to these issues is to apply a heuristic attribute selection
method [46].

Among the most interesting heuristic methods proposed in literature, we mention

the QuickReduct algorithm [35] presented by Algorithm 1.

Algorithm 1 The QuickReduct Algorithm

1: C: the set of all conditional features;

2: D: the set of decision features;

3: R ← {};

4: do
5: T ← R

6: ∀ x ∈ (C−R);

7: if 𝛾R∪{x}(D) > 𝛾T (D);
8: T ← R ∪ {x};

9: end if
10: R ← T;

11: until 𝛾R(D) == 𝛾C(D)
12: return R

The QuickReduct algorithm attempts to calculate a reduct without exhaustively

generating all possible subsets. It starts off with an empty set and adds in turn, one at

a time, those attributes that result in the greatest increase in the rough set dependency

metric. According to the QuickReduct algorithm, the dependency of each attribute is

calculated and the best candidate is chosen. This process continues until the depen-

dency of the reduct equals the consistency of the data set. For further details about

how to compute a reduct using the QuickReduct algorithm, we kindly invite the

reader to refer to [35].
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5 Followed Methodology

Before classification techniques are applied, a data pre-processing step has been per-

formed. First, the raw dataset is labelled according a set of initial corporate security
rules, i.e., every pattern is assigned to a label indication if the corresponding URL

request/access would be ALLOWED or DENIED considering these rules. This step

is necessary in order to transform the problem into a classification one. However,

in order to apply the rules they must be transformed from their initial format into

another one that can be applied in our programs, a hash or map. This is described

in Sect. 5.1. This Subsection also details how the patterns of the navigation data log

(URL sessions) are parsed, in order to build a hash to perform the matting/labelling

process.

At the end of the ‘parsing’ phase, the two hashes are compared in order to obtain

which entries of the log should be ALLOW or DENY, known as the labelling step.

This is similar to perform a decision process in a security system. This step results in

that there are 38972 pattern belonging to class ALLOW (positive class) and 18530

of class DENY (negative class), so just a 67.78 % of the samples belong to the major-

ity class. This represents a very important problem, since a classifier that is trained

considering these proportions is supposed to classify all the samples as ALLOW,

getting a theoretically quite good classification accuracy equal or greater than 68 %.

However, in Sect. 6 we will see that, despite the fact that some denied patterns are

classified as allow, the overall performance of the classifiers is better than expected.

It is worth to mention that there is not the same amount of patterns in the two

classes. This means that the dataset is unbalanced, and therefore Sect. 5.2 describes

the balancing techniques used for dealing with this situation. Finally, in Sect. 5.3 we

explain the applied methods in the pre-processing phase. What we want to prove

is that by adding this phase, it enhances the results of our previous work presented

in [28].

Based on the generated pre-processed and balanced dataset and as a final step, a

supervised classification process [25] has been conducted. For this step, Weka Data

Mining Software [42] has been used, in order to select the best set of classifiers in

order to deal with these data. These classifiers will be further tested in Sect. 6.

5.1 Building the Dataset

In previous sections, it was stated that the data to work with was not originally pre-

sented in the form of a dataset. Instead, ‘raw’ data was gathered. In order to have the

data in the form of a dataset, ready to be pre-processed, as well as being adequate to

act as an input for the classifiers, a parsing process must be performed.

First, in this work we have considered Drools [41] as the tool to create and manage

rules in a business environment. This so called Business Rule Management System

(BRMS) has been developed by the JBoss community under an Apache License

and it is written in Java. Though this platform consists of many components; here
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(a) (b)

Fig. 1 a Structure of a rule in Drools Expert. b Resulting rule, after the parsing, in a global hash

of rules

we focus on Drools Expert and the Drools Rule Language (DRL, [40]). Then, the

defined rules for a certain company are included in a file with a .drl extension;

the file that needs to be parsed to obtain the final set of rules. To obtain the needed

knowledge from the rules file, it is necessary to know the format of this type of

language, because it is essential for the parsing process.

In Fig. 1a, we display the typical rule syntax in DRL. Two main parts should be

obtained from the parsing method that will be applied: both left and right sides of the

rule, taking into account that the left side is where the company specifies the condi-

tions required to apply the action indicated in the right side. Also, for describing the

conditions, Squid syntax is used (see Sect. 3), having thus the following structure:

squid:Squid(conditions). Finally, from the right side of the rule, the ALLOW
or DENY label to apply on the data which matches with the conditions, will be

extracted. The parser that we have implemented applies two regular expressions,

one for each side of the rule, and returns a hash with all the rules with the conditions

and actions defined. The ‘before and after’ performing the parsing over the .drl
file is presented in Fig. 1.

Then, the log file is analysed. Usually, the instances of a log file have a number of

fields (which will be later referred as features/attributes of a connection pattern), in

order to have a registration of the client who asks for a resource, the time of the day

when the request is made, and so on. In this case, we have worked with an access.log
(see Sect. 3) file, converted into a CSV format file so it could be parsed and trans-

formed in another hash of data. All ten fields of the Squid log yield a hash like the

one depicted in Fig. 2. Once the two hashes of data were created, they were com-

pared in such a way that for each rule in the hash of rules, it was determined how

many entries in the data log hash are covered by the rule, and so they were applied

the label that appears as ‘action’ in the rule.

Among the tasks to be performed, is the one to extract from a whole URL the

part that was more interesting for our defined purposes. It is important to point

out that in a log with thousands of entries, an enormous variety of URLs can be

found, since some can belong to advertisements, images, videos, or even some oth-

ers does not have a domain name but are given directly by an IP address. For this

reason, we have taken into account that for a domain name, many subdomains (sepa-

rated by dots) could be considered, and their hierarchy grows from the right towards
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Fig. 2 Hash in Perl with an

example entry. The actual

hash used for this work has a

total of 100,000 entries, with

more than a half labelled as

ALLOW or DENY after the

comparing process

the left. The highest level of the domain name space is the Top-Level Domain

(TLD) at the right-most part of the domain name, divided itself in country code

TLDs and generic TLDs. Then, a domain and a number of subdomains follow the

TLD (again, from right to left). In this way, the URLs in the used log are such as

http://subdomain...subdomain.domain.TLD/ other_subdirectories. However, for the

ARFF
4

file to be created, only the domain (without the subdomains and the TLD)

should be considered, because there are too many different URLs to take into con-

sideration. Hence, applying another regular expression, the data parser obtains all

the core domains of the URLs, which makes 976 domains in total.

5.2 Balancing the Dataset

While analysing the data, we observed that more than half of the initial amount of

patterns are labelled, and that the ratio is 2:1 in allows to denies. The 2:1 ratio means

that the data is unbalanced, and therefore we have performed different approaches

from the first and second groups of data balancing techniques, which were introduced

in Sect. 2.1:

∙ Undersampling: we will randomly remove samples of the majority class until the

amount in both classes are similar. In other words, we will reduce the amount of

‘denied’ patterns by a half.

∙ Oversampling: we will introduce more samples in the minority class, in order

to get a closer number of patterns in both classes. This has to be done due to

the impossibility of creating synthetic data when dealing with categorical values,

given that there is not a proper distance measure between two values in a category.

Actually, since the number of samples in the majority class is almost twice the

minority one, we have just duplicated all of those belonging to the minority class.

4
Format of Weka files.
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5.3 Pre-processing the Data

Section 2.1 explains that having a good quality database is crucial when good accu-

racy values are required. For this reason, we have maintained the dataset by per-

forming a removal of patterns in the log which we found as redundant and applied a

feature selection technique, based on Rough Sets.

5.3.1 Erasing Redundant Information

The first thing to do is studying the data in order to look for the patterns that are

repeated. Hence, after having analysed the log of connecting patterns, we stud-

ied the field squid_hierarchy and saw that had two possible values: DIRECT or

DEFAULT_PARENT. The Squid FAQ reference [39], and the Squid wiki [44] explain

that, as a proxy, the connections are made, firstly to the Squid proxy, and then, if

appropriate, the request continues to another server. These connections are regis-

tered in Squid in the same way, with the same fields, with the exception of the client

and server IP addresses. From the point of view of classification, if one of these two

entries happens to be in the training file, and the other in the testing file, it would

mean that the second would be correctly classified because of all the attribute values

that both have in common. However, this also means that the good percentages that

we obtained may not be real, but biased. That is why the second step is about remov-

ing entries that we called “repeated” (in the explained sense). This step is performed

over the original, unbalanced, dataset. After the removal, a new file was created.

5.3.2 Performing Feature Selection

For pattern classification, our learning problem has to select high discriminating

features from the input database which corresponds to the URL information dataset.

To perform this task, we apply rough set theory.

Technically, we may formalize our problem as an information system where uni-

verse U = {x1, x2,… , xN} is a set of pattern identifiers, the conditional attribute set

C = {c1, c2,… , cN} contains each feature of the information table to select and the

decision attribute D of our learning problem corresponds to the class label of each

pattern. The input database has a single binary decision attribute. Hence, the deci-

sion attribute D has binary values d: either the HTTP request is allowed or denied.

The condition attribute feature D is defined as follows:

D = {Allow,Deny}
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For feature selection, we apply the rough QuickReduct algorithm which was pre-

viously explained in Sect. 4.2. First of all, the dependency of the entire database

𝛾C(D) is calculated. To do so, the algorithm has to calculate the positive region for

the whole attribute set C: POSC(D). Once the consistency of the database is mea-

sured, the feature selection process starts off with an empty set and moves to cal-

culate the dependency of each attribute c apart: 𝛾c(D). The attribute c having the

greatest value of dependency is added to the empty set. Once the first attribute c is

selected, the algorithm adds, in turn, one attribute to the selected first attribute and

computes the dependency of each obtained attributes couple 𝛾{c,ci}(D). The algorithm

chooses the couple having the greatest dependency degree. The process of adding

each time one attribute to the subset of the selected features continues until the depen-

dency of the obtained subset equals the consistency of the entire database already

calculated; i.e., 𝛾C(D).
From the initial dataset containing 12 features and after applying the rough feature

selection technique, we obtained a list of 9 features. The features kept after the feature

selection process are the following:

∙ http_reply_code

∙ duration_miliseconds

∙ content_type

∙ server_or_cache_address

∙ time

∙ bytes

∙ url

∙ client_address

On the contrary, the following features were erased by applying Rough Set for

feature selection:

∙ http_method

∙ content_type_MCT

∙ squid_hierarchy

In Sect. 6.2, we will show that by applying rough set theory for selecting the most

important features is a good way of maintaining the good quality of the database,

and the system performance will improve significantly.

5.4 Classification Methods

The choice of the classifiers to apply and would be admitted before we make a test

selection phase – known as a ‘pre-selection phase’ – is based on two main require-

ments. First and as our goal consists of obtaining a set of rules able to classify

unknown URL connection requests, we need classifiers based on decision trees or

rules, so that we can study their output in addition to their accuracy. Second and as
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mentioned in Sect. 3, the features of the data used for this work are mainly categori-

cal, but also numerical. Thus, among the classifiers based on trees or rules, we need

classifiers that are able to handle these types of features. Consequently, we made a

first selection over all the classifiers in Weka which complied with these require-

ments.

Yet, it is important to mention that previously in [28], we studied a set of classifiers

that may be applied to the nature of our dataset; classifiers that fit our requirements.

The selected classifiers are indeed based on the obtained good classification accu-

racy. In fact, we demonstrated that the classifiers that lead to better classification

results were:

J48 This classifier generates a pruned or unpruned C4.5 decision tree. Described

for the first time in 1993 by [33], this machine learning method builds a decision

tree selecting, for each node, the best attribute for splitting and create the next

nodes. An attribute is selected as ‘the best’ by evaluating the difference in entropy

(information gain) resulting from choosing that attribute for splitting the data. In

this way, the tree continues to grow till there are not attributes anymore for further

splitting, meaning that the resulting nodes are instances of single classes.

Random Forest This manner of building a decision tree can be seen as a random-

ization of the previous C4.5 process. It was stated by [2] and consist of, instead

of choosing ‘the best’ attribute, the algorithm randomly chooses one between a

group of attributes from the top ones. The size of this group is customizable in

Weka.

REP Tree Is another kind of decision tree, it means Reduced Error Pruning Tree.

Originally stated by [32], this method builds a decision tree using information

gain, like C4.5, and then prunes it using reduced-error pruning. That means that

the training dataset is divided into two parts: one devoted to make the tree grow

and another for pruning. For every subtree (not a class/leaf) in the tree, it is

replaced by the best possible leaf in the pruning three and then it is tested with

the test dataset if the made prune has improved the results. A deep analysis about

this technique and its variants can be found in [10].

NNge Nearest-Neighbor machine learning method of generating rules using non-

nested generalised exemplars, i.e., the so called ‘hyperrectangles’ for being mul-

tidimensional rectangular regions of attribute space [26]. The NNge algorithm

builds a ruleset from the creation of this hyperrectangles. They are non-nested

(overlapping is not permitted), which means that the algorithm checks, when a

proposed new hyperrectangle created from a new generalisation, if it has con-

flicts with any region of the attribute space. This is done in order to avoid that an

example is covered by more than one rule (two or more).

PART It comes from ‘partial’ decision trees, for it builds its rule set from them [11].

The way of generating a partial decision tree is a combination of the two afore-

mentioned strategies “divide-and-conquer” and “separate-and-conquer”, gaining

then flexibility and speed. When a tree begins to grow, the node with lowest infor-

mation gain is the chosen one for starting to expand. When a subtree is complete

(it has reached its leaves), its substitution by a single leaf is considered. At the
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end the algorithm obtains a partial decision tree instead of a fully explored one,

because the leafs with largest coverage become rules and some subtrees are thus

discarded.

These methods will be deeply tested on the dataset (balanced and unbalanced) in

the following section.

6 Results

This section presents the obtained results for the different configurations of the exper-

imental setup. First, Sect. 6.1 depicts the first results, summarising what was proved

in [28]. This means that, for the chosen classifiers, described in Sect. 5.4, results

are displayed for the dataset when it is in its initial—unbalanced—form, as well as

after the balancing process. At the end of this Subsection, we introduce the results

obtained once the dataset is released from the redundant patterns. Then, Sect. 6.2

presented the results obtained when applying rough set theory as a feature selection

technique to the balanced generated dataset. This subsection justifies that the use

of rough sets enhances the system performance in terms of both execution/running

time and classification accuracy. Finally, examples of the obtained rules which were

taken from the classifiers’ output, are discussed in Sect. 6.3.

6.1 Results About Classification

Several experiments have been conducted, once a subset of classification methods

has been chosen (see Sect. 5.4). In order to better test the methods, two different

divisions (training-test) have been done; namely 90–10 % and 80–20 %. Also, it is

worth mentioning that we have included Naïve Bayes in the result tables, as it is

normally used as a reference classifier in classification problems [12].

Moreover, the way in which those divisions were built has been considered as:

randomly built, or sequentially built. We say that the training and test files were ran-

domly built when the patterns are taken from the original dataset and, by generating

a random number, they have a certain probability to belong to the training file, and

another to belong to the test file. On the contrary, the training and test files are built

sequentially when the patterns inside them strictly follow the same order in time as

the original dataset, before being divided. The aim of the sequential division is to

compare if the online activity of the employees, considering URL sessions, could be

somehow “predicted”, just using data from previous minutes or hours. In the case of

the random distribution of patterns, we have done three different pairs of training-

test files. These files have been built considering that similar patterns (in the whole

dataset) are placed in the same file, in order to avoid biasing the classification.
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Table 2 Percentage of correctly classified patterns for the unbalanced dataset with 12 features

80 % Training–20 % Test 90 % Training–10 % Test

Random (mean) Sequential Random (mean) Sequential

Naïve Bayes 91.60 ± 1.25 85.53 92.89 ± 0.12 83.84

J48 97.56 ± 0.20 88.48 97.70 ± 0.15 82.28

Random Forest 97.68 ± 0.20 89.77 97.63 ± 0.13 82.59

REP Tree 97.47 ± 0.11 88.34 97.57 ± 0.01 83.20

NNge 97.23 ± 0.10 84.41 97.38 ± 0.36 80.34

PART 97.06 ± 0.19 89.11 97.40 ± 0.16 84.17

As stated in Sect. 5.2, the dataset presents unbalance in the data due to the fact

that there are more patterns classified as ‘allow’ than ‘deny’. Therefore, two data

balancing methods have been applied to all the files to get similar pattern amounts

in both classes: undersampling (random removal of ALLOW patterns) and oversam-

pling (duplication of DENY patterns).

Classification results for the unbalanced data are presented in Table 2. Mean and

standard deviation are shown for the three different tests done in the random pattern

distribution approach.

As it can be seen from Table 2, all five classifiers achieved a high performance

classifying in the right way the test dataset. Also, having low values of standard

deviation means that the obtained accuracies are stable; and this can be seen from

the obtained results as well.

For a 80–20 % division, results based on the sequential data have lower values than

those obtained from the random data, but still they are considered as good (> 85 %).

This is due to the occurrence of new patterns from a certain time. Some requests may

happen just at one specific time of the day, or in settled days. Then, the classifier may

not find enough similarity in the patterns to correctly classify the entries in the test

file. On the other hand, the loss of 5 to 6 points in the results of the 90–10 % division

is somehow expected as it reinforces the previous mentioned hypothesis.

The classifier that lightly stands out over the others is Random Forest, being the

best in almost every case for randomly made divisions, and it also has good results

for sequentially made divisions. However, if we focus on the standard deviation, REP
Tree is the chosen one, as its results present robustness.

Once balancing is performed, resulting datasets were used as inputs for the same

classifiers, and results are shown in Tables 3 and 4. Table 3 shows the classifiers’

accuracy for the balanced dataset with 12 features, applying undersampling tech-

nique, and Table 4, with the application of oversampling technique. For each one,

the 90–10 % and 80–20 % divisions were also made.

Applying Undersampling In comparison with those results from Table 2, these go

down one point (in the case of randomly made divisions) to six points (sequen-

tial divisions). The reason why this happens is that when randomly removing
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Table 3 Percentage of correctly classified patterns for the balanced dataset with 12 features, apply-

ing undersampling technique

80 % Training–20 % Test 90 % Training–10 % Test

Random (mean) Sequential Random (mean) Sequential

Naïve Bayes 91.30 ± 0.20 84.94 91.74 ± 0.13 85.43

J48 97.05 ± 0.25 84.29 96.85 ± 0.35 76.44

Random Forest 96.61 ± 0.17 88.59 96.99 ± 0.13 79.98

REP Tree 96.52 ± 0.13 85.54 96.55 ± 0.10 77.65

NNge 96.56 ± 0.42 85.28 96.33 ± 0.05 81.93

PART 96.19 ± 0.14 85.16 96.09 ± 0.10 79.70

Table 4 Percentage of correctly classified patterns for the balanced dataset with 12 features, apply-

ing oversampling technique

80 % Training–20 % Test 90 % Training–10 % Test

Random (mean) Sequential Random (mean) Sequential

Naïve Bayes 91.18 ± 0.16 82.35 91.77 ± 0.28 81.81

J48 97.40 ± 0.03 85.66 97.37 ± 0.06 74.24

Random Forest 97.16 ± 0.19 89.03 97.25 ± 0.33 81.33

REP Tree 97.13 ± 0.25 85.41 97.14 ± 0.09 76.81

NNge 96.90 ± 0.28 83.46 96.91 ± 0.06 78.73

PART 96.82 ± 0.09 84.50 96.68 ± 0.11 78.16

ALLOW patterns, we really are losing information, i.e., key patterns that could

be decisive in a good classification of a certain set of test patterns.

Applying Oversampling Here we have duplicated the DENY patterns so their num-

ber could be up to that of the ALLOW patterns. However, it does not work as

well as in other approaches which uses numerical computations for creating the

new patterns to include in the minority class. Consequently, the results have been

decreased.

In both cases, it is noticeable that if we take the data in a sequential way, instead

of randomly, results will decrease. Also, it is clear that due to the fact that perform-

ing undersampling some patterns are lost while in the case of oversampling they all

remain, and this leads to have better results with the oversampling balancing tech-

nique. Then, in this case the algorithm with best performance is J48, though Random
Forest follows its results very closely in random datasets processing, and REP Tree,

which is better than the rest when working with sequential data. Nevertheless, gen-

erally speaking and given the aforementioned reasons, performing data balancing

methods decreases the results.

Once this first study is finished, the next step is to erase the duplicated requests.

And then, we test the obtained reduced dataset to see if it has some influence on

the results. As it seems that the best results are obtained for an unbalanced dataset,
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Table 5 Percentage of correctly classified patterns for unbalanced data, after the removal of entries

that could lead to misclassification

80 % Training–20 % Test 90 % Training–10 % Test

Random (mean) Sequential Random (mean) Sequential

Naïve Bayes 93.01 ± 0.32 82.61 93.09 ± 0.91 83.04

Random Forest 96.97 ± 0.47 91.03 96.79 ± 0.97 80.60

J48 96.90 ± 0.26 87.78 96.50 ± 1.00 84.49

NNge 96.21 ± 0.28 81.17 96.11 ± 1.13 81.92

REP Tree 96.97 ± 0.40 87.75 96.62 ± 0.87 85.57

PART 96.84 ± 0.18 86.68 96.55 ± 0.87 83.61

and also for a training-test random division, we choose this configuration for the

following experiments.

The results are displayed in Table 5. We can see that the results slightly decrease

in comparison to the ones obtained originally, but they are still good, and definitely

better than Naïve Bayes.

The way it happened for the original datasets, results for files with the patterns

taken consecutively lower significantly. And as previously explained, this happens

due to the possible loss of information. Best results are obtained by both Random
Forest and REP Tree classifiers, with a 96 % of accuracy.

First, we concluded that not balancing the dataset was better for obtaining good

results, also that taking the samples randomly instead of a sequential way is more

adequate. Finally, we noticed that we have successfully reduced the dataset and did

not lose good accuracies. For this reason, the dataset with the redundant patterns

erased is the chosen one to perform the feature selection. Results are described in

next subsection.

6.2 Results About Feature Selection

In this section, our aim is to prove two hypotheses. First, we want to prove that

applying rough set theory for feature selection reduces the running time when testing

the classifiers. Second and based on the reduced feature set of data, we want to prove

that the accuracies remain the same, or even improve in comparison to the original

set of features.

The resulting reduced dataset, from the previous subsection, was used to test the

same chosen classifiers, plus JRip. This is a classifier which consists of a propo-

sitional rule learner, the so-called Repeated Incremental Pruning to Produce Error

Reduction (RIPPER) algorithm. It was proposed in [8] as an improved version of

the Incremental Reduced Error Pruning (IREP) algorithm. The reason why this JRip

classifier was added to the list, is because we cannot compare the size of the trees

for the Random Forest classifier, as the size of the forest is chosen when running it.

Then, we added JRip for making the comparison more complete.
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All the experiments were made with the same computer, in the following con-

ditions: Toshiba Laptop with Intel™Core i7-3630QM, CPU@2.40 GHz× 8; RAM

3.8 GB; operating system 64 bit Ubuntu Linux 14.04 LTS; and Weka version 3.6.10,

with 3 GB assigned for memory usage. Table 6 shows the results of the compari-

son between performance before and after applying feature selection. Though the

complexity of the trees generated by the classifiers grows after applying fea ture

selection, even obtaining more rules for PART classifiers, the running time lowers

by an average of 40 %.

Now, if we focus on the results of the accuracies which are summarised in Table 7,

we notice that the classification accuracies are nearly the same. This comparison was

made in the same conditions which are unbalanced datasets, and with a 10 fold cross-

validation technique for training-test.

Moreover, results in Table 8 show the same behaviour as for previous experi-

ments. Results from this table are compared to those obtained from Table 2. This is

because both tables are sharing nearly the same conditions, except that each one has

a specific number of features.

We can see that, for example, for a division of 80 % training–20 % test, the results

after feature selection are better for the Random Forest and PART classifiers. Only

Table 6 Comparison between rule/tree complexity and running times (in seconds) for the initial

data set, which had 12 features, and the resulting one, having 9 features, after applying Rough Set

Theory for feature selection

12 features 9 features

J48 Size of the tree 8113, 1.7 ± 0.41 (s) Size of the tree 10191, 1.17 ± 0.17 (s)

Random Forest 10 trees, 3.32 ± 0.61 (s) 10 trees, 2.28 ± 0.19 (s)

REP Tree Size of the tree 8317, 1.40 ± 0.31 (s) Size of the tree 8817, 0.87 ± 0.10 (s)

NNge 1341 exemplars, 66.65 ± 4.04 (s) 1294 exemplars, 64.18 ± 3.76 (s)

PART 966 rules, 40.28 ± 2.12 (s) 998 rules, 37.34 ± 1.67 (s)

JRip 87 rules, 164.99 ± 72.29 (s) 64 rules, 115.48 ± 60.88 (s)

Table 7 Comparison between the obtained accuracies for the initial data set, which had 12 features,

and the resulting one, having 9 features, after applying Rough Set Theory for feature selection

12 features 9 features

Naïve Bayes 92.30 ± 0.15 92.19 ± 0.09

J48 97.37 ± 0.29 97.36 ± 0.30

Random Forest 97.61 ± 0.24 97.62 ± 0.25

REP Tree 97.34 ± 0.25 97.35 ± 0.25

NNge 97.15 ± 0.25 97.13 ± 0.25

PART 97.34 ± 0.26 97.26 ± 0.25

JRip 92.84 ± 0.91 91.97 ± 1.25
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Table 8 Percentage of correctly classified patterns for the unbalanced dataset with 9 features

80 % Training–20 % Test 90 % Training–10 % Test

Random (mean) Sequential Random (mean) Sequential

J48 97.10 ± 0.23 87.83 97.33 ± 0.80 84.51

Random Forest 97.61 ± 0.49 88.06 97.76 ± 0.83 83.71

REP Tree 97.17 ± 0.15 87.79 97.39 ± 0.58 85.73

NNge 96.63 ± 0.50 82.18 97.27 ± 1.12 80.94

PART 97.24 ± 0.12 87.88 97.29 ± 0.86 85.11

NNge seems to generate lower classification results, but still considered as interesting

as it is higher than 96 %.

Finally, we have proved our first hypothesis: applying Rough Set Theory for fea-

ture selection significantly improves the computational cost of the system. Also, we

proved that our second hypothesis is also true, because the obtained accuracies after

applying rough set theory for feature selection are the same, even slightly better, than

the ones obtained before the pre-processing phase.

6.3 Discussion About the Obtained Rules

One of the main objectives of this chapter is to find a method (classifier) that can

build rules not dependent on the URL, in order to get a behaviour quite different

from the classical black and white lists. Thus, it could made a decision about new

connection requests based on other, more general, features.

In the performed experiments, the majority of the obtained rules/trees are based

on the URL in order to discriminate between the two classes. However, we also found

several ones which consider other variables/features rather than the URL itself to

make the decision. For instance:

IF server_or_cache_address = "173.194.34.225"

AND http_method = "GET"

AND duration_milliseconds > 52

THEN ALLOW

IF server_or_cache_address = "173.194.78.103"

THEN ALLOW

IF content_type = "application/octet-stream"

AND server_or_cache_address = 192.168.4.4

AND client_address = 10.159.86.22

THEN ALLOW
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IF server_or_cache_address = "173.194.78.94"

AND content_type_MCT = "text"

AND content_type = "text/html"

AND http_reply_code = "200"

AND bytes > 772

THEN ALLOW

In their presented format, these rules are considered adequate to fulfill our pur-

poses, since they are somehow independent of the URL to which the client requests to

access. Thus, it would be potentially possible to allow or deny the access to unknown

URLs just taking into account some parameters of the request.

When the features considered in the rule can be known in advance, such as

http_method, or server_or_cache_address, for instance, the decision

could be made in real-time, and thus, a granted URL (whitelisted) could be DENIED,

or the other way round.

Tree-based classifiers also yield to several useful branches in this sense, but they

have not been plotted here because of the difficulty for showing/visualizing them

properly.

Focusing on the presented rules, it can be noticed that almost all of them

also depend on very determining features/values, such as server_or_cache_
address, or even on the client_address, what we have called ‘critical fea-

tures’. These features create several non-useful rules, mainly in the case of the client

IP address, because it will not be correct to settle that a specific IP can or cannot

access to some URLs.

Thus, we have conducted two additional experiments in this line by removing,

first, the url feature in a new dataset, and second, erasing the three critical features:

url, server_or_cache_address and client_address from the dataset.

Then we have trained again the classifiers. These experiments have been performed

over the unbalanced data, considering a 10-fold cross validation test.

The results of classification accuracies in each of the two tests are shown in

Table 9.

As expected, and as it can be seen in Table 9, the percentages of accuracy have

been decreased. Results are more influenced and decrease in the case where three

features have been discarded. However, the results are still quite good, having in

mind that the remaining features are more general than those removed.

Table 9 Percentage of correctly classified patterns for the unbalanced dataset without the set of

critical features, namely URL, server_or_cache_address, and client_address

Without URL feature Without URL and IP addresses features

J48 93.62 90.53

Random Forest 94.42 91.75

REP Tree 92.58 89.61

PART 93.40 88.25

JRip 87.45 85.60
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In addition, it is worth to analyse the set of rules that the classifiers
5

have generated

as models. Thus, having a look at these other rules, in the case without url (i.e., 11

features), the rules are pretty similar to those presented before. Thus, we can find,

among the most important rules (in the sense that the classification accuracy depends

in a big part on them) the following ones:

IF bytes >= 1075

AND time >= 29633000

AND time <= 30031000

AND client_address = "10.159.52.182"

AND content_type_MCT = "image"

AND content_type = image/jpeg

THEN DENY

IF server_or_cache_address = "173.194.66.121"

AND client_address = "192.168.4.4"

AND time <= 33603000

THEN ALLOW

IF client_address = "10.159.188.11"

AND bytes <= 2166

AND content_type_MCT = "text"

THEN ALLOW

These rules, actually most of them in the generated model, still depend on the rest

of critical features (server and client IP addresses). Due to this reason, we conducted

the second experiment omitting these variables. In this case the generated rules by

all the classifiers are closer to what we aimed to obtain. Some examples of relevant

rules (those with high influence in the obtained accuracy) are the following:

IF http_reply_code = "200"

AND content_type = "application/json"

AND time <= 33635000

AND bytes <= 3921

THEN ALLOW

IF content_type = "text/plain"

AND duration_milliseconds >= 7233.5

THEN DENY

IF content_type = "application/octet-stream"

AND bytes <= 803

THEN ALLOW

5
Trees can be deployed as rules.
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IF bytes <= 1220

AND time <= 33841000

AND http_reply_code = "404"

AND squid_hierarchy = DEFAULT_PARENT

AND duration_milliseconds <= 233

AND bytes <= 722

THEN ALLOW

As it can be seen these are more general rules which could be much more useful

for classifying new, previously unknown, URL access requests in a company. These

rules could be taken as a reference to build a decision system. However, there are still

some considerations that should be taken into account since all the rules have been

created using a very specific data. Thus, there are several rules that cannot be used

as they are specific for some other companies, and should be supervised somehow

(maybe by an expert).

Moreover, some of these features depend on the session itself, i.e., they will be

computed after the session is over, but the idea in that case would be ‘to refine’

somehow the existing set of URLs in the white list. Thus, when a client requests

access to a whitelisted URL, this will be allowed, but after the session is over and

depending on the obtained values, one of these classifiers could label the URL as

DENIED for further requests. This could be a useful decision-aid tool for the Chief

Security Officer (CSO) inside a company, for instance.

7 Conclusions and Future Work

In this paper various classification methods have been applied in order to perform a

decision process inside a company, according to some predefined corporate security

policies. This decision is focused on allowing or denying URL access requests by

considering previous decisions on similar requests, and not having specific rules in

an already defined white/black list for those URLs. Thus, the proposed method would

allow or deny an access to a URL based on additional features rather than the specific

URL string, only. This could be very useful since new URLs could be automatically

’whitelisted’ or ’blacklisted’ depending on some of the connection parameters, such

as thecontent_type of the access or theIP of the client which makes the request.

To this aim, we have started from a big dataset (100,000 patterns) with employees’

URL requests information, and by considering a set of URL access permissions, we

have composed a labelled dataset (57,000 patterns). Over that set of data, we have

tested several classification methods, after some data balancing techniques have been

applied. Then, the best five classifiers have been deeply proved over several training

and test divisions, and with two methods: by leaving the order in time when the URL

were requested, and by taking them in a random way.
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The results show that classification accuracies are between 95 and 97 %, even

when using the unbalanced datasets. However, they have been diminished because

of the possible loss of data that comes from performing an undersampling (removing

patterns) method; or taking the training and the datasets in a sequential way from the

main log file, due to the fact that certain URL requests can be made only at a certain

time.

After that, we have shown that maintaining the dataset is crucial in order to

improve the performance of the system, mainly, in terms of classification accuracy.

We have shown that by erasing the duplicated data, the accuracies remain inside the

range of 96–97 %, which means that indeed there was redundant information in the

dataset.

The resulting dataset was the one over which we have performed feature selec-

tion by means of rough sets, and we have proved that by selecting the most interest-

ing features we could improve the classification accuracy of the system while being

lightweight in terms of running time. In this way, we can conclude that our proposed

approach has been successful and it would be a useful tool in an enterprise.

Future lines of work include conducting a deeper set of experiments trying to test

the generalisation power of the method, maybe by considering bigger data divisions,

bigger data sets (from a whole day, or a week), or by adding some kind of ‘noise’

to the dataset. Moreover, considering the good classification results obtained in this

work, the next step could be the application of our methodology in the real system

from which data was gathered, counting with the opinion of expert CSOs, in order

to know the real value of the proposal.

The study of other classification methods could be another research branch, along

with the implementation of a Genetic Programming approach, which could deal with

the unbalance problem. This can be done by using a modification of the cost associ-

ated to misclassifying patterns as done in [1].

Finally, we also aim at extracting additional information from the URL string.

This information could be transformed into additional features that could be more

discriminative than the current set of obtained rules. Moreover, a data process involv-

ing grouping data into sessions (such as number of requests per client, or average time

connection) will be also considered.
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A Granular Intrusion Detection System
Using Rough Cognitive Networks
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Abstract Security in computer networks is an active research field since traditional

approaches (e.g., access control, encryption, firewalls, etc.) are unable to completely

protect networks from attacks and malwares. That is why Intrusion Detection Sys-

tems (IDS) have become an essential component of security infrastructure to detect

these threats before they inflict widespread damage. Concisely, network intrusion

detection is essentially a pattern recognition problem in which network traffic pat-

terns are classified as either normal or abnormal. Several Computational Intelligence

(CI) methods have been proposed to solve this challenging problem, including fuzzy

sets, swarm intelligence, artificial neural networks and evolutionary computation.

Despite the relative success of such methods, the complexity of the classification

task associated with intrusion detection demands more effective models. On the other

hand, there are scenarios where identifying abnormal patterns could be a challenge
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as the collected data is still permeated with uncertainty. In this chapter, we tackle the

network intrusion detection problem from a classification angle by using a recently

proposed granular model named Rough Cognitive Networks (RCN). An RCN is a

fuzzy cognitive map that leans upon rough set theory to define its topological con-

structs. An optimization-based learning mechanism for RCNs is also introduced.

The empirical evidence indicates that the RCN is a suitable approach for detecting

abnormal traffic patterns in computer networks.

Keywords Intrusion detection system ⋅ Computational intelligence ⋅ Granular

computing ⋅ Rough set theory ⋅ Fuzzy cognitive maps ⋅ Rough cognitive networks ⋅
Harmony search

1 Introduction

The 21st century has brought forth a digital age in which we are all immersed.

Up-and-coming information communication and processing paradigms such as the

Internet of Things (IoT) [4], Cloud Computing [47], Software-Defined Networks

[32] and Wearable Computing [25] are increasingly gaining momentum and rapidly

permeating every facet of mankind. These new architectural frameworks bring a

unique set of challenges with them, among which cybersecurity is one of para-

mount importance. The computer systems that constitute the backbone of critical

infrastructure behind a plethora of industrial and societal processes often become

prey to sophisticated malicious attacks that originate at any node in the entangled

World Wide Web. As a result, governments and businesses are adapting their leg-

islative bodies to account for the prevention, detection and mitigation of the risks

and threats associated with these potentially devastating attacks [39].

Intrusion Detection Systems (IDS) [43] have become an essential component of

security infrastructure to detect these threats before they inflict widespread dam-

age, since traditional approaches (e.g., access control, encryption, firewalls, etc.) are

unable to completely protect networks from attacks and malwares. The purpose of an

IDS is to analyze the network traffic, either the incoming one or existing logs of past

traffic activities, and identify anomalous behaviours that could reasonably be taken

as cues of the presence of an intruder in the system. Concisely described, network

intrusion detection is essentially a pattern recognition problem in which network

traffic patterns are classified as either normal or abnormal.

Although traditional statistical techniques have enjoyed success in analyzing traf-

fic flows as part of an IDS operation, the network security research community is

increasingly leaning on Computational Intelligence (CI) solutions due to their ability

to adapt to complex environments, handle noise and uncertainty and remain compu-

tationally tractable and robust.

More recently, the advent of Granular Computing (GrC) [6, 26, 52] as an innov-

ative information representation and processing framework has largely influenced

the way CI systems are being conceived nowadays. This is due to the fact that
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GrC provides reasoning constructs at higher levels of abstraction that better capture

human understanding of the real world. From classification [55] to clustering [51],

time-series prediction [72] and decision making [50], granular models are becom-

ing prominent tools for the analysis of large volumes of data as they operate upon

information granules (i.e., constructs of order higher than plain numeric or symbolic

atoms) and can better represent and manifest the dynamics of human-centric world

modeling.

In this chapter, we tackle network intrusion detection via a GrC model and demon-

strate its advantages over several traditional classification schemes. Our study makes

the following contributions: (1) we model network intrusion detection as a classifi-

cation problem and apply a recently introduced granular model, named “Rough Cog-

nitive Network”(RCN), to the analysis of archived traffic data in computer networks

for intrusion detection purposes; (2) we put forth a learning mechanism for RCNs

that is based on self-adaptive Harmony Search [44]; (3) we empirically evaluate the

RCN performance in conjunction with that of seven well-established classifiers in

the literature. The experimental evidence confirms that RCNs are a plausible model

to discriminate between normal and abnormal traffic patterns in network data as it

attains high detection rates (i.e., successfully identified abnormalities) and low false

negative rates (misidentified anomalies).

The rest of this chapter is structured as follows. Section 2 briefly surveys relevant

works in intrusion detection systems, with special emphasis on CI-based solutions.

Section 3 elaborates on the two precursor formalisms leading up to RCNs: rough set

theory (RST) and fuzzy cognitive maps (FCMs). Then, the RCN topology learning

and classification inference process are dissected in Sect. 4 while Sect. 5 describes

the proposed optimization-based RCN parameter learning method. The experimen-

tal analysis is unveiled in Sect. 6 before conclusions and future work directions are

outlined in Sect. 7.

2 Related Work

In this section, we briefly review several published works that are relevant to our

study. They provide the necessary background to understand the contents of this

chapter.

2.1 Intrusion Detection Systems

The literature in the IDS arena is quite vast. This field appears often interwoven

with other similar terms such as “network anomaly detection” or “network intrusion

detection” and the common underlying problem has been addressed through a myriad

of techniques. In a recent and comprehensive survey [8] covering publications in

this field from 2000 to 2012, 28 % of the papers surveyed approached IDS from
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a supervised learning angle (i.e., classification), as we do in this chapter. However,

unsupervised learning (via clustering) was the preferred choice of 21 % of the papers

given that labeled data could be scarce and/or difficult to access in certain cases

where privacy concerns impede the sharing of such information.

The statistical methods and systems applied to intrusion detection [45, 61, 66,

79] first construct a general statistic model of the observed traffic data, either via

parametric techniques (which assume the knowledge of the type of probability

distribution is available and then try to learn their parameters) or by means of non-

parametric techniques, which do not lay any assumption on the type of the data

distribution. Once this model has been fitted to the data, any point (traffic pat-

tern) with low probability of having been generated by the underlying data model

is labeled as an outlier and hence flagged as suspicious.

The use of computational intelligence methods in the IDS realm has been well

documented in the 2010 survey compiled by Wu and Banzhaf [73]. Artificial neural

networks (ANNs) [11, 40, 67, 78, 81], fuzzy sets [16, 21, 29, 68], evolutionary com-

putation [5, 18, 24, 31, 38, 57–59], artificial immune systems (AIS) [70, 75], fuzzy

cognitive maps [62–64, 74, 83], rough sets [2, 13, 14] and swarm intelligence (SI)

[19, 20, 29] techniques, all representative methods of the wider CI/Soft Computing

(SC) family, and their hybrids [15, 22, 63, 64, 74] have all been wielded against

complex network traffic datasets to identify attack vectors or suspicious activities

either in a supervised or unsupervised fashion.

2.2 Rough Set Theory in Network Security

Rough sets and fuzzy cognitive maps have been independently applied to network

intrusion detection [8, 73], although the number of reported works thus far is not sig-

nificant compared to the volume of documented applications of other CI techniques.

Chen et al. [13] employ rough set theory in the preprocessing stage of their pro-

posed network intrusion detection scheme in order to remove irrelevant attributes

prior to the operation of the Support Vector Machine (SVM)-based classifier. A

similar use (attribute dimensionality reduction) is evoked by Li and Zhao with their

Fuzzy SVM [41] and by Zhang et al. in the context of their Artificial Immune System

(AIS)-based technique [82], where the number of attributes that describe an antibody

is shortened using the lower and upper approximations of each rough concept. Shri-

vastava and Jain [60] also boost the network traffic classification power of their SVM

via rough-set-based feature selection by dropping 35 irrelevant attributes out of 41

initially gathered to describe the traffic flows in their system. An analogous ratio-

nale is pursued by Sivaranjanadevi et al. in their work [65] and by Poongothai and

Duraiswamy in [53].
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Fuzzy and rough sets are integrated into a partitive clustering engine in [14] to

address network intrusion detection from an unsupervised perspective; the proposed

clustering method yielded superior results compared to other classical unsupervised

techniques.

Finally, rough sets are used in [2] to induce classification rules via the LEM2

algorithm so as to create a potent classifier capable of detecting network intrusions

with high detection rate and low false alarm rate. The classification results of LEM2

are found to be more interpretable and can be obtained in a shorter time than those

of the K-nearest neighbor classifier, which are more accurate yet more resource-

demanding.

2.3 Fuzzy Cognitive Maps in Network Security

Xin et al. [74] derive fuzzy features from the network data and pass them on to a

fuzzy cognitive map (FCM) in order to model more complex attack vectors.

Siraj et al. [63] used FCM and fuzzy rule bases to model causal knowledge

among different intrusion variables in an interpretable fashion. Suspicious events

are mapped to nodes in FCM, which function as neurons that trigger alerts with dif-

ferent weights depicting on the causal relations between them. So, an alert value for a

particular machine or a user is calculated as a function of all the activated suspicious

events at a given time. This value reflects the safety level of that machine or user at

that time.

Siraj et al. [64] chose FCMs and fuzzy rule bases as the vehicles for causal knowl-

edge acquisition within the decision engine of an intelligent IDS deployed at the

Mississipi State University. The system fuses information from a variety of intru-

sion detection sensors. In particular, the FCMs are used at two levels: (i) to model

individual suspicious events such as ‘high login failure’ or ‘SYN flood’ and (ii) to

ascertain the overall impact of various suspicious events (input concepts) for each

host computer and system user (output concepts).

Afterwards, Siraj and Vaughn [62] also leaned upon FCMs to cluster network

intrusion alerts based on discovered similarities among the raw features extracted

from sensor data. The FCM is thus acting as a fusion machine where intrusion evi-

dence for a particular network resource that originates at different clusters is amal-

gamated.

Zhong et al. [83] consider a distributed attack scenario and resort to an FCM to

describe the entities that are part of it as well as their relationships.

The study authored by Jazzar and Bin Jantan [27] focuses on IDS designed around

the Self Organizing Map (SOM) neural network given its ability to process large vol-

umes of data with low computational overhead. Having realized that these systems

still exhibit a high false alarm rate, they coupled the SOM with an FCM in order

to refine the clustering performed by the former approached. The FCM’s role is to

calculate the relevance of odd concepts (neurons) to a network attack. By doing so,
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irrelevant concepts can be left out and other concepts may come to the forefront of

the intrusion analysis.

Krichene and Boudriga [37] devised a methodology to automatically determine

responses to security incidents. The underlying formalism that allows attack identifi-

cation, complexity reduction and response elicitation is termed an incident response
probabilistic cognitive map. These maps differ from traditional FCMs in that they are

capable of modeling different relationships between symptoms, actions and unautho-

rized results as pertaining to a network attack. A function that enables the identifi-

cation of those concepts that are tied to a set of events is also part of the proposed

scheme. The authors illustrate their proposal on a real-world denial of service (DoS)

attack against a web server.

Zaghdoud and Al-Kahtani [80] bring forth a multi-layered architecture for intru-

sion detection and response. They employ an FCM to gauge the impact of a con-

firmed intrusion event belonging to a known class upon the compromised system.

The FCM nodes represent components of the computer network system or security

concepts whereas the edges symbolize the influence exercised by one component

upon another; these influences must be carefully taken into consideration now that a

network intrusion has been confirmed.

2.4 Discussion

Our proposed granular classifier, the Rough Cognitive Network, borrows from both

aforementioned techniques: RST and FCM; however, their synergy is dictated by a

topological arrangement of the FCM nodes into symbolic and higher-order informa-

tion granules, the latter of which correspond to the three RST-based regions (posi-

tive, boundary, negative) of the decision concepts (classes) induced by a similarity

relationship over the set of input attributes in the data set under consideration. To the

best of our knowledge, this hybridization scheme is completely different from previ-

ous efforts to combine both methodologies, and so is certainly the RCN application

to the IDS domain.

3 The Forerunners of Rough Cognitive Networks

As mentioned before, in this paper we design an IDS which uses an RCN for detecting

potentially atypical (and likely dangerous) patterns. One could briefly define an RCN

as a Sigmoid Fuzzy Cognitive Map where concepts represent granules of informa-

tion. In this section, we summarize the mathematical underpinnings behind Rough

Set Theory and Fuzzy Cognitive Maps, which are the two core building blocks of

the granular model proposed in this chapter.
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3.1 Rough Set Theory

Rough Set Theory (RST) is a robust and mature theory for handling uncertainty

in the form of inconsistency in the data [1, 49]. The RST framework employs two

exact set approximations to describe a generic or real-world concept. Let us assume

a decision system S = (U,A ∪ d), where U is a non-empty finite set of objects called

the universe, A is a non-empty finite set of attributes, while d ∉ A denotes the deci-

sion attribute. Any subset X ⊆ U can be approximated by two crisp sets: the lower

and upper approximations. These sets are defined as B∗X = x ∈ U ∶ [x]B ⊆ X and

B∗X = x ∈ U ∶ [x]B ∩ X ≠ ∅ where the equivalence class [x]B comprises the set of

inseparable objects associated to the target instance x that are described using B ⊆ A.

Based on the lower and upper approximations, we can compute the positive,

negative and boundary regions of any concept X. The positive region POS(X) =
B∗X includes those objects that are certainly contained in X; the negative region

NEG(X) = U − B∗X involves those objects that are certainly not contained in X,

whereas the boundary region BND(X) = B∗X − B∗X represents the objects whose

membership to the set X is uncertain, i.e., they might be members of X. These

regions are in fact information granules and provide a valuable knowledge when

facing decision-making or pattern classification problems.

Based on the positive, negative and boundary regions, Yao [76] defined two types

of rules: deterministic decision rules for the positive region and undeterministic deci-

sion rules for the boundary region. More recently Yao [77] introduced the three-way

decisions model. Rules constructed from the three regions are associated with dif-

ferent actions [23]. A positive rule suggests a decision of acceptance, a negative rule

makes a decision of rejection and a boundary rule implies a decision of abstaining.

The three-way decisions play an important role in decision-making problems [42].

In the classical RST formulation, the indiscernibility relation is defined as an

equivalence relation; hence, two objects will be inseparable if they are identical with

respect to a set of attributes B ⊆ A. The equivalence relation R induces a partition of

the universeU on the basis of the attributes inB. However, this definition is extremely

strict. For example, a decision system with millions of objects will be categorized

as inconsistent if two objects are equivalent but they have different decision classes

(i.e., two experts might have different perceptions about the same observation). But

are two objects really significant in a universe comprised of millions of objects?

To counter the above stringent definition, the equivalence requirement on R is

relaxed. In fact, if we adopt a “weaker” inseparability relation then we could tackle

problems having numerical (or mixed) attributes. Two inseparable objects, according

to some similarity relationship R, will be tossed together in the same set of not identi-

cal (but reasonably similar) instances. Equation 1 shows the indiscernibility relation

adopted in this paper, where 0 ≤ 𝜑(x, y) ≤ 1 is a similarity function. This binary rela-

tion determines whether two objects x and y are inseparable or not (i.e., as long as

their similarity degree 𝜑(x, y) is greater than or equal to a user-specified threshold 𝜉).
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Despite the clear advantages of using this approach to cope with problems having

numerical features, selecting the correct value for the similarity threshold 𝜉 could be

a challenge.

R ∶ yRx ⇔ 𝜑(x, y) ≥ 𝜉. (1)

If the threshold 𝜉 = 1 then the similarity relation R will be reflexive, transitive

and symmetric, leading to Pawlak’s model for discrete (nominal) domains. If 𝜉 < 1
then the similarity relation will be reflexive and symmetric but not transitive.

Another aspect to be considered when designing a similarity relation is the ade-

quate selection of the similarity function. Equation 2 shows a variant which combines

both numerical and categorical attributes. It provides a more general formulation for

addressing decision-making problems having different features.

𝜑(x, y) = 1
|A|

|A|∑

i=1
𝜔i𝛿(x(i), y(i)). (2)

In the above equation, A is the set of features describing the problem, 0 ≤ 𝜔i ≤ 1
represents the relative importance of the ith attribute, x(i) and y(i) denote the val-

ues of the ith attribute associated with the objects x and y respectively, and 𝛿 is the

attribute-wise similarity function. The greater 0 ≤ 𝜑(x, y) ≤ 1, the more similar the

objects x and y. Equations 3 and 4 display the attribute-wise similarity functions

adopted in this research study. The function 𝛿1 is used when we want to compare

two values of a discrete attribute, whereas 𝛿2 is used for comparing two values of a

numerical attribute (Li and Hi denote the lowest and highest value of the ith attribute,

respectively).

𝛿1(x(i), y(i)) =
{

1, x(i) = y(i)
0, x(i) ≠ y(i) . (3)

𝛿2(x(i), y(i)) = 1 −
|x(i) − y(i)|
Hi − Li

. (4)

Equations 5 and 6 respectively formalize how to compute the lower and upper

approximations of a concept X, where R(x) denotes the similarity class of the object

x. These exact sets are the basis for granulating the available information about the

concept using RST, and they become the core of Granular Fuzzy Cognitive Maps

[48].

B∗X = {x ∈ U ∶ R(x) ⊆ X}. (5)

B∗X =
⋃

x∈X
R(x). (6)

As a result, an object can simultaneously belong to multiple similarity classes,

so the covering induced by the similarity relation R over the universe U is not nec-

essarily a partition [7]. Therefore, similarity relations do not induce a partition of
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the universe, but rather generate similarity classes. It suggests that an object could

simultaneously belong to different similarity classes, and consequently the instance

x could activate several granular regions. In such cases, the decision-making stage

becomes really difficult for the expert, since it has to consider non-trivial decision

patterns.

3.2 Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCM) are recurrent neural networks for modeling and simu-

lation [34] consisting of concepts and their causal relations. Concepts are equivalent

to neurons denoting objects, variables, or entities related to the system under inves-

tigation whereas the weights associated with the connections among neurons denote

the strength of the causality among such nodes. It should be highlighted that causal

relations are quantified in the range [−1; 1]. This value is the result of the numerical

evaluation of a fuzzy linguistic variable, which is usually assigned by experts during

the modeling phase [36]. The activation value of the neurons is also fuzzy in nature

and regularly takes values in the range [0; 1] although the interval [−1; 1] is used

too. The magnitude of the activation is also meaningful for the model: the higher the

activation value of a map concept, the stronger its influence over the system under

consideration.

Equation 7 mathematically formalizes the rule for updating the activation value of

concepts in an FCM, assuming A0
is the initial configuration. This rule is iteratively

repeated until a fixed point attractor or a maximum number of iterations T is reached.

At each step t a new state vector is produced, and after a large enough number of

iterations, the map will arrive at one of the following states: (i) fixed equilibrium

point, (ii) limited cycle or (iii) chaotic behavior [35]. If the FCM reaches a fixed-

point attractor, then we can conclude that the map has converged. In such cases,

the final output corresponds to the desired state (i.e., the system response for the

activation vector).

At+1
i = f (

M∑

j=1
wjiAt

j + wiiAt
i), i ≠ j. (7)

In the above equation f (.) represents a monotonically non-decreasing nonlinear

function which is used for transforming the activation value of each concept (the

weighted combination of the activation levels). The most used functions are: the

bivalent function, the trivalent function, and sigmoid variants [10]. In this paper we

will focus on sigmoid functions since it has been shown that they exhibit superior

prediction capabilities [10].
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4 Rough Cognitive Networks

Rough Cognitive Networks (RCNs) [48] are an extension of three-way decision rules

introduced by Yao [76]. In a nutshell, we can define an RCN as a sigmoid FCM where

concepts denote information granules, namely, the RST-derived positive, boundary

and negative regions of the original problem as well as the set of decision classes in

the problem at hand.

The RCN methodology not just allows solving mixed-attribute problems, but also

provides accurate inferences since it uses a recurrent inferential process to converge

to a stable attractor, which comprises the most fitting decision class. It should be

pointed out that the complexity of this model does not depend on the number of

attributes in the decision system, but on the number of decision classes. In this

section, we explain how to learn an RCN from data. Furthermore, we introduce a

supervised learning algorithm for computing the required RCN parameters, which

enhances the value of our proposal.

4.1 Information Granulation and Network Design

As mentioned before, a central aspect when designing an RCN is the process related

to the construction of positive, negative and boundary regions. Let us assume a pat-

tern classification problem and a partition X = X1,… ,Xk,… ,XN of the universe

U according to the decision attribute, where each subset Xk denotes a decision

class and comprises all instances labeled as dk. These information granules will be

expressed as map concepts. More precisely, input concepts denote positive, negative

and boundary regions associated with each subset Xk; they are subsequently used for

activating the network.

In the RCN model, the output neurons do not influence other neurons since they

are target concepts. Once the FCM inference process is done (this point will be

clarified next), the activation degree of each output concept (decision class) will be

gauged. After the map concepts are defined, we establish causal connections among

such neurons, where the direction and intensity of the causal weights are computed

according to the set of rules below:

∙ R1 ∶ IF Ci is Pk AND Cj is dk THEN wij = 1.0.

∙ R2 ∶ IF Ci is Pk AND Cj is d(v≠k) THEN wij = −1.0.

∙ R3 ∶ IF Ci is Pk AND Cj is P(v≠k) THEN wij = −1.0.

∙ R4 ∶ IF Ci is Nk AND Cj is dk THEN wij = −1.0.

In the above rules, Ci and Cj denote two map concepts, Pk and Nk are the positive

and negative region for the kth decision respectively, whereas −1 ≤ wij ≤ 1 is the
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causal weight between the cause Ci and the effect Cj. More precisely, rules R1 and

R2 define the relation between positive regions and decision neurons. If the positive

region Pk is activated (rule 1), then the decision dk must be stimulated as well, since

we confidently know that objects belonging to the positive region Pk will be cate-

gorically members of the concept Xk. Accordingly, decisions d(v≠k) must be inhibited

(rule 2) because an object cannot simultaneously belong to different positive regions.

The third rule follows an analogous reasoning: if a positive region Pk is activated

then positive regions unrelated to the decision dk (i.e., P(v≠ k)) will be inhibited. If the

negative region Nk is activated (rule 4), then the map will inhibit the decision, but

we cannot conclude anything about other decisions. Moreover, we incorporated an

additional rule for handling the intrinsic knowledge concerning the RST boundary

regions:

∙ R5 ∶ IF Ci is Bk AND Cj is dv AND (BND(Xk) ∩ BND(Xv) ≠ ∅) THEN wij = 0.5.

Observe that not all boundary regions are included in the RCN’s topology. This

is dictated by the learning procedure on the training data: if a boundary region is

empty (BND(Xk) = ∅) then the neuron Bk will be removed from the modeling in

order to simplify the network topology. On the other hand, we need to establish causal

links between each boundary neuron and decision classes involving some degree of

uncertainty; otherwise the causal connection will be removed from the map as well.

The above topology construction scheme implies that an RCN for a problem with

|D| decision classes will have at most 3|D| input neurons (assuming all boundary

regions are in), |D| decision (output) neurons and 3|D|(1 + |D|) causal relations.

Additionally, for each neuron we add a self-reinforcement connection with causality

wii = 1 which partially preserves the initial excitation.

4.2 Inference Using Rough Cognitive Networks

The final phase concerns the network exploitation, where the activation value of

input and decision concepts play a pivotal role. In this scheme, to classify a test

instance Oi, first the excitation vector Ai will be calculated using the similarity class

R(Oi) and its relation to each RST-based region. For instance, let us assume that

|POS(X1)| = 20, |R(Oi)| = 10, whereas the number of objects that belong to the pos-

itive region is given by the expression: |R(Oi) ∩ POS(Xk)| = 7. This implies that the

activation degree of the neuron P1 is 7∕20 = 0.35. It denotes the conditional prob-

ability of accepting d1 given the similarity class R(Oi), that is Pr(dk|R(Oi)). Analo-

gously, we can compute the activation degree of other input concepts related to each

decision class. Rules R6 − R8 formalize this procedure as follows:

∙ R6 ∶ IF Ci is Pk THEN A0
i =

|R(Oi)∩POS(Xk)|
|POS(Xk)|

.

∙ R7 ∶ IF Ci is Nk THEN A0
i =

|R(Oi)∩NEG(Xk)|
|NEG(Xk)|

.

∙ R8 ∶ IF Ci is Bk THEN A0
i =

|R(Oi)∩BND(Xk)|
|BND(Xk)|

.
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Once the activation vector A0
has been computed, we trigger the FCM inference

rule until a fixed point attractor, or a maximal number of iterations T is reached. This

process will stress a pattern using the similarity class of the instance Oi to do that,

which is desirable in problems with insufficient positive evidence where selecting

the proper class could be difficult. Afterward one can use the output vector for mak-

ing a decision (e.g., we can sort the alternatives according to the preference degrees

calculated by the map inference process). When dealing with pattern classification

problems, the final output will be the concept having the highest activation, or alter-

natively it could be a random class if the input similarity class only activates negative

and/or boundary regions.

5 Learning Methodology for Rough Cognitive Networks

As mentioned before, the basis for computing the set of positive, negative and bound-

ary regions is the proper estimation of the similarity threshold 𝜉 in Eq. 1. If this value

is too small then positive regions will be small as well, leading to poor excitation of

neurons. This step is quite important when selecting the most adequate decision: the

higher the activation of the positive region, the more desirable the decision (although

the model will compute the final decision taking into account all the evidence). If this

threshold 𝜉 is excessively large then boundary regions will be large, thus increasing

the uncertainty.

In this section, we present a learning algorithm for tuning the model parameters,

which is based on the Harmony Search (HS) metaheuristic [44]. The method needs

to adjust two kinds of parameters: the weight 𝜔i of each attribute and the similarity

threshold 𝜉. This approach leads to a numerical optimization problem with |A| + 1
variables and will be solved using an adaptive variant of the HS procedure.

The HS metaheuristic is a simple-trajectory search method, which only evaluates

one potential solution at a time, instead of evaluating a set of potential solutions (as

it occurs with population-based metaheuristics). This HS design choice is relevant

for our learning methodology since evaluating a solution means computing the set

of lower and upper approximations, which could be computationally expensive as

the number of objects in the training data set increase.

During the optimization phase, the algorithm randomly creates a harmony mem-

ory with size HMS and iteratively improves a new harmony from the HM. If the

improved harmony is better than the worst harmony in the HM, then the new solu-

tion replaces the worst harmony. Despite its algorithmic simplicity, HS suffers from

a serious problem common to other metaheuristics: its search capabilities are quite

sensitive to the specified parameter vector.

For this reason in this paper we adopt an improved variant, called Self-adaptive

Harmony Search (SHS), which is capable of adjusting its own parameters [71].

The SHS method not only alleviates the parametric sensitivity issue, but also sig-

nificantly enhances the accuracy of the solutions. Algorithm 1 shows the pseudo-

code of this metaheuristic, where N is the maximal number of iterations, HMCR
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(Harmony Memory Consideration Rate) is a parameter that controls the balance

between exploitations and exploration, while R1 = U − x and R2 = x − L, assuming

that L and U respectively denote the lowest and the highest values for each problem

variable in the harmony memory.

On the other hand, PAR is the pitch adjustment rate and determines whether fur-

ther adjustment is required to a harmony drawn from the harmony memory. In this

variant, the PAR factor is linearly decreased over time. Experiments reported by the

authors [71] suggested that moderate size of the harmony memory (e.g., 50) and

large values of HMCR (e.g., 0.9) are adequate choices for these parameters. Based

on these considerations, we used these values during the experiments and simula-

tions performed in the next section. The rand() function draws a random number

uniformly distributed in the unit interval.

Algorithm 1. Self-adaptive Harmony Search
Initialize the memory
FOR i = 1 TO N DO
IF rand() < HMCR THEN
Select a random pitch x from the memory
IF rand() < PAR THEN

x = x + rand(R1,R2)
END

ELSE
x = x + rand(a, b)

END
Select the worst harmony y from the memory
IF (y is worse than x) THEN
Replace the worst harmony y with the new pitch x

END
END
Select the best solution S from the memory
RETURN S

The other component of the optimization problem to be specified is the objective

function. Equation 8 shows the function G(.) used in this study, where the parameters

denote the set of weights W, the similarity threshold 𝜉 and the set of instances 𝜙 to

be used for training the model, respectively. On the other hand, ℵR(W,𝜉)(x) is the

output vector computed by the RCN which is obtained from the similarity threshold

defined by the function R(W, 𝜉), whereas the function Y(x) is the known class vector

associated with the instance x and D is the set of decision classes in the problem. It

should be also mentioned that ‖.‖L refers to a norm (e.g., the L1-norm, L2-norm or

L∞-norm) that is used to calculate the error.

minimize G(W, 𝜉, 𝜙) =
∑

x∈𝜙

‖ℵR(W,𝜉)(x) − Y(x)‖L
|𝜙||D| . (8)



182 G. Nápoles et al.

If G(W, 𝜉, 𝜙) = 0 then the RCN, using the similarity relation R, is capable of

recognizing all patterns stored in the training set; otherwise the value 1 − G(W, 𝜉, 𝜙)
stands for the model accuracy. The proposed parameter tuning method not only esti-

mates the introduced parameters, but also allows determining the relevance of each

attribute, which contributes to elicit further knowledge about the problem.

6 Detecting Intrusion in Computer Networks

In this section we study the performance of the proposed granular cognitive network

for detecting abnormal traffic behavior in computer networks. As mentioned before,

this problem can be envisioned as a challenging pattern classification task having two

decision classes: either ‘normal’ or ‘abnormal’. In order to perform our simulations,

we used an improved variant of the NSL-KDD dataset [17] which is a widely used

benchmark when testing IDS [19, 22, 23]. In the following section, we summarize

the most important features of both training and testing NSL-KDD datasets.

6.1 Description of the NSL-KDD Dataset

Perhaps the most popular dataset for evaluating the performance of anomaly detec-

tion models is KDD’99 [30]. The KDD training dataset consists of 4,900,000 net-

work connection vectors, each of which contains 41 features. Such features could

be gathered in three groups: (i) basic features, (ii) traffic features and (iii) content

features.

The first group comprises attributes extracted from a TCP/IP connection, whereas

the second one includes time-based features computed in a window interval (e.g.,

connections in the past 2 s having the same destination host or the same service

as the current connection). It should be stated that there are several slow-probing

attacks that scan the ports using a much larger time interval than 2 s and accordingly

these attacks will not produce any intrusion patterns. Finally, the third group contains

features related to attacks having a single connection, which do not have intrusion

frequent sequential patterns. In such cases, attacks are embedded in the data por-

tions of packets, hence forcing the Intrusion Detection System to catch suspicious

behavior in the data portion (e.g., number of failed login attempts) instead of in the

connections.

On the other hand, in the training set each record is labeled as either “normal”

or “abnormal” with exactly one specific attack type (i.e., Probing Attack, Denial of

Service Attack, User to Root Attack and Remote to Local Attack).

It is essential to mention that the KDD’99 dataset was built based on the data

captured in DARPA’98 which has been criticized by McHugh [46]. It suggests that

some of the existing problems in the dataset DARPA’98 remain in KDD’99. More

recently, Tavallaee and collaborators [69] conducted a statistical analysis where two
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important issues were detected. The first important deficiency in the KDD’99 dataset

is the huge number of redundant records (78 and 75 % of records are duplicated in

the train and test set, respectively). Consequently, this will cause learning algorithms

to be biased towards the more frequent records. As a second issue they noticed that

this dataset has poor difficulty level: about 98 % of the records in the train set and

86 % of the records in the test set were correctly classified with 21 learned machines

(7 learners, each trained 3 times with different training sets).

To solve the aforementioned issues, Tavallaee et al. [69] removed all the redun-

dant records in both train and test sets. Moreover, they randomly sampled correctly

classified records in such a way that the number of selected instances from each

difficulty level group is inversely proportional to the percentage of records in the

original dataset. This refinement process gave rise to two improved datasets called

KDDTrain+ and KDDTest+ which include 125,973 and 22,544 records, respec-

tively. As well, they created another test set called KDDTest-21 by removing the

records that were correctly classified by all 21 learners. This dataset contains 11,850

records, which are more difficult to classify. Because of its increasing popularity and

sound verification procedure, we adopted Tavallaee et al’s data sets for our experi-

mentation.

6.2 Numerical Simulations

Next we study the behavior of RCN across the selected dataset. Figure 1 displays

the network topology that allows solving the prediction problem (i.e., where each

Fig. 1 The proposed Rough Cognitive Network for intrusion detection. The d1 concept corre-

sponds to the normal traffic class and the d2 concept represents the abnormal traffic class. The Pi,

Bi and Ni nodes denote the positive, boundary and negative regions for these two classes, i ∈ {1, 2}
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instance is classified as either “normal” or “abnormal”). More exactly, d1 = “nor-

mal”, d2 = “abnormal”, Pi denotes the positive region associated to the ith class, Ni
is the negative region related to the ith class while Bi is the ith boundary region. Note

that boundary concepts are allowed regardless of the inconsistency of the features in

the target problem because only two decision classes are possible. More explicitly,

if the problem has inconsistent instances, then both classes will be equally affected;

otherwise, the activation value of the (empty) boundary regions will remain inactive

during the inference process.

6.2.1 Comparison with Traditional Classifiers Over KDDTest+

The first experiment consists of studying the prediction ability of our model regard-

ing the following set of traditional classifiers: J48 decision tree [54], NBTree [33],

Random Forest [9], Random Tree [3], Multilayer Perceptron [56], Naive Bayes [28],

and Support Vector Machine [12]. For experimental purposes, we adopted the first

20 % of the records in KDDTrain+ for training all models. Figure 2a summarizes

the accuracy achieved for each learner, whereas Fig. 2b displays some representative

samples of the solution space associated with the similarity threshold to be explored

by the learning algorithm. In other words, Fig. 2b illustrates the performance of our

granular network for different similarity thresholds.

From the above experiment we can conclude that RCN results are competitive

regarding J48 decision tree, Random Forest (RF), NBTree (NBT) and Random Tree

(RT). However, our model outperforms other approaches such as Multilayer Percep-

tron (MLP), Naive Bayes (NB) and Support Vector Machine (SVM).

Next we study other statistics such as those extracted from the confusion matri-

ces. True Negatives (TN) as well as True Positives (TP) correspond to correctly

classified instances, that is, events that are rightly labeled as normal and attacks,

respectively. Alternatively, False Positives (FP) refer to normal events being labeled

as attacks while False Negatives (FN) are attack events incorrectly predicted as nor-

mal events. Table 1 shows such statistics for all classifiers used for comparison across

the selected KDDTest+ dataset.

Fig. 2 Experiments using datasets KDDTrain+ and KDDTest+. a Accuracy of selected classifiers

and b RCN accuracy as a function of the threshold values in Eq. (1)
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Table 1 Confusion matrix associated with each classifier for the KDDTest+ dataset

TN FP FN TP Detection rate False alarm

rate

J48 9436 275 3996 8837 0.68 0.02

NB 9010 701 4582 8251 0.64 0.07

NBT 8869 842 3257 9576 0.74 0.08

RF 9452 259 4523 8310 0.64 0.02

RT 8898 813 3011 9822 0.76 0.08

MLP 8971 740 4796 8037 0.62 0.07

SVM 8984 727 4893 7940 0.61 0.07

RCN 8891 820 3150 9683 0.75 0.08

The reader may notice that RCN ranks as the second-best algorithm regarding

the number of FN patterns. In our study we are especially interested in this value

since it denotes the number of abnormal patterns that the IDS was unable to detect,

although most authors prefer systems with high detection rate (i.e., TP∕(TP + FN))
and low false alarm rate which is defined as FP∕(TN + FP). Nevertheless, in com-

puter networks where high security is required, reducing the false negative rate is

indispensable since only those patterns having normal features will be confidently

allowed.

6.2.2 Comparison with Traditional Classifiers Over KDDTest-21

The second experiment is concerned with investigating the performance of our

RCN model with respect to traditional classifiers, but now using the test set called

KDDTest-21. Figure 3a portrays the classification accuracy achieved for each model

while Fig. 3b displays the performance of the proposed granular network for different

similarity thresholds.

Fig. 3 Experiments using datasets KDDTrain+ and KDDTest-21. a Accuracy of selected classi-

fiers and b RCN accuracy as a function of the threshold values in Eq. (1)
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Table 2 Confusion matrix associated with each classifier for the KDDTest-21 dataset

TN FP FN TP Detection rate False alarm

rate

J48 1879 273 3996 5702 0.58 0.12

NB 1460 692 4549 5149 0.53 0.32

NBT 1354 798 3257 6441 0.66 0.37

RF 1895 257 4523 5175 0.53 0.11

RT 1388 764 3008 6690 0.68 0.35

MLP 1426 726 4796 4902 0.50 0.33

SVM 1440 712 4893 4805 0.49 0.33

RCN 1572 580 2824 6874 0.70 0.26

It should be specified that the KDDTest-21 dataset is more complex since it

involves patterns that cannot be correctly classified by all learners. Despite this fact,

our model was able to compute the best accuracy (71 %), notably outperforming the

remaining approaches. However, in a previous experiment the model only achieved

an accuracy of 66 % due to the uncertainty present in the features during the infer-

ence stage (i.e., the overall evidence suggests accepting both decisions). To overcome

this situation, we used the similarity classes pertaining to the K-nearest neighbors

(K = 3) of the test instanceOi. In short, we adopted the similarity classes of its neigh-

bors instead of only using the set R(Oi) related to the target pattern for activating each

input neuron in the network.

Table 2 shows the confusion matrix achieved by each classifier across the

KDDTest-21 test set. In this case, our model computed the highest detection rate

(TP∕(TP + FN) = 0.7) and lowest false negative rate (FN∕(TP + FN) = 0.29)which

is the desired behavior. It means that the RCN will detect abnormal traffic with high

accuracy, thus reducing the risk of classifying abnormal patterns as normal. In a nut-

shell, such statistics confirm the reliability of our granular classifier (RCN) for intru-

sion detection in complex computer networks. For instance, the reader may observe

that if the false alarm rate is high, then the system will classify normal patterns as

abnormal, but this behavior is preferable in order to avoid potential attacks.

6.2.3 Discussion

Although the above experiments show that RCNs are a suitable approach for address-

ing intrusion detection problems, there are cases where the inference suggests accept-

ing a wrong decision class. This behavior could be a direct result of the strategy

adopted for activating the input concepts, so other ways for estimating the activation

vector could be explored. For example, in Bayesian inference one usually translates

Pr(C|[x]) into Pr(([x]C)Pr(C))∕Pr([x]) by the Bayes theorem, which allows a prac-

tical estimation of initial conditions required to trigger the FCM inference process.
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Another aspect to be considered is related to the network weights, since rules

R1–R5 formalize the direction (negative or positive) of each causal connection rather

than its intensity. This means that the granular neural network discussed in this

chapter calculates the decision class based on the initial state A0
and the sign of

causal relations, without exploiting the causal intensity. To achieve further perfor-

mance gains, we are currently focused on computing this indicator via a supervised

learning approach.

7 Conclusions

An important aspect in computer networks is how to detect intrusion since traditional

approaches such as access control lists or firewalls are incapable of entirely protect-

ing networks. In order to deal with such problem, several intrusion detection systems

have been proposed; however, increasing the overall performance (e.g., the detec-

tion accuracy) is still an open problem for researchers. More explicitly, an essential

component of intrusion detection systems is the inference algorithm used to classify

network traffic patterns as either normal or abnormal. This problem could be thought

of as a challenging binary classification task since modern intrusion techniques are

sophisticated, so it is difficult to design models being able to distinguish between

normal and abnormal patterns. As an example, frequently hackers attempt simulat-

ing trusted users in computer networks in order to gain access to remote resources.

Such behavior will produce inconsistency in the collected traffic data; that is, objects

that are very similar yet have been labeled as pertaining to different decision classes.

In this chapter we introduced a novel IDS based on Rough Cognitive Networks,

a recently proposed granular neural network for pattern classification. Without loss

of generality, we can define RCN as a Sigmoid Fuzzy Cognitive Map where input

neurons represent information granules whereas output concepts denote decision

classes. It should be remarked that the granulation of information is achieved by

using Rough Sets, since it allows handling uncertainty arising from inconsistency.

Furthermore, with the goal of increasing the reliability of the RCN-based inference

process, we discussed a supervised learning methodology for automatically comput-

ing accurate similarity relations by estimating the proper parameter vector.

In order to measure the performance of our model, we adopted an improved ver-

sion of the NSL-KDD dataset. From numerical simulations it is possible to conclude

that our granular neural network is a suitable approach for detecting abnormal traffic

patterns in computer networks. More precisely, we observed that RCNs are com-

petitive regarding traditional classifiers such as J48 decision tree and Random For-

est, across the simpler dataset (KDDTrain+). However, for the dataset KDDTest-21

the model significantly outperformed the other learners by computing the highest

detection rate (DR = 0.7) and lowest false negative rate (FNR = 0.29). This con-

firms the reliability of the learning methodology put forth in this chapter to boost

the model’s performance. Future work along this front will concentrate on validat-

ing our approach on real computer networks.
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NNCS: Randomization and Informed
Search for Novel Naval Cyber Strategies

Stuart H. Rubin and Thouraya Bouabana-Tebibel

Abstract Software security is increasingly a concern as cyber-attacks become
more frequent and sophisticated. This chapter presents an approach to counter this
trend and make software more resistant through redundancy and diversity. The
approach, termed Novel Naval Cyber Strategies (NNCS), addresses how to
immunize component-based software. The software engineer programs defining
component rule bases using a schema-based Very High Level Language (VHLL).
Chance and ordered transformation are dynamically balanced in the definition of
diverse components. The system of systems is shown to be relatively immune to
cyber-attacks; and, as a byproduct, yield this capability for effective component
generalization. This methodology offers exponential increases in cyber security;
whereas, conventional approaches can do no better than linear. A sample battle
management application—including rule randomization—is provided.

Keywords Battle management ⋅ Cybersecurity ⋅ Heuristics ⋅ Inferential
reasoning ⋅ Information dominance ⋅ Military strategic planning ⋅ Transfer
learning

1 Introduction

Deductive number of computational devices using embedded software is rapidly
increasing and the embedded software’s functional capabilities are becoming
increasingly complex each year. These are predictable trends for industries such as
aerospace and defense, which depend upon highly complex products that require
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systems engineering techniques to create. We also see consumer products as
increasingly relying upon embedded software—such as automobiles, cell phones,
PDAs, HDTVs, etc.

Embedded software often substitutes for functions previously realized in hard-
ware such as custom ICs or the more economical, but slower gate arrays; for
example, digital fly-by-wire flight control systems have superseded mechanical
control systems in aircraft. Software also increasingly enables new functions, such
as intelligent cruise control, driver assistance, and collision avoidance systems in
high-end automobiles. Indeed, the average car now contains roughly seventy
computer chips and 500,000 lines of code—more software than it took to get
Apollo 11 to the Moon and back. In the upper-end cars, in which embedded
software delivers many innovative and unique features, there can be far more code.

However, the great number of source lines of code (SLOC) itself is not a
fundamental problem. The main difficulty stems from the ever-more complex
interactions across software components and subsystems. All too often, coding
errors only emerge after use. Worse still, even good code is increasingly the target
of cyber-attacks. The software testing process must be integrated within the soft-
ware creation process—including the creation of systems of systems in a spiral
development. This follows because in theory, whenever software becomes complex
enough to be capable of self-reference it can no longer be formally proven valid [1].

Cyber threats are growing in number and sophistication [2]. In theory, it is not
possible, in the general case, to produce fault-free software [1, 3]. Attackers have
shown the ability to find and exploit residual faults and use them to formulate
cyber-attacks. Most software systems in use today run substantially similar software
[2]. As a result, successful cyber-attacks can bring down a large number of
installations running similar software. As we share more and more software (e.g.,
through the cloud), the situation can only get worse.

1.1 Background

Complex software underpins the GDP to the extent of about 15 % per year. Clearly,
we need to devote more attention to the processes by which efficient and cyber-safe
software may be created to improve the national economy.

Redundancy and Diversity in Cyber Defense. Redundancy is effective against
hardware faults because such faults are random [2]. However, software faults are
typically due to errors of design and/or implementation. This cannot be addressed
through redundancy.

Software faults are even more serious because they represent opportunities for
exploitation by cyber-attacks. Most seriously, system security software itself can
thus be breached.

However, if the system software is built out of a set of diverse, but functionally
equivalent components, then a single attack will be insufficient to breach the sys-
tem. Again, given the same input to the diverse components, whose behavior on
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this input is known, one would expect the same output. If this is not the case, then a
cyber-attack may be in progress.

Worms, viruses, and other infectious attacks can be countered by various types
of cyber management techniques. The problem stems from the fact that software,
which computes the same function does not need to have the same syntax as is
currently the case. The existence of the same flaw on many computers is routinely
exploited by attackers via Internet worms such as Code Red, which infected over
350,000 systems in just 13 h using a single vulnerability [4]. Hence, the goal is to
introduce more diversity into computer systems. Diversity can be introduced in the
software ecosystem by applying automatic program transformation, which main-
tains the functional behavior and the programming language semantics [2]. In
essence, distinct components can compute the same function—insuring computa-
tional immunity.

Among the technologies that have the potential of mitigating the cyber-attack
risks, “software redundancy” that includes “component diversity” appears to be one
of the rare technologies promising an order-of-magnitude increase in system
security [2]. The essential idea is to have software functionality redundantly
implemented—preventing an attack against any version from being successful
against the remaining versions. This also enables the detection of anomalous
behaviors—including the resolution of novel solutions (i.e., by comparing multiple
runs), which are not attack-based. Forrest et al. [5] argue for security enhancement
through the introduction of diversity. According to Ammann et al. [6], there is a
lack of quantitative information on the cost associated with diversity-based solu-
tions and a lack of knowledge about the extent of protection provided by diversity.
The security enhancement, focused on by this chapter, pertains to the synthesis and
assembly of software components using delimited chance and program
transformation.

Transformation-Based Diversity. Automatic program transformations can
preserve functional behavior and programming language semantics [2]. There are
three techniques, in practice, used to randomize code:

1. Instruction Set Randomization (ISR)—changes the instruction set of the pro-
cessor so that unauthorized code will not run successfully. Cyber-attacks can’t
inject code if they don’t know the true instruction set.

2. Address Space Randomization (ASR)—is used to increase software resistance
to memory corruption attacks. ASR randomizes different regions of the process
address space (e.g., stacks, arrays, strings, etc.). It has been incorporated into the
Windows Vista operating system.

3. Data Space Randomization (DSR)—defends against memory error attacks by
masking and unmasking data so that cyber-corrupted data will not be properly
restored—implying unpredictable results, which are detectable. DSR can ran-
domize the relative distance between two data object, unlike the ASR technique.

Combining Redundancy and Diversity. Novel and efficient intrusion detection
capabilities, not achievable using standard intrusion detection techniques based on
signatures or malware modeling involves the monitoring of a redundant system by
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comparing the behavior of diverse replicas [2]. Any difference in the output
responses of the replicas implies a system failure. Most interestingly, this archi-
tecture enables the development of adaptive controllers. Our approach is adaptive
too, but more sophisticated, as will be seen below.

1. N-Variant Approaches. If the same input is supplied to a set of diversified
variants of the same code, then the cyber-attack will succeed on at most one
variant—making the attack detectable. The problem with this approach, how-
ever, is that the type of attack must be properly anticipated so that it will succeed
on at most one variant. That is, variants must vary in the way in which they will
respond to a particular cyber-attack. This is increasingly unlikely in today’s
world.

2. Multi-Variant Code. This technique prevents cyber-attacks by using diversity. It
executes variants of the same program and compares the behavior of the variants
at synchronization points. Divergence in behavior suggests an anomaly and
triggers an alarm. Unlike the case using the n-variant approaches, the syn-
chronization points serve to mitigate the need for a priori knowledge of the type
of attack because they provide common entry and exit points under which
differences in performance can be measured.

3. Behavioral Distance. One way to beat traditional anomaly-based intrusion
detection systems is to emulate the original system behavior (i.e., mimicry
attacks). Behavioral distance defends against this by using a comparison
between the behaviors of two diverse processes running the same input. A flag is
raised if the two processes behave differently.

1.2 Related Work on Transfer Learning

The redundancy and diversity-based approaches, proposed in this chapter, pertain to
transfer learning theory. They focus on the need to utilize previously-acquired
knowledge to solve problems with greater rapidity and security. They differ from
traditional machine learning methods in that they allow for source and target
domains to be different [7]. Several survey papers on transfer learning have been
published in the last few years; but few apply transfer learning based on compu-
tational intelligence (CI) [8, 9]. Transfer learning, with the support of CI formalisms
such as neural networks, Bayesian networks, fuzzy systems, and genetic algorithms
have been applied in real-world applications. These applications may be subdivided
into the following five categories [9]: (1) Nature language processing [10–12];
(2) Computer vision [13–15]; (3) Biology [16–18]; (4) Finance [19–21]; and,
(5) Business management [22–24].

Deep learning is a fundamental technique for abstract learning using neural
networks [10, 14, 25]. It extracts high-level features, which offer great flexibility in
transfer learning. It rests upon multiple hidden layers, where the output of one layer
is the input to the next layer. Unsupervised learning is used to pre-train each layer.
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Multiple task learning (MTL) is proposed for improving the learning of the target
task(s). It includes a number of hidden layers, which are fewer than in deep neural
networks. In MTL, information contained in other related tasks is used to promote
the performance of the target task [26]. All tasks are trained in parallel using the
shared input and hidden neurons. Separate output neurons, corresponding to each
task, are provided [27]. This leads to redundant outputs and overlapping informa-
tion. To remedy this, Silver and Poirier [28] proposed context-sensitive multiple
task learning (csMTL), where only one neuron is included in the output layer; and,
the input layer also contains a set of contextual inputs, which associates each
training example with a particular task.

Many Bayesian-based transfer learning techniques have been developed in
recent years to address the problems raised by the classifier trained on source data,
which may not be predictive for the target data. To deal with this, [29] proposed a
novel naïve Bayes transfer learning classification algorithm. The experimental
results show that the performance of this method increases when the distribution
between the source data and the target data is significantly different. Roy and
Kaelbling [30], developed an approach, where the dataset is first partitioned into a
number of clusters, such that the data for each cluster for all tasks has the same
distribution. Next, one classifier is trained for each partition; all classifiers are then
combined using a Dirichlet process. The Bayesian network is suitable for repre-
senting correlations between features in a decision region. Recently, Oyen and Lane
[18] stated that it is more appropriate to estimate a posterior distribution over
multiple learned Bayesian networks, rather than a single posteriori. They proposed
to extend network discovery in individual Bayesian network learning, for transfer
network learning, by incorporating structural bias into order-conditioned network
discovery techniques.

Fuzzy logic constitutes a major component for Fuzzy Transfer Learning tech-
niques. In [19, 20], a fuzzy-based transductive transfer learning is developed based
on a distribution of data in the source domain, which differs from that in the target
domain. Next, the fuzzy refinement domain adaptation method [21] is improved by
developing a novel fuzzy measure to simultaneously take account of the similarity
and dissimilarity in the refinement process. The emphasis is put on the advantage of
fuzzy logic in knowledge transfer, where the target domain lacks critical infor-
mation and involves uncertainty and vagueness. More recently, the authors of [31]
proposed a framework for fuzzy transfer learning for predictive modeling in
intelligent environments. Genetic algorithms and transfer learning are introduced in
[32]. The approach consists in extending the transfer learning method of producing
a translation function. This process allows for differing value functions, which have
learned to map from source to target tasks. The transfer of inter-task mappings can
reduce the time required for learning a second more complex task.
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1.3 Contribution

This chapter presents an approach to counter this trend and make software more
resistant through redundancy and diversity. The approach that we propose, termed
Novel Naval Cyber Strategies (NNCS), addresses how to immunize
component-based (functional) software. The software engineer programs defining
component rule bases using a schema-based Very High Level Language (VHLL).
Chance and ordered transformation are dynamically balanced in the definition of
diverse components. Deviation from previously defined non deterministic I/O
constraint maps indicates a likely cyber-attack. Redundancy enables simultaneous
recovery in most instances; whereas, diversity prevents against the effectiveness of
attacks. Moreover, the system of systems counts the relative number of diverse
components yielding the same output vector and the relative number of distinct
paths used in the synthesis of the mapping component. The system of systems can
then be applied to previously unseen input vectors to predict output vectors along
with their relative validities. The use of multiple analogies for generalization
enables components to better approximate their defining semantics under a finite
number of constraints. The system of systems will be shown to be relatively
immune to cyber-attacks; and, as a byproduct, yield this capability for effective
component generalization.

In the remainder on the paper, Sect. 2 presents the randomization technique
behind the proposed approach. Section 3 shows the different aspects of the raised
problem. In Sect. 4, a methodology of resolution is developed. Section 5 discusses
the approach and provides some concluding remarks.

2 Randomization

Consider the following problem, where the assigned task is the lossless random-
ization of a sequence of integers [33]. Note that a slightly more complex
(real-world) task would be to randomize a similar sequence of integers, where the
error-metric (tolerance) need not be zero, but is always bounded. Such sequences
arise in the need for all manner of prediction, e.g., from the path of an incoming
missile to the movement of storm tracks, et al. This abstraction underpins the novel
aspects of the Novel Naval Cyber Strategies (NNCS) systems (see below).

Randomize
n: 0 0 1 4 11 26 57
i: 0 1 2 3 4 5 6

ð1Þ

A randomization of (1) is given here by ni+1 ← 2ni + i. We say that this
randomization is lossless because the associated error-metric (e.g., the 2-norm) is
zero. Randomizations may or may not exist given the operator, operand set, and the
set error-metric bounds. Furthermore, even in cases where randomizations exist,
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they may not be discoverable in the allocated search time on a particular processor
(s) [34]. In view of this, the general problem of randomization is inherently
heuristic.

Clearly, there is no logic that can solve the inductive inference problem [34].
Rather, one needs to define a search space such that the search operators are
adequately informed. The more informed the search operators, the less search that is
required (i.e., successful or not). Here is one possible schema to delimit the search
space in this problem:

ni+ 1←M *, ,̸ + , − , **f g ni *, ,̸ + , −f g i, ni− 1f g ð2Þ

Partially assigning mnemonics, this schema can be described as follows.

ni+ 1←int extended− ops niops i, ni− 1f g ð3Þ

But, even here, it is apparently ambiguous as to how such a schema might be
found. To answer this question, consider the randomization of the even sequence,
2n, and the odd sequence, 2n + 1. The randomization of these two sequence
definitions is given by 2n + j, j ∈ {0, 1}. Next, note that “+” ⊂ ops ⊂ extended-ops.
Each replacement, at the right, represents a level of generalization. Generalizations
are not made—except to randomize two or more instances. For example, if the odd
sequence were defined by 2n − 1, then a first-level randomization (i.e., based on the
given mnemonics) of 2n + 1 and 2n − 1 is given by 2n ops 1. Clearly, having
multiple mnemonics can greatly enlarge the search space and result in intractable
solutions. An evolutionary approach to reducing the implied search time is to
perform a gradient search outward from known valid points. Here, search reduction
is obtained by commensurately reducing search diversity. It is claimed that this
process is what enables most of us to solve inferential randomization problems such
as this one, most of the time. The dual constraints of available search time on a
given processor(s) versus the generality of the candidate solution space serves to
dynamically contract or expand the search space.

Notice that the process of randomization not only captures existing instances in a
more compact form, but in so doing embodies similar instances, which may or may
not be valid. The point is that by limiting the degree of generalization, one tightens
the degree of analogy and in so doing, increases the chance of a valid inference. The
inferences found to be valid are fed back to the randomization process. This results
in a more delimited search space and provides for multiple analogies—increasing
the subsequent chance for valid inferences. Moreover, according to Solomonoff
[35–37], the inference of grammars more general than regular grammars is inher-
ently heuristic. The context-free grammar (CFG) is the lowest-level such grammar.
All non-deterministic grammars may be statistically augmented—resulting in
stochastic grammars [38]. Furthermore, where heuristics serve in the generation of
new knowledge and that knowledge serves in the generation of new heuristics, the
amplification of knowledge occurs by way of self-reference [1]! Allowing for the
(self-referential) application of knowledge bases, any practical methodology,
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serving in the discovery of these heuristics, must be domain-general to be cost
effective. The transformative search for randomization is the most general such
methodology because it extracts self-referential knowledge from conditional as well
as procedural knowledge in context [33, 34, 39].

3 Problem Description

The problem is to detect a cyber-attack when it happens and recover from a
cyber-attack while it happens. Software needs to be subdivided into components,
which map a set of input vectors to a non-deterministic set of stochastic output
vectors. Components are defined in terms of other components, which are defined
by rules (Fig. 1).

The behavior of a set of Boolean components or a sequence of procedural
components is not unique. Thus, it is possible to synthesize a diverse set of com-
ponents, which provides the desired security for an arbitrary I/O characterization.

3.1 Justification for I/O Characterization of Software
Components

It is acknowledged that there is software, which cannot be sufficiently characterized
by a non-deterministic stochastic I/O mapping. For example, a component might
draw a picture. Here, a knowledge-based system may be applied to rank the quality
of the component. In a sense, mapping input to desired output(s) is universal—it’s
just that intermediate evaluation code is sometimes needed. Thus, while we will not
address such complexities in this paper, it is to be understood that the methodology
advanced herein is completely compatible with them. In fact, it may be used to
define the intermediate knowledge-based evaluation systems.

Another point of contention pertains to the use of empirical testing instead of, or
in combination with, denotational or axiomatic semantics for program validation.
The recursive Unsolvability of the Equivalence Problem [3] proves that in the

Fig. 1 Recursive rule-based
definition of software
components

200 S.H. Rubin and T. Bouabana-Tebibel



general case it is impossible to prove that two arbitrary programs compute the same
function. Moreover, approaches to program validation based on computational
semantics have proven to be unacceptably difficult to apply in practice. There can
be no theoretical method for insuring absolute validity once a program grows to a
level of complexity to be capable of self-reference [1, 3, 34].

It follows that program validation is properly based on empirical testing, the goal
of which is to cover a maximal number of execution paths using a minimal number
of test cases. This is none other than randomization [33, 34]. Of course, there is no
need to achieve the absolute minimum here—a minimum relative to the search time
required to find the test cases will suffice. In a large enough system of systems, the
methodology advanced herein may be applied to the generation of relatively ran-
dom test cases. Randomization serves to maximize reuse. Reuse is perhaps the best
real-world technique for exposing and thus minimizing the occurrence of program
bugs.

3.2 Random-Basis Testing

Each component saved in the database is associated with one or more I/O test vector
pairings that serve to map a random input vector to correct non deterministic output
vectors. The underpinning principle is that test vectors, which have been sufficiently
randomized, are relatively incompressible. For example, consider the synthesis of a
sort function using LISP (Fig. 2). There are some extraneous details such as
knowing when a particular sequence will lead to a stack overflow, but these are
easily resolved using an allowed execution time parameter. Impressive programs
have been so synthesized—supporting the component-based concept. Notice that
components can be written at any scale—from primitive statements to complex
functions. Given only so much allocated search time, the system will either discover
a solution or report back with failure. This is in keeping with the recursive
Unsolvability of the Halting Problem [3, 34].

Consider such I/O constraints as (((3 2 1) (1 2 3)) ((3 1 2) (1 2 3))). That is, when
(3 2 1) is input to the sort function, it is required to output (1 2 3). Similarly, when (3
1 2) is input to it, it is required to output the same. Clearly, there is little value in
using a test set such as (((1) (1)) ((2 1) (1 2)) ((3 2 1) (1 2 3)) ((4 3 2 1) (1 2 3 4))…).

The problem here is that this test set is relatively symmetric or compressible into
a compact generating function. A fixed-point or random test set is required instead
and the use of such relatively random test sets is called, random-basis testing [40].
While the need for functional decomposition remains, under random-basis testing,
the complexity for the designer is shifted from writing code to writing search
schema and relatively random tests. For example, such a test set here is (((1) (1)) ((2
1) (1 2)) ((3 1 2) (1 2 3)) ((1 2 3) (1 2 3))). Many similar ones exist. One may also
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want to constrain the complexity of any synthesized component (e.g., Insertion
Sort, Quicksort, et al.). This can be accomplished through the inclusion of temporal
constraints on the I/O behavior (i.e., relative to the executing hardware and com-
peting software components).

((DEFUN MYSORT (S)

(COND((NULL S) NIL)

(T(CONS(MYMIN S(CAR S)) 

(MYSORT(REMOVE(MYMIN S(CAR S)) S)))))))

? io

((((1 3 2))(1 2 3))(((3 2 1))(1 2 3))(((1 2 3))(1 2 3)))

? (pprint(setq frepos '((CRISPY'

(DEFUN MYSORT (S)

(COND(FUZZY((NULL S) NIL)

((ATOM(FUZZY S((FUZZY CAR CDR) S))) NIL))

(T(CONS(MYMIN S(CAR S))

(MYSORT(REMOVE(MYMIN S(CAR S)) S)))))))))) 

((CRISPY '(DEFUN MYSORT(S)

(COND(FUZZY((NULL S) NIL)

((ATOM(FUZZY S((FUZZY CAR CDR) S))) NIL))

(T(CONS(MYMIN S(CAR S))

(MYSORT(REMOVE(MYMIN S(CAR S)) S))))))))

; Note that (ATOM S) was automatically programmed using the large 
fuzzy function space.

? (pprint(auto frepos io))

((DEFUN MYSORT(S)

(COND((ATOM S) NIL)

(T(CONS (MYMIN S (CAR S)) 

(MYSORT(REMOVE(MYMIN S(CAR S)) S)))))))

; Note that each run may create syntactically different, but semanti-
cally equivalent  functions:

? (pprint(auto frepos io))

((DEFUN MYSORT (S)

(COND((NULL S) NIL)

(T(CONS(MYMIN S(CAR S)) 

(MYSORT(REMOVE(MYMIN S(CAR S)) S)))))))

Fig. 2 Function synthesis using random-basis testing
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3.3 Component Definition

There are two categories of components—Boolean components, which return True
or False and procedural components, which compute all other functions and can
post and/or retract information to/from a blackboard. There are two blackboards—a
local blackboard, which is only accessible to local component functions and pro-
cedures as well as those invoked by them and a global blackboard, which is
accessible to all component functions and procedures. The blackboards dynamically
augment the input vectors to provide further context.

All components are composed of rules, each of which consists of one or a
conjunction of two or more Boolean components, which imply one or a sequence of
two or more, procedural components—including global and local RETRACT and
POST. Given an input vector and corresponding output vector(s), the rule base
comprising the component must map the former to that latter at least tolerance
percent of the time. The default tolerance is 100 %. Transformation may also favor
the fastest component on the same I/O characterization. Notice that greater diver-
sification comes at an allowance for less optimization.

3.4 Component Synthesis

A library of universal primitive and macro components is supplied and evolved.
There are three ways that these are retrieved. First, is by name. Second is by
mapping an input vector closer, by some definition (e.g., the 2-norm et al.), to a
desired non deterministic output vector (i.e., hill climbing—non contracting
transformations reducing the distance to a goal state with each substitution). Third
is just by mapping the input vector using contracting and non contracting trans-
formations (i.e., Type 0 transformation). Hill climbing and Type 0 transformation
may be combined and occur simultaneously until interrupted. The former accel-
erates reaching a desired output state, while the latter gets the system off of
non-global hills.

Macro components are evolved by chance. They comprise a Very High Level
Language (VHLL). For example, a macro component for predicting what crops to
sow will no doubt invoke a macro component for predicting the weather. Similarly,
a macro component for planning a vacation will likewise invoke the same macro
component for predicting the weather (i.e., reuse) [41].

Test vectors are stored with each indexed component to facilitate the pro-
grammer in their creation and diversification as well as with the overall under-
standing of the components function. While increasing the number of software tests
is generally important, a domain-specific goal is to generate mutually random
ordered pairs [40]. Components in satisfaction of their I/O test vectors are valid by
definition. Non deterministic outputs are not stochastically defined for testing as it
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would be difficult to know these numbers as well as inefficient to run such quan-
titative tests.

As software gets more complex, one might logically expect the number of
components to grow with it. Actually, the exact opposite is true. Engineers are
required to obtain tighter integration among components in an effort to address cost,
reliability, and packaging considerations, so they are constantly working to
decrease the number of software components but deliver an ever-expanding range
of capabilities. Thus, macro components have great utility. Such randomizations
have an attendant advantage in that their use—including that of their constituent
components—implies their increased testing by virtue of their falling on a greater
number of execution paths [33, 34, 42]. The goal here is to cover the maximum
number of execution paths using the relatively fewest I/O tests (i.e., random-basis
testing [40]).

The maximum number of components in a rule, as well as the maximum number
of rules in a component, is determined based on the speed, number of parallel
processors for any fixed hardware capability, and the complexity of processing the
I/O vectors. It is assumed that macro components will make use of
parallel/distributed processors to avoid a significant slowdown. Components that
are not hierarchical are quite amenable to parallel synthesis and testing.

Components may not recursively (e.g., in a daisy chain) invoke themselves. This
is checked at definition time through the use of an acyclic stack of generated calls.
Searches for component maps are ordered from primitive components to a maximal
depth of composition, which is defined in the I/O library. This is performed to
maximize speed of discovery. The components satisfying the supplied mapping
characterization are recursively enumerable.

Software engineers can supply external knowledge, which is captured for the
specification of components. Components are defined using a generalized language
based on disjunction. This is because it is easier to specify alternatives (i.e.,
schemas) in satisfaction of I/O constraints than to specify single instances (e.g., A|
B→ C than A→ C | B→ C; or, A→ B|C than A→ B | A→ C). Moreover, such an
approach facilitates the automatic re-programming of component definitions in
response to the use of similar I/O constraints. The idea is to let the CPU assume
more of the selection task by running a specified number of rule alternates against
the specified I/O constraints. This off-loads the mundane work to the machine and
frees the software engineer in proportion to the processing speed of the machine.
Here, the software engineer is freed to work at the conceptual level; while, the
machine is enabled to work at the detailed level. Each is liberated to do what it does
best. The number of (macro) Boolean components, (macro) procedural components,
and alternate candidate rules is determined by the ply of each and the processing
speed of the machine. Notice that the task of programming component rules is thus
proportionately relaxed. Programming is not necessarily eliminated; rather, it is
moved to ever-higher levels. This is randomization [33]. Furthermore,
component-type rule-based languages have the advantage of being
self-documenting (e.g., IF “Root-Problem” THEN “Newton-Iterative-Method”).
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Novel and efficient development environments can be designed to support the
pragmatics of such programming.

Each run may synthesize semantically equivalent (i.e., within the limits defined
by the I/O test vectors), but syntactically distinct functions (e.g., see the alternative
definitions for MYSORT at the bottom of Fig. 2). Similar diversified components
are captured in transformation rules. Thus, initially diversified components are
synthesized entirely by chance, which of course can be very slow. Chance synthesis
is a continual on-going process, which is necessary to maintain genetic diversity.
But, once transformation rules are synthesized, they are applied to constituent
component rules to create diversified components with great rapidity. The 3-2-1
skew may be applied to favor the use of recently acquired or fired transformation
rules. It uses a logical move-to-the-head ordered search based upon temporal
locality [43]. The acquisition of new components leads to the acquisition of new
transforms. Note that if the system sits idle for long, it enters dream mode via the
3-2-1 skew. That is, it progressively incorporates less recently acquired/fired
transforms in the search for diversified components.

Transformation rules can be set to minimize space and/or maximize speed and in
so doing generalize/optimize. Such optimizations are also in keeping with Occam’s
Razor, which states that in selecting among competing explanations of apparent
equal validity, the simplest is to be preferred. If, after each such transformation, the
progressively outer components do not properly map their I/O characterization
vectors, then it can only be because the pair of components comprising the trans-
formation rule is not semantically equivalent. In this case, the transformation is
undone and the transformation rule and its substituted component are expunged
(i.e., since it has an unknown deleterious I/O behavior). This allows for a proper
version to be subsequently re-synthesized. Components having more-specific
redundant rules have those rules expunged.

Convergence upon correct components and thus correct transforms is assured.
This is superior to just using multiple analogies as it provides practical (i.e., to the
limits of the supplied test vectors) absolute verification at potentially multiple
component levels. Such validation is not in contradiction with the Incompleteness
Theorem as the test vectors are always finite as is the allowed runtime [1].

3.5 Non Monotonic Rules

Non monotonic rules are secondary rules, which condition the firing of primary
rules. They have the advantage of being highly reusable—facilitating the specifi-
cation of complex components. Reuse is a tenet of randomization theory [34]. Both
local and global blackboards utilize posting and retraction protocols. The scope of a
local blackboard is limited to the originating component and all components
invoked by it. For example,
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fLaces: Pull untied laces, Tie: Make bowg→GRETRACT:

ðFoot−ware: Shoes are untiedÞ; GPOST: ðFoot−ware: Shoes are tiedÞ ð4Þ

The order of the predefined, global and local RETRACT and POST procedures
is, akin to all procedural sequences, immutable.

3.6 Component Redundancy and Diversification

The pattern-matching search known as backtracking can iteratively expand the
leftmost node, or the rightmost node on Open [44]. Results here are not identical,
but are statistically equivalent. If one component is provided with one expansion
search parameter, the other component must be provided with the same search
parameter, or the resultant dual-component search will have some breadth-first,
rather than strictly depth-first characteristics. This will change the semantics
resulting from the use of large search spaces. Clearly, components need to be
transformed with due regard for subtle context to preserve their aggregate seman-
tics. These semantic differences become apparent on input vectors, which are
outside of those used for I/O definition. Their use can result in erroneous com-
munications via the local and/or global blackboards. The system of systems,
described in the technical approach below, evolves such context-sensitive compo-
nents and their transformations.

NNCSs can potentially provide exponentially more security than can a
multi-compiler by finding multiple paths from start to goal states [44, 45]. Under
syntactic differentiation, achieving the same results implies computing the same
component semantics. Under transformational equivalence, one need not compute
the same exact component semantics—only ones that achieve the same results in
the context of other components. Given sufficiently large problem spaces and
sufficient computational power, exponential increases in cyber security can thus be
had. Syntactic differentiation can at best provide only linear increases in cyber
security. Thus, our methodology offers far greater security against cyber-attacks
than can conventional approaches [2].

The transformational process converges on the synthesis of syntactically distinct
components, which are, to the limits of testing, semantically equivalent. Such
components can be verified to be free from attack if their I/O synthesis behavior is
within the specified tolerance. Even so, multiple “semantically equivalent” com-
ponents may compute different output vectors on the same, previously untested
input vectors. Here, diversity enables the use of multiple functional analogies by
counting the number of diverse components yielding the same output vector. It also
allows for a count of the approximate number of recursively enumerable distinct
paths leading to the synthesis of each component. This multiple analogies of
derivation, when combined with multiple functional analogies, provide a relative
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validity metric for voting the novel output vectors. These solution vectors are very
important because they evidence the system capability for learning to properly
generalize by way of exploiting redundancy (i.e., in both function and derivation).
Furthermore, having multiple derivations provides stochastic non deterministic
probabilities. This lies at the root of human imagination and knowledge.

4 Technical Approach

The more constrained the search for knowledge, not only the faster that knowledge
may be discovered, but the faster heuristics aiding in the discovery of that
knowledge may be obtained as well.

4.1 The System of Systems Randomization Methodology

To this point, redundancy and diversification have been discussed in the context of
detecting and recovering from a cyber-attack as well as in the inductive prediction
of outputs for inputs not previously supplied. The methodology that follows is
depicted in Fig. 3.

Component Types. There are two categories of components—Boolean com-
ponents, which return True or False and procedural components, which compute all
other functions. There are two blackboards—a local blackboard and a global
blackboard, which is accessible to all component functions and procedures. The
blackboards dynamically augment the input vectors to provide further context. Two
special predefined components are the non monotonic global and local RETRACT
and POST procedures. Each carries a single well-defined argument found in the I/O
library. The scope of a local blackboard is limited to the originating component and
all components invoked by it. The global blackboard is visible to all components.
Postings and retractions should be made by the most primitive level component as
is practical (i.e., having the lowest maximal depth of composition) to facilitate
efficiency and validity (i.e., minimizing the potential for deleterious side effects).

Component Structure. All components are composed of rules, each of which
consists of one or a conjunction of two or more Boolean components, which imply
one or a sequence of two or more, procedural components—including global and
local RETRACT and POST. Given an input vector and corresponding output vector
(s), the rule base comprising the component must map the former to that latter at
least tolerance percent of the time. The default tolerance, t, is 100 %. A Boolean
speed of computation compiler directive, s, when set means that the direction of
transformation favors the component performing at least as fast on the same I/O
characterization vectors. A Boolean space of computation compiler directive, a, is
similar.
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Macro Component Library. A library consisting of at least universal primitive
and macro components is supplied. I/O test vectors and the maximal depth of
composition are stored with each indexed component. Components may be
retrieved by name, by mapping an input vector closer, by some definition (e.g., the
2-norm et al.), to a desired non deterministic output vector (i.e., hill climbing—non
contracting transformations reducing the distance to a goal state with each substi-
tution), and/or by mapping the input vector (i.e., Type 0 transformation—con-
tracting and non contracting transformations). Hill climbing and Type 0
transformations are interleaved, since each can benefit the other. Search is termi-
nated upon interrupt.

Component Synthesis. Macro components are evolved by chance. Basically,
Boolean and procedural components are selected from the library at chance and
combined into defining rules based on software engineer defined schemas (see
below). Set the maximum number of components in a rule and the maximum
number of rules in a component—at the primitive level. The maximum number of
such components and such rules is determined by the software engineer in con-
sideration of the capabilities of the executing hardware, the complexity of pro-
cessing the I/O vectors, and any supplied external knowledge (see below). These

Fig. 3 A system of systems methodology for NNCS
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maximums will need to respect macro components if a sufficient number of parallel
processors cannot be had. This may be accomplished by dividing this number by
the maximal depth of composition found in the I/O library. The process iterates
until the supplied I/O vectors are properly mapped within the specified tolerance, or
an interrupt signals failure to do so (whereupon the software engineer may modify
the search specification, or abandon it). Components may not recursively (e.g., in a
daisy chain) invoke themselves. This is checked at definition time through the use
of an acyclic stack of generated calls. Once evolved, macro components are added
to the I/O library. All else being equal, search primitive components before macro
components, as recursively defined (referring to the maximal depth of composition
in the I/O library), for effective I/O maps.

Component Definition. Components are defined using a generalized language
based on disjunction. This is because it is easier to specify alternatives (i.e.,
schemas) in satisfaction of I/O constraints than to specify single instances (e.g., A|
B → C than A → C | B → C; or, A → B | C than A → B | A → C). The number of
(macro) Boolean components, (macro) procedural components, and alternate can-
didate rules is determined by the ply of each and the processing speed of the
machine. Furthermore, component-type languages have the advantage of being
self-documenting (e.g., IF “Root-Problem” THEN “Newton-Iterative-Method”).
Novel and efficient development environments can be designed to support the
pragmatics of such programming.

Component Schedule. Synthesize components in satisfaction of the I/O test
vectors and s, a, and t by chance. Such synthesis may lead to diverse components
computing the same function. Pairings of such components form transformation
rules, which are saved in a separate base and dynamically ordered using the 3-2-1
skew. Rules are logically moved to the head of their list upon acquisition or firing.
Convergence upon correct components, and thus correct transforms, and so on
follows with scale. A most-specific first agenda mechanism controls the firing of
component rules. Redundant rules, having a more-specific (i.e., superset) of Boo-
lean components, are expunged. The direction of transformation is determined by
compiler directives, based on s, a, and t. Use of the s and/or a optimization
directives minimizes the potential for diversification. Conversely, decreasing the
t generalization directive maximizes the potential for diversification.

Component Computation. Diverse components are constructed by transfor-
mation, which in turn depends on random component synthesis as a source of
transformation rules. The relative time spent (processors allocated) for each is
dynamically given as follows.

Let, r(t) give the number of novel transformation rules yielded by components
synthesized by chance, over some timeframe, t.

Let, x(t) give the number of novel component rules yielded by transformation
rules, over some timeframe, t.

Note that it could potentially reduce the diversity space; and, it is otherwise
redundant to self-apply transformation rules.
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Then, the percent of time/resources to be spent in transformation rule synthesis is
given by rðtÞ+1

rðtÞ+ xðtÞ+2; while, the percent of time/resources to be spent in component

rule synthesis is given by xðtÞ+1
rðtÞ+ xðtÞ+2, where if r(t) + x(t) = 0, t is doubled else t is

halved. t is initialized to 1.0. Thus, time/resources are proportionately spent where
they were most-recently productive.

Component Diversification. The 3-2-1 skew favors the use of recently acquired
or fired transformation rules. Transformation rules are applied to the (symmetric)
rules comprising a component to yield diversified components. Diversified com-
ponents are realized using at least one diversified rule, which in turn, consists of at
least one diversified component. Duplicate transformation rules are logically moved
to their list head. Every component substitution is verified using the local and
progressively higher I/O characterization vectors and invoking components. In case
of failure, the involved component rule, the involved transformation rule, and the
substituted component are expunged.

Component Validation. Components are verified to be free from attack if their
I/O synthesis behavior is within the specified tolerance. Even so, multiple “se-
mantically equivalent” components may compute different output vectors on the
same, previously untested input vectors. Here, diversity enables the use of Multiple
Functional Analogies (MFA) by counting the number of diverse components
yielding the same output vector. It also allows for a count of the approximate
number of recursively enumerable distinct paths leading to the synthesis of each
component. This is approximated by the number of times that it is derived—
including random and transformational synthesis. This Multiple Analogies of
Derivation (MAD), when combined with the MFA, provide a Relative Validity
Metric (RVM) for voting the novel output vectors. Using the 3-2-1 skew, com-
ponents synthesized from more recently acquired/fired transformation rules are
given a higher relative validity, since they are more likely to be repeatedly derived.
This makes sense because these solutions are immediately needed (i.e., just in time
synthesis) and not stored for possible future use. The MAD for the ith combination
of Boolean components in a rule is given by:

MADðiÞ= cardfcomponenti synthesisg

ð ∑
jcomponentsj

j=1
cardfcomponentj synthesisgÞ j̸componentsj

ð5Þ

The greater the MAD, the more likely the novel output vector is to be valid.
The MFA for the ith combination of Boolean components in a rule is given by:

MFAðiÞ=
∑
NDO

k=1
cardfcomponenti, k outputg

∑
NDO

k=1
ð ∑
jcomponentsj

j=1
cardfcomponentj, k outputsg j̸componentsjÞ N̸DO

ð6Þ
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where NDO is the number of non-deterministic outputs per component. Hence, the
joint RVM for the ith combination of Boolean components in a rule is given by
combining (5) and (6):

RVMðiÞ=MADðiÞ ⋅MFAðiÞ ð7Þ

The greater the RVM, the more likely the output is to be valid. Validity is
associated with an RVM > 1. Absolute component validity is predicated on testing
as absolute validity is not necessarily provable [1].

Non Deterministic Outputs. Non deterministic procedural alternatives are
defined to be a member of the specified output vectors. The probability of each
distinct alternative is directly proportional to the number of paths for its synthesis.
This, in turn, is approximated by the number of times that it is derived—including
random and transformational synthesis. Thus, the dynamic stochastic probability for
the jth non deterministic selection for the ith combination of Boolean components
in a rule is given by:

non det probði, jÞ= cardfproceduralj synthesisg
∑
NDO

k=1
cardfproceduralk synthesisg

ð8Þ

where NDO is the number of non deterministic outputs.

4.2 Proof of Concept

This methodology will be proven to be immune to cyber-attack by two routes. First,
it will be demonstrated that a significant percentage of components can be corrupted
and the system of systems will autonomously discover and report this occurrence
and still return correct outputs. Second, it will be demonstrated that the system of
systems can generalize I/O maps in the form of diverse components that can usually
properly map previously unseen inputs to correct outputs. This is accomplished by
supplying NNCSs I/O vectors, letting it learn diverse component maps, supplying
novel input vectors for similar problems—correct output vectors for which have
never been supplied, and seeing if the system converges on finding correct non
deterministic output vectors. Such a result not only solves the long-standing gen-
eralization problem in CBR [46], but the context-based knowledge extension
problem, previously described in [46–49].

Contemporary components for NNCS will be taken from select newLISP
functions used for the realization of the methodology (e.g., bootstrapping). The
system of systems will automatically generate diverse components from them. The
performance of the system will be rated as a function of scale. It will be shown that
the inferential error rate is inversely proportional to scale. That is, the larger the
domain-specific component base and the more processing power/time allocated, the
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lower the inferential error rate. A cost-benefit analysis of the protection provided by
component diversification can be provided based on an empirical study and pro-
jection of its scalability.

5 CI for Tactical Battle Management

In this section, our prototype NNCS program will be demonstrated as applied to
learning tactical battle management. Here, the focus will be on learning more than
on actual battle management techniques. Indeed, the entire program is being
reworked and moved from a rule-based approach to an algorithmic one to better
capture the nuances of natural language understanding as well as those pertaining to
naval battles. The problem is that although rules are universal [44] and cases are
easy to manage [46–49], neither generic approach can efficiently capture the
structure and knowledge applied in complex decision making.

5.1 Overview of Battle Management

The goal of battle management is to provide decision superiority to one side, which
then translates into victory over an opponent(s). Successful battle management
requires assessing the context—that is, what is and is not relevant to the outcome of
a battle(s). It also entails logistics, or the allocation of scarce resources where and
when they are needed to provide the necessary advantage. In what follows, this
desired behavior is approximated through a rule-based system having a computa-
tionally intelligent capability to learn. Note that successful learning, in theory at
least, is merely a matter of allocating enough time and space to the algorithm.
However, in practice, a far more programmed structure becomes necessary with
scale. The following example is abridged as necessary.

5.2 NNCS Interactive Learning

Here, a sample run of the first NNCS LISP program will be presented to highlight a
few capabilities. Randomization is performed in “dream mode” (i.e., when the
system would otherwise be idle), where the system applies learned equivalence
rules to itself to randomize its knowledge bases. Not only does this facilitate
contextual matching, because the context and situations are similarly normalized;
but, it also economizes produced actions through randomization. As an example of
the latter, it might substitute automobile for the description of a car. However, a
simple randomization example requires about ten pages, which exceeds the
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allocated space herein. The program is cold-started and is devoid of any domain or
natural language processing knowledge.

Dream Demo. Here is an early battle management executable, which demon-
strates its capability for randomization in dream mode. Note that only, “shorthand
keys”, not the equivalent “narrative phrases”, are shown to conserve space. Gen-
erally, with sizable knowledge bases, dream mode will be measured in hours, but
here we use the minimum of 1 min for demo. Randomization serves to enable
contextual matches that are syntactically distinct, but semantically equivalent. Since
multiple transformations are used, this can be an arbitrarily complex equivalence.
The randomization of actions, for example, allows one to state, “seek shelter,”
instead of (1) find abode with four walls and roof, (2) make path to abode, (3) …
Not only does this make for convenient communication to human or machine, but
similarly enables practical transformation (e.g., shelter → aircraft hanger versus the
unruly expanded equivalent).

This function uses the 3-2-1 skew to randomly transform a random rule LHS and
RHS. Rules are randomly selected from [0, 0], [0, 1], [0, 2], [0, 3], … , [0, n], and
holding. Rules LHS and RHS are processed in sequence before selecting the next
rule. The goal is to iteratively minimize the length of each side. This minimizes the
number of questions asked and often provides the best answers. It also conserves
space and thus speeds up the algorithm as well. The following three lists—left-hand
side transformation rules, right-hand side transformation rules, and the rule base,
respectively, were used for brief demonstration of dream mode. A fourth list, or
dictionary, used for table lookups for translation is not shown. In what follows, the
user repeats many queries. This is done to show how the responses evolve with
learning. Also, the CI system has capabilities to reuse answers for non-monotonic
reasoning, which have not been adequately demonstrated for the sake of brevity.
Brief comments have been added for purposes of explanation. As in LISP, each
comment is prefixed with a semicolon.

(setq LHSeqrules '(((“∼”) (“∼”)) ((“y” “y” “p”) (“q” “t”)) ((“x” “p”) (“y”)) ((“p”
“x” “p”) (“p” “p”)) ((“x” “x”) (“z”)))); situational transformation rules of the form,
((LHS) (RHS))

(setq RHSeqrules '(((“∼”) (“∼”)) ((“z” “p”) (“y”)) ((“x” “x”) (“z”))))
; action transformation rules, where the matched LHS is transformed into the RHS

(setq rulebase '(((“∼”) (“∼”)) ((“p” “x” “x”) (“p” “x” “x”)) ((“x” “x” “p” “x” “x”
“p” “x” “x” “p”) (“x” “x” “p” “x” “x” “p” “x” “x” “p”)) ((“x” “x” “y” “y” “x” “y”)
(“u” “x” “p” “x” “x” “x” “p” “x” “x”)))); main rule base, where the rules of the
form, ((situation) (action)) are acquired from user interaction to correct perceived
errors

> (Main)
Sun Jun 28 13:35:43 2015
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Please specify the desired filename, or use “Enter” to prevent saving results
? battle management
The file, “BATTLE MANAGEMENT” is unknown. Do you wish to cold start and
create it (c), or not (n)
? c

The four knowledge bases and keylength have been initialized.
At Sea. Here is the battle management executable, illustrated for the context of
learning decision superiority for a hypothetical naval battle:
…

Can we continue (yes or no)
? y

Tell me the starting conditions and end with a <CR>
? An enemy submarine has been detected.
The matching sentence is:
An enemy submarine may launch a torpedo against our ship
Is that right
? y

You said that I was correct.
The unique key is “P” ; an automatically created unique identifier
Give me an antecedent and end with a <CR> ; antecedent is a situation
? An enemy submarine has been detected off the port bow.
The matching sentence is: ; the use of similarity metrics found a disjoint semantics
Depth charges can reach enemy submarine at distance
Am I correct
? n

You said no or that you don’t know. ; entering a “dk” would produce the same
result here

What is an equivalent consequent for:
(Press “Enter” to copy and use the shown situation for the action:)
? An enemy submarine has been detected off the port bow
? ; the action and the situation are set to the same here for simplicities sake

The associated right-hand side predicate is:
an enemy submarine has been detected off the port bow
The unique key is “i” ; we set a system parameter was set to show this unique id
Tell me the starting conditions and end with a <CR>
? ; an absent input serves to signal an end to a conjunction of antecedents

The initial (last) context was:
An enemy submarine may launch a torpedo against our ship.
- and -
An enemy submarine has been detected off the port bow.
In my judgement, the following action is likely.
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This is a new action.
The fired consequent in shorthand keys is: (“f” “s”)
The fired consequent in narrative phrases is:
Fire anti-submarine weapon. ; this corresponds to the “f” key
- and -
Turn ship to defend against torpedoes.; this corresponds to the “s” key
The probability is 50 percent; the system derives a probability from the match
Is that last actions meaning correct
? y

Can you give me an exactly equivalent correct context (yes, no, or dk)
? y

Tell me the starting conditions and end with a <CR>
? An enemy submarine is off the port bow.
The matching sentence is:
An enemy submarine has been detected off the port bow
Is that right
? y

You said yes. ; the echo will sometimes appear—just as in natural conversation
The unique key is “i”
Enter a contextual sentence and end with a <CR>
? The danger is that the enemy submarine may torpedo our ship.
The matching sentence is:
An enemy submarine may launch a torpedo against our ship
Is that right
? y

You said that I was correct.
The unique key is “P”
Give me an antecedent and end with a <CR>
? ; an absent input serves to signal an end to a conjunction of antecedents

Can you give me another situation having the same exact meaning (yes, no, or dk)
? n ; this is so it learns semantically equivalent situations for use in matching
Can you restate the action without changing its exact meaning (yes, no, or dk)
? y ; this is so it learns semantically equivalent actions for use in matching
Tell me a proper action, or unknown, and end with a <CR>
? Turn the ship away from the enemy submarine.
The matching sentence is:
An enemy submarine has been detected off the port bow
; this does not mean the same thing
Am I correct
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? n

You said that I was incorrect or that you don’t know.
What is an equivalent antecedent for:
(Press “Enter” to copy and use the shown action for the situation:)
? Turn the ship away from the enemy submarine
? ; the action and the situation are ascribed the same syntax
The associated left-hand side predicate is:; a carriage return here “duplicates”
turn the ship away from the enemy submarine
The unique key is “n”
Tell me a proper action, or unknown, and end with a <CR>

? Launch an anti-submarine weapon.
The matching sentence is:
Fire anti-submarine weapon
Am I right
? y

You said that I was correct.
The unique key is “f”
Tell me a proper action, or unknown, and end with a <CR>

??

Can you restate the action without changing its exact meaning (yes, no, or dk)
? n

There were no cycles in the action sequence.; cycles need be broken for answers
Keep going (yes, no, copy, or append (last action))
? y

Give me an antecedent and end with a <CR>
? An enemy submarine periscope was detected off the port bow.

The found matching sentence is:
An enemy submarine has been detected off the port bow
Is that correct
? y

You said yes.
The unique key is “i”
Enter a contextual sentence and end with a <CR>
?

The initial (last) context was:
An enemy submarine has been detected off the port bow.
Here is what I think is likely.
This is a new action.
The transformed and fired consequent in shorthand keys is: (“f” “s”)
The transformed and fired consequent in narrative phrases is:
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Fire anti-submarine weapon.
- and -
Turn ship to defend against torpedoes.
The probability is 50 percent.
Is that last action semantically correct
? y

Can you give me another context having the same exact meaning (yes, no, or dk)
? n

Can you give me an exactly equivalent correct action (yes, no, or dk)
? n

The action sequence was acyclic.
Continue (yes, no, copy, or append (last action))
? y

Enter a contextual sentence and end with a <CR>
?

The starting (last) context was:
Enemy submarine detected off starboard bow.
This is a new context for me.
The initial (last) action was:
Shoot back.
The same transformed (last) action is:
Fire back rounds.
Do these consequents have the same meaning (yes, no, or dk)
? y

Could you give me a proper action (yes, no, or dk)
(Or, initially enter “f”, or “final”, for a terminating cycle)
? y

Give me a consequent, or unknown, and end with a <CR>
? Sound general quarters
I recall that exact sentence.
The unique key is “h”
Enter an action sentence, or unknown, and end with a <CR>
? Launch anti-submarine weapon.
The matching sentence is:
Fire anti-submarine weapon
Is that right
? y

You agree with me.
The unique key is “f”
Tell me the starting conditions and end with a <CR>
?
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The initial (last) context was:
Fire anti-submarine weapon.
Turn ship to defend against torpedoes.
Fire anti-aircraft guns.
- and -
We are under attack by an enemy submarine enemy tanks and enemy aircraft.
Is this the correct situation
? y

Here is what I think is very probable.
This is novel.
The fired consequent in shorthand keys is:
(“f” “x” “N” “T”)
The fired consequent in narrative phrases is:
Fire anti-submarine weapon.
Turn ship away from enemy submarine.
Fire anti-aircraft guns.
- and -
Fire agm-114r missiles at enemy tanks ashore.
The probability is 75 percent.
Is my last action correct
? y

Can you give me another proper context having the same exact meaning (yes, no,
or dk)
? n

Can you give me another consequent having the same exact meaning (yes, no, or
dk)
? n

There were no cycles in the action sequence.
Keep going (yes, no, copy, or append (last action))
? y

Tell me the starting conditions and end with a <CR>
? The ship is under attack by enemy aircraft, an enemy submarine, and enemy
tanks.

The found matching sentence is:
We are under attack by an enemy submarine enemy tanks and enemy aircraft
Am I right
? y

You said yes.
The unique key is “R”
Tell me the starting conditions and end with a <CR>
?
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The beginning (last) antecedent was:
We are under attack by an enemy submarine enemy tanks and enemy aircraft.
In my opinion, the following action is improbable.
This is novel.
The fired consequent in shorthand keys is: (“f” “x” “N” “T”)
The fired consequent in narrative phrases is:
Fire anti-submarine weapon.
Turn ship away from enemy submarine.
Fire anti-aircraft guns.
- and -
Fire agm-114r missiles at enemy tanks ashore.
The probability is 25 percent.
Is my suggested action right
? y

Can you give me an exactly equivalent correct context (yes, no, or dk)
? n

Can you restate the action without changing its exact meaning (yes, no, or dk)
? n

There were no cycles in the action sequence.
Do you want me to keep going (yes, no, copy, or append (last action))
? n

May I take a dream hour now (yes or no)
? n

Do you wish to save the file, “BATTLE MANAGEMENT”
? y

Proceeding to save the file, “BATTLE MANAGEMENT”.
The file, “BATTLE MANAGEMENT” has been saved in the Knowledgebases
folder.
The file, “BATTLE MANAGEMENT” has been saved in the Backups folder.
Semper Fi!

5.3 Summary

Rules can be learned for a computationally intelligent system as was demonstrated
above. However, the non-monotonic reasoning required with scale becomes
unmanageable. Details need to be explicitly programmed—not only in the interests
of efficiency, but because without a sufficient framework, such learning becomes
NP-hard. This then is the pragmatic side—again, despite the universality of
rule-based systems.
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Case-based systems were reviewed for the intelligent capability to generalize the
cases. The case-based version is a better design because it can combine statistical
and formal generalizations and can insure cyber security using multiple processors
vice multiple non-deterministic codes. It is also more scalable. However, even here,
with increasing scale such generalization needs algorithmic knowledge to be valid,
tractable, and in the needed direction. Even a transformative calculus needs
heuristics to squelch combinatoric explosions. The problem is like attempting to
scale the predicate calculus (Prologue) [44]. Eventually, heuristics are needed, or
the back-cut and resolution mechanisms grind to a halt under the combinatorics of
their own expansion [50].

6 Discussion and Concluding Remarks

The Mission critical systems are increasingly subject to operation in hostile envi-
ronments, where cyber-attack is just a click away. The cost of combining redun-
dancy and component diversity is justified by the cost of security failures in mission
critical systems.

The greater the multiplicity of components derived through chance and trans-
formation, the greater their individual reliabilities will be through the use of mul-
tiple analogies. Chance and ordered transformation are dynamically balanced in the
definition of diverse components. Communication occurs, using non monotonic
components, through both a global and local blackboards. Although the method-
ology is self-referential, it is not subject to the limitations imposed by the Incom-
pleteness Theorem [1]. This is because it is inherently heuristic.

In theory, the only competing way to realize the results promised in this chapter
is to apply knowledge to the inference of knowledge. A few approaches here have
met with limited success [50]. The problem is that the knowledge, which is
self-referential, needs proper context for applicability. This context cannot be
generated by the formal system itself due to limitations imposed by the Incom-
pleteness Theorem [1]. Rather, it must be externally supplied, which by definition
necessarily makes it an incomplete set, or it must be heuristic in nature (e.g.,
multiple analogies) to avoid applicability of the Incompleteness Theorem.

A divergent multiple-analogies approach to component synthesis underpins this
chapter. A theoretical consequence of this heuristic approach is that all non-trivial
learning systems must embody an allowance for inherent error in that which may be
learned. Thus, despite the seeming appeal of valid deduction systems (e.g., the
predicate calculus and Japan’s Fifth Generation project [51]), they are inherently
not scalable. The Navy requires scalable software systems, which are relatively
immune to cyber-attack.

The novel technology has been realized in NNCSs for the generation of sym-
metric software for countering cyber-attacks. The problem here pertains to the
acquisition of components along with a methodology for mapping supplied input
vectors to one or more desired stochastic output vectors. These maps need to be
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diverse to thwart cyber-attacks as well as to allow for the use of multiple analogies
to better predict the (non-deterministic) mapping of previously unknown inputs.
This methodology has been realized in newLISP (in view of its superior list pro-
cessing capabilities) as a system of systems. It enables a relative immunity against
cyber-attacks. It can also succeed against a sequence of progressively more com-
plex problems for which no solution has been pre-programmed; although, the
learning mechanism here is not very efficient. Finally, the performance of the
system (i.e., the inferential error rate) is tied to the size of the transformational base
as well as the processing power/time allocated in conjunction with the
schema-definition language. This is unbounded, by any non-trivial metric, because
the Kolmogorov complexity of computational intelligence is unbounded [52].

The value of a successful experiment is that as a result, component software
systems will be able to protect themselves against cyber-attacks. Our methodology
offers exponential increases in cyber security; whereas, conventional approaches
can do no better than linear [45]. Moreover, intelligent software systems are able to
learn outside the bounds specified by supplied I/O constraints—by inductive
inference.
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Semi-Supervised Classification System
for the Detection of Advanced Persistent
Threats
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and Antonio Villalón-Huerta

Abstract Advanced Persistent Threats (APTs) are a highly sophisticated type of

cyber attack usually aimed at large and powerful organisations. Human expert knowl-

edge, coded as rules, can be used to detect these attacks when they attempt to extract

information of their victim hidden within normal http traffic. Often, experts base their

decisions on anomaly detection techniques, working under the hypothesis that APTs

generate traffic that differs from normal traffic. In this work we aim at developing

classifiers that can help human experts to find APTs. We first define an anomaly score

metric to select the most anomalous subset of traffic data; then the human expert

labels the instances within this set; finally we train a classifier using both labelled

and unlabelled data. Three computational intelligence methods were employed to

train classifiers, namely genetic programming, decision trees and support vector

machines. The results show their potential in the fight against APTs.
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1 Introduction

Advanced Persistent Threats (APTs) are a relatively new concept that has been

defined in many ways. Most of these definitions home in the fact that they are attacks

carried out with a highly sophisticated malware, the development of which requires

dedicated, skilled individuals with expertise in multiple technological fields, as

well as significant financial resources [1]. As befits these characteristics, APTs

are generally addressed to either governments or large companies [2]. Hence, their

detection and prevention are highly relevant, both economically and socially.

In addition to the above, this kind of cyberattacks is becoming both more frequent

and more complex, a fact that has exposed the limitations of traditional security

mechanisms, whose success in detecting such sophisticated threats has been poor.

Examples of recent APTs which went undetected by current security solutions are

Stuxnet [3], Duqu [4], Flame [5], Red October [6] and Miniduke [1, 7].

Although many standard web attack detection tools and apps have been adapted

for the purpose, the very design of these attacks makes them extremely difficult to

detect [8, 9]. Most solutions are based on expert knowledge; the techniques under-

lying these tools are rule-based systems, statistical and correlation methods, manual

approaches and automatic blocking (black lists) [8]. One big shortcoming of these

approaches is that they lack the capability to detect previously-unseen attacks [8].

Thus, building tools and algorithms to assist in the detection of novel APTs has

become of the utmost importance for the security of both companies and states [2].

The rest of the chapter is organized as follows. In Sect. 2 we introduce related

work on APT detection and the generalities of the anomaly detection (AD) methods

are described. Our approach is presented in Sect. 3. A description of the character-

istics of the proxy data is presented in Sect. 4. Section 4.2 includes a description of

the proposed metric to assign the anomaly score to the instances. Next, in Sect. 5

the different classification methods considered are described. The specific results of

these methods are presented in Sect. 8. Finally, Sects. 9 and 10 include a discussion

of the results and the conclusions.

2 Related Work

2.1 Anatomy of an APT

In [8, 10] the typical APT strategy is described as follows:

∙ Attacker gains foothold on victim system via social engineering and malware.

∙ Attacker then opens a shell prompt on victim system to discover if system is

mapped to a network drive.

∙ Victim system is connected to the network drive prompting attacker to initiate a

port scan from victim system.
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∙ Attacker will thereby identify available ports, running services on other systems,

and identify network segments.

∙ Network map now in hand, attacker moves to targeting VIP victims with high

value assets at their disposal.

In many cases the aim of the attacker once the steps described above have been

accomplished, is to extract information from the source [11]. This is known as exfil-
tration and is deemed to be one of the phases where the APT can be detected [8],

although, as proven by the examples given earlier, this is not always the case [1, 9].

2.2 Detecting APTs

A relevant body of work in the detection of APTs relies on monitoring an organiza-

tion’s network traffic -where HTTP data can be stored using a proxy- and identifying

certain behaviours. This is based on the assumption that many APTs will use the

HTTP protocol for the exfiltration step, given that it is supported by most organi-

zations. For instance, [8] describes how a human expert can detect patterns that an

APT might follow in order to develop countermeasures.

Frequently, detection methods work under the premise that if an APT infects a

given system the behavior of the HTTP requests carried out within it will follow a

different pattern than that existing in the absence of this attack, i.e. HTTP traffic will

follow an anomalous behaviour.

Although it cannot be assumed that this will be always the case, as a cleverly

designed APT will aim at disguising itself to appear as normal as possible, we can

nevertheless expect that APT-induced behaviour will be closer to the anomalous

rather than to the normal behaviour. The work presented here is also based on this

premise.

2.3 Anomaly Detection Methods

Anomaly detection is a relevant problem that has been tackled in diverse research

areas and application domains. Its importance lies with the fact that anomalies in data

translate to significant, and often critical, actionable information in a wide variety

of application domains. For a review of AD techniques the reader is referred to [12],

which covers both those specifically developed for an application and other more

generic ones. Examples of application domains of AD techniques include:

∙ Cybersecurity: network traffic analysis [13] to detect intrusions.

∙ Medicine: finding tumours in magnetic resonances [14].

∙ Banking: credit card fraud detection [15].

∙ Space: Sensor behaviour analysis to prevent spaceship failure [16].
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Different technical approaches can also be found:

∙ Classification-based techniques [17]:

– Artificial Neural networks (ANN) [18].

– Bayesian Networks (BN) [19].

– Support vector machines (SVM) [20].

– Rules-based systems [12].

∙ Detection of n-neighbors [21]:

– Distance to the closest n-neighbors [22].

– Density of the neighborhood [23].

∙ Clustering-based techniques [24].

∙ Statistical methods [12]:

– Parametric techniques [25].

– Non parametric techniques [26].

∙ Other methods:

– Information theory [27].

– Spectral techniques [28].

When selecting an AD method special attention must be paid to the specific char-

acteristics of the problem, such as type of data, type of anomalies sought, compu-

tational capacity of the device and so on. In the cases where many attributes that

describe the behavior of the dataset are available, the detection method should ide-

ally include information on all the attributes. Furthermore, anomalies can be detected

by looking at attributes individually or considering them as an ensemble.

Most AD methods are based on the assignation of an anomaly score (AS) to each

instance of the dataset [12]. This score represents how anomalous a given instance

is. After the assignation of the AS the instances to focus on can be chosen mainly

using two methods : (1) Setting a threshold (tha) and selecting all instances whose

AS is above it, and (2) selecting the N instances with larger AS.

The solution proposed in this work was developed based on the characteristics of

the available data, which are explained in Sect. 4.

3 Proposed Method

As explained earlier, the method presented here utilises the premise that APT-infected

HTTP traffic will tend to be anomalous to help create a classifier for suspicious/non-

suspicious behaviour. This classifier will be trained using data labelled by human

experts and then tested with a new set of data in order to evaluate its performance.

In this way, we aim to model how experts work. The methods used to train the clas-

sifier are Genetic Programming (GP), two Decision Tree Classifiers (DTC), namely

CART and Random Forests, and Support Vector Machines (SVM).
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Fig. 1 General diagram of the APT detection process proposed. In the first phase, the most anom-

alous instances (Sa or dark set) are detected with the anomaly score (AS) metric defined. In the

second phase the expert labels these instances as suspicious or non-suspicious. In the third phase

the classifier is trained using the labelled instances from the dark set and, possibly, also instances

from the (unlabelled) grey set

Because suspicious instances within HTTP data are rare and the amount of data

available is too large to allow full labelling by the expert, we propose to look only at

the anomalous instances within the available set, where we expect most suspicious

instances will also be concentrated.

Our method, thus, follows these steps:

1. Select the most anomalous instances within the data available (HTTP requests

registered by a proxy)—the dark set
2. Get the human expert to label these instances as suspicious/non-suspicious
3. Train a classifier using part of the labelled data in the dark set

4. Test the classifier obtained in the previous step using the remaining data in the

dark set

The data that has not been labelled by the human expert (which we will refer to

as the grey set) may also be used for testing purposes.

Step one is based on the definition of a new metric for the assignation of an anom-

aly score to the instances of the set. The proposed metric takes into account more

information available in the data than other metrics found in the literature [29, 30].

Once the expert had studied the dark set and labelled its instances (step 2) a clas-

sification method was applied to label the instances in the grey set (step 3), based on

the human knowledge included in the former. This scheme corresponds to a semi-

supervised classification method, since only knowledge of a part of the data is known.

The three phases of the proposed method can be seen in Fig. 1.

4 Step One: Processing the Data

4.1 Traffic Data

The available data come from an access log of the Squid proxy application from a

real organization. The records correspond to a URL session lasting several hours and
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Table 1 Attributes, types and ranges

Attribute Id Type Range or number of attributes

http reply code c1 c 28

http method c2 c 8

Main content type c3 c 153

Bytes c4 n [0, 921701242]

Duration (ms) c5 n [0, 6674481]

Server address – c 7778

Date (days) – n 4

Squid hierarchy – c 2

Client address – c 110

URL (FQDN) c6–c11 s 8872

The id column indicates those attributes that were selected for the proposed AS metric. FQDN
(Fully Qualified Domain Name)

containing 1.1 million instances. Each instance, in turn, has ten associated variables

which can be of three types: numerical, nominal/categorical and string, as follows:

∙ Numerical (n): duration (ms), date and bytes.
∙ Categorical/nominal (c): http reply code, httpmethod, content type, server address,
squid hierarchy, and client address.

∙ String (s): URL.

Since data come from a proxy register, many instances are “duplicated” in all

values but the squid hierarchy (sh) attribute, which indicates if the query goes from

the client to the proxy (sh=DIRECT) or from the proxy to the server (sh=Default
parent). To avoid these duplicated instances all of those with sh=default parent value

were removed, leaving the final set with 637,887 instances. The attributes contained

in the final set are given in Table 1.

4.2 A New Metric for Anomaly Score Assignation

In order to define the proposed metric the most relevant attributes for detecting anom-

alies in the proxy data were selected by a human expert; then it was defined how to

detect abnormal behaviour using these attributes. In this way we obtain a final anom-

aly score value for every instance.

Individual Elements

Because the aim is not to detect anomalies in the behaviour of specific individuals

but rather in the group of users as a whole, we will only consider those attributes

that give information on the latter, rather than on individual behaviour. The final

attributes are those that have a value in the id column in Table 1.
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The FQDN is the attribute that contributes the most information. For this reason,

several characteristics contained in it were also considered relevant by an expert for

the identification of anomalies in the behavior of the set:

∙ Top Level Domain, TLD (considered as categorical attribute) (c6)

∙ Length of the core domain (cd) (c7)

∙ Vowels/consonants ratio of the full domain (c8)

∙ Numbers/letters ratio of the full domain (c9)

∙ Sequences of elements of the FQDN (c10)

∙ Popular core domains that appear as subdomains, sd (c11)

For c10 the elements of the domains are divided into consonants, vowels, numbers

and symbols.

For c11 the popular domains are extracted from Alexas lists.
1

A list consisting

of 42 domains was constructed taking the 20 most popular (visited) domains of the

country where data was collected (Spain), 11 more from the continent (Europe) and

other 11 from the global list.

Combinations of Elements

As explained in Sect. 2, anomalies can be detected by considering each attribute

independently from the others but also considering several attributes as a set. In

this case anomalies were detected by identifying rare values in the combinations of

attributes, independently of the individual values.

For this particular set of data the relevant attributes for detecting anomalies in

their combinations are the four categorical attributes (c12): http reply code, http
method, main content type, and TLD.

The main contribution of the proposed metric as compared to others found in

the literature is the consideration of attributes and characteristics of the logs both

individually and in combination.

Once the relevant attributes for detecting anomalies in these URL connections

were determined, the next step was to define how the anomaly score of each instance

would be assigned.

The total AS of each instance (asi) is composed by the anomaly score of each

attribute or characteristic included (asj) weighed by its relative importance (wj):

asi =
cN∑

j=c1
wj ⋅ asij (1)

The value of the anomaly score of each attribute (asj) is assigned to 0 if the value

adopted is considered normal and to 1 if it is considered anomalous. The question

which arose now was: When are these characteristics considered to have an anom-

alous value? It depends on the nature of the characteristic:

1
http://www.alexa.com/topsites.

http://www.alexa.com/topsites
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∙ Categorical: when the frequency of appearance of the value adopted is very low

(infrequent appearance). For instance, if any of these variables has a value that

appears less than 0.01 % in the whole set, it is considered anomalous. Characteris-

tics within this case are: c1, c2, c3, c6, c10, c11 and c12. The infrequent threshold

for each case is different.

∙ Numerical: to find anomalous values in numerical data the parameters of the dis-

tribution are used. A value is considered to be anomalous when it lies outside the

range given by the mean (m) plus (or minus) three times the standard deviation

(𝜎)s (x ∉ [m − 3𝜎,m + 3𝜎]). In other words, the sample has a normal distribution.

Characteristics within this case are: c4, c5, c7, c8 and c9.

Two variations of the metric were considered:

(i) Only the individual attributes were considered. In this case, since the expert did

not point out any of the individual attributes to be more relevant than the rest,

all of them contribute with the same importance to the AS metric.

(ii) In addition to the individual attributes, the anomalous combination of attributes

was included. In this case, since the expert indicated that this attribute gives

more information than the individual ones the weight of this characteristic is

larger than those of the individual attributes in the AS metric.

5 Step Two: Data Labelling by Human Expert

After the assignation of the AS index, those instances with larger AS that could

represent an APT (the dark set) were filtered out and an expert determined which

ones were worth of further study (i.e. suspicious instances). Because the dark set is

small compared to the whole original data set, the information given by the expert

is necessarily partial.

Semi-supervised learning (SSL) methods are applicable to this type of scenario:

the known information is used to reach conclusions on the unknown information.

With SSL methods at least some known information about the data is considered.

The hypothesis is that this information can be used for the unknown part of the set

if all data follow the same structure.

6 Step Three: Building Classifiers

We used three different methods to carry out the classification of the instances, as

described below.
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6.1 Genetic Programming

Genetic programming (GP) [31] is a flexible and powerful evolutionary technique

with some features that can be very valuable and suitable for the evolution of classi-

fiers [32]. GP is a subclass of genetic algorithms, which uses mutation and repli-

cation to evolve structures, following Darwinian survival-of-the-fittest principles

[33]. These programs are composed of nodes (mathematical functions) and terminals

(inputs and constants). GP treats individual computer programs as genetic individu-

als potentially capable of recombining or changing to form new individuals [34].

In this work we employed the GPlab toolbox developed by Silva [35].

6.2 Tree Classification Methods

Decision Tree Classifiers (DTC) are used for classification problems in many areas.

Perhaps, the most important feature of DTC’s is their capability to break down a com-

plex decision-making process into a collection of simpler decisions, thus providing

a solution which is often easier to interpret [36]. Decision trees are a classification

tool used for many years.

Two different methods that use DTC are considered here: CART approach, which

employs a single tree and random forests which employ a set of trees and a voting

mechanism.

CART

Classification and Regression Trees (CART) were proposed by Breiman [37]. With

this method the tree is built by growing branches and pruning them iteratively. CART

allows only either a single feature or a linear combination of features at each internal

node [36]. This method is computationally very expensive as it requires the gen-

eration of multiple auxiliary trees, yet it can be a good approach since it is non-

parametric and easy to apply [38].

Random Forest

Random forests are a combination of tree predictors such that each tree depends on

the values of a random vector sampled independently and with the same distribution

for all trees in the forest [39]. Significant improvements in classification accuracy

have resulted from growing an ensemble of trees and letting them vote for the most

popular class.

The common element in all of these procedures is that for the kth tree, a random

vector 𝛩k is generated, independent of the past random vectors 𝛩1,. . . ,𝛩k−1 but with

the same distribution. After a large number of trees is generated, they vote for the

most popular class. These procedures are called random forests [39].
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6.3 Support Vector Machines

Support Vector Machines (SVM) are algorithms used for classification based on the

class hyperplanes [40]. It can be shown that the optimal hyperplane, defined as the

one with the maximal margin of separation between the two classes has the lowest

capacity. It can be uniquely constructed by solving a constrained quadratic optimiza-

tion problem [41].

It is worth emphasizing one important property of this algorithm: both the

quadratic programming problem and the final decision function depend only on dot

products between patterns. This is precisely what lets this method to be generalized

to the nonlinear case.

7 Experimental Setup

Two different frameworks for the experiments were set:

(A) Once instances in the dark set are labelled by the expert as suspicious/non-
suspicious, the different classification methods were trained using these. The

results of the training phase were then tested with the remaining instances (the

gray set) and results were analysed. See Fig. 2 for a graphical representation of

this approach.

(B) The training set was built using the instances marked as suspicious in the dark

set plus a larger number of randomly selected instances from the grey set. The

hypothesis is that instances in the grey set are non-suspicious. The classifiers

thus obtained were tested using one third of the suspicious instances from the

dark set plus a number of (unlabelled) instances from the grey set, which are

assumed to be non suspicious. The latter are replaced on every iteration, so

that the trained classifiers do not overfit to them, but rather learn the labelled

instances. See Fig. 3 for a graphical representation of this approach.

Fig. 2 Representation of Case A for training only with labelled data and testing with unlabelled

data. ST refers to the total set of data. Sa∕Sn refer to the set of anomalous data and normal data

respectively. Ss∕Sns refer to the suspicious and non-suspicious sets
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Fig. 3 Representation of Case B for training and testing considering that the instances not marked

as suspicious by the expert are non suspicious. Original set is divided into 2/3 for training and 1/3

for testing. ST refers to the total set of data. Sa∕Sn refer to the set of anomalous data and normal

data respectively. Ss∕Sns refer to the suspicious and non-suspicious sets

8 Results

8.1 Anomaly Score Assignation

The levels to consider each of the categorical attributes or characteristics as anom-

alous were:

∙ Categorical attributes (c1, c2, c3 and c6): when they appeared less than 10 times

in the whole set (0.0015 %) their asj was set to 1.

∙ Sequences of elements in the domain (c10): subsequences of six elements were

considered to find the patters:

– Domains with length less than 6 were directly considered anomalous.

– Domains with a subsequence of elements that only appear once in the whole

set were considered anomalous.

∙ When popular domains (c11) of the list appeared as subdomains this characteristic

anomaly score was directly set to 1.

∙ For the combination of elements (c12):

– Its asj was set to 1 when a combination only appear once in the whole set.

– The weight of this parameter was set to w12 = 2 to express its higher indication

of an anomaly with regard to the rest of characteristics.

In the first case, where only the individual attributes were considered to form the

anomaly metric and with all attributes having the same weight, the AS adopted by

the instances was in the [0, 3] interval. Of the total set of 638,887 instances, 29,092

of them did have an asi different from 0. The distribution is shown in Table 2.

In the second case, where the anomalous combination of attributes was also

included in the anomaly metric in addition to all the individual attributes, the

instances adopted an AS value in the interval [0,5]. Of the total set of 638887

instances, 28858 of them did have an asi different from 0. The distribution is shown

in Table 3.
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Table 2 Case (i) Number of

instances for each AS

different than 0

As Num. of instances

1 28,901

2 179

3 12

Table 3 Case (ii) Number of

instances for each AS

different than 0

As Num. of instances

1 28,532

2 265

3 54

4 6

5 1

In both cases, to consider the instances that had at least two anomalous fields, the

instances studied were those that had as > 1 in case (i); and as > 2 in case (ii), since

the anomalous combinations had a value of as = 2. Thus, in case (i) there are 191

instances to study (Sa); and in case (ii) there are 61 instances to study (Sa).

8.2 Assignation of Labels by an Expert

Case (i): From all the instances with as > 1 the expert marked as instances to be

further studied:

∙ 66 instances with asi = 2 (36 %)

∙ 4 instances with asi = 3 (33 %)

Case (ii): From all the instances with as > 2 the expert marked as instances to be

further studied:

∙ 32 instances with asi = 3 (59 %)

∙ 4 instances with asi = 4 (67 %)

∙ 1 instance with asi = 5 (100 %)

These results indicate that:

(1) Case (i) has percentages lower than 50% while case (ii) has percentages larger

than 50%.

(2) Case (ii) has larger percentages of suspicious instances among the detected

anomalous instances.

(3) In case (ii), the percentages of suspicious instances increases for larger AS

values.

This indicates that metric defined in case (ii) is more trustworthy than case (i);

for this reason it was chosen as final metric to set the anomaly score of the instances.
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Table 4 Results GP

classification only with

labelled data

GP

# (%)
Training TP 85 85.86

FN 14 14.14

TN 102 75.56

FP 33 24.44

Table 5 Application of

resulting GP model to rest of

data (unlabelled)

GP

(%)
Suspicious 95.27

Non-suspicious 4.73

8.3 Application of Classification Methods
to Semi-supervised Data

In order to apply the classification methods described in Sect. 6.1 in the two approa-

ches described in Sect. 7, instances labelled by the expert were considered as known

classification information for the training phase. Combined information from metrics

(i) and (ii) results in 99 instances marked as suspicious (Ss) and 135 instances marked

as non-suspicious (Sns), since some of the instances where present in both cases.

For Case A the whole dark set (234 labelled instances) was used for training

and the classification model obtained was then tested using the grey set (remaining

unlabelled data, 638,653 instances).

For Case B the data considered for training was two thirds of the total set (425,925

instances), including two thirds of the labelled suspicious data (66 instances). The

unlabelled data included for training and testing have been randomly selected.

Genetic Programming
First of all, GP was applied to only the dark set, or labelled data (Case A). Results

from the best run can be seen in Table 4. Results of the application of the resulting

model to the rest of data (grey set) can be seen in Table 5.

The results of the training phase with the labelled data are not very good, since

many suspicious and non-suspicious instances are not well classified. This happened

even though many configurations were adopted, all them with similar results. Longer

run times also reached similar results. Further, the large number of potentially sus-

picious instances “identified” in the test phase, indicates that the results obtained

are not applicable to the rest of the set, since not such a large number of suspicious

instances can be present in a normal web log session like the one considered.

Considering hypothesis of Case B, the classes are quite unbalanced. This is an

important property of the APT detection problem, since attacks only represent a

small set of the total data. For this reason, options like data undersampling or over-

sampling would distortion this property and were not appropriate for this application



238 F. Barceló-Rico et al.

Table 6 Results from GP classification in Case B

GP

8k

Training TP 54 81.82 %

FN 12 18.18 %

TN 7791 97.39 %

FP 209 2.61 %

Testing TP 28 84.85 %

FN 5 15.15 %

TN – 97.36 %

FP 16683 2.64 %

[42]. Instead, the fitness function was modified to include weights and take into

account the larger importance of classifying well the minority class, following [42].

The experiments carried out applying GP were done using a reduced dataset,

due to the computational expense of using the whole training dataset. The reduced

set consisted of two thirds of the dark set (labelled) and 8000 (8k) instances from

the grey set (unlabelled data). Several experiments were carried out, considering

different weights for the minority class. The best results can be seen in Table 6.

As has been pointed out by, e.g. [43], GP has scalability issues. Simulation with

a dataset of this size was computationally expensive and experiments with a larger

dataset were considered unfeasible.

CART
CART algorithm is non-parametric, which eased up its application. For Case A the

resulting tree had 33 nodes and a depth of 8. Classification from this tree is shown

in Table 7. Its application to the rest of data is shown in Table 8.

Table 7 Results of CART

classification with labelled

data only

CART

# (%)
Training TP 93 93.94

FN 6 6.06

TN 129 95.56

FP 6 4.44

Table 8 Application of

resulting CART classifier to

rest of data (unlabelled)

CART

# (%)
Suspicious 23.85

Non-suspicious 76.15
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Table 9 Results from CART classification in Case B

CART

All 12k

Training TP 59 89.39 % 60 90.91 %

FN 7 10.61 % 6 9.09 %

TN – 99.998 % – 99.98 %

FP 10 0.002 % 2 0.02 %

Testing TP 19 57.58 % 27 81.82 %

FN 14 42.42 % 6 18.18 %

TN – 99.996 % – 99.87 %

FP 9 0.004 % 844 0.13 %

Table 10 Results of random

forests classification only

with labelled data

RF

# (%)
Training TP 97 97.98

FN 2 2.02

TN 130 96.3

FP 5 3.7

The high number of suspicious instances detected in the set of unlabelled data is

too large to indicate real suspicious instances, since APTs are infrequent. In addition,

the size of the set makes it unfeasible for an expert to evaluate all its instances. This

indicates that this reduced set does not contain enough information on its own in

order to represent the model via a single tree using the CART method.

To train the method with more information we considered the hypothesis of Case
B. When CART algorithm is trained with two thirds of the data the training results are

very good, yet the number of False Negatives (FN) of the test phase is too large, see

Table 9. Several experiments modifying the size of the training set were performed,

see Table 9 for best results. When the number of training instances is reduced, the

obtained tree is more robust. The resulting tree had 77 nodes and depth 12.

The percentage of FN is only 0.13% i.e. 844 instances. This small set size makes

it feasible for an expert to evaluate all instances and check the quality of the results.

Random Forests
For the application of Random Forests (RF) to the Case A, several parameters had

to be tuned. After running a few experiments, the parameters with best results were

adopted. Results can be seen in Table 10. Results of the application of this classifi-

cation model to the rest of the set (unlabelled) can be seen in Table 11.

These results show that the identification of the labelled data is quite good, yet

the extrapolation of the classification model to the unlabelled data results in a very

large amount of suspicious instances. This indicates that the model obtained with

the small set of known data does not offer useful results with the remaining set.
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Table 11 Application of the

resulting RF model to the

remaining data (unlabelled)

RF

# (%)
Suspicious 87.19

Non-suspicious 12.81

For application of Case B it was not possible to do it with the full identification

set (2/3 of the total set) since there were memory issues with the operations. For

this reason, several experiments have been run with different sizes of the training

set. First of all an experiment with same “best size” of the CART experiments were

performed (12k instances). This experiment did not gave good results, as can be seen

in Table 12. Different sizes were checked. Best results are also shown in Table 12.

Support Vector Machines
For this method, given that the resulting dividing hyperplane is only computed in the

projection space, the inputs were normalized in the interval [0,1] to give all them a

priori the same importance.

Results of application of SVM under approach of Case A is shown in Table 13,

while the results of applying the resulting classification model to the rest of the set

is shown in Table 14.

Table 12 Results from RF classification in Case B

RF

12k 100k

Training TP 58 87.87 % 58 87.87 %

FN 8 12.12 % 8 12.12 %

TN – 98.22 % – 98.95 %

FP 214 1.78 % 1052 1.05 %

Testing TP 18 54.55 % 12 36.36 %

FN 15 45.45 % 21 63.63 %

TN – 97.65 % – 98.92 %

FP 14714 2.35 % 5816 1.08 %

Table 13 Results SVM

classification only with

labelled data

SVM

# (%)
Training TP 88 88.89

FN 11 11.11

TN 133 98.52

FP 2 1.48
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Table 14 Application of

resulting SVM model to rest

of data (unlabelled)

SVM

# (%)
Suspicious 43.65

Non-suspicious 56.35

These results show that with this method a still large number of potentially

suspicious instances is found. Like for CART and RF, this amount is too large to

represent real APTs and also for an expert to analyse all them.

For the training phase of SVM in Case B there were memory issues that do not

allow the training with the full training set (2/3 of the total set). A reduced set was

used for training then. The maximum size allowed for operations is 8k unlabelled

instances plus two thirds of the suspicious ones (total of 8066 instances). Results of

the training phase and the testing with the remaining data can be seen in Table 15.

Tables 16 and 17 show the best results (percentages) in cases A and B respectively

for all the classification methods applied.

Comparison
In order to compare all methods tested, a number of runs were carried out so as to

minimize the effects of the randomly selected variables, given that some of these

methods are stochastic. For CART, RF and SVM methods, the configurations with

best results were run 30 times. GP had a a different treatment, since running time

Table 15 Results SVM application

SVM

Training TP 59 89.39 %

FN 7 10.61 %

TN 8000 100 %

FP 0 0 %

Testing TP 25 75.76 %

FN 8 24.24 %

TN – 99.86 %

FP 902 0.14 %

Table 16 Case A: classification results only with labelled data for different methods

GP (%) CART (%) RF (%) SVM (%)

Training TP 85.86 93.94 97.98 88.89

FN 14 6.06 2.02 11.11

TN 75.56 95.56 96.3 98.52

FP 24.44 4.44 3.7 1.48

Testing S 95.27 23.85 87.19 43.65

NS 4.73 76.15 12.81 56.35
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Table 17 Case B: classification results for unlabelled hypothesis for different methods

GP (%) CART (%) RF (%) SVM (%)

Training TP 81.82 90.91 87.87 89.39

FN 18.18 9.09 12.12 10.61

TN 97.39 99.98 98.22 100

FP 2.61 0.02 1.78 0

Testing TP 84.85 81.82 54.55 75.76

FN 15.15 18.18 45.45 24.24

TN 97.36 99.87 97.65 99.86

FP 2.64 0.13 2.35 0.14

Table 18 Mean running time of the different configurations

GP CART RF SVM

2k 8k All 12k 100k 12k 4k 8k

Training 35⋅103 s 183⋅103 s 185 s 186 s 1180 s 765 s 370 s 810 s

Testing 101 s 93 s 0.22 s 3.1 s 42 s 48 s 223 s 324 s

were much larger (see Table 18). To make the total set of runs feasible run time was

set to one hour. The training set consisted of 1k random instances and 66 suspicions

instances, a population of 50 individuals and 300 iterations.

Two errors were considered for statistical comparison of the four methods: e1
the percentage of false negative instances and e2 the percentage of false positive

instances, both obtained during the testing phase. Since we can not assume that errors

have normal distribution, we chose the Kruskal-Wallis statistical test, a non paramet-

ric statistic method.

Both for e1 and e2 the probability that the results from the different methods

applied follow the same distribution is equal to 0 (P = 0), meaning that the applied

methods are statistically different.
Thus, since the methods do not follow the same distribution, two parameters were

used to compare them: (1) run time and (2) distribution of errors. Run time is impor-

tant to check the feasibility of each method to be applied online. On the other hand,

errors distribution is important to check the repeatability of each method and con-

figuration.

Mean run time of every configuration can be seen in Table 18. It can be seen that

CART is the fastest method while GP is the slowest one. However, CART, RF and

SVM all have a fast enough run time that make it feasible to run many experiments

and these methods could be a good option for an online application.

The error distribution of the 30 runs of each case is shown in Figs. 4 and 5 for

the percentages of False Negative and False Positive instances, both for the testing

phase.
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Fig. 4 Representation of error distribution for the percentage of False Negative instances FN in

the testing phase. The order is (1) GP; (2) CART; (3) RF and (4) SVM

In the case of e1 (FN), it is seen that CART and SVM have the lowest errors,

which was already seen in the previous results. In addition, in this plot it can also be

seen that these are the methods with larger repeatability (smaller dispersion of the

error). In this case GP has smaller error than RF and both have a similar dispersion

of the error.

In the case of e2 (FP) results are similar to the case of e1: CART and SVM are

the methods with smaller error and smaller dispersion. For this error GP has a large

error with an even larger dispersion among the runs. RF has a much smaller error

than GP and a small dispersion, but its results are worse than those of CART and

SVM.

9 Discussion

In this work we proposed a new Anomaly Score metric for http log instances, where

the main characteristics that can indicate that an instance is anomalous are considered

together. The expert indicated the interesting features to be considered in this metric.
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Fig. 5 Representation of error distribution for the percentage of False Positive instances FP in the

testing phase. The order is (1) GP; (2) CART; (3) RF and (4) SVM

With this metric, the set of data containing a session of http requests was fil-

tered and the most anomalous instances were selected. This subset (very reduced

from original one) was studied by the expert who indicated the instances considered

suspicious, which are the real aim of the detection.

With this subset of labelled instances two approaches for the design of classifi-

cation methods were designed: considering only the labelled data; and considering

only suspicious data and adopting the hypothesis that the rest are non-suspicious.
To these two scenarios classification is performed with several techniques: genetic

programming (GP), single tree classification (CART), random forests (RF) and sup-
port vector machines (SVM).

The application of GP showed unpromising results for case A and the extrapola-

tion of the model found to the rest of the data, with 95.27 % of suspicious instances

found. In case B, GP performs much better than in case A, having a smaller number

of FP (2.64 %) and a larger percentage of TP in the test phase. This percentage could

represent real suspicious instances yet the total number of resulting instances is too

large to be analysed by an expert.
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The CART method gives good results in the training phase, but when the tree

found was applied to the rest of unlabelled data the number of “potentially” suspi-

cious instances found was too large to represent real suspicious instances. In case B,

several configurations are checked, considering different sizes of the training data.

In case all data of the training set was considered (2/3 of total data), the results of the

training phase are quite good. Yet, in the testing phase there are a 42 % of FN and a

0.004 % of FP. Thus, this configuration is good at avoiding FP, yet it is not good at

detecting the TP.

The other configuration was to consider a subset for training (only 12k instances).

With this configuration, the method reduces the percentage of FN to 18 % but

increases the percentage of FP to 0.13 %. It can be seen that the different config-

urations have different performance and that getting better in one direction implies

getting worse in another one. It remains for the expert to determine which part is more

important, but we would suggest that detecting the known suspicious instances even

at the price of detecting more FP instances is better in these cases. It is important to

consider that even though in the second case the percentage of FP is larger, it still

represents a small subset that can be analysed by the expert.

The application of RF shows that the extrapolation of the classification model

trained with only labelled data gives quite bad results, since the majority of instances

(87 %) are classified as suspicious. This indicates that this model does not represent

the essence of the small set of instances labelled as suspicious.

When RF was applied in case B, something similar to the CART results happens:

the larger the training set the lower the percentage of FN detected in testing phase.

In this case, results both for small set for training (12k) and for a set lager (100k)

give very high percentages of FN: 45 % and 63 % respectively. In addition to this

fact, percentages of FP are larger than in the case of CART, reaching 2.35 % which

represents a very large number of instances to be analysed by the expert.

RF have proved better than single tree like CART in many applications [39].

Nonetheless, this system is quite complex and this makes that even when both algo-

rithms have very similar results in the training phase, the simpler one is more robust

for the testing phase.

The final classification method checked was SVM. This method gives very similar

results to CART. The extrapolation of the model of case A does not lead to good

results in the unlabelled data. Meanwhile, the results of the scenario of case B gives

good results both from training and testing, reaching a 76 % of TP detected and only

a 0.14 % of FP in the testing set.

Since results from CART and SVM are similar and both result in subsets of

potentially-suspicious instances small enough to be analysed by the expert, we have

proceed in this line. An expert analysed both sets of new suspicious instances found

and marked the ones considered in this way. In the subset resulting from CART

method, the expert detected 66.35 % of real-suspicious instances, while in the subset

of SMV method the percentage of real-suspicious was 66.19 %. This analysis indi-

cates that still both methods are comparable in terms of performance once the results

are analysed.
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Considering the case A, it was seen that none of the methods applied had trans-

latable results to the rest of the set. Training results were quite good in all cases

(minimum of 80 % of well classified data), yet the small number of instances used

for training phase (only a 0.037 % of the set) made the models obtained not valid for

the rest of the set with a lot of information not included in the training set.

10 Conclusion and Future Work

APTs are advanced attacks against governments or large companies. For this reason

they are well designed and they are difficult to detect. At the same time, it is interest-

ing in cybersecurity to detect them or at least have a prevention method to minimize

their risks.

Several classification algorithm have been applied to the detection of suspicious

instances for identifying APT attacks. Two main scenarios have been checked: con-

sidering only a small set of labelled data (case A) and considering only a few

known suspicious instances with a larger set of supposedly non-suspicious instances

(case B).

In case A all methods had similar results. However, in case B it was shown that

SVM and CART method outperformed the other two. Considering the complexity

of the problem these two method obtained quite good numbers. The negative side of

this experiments is that we could not make RF and GP methods perform better. The

worse results from RF are probably due to the tuning of the algorithm parameters

while GP issues might fall on the scalability issues of this method.

Results from both cases considered (A and B) show that hypothesis of case A that

the small labelled set is representative of the total set is not valid, since the results

point out many instances as suspicious and that large number is not realistic that

happens in a real set.

On the other hand, hypothesis taken in case B could be more realistic, since most

of the unlabelled instances are non-suspicious. Yet, with this hypothesis, some sus-

picious instances of the unlabelled set can be considered as non-suspicious for the

training phase, biasing this the results obtained.

This makes it obvious that a better treatment of the unlabelled data could improve

the results. An option is to use a recursive labelling method, considering the results

obtained from a method and increasing the labelled set until the identified instances

remain the same.

Another approach in this line could be to use rules defined by the expert to get

the initial set of suspicious instances, and then use this set for the training phase and

check the results.

In a different line, a future work could be to improve the used methods to adjust

them to the problem considered. GP could be used if the evaluation of the fitness

function is sped-up. For RF a finer tuning of the many parameters of the method

could be done to refine the results. Yet, both of these improvements are time requiring

and a hard work. For this reason, they remain for the future.
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Experiments with other configurations or other methods are left for future work.

An option could be a method considering a combination of the proposed methods. It

is important to remark that the large number of instances makes it unfeasible to label

all of them by a human expert. Therefore, the framework for the studies is a semi-

supervised scenario. In this type of scenarios one option is to train several methods

and obtain the conclusions from the results of all the methods together.

An option for overcoming the large amounts of data with which the methods have

to deal. A method, already explored by some authors in other lines, is to work first

with clusters of data or sets of logs, find anomalies within sets, which would mean

that those sets contain anomalous instances, and then proceed to a further study

of only anomalous sets. These method, as general idea, has many advantages, yet,

further work is to be done to apply it to the currently considered scenario.
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A Benchmarking Study on Stream
Network Traffic Analysis Using
Active Learning

Jillian Morgan, A. Nur Zincir-Heywood and John T. Jacobs

Abstract Analyzing network activity as it occurs is an important task since it
allows for the prevention of malicious activity on the host system and the network.
In this work, we investigate the performance of different budgeting strategies, as
well as an adaptive Artificial Neural Network to analyze the activities on streaming
network traffic. Our results show that all of our budgeting strategies (with the
exception of the fixed uncertainty strategy) are suitable candidates for classification
of streaming network traffic where some of the state-of-the-art classifiers achieved
accuracies in the range of 90 % or higher.

Keywords Streaming data ⋅ Active learning ⋅ Computational intelligence ⋅
Network traffic analysis

1 Introduction

Malicious network activity, such as viruses, denial-of-service attacks, and botnets,
is a growing concern for businesses and the general public alike. Detection of
malicious network activity as it occurs is important since it can assist the network
management teams in preventing further damage on their systems and networks.
Therefore, it is of interest to classify network activity as it is being streamed. With
the use of computational intelligence techniques gaining popularity, many
researchers propose the use of different learning techniques as well as quantifiers in
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order to accurately analyze and classify the network traffic in streaming environ-
ments [1, 2] in order to detect malicious activity [3–5].

Even when using a machine learning algorithm, classification within a streaming
environment poses many challenges. One of the main challenges is that one cannot
have access to all available data in a streaming scenario at once, as in the case of
non-streaming environments such as offline streaming scenarios. Thus, classifica-
tion of streaming data can be quite costly in terms of resources as datasets can grow
to be quite large. Furthermore, because a complete set of data cannot be viewed at
once it is difficult to determine if given data instance attributes (features) are rep-
resentative of others in the same class. Additionally, network traffic patterns can
slowly change over time or even instantaneously. Indeed, such problems are also
exhibited in other streamed datasets. To this end, active learning has often been
implemented to alleviate these issues [6, 7]. Active learning is the task of selecting a
data instance on which to query the true classification label and retrain the learning
algorithm. Selection of labels is not a simple task as one must consider how many
and which labels will represent the entire dataset and allow for the most accurate
prediction of future data instances.

Many researchers in the literature [4, 6–8] determine the success of classification
by measuring the overall accuracy (the number of successful classifications over the
total amount of classifications) of the chosen classification algorithm and active
learning strategy. This is not necessarily the best solution in determining classifi-
cation success as it does not account for class distribution. If a dataset has an
unbalanced distribution of classes then the resulting prediction accuracy may not be
representative of the actual performance of the given classification strategy. Thus, a
performance metric that factors class distribution into account is necessary.

In this work we aim to benchmark the performance of previously existing active
learning and query budgeting strategies as well as an adaptive Artificial Neural
Network approach when performed on network traffic flows, specifically in order to
detect malicious network activity, such as botnets. In evaluating the performance of
these strategies, we include two performance measures; (i) prequential accuracy and
(ii) prequential detection rate.

The remainder of our chapter is organized by discussing related work in Sect. 2.
Detailing the methodology employed in this research in Sect. 3. Presenting and
discussing the evaluations and results in Sect. 4. Finally, we draw our conclusions
and discuss the future work in Sect. 5.

2 Related Work

There are many works on the detection of malicious activity within network traffic,
classification of streaming data, and active learning, as separate topics. However, to
the best of our knowledge there are no works that combine all of these to evaluate
and analyze their performances on the detection of malicious behaviors on network
traffic. It should be noted that, some techniques have been proposed that utilize a
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subset of these ideas. The works most relevant to our study are described in detail
below. In this case, the related works are discussed under three categories; active
learning, streaming data classification, and detection of malicious activity among
network traffic.

2.1 Active Learning

Wang et al. [1] proposes an active learning strategy that utilizes computational
intelligence in the form of fuzzy rough sets combined with a support vector machine
(SVM). This strategy is performed on both binary and multiclass benchmarking
datasets where the performance is evaluated by quantifying accuracy, time costs for
labeling new examples from the data, and paired Wilcoxon rank-sum tests. The
results of this strategy are compared to other existing strategies such as Random
Sampling, SVM Active, and QBC. The researchers conclude that this new strategy
is generally successful when compared to other tested strategies in terms of accu-
racy and the paired Wilcoxin rank-sum tests. However, this comes at a higher time
cost as labeling instances takes longer when using this strategy.

Zliobaite et al. [6], also endeavor to produce new active learning strategies.
However, the active learning strategies they designed were created with the
intention of being used on drifting streaming data. These methods focus on
retraining a learning algorithm when confidence of successful prediction of an
entity falls below a fixed threshold and randomly selecting entities. The selection of
entities to train on was limited by a set budget for querying new labels on which to
train the model. The strategies that were developed were tested on a series of
publicly available big data sets, which were categorized as either being a prediction
or textual dataset. Prediction datasets required a prediction from the classifier and
textual datasets required a recommendation from the classifier. Performance of the
active learning strategies was evaluated by applying these strategies to the Naive
Bayes algorithm and the Hoeffding Tree algorithm. Accuracy of these techniques
using different datasets [6] and labeling budgets (10 and 100 %) was measured [6].
The researchers concluded that the strategies are effective for reducing computation
costs while maintaining performance.

Like the previous researchers, Zhu et al. [7] proposed another active learning
strategy for the implementation of streamed datasets. The strategy they designed
features a weighted-classifier ensemble framework with an emphasis on reducing
variance. The researchers reported that by decreasing the classifier ensemble vari-
ance, the error rate of the classifier ensemble would decrease as well. Thus, a
minimum-variance principle was introduced whereas labels were queried for
instances that produced a high ensemble variance. The combination of a
weighted-classifier ensemble and a minimum-variance principle were employed
over three publically available prediction datasets. Performance of this strategy was
evaluated by determining the accuracy and runtime when using this strategy on
various data chunks and data chunk sizes. These results were then compared to the
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results of simpler solutions. The researchers concluded that their strategy was
effective at dealing with multiclass problems in a streaming environment.

2.2 Streaming Data Classification

Dalal et al. [9] demonstrated various data mining prediction techniques used to
predict user-perceived streamed media quality. The researchers proposed the use of a
nearest neighbor algorithm, in which unlabelled instances in a stream are given the
label (i.e., the normalized user-perceived quality rating) of the instance in the
training set of the instance within the closest distance. The researchers tested this
algorithm using two different types of distance metrics; summary statistics and
dynamic time warping [9]. The algorithm was employed over three different data
streams; a commercial, a movie trailer, and a news segment. The authors measured
performance using hit rates, that is, the percentage of predictions within 0.8 standard
deviations of the normalized user quality rating for the given stream. The researchers
concluded that the chosen techniques performed effectively. They expanded upon
their work further [10] by performing similar tests in real time using Transmission
Control Protocol (TCP) based streams rather than offline using User Datagram
Protocol (UDP) based streams. They conclude that the performance accuracy was
hopeful (falling between 75 to 87 % accuracy) but could be improved further.

Moreover, Cunha et al. [11] evaluated the performance of Naive Bayes and C4.5
Decision Trees algorithms in classifying different failure states when streaming
video data. Specifically, the researchers wanted to be able to predict whether a
server failure was a performance anomaly or was caused by overloading produced
by clients. Performance was measured by; True Positive Rate, False Positive Rate,
Precision, Recall, F-measure, ROC Area, and Root Mean Squared Error. The
researchers concluded that both algorithms were good but C4.5 performed slightly
better than Naive Bayes.

Vahdat et al. [2] designed and developed a framework for employing genetic
programming in order to perform classification on streamed data while maintaining
a labeling budget. They employed artificially generated, as well as publically
available, datasets. They measured the performance not only by the aforementioned
performance metrics but also by prequential accuracy. They conclude that genetic
programming with labeling budgets is an effective method for making classifica-
tions on streaming data.

2.3 Detection of Malicious Behavior Among
Network Traffic

The use of flow-based network traffic in detecting malicious activity among net-
work traffic appears to be quite popular within existing literature. In the work of
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Stevanovic et al.’s [4] study, network traffic was converted into network flows in
which to be classified. To evaluate the validity of using such a technique to detect
malicious activity, a number of classifiers were tested; Naive Bayes, Bayesian
Network, Logistic Regression, Artificial Neural Networks, Support Vector
Machines with a linear kernel, C4.5 decision tree, Random Tree, and Random
Forest. The proposed technique was implemented on a combination of datasets
featuring traffic from Storm and Waledec botnets and normal traffic. In order to
measure performance, they employed precision, recall, F-measure, and a correlation
coefficient. Additionally, they measured the training and classification time when
using each classifier. The researchers concluded that C4.5 Decision Tree, Random
Tree and Random Forest were the most successful algorithms for their task.

Similarly, Nogueira et al. [5] proposed the use of a flow based system in order to
detect botnet activity among network traffic. They employed a Neural Network
model in conjunction with a flow-based system. However, the employed system
also features a user interface to visualize illicit activity that was detected for further
action by an administrator. In identifying botnet activity a feed-forward propagation
neural network with three layers was implemented. Performance was evaluated by
testing the framework on traffic generated by known safe applications such as
Skype. Malicious activity was artificially generated. The authors concluded that the
detection of the botnet activity using their methodology was quite successful.

Hsiao et al. [8] also proposed the use of flow-based network traffic for the
purpose of detecting malicious behavior amongst said traffic. Flows were generated
from network flows collected by the researchers. What differentiates this study from
others is that the authors varied the number of flow attributes and which flow
attributes were presented between experiments. Thus, they created four sets of
attributes to be tested; NetFlow variables, Temporal Variables, Spatial Variables,
and a combination of Temporal and Spatial variables. In these experiments, the
classification algorithms chosen to employ on the flows were as follows: Naïve
Bayes, Decision Tree and SVM algorithms. The results showed that using a
combination of temporal and spatial attributes provided the best prediction
accuracy.

On the other hand, Saad et al. [3] implement a slightly different approach to
detecting malicious botnet behavior than the aforementioned studies that share the
same goal. They used not only flow based attributes but also used host-based
attributes (i.e., attributes that are exhibited in communications between hosts). They
employed the following classification algorithms: Nearest Neighbor, Linear Sup-
port Vector Machine, Artificial Neural Network, Gaussian-Based Classifier, and
Naïve Bayes. With these methods, the researchers aimed to satisfy three
botnet-detection requirements; adaptability, novelty detection, and early detection.
The authors used a combination of three datasets for their experiments. The first two
datasets were generated by a botnet effected machine where all packets incoming
and outgoing were captured. Each machine was affected with a different botnet;
Storm or Walodec. The third dataset was made up of normal traffic. These datasets
were then combined into one larger dataset in order to simulate a real world
scenario. To determine the performance of the selected methodology the researchers
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adopted four performance metrics: training time, classification time, accuracy, and
classification error. The researchers concluded that the selected methodology did
not sufficiently satisfy the three stated requirements for effectively detecting botnets.

In our previous work [12], we proposed a new framework to detect HTTP-based
botnet activity based on botnet behavior analysis. To achieve this, we employed
machine learning algorithms on flow-based network traffic utilizing NetFlow (via
Softflowd). The proposed botnet analysis system was implemented by employing
two diffent learning algorithms, namely C4.5 and Naïve Bayes. Our results showed
that the C4.5 learning algorithm-based classifier obtained very promising perfor-
mance on detecting HTTP-based botnet activity. However, that work did not
employ any streaming or budgeting strategies.

On the other hand, in this paper, we aim to apply and benchmark existing active
learning strategies on network streamed traffic in order to make classification pre-
dictions for malicious network behavior. This approach differs from the afore-
mentioned related work as the previous work has not combined active learning
strategies with the streaming data classification on network traffic. In this paper, we
employ such an approach, specifically to detect botnet activities under a streaming
scenario. We also aim to compare the performance of these strategies with an
adaptive Artificial Neural Network approach and determine which is more effective
in performing the desired task.

Last but not least, we also introduce the use of performance metrics; prequential
accuracy and prequential detection rate. Prequential detection rate has not been used
to measure performance under Massive Online Analysis (MOA) scenarios. Pre-
quential detection rate is a useful metric when unbalanced distributions of classes
are present in a given dataset, because unlike accuracy, prequential detection rate
can reflect the difference of correctly classifying data instances of the smaller
classes in the data. To give an example, if a data set has 99 % of class-normal and
1 % class-malicious, by classifying everything as class-normal, a classifier can reach
100 % accuracy! Even though false positive rates may show the picture a bit clearer,
in streaming environments this kind of metric can be ineffective and cannot measure
the performance correctly. This is important to consider as looking at accuracy
alone can skew how we perceive the performance of our algorithms on an unbal-
anced dataset. We also analyze the prequential values for both accuracy and
detection rate as this allows for us to see how these values change over time.

3 Methodology

In this research, our goal is to utilize the algorithms as discussed in [6], and
determine the success of these algorithms when classifying streamed network traffic
data for detecting malicious botnet behavior. In order to achieve this, we enacted
three major steps: data collection, implementation of learning algorithms in con-
junction with various active learning budgeting strategies, and performance
analysis.
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3.1 Datasets and Features Employed

In this research, four datasets, Table 1, are employed in our evaluations. These are:

(1) KDD Cup 1999: The KDD Cup 1999 dataset is a simple to classify dataset
that contains malicious and normal network traffic flows, where each instance
to be classified is a connection record [13]. The malicious traffic is broken into
four types; denial of service, unauthorized remote access, unauthorized access
to root commands, and probing. For our purposes, we only aimed to detect
whether or not a connection is malicious, thus, we combined the four attack
types into one class. Even though, it is an old dataset, it is chosen to provide us
with a baseline and reference point for our other results. This dataset is suitable
for this purpose as it is one of the first datasets that was made publically
available for benchmarking computational intelligence techniques for network
security purposes.

(2) NIMS1: The NIMS1 dataset can be retrieved from the Network Information
Management and Security (NIMS) [14]. The dataset is a collection of network
traffic flows. Unlike the other datasets, where we aim to detect malicious
behavior among network traffic, with this dataset, we aim to classify appli-
cation type. Thus, this dataset is chosen to provide us a comparison of results
when aiming to classify different applications on streaming network traffic as
opposed to making classifications between normal and malicious network
behaviors.

(3) ISOT: The ISOT (Information Security and Object Technology) dataset is a
collection of publically available malicious (different botnets) and normal
datasets [15]. These traffic datasets were generated by using a series of
machines with different MAC addresses and IP addresses. The traffic gener-
ated was captured by the open source packet capturing tool, Wireshark,1 in
order to combine the smaller datasets into the larger ISOT dataset. Thus, we
employed this dataset to predict whether or not a connection was malicious.

(4) Zeus versus Alexa: This dataset is generated by the NIMS Lab to be used for
botnet detection purposes. To this end, we generated a traffic dataset that
exhibited an approximate balance of malicious and normal network traffic. In
order to generate this dataset, lists of valid malicious and non-malicious

Table 1 Summary of the
datasets

Instances Attributes Classes

KDD 99 494 021 42 2
ISOT 2 084 216 16 2
NIMS 713 851 23 11
Zeus versus Alexa 11 468 16 2

1Wireshark; https://www.wireshark.org/.
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domain names were obtained [12]. We obtained the list of non-malicious
(normal) domain names from Alexa, a website that ranks the top 500 websites
on the Internet according to page views [16]. Because the domains listed are
some of the most popular domains on the Internet, it is fair to assume that the
traffic generated by accessing these domains is representative of normal,
everyday, network traffic. For the malicious domains, we obtained a list of
domain names that are known to belong to the Zeus botnet [17, 18]. To
simulate web traffic to these domains, a script was written to randomly connect
to either a normal or malicious domain using the wget command in Linux.
These steps are detailed in Fig. 1.

Once the above datasets were obtained, we replayed the traffic on our test bed
network to emulate a real-life scenario of streaming traffic. The streaming traffic is
then converted to flows as the traffic runs and then, the network flows are input to the
streaming classifiers. A network traffic flow is a sequence of network traffic packets
with 5-tuple information over a specific period defined by the Internet Engineering
Task Force [19]. This 5-tuple information includes; the source/destination IP
addresses, source/destination port numbers and the protocol. Usually, in real life, the
router (such as a Cisco router with NetFlow) will do this on the flow. To emulate
such a scenario, we employed the following open source tools to convert the packets
into flows:

• Softflowd: Softflowd2 is an open source tool that accepts network packets and
exports them into NetFlow3

flows.
• Nfcapd: Nfcapd4 captures the exported flows and stores them for further pro-

cessing. The flow data that Nfcapd records are not in a human readable format,
thus, further processing is required.

• Nfdump: NfDump5 takes the recorded flow data and converts it into a human
readable format (Table 1).

Fig. 1 Script functionality for generating web traffic

2Softflowd: http://www.mindrot.org/projects/softflowd/.
3Netflow: http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html.
4Nfcapd: http://nfdump.sourceforge.net/.
5NfDump: http://nfdump.sourceforge.net/.
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3.2 Learning Algorithms and Budgeting Strategies

As mentioned previously, the goal of our study is to benchmark the performance of
existing active learning strategies on streamed network traffic flows. Thus, in this
section we present the data stream mining tools, the budgeting strategies, and
performance metrics we employed in our evaluations.

3.2.1 Massive Online Analysis

Massive Online Analysis (MOA6) is an open source tool for data stream mining
[20]. It has proved very useful for our study as it is able to simulate a data stream
with a provided input. Furthermore, MOA provides users the ability to implement
the use of various machine learning algorithms and active learning strategies on the
data as it is being streamed. Additionally, MOA includes an Application Pro-
gramming Interface (API) suite that allows for users to create and modify the
functionality of existing code to suit their own evaluation needs.

3.2.2 Labels, Budgeting, and Active Learning

In a real-world streaming network traffic environment, it is assumed that the amount
of incoming data is infinite and dynamic. This means that the data attributes and
how they relate to one another can change over time either slowly (concept drift) or
suddenly (concept shift). Thus it can be assumed that it is of more use to train a
classifier on incoming data than to use a pre-existing model. In this scenario, a
classifier predicts the class of an instance based on the attributes of instances
received prior. Once the prediction has been made, the classifier will query the
actual class from a human provided label. The classifier will then train on the
current instance with the intention of increasing prediction accuracy for future
oncoming instances. In a network streaming environment where one aims to
classify between normal or malicious behavior this would mean that for every flow
that arrived at the network the classifier would have to be provided with its true
classification label (i.e., whether the flow was normal or malicious network traffic
behavior). As mentioned previously, attempting to perform classification tasks on
such a large dataset can be quite costly in terms of human effort (providing true
classification labels) time efficiency and hardware required to handle such large
datasets. Thus, the concept of budgeting is introduced. Budgeting involves limiting
the amount of queries that can be made to retrieve the true classification label of an
instance in a data stream [6]. Active learning incorporates this idea of budgeting but
adds a learning aspect in which the system makes an educated guess on which
classifications labels are most useful to query.

6MOA: http://moa.cms.waikato.ac.nz/.
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3.2.3 Budgeting and Active Learning Strategies

The budgeting strategies that were chosen for our benchmarking study were chosen
based on the study performed in [6]. We chose to implement the same strategies for
a multitude of reasons. Firstly, work in [6] focuses on developing strategies for
streams with drifts, which is relevant for our study as most network streamed data
will exhibit drifts. Secondly, using the same active learning strategies gives us an
opportunity to compare how the strategies perform on streamed network traffic
datasets as compared to the general prediction and textual datasets used within
Zliobaite et al.’s study [6]. Because we will be comparing our results with the
results of [6], we will also be using budgets of 10 and 100 %. The active learning
strategies that were used in our study are described below.

• Random: This strategy randomly chooses data instances to query for the true
label [6]. No active learning occurs with this simple budgeting strategy, so it
provides an effective baseline for our evaluations.

• Fixed Uncertainty: Queries the true labels of the data instances with a confi-
dence below a given threshold [6].

• Variable Uncertainty: Queries the true labels of the data instances with the
lowest confidence within a variable time interval [6].

• Random Variable Uncertainty: This is a combination of the Random and
Fixed Uncertainty budgeting strategies [6].

• Select Sampling: Queries the true labels randomly with a changing probability
bias [21].

It is important to note that if a query for a true label is necessary then the training
model will be trained on the instance that was queried.

3.2.4 Learning Algorithms

For our study, we selected three different algorithms to accompany our chosen
active learning strategies for streaming classification. The algorithms chosen are:
(i) Naïve Bayes, (ii) Hoeffding Tree, and (iii) Adaptive Artificial Neural Networks.

(i) Naïve Bayes
Naive Bayes is a simple probabilistic classifier that is known to perform quite well
considering its simplicity [22]. The classifier makes predictions by assuming that all
attributes of a given instance do not correlate to each other in the probability of a
label being of a given class. Predicting a class using this algorithm is performed by
determining which class (C1, C2…Ck where k is the total number of classes) has the
highest posterior probability based on the input x:

P Cijxð Þ>P Cjjx
� �

for 1≤ j≤ k, j≠ i ð1Þ
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where:

P Cijxð Þ= P Cijxð ÞP Cið Þ
P xð Þ ð2Þ

where P(Ci|x) is the conditional probability and P(Ci) is the prior probability of
class Ci.

(ii) Hoeffding Tree
The Hoeffding Tree algorithm, also known as a Very Fast Decision Tree, is a more
complicated algorithm that incorporates the use of decision trees. It was designed to
be used on large data streams where only a subset of the data that passes through is
used to find the best split for the tree. The number of samples included in this subset
to achieve the desired confidence threshold is determined by a dynamic threshold
called a Hoeffding Bound. Hoeglinger et al. [23] describe the Hoeffding Bound as a
principle that says “with a probability of 1 − δ the true mean of a variable is at least
r ̄− ε” where ε is the desired error and is described as follows:

ε=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ln 1 δ̸ð Þ

2n

r
ð3Þ

where l is the current leaf in the decision tree, R is the range of random variables, r,
n is the number of independent observations made so far, and 1− δ is the error
probability. The described Hoeffding Bound is then used within a decision tree to
determine on which attribute to split. This is done by determining the largest gain
between two attributes. If the largest calculated gain is greater than the ε then the
Hoeffding Tree algorithm states that this attribute is the best attribute to split on
with a probability of 1− δ [23].

(iii) Neural Networks
We also employ a well-known bio-inspired computational intelligence technique in
our evaluations in order to systematically benchmark different learning techniques.
To this end, we specifically use adaptive Artificial Neural Networks. Artificial
Neural Networks (ANNs) are learning algorithms that are designed to imitate
real-world biological neural networks. In our work, we use the Pattern Recognition
network with a Multi-layer Perceptron within Matlab’s7 Neural Network Toolbox.
In order for our network to work properly with streaming data we implement the
use of the adapt function within Matlab. The adapt function, as we used it in our
experiments, allowed for the neural network to adapt as data was being streamed. In
other words, instead of training our network on a training set, the neural network
would be trained on each data instance as the data (traffic) arrives. This means that a
labeling budget of 100 % is used to train on each instance where the true label is
queried.

7Matlab: http://www.mathworks.com/products/matlab/.
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4 Evaluation and Results

For the purpose of evaluating the performance of our chosen machine learning
algorithms and budgeting strategies on network datasets, two performance metrics
are employed [24]: prequential accuracy and prequential detection rate.

Accuracy of a classifier is described as the total number of correct classifications
over all the classification predictions made (n), that is:

Accuracy=
tp

tp+ fn
ð4Þ

where, tp denotes the true positives, and fn denotes the false negatives.
Similarly, prequential accuracy is the total number of correct classifications over

the total number of classifications made at a given point in time, that is;

preqACCt =
t− 1ð Þ× preqAcct− 1 +Ct

t
ð5Þ

where t indicates a given time instant, t − 1 indicates the previous time instant, and
C indicates whether or not the classification at the given time point was successful
(C = 1 if the classification was correct, or C = 0 if the classification was incorrect).

Although accuracy is used to measure the performance in some works [1, 3,
6–10], its use could be problematic. With the use of unbalanced datasets, where the
number of instances belonging to each class is significantly different, using accu-
racy as a measure of classification performance can be misleading. For example, if
we have a dataset that consists of 98 % normal activity and 2 % malicious activity
and the classification model predicts that all activity is normal then we achieve 98 %
prediction accuracy. However, this result does not indicate successful classification,
as no malicious activity was detected. Therefore, we want to use a performance
metric that accounts for class imbalance in addition to false positive rates. Thus, the
use of prequential detection rate is introduced as a performance metric for our
experiments.

In this research, the detection rate at time t is calculated using Eqs. 6 and 7:

DR tð Þ= 1
Q

∑
q=Q

q=1
DRq tð Þ ð6Þ

where:

DRq tð Þ= tpq tð Þ
tpq tð Þ+ fnq tð Þ ð7Þ

where Q is the number of classes, q denotes a particular class, tp indicates true
positives, fn indicates false negatives, and t denotes the given instant in time.
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Similarly, to find the detection rate at any given time, Prequential detection rate is
calculated below Eq. 8, where t denotes the given point in time.

preqDRt =
t− 1ð Þ× preqDRt− 1 +DRt

t
ð8Þ

where:

DR tð Þ= 1
Q

∑
q=Q

q=1
DRq tð Þ ð9Þ

where:

DRq tð Þ= tpq tð Þ
tpq tð Þ+ fnq tð Þ ð10Þ

4.1 Results of Using Learning Algorithms Together
with Budgeting Strategies

Tables 2, 3, 4, and 5 show the overall results for each labeling when using different
budgets with different classification algorithms (Naïve Bayes and Hoeffding Tree)
over the four chosen datasets employed in this research. Classifications predictions
made on the KDD 1999 Cup dataset (Table 2) generally appear to perform the same
regardless of the budget or the learning algorithm chosen, with the exception of
the Hoeffding Tree Algorithm using the Fixed Uncertainty Strategy whereas fewer
correct classifications are made. Furthermore, we see the detection rate make
a dramatic drop from the other detection rates and accuracies presented here.

Table 2 Overall prediction accuracy (ACC) and detection rate (DR) of different budgeting
strategies using KDD 1999 Cup dataset

Performance
metric

Random Fixed
uncertainty

Variable
uncertainty

Random variable
uncertainty

Select
sampling

NB ACC 99.87 94.21 99.73 99.84 99.81
100 % DR 99.70 92.64 99.62 99.79 99.75
NB ACC 99.90 97.05 99.54 99.47 99.47
10 % DR 99.14 97.12 99.37 99.29 99.38
HT ACC 99.90 80.46 98.37 99.77 99.86
100 % DR 99.87 50.38 96.06 99.59 99.81
HT ACC 99.46 81.88 99.36 99.56 99.54
10 % DR 99.15 53.99 98.84 99.38 99.38
NB indicates Naive Bias and HT indicates Hoeffding Tree
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We believe that this is because the differences between the malicious and
non-malicious behaviors are easily separable as discussed in [25].

On the NIMS1 dataset (Table 3), all strategies that use Naïve Bayes as the
classification algorithm perform similarly with each other. The same observation
can be made for the strategies that use the Hoeffding Tree algorithm in terms of
accuracy. We see a significant jump in performance in accuracy when using this
algorithm on this dataset when compared to Naïve Bayes, except when using the
Fixed Uncertainty strategy where we see a large drop in performance in terms of the
detection rate.

On the ISOT dataset (Table 4), we see that Random, Fixed Uncertainty, Random
Variable Uncertainty and Select Sampling perform roughly the same among all
budgets and classification algorithms (excluding the fixed uncertainty strategy used
in conjuction with the Hoeffding Tree algorithm). However, we see some inter-
esting results when using the Variable Uncertainty strategy on this dataset.

Table 3 Overal prediction accuracy (ACC) and detetion rate (DR) and of different budgeting
strategies using NIMS dataset

Performance
metric

Random Fixed
uncertainty

Variable
uncertainty

Random variable
uncertainty

Select
sampling

NB ACC 88.73 87.20 90.41 90.72 90.47
100 % DR 96.42 55.00 96.41 96.20 95.63
NB ACC 82.16 89.73 89.17 91.11 89.31
10 % DR 92.24 49.17 92.79 91.70 92.85
HT ACC 96.38 0.33 95.33 95.30 95.54
100 % DR 88.05 9.08 79.74 80.70 81.96
HT ACC 93.69 0.33 94.25 94.56 94.50
10 % DR 71 8.96 74.87 75.24 75.92
NB indicates Naive Bias and HT indicates Hoeffding Tree

Table 4 Overal prediction accuracy of different budgeting strategies using ISOT dataset

Performance
metric

Random Fixed
uncertainty

Variable
uncertainty

Random variable
uncertainty

Select
sampling

NB ACC 99.99 90.27 19.48 99.99 99.99
100 % DR 99.94 94.96 58.45 99.96 99.93
NB ACC 99.98 92.71 89.71 99.99 99.98
10 % DR 99.84 96.18 99.77 99.88 99.88
HT ACC 99.99 3.03 12.94 99.99 99.99
100 % DR 99.99 49.98 55.10 99.99 99.99
HT ACC 99.99 3.03 99.72 99.99 99.99
10 % DR 99.94 49.99 99.79 99.96 99.96
NB indicates Naive Bias and HT indicates Hoeffding Tree
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Although we see very poor performance (results <60 %) when using budgets of
100 % with variable uncertainty, when we change the budget to 10 %, we actually
get an increase in performance, bringing the results on par with the other strategies.
This is important to note, as it shows that even though we are training on less
information, we can actually train more effectively in some cases.

Lastly, we see our results for our experiments on the Alexa versus Zeus dataset
in Table 5. Again, we see similar performance among all strategies, budgets, and
classification algorithms except for when using the Fixed Uncertainty Strategy with
the Hoeffding Tree machine learning algorithm.

In the cases where the fixed uncertainty strategy produces low rates of correct
classifications, we can assume that this may be because the confidence of each
instance when streaming is never low enough to invoke training. Thus, no learning
is performed. This happens with the fixed uncertainty strategy in particular as the
confidence threshold is fixed and never changes to adjust to incoming data.

In Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13, 14, 15, 16 and 17, we can view the
prequential accuracy and prequential detection rates for each instance (time point)
when using machine learning algorithms (Naïve Bayes and Hoeffding Tree) in
conjunction with the selected budgeting strategies.

When our budgeting experiments were performed on the KDD 1999 (Figs. 2, 3,
4, and 5) Cup dataset, we see that accuracy and detection rate increases rapidly at
the beginning and then maintains a consistent performance throughout the
streaming process. This statement is true for all budgeting strategies used here
except for the fixed uncertainty strategy, which exhibits a different pattern. In terms
of prequential accuracy, we see a slower rise when using the fixed uncertainty
strategy in all cases on this dataset, except when using Naives Bayes with a budget
of 10 %. In this case, the prequential accuracy initially increases rapidly but drops
soon after in a concave formation. The prequential detection rate when employing
the fixed uncertainty strategy remains around 50 % in all cases except when using
Naives Bayes with a budget of 10 %. In that case, the prequential detection rate
initially increases rapidly, but then drops soon after in a concave formation.

Table 5 Overal prediction accuracy of different budgeting strategies using Alexa versus Zeus
dataset

Performance
metric

Random Fixed
uncertainty

Variable
uncertainty

Random variable
uncertainty

Select
sampling

NB ACC 98.44 97.62 97.52 98.16 97.50
100 % DR 99.96 96.21 97.18 97.73 97.14
NB ACC 95.80 97.50 96.15 95.40 93.85
10 % DR 95.23 96.01 95.60 95.61 94.47
HT ACC 98.32 31.29 93.69 97.96 97.95
100 % DR 97.94 49.97 94.38 97.46 97.66
HT ACC 96.47 31.21 94.84 95.22 94.34
10 % DR 95.26 49.84 94.89 95.30 94.51
NB indicates Naive Bias and HT indicates Hoeffding Tree
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Fig. 3 Prequential accuracy (left) and prequential detection rate (right) on KDD 1999 Cup Dataset
using the Hoeffding Tree Algorithm with a 100 % budget

Fig. 4 Prequential accuracy (left) and prequential detection rate (right) on KDD 1999 Cup Dataset
using the Naïve Bayes Algorithm with a 10 % budget

Fig. 2 Prequential accuracy (left) and prequential detection rate (right) on KDD 1999 Cup Dataset
using the Hoeffding Tree Algorithm with a 10 % budget
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When evaluating the employed machine learning algorithms in conjunction with
the budgeting strategies on the NIMS dataset (Figs. 6, 7, 8, and 9), prequential
accuracy tends to rise quickly and then maintains its performance. However, the
detection rate appears to increase in performance more slowly, almost in a step
pattern. These are consistent in all cases when using this dataset except when the
fixed uncertainty strategy is utilized. In that case, the prequential accuracy rises
quickly and then drops back down quickly to a very low accuracy for the rest of the
stream. When measuring the prequential detection rate, under the fixed uncertainty
strategy, we observe that it either remains low (when using the Hoeffding Tree
Algorithm, Figs. 6 and 7) or follows the trend of the rest of the strategies but at a
lower accuracy (when using the Naïve Bayes Algorithm, Figs. 8 and 9) throughout
the stream.

Fig. 5 Prequential accuracy (left) and prequential detection rate (right) on KDD 1999 Cup Dataset
using the Naïve Bayes Algorithm with a 100 % budget

Fig. 6 Prequential accuracy (left) and prequential detection rate (right) on NIMS Dataset using the
Hoeffding Tree Algorithm with a 10 % budget
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On the other hand, when these strategies are employed on the ISOT dataset
(Figs. 10, 12, 13, and 14) we see that for the Random, Random variable Uncer-
tainty, and Select Sampling strategies, the prequential detection rate and accuracy
remain at approximately 100 % throughout the streaming process. However, with
the fixed uncertainty strategy and the variable uncertainty strategy, we observe
some more interesting behavior. When using a budget of 10 % with the variable
uncertainty strategy, the trends exhibited follows the patterns of the Random,
Random Variable Uncertainty, and Select Sampling on this dataset. However when
using a budget of 100 % with either machine learning algorithm, we observe a
significant drop in the performance in terms of prequential detection rate and even
greater loss in terms of prequential accuracy.

When using the fixed uncertainty strategy with the Hoeffding Tree Algorithm,
we observe a downwards slope in the prequential accuracy while the prequential

Fig. 7 Prequential accuracy (left) and prequential detection rate (right) on NIMS Dataset using the
Hoeffding Tree Algorithm with a 100 % budget

Fig. 8 Prequential accuracy (left) and prequential detection rate (right) on NIMS Dataset using the
Naïve Bayes Algorithm with a 10 % budget
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detection rate maintains a steady performance around 50 %. When this strategy is
used in conjunction with the Naives Bayes Algorithm an interesting pattern is
exhibited where the prequential accuracy and the prequential detection rate show a
sharp rise and then a bit of a fall and then a steady climb up again.

Finally, we look at the trends when using our selected strategies and chosen
machine learning algorithms on the Alexa versus Zeus dataset (Figs. 14, 15, 16, and
17). Random, Random Variable Uncertainty, and Select Sampling strategies in
conjunction with any budget and machine learning algorithm maintain high pre-
quential accuracy and prequential detection rates throughout this streaming dataset.
The Variable Uncertainty strategy performs similarly to the previous cases except
when using the Hoeffding Tree Algorithm at a 10 % budget. In this case, the
prequential accuracy and the prequential detection rate drop in performance.

Fig. 9 Prequential accuracy (left) and prequential detection rate (right) on NIMS Dataset using the
Naïve Bayes Algorithm with a 100 % budget

Fig. 10 Prequential accuracy (left) and prequential detection rate (right) on ISOT Dataset using
the Hoeffding Tree Algorithm with a 10 % budget
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As with our previous experiments, the uncertainty strategy performs differently
than the others. When using the Hoeffding Tree algorithm, the prequential detection
rate and prequential accuracy performances remain pretty low whereas when the
Naïve Bayes Algorithm is used, the performance begins to go upwards again.

Based on the similarity in performances between using 10 and 100 % budgets in
all experiments, our results indicate that it is well worth to use a low budget as there
appears to be little to no effect on the overall performance. Furthermore, our overall
accuracy and detection rates are usually quite high when paired with the Random,
Variable Uncertainty, Random Variable Uncertainty, or Select Sampling strategies
with performances averaging in the 90 %’s.

Fig. 11 Prequential accuracy (left) and prequential detection rate (right) on ISOT Dataset using
the Hoeffding Tree Algorithm with a 100 % budget

Fig. 12 Prequential accuracy (left) and prequential detection rate (right) on ISOT Dataset using
the Naïve Bayes Algorithm with a 10 % budget
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4.2 Adaptive Artificial Neural Network Results

The overall accuracy and detection rate when applying the Adaptive Neural Net-
work approach on the same datasets used above are presented in Table 6. Here, we
observe an overall detection rate of approximately 50 % on all datasets with two
classes. We also observe some very low prediction accuracies. Furthermore, in this
case, the highest achieved overall accuracy and overall detection rate are ∼68 % and
∼50 %, respectively. These results are significantly lower than most of the results
presented in the previous section.

The trend shown when looking at the prequential detection rate using this
learning technique on our datasets seems to remain at approximately 50 %
throughout the streaming process (Figs. 18 and 19). This consistent for tests on all
datasets except for the NIMS1 dataset where detection rate is at 16.73. This is to be

Fig. 13 Prequential accuracy (left) and prequential detection rate (right) on ISOT Dataset using
the Naïve Bayes Algorithm with a 100 % budget

Fig. 14 Prequential accuracy (left) and prequential detection rate (right) on Alexa versus Zeus
Dataset using the Hoeffding Tree Algorithm with a 10 % budget
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Fig. 15 Prequential accuracy (left) and prequential detection rate (right) on Alexa versus Zeus
Dataset using the Hoeffding Tree Algorithm with a 100 % budget

Fig. 16 Prequential accuracy (left) and prequential detection rate (right) on Alexa versus Zeus
Dataset using the Naïve Bayes Algorithm with a 10 % budget

Fig. 17 Prequential accuracy (left) and prequential detection rate (right) on Alexa versus Zeus
Dataset using the Naïve Bayes Algorithm with a 100 % budget
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expected however, as there are more classes. On the other hand, we observe a rapid
rise in prequential accuracy at the beginning, and then either a slow drop or a steady
state for the rest of the stream. This seems to indicate that the learning algorithm is
not able to detect drifts in the behaviors to ask for retraining.

5 Conclusion and Future Work

In this research, we study how to classify (analyze) streaming network traffic using
different machine learning algorithms under different training (budgeting) strate-
gies. To achieve this, we analyzed the traffic using flow type features with Adaptive
Artificial Neural Network, Naive Bayes and Hoeffding Tree stream classifiers under
10 and 100 % training scenarios with five different budgeting strategies to train.
Furthermore, we evaluated the performance of the different combinations of these
algorithms and strategies using both the standard accuracy and detection rate as
well as the prequential accuracy and detection rate.

Our evaluations show that all the tested budgeting strategies perform relatively
similarly (with the exclusion of the fixed uncertainty strategy) on the network
datasets employed regardless of the number of different classes in the datasets
(NIMS-application versus NIMS1, ISOT, and Alexa vs. Zeus datasets). The results
are generally quite high, averaging in the 90 %’s especially when the Hoeffding

Table 6 Overall accuracy and detection rate when using Adaptive Artficial Neural Networks on
various datasets

KDD 1999 Cup NIMS ISOT Zeus versus Alexa

Accuracy 19.69 1.71 6.84 68.32
Detection rate 49.97 16.73 48.48 49.74

Fig. 18 Prequential accuracy versus prequential detection rate on the Zeus and Alexa dataset (left)
and the KDD 1999 Cup dataset (right)
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Tree classifier is employed. This indicates that any of these strategies could be used
successfully in classifying network traffic and detecting malicious activity.

Furthermore, we see that changing the budget to 10 % does not affect the
performance of our strategies negatively, and can actually increase the performance
of a given strategy.

When comparing these results to the adaptive Artificial Neural Network, we
observe that this method is not effective at classifying malicious activity among
streamed network traffic. Thus it is recommended that an active learning approach
is used instead.

In the future, we would like to benchmark these strategies on more datasets as
this will give us a better idea how these methods would perform under other real
world scenarios. Additionally, it would be interesting to see which budgets would
give us the highest performances as we only attempted two different budgets in this
work. Finally, we would also like to improve the adaptive Artificial Neural Network
used in this study.

Acknowledgement This research is supported by Raytheon SAS. The research is conducted as
part of the Dalhousie NIMS Lab at https://projects.cs.dal.ca/projectx/.
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Part III
Biometric Security and Authentication

Systems



Visualization of Handwritten Signatures
Based on Haptic Information

Julio J. Valdés, Fawaz A. Alsulaiman and Abdulmotaleb El Saddik

Abstract The problem of user authentication is a crucial component of many solu-

tions related to defense and security. The identification and verification of users

allows the implementation of technologies and services oriented to the intended

user and to prevent misuse by illegitimate users. It has become an essential part of

many systems and it is used in several applications, particularly in the military. The

handwritten signature is an element intrinsically endowed with specificity related

to an individual and it has been used extensively as a key element in identifica-

tion/authentication. Haptic technologies allow the use of additional information like

kinesthetic and tactile feedback from the user, thus providing new sources of bio-

metric information that can be incorporated within the process in addition to the

traditional image-based sources. While work had been done on using haptic infor-

mation for the analysis of handwritten signatures, most efforts have been oriented to

the direct use of machine learning techniques for identification/verification. Compar-

atively fewer targeted information visualization and understanding the internal struc-

ture of the data. Here a variety of techniques are used for obtaining representations

of the data in low dimensional spaces amenable to visual inspection (two and three

dimensions). The approach is unsupervised, although for illustration and comparison

purposes, class information is used as qualitative reference. Estimations of the intrin-

sic dimension for the haptic data are obtained which shows that low dimensional

subspaces contains most of the data structure. Implicit and explicit mappings tech-

niques transforming the original high dimensional data to low dimensional spaces are
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considered. They include linear and nonlinear, classical and computational intelli-

gence based methods: Principal Components, Sammon mapping, Isomap, Locally

Linear Embedding, Spectral Embedding, t-Distributed Stochastic Neighbour Embed-

ding, Generative Topographic Mapping, Neuroscale and Genetic Programming.

They provided insight about common and specific characteristics found in haptic

signatures, their within/among subjects variability and the important role of certain

types of haptic variables. The results obtained suggest ways how to design new rep-

resentations for identification and verification procedures using tactile devices.

Keywords Dimensionality reduction ⋅ Intrinsic dimension ⋅Manifolds ⋅Nonlinear

transformations ⋅ Implicit/explicit mappings ⋅ Haptics ⋅ User authentication

1 Introduction

The problem of user authentication is a crucial component of many solutions related

to defense and security. The identification and verification of users allows the imple-

mentation of technologies and services oriented to the intended user and to prevent

misuse by illegitimate users. It has become an essential part of many systems and it

is used in several applications, particularly in the military.

The handwritten signature is considered as one element intrinsically endowed

with specificity related to an individual and therefore, it has been used extensively

as a key element in individual identification/authentication. Traditional approaches

have been based on the analysis of the signature as a graphic or visual element,

spawning a lot of research in pattern recognition and image processing over many

years. Recently introduced Haptic technologies allow the use of additional informa-

tion like kinesthetic and tactile feedback from the user, thus providing new sources

of biometric information that can be incorporated within the description and analysis

process in addition to the aforementioned image-based sources.

One possible approach is to capture the human handwritten signature using hap-

tic devices (Sect. 2), describe it using appropriate features and build models (com-

putational intelligence-based for example), as a mean of user authentication. When

described in relational form, the haptic information yields high dimensional datasets

that require a comprehensive analysis in order to gain insight into the properties of

the data and ultimately in achieving an understanding of the information contained.

Additional issues are the determination of relevant features, the derivation of new,

better descriptive ones, etc. In this sense, the role of visualization techniques in the

knowledge discovery process is well known, particularly in the first stages of the

data analysis process, although visualization is in no way restricted to that phase. A

crucial advantage is the inclusion of the human element with his top pattern recog-

nition capabilities and his problem domain knowledge. A closely related element

fulfilling several roles are dimensionality reduction techniques, which enables visu-

alization and also provide ways to understand the relation between features (original

and new) and between data objects.
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While work had been done on using haptic information for the analysis of hand-

written signatures, most efforts have been oriented to the use of several machine

learning techniques for identification/verification. Comparatively fewer targeted

information visualization and data structure understanding, which is the focus of

this chapter.

The chapter is organized as follows. Section 2 describes the haptic data used in the

study. In Sect. 3 the topic of intrinsic dimensionality is discussed and several among

the many proposed approaches for its estimation are presented. Section 4 introduces

some common techniques for producing low dimensional spaces for visualization.

Section 5 presents the results obtained when estimating the intrinsic dimensionality

of the data and the low dimensional mappings produced by the different dimension-

ality reduction techniques. Conclusive remarks are outlined in Sect. 6.

2 Haptic-Signature Data and the Virtual Check
Application

The experiments were performed using the Reachin Display [41] where a high qual-

ity 3D experience is combined with a haptic device. The Reachin visuo-haptic inter-

face allows users to feel and see virtual objects at the same location in space. The

sense of touch is felt through the use of the SensAble PHANTOM Desktop force-

feedback device by an encoder stylus that provides 6-degree-of-freedom single con-

tact point interaction and positional sensing.

The visual stimuli is depicted in Fig. 1, represented by a virtual pen and a vir-

tual check on which users can record their handwritten signature. The haptic stim-

uli consist of force and frictional feedback that try to mimic the tactile sensations

felt during signing a traditional check. More specifically, the check is built on an

elastic membrane surface with particular texture features, providing the users with

a user-friendly and realistic feel of the virtual object. In addition, the virtual check

application records a wide array of attributes as the user sign the check. In a previous

study [44], a group of 13 participants contributed with 10 instances of their signa-

tures (handwritten on the virtual check) a total of 130 haptic-based vectors. In the

present study, a more comprehensive dataset was used, composed of 20 participants,

each of them contributing with 50 instance signatures for a much larger collection

of 1000 haptic vectors.

The collected haptic data contains information about three-dimensional position

(P), force (pressure exerted on the virtual check) (F), torque (T), and angular ori-

entation (O). In each case, their three components along the x, y, z axis are recorded

as the signature is produced. In addition, an extra feature is included (length) that

represents the time taken to generate the signature. Each original instance consist of

the aforementioned features collected over the duration of the signature production

process. In practice, even for the same subject there are variations in the time taken

to generate a signature. Therefore, up-sampling/down-sampling processes were per-
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Fig. 1 Haptic-enabled virtual check application. The user writes his signature on the virtual check,

visible only through the 3D-glasses and the Reachin display. He experiences the feeling of produc-

ing his signature on a solid surface as it would be the case under normal conditions

formed to make all signatures comparable in time to a common number of descrip-

tors/signature, which resulted in versions of the original signatures described in

terms of vectors of 9600 features, in addition to the length feature. Finally, a nor-

malization process was performed on the dataset in order to convert each original

attribute into its z-score (a variable with zero mean and unit variance). In the end the

dataset consisted of 1000 signatures described by 9601 features.

3 Intrinsic Dimensionality

The analysis of high dimensional data is an increasingly common and also complex

problem. The accelerated rate of development of sensor, communication and com-

puter technologies allows the acquisition of massive amounts of data that are large

not only from the point of view of the number of samples/observations, but also from

the point of view of the dimensionality of the individual observations themselves.

Accordingly, they are described in terms of a large collection of variables/attributes

(hundreds, thousands, tens of thousands), which in the case of real world data like

those from many engineering and bio-medical domains, are characterized by several

kinds of mutual dependencies, redundancies and noise. While apparently the effect

of the technological revolution leads to the acquisition of more information from

the problems under study, in reality due to the nature of the observed variables and

their complex relationships, the amount of useful information is not proportional to

their cardinality, which represents the dimension of the observation space. From a

data analytics perspective, the performance and efficiency of statistical and machine
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learning procedures degrades rapidly as the original dimension of the data increases,

in what is coined as the curse of dimensionality.

It is known that in high-dimensional spaces the volumes of neighborhoods of a

fixed size become large, thus requiring a number of points that grows exponentially

for reliable estimation of probability density distributions. Another problem is that

the high dimensional spaces associated to the representation of real world data are

not filled uniformly. What is found is that very often the data concentrate in low

dimension nonlinear manifolds which are embedded within the high dimensional

space in which the data is represented. The dimension of those manifolds is what is

considered as the intrinsic dimension. Often the dimension of the nonlinear subspace

is much smaller than that of the original data representation space, which means that

in fact the data is not really high dimensional. The existence of those subspaces is

considered an explanation as to why data analytic methods work at all when applied

to high dimensional data.

Learning these data manifolds is important and useful for understanding the inter-

nal structure of the data, as well as for improving the performance of data analytic

methods like clustering, classification and regression. However, depending of the

complexity of the data structure dimensionality reduction is usually a difficult task

and different approaches have been proposed for finding the intrinsic dimensionality

(this section) and for learning the subspace (Sect. 4).

A classical approach to estimate intrinsic dimensionality has been based on the

eigenvalues obtained when performing Principal Components Analysis (PCA) [18].

In this case the dimension is determined by the number of important eigenvalues.

While the simplicity of this technique makes it appealing, it has the disadvantage of

the subjectivity introduced by the choice of the threshold for considering an eigen-

value important. A typical one is to retain those normalized eigenvalues larger than

0.025.

A maximum likelihood estimator (MLE) of the dimension is presented in [34].

The idea is to analyze small hyperspheres around each data point and consider the

occurrence of points within as a Poisson process, under the assumption that the prob-

ability distribution of the points is constant within the sphere. A log-likelihood func-

tion is derived for the process from which an estimate for the dimension around a

point x is obtained. This estimate is expressed in terms of the number of neighbours

k as

m̂k(x) =

[
1

k − 2

k−1∑

j=1
log

Tk(x)
Tj(x)

]−1

where k is the number of neighbours considered and Tk(x) is the Euclidean distance

from the point x to its kth neighbour. The estimation for the whole dataset is obtained

by averaging m̂k(x) for all points x ∈ X = {x1,… , xn}. Since this is valid only for a

certain k, several estimates are produced for a range of values of k ∈ [k1, k2] and then

an overall average over that range is considered as the final estimate (usual choices

are k1 = 6, k2 = 12):
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m̂k =
1
n

∑n
i=1 m̂k(xi), 𝜈 = 1

(k2−k1+1)
∑k2

k=k1
m̂k (1)

Another approach is based on estimating the dimension of the attractor of a

chaotic dynamical system, using the correlation integral [21]. The assumption is that

the volume of a m-dimensional dataset scales up with its size in a power-law fashion

determined by the dimension and that a similar behaviour can be observed for the

number of neighbours that are less than the given size. The correlation integral is

used [21] for estimating the intrinsic dimension (𝜈) as

𝜈 = lim
s→0

lim
n→∞

log(Cn(s))
log(s)

(2)

where

C(s) = 2
n(n − 1)

n∑

i<j
1‖xi−xj‖≤s

n is the number of samples, composed of vectors X = {x1,… , xn}, s is the set dimen-

sion and 1Z = 1 when Z = true and 0 otherwise.

An algorithm for obtaining asymptotically consistent estimates of the intrinsic

dimension and the Rényi 𝛼-entropy [42] using a geodesic-minimal-spanning-tree

(GMST) is given by [12]. In this approach a sequence of minimal spanning trees is

constructed, from which (geodesic) distances along the edges of the graphs as well

as their overall lengths are used in order to simultaneously derive the dimension

and entropy estimates. The procedure involves the construction of a complete graph

between all pairs of data vectors (as in the Isomap procedure, Sect. 4.2), which is

converted into a minimal spanning graph (the GMST) by a series of edge deletions

so that the geodesic length is minimized, while still keeping all points connected. In

a minimal spanning graph the overall length is given by

LRd

𝛾

(n) = min
T∈

∑

e∈T
e𝛾

where n = {x1,… , xn} is the set of objects in Rd
(the original space with dimen-

sion d),  the set of spanning trees over n, e an edge of T connecting two dis-

tinct objects xi, xj, i ≠ j and 𝛾 ∈ (0, d) the so called edge exponent (power-weighting

constant). When the Isomap algorithm is applied, an estimation of a manifold 

embedded in Rd
is obtained. If eij is an edge joining points i, j on  and ̂d(eij)

the estimated length of the edge, the GMST is the minimal graph whose length is

̂L
𝛾

(n) = minT∈
∑

e∈T
̂d𝛾 (e) In [12] it is proven that the following approximation

holds

log( ̂L
𝛾

(n)) = a log(n) + b + 𝜖n (3)

where a = (m−𝛾)
m

, m is the estimated dimension of the manifold, b is a function related

to m and the Rényi 𝛼-entropy and 𝜖n is a residual error that goes to 0 as n → ∞. In
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practice, a collection of M bootstrap data sets are sampled from the data and for

of each of them an estimated dimension m̂ is obtained by solving Eq. 3 via least

squares. The overall estimator of the intrinsic dimension 𝜈 =
∑M

i=1 m̂i∕M is obtained

by averaging over the boostraped samples.

A U-statistic approach to estimate 𝜈 has been proposed in [24]. The basic idea is

to use a modified version of the correlation integral where 1 is replaced by a general

kernel function and the estimation is based on the convergence rate of the modified

correlation integral. The U-statistic used is defined as

Un,h() = 2
n(n − 1)

n∑

1≤i<j≤n
h(‖xi − xj‖2) (4)

where h(‖xi − xj‖2) =
1
hm
(‖xi − xj‖2∕h2),  is a measurable, non-negative,

bounded kernel ( ∶ R+ → R), h is a kernel parameter, m is the dimension of the

submanifold contained in the high dimensional space and n the number of vectors in

the sample. In particular a simple kernel (x) = (1 − x)+ is used and five samples of

sizes {N∕5,N∕4,N∕3,N∕2,N} are considered. For them empirical estimates of the

U-statistic are produced for a collection of tentative dimensions l ∈ [1, lmax]. Indi-

vidual estimates of intrinsic dimension result from applying weighted least squares

to linear fits for the obtained U-values and the tentative dimensions. The slope with

the smallest absolute value is considered to represent 𝜈 (see [24] for details).

Another approach from a dynamic systems perspective is the Takens estimator

[48], given by

𝜈 = − 1
hTakens (log(‖xi − xj‖∕hTakens))

(5)

where ‖ is the Euclidean norm, hTakens = d + 𝜎, with d and 𝜎 being the mean and

the standard deviation of the nearest neighbor distances. hTakens is the mean over

all distances smaller than hTakens, which is a kind of maximal scale when consider

neighbourhoods.

4 Dimensionality Reduction and Visualization

4.1 Sammon Mapping

The representation of distance matrices in low dimensional spaces, particularly for

visualization purposes, has been the objective of multidimensional scaling methods

(MDS) [10, 29, 30]. It is based on the idea of distance preservation between the orig-

inal and the target spaces, which has a strong intuitive appeal. In particular, objects

which are close/far in the original data space should be represented close/far from

each other in the low-dimensional space and more generally, dissimilarities in the

original space are considered versus distances in the target space. This is captured

by minimizing objective functions like



284 J.J. Valdés et al.

∑

1≤i,j≤N
wij

(
 (𝛿pij) − dpij

)2

where N is the number of objects, wij is a weight associated to every pair of objects

i, j in either space,  is a monotonically increasing function, 𝛿ij is a dissimilarity

measure between objects i, j in the original data space, dij their distance in the target

space and p an exponent.

Different methods are derived from this general formulation, among them Sam-

mon’s nonlinear mapping [45]. It considers the transformation of vectors of two

spaces of different dimension (D > m) by means of a transformation like 𝜑 ∶ RD →
Rm

which maps vectors x ∈ RD
to vectors y ∈ Rm

, y = 𝜑(x).

Sammon error = 1∑
i<j 𝛿ij

∑

i<j

(𝛿ij − d(yi, yj))2

𝛿ij
, (6)

where typically d is an Euclidean distance in Rm
. The weight term 𝛿

−1
ij gives more

importance to the preservation of smaller distances rather than larger ones and is

determined by the dissimilarity distribution in the data space. Moreover, they are

fixed, which is referred to as lack of plasticity.

4.2 Isomap

Classical methods like principal components or MDS have difficulties when facing

data with highly nonlinear structures. Isomap [7, 47, 49] is a flexible approach to

learn a broad class of nonlinear manifolds. A key idea is to distinguish distances as

measured by classical Euclidean distances (like in MDS, Sammon and related tech-

niques), from those measured along the underlying manifold (geodesic distances).

For points that are far from each other on the manifold, it may happen that they are

seen as close when Euclidean distances are considered, which implies a failure from

the point of view of recognizing intrinsic dimensionality. In such cases, the geodesic

distances are the ones that reflect the true possibly low-dimensional geometry of the

manifold. Isomap builds on MDS but aims at preserving the intrinsic geometry of

the data.

The procedure consists of three steps: (i) Construction of the so called neighbor-

hood graph G connecting all points i, j according to their pairwise distances dX(i, j)
(usually in Euclidean metric). Only those points closer than a given distance thresh-

old 𝜖 are connected with an edge having a length given by dX(i, j). This approach is

called 𝜖 − Isomap. Alternatively, a K − Isomap approach can be considered, based

on the number of neighbours associated to each point. In this case a number of neigh-

bours K is given and two points i, j are connected with an edge in G if i is one

of the K-neighbours of j. (ii) Estimation of the geodesic distances dM(i, j) between

all pairs of points by computing their shortest path distances dG(i, j) in G. At the
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beginning dG(i, j) is dX(i, j) if there is an edge between i and j and set as ∞ oth-

erwise. With N being the number of data points, for each k ∈ [1,N] replace each

dG(i, j) by min{dG(i, j), dG(i, k) + dG(k, j)} to obtain the shortest path distances. (iii)
Construction of the d-dimensional embedding: This is obtained by applying classical

multidimensional scaling to the DG geodesic distance matrix, targeting a Euclidean

distance matrix DY with d-dimensional vectors in the new space.

4.3 Locally Linear Embedding

Locally Linear Embedding (LLE) performs non linear dimensionality reduction. The

mapping of high dimensional data is not approached as in MDS, nor uses shortest

paths as in Isomap, but rather rely on neighbours or local points to maintain a global

structure. The assumption is that data points and their neighbours are located close

to a locally linear path of the manifold. This is based on a linear coefficient that

is associated to neighboring points used to reconstruct the low dimensional embed-

dings [43]. The algorithm tries to minimize the least square error of the cost function

𝜖(W) =
∑

i
|||Xi −

∑
j WijXj

|||
2

where Wij represent the contribution of data point ith to reconstruction of jth.

Assignment of Wij is restricted by two constraints. First, only neighbour datapoints

can be considered, otherwise Wij becomes 0. Second, the sum of the contributions in

a single row equals 1, specifically
∑

Wij = 1j This constraint, lead to weights that are

steady to rotation, rescaling, and translation in reference to neighboring data points.

The weight is a reflection of intrinsic geometry features of transforming high dimen-

sional data points capturing non-linear manifold in the lower dimension space by

linear mapping. The final step tries to minimize an embedding cost function in the

lower dimension space while using fixed weights Wij and trying to reach an optimal

set of data points Xi that minimizes 𝜙(W) =
∑

i
|||Yi −

∑
j WijYj

|||
2

LLE has the num-

ber of neighbors as the only algorithm parameter. An improved approach (MLLE)

is introduced by considering a multiple weight vectors for each local point neigh-

bours [56].

4.4 Spectral Embedding

Spectral embedding or Laplacian Eigenmaps [6, 38, 46, 55] is a non-linear dimen-

sionality reduction technique that uses the laplacian notion to preserve intrinsic geo-

metrical features between a high dimension space and a lower dimensional target

space. The algorithm computes the eigenvectors of the graph Laplacian and uses

Laplace Beltrami operator to construct an embedding of the manifold. The algo-

rithms searches in the higher dimensions space for n nearest neighbors and build
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a heat kernel t ∈ R which is approximated to be the Guassian to assign weights to

edges Wij = e−
‖xi−xj‖2

t where xi, and xj are two points of the high dimension space.

Afterward, the algorithm finds the eigenvalues and eigenvectors for Lf = 𝜆Df where

D is the constructed diagonal weight matrix that sums the weights of higher dimen-

sional space and L = D −W. The algorithms finds k solutions of eigenvectors (f (i)
denotes the eigenvector associated with point i) and the eigenvalues 𝜆i that are used

for dimensionality reduction, such that xi → (f1(i),… , fm(i)). The Laplacian eigen-

maps preserve local features in the lower dimensional space in which alleviate the

effects of noise in the data [6].

4.5 t-Distributed Stochastic Neighbour Embedding

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a non-linear dimension-

ality reduction technique that is an improvement to SNE [25]. SNE consider the

Euclidean distance of datapoints of higher dimensional space and convert it to con-

ditional probabilities, in which it represents similarities between datapoints. A con-

ditional probability pj|i is the probability of datapoint xi to choose xj as a neighbor

based on Gaussian distribution where

pj|i =
exp(−‖xi − xj‖22𝜎2

i )∑
k≠i exp(−‖xi − xk‖22𝜎2

i )

where sigmai represent the Gaussian variance of datapoint xi and k is perplexity

or selected local neighbors. Similarly SNE builds conditional probabilities qj|i of

datapoints xi based on Gaussian distribution for the low dimensional space. The tar-

get is to match the probability distribution of lower dimensional datapoints to its

higher counterpart. To perform this process, a cost function that minimizes the sum

of Kullback-Leibler divergences is as follow:

C =
∑

KL(Pi‖Qi)i =
∑

i

∑

j
pj|ilog

pj|i
qj|i

One drawback of SNE, is the low cost when representing widely separated points

by two closely mapping points. A gradient descent method is utilized to minimize

the cost function. t-SNE uses a symmetric SNE cost function by considering pij = pji
and qij = qji and matching a joint probability distribution P of higher dimension and

Q a joint probability distribution of low dimension space as follows

C =
∑

KL(P‖Q) =
∑

i

∑

j
pijlog

pij
qij
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A simpler gradient is produced which reduce the computational overhead. To

alleviate the crowding problem of SNE, the area utilized to represent map points of

lower dimensional space cannot represent moderate distance points properly in com-

parison to close-distant datapoints. Therefore, t-SNE represent the high dimensional

space with joint probabilities using Gaussian distribution while lower dimensional

space is represented by joint probabilities using Student t-distribution which has a

heavier tail [52].

4.6 Generative Topographic Mapping

In the Generative Topographic Mapping (GTM) method, latent variable non-linear

models in a low dimensional space are used to represent the probability density p(t)
of the data in the original high dimensional space t of dimension D [9]. If L is the

number of latent variables x = (x1,… , xL) (whose cardinality is the dimension of the

latent space), a mapping from the latent space into the data space is given by the func-

tion y(x;W). It maps points x in the latent space into corresponding points y(x;W)
in the data space. The mapping is controlled by a set of parameters W. A probability

distribution p(x) on the latent-variable space, induces a distribution p(y|W) in the

data space, represented as Gaussian functions with variance 𝛽
−1

around each y(x;W)
given by

p(t|x,W,𝛽) =
(

𝛽

2𝜋

)D∕2

exp

{
−𝛽

2
||y(x;W) − t||2

}
(7)

If a collection of K points in the latent space are considered, xi, i = {1,… ,K}, the

distribution in the data space will be given by p(t|W,𝛽) = 1
K

∑K
i=1 p(t|xi,W, 𝛽)which

corresponds to a Gaussian mixture model. For a dataset  = {t1,… , tN} of N vec-

tors, the log likelihood function is expressed as

(W,𝛽) =
N∑

n=1
ln

{
1
K

K∑

i=1
p(tn|xi,W, 𝛽)

}
(8)

In GTM the mapping from the latent to the data space is typically chosen as a

generalized linear regression model y(x;W) = W𝜙(x), where 𝜙(x) is a collection of

basis functions (Gaussians) and W is a matrix of weights. The EM algorithm is used

for finding W and 𝛽 using (8) to asses convergence. Once the model parameters

are determined, the latent space posterior distribution p(y|x,W, 𝛽) can be obtained

using Bayes theorem and from them the posterior means, which are used for the

visualization. One interesting feature of GTM is its ability to estimate the so-called

magnification factor [37], which measures the change between volumes in the latent

and the data spaces. By looking at the distribution of this factor it is possible to get an
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idea about the stretching of the manifold due to the nonlinear mapping of the latent

to the data space. Different variants and extensions of GTM have been proposed,

notably those described in [13, 19, 20, 39, 57].

4.7 Neuroscale

The Neuroscale procedure [35, 36] is a dimension-reducing transformation for the

purposes of visualization and analysis. What is sought is that the geometric structure

of the data can be optimally preserved by the transformation, keeping the inter-point

distances in the feature space corresponding as closely as possible the distances in

the data space. In this sense, the goals are closely related to metric MDS. However,

several important elements are introduced: (i) In contradistinction with MDS where

the solution is found iteratively via an implicit mapping, Neuroscale uses a RBF

neural network that is trained using the available data by optimising the network

parameters in order to minimize a suitable error measure. The goal is to produce a

representation of the mapping function 𝜑 ∶ RD → Rm
from the D dimensional data

space to the target space (m < D) in explicit form. (ii) It uses a flexible formulation

of the error measure to optimize (stress) in terms of a convex combination of two

types of objective and subjective dissimilarities in the data space, compared with the

chosen metric in the target space (usually Euclidean).

If d∗ij are distances between objects i, j in the original data space of dimension

p and sij are (user defined) subjective dissimilarities, a general dissimilarity can be

defined as 𝛿ij = (1 − 𝛼)d∗ij + 𝛼sij, where the parameter 𝛼 (𝛼 ∈ [0, 1]) controls the pro-

portion of subjective information incorporated. The role of the RBF network is to

provide an explicit nonlinear mapping between vectors 𝐱𝐢 in the data space and vec-

tors 𝐲𝐢 = 𝐟 (𝐱𝐢;𝐖) in the target space of dimension q (q < p), where 𝐟 is the nonlinear

transformation represented by the RBF with weights 𝐖. In the target (feature) space

the distances are given by dij = ||𝐟 (𝐲𝐢) − 𝐟 (𝐲𝐣)||. If 𝜙k() are the basis functions of the

RBF (with 𝜇k as their centres), and wlk the network weights, that distance can be

expressed as

d2ij =
q∑

i=1

(
∑

k
wlk[𝜙k(||xi − 𝜇k||) − 𝜙k(||xj − 𝜇k||)]

)2

The RBF network is trained to minimize the error (stress) term given by

E =
N∑

i<j

(
𝛿ij − dij

)2
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4.8 Genetic Programming

Genetic Programming (GP) is an evolutionary computation technique introduced in

[27, 28]. It combines the expressive high level symbolic representations of com-

puter programs with the near-optimal search efficiency of the genetic algorithm. For

a given problem, this process often results in a computer program which solves it

either exactly or with acceptable approximation. Those programs which represent

functions are of particular interest and can be modeled as y = F(x1,… , xn), where

{x1,… , xn} is the set of predictor variables, and y the dependent variable, so that

{x1,… , xn}, y ∈ R, where R are the reals. The function F is built by assembling

functional subtrees using a set of predefined primitive functions (the function set),

defined beforehand. The model describing the program is given by y = F(⃖⃖x), where

y ∈ R and ⃖⃖x ∈ Rn
. Most implementations of genetic programming for modeling fall

within this paradigm.

One of the variants of GP is Gene Expression Programming (GEP) [15] which

uses a simple string representation for the expression tree. In GEP the chromosomes

are encoded as strings of fixed length with a head and a tail. Each chromosome

can be composed of one or more genes which represent mathematical subexpres-

sions that are linked together to form a larger one. This technique uses a variety of

genetic operators such as inversion, mutation, one point recombination, two point

recombination, gene recombination, root insertion sequence transposition, insertion

sequence transposition, gene transposition, and random numerical constants (RNC)

mutation. Advantages of GEP are the simplicity of its representation, as well as the

property of its genetic operators of always producing valid expression trees.

The GEP approach was extended in [50, 51] to evolve programs that represent

vector functions. ⃖⃖y = F(⃖⃖x), ( y ∈ Rm
, ⃖⃖x ∈ Rn

) with objective function depending of

all vector components of ⃖⃖y. In this case the chromosomes are independent but evolve

together (linked by a single objective function), as a population of forests such as

the one needed for learning vector functions. The extension also allows the study of

unsupervised problems (e.g. using a fitness function based on Sammon mapping).

With the mapping function(s) in explicit form, new data can be easily transformed

without having to re-generate the low dimensional space with the enlarged dataset,

as is required in the vast majority of dimensionality reduction methods in which the

mappings found are implicit.

A genetic programming approach to the dimensionality reduction problem has

several advantages: (i) it produces an explicit mapping, (ii) it is given as a white box

model in the form of closed algebraic expressions in which the relative importance

of the data attributes can be easily inspected, (iii) the evolutionary process performs

an implicit feature selection/generation as part of the search in the space of algebraic

transformations. Natural disadvantages are the usually huge size of the search spaces,

as well as the large number of parameters controlling the evolutionary process, which

impacts the computational effort required.
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4.9 Quality Measures for Embeddings

It is natural to look for ways of assessing the quality of a mapping using numeric

measures. Importantly, such measures allow more objective comparisons between

the many existing methods, as well as a deeper understanding of the nature of the

transformation linking the high and low dimensional spaces. Several indices have

been proposed and the most favored ones are those based on the analysis of neigh-

bourhoods of varying sizes between the high and low dimensional spaces [3, 11,

16, 31, 32, 53, 54]. If xi and yi are vectors in the high and low dimensional spaces

respectively (where yi is the image of xi in the low dimensional space), and if 𝜂(xi,K)
and 𝜂̂(yi,K) are their corresponding K-neighbourhoods, the so-called average agree-

ment rate is defined as QNX(K) =
1
KN

∑N
i=1

||𝜂(xi,K) ∩ 𝜂̂(yi,K)||, where N is the num-

ber of vectors and K ∈ [1,N − 2] the neighbourhood size. A derived index based on

QNX(K) which measures the improvement over a random mapping is given by

RNX(K) =
(N − 1)QNX(K) − K

N − 1 − K
(9)

which has 1 as maximum, indicating that all neighbourhoods of size K have the same

composition in both spaces. This index will be the one used for comparing the haptic

data mappings in Sect. 5.

5 Results

5.1 Intrinsic Dimensionality

The set of Intrinsic Dimensionality estimations for the haptic data obtained with

the techniques described in Sect. 3 are shown in Table 1. Interestingly, the estima-

tions fall into two well defined groups. While the values obtained with the Correla-

tion Dimension, the Takens and the U-statistic methods are tightly packed around 4,

those produced by the MLE, GMST and the Eigenvalues are larger, in the [7, 11.4]
range. A closer look at this sort of dual behaviour of the estimated values may reflect

the difference between methods that rely more on the analysis of properties within

local neighbourhoods like MLE and GMST and techniques based on the study of

the attractor, like Takens, the Correlation Dimension and the U-statistic (which is

related technique). However, despite of these differences, when the estimated intrin-

sic dimensions are compared with the dimensionality of the original dataset (9601),

the differences become negligible, cleary indicating that there are indeed low dimen-

sional manifolds containing most of the structure of the data.

From a PCA perspective, the distribution of the cumulative variance for differ-

ent number of components is shown in Fig. 2 (left). An elbow occurs at around 50
components and while 71 of them are required to explain 90% of the total variance,

99.5% is explained by 461.
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Table 1 Intrinsic

dimensionality estimations
Method Intrinsic dimension

estimation

Eigenvalues 7.000000

Maximum likelihood

estimator (MLE)

9.227160

Correlation dimension 3.987503

Takens 3.6673

Geodesic minimal spanning

tree (GMST)

11.441282

U-statistic 4

Fig. 2 Left Distribution of the cumulative variance in Principal Components Analysis with dif-

ferent number of components retained. Right Distribution of the nonlinear Sammon mapping error

with the dimension of the target space (up to the first 50 nonlinear dimensions)

The PCA results provide an idea about the variance distribution, but not about

distance preservation. Moreover, PCA embedding has the disadvantage of arbitrarily

distorting pairwise distances between data objects [1]. Sometimes PCA may map two

different objects to a single point in the target low-dimensional space, making them

indistinguishable. Other linear embedding techniques exhibit this pairwise distances

distortion behaviour. However, the problem can be circumvented by using random

projections [5, 8, 14, 22, 23]. The Johnson-Lindenstrauss Lemma [26], states that a

finite set of N objects in RD
can be linearly mapped to a subspace of dimension M =

(logN) with very small pairwise distance distortion and such linear mapping can

be constructed using a random matrix whose elements are chosen from a particular

distribution [1, 2, 26].

The application of the Johnson-Lindenstrauss lemma to the haptic data pro-

vides different estimations of the minimum number of dimensions required for dis-

tance preservation for different values of the maximum distance distortion rate (𝜖)

(Table 2). Considering a distortion rate of 𝜖 = 0.1 the required number of dimensions

(5920) represents 62% of the attributes, which is an important reduction. Accord-
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Table 2 Minimum dimension estimates for an 𝜖-distance preservation mapping based on the

Johnson-Lindenstrauss lemma

𝜖 0.99 0.5 0.4 0.3 0.2 0.1 0.09 0.08 0.075 0.07

Minimum nbr. of

dimensions

165 331 470 767 1594 5920 7257 9121 10341 11830

ingly, a random projection operator Φ linearly mapping the data to such space on

the one hand would preserve the distance structure and on the other would speed up

considerably the performance of machine learning procedures applied to the data.

The nonlinear character of the haptic data subspace can be recognized in Fig. 2

(right) which shows the distribution of the Sammon error (Eq. 6) with the dimension

of the target space. An elbow occurs at around 5 nonlinear new dimensions and after

dimension 11 the mapping error falls to very low levels, which is in agreement with

the intrinsic dimensionality estimation results.

5.2 Dimensionality Reduction Methods

From the point of visualizing the structure of the data the representation has to be

made in spaces of a dimension compatible with the human perception capabilities

({2, 3, 4}), which does not necessarily coincide with the intrinsic dimensionality of

the information as such. The results of the previous section indicate that the required

dimension for the target spaces would exceeds what is possible, moreover using hard

media. Accepting the limitations imposed by these factors, two dimensional spaces

will be used for representing the results of the dimensionality reduction methods

considered. In a few cases 3D snapshots are presented as well to improve the under-

standing of the data distributions. Section 5.3 presents a comparison of the different

methods from a numeric quality assessment perspective.

The dataset contains signature contributions from 20 subjects 50 haptic signa-

tures/subject and a user identification scenario would be a classification problem

with 20 classes. Here the focus is on understanding data structure as determined by

the descriptor variables and therefore, the nature of the problem is unsupervised.

Even though the class distribution is known a-priori, it was not used when comput-

ing the visual spaces presented. However, for clarity purposes and for the benefit of

the discussion, all objects of the same class (signatures from the same subject) are

represented with the same color.

5.2.1 Sammon Mapping

Nonlinear mappings of the haptic data targeting 2 and 3 dimensional spaces were

obtained using Euclidean distances in both the original and target spaces and solv-

ing Eq. 6 with the Fletcher-Reeves method [40]. In order to alleviate the problem of

local minima entrapment, 10 solutions were found using different machine-generated
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Fig. 3 Sammon nonlinear

mapping to a 2D target

space. Each object represents

the image of a signature and

those produced by the same

subject have the same color

random seeds. The best solution with Sammon error = 0.0906 was used for visual-

ization and is shown in Fig. 3.

It can be observed that in general, signatures from the same subject are close to

each other and tend to occupy definite areas of the space. Some classes are compact

while others are more spread, particularly in the periphery of the point distribution.

An important difficulty with the Sammon mapping, as well as with other methods

considered here like Isomap, LLE, Spectral Embedding and t_SNE is that they are

implicit. That is, they do not provide a mapping function by means of which new

objects can be mapped into the target space. Approaches oriented to circumvent this

limitation are explored in Sects. 5.2.7 and 5.2.8.

5.2.2 Isomap

Isomap spaces of dimension 2 and 3 were obtained using k = {10, 20, 100, 999}
neighbours and Fig. 4 shows the one corresponding to k = 20. An immediately dis-

tinguishing feature is that the space is much more expanded than the one produced

by the Sammon mapping. Regions with higher densities are associated with classes,

and they exhibit different degrees of homogeneity. Some classes are well differen-

tiated regardless of their dispersion and the central area contains a large subset of

intertwined classes, similarly to Sammon mapping. However, relatively large, less

dense extruding areas are occupied by a rather well differentiated classes.

Solving identification/verification problems in those nonlinear spaces should be

beneficial. However, a difficulty with Isomap is that it is implicit. In the case of

Isomap an additional drawback is that it is not always possible to map all of the

original data space objects, as the method works only with those objects needed for

the construction of the neighborhood graph. That is, sometimes objects from the

original set are not mapped at all.
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Fig. 4 Isomap 2D

representation. Each object

represents the image of a

signature and those produced

by the same subject have the

same color

5.2.3 Locally Linear Embedding (LLE)

LLE and MLLE spaces of dimension 2 and 3 were obtained using k = {10, 20}
neighbours and the 2D one corresponding to LLE with k = 20 is shown in Fig. 5.

The objects appear distributed along well defined directions in the space, also show-

ing areas with high concentration (at low values of the X coordinate) and low density

regions (at medium-high X values). While some classes appear well clustered and

compact, others are very spread. However, they occupy low density regions and do

not intersect with other classes. As opposed to the Sammon and the Isomap spaces,

it is more difficult to distinguish the individual classes and there are many outlying

objects. These elements suggest that the LLE’s assumption that each data point and

its neighbors lie on or close to a locally linear patch of the manifold does not hold

for the haptic data analyzed and that even at the local level, nonlinearity persists.

Fig. 5 Left Locally Linear Embedding, Right Modified Locally Linear Embedding (MLLE), 2D

representation (k = 20 neighbours). Each object represents the image of a signature and those pro-

duced by the same subject have the same color
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Fig. 6 Spectral Embedding

2D representation (k = 20
neighbours). Each object

represents the image of a

signature and those produced

by the same subject have the

same color

The 2D space corresponding to MLLE (the modified version of LLE) is shown in

Fig. 5, where the common pattern observed with previous methods is found. Namely,

a central dense region with compact, more homogeneous classes and extruding low

density areas where classes are elongated along clearly preferred linear directions

of the space. The latter seems suspicious, but similar results were obtained with

different neighbourhood sizes. Although difficult to appreciate in Fig. 5 (Right), the

classes appearing at the central region and those located at the peripheral branches

coincide with those found with other methods.

5.2.4 Spectral Embedding

Spectral Embedding spaces of dimension 2were obtained using k = {10, 20, 100, 999}
neighbours and the one for k = 20 is shown in Fig. 6. As with other methods, a high

density area is found where classes concentrate while keeping small neighborhoods

being composed mostly of elements of the same class. Also, most of the space is

of lower density with less homogenous classes, oriented along preferred directions.

However, class separability is low and the occurrence of outlying elements is very

high, as with LLE and MLLE. From the point of view of the relative distribution

of the classes, the space exhibits a similar organization as the one obtained with

previous methods.

5.2.5 t-Distributed Stochastic Neighbour Embedding

t-Distributed Stochastic Neighbour Embedding spaces were computed using several

perplexity parameters {10, 20, 30, 50} and number of iterations {1000, 10000}. No

substantial differences were found among them and the one corresponding to per-

plexity 50 is shown in Fig. 7. As with previous methods, the space follows the gen-
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Fig. 7 t-Distributed

Stochastic Neighbour

Embedding 2D space. Each

object represents the image

of a signature and those

produced by the same subject

(numbered) have the same

color. A light background

covers the populated areas

eral pattern of having a central high density region where most classes concentrate

and a larger, lower density periphery occupied by fewer classes. Also, the classes

located at the central core and the periphery are the same as those found by the

previous techniques. On Fig. 7 numbers identifying the individual classes/subjects

have been added in order to clarify the association between clusters and classes. A

light background highlights populated areas and serves as an approximate pattern

for the overall distribution and can be used as reference when comparing with other

methods.

A very remarkable feature of the t-SNE result is the well defined structure of the

center of the distribution as a collection of well separated, compact clusters and their

correspondence with the known classes. Moreover, the clusters are densely packed

and are mostly unimodal (17 and 19 are clearly bivariate). There are outlying ele-

ments, but they are much fewer than those observed in the LLE, MLLE and Spec-

tral Embedding spaces. What is distinctive for the t-SNE outliers is that very often

they appear rather far from the clusters corresponding to their core classes, distort-

ing neighbourhood structures for some classes. In the overall, separability between

clusters/classes is remarkable.

Some peculiarities emerge from the analysis of the t-SNE as well as the spaces

produced by previous methods: (i) there is a sort of “common” way in which humans

tend to produce their signature (from the point of view of the physical variables asso-

ciated to the use of a tactile device like the haptic pen), suggested by the existence of

a large central region where most classes appear. However, signatures from the same

subject tend to appear clustered even within that region. (ii) there are subjects with

clearly distinct haptic signatures. (iii) The bimodal nature of some individual distrib-

utions suggests that some subjects exhibit what could be considered as a kind of dual

style when producing the signature. Such styles appear somewhat consistent, con-

sidering that in all cases when such behavior is observed ({17, 19}), the two modes

are well populated. Since signing with a haptic device captures the subject’s ten-

dency to press and orient the pen in specific ways in addition to the signature itself,

the fact that the same individual has more than one way of doing it is interesting.

Whether this is something related to more permanent physio-neurological factors or

to psychological states affecting the subjects during the signature acquisition exper-
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iments would be worth investigating. (iv) The individual class distributions exhibit

great variability. For some subjects their signature instances define homogeneous,

compact clusters, while for others the clusters appear spread and elongated in the

nonlinear spaces. This suggest that the way in which the haptic variables interrelate

for different individuals also exhibits large variation and such peculiarities could be

used when designing verification/identification procedures.

5.2.6 GTM

The very high dimension of the haptic data space (D = 9601) poses a problem for this

technique, given the much lower number of objects available (1000). Since in GTM

the mapping goes from the low dimensional latent space (2 in this case) to the orig-

inal, the transformation is 𝜓 ∶ R2 → RD
. Accordingly, the solution of Eq. 8 would

require the estimation of a very large number of parameters, many times exceeding

the number of objects.

In order to produce a reasonable approximation while keeping the problem

tractable, instead of building a mapping from a latent space to the data space,

the mapping targets an approximate representation of it. A good approximation is

given by the first 71 principal components, which accounts for 90% of the variance

(Sect. 5.1). For the GTM a collection of points must be placed in the latent space and

a Gaussian mixture model is built (Eqs. 8 and 7) by means of a Radial Basis Func-

tions (RBF) neural network, targeting a data space of D = 71 which contains 90%
of the variance of the original D = 9601 space. A total of 225 points in the 2D latent

space were distributed in a regular grid of 15 × 15. The number of components of

the Gaussian mixture model was set to 4 in order to keep the number of parameters

in the W matrix a few times smaller than the number of data objects. The maximum

number of iterations for the EM algorithm was set to 30, but convergence was found

with fewer. The latent space is shown in Fig. 8.

Fig. 8 Generative Topographic Mapping. Latent 2D space
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The left hand side shows the posterior means for each object. The pattern defined

by that distribution is characterized by a high density central region (at and above

a diagonal), surrounded by lower density peripheral areas. This main feature of the

GTM latent space coincides with the one defining the general structure of the spaces

constructed by the previous methods. This is interesting, considering that i) these

methods were mapping between the data space and the 2D visualization space, ii)
GTM is using the subspace defined by the first 71 principal components instead of the

whole data space and iii) the mapping performed by GTM goes in an opposite direc-

tion (approximation of a given data space from one consisting on latent variables).

The right hand side of Fig. 8 shows the distribution of the magnification factor (as a

heat map). Space stretching increases with brightness indicating that classes along

the bottom and right side of the latent space are in the 71-D PC space farther from

the center, like the extruding lower density structures identified by other methods

(Isomap, LLE, MLLE, Spectral Embedding and t-SNE).

5.2.7 Neuroscale

This is the first of the two instances of explicit mapping presented. As was done in

the case of GTM, the original data space (D = 9601) was replaced by the one defined

by the first 71 PCs in order to keep the number of free parameters a few times smaller

than the number of objects. Four centers and 100 iterations were used for the RBF

network, approximating the mapping 𝜑 ∶ R71 → R2
.

The corresponding space is shown in Fig. 9. It has in common the distinctive

features identified by previous methods: i) a high density region with more class

agglomeration and ii) two lower density areas at opposite sides of the central region

containing fewer classes (some appear multimodal). However, in the Neuroscale

case, the more populated lower density extruding region is not as extended as in the

spaces found by other techniques (e.g. Figure 7). The relative location of the classes

within the space, which is an important structural feature, keeps consistency with

what was found by the previous methods. This behavior of the Neuroscale approach

Fig. 9 Neuroscale 2D

representation. Each object

represents the image of a

signature and those produced

by the same subject have the

same color
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is promising, considering that it uses an intermediate PCA space, which is known

to distort distance structures, precisely those defining the objective function of the

procedure.

The RBF network can be used for mapping new haptic data using a composition

(𝜓 ⋅ 𝜑) ∶ RD → R2
where 𝜓 ∶ RD → R71

is a linear mapping using the truncated

eigenvector matrix and 𝜑 is the nonlinear transformation represented by the RBF.

Clearly, the first step implies an initial information loss, as the intermediate space

contains only 90 of the variance with respect the original data, on top of which is

the loss due to the nonlinear mapping. For practical purposes, an explicit, direct

transformation is preferable as it avoids the compositional mapping, but it is not

always possible.

5.2.8 Genetic Programming

In order to produce a direct mapping 𝜑 ∶ RD=9601 → Rm=2
between the data and

the target spaces, the Gene Expression Programming vector functions extension was

used [50, 51]. With it the m components of the mapping function 𝜑 = {𝜑1, 𝜑2} can

be obtained simultaneously in either supervised or unsupervised mode. In this case

the later was used (ignoring the class information associated to the haptic signatures),

aiming at minimizing Sammon error (Eq. 6).

The algorithm is controlled by a large number of parameters which are asso-

ciated to: i) the evolutionary process in general (number of generations, popu-

lation size), ii) the structure of the populations (number of chromosomes, num-

ber of genes/chromosome), iii) chromosome composition (gene head size), iv) the

type and rates for evolutionary operators (inversion, mutation, is-transposition, ris-

transposition, one-point recombination, two-point recombination, rnc-mutation rate,

dc-mutation rate), v) the use of numeric constants within the evolved equations (num-

ber of constants/gene, bounded range for the constants). Some of them are specific to

Gene Expression Programming and are described in [15]. In addition, genetic pro-

gramming parameters related to the algebraic structure of the evolved equations are

required (function set, linking function). The function set defines the collection of

elementary functions that will be made available to the evolutionary process when

building candidate equations, combining data attributes, constants and other func-

tional blocks when forming the expression tree. The linking function is the one cho-

sen as the root of the expression tree. Weights associated to the elements of the

function set allows the introduction of bias (expert knowledge) when choosing can-

didate functions during the evolutionary process. The set of genetic programming

parameters used in the experiments is shown in Table 3.

Because of the lack of previous experiences in learning unsupervised mappings

for haptic data using genetic programming, a parsimonious approach was taken.

The goal was to obtain some initial mappings under relatively simple conditions in

order to get some idea about their nature and behaviour. The population size chosen
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Table 3 Experimental

settings of the GEP algorithm
GEP parameter Experimental values

No. generations 3000

Population size 200

No. chromosomes/individual 3

No. genes/chromosome {4, 6, 8, 10, 12}
Gene head size {4, 6, 8, 10, 12, 14}
Linking function addition

No. constants/gene 2

Bounded range of Constants [0,10]

Inversion rate 0.1

Mutation rate 0.044

is-transposition rate 0.1

ris-transposition rate 0.1

One-point recombination rate 0.3

Two-point recombination rate 0.3

Gene recombination rate 0.1

Gene transposition rate 0.1

rnc-mutation rate 0.01

dc-mutation rate 0.044

dc-inversion rate 0.1

Function set (e.g.,

{function1(weight))

function2(weight), . . . })

{+(1),−(1), ∗ (1), x2(1)}

No. random seeds 5

ensured a good initial genetic diversity and a modest amount of search was made

(3000 generations), given the huge size of the search space. A small function set

was chosen (just four functions with equal weights), at the same time composed of

very simple functions (basic arithmetics and the second power as the only unary

nonlinearity). The set of parameters controlling the genetic operators were chosen

according to default values that proved to be effective in other genetic programming

experiments, although for different problems and data. Five different initial popu-

lations were generated from machine generated random seeds and evolved with the

same set of evolutionary parameters, aiming at minimizing Sammon error (Eq. 6).

The best result is shown in Fig. 10.

The Sammon error obtained was 0.1356 which is higher than the one obtained

with the implicit deterministic minimization of Eq. 6 in Sect. 5.2.1 (Fig. 3). The GEP

space has a similar class distribution with respect to the implicit solution (trans-

lations, rotations and symmetries aside due to distance properties), but with less

efficient class separability due to the higher mapping error. The overall distribution

with a central higher density region flanked by two lower density areas is captured,
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Fig. 10 Gene Expression

Programming (GEP) explicit

mapping (2D space). Each

object represents the image

of a signature and those

produced by the same

subject have the same color

although one of them is not as extruding as with other methods. In comparison with

Fig. 7, the separated, low density area where class 16 is located appears much closer

and interlaced with classes {3, 9}. Also the lower region corresponding to classes

{8, 17} and {1, 10, 19} appears interlaced with the core, although with a clearly dif-

ferentiated lower density. However, the relative location of the classes is mostly pre-

served.

Considering the inherent difficulties in learning the 𝜑 ∶ RD=9601 → Rm=2
direct

mapping, the extremely simple function set used and the modest search effort, the

result is promising.

The explicit form of 𝜑 = {𝜑x, 𝜑y} is given by Eqs. 10 and 11, which shows the

specific variables involved in the space transformation as well as their roles. Interest-

ingly, i) the number of variables involved in the mapping is very small in comparison

with the total (arities for 𝜑x, 𝜑y are 36 and 45 respectively). Since they have no inter-

section, the arity of 𝜑 is 81 which represents only a very small fraction of the total

number of variables (0.84%).

𝜑x = (((((((((((((Oy29491) ∗ (((Tz7689 − Oy2747) + (Px9481 + Tz5589)) − (Py8030
− Tz1593))) + (Pz39 ∗ ((Pz7215 − (Py4250 + Pz3783)) − ((Ty4196 + Fy7541)
+ Fy8501)))) + (Oy29299)) + Px8341) + (Px28089)) + (Oz7968 − ((Fx28344)

2)))
+ Px6277) + Tz573) + ((((Py21886) + Fz1998) + (Ox8278 − Py902)) + ((k21)
∗ (Oy4979 + Ox9286)))) + ((Ty4460 + (((Ox3922 ∗ Pz8859)2) − (Oz28892)))
+ Ox766)) + Px9073) + ((Fz25058) + ((Pz25979) − Oy1055))) (10)

k1 = 7.039750799831218
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𝜑y = (((((((((((Px253 + ((((Px4921 + Oz2172) − Py2294) + (Tx24411)) − (Py2690
+ (Ox3310 + Py1082)))) + (Fx9268 + (Oy779 + Oz2412))) + (((Px8437
+ (Fz2418 − (k2 + Oy731))) − Pz1995)2)) + Fx3100) + ((Oy21823)
∗ (((Fx22800) − (Py4982 + Fy9221)) − Px37))) + ((Tx22119)
+ (((Px3469 ∗ Ox7606) − (Fx4204 + Py8402)) − (Fy7577 + Fy1181))))
+ (Oy8711 − Fy4817)) + (Oz7440 + Ty3524)) + (((((Fz7110 ∗ Px9217)
− Px8221) + (Oy4931 − Px241)) + Fz606)2)) + (Oz2532 − Fz5802))
+ ((((Oz5064 − Fy9293) − Ox418) ∗ (Oz27260)) + Ty5012)) (11)

k2 = 9.767127644377611

With Eqs. 10 and 11 the transformation of new haptic data can be obtained. If

they can be considered as coming from the same joint distribution as the data from

which the mapping equations were derived, their location in the low dimensional

space can be expected to share their properties, shown in Fig. 10.

5.3 Quality Assessment

Section 5.2.1 presented the individual results obtained with several mapping

approaches and briefly presented their main properties (mainly from a visual point of

view). However, further understanding can be obtained by using numerical descrip-

tors, as the one presented in Sect. 4.9 using the RNX(K) function (Eq. 9) which com-

pares neighbourhood differences between the data and target spaces for different

neighbourhood sizes.

The higher the value of RNX(K) for a given method and neighbourhood size, the

higher the preservation of the original neighbourhoods will be in the target space,

with preservation understood as communality of neighbourhood composition. A

graphic comparison of the relative qualities of the mapping techniques presented

in Sect. 5.2.1 is shown in Fig. 11.

There is a subset of methods composed of t-SNE, Sammon, Isomap and GMT

that exhibits better distribution of RNX(K) values. At the lower end are LLE (which

presented a rather poor performance), MLLE and Spectral Embedding. Genetic Pro-

gramming does not perform well at smaller neighbourhoods, but improves as the size

increases, approaching GMT. Practically all methods have a relative maximum at

low neighbourhood sizes (in the 40−60 range), most noticeably t-SNE, which up to

K = 122 outperforms all other techniques and falls only to Sammon and Isomap for

larger sizes. Those two appear as the ones with better behavior from a broader neigh-

bourhood size perspective, despite of suffering from sensitivity to distance concen-

tration [17] and lack of plasticity [33]. The former refers to the tendency of Euclid-

ean distances in high dimensional spaces to concentrate; thus making all distances

between pairs of objects very similar. The later refers to the ability of a method to
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Fig. 11 RNX(K) quality function for different mapping procedures. (LLE): Locally Linear Embed-

ding, (MLLE): Modified LLE, (Spectral): Spectral Embedding, (t-SNE): t-Distributed Stochastic

Neighbour Embedding, (GMT): Generative Topographic Mapping, (GEP): Genetic Programming.

K is the neighbourhood size

Table 4 Area under the

RNX(K) function (in

descending order)

Method Area

Sammon 582.896

Neuroscale 573.126

t-Distributed stochastic neighbour

embedding (t-SNE)

546.365

Isomap 484.893

Generative topographic mapping (GTM) 469.679

Genetic programming (GEP) 445.426

Modified locally linear embedding

(MLLE)

443.231

Spectral embedding 343.365

Locally linear embedding (LLE) 174.377

break some proximities in order to improve the preservation of others. This picture

is completed by looking at the overall behavior for all neighbourhoods, which is

typically characterized by the area under the RNX(K) function, shown in Table 4.

From this point of view, Sammon, t-SNE and Isomap appear as the best perfor-

mance techniques (Neuroscale does not start from the original space, but from the

one defined by the subset of eigenvectors with 90% cumulated variance). The fact

that for haptic signature data non-plastic methods affected by norm concentration

like Sammon mapping outperforms t-SNE which is a more state of the art technique

with respect to those properties deserves further attention.
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6 Conclusions

The use of haptic signatures as a biometric procedure presents many opportuni-

ties and also challenges. While it brings more information in comparison to tra-

ditional image-based signatures, its exploitation for identification/verification pur-

poses requires finding appropriate ways for representing the haptic data and under-

standing of the structure of the associated information. This work represents a step

in that direction, from an unsupervised point of view using class information as a

qualitative aid in supporting the discussion and interpretation of the results obtained

with a small set of dimensionality reduction and mapping procedures.

Within the context of the experimental data used in this study (20 subjects with

50 instance signatures/subject), it has been found that the high dimensionality of the

data seems to mask an underlying embedded nonlinear space of very low intrinsic

dimension (in the [4, 11] range). Even though it exceeds the dimension of spaces suit-

able for visual inspection, dimensionality reduction procedures consistently produce

spaces sharing similar properties from the point of view of structure and class distri-

bution. Besides the expected apriori variability due to the human and even cultural

nature of a signature, it has been found that there seems to be a sort of “common”

way in which a subject tend to produce the signature from the point of view of the

physical variables associated to the use of a tactile device (a haptic pen), like force,

torque, orientation and position. Subjects were found with highly differentiated hap-

tic signatures.

The individual signature distributions exhibit great variability. For some subjects

they appear quite homogeneous, while for others they are spread and elongated in the

nonlinear spaces. This suggest that the way in which the haptic variables interrelate

for different individuals also exhibits large variation. These peculiarities could be

used when designing verification/identification procedures. If a “style” is conceived

as a particular way in which force, torque, orientation, etc. are combined in order to

produce a haptic signature, subjects were found that exhibited more than one style. It

cannot be said at this stage whether this is an intrinsic property of certain individuals

or it is something related to the psychological state of the subject when the signature

gathering experiments were made. The haptic signature is obtained in a virtual reality

space and the subject signs “on the air” and it is understandable that some subjects

take more time to adapt to that environment than others.
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Abstract Biometrics are increasingly being used as security measures in online as
well as offline systems, giving rise to more reliable and unique authentication
techniques. In these systems, false positive minimization is one of the crucial
requirements, which is especially critical in security sensitive applications. In this
chapter, we present an Extended Metacognitive Neuro-Fuzzy Inference System
(eMcFIS) based biometric identification system. eMcFIS consists of a cognitive
component and a metacognitive component. The cognitive component, which is a
neuro-fuzzy inference system, learns the input-output relationship efficiently. The
metacognitive component is a self-regulatory learning mechanism, which actively
regulates the learning in the cognitive component such that the network avoids
over-fitting the training samples. Further, the learning strategies are chosen such
that the network minimizes false-positive prediction. The proposed eMcFIS is first
benchmarked on a set of medical datasets from machine learning databases.
eMcFIS is then employed in detection of two real-world biometric security appli-
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1 Introduction

In the current world of online and offline fraud, the need for efficient security and
surveillance fraud detection systems cannot be overstated. One of the main reasons
for the failure in these systems is high false positive prediction. A false positive in
binary classification is an error resulting from incorrectly indicating the presence of
a condition while in truth it is absent. False positive reduction is important in
security oriented applications like malware and intrusion detection systems as they
incur huge damages. False positive minimization finds resonance in other fields too.
For instance, wrongly predicting a non-malignant tumor to be malignant in com-
puter aided disease diagnosis causes unnecessary trauma, treatment and
expenditure.

Due to ever-increasing identity thefts in knowledge and token based systems
(e.g., password, ID card) biometric identification systems are being progressively
used in commercial and governmental organizations to establish a person’s identity.
In a defense establishment with biometric identification systems, if an imposter is
identified as a client and given access to the utilities it causes a security breach.
Similarly, in a banking system if a forged signature is identified as original and the
transaction is approved, it might lead to financial loss. In all these applications, it is
imperative to have a low false positive rate since the end-users are highly sensitive
to misclassification on a specific class.

A classifier with high coverage may not necessarily be precise in predicting the
class the end-user is sensitive to. Various works are being actively conducted to
address this ever growing problem of false positive reduction. Some of the earliest
works on such class-sensitive classifiers are based on Naïve Bayes algorithm. Due
to their previously known robustness in the text classification domain, Naïve Bayes
classifiers were used for spam mail filtering. In [1, 2] the Bayesian probability
model parameters were modified to associate positive predictions of the sensitive
class with high confidence for filtering spam mail. Although this modification
partially handled false positive minimization it was suggested by Sahami et al. in
[1] that application of SVMs could help control parameter variance during learning.
Furthermore, Schneider in [3] reasoned that using cost-sensitive measures in con-
junction with Naïve Bayes classifier is problematic as the probabilities computed by
the classifier are unreliable and therefore proposed two statistical event models for
spam mail filtering, out of which, multinomial model using feature ranking func-
tions and taking into account word frequency information was found to result in
better accuracy and less biased towards the sensitive class. Though effective, the
solution is not suitable for non-text classification problems.

Support Vector Machine (SVM) based algorithms typically use parameter tuning
or threshold mechanisms for false positive reduction. Parameter tuning in SVM
generally involves tuning the SVM tradeoff parameter ‘C’ to balance between low
false positives and acceptable overall accuracy. But such parameter selection
mechanism [4] incurs exhaustive search for the optimum combination, which could
be very time-consuming and does not really address the issue of false positives.
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Parameter tuning approach by Kołcz and Alspector [5] applied different misclas-
sification costs for classes while training the SVM classifier using prior knowledge
of mail categories in spam mail filtering to reduce false positives. While the pro-
posed method showed a clear improvement over standard SVM it needs
domain-specific knowledge about the target data misclassification costs and the
probability distribution of data for estimating the optimum cost factor to apply.
Sculley and Wachman proposed threshold mechanism [6] to detect spam mail, such
that, if the predicted score is greater than the chosen threshold, then the mails are
classified as spam. The choice of good threshold is crucial in such algorithms
because if the threshold is chosen to be high there are less false positives while at
the same time true positive count also drops resulting in an undesirable tradeoff
between false and true positives.

Boosting algorithms also were proposed for low false positive learning. An
AdaBoost algorithm was proposed by Carreras et al. in [7] which used evaluated
prediction confidence of a decision tree classifier for false positive reduction in
spam mail filtering. Methods for automatic tuning of the classifier parameters were
proposed and it was shown that deeper weak rules are apt for high precision
classifier requirement as they result in a filter which only classifies messages that it
is highly confident and delivers the rest to the user. Although the filter outperformed
decision trees, Naïve Bayes and k-NN methods it was highlighted that further
studies on effectiveness of tuning the parameters was needed as the classifier
confidence depends on parameter settings. Wu et al. [8] used cascaded classifiers
for face detection problem, where feature selection was carried out using asym-
metric AdaBoost classifier. Each of the cascaded classifiers carried out a stage-wise
rejection procedure for non-facial inputs and only those that passed through all the
rejections-stages of cascade were classified as faces. Instead of a single complex
classifier with low false positive rates, the cascaded classifiers with high detection
and moderate false positive rate at each stage yielded a final lower false positive
rate.

Yih et al. [9] used a two-stage methodology to reduce false positives. In the first
stage, data from the low-false positive region is identified for training the second
stage classifier so that the selected training data is characteristic of the data that is
more important to the application setup. At test time, if the first stage of classifier
predicted the test instance to be in the region interest of the second-stage, it was
classified using the second-stage classifier and the verdict of second-stage classifier
was used to predict the test instance. This two-stage filtering caused the learned
classifier to be optimized for such particular data and hence enabled in lowering
false-positive rate. Lynam et al. [10] proposed an ensemble approach for filtering
spam mail, wherein outcomes from a set of independently developed spam filters
are combined resulting in substantially better filtering than any of the individual
filters. Such cascaded and ensemble classifier set-up incurs high-costs.

A compression algorithm for spam mail filtering was proposed by Bratko et al.
in [11] for decreasing false-positives. Here two compression models were first built
for each of the classes in the binary classification problem from the training data.
Since spam mails usually contain homogenous terms, they result in high text
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compression rate. Given that spam mail is continuously evolving, an adaptive data
compression was proposed based on online user feedback resulting in a compres-
sion model that is incrementally updateable. This proposal is only suitable for such
text-based spam mail filtering and not for other applications.

Akusok et al. [12] proposed a two-stage methodology to minimize false posi-
tives in malware/anomaly detection. The malware dataset attributes were nominal in
nature. Therefore a classifier with distance based machine learning technique was
used in the first stage with Jaccard distance measure approximation adapted to the
problem setup. The first stage of the decision process made use of a 1-Nearest
Neighbor classifier. For the second stage, a classifier using modified extreme
learning machine (ELM) [13], was proposed. The modified ELM classifier used
information gathered from searching the nearest neighbor in the first stage for
classification. While the number of false positives was almost ideal on the malware
dataset, around 56 % of the test samples were classified as “Unknown” which could
inhibit its usage in practical applications. It can therefore be seen from the above
discussion that there is a need to develop an efficient algorithm which could reduce
false positives while maintaining high accuracy. Such an algorithm should have
intrinsic learning characteristics to handle false positives while maintaining high
generalization ability.

In the past, fuzzy inference systems (FIS) have been extensively used in machine
learning problems due to their efficiency in accurately approximating the target
non-linear functions. FIS is a collection of fuzzy rules specifying mapping between
input and output. The important steps in the design of a FIS are: identification of the
fuzzy rule base and tuning the rule parameters, the latter of which was not
well-defined and needed domain knowledge and data evidence [14]. Neural net-
works, on the other hand, were effective in learning from training samples. Hence,
of late, FIS and neural networks are combined to make use of approximate rea-
soning and interpretability of FIS and learning abilities of neural networks.

Adaptive network based neuro fuzzy inference system (ANFIS) [15] is one of
such first neuro fuzzy inference systems proposed which uses a gradient descent
based learning algorithm for updating network parameters. ANFIS could either be
used to refine fuzzy rules provided by the domain experts or could learn and
generate them itself by partitioning the input space. However, it suffers when
uncertainties are present in the data. In many practical applications data specifying
the complete input-output mapping may not be available beforehand. This intro-
duces additional challenges in accommodating new features or classes. To cir-
cumvent this, adaptive neuro fuzzy inference systems have been proposed which
start with zero rules and build up the rule base approximating decision surface as
per required accuracy. Kasabov [16] proposed one of the first adaptive neuro-fuzzy
inference systems which used an incremental hybrid supervised/unsupervised
online learning for evolving rules and network parameters based on the principles
of resource allocation network.

Dynamic evolving neuro-fuzzy inference system (DENFIS) [17] is another such
adaptive neuro-fuzzy inference systems which used evolving clustering method to
partition the input space. DENFIS used offline clustering to select ‘m’ most
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activated fuzzy rules, for calculating the output which limits it from being a truly
online solution. Similar to Kasabov’s proposal in [16], DENFIS also uses local
element tuning and hence needs more training data than ANFIS which uses global
generalization. Proposals based on fuzzy support vector machines [18, 19] and
fuzzy extreme learning machines [20] too exist in literature. Fuzzy SVM solutions
construct large rule base with some rules being under-utilized whereas fuzzy ELM
proposal needs the number of rules to be fixed a priori [21]. While all the afore
mentioned neuro fuzzy inference systems possess human cognitive information
processing capabilities like learning, recall, perception and problem solving, they
lack the metacognitive ability of judging the knowledge existing in their cognitive
component with that contained in the training samples. Therefore, they assume that
knowledge is distributed uniformly in all the learning samples and learn all samples
sequentially whereas human learning studies suggest otherwise [22]. Studies show
that humans regulate their knowledge acquisition by judging their acquired
knowledge with that of the environment. This is known as metacognition.

Recently a Metacognitive sequential learning algorithm for Neuro-Fuzzy
Inference System (McFIS) was proposed in [21]. McFIS leverages on its
metacognitive component in choosing a suitable learning strategy for the neuro
fuzzy inference system (i.e., the cognitive component). It has been shown in [21,
23–26] that the metacognitive learning helps the fuzzy inference system to achieve
better generalization performance than other existing classifiers in literature like
SVM [4], eClass [27], ELM [13], Online Sequential Fuzzy Extreme Learning
Machine (OS-FUZZY-ELM) [20] and Sequential Adaptive Fuzzy Inference System
(SAFIS) [28]. McFIS, however, lacks the ability to handle false positives during
prediction efficiently. Our proposed learning algorithm is built up on McFIS to
leverage on its metacognitive learning strategies and high generalization abilities.

In this chapter we propose an extended Metacognitive Neuro-Fuzzy Inference
System (eMcFIS) for minimizing false positive predictions. The metacognitive
component in eMcFIS monitors the knowledge in the cognitive component and
regulates the learning in it by deciding on what-to-learn, when-to-learn, and
how-to-learn the presented data. In the how-to-learn strategy, eMcFIS considers the
class-sensitive false positive criterion to either add a new rule to the network or
update the parameters of the network such that the false positive prediction is
minimized. It uses posterior probability as a measure of classifier’s confidence,
along with self-adaptive learning thresholds and class-specific criterion which helps
in minimizing false positives. The performance of eMcFIS is first benchmarked on
a set of medical datasets from the UCI machine learning repository and Mammo-
gram database. The results clearly show that eMcFIS has lower false positive
predictions along with better coverage. Statistical Friedman test followed by
Benforroni-Dunn test on the classifier results over the tested data sets proves that
eMcFIS performs better than other well-known classifiers. Subsequently, the gen-
eralization and false positive reduction abilities of the proposed system are vali-
dated on two real-world security sensitive biometric identification applications:
signature verification and fingerprint recognition problems. The performance

Extended Metacognitive Neuro-Fuzzy Inference System … 313



comparison of eMcFIS on biometric datasets with other state-of-the-art approaches
effectively signifies the advantages of the proposed method.

We make the following contributions in this chapter:

• Metacognitive sequential learning algorithm for low false positive prediction
• Usage of posterior probability as a measure of classifier confidence
• False positive threshold for choosing the learning strategy to apply
• Class-specific criteria for low false positive learning

The rest of the chapter is organized as follows. Section 2 describes McFIS
algorithm in brief. Section 3 presents the eMcFIS learning algorithm followed by an
initial evaluation of eMcFIS on a set of medical datasets from the machine learning
repositories. Section 4 presents two real-world security sensitive biometric verifi-
cation problems and the performance evaluation of eMcFIS on the biometric
datasets. Section 5 summarizes the chief conclusions from this study.

2 A Brief Review on Metacognitive Neuro-Fuzzy
Inference System (McFIS)

In this section, we describe the McFIS algorithm in brief along with a problem
summary of false positive optimization.

McFIS [21] is a metacognitive sequential learning algorithm for Neuro-Fuzzy
Inference Systems. McFIS realizes metacognitive learning strategies by a two
component system as depicted in Fig. 1. The primary component is a cognitive
component realized by a neuro-fuzzy inference system and the second component is
a metacognitive component. The cognitive component of McFIS is a four-layer
neuro-fuzzy network with radial basis activation function realizing the behavior of
zeroth-order TSK-type fuzzy inference system as shown in Fig. 2. Metacognitive
component of McFIS monitors the knowledge in the cognitive component and
decides on the suitable learning strategy to apply when presented with the input
data. McFIS uses theoretically proven hinge-loss error function [29, 30] to measure
the sample classification error and class-specific spherical potential derived from
[31] as novelty measure of the data.

McFIS controls the learning process in the cognitive component by resolving on
what-to-learn, how-to-learn and when-to-learn. These actions are realized by
sample deletion, sample learning, and sample reserve strategies respectively as
follows:

1. Sample deletion strategy

If the knowledge in the sample is similar to that already contained in the network
then the sample is deleted without learning.
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2. Sample learning strategy

There are three kinds of learning strategies in McFIS namely: rule growing, rule
parameter updating and rule pruning.

• Rule Growing Strategy

If the training sample contains significant information not already present in the
cognitive component or if the estimated class label is incorrect, a new rule is added
to capture this novel knowledge.

• Rule Parameter Update Strategy

If the predicted class label is the same as the actual class label, but the maximum
hinge loss error is greater than the self-adaptive parameter update threshold, then
the parameters of the nearest rule in the same class are updated using an EKF
algorithm.

• Rule Pruning Strategy

McFIS removes from network rules whose contribution in the class is lesser than
pruning threshold for specified consecutive samples in the class.

Fig. 1 Schematic diagram of McFIS and eMcFIS
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3. Sample reserve strategy

This represents the “what-to-learn” concept of McFIS. If the sample does not
meet either the rule growth or the parameter update conditions, it is reserved for
possible usage in learning at a later stage when the McFIS self-adaptive thresholds
may find it conducive for the learning process.

McFIS algorithm was employed to solve various medical, energy analytics,
video analytics and time-series related problems and was shown to achieve higher
generalization performance over other state-of-the-art approaches [4, 13, 20, 27,
28]. McFIS however lacks the ability to handle false positives.

Fig. 2 Architecture of cognitive component of McFIS and eMcFIS
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3 Extended Metacognitive Neuro-Fuzzy Inference System
(eMcFIS)

It can be inferred from the above discussion that McFIS is a generic classification
algorithm and does not specifically address the issue of false positive optimization.
In this section, we describe the proposed eMcFIS learning algorithm for handling
false positive reduction in binary classification problems. We first outline the
cognitive component followed by the metacognitive component. The goal of the
classifier is to closely approximate the decision function while minimizing the false
positives incurred, rendering it to achieve high generalization performance along
with low false positives.

3.1 Cognitive Component of eMcFIS

The cognitive component of eMcFIS, similar to McFIS, is a four-layer neuro-fuzzy
network with radial basis activation function as depicted in Fig. 2. Consider a

training data instance: xt, ctð Þ, where xt = xt1, . . . , x
t
m

� �T ∈ℜm is a m dimensional
input vector of tth sample and ct ∈ ð1, 2, . . . , nÞ is its class label among n distinct
classes. The class label ctð Þ is converted into coded class label

yt = yt1, .., y
y
j , . . . y

t
n

h i
∈ℜn

� �
such that

ytj =
1, if j= ct

− 1, otherwise

�
j=1, 2, . . . , n ð1Þ

The predicted output yt̂ð Þ of eMcFIS classifier is given by

y ̂t = f xt,wð Þ ð2Þ

where decision function f: x → y is a relationship between xt and yt and vector
w represents classifier parameters. The first layer of neuro fuzzy network consists of
m input nodes with each node representing an input feature.

The outputs from input layer utð Þ are directly transmitted to the Gaussian layer.
Output of ith input node uti

� �
is given by

uti = xti, i=1, 2, . . . ,m ð3Þ

Assuming that eMcFIS built K rules from previous t − 1 training samples, the
Gaussian layer contains the rule antecedents of each of the K rules and performs
rule inference to calculate the overall contribution of the rule to the input features.
The membership of the kth rule is given as
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∅k utð Þ= exp
− ut − μlk
		 		2
2 σlk
� �2

 !
, k=1, 2, . . . ,K ð4Þ

where μlk is the center of kth Gaussian node and σlk is its width (superscript l indi-
cates the rule’s class label). Normalization layer has the same number of nodes as
that of Gaussian layer. The output of ith normalized node is given as follows:

∅k =
∅k

∑K
j=1 ∅j

, k=1, 2, . . . ,K ð5Þ

The output layer has the same number of nodes as that of distinct classes.
Predicted output yt̂ð Þ of the output layer is calculated as the weighted sum of the
normalized output given by

y ̂tj = ∑
K

k =1
αjk∅k , j=1, 2, . . . , n ð6Þ

where αjk is the weight connecting kth normalized node to jth output node. The
predicted class label is given by

c ̂t = arg max
j=1, ..., n

y ̂tj
� �

ð7Þ

3.2 Metacognitive Component of eMcFIS

The metacognitive component of eMcFIS is a self-regulatory learning mechanism. It
uses the monitory signals from the cognitive component to compare the knowledge
existing in the network with that in the presented sample to choose the learning
strategy to apply. Similar to McFIS, eMcFIS too uses hinge-loss error function as a
measure of sample error and data novelty measure derived from [31] as the

knowledge-based measure. Hinge-loss error et = et1, . . . , e
t
n

� �T ∈ℜn
� �

is defined as:

etj =
0 if yt̂jy

t
j >1

yt̂j − ytj otherwise

�
j=1, 2, . . . , n ð8Þ

Hinge-loss error lets the network output to go beyond ±1. Therefore truncated
hinge-loss error output is an accurate estimate of posterior probability and is given as:

p ̂ cjxtð Þ=
min max yt̂j, − 1

� �
, 1

� �
+1

2
, j=1, 2, . . . n; c=1, 2, . . . , n ð9Þ
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and the maximum absolute hinge-loss error Et is defined as

Et = max
j=1, ..., n

etj



 


 ð10Þ

The classifier algorithm determines sample novelty by projecting the input
feature xtð Þ onto spherical feature space, S, i.e., xt →∅, with center μl and width σl

of the Gaussian rules describing S. Assuming Kc rules associated with class c,
class-specific spherical potential is given by:

φc =
1
Kc ∑

Kc

j=1
∅ xt, μcj
� �

ð11Þ

Smaller spherical potential suggests that the sample contains new information
whereas higher value indicates that the information provided by the sample already
exists in the cognitive component. Metacognitive component of eMcFIS controls
the learning process in the cognitive component through sample deletion, sample
learning, and sample reserve strategies using hinge-loss error function, class pos-
terior probability and class-specific spherical potential as monitory signals.

Sample deletion strategy
If the knowledge presented by the sample is analogous to that already existing in
the network, it is deleted without learning. This avoids overtraining of the network
and also reduces the computational resources that would have been otherwise
consumed. The sample deletion criterion is given as

ct = c ̂t AND Et <Ed ð12Þ

where Et is the maximum absolute hinge error and Ed is the sample deletion
threshold.

eMcFIS Sample learning strategy
eMcFIS differs from McFIS in the sample learning strategy due to its false positive
optimized how-to-learn strategy.

False positive aware classifier sample learning strategy
The first step in false positive minimization is to make the classifier aware of false
positive predictions during the learning process. Throughout the following dis-
cussion we represent c1 as the positive class and c2 as the negative class. A sample
xt, ctð Þ is considered as False Positive (FP) prediction by the classifier if:

FP: ct = c2 AND c ̂t = c1 ð13Þ

where ct is the actual class label and c ̂t is the predicted class label.

Classifier False Positive Prediction Confidence Measure
It is important to know the confidence of the classifier while making a FP prediction
to decide on a suitable learning strategy for correcting it and minimize such
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subsequent false positives. We propose using posterior probability estimate of the
sample belonging to positive class c1 as confidence measure. This measure will be
used as a monitory signal for handling false positives. It has been proven theo-
retically that truncated classifier output is an accurate estimate of posterior proba-
bility [30]. The truncated classifier output is given as:

T y ̂tj
� �

=min max y ̂tj, − 1
� �

, 1
� �

, j=1, 2 ð14Þ

where the range for T y∧ t
j

� �
is [−1, 1]. The posterior probability of the input xt

belonging to positive class c1 is given as

p ̂ c1jxtð Þ=
T y ̂tj
� �

+1

2
ð15Þ

Rule Growing Strategy
If the training sample contains significant information not already present in the
cognitive component or if the estimated class label is incorrect with a high error,
McFIS adds a new rule to the network. In addition to this rule growth criterion, to
minimize false positive predictions, eMcFIS adds new rule when the sample results
in a false positive with a positive class posterior probability estimate greater than
the false positive minimization threshold.

In other words, eMcFIS combines posterior probability of predicted sample
belonging to positive class c1, p ̂ c1jxtð Þ, along with hinge error and class-specific
spherical potential measures proposed by McFIS to develop following rule growth
criteria:

Et >Ea AND ct ≠ c ̂t AND φc <ESð Þ OR FP AND p ̂ c1jxtð Þ>EFPð Þ ð16Þ

where Ea is self-adaptive rule addition threshold, φc is the class-specific spherical
potential, ES is class-specific novelty threshold, FP denotes the instance being a
false positive prediction by the classifier as given in Eq. 13 and EFP is the fixed
false positive minimization rule addition threshold.

The term FP AND p ̂ c1jxtð Þ>EFP measures the classifier’s confidence of the
false positive sample belonging to positive class c1 against EFP. If the confidence
measured by posterior probability is greater than the false positive minimization
rule addition threshold, it means that the misclassification occurs with a higher
degree of confidence for positive class while the sample actually belongs to neg-
ative class. Hence this sample presents novel knowledge to be learnt for the false
positive optimization. Therefore, we add it as a new rule.
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Upon adding a new rule the self-adaptive rule addition threshold, Ea is adapted
as follows:

Ea : = δ Etð Þ+ 1− δð ÞEa ð17Þ

where δ is the slope that controls the rate of adaptation. The center μK +1ð Þ, width
σK +1ð Þ and output weight αK +1ð Þ of new rule are initialized as follows:

μK +1 = xt ð18Þ

σlK +1 =
k × dS, if dS

dI
<1.0

η× dI , if dS
dI
>1.0

(
ð19Þ

where nrS is the nearest rule in the same class and nrI is the nearest rule in the
interclass with ds = xt − μnrSj jj j, dI = xt − μnrIj jj j and k and η determining the overlap
between the new rule and nearest rule in the same and opposite class respectively.

αj,K +1 =
0, ytj*

∑K
i=1 αji∅i

1+ ∑K
i=1 ∅i

>1

ytj −
∑K

i=1 αji∅i

1+ ∑K
i= 1 ∅i

, otherwise

8<
: where j=1, 2, . . . , n ð20Þ

Rule Update Strategy
When a training sample is predicted correctly but the maximum hinge error is
greater than the self-adaptive rule parameter update threshold, El, then McFIS
updates the parameters of the nearest rule in the same class using an EKF algorithm.
In addition to this criterion, if the sample results in a false positive prediction then
the rule parameters of the nearest rule in opposite class, i.e., the positive class (c1),
are updated to minimize such false positive prediction errors.

Hence the rule update criterion for eMcFIS is given by:

Et >El AND ct = c ̂tð Þ OR ðFPÞ ð21Þ

where El is the self-adaptive parameter update threshold, updated as per equation
below:

El: = δEt + 1− δð ÞEl ð22Þ

If condition Et >El AND ct = ct̂ð Þ is evaluated to be true it shows that the sample
was predicted correctly but maximum hinge error is greater than rule parameter
update threshold. Hence the following McFIS rule update strategy equations apply
wherein the nearest same class rule parameters are updated as follows:

wnrS =wnrs +GnrSet, wnrS = αnrS, μlnrS, σ
l
nrS

� �
∈ℜ m+ n+1ð Þ ð23Þ
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where et is the error defined in (8), and GnrS is the Kalman gain matrix given by

GnrS =PnrSatnrS R+ atTnrSPnrSatnrS
� �− 1 ð24Þ

where anrS ∈ℜ m+ n+1ð Þ× n is the output gradient with respect to the parameters
(wnrS), R = r0Inxn is the variance of measurement noise and
PnrS ∈ℜ m+ n+1ð Þ× m+ n+1ð Þ is the nearest rule parameters error covariance matrix.
Gradient ðanrSÞ is given by

atnrS =

∂yt̂i
∂αi, nrS

=∅nrS, i=1, 2, . . . , n
∂yt̂i

∂μnrS, j
=2∅nrS

xtj − μnrS, j
σ2nrS

αi, nrS − yt̂i
∑K

l=1 ∅l

∂yt̂i
∂αnrS

=2∅nrS
xt − μnrSj jj j2

σ3nrS

αi, nrS − yt̂i
∑K

l= 1 ∅l

2
6664

3
7775 ð25Þ

where j = 1, 2, …, m and PnrS is updated as

PnrS = Iz× z −GnrSatTnrS
� �

PnrS + q0Iz× z ð26Þ

If ðFPÞ condition holds true, then the parameters of the nearest rule in positive
class (c1), nrP, defined by

nrP= argmin
l≠ 2

xt − μl


 



 

 ð27Þ

are updated as given below:

wnrP =wnrP +GnrPet, wnrP = αnrP, μlnrP, σ
l
nrP

� �
∈ℜ m+2+1ð Þ ð28Þ

where et is the error defined in (8) and GnrP is the Kalman gain matrix given by

GnrP =PnrPatnrP R+ atTnrPPnrPatnrP
� �− 1 ð29Þ

where anrP ∈ℜ m+2+1ð Þ×2 is the output gradient with respect to the parameters
(wnrP), R = r0I2x2 is the measurement noise variance and PnrP ∈ℜ m+2+1ð Þ× m+2+1ð Þ

is the nearest rule parameters error covariance matrix. anrP is given by

atnrP =

∂yt̂i
∂αi, nrP

=∅nrP, i=1, 2
∂yt̂i

∂μnrP, j
=2∅nrP

xtj − μnrP, j
σ2nrP

αi, nrP − yt̂i
∑K

l=1 ∅l

∂yt̂i
∂αnrP

=2∅nrP
xt − μnrPj jj j2

σ3nrP

αi, nrP − ŷti
∑K

l= 1 ∅l

2
6664

3
7775 ð30Þ

where j = 1, 2, …, m and PnrP is updated as
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PnrP = Iz× z −GnrPatTnrP
� �

PnrP + q0Iz× z ð31Þ

where z=m+2+ 1 and q0 determines the allowed step in gradient vector direction.

Rule Pruning Strategy
eMcFIS prunes the network rules whose contribution βk in the class is lesser than
the pruning threshold Ep for Nw consecutive samples in class c. Rule contribution βk
is given by

βk =
E
φc

∅kmax αkj j ð32Þ

where E is the maximum hinge error, φc is the spherical potential of actual class
c and ϕk and αk are the firing strength and output weight of kth rule respectively.
Whenever a new rule is added, the error covariance matrix, P, is updated as
following:

P 0
0 p0Iz× z

� �
ð33Þ

where p0 is the initial estimated uncertainty. Conversely, when a rule is pruned from
the network the dimensionality of the matrix is reduced by removing the respective
rows and columns in P.

Sample reserve strategy
If the training sample does not fulfill the rule growing or parameter update
requirements, it is reserved for probable usage afterwards when eMcFIS may find it
favorable for learning. For ease of understanding, the summarized pseudo-code for
eMcFIS is given in Fig. 3.

3.3 Influence of Thresholds in Decision-Making of eMcFIS

In this proposal we used fixed as well as self-regulatory thresholds in the
decision-making process. We hereby explain their effect and provide a guideline for
their initialization. There are five important thresholds used in this study. They are:
delete threshold ðEdÞ, novelty threshold ðESÞ, rule addition threshold ðEaÞ,
parameter update threshold ðElÞ and false positive minimization threshold (EFP).
For detailed information on other parameters influencing decision making capa-
bilities of the classifier, such as class overlap factors, a reading of [21] is suggested.
The proposed algorithm uses hinge-loss error function for measuring classification
error. It can be seen from Eq. (10) that range of Et is [0, 2]. There are two
possibilities when a sample is classified namely, classified correctly or misclassi-
fied. The classification outcome along with the confidence of prediction and
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class-specific criteria information is used in determining the self-regulatory
thresholds.

Delete threshold Ed

When a training sample is predicted correctly with maximum absolute hinge loss
error less than the delete threshold Ed it is deleted without learning, as it represents
the knowledge present in the network. If Et is close to 0, it signifies that the sample
is predicted correctly with a high level of confidence as the predicted and actual

while learning the samples do
1. Calculate the absolute maximum error , significance ϕ, predicted posterior 

probability and predicted posterior probability of sample for positive 
class for the current input 

2. if then
a. delete the sample without learning. 
b. Increment t by 1. Goto Step 1.

3. else if
then
a. Add new rule.
b. Update and EKF as per eqns. (17-20) and error covariance matrix 

as per eqn. 33
c. if then

i. Update nearest positive class rule parameters of network 
according to eqns. (28-31) and as per eqn. 22

d. end
4. else if then

a. if then
i. Update nearest same class rule parameters of network ac-

cording to eqns. (23-26) and as per eqn. 22
b. else

i. Update nearest positive class rule parameters of network 
according to eqns. (28-31) and   as per eqn. 22

c. end
5. else

a. Reserve the sample to learn later. Increment t by 1. Goto Step 1.
6. end
7. if rule contribution in the class is lesser than pruning threshold  for 

consecutive samples
a. Prune the rule from network and update error covariance matrix

8. end
9. Increment t by 1. Goto Step 1.

end

Fig. 3 Pseudo-code for eMcFIS classifier
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output are similar. Misclassification occurs when Et is greater than 1. If Ed is
chosen close to 1 then most of the samples will be deleted whereas if it is selected
close to 0 most of the samples will be used for training leading to overtraining.
Therefore Ed should be selected in the range [0.9, 0.97].

Class-specific Novelty threshold Es

This threshold measures the data sample novelty. Spherical potential is in the range
[0, 1] with a value closer to 0 indicating novel knowledge and that nearer to 1
representing existing knowledge. If ES is selected close to 0, then the algorithm
does not allow for rule addition while if it is selected to be near 1, then most of the
samples will be represented as novel. Therefore ES should be in the [0.5, 0.7] range.

Rule addition threshold Ea

This is a self-regulatory threshold used to identify and learn training instances with
significant knowledge first followed by fine tuning of the classifier parameters with
ones that are less significant. Given that misclassification occurs when Et is greater
than 1, if Ea is chosen close to 1 then all the misclassified samples will be used for
rule addition whereas if it is chosen close to 2 then fewer samples will be selected
for rule addition. We therefore suggest Ea being in the range [1.2, 1.7].

Rule parameter update threshold El

When the sample is predicted correctly but the maximum absolute hinge loss error is
greater than the self-regulatory parameter update threshold, El, the parameters of
nearest rule in the same class are updated. IfEl is selected close to 0 then all the samples
will qualify this criterion leading tooverfitting.On thecontrary, ifEl is selected close to
1, thenmost of the sampleswill not be selected. To let the sampleswithhigher error rate
be first used for tuning we suggest choosing El to be in the [0.3, 0.7] range.

False Positive Minimization threshold EFP

EFP is used to determine if a new rule is to be added to minimize false positives or not.
A training instance is classified wrongly if it is closer to the nearest rule in opposite
class than the actual class. False positive prediction occurs when the sample belongs
to the negative class but is predicted as belonging to the positive class. We measure
the posterior probability of a predicted FP sample belonging to the positive class c1. If
this is greater than EFP, it suggests that misclassification is happening with a higher
degree of confidence for the positive class. Therefore, the sample is selected for rule
addition to learn the missing information about the actual class. On the contrary, if the
classifier has less confidence in predicting the sample, then it suggests that there exists
some knowledge in the network of the sample belonging to the actual negative class
c2. We therefore update the parameters of nearest positive class rule, nrP taking into
account its distance from the false positive training sample.

All false positive instances are used for the update of nrP rule parameters. The
range of posterior probability is [0, 1]. Misclassification occurs if the posterior
probability for the predicted class is greater than or equal to that of the actual class.
Assuming an ideal situation, the range for EFP will be [0.4, 1.0]. If EFP close to 0.5
is selected, then all of false positive samples will be used for rule addition resulting
in over fitting the false positive instances. Similarly if EFP is chosen close to 1.0,
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then not many samples may be available for false positive minimization rule
addition. In practical scenarios posterior probability may not have such high values.
Hence, the suggested EFP range is [0.5, 0.7].

3.4 Performance Analysis of eMcFIS on Benchmark
Datasets

In this section we evaluate the performance of the proposed eMcFIS classifier and
compare it with other existing algorithms: McFIS [21], batch learning ELM [13]
and standard Support Vector Machine [4] in false positive minimization using
real-world binary classification benchmark data sets from University of California,
Irvine (UCI) machine learning repository [32] and mammogram dataset from
mammographic image analysis society digital mammogram database [33].

Benchmark Datasets
To substantially verify the performance of the proposed algorithm we have utilized
data sets with small and high number of samples as well as varying dimensional
features in binary classification problems. Table 1 shows the detailed specifications
of the five datasets used in the study. Heart disease (HEART) is an unbalanced data
set while the rest four of the benchmark datasets, PIMA Indian diabetes (PIMA),
breast cancer (BC), Mammogram (MAMM) and Ionosphere (ION), are balanced.
For performance comparison, we used one class as positive (P) and another as
negative (N) to train the eMcFIS classifier.

Simulation Environment
We performed a ten-fold cross validation on all the benchmark data sets in Matlab
R2012a environment on a Windows 7 system with 8 GB RAM by maintaining the
sample sizes on each of the ten randomly generated cross validation partitions of the
data set. The tunable parameters of McFIS, eMcFIS, SVM and ELM are selected
using a ten-fold cross validation on training samples. The cost and kernel param-
eters for SVM were optimized using a grid search. We report the best parameter
combination for which the algorithm produces higher validation accuracy results.

Table 1 Specification of benchmark datasets

Data set Features Train
samples

Train
samples
(P)

Train
samples
(N)

No. of
testing
Samples

Test
samples
(P)

Test
samples
(N)

PIMA 8 310 155 155 368 255 113
BC 9 222 111 111 383 255 128
MAMM 9 80 40 40 11 5 6
HEART 13 70 30 40 200 110 90
ION 34 72 36 36 251 161 90
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Performance Measures
Performance measures of each algorithm on ten-fold partitions of the data set are
measured using class-level and global performance measures as well as incurred
false positives. Elements of Confusion matrix Q are used to obtain the performance
measures. Class-level performance measured by percentage classification (ηj) is
defined as

ηj =
qjj
Nj

×100% ð34Þ

where qij is the number of correctly classified instances in class j. Global perfor-
mance measures used in the evaluation are the overall classification accuracy (ηo),
average per-class classification accuracy (ηa) and average false positive count
(fmean) defined as

ηa =
1
n
∑
n

j=1
j, ηo =

∑n
j=1 qjj
N

× 100%, fmean =
∑10

f =1 fp

10
ð35Þ

where fp denotes the number of false positives predictions in the fold f.

Performance Comparison
Table 2 gives the classifier training time, number of rules, mean and standard
deviation of testing overall (ηo) and average per-class classification accuracy (ηa)
along with false positive count (fp) for the tested algorithms on the benchmark data
sets. It should be noted that SVM is implemented in C language and other algo-
rithms are implemented in Matlab environment. From the performance measures
reported in Table 2, it can be seen that eMcFIS achieves significant reduction in
false positives along with increase in average accuracy as compared to other
algorithms in all data sets. On MAMM dataset the algorithm results in zero false
positives, with a performance analogous to McFIS. Even on a simple dataset like
BC where all classifiers achieve similar performance with overall accuracy greater
than 97 % the false positive optimization effect of the proposed eMcFIS can be
seen. In addition to this, due to the metacognitive component in eMcFIS, it requires
only around 21 % of the total samples in BC to develop the classifier and employs
less number of rules to approximate the decision surface as compared to SVM and
ELM algorithms.

In case of HEART and ION data sets, eMcFIS reports an overall accuracy
comparable to the best-performing McFIS along with around 1 and 5 %
improvement over SVM and ELM respectively. Except for PIMA, eMcFIS reports
higher overall accuracy over SVM and ELM on all other data sets. For HEART
dataset, eMcFIS reported highest overall accuracy of all the classifiers tested. It also
had best average per-class classification accuracy on all the datasets. These results
show that eMcFIS minimizes false positives while maintaining high generalization
accuracy.
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PIMA and BC data sets were also used for evaluation in [12] which uses
two-stage methodology consisting of 1-NN and ELM for false positive mini-
mization. On PIMA dataset, the proposal reported a 3.9 % overall false positive rate
(i.e., false positive count/testing samples) and 54.69 % overall accuracy along with
classifying 25 % of testing samples as unknown. As compared to this, using the
information in Tables 1 and 2 it can be calculated that eMcFIS has 5.7 % overall
false positive rate and 75.79 % overall accuracy. On BC data set the algorithm
reported a 0.5 % overall false positive rate and 93.16 % overall accuracy and
classifies 4.2 % testing samples as unknown whereas eMcFIS has 0.08 % overall
false positive rate and 97.42 % overall accuracy. It can therefore be inferred that
eMcFIS is practical in reducing false positives while balancing coverage without
the need for further auditing those classified as unknown.

Statistical Comparison
To statistically compare the false positive optimization performance of the proposed
eMcFIS classifier with that of other classifiers on the benchmark datasets, we
employed a nonparametric Friedman test followed by the Benforroni-Dunn test as
described in [34]. Friedman test compares if the individual experimental mean
condition differs significantly from the aggregate mean across all conditions. If the
F-score measure is greater than the F-statistic at 95 % confidence level, then the

Table 2 Performance evaluation on benchmark datasets

Data set Algorithm Time (s) Rules mean ηo mean ηo S.D ηa mean ηa S.D fmean fp S.D

PIMA SVM 0.006 193.2 76.17 1.64 76.00 1.41 27.6 3.24

ELM 0.02 34.2 76.77 1.60 76.53 1.92 27.2 5.47

McFIS 0.64 103.8 76.79 1.33 74.98 1.89 33.6 6.95

eMcFIS 0.96 104.5 75.79 1.91 77.28 2.02 21.3 5.44

BC SVM 0.003 64.3 97.21 0.56 97.30 0.74 3.1 1.79

ELM 0.014 25.5 97.08 0.64 97.10 0.89 3.6 2.32

McFIS 0.22 12 97.76 0.53 97.94 0.65 1.9 1.66

eMcFIS 0.36 13.6 97.42 0.31 98.00 0.24 0.3 0.48

MAMM SVM 0.003 73.6 94.55 4.69 94.33 4.92 0.2 0.42

ELM 0.005 37.9 94.55 6.36 94.5 6.43 0.3 0.48

McFIS 0.24 28 96.36 4.69 96.00 5.16 0.0 0.00

eMcFIS 0.34 27 96.36 4.69 96.00 5.16 0.0 0.00

ION SVM 0.003 50.2 91.24 2.28 89.05 2.98 16.8 6.55

ELM 0.004 61.7 86.69 1.60 83.43 1.93 25.3 3.53

McFIS 0.28 21.7 92.75 1.44 91.73 1.98 10.7 4.85

eMcFIS 0.36 22.8 92.39 1.67 92.65 1.97 5.8 4.26

Heart SVM 0.003 55.7 78.95 3.58 79.49 3.09 13.6 5.38

ELM 0.003 25.7 74.7 4.08 75.09 3.96 18.9 4.91

McFIS 0.27 26.4 78.8 3.85 78.96 3.64 17.5 4.65

eMcFIS 0.39 29.1 79.75 0.92 80.44 0.72 11.4 3.41
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equality of mean hypothesis is rejected, i.e., the hypothesis that the classifiers used
in the means comparison perform alike on the benchmarked data sets is rejected. If
equality of means hypothesis is rejected by nonparametric Friedman test, then
pairwise post hoc test should be performed to identify which classifier algorithm
mean is different from that of the other classifiers.

In this chapter we used average false positive count of four classifiers on five
different datasets from Table 2 to carry out the described statistical comparison test.
The F-score obtained using nonparametric Friedman test is 7.95, which is greater
than the F-statistic at 95 % confidence level (F3,12,0.05), 3.49. Since 7.95 > 3.49,
mean equality hypothesis can be rejected at a confidence level of 95 %. To
emphasize the performance significance of eMcFIS classifier we conduct a pairwise
comparison of average rank of eMcFIS classifier with that of each of other clas-
sifiers. The critical difference is calculated as 1.14 at 95 % confidence level and the
proposed eMcFIS classifier is used as control. The average rank of all the four
classifiers in false positive optimization can be calculated from Table 2 and are
found as eMcFIS: 1.1, McFIS: 2.5, SVM: 2.8 and ELM: 3.6. The difference in
average rank between the proposed eMcFIS classifier and the other three classifiers
are eMcFIS-SVM: 1.7, eMcFIS-ELM: 2.5, eMcFIS-McFIS: 1.4. The difference
between the average rank of eMcFIS and each of the rest of the classifiers is greater
than the CD at 95 % confidence level of 1.14. Hence it can be deduced that eMcFIS
is significantly better than the rest of the classifiers in reducing false positives with a
confidence level of 95 %.

4 Biometric Identification Using eMcFIS

In this section we present practical applications of the proposed eMcFIS for the
security sensitive problems of biometric identification namely, fingerprint recog-
nition [35] and forged signature identification [36].

Biometrics are automatically measurable physiological (e.g., fingerprints, facial
image) or behavioral characteristics (e.g., voice, signature) that can be used to
identify individuals. Biometric measurements obtained from an individual are used
to create a reference template. A biometric system uses the created reference
templates to automatically identify or verify a person’s identity. Fingerprint bio-
metrics use distinctive characteristics of human fingerprint whereas facial image
recognition uses facial features such as location and contours of eyes, nose,
cheekbones and mouth for identification. Voice based systems use speech recog-
nition techniques while signature based biometric systems use dynamics of person’s
hand written signature like letter strokes, pressure, and speed of signing for iden-
tification. Biometric systems are being used as stand-alone or complimentary means
of access control to conventional personal identification systems. Since such bio-
metric identifiers are unique to an individual they are more reliable in verifying a
person’s identity instead of conventional identifiers like access cards for physical
systems or passwords for knowledge-based authentication systems. Due to
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increasing online and offline fraud, several organizations from financial and
banking services to government organizations are looking to biometric systems for
enhanced security. We evaluate the performance of eMcFIS using two biometric
datasets namely, Signatures dataset [36] and the third fingerprint verification dataset
from FVC2004 [35]. A biometric system can be expressed as binary classification
problem and solved using machine learning approaches.

4.1 Signature Verification Problem

Signature verification systems analyze the way a user signs his or her name. Sig-
nature verification has long been used for verifying the identification of an indi-
vidual although automatic signature verification is still a new topic. Signature
verification systems can be classified as online or offline systems. In offline
methods, the signature is digitized using a scanner or camera and is verified by
examining the overall or detailed features whereas online methods use digitizing
tablet to acquire the signature dynamics in real-time during signing. In the pre-
processing phase, techniques based on signal processing are generally employed to
improve the acquired input data. These may include removal of noise caused by
scanners using median filters, signature size normalization and thinning [37].
Segmentation of signature is another curial step in pre-processing since signatures
produced by a signer may differ due to stretching or compression owing to dif-
ference in physiological or practical conditions. Segmentation techniques like those
using structural analysis, connected components, dynamic time warping
(DTW) were proposed in literature. Depending on offline or online signature ver-
ification system being utilized, two types of feature extraction mechanisms can be
used namely: those using parameters like displacement, contour, slant, shape and
ones that express the signature by characterizing it in terms of time function such as
position, velocity, pressure, force, direction respectively.

Signature verification systems can be classified into template matching, statis-
tical or structural techniques [37]. Template matching techniques match a provided
sample against known authentic or forged signature templates. When time function
based features are used, DTW is most commonly used for template matching.
Distance based measures, neural networks and hidden markov models (HMM) are
used when employing statistical approaches. Neural network models have been
widely used for signature verification due to their learning and generalization
capabilities as demonstrated by the proposals using Bayesian [38], multi-layer
perceptron (MLP) [39, 40], neuro fuzzy inference networks [41, 42]. In recent
times, HMM based verification models [43, 44] are commonly used for signature
verification as they are capable of absorbing the variability between signature
patterns. SVM, due to its ability to map input vector into a higher dimensional
cluster separating hyper plane, has been used in offline and online signature veri-
fication [45, 46]. Structural approaches [47, 48] are usually used in combination
with other techniques to support signature structure or description match. Apart
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from these, decision combination schemes like majority voting and weighted
averaging solutions [49] were also proposed in literature in addition to multi expert
approaches combining complimentary signature verification systems like those
using static as well as dynamic features [50] and global and local features [51].
While all these solutions try to improve coverage they do not address the issue of
false positives.

Signatures Dataset (SD)
The MYCT SUB-CORPUS-100 dataset used in this study was generated using 100
signers [36]. Each signer produced 25 signatures. After registering the signature,
forgers are supplied with the signature images of the clients to be forged. After
training the forgers with these genuine signature images, forgers are asked to mimic
the natural dynamics of client’s signature and 25 forged signatures are collected.
Together, there are 2500 (25 × 100) genuine signatures and 2500 (25 × 100) forged
signatures. For each signature, 100 features are extracted by fusing the local and
global information. The database is then divided into training and testing sets. The
training set is composed offirst five genuine signatures of each of the 100 signers and
skilled forgeries for first 20 signers. The test set comprises of remaining samples of
rest 80 signers (i.e., 80 × 20 genuine and 80 × 25 imposter similarity test scores) [52].

For this study we used these training and testing sets comprising of 1000 and
3600 instances respectively. In this study we took forged signature predicted to be
original as being a false positive. This is critical, for example, in banking systems
where forged signature transaction detected as original might lead to financial loss.

Performance Evaluation on SD
Table 3 reports the performance evaluation of McFIS (the next best classifier in
minimizing false positives from statistical comparison results on medical datasets in
the previous section) and eMcFIS on Signatures dataset. It can be seen from the
results that eMcFIS reports overall accuracy analogous to McFIS, while its average
per class accuracy is also comparable to McFIS. The false positives reported by
eMcFIS were around 3.4 % (=124/3600) of total samples in contrast to 10.2 %
samples reported by McFIS.

4.2 Fingerprint Verification Problem

Given that fingerprints are claimed to be unique to a person and usually remain
invariant over time, they are used as biometrics for distinguishing between

Table 3 Performance evaluation on signatures dataset

Algorithm Time (s) Rules ηo ηa fp Sample usage (%)

McFIS 3.39 249 75.53 74.77 368 32.50
eMcFIS 2.52 242 75.47 73.18 124 30.40
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individuals. There are two steps in fingerprint verification system. In the enrollment
phase, fingerprints of users are acquired by a scanner to produce a raw digital
representation [53] which is further processed by the feature extractor to generate
user template that is stored in the biometric database. At the time of verification, the
input fingerprint is compared by the feature matcher with stored template to
authenticate the identity. Fingerprint is a pattern of interleaved ridges and valleys
that often run in parallel and at times bifurcate and terminate. Singularities are
regions in fingerprint where ridge lines have a distinct shape. These are termed as
global features in fingerprint. Local features are termed as minutiae and refer to
ridge discontinuities. Extracted fingerprint features typically have physical features
like singularities and minutiae and could also use non-physical features like local
orientation image, filter responses etc.

Fingerprint classification approaches can be categorized into rule-based, syn-
tactic, structural, neural network and multiple classifier techniques [54]. Rule-based
approaches classify fingerprints based on position and number of singularities,
analogous to techniques employed by human experts for manual classification [55].
Syntactic approaches describe the fingerprint patterns using terminal symbols and
production rules. Structural approaches use hierarchical organization information
(e.g., trees and graphs) for classification [56]. Statistical approaches using Bayes
decision rule, SVM [57], k-nearest neighbor algorithms [58] were proposed in the
past. Classifiers harnessing the generalization and learning abilities of neural net-
works were also proposed in literature [59, 60]. Observations that some classifiers
misclassify certain patterns but are effective for other patterns triggered multiple
classifier based methods making use of complementary information processing
capabilities of different classifiers [61].

Fingerprint Verification Competition (FVC) Dataset
A public domain fingerprint database was created for the purpose of evaluation of
fingerprint recognition algorithms. Two different competitions namely, open and
light were held in FVC2004 competition. We used the open category database in
our experiment. In this category the data came from four different databases created
using three commercially available scanners and the other using synthetic generator
SFinGe. The data collection details can be found in [35]. The database comprises of
100 different fingers with eight impressions per finger. Eight impressions of each
finger were matched against each other to generate 2800 genuine matching scores.
First impression of each user was also matched against first impression of every
other user to generate 4950 imposter matching scores. Together there are 7750
scores for each scanner resulting in total of 31,000 matching scores for all four
scanners. The features of the dataset are the scores of 41 competitors of FVC2004.
A random two-fold cross validation was performed to divide the FVC data set into
training and testing datasets comprising of 15,500 instances each respectively to
enable performance comparison of eMcFIS and McFIS classifiers with the results
published in [52] and using a two-fold cross validation on the dataset.

In this study we treated imposter predicted as genuine to be false positive
instance. Such assumption is relevant for instance, in a defense establishment with
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biometric identification systems, where an imposter identified as client and given
access might lead to security breaches.

Performance Evaluation on FVC Dataset
Table 4 reports the two-fold cross validation performance evaluation of McFIS and
eMcFIS on FVC dataset. On this data set both McFIS and eMcFIS achieve an
overall and average accuracy over 99 % with eMcFIS having a slightly better
accuracy than McFIS. While the number of false positives reported by McFIS is
around 0.17 % (=26/15,500) of total test samples, the effect of false positive
minimization of eMcFIS can be perceived with its respective 0.13 % performance.

4.3 Performance Comparison

In this section performance of eMcFIS is compared with McFIS and the stand-alone
classifier results published in [52]. Equal Error Rate (EER) was used for perfor-
mance evaluation in FVC2004 [35]. EER measures the error rate when the false
acceptance rate (FAR) and the false rejection rate (FRR) assume the same value. It
is computed based on classifier prediction scores. Lower EER values are desirable
in a biometric system. Along with proposed performance measures described in
Sect. 3.4, we used EER in the performance evaluation of biometric data sets. It
should however be noted that a lower EER value does not necessarily imply better
coverage or lower false positives and nature of application determines the choice of
performance measures.

The classifier set up in [52] generated K new training sets from the training data
with K taking on values 10 and 25 for SD and FVC data sets respectively. The
stand-alone classifier models were built using these modified training sets and then
combined using SUM rule for final prediction decision. The performance measures
of the classifiers on SD and FVC datasets are presented in Tables 5 and 6
respectively.

Table 4 Performance evaluation on FVC dataset

Algorithm Time (s) Rules ηo ηa fmean Sample usage (%)

McFIS 23.56 211.5 99.34 99.19 26.0 11.80
eMcFIS 09.88 83.5 99.39 99.23 19.5 08.14

Table 5 EER Performance evaluation on signatures dataset

Algorithm EER (%)

LM 36
LV 37
RV 18
McFIS 25.11
eMcFIS 22.94
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Random Subspace (RS) [62] ensemble was reported to outperform other
ensemble methods tested in [52] namely: bagging [63], arcing [64], class switching
[65] and decorate [66]. In RS individual classifiers use only a subset of all features
for training and testing. RS ensemble in the paper used 50 % of features. The
ensemble classifier methods were tested with Levenberg-Marquardt neural network
with five hidden units (LM) [67], linear support vector machine (LV) and radial
basis support vector machine (RV) as classifier and “Max rule” (MAX) and “Sum
rule” (SUM) [68] as decision rules for determining final class from an ensemble of
classes.

It can be seen from Table 5 that EER of eMcFIS is better than LM and LV
classifiers and is next best to RV with a difference less than 5 %. When compared
with ensemble classifier results reported in the paper also, eMcFIS performs sig-
nificantly better than non-RV based ensemble classifier set-ups. Although the
overall and average accuracy measures of McFIS are slightly better than eMcFIS,
the EER of McFIS is higher than that of eMcFIS. This is because EER is calculated
using classifier scores rather than enumerating correctly classified instances.

We now present performance comparison for FVC dataset. While reporting the
FVC results, the authors of [52] combined the scores obtained by i best competitors
of 41 used in our study, where i = 3, 5, 7. Table 6 shows the EER results reported
for stand-alone classifiers in the paper with that of McFIS and eMcFIS.

We can see from the table that McFIS outperforms all the stand-alone classifiers
while eMcFIS falls short of McFIS with a difference of 0.074 %. The paper reported
that RS_LM was best ensemble classifier with EER of 0.64. The difference between
it and eMcFIS is 0.15 % which is comparatively negligible given the resources and
costs needed for an ensemble classifier set up. It can be inferred from the results
reported in Tables 4 and 6 that although McFIS has slightly better EER than
eMcFIS for the FVC dataset, the mean false positive count of eMcFIS is lower than
that of McFIS which is highly desirable for the problem.

To summarize, having low false positives is highly critical in signature and
fingerprint verification biometric systems due to their security requirements. While
there are many biometric classifier algorithm proposals in current literature they do
not explicitly address the issue of false positive reduction. eMcFIS with its intrinsic
false positive handling and metacognitive self-regulatory learning is appropriate for
such security sensitive biometric identification systems as it couples high accuracy
with low false positive predictions.

Table 6 EER performance
evaluation on FVC Dataset

Algorithm EER (%)
FVC3 FVC5 FVC7

LM 1.27 1.75 0.95
LV 0.94 0.73 0.76
RV 0.93 0.74 0.75
McFIS 0.715
eMcFIS 0.789
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5 Conclusion

Biometric solutions are being progressively deployed in online and offline systems
to ensure reliability. False positive optimization is critical in security-sensitive
biometric systems as they can result in huge damages. In this chapter, we presented
an extended MetaCognitive Fuzzy Inference System (eMcFIS) with low false
positive learning for biometric identification. eMcFIS employs a neuro-fuzzy
inference system in the cognitive component along with a sequential evolving
learning algorithm, where the data arrives sequentially and the network evolves
rules to approximate the decision surface. The metacognitive component of eMcFIS
decides on what-to-learn, when-to-learn, and how-to-learn the given data. It uses
posterior probability as a measure of classifier’s confidence, along with
self-adaptive learning thresholds and class-specific criterion for low false positive
learning. The performance of proposed eMcFIS classifier was evaluated initially
using benchmarked medical datasets from UCI machine learning repository and
mammogram database. The statistical Friedman test followed by the
Benforroni-Dunn test on the benchmarked data sets highlights that the proposed
eMcFIS algorithm achieves better performance than other well-known classifiers.
The performance of eMcFIS in biometric identification was evaluated using two
real-world security sensitive classification problems of signature and print identi-
fication. The performance comparison on the biometric datasets with other
approaches clearly highlights the advantages of the proposed method in biometric
identification with its intrinsic low false positive learning and efficient generaliza-
tion ability.
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Abstract We propose a new paradigm for issuing, storing and verifying travel
documents that features entirely digital documents which are bound to the indi-
vidual by virtue of a privacy–respecting biometrically derived key, and which make
use of privacy-respecting digital credentials technology. Currently travel docu-
mentation rely either on paper documents or electronic systems requiring connec-
tivity to core servers and databases at the time of verification. If biometrics are used
in the traditional way, there are accompanying privacy implications. We present a
smartphone-based approach which enables a new kind of biometric checkpoint to
be placed at key points throughout the international voyage. These lightweight
verification checkpoints would not require storage of biometric information, which
can reduce the complexity and risk of implementing these systems from a policy
and privacy perspective. Our proposed paradigm promises multiple benefits
including increased security in airports, on airlines and at the border, increased
traveller convenience, increased biometric privacy, and possibly, lower total cost of
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1 Introduction

This chapter explores applications of computational intelligence and cryptography
to biometric privacy in the domain of international travel and border security.
Traditionally, paper-based documents have been issued to show authorization to
travel. Often these have been secured with biometric images on the printed docu-
ment, in a supporting database or in an embedded chip on the document itself (as in
ICAO e-passports). In this chapter, we present the possibility of representing travel
credentials, not as a paper document secured by an actual biometric, but rather, an
electronic document secured by a privacy-respecting biometric identifier. The
electronic document is stored on the traveller’s smartphone and used throughout the
traveller’s voyage. The biometric identifier is derived in an irreversible manner
from the actual biometric using computational intelligence and cryptographic
techniques.

We describe the architecture and key algorithms for a notional document: the
biometric-enabled electronic Travel Authority (b-TA). We use this notional b-TA as
an example, to illustrate a broader class of documents: Electronic Travel Creden-
tials. These Electronic Travel Credentials are characterized by the following:

(1) The document is issued and verified by two separate agencies
(2) The integrity of the data contained within the document must be verifiable

from the time of issuance
(3) The document grants a special privilege to the individual to whom it was

issued
(4) The document must not be transferable between individuals
(5) The document can be cross-referenced to an overarching traveller record (such

as a passport)

Extending the ideas in this paper to a collection of credentials, stored in a secure
repository on the smartphone leads to a mobile phone-based passport (an
m-passport). We believe this type of credential has the possibility to significantly
change the international travel, border security and mobile commerce environments.

In the scenario we put forward, the b-TA is an electronic document, using
attribute-based credentials secured to the traveller through a Renewable Biometric
Reference (RBR)1 created from the traveller’s fingerprint or other biometrics, and
certified by the issuer’s digital signature. The b-TA is cross-referenced to the
traveller’s e-passport. This b-TA can be seen as a privacy preserving biometric

1Given the range of terms used in the domain, we choose to follow ISO standard 24745 [41]. The
concept of a RBR is described in Annex C of the 24745 standard as follows:

Renewable biometric references (RBRs) are revocable/ renewable identifiers that represent an
individual or data subject within a certain domain by means of a protected binary identity
(re)constructed from a captured biometric sample. A renewable biometric reference does not
allow access to the original biometric measurement data, biometric template or true identity of its
owner. Furthermore, the renewable biometric reference has no meaning outside the service
domain.
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variation of the Electronic System for Travel Authorization ESTA [18] required by
The United States Customs and Border Protection (CBP) for US Visa-Exempt
Countries, or Canada’s Electronic Travel Authority (eTA) program under
Citizenship and Immigration Canada [27]. The approach we present yields benefit
in terms of security, efficiency and privacy. From a security perspective, binding the
cryptographic credential to the traveller through the use of biometrics prevents
many types of fraudulent activity which can occur. Operational efficiency increases
since automation technologies such as kiosks and electronic gates (e-gates) become
possible. From the perspective of privacy, the use of RBRs removes the need to
store the biometric on a server or even on the smartphone. This can help alleviate
public concern over the use of biometrics, and can simplify policy issues associated
with privacy impact and personal information banks. The presented approach is
scalable to accommodate b-TAs from multiple countries, and can lay foundations
for m-passports. The paper presents a general b-TA scenario, elaborates a list of
security and engineering requirements, puts forward a system design, and makes an
assessment of the proposed system.

2 The b-TA Scenario

This section aims to present the application from a technology neutral perspective to
set the context for the technical solution and engineering assessment to occur sub-
sequently. We present the b-TA scenario and discuss its general flow. We introduce
the participants and protocols, and present a set of application requirements.

At its simplest, the b-TA scenario consists of two transactions: issuance, in
which the traveller applies for and is granted a b-TA, and verification, in which the
traveller uses the travel authority to enter the country. We also include an optional
pre-departure step in which b-TA validity is confirmed.

Internationally, it has been identified that border security and the international
travel experience can benefit if certain steps in traveller processing occur prior to
arrival in the country of destination [33]. As shown in Fig. 1, this can be considered
as a travel continuum which extends beyond the border of the destination country.

Advanced Passenger Information (API), an approach adopted internationally,
provides an example of this. In API, the airline sends an electronic manifest con-
taining information about the passengers that have boarded a flight and will be
arriving at the country of destination. This allows the ability to conduct preparation
and processing in advance, to reduce border wait-times and to maintain integrity of
the borders.

The model proposed in this paper can be used in a manner consistent with this
philosophy of “pushing out the border”. Here, a privacy-respecting check could be
made of the validity and the biometric ownership of the issued document prior to
boarding.
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3 Background

Over the last two decades there has been a rapid increase in the uptake of automated
biometric systems. Biometrics is now commonly being integrated into a range of
large and complex information and communication technology systems and pro-
cesses. We see the use of biometric systems being implemented throughout the
world in areas such as national ID systems, border security control, travel docu-
ments, crime prevention, fraud detection, forensics, war zone applications, atten-
dance recording, access control, and financial transactions.

In particular, biometric passports [39] have become quite common. The passport
uses contactless smart card technology while the biometric information is stored in
a microchip embedded in the passport. While the use of biometrics greatly enhances
the security of the travel documents, this also presents a new set of challenges
regarding privacy and data safeguarding. Unlike passwords, biometric data are
unique, permanent and irrevocable. However, the same technology that serves to
threaten or erode privacy may also be enlisted to its protection, thus giving rise to
“privacy-enhancing technologies” (PET). This entails the use of Privacy by Design
(PbD)—embedding privacy directly into technologies and business practices,

Fig. 1 FRONTEX representation of the layers of intent and information in international travel.
The scenario and architecture proposed in this document actually interpose structure and
information processing from the earliest pre-departure phases of the travel continuum and allows a
progressive update of data throughout
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resulting in privacy, security and functionality through a “positive-sum” paradigm
[51].

There have been a number of technological solutions proposed to address pri-
vacy issues in biometrics, such as Biometric Encryption (Fuzzy Extractors), Can-
cellable Biometrics, Cryptographic Protocols, and hardware protection (e.g.,
Match-on-Card). For the b-TA application, combining Fuzzy Extractors with
Cryptographic Protocols within the secure architecture seems to be the most fea-
sible approach. We also use the hardware protection to locally store the data
extracted from the biometrics.

3.1 Biometric Encryption (BE) and Fuzzy Extractors

Biometric Encryption (a.k.a. biometric template protection, biometric cryptosystem,
fuzzy extractor, secure sketch, etc.) was proposed as a viable approach [58] to
meeting the intent of conventional biometric systems while at the same time
addressing the privacy issues. BE is a group of technologies that securely bind a
digital key to a biometric or generate a key from the biometric, so that no biometric
image or template is stored. It must be computationally difficult to retrieve the key
or the biometric from the stored BE data (often called “helper data”). The key can
be recreated only if a genuine biometric sample is presented on verification. The
output of the BE authentication is either a key (correct or incorrect) or a failure
message. See surveys [9, 19, 21, 42, 53] for more details on BE.

Fuzzy Extractor is, in fact, a formal definition of BE introduced by Dodis et al.
[31] in terms of two primitives, a fuzzy extractor and a secure sketch. The secure
sketch is a helper data stored on enrollment. On verification, the exact recon-
struction of the original biometric template is possible when a fresh (i.e., noisy)
biometric sample is applied to the secure sketch. The fuzzy extractor is a crypto-
graphic primitive that generates a key from the biometric and the secure sketch, for
example, by hashing the reconstructed template. More details on fuzzy extractors
are provided in Sect. 5.

At present, the most popular are the following BE schemes: Fuzzy Commitment,
QIM, and Fuzzy Vault.

Fuzzy Commitment
Proposed in 1999 [44], this is conceptually the simplest yet the most studied BE
scheme. It is applicable to ordered binary biometric templates of a fixed length,
n. A k-bit key, where k ≪ n, is bound to the template by using an Error Correcting
Code (ECC). Both the template and an ECC codeword have the same length n. In
total, there are 2k possible keys and ECC codewords, such that each k-bit key
directly corresponds to an n-bit codeword. The key is usually generated at random.
Then the corresponding codeword is XOR-ed with the binary template to obtain an
n-bit string that is stored into the helper data. The key is hashed and its hashed value
is also stored either in the helper data or remotely, depending on the application. On
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verification, a newly acquired biometric template will not be exactly the same as
was obtained during enrollment, which will result in some bit errors. However, if
the number of those errors is within the ECC bound, the key can be recovered: the
fresh template is XOR-ed with the string stored in the helper data, and the ECC
decoder corrects the bit errors. The k-bit key output by the ECC decoder is hashed.
If the new hashed value coincides with the enrolled one, the reconstructed key is
released. Otherwise, a failure is declared or, alternatively, an incorrect key is output.

Fuzzy Commitment scheme was successfully applied to most biometric
modalities (see, for example, [16, 38, 62, 65]).

Quantization Index Modulation (QIM)
QIM is another scheme that is applicable to biometrics with ordered feature vectors,
first proposed in [48]. Those feature vectors, b, are continuous. They are quantized
using a set of quantizers. In the original version of [48], the quantizers are binary;
however, other types can also be used, such as in [20]. Each continuous component
of the feature vector has an offset from its quantized value. On enrollment, those
offsets are stored into the helper data in the form of a correction vector, v. On
verification, a newly acquired feature vector, b’, is added to v. The result for each
component is decoded to the nearest quantizer (e.g., in the case of binary quantizers
[48], to either 1 or 0). In addition, the scheme can also employ an outer ECC to
correct the remaining errors. Unlike most other BE schemes, QIM has one or more
tunable parameters, the size(s) of the quantization intervals. This allows generating
a Receiver Operating Characteristic (ROC) curve, like in conventional biometrics,
and, therefore, tuning the security and accuracy of the scheme to the needs of a
specific application.

The QIM scheme was successfully applied to face recognition [20, 61].

Fuzzy Vault
Some biometric modalities, such as minutiae-based fingerprint biometrics, do not
have a template in the form of an ordered string. In this case another BE scheme,
called Fuzzy Vault [43, 50, 64], can be applied. A key that is to be bound to the
biometric corresponds to the coefficients of a polynomial that contains the finger-
print minutiae as its points. However, the real minutiae are buried within the set of
fake minutiae called chaff points. On enrollment, the full set of points (both real and
chaff) is stored into the helper data. On verification, the fresh minutiae template is
matched against the full set of points. If a sufficient number of minutiae match in
both sets, the correct polynomial and, thus, the key, will be reconstructed.

As already mentioned, Fuzzy Vault is used primarily for the fingerprint
minutia-based biometrics.

BE Security Issues
Some BE systems may be vulnerable to low level attacks, when an attacker is
familiar with the algorithm and can access the stored helper data (but not a genuine
biometric sample). The attacker tries to obtain the key, or at least reduce the search
space, and/or to obtain a biometric or create an approximate (“masquerade”) ver-
sion of it.
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In recent work, several attacks against BE were identified.2 An offline False
Acceptance attack (FAR attack) is conceptually the simplest. The attacker needs to
collect or generate a biometric database of a sufficient size to obtain offline a false
acceptance against the BE helper data. The biometric sample (either an image or a
template) that has generated the false acceptance will serve as an approximation of
the genuine image/template. Since all biometric systems, including BE, have a
non-zero False Acceptance Rate (FAR), the size of the offline database (that is
required to crack the helper data) will always be finite. The FAR attack, and most
other attacks, can be mitigated by applying a feature randomization or permutation
(preferably controlled by a user’s password, or even not necessarily secret [45]), by
using slowdown functions, in a Match-on-Card architecture, by secure architecture
with data separation, by performing verification in the encrypted domain (see the
next subsection), or by other security measures common in biometrics.

There is no doubt that BE must be made resilient against attacks, and the
foregoing works report substantial progress in that direction. However, BE is not
solely a cryptographic algorithm and so it is inappropriate to measure its security
only by a cryptographic yardstick. As with conventional biometrics, BE security
should be viewed as part of the overall secure system design and its security should
be assessed in the context of specific applications.

BE Products
GenKey, the Netherlands-based company, offers a broad range of BE products [34].
There are several installations of the GenKey systems for elections and digital
healthcare sectors, focusing primarily on the emerging economies. GenKey prod-
ucts were independently tested and showed an accuracy level comparable to
non-BE conventional biometrics [8, 16, 35].

The largest and, perhaps, the most notable BE deployment so far is a facial
recognition with BE in a watch-list scenario for the self-exclusion program in most
of the Ontario gaming sites [20].

3.2 Cryptographic Protocols for Privacy-Preserving
Biometric Authentication

This is a group of emerging technologies that have several parts of a biometric
system (e.g., sensor, database, and matcher) communicate via secure cryptographic
protocols, so that each part learns only minimal information to ensure that the users’

2The following attacks against BE are known: Inverting the hash; False Acceptance (FAR) attack;
Hill Climbing attack [3]; Nearest Impostors attack [59]; Running Error Correcting Code (ECC) in
a soft decoding and/or erasure mode [59]; ECC Histogram attack [59]; Non-randomness attack
against Fuzzy Vault [22]; Non-randomness attack against Mytec2 and Fuzzy Commitment
schemes [59, 66]; Re-usability attack [11, 46, 54]; Blended Substitution attack [54]; and Linkage
attack [21, 45, 57].
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privacy is protected. Such technologies include Authentication in Encrypted
Domain (see the following subsection), Secure Multiparty Computation [15],
Cryptographically Secure Filtering [2, 7], and One-to-many Access Control-type
System in Match-on-Card Architecture [6].

Authentication in Encrypted Domain
Authentication in the encrypted domain can be performed using homomorphic
encryption [5, 14, 56, 63]. Even though a fully homomorphic encryption that
supports both addition and multiplication has already been discovered, it is still
impractical. Therefore, most proposed solutions deal with partially homomorphic
encryption which supports either additions or multiplications but not both. Those
solutions work best for binary XOR-based or distance-based biometric classifiers,
such as an iris biometric with a 2048-bit binary template. For example, a
component-wise Goldwasser-Micali homomorphic encryption was proposed for
binary biometric data and for the Fuzzy Commitment scheme in an architecture
featuring Client, Database and Matcher [5, 56]. In this scheme the Matcher never
obtains biometric data, the database only obtains encrypted biometric data, and the
Client never receives the private key, which is only known by the Matcher and
is used in the final steps of the hamming distance calculation [56] or the key
recovery [5].

Despite the progress that has been achieved in the implementation of homo-
morphic encryption [4, 32, 55], these schemes are still typically less practical in
terms of processing speed and storage requirements than non-homomorphic
approaches.

A new approach that combines Biometric Encryption with the well-known
Blum-Goldwasser cryptosystem was proposed in [60]. As shown, it is possible to
keep the biometric data encrypted during all the stages of storage and authentica-
tion. The solution has clear practical advantages over homomorphic encryption and
is suitable for two of the most popular BE schemes, Fuzzy Commitment and QIM.
A smartphone application based on the scheme of [60] is proposed in [19].

Both homomorphic encryption schemes and the Blum-Goldwasser cryptosystem
are malleable; i.e., under some circumstances they are vulnerable to an adaptive
chosen ciphertext attack (IND—CCA2).

3.3 Attribute-Based Credentials

We introduce some previous work in the area of credential systems and highlight
the applicable approaches to non-transferability and their weaknesses. In 1985,
Chaum [24] identified the privacy concerns resulting from the ability of service
providers to aggregate electronic records. Chaum presents a pseudonymous system
whose security is based on the discrete logarithm problem and blind signatures.
Credentials in this system can be copied and transferred. In 1986, Chaum and
Evertse [23] generalized the system presented in [12] to accommodate multiple
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credentials, from different issuers and verifiers. Following this, Damgård [29] and
Chen [26] presented alternative approaches, also including a trusted-third party
(TTP). In 1998–1999, Canetti et al. [17] proposed a non-transferable anonymous
credential scheme which was patented by IBM in 2007 as US Patent #7222362. In
Canetti’s approach to non-transferability, along with the credential, the user is
issued a master-key that is bound to a valuable piece of personal data which the
individual is reluctant to share (such as a bank account number). To claim the
privilege granted by the credential, the user must prove knowledge of the master
key. However since the master key is too valuable to share, no unauthorized users
are presumed to know it. As stated by the authors, this approach to
non-transferability does not prevent sharing, but rather dissuades it. In 1999,
Lysyanskaya et al. [47] presented an anonymous credential system which, similarly
to Canetti’s approach, dissuades by relying on the user’s motivation to preserve a
high-value secret. In 2000, Brands [13] presented the digital credentials scheme, a
single-show credential system. In this scheme, the credential is provided to the
verifier, and the specific attributes used are divulged during the Show protocol.
Brands provided a non-transferability approach of embedding a biometric into the
credential. This does not provide biometric privacy, since the biometric itself must
be used and divulged. In 2001, Camenisch and Lysyanskaya [28] presented
“Anonymous Credentials”, a credential system using zero-knowledge proofs of
knowledge (ZKPoK) to deliver multi-show credentials. These approaches all have
similar weaknesses: either a trusted third party is used, or if any non-transferability
is present it relies on a disincentive approach which can be circumvented if col-
luding users have no qualms about sharing secrets.

The protocol proposed in this paper targets the lending problem. Its integration
to digital credential and anonymous credentials has been demonstrated in [10].
However, it is general enough to be added to most credential schemes.

4 Our Contribution

Our approach combines Fuzzy Extractors with Cryptographic Protocols within the
secure architecture. The BE helper data (i.e., “public data”) are stored locally and
protected by hardware.

The idea of combining BE with cryptographic Issue and Show protocols was
first proposed in [10]. It was shown that the proposed approach preserved the
security of the underlying credential system, protected the privacy of the user’s
biometric, and could be generalized to multiple biometric modalities. In the present
paper we extend the approach of [10] to smartphone-based electronic travel doc-
uments. The proposal presents the secure architecture of the entire system.

Privacy, Security and Convenience: Biometric Encryption … 347



Our proposed architecture includes:

1. A biometrically secured electronic travel authority (b-TA)
2. A Traveller smartphone having an installed user-application and fingerprint

sensor
3. A user-application on the cellphone which:

3:1. Coordinates the b-TA issuance, airline check in, and customs-arrival
processes

3:2. Implements cryptographic protocols for privacy and security
3:3. Interfaces with the programming model of the fingerprint sensor

4. Distinct touch points, progressive processing, and incremental mitigation of risk
throughout the traveller continuum:

4:1. User convenience upon b-TA application
4:2. Verification of authority to travel pre-boarding
4:3. Verification of identity and document integrity at arrival
4:4. Ability to reconcile entry-exit

The protocol proposed in this paper uses fuzzy extractors to derive cryptographic
keys from biometrics. To overcome the fuzzy extractor vulnerabilities (in particular,
in multiple use scenarios), we enclose the derived key in a Pedersen commitment
and we encrypt the public data using IND-CCA2 encryption.

Our proposed protocol includes the following features:

1. Fuzzy extractors (aka “Biometric Encryption”) running on the smartphone to
provide privacy protection;

2. Additional layers of encryption: Helper data are further encrypted (by
RSA-OAEP [12]) and stored on smartphone; Pedersen commitment is stored by
Issuer for future validation of b-TA;

3. The decryption key is not stored on the smartphone;
4. Hardware protection against tampering of the information stored on the

smartphone;
5. Verification in a secure environment at a border control kiosk rather than on the

smartphone.

The details of the proposed system are presented in the following Sections.

5 Supporting Algorithms

5.1 Secure Sketches and Fuzzy Extractors

A fuzzy extractor is a pair of algorithms (gen (...), rep (...)) which allow randomness
to be extracted from an input string and later reproduced exactly using another input
string sufficiently close to the original. Most fuzzy extractor schemes also produce
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helper data which is created during the initial generation step, and used to assist in
reproducing the randomness.

The pair of algorithms can be represented as

<P, R> = gen ðbÞ and R= rep ðb0
,PÞ,

where:

P is public data safe for storage, used to assist in the rep (...) algorithm,
R is a random string that can be used for cryptographic purposes,
B is an input string, for example a biometric template, and
b is fresh input within a certain similarity distance t from b.

5.2 Pedersen Commitments

The Pedersen commitment [30, 52] allows a sender to create a publically storable
commitment on a value which irrefutably binds to the value, and also perfectly
hides the value from being derived.

The Pedersen commitment scheme has two protocols Cs = Commit (s, r) = gshr

(mod p) and (s, r) = Open (Cs) where the secret s is a value from Zq and random
value r is uniformly drawn from Zq. The specification of mod p for Pedersen
commitments will be subsequently be omitted in this chapter but is implied by
context.

Here, Pedersen Commitments are used to commit to the biometrically derived
cryptographic key: the “hiding” property preserves privacy of the key, and the
“binding” property ensures security (non-transferability).

5.3 Digital Signatures

A digital signature is a mathematical scheme for securing and demonstrating
the authenticity of a digital message or document [37]. A valid digital signature
gives the recipient assurances that the message was created by a known sender
(authentication), and that the message has integrity (was not tampered with). It also
supports the non-repudiation property (the sender cannot later deny having sent
the message). Digital signatures are used in the protocols we propose to seal the
attributes provided by the traveller into an electronic travel document signed by the
issuing authority.
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5.4 Proofs of Knowledge

A Proof of Knowledge (PoK) is an interactive protocol in which a prover P con-
vinces a verifier V of possession of particular knowledge [36]. In general, a PoK has
the properties of completeness and validity. The property of completeness states
that if P holds the required knowledge, P will succeed in convincing the verifier
V of that fact. The property of validity states that if verifier V accepts the proof,
P really knows the required knowledge. An additional property can be added:
zero-knowledge, which states that during the protocol, V learns nothing beyond the
fact that P holds the required knowledge. A PoK holding completeness, validity,
and zero-knowledge is called a Zero Knowledge Proof of Knowledge (ZKPoK).

5.5 Attribute-Based Credentials

Various cryptographic credential systems have been proposed in the literature;
however, two of the predominant ones today are digital credentials and anonymous
credentials. We discuss these at a high level and attempt to highlight the important
similarities and differences.

In general, a cryptographic credential system includes three entities: the indi-
vidual, the issuer, and the verifier. The individual applies for a credential from the
issuer by submitting attributes. The individual receives a signed data package which
is shown later to a verifier to claim a privilege.

Anonymous credentials and digital credentials are similar in some ways. The
general protocol proceeds as follows:

1. An issue protocol, in which:

(a) User U sends attributes X to Issuing organization I
(b) I issues credential C to U

2. A show protocol, in which:

(a) U presents C for verification of signature
(b) U makes a claim involving attributes of X and proves it to the verifier to

claim a privilege

However, the schemes differ in some important manners, including that Anony-
mous credentials explicitly include the concept of unlinkability across transactions,
whereas digital credentials do not. In the show protocol of anonymous credentials,
U does not show the values of the attributes X to verifier V, but rather uses a
ZKPoK. This provides additional privacy in a multiple-show scenario.
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6 Approach

We outline an approach for implementing a b-TA held on the traveller’s cellphone
using RBR and attribute-based credentials. We introduce the main entities involved
in the scenario, describe the traveller flows, and then describe algorithms which are
significant from the perspectives of security and privacy. We also describe certain
special features of the algorithm including the ability to help detect passport fraud
prior to boarding (optional), triangular binding of b-TA to a fingerprint RBR and an
e-passport, scalability to a paperless “m-passport” application, as well as the pos-
sibility for the e-passport to be optional after the first verification. Finally, we briefly
discuss how the proposed system addresses privacy and security issues.

6.1 Traveller Flows

Figure 2 captures the main system flows from a traveller’s perspective. Each of
these three flows, “application submission”, “airport check-in”, and “arrival at
destination”, are described in detail below.

TravellerFlow 1—Application Submission: The b-TA Issuance Process
The traveller applies online for a b-TA some time prior to departure. The traveller
uses her smartphone to submit data and obtain the b-TA from the issuing organi-
zation. The entire application process is coordinated on the smartphone by a soft-
ware application certified/approved by the issuer and verifier. Once issued, the
b-TA is stored on the smartphone to be used during check-in and arrival processes,
until it expires.

The b-TA applicant begins the application process using a smartphone equipped
with specialized software (the end-user application), a biometric sensor and secure
storage capability.

1 The traveller begins the b-TA application procedure

The end-user application coordinates user workflow including data collection,
generation of an RBR, and communication with the back-end b-TA Issuing system.

The end-user application maintains secure storage which is able to store user
data in a reliable manner such that this information is not released to external
parties.

2 End-user application submits b-TA application

The end-user application provides the interface to facilitate submitting all required
pieces for the online b-TA application procedure.

This information includes biographical data, biometric data and information
regarding travel intent. The biometric data consists, not of a traditional biometric
template or image, but of an RBR which the smartphone generates using the
traveller’s fingerprint, random data, and publically available group parameters.
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The end-user application uses wireless communication to transfer information to
the issuance server application upon request of the traveller.

3 Issuer verifies submitted application

The issuer performs an initial check on the submitted information to see if the
traveller can be granted a b-TA using the online application service.

The approval process may include queries to other core systems, record keeping,
and manual processes. This attribute check occurs offline: the length of the process
does not impact the protocol we present.

Upon successful completion of the attribute verification step, the issuer sends a
notification to the applicant to proceed to next step: retrieval of the granted b-TA.

B) Issuance

F) Verification

b-TA

b-TA

<travel info>

1

2 3

5

13

<<e-TA Applicant>>

<<b-TA Issuance System>>

Traveller (at 
airport) 

4

C) Check-in

b-TA
6

<<Traveller (at airport)>>

8

Boarding 
Pass

Declaration

D) Departure

E) Arrival 

9

10

12

7

14
11 15

Query: 
    Has b-TA been issued?      
    Has it been revoked?

Board/No Board 
Status

Boarding 
Information

Traveller Arrival 
Update

A) Application 

<travel info>

<<Issuance App>>

1) Application Submission: the b-TA Issuance Process

2) Airport Check-in: b-TA Validity Checking

3) Arrival at Destination: Biometric Ownership Verification

<<b-TA Query Interface >>
<<Traveller Smart Phone>>

Fig. 2 Three main traveller flows. The b-TA workflow consists of three main steps from the
traveller point of view: (1) Application Submission: The b-TA Issuance Process; (2) Airline
Check-in: b-TA Validity Checking; (3) Arrival at Destination: Biometric Ownership Verification.
Issuance occurs through an online application and approval process. Successful issuance provides
the traveller with a digital b-TA which is stored on the smartphone. The validity of this b-TA is
checked before boarding, and the biometrical linkage to the traveller is verified upon arrival in
Canada. An invalid, revoked or forged b-TA can be identified at either of these steps

352 D. Bissessar et al.



4 Retrieval of the b-TA

To retrieve the b-TA, the user agent and the issuance server application enter into a
secure protocol in which the issuer signs the b-TA, and the traveller obtains this
signed b-TA and any required helper data.

5 b-TA is stored

The signed b-TA and any associated helper data are stored on the cell phone in a
secure manner, to be used at a later date (i.e., at the airport to register for boarding).

Traveller Flow 2—Airport Check-in: b-TA Validity Checking
At the departure airport, the traveller goes through the check-in procedures of the
airline. These include a step in which the b-TA is verified for validity. This validity
checking occurs in a wireless protocol between the end-user application on the
traveller’s smartphone and the airline kiosk, as well as system-to-system queries
between the airline kiosk and the Issuer’s b-TA query system. The kiosk verifies
that travel is occurring within the allowed b-TA effective dates, that the b-TA has
not been tampered with, and that travel privileges have not been revoked. No
biometric check is performed at this stage. On successful completion of the check,
the traveller can board the flight and proceed to the destination country.

6 The traveller begins the Check-in process

The traveller approaches the kiosk at the airport of origin to check-in and to obtain a
boarding pass. The traveller has a smartphone equipped with the b-TA application
and an issued b-TA.

7 The traveller submits required check-in information

The traveller enters required information at the airline check-in kiosk. This infor-
mation can include name, destination, flight and b-TA number. The information can
be entered automatically from the smartphone using wireless communication and
using an e-passport reader. No biometric verification is performed at this stage: it
occurs in the next step upon arrival in the destination country. (To note, a biometric
check of fingerprint for b-TA and face for e-Passport could be added here. These
would increase the cost of the check-in kiosk.)

8 The check-in kiosk processes submitted information

The airline’s kiosk performs a validation of the information submitted.
This includes a verification the b-TA has indeed been correctly issued and has

not been revoked. These checks can occur simply using an online query to the
issuer system.

The kiosk also verifies that the expiration date has not been reached.
Important note: Passport fraud at boarding time can be detected by adding

biometric verification to the airline kiosk. The traveller’s face can be compared to
the e-passport or a captured fingerprint can be compared against b-TA.
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9 The arrival kiosk provides next step information

If the check is successful, the kiosk may issue a printed token or an electronic token
and the traveller proceeds to “the next step” in the check-in and boarding process.
This may be, for example, a security or a baggage processing step or the issuance of
a boarding pass.

10 The traveller proceeds to next step in departure

The traveller proceeds to “the next step” as deemed by the kiosk, possibly using a
token dispensed by the kiosk (such as a boarding pass, for example). The airline
also maintains any departure information records as needed.

Traveller Flow 3—Arrival at Destination: Biometric Ownership Verification
At the destination country the traveller disembarks and proceeds to the verification
kiosk. The verification kiosk and the smartphone engage in a protocol to verify the
user’s fingerprint against the fingerprint RBR in the b-TA. For first time travel, the
traveller’s passport and passport biometric are also verified and cross-verified with
b-TA information.

11 The traveller begins the arrival process

The traveller arrives at the destination airport. The traveller has a smartphone on
which is stored the issued b-TA and supporting data. The interaction at the airport
occurs with a biometric kiosk maintained by the destination country’s Border
Security Agency. The kiosk will verify the authenticity of the credentials and the
ownership of the b-TA through a biometric verification.

12 The traveller provides arrival information

Upon arrival the traveller initiates a session with the kiosk to provide passport
information, b-TA information, and required biometrics to prove ownership of
these.

13 The kiosk processes the information

The kiosk reads provided e-passport information including traveller name, passport
number and the enrolment facial image captured by the issuing country. The kiosk
captures another facial image and a fingerprint from the traveller.

The passport face is matched to the travellers face and the fingerprint is used to
regenerate the biometric key for verification against the one sealed into the b-TA.

The kiosk may also send a copy of the face image to other systems for screening
purposes depending on the requirements of the international agencies involved, and
of countries of departure and arrival.

14 Passenger arrival is recorded

After having performed all verifications, the stored records are maintained. This can
include updates to databases as well as tokens issued to the user.
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15 Passenger continues through arrival process

Having cleared the verification of e-passport and b-TA, the Traveller can proceed to
other arrival processes.

6.2 Key Algorithms

Algorithm: Issuance-Time RBR Capture
The traveller’s smartphone is responsible for capturing the imprint of the traveller’s
fingerprint generating the RBR which will subsequently be submitted to the issuer to
be sealed into the b-TA. This can be achieved using any RBR generation mechanism.
We illustrate it in Fig. 3 using a variation of the scheme presented in [10].

The RBR is generated on the smartphone using the fuzzy extractor indistin-
guishability adapter (FEInd) configured in issue mode, as described in [10]. We
briefly describe the mechanism here, but defer the reader to the primary literature
for a full description.

First, the smartphone captures the fingerprint impression and produces biometric
template bI. This template is passed to the gen (...) method of the FEInd which gen-
erates the fuzzy extractor tuple <R, Pe> which are obtained by encrypting the public
data P obtained from the underlying fuzzy extractor with the encryption key k. The
cryptographic key R obtained from the fuzzy extractor is combined with a random
value rI to produce the renewable biometric referenceCRI, a Pedersen commitment on
those values.

The values of Pe, and CRI are retained on the smartphone. The value of CRI will
be sent to the issuer as a RBR.

Smartphone

Fig. 3 Generation of the Issue-time Renewable Biometric Reference. The RBR is generated on
the smartphone using the sensor and custom software embedded within it. The user supplies the
biometric bI, and accompanying random data rI, the system provides the RBR CRI, and
accompanying public data Pe. The RBR is also provided to the issuer, who will eventually seal it
into the b-TA in the issue protocol
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Algorithm: Generation of Verification-Time RBR
On arrival at the airport of destination, the traveller’s ownership of the b-TA must
be established. The first step in this process is the creation CRS: the verification-time
instance of the RBR (Fig. 4).

This algorithm creates a Pedersen Commitment on the Fuzzy Extractor R value.
Here, however, rather than the biometric capture and RBR generation being per-
formed on the smartphone, it is performed on the verification kiosk.

To create CRS, the traveller initiates communication with the kiosk which allows
Pe and rS to be transferred. The traveller also supplies a fingerprint imprint to the
kiosk. The kiosk then generates the CRS and securely disposes of the fingerprint.

First, the smartphone and the kiosk enter into communication. The user then
submits a fingerprint impression and produces a fresh biometric template bS. This
template is passed to the rep (...) method of the FEInd which regenerates a biometric
key RS. This RS is sealed in a Pedersen Commitment CRS which then becomes the
verification time RBR [10].

CRS and RS are provided to the traveller to use at subsequent steps in the
verification process.

Algorithm: Show Protocol
After the RBR has been regenerated by the arrival kiosk, the final step in the
workflow requires verification of the b-TA, the e-passport, ownership thereof, and
the claimed travel privilege. This requires the verifier to become convinced that:

1. The b-TA data package has not been tampered with,
2. The RBR sealed into the b-TA and regenerated in the previous step refer to the

same biometric,
3. The e-passport number within the b-TA corresponds to that of the passport held

by the traveller,

Smartphone

Fig. 4 Generation of the verification of RBR. Upon arrival, a fresh biometric is captured, using
the kiosk. The kiosk is equipped with show time device functionality as defined in [9]
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4. The traveller’s face and the face image on the e-passport match, and
5. The traveller claim of privilege is valid.

The verifier checks the digital signature to verify that the digital package has not
been tampered with. This signature verification protocol is defined by the under-
lying credential scheme. In general it is a function of the credential itself, and the
issuer’s public key. The public key may be installed on the kiosk itself, or can be
accessed through an online connection.

Once the verification relation has been checked, the traveller proves ownership
of b-TA. This is done by proving that the RBR within the b-TA and the RBR
generated by the kiosk on arrival are derived from the biometric of the same
individual. This is achieved using a ZKPoK DLRep WithPC which verified that CRI

and CRS are commitments on the same derived key RS. A detailed description of the
protocol DLRep WithPC is available in [1, 9, 10].

Following proof of biometric ownership of the b-TA, the smartphone and the
kiosk engage in a check that the b-TA allows entry into the country, that it is within
appropriate entry dates, and it has not been revoked. This can be proven using a
combination of the statement proof mechanism of the underlying credential system
[13, 28] and online revocation checks with the issuing authority.

6.3 Triangular Biometric Bindings

Figure 5 illustrates how the b-TA binds to the traveller’s RBR, and the traveller’s
e-passport. These relations enable security to be linked to an identity, and offer the
potential for the b-TA to replace the e-passport after the initial verification.

b-TA

e-passport

fingerprint 
RBR

face
biometric

b-TA

Fig. 5 Triangular bindings between issued documents. The b-TA is bound to the e-passport
number as well as the traveller’s fingerprint RBR in a tamper-proof manner. This results in two
biometric linkages which provide strength of security but also enables operational efficiency and
traveller convenience in terms of streamlining second passages and online application. The kiosk
at arrival is responsible for both facial recognition and fingerprint RBR verification
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The e-travel authority is cryptographically bound to the passport number as well
as the traveller’s RBR. The traveller’s identity is thus bound to both the e-passport
and the b-TA. The b-TA is bound to the passport number and to a RBR created
using the traveller’s fingerprint. The traveller’s identity is bound to both the
e-passport and the b-TA. The e-passport binding occurs through the issuing
country’s adherence to ICAO e-passport standards. While these standards are
indeed quite high, and demanding, there is variability in the processes and docu-
ments issued within the international community. A domestic Government has no
control over the processes, checks and balances followed by international issuers.
The b-TA is bound per agreement between the issuer and the verifier.

Four important lifecycle steps in identity binding and verification are required:

0. The e-passport is issued
Before anything occurs in the b-TA steps, the passport must be issued. The
foreign country issues an e-passport to the individual, a foreign national. At the
point of e-passport issuance, any number of procedures is followed including
background checks and updates to the civil registry. Different countries will
have different processes. The e-passport is produced in accordance with ICAO
e-passport standards and includes an electronic file with the individual’s pass-
port image.

1. The b-TA is issued
The applicant’s submits informational attributes (which include at least an
e-passport number and RBR) to the issuing organization. The issuer performs a
background check, and issues the b-TA. The b-TA is bound to the attributes in a
manner which prevents the attributes from being changed without invalidating
the digital signature. At this point, the traveller’s identity and ownership of
biometric is assumed, but has not yet been verified.

2. First arrival:
The first time the traveller arrives to visit the country that issued the b-TA, the
biometric linkage between b-TA has not yet been verified. On first arrival, the
kiosk verifies the e-Passport biometric, the b-TA biometric and the passport
number contained in the b-TA. On successful verification, the verifier may
record the passage in a data base, and issue a “verified entry” credential to be
retained by the traveller to simplify further processing, on this trip and on
subsequent trips.

3. Subsequent arrivals:
After successful verification on the first arrival, the processing of subsequent
arrivals may be streamlined. If the verifier chooses to issue “verified entry”
credentials for first arrival, this can be checked on subsequent arrivals poten-
tially making the e-passport verification optional.
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6.4 m-Passports: An Electronic Wallet Approach for b-TA

What about the scenario where a traveller holds b-TAs for multiple countries? We
have presented an application which manages the workflow necessary to obtain,
view, modify and use a b-TA for a single destination country. This can be extended
to a multi-nation scenario (Fig. 6). While beyond the scope of this study to do so,
we provide a sketch to highlight the potential. We name this functionality
m-passport, to mean a mobile paperless passport, stored on a smartphone.

We may consider the scenario where a home country issues an electronic
identity document, and where multiple nations each issue their own b-TA to
travellers and the traveller thus has a collection of b-TAs to manage. This leads to a
more sophisticated user agent application which allows the traveller to store many
such secured travel documents: we generically refer to this as an m-passport. This
m-passport would be analogous to a passport in that it would be certified as
belonging to the given traveller, issued by the country of citizenship, and a
cumulative record of travel authorities and travel passages.

 

  PDE2:

 PDE3:

  PDE4:

PDE n :

  PDE1

(…)

(…)

(…)

(…)

r1, r2, a

travel authority 1

entry stamp
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2b
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3b

4

Private Shared

Traveler
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Passport Issuer 

(Home Country)

Fig. 6 m-passport schematic. The credential-based solution can be extended to multiple nations,
where a national identity block is issued by the country of citizenship, travel privileges extended
and verified by international destinations—and records of entry and exit are annotated. The user
portion of the application would reside on the cellphone, and be akin to a mobile passport,
“m-passport”
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In order to make this, the following are required:

1. A more sophisticated user application is required
2. A smartphone construct allowing secure and selective read and write

permissions
3. A cryptographic credential corresponding to an electronic citizenship card
4. Selective show and an ability to show across credentials issued by multiple

issuers
5. Standards within and across Issuer and Verifier communities

Currently, as internet commerce reaches high levels of technical maturity, there are
a number of market offerings which may lend themselves to this kind of applica-
tion, including Microsoft’s UProve [49], or IBM’s Idemix [40], which implement
the base credential schemes described in this document. Within the literature, one
can refer to Chaum and Pedersen’s 1992 paper [25] which sets foundations for
secure wallets.

While this should be the subject of future study, there is no evident requirement
for all countries to use the same attributes for the issuance and verification of
b-TAs. It seems that the responsibility for the definition of these fields may be left
with the issuance and verification bodies of each nation.

National certificates of identity, on the other hand, correspond to the personal
identification block on a traditional e-Passport. As these will need to be read by
multiple nations, it seems standardization will be required. These standards may be
aligned with ICAO specifications [39].

7 Security and Privacy of the Proposed System

In this Section, we briefly outline the features that make the proposed system
resilient to known attacks. More details can be found in [9, 10].

1. Resilience to data insertion and tampering:

• RSA-OAEP encryption of the information stored on the smartphone;
• No cryptographic keys are stored on the smartphone;
• Hardware protection of the stored information.

2. Non-transferability:

• Biometric enrollment and verification are performed during the Issue and
Show protocols respectively;

• The unforgeability of signatures in digital credentials;
• The intractability of the discrete log problem.
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3. No substitution or blended substitution attacks:

• RSA-OAEP encryption of the information stored on the smartphone;
• Hardware protection of the stored information;
• The attacker does not know the RBR that was generated by the Fuzzy

Extractor: the RBR is hidden in the Pedersen Commitment and sealed by the
issuer’s signature.

4. No storage or leakage of raw biometric or extracted feature set (biometric
template):

• Both raw biometric and extracted feature set are discarded at the end of the
Issue process;

• It is computationally difficult to obtain the feature set from the public data, P,
that are output by the Fuzzy Extractor;

• P is additionally encrypted by RSA-OAEP;
• The proof of knowledge in the Show protocol keeps R a secret;
• The attacker does not know the RBR that was generated by the Fuzzy

Extractor: the RBR is hidden in the Pedersen commitment and sealed by the
issuer’s signature;

• Hardware protection of the stored information;
• During the Show process, a fresh biometric sample is obtained and verified

at the kiosk, not on the smartphone.

5. Resilience to biometric spoofing and replay attacks:

• Spoofing and replay attacks would be detected at the time of verification,
which in our scenario happens in a supervised and controlled environment
(in a customs-controlled area);

• Liveness detection at the kiosk.

6. Resilience to False Acceptance attack:

• RSA-OAEP encryption of the information stored on the smartphone;
• Hardware protection of the stored information;
• The attacker does not have any indication of gradual success for the attack.

7. Resilience to score-based attacks (e.g., Hill Climbing or Nearest Impostors),
attacks on Error Correcting Code, and Non-randomness attacks:

• RSA-OAEP encryption of the information stored on the smartphone;
• Hardware protection of the stored information;
• The attacker is not given any biometric matching score and cannot derive

any such score;
• The attacker does not have any indication of gradual success for the attack.
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8. Resilience to Re-usability (aka record multiplicity) attack:

• The RBR scheme used outputs indistinguishable data. Specifically, the
encrypted public data from the fuzzy extractor are indistinguishable by the
properties of RSA-OAEP. The RBR are the biometric key commitments and
these are indistinguishable due to the properties of Pedersen Commitments.

9. Resilience to the database linkage attack:

• The cryptographic key R obtained from the fuzzy extractor is different for
each application, even for the same user;

• There is no possibility for cross-database linkage based on the RBR, given
computational difficulty of cracking Pedersen Commitments and their
indistinguishability.

Overall, the proposed system design appears to be resilient to known attacks against
biometric systems in general and fuzzy extractors in particular.

8 Conclusions

We have described a promising application of privacy-enhancing techniques as
applied to biometrics in the context of a secure electronic document suitable for use
as a mobile biometric-enabled electronic travel authority (b-TA) for foreign pass-
port holders wishing to visit Canada. We have developed this scenario in detail,
identifying the participating entities, transactions, and data interchanges required
over the lifecycle of the document from issuance through validation, usage, and on
to expiry.

As a result, all known attacks against fuzzy extractors appear to be thwarted.
Given the framework, tools, and approach selected, as well as the Privacy-by-Design
methodology incorporated, we expect this architecture to enhance system security,
as well as the privacy and convenience of international travellers.
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A Dual-Purpose Memory Approach
for Dynamic Particle Swarm Optimization
of Recurrent Problems

Eduardo Vellasques, Robert Sabourin and Eric Granger

Abstract In a dynamic optimization problem (DOP) the optima can change either

in a sequential or in a recurrent manner. In sequential DOPs, the optima change

gradually over time while in recurrent DOPs, previous optima reappear over time.

The common strategy to tackle recurrent DOPs is to employ an archive of solu-

tions along with information allowing to associate them with their respective prob-

lem instances. In this paper, a memory-based Dynamic Particle Swarm Optimization

(DPSO) approach which relies on a dual-purpose memory for fast optimization of

streams of recurrent problems is proposed. The dual-purpose memory is based on a

Gaussian Mixture Model (GMM) of candidate solutions estimated in the optimiza-

tion space which provides a compact representation of previously-found PSO solu-

tions. This GMM is estimated over time during the optimization phase. Such mem-

ory operates in two modes: generative and regression. When operating in generative

mode, the memory produces solutions that in many cases allow avoiding costly re-

optimizations over time. When operating in regression mode, the memory replaces

costly fitness evaluations with Gaussian Mixture Regression (GMR). For proof of

concept simulation, the proposed hybrid GMM-DPSO technique is employed to opti-

mize embedding parameters of a bi-tonal watermarking system on a heterogeneous

database of document images. Results indicate that the computational burden of this

watermarking problem is reduced by up to 90.4 % with negligible impact on accu-

racy. Results involving the use of the memory of GMMs in regression mode as a

mean of replacing fitness evaluations (surrogate-based optimization) indicate that

such learned memory also provides means of decreasing computational burden in

situations where re-optimization cannot be avoided.
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1 Introduction

Evolutionary computing (EC) allows tackling optimization problems where the

derivatives are unknown (black box optimization) by evolving populations of candi-

date solutions through a certain number of generations, driven by one or more fitness

functions. Because of its black box nature, EC has been successfully employed in

many different practical applications. The drawback is that most of the techniques

available in the literature assume that the optima location does not change (static

optimization) while most practical applications have a dynamic nature.

Problems where the optima change with time are known in the literature as

dynamic optimization problems (DOPs). In a DOP, a change can be either of type I

(optimum location changes with time), type II (optimum fitness changes with time

but location remains fixed) or type III (both, the location and fitness change with

time) [1] and be followed or not by a period of stasis [2]. A change in such context

is subject to temporal severity and/or spatial severity. Some applications involve

tracking one or more peaks moving in a sequential manner through the environment.

In such scenario, changes can be of any of the three types above but the temporal

severity is usually high as change occurs in short intervals of time. Spatial severity is

usually low as peaks move in a smooth fashion, therefore stasis is small or inexistent.

In DOPs involving low spatial severity (e.g.: moving a robot through a 3D space),

the optima usually moves within a region in the fitness landscape already surrounded

by one or more candidate solutions. In such case, the most important issues to be

addressed are diversity loss (in static optimization, the population tends to collapse

towards a narrow region of the fitness landscape, making adaptation difficult) and

outdated memory (past knowledge is very useful in EC, but it might be useless when

a change occurs). Diversity loss can be mitigated by three different approaches—

introducing diversity after a change occurs, maintaining diversity throughout the run

or using multi-population—while outdated memory can be tackled by either erasing

memory or re-evaluating memory and setting it to either previous or current value

(whichever is better) [3]. Another important issue for such type of DOP is detecting

when a change occurs. The most common approach is to track the fitness value of

one or more sentry particles [4, 5]. An alternative is to compute a running average

of the fitness function for the best individuals over a certain number of iterations [6].

In recurrent problems [7–9], the spatial severity is high as the optima re-appears

abruptly in a previous location but the temporal severity is low. Such type of DOP

is usually linked to applications involving optimizing system parameters for streams

of data like machine learning [10], digital watermarking [11] and video surveillance

[12–14]. It has been demonstrated in the literature that the use of a memory of pre-
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viously seen solutions can decrease the computational cost of optimization in such

recurring environments [8].

One of the main strategies to decrease the computational cost of optimization in

such scenario is through the use of a memory of ready-to-use solutions, as demon-

strated in [11]. The motivation for the use of ready-to-use solutions is that the opti-

mization of streamed data (which corresponds to optimizing a stream of problem

instances) can be seen as a special case of a type III change where the spatial sever-

ity is minimal (or inexistent) in the parameter space and small in the fitness space.

Time severity is inexistent as the exact moment a new problem instance arrives is

known beforehand. Put differently, stasis can have an indefinite length. Such case of

type III change can be considered as a pseudo-type II change. Optimal solutions are

interchangeable across problem instances involving pseudo-type II change. Due to

its fast convergence, Particle Swarm Optimization (PSO) is preferred in such time-

constrained applications.

A novel memory-based Dynamic PSO (DPSO) technique has been proposed for

fast optimization of recurring dynamic problems, where a two-level memory of

selected solutions and Gaussian Mixture Models (GMM) of their corresponding

environments is incrementally built [15]. For each new problem instance, solutions

are sampled from this memory and re-evaluated. A statistical test compares the distri-

bution of both fitness values and the best re-evaluated solution is employed directly if

both distributions are considered similar. Otherwise, L-best PSO [10] is employed in

order to optimize parameters. Vellasques et al. [16] present a more detailed descrip-

tion of that technique, including a comprehensive experimental validation in many

different scenarios involving homogeneous and heterogeneous problem streams. In

the present paper, a study on the use of surrogates as a tool to decrease the computa-

tional cost of the L-best PSO is presented. The main research problem addressed in

the given work is how to employ a model of the stream of optimization problems in

order to at the same time (1) generate ready-to-use solutions which allow avoiding

re-optimization and (2) replace costly fitness evaluations with regression when re-

optimization cannot be avoided. The research hypothesis is that density estimates of

historical solutions found during the optimization phase allow tackling (1) and (2)

at the same time.

The application which motivates this research is the optimization of embedding

parameters for digital watermarking systems in scenarios involving streams of doc-

ument images. Digital watermarking allows enforcing authenticity and integrity of

such type of image which is a major security concern for many different industries

including financial, healthcare and legal. Since the protection provided by digital

watermarks is minimally intrusive, it can be easily integrated into legacy document

management systems (allowing an extra layer of security with minimum implemen-

tation costs).

The research presented in this paper is a continuation of the research presented in

[15]. The main distinction, is that in the approach presented in this paper, the GMM

memory of solutions serves two main purposes—(1) generating ready-to-use solu-

tions and (2) replacing fitness evaluation with regression. Therefore, the main contri-

bution of this paper is that here it is demonstrated that a previously learned memory
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of GMMs not only provides means of avoiding costly re-optimization operations but

also makes possible a further decrease in computational burden in situations where

re-optimization cannot be avoided. The surrogate strategy employed in these exper-

imental simulations is based on the strategy proposed by Parno et al. [17] with the

difference that in the proposed strategy, no surrogate update takes place since it is

assumed that a memory of GMMs learned over a training sequence of optimization

problems should provide enough knowledge about future similar problems, which

would make possible replacing fitness evaluations with regression. Thus, surrogate-

based optimization is formulated as an unsupervised learning problem. There are

two reasons for using a surrogate in the envisioned application. The first reason is

that re-optimization cannot be completely avoided and when it is made necessary, its

computational cost is much higher than that of recall. Therefore, there is a consider-

able amount of computational cost savings to be made for such operation. The second

reason is that although a surrogate can lead to such computational cost savings, it also

requires costly fitness evaluations. However, in a scenario involving recurring prob-

lems, even when re-optimization cannot be avoided, previously learned GMMs can

offer a good approximation of the new problem, avoiding part of the costs involved

in training surrogates.

A review of DPSO is provided in Sect. 2. The proposed hybrid GMM-DPSO

technique for fast dynamic optimization of long streams of problems is proposed

in Sect. 3. Proof of concept simulation results and discussions are shown in Sect. 4.

2 Dynamic PSO (DPSO)

PSO [18] is an optimization heuristics based on the concept of swarm intelligence. In

its canonical form, a population (swarm) of candidate solutions (particles) is evolved

through a certain number of generations. As its physics equivalent, each particle i
in PSO has a position (xi) in a multidimensional search space and a velocity (vi).
The velocity of the ith particle is adjusted at each generation according to the best

location visited by that particle (pi) and the best location visited by all neighbors of

particle i (pg):

vi = 𝜒 × (vi + c1 × r1 × (pi − xi) + c2 × r2 × (pg − xi)) (1)

where 𝜒 is a constriction factor, chosen to ensure convergence [19], c1 and c2 are

respectively the cognitive and social acceleration constants (they determine the mag-

nitude of the random forces in the direction of pi and pg [20]), r1 and r2 are two

different random numbers in the interval [0, 1]. PSO parameters c1 and c2 are set to

2.05 while 𝜒 is set to 0.7298 as it has been demonstrated theoretically that these val-

ues guarantee convergence [20]. The neighborhood of a particle can be restricted

to a limited number of particles (L-Best topology) or the whole swarm (G-Best

topology).
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After that, the velocity is employed in order to update the position of that same

particle:

xi = xi + vi (2)

Canonical PSO is tailored for the optimization of static problems. However,

numerous real world problems have a dynamic nature. A DOP is either defined as a

sequence of static problems linked up by some dynamic rules or as a problem that

has time-dependent parameters in its mathematical formulation [21].

The three main issues that affect the performance of EC algorithms in DOPs are

(1) outdated memory, (2) lack of change detection mechanism and (3) diversity loss

[4, 22]. It is important to mention that for PSO, outdated memory can be easily

tackled by re-evaluating the fitness function for the new problem instance [3, 5].

Change detection mechanisms either assume that changes in the environment are

made known to the optimization algorithm or that they need to be detected [21]. In

the proposed formulation of a DOP, each problem instance in the stream of optimiza-

tion problems is static and the moment a transition between any two instances occurs

is known. However, the similarity between a new and previously seen instances is

unknown and the objective of change detection in this concept is to measure the

similarity between new and previously seen problem instances. The most common

change detection strategy is based on the use of fixed sentry particles, re-evaluated

at each generation [4]. Another strategy relies on measuring algorithmic behavior

with the use of a statistical test [21].

Tackling diversity loss requires more elaborate techniques, which can be catego-

rized as [23]: increasing diversity after a change, maintaining diversity throughout

the run, memory-based schemes and multi-population approach. The choice of diver-

sity enhancement strategy is tied to properties of the dynamic optimization problem.

Problems involving a single optimum drifting in the fitness landscape can be tackled

by either increasing diversity after a change (e.g. re-initializing part of the swarm, a

technique known as random immigrants [6]) or by maintaining diversity throughout

the run. Problems involving multiple peaks drifting in the fitness landscape with the

optimal position shifting between these peaks can be tackled with the use of multi-

population and is for example, the assumption of the technique proposed by Parno

et al. [24].

Problems involving one or more states re-appearing over time are better tack-

led through the use of memory-based schemes [8]. The main reason is that in such

type of DOP, the transition between one or more problem instances is not smooth

as assumed in [24] and the three strategies described above are of no use when the

optimum moves away from the area surveyed by the swarm. In such case, as stated

by Nguyen et al. [21], the optima may return to the regions near their previous loca-

tions, thus it might be useful to re-use previously found solutions to save compu-

tational time and to bias the search process. As observed by Yang and Yao [8], the

main strategy to tackle such type of DOP is to preserve relevant solutions in a mem-

ory either by an implicit or an explicit memory mechanism and then, recall such

solutions for similar future problems. In an implicit memory mechanism, redundant
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genotype representation (i.e. diploidy-based GA) is employed in order to preserve

knowledge about the environment for future similar problems. In an explicit mech-

anism, precise representation of solutions is employed but an extra storage space is

necessary to preserve these solutions for future similar problems. The three major

concerns in memory-based optimization systems are: (1) what to store in the mem-

ory?; (2) how to organize and update the memory?; (3) how to retrieve solutions

from the memory?

In this paper we propose a technique which is based on storing Gaussian Mixture

Models (GMMs) of solutions in the optimization space along with their respective

global best solutions. The main motivation for relying on GMM representation of

the fitness landscape is that as stated by Nguyen et al. [21], the general assumption

of a DOP is that the problem after a change is somehow related to the problem before

a change, and thus an optimization algorithm needs to learn from its previous search

experience as much as possible. The use of probabilistic models in EC is not new.

Such approach, known as Estimation of Distribution Algorithms (EDA) [25] is an

active research topic. The main advantage of EDA is that such probabilistic models

are more effective in preserving historical data than a few isolated high evaluating

solutions.

3 Proposed Approach

Figure 1 illustrates the proposed memory-based method. In the proposed approach,

the basic memory unit is a probe and it contains a density estimate of solutions

plus the global best solution, obtained after the optimization of a given problem

instance. The first memory level is the Short Term Memory (STM) which contains

Fig. 1 Hybrid GMM/DPSO

framework
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a single probe, obtained during the optimization of a single problem instance and

provides fast recall for situations where a block of similar problem instances appear

sequentially (e.g. a sequence of practically identical frames in a video sequence,

except for noise). The second memory level is the Long Term Memory (LTM) which

contains multiple probes obtained in the optimization of different problem instances

and allows recalling solutions for problems reappearing in an unpredictable manner.

Given a stream of optimization problems, an attempt to recall the STM is per-

formed first. During a recall, solutions are re-sampled from the density estimate and

re-evaluated (along with the global best solution) in the new problem instance. The

Kolmogorov-Smirnov statistical test is employed in order to measure the difference

between the sampled and re-evaluated sets of fitness values. If they are similar, this

means that the given problem instance is a recurring one and therefore, the best re-

evaluated solution is employed right away, avoiding a costly re-optimization opera-

tion. If the distributions are not similar, the same process (sampling/re-evaluation/

statistical test) is repeated for each probe in the LTM until either a similarity between

both distributions of fitness values is found or all probes have been tested.

In such case, the solutions sampled from the STM probe are used as a starting

point for a new round of optimization. Optimization relies on a surrogated-based

PSO algorithm. Such approach relies on the use of two populations—one based on

exact fitness evaluations and another one which replaces exact fitness evaluations

with a regression model. Both populations tackle optimization with the use of the

L-best PSO (Sect. 2). The change detection module was adapted to the memory recall

mechanism employed in the proposed approach. Although each problem instance is

static, this PSO variant allows tackling multi-modal optimization problems and the

motivation behind the proposed technique is tackling dynamic optimization of recur-

ring problems in practical applications (which might imply in multi-modal land-

scapes). After that, a mixture model of the fitness landscape is estimated using the

GMM approach of Figueiredo and Jain [26]. The position and fitness data of all

intermediary solutions, found in all generations are employed for this purpose. The

reason for using all intermediary solutions and not selected solutions (e.g. best par-

ticle positions) is that these solutions allow a more general model of the fitness land-

scape. That is, local best data usually results in density estimates that are over-fit to

a specific problem.

This mixture model along with the global best solution will form a probe, to be

stored in the STM (replacing the previous probe) and updated into the LTM. The

LTM update consists of either a merge between the new probe and a probe in the

memory (if they are similar) or an insert (if either the LTM is empty or no similar

probe has been found). In such case, if the memory limit has been reached, an older

probe is deleted (we propose deleting the probe which resulted in the smallest number

of successful recalls up to that instant).

Thus, the proposed approach relies on the use of an associative memory [8]. In

an associative memory approach, selected solutions are stored in a separate archive

along with a density estimate that allows associating these solutions with recurring

environments. However, an important distinction has to be made here. In the asso-

ciative memory approaches found in the literature, the density estimates are trained
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using only position data while in the proposed approach, the density is trained using

fitness and position data. The main motivation is that in the proposed approach, a

density provides not only means of associating solutions with recurring problems,

but it is also an important part of the change detection mechanism (sampled fitness

values are compared with re-evaluated fitness values in order to measure the similar-

ity between the new and previously seen problems). Therefore, instead of providing

a hint of locations where good solutions are likely to be found, a memory element

in the proposed approach provides a topographic map of one or more optimization

problems while the change detection mechanism provides means of probing the new

optimization problem in order to compare how similar both landscapes are. This

GMM representation of the fitness landscape is also employed as a regression model

for surrogate-based optimization.

3.1 Gaussian Mixture Modeling of Fitness Landscapes

The main reason for building and storing a model of all solutions found during the

optimization of a problem instance rather than storing selected solutions is that the

former allows a more compact and precise representation of the fitness landscape

than individual solutions. As explained before, the GMM approach of Figueiredo

and Jain [26] is employed for this purpose since it is a powerful tool for modeling

multi-modal data (which makes the proposed technique robust for multi-modal opti-

mization as well). Different than other clustering techniques such as k-means, GMM

allows to model overlap among data densities, and provides more accurate (complex)

modeling of data distributions. A mixture model is a linear combination of a finite

number of models

p(x|𝛩) =
K∑

k=1
𝛼kp(x|𝜃k) (3)

where p(x|𝛩) is the probability density function (pdf) of a continuous random vector

x given a mixture model 𝛩, K is the number of mixtures, 𝛼j and 𝜃j are the mixing

weights and parameters of the jth model (with 0 < 𝛼j ≤ 1 and
∑K

j=1 𝛼j = 1). The mix-

ture model parameters 𝛩 = {(𝛼1, 𝜃1),… , (𝛼K , 𝜃K)} are estimated using the particle

position (x) and fitness (f (x)) of all particles through all generations.

In the GMM approach employed in this framework, the mixture is initialized with

a large number of components, where each component is centered at a randomly

picked data point. Training is based on the use of Expectation Maximization (EM)

where the E-step and M-step are applied iteratively. In the E-step, the posterior prob-

ability given the data is computed:

w(t)
i,j =

𝛼jp(xi|𝜃j)
∑K

k=1 𝛼kp(xi|𝜃k)
(4)
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Then, in the M-step, the model parameters are updated. Authors propose a slightly

modified variant of mixing weights update, which discounts the number of parame-

ters in each Gaussian (N):

N = d + d(d + 1)
2

(5)

𝛼

(t+1)
j =

max{0, (
∑n

i=1 wi,j) − N∕2}
∑K

k=1 max{0, (
∑n

i=1 wi,k) − N∕2}
(6)

where d is the number of dimensions of x and n is the number of data points. The

remaining parameters are updated as:

𝝁
(t+1)
j =

∑n
i=1 w

(t)
i,j xi

wi,j
(7)

𝜮
(t+1)
j =

∑n
i=1 w

(t)
i,j (xi − 𝝁

(t+1)
j )(xi − 𝝁

(t+1)
j )T

wi,j
(8)

However, during learning as the model is updated (1) components lacking enough

data points to estimate their covariance matrices have their corresponding mixing

weights set to zero (component annihilation) and (2) the number of components is

gradually decreased until a lower boundary is achieved and then, the number that

resulted in the best performance is chosen.

The use of density models in EC is not new. However, such strategy of using both

phenotypic and genotypic data to estimate the models is novel. Another major dif-

ference between the proposed use of probabilistic models and those seen in the EDA

literature is that in the proposed approach, all solutions found in the course of an

optimization task are employed in order to estimate the model of the fitness land-

scape. In the EDA literature instead, selected (best fit) solutions at each generation

are employed in model estimation, as a selection strategy. In the proposed approach,

a density estimate is employed as a mean of matching new problems with previously

seen problems.

3.2 Memory Update

The memory is due to be updated after the mixture model has been created. As men-

tioned before, the basic memory element in the proposed approach is a probe. Updat-

ing the STM is trivial, it requires basically deleting the current probe and inserting

the new probe since the STM should provide means of recalling the last case of opti-

mization, for situations involving a block of similar optimization problems appearing

in sequence.
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The LTM instead, must provide a general model of the stream of optimization

problems. Since all LTM probes must be recalled before optimization is triggered,

the size of the LTM must be kept to a minimum in order to avoid a situation where

the cost of an unsuccessful recall is greater than the cost of full optimization. For

this reason, we propose an adaptive update mechanism. In the proposed mechanism,

when the LTM is due to be updated, the C2 distance metric [27] (which provides a

good balance between computational burden and precision) is employed in order to

measure the similarity between the GMM of the new probe and that of each of the

probes in the LTM. The C2 distance between two mixtures 𝛩 and 𝛩

′
is defined as:

𝝓i,j = (𝜮−1
i +𝜮

′−1
j )−1 (9)

𝜈i,j = 𝝁
T
i 𝜮

−1
i (𝝁i − 𝝁

′
j) + 𝝁

T
j 𝜮

′−1
j (𝝁′

j − 𝝁
′
i) (10)

C2(𝛩,𝛩

′) = −log
⎡
⎢
⎢
⎢⎣

2
∑

i,j 𝛼i𝛼
′
j

√
|𝜙i,j|∕(e𝜈i,j |𝜮 i||𝜮 ′

j |)
∑

i,j 𝛼i𝛼j
√
|𝜙i,j|∕(e𝜈i,j |𝜮 i||𝜮 j) +

∑
i,j 𝛼

′
i𝛼

′
j

√
|𝜙i,j|∕(e𝜈i,j |𝜮 ′

i ||𝜮
′
j |)

⎤
⎥
⎥
⎥⎦

(11)

The new probe is merged with the most similar probe in LTM if this distance

is smaller than a given threshold. Otherwise, the new probe is inserted (the probe

with smallest number of successful recalls is deleted if the LTM size limit has been

reached). The insert threshold is computed based on the mean minimum distance

between new probes and probes on the LTM for the last T LTM updates (𝜇
t
𝛿

). That

is, an insert will only occur if C2 − 𝜇

t
𝛿

is greater than the standard deviation for the

same time-frame (𝜎
t
𝛿

).

The Hennig technique, which is based on the use of Bhattacharyya distance and

does not require the use of historical data, is employed in order to merge two GMMs

[28]. The Bhattacharyya distance is defined as:

̄𝜮 = 1
2
(𝜮1 +𝜮2) (12)

dB(𝛩1, 𝛩2) = (𝝁1 − 𝝁2)T ̄𝜮
−1(𝝁1 − 𝝁2)

+ 1
2

log

(
| 1
2
(𝜮1 +𝜮2)|

√
|𝜮1||𝜮2|

)
(13)

where 𝜇i is a mean vector and 𝛴i is a covariance matrix.

In Hennig’s approach, given a tuning constant d∗ < 1, the two components with

maximum Bhattacharyya distance are merged iteratively as long as e−dB < d∗ for

at least one component. We propose a slight modification, which is to merge the

two components with minimum distance instead, in order to get a more incremental

variation in the mixture components.

If the number of mixture components after the merge operation is still greater

than a limit, un-merged components from the older mixture are deleted (the old un-

merged component with the highest Bhattacharyya distance from all other compo-

nents is delete iteratively until the limit has been achieved).
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Algorithm 1 summarizes the memory update mechanism. After the end of a round

of re-optimization, a new mixture (𝛩N) is estimated based on position and fitness

values of all particles from all generations during the optimization process (step 1).

The estimated mixture plus the global best solution will form a probe to be added

to the STM (any previous STM probe is deleted, step 2). Then, if the length of the

vector containing the last n minimum C2 distances between new probes and probes

in the LTM (𝜹) is smaller than T (step 3), its mean and standard deviation (𝜇
t
𝜹

and

𝜎

t
𝜹
) are initialized based on pre-defined values (𝜇

0
𝜹

and 𝜎

0
𝜹
, steps 4 and 5). Otherwise,

𝜇

t
𝜹

and 𝜎

t
𝜹

are computed based on 𝜹 (steps 7 and 8). After that, the minimum C2
distance between new probe and probes in the LTM is added to 𝜹 (steps 10 and 11).

The new probe is inserted into the memory if the difference between the minimum

C2 distance and 𝜇

t
𝜹

is greater than the standard deviation (𝜎
t
𝜹
, steps 12–16). It is

important to notice that before the insert, the LTM probe with the smallest number

of recalls is deleted if the memory limit has been reached. Otherwise the new probe

is merged with the most similar probe in the LTM (steps 18 and 19). If the limit of

vector 𝜹 has been reached, its first element is deleted (steps 21–23).

3.3 Memory Recall

Basically, the recall mechanism is the same for both levels of memory. The only

difference is that the LTM contains more probes than the STM and for this reason,

this process might be repeated for many LTM probes until either all probes have

been tested of a successful recall has occurred. For a given probe, Ns solutions are

sampled from its mixture model:

Xs = 𝝁j +𝜮 jRs (14)

where Xs is a sampled solution, s is the index of a solution sampled for the compo-

nent j in the mixture (⌊(Ns𝛼j) + 0.5⌋ solutions are sampled per component) and Rs
is a vector with the same length as 𝝁j whose elements are sampled from a normal

distribution N(0, I), being I the identity matrix.

It is important to observe that both, position and fitness values are sampled simul-

taneously. Then, the sampled solutions (along with the corresponding global best)

are reevaluated for the new problem instance. A Kolmogorov–Smirnov statistical

test is employed in order to compare the sampled and re-evaluated fitness values. If

they are below a critical value for a given confidence level, the recall is considered

to be successful and the best recalled solution is employed right away, avoiding a

costly re-optimization. If no probe (neither in the STM nor in the LTM) results in a

successful recall, a part of STM re-sampled solutions is injected into the swarm and

optimization is triggered for that problem instance.
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Algorithm 1 Memory update mechanism.

Inputs:
kmax—maximum number of components with 𝛼j > 0.

𝕸S—Short Term Memory.

𝕸 = {𝕸1,… ,𝕸|𝕸|}—Long Term Memory.

𝕯—optimization history (set of all particle positions and fitness values for new problem instance).

L𝕸—maximum number of probes in LTM.

𝜹—last T minimum C2 distances between a new probe and probes in the LTM.

|𝜹|—number of elements in 𝜹.

T—maximum size of 𝜹.

𝜇

0
𝜹
, 𝜎

0
𝜹
—initial mean and standard deviation of 𝜹.

Output:
Updated memory.

1: Estimate 𝛩N using 𝕯 [26].

2: Add 𝛩N and pg to 𝕸S.

3: if |𝜹| < T then
4: 𝜇

t
𝜹
← 𝜇

0
𝜹

5: 𝜎

t
𝜹
← 𝜎

0
𝜹

6: else
7: 𝜇

t
𝜹
← 1

|𝜹|
∑|𝜹|

i=1 𝛿i

8: 𝜎

t
𝜹
←

√∑n
i=1(𝛿i−𝜇

t
𝜹
)2

|𝜹|
9: end if

10: i∗ ← argmini{C2(𝛩N , 𝛩i)}, ∀𝛩i ∈ 𝕸
11: 𝜹 ← 𝜹 ∪ C2(𝛩N , 𝛩i∗ )
12: if C2(𝛩N , 𝛩i∗ ) − 𝜇

t
𝜹
> 𝜎

t
𝜹
then

13: if |𝕸| = L𝕸 then
14: Remove LTM probe with smallest number of successful recalls.

15: end if
16: Add 𝛩N and pg to 𝕸
17: else
18: Merge(𝛩i∗ , 𝛩N ) (Sect. 3.2)

19: Purge merged mixture in case number of elements exceed kmax.
20: end if
21: if |𝜹| > T then
22: Remove 𝛿1.

23: end if

3.4 Surrogated-Based Particle Swarm Optimization

Since the proposed method relies on several GMMs learned with the use of a train-

ing sequence, a promising strategy to further decrease the computational cost asso-

ciated in such recurring optimization problems is to employ the GMMs in regression

mode whenever re-optimization is triggered. Such approach is known in the litera-

ture as surrogate-based optimization [29]. In surrogate-based optimization, the fit-

ness landscape is sampled with the use of a sampling plan (design of experiments).
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Then, during optimization a portion of the exact fitness evaluations is replaced with

approximate fitness values obtained through regression and the surrogate is updated

with newly sampled points as necessary.

The surrogate-based strategy described in [17] is employed in the proposed

framework. This surrogate-based approach employs two populations (XA and XB)

in parallel, one based on surrogate fitness evaluations and another one based on

exact fitness evaluations. During initialization, solutions sampled from the GMM

memory are injected into XB. Optimization is first performed in XA. Then, the best

solution found in the surrogate fitness optimization (pg,s2) is re-evaluated in the exact

fitness. If it improves the neighborhood best of population XB, that neighborhood

best is replaced with pg,s2. After that, an iteration of optimization is performed using

population XB on the exact fitness. This process is repeated until a stop criterion has

been reached.

However, differently than the approach proposed in [17], no surrogate update is

employed. The motivation is that a memory of previously learned GMMs already

provides a valuable knowledge about new optimization problems.

In terms of regression, the proposed strategy relies on the Gaussian Mixture

Regression (GMR) approach described in [30]. The advantage of Sung’s approach

is that it requires no modification to the proposed GMM learning. Moreover, it pro-

vides a distribution of the predicted value with f̂ (x) as the mean and 𝜺
2(x) as the

covariance matrix.

Here 𝜺
2(x) can be seen as the amount of uncertainty about the predicted value.

Since it is important to allow for exploration, this quantity will be discounted from

the predicted value which should direct search towards unexplored regions of the

fitness landscape (higher uncertainty). More formally, costly calls to the exact fitness

f (x) are partially replaced by a predicted fitness fP(x, 𝛩) using the strategy proposed

by Torczon and Trosset [31]:

fP(x, 𝛩) = ̂f (x, 𝛩) − 𝜌c𝜀(x, 𝛩) (15)

where ̂f (x, 𝛩) is an approximation to f (x) based on model 𝛩, 𝜌c is a constant that

dictates how much emphasis will be put in exploring unknown regions of the model

and 𝜀(x) is the prediction error.

4 Experimental Results

4.1 Application

The proposed fast optimization technique will be validated in the optimization of

embedding parameters for a bi-tonal watermarking system [11]. This is an interesting

problem because a given watermark needs to be robust against attacks but at the

same time result in minimum visual interference in the host image and this trade-

off can be manipulated by carefully adjusting heuristic parameters in the watermark
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embedder. Generally speaking, in this watermarking system, a cover bi-tonal image

is partitioned into several blocks, the flippability score of each pixel is computed

using a moving window, the pixels are shuffled according to shuffling seed and each

bit of the given bit stream is embedded into each block of the cover image through

manipulation of the quantized number of black pixels. The quantization step size (Q)

determines the robustness of the watermark and since this watermarking technique

allows the embedding of multiple watermarks (with different levels of robustness),

we will embed two watermarks a fragile one (which can be employed to enforce

image integrity) with a fixed value for its quantization step size of (QF = 2) and

robust one (which can be employed to enforce image authenticity) with an adjustable

quantization step size QR = QF + 𝛥Q where 𝛥Q is a parameter to be optimized. More

details can be found in [11]. Four parameters need to be optimized: the partition block

size which is an integer between 1 and the maximum attainable size for the given

image as seen in [32]; the size of the window used in the flippability analysis, which

can be either 3 × 3, 5 × 5, 7 × 7 or 9 × 9; the difference between the quantization step

size for the robust and fragile watermarks (𝛥Q), which is an even number between 2

and 150; and the index of the shuffling key (we proposed using a pool of 16 possible

shuffling keys, thus this index is an integer between 1 and 16).

The fitness function is a combination of the Bit Correct Ratio (BCR) between

the embedded and detected watermarks (both, robust and fragile), and Distance

Reciprocal Distortion Measure (DRDM) [33], which measures the quality of the

watermarked image (more details can be found in [11]). The three fitness values are

aggregated using Chebyshev approach [34]:

F(x) = maxi=1,…,3{(1 − 𝜔1)(𝛼sDRDM − r1),
(1 − 𝜔2)(1 − BCRR − r2),
(1 − 𝜔3)(1 − BCRF − r3)} (16)

where 𝛼s is the scaling factor of the quality measurementDRDM, BCRR is the robust-

ness measurement of the robust watermark, BCRF is the robustness measurement of

the fragile watermark, 𝜔i is the weight of the ith objective with 𝜔i =
1
3
,∀i, ri is the

reference point of objective i.
Each image corresponds to an optimization problem. In situations involving

streams of images with similar structure (like document images) it is very likely

that some of the images in the stream will have similar embedding capacity. In such

case, a stream of document images can be seen as a stream of recurrent optimization

problems.

4.2 Validation Protocol

The BancTec logo (Fig. 2a), which has 26 × 36 pixels will be employed as robust

watermark and the Université du Québec logo (Fig. 2b), which has 36 × 26 pixels

will be employed as fragile watermark.
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Fig. 2 Bi-tonal logos used

as watermarks. a 26 × 36
BancTec logo. b 36 × 26
Université du Québec logo

Oulu University’s MediaTeam [35] (OULU-1999) database is employed as image

stream. This database was scanned at 300 dpi with 24-bit color encoding. Since the

baseline watermarking system is bi-tonal, the OULU-1999 database was binarized

using the same protocol as in [11]. As some of its images lack the capacity necessary

to embed the watermarks described above, a reject rule was applied: all images con-

taining less than 1872 pixels with SNDM greater than zero were discarded. This rule

resulted in the elimination of 15 of the original 512 images. The database was split

in two subsets: a smaller one for development purposes, containing 100 images and

a larger one, for validation purposes, containing 397 images. Images were assigned

to these sets randomly. Table 1 shows the structure of both subsets.

Table 1 OULU-1999 database structure

Category TRAIN TEST

# #

Addresslist 0 6

Advertisement 5 19

Article 51 180

Businesscards 1 10

Check 0 3

Color segmentation 1 7

Correspondence 6 18

Dictionary 1 9

Form 9 14

Line drawing 0 10

Manual 6 29

Math 4 13

Music 0 4

Newsletter 4 37

Outline 4 13

Phonebook 4 3

Program listing 2 10

Street map 0 5

Terrainmap 2 7

Total: 100 397
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Fig. 3 Images from OULU-1999-TRAIN. a Image 1. b Image 2. c Image 5. d Image 6

As can be seen in Fig. 3, the images in this database are considerably heteroge-

neous.

The number of previous updates T employed to compute the adaptive threshold

will be set to 10. The initial mean and standard deviation of the minimum distance

were set to 361.7 and 172.3 respectively. These values were obtained by running

the proposed technique in a “fill-up” mode (forcing re-optimization and LTM insert

for every image in the OULU-1999-TRAIN subset). The resulting minimum C2 dis-

tances of these inserts were employed in order to compute these initial values.

The metrics employed in order to assess the computational performance are the

average number of fitness evaluations per image (AFPI), the total number of fitness

evaluations required to optimize the whole image stream (FEvals) and the decrease in

the number of fitness evaluations (DFE), computed as:

DFE = 1 −
FEvals,M

FEvals,F
(17)

where FEvals,M is the cumulative number of fitness evaluations for the memory based

approach and FEvals,F is the cumulative number of fitness evaluations for full opti-

mization. Full optimization means applying the PSO algorithm described in Sect. 2

without resorting to neither memory recall nor to surrogates.

The reference points for the Chebyshev Weighted Aggregation were obtained

through sensitivity analysis of the OULU-1999-TRAIN subset and were set to r1 =
r2 = r3 = 0.01. The scaling factor of the DRDM (𝛼r) was also obtained through sen-

sitivity analysis using the training subset and was to 0.53.

During recall, 19 solutions are re-sampled from each probe, which are re-evaluated

along with the global best solution, resulting in 20 sentry particles. The confidence

level (𝛼) of the KS statistic was set to the same value employed in [11], which is 0.95

and corresponds to a critical value (D
𝛼

) of 0.43. The LTM size is limited to 20 probes.

The PSO parameters employed on full optimization are the same defined in [11]

(20 particles, neighborhood size of 3, optimization stops if the global best has not

improved for 20 generations). Cropping of 1 % of the image surface was employed
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during the optimization since such attack can effectively remove a non-optimized

watermark. The proposed approach is compared with a previous approach (case-

based), which relies on a memory of selected solutions [11] to demonstrate the main

advantages of employing a memory of mixture models. In the case-based approach,

the STM and LTM contain the local bests of each particle, obtained at the end of the

optimization process.

In the simulations involving surrogates, re-optimization is forced for each image,

as a mean of generating enough data to validate the contribution of surrogates in

decreasing the computational cost of re-optimization. Recall is performed only as

a mean of assigning the best model for each new problem (the one with smallest

KS is chosen as the most appropriate). Therefore, the comparison to be made is

between the surrogate-based approach and full optimization since the main objective

here is to decrease the cost of full optimization in situations where re-optimization

cannot be avoided. After each transition, 70 % of the swarm is randomized and the

remaining 30 % solutions are replaced with solutions sampled from the STM. The

memory is created by applying the GMM-based approach to the training stream, with

full optimization activated (when re-optimization is triggered) and with the merge

operator de-activated. However, since the underlying assumption of the proposed

strategy is that previously learned surrogates provide valuable knowledge about new

problems, it is important to define a matching strategy between previously learned

surrogates and new problems. The strategy proposed here is to simply choose the

GMM that results in the smallest KS value during recall.

The simulations are conducted in the heterogeneous OULU database described

before. In order to understand the behavior of surrogates in more stable scenarios,

simulations are also conducted using the homogeneous database of scientific docu-

ments from Computer Vision and Image Understanding (CVIU) journal. The train-

ing database (TITI-61) contains 61 pages from issues 113(1) and 113(2), split in

two categories—30 pages of text and 31 pages of images—while the test database

(CVIU-113-3-4) contains 342 pages of 29 complete papers from CVIU 113(3) and

113(4). More details about both databases can be found in [11].

4.3 Simulation Results

Avoidance of Re-Optimization In the first set of experiments, the surrogates are de-

activated and the proposed recall mechanism works as described in Sect. 3. For each

image, as soon as a case of KS value between the re-sampled and re-evaluated smaller

than the critical value is found, the best recalled solution is employed directly and re-

optimization is avoided. Otherwise, if no such case is found, full optimization takes

place. The GMM-based approach resulted in a significant decrease in computational

burden when compared to full optimization and even compared to the case-based

approach (Table 2). Despite the decrease in computational burden, the watermarking

performance of the GMM-based approach is practically the same of the other two

approaches (Table 3).
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Table 2 Computational cost of the proposed technique compared to case-based approach and full

optimization

Subset Full PSO Case-based GMM-based

AFPI FEvals AFPI FEvals DFE (%) AFPI FEvals DFE (%)

TRAIN 887(340) 88740 351(455) 35100 60.5 274(447) 27420 69.1

TEST 860(310) 341520 177(351) 70300 79.4 83(213) 32920 90.4

AFPI is the average number of fitness evaluations per image where the mean 𝜇 and standard devi-

ation 𝜎 are presented as 𝜇(𝜎). FEvals is the cumulative number of fitness evaluations required to

optimize the whole stream and DFE is the decrease in the number of fitness evaluations compared

to full optimization

Table 3 Watermarking performance of the proposed technique compared to case-based approach

and full optimization

Variant Subset DRDM BCR robust BCR fragile

Full PSO TRAIN 0.03(0.03) 98.4(2.1) 99.7(0.6)

TEST 0.03(0.04) 98.4(2.2) 99.6(0.6)

Case-based TRAIN 0.03(0.03) 97.9(2.6) 99.6(1)

TEST 0.03(0.03) 97.2(3.6) 99(1.6)

GMM-based TRAIN 0.03(0.03) 97.5(2.8) 99.4(1.0)

TEST 0.03(0.03) 96.7(4.0) 99.1(1.5)

For all values, the mean 𝜇 and standard deviation 𝜎 per image are presented in the following form:

𝜇(𝜎). DRDM is presented with two decimal points and BCR is presented in percentage (%) with

one decimal point

These results demonstrate that the memory of mixture models can cope better

with the variations in the stream of optimization problems. Since the case-based

probes are more tuned to the problems that generated them, they are more sensitive

to small variations in a given recurring landscape caused by noise. A clear sign of

this is that the smaller number of fitness evaluations was obtained even though for

two of the watermarking performance metrics there was even an improvement when

compared to the case-based approach. Moreover, for both cases, the watermarking

performance is similar to that of full optimization, which illustrates the applicability

of the proposed technique. However it is important to notice that the basic assumption

is that the application can be formulated as the problem of optimizing a stream of

optimization problems with some of the problems re-appearing over time, subject to

noise.

Surrogate-Based Optimization Performance Table 4 shows the computational

cost and watermarking performance of the simulations involving surrogates. It is pos-

sible to observe that in both cases (heterogeneous and homogeneous image streams),

the use of a surrogate allowed a slight decrease in computational burden with a water-

marking performance identical to that of full optimization.

The computational cost performance for the homogeneous stream is slightly bet-

ter than that of the heterogeneous stream with a decrease of 12.3 % in the number of

fitness evaluations when compared to full optimization. The reason is that the mem-
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Table 4 Computational cost and watermarking performance of the surrogate-based strategy

Subset AFPI FEvals DFE (%) DRDM BCR robust BCR fragile

OULU-1999-TEST 831(334) 330021 3.4 0.03(0.03) 98.4(2.2) 99.6(0.7)

CVIU-113-3-4 787(322) 269168 12.3 0.02(0.04) 98.8(2.2) 99.5(0.4)

AFPI is the average number of fitness evaluations per image where the mean 𝜇 and standard devi-

ation 𝜎 are presented as 𝜇(𝜎). FEvals is the cumulative number of fitness evaluations required to

optimize the whole stream and DFE is the decrease in the number of fitness evaluations compared

to full optimization

ory learned with the use of a training sequence represents better the images found in

the test database for that specific stream.

These results depict the main advantage of using a surrogate. Although the gains

are not substantial as in the case where re-optimization is avoided, they are more

robust in terms of watermarking performance and are a better alternative compared

to performing full optimization.

4.4 Discussion

The proposed technique was assessed in a proof of concept intelligent watermarking

problem. These simulation results demonstrate that the proposed technique allows

decreasing computational burden of dynamic optimization with little impact on pre-

cision for applications involving the optimization of a stream of recurring problems.

For example, in Fig. 4, which shows the best fitness value for each generation for

both, full optimization and the proposed approach, it is possible to observe that

although the proposed technique resulted in less generations, the best recalled solu-

tions (square and triangle marks) are very close to those obtained by full optimiza-

tion.
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Simulations involving the use of previously learned GMMs as surrogates demon-

strate that such memory of GMMs allows not only avoiding re-optimization in situ-

ations involving recurring problems but also provides means of directing the search

process for not so similar problems. Such strategy allows formulating surrogate-

based optimization as a machine learning problem. One of the major concerns in

surrogate-based optimization is the cost associated with probing the new environ-

ment during optimization. However, these simulation results demonstrate that it is

possible to learn such a memory of surrogates in a controlled (training) environment

and then, deploy this memory of surrogates to a production environment where the

constraints on performance are higher. It is interesting to observe in the simulations

involving the use of surrogates that the decrease in the number of fitness evaluations

was higher for the homogeneous stream than for the heterogeneous stream (12.3 ver-

sus 3.4 %). Considering that in both cases re-optimization has been forcibly triggered

for each image, the only possible explanation is that the train stream represents bet-

ter the test stream for the homogeneous stream than for the heterogeneous stream.

These results suggest that the surrogate model must be updated as optimization of

new optimization problems takes place.

The trade-off between precision and computational burden is driven by (1) the

number of times optimization is triggered and (2) the speed up in convergence

provided by the surrogates. Therefore it is possible to improve precision by either

employing a more restrictive decision threshold in the Kolmogorov-Smirnov test

employed on change detection or by relying less on surrogate optimization (applying

one round of surrogate optimization for every two iterations of exact optimization,

for example).

5 Conclusion

A hybrid GMM/PSO dynamic optimization technique was proposed in this paper.

The main objective of the proposed approach is to tackle optimization of streams

of recurring optimization problems. Such formulation of dynamic optimization is

applicable to many practical applications, mainly those related to optimizing heuris-

tic parameters of systems that process streamed data such as batch processing of

images, video processing, incremental machine learning.

In the proposed technique, a two-level adaptive memory containing GMMs of

solutions in the optimization space and global best solutions is incrementally built.

For each new problem instance, solutions are re-sampled from this memory and

employed as sentries in order to (1) measure the similarity between the new prob-

lem instance and previous instances that had already resulted in optimization; (2)

provide ready-to-use solutions for recurring problems, avoiding an unnecessary re-

optimization.

It is worth noticing that the proposed technique resulted in a decrease of 90.4 %

in computational burden (compared to full optimization) with minimum impact on

accuracy in an application involving a heterogeneous stream of document images.



A Dual-Purpose Memory Approach for Dynamic Particle . . . 387

Although these results are still preliminary, they are comparable to results obtained

in a previous version of the proposed approach already published, with the main dif-

ference that the experiments reported in this paper involved a much more challenging

database which results in more varied (noisy) optimization problems.

Simulation results involving the use of the memory of GMMs as surrogates

demonstrate that it is possible to use the knowledge of previously seen problems as

a mean of decreasing the computational cost of re-optimization in situations where

re-optimization cannot be avoided. Even though model update was not employed,

the use of surrogates resulted in a decrease of 3.4 % in the number of fitness evalua-

tions for a heterogeneous stream and 12.3 % for an homogeneous stream. To the best

of our knowledge, such finding advances the state-of-the-art in the surrogate-based

optimization literature by separating surrogate learning (or modeling) which can be

performed in a controlled environment from prediction in a more constrained pro-

duction environment. The superior performance for homogeneous database indicate

that model adaptation is an important issue for heterogeneous streams of optimiza-

tion problems. This means that in the same manner an adaptive memory is required

to tackle recall of heterogeneous streams an adaptive surrogate is required to tackle

optimization in such scenario. As a future work we propose an evaluation in a larger

stream of document images and also in synthetic benchmark functions which could

allow a better understanding of the mechanisms behind the proposed approach. We

also propose validating the proposed technique in other applications where such

stream of recurring optimization problems is applicable such as incremental learn-

ing, video processing.
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Risk Assessment in Authentication Machines

S. Eastwood and S. Yanushkevich

Abstract This work introduces an approach to building a risk profiler for use in

authentication machines. Authentication machine application scenarios include the

security of large public events, pandemic prevention, and border crossing automa-

tion. The proposed risk profiler provides a risk assessment at all phases of the authen-

tication machine life-cycle. The key idea of our approach is to utilize the advantages

of belief networks to solve large-scale multi-source fusion problems. We extend the

abilities of belief networks by incorporating Dempster-Shafer Theory measures, and

report the design techniques by using the results of the prototyping of possible attack

scenarios. The software package is available for researchers.

Keywords Authentication ⋅ Security ⋅ Risks ⋅ Belief (bayesian) network ⋅
Dempster-Shafer evidence model ⋅ Border crossing automation

1 Introduction

International Air Transport Association (IATA) introduced a roadmap for 2020+

border crossing automation in [1]. The Department of Homeland Security (DHS),

U.S.A. outlined [2] the breakthrough technological directions in border crossing

automation. The core of both IATA’s and DHS’ visions is the risk assessment of the

deployed technologies. Those include authentication machines (A-machines), along

with their supporting infrastructure built on an intelligent platform.

An A-machine performs the human identification/verification task. It is tradition-

ally a part of security infrastructure and management [3]. Standard [4] defines this

area as biometric identity assurance services. The A-machine is a typical service-
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Fig. 1 Groups of risk categories with respect to application scenario of A-machines

oriented architecture. The authentication is understood as the implementation of the

following processes [5–7]:

(a) Knowledge acquisition (information about the person in various forms and from

different sources including physical possessions such as keys, IDs, passports,

and certificates), or/and

(b) Biometric acquisition (physiological and behavior appearances and characteris-

tics of individuals that distinguish one person from another).

There are two aspects of this technology: (a) implementation of authentication

techniques and supported infrastructure (A-machine), and (b) modeling and simu-

lation that supports all phases of the A-machine life-cycle by assessing the risks of

various design, testing, and deployed scenarios. Our work focuses on the design of

intelligent tools for authentication risk assessment.

A general landscape of A-machine applications is introduced in Fig. 1. It addresses

four key application scenarios: security of large public events, pandemic prevention,

terrorist threats, and border crossing technologies [8, 9]. The lower part of each tri-

angle corresponds to the high-risk decisions due to low information content, and the

higher part corresponds to the low-risk decisions, because the accumulated informa-

tion content is relatively sufficient for making reliable decisions. At the right plane

of each triangle, risk categories for information accumulation are indicated in order

of their priority.

This group of risk categories includes the following sources of information:

∙ token/ID (risks such as a counterfeit or stolen item);

∙ early warning biometrics (risks such as an unidentified disease);

∙ watchlist (risks such as non-updated data, or an attack on the database);

∙ advanced information (risks such as forged personal data);

∙ interview (risks such as an undetected lie);

∙ e-passport/ID (risks such as an intentional change of appearance via plastic

surgery, colored eye lenses, or replacing the biometric template in an e-document);

and

∙ surveillance (risks such as an intentional face obstruction or wrong identification).
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Gathering personal information from these sources results in a decision regard-

ing the targeted person. Initial information is provided by a token/ID, verified against

a watchlist, and then additional information is continuously accumulated by means

of biometric surveillance and related technologies. Risks in the A-machine applica-

tion of pandemic prevention include early warning information and distance control.

Other components, such as soft biometrics at distance, were reported in [12–14].

Interview (authentication) supported machines with a virtual security officer were

described in [15–19]. After identifying pandemic features (geographical, as well as

temperature, blood pressure, and other features), traditional technologies for human

authentication can be used. Large public events are usually secured against threats

using mobile identification [10, 11] (Fig. 1).

Risks in case of terrorist threats are analyzed, in particular, in [20, 21]. Traveler

risk assessment in A-machines for border crossing is initiated from the moment of

buying the ticket and providing personal information [22, 23].

A-machines can be potentially used to mitigate the vulnerability of domestic pub-

lic transportation systems and various mass-public hubs. Passenger risk assessment

in these applications is calculated using other risk categories for the following rea-

sons. To enhance the security of mass-transit systems, specific supporting technolo-

gies for A-machines are needed [24], as passengers may not have an e-passport or

e-ID. It is possible to delegate some functions of the A-machine for mass-transit

public system security to the passengers’ personal mobile devices. Contemporary

mobile devices can authorize their holders to use various technologies [8, 9, 24].

In such an approach, the hub A-machine communicates with personal devices that

constantly confirm the holder’s identity, that is, each passenger is being authorized

and trucked through the transit hub.

Examples of real-world A-machines for border crossing purposes are given in

Fig. 2. For instance, the SmartGate is a typical A-machine which can operate only

in a specific environment such as e-passport risk assessment technology based on

Fig. 2 A-machines for border crossing applications. a Faro airport, Portugal [27] http://www.fron

tex.Publications/Research/Biopass; b Interview supported A-machine (AVATAR machine) http://

www.borders.arizona.edu/cms/sitesdefault/files/FieldTestsofanAVATARInterviewingSystemforTr

ustedTraveler/; c New Zealand [25] http://biometrics.nist.gov/cs_links/ibpc2014/presentations/

http://www.frontex.Publications/Research/Biopass
http://www.frontex.Publications/Research/Biopass
http://www.borders.arizona.edu/cms/sitesdefault/files/FieldTestsofanAVATARInterviewingSystemforTrustedTraveler/
http://www.borders.arizona.edu/cms/sitesdefault/files/FieldTestsofanAVATARInterviewingSystemforTrustedTraveler/
http://www.borders.arizona.edu/cms/sitesdefault/files/FieldTestsofanAVATARInterviewingSystemforTrustedTraveler/
http://biometrics.nist.gov/cs_links/ibpc2014/presentations/
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watchlists, and pre-border risk evaluations [25, 26]. First, a traveler checks whether

he/she is eligible to use the A-machine, and then undergoes the process of verifying

their identity and final clearance.

The main feature of the border crossing A-machines, which distinguishes

them from other authentication tools, is that they are deeply integrated into social

infrastructure [28, 29]. This allows for the implementation of computational

intelligence-based mechanisms for information gathering and risk assessment. For

example, initial information can be provided by an ID submitted by the user, on-line

biometrics, surveillance data, personal information from various databases avail-

able to the system, and interview data [20, 30]. State-of-the-art applications of

A-machines for border crossing automation are reported in [31, 32].

Hence, the central procedure of authentication technology is the fusion of infor-

mation provided by various sources or sensors. Data fusion is defined as A multi-
level, multifaceted process dealing with the automatic detection, association, corre-
lation, estimation, and combination of data and information from single and multiple
sources to achieve refined position and identity estimates, and complete and timely
assessments of situations and threats and their significance [33].

1.1 Problem Formulation

All phases of the life-cycle of A-machines for large-scale applications, such as border

crossing automation, need knowledge of the behavior of these machines in possible

operational scenarios. These scenarios address risks of the impact of complicated

combinations of various factors in the performance of the A-machine that can result

in a failure of the A-machine. Examples are semantic attacks (user lies in an inter-

view) and biometric attacks (traveler uses a stolen e-passport/ID with a replaced bio-

metric template). Risks of such threats should be taken into account at all phases of

the life-cycle of the A-machine (development, prototyping, testing, deployment, and

exploiting). There are two ways to solve this problem: (a)Risk evaluation using mod-

eling and simulation of scenarios of interest [3, 34–36], and (b)Risk evaluation using

a special proving ground (testing areas) [37]. A common platform for A-machine vul-

nerability and risk study includes simulation and modeling of the decision-making

process.

Special computational intelligence-based techniques and tools for security risk

assessment in various applications are called profilers [3]. In this work, we aim at

developing a special purpose simulator, called an A-profiler, for the evaluation of

risks related to A-machine applications.
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1.2 Contribution

The following constitute the contributions of this work:

1. Systematic approach to developing the A-profilers for the risk assessment of

A-machines. Instead of general terrorism risk management such as in [3], our

work focuses on A-machine risk assessment over a library of scenarios, includ-

ing cyber-attack management. However, the A-profiler can be considered as a

part of the security portfolio management [3].

2. Two types of A-profilers are developed: (a) belief (Bayesian) network (BN) based,

and (b) Dempster-Shafer Theory (DST) based profiler. This is a continuation and

extension of our previous study, in particular, [34, 35].

3. We use the same computational platform, a graph model (causal network), for

both Bayesian point estimates and DST interval estimates (pessimistic and opti-

mistic scenarios). This approach is motivated by the large scale of the problem. In

particular, we address this problem by using decompositions of the graph models

and a library of risk assessment scenarios for A-machines.

4. We provide a software package “Dempster-Shafer Bayesian Network (DS-BN)”

[38] which is a platform of the DST based profiler. This package can be used for

various DST based multi-source fusion problems.

The main goal of our study is to increase the reliability of security risk assessment

for A-machines, using the computational intelligence-based fusion of results from

different models, metrics, and philosophies of decision-making under uncertainty.

2 Theoretical Platform of A-Profilers

Risk is defined as an event that, if it occurs, has an unwanted impact on the system’s

ability to achieve its performance or outcome objectives [39]Risk = R(p,Impact)
where p is probability of a risk. If risk and impact are identified, a risk mitigation

strategy can be developed. A risk can be expressed in the form of risk statement,

as Risk = Condition-If-Then = Pr(A|B) − Then where Condition is an

event that has occurred, or is presently occurring, or will occur with certainty; Risk
is a potentially possible future event; Pr(A|B) is the probability of risk event A given

eventB. Risk can be evaluated via evidence accumulation and data fusion techniques.

Various data fusion paradigms can be used in an A-profiler, such as:

∙ Belief (Bayesian) network as an extension of Bayesian rule for an arbitrary directed

acyclic graph (DAG) [40]. It is reasonable when the problem is described by DAG,

however, the primary statistics must be available. Belief propagation is a means for

updating the marginal distributions of variables in the DAG through knowledge

of the values of some subset of evidentiary variables. An arbitrary A-machine can

be represented by a DAG and modeled by a belief network.
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∙ Markov networks also known as Markov random field models [40, 41]. Their

unique property is that the causal description, such as in belief (Bayesian) net-

works, is replaced by a topology of the problem in the form of an undirected,

possibly cyclic, graph.

∙ Dempster-Shafer Theory (DST) evidence model [42] and its extensions such as

Dezert-Smarandache Theory (DSmT) [43]. They are useful when expert knowl-

edge is given in imprecise form such as interval probabilities. This model may

be implemented using similar belief networks but with more complicated calcu-

lations. When probabilistic intervals are small, the DST model becomes a belief

network.

∙ Neural networks are a flexible heuristic technique for data fusion and statistical

pattern recognition using maximum-likelihood estimation of the weight values in

the model defined by the network topology [44]. Knowledge from the problem

domain is incorporated into the network topology.

∙ Voting logic can be used at the low level fusion. Sensor information is used to com-

pute detection probabilities that are combined accordingly using Boolean algebra

expressions. The key idea of voting fusion is the combining of logical levels rep-

resenting sensor confidence levels [51]. However, this is a noise-vulnerable fusion

technique.

∙ Fuzzy logic is well suited where the boundaries between sets of values are not

sharply defined or there is a partial occurrence of an event. It can be efficiency

used to fuse information from multiple sources (sensors) [51].

∙ Information-theory models provide description of flows (propagation of data,

uncertainty, screened customers, mismatched patterns etc.) in terms of entropy.

For example, high and low entropy are associated with the A-machine input and

output, respectively.

There are various combined models such as the Transferable Belief Model (TBM)

[45], factor graphs which have combined properties of Bayesian and Markov net-

works [40, 41], fuzzy cognitive mapping [46], fuzzy neural networks [47], and fuzzy

DST [48, 49], Bayesian neural networks [44], as well as the DST based neural net-

work [50]. In this paper, the mixed model we propose is a belief (Bayesian) network

with incorporated DST measures; this is similar to the TBM [45] except that our

goals are different: we aim at designing a Bayesian causal network as a graphical

model of an A-profiler; instead, the TBM is a fusion algorithm whose core is an

updated Bayesian fusion paradigm with DST measures. Most of the aforementioned

data fusion approaches are reviewed in [33, 51].

In addition, game-theory models can be used as a framework for different authen-

tication scenarios and security personnel training, especially in training skills for

attack scenarios, that is, when a customer tries to deceive personnel [52]. In these

models, security personnel must anticipate what a customer will infer from the per-

sonnel’s own actions or questions.

The effectiveness of each of these models depends on specific details of the prob-

lem under consideration. Moreover, they provide different interpretations of uncer-

tainty in terms of probabilities. For example, a belief network and a Markov random
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field model provide different results. However, all models favour static scenarios, in

which the truth values of the statements on which they rely are assumed to remain

constant. Only game-theory methods explicitly model the interaction between two

adversarial reasoners.

3 Risk Assessment as an Evidence Accumulation Process

Formally, authentication based on digitized data of a stochastic nature, such as bio-

metrics, is known as decision-making under uncertainty. Decision-making is under-

stood as a cognitive process leading to the selection of a course of action among

several alternatives.

Any application involving A-machines incurs a risk of an incorrect authentication

of a person. There is always a risk that the A-machine makes an incorrect decision.

The magnitude of such risks depends on the application. For example, the error of

human authentication for golf facility access, border crossings, and for nuclear plant

access are associated with different risks. Risks should be evaluated using appro-

priate computational intelligence-based models. Various models and their metrics

reflect particular aspects of decision-making under uncertainty. No methodology,

model or metric exist that can be ultimately applied for risk assessment in various

deployed scenarios.

The A-machine is a typical evidence accumulation machine because it makes

decisions at various levels of the decision-making hierarchy, after accumulating a

sufficient information content. The A-profiler is a modeling tool that models the

Fig. 3 a The causal view of

the 4-state screening

discipline of service over

authentication resource Ri;

b resource utilization as an

evidence accumulation

process (see the notation in

Table 1)

IN

sIN R1 s1 s2 sOUT
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process of evidence accumulation in A-machines. The A-profiler can provide useful

information about A-machine operation in various deployment scenarios, for exam-

ple, when it gathers information from available sources to assess traveler risk fac-

tors [1, 4].

The platform of the risk profiler for A-machines and supporting infrastructure

is the data fusion model. This model includes a low level fusion processes, such as

data preprocessing, classification, identification, and verification, and a high level
fusion processes, such as situation and threat assessment, as well as a fusion process

refinement.

One of possible causal model of the A-machine is shown in Fig. 3a. This is a

4-state network over authentication resource Ri. The resource Ri is distributed

between the three evidence accumulation phases (I, II, and III). They are modeled

using the corresponding groups of variables (Table 1): phase I, state SIN over authen-

Table 1 A 4-state screening discipline of service over authentication resource

State Content

sIN Initial state, unknown (unauthorized) traveler

s1 Traveler under visual (r11) and multispectral surveillance (r12)

s2 Traveler under visual (r21) and multispectral surveillance (r22), ID-based

authentication (r23), and database search (r24)

sOUT (a) Traveler at the officer desk under authentication resource R3: visual (r31) and

multispectral surveillance (r32), dialogue (r33), global search (r34), or (b) traveler

directed from state s2 to the authorized state sOUT (resources R3 are not activated)

Customer

x1 x2 

Customer

Decision 
making 
support 

assistant 

SIN

Customer

p(a1) p(a2)
0.999 0.001

p(b1) p(b2)
0.999 0.001

a1 , b1, x2 – regular
a2, b2 , x1  –alert 

Guard 
assistant 

a

p(x1|aibj) p(x2|aibj)
a1b1 0.01 0.99
a1b2 0.05 0.95
a2b1 0.10 0.90
a2b2 0.15 0.85
a3b1 0.40 0.60
a3b2 0.50 0.50
a4b1 0.60 0.40
a4b2 0.90 0.10

x

p(a) p(b)

p(x | a,b)

Guard 
assistant 

b

Evidence I
accumulation 

Evidence II
accumulation 

Evidence III
accumulation 

x7 x8 x9 x10

Customer

x3 x4 x5 x6 

S1

S2

S OUT

Fig. 4 A generic model of the A-machine in terms of evidence accumulation
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tication resource R1 (visual multispectral surveillance, r11, r12); phase II, state S1
over authentication resource R2 (surveillance r21, r22, ID identification r23, and risk

assessment using a watchlist database search r24); and phase III, state S2 (if neces-

sary) over authentication resource R3 (surveillance r31, r32, interview r33, and addi-

tional resources for risk assessment r34).
A generic model of the A-machine that collects, process, and analyzes the cus-

tomer’s data is illustrated in Fig. 4. As one possible description of the A-machine,

this model is assumed to be a belief network with conditional probability tables

that represent likelihoods based on prior information. In Fig. 4, variables xi are

associated with authentication resource as follows: R1 = {r11, r12} ≡ {x1, x2}, R2 =
{r21, r22, r23, r24} ≡ {x3, x4, x5, x6}, and R3 = {r31, r32, r33, r34} ≡ {x7, x8, x9, x10}.

Several scenarios of evidence accumulation in border management are introduced

in the ISO standard [4].

4 Graph Models for A-Profiler Design

A-profiler can be built based on various theoretical models that can describe the

insufficiency of initial data or its imperfection, as well as different scenarios for

modeling (causal or non-causal description). In our work, we built the A-profiler

that utilizes undirected graphs, or/and directed graph models for probability distrib-

utions [40, 44].

There are scenarios in A-machine design and deployment where interactions

between components have a natural directionality and can be represented by causal

relations. For example, “e-passport check addresses a three-step procedure” and

“failure in traveler biometric verification results in the manual control of this trav-

eler”. These scenarios should be described by directed graphs and modeled by belief

(Bayesian) networks. In the cases when the interactions between components are

more symmetrical, Markov random field models based on undirected graphs are

preferable.

Probability distributions over a large number of variables can be denoted in a

compact manner using Markov networks [40], which are undirected graphs. Let a

factor F be a multi-dimensional array indexed by some subset of variables Var(F).
Each entry of F is non-negative, though the entries of F do not necessarily need to

sum to 1. The utilized notations and formalization is given in Fig. 5. The Markov

network that describes this distribution is an undirected graph over || nodes where

each node denotes one of the random variables from  . For each factor F, a clique

(complete subgraph) is introduced between the nodes in Var(F).
In this work, we concentrate on directed graphs such as belief networks derived

from Bayesian causal models. In the next sections, we describe simple models, belief

(Bayesian) networks, and their extension using DST measures.
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Fig. 5 Notations utilized in risk assessment models

5 A-Profiler Based on Belief Networks

A sensor or a source of information can be seen as a part of the A-machine and

supporting infrastructure that observes some data or evidence E, and transmits some

opinion or hypothesis about the actual value of the parameter of interest Bi. The rela-

tionship between evidence E and parameter of interest Bi is represented by a prob-

ability distribution on E for each Bi, i = 1, 2,… ,M. After observing E, the sensor
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communicates its opinion on the value of Bi under the form of a likelihood vector.

Let Pr(E|Bi) be the likelihood of the hypothesis Bi given the evidence E. Inference

on Bi is based on this likelihood and some a priori probabilities. The Bayesian rule

enables to update our knowledge and give the posterior probabilities:

Pr(Bi|E) =Likelihood × Prior
Evidence

= Pr(E|Bi) ×
Pr(Bi)
Pr(E)

(1)

Bayesian updating (Eq. 1) is implemented by a belief (Bayesian) network which

is a special instance of a Markov network [40, 53]. It is a directed acyclic graph

where each variable/node has a corresponding factor also referred to as a conditional

probability table (CPT). Let Pa(X) denote the parents of node X. The factor assigned

to each node X is an array over the variables {X} ∪ Pa(X) that stores the conditional

probability distribution ofX for each possible variable assignment to the parents ofX:

Pr(X|Pa(X)). The probability distribution denoted by the belief (Bayesian) is ∀V ∈
Val() ∶ Pr(V) =

∏
X∈ Pr(V(X)|V(Pa(X))) where the normalization constant is 1.

5.1 Simple A-Profiler

The Bayesian decision profiler is the simplest evidence accumulation technology. As

an example, consider an e-passport which stores three types of biometric templates:

facial, fingerprint, and iris.
1

A multi-biometric identification system can function

in an accumulation mode and an update mode. Accumulation mode is defined as

follows: the e-passports of various countries utilize one of three types of biometrics,

B1, B2, or B3 (face, fingerprints, or iris), and it is known that 30 % of e-passports

utilize authentication by face, 45 % by fingerprint, and 25 % by iris (Fig. 6a).

It is known from past experience that 2, 3, and 2 % of travelers cannot be authen-

ticated using biometric B1,B2, and B3, respectively, since, defects in e-passport,

aging effects (face and iris), as well as other reasons such as the corresponding tem-

plates are not available in the database. The accumulated evidence, E, that a ran-

domly selected traveler cannot be authenticated (in probability metrics) is Pr(E) =∑3
i=1 Pr(Bi) × Pr(E|Bi) = 0.006 + 0.0135 + 0.005 = 0.0245.
Updated mode is specified as follows: assume that a randomly chosen traveler

has not been authorized after the authentication procedure. The probability that it

was the ith biometric, i = 1, 2, 3, that failed to authenticate this traveler, is called the

posterior probability (Fig. 6b) and calculated using Bayesian updating (Eq. 1). So,

the a priori belief about the biometrics for traveler authentication is updated as fol-

lows: probability 0.245 instead of 0.3 for B1, 0.551 instead of 0.45 for B2, and 0.204

1
The e-passport and e-ID are defined by the ICAO standard, and are the key components of

advanced border control technologies [54]. The face was recommended as the primary biomet-

ric, mandatory for global interoperability in the passport inspection systems. Fingerprint and iris

were recommended as secondary biometrics.
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Fig. 6 The simplest A-profiler for e-passport/ID based on Bayesian inference to fusing informa-

tion from multiple sources. Left plane a the evidence accumulation is provided by three types of

biometrics Bi, i = 1, 2, 3 (face, fingerprints, and iris [54]). Right plane b Updating beliefs about the

type of biometric in the A-profiler based on Bayesian rule

instead of 0.25 for B3. This updating mechanism takes into account the likelihood

of the evidence given Bi, p(E|Bi), and “tunes up” the A-profiler to the evidence (the

chance of seeing the evidence E if B is true).

5.2 Designing a Belief (Bayesian) Network

Causality is an efficient way to model dependencies between variables and to pre-

dict the effect of observation on the joint pdf [40, 41, 53]. A belief network locally

assembles probabilistic beliefs into a coherent whole for reasoning and learning

under uncertainty. While some of these beliefs could be read directly from the belief

network, others require computations to be made explicit. Computing and making

explicit such beliefs is known as the problem of inference in belief networks. A belief

network consists of a directed acyclic graph (DAG), which represents the influences

among the variables, and a set of CPTs which quantify these influences in a proba-

bility metric. Each discrete random variable (or node) has a finite number of states

and is parametrized by a CPT. Inference in belief networks means to compute the

conditional pdf of a hypothesis for some observed evidence.

Let us design a belief network for a causal model in which the impact on variable

x3 by variables x1 and x2 is described by the joint pdf Pr(x1, x2, x3). Using the product

rule of probability, the joint pdf is

Pr(x1, x2, x3) = Pr(x1) Pr(x2) Pr(x3|x1, x2) (2)
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Fig. 7 a The belief network

model, and formal

description by Eq. (2); b the

belief network model, and

formal description by Eq. (3)

This decomposition holds for any choice of joint pdf. Equation (2) represents the

following graphical model:

1. Associate each node with the random variables x1, x2, and x3, and the correspond-

ing conditional pdf from Eq. (2).

2. Draw directed links from the nodes corresponding to the variables on which the

pdf is conditioned.

The resulting belief network as the DAG model is given in Fig. 7a. For the con-

ditional pdf Pr(x3|x1, x2), there are links from nodes x1 and x2 to node x3, whereas

for the pdf Pr(x1) and pdf Pr(x2) there are no incoming links. If there is a link going

from a node x1 to a node x3, then we say that node x1 is a parent of node x3 and node

x3 is a child of node x1. A more complicated scenario is given in Fig. 7b. The joint

pdf of all 5 random variables is

Pr(x1,… , x5) = Pr(x1) Pr(x2) Pr(x3|x1) Pr(x4|x2) Pr(x5|x3, x4) (3)

Each node of the belief networks in Fig. 7 contains a CPT. The size of the CPT

is critically dependent on the DAG topology. Specifically, the number of parame-

ters stored in the CPT is the number of joint assignments to X and Pa(X), that is,

|Val(Pa(X))| × |Val(X)| [40]. This size of the CPT grows exponentially in the num-

ber of parents in the belief network. For example, the size of the CPT for 5 binary

parents of a binary variable X is 25 × 2 = 64 values; for 10 parents we need to store

210 × 2 = 2,048 values.

In general, the relationship between a given DAG and the corresponding joint pdf

over the random variables is defined as the product, over all of nodes of the DAG,

of a conditional pdf for each node conditioned on the variables corresponding to the

parents of that node in the DAG:

Pr(x) =
K∏

k=1
Pr(xk|x1, x2,… , xk−1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Factored form

=
K∏

k=1
Pr(xk|Pa(xk))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Graphical form

(4)

where Pa(xk) denotes the set of parents of xk and x = {x1, x2,… , xK}. Equation (4)

results in the joint pdfs (2) and (3) for the K = 3 and K = 5. The corresponding

network topologies and DAG are given in Fig. 7a and Fig. 7b, respectively.

The main drawback of belief networks is that its compact graphical structure must

be supported by CPTs, which corresponds to distributed memories. The size of these
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memories grows exponentially with the number of variables. To improve the compu-

tational properties of belief networks, decomposition is applied [3, 34, 55]. However,

it does not always result in an acceptable number of values for the CPTs. The idea of

representing CPTs by decision diagrams has been the focus of recent research [56].

6 Estimating Risk of Attacks

Figure 8 depicts a simplified belief network that models attack scenarios on an access

system supporting the e-passport. This belief network will be referred to as the “sce-

nario network”. There are only three random variables: S, L, and W with the domains

described below:

Variable S denotes the scenario currently taking place; Val(S) = {s1, s2, s3, s4, s5}
where

∙ s1 denotes a normal situation where the traveler holds an e-passport belonging to

his/herself.

∙ s2 denotes a situation where the traveler does not have an e-passport.

∙ s3 denotes a situation where the traveler has lost their e-passport.

∙ s4 denotes a situation where the traveler is attempting to use an e-passport that

they have stolen.

∙ s5 denotes a situation where the traveler is attempting to use a counterfeit

e-passport, or an e-passport obtained through fraudulent means.

Variable L denotes whether or not the e-passport has been reported as lost;

Val(L) = {l1, l2} where l1 indicates that the passport has been reported as lost, and

l2 indicates that the passport has not been reported as lost.

Variable W denotes whether or not the e-passport is on a watchlist for being fraud-

ulently obtained or not; Val(W) = {w1,w2} where w1 indicates that the e-passport is

on a watchlist, and w2 indicates that the e-passport is not on a watchlist.

The conditional probabilities in Fig. 8 do not claim to be accurate and serve only
as examples.

The probability that the e-passport was stolen when it was reported as being lost

is ∼0.387755. A-profiler operates with the total joint probability described by this

belief network:

Pr(S,L,W) = Pr(S) Pr(L|S) Pr(W|S,L)

Risk assessments of other scenarios can be obtained by analogy. As an example of

inference, imagine that it is known that the traveler’s e-passport has been reported as

lost, and we are trying to infer the probability that it was actually stolen. Thus, the

probability that we wish to compute is: Pr(s4|l1) = Pr(s4, l1)∕Pr(l1). This calculation

is carried out in the box in Fig. 8.
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Fig. 8 A belief (Bayesian) network that models attack scenarios on the e-passport system
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7 Mitigating A-Profiler Complexity Using a Decomposition
of Belief Networks

One significant drawback with probabilistic inference using belief networks is that

inference is an NP-complete problem [40, p. 288]. To address this problem, a large

belief network can be subdivided into “modeling module” [34]. A modeling module

is a small belief network that may be integrated into a larger network of modeling

modules. In a modeling module, some of the probability values may themselves be

functions of posterior probability distributions computed in other networks. A sim-

plified model of the A-machine for traveler risk estimation as a network of modules

is shown in Fig. 9.

An example belief network that will become a non-trivial modeling module is

shown in Fig. 10. This module will be named the “authentication network”. This

network will request a posterior distribution for the random variable S and a pos-

terior distribution for the random variable W as input. The variable S is the “sce-

nario”variable from the scenario network, and the variable W is the “watchlist” vari-

able from the scenario network. The domain of each variable is described below:

Variable A denotes whether the e-passport under consideration passes authenti-

cation or not; Val(A) = {a1, a2} where

∙ a1 denotes the scenario where the e-passport is authenticated by the automated

border control system.

∙ a2 denotes the scenario where the e-passport is rejected by the automated border

control system.

VariableB denotes whether the traveler who holds the e-passport passes biometric

recognition; Val(B) = {b1, b2} where

∙ b1 denotes the scenario where the biometric data extracted from the traveler

matches the data extracted from the e-passport.

Fig. 9 A simplified model of the A-machine as a network of modules
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Fig. 10 An example of A-profiler for risk assessment of simplest scenario of e-passport authenti-

cation process in A-machine

∙ b2 denotes the scenario where the biometric data extracted from the traveler does

not match the data extracted from the e-passport.

Variable M denotes whether the traveler is directed to a manual check or not;

Val(M) = {m1,m2}wherem1 denotes the scenario where the traveler fails automated

authentication and is directed to a manual check, and m2 denotes the scenario where

the traveler passes automated authentication and is not directed to a manual check.

Probabilities associated with variable A, B, and M (note the dependence on Pr(S))
are given in Fig. 10. What makes modeling modules distinct from ordinary Bayesian

network is the fact that the conditional probabilities may depend on posterior prob-

ability values computed in other modeling modules. The probability distributions

Pr(S) and Pr(W) where S denotes the scenario type and W denotes whether of not

the e-passport is on a watchlist are imported from another network.
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As an example of inference, assume that the authentication network has imported

the following posterior distribution for S: Pr(s1) = 0.1, Pr(s2) = 0.1, Pr(s3) = 0.1,

Pr(s4) = 0.3, and Pr(s5) = 0.4; as well as the following posterior distribution for W:

Pr(w1) = 0.5, Pr(w2) = 0.5. The prior probability distributions for A and B respec-

tively become: Pr(a1) = 0.169,Pr(a2) = 0.831,Pr(b1) = 0.123,Pr(b2) = 0.877. The

conditional probability for M given A = a1 and B = b1 becomes Pr(m1|a1, b1) = 0.5
and Pr(m2|a1, b1) = 0.5. The probability that the traveler will fail to cross the auto-

mated border and be sent to a manual check is therefore ∼0.989607 as shown in

Fig. 10.

8 DST Based A-Profiler

The main drawback of the A-profiler based on belief networks is the need of detailed

initial risk statistics which are not available in practice. In most cases, these statistics

can be defined as interval estimations. This means that the A-profiler should be used

many times in order to calculate possible combinations of initial interval data. The

result of such calculation is a point estimate which is then interpreted by an expert.

The advantage of the A-profiler based on belief networks is that it utilizes a causal-

ity paradigm based on graphs. The graphs can be decomposed to sub-graphs, and

therefore can be used for modeling large-scale tasks using decomposition techniques.

For such problems, we develop a technique for replacing CPTs by decision diagrams

[56]. In some cases, it drastically improves the performance of the A-profiler. As our

goal is to improve the robustness of the A-profiler, we need a paradigm that allows

for interval estimates for the input and output data and requires less initial statistics,

while retaining the advantages of a causal description of the problem. To approach

this problem, we suggest the use of a DST based technique.

8.1 The Motivation and Key Idea

There are some key differences between the DST evidential techniques and belief

(Bayesian) networks:

1. The DST approach can be applied when the prior probabilities and likelihood

functions are unknown. That is, DST accepts an incomplete probabilistic model

but Bayesian inference does not.

2. Belief (Bayesian) network can be used when the required information is available.

However, when knowledge is not complete, such as ignorance exists about the

prior probabilities, DST offers an alternative approach.

3. The DST well suited for fusion incomplete information from multi sources (sen-

sors) because DST permits probabilities to be assigned directly to an uncertain

event. Bayesian approach is limited in this.
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The DST model and belief (Bayesian) network provide the same results when uncer-

tainty interval is zero for all propositions and the probability mass assigned to units

of propositions is zero.

There is the relationship between Markov networks (as undirected graphs) and

belief (Bayesian) networks (as directed graphs) [40]. Our idea is to incorporate

DST measures into belief (Bayesian) networks. This is a useful extension of both

belief (Bayesian) network and DST measures because it utilizes advantages of both

approaches to decision-making under uncertainty.

Our approach is different from the Transferable Belief Model (TBM) developed

in [45]. Similar to our approach, the TBM model is based on the Bayesian concept of

updating knowledge and the calculation of posterior probabilities: to pass from likeli-

hoods to posterior beliefs. Our approaches are similar as we replace every probability

function by a DST belief function. This novelty provides the opportunity to handle

degrees of uncertainty hard to represent in a probabilistic Bayesian approach. How-

ever, the TBM is limited by the Bayesian updating rule and does not explore complex

belief (Bayesian) networks. Instead our goal is to utilize causality in DST measures,

resulting in a belief (Bayesian) network with DST-based CPTs. Our approach is also

different from the directed graphical model introduced in [58]. Jirousek [58] does

not utilize Dempster’s rule of combination, nor develops the concept of conditional

Dempster-Shafer tables used in this chapter. Our approach is implemented in the

software package “Dempster-Shafer Bayesian Network (DSBN)” which is available

for researchers [38].

8.2 DST Interval Measures

Instead of treating events directly, as it is done in belief networks, DST models are

based on the concept of evidence [48, 49]. Evidence is related to data through the

higher level interpretation imposed on it. A DST structure operates with sets of

propositions and assigns to each of them an interval [Belief,Plausibility] in

which the degree of belief must lie. Belief measures the strength of the evidence in

favor of a set of propositions. It ranges from 0 (no evidence) to 1 (certainty). Plausi-

bility is defined as Plausibility(A) = 1 − Belief(¬A). It also ranges from

0 to 1 and measures the extent to which evidence exists in favor (Fig. 11).

The DST model utilizes the formalization of imprecise probabilities. They are

captured by belief and plausibility measures, which may be interpreted as lower and

upper probabilities respectively. The amount of information obtained by the action

may be measured by the reduction of uncertainty that results from the action. In

this sense, the amount of uncertainty and the amount of information are connected.

The DST belief model provides a framework for the representation of knowledge

about the value of an uncertain variable which can be used when there exists some

uncertainty regarding our knowledge of the underlying measure.



410 S. Eastwood and S. Yanushkevich

Fig. 11 Belief and plausibility computing in DST-based A-profiler

8.3 Theoretical Platform

In this and the next sections, we introduce the theoretical platform of the software

package “Dempster-Shafer Bayesian Network (DSBN)” [38]. The DSBN package

supports DST calculations for belief (Bayesian) networks.

Recall that  denotes the set of all random variables. A DST model over  is

defined as follows [48, 49]: A set  of distinct non-empty subsets of Val(),  ⊆

2Val() − {∅} are chosen as “focal elements”. Each focal element denotes a possible

range for the true outcome. A probability distribution over the set of focal elements

is given. Each B ∈  is assigned a probability value m(B) which must sum to 1:∑
B∈ m(B) = 1.

A DST-based A-profiler can be interpreted as follows [48]: the setB ∈  that con-

tains the true outcome is chosen with probability m(B). As can be seen a DST-based

A-profiler does not necessarily ascribe precise probability values to each possible

outcome.

Computing a lower and upper bound on the probability of the outcome belonging

to a set C ⊆ Val() of outcomes is given in Fig. 11. If  = {{v}|v ∈ Val()}, then

Bel(C) = Pl(C) for all C ⊆ Val() and the DST model effectively denotes a proba-

bility distribution. Given DST models D1 and D2 over  , we will say that D1 ⊆ D2
if [BelD1

(C),PlD1
(C)] ⊆ [BelD2

(C),PlD2
(C)] for every subset C ⊆ Val().

Given two different DST models D1 and D2 over  , the information in these

models can be combined into D3 = D1 × D2 using Dempster’s rule of combination

which provides the formalism to combine probability masses from different sources

of information [57]. Details are given in Fig. 12.



Risk Assessment in Authentication Machines 411

Fig. 12 Basic operations of the DST-based A-profiler: computing the combination of DST models,

marginal and conditional DST models

Given a subset of random variables  ⊂  , a DST model D over  can be mar-

ginalized to  to get the marginal DST structure D


as shown in Fig. 12. In a similar

manner, a conditional DST model is derived (Fig. 12).

8.4 Dempster-Shafer Analog of Markov-Networks

Like traditional Markov networks, a Dempster-Shafer Markov network (DS-MN)

consists of a collection of Dempster-Shafer factors (DSFs). A DSF F is not simply

an array indexed by the variables Var(F), but a DST model over the variables Var(F).
Each focal element is a non-empty subset of Val(Var(F)), and the focal elements are

all distinct. The restriction that the weights assigned to the focal elements sum to

1 is relaxed, similar to how the array entries in a Markov network factor do not
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Fig. 13 Computing the weights of focal elements of DST-based A-profiler

necessarily sum to 1. DSFs are multiplied using Dempster’s rule of combination.

Like with Markov networks, the normalization constant is only computed after all

of the factors have been multiplied together.

Multiplying DSFs over different variable sets requires the “extend” operation: let

 and  be subsets of  where  ⊂  . Given a set of assignments S ⊆ Val(), S
can be extended to a subset of Val() by the following: ext(S|) = {⟨V1,V2⟩|V1 ∈
S ∧ V2 ∈ Val( −)}. We describe the multiplication of DST factors F1 and F2 in

Fig. 13.

8.5 Embedding DST Models into Belief (Bayesian) Networks

The goal of this section is to show how we can utilize the causal paradigm of belief

(Bayesian) network for DST interval measures. For this, we replace the CPTs in a

belief network with DST based structures to create a “Dempster-Shafer Bayesian

network” (DS-BN). For each node X and for each possible assignment to the parents

of X, V ∈ Val(Pa(X)), imagine that instead of a probability distribution over X, that

we instead have a DST model DX|V over X. The DST model DX|V over X reflects

uncertainty in the conditional probability distribution of X. For each node X, the

DST models associated with each assignment to Pa(X) form a DST analog of the

CPT which we will refer to as a “conditional Dempster-Shafer table” (CDST).

To derive the resultant DS-MN, we now extend each DST model DX|V (V ∈
Val(Pa(X))) to a DST factor FX|V over the variables {X} ∪ Pa(X). The focal ele-

ments of DX|V are subsets of Val(X), while the focal elements of FX|V are subsets

of Val({X} ∪ Pa(X)). For each focal element B ∈ DX|V
, B is extended as follows via

the “Ballooning extension” [45]:
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B ↦ {⟨VX ,V⟩|VX ∈ B} ∪
{
VA ∈ Val({X} ∪ Pa(X))

||||
VA(Pa(X)) ≠ V

}

In summary, each focal element in DX|V has appended onto it every assignment from

Val({X} ∪ Pa(X)) except for those assignments that coincide with V . The weight

assigned to each focal element is unchanged. The resultant DST model over  is the

product of all DSFs FX|V for every X and V ∈ Val(Pa(X)) with the weights normal-

ized.

8.6 Example Application of the DST-Based A-Profiler

Consider again the scenario network described in Sect. 6 and shown in Fig. 8. Instead

of assigning a CPT to each node, a “conditional DST table” is assigned to each node

as described in Sect. 8.5. Since variable S has 5 different values, this large domain

makes the inference too complex to be followed. To simplify matters, the range of

values that S can attain will be restricted to Val(S) = {s1, s3, s4}, omitting the case

where the traveler is not enrolled in an e-passport program (S = s2), and the case

where the traveler is using a fraudulent e-passport (S = s5).
The DST model associated with variable S is ⟨{s1}, 0.8⟩; ⟨{s3}, 0.15⟩; ⟨{s4},

0.05⟩. A DST model is expressed as a series of ⟨ focal element, weight ⟩ pairs:

⟨B,m(B)⟩. This DST model indicates that with probability 0.8 we know that the

traveler holds their own e-passport; with probability 0.15 we know that the traveler

does not currently possess an e-passport; and with probability 0.05 we know that the

traveler is engaged in illegal activity. The CDSTs associated with variables L and W
are listed in Table 2.

Table 2 CDSTs for L and W
S DS models for L
s1 ⟨{l2}, 1⟩
s3 ⟨{l1}, 0.8⟩; ⟨{l1, l2}, 0.2⟩
s4 ⟨{l1}, 0.9⟩; ⟨{l1, l2}, 0.1⟩
S L DS models for W
s1 l1 ⟨{w1}, 1⟩
s1 l2 ⟨{w1,w2}, 0.02⟩; ⟨{w2}, 0.98⟩
s3 l1 ⟨{w1}, 1⟩
s3 l2 ⟨{w1,w2}, 0.02⟩; ⟨{w2}, 0.98⟩
s4 l1 ⟨{w1}, 1⟩
s4 l2 ⟨{w1,w2}, 0.02⟩; ⟨{w2}, 0.98⟩
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8.7 Algorithm for DST Based Belief Network

First, we derive the total DST model that is described by the above DS-BN. As

described in Sect. 8.5, the total DST model is built by first deriving a DSF from each

row of each CDST. There is one DSF associated with S, 3 DSFs associated with L,

and 6 DSFs associated with W. The one DSF associated with S will be denoted by

FS.

Step I: The product of the 3 DST factors associated with L, denoted by FL, is

shown below. Let sl denote an arbitrary assignment from Val({S,L}), where s ∈
Val(S) and l ∈ Val(L).

Focal element Weight Focal element Weight

{s1l2, s3l1, s4l1} 0.72 {s1l2, s3l1, s3l2, s4l1} 0.18

{s1l2, s3l1, s4l1, s4l2} 0.08 {s1l2, s3l1, s3l2, s4l1, s4l2} 0.02

Step II: The product of the 6 DST factors associated with W, denoted by FW ,

is shown below. To simplify notation, slw denotes an arbitrary assignment from

Val({S,L,W}) where s ∈ Val(S), l ∈ Val(L), and w ∈ Val(W).

Focal element Weight Focal element Weight

{s1l1w1, s1l2w1, s1l2w2,… {s1l1w1, s1l2w2,…
… , s3l1w1, s3l2w1, s3l2w2,… … , s3l1w1, s3l2w1, s3l2w2,…
… s4l1w1, s4l2w1, s4l2w2} 0.000008 … s4l1w1, s4l2w1, s4l2w2} 0.000392

{s1l1w1, s1l2w1, s1l2w2,… {s1l1w1, s1l2w2,…
… s3l1w1, s3l2w1, s3l2w2,… … s3l1w1, s3l2w1, s3l2w2,…
… s4l1w1, s4l2w2} 0.000392 … s4l1w1, s4l2w2} 0.019208

{s1l1w1, s1l2w1, s1l2w2,… {s1l1w1, s1l2w2,…
… s3l1w1, s3l2w2,… … s3l1w1, s3l2w2,…
… s4l1w1, s4l2w1, s4l2w2} 0.000392 … s4l1w1, s4l2w1, s4l2w2} 0.019208

{s1l1w1, s1l2w1, s1l2w2,… {s1l1w1, s1l2w2,…
… s3l1w1, s3l2w2,… … s3l1w1, s3l2w2,…
… s4l1w1, s4l2w2} 0.019208 … s4l1w1, s4l2w2} 0.941192

Step III: Let us compute the product: FS,L = FS × FL. The result is shown below:

Focal element Weight

{s1l2} 0.8 ⋅ (0.72 + 0.08 + 0.18 + 0.02) = 0.8
{s3l1} 0.15 ⋅ (0.72 + 0.08) = 0.12
{s3l1, s3l2} 0.15 ⋅ (0.18 + 0.02) = 0.03
{s4l1} 0.05 ⋅ (0.72 + 0.18) = 0.045
{s4l1, s4l2} 0.05 ⋅ (0.08 + 0.02) = 0.005
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Step IV: Next, we compute the product: FS,L,W = FS,L × FW , as shown below:

Focal element Weight

{s1l2w1, s1l2w2} 0.8 ⋅ (0.000008 + 0.000392 + 0.000392 + 0.019208) = 0.016
{s1l2w2} 0.8 ⋅ (0.000392 + 0.019208 + 0.019208 + 0.941192) = 0.784
{s3l1w1} 0.12 ⋅ (0.000008 + 0.000392 + 0.000392 + 0.019208 +…

…0.000392 + 0.019208 + 0.019208 + 0.941192) = 0.12
{s3l1w1, s3l2w1, s3l2w2} 0.03 ⋅ (0.000008 + 0.000392 + 0.000392 + 0.019208) = 0.0006
{s3l1w1, s3l2w2} 0.03 ⋅ (0.000392 + 0.019208 + 0.019208 + 0.941192) = 0.0294
{s4l1w1} 0.045 ⋅ (0.000008 + 0.000392 + 0.000392 + 0.019208 +…

…0.000392 + 0.019208 + 0.019208 + 0.941192) = 0.045
{s4l1w1, s4l2w1, s4l2w2} 0.005 ⋅ (0.000008 + 0.000392 + 0.000392 + 0.019208) = 0.0001
{s4l1w1, s4l2w2} 0.005 ⋅ (0.000392 + 0.019208 + 0.019208 + 0.941192) = 0.0049

The above table simplifies to:

Focal element Weight Focal element Weight

{s1l2w1, s1l2w2} 0.016 {s3l1w1, s3l2w2} 0.0294
{s1l2w2} 0.784 {s4l1w1} 0.045
{s3l1w1} 0.12 {s4l1w1, s4l2w1, s4l2w2} 0.0001
{s3l1w1, s3l2w1, s3l2w2} 0.0006 {s4l1w1, s4l2w2} 0.0049

which is the total DST model for the DS-BN under consideration.

8.8 Example of an Inference Problem: E-Passport Lost

Let us consider the inference problem where the e-passport has been reported as

being lost L = l1. We wish to compute the belief and plausibility that the e-passport

is simply lost and not stolen S = s3. To start, we derive the conditional DST model

by applying the evidence L = l1 to the total DST model FS,L,W computed previously.

This gives us the model:

Focal element Weight

{s3w1}
1
M
(0.12 + 0.0006 + 0.0294) = 1

0.15+0.05
0.15 = 0.75

{s4w1}
1
M
(0.045 + 0.0001 + 0.0049) = 1

0.15+0.05
0.05 = 0.25

Marginalizing out variable W gives {s3} = 0.75 and {s4} = 0.25 We finally see that

Bel(s3|l1) = Pl(s3|l1) = 0.75.
The Bayesian network with incorporated DST measures (or the DST Bayesian

network) is shown in Fig. 14 (compare with Bayesian network in Fig. 8).
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Fig. 14 The DST Bayesian network that is used in the example in Sect. 8.6. Each DS model is

denoted using a list of focal element, weight pairs: ⟨B,m(B)⟩

8.9 Disadvantages of the DST Based Measures

In this section we will note an irregularity associated with combining DST mod-

els. DST model is well suited for representing uncertainty and combining informa-

tion, especially in the case of low conflicts between sources with high beliefs. How-

ever, when there is great uncertainty in the probability values, Dempster’s rule yields

unexpected results.

Let D1,D′
1,D2,D′

2 be DST models over  such that D1 ⊆ D′
1 and D2 ⊆ D′

2. It

is natural to expect that (D1 × D2) ⊆ (D′
1 × D′

2), but this is not necessarily always

the case as will be shown in the following counter-example. Let  = {A} where

Val(A) = {a1, a2}; D1 has the focal elements D1
= {{a1}, {a2}} with weights

mD1
({a1}) = 0.1 and mD1

({a2}) = 0.9; and D2 = D1; D′
1 has the focal elements

D′
1
= {{a1}, {a1, a2}, {a2}} with weights mD′

1
({a1}) = 0.1, mD′

1
({a1, a2}) = 0.8,

and mD′
1
({a2}) = 0.1; and D′

2 = D′
1. It can easily be checked that D1 ⊆ D′

1 and

D2 ⊆ D′
2.

Computing D1 × D2 gives mD1×D2
({a1}) =

0.12

0.12+0.92
= 0.01

0.82
≈ 0.012195 and

mD1×D2
({a2}) =

0.92

0.12+0.92
= 0.81

0.82
≈ 0.987805. Computing D′

1 × D′
2 gives mD′

1×D
′
2

({a1}) =
0.12+0.1⋅0.8+0.8⋅0.1

1−0.12−0.12
= 0.17

0.98
≈ 0.173469, mD′

1×D
′
2
({a1, a2}) =

0.82

1−0.12−0.12
= 0.64

0.98
≈
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0.653061, andmD′
1×D

′
2
({a2}) =

0.12+0.1⋅0.8+0.8⋅0.1
1−0.12−0.12

= 0.17
0.98

≈ 0.173469.Hence, (D1 × D2)
⊈ (D′

1 × D′
2). Several alternative methods have been developed to make the DST

fusion more intuitively appealing. In particular, the DSmT model proposes a new set

of combination rules for information fusion [43]. The DSmT model deals with uncer-

tain, imprecise and highly conflicting information for static and dynamic fusion. Our

software package DSBN [38] can be extended for the DSmT measures.

9 Conclusion and Future Work

We introduced the concept and prototyping results of the A-profiler, a tool for risk

profiling via modeling of the A-machines and supporting technologies. The key con-

clusions of our study are as follows:

1. An A-profiler based on belief networks can be used for large-scale tasks if his-

torical statistics are available. In order to address the model complexity problem,

we suggest that it can be decomposed and represented by a library of modeling

modules. In some scenarios, the performance of the A-profiler can be signifi-

cantly increased. In particular, conditional probability tables can be replaced by

the more compact decision diagrams as suggested in [56].

2. The robustness of the A-profiler can be improved by using interval measures

suggested by the DST model of uncertainty. We showed that the DST model can

be embedded into a belief (Bayesian) network. We implemented this approach

in the DS-BN-01 software package which is available for researches.

The next step in the evolution of A-profilers should be an embedding of the DSmT

model [43] into a belief network.
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1 Introduction

Maritime piracy has become an important security focus area due to the influence

that this phenomenon has on the global economy [1]. Commanders and policy-

makers need decision-support tools for optimal resource allocation in order to plan

and execute counter-piracy activities more efficiently and effectively. In this work we

propose a Decision Support System (DSS) which aims to improve the allocation of

mobile resources in a maritime scenarios. Specifically, a set of defender’s resources

have to patrol a large scenarios where several mobile targets move in the presence of

mobile attackers with different and partially unknown characteristics and goals. To

efficiently manage the problem, the DSS has been designed using the Game Theoret-

ical framework in order to handle the attractiveness of targets so as modeling strate-

gies of attackers and defenders. Indeed, Game Theory moves from the problem to

find optimal solution in the presence of multiple player with different, or eventually

conflicting, goals. Game theoretic models have been used for modelling scenarios in

which a group of agents (generally labelled as defenders or patrollers) need to pro-

tect an area [2], a perimeter [3] or prevent an attack against one or more targets [4].

Moreover game theoretic models have been recently applied in security scenarios as

airport terminals, commercial flights and ports [5–8]. These studies emphasize how

Game Theory can be used to identify the best strategy for the defenders given the

information and capabilities of opponents.
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This chapter describes the architecture of the developed system, after providing

an introduction about maritime piracy and a state of the art about game-theoretic

patrolling.

In spite of the existing approaches which assume stationary targets and resources,

we explicitly take into account the movement of targets, defenders and attackers.

This introduces a spatial-temporal layer that allows to model constraints on displace-

ments, and dynamic changes in available information. In this framework the optimal

strategy is identified as the equilibrium of time-varying Bayesian-Stackelberg game.

This chapter is organized as described below. The first section provides an

introduction about maritime piracy. The second section surveys the existing game-

theoretic approaches for active patrolling. The third section describes the problem

statement. The last three sections describe the problem formulation, the simulations

carried out and the related results.

2 The Modern Piracy

Piracy is defined in the 1982 United Nations Convention on the Law of the Sea

(UNCLOS) as

any illegal acts of violence or detention, or any act of depredation, committed for private

ends by the crew or the passengers of a private ship or a private aircraft, and directed against

another ship or aircraft, or against persons or property on board such ship or aircraft [9].

In recent years, the problem of piracy has emerged as a major threat in the field

of sea transportation expecially in some parts of the world [10]. The International

Maritime Organization (IMO), a specialized agency of the United Nations (UN), has

recorded 5,667 piracy attacks against international shipping since 1984 [11]. IMO

reports 245 attacks only in the 2014. Similarly, the International Maritime Bureau

(IMB), a branch of the International Chamber of Commerce and the industry organi-

zation, reports that worldwide there were nearly 3,000 attempted or successful mar-

itime piracy attacks during the period 2000–2009. IMB publishes monthly, quarterly

and annual piracy reports with details about names of ships attacked, position and

time of attack, consequences to the crew, ship or cargo, and actions taken by the crew

and coastal authorities.

The hot spots of piracy today (Fig. 1) are the Indian Ocean, East Africa and

the Far East including the South China Sea, South America, and the Caribbean.

In recent times, pirates have been found to be very active in the waters between

the Red Sea (particularly in Gulf of Aden) and Indian Ocean, off the Somali coast,

and in the Strait of Malacca. There are also reports of pirate attacks on the Serbian

and Romanian stretches of the international Danube River since 2011. The Strait

of Malacca remains another hot spot for piracy today, but in recent years the area

has seen a dramatic downturn in piracy due to coordinated patrolling by Indonesia,

Malaysia, and Singapore navy forces, and increased level of on-board security on

ships. Other major piracy prone areas are the Caribbean and the Bay of Bengal in
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Fig. 1 Hot spots of modern piracy [13]

the Indian Ocean. According to reports, piracy in the Indian Ocean is getting more

lucrative and more violent, despite an anti-piracy EU (European Union) naval force

patrolling the area. The EU established Naval Force (NAVFOR) Operation ATA-

LANTA on November 10, 2008, to protect World Food Program (WFP) ships deliv-

ering humanitarian supplies into Somalia. Operation ATALANTA also was autho-

rized to protect merchant vessels in the western Indian Ocean. The EU force operates

throughout an area of operations that extends south of the Red Sea, and includes the

Golf of Aden, the Somali Basin, and part of the western Indian Ocean and the water

surrounding the Seychelles [12].

The vast expanse of water in the Gulf of Aden (Fig. 2) combined with the large

number of fishing villages on the Somali east coast, prevent effective patrolling by

naval forces. Moreover the large transit distances prevent escort operations so as the

co-location of pirate’s bases with fishing villages inhibits military strikes on pirate

bases. Finally, the instability of the Somali government and the fractured tribal struc-

ture of the fishing villages further complicate the problem and prevent diplomatic

or economic solutions. U.S. Agency for International Development, through their

famine early warning network, notes Somalia’s increased reliance on foreign foods

arriving in Somali ports and the associated decrease in regional stability. The threat

of piracy further increases commodity prices, decreases income in commercial trade,

and delays shipments throughout the region. The result is a cycle that increases the

incentive for Somali’s to turn to piracy and decreases legitimate commercial incen-

tives.

Like legendary pirates, modern pirates are still involved in looting and hijacking

ships for ransom, but their ways of operations has dramatically changed over time.

Modern pirates now wear night-vision goggles, carry AK-47 s, heavy machine guns,

and rocket launchers, navigate with GPS devices, and use sophisticated speedboats

mounted with heavy mortars to target ships. They use radar and sonar to track their

quarries, and exploit high-tech navigation equipment and communications appara-

tus. The small speedboats can easily overtake large ships, and can get out of sight
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Fig. 2 Influence of piracy in Somali Basin [14]

of support ships much more easily. Modern pirates also use to organize into large

groups and coordinate their attack. They attack in full daylight or at night, without

regard and they often use grappling hooks to board the victim ship. They then hold

the entire lot ships, cargo, and occupants for ransom. This has lead to the develop-

ment of terrorism by the pirates even if their main object is robbing and kidnapping

in order to make money to be invested in other criminal initiatives. This evolution in

terms of technologies and tactics makes the problem of piracy an actual and unsolved

threat. To combat this problem, researchers have explored various measures for get-

ting piracy back under control and for mitigating the risks it entails.

3 State of the Art of Game-Theoretic Patrolling

A patrolling task can be defined as the act of travelling an area in order to secure it

against different threats. To face this problem, the use of the Game Theory is jus-

tified by the need of a mathematical framework in order to deploy limited secu-

rity resources to maximize their effectiveness. Game theory has been applied to a

wide number of problem and scenarios ranging from economics (auctions, voting,

bargaining, oligopolies, social network formation etc.) through political science

(public choice, fair division, war bargaining etc.) and biology (mainly evolution-

ary Game Theory) to military operations (operations research, military planning,

negotiation etc.) [15].
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In the area of security where Game Theory has always been used, there now seems

to be an exponential increase in interest underlined by the large and growing liter-

ature on game-theoretic models and their applications. This increase is in part due

to the actual socio-technological threats that our societies face, from terrorism to

drugs and crime [16]. These threats require to pay close attention to the problem of

how to efficiently allocate limited resources to be effective against these everywhere

dangers.

In the last few years Game Theory has been applied to patrolling problems in

infrastructure security domains, in which security agencies deploy patrols and check-

points to protect targets from terrorists and criminals. For such domains, due to

limited defence resources it is not possible to cover all targets at the same time. More-

over, despite of alternative Computational Intelligence (CI) approaches, game theo-

retic approach provides a method to allocate security resources taking into account

different weights of different targets and adversary’s response to any particular pro-

tection strategy. In recent years, several studies have been conducted to fill this gap

as shown in [17] in which evolutionary Game Theory is combined with a swarm

intelligence method to solve a resource allocation problem.

In the specific context of counter piracy operations several allocation models have

been developed [18]. Grasso et al. [19–21] proposes an operational planning system

able to consider real environmental parameters such as MeTeorological and OCeano-

graphical (METOC) information and satellite Automatic Identification System (AIS)

performace surfaces. In this case a game theoretical approach would be suitable to

model not only the optimal asset network planning but also the adaptive response of

pirate activities.

The study of strategic interaction situations in particular, commonly named non-

cooperative games, has been receiving more and more attention in the security field.

An interesting open strategic interaction problem is the strategic patrolling [22, 23].

This problem is characterized by a guard that decides what houses to patrol and how

often and by a robber that decides what house to strike [24]. Obviously the guard will

not know in advance exactly where the robber will strike. Moreover the guard does

not know with certainty what adversary it is facing. A common approach for choos-

ing a strategy for agents in such a scenario is to model the problem as a Bayesian

game. A Bayesian game is a game in which agents may belong to one or more types;

the type of an agent determines its payoffs. The probability distribution over agents

types is common knowledge. The appropriate solution for these games is the Bayes-

Nash equilibrium [15]. In [22] the authors propose a model for the strategic patrolling

and an algorithm to solve it. The guard’s actions are all the possible routes of houses,

while the robbers action is the choice of a single house to rob. The robber can be of

several types with a given probability distribution. Moreover, the rob can observe the

actions undertaken by the guard and choose its optimal action on the basis of this

observation. The presented model seems to be satisfactory when the guard and the

robber act simultaneously. However, in real-world applications it is unreasonable to

assume that robber always acts at the turn where the guard starts to patrol. This is

essentially due to two reasons. Firstly, the guard cannot synchronize the beginning

of its patrolling route with robbers action, since the guard cannot observe the robber.
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Secondly, the robber could wait for one or more turns before choosing the house to

rob in order to observe guards strategy and take advantage from this observation.

Due to the fact that the attacker can observe the defenders daily schedules, any

deterministic schedule by the defender can be exploited by the attacker. One game-

theoretic model that has been effective to solve these problems is a Stackelberg game

between a leader (the defender) and a follower (the adversary): the leader implement

a mixed strategy, which is a randomized schedule specified by a probability distri-

bution over deterministic schedules; the follower then observes the distribution and

plays a best response.

Different approaches have been used to model this kind of situations.

Agmon et al. [25] analyzes the problem of patrolling a perimeter. In their approach

the environment is modelled as a circular graph, where each of the nodes is a potential

target. The Patroller strategy is sought as a simple Markovian policy and as a policy

with an additional state representing the facing of the agent in one of two directions.

The crucial assumption here is made about the Attacker knowing the strategy used

by the Patroller. Basically, the Attacker can wait unlimitedly long and observe the

Patroller and thus infers his strategy. If we limit the Attackers knowledge, we get

a game model analyzed in [26]. The perimeter patrol strategies cannot be directly

applied on more general environment topologies. Arbitrary graphs are studied by

Basilico et al. [2], where they provide a general model (termed BGA model) for find-

ing the optimal strategy for the Patroller, which is defined as a higher-order Markov-

ian policy. Further work extending this approach is the analysis of the impact of the

Attacker’s knowledge about the Patroller’s policy on a general graph [27] and an

extension of the model for multiple Patrollers [28].

Vanek et al. [29–31] explores how multi-agent systems, a branch of artificial intel-

ligence, can be used to improve maritime security, with particular focus on fighting

maritime piracy. Their ultimate objective is to develop an integrated set of algorith-

mic techniques for maximizing transit security given the limited protection resources

available. They achieve this by improving the coordination of the movement of mer-

chant vessels and naval patrols, taking into account the behaviour of pirates. In order

to evaluate the proposed techniques and to gain better insight into the structure and

dynamics of maritime piracy, they also employ agent-based simulation and machine

learning techniques to build dynamic models of maritime transit and to model and

assess piracy risk. All methods are implemented within a modular software testbed

featuring a scalable simulation engine, connectors to real-world data sources and

visualization front-end based on Google Earth.

Decision Support Systems based on the Bayesian-Stackelberg model have been

successfully deployed in several domains [5–7, 32].

In [5] a software assistant agent called ARMOR (Assistant for Randomized Moni-

toring over Routes) is described. ARMOR casts the patrolling/monitoring problem as

a Bayesian Stackelberg game, allowing the agent to appropriately weigh the different

actions in randomization, as well as uncertainty over adversary types. It uses a solver

for Bayesian Stackelberg games called DOBSS, where the dominant mixed strate-

gies enable randomization. ARMOR has been deployed at the Los Angeles Interna-

tional Airport (LAX) to randomize checkpoints on the roadways entering the airport
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and canine patrol routes within the airport terminals. Based on pre-specified rewards

they provide the custom rewards for the LAX police and the adversaries to generate a

game matrix (a payoff matrix) for each adversary type. After the final game matrices

are constructed for each adversary type, they are sent to the DOBSS implementation,

which chooses the optimal mixed strategy over the current action space.

Whereas ARMOR handles 10 terminals at the LAX, the FAMS (Federal Air Mar-

shals) considered in IRIS [6] must protect tens of thousands of commercial flights

per day. As shown in Kiekintveld et al. [33], the DOBSS algorithm at the heart

of ARMOR cannot handle problems of this magnitude. Also, in ARMOR, domain

experts have to enter four payoff values for each of the 10 targets in the domain.

IRIS models the problem as a Stackelberg game, with FAMS as leaders that com-

mit to a flight coverage schedule and terrorists as followers that attempt to attack a

flight. It uses ERASER-C as a solver for the Stackelberg game. In particularly, IRIS

combines three key elements: it uses the ERASER-C solver for this class of security

games, that exploits symmetries in the payoff structure; it models the problem with

definition of actions for Defenders and Attackers that allow us to efficiently han-

dle the scheduling constraints inherent in the domain; it includes an attribute-based

preference elicitation system for calculating risk values for targets to alleviate the

need for users to enter risk values for each target individually. IRIS makes also use

of algorithmic advances in multi-agent systems research to solve the class of mas-

sive security games with complex constraints that were not previously solvable in

realistic time–frames.

In [7] a software system, labelled Game-theoretic Unpredictable and Randomly

Deployed Security (GUARDS), is described. It utilizes a Stackelberg framework to

aid in protecting the airport transportation network. From an application perspective,

the fundamental novelty in GUARDS is the potential national scale deployment at

over 400 airports.

A game-theoretic security application to aid the United States Coast Guard

(USCG), called Port Resilience Operational/Tactical Enforcement to Combat Ter-

rorism (PROTECT) is presented in [32]. It uses an attacker-defender Stackelberg

game framework, with USCG as the defender against terrorist adversaries that patrols

before potentially launching an attack. The aim of PROTECT solution is to pro-

vide a mixed strategy, i.e. randomized patrol patterns taking into account the impor-

tance of different targets, the surveillance of the adversaries and the anticipated reac-

tion to USCG patrols. GUARDS and PROTECT introduce many new features and

challenges beyond the previous applications at LAX and FAMS, mainly due to the

potential large scale deployment: the strategy space of the agents may exponentially

increase with the number of security activities, attacks, and resources.

These methods provide an optimal mixed strategy for the single security activ-

ity such as assigning checkpoints or air marshals; the randomized solutions pro-

duced avoid deterministic strategies that are easily exploitable and remove the human

element in randomization since humans are well known to be poor randomizers.

Unfortunately previous methods are specific to the stand-alone location they con-

sider and thus cannot directly be applied in an anti-piracy framework.
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4 Problem Statement

Focusing on piracy framework, the aim of our research is to optimally (and dynam-

ically) allocate the position of l Patrollers in order to protect t mobile targets with

respect to an unknown number of enemies. Targets are supposed to move on known

routes inside a generally quite huge maritime area. Moreover, despite the classi-

cal formulation, in this framework we need to explicitly take into account the time

dimension to consider the travelling time.

To make the problem computationally manageable, we approach it as a two-stage

repeated game (as illustrated in Fig. 3). Specifically at each turn the patroller, solving

a Bayesian-Stackelberg game, identifies the optimal target to cover on the basis of the

position, type and route of the targets so as any other relevant information about the

enemies (e.g. suspected presence as illustrated in the next section). Similarly each

enemy identifies the target to attack solving a deterministic Stackelberg game on the

basis of position, type and routes of the targets taking also into account information

about strategies of the patroller. These data represent the input for a path-planning

module which identifies the best route for the players considering their characteristics

(e.g. speed) so as the maritime scenario (e.g. presence of obstacles, forbidden areas,

weather, etc.). Then the players start to move on planned paths and, after a defined

time, the algorithm repeats the optimization procedure starting from the updated

information. Subsequently the payoff matrix that describes the possible outcome of

the game is dynamically constructed during the evolution of the game through an

iterated procedure as illustrated in Fig. 4. Starting from the characterization of the

scenarios in terms of continuous network of an arbitrary topology, the problem is

presented as a two-players Stackelberg Security Game (SSG).

Fig. 3 Illustration of the two-stage repeated game
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Fig. 4 Illustration of the system’s seven-step workflow

At each step the patroller determines, on the basis of his actual location and infor-

mation, the optimal Bayesian-Stackelberg solution expressed as the best target to

protect. After updating the position of the players and computing the actual earned

payoffs, the configuration of the scenario is updated taking into account new possi-

ble information available from external sources (e.g. radio communication systems,

sightings, etc.) and the new positions of the players. The procedure is then repeated

starting from the computation of the payoff of the patroller on the basis of updated

information.

More in details the patroller and the attacker are characterized by the following

features.

Features of the patroller:

∙ Position: actual position of the patroller within the scenario (expressed in latitude

and longitude).

∙ Velocity: how fast a patroller can move within the scenario (expressed in knots).

∙ Range of coverage: the dimension of the circular area, centred on actual position

of the patroller, inside which it is able to effectively contrast any attacks (expressed

in nautical miles).

Features of the attacker:

∙ Position: actual position of attacker (expressed in latitude and longitude).

∙ Velocity: how fast an attacker can move within the scenario (expressed in knots).

∙ Attack Capabilities: a parameter that express the effectiveness of the offensive

instruments (weapons, electronic instruments, etc.) present in the boat of the

attacker.

In our framework, targets are not players of the game, but they are defined as time

varying parameters in the scenario. All the data related to targets and to the scenario

are assumed to be known by all the players.
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More in detail, each target is characterized by the following parameters:

∙ Position: actual position of the target (expressed in latitude and longitude).

∙ Value: expressed in terms of intrinsic value of the target. This feature represent

the payoff earned by the players in case of capture (from attacker) or protection

(from patroller).

∙ Velocity: how fast a target can move within the scenario (expressed in knots).

∙ Route: trajectory, assumed fixed and known, covered by a target while it is travel-

ling within the scenario.

∙ Defence Capabilities: a parameter that express the effectiveness of defensive

instruments (water cannons, electronic instruments, etc.) in order to cope with

an attack.

On the other side the maritime scenario is described in terms of:

∙ Geographical constraint: expresses the characteristics of the area in terms of

obstacles, forbidden areas, etc. These data impose constraints to the path plan-

ning module, but do not effect the coverage area.

∙ Weather condition: information about the actual marine weather which can influ-

ence the behaviour of the players (e.g. due to severe weather conditions a vessel

transits within an area with reduced velocity).

∙ Critical Area: expressed in terms of geographical locations where historically

piracy attacks are more frequent due to peculiarities (e.g. presence of hideaways,

etc.). Consequently a target travelling through a critical area has a higher payoff

than its intrinsic value both for the patroller (the target is in a dangerous area) and

the attacker (the target is in a valuable area).

∙ Suspected Area: expressed in terms of geographical location considered vulnera-

ble by the patroller. While critical areas are statically defined by statistical informa-

tion, suspected areas are defined at run-time on the basis of available information

(e.g. a satellite image indicating the presence of an unidentified vessel). Notice that

only patroller has information about suspected areas hence this element influences

only the patroller’s payoff.

The aim of the attacker is to conquer the targets with the highest value (or highest

payoff) avoiding to be intercepted by the patroller. To defeat a target, an attacker has

to be sufficiently close to the target (e.g. the target has to be in the nearness of the

attacker) for a sufficiently long period of time. This period depends on the difference

between attack and defence capabilities: higher is the attack capability less time is

needed to defeat the target.

On the other side, patroller wants to avoid any piracy attack preferring, at the same

time, the protection of those targets with the highest payoff. To be protected a target

should be inside the coverage area of a Patroller.

As mentioned before we assume that target and scenario (with the only exception

to the suspected areas) are known both to the attacker and the patroller. Patroller

may have no information on the positions of the attacker, except for those indirectly

deducted from the suspected area, at the same time attackers know the strategy of

the Patrollers in the current round. Consequently the solution has been evaluated in
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the Stackelberg-Bayesian framework through an algorithm that equalizes the interest

associated to the most relevant targets, providing for each single resource a most

convenient possible mixed strategy.

5 Problem Formulation

The proposed solution follows multiple steps, as will be further explained below.

Specifically, it will be illustrated how Patrollers and Attackers determine, at each

iteration, the corresponding payoffs and strategies and how the different contextual

variables are updated. As mentioned before, Patrollers (and Attackers) evaluate at

each iteration the best strategy estimating, on the basis of the actual information,

the payoff associated with the different targets presents within the scenario. These

computations are then repeated after a sampled period of time 𝜏. In this context we

will consider, without loss of generality, 𝜏 = 1 h. In the follow we will identify with

the subscript L (as Leader) the Patroller, with the F (as Follower) the Attackers and

with T all the target contributions. Without loss of generality, we will consider to

have l Leaders (or resources of the team of the Patrollers), f Followers (or, also in this

case, resources of the team of Attackers) and t targets. Concerning the mathematical

exposition, an X will be considered as a matrix while X will be a column vector. For

the sake of simplicity, in the follow we assume to explicitly indicate the iteration

index k𝜏 with k ∈ N+
except when this may creates confusion.

5.1 Payoff Computation for Patrollers

The evaluation of the payoff of the Patrollers is performed taking into account charac-

teristics of the scenario, value of targets, position of other Patrollers and information

about Attackers.

Defined an identity row vector 1 = [1, 1,… , 1] with l elements, the matrix of

payoffs is defined by:

U
L
= 𝛾1UTL1 + 𝛾2USL1 + 𝛾3UDL

+ 𝛾4U
FL

U
L
∈ ℜt×l

(1)

where 𝛾i (i = 1,… , 4) are weights, in order to model the relevance of each element

in the computation of the payoffs. It will be assumed as boundary condition that:

4∑

i=1
𝛾i = 1 (2)

In Eq. (1), the first contribution rules the importance of each target in terms of

its actual position and intrinsic relevance (probably a cargo ship with fruit has less
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Fig. 5 Example of a risk

area

importance than a cargo ship with electronic components). The contribution can be

mathematically modeled as:

UTL ∈ ℜt ∶ uTL (i) = uT (i)
(
1 + 𝛼

C
T (i)

)
∀i ∈ [1,… , t] (3)

with:

𝛼

C
T (i) =

{
𝛼

C
if PT (i) ∈ AC

0 otherwise
(4)

where PT (i) is the actual position of the i target. Equation (5) illustrates how the

intrinsic value of the target is, eventually, amplified by a constant coefficient 𝛼
C ∈

(0, 1] in the case the target is inside a critical area AC
. As mentioned before, a critical

area is a zone where there is an high probability of piracy attacks. This assumption

is based on historical and statistical data (Fig. 5).

The second contribution is similar to the previous one, but it increase the payoff

associated to the i target in the case the target is inside a suspected area. As illustrated

in the previous section, a suspected area is defined on the basis of information at

disposal of the Patrollers about the presence of suspected boats. Known the suspected

area AS
, the contribution can be modeled as:

USL ∈ ℜt ∶ uSL (i) = uT (i) 𝛼S
T (i, 𝜏) ∀i ∈ [1,… , t] (5)

where:

𝛼

S
T (i, 𝜏) =

{
𝛼

S (𝜏) if PT (i) ∈ AS (𝜏)
0 otherwise

(6)
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The parameter 𝛼
S (𝜏), is time dependent so as the boundary of the suspected area

AS (𝜏): this because they change on the basis of actual information (e.g. satellite

images, etc.). Notice that AS (𝜏) and 𝛼

S (𝜏) ∈ [0, 1] are calculated by a dedicated

DSS module whose description is beyond the scope of this chapter.

The third contribution models the attractivity of the targets for the Patrollers, with

respect to their mutual distance: e.g. if a target is too far, it will be more convenient to

cover another nearer ship. More specifically, to take into account the effective veloc-

ities of each Patroller, this contribution considers the time needed by the Patroller

to cover the actual target position. This quantity is evaluated by the path-planner

module taking into account the actual position PT of the i target and the PL position

of the j Patroller, the velocity of the Patroller vL and considering both geographical

constraints and weather conditions.

U
DL

∈ ℜt×l ∶ uDL (i, j) =

{
𝛿D−𝛥(i,j)

𝛿D
if𝛥 (i, j) ≤ 𝛿D

0 otherwise
(7)

∀i ∈ [1,… , t] ,∀j ∈ [1,… , l]. 𝛥 (i, j) is the reaching time (for the j Leader and the

i target) calculated by the path-planning algorithm and 𝛿D is a threshold coefficient

that allows to set the sensitivity of the factor in relation to time. Specifically, if the

time needed to reach the target is greater than 𝛿D, the contribution is zero (i.e. no

contribution to the actual payoff). Otherwise, it ranges from 0 to 1 with 1 that means

that the Patroller reaches the target instantaneously (i.e. 𝛥 (i, j) = 𝛿D).

The fourth and last contribution rules the effect of the eventual presence of recog-

nized Attackers in the scenario. Specifically, it takes into account the possibility that

an enemy attacks the i target. In order to evaluate this quantity, it is important to

remember that the Patrollers are considered as “Leaders” of the Stackelberg Game,

so they can use only the data (more specifically, the mixed strategies of the Attackers)

derived in the previous turns. To manage the impossibility to estimate the effective

parameters of the Attackers (i.e. its velocity and offensive capabilities) we consider

this as a Bayesian contribution with various pre-setted models of Attackers obtained

from statistical data. Known the f ∗ number of models F∗
of prototypes of Attacker

and f recognized Attackers on the field, the Attacker contribution on the payoff of

the Patroller is based on the modeled mixed strategies of the Attacker, assuming the

worst possible condition. This aspect will be explained more in detail in the follow-

ing sections. Considering the contribution of the Attacker as a vector, this will be

expressed as:

UFL ∈ ℜt ∶ uFL (i) = uT (i)

( f∑

j
𝜔F (i, j)

)
∀i ∈ [1,… , t] (8)

where each element 𝜔F (i, j) represents the j mixed strategy of the Attacker for the i
target, obtained from the previous round.
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5.2 Payoff Computation for Attackers

As mentioned before, when there aren’t recognized Attackers on the field the DSS

system works to prevent attacks, modifying the hypothetical payoff of Attackers in

order to minimize risks for most valuable targets and to optimize the strategies of

the Patrollers. When an Attacker is recognized in the field the DSS system models

the payoffs and the possible strategies of the Attacker too. Similarly to the Patrollers,

also the utilities of the Attackers are expressed as a sum of different contributions,

assuming that Attackers have a perfect knowledge of the targets behavior, in terms

of actual position PT , route, intrinsic value uT and defense capabilities DT . However

there are some differences, specifically:

∙ We assume to have, instead of a single type of Attacker, f ∗ different classes of

Attackers each one characterized by their own peculiarities in terms of offender

capabilities CF and velocity vF;

∙ Coherently with the leader-follower paradigm, we assume that Attackers have

knowledge about the choice done in the same round by the Patrollers: more specif-

ically the Attackers know which target each Patroller wants to cover so as the time

requested to the Patroller to reach the target;

∙ For Attackers there is not the term related to the suspected area.

To manage the presence of multiple classes of Attackers, they are modeled as

a Bayesian entity which express the mixed strategy associated to each class of

Attackers. Consequently the Attacker payoff will be a three dimensional matrix

U
F
∈ ℜt×f×f ∗

where the entry uF(i, j, k) represent the payoff associated to the i target

for the j Attacker in the case this latter belong to the k class of Attackers. The payoff

for each single class of Attackers is expressed as:

U
F
(k) = 𝛾1UTF

(k) + 𝛾2U
DF

(k) + 𝛾3UT
LF1 (k) ∀k ∈ F∗

(9)

where 𝛾

F
i (i = 1, 2, 3), are weight coefficients that model the different relevance of

each element in the total payoff computation, with the constraint that:

∑

i
𝛾i = 1 (10)

Similarly to Patrollers, the first contribution rules the importance of each target

in terms of its actual position and intrinsic relevance:

UTF ∈ ℜt ∶ uTF (i) = uT (i)
(
1 + 𝛼

C
F (i)

)
∀i ∈ T (11)

taking into account the Attacker point of view, with:

𝛼

C
F (i) =

{
𝛼

C
if PT (i) ∈ AC

0 otherwise
(12)
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In this case the intrinsic value of the target is, eventually, amplified by a constant

coefficient 𝛼
C
F ∈ (0, 1] in the case the target is inside a critical area AC

. Notice that the

boundary of the critical area AC
is the same of those used for the Patrollers, but the

amplification coefficient 𝛼
C
F may be different expressing an higher (or lesser) interest

for the Attackers to perform an attack preferentially in well know area. Notice that

this contribution does not depend on the specif class of the Attackers, i.e. it is the

same for all the f ∗ classes.

The second contribution models the attractivity of a target as function of its dis-

tance from the Attackers. As for the Patrollers case, this contribution weights the

intrinsic value of targets in relation to the time needed by each class of Attackers

to complete the attack considering: the actual target, the Attackers position PF and

the relative defender and offender capabilities. Also for the Attacker, this quantity

is evaluated by the path-planning module. In this case the calculus is performed f ∗
times considering, for each calculation, the characteristic of each class of Attacker

in terms of velocity and offender capabilities. Specifically:

U
DF

∈ ℜt×f×f ∗ ∶ uDT (i, j, k) =

{
𝛿D−𝛥(i,j)

𝛿D
if𝛥 (i, j) ≤

(
𝛿D − CD(i)

CF(j,k)

)

0 otherwise

(13)

∀i ∈ [1,… , t] ,∀j ∈
[
1,… , f

]
,∀k ∈

[
1,… , f ∗

]
.

where 𝛥 (i, j) is the reaching time (for the j Attacker and the i target) calculated by

the path-planning algorithm and 𝛿D is the threshold coefficient: if the time to reach

the target overcome this threshold the target is considered no attractive. In spite of

the analogous contribute of the Patroller, here the threshold is modulated taking

into account the offensive and defensive capability of Attackers and targets. Specif-

ically in the case the Attacker has an huge offender capability with respect to the

target defender capability, i.e. CF(j, k) ≫ CD(i) then the threshold takes into account

exclusively the time needed to reach the target. However, if CF(p, f ) ≪ CD(i), i.e. the

defender capabilities of the target overcome the offender capabilities of the Attacker,

the latter has reduced interest, hence, to be attractive, the target should be really very

close to the Attacker.

The third and last contribution is necessary in a SSG context: the Attacker

knows the strategies of the Patroller. So the third contribution U
LF

considers the

actions of the Patrollers, made in the round, in order to influence the payoff of the

Attacker. Essentially the third contribution models the discouraging effect related to

the Patrollers, reducing the attractiveness of those targets that has been selected to

be covered. Known the coverage vector of the team of Patrollers, the contribution

vector will be:

ULF ∈ ℜt ∶ uLF (i) =
{

0 if i is covered
uT (i) otherwise

∀i ∈ T (14)
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5.3 Strategy Computation for Patrollers

Each Patroller, in each round, has to identify its best target to cover. To this end all

Patrollers have to compare their own strategy in order to identify those that globally

optimize the allocation, taking also into account the strategies of the Attackers.

Concerning the Patrollers, the possible strategies can be grouped in a strategy

matrix as:

S
L
(i, j) =

⎛
⎜
⎜
⎜⎝

𝜔L (1, 1) 𝜔L (1, 2) ⋯ 𝜔L (1, l)
𝜔L (2, 1) 𝜔L (2, 2) ⋯ 𝜔L (2, l)

⋮ ⋮ ⋱ ⋮
𝜔L (t, 1) 𝜔L (t, 2) ⋯ 𝜔L (t, l)

⎞
⎟
⎟
⎟⎠

∀i ∈ T ∀j ∈ L (15)

where 𝜔L (i, j) represents the option that j Patroller covers the i target, e.g. 𝜔1,2 rep-

resents the strategy “the Patroller 2 goes to cover the target 1”. Each strategy is asso-

ciated with a payoff, and it is determined as mentioned in the previous paragraphs.

To identify the best strategies that each one of the Patrollers has to play at the

current round, i.e. to select which target the Patroller has to cover, we develop a

two steps solution. Firstly, we find the solution of the Stackelberg problem using an

ORIGAMI-based algorithm [34]. The ORIGAMI (Optimizing Resources in Game

Using Maximal Indifference) solver acts in order to reduce the attractiveness of the

most valuable targets for the Attackers, trying to “equalize” the payoffs, i.e. Attack-

ers have not a preferred target to attack. The solution of the ORIGAMI algorithm is

a mixed strategy that converts each single resource in a set of most convenient pos-

sible strategies. The second algorithm called MORESCO (MOst RElevant Strategy

in COoperative teams) evaluates all the mixed strategies generated by ORIGAMI,

and assigns a single pure strategy to each patroller, in order to simulate both the

cooperation between elements and the (automatic) evolution of the scenario. The

MORESCO takes into account the variance between each mixed strategy for each

Patroller, and models the “determination” of each element to cover each target.

5.4 Strategy Computation for Attackers

Also in this case we use the ORIGAMI algorithm to calculate the mixed strategy of

each Attacker. As introduced before, each Attacker can have multiple possible pay-

offs, each one related to a single Attacker class. So the real mixed strategy for each

Attacker is a Bayesian correlation between all possible mixed strategies, assuming

that it can be represented with all possible Attacker models simultaneously. The strat-

egy matrix, considering all possible classes, is:
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S
F
(i, j, k) ∈ ℜt×f×f ∗ ∶ S∗

F
(i, j) =

⎛
⎜
⎜
⎜⎝

𝜔F (1, 1) 𝜔F (1, 2) ⋯ 𝜔F (1, f )
𝜔F (2, 1) 𝜔F (2, 2) ⋯ 𝜔F (2, f )

⋮ ⋮ ⋱ ⋮
𝜔F (t, 1) 𝜔F (t, 2) ⋯ 𝜔F (t, f )

⎞
⎟
⎟
⎟⎠

(16)

∀k ∈
[
1,… , f ∗

]
.

Due to the third dimension of the payoff matrix of Attackers, it is evident that for

each target there are f ∗ possible strategies associated to f recognized Attackers in the

field. Defining any possible set of mixed strategies for a target, for each Attacker, as

𝜔T (i, j, k), ∀i ∈ [1,… , t] ∀j ∈
[
1,… , f

]
∀k ∈

[
1,… f ∗

]
, in order to simulate the

worst possible situation, the most relevant possible mixed strategy for each Attacker

will be considered. So it is possible to derive the final matrix of mixed strategies as:

S
F
(i, j) =

⎛
⎜
⎜
⎜⎝

𝜔F (1, 1) 𝜔F (1, 2) ⋯ 𝜔F (1, f )
𝜔F (2, 1) 𝜔F (2, 2) ⋯ 𝜔F (2, f )

⋮ ⋮ ⋱ ⋮
𝜔F (t, 1) 𝜔F (t, 2) ⋯ 𝜔F (t, f )

⎞
⎟
⎟
⎟⎠

(17)

∀i ∈ [1,… , t] ∀j ∈
[
1,… , f

]

where:

𝜔F (i, j) = maxk
(
𝜔T (i, j)

)
∀i ∈ [1,… , t] ∀j ∈

[
1,… , f

]
(18)

i.e. for each i-j combination, the j attacker will be represented by the more efficient

class of attackers k that maximize 𝜔T (i, j).

6 Simulations

In order to validate the proposed approach a set of simulations has been performed.

To evaluate the effectiveness of the strategies of Patrollers we consider a fixed set

of targets (30 targets) with assigned routes (selected from a set of 10 pre-defined

routes) and randomly introduced in the scenario within a time horizon of 30 h. In each

simulation, 5 Patrollers (l = 5) and 5 Attackers (f = 5) are present in the scenario.

The starting point of each Patroller is selected randomly from a set of 10 pre-defined

realistic starting points (i.e. Port of Aden, Port of Djibouti, etc.). The starting point

and the instant of appearance of the Attackers are randomly defined within the first

5 h of the simulation. Concerning the intrinsic parameters of each entity, the targets

will be defined with a random combination of:

∙ Intrinsic payoff—ut = 0.5 + 0.5𝜂1;

∙ Velocity—VT =
(
16 + 4𝜂2

)
knots;

∙ Target defense capability—CD = 2 + 1𝜂3.
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The Patrollers are modeled with a random combination of:

∙ Operational range—RL =
(
11 + 3𝜂4

)
NM;

∙ Velocity—VL =
(
24 + 4𝜂5

)
knots;

Where 𝜂i are uniform random numbers in [−1, 1].
Concerning the Attackers, as mentioned before they are expressed in terms of

Bayesian combinations, so the effective attacker velocity vF and the offensive capa-

bility CF are defined choosing (randomly) a model from a representative set of 3

classes (f ∗ = 3) of Attackers with the following characteristics:

class F∗ (1) =
{

vF = 20 knots
CF = 4 (19)

class F∗ (2) =
{

vF = 22 knots
CF = 3 (20)

class F∗ (3) =
{

vF = 18 knots
CF = 5 (21)

The parameters contained in the model, more specifically the weight parameters

𝛾i and the threshold limits 𝛿, will be imposed as 𝛾i = 0.25 (in the computation for

Leaders), 𝛾i = 0.33 (in the computation for Followers) and 𝛿 = 10. Referring to (2)

and (10) this particular setting of the parameters will equalize the weight of all the

contribution.

The criteria used for the model validation are:

∙ The average number of covered targets NC simultaneously covered during the sim-

ulation;

∙ The average number of attacked targets NA simultaneously attacked during the

simulation;

∙ The efficiency of the action of the Patrollers expressed as the sum of intrinsic

payoffs of the covered targets with respect to the actual total payoff of all the targets

in the scenario:

Eff =
∑tcovered

i=1 uT (i)
∑t

j=1 uT (j)
(22)

∙ The average payoff values PC in relation to the group of covered targets;

PC =
∑tcovered

i=1 uT (i)
NC

(23)

∙ The average payoff values PA in relation to the group of attacked targets.
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Fig. 6 Evolution of team payoffs PL (in blue) and PF (in red)

PA =
∑tattacked

i=1 uT (i)
NA

(24)

∙ The total payoff earned by each team (PL for the leader, PF for the follower) during

a simulation, expressed as mean of the total payoff earned in each round.

PL =
∑nrounds

i=1 PC (i)
nrounds

(25)

PF =
∑nrounds

i=1 PA (i)
nrounds

(26)

20 simulations were carried out obtaining the following values for the indicators:

Eff ∶ 56% NT = 10.37 NC = 5.02 NA = 0.63 PC = 6.37 PA = 3.31 (27)

Figure 6 reports the average payoffs PL and PF of both teams during each simu-

lation.

It is interesting to note that with this model, the Leaders cover the most rele-

vant targets during the time (PC ≥ PA), allowing Followers to attack only second

choices. Moreover, a single Patroller covers at least one target in the whole simulation

(NC ≥ l), while an Attacker can hit at most only one target in each simulation

(PC ≤ 1). The average efficiency means that the Patrollers are able to control directly

is the 56% of the total goods present on the scenario.
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Fig. 7 Number of targets in the scenario (green), covered targets (blue) and attacked targets (red)

in a single run

Fig. 8 a Scenario Map: Gulf of Aden. In red the Attackers starting points; in cyan the Patrollers

starting points; The yellow circle is the critical area. b Routes of the Targets: heat map. c Routes of

the Patrollers: heat map. d Routes of the Attackers: heat map

For a more detailed analysis Fig. 7 reports the time history obtained by a single

simulation.

Heat plots (Fig. 8) show the behavior of targets and players on the scenario dur-

ing a single run: the targets follow pre-defined and imposed routes (Fig. 8b). Concur-

rently, the teams act their strategies in order to cover/attack the best target as possible

relating to the evolution of the scenario. In the Fig. 8c it is possible to note how the

dislocation of Patrollers limits the movement of Attackers (especially in the middle

of the map, where the Patrollers are more present). In the Fig. 8d it is possible to note

that the attackers prefer to attack ships on the critical area only if it is possible. This

is due to the fact that in this area the targets’ route are more scattered hence patrollers

have more difficulties to cover all the possible routes. To this end, it is also important

to note that patroller are mostly present in the south-eastern region of the scenario

where they can cover a larger number of routes and move from a target routes to an

other to protect different targets. On the other side the attackers, especially in the

critical area of the scenario, seem to follow more clearly the target’s routes.
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7 Conclusions

This chapter describes an optimization model that uses a game theoretical approach

to solve the problem of patrolling of mobile targets. The problem is solved consider-

ing an iterative two stages approach where, in the first stage, the leader (the patroller)

and the follower (the attacker) select the best target to cover and attack respectively

solving a Bayesian-Stackelberg game. In the second stage a dedicated path-planning

module identifies the route that patrollers and attackers have to follow to perform

their selected strategies. The strict cooperation between the path-planning module

and the game theoretical model allows to consider typical variables present in piracy

context such as routes of targets, distances, dynamic parameters (i.e. velocities), geo-

graphical boundary conditions, weather conditions, etc. Future researches will be

dedicated to generalise the framework introducing further constraints related to the

behaviour of the targets.
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mspMEA: The Microcones Separation
Parallel Multiobjective Evolutionary
Algorithm and Its Application to Fuzzy
Rule-Based Ship Classification

Marco Cococcioni

Abstract This chapter presents a new parallel multiobjective evolutionary
algorithm, based on the island model, where the objective space is exploited to
distribute the individuals among the processors. The algorithm, which generalizes
the well-known cone separation method, mitigates most of its drawbacks. The new
algorithm has been employed to speed-up the optimization of fuzzy rule-based
classifiers. The fuzzy classifiers are used to build an emulator of the Ship Classi-
fication Unit (SCU) contained in modern influence mines. Having an accurate
emulator of a mine’s SCU is helpful when needing: (i) to accurately evaluate the
risk of traversal of a mined region by vessels/AUVs, (ii) to assess the improvements
of ship signature balancing processes, and (iii) to support in-vehicle decision
making in autonomous unmanned mine disposal.

Keywords Parallel multi-objective evolutionary algorithms ⋅ Fuzzy rule-based
classifiers ⋅ Influence mine modeling ⋅ Ship classification

1 Introduction

The use of Multiobjective Evolutionary Algorithms (MEAs) for optimizing fuzzy
rule-based systems has attracted wide interest over the last decade [1, 3, 6, 8–10,
17]. An extensive list of contributions to this research area, usually referred to as
multiobjective genetic fuzzy systems, can be found in [11]. This family of tools is
powerful in regression and classification problem for many reasons: (i) the fuzzy
rules are automatically extracted from data, (ii) they are human interpretable;
(iii) the optimization in performed globally (and thus the risk of getting stuck into a
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local optimum is low), and; (iv) the possibility to include multiple objectives allows
designing more accurate systems.

A hot topic in current literature about multiobjective optimization of fuzzy
system is the one related to the handling of high-dimensional and/or large datasets.
There are many different ways to speedup multiobjective optimizations of fuzzy
rule-based systems. For instance, concerning the Takagi-Sugeno fuzzy model, fit-
ness approximation techniques can be used [6, 8–10]. When the dataset is large,
only a subset of the available samples for the evolutionary optimization of the
model can be utilized, where this subset is evolved using another evolutionary
algorithm in a co-evolutionary scheme, as done in [1] and in [17].

Of course, MEAs parallelization on multiple processors is a viable option. While
there are many parallel MEAs, most of them use parallelizing techniques borrowed
from the parallelization of single objective EAs [16, 20, 26]. Such an approach does
not exploit the multiobjective nature of the problem and thus can be less effective in
approximating the Pareto optimal front. One of the few exceptions is the Cone
Separation method introduced in [2] (hereafter referred to as cone separation par-
allel MEA—cspMEA—), where the authors have shown the superiority of using a
divide-and-conquer approach based on the objective space over random assignment
(i.e., without exploiting the objective space).

In this work we focus on two-objective problems and, after highlighting the
main limitations of cspMEA, we introduce an extension of it, based on the concept
of microcones, which mitigates such limits.

We have then employed this new algorithm, named mspMEA (microcones
separation parallel MEA), to learn fuzzy rule-based classifiers in a ship classifica-
tion problem. The aim of building such a classifier is to build a stochastic emulator
of the ship classification unit (SCU) found on modern influence mines. This unit is
demanded to decide if the mine has to detonate, by discriminating the presence of
target ships from non-target ones. Of course, to make this decision the influence
mine is equipped with a number of sensors (acoustic, magnetic, pressure, etc.) along
with a complex logic. Being able to emulate this logic has a number of defense
applications, such as: (i) to a accurately compute the risk associated with the
traversal of a mined region by vessels/AUVs [12, 18, 23], (ii) to assess the benefits
of a ship signature balancing process [14, 21], and (iii) to support in-vehicle
decision making in unmanned mine disposal operations [22, 24]. The latter is an
enabling technology in autonomous mine countermeasures approached using
AUVs, a hot topic in current mine countermeasures strategies.

This chapter is organized as follows. In Sect. 2 the cspMEA is described, along
with its main limitations. In Sect. 3 we introduce the concept of microcones and
then we outline the whole mspMEA algorithm. Section 4 describes the problem at
hand, namely the building of a stochastic emulator for SCUs by means of fuzzy
rule-based classifiers. The result of the optimization of the fuzzy classifiers by
means of cspMEA and mspMEA are provided in Sect. 5, while Sect. 6 draws
conclusions.
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2 The Cone Separation Parallel Multiobjective
Evolutionary Algorithm (cspMEA)

The aim of multiobjective optimization (when approached according to the Pareto
optimality criterion) is to find an approximation to the Pareto front. The Pareto front
is the set of non-dominated solutions that are non-dominated by any other feasible
solution. A solution is said to dominate another one if and only if it is equal or
better on all the objectives and is better than the others at least of one objective. The
numerical solution of a multiobjective problem having a continuous Pareto front is
aimed at finding a finite number of equally distributed solutions along the Pareto
optimal front. MEAs are especially suited to solve these kinds of problems, since
they are population based: with only one run, they are able to find a set of
non-dominated solution close to the Pareto front.

Among many others (PAES [19], (2 + 2)M-PAES [9], SPEA2 [28], AMGA2
[25], CHEA [5], MOEA/D [27], etc.) NSGA-II [15] has had a wide influence on
many multiobjective evolutionary algorithms developed since its introduction
(besides being one of the algorithms to compare to when proposing new ones).

While the parallelization of Multiobjective EAs could be made by resorting to
general purpose technique exploited to parallelize single objective EA [16, 26],
specific methods can be devised to better parallelize them exploiting their multi-
objective nature.

The cone separation method described in [2] (that here we have referred to as
cspMEA to distinguish it from the mspMEA) is one of such attempts, and is built
upon the concepts introduced in NSGA-II.

2.1 The Idea of Dividing the Objective Space
into Regular Cones

The cspMEA introduced in [2] is a parallel version of NSGA-II [15], which uses the
island model with migration (the number of islands corresponds to the number of
processors).

To describe the working principle of cspMEA let us focus on a bi-objective (let
x be the first objective and y the second), where both the conflicting objectives have
to be minimized. Given the current population, the non-dominated solutions are first
computed. Let also consider the solutions achieving the best value (the minimum in
our case) on the first objective 1B ≡ (1Bx,

1By), and the one obtaining the minimum
on the second objective 2B ≡ (2Bx,

2By). We are now able to compute the position
of the nadir point (the diamond in Fig. 1b, c, d), that is the virtual point having
coordinates: (2Bx,

1By). Let us also define another virtual point, called the ideal
point (the triangle in Fig. 1b, c, d), as the point having coordinates (1Bx,

2By). We
can now normalize the objective space, in such a way the rectangle in Fig. 1b
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between the nadir point and the ideal point becomes a square (Fig. 1c): this square
is called the unit square [2].

The basic idea in cspMEA is to divide the unit square of Fig. 1c into n cones
(Fig. 1d), n being the number of processors, and to assign the candidate solutions
falling within the pth cone to the pth processor. Therefore the strategy is to have
each island focused on a specified cone, where the borders of the cones are treated
as hard constraints, i.e., handled by resorting to the constrained domination prin-
ciple. This principle assumes that all solutions outside the designated region are
dominated by all solutions within it. When the offsprings generated on a processor
fall outside the associated cone, they are always migrated to the appropriate one.

Fig. 1 How the cspMEA computes the unit square and divides it into p cones. The considered
problem is a minimization problem with two objectives, x and y. Gray circles dominated solutions;
black circles non-dominated solutions; diamond the nadir point; triangle the ideal point. The
rectangle in (b) becomes a unit square (dotted square) in (c), after normalizing the objective space.
Finally in (d) the unit square is divided into 3 regions (the cones)
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Figure 2 shows the re-computation of the unit square when the fitness of the next
generation is available. An important aspect to notice is that to compute the unit
square the best fitness must be shared among the processors (more precisely,
exchanging only the extremes found by each processor is enough [2]).

An appealing property of cspMEA is that the final Pareto front (the global one)
is approximated by the union of the Pareto front approximations computed by each
processor (local Pareto fronts). Unfortunately, there is no guarantee that the union
of the local Pareto front contains only non-dominated solutions. For this reason, as a
final step, the dominated solutions are discarded from the front, thus obtaining the
true global Pareto front approximation.

Since cspMEA is based on NSGA-II, it ranks the population using the
non-dominated sorting. Then individuals having the same rank are ordered by
crowding distance (see next subsections).

2.2 Non-dominated Sorting

On each cone the cspMEA uses the non-dominated sorting operator (the same one
adopted by NSGA-II). Non-dominated sorting consists in computing rank 1 solu-
tions, i.e., all the non-dominated solutions. Then, it discards rank 1 solutions, and
on the remaining ones, it computes again those that are non-dominated (and assigns
them the rank 2). It then continues until no further solutions are present.

2.3 The Crowding Distance

The crowding distance is the operator allowing to selecting a subset of solutions
among the ones in the same rank, say k, when more than needed are present. It

Fig. 2 Unit square update from previous (a) to next generation (b) in cspMEA
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performs this selection trying to widening the Pareto front approximation as much
as possible, and distributing solutions as uniformly as possible along the front. Its
definition can be found in [15].

2.4 The cspMEA Algorithm

In summary, the cspMEA algorithm is outlined in Algorithm 1.

The flowchart of cspMEA is provided in Fig. 3 (the operations that cannot be
parallelized are marked with a circled “C”).

2.5 Limits of cspMEA

In [2] it has been shown that cspMEA is superior to a naïve parallelization approach
based on random assignment to the processors (i.e., without exploiting the objective
space). However, the algorithm has three weaknesses: (i) local Pareto fronts might
not belong to the global Pareto front, and (ii) the solutions of the global Pareto front
can be unevenly distributed, and (iii) the migration rate can be too high, being it
unbounded. Let us see these limits more in detail in next subsections.

2.5.1 Local Pareto Fronts Might Not Belong to the Global Pareto
Front

In case of discontinuous global Pareto fronts, it may happen that solutions of one
local Pareto front are dominated by some contained in other cones, as depicted in
Fig. 4. This is a serious problem, because it could lead to a significant waste of
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computing resources. For example, Fig. 4 shows how the work done by processor 4
is completely useless, since its computed local Pareto front will be discarded at the
end, when the global Pareto front is computed (in the considered case, 20 % of the
computing power is therefore totally wasted).

2.5.2 The Solutions of the Global Pareto Front can be Unevenly
Distributed

To illustrate this weakness, we provide two situations. The first is one is when a
local Pareto front is discontinuous (see Fig. 5). In this case, while the crowding
distance of NSGA-II would distribute solution evenly along the front in a single
processor (Fig. 5b), cspMEA generates solutions unevenly distributed along the
front (Fig. 5a). In Sect. 3 we will discuss how to mitigate this problem.

Fig. 3 A flowchart of the cspMEA introduced in [2] (EVOPs stands for evolutionary operations:
fitness evaluation, ranking, selection, crossover and mutation). The operation that cannot be
parallelized (finding the global extremes and migration) are marked with a circled “C”
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The second situation when a non-uniform distribution of solutions can occur is
when the global Pareto front is far from the unit circle (either being it convex or
concave), as discussed in Fig. 6.

Fig. 4 The local Pareto front computer by the 4th processor (cone 4) is completely dominated by
solutions of the local Pareto front computed by the 3rd processor (cone 3). In particular, the local
Pareto front on cones 1, 2, 3 and 5 belongs to the global Pareto front, while the local Pareto front of
the 4th cone is completely absent from the global Pareto front

Fig. 5 Suppose we have the global Pareto front depicted in (a) and to have 3 processors (3 cones),
each with a population size equal to 5. Since the local Pareto front of the second cone is
discontinuous, the density of solutions on local Pareto front 2 is higher than that of solutions of
local Pareto fronts 1 and 3 (assuming each processor has a population size equal to 5). In (b) we
can see the distribution of the solutions of the (3 × 5 = 15) solutions we would have obtained by
running NSGA-II on a single processor: here the use of the crowding distance applied to the whole
Pareto front would have given a uniform of solutions. This means that dividing the Pareto front
into cones (as done by cspMEA) can lead to an uneven distribution of the candidate solutions
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2.5.3 The Migration Rate can be too High, Being it Unbounded

When a new offspring is computed, it can happen that it does not fall within the
cone associated to the parents involved on its generation. In this case the offspring
is moved to the right cone (i.e., to its associated processor). In the worst case, all the
offsprings might have to be migrated to other processors. This means that in
cspMEA we have no control on the number of migrations. As we will see in the
following, this stems from the fact that belonging to a cone is handled as a hard
constraint.

In next section we will provide a new pMEA able to mitigate the three limits of
cspMEA discussed above.

3 The Microcones Separation Parallel Multiobjective
Evolutionary Algorithm (mspMEA)

3.1 The Idea of Microcones

We propose here a new parallel MEA, still based on the idea of cone separation. In
this case, however, we not only divide the unit square into n cones, but we also
uniformly divide each cone into Ngroup microcones (numbered from 1 to Ngroup,

from top left to bottom right). Then the algorithm assigns all the microcones with
number 1 to processor 1, all the microcones with number 2 to processor 2, etc. (see
Fig. 7). Obviously, when Ngroup = 1, mspMEA and cspMEA coincide.

Fig. 6 In c we have a global Pareto front which is very close to the unit circle centered at the nadir
point: in this case the solutions are uniformly distributed by cspMEA along the front. However,
this is not the case in a, i.e., when the global Pareto front is far from the unit circle: in this case the
density of solutions on cone 2 is higher than those on cones 1 and 3 (the three local crowding
distances independently computed by cspMEA fail to generate a globally uniform distribution).
This phenomenon is due to cspMEA, as NSGA-II is not affected by it: in b the distribution made
by NSGA-II (using one crowding distance on the whole front) is shown. It can be seen easily how
in this case the solutions are uniformly distributed along the front even when the Pareto front is far
from the unit circle
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The mspMEA has an important property that helps mitigating the problem
discussed in Fig. 4. To show it, we provide another example, still made of 3 cones
and 3 microcones (see Fig. 8). In this case we have also displayed the global Pareto

Fig. 7 Working principle of microcones separation parallel MEA (mspMEA) in the case of 3 cones
divided into 3 microcones each: the 3 microcones numbered 1 will be assigned to processor 1, the 3
with number 2 to processor 2, and the 3 with number 3 to processor 3

1

1

1 

2

2

2 

3 

3 3 

proc. # 1

proc. # 2 

proc. # 3 

Fig. 8 Another example of the working principle of mspMEA: glocal Pareto front of proc. #1
(red), proc. #2 (yellow) and proc. #3 (blue). The clear advantage of mspMEA over cspMEA is that
the second microcone of proc.#3 knows that its front is not Pareto optimal (the black rectangle)
because of the presence of his solutions (the one above the purple horizontal line) falling within its
first microcone. This does not mean that the union of the 3 glocal Pareto front approximation gives
the global Pareto front, because some solutions on the glocal fronts can be still dominated by
others of other glocal fronts (e.g., the blue part of the glocal front portion found on the third
microcone by the 3rd processor falling within the black ellipsoid is dominated by solutions found
by the second microcone of the second processor, i.e., by the ones above the green horizontal
line). This means that not all the problems discussed in Fig. 4 are solved, but at least they have
been heavily mitigated
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front. The interesting point to note is that each processor is partially aware of the
whole global Pareto front, having part of it. For this reason, we have named it
glocal, (a hybridization of local and global), for remarking the fact that the Pareto
front approximation locally computed by each processor contains information about
the global Pareto front (although only partially).

However, this clear advantage comes with a drawback: the offspring obtained by
recombining two parents belonging to two (in general distinct) microcones is more
likely to fall outside all the microcones assigned to the current processor. Thus, the
chance of having to migrate the offsprings is slightly higher for mspMEA than for
cspMEA. To overcome this problem, we have considered the constraint of
belonging to processor p as a soft constraint instead of a hard constraint (as done
by cspMEA). This means that we tolerate the presence of individuals falling on
microcones different from those associated to the pth processor. However we will
give priority to those individuals that do belong to the right microcones (the ones
associated to the current processor). At each generation we migrate a fixed number
of individuals to their right processors, randomly chosen among the ones violating
the soft constraint. The important aspect here is that with the mechanism of random
selection we are also able to control (and bound) the migration rate. To further
privilege the recombination of solutions that belongs to the right set of microcones
we have added the binary tournament selection for selecting the pair of individuals
to mate.

Before providing the outline of the whole mspMEA algorithm we have still to
add an improvement to the selection criterion, since the one adopted by NSGA-II
and cspMEA (the crowding distance) can be inappropriate if utilized alone when
working with microcones. For this reason we have introduced the microcone
assignment technique, as explained in the next.

3.2 The Microcone Assignment

The microcone assignment plays the same role of the crowding distance in
NSGA-II and cspMEA. It is used to select which offsprings to copy in the next
generation, for each processor. Since a processor covers multiple, disjoint regions
of the Pareto front (the microcones), we need a way to determine which are the best
candidate solutions for each microcone. Then, the best solutions on each microcone
can be iteratively picked up, microcone after microcone, until the size of the next
population is equal to the size of the previous population. Clearly, within each
microcone, the best solutions are those falling within that microcone, if there is/are
any. Furthermore, the best ones within the ones that fall in a microcone can be
chosen according to the crowding distance. Doing so we have a criterion to give
priority to solutions falling within the microcone. However, as Fig. 9 shows, it can
happen that the number of required solutions from a given microcone is larger than
the number of available solutions falling within that microcone (or, in the worst
case, there are none at all). In this case, we decide to allow selecting solutions
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falling outside the considered microcone, but close to it. Of course, we need to
privilege solutions as closer as possible to the microcone at hand. To do this, we
introduce the microcone distance, which is the angular distance between a solution
and the considered microcone. Figure 9 shows an example of the combined use of
crowding distance and microcone distance, for a microcone.

In Fig. 10 we show an example of the benefits of the combined use of crowding
distance and microcone distance when considering all the microcones associated to
a processor. In particular, in the example we have 2 processors and 2 microcones
(Ngroup = 2) per processor. Suppose that the microcones of processor 1 are those in
gray. Microcone 1 of processor 1 (the gray one on top) has no solutions, while the
second of the same processor has four. If the population size is four, using the
crowding distance only (and considering the hard constraint approach) the four
solutions to copy in the next generation of processor 1 are the four ones of the
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Fig. 9 An example of the working principle of the combined use of crowding distance and
microcone distance (microcone assignment), when considering a single microcone. For solution
falling within the microcone (b, c, d, and e) the crowding distance sorting is employed. For
solutions outside the microcone (a, f, g and h) the microcone distance sorting is utilized. Solutions
within the microcone as selected first

Fig. 10 An example of the working principle of the combined use of crowding distance and
microcone distance (microcone assignment), when considering all the microcones of a processor.
The four selected solutions by microcone assignment are the black ones in (c), while the four that
would have been selected using only the crowding distance (with hard constraints) are the black
ones in (b). The gray arrows indicate solutions violating the soft constraint (and thus the ones
candidate to migrate)
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second microcone, highlighted in black in Fig. 10b. This means that one microcone
would have no solutions at all. As a consequence, the glocal Pareto front generated
by processor 1 would be quite narrow. On the contrary, when considering the
microcone assignment, the algorithm starts by selecting a solution from microcone
1. Since it has no solutions falling within it (and thus the crowding distance set of
solutions is empty), the solution with the lowest microcone distance is chosen, i.e.,
the one on the top. Then the algorithm seeks one solution from the second
microcone. In this case, the one with the lowest crowding distance is chosen. Then,
since we have to pick four solutions in total, one more is added from the first
microcone (the one with the second smallest microcone distance, i.e., the second
from the top). Then another one is selected for the second microcone of processor 1
(the one with the second smallest crowding distance). In summary, the four selected
solutions for processor one are those in black in Fig. 10c (the others are those
candidate for migration). As it can be seen, the glocal Pareto front approximation is
wider adopting microcone assignment (Fig. 10c) than adopting crowding distance
(Fig. 10b), giving a better distribution and coverage of the global Pareto front.

Summarizing, in our mspMEA we have still adopted the non-dominated sorting
operator as in NSGA-II and in cspMEA. The only difference is the fact that we have
combined it with the microcone assignment (instead of the pure crowding distance
as in cspMEA), to select the subset of individuals to copy in next generation (see
Fig. 11).

3.3 The mspMEA Algorithm

The final mspMEA algorithm is given in Fig. 12. In next section we introduce the
problem we have solved with the help of mspMEA.

Fig. 11 Ranking adopted by NSGA-II and cspMEA (a). Ranking adopted by mspMEA (b). Both
use the non-dominated sorting operator. They only differ on which rank 1 solutions are selected to
be copied in next generation
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4 The Application: Modeling the Ship Classification Unit
of an Influence Mine

4.1 Modern Influence Mines

While (old) contact mines detonate in case of contact (both with target and
non-target ships) modern influence mines, equipped with a series of sensors, are

Fig. 12 The mspMEA algorithm. The deterministic migration of cspMEA is substituted with a
random migration (g) of a prefixed number of individuals chosen among the ones violating the soft
constraint (the ones falling within wrong microcones)
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able to classify ships and to detonate only when they are targets. Furthermore, they
are able to compute the optimal detonation time. Figure 13 illustrates a general
representation of a modern influence mine. The classification step shown in the
figure is performed by a specific unit: the ship classification unit (SCU).

4.2 Modeling Influence Mines

Building a model for an influence mine is useful in many cases, as discussed in the
introduction. The mine logic can be modeled either deterministically or stochasti-
cally [13]. A deterministic model is an accurate model of every subsystem of an
influence mine. When building such a model, the modeler has to choose the usage
criteria, in order to decide which subcomponents needs to be modeled and which
ones could be disregarded (see Fig. 14).

Deterministic modeling requires a lot of efforts and time. Furthermore, once the
model has been built for a specific mine, it cannot be reused for different mines
(meaning that the process has to restart from scratch [13]). In some situations an
accurate, deterministic model is not strictly necessary for the user’s goals. In such
situations, building a stochastic one (able to describe the behaviour of the mine on
average) could be enough. In particular, the construction of a stochastic emulator of
the SCU is adequate in many applications. In next section we describe how we have
built such an emulator using fuzzy rule-based classifiers optimized by means of the
mspMEA algorithm.

Fig. 13 General representation of a modern influence mine. Each box is a subsystem of the mine.
The classification is performed by the SCU
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4.3 The Ship Classification Unit Fuzzy Emulator (SCUFE)

We have developed a Ship Classification Unit Fuzzy Emulator (SCUFE), which is a
fuzzy rule-based classifier able to classify ships as the mine would do, once trained
using MEAs in the appropriate way. In particular, the input of the fuzzy classifier is a
set of features extracted from one or more signatures. Modern influence mines use
one or more sensors for the different influences contained in the signature of a
ship. These influences can be acoustic, magnetic, pressure, electric, seismic or even
flow. The mines not only try to classify the ship but also try to determine the optimal
detonation time. The mine logic actually translates the specific signature features in
characteristic properties that describe the ship and its location. The developed
SCUFE mine model only models the classification and the mine counter measures
(MCM) rejection capabilities of influence mines. The functionality of the SCUFE is
indicated by the dashed box in Fig. 15, and his diagram is detailed in Fig. 16.

4.4 Fuzzy Rule-Based Classifiers

The role of the fuzzy rule-based classifier within the SCUFE is to classify the
features extracted from signatures in order to stochastically mimic the ship classi-
fication unit of the influence mine to model. The fuzzy rules have to be learned from
a labeled dataset, containing samples of both target and non-target ships.

The inputs used for the fuzzy classifiers are the same ones specified in [13], i.e.,
the following 18 features extracted from the static magnetic (SM) signature:

• Global minima and maxima of the x, y and z components (6 features)
• Rate of rise of the x, y and z components (3 features)
• Global maximum of the total field (1 feature)
• Pseudo period (1 feature)
• Integral values of the x, y and z components and the total field (4 features)
• Number of zero crossings of the x, y and z components (3 features)
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Fig. 14 Deterministic modeling process of mines
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The employed fuzzy rules are of the form:

Ri: if X1 is A1
δi, 1

and . . .XF is AF
δi,F

then Y is C1 . . .CM with γ1i . . . γ
M
i

ð1Þ

where: Xf is the fth input feature ðf =1 . . .F,F =18Þ; Af
t is the tth fuzzy set defined

over the fth input variable (assuming to have uniformly partitioned the domain of
the fth variable into T Gaussian fuzzy sets); C1 . . .CM are the M classes (in this
work, M = 2: C1 is the target class and C2 the non-target class), and; γmi are the
probabilities of belonging to the mth class associated with the ith rule [4]. In
particular, the δi, f used in (1) specifies the fuzzy set involved in the ith rule for the
fth variable. The mspMEA algorithm has to optimize the number of rules, the fuzzy

Detection

Classification / 
feature analysis

LocalizationMCM rejection

Actuation
decision

Self-protection

Combination/
final logic

Fig. 15 Capabilities and modules typically found in modern influence mines. The dashed box is
unit emulated by SCUFE. The detection, self-protection, localization and the combinational/final
logic modules are not covered by the SCUFE

Fig. 16 Detailed diagram of the SCUFE model

mspMEA: The Microcones Separation … 461



sets involved (i.e., the values for the δi, f Þ and the associated probabilities
ðγ1i and γ2i Þ.

An example of the extracted rules is the following:

if
the TOTAL INTEGRAL MAGNETIC FIELD VALUE is LOW

and
the NUMBER OF ZERO CROSSINGS IN THE Z COMPONENT is MEDIUM

then 
the ship is a target,   with probability 0.87  and 

the ship is a non-target, with probability 0.13

The crossover and mutation operators are the ones described in [10]. The
training and test sets are the same utilized in [13], consisting of 56 samples of target
ships and 432 of non-target ships, for a total of 488 samples in the 18-dimensional
feature space.

5 Results

Two objective functions have been used in MEA optimization: the true positive rate
and the false positive rate (the former to be maximized and the latter to be mini-
mized). Since the performance of a continuous classifier can be charted on the
Receiver Operating Characteristic (ROC) space, in this work we have adopted the
Area Under the ROC curve (AUC) as the sole indicator of the goodness of the
whole Pareto front approximation. Doing so, we have been able to easily compare
the performances of different MEAs: the higher the AUC the better. The AUC
(which ranges between 0 % and 100 %), is particularly interesting because it has a
“physical” meaning: it is equal to the probability of correctly classifying a pair of
samples, when one belongs to the target class and the other to the non-target one.

As regards the settings of the FRBCs, we have employed 5 fuzzy sets (VERY
LOW, LOW, MEDIUM, HIGH, and VERY HIGH) on each input feature and a
maximum number of rules equal to 40.

Concerning the parallel MEAs, we have run cspMEA with a number of cones
equal to the number of available processors (8 in our case). The mspMEA has been
run with 4 cones and 4 microcones per cone (this turned out to be the best tradeoff
on the problem at hand), and the number of solutions to randomly migrate per
epoch was set to 20. We have compared the accuracy and the speedup of these two
algorithms with a sequential NSGA-II running on a single processor. The popu-
lation size and the number of epochs for the sequential NSGA-II have been set to
200 and 5000, respectively. On the contrary, the cspMEA and mspMEA have been
run with a population size of 25 for each of the 8 processors, and the same number
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of epochs. In this manner, the number of fitness evaluations has been the same for
the three algorithms.

Table 1 shows the AUC on test set and the speedup obtained by the parallel
versions against the sequential one (NSGA-II), after averaging the results of ten
runs. As confirmed by a t-test with 95 % of statistical significance, the three AUC
values reported in Table 1 are not statistically different. This means that the three
algorithms are statistically equivalent from the accuracy point of view. However,
there is a statistically significant difference in the speedup achieved by mspMEA
(7.45) with respect to that achieved by cspMEA (6.39). In particular, mspMEA has
a significant higher speedup (16.58 % of improvement), reaching a value rather
close to 8, the theoretical maximum value. The difference in the speed is also due to
the well-known cold start problem of cspMEA, when a high, uncontrolled number
of migrations occur. In addition, mspMEA has other degrees of freedom that help
tuning the parallel algorithm for the problem at hand (the number of microcones
and the migration rate).

6 Conclusions

We have presented the mspMEA algorithm, an extension of the well-known
cspMEA algorithm. While the latter is built upon the concept of cones, the former is
built upon the concepts of both cones and microcones. The use of microcones gives
to each processor a wider view of the global Pareto front: this prevents wasting time
working on portions of the fronts that are dominated by solutions contained in other
microcones of the same processor. It also allows a better distribution of the solu-
tions along the global Pareto front in case of discontinuous fronts. In addition the
new algorithm has a greater flexibility over cspMEA: the user can tune the number
of microcones and the migration rate for the problem at hand.

We have shown how the mspMEA outperforms cspMEA in the considered
application, namely, the fuzzy rule-based emulation of the ship classification unit
within modern influence mines. This has led to a better use of the 8 processors with
a speedup improvement of 16.58 % over cspMEA. As a future work, we will
investigate whether the concept of microcones is effective in parallelizing other
types of MEAs, and how to further speedup the learning phase of the ship classi-
fication emulator by moving the fitness evaluation on GPGPUs (following the
approach discussed in [7]).

Table 1 Results in terms of
accuracy (AUC) and speedup

AUC Speedup

NSGA-II (1 processors) 96 % ± 0.28 % -
cspMEA (8 processors) 96 % ± 0.52 % 6.39 ± 0.12
mspMEA (8 processors) 96 % ± 0.45 % 7.45 ± 0.24
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Synthetic Aperture Radar
(SAR) Automatic Target Recognition
(ATR) Using Fuzzy Co-occurrence Matrix
Texture Features

Sansanee Auephanwiriyakul, Yutthana Munklang
and Nipon Theera-Umpon

Abstract Synthetic aperture radar (SAR) image classification is one of the chal-
lenging problems because of the difficult characteristics of SAR images. In this
chapter, we implement SAR image classification on three military vehicles types,
i.e., T72 tank, BMP2 armored personnel carriers (APCs), and BTR70 APCs. The
texture features generated from the fuzzy co-occurrence matrix (FCOM) are utilized
with the multi-class support vector machine (MSVM) and the radial basis function
(RBF) network. Finally, the ensemble average is implemented as a fusion tool as
well. The best detection result is at 97.94 % correct detection from the fusion of
twenty best FCOM with RBF network models (ten best RBF network models at
d = 5 and other ten best RBF network models at d = 10). Whereas the best fusion
result of FCOM with MSVM is at 95.37 % correct classification. This comes from
the fusion of ten best MSVM models at d = 5 and other ten best MSVM models at
d = 10. As a comparison we also generate features from the gray level co-occurrence
matrix (GLCM). This feature set is implemented on the same classifiers. The results
from FCOM are better than those from GLCM in all cases.
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1 Introduction

One of the most challenging problems in image classification is to classify synthetic
aperture radar (SAR) since SAR images do not look similar to optical images at all.
Example of optical images and SAR images of three military vehicles (T72 tank,
BMP2 armored personnel carriers (APCs), and BTR70 APCs) are shown in Fig. 1.
Even for human eyes sometimes it is difficult to classify objects in SAR images.
There are several studies involving SAR image classification and target detection in
SAR images [1–13]. Some of these methods provide a good to very good detection
results. However, some of them require pre-processing steps of SAR images,
template creation process, or segmentation process. Recently, there have been a few
attempts in increasing the detection performance by using data fusion or feature
fusion [14–16]. Although, they provide better detection results than that without
fusion methods, their results are approximately 95 %. In [17], the detection result is
around 98 %, but they need to pre-process the SAR images before performing any
detection.

Fig. 1 Example of optical
images (left) and SAR images
(right) of a T72, b BMP2, and
c BTR70
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In this chapter, we will use texture features generated from the fuzzy
co-occurrence matrix [18, 19] without any pre-processing method to detect three
type of military vehicles, i.e., T72 tank, BMP2 APCs, and BTR70 APCs—with
different orientations in SAR images from the MSTAR public release data set
collected by the DARPA and Wright Laboratory. We previously utilized these
features in texture classification and abnormality detection in mammograms [19].
Very good results were achieved in both classification and detection problems.
Since different types of military vehicles in SAR images have different textures, it
might be reasonable to try to detect these vehicles using texture features. After we
generate features from the fuzzy co-occurrence matrix, we utilize support vector
machine (SVM) with one against all scheme [20, 21] and radial basis function
network (RBF) network [22]. We implement an ensemble average on the outputs
[23] from 10 best models from SVM and other 10 best models from RBF networks
as well. We also compare the result with the texture features extracted from the gray
level co-occurrence matrix (GLCM) [24].

2 Methodology

We compare our result with those from GLCM (a second-order statistics of an
image) [24]. Here we will briefly describe GLCM. The joint probability of
occurrence of two gray level values with a particular distance (d) and orientation (θ)
(shown in Fig. 2) is counted as P(i, j, d, θ). Suppose the size of an image is Nx × Ny.
Let Lx = {1, 2, …, Nx} and Ly = {1, 2, …, Ny} be the horizontal and vertical spatial
domains, respectively, and G = {1, 2, …, Ng} be the set of Ng quantized gray tones.
In the experiment, we varies Ng from 2, 3, 4, 5, 6, 7, 8, 16, and 32. The image I can
be represented as a function which assigns each gray tone in G to each resolution
cell or a pair of coordinates in Ly × Lx.

6 7 8 

5 X 1 

4 3 2 

135° 90° 45°

225° 270° 315°

0°180°

Fig. 2 GLCM orientation
assignment
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The joint probability of occurrence of two gray level values in each distance and
direction is calculated as:

P i, j, d, 0ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx
� �

× Ly × Lx
� �

k−mj j=0, l− nj j= d, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 45ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j= d, l− nj j= − d, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 90ð Þ= #f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j= d, l− nj j=0, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 135ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j= d, l− nj j= d, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 180ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j=0, l− nj j= − d, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 225ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j= d, l− nj j= − d, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 270ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j= d, l− nj j=0, I k, lð Þ= i, I m, nð Þ= jg
P i, j, d, 315ð Þ=#f k, lð Þ, m, nð Þð Þ∈ Ly × Lx

� �
× Ly × Lx
� �

k−mj j= d, l− nj j= d, I k, lð Þ= i, I m, nð Þ= jg

ð1Þ

where # denotes the number of elements in the set. In the experiment, d is varied
between 1, 2, 3, 5, and 10 with θ = 0 or θ = 0, 45, 90, and 135 degrees. We compute
14 GLCM features [24], i.e., contrast (f1), correlation (f2), energy (f3), homogeneity
(f4), variance (f5), sum average (f6), sum variance (f7), sum entropy (f8), entropy (f9),
difference variance (f10), difference entropy (f11), information measure of correla-
tion1 (f12), information measure of correlation2 (f13), and maximum probability (f14).
We also compute an average and standard deviation of each feature from all
directions to produce μ1, μ2,…, μ14 and σ1, σ2,…, σ14, respectively. Then we have 6
sets of features, called GLCM1, GLCM2, …, GLCM6 with different combinations
of features and different θ. Table 1 shows the number of dimensions of each feature
vector generated from each combination set. Although, Ng and d are varied, the
number of dimensions is still similar to the one shown in Table 1.

To reduce the domination of feature, each feature is normalized using

x′=
x− μx
σx

. ð2Þ

Since our fuzzy co-occurrence matrix (FCOM) is built by incorporating the
fuzzy C-means (FCM) clustering [25, 26] with the GLCM. We will briefly describe
the FCM first. Let X = {x1, x2,…, xN} be a set of vectors, where each vector is a
p-dimensional vector. The update equation for FCM is as follows [26]
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uij =
1

∑
Cl

k=1

xi − cjk k
xi − ckk k

� � 2
m− 1

. ð3Þ

cj =
∑
N

i=1
umij xi

∑
N

i=1
umij

ð4Þ

where, uij is the membership value of vector xj belonging to cluster j, cj is the center
of cluster j, and m is the fuzzifier. The algorithm of the FCM is:

We implement the FCM on an original gray scale image I with m = 2. The
number of clusters (Cl) is varied between 2, 3, 4, 5, 6, 7, 8, 16 and 32. Each pixel
will be assigned to the cluster with the maximum membership value. Finally,
FCOM plane will be created in each direction (θ = 0, 45, 90, and 135 degrees). The
number of FCOM planes in each direction is equal to the number of clusters. In the
experiment θ is set to 0 degree or 4 directions mentioned above and d is varied
between 1, 2, 3, 5, and 10. The fuzzy co-occurrence matrix algorithm is as follows:

Table 1 GLCM feature sets

Name θ Feature Name θ Feature

GLCM1 Combination 0° f1−f4 GLCM4 Combination 0° f1−f14
No. of
dimensions

4 No. of
dimensions

14

GLCM2 Combination 0°, 45°,
90°, and
135°

f1−f4 GLCM5 Combination 0°, 45°,
90°, and
135°

f1−f14

No. of
dimensions

16 No. of
dimensions

56

GLCM3 Combination 0°, 45°,
90°, and
135°

μ1−μ4,
σ1−σ4

GLCM6 Combination 0°, 45°,
90°, and
135°

μ1−μ14,
σ1−σ14

No. of
dimensions

8 No. of
dimensions

26
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From the algorithm, the number of clusters indicates the size of FCOM. For
example, if Cl = 8, each FCOM plane will have the size of 8 × 8. After the FCOM
plane is produced, we compute 14 features similar to those from GLCM as
following:

for 1 ≤ k ≤ Cl

fc1: contrastk = ∑
i, j

i− jj j2FCOMðk, i, jÞ, ð5Þ

fc2: correlationk = ∑
i, j

ði− μki Þðj− μkj ÞFCOMðk, i, jÞ
σki σ

k
j

, ð6Þ

fc3: energyk = ∑
i, j
FCOMðk, i, jÞ2, ð7Þ

fc4: homogeneityk = ∑
i, j

FCOMðk, i, jÞ
1+ i− jj j , ð8Þ

fc5: variancek = ∑
i, j
ði− μki Þðj− μkj ÞFCOMðk, i, jÞ, ð9Þ

fc6: sumAvek = ∑
i, j
ðijÞFCOMðk, i, jÞ, ð10Þ

fc7: sumVark = ∑
i, j

ij− sumAvekð Þ2FCOMðk, i, jÞ, ð11Þ

fc8: sumEntk = − ∑
i, j
FCOMx+ yðk, i, jÞ log FCOMx+ yðk, i, jÞ

� �
, ð12Þ

472 S. Auephanwiriyakul et al.



fc9: entropyk = − ∑
i, j
FCOMðk, i, jÞ log FCOMðk, i, jÞð Þ, ð13Þ

fc10: dif vark = varFCOMx− y kð Þ� � ð14Þ

fc11: difEntk = − ∑
i, j
FCOMx− yðk, i, jÞ log FCOMx− yðk, i, jÞ

� �
, ð15Þ

fc12: InfoCor1k =
entropyk −HXY1
max HX,HYð Þ ð16Þ

fc13: InfoCor2k = 1− exp − 2.0 HXY2− entropykð Þ½ �ð Þ1 2̸ ð17Þ

fc14:MaxCorCoefk = second largest eigenvalue of Qð Þ1 2̸ ð18Þ

where, for 1 ≤ k ≤ Cl

FCk
x ið Þ= ∑

j
FCOMðk, i, jÞ,

FCk
y jð Þ= ∑

i
FCOMðk, i, jÞ,

μki = ∑
i
iFCk

x ið Þ,

μkj = ∑
j
jFCk

y jð Þ,

σki = ∑
i

i− μki
� �2

FCk
x ið Þ,

σkj = ∑
j

j− μkj

� �2
FCk

y jð Þ,

FCOMx+ y kð Þ= ∑
i, j
FCOM
i+ j= l

ðk, i, jÞ, for l=2, 3, . . . , 2C

FCOMx− y kð Þ= ∑
i, j
FCOM
i− jj j= l

ðk, i, jÞ, for l=0, 1, . . . ,C− 1

HX = entropy of FCk
x

HY = entropy of FCk
y

HXY1= − ∑
i, j
FCOMðk, i, jÞ log FCk

x ið ÞFCk
y jð Þ

� �
,

HXY2= − ∑
i, j
FCk

x ið ÞFCk
y jð Þ log FCk

x ið ÞFCk
y jð Þ

� �
,

andQ i, jð Þ= ∑
l

FCOM k, i, lð ÞFCOM k, j, lð Þ
FCk

x ið ÞFCk
y lð Þ .

ð19Þ

Again, similar to the GLCM, we also compute the average and the standard
deviation of each feature from all directions, i.e., μfc1, μfc2, …, μfc14, and σfc1, σfc2,
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…, σfc14, respectively. We create 6 sets of features similar to the features generated
from GLCM, called FCOM1, FCOM2, …, FCOM6 with different combinations of
features, different numbers of clusters and different θ. Table 2 shows the number of
dimensions of each feature vector generated from each combination set. Since the
number of clusters will indicate the number of FCOM planes, the number of feature
dimensions will be different. Again, even though d is varied, the number of
feature dimensions is similar to the one shown in Table 2. We also normalized each
feature using Eq. (2) similar to the one from GLCM.

Now, we will briefly describe the multi-class SVM (MSVM) [20] which is a
method that assigns a class label to a vector which belongs to one of several classes.
In this chapter, we utilize one-versus-all strategy. Suppose we have an optimum
discriminant function (Di(x) for i = 1, …, Class). From the support vector machine
(SVM) [21], we have an optimum hyperplane at Di(x) = 0 that will separate class
i from all the others. Hence, each SVM classifier gives Di(x) > 0 for vectors in class
i, and Di(x) < 0 for those in all other classes. Then the classification rule is

x is assigned to class i if i= arg max
j=1, .., n

DjðxÞ ð20Þ

The SVM used in the experiment is the one with soft margin optimization. To
ease our training process, we set C = 1 and ε = 1 × 10−3 in the experiment. The
radial basis function used in each SVM is

Kðxi, xjÞ= exp
− xi − xj
�� ��2
2σ2

 !
ð21Þ

Table 2 FCOM feature sets

No. of
clusters

No. of dimensions
FCOM1 FCOM2 FCOM3 FCOM4 FCOM5 FCOM6
θ = 0°
using
fc1−fc4

θ = 0°,
45°, 90°,
and 135°
using
fc1−fc4

θ = 0°, 45°,
90°, and
135° using
μfc1−μfc4,
σfc1−σfc4

θ = 0°
using
fc1−fc14

θ = 0°,
45°, 90°,
and 135°
using
fc1−fc14

θ = 0°, 45°,
90°, and
135° using
μfc1−μfc14,
σfc1−σfc14

2 8 32 16 28 112 56
3 12 48 24 42 168 84
4 16 64 32 56 224 112
5 20 80 40 70 280 140
6 24 96 48 84 336 168
7 28 112 56 98 392 196
8 32 128 64 112 448 224
16 64 256 128 224 896 448
32 128 512 256 448 1792 896
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Another classifier used in this chapter is the RBF network [22]. The output of
node i in the hidden layer is not calculated from the inner product between input
vector x with weights, but instead it is calculated from

yi = exp
− x− tik k2
σ 0̸.8326ð Þ2

 !
ð22Þ

where ti is the center of node i and σ is the spread of node i. The output of node j in
the output layer will be the inner product between inputs coming to node j with
their weights. For the weights training, the linear least square method [22] is
implemented.

One might want to improve the result by fusing the output of the best models. We
implement the simple ensemble average by averaging the output from all the output
[23]. To fuse the output from multi-class SVM, we only use Di(x) for i = 1, 2, and 3
and then compute the average of those values over the M best multi-class SVM
models by

Fi xð Þ= 1
M

∑
M

j=1
Dj

i xð Þ ð23Þ

where Dj
i xð Þ is the discriminant function of class i from model j for input vector x,

and Fi(x) is the fused output of class i for input vector x. For the fusion of the
M best RBF network models, we also implement a similar scheme.

3 Experiment Results

The MSTAR public data set was collected by the DARPA/WRIGHT laboratory
Moving and Stationary Target Acquisition and Recognition (MSTAR) program. It
contains a high resolution SAR data. The data set utilized in this chapter contains
two types of military vehicles, i.e., tanks and armored personnel carriers (APCs).
However, there are two types of APCs, i.e., BMP2 and BTR70, three different T72
tanks, and three different BMP2 APCs indicated by their serial numbers. However,
in this chapter, we only run the experiment on the T72 tank with serial number S7,
the BMP2 APC with serial number C21, and the BTR70 APC with serial number
C71. Hence, there are 233 training BMP2 images, 196 blind test BMP2 images, and
233 training BTR70 images, 196 blind test BTR70 images, and 228 training T72
images, 191 blind test T72 images. These images are with the size of 128 × 128.
Since, the objects is approximately at the center of each SAR image, we use a
square window of size M × M centered at (64, 64) to extract the features. In the
experiment, we vary M to 21, 31, and 35. Example of object in each window size is
shown in Fig. 3.
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In the experiment with FCOM and GLCM feature generation, we set the same
parameters in MSVM and RBF network. That is σ = 0.01, 0.25, 0.50, 0.75, and 1 to
50 with the step size of 0.5 for both MSVM and RBF network experiments. For the
RBF network, we let the number of hidden nodes equal to the number of training
feature vectors and use those feature vectors to be the centers of hidden nodes. To
create generalized network, we implement the 10-fold cross validation on the
training images set. For each d, we compute ensemble average of the 10 best
validation MSVM models, and ensemble average of 10 best validation RBF net-
work model. Table 3 shows the 10 best validation set for FCOM with d = 1, 2, 3, 5,
and 10 from MSVM. These 10 best models come from different FCOM feature sets
and differentM and σ. Table 4 shows the blind test result from these 10 best models.
Table 5 shows the 10 best validation set for FCOM with d = 1, 2, 3, 5, and 10 from
RBF network.

Again, these 10 models are with different FCOM feature sets, M and σ. Table 6
shows the blind test result from these 10 best models. Table 7 shows the ensemble
average results on blind test set from 10 best MSVM models and 10 best RBF
network models with different d. We can see that best validation detection from
FCOM with MSVM is 97.14 % whereas the blind test result for this model is

SAR M=21 M=31 M=35

SAR M=21 M=31 M=35

SAR M=21 M=31 M=35

(a)

(b)

(c)

Fig. 3 Example of objects in different window sizes for a BMP2, b BTR70, and c T72. Please be
noted that the images are not of the same scale, we zoom in some images for the display purpose in
this figure
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Table 4 The classification rates on blind test sets from 10 best MSVM models in Table 3 using
FCOM for d = 1, 2, 3, 5, and 10

Model no. d = 1 d = 2 d = 3 d = 5 d = 10

1 69.81 79.25 82.68 85.59 85.25
2 67.07 79.25 80.96 85.08 80.62
3 62.26 77.02 81.99 83.88 89.02
4 67.58 75.81 78.90 83.53 87.48
5 64.15 77.02 82.68 82.33 88.16
6 62.95 81.65 79.42 86.11 84.91
7 62.44 74.61 84.91 81.82 84.56
8 68.27 80.96 83.53 80.62 87.65
9 60.55 75.81 78.22 81.99 83.70
10 59.35 79.42 83.53 79.59 81.82

Average 64.44 78.08 81.68 83.05 85.32

Table 5 Ten best RBF network classification rates on validation sets using FCOM for d = 1, 2, 3,
5, and 10

Model
no.

d = 1 d = 2 d = 3 d = 5 d = 10

Cl Validation
result

Cl Validation
result

Cl Validation
result

Cl Validation
result

Cl Validation
result

1 7 82.61 6 90.00 7 92.86 16 98.55 6 97.14

2 8 81.43 16 89.86 8 92.86 5 97.14 8 97.14

3 32 78.57 8 88.57 8 92.75 6 97.10 16 97.14

4 8 78.26 7 88.57 7 92.75 8 97.10 7 97.10

5 8 77.14 8 88.57 8 91.43 7 95.71 7 95.71

6 6 77.14 7 88.41 32 91.43 5 95.65 7 95.71

7 32 77.14 8 88.41 8 91.30 5 95.65 5 95.71

8 7 76.81 16 88.41 7 91.30 5 94.29 7 95.71

9 16 75.71 7 88.41 32 90.00 7 94.29 8 95.71

10 6 75.71 8 87.14 6 90.00 8 94.29 7 95.65

Average 78.05 88.63 91.67 95.98 96.28

Table 6 The classification
rates on blind test sets from
10 best RBF network models
in Table 5 using FCOM for
d = 1, 2, 3, 5, and 10

Model no. d = 1 d = 2 d = 3 d = 5 d = 10

1 65.52 73.76 74.61 85.93 89.02
2 65.69 73.24 81.48 81.30 88.16
3 57.12 73.93 78.90 84.05 87.82
4 57.98 77.02 75.99 83.53 89.88
5 60.21 74.10 80.10 84.05 83.53
6 63.12 74.61 82.33 84.39 87.99
7 66.04 77.02 79.07 83.36 84.05
8 59.52 81.82 84.22 81.30 86.11
9 66.55 75.81 76.33 76.50 83.70
10 57.29 69.98 73.93 79.25 89.37
Average 61.90 75.13 78.70 82.37 86.96
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85.25 %. The best validation detection and blind test from FCOM with RBF net-
work are 97.14 % and 89.02 %, respectively. We can see that when d increases, the
detection performance also increases. This might be because the histogram of object
in SAR image is dense around the bright area. Hence when we compute the values
of FCOM plane with low distance (d), they will not be much different.

The example of FCOM planes with Cl = 8, M = 35, θ = 0°, and with different
d is shown in Fig. 4. From the figure, we can see that there is more information
when d increases. For example, in the 4th cluster there are more peaks and the
values of the peaks are higher for larger d. The values of FCOM planes have similar
characteristics in the other clusters as well.

The best ensemble results on blind test sets from MSVM and RBF network from
Table 7 are 93.14 and 96.23 %, respectively. These detection results are better than
the normal average of all 10 best models in each classifier. However, one might
wonder how the ensemble average will perform if the ensemble average is
implemented over the outputs from different d. We implement the ensemble
average on 50 MSVM best models with 10 best model from each d, and that on
40 MSVM best models with 10 best models from d = 2, 3, 5, and 10, and that on
30 MSVM best models with 10 best models from d = 3, 5, and 10, and finally that
on 20 MSVM best models with 10 best models from d = 5 and 10. We also
implement the same scheme with the RBF network ensemble average. Table 8
shows the blind test results from the ensemble average of MSVM best models from
different d and that of RBF network best models from different d. The best
ensemble average detection results in this case from MSVM and RBF network are
95.37 % and 97.94 %, respectively. This type of ensemble average produces better
detection results than the previous ensemble average. This might be again because

Table 7 Ensemble averge
classification rates using
FCOM from 10 best MSVM
models and 10 best RBF
network models for different
d on blind test sets

D MSVM RBF network

1 70.33 72.56
2 83.53 85.08
3 87.31 88.16
5 89.19 92.80
10 93.14 96.23

Table 8 Blind test classification rates using FCOM from ensemble average of SVM best models
with different d and that of RBF network best models with different d and with 10 best models
from each d

Classifier d = 1, 2, 3, 5, and 10 d = 2, 3, 5, and 10 d = 3, 5, and 10 d = 5 and 10

SVM 92.11 93.65 95.03 95.37
RBF
network

94.85 96.74 97.43 97.94
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of larger d gives more information than smaller d. Hence fusing the outputs from
inputs with more information should give better results.

The confusion matrices from MSVM and RBF network in this case are shown in
Tables 9 and 10, respectively. The reason of misclassification in any experiments
mentioned previously might be because the generated FCOM plane of each object
is similar to the other objects. For example, BMP2 and BTR70 that are misclassified
as T72 has similar FCOM plane in each cluster to those from T72 with θ = 0° and
Cl = 8 as shown in Fig. 5.

The GLCM detection results are shown in Tables 11, 12, 13, 14 and 15.
Tables 11 and 12 show the 10 best MSVM models on validation and blind test sets,
respectively. Tables 13 and 14 show the 10 best RBF network models on validation
and blind test sets, respectively. Finally Table 15 shows the ensemble average
results from both MSVMs and RBF networks. Again, the 10 best models are from
different GLCM feature sets, different M, and different σ. The best validation result
and blind test result from MSVM are 92.75 and 79.59 %, respectively. Whereas the
best validation and blind test detection results from RBF network are 92.86 and
82.50 %, respectively. Again, if distance (d) increases, the detection result also
increases with the same reason as in FCOM. The GLCM plane of each d with
θ = 0° and Ng = 8 of BMP2 in Fig. 4a is shown in Fig. 6. Again, there is more
information (in terms of the number of pair-pixels) provided with larger d.

The best ensemble average results on blind test sets from 10 best MSVM models
and 10 best RBF network models are 85.25 % and 92.80 %, respectively. These best
results are from d = 10. We also implement the ensemble average of the outputs of
MSVM models and RBF network models from different d similarly to the one for
FCOM. Tables 16, 17 and 18 show the ensemble results in this case. The best
ensemble average results in this case for MSVM and RBF network fusion are 87.31
% and 94.68 %, respectively. Again output fusion from d = 5 and 10 provides the
best detection results in both MSVM and RBF network. The reason is the same as
mentioned earlier in the case of FCOM. The misclassification is caused by the
generated GLCM plane which is similar to that of other objects.

Table 9 Confusion matrix of
the best ensemble average in
Table 8 from MSVM

Algorithm output
BMP2 BTR70 T72

Desired output BMP2 178 5 13
BTR70 3 192 1
T72 5 0 186

Table 10 Confusion matrix
of the best ensemble average
in Table 8 from RBF network

Algorithm output
BMP2 BTR70 T72

Desired output BMP2 189 2 5
BTR70 0 195 1
T72 4 0 187
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From all the results, we can see that FCOM performs better than GLCM in all the
cases in the experiment as we have shown in different applications [18, 19]. This
might be because, with the same setting, i.e., d, θ, Cl (Ng), the FCOM plane has more
information than the GLCM plane. In addition, the number of FCOM planes is equal
to the number of clusters whereas there is only one GLCM plane. This will provide
more information than the one given by the GLCM plane. An example of GLCM
planes (and FCOM planes) with d = 10, θ = 0° with Ng (and Cl) = 2, 4, and 8 are

Original BMP2 SAR image              M =35 (scaled for display)

(a)

(b)

(c)

Fig. 4 a original BMP2 SAR image and its corresponding subimage (M = 35), the value of each
FCOM plane for b d = 1, c d = 2, d d = 3, e d = 5, and f d = 10
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Fig. 4 (continued)

482 S. Auephanwiriyakul et al.



Original SAR image

FCOM planes

Original SAR image

FCOM planes

Original SAR image

FCOM planes

(b)

(c)

(a)

Original SAR image

FCOM planes

Original SAR image

FCOM planes

Original SAR image

FCOM planes

(b)

(c)

(a)

Fig. 5 Example of similar FCOM planes between different objects a BMP2, b BTR70 and c T72
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shown in Fig. 7. Also from this figure, we can see that with larger Ng (and Cl), the
GLCM plane (and FCOM planes) has more information than the case with smaller
Ng (and Cl). This might be the reason why the detection performance is better with
increasing number of gray scales in case of GLCM or number of clusters in case of
FCOM.

Table 11 Ten best SVM classification rates on validation sets using GLCM for d = 1, 2, 3, 5, and
10

Model
no.

d = 1 d = 2 d = 3 d = 5 d = 10

Ng Validation
result

Ng Validation
result

Ng Validation
result

Ng Validation
result

Ng Validation
result

1 32 82.86 32 85.71 32 84.26 32 85.71 32 92.75

2 32 82.86 32 85.71 16 82.86 32 85.51 16 89.86

3 32 81.43 16 84.06 32 82.86 32 84.29 32 87.14

4 16 75.36 32 82.61 32 81.43 32 84.08 32 87.14

5 32 74.29 32 81.43 32 80.00 32 82.86 16 85.51

6 32 72.86 32 80.00 32 79.71 32 82.86 32 85.51

7 6 72.86 32 78.57 16 78.57 32 82.61 32 85.51

8 7 72.86 32 78.57 32 78.26 16 82.61 32 84.29

9 32 72.46 32 78.26 32 78.26 8 81.43 5 84.06

10 32 71.43 32 77.14 16 77.14 16 81.43 32 82.86

Average 75.93 81.21 80.34 83.34 86.46

Table 12 The classification
rates on blind test sets from
10 best SVM models in
Table 3 using GLCM for
d = 1, 2, 3, 5, and 10

Model no. d = 1 d = 2 d = 3 d = 5 d = 10

1 67.24 62.95 75.30 78.04 79.59
2 68.27 67.07 72.04 72.21 76.84
3 59.52 64.49 75.81 71.18 71.18
4 57.29 69.13 70.50 72.21 76.67
5 56.09 64.49 68.61 70.15 74.96
6 57.98 58.66 68.27 73.93 79.76
7 53.17 56.43 70.67 63.98 75.64
8 52.32 61.41 65.69 68.61 74.61
9 58.15 62.26 69.30 64.15 64.49
10 57.46 63.29 66.72 66.04 73.76
Average 58.75 63.02 70.29 70.05 74.75
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Table 13 Ten best RBF network classification rates on validation sets using GLCM for d = 1, 2,
3, 5, and 10

Model
no.

d = 1 d = 2 d = 3 d = 5 d = 10

Ng Validation
result

Ng Validation
result

Ng Validation
result

Ng Validation
result

Ng Validation
result

1 32 79.71 32 87.14 32 88.41 32 89.86 32 92.86

2 32 75.36 32 79.71 32 88.41 32 87.14 32 90.00

3 32 72.86 32 78.57 32 84.29 32 86.96 16 90.00

4 32 72.86 16 78.26 32 81.16 32 85.71 32 89.86

5 32 71.43 32 76.81 8 80.00 32 85.71 16 88.41

6 32 71.01 16 76.81 32 79.71 16 85.51 8 87.14

7 32 71.01 32 74.29 32 78.26 8 84.29 32 87.14

8 32 70.00 16 73.91 16 78.26 16 84.29 16 85.71

9 6 70.00 32 73.91 32 78.26 16 82.86 6 85.71

10 32 67.14 32 72.46 16 77.14 32 82.86 32 85.71

Average 72.14 77.19 81.39 85.52 88.25

Table 14 The classification
rates on blind test sets from
10 best RBF network models
in Table 5 using GLCM for
d = 1, 2, 3, 5, and 10

Model
No.

d = 1 d = 2 d = 3 d = 5 d = 10

1 63.12 65.69 69.13 78.73 82.50
2 64.15 64.84 74.27 74.27 77.87
3 59.35 64.67 71.53 73.58 80.27
4 56.26 61.23 71.87 67.07 79.59
5 60.03 57.29 62.26 76.16 76.84
6 56.60 51.63 64.67 66.04 70.67
7 59.18 63.81 51.97 68.95 77.36
8 56.95 53.00 67.58 72.04 68.95
9 48.03 58.83 68.78 65.18 69.47
10 52.83 58.49 63.46 62.95 76.50
Average 57.65 59.95 66.55 70.50 76.00

Table 15 Ensemble averge
classification rates using
GLCM from 10 best SVM
models and 10 best RBF
network models for different
d on blind test sets

d SVM RBF network

1 68.27 75.81
2 72.21 77.70
3 80.45 83.71
5 84.39 89.02
10 85.25 92.80
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Fig. 6 GLCM plane of BMP2 in Fig. 4a with a d = 1, b d = 2, c d = 3, d d = 5, and e d = 10

Table 16 Classification rates on bilnd test sets using GLCM from ensemble average of SVM best
models with different d and that of RBF network best models with different d with 10 best models
from each d

Classifier d = 1, 2, 3, 5, and 10 d = 2, 3, 5, and 10 d = 3, 5, and 10 d = 5 and 10

SVM 85.08 85.59 86.79 87.31
RBF
network

93.31 93.14 95.88 94.68
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Table 17 Confusion matrix
of the best ensemble average
in Table 16 from MSVM

Algorithm output
BMP2 BTR70 T72

Desired output BMP2 158 18 20
BTR70 7 183 6
T72 13 5 173

Table 18 Confusion matrix
of the best ensemble average
in Table 16 from RBF
network

Algorithm output
BMP2 BTR70 T72

Desired output BMP2 185 5 6
BTR70 6 186 4
T72 4 1 186

GLCM plane FCOM planes

GLCM plane

FCOM planes

GLCM plane FCOM planes

(a)

(b)

(c)

Fig. 7 Example of GLCM planes and FCOM planes with d = 10 and θ = 0° for a Ng = 2 and
Cl = 2, b Ng = 4 and Cl = 4, and c Ng = 8 and Cl = 8
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4 Conclusion

In this chapter, the texture features generated from the fuzzy co-occurrence matrix
(FCOM) are implemented in the synthetic aperture radar (SAR) image classifica-
tion. We implement these features on the multi-class support vector machine
(MSVM) and the radial basis function (RBF) network. The ensemble average is
utilized as an information fusion tool. There are two types of fusion, i.e., the fusion
of the outputs from ten best models from each classifier in each distance d, and the
fusion of the outputs from several best models from several d of each classifier. We
found out that the best detection results is 97.94 % correct detection from the fusion
of twenty best FCOM with RBF network models (ten best RBF network models at
d = 5 and other ten best RBF network models at d = 10). Whereas the best fusion
result of FCOM with MSVM is 95.37 % correct classification. This comes from the
fusion of ten best MSVM models at d = 5 and other ten best MSVM models at
d = 10. The detection results from FCOM are far better than that from gray level
co-occurrence matrix (GLCM) in any cases.

Acknowledgement The authors would like to thank the Sensor ATR Division of the U.S. Air
Force Research Laboratory and Veridian Corporation, especially to Mark Axtell, for providing the
MSTAR data set.
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Text Mining in Social Media for Security
Threats

Diana Inkpen

Abstract We discuss techniques for information extraction from texts, and present

two applications that use these techniques. We focus in particular on social media

texts (Twitter messages), which present challenges for the information extraction

techniques because they are noisy and short. The first application is extracting the

locations mentioned in Twitter messages, and the second one is detecting the location

of the users based on all the tweets written by each user. The same techniques can

be used for extracting other kinds of information from social media texts, with the

purpose of monitoring the topics, events, emotions, or locations of interest to security

and defence applications.

Keywords Information extraction ⋅ Natural language processing ⋅ Social media ⋅
Text mining ⋅Automatic text classification ⋅Conditional random fields ⋅Deep neural

networks

1 Introduction

There is a huge amount of user-generated content available over the Internet, in vari-

ous social media platforms. An important part of this content is in text form. Humans

can read only a small part of these texts, in order to detect possible threats to secu-

rity and public safety (such as mentions of terrorist activities or extremist/radical

texts). This is why text mining techniques are important for security and defence

applications. Therefore, we need to use automatic methods for extracting informa-

tion from texts and for detecting messages that should be flagged as possible threats

and forwarded to a human for further analysis.

Information extraction from text can target various pieces of information. The

task could be a simple key phrase search (with focus on key phrases that could be
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relevant for detecting terrorist threats) or a sophisticated topic detection task (i.e., to

classify a text as being about a terrorism-related topic or not). Topic detection was

studied by many researchers, while only a few focused on social media texts [32].

Emotion detection from social media texts could also be of interest to security appli-

cations, in particular anger detection. Messages that express anger at high intensity

levels could be flagged as possible terrorist threats. Combined with topic detection,

anger detection could lead to more accurate flagging of the potential threats. Emo-

tion classification was tested on social media messages, for example on a blog dataset

[14] and on the LiveJournal dataset [21].

Location detection from social media texts is the main focus of in chapter. There

are two types of locations: location entities mentioned in the text of a message and

the physical locations of the users. We present experiments that show that loca-

tion mentions can be extracted from Twitter messages: in particular, what cities,

states/provinces, or countries are mentioned in a tweet [20]. This is useful in order

to detect events or activities located in specific places that are mentioned by peo-

ple. For example, potential terrorist plots can target specific geographic areas. For

the second kind of locations, we present experiments that predict the physical loca-

tion of a Twitter user based on all the messages written by the user [26]. Only a

few users declare their location in their Twitter account profile. We used this data

(tweets annotated with user location) as training data for a classifier that can be used

to prediction the location of any user. The classifiers catch subtle differences in the

language (dialect) and the types of entities mentioned. User location can be of inter-

est to defence applications in cases when many disturbing messages are posted by a

user, in order to estimate the possible location of this user.

The first task discussed (called task 1 bellow) detects location mentioned and it

needs to extract spans of one or often several words. Another example of task that

extracts spans of text is risk detection. In particular, information about maritime

situation awareness, from textual reports (risk spans, type of risk, type of vessel,

location, etc.) was extracted using a similar technique [33].

The second task that we present in detail in this chapter (called task 2 bellow) is

detecting the location of the Twitter users based on their messages. This is a classi-

fication task in which the classifier needs to choose one of the possible locations for

which the classifier was trained. It is not a sequential classification task, this is why

we experimented with standard classifiers that choose one class for each text, as well

as with new models based on Deep Neural Networks.

The two tasks together would allow an intelligent system to analyze information

posted on Twitter in real time. It can analyze each tweet in order to spot locations

mentioned in it (task 1) and to visualize these locations on a map. If many tweets at

a given time mention a specific location, it might be the case that some event (such

as natural disaster or terrorist attack) just happened somewhere in the world. Or

the system can monitor only a region of interest. The system could also keep track

of individual users that might have a suspicious behaviour (for example possible

terrorist activities, or cyber bullying). If the user does not have a declared location

in his/her Twitter profile, the system can collect all the recent tweets from that user,

then apply our models from task 2 in order to compute the location of the user.
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The novelty of the computational intelligence methods proposed in this chapter

consists in the way we address task 1, via a sequence-based classifier followed by

disambiguation rules, and the way we address task 2, via Deep Neural Networks,

which were not applied yet to this task.

2 Proposed Computational Intelligence Solution

2.1 Extracting Expressions Using Conditional Random
Fields

Early information extraction techniques were based on identifying patterns that can

extract information of interest [7]. The patterns were often manually formulated,

though it is possible to automatically learn patterns. Modern methods of information

extraction are based on the latter idea, and even deeper on automatic text classifica-

tion [1]. In this chapter, we discuss on the latest advances in information extraction

from text, based on classifiers such as Support Vector Machines (SVM) [9], Deep

Neural Networks [5], and Conditional Random Fields (CRF) [22].

The first two classifiers are applied to a text as a whole and are able to predict

a class from a set of pre-determined classes. SVM classifiers were shown to obtain

high performance on text data, including the emotion classification tasks. The deep

neural networks were very recently applied on text data with high success rate [16].

The CRF classifiers were designed specifically for sequence classification. They

can be applied to detecting spans of text that are of interest, by classifying each word

into one of the following classes: beginning of a span, inside a span, and outside a

span. In this way, CRF learns spans of interested from the annotated training data,

and can be applied to detect similar spans in new test data. We used this technique for

location expressions detection, due to the sequential nature of the task (an expression

contains one or more words, and often a city name, followed by a state/province,

followed by a country name).

Before using these classification techniques, we applied Natural Language

Processing (NLP) techniques to pre-process the texts in order to extract the features

needed for the classification. Examples of features are: words, n-grams (sequences of

2, 3, or more words), part-of-speech tags (such as nouns, verbs, adjectives, adverbs),

and syntactic dependency relations.

Social media text is particularly difficult because the current NLP tools are trained

on carefully edited texts, such as newspaper texts. Therefore they need to be adapted

before being able to run on social media texts that are more informal, ungrammati-

cal, and full of abbreviations and jargon. There are two ways to adapt tools to social

media texts. One is to normalize the texts, which is rather difficult without loosing

useful information about the people who post messages on social media. The second

way, that we use here, was to train all the tools and methods on social media texts,

in addition to shallow forms of text normalization, which we used in order to extract
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better features for the classification tasks. We also added new types of features spe-

cific to social media texts, such as hashtags for Twitter messages, emoticons, etc.

A CRF is a undirected graphical model. In a CRF, or more specifically, a lin-

ear chain CRF, if we denote the input variables by X and the output labels Y , the

conditional probability distribution P(Y|X) obeys the Markov property:

P(yi|y1, y2,… , yi−1, yi+1,… , yn, x)
= P(yi, yi−1, yi+1, x) (1)

Given some specific sequence of input variables 𝐱, the conditional probability of

some sequence of output label 𝐲 is:

P(𝐲|𝐱) =
1

Z(𝐱)
exp(

∑

i,k
𝜆ktk(yi−1, yi, x, i) +

∑

i,l
𝜇lsl(yi, x, i)) (2)

where Z(𝐱) =
∑

y exp(
∑

i,k 𝜆ktk(yi−1, yi, x, i) +
∑

i,l 𝜇lsl(yi, x, i)) is the normalizing
constant, tk and sl are feature functions, 𝜆k and 𝜇l are the corresponding weights.

2.2 Classifying Texts Using Deep Neural Networks

In this section, we present the artificial neural network architectures that we will

employ in the task of detection user locations based on their tweets. The reason we

chose this technology is that other methods, such as SVM classifiers, were already

applied for this task in related work (that we will compare with).

A feedforward neural network usually has an input layer and an output layer. If the

input layer is directly connected to the output layer, such a model is called a single-
layer perceptron. A more powerful model has several layers between the input layer

and the output layer; these intermediate layers are called hidden layers; this type

of model is known as a multi-layer perceptron (MLP). In a perceptron, neurons are

interconnected, i.e., each neuron is connected to all neurons in the subsequent layer.

Neurons are also associated with activation functions, which transform the output of

each neuron; the transformed outputs are the inputs of the subsequent layer. Typical

choices of activation functions include the identity function, defined as y = x; the

hyperbolic tangent, defined as y = ex−e−x

ex+e−x
and the logistic sigmoid, defined as y =

1
1+e−x

. To train a MLP, the most commonly used technique is back-propagation [35].

Specifically, the errors in the output layer are back-propagated to preceding layers

and are used to update the weights of each layer.

An artificial neural network (ANN) with multiple hidden layers, also called a

Deep Neural Network (DNN), mimics the deep architecture in the brain and it is

believed to perform better than shallow architectures such as logistic regression mod-

els and ANNs without hidden units. The effective training of DNNs is, however, not
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achieved until the work of [5, 18]. In both cases, a procedure called unsupervised
pre-training is carried out before the final supervised fine-tuning. The pre-training

significantly decreases error rates of Deep Neural Networks on a number of ML

tasks such as object recognition and speech recognition. The details of DNNs are

beyond the scope of this chapter; interested readers can refer to [5, 18, 39] and the

introduction from [4].

Data representation is important for machine learning [11]. Many statistical NLP

tasks use hand-crafted features to represent language units such as words and doc-

uments; these features are fed as the input to machine learning models. One such

example is emotion or sentiment classification which uses external lexicons that

contain words with emotion or sentiment prior polarities [2, 15, 24, 28]. Despite

the usefulness of these hand-crafted features, designing them is time-consuming and

requires expertise. We also used hand-crafted features for task 1, while here, for task

2, we let the DNN choose the features automatically, since this in one of the advan-

tages of the method.

A number of researchers have implemented DNNs in the NLP domain, achieving

state-of-the-art performance without having to manually design any features. The

most relevant to ours is the work in [16], who developed a deep learning architecture

that consists of stacked denoising auto-encoders and apply it to sentiment classifica-

tion of Amazon reviews. Their stacked denoising auto-encoders can capture mean-

ingful representations from reviews and outperform state-of-the-art methods; due to

the unsupervised nature of the pre-training step, this method also performs domain

adaptation well.

In the social media domain, [38] extracted representations from Microblog text

data with Deep Belief Networks (DBNs) and used the learned representations for

emotion classification, outperforming representations based on Principal Compo-

nent Analysis and on Latent Dirichlet Allocation.

Huang and Yates [19] showed that representation learning also helps domain

adaptation of part-of-speech tagging, which is challenging because POS taggers

trained on one domain have a hard time dealing with unseen words in another

domain. They first learned a representation for each word, then fed the learned word-

level representations to the POS tagger; when applied to out-of-domain text, it can

reduce the error by 29 %.

3 Datasets

3.1 Location Expressions Data

Annotated data are required in order to train our supervised learning system. Our

work is a special case of the Named Entity Recognition task, with text being tweets
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and target Named Entities being specific kinds of locations. To our knowledge, a

corresponding corpus does not yet exist.
1

We used the Twitter API
2

to collect our own dataset. Our search queries were

limited to six major cell phone brands, namely iPhone, Android, Blackberry, Win-

dows Phone, HTC and Samsung. Twitter API allows its users to filter tweets based

on their languages, geographic origins, the time they were posted, etc. We utilized

such functionality to collect only tweets written in English. Their origins, however,

were not constrained, i.e., we collected tweets from all over the world. We ran the

crawler from June 2013 to November 2013, and eventually collected a total of over

20 million tweets.

The amount of data we collected is overwhelming for manual annotation, but

having annotated training data is essential for any supervised learning task for loca-

tion detection. We therefore randomly selected 1000 tweets from each subset (cor-

responding to each cellphone brand) of the data, and obtained 6000 tweets for the

manual annotation (more data would have taken too long to annotate).

We have defined annotation guidelines to facilitate the manual annotation task.

Mani et al. [27] defined spatialML: an annotation schema for marking up references

to places in natural language. Our annotation model is a sub-model of spatialML.

The process of manual annotation is described next.

A gazetteer is a list of proper names such as people, organizations, and locations.

Since we are interested only in locations, we only require a gazetteer of locations. We

obtained such a gazetteer from GeoNames,
3

which includes additional information

such as populations and higher level administrative districts of each location. We also

made several modifications, such as the removal of cities with populations smaller

than 1000 (because otherwise the size of the gazetteer would be very large, and there

are usually very few tweets in the low-populated areas) and removal of states and

provinces outside the U.S. and Canada; we also allowed the matching of alternative

names for locations. For instance, “ATL”, which is an alternative name for Atlanta,

will be matched as a city.

We then used GATE’s gazetteer matching module [10] to associate each entry

in our data with all potential locations it refers to, if any. Note that, in this step, the

only information we need from the gazetteer is the name and the type of each loca-

tion. GATE has its own gazetteer, but we replaced it with the GeoNames gazetteer

which serves our purpose better. The sizes of both gazetteers are listed in Table 1.
4

In addition to a larger size, the GeoNames contains information such as population,

administrative division, latitude and longitude, which will be useful later in Sect. 4.4.

1
[25] recently released a dataset of various kinds of social media data annotated with generic loca-

tion expressions, but not with cities, states/provinces, and countries.

2
https://dev.twitter.com.

3
http://www.geonames.org.

4
The number of countries is larger than 200 because alternative names are counted; the same for

states/provinces and cities.

https://dev.twitter.com
http://www.geonames.org
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Table 1 The sizes of the gazetteers

Gazetteer Number of countries Number of states and

provinces

Number of cities

GATE 465 1215 1989

GeoNames 756 129 163285

The first step is merely a coarse matching mechanism without any effort made

to disambiguate candidate locations. For example, the word “Georgia” would be

matched to both the state of Georgia and the country in Europe.

In the next phase, we arranged for two annotators, who are graduate students

with adequate knowledge of geography, to go through every entry matched to at

least one of locations in the gazetteer list. The annotators are required to identify,

first, whether this entry is a location; and second, what type of location this entry is.

In addition, they are also asked to mark all entities that are location entities, but not

detected by GATE due to misspelling, all capital letters, all small letters, or other

causes. Ultimately, from the 6000 tweets, we obtained 1270 countries, 772 states or

provinces, and 2327 cities.

We split the dataset so that each annotator was assigned one fraction. In addition,

both annotators annotated one subset of the data containing 1000 tweets, correspond-

ing to the search query of Android phone, in order to compute an inter-annotator

agreement, which turned out to be 88 %. The agreement by chance is very low, since

any span of text could be marked, therefore the kappa coefficient that compensates

for chance agreement is close to 0.88. The agreement between the manual annota-

tions and those of the initial GATE gazetteer matcher in the previous step was 0.56

and 0.47, respectively for each annotator. The fully-annotated dataset (as well as our

source code for task 1) can be obtained through this link.
5

Annotation of True Locations Up to this point, we have identified locations and

their types, i.e., geo/non-geo ambiguities are resolved, but geo/geo ambiguities still

exist. For example, we have annotated the token “Toronto” as a city, but it is not clear

whether it refers to “Toronto, Ontario, Canada” or “Toronto, Ohio, USA”. Therefore

we randomly choose 300 tweets from the dataset of 6000 tweets and further manu-

ally annotated the locations detected in these 300 tweets with their actual location.

The actual location is denoted by a numerical ID as the value of an attribute named

trueLoc within the XML tag. An example of annotated tweet is displayed in Table 2.

3.2 User Location Data

For the second task, we need data annotated with users’ locations. We choose two

publicly available datasets which have been used by several other researchers. The

5
https://github.com/rex911/locdet.

https://github.com/rex911/locdet
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Table 2 An example of annotation with the true location

Mon Jun 24 23:52:31 +0000 2013
<location locType=’city’, trueLoc=’22321’>Seguin </location>
<location locType=’SP’, trueLoc=’12’>Tx </location>
RT @himawari0127i: #RETWEET#TEAMFAIRYROSE #TMW #TFBJP
#500aday #ANDROID #JP #FF #Yes #No #RT #ipadgames #TAF #NEW
#TRU #TLA #THF 51

first one is from [13].
6

It includes about 380,000 tweets from 9,500 users from the

contiguous United States (i.e., the U.S. excluding Hawaii, Alaska and all off-shore

territories). The dataset also provides geographical coordinates of each user. The

second one is much larger and we obtained it from [34].
7

It contains 38 million tweets

from 449,694 users, all from North America. We regard each user’s set of tweets as

a training example (labelled with location), i.e., (x(i), y(i)) where x(i) represent all the

tweets from the ith user and y(i) is the location of the ith user. Meta-data like user’s

profile and time zone will not be used in our work.

4 Task 1: Detecting Location Expressions

For this subtask, we propose to use methods designed for sequential data, because the

nature of the problem is sequential. The different parts of a location such as country,

state/province and city in a tweet are related and often given in a sequential order,

so it seems appropriate to use sequential learning methods to automatically learn

the relations between these parts of locations. We decided to use CRF as our main

machine learning algorithm, because it achieved good results in similar information

extraction tasks.

4.1 Designing Features

Features that are good representations of the data are important to the performance

of a machine learning task. The features that we design for detecting locations are

listed below:

∙ Bag-of-Words: To start with, we defined a sparse binary feature vector to repre-

sent each training case, i.e., each token in a sequence of tokens; all values of the

feature vector are equal to 0 except one value corresponding to this token is set

6
http://www.ark.cs.cmu.edu/GeoTwitter.

7
https://github.com/utcompling/textgrounder/wiki/RollerEtAl_EMNLP2012.

http://www.ark.cs.cmu.edu/GeoTwitter
https://github.com/utcompling/textgrounder/wiki/RollerEtAl_EMNLP2012
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to 1. This feature representation is often referred to as Bag-of-Words or unigram

features. We will use Bag-of-Words Features or BOW features to denote them, and

the performance of the classifier that uses these features can be considered as the

baseline in this work.

∙ Part-of-Speech: The intuition for incorporating Part-of-Speech tags in a location

detection task is straightforward: a location can only be a noun or a proper noun.

Similarly, we define a binary feature vector, where the value of each element indi-

cates the activation of the corresponding POS tag. We later on denote these fea-

tures by POS features.
∙ Left/right: Another possible indicator of whether a token is a location is its adja-

cent tokens and POS tags. The intuitive justification for this features is that loca-

tions in text tend to have other locations as neighbours, i.e., “Los Angeles, Califor-

nia, USA”; and that locations in text tend to follow prepositions, as in the phrases

“live in Chicago”, “University of Toronto”. To make use of information like that,

we defined another set of features that represent the tokens on the left and right

side of the target token and their corresponding POS tags. These features are sim-

ilar to Bag-of-Words and POS features, but instead of representing the token itself

they represent the adjacent tokens. These features are later on denoted by Window
features or WIN features.

∙ Gazetteer: Finally, a token that appears in the gazetteer is not necessarily a loca-

tion; by comparison, a token that is truly a location must match one of the entries

in the gazetteer. Thus, we define another binary feature which indicates whether

a token is in the gazetteer. This feature is denoted by Gazetteer feature or GAZ

feature in the next sections.

In order to obtain BOW features and POS features, we preprocessed the dataset

by tokenizing and POS tagging all the tweets. This step was done using the Twitter

NLP and Part-of-Speech Tagging tool [29].

For experimental purposes, we would like to find out the impact each set of fea-

tures has on the performance of the model. Therefore, we test different combinations

of features and compare the accuracies of resulting models.

4.2 Experiments

Evaluation Metrics We compute the precision, recall and F-measure, which are the

most common evaluation measures used in most information retrieval tasks. Specif-

ically, the prediction of the model can have four different outcomes: true positive

(TP), false positive (FP), true negative (TN) and false negative (FN), as described

in Table 3 with respect to our task. We will present separate results for each type of

locations (cities, states/provinces, and countries).
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Table 3 Definitions of true positive, false positive, true negative and false negative

Model Ground truth

Location ¬ Location

predicted as location TP FP

predicted as ¬ location FN TN

Precision measures how correctly the model makes predictions; it is the propor-

tion of all positive predictions that are actually positive, computed by:

precision = TP
TP + FP

(3)

Recall measures the model’s capability of recognizing positive test example; it is the

proportion of all actually positive test examples that the model successfully predicts,

computed by:

recall = TP
TP + FN

(4)

Once precision and recall are computed, we can therefore calculate the F-measure by:

F = 1
𝛼

1
P
+ (1 − 𝛼) 1

R

(5)

where P is the precision and R is the recall; 𝛼 is the weighting coefficient. In this

work, we shall use a conventional value of 𝛼, which is 0.5; one can interpret it as

equally weighting precision and recall.

We report precision, recall and F-measure for the extracted location expressions,

at both the token and the span level, to evaluate the overall performance of the trained

classifiers. A token is a unit of tokenized text, usually a word; a span is a sequence

of consecutive tokens. The evaluation at the span level is stricter. In other words, if

a token belongs to the span and is tagged by the classifier the same as the location

label, we count it as a true positive; otherwise, we count it as false positive; the same

strategy is taken for the negative class. At the span level, we evaluate our method

based on the whole span; if our classifiers correctly detects the start point, the end

point and the length of the span, this will be counted as a true positive; however, if

even one of the three factors was not exact, we count it as a false positive. It is clear

that evaluation at the span level is stricter.

In our experiments, one classifier is trained and tested for each of the location

labels city, SP, and country. For the learning process, we need to separate training

and testing sets. We report results for 10-fold cross-validation, because a conven-

tional choice for n is 10. In addition, we report results for separate training and test

data (we chose 70 % for training and 30 % for testing). Because the data collection

took several months, it is likely that we have both new and old tweets in the dataset;
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therefore we performed a random permutation before splitting the dataset for training

and testing.

We would like to find out the contribution of each set of features in Sect. 4.1 to

the performance of the model. To achieve a comprehensive comparison, we tested

all possible combinations of features plus the BOW features. In addition, a baseline

model which simply predicts a token or a span as a location if it matches one of the

entries in the gazetteer.

We implemented the models using an NLP package named MinorThird [8] that

provides a CRF module [36] easy to use; the loss function is the log-likelihood and

the learning algorithm is the gradient ascent. The loss function is convex and the

learning algorithm converges fast.

4.3 Results for Location Expressions

The results are listed in the following tables. Table 4 shows the results for countries,

Table 5 for states/provinces and Table 6 for cities. To our knowledge, there is no

previous work that extracts locations at these three levels, thus comparisons with

other models are not feasible.

Discussion The results from Tables 4, 5 and 6 show that the task of identifying

cities is the most difficult, since the number of countries or states/provinces is by

far smaller. In our gazetteer, there are over 160,000 cities, but only 756 countries

and 129 states/provinces, as detailed in Table 1. A lager number of possible classes

generally indicates a larger search space, and consequently a more difficult task. We

also observe that the token level F-measure and the span level F-measure are quite

similar, likely due to the fact that most location names contain only one word.

Table 4 Performance of the classifiers trained on different features for countries

Features Token Span Separate train-test sets

P R F P R F Token F Span F

Baseline-Gazetteer

Matching

0.26 0.64 0.37 0.26 0.63 0.37 – –

Baseline-BOW 0.93 0.83 0.88 0.92 0.82 0.87 0.86 0.84

BOW+POS 0.93 0.84 0.88 0.91 0.83 0.87 0.84 0.85

BOW+GAZ 0.93 0.84 0.88 0.92 0.83 0.87 0.85 0.86

BOW+WIN 0.96 0.82 0.88 0.95 0.82 0.88 0.87 0.88

BOW+POS+GAZ 0.93 0.84 0.88 0.92 0.83 0.87 0.85 0.86

BOW+WIN+GAZ 0.95 0.85 0.90 0.95 0.85 0.89 0.90 0.90

BOW+POS+WIN 0.95 0.82 0.88 0.95 0.82 0.88 0.90 0.90

BOW+POS+WIN+GAZ 0.95 0.86 0.90 0.95 0.85 0.90 0.92 0.92

Column 2 to column 7 show the results from 10-fold cross validation; the last two columns show

the results from random split of the dataset where 70 % are the train set and 30 % are the test set.

(The same in Tables 5 and 6)
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Table 5 Performance of the classifiers trained on different features for SP

Features Token Span Separate train-test sets

P R F P R F Token F Span F

Baseline-Gazetteer

Matching

0.65 0.74 0.69 0.64 0.73 0.68 – –

Baseline-BOW 0.90 0.78 0.84 0.89 0.80 0.84 0.80 0.84

BOW+POS 0.90 0.79 0.84 0.89 0.81 0.85 0.82 0.84

BOW+GAZ 0.88 0.81 0.84 0.89 0.82 0.85 0.79 0.80

BOW+WIN 0.93 0.77 0.84 0.93 0.78 0.85 0.80 0.81

BOW+POS+GAZ 0.90 0.80 0.85 0.90 0.82 0.86 0.78 0.82

BOW+WIN+GAZ 0.91 0.79 0.84 0.91 0.79 0.85 0.83 0.84

BOW+POS+WIN 0.92 0.78 0.85 0.92 0.79 0.85 0.80 0.81

BOW+POS+WIN+GAZ 0.91 0.79 0.85 0.91 0.80 0.85 0.84 0.83

Table 6 Performance of the classifiers trained on different features for cities

Features Token Span Separate train-test sets

P R F P R F Token F Span F

Baseline-Gazetteer

Matching

0.14 0.71 0.23 0.13 0.68 0.22 – –

Baseline-BOW 0.91 0.59 0.71 0.87 0.56 0.68 0.70 0.68

BOW+POS 0.87 0.60 0.71 0.84 0.55 0.66 0.71 0.68

BOW+GAZ 0.84 0.77 0.80 0.81 0.75 0.78 0.78 0.75

BOW+WIN 0.87 0.71 0.78 0.85 0.69 0.76 0.77 0.77

BOW+POS+GAZ 0.85 0.78 0.81 0.82 0.75 0.78 0.79 0.77

BOW+WIN+GAZ 0.91 0.76 0.82 0.89 0.74 0.81 0.82 0.81

BOW+POS+WIN 0.82 0.76 0.79 0.80 0.75 0.77 0.80 0.79

BOW+POS+WIN+GAZ 0.89 0.77 0.83 0.87 0.75 0.81 0.81 0.82

We also include the results when one part of the dataset (70 %) is used as training

data and the rest (30 %) as test data. The results are slightly different to that of 10-

fold cross validation and tend to be lower in terms of f-measures, likely because less

data are used for training. However, similar trends are observed across feature sets.

The baseline model not surprisingly produces the lowest precision, recall and f-

measure; it suffers specifically from a dramatically low precision, since it will predict

everything contained in the gazetteer to be a location. By comparing the performance

of different combinations of features, we find out that the differences are most sig-

nificant for the classification of cities, and least significant for the classification of

states/provinces, which is consistent with the number of classes for these two types of

locations. We also observe that the simplest features, namely BOW features, always

produce the worst performance at both token level and span level in all three tasks;

on the other hand, the combination of all features produces the best performance in
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every task, except for the prediction of states/provinces at span level. These results

are not surprising.

We conducted t-tests on the results of models trained on all combinations of fea-

tures listed in Tables 4, 5 and 6. We found that in SP classification, no pair of feature

combinations yields statistically significant difference. In city classification, using

only BOW features produces significantly worse results than any other feature com-

binations at a 99.9 % level of confidence, except BOW+POS features, while using

all features produces significantly better results than any other feature combinations

at a 99 % level of confidence, except BOW+GAZ+WIN features. In country clas-

sification, the differences are less significant; where using all features and using

BOW+GAZ+WIN features both yield significantly better results than 4 of 6 other

feature combinations at a 95 % level of confidence, while the difference between

them is not significant; unlike in city classification, the results obtained by using only

BOW features is significantly worse merely than the two best feature combinations

mentioned above.

We further looked at the t-tests results of city classification to analyze what impact

each feature set has on the final results. When adding POS features to a feature com-

bination, the results might improve, but never statistically significantly; by contrast,

they always significantly improve when GAZ features or WIN features are added.

These are consistent with our previous observations.

Error Analysis Some of the predictions errors were due to partial detection of some

names, for example “Korea” was predicted as a country, instead of “South Korea”.

Another source of errors was due to misspellings and to non-standard nicknames that

were not in our gazetteers. We went through the predictions made by the location

entity detection model, picked some typical errors made by it, and looked into the

possible causes of these errors.

Example 1:

Mon Jul 01 14:46:09 +0000 2013

Seoul

yellow cell phones family in South Korea #phone #mobile #yellow #samsung

http://t.co/lpsLgepcCW

Example 2:

Sun Sep 08 06:28:50 +0000 2013

minnesnowta.

So I think Steve Jobs’ ghost saw me admiring the Samsung Galaxy 4 and now

is messing with my phone. Stupid Steve Jobs. #iphone

http://t.co/lpsLgepcCW
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In Example 1, the model predicted “Korea” as a country, instead of “South

Korea”. A possible explanation is that in the training data there are several cases con-

taining “Korea” alone, which leads the model to favour “Korea” over “South Korea”.

In Example 2, the token “minnesnowta” is quite clearly a reference to “Minnesota”,

which the model failed to predict. Despite the fact that we allow the model to recog-

nize nicknames of locations, these nicknames come from the GeoNames gazetteer;

any other nicknames will not be known to the model. On the other hand, if we treat

“minnesnowta” as a misspelled “Minnesota”, it shows that we can resolve the issue

of unknown nicknames by handling misspellings in a better way.

4.4 Location Disambiguation

In the previous section, we have identified the locations in Twitter messages and

their types; however, the information about these locations is still ambiguous. In this

section, we describe the heuristics that we use to identify the unique actual location

referred to by an ambiguous location name. These heuristics rely on information

about the type, geographic hierarchy, latitude and longitude, and population of a cer-

tain location, which we obtained from the GeoNames Gazetteer. The disambiguation

process is divided into 5 steps, as follows:

1. Retrieving candidates. A list of locations whose names are matched by the loca-

tion name we intend to disambiguate are selected from the gazetteer. We call these

locations candidates. After step 1, if no candidates are found, disambiguation is

terminated; otherwise we continue to step 2.

2. Type filtering. The actual location’s type must agree with the type that is tagged

in the previous step where we apply the location detection model; therefore, we

remove any candidates whose types differ from the tagged type from the list of

candidates. E.g., if the location we wish to disambiguate is “Ontario” tagged as

a city, then “Ontario” as a province of Canada is removed from the list of candi-

dates, because its type SP differs from our target type. After step 2, if no candi-

dates remain in the list, disambiguation is terminated; if there is only one candi-

date left, this location is returned as the actual location; otherwise we continue to

step 3.

3. Checking adjacent locations. It is common for users to put related locations

together in a hierarchical way, e.g., “Los Angeles, California, USA”. We check

adjacent tokens of the target location name; if a candidate’s geographic hierarchy

matches any adjacent tokens, this candidate is added to a temporary list. After step

3, if the temporary list contains only one candidate, this candidate is returned as

the actual location. Otherwise we continue to step 4 with the list of candidates

reset.

4. Checking global context. Locations mentioned in a document are geographically

correlated [23]. In this step, we first look for other tokens tagged as a location

in the Twitter message; if none is found, we continue to step 5; otherwise, we
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disambiguate these context locations. After we obtain a list of locations from the

context, we calculate the sum of their distances to a candidate location and return

the candidate with minimal sum of distances.

5. Default sense. If none of the previous steps can decide a unique location, we

return the candidate with largest population (based on the assumption that most

tweets talk about large urban areas).

4.5 Experiments and Results for Actual Locations

We ran the location disambiguation algorithm described above. In order to evaluate

how each step (more specifically, step 3 and 4, since other steps are mandatory)

contributes to the disambiguation accuracy, we also deactivated optional steps and

compared the results.

Example 3:

Fri Jul 19 16:35:29 +0000 2013

NYC and San Francisco

You Have to See this LEOPARD phone HTC 1 case RT PLS http://t.co/

Ml6zH3Yp2b

The results of different location disambiguation configurations are displayed in

Table 7, where we evaluate the performance of the model by accuracy, which is

defined as the proportion of correctly disambiguated locations. By analyzing them,

we can see that when going through all steps, we get an accuracy of 95.5 %, while

by simply making sure the type of the candidate is correct and choosing the default

location with the largest population, we achieve a better accuracy. The best result

is obtained by using the adjacent locations, which turns out to be 98.2 % accurate.

Thus we conclude that adjacent locations help disambiguation, while locations in

the global context do not. Therefore the assumption made by [23] that the locations

in the global context help the inference of a target location does not hold for Twitter

messages, mainly due to their short nature.

Error Analysis Similar to Sect. 4.3, this section presents an example of errors made

by the location disambiguation model in Example 3. In this example, the disambigua-

Table 7 Location

disambiguation results
Deactivated steps Accuracy (%)

None 95.5

Adjacent locations 93.7

Global context 98.2
Adjacent locations + context locations 96.4

http://t.co/Ml6zH3Yp2b
http://t.co/Ml6zH3Yp2b
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tion rules correctly predicted “NYC” as “New York City, New York, United States”;

however, “San Francisco” was predicted as “San Francisco, Atlantida, Honduras”,

which differs from the annotated ground truth. The error is caused by step 4 of the

disambiguation rules that uses contextual locations for prediction; San Francisco of

Honduras is 3055 km away from the contextual location New York City, while San

Francisco of California, which is the true location, is 4129 km away. This indicates

the fact that a more sophisticated way of dealing with the context in tweets is required

to decide how it impacts the true locations of the detected entities.

5 Task 2: Detecting User Locations

We define our work as follows: first, a classification task puts each user into one

geographical region (see Sect. 5.5 for details); next, a regression task predicts the

most likely location of each user in terms of geographical coordinates, i.e., a pair of

real numbers for latitude and longitude. We present one model for each task.

5.1 Models

Model 1 The first model consists of three layers of denoising auto-encoders. Each

code layer of denoising auto-encoders also serves as a hidden layer of a multiple-

layer feedforward neural network. In addition, the top code layer works as the input

layer of a logistic regression model whose output layer is a softmax layer.

Softmax Function
The softmax function is defined as:

softmaxi(𝐳) =
e𝐳i

∑J
j=1 e

𝐳j
(6)

where the numerator zi is the ith possible input to the softmax function and the

denominator is the summation over all possible inputs. The softmax function pro-

duces a normalized probability distribution over all possible output labels. This prop-

erty makes it suitable for multiclass classification tasks. Consequently, a softmax

layer has the same number of neurons as the number of possible output labels; the

value of each neuron can be interpreted as the probability the corresponding label

given the input. Usually, the label with the highest probability is returned as the pre-

diction made by the model.

In our model, mathematically, the probability of a label i given the input and the

weights is:
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P(Y = i|xN ,W (N+1)
, b(N+1))

= softmaxi(W (N+1)xN + b(N+1))

= eW
(N+1)
i xN+b(N+1)i

∑
j e

W (N+1)
j xN+b(N+1)j

(7)

where W (N+1)
is the weight matrix of the logistic regression layer and b(N+1) are its

biases. N is the number of hidden layers, in our case N = 3. xN is the output of the

code layer of the denoising auto-encoder on top. To calculate the output of ith hidden

layer (i = 1 . . .N), we have:

xi = s(W (i)xi−1 + b(i)) (8)

where s is the activation function, W (i)
and b(i) correspond to the weight matrix and

biases of the ith hidden layer. x0 is the raw input generated from text,
8

as specified

in Sect. 5.5. We return the label that maximizes Eq. (7) as the prediction, i.e.:

ipredict = argmax
i

P(Y = i|xN ,W (N+1)
, b(N+1)) (9)

We denote this model as SDA-1.

Model 2 In the second model, a multivariate linear regression layer replaces a logis-

tic regression layer on top. This produces two real numbers as output, which can be

interpreted as geographical coordinates. Therefore the output corresponds to loca-

tions on the surface of Earth. Specifically, the output of model 2 is:

yi = W (N+1)
i xN + b(N+1)i (10)

where i ∈ {1, 2}, W (N+1)
is the weight matrix of the linear regression layer and b(N+1)

are its biases, xN is the output of the code layer of the denoising auto-encoder on top.

The output of ith hidden layer (i = 1…N) is computed using Eq. (8), which is the

same as Model 1. The tuple (y1, y2) is then the pair of geographical coordinates pro-

duced by the model. We denote this model as SDA-2. Figure 1 shows the architecture

of both models.

5.2 Input Features

To learn better representations, a basic representation is required to start with. For

text data, a reasonable starting representation is achieved with the Bag-of-N-grams
features [4, 16].

8
Explained in Sect. 5.2.
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Fig. 1 Illustration of the two proposed models (with 3 hidden layers). The models differ only in the

output layers. The neurons are fully interconnected. A layer and its reconstruction and the next layer

together correspond to a denoising auto-encoder. For simplicity, we do not include the corrupted

layers in the diagram. Note that models 1 and 2 are not trained simultaneously, nor do they share

parameters

The input text of Twitter messages is preprocessed and transformed into a set of

Bag-of-N-grams frequency feature vectors. We did not use binary feature vectors

because we believe the frequency of n-grams is relevant to the task at hand. For

example, a user who tweets Senators 10 times is more likely to be from Ottawa than

another user who tweets it just once. (The latter is more likely to be someone from

Montreal who tweets Senators simply because the Canadiens happen to be defeated

by the Senators that time.) Due to computational limitations, we consider only the

5000 most frequent unigrams, bigrams and trigrams.
9

We tokenized the tweets using

the Twokenizer tool [29].

5.3 Statistical Noises for Denoising Auto-Encoders

An essential component of a DA is its statistical noise. Following [16], the statis-

tical noise we incorporate for the first layer of DA is the masking noise, i.e., each

active element has a probability to become inactive. For the remaining layers, we

apply Gaussian noise to each of them, i.e., a number independently sampled from

the Gaussian distribution  (0, 𝜎2) is added to each element of the input vector to

get the corrupted input vector. Note that the Gaussian distribution has a 0 mean. The

9
Not all of these 5000 n-grams are necessarily good location indicators, we don’t manually distin-

guish them; a machine learning model after training should be able to do so.
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standard deviation of the Gaussian distribution 𝜎 decides the degree of corruption;

we also use the term corruption level to refer to 𝜎.

5.4 Loss Functions

Pre-training In terms of training criteria for unsupervised pre-training, we use the

squared error loss function:

𝓁(x, r) = ||x − r||2 (11)

where x is the original input, r is the reconstruction. The squared error loss function

is a convex function, so we are guaranteed to find the global optimum once we find

the local optimum.

The pre-training is done by layers, i.e., we first minimize the loss function for the

first layer of denoising auto-encoder, then the second, then the third. We define the

decoder weight matrix as the transposition of the encoder weight matrix.

Fine-Tuning In the fine-tuning phase, the training criteria differ for model 1 and

model 2. It is a common practice to use the negative log-likelihood as the loss func-

tion of models that produce a probability distribution, which is the case for model 1.

The equation for the negative log-likelihood function is:

𝓁(𝜃 = {W, b}, (x, y))
= − log(P(Y = y|x,W, b)) (12)

where 𝜃 = {W, b} are the parameters of the model, x is the input and y is the

ground truth label. To minimize the loss in Eq. (12), the conditional probability

P(Y = y|x,W, b) must be maximized, which means the model must learn to make the

correct prediction with the highest confidence possible. Training a supervised clas-

sifier using the negative log-likelihood loss function can be therefore interpreted as

maximizing the likelihood of the probability distribution of labels in the training set.

On the other hand, model 2 produces for every input a location ŷ( ̂lat, ̂lon), which is

associated with the actual location of this user, denoted by y(lat, lon). Given latitudes

and longitudes of two locations, their great-circle distance can be computed by first

calculating an intermediate value 𝛥𝜎 with the Haversine formula [37]:

𝛥𝜎 = arctan

⎛
⎜
⎜
⎜⎝

√(
cos𝜙2 sin𝛥𝜆

)2 +
(
cos𝜙1 sin𝜙2 − sin𝜙1 cos𝜙2 cos𝛥𝜆

)2

sin𝜙1 sin𝜙2 + cos𝜙1 cos𝜙2 cos𝛥𝜆

⎞
⎟
⎟
⎟⎠

(13)

Next, calculate the actual distance:
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d((𝜙1, 𝜆1), (𝜙2, 𝜆2)) = r𝛥𝜎 (14)

where 𝜙1, 𝜆1 and 𝜙2, 𝜆2 are latitudes and longitudes of two locations, 𝛥𝜆 = 𝜆1 − 𝜆2,

r is the radius of the Earth. Because d is a continuously differentiable function with

respect to 𝜙1 and 𝜆1 (if we consider (𝜙1, 𝜆1) as the predicted location, then (𝜙2, 𝜆2) is

the actual location), and minimizing d is exactly what model 2 is designed to do, we

define the loss function of model 2 as the great-circle distance between the estimated

location and the actual location:

𝓁(𝜃 = {W, b}, (x, y))
= d(Wx + b, y) (15)

where 𝜃 = {W, b} are the parameters of the model, x is the input and y is the actual

location.
10

Now that we have defined the loss functions for both models, we can train

them with back-propagation [35] and Stochastic Gradient Descent (SGD).

5.5 Experiments

Evaluation Metrics We train the stacked denoising auto-encoders to predict the

locations of users based on the tweets they post. To evaluate SDA-1, we follow [13]

and define a classification task where each user is classified as from one of the 48 con-

tiguous U.S. states or Washington D.C. The process of retrieving a human-readable

address including street, city, state and country from a pair of latitude and longi-

tude is known as reverse geocoding. We use MapQuest API
11

to reverse geocode

coordinates for each user. We also define a task with only four classes, the West,

Midwest, Northeast and South regions, as per the U.S. Census Bureau.
12

The metric

for comparison is the classification accuracy defined as the proportion of test exam-

ples that are correctly classified. We also implement two baseline models, namely a

Naive Bayes classifier and an SVM classifier (with the RBF kernel); both of them

take exactly the same input as the stacked denoising auto-encoders.

To evaluate SDA-2, the metric is simply the mean error distance in kilometres

from the actual location to the predicted location. Note that this is the distance on

the surface of the Earth, also known as the great-circle distance. See Eqs. (13)–(14)

for its computation. In Sect. 5.6, we applied two additional metrics, which are the

median error distance and the percentage of predictions less than 100 miles away

from the true locations, to comply with previous work. Similarly, we implement a

baseline model which is simply a multivariate linear regression layer on top of the

10
Alternatively, we also tried the loss function defined as the average squared error of output num-

bers, which is equivalent to the average Euclidean distance between the estimated location and the

true location; this alternative model did not perform well.

11
http://www.mapquest.com.

12
http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf.

http://www.mapquest.com
http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf
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input layer. This baseline model is equivalent to SDA-2 without hidden layers. We

denote this model as baseline-MLR. After we have obtained the performance of our

models, they will be compared against several existing models from previous work.

Early Stopping We define our loss functions without regularizing the weights; to

prevent overfitting, we adopt the early-stopping technique [41]; i.e., training stops

when the model’s performance on the validation set no longer improves [3].

To make the comparisons fair, we split the Eisenstein dataset in the same way as

[13] did, i.e., 60 % for training, 20 % for validation and 20 % for testing. The Roller

dataset was provided split, i.e., 429,694 users for training, 10,000 users for validation

and the rest 10,000 users for testing; this is the split we adopted.

Tuning Hyper-parameters One of the drawbacks of DNNs is a large number of

hyper-parameters to specify [3]. The activation function we adopt is the sigmoid

function y = 1
1+e−x

, which is a typical choice as the non-linear activation function. For

the size (the number of neurons) of each hidden layer, usually a larger size indicates

better performance but higher computational cost. Since we do not have access to

extensive computational power, we set this hyper-parameter to 5000, which is equal

to the size of the input layer. As for the corruption level, the masking noise probability

for the first layer is 0.3; the Gaussian noise standard deviation for other layers is 0.25.

These two values are chosen because they appear to work well in our experiments

based on the validation dataset. The Mini-batch size chosen for stochastic gradient

descent is 32, which is a reasonable default suggested by Bengio [3]. For the learning

rates, we explore different configurations in the set {0.00001, 0.0001, 0.001, 0.01,

0.1} for both pre-learning rate and fine-tuning learning rate. Lastly, the pre-training

stops after 25 epochs, which usually guarantees the convergence. Fine-tuning stops

after 1000 epochs; because of the early stopping technique described in Sect. 5.5,

this number is rarely reached.

Implementation Theano [6] is a scientific computing library written in Python.

It is mainly designed for numerical computation. A main feature of Theano is its

symbolic representation of mathematical formulas, which allows it to automati-

cally differentiate functions. We train our model with stochastic gradient descent

which requires the computation of gradients, either manually or automatically. Since

Theano does automatic differentiation, we no longer have to manually differentiate

complex functions like Eq. (13). We implemented SDA-1, SDA-2
13

and the base-

line multivariate linear regression model with Theano. Scikit-learn [30] is a machine

learning package written in Python. It includes most standard machine learning algo-

rithms. The two baseline models compared against SDA-1 (Naive Bayes and SVM)

are implemented using the Scikit-learn package.

13
Our code is available at https://github.com/rex911/usrloc.

https://github.com/rex911/usrloc
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Table 8 Classification accuracy for SDA-1 and other models

Model Classif. Acc. (%)

Region (4-way) State (49-way)

Eisenstein et al. (2010) Geo topic model 58 24

Mixture of unigrams 53 19

Supervised LDA 39 4

Text regression 41 4

kNN 37 2

Our models SDA-1 61.1 34.8
Baseline-Naive Bayes 54.8 30.1

Baseline-SVM 56.4 27.5

5.6 Results for User Locations

Evaluation on the Eisenstein Dataset The SDA-1 model yields an accuracy of

61.1 % and 34.8 %, for region classification and state classification, respectively. The

results of all models are shown in Table 8. Among all previous works that use the

same dataset, only [13] report the classification accuracy of their models; to present

a comprehensive comparison, all models from their work, not just the best one, are

listed. Student’s t-tests suggest that the differences between SDA-1 and the baseline

models are statistically significant at a 99 % level of confidence.
14

It can be seen that our SDA-1 model performs best in both classification tasks.

It is surprising to find that the shallow architectures that we implemented, namely

SVM and Naive Bayes, perform reasonably well. They both outperform all models in

[13] in terms of state-wise classification. A possible explanation is that the features

we use (frequencies of n-grams with n = 1, 2, 3) are more indicative than theirs

(unigram term frequencies).

Table 9 shows the mean error distance for various models trained on the same

dataset. The difference between SDA-2 and the baseline model is statistically sig-

nificant at a level of confidence of 99.9 %.
15

Our model has the second best results

and performs better than four models from previous work. In addition, the fact that

SDA-2 outperforms the baseline model by a large margin shows the advantages of a

deep architecture and its ability to capture meaningful and useful abstractions from

input data.

Evaluation on the Roller Dataset Table 10 compares the results from various mod-

els on the Roller dataset. The model in [17], which included extensive feature engi-

neering, outperformed other models. In addition it achieves the best results by uti-

14
We are unable to conduct t-tests on the Eisenstein models, because of the unavailability of the

details of the results produced by these models.

15
We are unable to conduct t-tests on the other models, because of the unavailability of the details

of the results produced by these models.
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Table 9 Mean error distance of predictions for SDA-2 and models from previous work

Model Mean error distance (km)

Eisenstein [12] 845

SDA-2 855.9
Priedhorsky [31] 870

Roller [34] 897

Eisenstein [13] 900

Wing [40] 967

Baseline-MLR 1268

Table 10 Results from SDA-2 and the best models of previous work

Model Mean error (km) Median Acc. error (km)

Roller [34] 860 463 34.6

Han [17] NA 260 45

Han [17] using top 3 %

features (6420)

NA NA 10

SDA-2 733 377 24.2

NA indicates Not Available

lizing about 90 % of all 214,000 features; when using the top 3 % (6420) features,

the Accuracy was 10 %.
16

The SDA-2 model, despite the computational limitation,

achieved better results than [34] using just 5,000 features.

ErrorAnalysisThe datasets we used for this task do not have a balanced distribution.

Users are densely distributed in the West Coast and most part of the East, whereas

very few are located in the middle. Such label imbalance has a negative effect on

statistical classifiers, and adversely affects regression models because many target

values will never be sampled. This would explain some of the prediction errors made

by our models.

6 Conclusion and Future Work

In this chapter, we looked at techniques that allow us to extract information form

texts. This information can be useful ins security applications by allowing to moni-

toring od locations, topics, or emotions mentioned in texts. Of particular interest are

social media messages, which are more difficult to process than regular texts.

We examined two tasks in detail. The first task was extracting location entities

mentioned in tweets. We extracted different types of features for this task and did

experiments to measure their usefulness. We trained CRF classifiers that were able

to achieve a very good performance. We also defined disambiguation rules based on

a few heuristics which turned out to work well. In addition, the data we collected and

16
Only this metric was reported by the author in the top 3 % features configuration.
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annotated for task 1 is made available to other researchers to test their models and to

compare with ours.

We identify two main directions of future work. First, the simple rule-based

disambiguation approach does not handle issues like misspellings well, and can

be replaced by a machine learning approach, although this requires more anno-

tated training data. Second, since in the current model, we consider only states and

provinces in the United States and Canada, we need to extend the model to include

states, provinces, or regions in other countries as well.

For the second task, user location detection, we proposed models based on DNN.

Our experimental results show that our SDA-1 model outperformed other empirical

models; our SDA-2 model’s performance is reasonable. We demonstrate that a DNN

is capable of learning representations from raw input data that helps the inference of

location of users without having to design any hand-engineered features. The results

also show that deep learning models have the potential of being applied to solve

real business problems that require location detection, in addition to their recent

success in natural language processing tasks and to their well-established success in

computer vision and speech recognition.

We believe a better model can yet be built. For example, our exploration for hyper-

parameters is by no means exhaustive, especially for the mini-batch size and the cor-

ruption levels, due to the very high running time required. It would be interesting

to find out the optimal set of hyper-parameters. More computational capacity also

allows the construction of a more powerful DNN. For example, in our SDA the hid-

den layers have a size of 5000, which is equal to the size of input layer; however, a

hidden layer larger than the input layer learns better representations [4].

In terms of improvement in the future, we plan to collect a dataset uniformly dis-

tributed geographically, and the locations do not have to be limited to the contiguous

United States. Alternatively, one may notice that the distribution of users is similar

to that of the U.S. population, therefore it is possible to use the U.S. census data to

offset such skewed distribution of users. In addition, the input of our system con-

sists only of tweets, because we are mostly interested in recovering users’ location

from the language they produce; however, real applications require a higher accu-

racy. To achieve this, we could also incorporate information such as users’ profiles,

self-declared locations, time zones and interactions with other users. Another type

of stacked denoising auto-encoder is one that only does unsupervised pre-training,

then the output of the code layer is regarded as input into other classifiers such as

SVM [16]. It would be interesting to compare the performance of this architecture

and that of an SDA with supervised fine-tuning with respect to our task.

The most important direction of future work in regard to applications for security

and defence is to use the information extracted from texts, about topics, emotions,

and locations, in order to flag social media messages for possible security threats.

These pieces of information can be combined via a rule-based approach. Alterna-

tively, classification techniques, such as the ones we used for task 2, can be employed;

but annotated training data (marked with security threat labels) would be needed.
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DroidAnalyst: Synergic App Framework
for Static and Dynamic App Analysis
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Abstract Evolution of mobile devices, availability of additional resources coupled

with enhanced functionality has leveraged smartphone to substitute the conven-

tional computing devices. Mobile device users have adopted smartphones for online

payments, sending emails, social networking, and stores the user sensitive informa-

tion. The ever increasing mobile devices has attracted malware authors and cyber-

criminals to target mobile platforms. Android, the most popular open source mobile

OS is being targeted by the malware writers. In particular, less monitored third party

markets are being used as infection and propagation sources. Given the threats posed

by the increasing number of malicious apps, security researchers must be able to ana-

lyze the malware quickly and efficiently; this may not be feasible with the manual

analysis. Hence, automated analysis techniques for app vetting and malware detec-

tion are necessary. In this chapter, we present DroidAnalyst, a novel automated app

vetting and malware analysis framework that integrates the synergy of static and

dynamic analysis to improve accuracy and efficiency of analysis. DroidAnalyst gen-

erates a unified analysis model that combines the strengths of the complementary

approaches with multiple detection methods, to increase the app code analysis. We

have evaluated our proposed solution DroidAnalyst against a reasonable dataset con-

sisting real-world benign and malware apps.
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1 Introduction

The tremendous success of Android Mobile devices (smartphone, tablets) due to its

open nature has resulted in vast number of third-party developer apps. The apps are

distributed from Google Play, the official Android market, and other third party mar-

kets. The emergence of the third party and improper app vetting results in benign

apps with software vulnerabilities or bugs that can be exploited to steal personal

information and user privacy-invasive practices. The software flaws may also result

due to logical errors, in time delivery pressures and lack of security issues and expe-

rience on the emerging mobile platform [17]. Furthermore, the software vulnerabil-

ities are a part of Android security model. The same questions apply to the popular

apps downloaded and used by a majority of the users based on trust and ranking at

online app marketplaces. In [20], the authors, conducted a comprehensive review

of different analysis and detection methods and stressed the necessity of multiple

detection methods on Android.

The Android security model is a permission-based security model to prevent the

resources not requested apps resources they never requested. For example, The Inter-

net is accessible only if the app developer explicitly declares the INTERNET permis-

sion; SMS permitted if SMS_SEND is declared in the Application PacKage (APK)

manifest. Furthermore, availability of Internet does not implicitly guarantee the data

security. The app user decides to install the APK with all required permissions even if

some app has an approval leading to undesirable consequences. Hence, a naive user

may not be able to judge the appropriateness of security requirements. Cyber crimi-

nals and malware authors are targeting Android due to the enormous user base and

availability of more than 1.5 million apps on Google Play with millions of downloads

each day [40]. The exploding number of third-party developer apps necessitate an

automated analysis system to analyze malware menace. Mobile platform usage has

complicated the security issues as personal mobile devices are also being used in

companies for professional work. Thus, the Bring-Your-Own-Device (BYOD) brings

in additional security concerns such as security of data, privacy issues, and user data

invasion. Moreover, Fernandes et al. [26] developed an FM radio frequency based

attack model and reported the mobile OS vulnerability against such threats.

Malicious app detection and mitigation are important concerns for anti-malware

research. The app detection approaches are either static, dynamic or hybrid. How-

ever, Android mobile platform faces the analysis challenge within limited memory-

constrained processing and limited power availability. Static app analysis is

performed by inspecting the complete code without executing it. Dynamic analysis

generates temporal or spatial snapshots of processor execution, memory, network

activity, system call logs, SMS messages sent, phone calls. Static approaches are

useful for resource constrained Android devices. This approach can be defeated by
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employing repackaging, polymorphic or code transformed malware app. Dynamic

analysis overcomes the limitation of static methods against obfuscated transforms.

Both the approaches have their strengths and weakness. In [16, 28, 57], authors

have implemented static, dynamic or hybrid analysis. However, a few approaches

provide a complete solution with post-processing machine learning approaches.

Hence, we have proposed and implemented DroidAnalyst, an automated web-based

analysis system to analyze bytecode on the Dalvik Virtual Machine (DVM), and

native execution based on system calls. The proposed approach takes into account

the conditions and interactions necessary to reveal the hidden behavior. DroidAn-

alyst is one of the few frameworks implementing various static, anti anti-analysis
techniques to detect advanced and targeted malware.

The remaining part of this chapter is organized as follows: Sect. 2 discusses the

most relevant static and dynamic analysis approaches. Section 3 is a brief account

of the DroidAnalyst system and necessity of multiple analysis modules. We briefly

discuss the Android system and necessity of the proposed framework. In Sect. 4,

we discuss static analysis modules ApPRaISE, AndroSimilar, AbNORMAL and

DePLORE and the implementation details classification system. Furthermore, we

identify the necessity of multiple analysis and detection methods for improved code

coverage. Section 5 details the working of the dynamic analysis module and integra-

tion of novel analysis techniques. In Sect. 6, we evaluate the DroidAnalyst framework

based on relevant parameters. Finally, we conclude the chapter in Sect. 7 discussing

the enhancements and future work.

2 Related Work

Androguard [13] is a recursive disassembly based static analysis tool to detect simi-

lar and classes and methods and identify cloned apps. The signature-based modules

identify known malicious applications. Zheng et al. [55] proposed the static analy-

sis stress test to experiment and evaluate the performance of anti-malware against

code transformations. Authors concluded that static analysis methods can be circum-

vented with simple obfuscation techniques. There is an exponential rise of obfus-

cated Android malware eluding the static analysis methods [21]. Hence, dynamic

analysis and detection techniques are gaining prominence on Android platform. Fur-

ther Rocha et al. [43] proposed a hybrid and lightweight analysis model enforcing

realistic policies on the mobile platform with low overhead.

Droidbox [19] is an Android dynamic analysis tool providing emulation, taint

analysis, and API monitoring capabilities. It extends TaintDroid [52] with new taint

sources and sinks. Droidbox records app behavioral such as file operations, telephony

operations (i.e., SMS and phone calls), cryptography operations and network traffic

monitoring to identify sensitive information invasive practices. DroidScope [53] is

an offline and dynamic Virtual Machine Introspection (VMI) to detect malicious

apps. However, the approach requires OS modification. Bläsing et al. [14] proposed

AASandbox, an app profiling framework logging system calls with Loadable Kernel
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Modules. The authors employ clustering to predict the app behavior. Jiang et al. [56]

classified the Android malware family dataset identifying their characteristics and

released the samples under Genome Project. In [48] authors analyzed more than

6,000 Android malware and clustered them among families using the VirusTotal

API [10].

Andrubis [33] is a web-based interface for analyzing malicious apps using both

static and dynamic analysis. It is developed using Droidbox, Taintdroid, Androguard

and APK Tool. Thus, Android framework is modified to an extent for Taint analysis

and API monitoring. CopperDroid [42] is a system call based analysis framework to

monitor inter-process communication through VMI. Authors of CopperDroid evalu-

ated Android Malware Genome Project malware families [9]. Mobile Sandbox [49]

is a static, and dynamic analysis web service using the existing analysis methods

combined with novel system call tracing for app analysis.

However, Petsas et al. [39] demonstrate advanced malware apps thwarting vir-

tual/emulated environment to hinder dynamic analysis. Authors patched existing

malware apps with anti-analysis features to show the weakness of majority of exist-

ing frameworks already discussed in [14, 33, 42, 54]. Furthermore, Vidas et al. [50]

proposed a system to identify the emulated Android environment. The authors iden-

tified the difference in behavior, performance evaluation, presence/absence of smart-

phone hardware and software capabilities. Such a system highlights the importance

of employing anti anti-analysis techniques among the sandbox environment. To

overcome this limitations, Faruki et al. [23] proposed a platform-invariant anti anti-

emulation sandbox to detect the stealth Android malware. Thus, the synergy of static

and dynamic analysis can be combined to create an effective analysis.

Andrubis [2, 33] and Mobile Sandbox [49] are two known systems similar to

the proposed DroidAnalyst. Andrubis employs Droidbox, a dynamic app analysis

tool and TaintDroid, privacy leakage detection tool for automated analysis. How-

ever, Andrubis app analysis is limited to the Android API version 9, i.e. Android

OS, Gingerbread version 2.3. Mobile Sandbox improved the Droidbox application

to support the Android versions up to API level 17 (Android Jellybean OS version

4.2). Hence, APK files up to the Android Jellybean 4.2 version can be analyzed.

However, both the above services employ the existing tools that modify the Android

platform. However, rather than depending upon the OS modifications, DroidAnalyst

can be configured to support the latest version of Android OS supported applications.

Hence, DroidAnalyst can support the devices with higher API versions for which the

APK are developed by the third party developers.

Furthermore, Andrubis and Mobile Sandbox cannot detect advanced malware

equipped with anti-analysis techniques discussed in [39]. The dynamic analysis

module of DroidAnalyst is developed to be a scalable anti anti-analysis frame-

work to detect analysis environment-reactive malware. There are a very few analy-

sis frameworks using the synergy of static and dynamic approaches. Furthermore,

known frameworks Andrubis [34, 51], MobileSandbox [49] and Foresafe [50] can be

circumvented by the advanced and targeted malware. Hence, we propose and imple-

ment DroidAnalyst, an extension of our proposed research [23].
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3 Our Contribution: DroidAnalyst

The existing web-based analysis systems incorporate the static and dynamic analy-

sis techniques [39]. Furthermore, the DroidAnalyst improves existing methods by

including anti-analysis malware detection capability discussed in [33, 50]. In par-

ticular, our contributions are:

1. An automated framework incorporating multiple static and dynamic analysis

detection methods for Android APK vetting, and malware analysis. Proposed

DroidAnalyst, combines the synergy of existing state of the art with multiple

analysis detection methods.

2. We implement various user interface (UI) stimulation techniques to force the

APK file reveal the malicious behavior. Furthermore, the dynamic analysis mod-

ule integrates a range of static, anti anti-analysis techniques to coax the environ-

ment aware advanced Android malware reveal hidden behavior.

3. We employ machine learning methods to generate a set of features with multiple

detection methods based on the static and dynamic module analysis.

4. The proposed research is available to the researchers through a web-based inter-

face http://www.droidanalyst.org [35].

Static analysis module has multiple detection methods: (i) Parse the Android-

manifest.xml with Android Permission Risk Model (ApPRaISe), (ii) Statistically

robust signature method (AndroSimilar [22]) to detect app malware variants, (iii)

vulnerable component detection (INVAsiON), and (iv) Inter-component control flow

dependence analysis (AbNORMAL). Further, we (v) test the input APK files against

commercial anti-malware with VirusTotal API [10], and (vi) apply dynamic analysis

methods to analyze the analysis ware threats.

The static component generates APK meta-data information to get an overview

of the app. In the first stage, app package name, MD5, SHA signature are produced.

The meta-data information such as the presence of the cryptographic, dynamic and

native code is ascertained. Simultaneously, the VirusTotal API are used to scan

the APK file to identify the known malware. Furthermore, the Android manifest is

parsed to determine the permissions requested, and components declared in the APK.

Vulnerable components such as activities, broadcast receivers, content providers, and

services are identified. The app is decompiled into Dalvik bytecode to identify any

suspicious functionality. The bytecode is used to generate a Control Flow Graph

(CFG), an asynchronous control flow graph to detect misuse of sensitive features

such as SMS, Call, picture click, and audio recording.

The dynamic analysis module has multiple analysis components that execute the

APK file on Android emulator and record the operations of the APK. The default

emulator is modified to represent a real Android device. Default information such

as IMEI, IMSI, device identifiers, network information, device name are rebuilt to

resemble an actual Android device.

The system logs interaction of Dalvik bytecode and system call interaction at the

native level. Static analysis module generates a complete report of the submitted

http://www.droidanalyst.org
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APK. The multiple analysis techniques classify APK either as normal or mali-

cious. The collected features are categorized with tree-based classifiers Random For-

est [15], and J48. The most relevant features are identified with minimum redundancy

Maximal Relevance (mrMR) [38] to maintain feature relevance. DroidAnalyst iden-

tifies anti-analysis malware evading known systems Andrubis [51], Mobile Sand-

box [49], and Copperdroid [37, 50]. To evaluate the analysis framework we crawled

36,788 collected apps from Google Play, and other third-party markets like Anzhi,

HiApk, appchina, androidbest.ru and 13,462 malware APK from different malware

repositories.

3.1 Android Background

Android is being developed under Android Open Source Project (AOSP), maintained

by Google and promoted by the Open Handset Alliance (OHA). Android apps are

developed in Java. Android OS is built on top of Linux kernel due to its robust driver

model, efficient memory and process management, and networking support for the

core services. Android user app, written in Java language is translated into Dalvik

bytecode that runs under newly created runtime, the Dalvik Virtual Machine (DVM).

Android protects the sensitive functionality such as telephony, GPS, network, power

management, radio and media as system services using the mandatory permission-

based model.

3.1.1 App Components

An Android app is composed of one or more components discussed below:

∙ Activity: It is the user interface component of an app. Any number of activities are

defined in the manifest depending on the developer requirement and app function-

ality.

∙ Service: Service component performs background tasks without any UI

∙ Broadcast Receiver: This component listens to the Android system generated

events. For example, BOOT_COMPLETED, SMS_RECEIVED are system events.

∙ Content Provider: Content provider also known as the data-store provides a con-

sistent interface for data access within and between different apps.

Android security protects apps and data with the combination of system-level and

Inter Component Communication (ICC) [25]. Android middleware mediates the ICC

between application and components. Access to a component is restricted by assign-

ing access permission label. The developer assigns permission labels through the

manifest within an app. The developer defines the app security policy. However, per-

mission(s) allocated to the components in an application specifies an access policy

to protect app resources.
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3.1.2 Android Permission Model

To restrict an app from accessing the sensitive functionality such as telephony,

network, contacts/SMS/sdcard and GPS location, Android provides permission-

based security model within the application framework. Developer must declare the

required permissions to access a resource using the <uses-permissions> tag

inside AndroidManifest.xml. Android controls the individual apps to miti-

gate the undesirable effects on the system apps or third-party developer apps using

the app sandboxing. The process enforces the restrictions at the install time. Android

permission protection is discussed below [25]:

1. Normal: These permissions have a minimum risk. The Normal permissions are

granted by default during installation.

2. Dangerous: These permissions fall into the high-risk group as they access the

private data and relevant sensors of the device. A user must explicitly permit the

usage of dangerous permissions before installing the APK.

3. Signature: Signature permissions are available with the system apps. They are

granted automatically at the time of installation.

4. SignatureOrSystem: These permissions are granted if the requesting app is signed

with the same certificate as the Android system image or with an app that declared

such permission.

Android permissions are coarse-grained. For example, the INTERNET permis-

sion does not have the capability to restrict access to a particular Uniform Resource

Locator (URL). During the APK installation, the user is forced to grant either all

permissions or deny the app installation. Hence, the dangerous permissions cannot

be avoided at the install time. Moreover, the users cannot differentiate between the

necessity and its imperative misuse that may expose them for exploitation [47].

4 DroidAnalyst: System Description

This section gives a broad view of the DroidAnalyst. We first discuss the Droid-

Analyst architecture and various modules involved in creating the analysis system.

It is followed by a brief discussion of its components in detail. This section covers

the automated analysis beginning with the static analysis module, followed by the

dynamic analysis to complement the static analysis. The dynamic module is designed

to coax the APK to execute on a modified Android emulator(s).

4.1 DroidAnalyst: Architecture

Figure 1 illustrates the synergic framework utilizing the static and dynamic analysis

approaches to generate analysis report. The following sections discuss the multiple

analysis and detection methods integrated together in DroidAnalyst.
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Static Analysis Module

Dynamic Analysis Module

Emulators

DVM

Data Processing

Meta-data analysis &
 VirusTotal Scanning

Permission
Model

InVaSIoN

Taint 
Analysis

Component
Vulnerability

Analysis

App Analysis
Report

AbNORMAL
Feature 
Misue

Fig. 1 DroidAnalyst overview

4.2 Static App Analysis

The static analysis module is formed of multiple analysis components (Permission

risk model, Component vulnerabilities detection, taint analysis, ICC-based control

flow analysis and signature-based malware variant detection model). The initial

impression of the APK is generated by calculating the corresponding hash value

is matched against the VirusTotal database. In this step, our system compares the

MD5 and SHA1 of inspected APK with the hash signatures of VirusTotal malware

database. Detection ratio of suspect malware is tested against 56 commercial anti-

malware. This step is an indicator for identifying already known malware APK.

Simultaneously, indicators such as the use of reflection code, the presence of the

cryptographic code, dynamic code loading, and the presence of native code inside

APK. The APK file is then reverse engineered to its Dalvik bytecode and gain access

to the Android components. We analyze the Androidmanifest.xml to avail the

list of permissions requested by the APK. We use APK Tool [11] for the same. Apart

from permissions, we extract components, intents, services and broadcast receivers

for the vulnerability analysis. SDK version of the APK is also listed to ensure the

compatible APK is given to the dynamic analysis module.
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We further analyze the executable code, i.e., the Dalvik bytecode in theclasses.
dex. It is reverse engineered to an intermediate smali [12] format to perform auto-

mated parsing. DroidAnalyst is capable of identifying the advertisement libraries

from the Dalvik bytecode to ensure proper identification of executable code and

hence the analysis report remains accurate. The smali file corresponding to each

class is inspected for malicious functionality or dangerous methods.

4.3 Android Permissions RISk Modeling (ApPRaISe)

Android permission model is an important security measure to prevent unauthorized

access to sensitive resources. Permissions classified dangerous in the Android frame-

work use resource that costs money. Dangerous permissions used by the APK devel-

oper need to be explicitly accepted and installed during APK installation. Thus, users

have to understand the impact of dangerous permissions. For example, it is uncom-

mon for a game app to request SEND_SMS permissions. Unfortunately, the majority

users ignore to check required permissions during installation. Furthermore, naive

users cannot identify the potential misuse of app permission. Hence, we propose

ApPRaISe, an app permission assessment model that determines the risk associ-

ated with dangerous permissions. Further, the presence of essential bytecode features

such as native, dynamic, cryptographic and Reflection code is identified.

Individual dangerous permissions may not be harmful in themselves; for example,

an app using INTERNET or READ_SMS permission individually may not pose a risk

to the user device. However, if the app requests both the permissions together in an

app, those permissions can be misused to harm the user privacy. Hence, we perform

the n-Set permission usage analysis to identify the dangerous permissions risk.

4.3.1 n-Set Permissions Usage Analysis

Comparison of dangerous permissions between benign and malware apps con-

sidering the combination of 2 permissions (2-Set) combination of 3 permissions

(3-Set) and 4-Set is performed on a reasonable size dataset. Figures 2 and 3 gives

the comparative analysis for 2-Set and 3-Set permissions respectively. In fact, we

analyzed 4-Set and 5-Set permissions, but the number of apps that cover those

sets were not significant. In 2-Set (Fig. 2), INTERNET/READ_PHONE_STATE and

INTERNET/READ_SMS are requested by more malware than benign apps. Sim-

ilarly, the Figure illustrates many such combinations requested by malware com-

pared to benign apps. From the total permissions of both data sets, top 70 permission

combinations are selected as features. Additionally ApPRaISe considers following

Dalvik bytecode features:
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Fig. 2 Comparative analysis for 2-Set permission
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Fig. 3 Comparative analysis for 3-Set permission
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1. Cryptographic Code: This feature is present if the strings are encrypted in an

APK file.

2. Native Code: This feature is present if an app contains native (C/C++) code

embedded as library or executable.

3. Dynamic Code: This feature is present if an app can load external Java classes

at runtime.

4. Reflection Code: This feature is present if an app uses Java Reflection API in the

code.

The proposed model also identifies over-privileged permissions declared in the

Androidmanifest.xml, absent in the Dalvik bytecode. To determine the unused

permissions ApPRaISe:

1. Lookup APIs, intent-filters or content providers corresponding to the permission

from mapping database and find their usage in the app. If usage is not found, we

conclude that permission is unused, otherwise follow next step.

2. Perform reverse path reachability analysis using synchronous and asynchronous

control flow and locate the bytecode where the permission is used.

3. If the topmost method found in the path is an entry point method called by the

Android framework (e.g., onClick, onCreate, onBind); we conclude that permis-

sion declared in the manifest file has been used in the app code; hence justified

use declared permission. Otherwise, permission is treated as declared but unused,

hence over-privileged.

4.3.2 Results

We have evaluated the ApRaiSE model on 73 features (permissions and bytecode

features) extracted from 11,639 apps and trained with Random Forest [15] decision

tree algorithm. Random Forest is chosen as the machine learning model to balance

the performance trade-off. Permission modeling results are illustrated in Table 1,

enlisting acceptable low false positives.

Random Forest machine learning classifiers [15] are nearest neighbor predictors

for regression and classification to construct multiple decision trees during training

and testing. Random forests form a strong learner classifier from a group of weak

learners as it brings weak classifiers together [15]. Hence, the Tree-based Classifiers

are considered for accurate classification. The machine learning model used k-fold

cross–validation to discriminate malicious APK from the normal files.

Table 1 Performance of

ApPRaISe on 73 features
Actual class Predicted class

Malware (%) Benign (%)

Malware 81.3 18.7

Benign 2.8 97.2
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Table 2 Performance of

ApPRaISe on top 20 features
Actual class Predicted class

Malware (%) Benign (%)

Malware 84.6 15.4

Benign 7.7 92.3

A good feature selection algorithm must have: (1) simplified model; (2) short

training time; and (3) reduced variance. The ApPRaISe model further identified top

20 permission features with minimum redundancy Maximal Relevance [38] feature

selection algorithm. mrMR employs mutual information, correlation, or similarity to

identify and remove the redundant features. The mrMR maximizes the mutual infor-

mation of the selected attributes with a combinatorial estimation [7] to extract robust

probabilities and thus improves the relevant features for accurate classification.

The evaluation results discussed in the Table 2 illustrate 85 % accuracy based on

permissions and bytecode features. The test phase the benign and malware apps, it

was observed that the apps using ACCESS_NETWORK_STATE always paired with

the INTERNET permission. More than 72 % apps requested ACCESS_COARSE_

LOCATION AND ACCESS_FINE_LOCATION permissions. Genuine Wallpaper

APK files also included such permission. Some applications were over-privileged or

require excess permission such as reading the browsing history, bookmarks, reading

phone storage, even though the app category did not necessitate this. Hence, the

ApPRaISe model developed the n-set model to detect risky apps based on the user

private data invasive practices.

4.4 INVAsiON—IdeNtifying Vulnerable App cOmpoNents

Android framework allow developers to divide their apps into one or more logical

components such as activities, services, broadcast receivers and content providers.
Besides, the framework also provides API to facilitate inter-app communication. An

app can export its several components to allow other third-party apps for re-use.

To illustrate a real-world scenario, we developed an app that captures pictures by

communicating with device camera app. Internally, inter-app communication hap-

pens between components of two different apps using higher level abstractions such

as Intent. Unfortunately, the exported components of an app can be vulnerable to

attack by adversaries if proper care is not exercised. Android framework recommends

that a developer should protect the exported app components using permissions.

Grace et al. [29] developedWoodpecker to identify vulnerable components in pre-

loaded system apps within stock Android versions of OEMs. However, the authors

perform reachability analysis on exported components using the control-flow to

investigate the execution paths using dangerous permission. An exported compo-

nent can be utilized by malicious apps to exploit an un-intentional benign app to

elevate the malicious privileges. For example, a benign app component sends SMS
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... ... ...

Entry points of
components

Methods that
call dangerous APIs

1. Find out methods in Dalvik
bytecode that access dangerous APIs

Control-flow
includes
asynchronous
path

2. Perform reverse reachability
analysis using control-flow

3. Identify which components
are exported without proper
protection

Fig. 4 Working of INVAsiON

by accepting the phone number and message text as arguments of an Intent. If

this component is exported without proper protection, malicious apps can leverage

it to send SMS messages without requesting SEND_SMS permission in its mani-

fest. Thus, it is important for developers to vet their code to ensure the protection

of declared components. Figure 4 illustrates the steps performed by the proposed

INVAsiON to identify the exported and vulnerable components.

As illustrated with steps in Fig. 4, the first step is to search for Dalvik bytecode

methods that access the dangerous permissions. In step 2, we perform the reverse

reachability analysis using control flow to check if the execution path is initiated from

an entry point of some exported component. In contrast to the Woodpecker, we iden-

tify feasible paths from entry points that can lead to usage of sensitive permission.

An advantage is that the information about the permission that can be misused is also

identified. Further, unlike the Woodpecker, INVAsiON does not perform data-flow

analysis to find an exact relation between the arguments of an exported components’

entry points to API calls related to dangerous permissions. The report points to the

vulnerable component and potential permission misuse.

Further, we also consider the asynchronous API calls. For example, consider

the java.lang.Thread class. This class is used to implement threads, which

apps generally use to perform background tasks for better UI responsiveness. A

developer just have to simply extend this class, implement the run() method, and

then call the start() method to schedule the thread. However, if we analyze

Dalvik bytecode of an app, the run() method does not appear to be reachable from

start(), despite the fact that after the start() method is called, control-flow

goes through the Dalvik VM to the underlying thread scheduler and eventually to

the run() method (See Fig. 5). INVAsiON considers asynchronous APIs like these

to keep continuity in building control-flow graph. Particularly, we currently con-

sider Thread, Runnable, TimerTask, CountDownTimer, AsyncTask and

Handler APIs.
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Fig. 5 Discontinuity in

control-flow due to

java.lang.Thread

Entry Point

Thread::start()

...

Method that
calls dangerous API

Thread::run()

...

Scheduler

Discontinuity

Continuous
control-flow

We recommend that, unless it is necessary, vulnerable exported components of

an app must be protected by either signature or signatureOrSystem level permis-

sions to limit their exposure. The problem limit the malicious app from accessing

the vulnerable component due to the unavailability of same certificate.

4.5 DEPLorE—DEtecting Privacy LEakage

In the following, we enumerate the challenges and requirements for developing a

precise static taint analysis algorithm [27]:

1. The app components follows a lifecycle imposed by the Android framework.

Component lifecycle has pre-defined or user-defined callback methods. The com-

ponents are invoked at different times during app execution. Precise control-flow

generation requires an app to model the lifecycle accurately.

2. Algorithm should be context sensitive in nature. A context-insensitive analysis

joins the analysis results for a method m at all call sites to m even if the arguments

to m at those call sites differ.

3. Algorithm should be object-sensitive in nature. That is algorithm should be able

to distinguish between instances of the same object (i.e., class).

4. Similarly, the algorithm should be field sensitive in nature.

5. Algorithm must consider the semantics of several API and Dalvik bytecode con-

structs like arrays.

4.5.1 Implementation Details

DEPLorE, like FlowDroid [27], is context–, object–, field– and flow–sensitive,

aliasing aware implementation of static taint analysis algorithm to detect privacy
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Table 3 Partial list of taint source and sink APIs

API Type
android.location.Location::getLatitude() LOCATION

android.telephony.TelephonyManager::getDeviceId() DEVICE_INFO

android.telephony.TelephonyManager::getSubscriber() DEVICE_INFO

android.accounts.Account::name ACCOUNT_INFO

java.io.FileOutputStream::write(Byte[]) FILE

java.net.URL::URL(String, String, int, String) INTERNET

android.telephony.SmsManager::sendTextMessage
(String, String, String, PendingIntent,
PendingIntent)

SMS

Fig. 6 An overview of

DEPLorE Prepare taint
sources & sinks

Parse APK file

Detect sources
& sinks in
bytecode

Traverse towards
top-level

methods in CFG

Add component
lifecycle methods

Initialize static
classes

Perform Taint
Analysis

invasion in Android apps. We consider location, device information,
installed packages, Wi-Fi, and Bluetooth details and account infor-

mation as taint sources. Further, File, Internet and SMS are our taint sinks. Table 3

lists the present source and sink API calls. We have Formalized the Dalvik bytecode

semantics into an abstract state machine based on the ScanDal [32] approach.

Figure 6 illustrates the proposed taint analysis DEPLorE functionality. App byte-

code may contain a large number of execution paths; so instead of traversing every

possible path, we prune it by searching the methods in which source and sink APIs

have been accessed. Furthermore, with the help of control-flow graph (CFG), we

traverse towards top-level methods, which gives us an opportunity to find common

execution paths for both sources and sinks. Before starting actual taint analysis, we

initialize abstract state machine environment by creating instances of static classes in
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Table 4 Accuracy of DEPLorE against DroidBench test suite

Test case # of Apps Detected by DEPLorE

Android specific 6 5

Callbacks 13 8

Field and object sensitivity 3 2

General Java 10 8

Implicit flows 4 2

Inter-app communication 3 1

Lifecycle 10 8

Reflection 4 3

a heap and also prepend lifecycle callback methods for every component of interest in

the list of top-level methods. Then, we perform inter-procedural taint analysis for all

the Dalvik methods in the list by employing the modified fixed-point algorithm [18].

It must be noted that among top-level Dalvik methods that are user triggered call-

back methods, privacy leak may happen in a particular sequence during execution.

To prune the search for privacy leak, we strictly perform taint analysis of source
methods before the sink methods.

4.5.2 Results

We have evaluated DEPLorE against DroidBench,
1

an open-source, comprehen-

sive test suite to assess the effectiveness and accuracy of taint analysis tools for

Android [27]. DroidBench consists of some apps that cover a broad range of privacy

invasive scenarios, including false leakage scenarios. Table 4 illustrates the detection

rate of DEPLorE against DroidBench test suite.

4.5.3 Limitations

DEPLorE is still to handle important cases such as location-related API callbacks,

reflection, inter-component communication, APIs related to byte streams, bytecode

array semantics and class hierarchy analysis. Further, additional taint sources such

as browsing history, contacts and SMS messages can be added to strengthen the taint

analysis.

1
https://github.com/secure-software-engineering/DroidBench.

https://github.com/secure-software-engineering/DroidBench
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4.6 AndroSimilar—Robust Statistical Malware Signature

We have integrated AndroSimilar [24], our proposed statistical malware variant

detection method, as a part of DroidAnalyst to detect obfuscated malware variants.

As the proposed approach is effective against code obfuscation, repackaged mal-

ware of known benign apps, we have integrated the approach with DroidAnalyst.

AndroSimilar is a byte analysis method that finds regions of statistical similarity

with known malware to detect those unknown, zero-day samples. We also show that

syntactic similarity considering whole app, rather than just embedded DEX file is

more efficient, contrary to known fuzzy hashing approach. A brief summary of the

proposed approach is given below.

∙ Submit Google Play, third-party or an obfuscated malicious app as input to

AndroSimilar.

∙ Generate entropy values for every byte sequence of fixed size in a file and normal-

ize them between [0, 1000].
∙ Select statistically robust byte features as per the similarity digest hashing scheme.

∙ Extracted features are stored in the sequence of Bloom Filters to generate the APK

signature.

∙ Compare the generated signature with existing malware signature database. Sim-

ilarity score beyond a given threshold marks the sample as repackaged malware.

The proposed methodology needs a fewer number of signatures, the variants of a

single malware family have a strong code co-relation. Further, we choose to clus-

ter variants representing robust bytecode similarity and discard the other app signa-

tures. Signature clustering is performed with SDHash [44–46] similarity. The dis-

tance between the signatures within a cluster is quite small (i.e., high similarity)

according to an empirically chosen inter-app similarity threshold. From each group,

we choose a single point capable of representing all the apps in the cluster. App

feature that are dissimilar to others files is described as a separate cluster. However,

reduced signatures may miss the low similarity unknown variant. Nevertheless, such

techniques are suitable for mobile devices.

4.7 AbNORMAL—ANdrOid FeatuRe Misuse AnaLysis

SMS Trojan apps that send SMS or make calls to premium-rate numbers have an

alarming share in overall malware outbreak. An increased number of SMS Tro-

jan apps is due to significant monetary gains. An innocent user cannot judge the

appropriateness of permissions requested by an app according to its functional-

ity [30]. The first SMS Trojan app, Trojan-SMS.AndroidOS.FakePlayer,

disguised as a music player, was reportedly distributed from Google Play in 2010 [6].

Android Malware Genome project [9] reported many more SMS Trojan families
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such as HippoSMS, DogWars, GGTracker and YZHCSMS. In 2012, the anti-

malware industry got hold of other families such as SMS.Boxer, SMSFoncy and

SMStado [3–5].

In particular, we identify malicious activity such as sending SMS or make calls

to premium-rate numbers, recording audio/video and taking pictures without user’s

knowledge or consent as feature misuse in general. AbNORMAL prototype per-

forms inter-component control-flow dependence analysis to detect feature abuse in

Android apps. AbNORMAL generates a precise and complete Control-Flow Graph

(CFG) using static program analysis of Dalvik bytecode. The technique incorpo-

rates execution path of sensitive resource access (sending SMS, taking pictures), to

reach towards the top-level methods. Then, all the top-level methods are examined

to identify if they are user-triggered events (e.g., onClick) or entry points (e.g.,

onCreate) triggered by the Android framework. We assume the hypothesis that the

legitimate access to sensitive resources in apps originate from user triggered inputs.

However, we observe that not all Trojan apps send SMS messages without initiated

from user-triggered events. For example, the more recent variant of FakeInst fam-

ily tricks users to purchase paid contents by clicking on UI, and instead they send

SMS to premium-rate numbers. We believe such cases are very difficult to detect and

consider them out of scope.

4.7.1 Inter-component Control-Flow Graph

Our analysis for feature misuse in apps depends upon the quality of control flow

graph (CFG). CFG is a directed graph, where a node represents a code block (i.e.,

the sequence of bytecode instructions), and an edge represents a path dependency

between two nodes. An edge can be one of the following types:

∙ Conditional: It represents a conditional branching (i.e., if, while, case,
for etc.) from one node to another node within a method.

∙ Synchronous: It represents a direct flow from one node in method m1 to another

node in method m2 in the graph. The method invocation in Java is an example of

a synchronous flow.

∙ Asynchronous: It represents an indirect flow from one node in method m1 to

another node in method m2 in the graph. For example, forking a java.lang.
Thread or scheduling a java.util.TimerTask.

∙ ICC: It represents an interaction between different components of an app. For

example, an activity component can interact with a service component using the

startService() API.

Each type of the edge can be visualized in the CFG as illustrated in Fig. 7.

We have developed AbNORMAL in Python on top of state of the art static pro-

gram analysis toolAndroguard [13]. Androguard decompiles the Dalvik bytecode

of an app and generates programmable structures including inter-procedural CFG.

We augment this CFG with asynchronous control-flow information. Particularly,
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if src.getId() != -1

CALL
this.service_call_1()

thread = new DerivedThread();
thread.start();

AppDemo::onClick()
service_call_1()

CALL
startService(...)

Return

Return

RETURN
this.service_call_1()

RETURN
startService(...)

......

MyService::onCreate DerivedThread::run

thread = new SMSThread();
thread.start();

......

Return

DerivedThread::run

smsManager = SMSManager.getDefault();
smsManager.sendTextMessage(...);

......

Return

Synchronous Call

Inter-component Communication

Asynchronous Call

Fig. 7 ICC CFG example

we currently consider Thread, Runnable, TimerTask, CountDownTimer,

AsyncTask and Handler APIs.

We further augment CFG with ICC information. We build CIG of an app by

applying interprocedural data-flow analysis [18] on the ICC API. The node of the

CIG represents a component of an app, whereas edge from one node n1 to another

node n2 represents the fact that component n1 launches n2. Initially, we search for

the source components in Dalvik bytecode that use ICC related APIs. Then we per-

form interprocedural constant propagation [31] to identify possible argument values

of these APIs at runtime. These constant argument values are further analyzed to

resolve possible target components launched from the source components. As con-
tent providers in an app provide only data related services, we currently exclude

while building CIG. The procedure is listed below:

4.7.2 Implementation Details

1. Identify the methods in Dalvik bytecode that access sensitive features of interest

(i.e., sending SMS, recording video).

2. Build a precise and complete CFG by taking into account asynchronous APIs as

well as CIG.



538 P. Faruki et al.

BootReceiver->onReceive() SplashActivity->onCreate()

MessageService->onStart()

MessageService->sendSMS()

MessageService

SplashActivity

BootReceiver

SelectList

Service Component

Broadcast Receiver Component

Activity Component

Fig. 8 CIG and feature misuse in HippoSMS malware

3. Perform reverse path reachability in CFG to ascend towards top-level methods.

4. Classify top-level methods into user triggered and entry point callbacks.

4.7.3 Results

In this section, we evaluate the effectiveness of AbNORMAL by analyzing some

notable SMS Trojans and Spyware apps. We have also evaluated AbNORMAL

against benign apps from Google Play store to verify legitimate usage of sensitive

features.

4.7.4 HippoSMS

HippoSMS malware family was found in Chinese app stores in July 2011. It sends

SMS messages to hard-coded premium-rated numbers. Moreover, it can also

block/remove reply messages from service providers to prevent the user from know-

ing about the charges incurred. Partial CIG of an app of this malware family (left)

and SMS feature misuse (right) is illustrated in Fig. 8.

We observe that the sendSMS() function of MessageService component is

sending SMS messages to premium-rate numbers. The component gets invoked from

the entry point of same component. We can observe from the CIG that

MessageService component is launched by both SplashActivity and

BootReceiver components. Ascending up toward the top, we can conclude that

this app sends SMS at two instances: (1) WheneverSplashActivity is launched,

and (2) The BootReceiver is executed due to broadcast event.

4.7.5 Evaluation

Table 5 illustrates AbNORMAL evaluation. The existing analysis techniques evaded

by the advanced malware is identified with the proposed AbNORMAL. Promising
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Table 5 Sample evaluation of CONFIDA

Package name Sensitive

feature(s)

# of sensitive feature paths

Total Without

user

triggered

events

Correctly

detected by

CONFIDA

Malware apps

com.ku6.android.videobrowser

(HippoSMS)

SMS 2 2 2 ✔

org.me.androidapplication1 (FakePlayer) SMS 1 1 1 ✔

kagegames.apps.DWBeta (Dog Wars) SMS 1 1 1 ✔

t4t.power.management (GGTracker) SMS 1 1 1 ✔

com.talkweb.ycya (RogueSPPush) SMS 1 1 1 ✔

com.mobile.app.writer.zhongguoyang

(Pjapps)

SMS,

Audio

3 3 3 ✔

com.software.application (SMS Boxer) SMS 7 3 3 ✔

com.parental.control.v4 (Dendroid) SMS, Call,

Audio,

Video,

Photo

6 6 6 ✔

Benign apps

cn.menue.superredial
1

Call 2 1 2 ✗

com.wn.message SMS 3 0 0 ✔

polis.app.callrecorder
1

Audio 1 1 1 ✗

com.me.phonespy
1

Photo 1 1 1 ✗

com.Rainbow.hiddencameras Photo 1 0 0 ✔

✔ depicts correct detection. ✗ depicts True Negatives (TNs) and False Positives (FPs) in malware

and benign category respectively

Google Play apps: https://play.google.com/store/apps/details?id=cn.menue.superredialhl=en,

https://play.google.com/store/apps/details?id=com.appstar.callrecorderhl=en

results of the approach motivates the use of AbNORMAL as an app vetting frame-

work. Table 5 enlists Google Play apps identified malicious with the proposed

approach.

Static analysis is an effective approach that analyzes applications without exe-

cuting them. If the application is encrypted, obfuscated or requires some input to

execute, it has to be executed to analyze its runtime behavior. We leverage the exist-

ing Android emulator provided with the SDK for analysis. Emulator being a software

can be easily reset to its clean state once the app under execution has been tested. In

the following section, we discuss the necessity and integration of dynamic analysis

module in the DroidAnalyst.

https://play.google.com/store/apps/details?id=cn.menue.superredialhl=en
https://play.google.com/store/apps/details?id=com.appstar.callrecorderhl=en
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5 Dynamic Analysis

In this section we detail the scalable, and a dynamic analysis module to analyze, and

detect advanced Android malware and resource hogger apps draining the Android

devices. Privacy risk apps may leak user information such as smartphone identi-

fication number (IMEI), subscriber identification (IMSI) without the device owner

knowledge and consent. The advanced malicious apps like Anserverbot, Pincer [41],

roguelemon [41] have an inbuilt capability to identify the analysis environment based

on the existing static properties. If the malicious app identifies the analysis environ-

ment, it behaves benign. We identify such properties as anti-analysis techniques.

To counter such advanced malware and reveal their malicious behavior, we exe-

cute the apps in an emulated environment enriched with static, anti anti-analysis
capabilities to detect the environment reactive malware. The anti anti-analysis tech-

niques are defined as the modification of static parameters within the Android

virtual device to resemble them as real Android devices. The proposed modifica-

tions are successful in revealing the hidden behavior as they identify the proposed

Sandbox as real Android devices. Proposed Sandbox monitors file operations, app

downloads, suspicious payload installation, encrypted strings, premium rate SMS

and voice calls. The proposed approach also monitors aggressive app behavior such

as contacting URLs that exploit the network bandwidth.

The essence of the proposed dynamic analysis sandbox is its multiple analy-

sis methods as illustrated in Fig. 9. When an app is submitted to the Sandbox, a

clean, isolated environment is initialized with a refreshed Android emulator consist-

ing clean OS snapshot. Android Virtual Device (AVD) manager [1] allows creation,

execution, saving and restores and load the emulator. The emulator is customized

by: (1) installing the appropriate system apps (Google Market app, default Google

apps); (2) wallpaper settings are modified; (3) default user settings are changed by

adding, phone numbers, SMS messages; and (4) user settings are customized. The

modified device (emulator) is launched each time as the new APK file is submit-

ted for analysis. The Sandbox starts the emulator(s) with a save-to-snapshot state

to resemble it as a real device by adding wallpaper, messages, contacts and setting

custom device settings. Each time an app is submitted for analysis, clean emulator

snapshot is loaded.

As illustrated in Fig. 9, the Framework core controls all the components for essen-

tial feature collection, facilitates the AVD loading, and generates the analysis report.

Dalvik Dynamic Instrumentation (DDI) hooking libraries hook their methods for

behavior monitoring. Analysis module results are summarized to predict malicious

behavior, resource hogging activity or benign behavior. Proposed sandbox employs

DDI to identify resource hoggers and privacy risk apps.

The analysis environment sets up static, anti anti-analysis features to modify

static emulator properties to resemble it as a real device. Proposed Sandbox is scal-

able as we employ a transparent functionality without changing the Android plat-

form. Resource Hogger App detection is based on anomalous consumption of CPU,
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memory or network resource consumption in comparison to benign apps. The pro-

posed approach finds a strong link between malware and its resource usage pattern.

App tagging is performed based on its behavior.

5.1 Anti Anti-analysis Capabilities

Persistent, advanced Android malware families like AnserverBot, Bgserv and Fak-

enetFlix defend themselves against analysis environment and obtain more propa-

gation time to avoid revealing malware behavior on the emulator. We modify the

IMEI, IMSI, serial number, phone number defaults that are easy to verify an emulator

identity. Changes are made to geolocation properties, system time, E-mail account

configuration, wallpaper apart from adding images and audio/video files to change

the default look. With all these random changes, it would be difficult even for an

advanced Android malware to detect the virtual environment. Table 6 compares the

static parameters used by anti-analysis malware to fingerprint the analysis environ-

ment. As the default emulator is used to achieve better performance, malware authors

detect the listed static defaults and hide the original malicious behavior. Hence, we

extracted the corresponding device parameters of Samsung, Nexus 7 Tablet, Micro-

max and Karbonn devices. Furthermore, we modified the default Android emulator

and replaced the Android defaults with the real Android device. This technique had a

desired effect on environment aware malware. Anserver, Bgserv, Dendroid malware

samples that do not execute on the existing web services, displayed the malicious

behavior assuming that they are running on a real device.

5.2 App Stimulation

Many apps avoid their normal functioning on the standard emulator. However, when

we Design a behavioral analysis framework, we need their actual functioning to

detect malicious activity. Hence, we need to lure apps by providing the required envi-

ronment. So we find all the Intents needed by the app and generate them with the

Android Debug Bridge (ADB); to start corresponding components (i.e., activity, ser-

vice or broadcast receiver). The Intents may be developer defined or broadcast. We

try to generate some of the Intents implicitly by performing the task like SMS_SENT

or NEW_OUTGOING_CALL and explicit generation of other Intents. In case of the

time triggered actions, we change emulator’s system time to future time with some

fixed interval. For example, incrementing an hour 24 times with 3 seconds inter-

val during the app execution at some point in time. To simulate user events, we use

Android Monkey [1], a command line tool that provides random user inputs to the

Android package with a reasonable control over the type and the number of injected

events. The framework initiates activities and services from android debug bridge

(Adb) to lure a persistent threat to begin malicious service if present.
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Table 6 Comparison of static parameters of android AVD and real android device

Property value Default AVD Real android device

IMEI 000000000000000 911315462535214

IMSI 310260000000000 925117254763458

Phone Number 15555525554 121314115554

Serial Number 98101430121181100000 54215E52C54525851254

Network Android Tmobile

ro.build.id ICS MR0 IMM76I

ro.build.display.id sdk-eng 4.0.2 ICS MR0229537

testkeys

TBW592226 8572 V000225

ro.build.version. incremental 229537 TBW592226 8572 V000225

ro.build.version.sdk 19 17

ro.build.version. release 4.0.2 4.2.2

ro.build.date Wed Nov 23 22:46:18 UTC

2011

2013 01 25 15:53:21 CST

ro.build.date.utc 1322088378 1359100401

ro.build.type eng user

ro.build.user android-build ccadmin

ro.build.host vpbs2.mtv.corp.google.com BUILD14

ro.build.tags test-keys test-keys

ro.product.model sdk msm7627a

ro.product.brand generic qcom

ro.product.name sdk msm7627a

ro.product.device generic msm7627a

ro.product.board 7× 27

ro.board.platform msm7627a

ro.build.product generic msm7627a

ro.build.description sdk-eng 4.0.2 ICS MR0

229537testkeys

msm7627a-user 4.0.4

IMM76ITBW5922268572

V000225 testkeys

ro.build.fingerprint generic/sdk/generic:4.0.2/ICS

MRO/ 229537:eng/test-keys

qcom/msm7627a/msm7627a:

4.0.4/IMM76I/ TBW592226

8572 V000225: user/test-keys

net.bt.name Android Airtel

5.3 Behavioral Analysis

After recording the app actions, we analyze them with behavioral analysis with

logcat results to detect additional installations, new process spawns and SMS sent.

We scan the traffic(.pcap) files to analyze malicious URL or sensitive information

leakage. Analysis of system calls relates file and network related activities. Addi-

tionally we use Dalvik Dynamic Instrumentation (DDI) to keep track of dynamic

operations. Using DDI we use string monitor to monitor string operations and track

some external operations like SMS sent/received, and phone calls.
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Proposed analysis reports few system calls (bind and connect) prominently visible

among malware apps, hence an app with such calls is considered risky. Proposed

Sandbox marks actions like sending SMS, e-mail(s) without user consent as covert

misuse of existing facilities not seen among normal apps. Sending private user data

such as call logs, contacts, existing SMS and e-mails, encrypting sensitive user data

(contacts, SMS), GPS coordinates activities not visible in normal apps. An app is

termed Potential Risk if its behavior deviates from normal:

∙ Sending Device data (IMEI and IMSI)

∙ Use of executable and shell files during execution

∙ Permission gain for any of its files

∙ Prohibits app removal once installed on the device

∙ Use of certain prominent System calls not used by normal apps

5.4 Network Activity

Android emulator natively supports the network traffic capturing. The proposed

approach integrates TCPDump [8] to capture the network traffic to a PCAP file.

The data such as some bytes sent, bytes received, URLs contacted, messages sent

to hard coded numbers are monitored to identify suspicious activities. Further the

host connected to, the port used for connection and data sent is identified. Malicious

Domains are identified with the URL blacklists. PCAP content classifies the network

activity during the post processing.

5.5 Resource Hogger or Aggressive Malware Analysis

We analyzed comparative resource usage pattern of number of benign and mali-

cious apps to construct a threshold pattern that would be reasonably greater than the

benign usage (e.g., twice the benign usage) but lesser than the peak malware usage.

Resources consumption may change in the course of execution, so we fetch maxi-

mum usage by a given app category, i.e., the difference between the resource usage

before, during and after completing the app execution.

5.6 Dalvik Dynamic Instrumentation (DDI)

DDI [36] hooks itself to classes and methods of Dalvik Virtual Machine (DVM). We

use DDI to observe various runtime strings to detect encrypted malware. Framework

Instruments hooks for SMSManager class to keep track of messages sent by an app

and Intent class to monitor phone calls and e-mails.
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5.7 Machine Learning Analysis Model

As a preliminary step, representative Google Play and different families of malware

apps are chosen. These apps are used to train the framework by recording behavioral

information. It is converted to features and are marked according to their respec-

tive category. Using these feature vectors, we train the machine learning algorithms

to test the potential app under execution. Random Forest machine learning classi-

fiers [15] are nearest neighbor predictors for regression and classification to construct

multiple decision trees during training and testing. Random forests form a strong

learner classifier from a group of weak learners bringing them together [15]. Hence,

Tree-based Classifiers are considered for accurate classification. The machine learn-

ing model used k-fold cross–validation to discriminate malicious APK from the nor-

mal files.

5.7.1 Analysis Tools

We use some tools available on emulator that are as follows:

∙ Logcat: Tool to access Android system log. It provides a mechanism for collecting

and viewing system debug output.

∙ Tcpdump: Command line tool to intercept the packets being received and trans-

mitted over the network.

∙ Monkey: Command line tool available on emulator/device to simulate prespeci-

fied number and type of user events.

∙ Strace: Command line tool available on Android emulator/device for system call

tracing.

∙ Dumpsys: It dumps the state of the various components of Android emulator. It is

also available as a command-line tool. It is capable of dumping the emulator state

and its snapshots.

5.8 System Call Monitoring

The existing approaches Droidbox, TaintDroid or the analysis systems using them

only analyze the Dalvik bytecode. However, Android apps also allow the usage of

native code getting executed on the processor. Thus, the native code tracing is not

possible. To track the native code we have included the modified strace tool for

Android to intercept the system calls of the app being monitored. Once the APK

is launched in the emulator, strace instance is initiated and gets attached the Dalvik

process of the executing APK file. Then, the native calls are recorded for further

analysis. Analysis of System calls helps to understand file operations and network

related app actions. The framework fetches the files written/modified during the

execution and scan for any traces of user data. During the analysis on a number
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of Android apps (benign and malicious). Specific system calls such as bind and
connect have been visible among the malware APK. Hence, the system call analy-

sis tags an app as Risky once it identifies the usage of such system calls.

6 Evaluation

The motive of DroidAnalyst is to provide the researchers an automated app analysis

framework with an APK report including the results of the static and dynamic analy-

sis. It is further used to interpret the Android app as a normal or malicious, rather

than the automatic identification by the system. We evaluate DroidAnalyst to verify

the web-based system provides enough information to an analyst. We have analyzed

the following aspects during evaluation: (i) app stimulation, (ii) system correctness,

(iii) performance evaluation, (iv) detect environment aware apps, (v) detectability,

and (vi) scalability analysis.

DroidAnalyst has been released for researchers. The static analysis approach takes

average 2 min to analyze and generate the response. The dynamic module takes an

average 7–12 minute execution time. The maximum time limit is 15 min within the

Sandbox. The emulator takes about 50 seconds to reboot the clean state, load stim-

ulation techniques, and anti anti-analysis features to handle the subsequent execu-

tion. The Android Monkey spends an average 5 min for app interaction by inserting

the gestures and stimulation techniques. The post processing techniques need about

2 min to extract the features from execution logs (i.e., Network traffic, System calls,

UI gestures and stimulation methods, files created, written). The extracted informa-

tion is submitted to the machine-learning algorithms for post-processing analysis

techniques. The DroidAnalyst is capable of running eight emulation instances in

parallel; However, it can be scaled further according to the analysis requirements.

6.1 App Stimulation Effects

The core functionality of DroidAnalyst is to generate a complete APK interaction

report rather than detection. Hence, the system needs to stimulate the app reveal as

much as possible. Hence, to test the stimulation engine effect, we chose 172 Google

Play store and 165 malicious apps from different families. Furthermore, we applied

techniques to initiate UI component, i.e. the activity component for interaction. The

app not responding to the system were separated.

At the first stage individual stimulation techniques were applied (invoke only;

main activity, monkey tool, app stimulation, and DDI hooking). The complete picture

is illustrated in the Fig. 10. The first bar illustrates the initiating the main activity.

The second one is a combination of monkey gestures and main activity. The third

bar displays response to differently implemented stimulation techniques. The bar

labeled DroidAnalyst illustrates the results of multiple stimulation techniques put
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Fig. 10 Comparison of
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together. The results shows the effect of combined stimulus resulting in high code

coverage. For example, random clicks generated by the Android Monkey triggers

SMS sending activities. However, services are triggered with the service iterators. It

is also interesting to note that combination of multiple techniques has high coverage

as compared to one single method. Hence, the integration of the synergy of static

and dynamic analysis is justified.

6.2 System Correctness

The system correctness methodology ensures that the logs of an APK is generated

only when such action deemed to have been performed. We chose random 10 samples

from known families performing varied malicious activities. Anserverbot malware

checks forIMEI andModel.build to verify the presence of analysis environment.

If the app detects emulator based on static properties, it hides the malicious behavior.

If the malicious APK identifies random numeric values, it sends the IMEI to a remote

server. FAkeInstallermalware sends premium rate SMSmessages without user

consent. RootSmart malware employs root exploits and executes native calls to

exploit the device.FakeInst andAdSMS sends premiumSMSmessages apart from

sending theIMEI andIMSI numbers to the remote server. TheTapSnakemalware

family leaks user location to the remote server for targeted advertisements. Dendroid

malware clicks pictures, records audio and sends call history to the remote server.

The above information is verified and reported by the leading commercial anti-

malware and researchers. Hence, we evaluate the effectiveness of DroidAnalyst

against the known malware. The evaluation reports provide additional information

evading the commercial anti-malware. The reason for the improved effect is the com-

bination of static and dynamic analysis methods.
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6.3 Environment Reactive Malware Detection

Android malware is following the trends of detecting analysis systems; i.e. it identi-

fies the emulated/analysis environment and behaves normally to evade the analyzer.

Various static and dynamic techniques exist to detect the emulation. Variants of Fak-

eNetFlix, Anserver, and Dendroid are equipped with static anti-analysis techniques

to evade the analysis systems. To the best of our knowledge, DroidAnalyst is the first

system to have integrated a range of static, anti anti-analysis techniques to coax the

advanced and targeted Android malware reveal hidden behavior.

6.4 Scalability

The third parameter tests the scalability. Can DroidAnalyst handle the large-scale

analysis response to thousands of hundreds of submissions. Detection of scalability

is evaluated against data crawled between February 2013 and December 2014. A

total 47,342 apps were crawled from Google Play, Anzhi, and other third party Asian

markets; 26,469 malicious are downloaded from virus share, contagiominidump, and

other third party markets. We also received 312 new malware samples based on user

uploads. Out of the total, we randomly selected 6,743 benign and 2,786 from the

malware dataset.

We performed the analysis for 16 days on intel core i7 processor, with 8 GB mem-

ory. Out of the total benign labeled apps, the proposed multiple methods approach

tagged 217 apps as malicious. These apps were already labeled benign by the com-

mercial anti-malware. The benign data labeled normal with anti-malware is classified

malicious with DroidAnalyst. The majority of the samples belonged to FakeInstaller,

Anserver, Kmin and FakePlayer families that either send premium SMS messages

or steals the user information and send them to the remote servers.

6.5 Limitations

DroidAnalyst is not a panacea for APK analysis and has a share of limitations. When

virtual machines are executed on the x86 architecture, fingerprinting methods to

detect execution environment do exist. DroidAnalyst has successfully integrated the

static, anti anti-analysis techniques to coax the advanced malware, but new methods

to detect analysis environment become available. Further, the absence of device sen-

sors can be used to detect the emulator. Google Bouncer has limited the instances of

malware outbreak from Google Play. Hence, it is a challenge for malware authors to

adopt smart techniques to evade the analysis environment.
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7 Conclusions and Future Work

In this chapter, we discuss the intricacies of a user-driven, fully automated Android

app assessment framework: DroidAnalyst. Proposed research framework combines

the synergy of static and dynamic analysis techniques to increase the code coverage

for analyzing emerging malware threats. While illustrating the tool, we have also

elaborated the techniques embedded in the DroidAnalyst framework. A user scans

the APK file to receive a detailed analysis report consisting meta-data information,

permission modeling, bytecode analysis. Furthermore, DroidAnalyst generates app

execution information, component vulnerability analysis, and signature-based mal-

ware variant detection method. DroidAnalyst explores multiple detection techniques

like robust statistical signatures, identification of overprivileged apps, detection of

vulnerable components, detection of covert feature misuse within the static analy-

sis module. Furthermore, the dynamic analysis module counters the obfuscated and

encrypted payloads, performs taint analysis to identify sensitive data leakage and

cryptographic operations used by the advanced malware threats. DroidAnalyst can

be deployed as an App Store verification and vetting tool to protect Android mar-

ketplaces. DroidAnalyst is a modular research framework and currently under active

development for feature expansion.

In future, we would like to develop an interface through which an Android APK

shall be able to upload the samples from target Android device. In future, we plan

to simulate additional sensor features and strengthen the emulator based analysis

including intelligent and efficient custom classifiers that can perform in near real

time within the mobile platform resource constraints.
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Design and Development of Intelligent
Military Training Systems and Wargames

D. Vijay Rao

Abstract Today’s military teams are required to operate in environments that are
increasingly complex. Such settings are characterized by the presence of
ill-structured problems, uncertain dynamics, shifting and ill-defined or competing
goals, action/feedback loops, time constraints, high stakes, multiple players and
roles, and organizational goals and norms. Warfare scenarios are real world systems
that typically exhibit such characteristics and are classified as Complex Adaptive
Systems. To remain effective in such demanding environments, defence teams must
undergo training that targets a range of knowledge, skills and abilities. Thus
oftentimes, as the complexity of the transfer domain increases, so, too, should the
complexity of the training intervention. The design and development of such
complex, large scale training simulator systems demands a formal architecture and
development of a military simulation framework that is often based upon the needs,
goals of training. In order to design and develop intelligent military training systems
of this scale and fidelity to match the real world operations, and be considered as a
worthwhile alternative for replacement of field exercises, appropriate Computa-
tional Intelligence (CI) paradigms are the only means of development. A common
strategy for tackling this goal is incorporating CI techniques into the larger training
initiatives and designing intelligent military training systems and wargames. In this
chapter, we describe an architectural approach for designing composable,
multi-service and joint wargames that can meet the requirements of several military
establishments using product-line architectures. This architecture is realized by the
design and development of common components that are reused across applications
and variable components that are customizable to different training establishments’
training simulators. Some of the important CI techniques that are used to design
these wargame components are explained swith suitable examples, followed by
their applications to two specific cases of Joint Warfare Simulation System and an
Integrated Air Defence Simulation System for air-land battles is explained.
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1 Introduction

Warfare is changing, perhaps more rapidly and fundamentally today, than at any
point in history. The emergence of new operational drivers such as asymmetric
threats, urban operations, joint and coalition operations and the widespread use of
military communications and information technology networks have highlighted
the importance of providing warfighters with competencies required to act in a
coordinated, adaptable manner, and to make effective decisions in environments
characterized by large amounts of sometimes ambiguous information. Warfare
systems are characterized by the presence of ill-structured problems, uncertain
dynamics, shifting and ill-defined or competing goals, action/feedback loops, time
constraints, high stakes, multiple players and roles, and organizational goals and
norms. Such systems are typically classified as Complex Adaptive Systems. While
the beginnings of understanding warfare as a complex adaptive system dates more
than 2500 years to the writings of Sun Tzu, recently, a growing body of literature
describes the broader aspects of defence systems and operations as a complex
systems science. Complexity results from the inter-relationships, inter-actions and
inter-connectivity of elements within a system and between a system and its
environment. They are dynamic systems that are able to adapt in and evolve with a
changing environment. Sir Smith’s thesis [1] that the world entered a new paradigm
of conflict at the end of the 20th and beginning of the 21st centuries, which he calls
“war amongst the people”, and that Western, industrialized armies are ill-suited to
the new style of warfare, is noteworthy.

With rapid advances in technology and increasingly complex defense systems in
operation, substantial effort and resources are spent on training for their effective
usage. To improve the efficiency, effectiveness, usage and safety of training,
organizations and user agencies are investing heavily into developing
computer-based training simulators. While investment in new technologies can
make available new opportunities for action, it is only through effective training that
personnel can be made ready to apply their tools in the most decisive and dis-
criminating fashion. The infeasibility of replicating the environment under which
such systems are deployed and operated, coupled with resource constraints and
environmental hazards are forcing military organizations worldwide to invest
heavily on computer based systems for their training needs. A recent empirical
study on the impact of computer based training (CBT) on maintenance costs and
actions in a sonar system operations found that CBTs use has adversely influenced
parts costs, actions, and labor costs associated with operating and maintenance of
the AN/SQQ-89(v) sonar system and has negatively impacted sailor performance
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on ships. It also suggested that explicit costs are traded for an obscured cost in terms
of parts, maintenance actions, labor-hours readiness [2]. Such studies along with the
lessons learnt during several training sessions of military training simulators and
wargames emphasize that Modeling and Simulation (M&S) is one of the critical
success factors that should be mainstay in designing and developing training
simulators if they are to be effective. In order to design and develop intelligent
military training systems of industry strength scale with fidelity to match the real
world operations, and to be considered as a worthwhile alternative for replacement
of field exercises, appropriate computational intelligence (CI) paradigms are the
only means of development. We describe an architectural approach for designing
composable multi-services and joint wargames, and explain the applicability of the
various CI techniques in every aspect of the architectural design. These are
explained with suitable examples along with potential applications for military
systems design are discussed throughout the chapter.

2 Modeling, Simulation and Military Systems Analysis

Operations Research (OR) and Systems Analysis (SA) are the two related methods
of logically attempting to solve complex problems having a quantitative analytical
component [3, 4]. Figure 1 identifies the various ways of studying a real-world
system. Warfare has many facets of study and analysis and generally classified as
complex, adaptive systems that are nonlinear, dynamic, and show emergence
behaviors. Thus in order to obtain closed form solutions for such systems in their
entirety is elusive. Modeling and Simulation (M&S) is thus becoming the main
approach used by defense organizations to study warfare systems for analysis and
training, model complex military operations, design training and analysis systems
of existing and proposed defense systems. (We shall use the term wargames to also
mean the military training systems that are specific instances of the generic class of
wargames that are implemented for training purposes while the former also
encompasses analytical and research wargames).

One of the major challenges of military systems analysis is to identify the models
that are suitable to the problems at every level of the pyramid. The choice primarily
depends upon the purpose, resolution, and objectives of the study and can be clas-
sified as strategic level, tactical level and operational level games. All the approaches
to force-on-force analysis are underpinned by theories of combat. Combat is an
exceedingly complex and simultaneous interaction of several factors that are typi-
cally classified under complex adaptive systems. Force-on-Force campaign analysis
that use combat models are not intended to predict accurately who is likely to win or
lose and an engagement, a battle, a campaign, or a war but to predict whether one
system, tactic force structure, or course of action is likely to perform roughly better
or worse than another. As shown in Fig. 1, there is a continuum of techniques and
applications from operations research to force-on-force campaigns and net assess-
ment that spans the complete range of defence decision-making problems. Broadly
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speaking, modeling and simulation may be applied at the tactical, operational or
strategic levels to meet the functional requirements of training, operational planning,
force structuring to include force development, and, strategy formulation. Simula-
tion is also the only way to test and train for some special environments, such as
nuclear events, biological and chemical contamination, and operations that require
large-scale mobilization and movement. Analytical simulations are used to study
problems like force composition, weapons effectiveness, and logistics issues.
Examples to illustrate are:

• What would be the survivability and cost-effectiveness of an unmanned combat
system as compared to a manned combat mission?

• Which is the best weapon mix, force mix of aircraft-weapons types and con-
figurations that can achieve the maximal damage to given target with a minimal
acceptable loss of own resources?

• Given a set of military resources, what is the optimal deployment of these
resources against a given threat scenario.

• In what specific scenarios are joint services operations synergistic? What are the
core and critical factors that ensure synergy in jointness?

2.1 Modeling and Simulation Techniques for Training
and Analyses

Modern methods of training are being introduced with enhanced use of modeling
and simulation [6]. Modeling and simulation refers to the use of models, including
emulators, prototypes, simulators, and stimulators, either statically or over time, to
develop data as a basis for making managerial or technical decisions and training.
The terms “modeling” and “simulation” are often used interchangeably. Simula-
tion is the imitation of the operation of a real-world process or system over time.
Simulation not only helps them in learning the given scenarios, but teaching

Fig. 1 Ways to study a system [4] and military systems analyses hierarchy [5]
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themselves replicate real-life experiences to relive and recreate what they have seen,
on their own missions. Basic applications that evolve from the core Modeling and
simulation domains of Engineering, Training and Analysis areas into Simulators,
Wargames and Performance Evaluation systems are shown in Fig. 2. Depending
upon the goals of the study, analytical techniques process simulations, trace driven
simulations, or discrete event simulation systems are employed in each of these
three areas [7].

Simulation is the imitation of the operation of a real-world process or system
over time. A simulation of a system is the operation of a model of the system. The
model can be reconfigured and experimented with; usually, this is impossible, too
expensive or impractical to do in the system it represents. The operation of the
model can be studied, and hence, properties concerning the behavior of the actual
system or its subsystem can be inferred. Simulation can be used before an existing
system is altered or a new system built, to reduce the chances of failure to meet
specifications, to eliminate unforeseen bottlenecks, to prevent under or
over-utilization of resources, and to optimize system performance. To simulate is to
mimic a real system so that we can explore it, perform experiments on it, and
understand it before implementing it in the real world. This becomes extremely
important, especially when the real system cannot be engaged, because it may not
be accessible, or it may be dangerous or unacceptable to engage, or it is being
designed but not yet built, or it may simply not exist [4].

When we simulate, we are first required to develop a mathematical model of the
original entity (weapon, equipment or process) wherein, the model so developed
represents the key characteristics or behaviors of the selected physical or abstract
system or process. The model represents the system itself, whereas the simulation
represents the repetitive operation of the processes of the system, over a period of
time. This could be to simulate the behavior of a weapon/equipment or a group of
entities (platoon/company/combat team) in a particular scenario. Military simula-
tions are seen as a useful way to develop tactical, strategic and doctrinal solutions.
The term military simulation can cover a wide spectrum of activities, ranging from
full-scale field-exercises, to abstract computerized models that can proceed with
little or no human involvement as shown in Fig. 2. The simulations have been
universally identified to be of three types—live, virtual and constructive [3].

Fig. 2 Application areas of military modeling and simulation: performance evaluations,
simulators, and wargames
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Live simulation refers to a simulation that involves real people in real systems.
For example, two pilots can be trained for dog fighting by using real aircrafts in the
air. In this case, the aircrafts and pilots are real, but the interaction between the
aircrafts are simulated and simulation decides how effective the pilots and aircrafts
are against each other. Similarly, all the weapon systems can be equipped with
emitters, and all the equipment and personnel can be equipped with sensors. If the
weapons are aimed and fired correctly, the emission by the emitter can be sensed by
the sensors, which indicates a hit and a kill.

Virtual simulation involve humans and/or equipment where actual players use
simulation systems in a computer generated synthetic or virtual environment. The
running time can be real or in discrete steps, allowing users to concentrate on the
key training objective. These represent a specific category of devices that utilize
simulation equipment (which exactly replicates the controls of the original equip-
ment) to create a simulated world for the user. In this manner, the system can accept
input from the user (e.g., body tracking, voice/sound recognition, physical con-
trollers) and produce output to the user (e.g., visual display, aural display).

Constructive Simulation, also known as wargaming, derives its name from the
fact that the pieces operating on the battlefield are not individual tanks and aircraft
but a construction of many different types of equipment into a single aggregated
unit like an armor company, artillery battery.

Wargames are physical or electronic simulation of military operations designed
to explore the effects of warfare or testing strategies or an operational concept
without actual combat. Wargame is the employment of military resources in
training for military operations, either exploring the effects of warfare or testing
strategies without actual combat. It is the most cost-effective methodology for
training as it creates a realistic environment to generate near-real responses to
various contingences as well as handling of complex weapon systems. The main
advantage of using wargames is to enable the users to take another look at specific
events from a stress free environment and enhance their performance for the given
event.

The first two types of simulations are used to train individuals operating
equipment, this equipment is in turn controlled by leaders in command posts who
see the battle in a more abstract form. Constructive simulations allow these com-
manders to face situations and make decisions under the stress of time and limited
resources just as they will during actual combat. Constructive simulations immerse
these commanders in a situation where the enemy is highly trained, experienced,
and just as determined to win the war. Here soldiers discover whether the tactics
they have been taught really work, here they develop confidence in their ability to
operate as a team and win wars. These simulations have emerged as one of the
powerful tools of system analysis in military applications. They have been used
extensively for training, planning, analysis and decision support purposes. A wide
range of wargames has been developed at various resolution levels to support
different objectives. Training wargames allows analyzing various aspects of tactics
at lower levels. Higher level wargames can be used for evaluation of various
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employment/deployment plans, different course of action and also evaluation of
weapon systems [7, 8].

The new reality of military operations is characterized by complex interactions,
adaptivity and nonlinearity, with an increase of uncertainty and risk, explicitly or
implicitly, in all dimensions of warfare [9–13]. Uncertainty is the inability to
determine a variable value or system state (or nature) or to predict its future evo-
lution. Uncertainty is a fact (that is certain): real-world data will be uncertain,
incomplete, ambiguous, contradictory, and vague, and this uncertainty can never be
reduced completely; but can only be managed. While uncertainty can only be
managed, the real objective of studies is reducing risk in taking informed decisions.
Computational Intelligence (CI) paradigms encompass a collection of heuristic
techniques to imitate or represent aspects of cognitive and biological processes in
nature, which have been successfully used to model and manage these inherent
uncertainties in the design and development of wargames.

We propose a number of CI techniques to design intelligent military training
simulators and wargames. In contrast to the organisation-specific, training-specific
monolithic system development, we propose a product-line, layered approach to
design large-scale intelligent wargames that can be easily customized to specific
requirements of organisations. Such an architectural framework based approach has
its basis in software reuse and component based system development. The various
components common to a family of wargame solutions and the variable compo-
nents that are customised to meet a specific end product is described. All these CI
techniques have been integrated in a Discrete Events Simulation Specification
(DEVS) framework to design specific end-products to meet the training require-
ments of military schools [14–18]. These predominant CI techniques that have been
successfully used to develop intelligent military training simulators are described in
the sections that follow.

3 An Architectural Approach to Design and Development
of Wargames

The design and development of large scale simulators, software testbeds and war-
games, demands a formal architecture and development of a military simulation
framework that is often based upon the needs, goals of training and resolution of the
wargames. The Joint Warfare Simulation System (JWSS) is a constructive simula-
tion based software testbed that is designed to cater for Analysis, Training and
preliminary studies of Engineering design. The JWSS is designed based on the
operational foundations of the military domain; conceptual foundation required for
the modeling and theoretical foundations of implementing and composing simula-
tion system. JWSS system design is highly influenced by (i) scope, resolution of the
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entities involved, (ii) level of wargame, trainee audience and objectives (iii) number
and types of entities being addressed/modeled (iv) resolution of the battlefield
entities and fidelity of the combat entity models (v) number and types of players and
their hierarchy configurations (vi) area of operations (vii) terrain and environ-
mental features (viii) time advancement and resolution. Conventional approaches to
designing and developing Wargames are based on a monolithic homogeneous
design and development as any software development system. This approach
imposes difficulties in developing and maintaining these systems as they must keep
evolving to be useful. In JWSS an Inner-Sourcing, hybrid approach to designing
common components and an agent-oriented approach to designing wargame com-
ponents is proposed. Organizations leveraging open-source development practices
for their in-house software development is called Inner Source [19].
An Agent Based Modeling Approach to Wargame Development
Agent-oriented system development aims to simplify the construction of complex
systems by introducing a natural abstraction layer on top of the object-oriented
paradigm composed of autonomous interacting actors [20–22]. It has emerged as a
powerful modeling technique that is more realistic for today’s dynamic warfare
scenarios than the traditional models which were deterministic, stochastic or based
on differential equations. These approaches provide a very simple and intuitive
framework for modeling warfare and are very limited when it comes to representing
the complex interactions of real-world combat because of their high degree of
aggregation, multi-resolution modeling and varying attrition rate factors. The effects
of random individual agent behavior and of the resulting interactions of agents are
phenomenon that traditional equation-based models simply cannot capture. Fig-
ure 3a, b shows the agent based architecture of a virtual warfare training simulator
[22]. In agent-based modeling (ABM), a system is modeled as a collection of
autonomous decision-making entities called agents. Each agent individually
assesses its situation and makes decisions on the basis of a set of rules. Agents may
execute various behaviors appropriate for the system they represent—for example,
producing, consuming, or selling. Repetitive competitive interactions between
agents are a feature of agent-based modeling, which relies on the power of com-
puters to explore dynamics out of the reach of pure mathematical methods. At the
simplest level, an agent-based model consists of a system of agents and the rela-
tionships between them. Even a simple agent-based model can exhibit complex
behavior patterns and provide valuable information about the dynamics of the
real-world system that it emulates. In addition, agents may be capable of evolving,
allowing unanticipated behaviors to emerge. Sophisticated ABM sometimes
incorporates neural networks, evolutionary algorithms, or other learning techniques
to allow realistic learning and adaptation. The benefits of ABM over other modeling
techniques can be captured in three statements: (i) ABM captures emergent phe-
nomena; (ii) ABM provides a natural description of a system; and (iii) ABM is
flexible. It is clear, however, that the ability of ABM to deal with emergent
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phenomena is what drives the other benefits. ABM appear to represent complex,
adaptive systems where, non-linearity, interactions and emergence are an inherent
nature of systems, such as warfare systems. One may want to use ABM [23] when
there is potential for studying emergent phenomena, i.e., when:

• Individual behavior is nonlinear and can be characterized by thresholds, if-then
rules, or nonlinear coupling. Describing discontinuity in individual behavior is
difficult with differential equations.

• Individual behavior exhibits memory, path-dependence, and hysteresis,
non-Markovian behavior, or temporal correlations, including learning and
adaptation.

Fig. 3 Joint warfare simulation system architectural framework
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• Agent interactions are heterogeneous and can generate network effects.
Aggregate flow equations usually assume global homogeneous mixing, but the
topology of the interaction network can lead to significant deviations from
predicted aggregate behavior.

• Averages will not work. Aggregate differential equations tend to smooth out
fluctuations, not ABM, which is important because under certain conditions,
fluctuations can be amplified: the system is linearly stable but unstable to larger
perturbations.

Differential equations are a fundamental modeling technique, which finds place
in warfare modeling. Land wargames typically use Lanchester laws that are
mathematical formulae for calculating the relative strengths of a predator/prey pair.
The Lanchester equations are differential equations describing the time dependence
of two armies’ strengths A and B as a function of time, with the function depending
only on A and B. During World War I, Frederick Lanchester devised a series of
differential equations to demonstrate the power relationships between opposing
forces. Among these are what is known as Lanchester’s Linear Law (for ancient
combat) and Lanchester’s Square Law (for modern combat with long-range
weapons such as firearms). Pursuit-Evasion games, Differential games, air to air
combat models such as Adaptive Maneuvering Logic (AML) all have their basis as
DE, and have been an active area of research in Warfare modeling [24, 25].

In many cases, such as wargames, ABM is most natural for describing and
simulating a system composed of behavioral entities [26–28]. Each agent is
implemented using different CI techniques depending upon its purpose. For exam-
ple, in modeling air warfare tactics in JWSS, the pilot agent can be modeled using a
simple behavioral model, a cognitive model, a rule-based model, control-theoretic
model, or a neuro-fuzzy model [29–34]. Computer-generated forces and
semi-automated forces have an important role to play in modeling counter insur-
gency operations, terrorist attacks, and operations other than war [35–37]. These are
very efficiently modeled using ABMs. In order to design and develop training
simulators for such operations, the opponents are modeled using agents governed by
simple rules, and emergent phenomenon. Simulators are built for operations, tactics
and strategies training using CGF and SAF. Epistemic states are often used to
represent an actual or a possible cognitive state that drives the human-like behavior
of an agent. Commonly used models are propositional, probabilistic and possibilistic
world models, where methods of knowledge representation, reasoning and infer-
encing about the various mental constructs of the agent, including beliefs, desires,
goals, intentions, and knowledge are used to simulate its human-like cognitive states.
Validation of CGFs and SAFs is an area of concern; and drawing lessons from these
simulations is difficult and caution needs to be exercised.

Main components of Joint Warfare Simulation System (JWSS) Architectural
Framework are as follows:

Backend Databases
All the JWSS data is classified into static data (such as resources, weapons, their
characteristics) and dynamic (run-time results that are generated by gaming the
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mission plans) data, stored in the data servers that form the backend for the entire
game. The database is designed using MySql and SQLServers that are ADODB and
ODBC compliant databases. Backend Databases are partitioned into four functional
clusters to improve the performance and maintenance of the servers: Operational
Database, GIS Database, Wargaming Database and Weather/Terrain Database.
Operational Database contains data that changes frequently during the game and is
dependent on the scenario being simulated. Data about missions, resources
deployed, event logs generated during simulation, and results are stored in this
database.GIS Database contains geographical data such as raster and vector maps
of different themes, DTED and DEM data of maps of the Theatre and Area of
Operation (AOP) during game customization and game initialization phase. An
open source GIS has been customized for the military (Mil-GIS) to depict the
various theatres of warfare in JWSS. Wargaming Database contains the data which
is read only and can be changed only by the controller during the initialization
phase. Performance parameters of an aircraft and their configurations, resource
specifications, sensor details, target information, force structure, network and game
settings all forms part of this database. Weather/Terrain Database contains data
such as weather and terrain information in an enclosed region specified by the users.
Location-based intelligent services (LBIS) are developed on these databases to
generate the military intelligence, information, and data that is utilized by the
players to decide the course of actions during the wargame exercises. These LBIS
along with fuzzy linguistic variables to represent the uncertainty of information
obtained from various intelligence sources are generated, collated and inferred to
generate the Fog of War during the training exercises. For example, Suitability of
terrain conditions to troops and logistics movement along the selected route to meet
the objective is low.

Resource Manager
Resources of the game include the various types of entities involved in the game
such as weapon systems, sensors, platforms such as aircraft, naval ships, air defence
artillery, infantry, armour brigades, and the hierarchy of organization and their
compositions, platform-weapon configurations, types of targets, expected damages
to targets, weapon-target matching and their primary and secondary effects of
damages. Weapon systems include all kinds of air-launched and surface-launched
weapons like Bombs, Guns, Rockets and Missiles. All types of Aircraft such as
Fighters, Air-to-Air Re-fuellers, Transport, Unmanned combat systems, Unmanned
aerial vehicles, their operational performances, effective radii of action, and
effectiveness against targets are stored in the resource databases. Air Defense
(AD) units such as Radars, air defense Guns, Mobile Observation Posts, and
Aerostats form a part of the Resource Folder. The Target Folder contains relevant
information of all the static targets and RCS of various aircraft, EW emitter sig-
natures obtained from ESM missions in the game. Targets include Bridges, Air-
fields, Refineries, Oil Depots and other such vulnerable areas and vulnerable points
(VA/VP’s). The information in the resource folder is updated as and when new
resources are inducted into the services and may not change frequently during the
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wargame simulation. Target folder is updated whenever any new intelligence inputs
about targets are made available. Creation and administration of the Resource
Folder and Target Folder as per the game scenario is the primary task of the
resource manager. Searching, Matching and Retrieval of “similar” images from the
target folder to the acquired target from an unmanned system uses fuzzy image
retrieval and fuzzy inferencing techniques [38].
Force Packaging
Before planning, study of the anticipated air and ground threats is essentially
required to get the near real time information of the battlefield in time and space
domain. Anticipated threats determine ingress/egress tactics and techniques to
minimize risk, aircraft selection, weapon configuration, weapon delivery mode and
other operational factors. Data from many sources such as HUMINT, COMINT and
SIGINT enables the most effective use of available resources to destroy or neu-
tralize adversary’s assets.

Many critical decisions are taken in the force planning phase. How large a force
package should be and which types of aircraft with what weapons configuration is
best suited for the mission objective? Should there be a need for escorts in the force
package? What likely threats can be encountered and how does one mitigate these
risks? Which routes would optimize use of terrain masking? At what time target
should be shot down? While planning planner must consider assets availability,
range to target, C2/C3 connectivity, and tactics. For tactical routing, planner must
focus on suppressing threats using SEAD/AD/ECM/Stand-off escorts and
identifying/acquiring the target. In the target area, terrain masking and high speed
are used to minimize the threat exposure to adversary’s low level air defense.
Optimal Deployment of resources against a perceived threat is obtained using
Genetic algorithms, and Weapon Target matching used for force packaging the
campaigns is done using Genetic algorithms.
C2/C3 Structures
A Command, Control and Communication (C3) structure is an information system
employed within a military organization. Command is the functional exercise of
authority, based upon knowledge, to attain an objective or goal. Control is the
process of verifying and correcting activity such that the objective of command is
accomplished. Communication is the ability and function of providing the neces-
sary liaison to exercise effective command between tactical and strategic units of
command. Thus the C3 structure can be succinctly defined as a knowledgeable
exercise of authority in accomplishing military objectives and goals.

The C3 structure is implemented in JWSS with the Air Defense Direction Centre
(ADDC) being responsible for providing air defense to assigned VA/VP using air
defense systems against air threats. ADDC is also responsible for communicating
the change in status of Control order and status of target. It passes these messages to
the Base Air Defense Centre (in case of airbases) or to the Air Defense Command
Post (in case of other VA/VP’s). The ADDC could control one or more BADC.
BADC on receipt of the message from the ADDC activates its own radar and
transmits the message on the basis of its track information to engage the threat.

566 D. Vijay Rao



Simulation Manager
The Simulation Manager coordinates and controls the whole entire wargame. It starts
the game by starting a simulation clock and initializing the game parameters, target
folder, resource folder, war date and block. It allocates resources for the block of
game, sets up weather conditions and monitors the game. The missions of various
teams are processed by the simulation manager using various simulation models and
the results are generated in a quantitative manner. The damage caused to the aircraft,
airbase, and other VA/VP’s is computed using weaponeering techniques based
damage assessment models [6]. Mathematical models have been developed for
computing weapon trajectories, wind effects, and atmospheric parameters. Statistical
distributions are used to generate various events and for damage assessment. All
these events and the effects caused are recorded by the Event Logger to be viewed
and analyzed later. Extensive set of fuzzy game rules are used to simulate realistic
war scenario such as if takeoff runway is non-operational then abort the mission,
otherwise allow aircraft to take-off, if aircraft in a mission is unserviceable then
abort the mission, unserviceable factor of 3 % before take-off and 2 % after take-off is
acceptable, if storm is present at takeoff base then abort the Mission, if landing
runway is non-operational, then the landing aircraft is made available after the
runway available time added to turn around service time (TRS) of the aircraft.

Simulation Models
The core functionality of the JWSS framework lies in the various simulation models
that are being used extensively by the simulation manager during the course of the
game. Some of the classes of models are explained below:
Damage Assessment Models
The assessment of damage has its basis in the various mathematical models
developed based on the weaponeering principles, force structure planning, weapon
planning directive and the weapon-target matching documents. These models help
in determining the optimal quantity of a specific type of weapon required to achieve
a specific level of damage to ground targets considering weather, terrain, target
vulnerability, weapon effects, munitions delivery errors, damage criteria, proba-
bility of kill, weapon detonation reliability, weapon release conditions and other
operational factors. An Over the Target Requirement Estimation System (OTRES)
tool has been developed based on these principles that estimate the damage caused
and generates the courses of action for a planner [21]. The planner selects one
course of action (mission plan) which is gamed against the threat (perceived enemy
threat during mission assessment and actual enemy threat during gaming the
missions) using the JWSS test-bed to assess the mission effectiveness. Target
damage assessment using weaponeering principles gave realistic results when used
in field training and deployment of the system. Computation of damages for
ground-ground, ground-air, air-ground, and air-air engagements uses physics based,
logic based, probabilistic and fuzzy logic based models [21, 24, 25, 39].
Sensor Models
Electronic warfare (EW) is the art and science of denying enemy force, the use of
the electromagnetic spectrum while preserving its use for friendly forces. It involves
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radars, electronic sensors, jammers used in conjunction with traditional weapon
systems as part of the warfare. The EW module in JWSS includes firstly modeling
of the performance of radars in the presence of different weather and terrain con-
ditions considering the Line of Sight between Radar and the target, secondly
electronic countermeasures and electronic, counter- countermeasures and lastly
modeling the effect of different types of jammer on the radar performance. The
parameters considered in these models are radar characteristics, target characteris-
tics, environment parameters, jammer parameters, threshold detection level.
Combat Models
Combat models are developed for mathematical analysis of attrition process of the
forces in combat. Combat is an engagement or a series of engagements between two
conflicting forces, which causes attrition. An engagement can be defined as a set of
actions within a particular region, over a particular time period, and with a given
force structure. In the context of land wargames, it is a complex system involving
men, machines, materials, money, environment, terrain and their complicated
interactions. Involvement of quantitative and qualitative factors gives rise to dif-
ferent degrees of complexities to the system. Training, battle fatigue, fear, morale,
leadership are some qualitative factors which govern human behavior during the
battle. Many of these attributes are intangible and we may not be able to give a
specific number. Neuro-Fuzzy linguistic variables are used to model these quali-
tative factors that play an important role in wargames. In the case of naval plat-
forms, trajectories of the weapons launched and the incidence of impact, the
warhead tonnage of explosive, and physics based impact dynamics decide the
extent of damage caused to the platforms. In air combat scenarios, a weighting
factor that is derived from the static combat potential of the packages of both sides
is used to assess the aircraft attrition, Adaptive Maneuvering Logic (AML) for
one-one, pursuit evasion modes [24] is modeled or a more detailed model that
considers the aerodynamics, aircraft weapon load, EW, RWR, MWR, frequencies
of operation, on board missiles, and their ranges to compute the dynamic combat
potential for gaming and computing the attritions. These entire processes can be
simplified by deriving probabilistic game rules that can also be used for quick
statistical analysis of the air campaign. The inherent complexity of the combat
process leads to great complexity in the operational models of combat attrition, and
combat effects.
Target Acquisition Models
In cases of bad weather, terrain and other environmental conditions, and height of
the air attacks, the target may not be acquired by the on-board sensors, and weapons
are not released. Mission planners need an estimate of the probability the target
would be acquired in order to get a better measure of mission success. As for many
air to ground missions, rules of engagement require that the pilot makes a direct
visual or instrumental acquisition of the target before weapons are employed. This
is true for conventional bombs, rockets, guns and some guided missiles. The choice
of tactics and weapons and the estimation of the effectiveness of the mission should
include the probability of target acquisition for the successful attack. Mathematical
models have been developed to predict the probability that targets can be detected
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which is applicable not just to the human eye, but to wide variety of on board
electro-optical sensors operating in different parts of the electromagnetic frequency
spectrum [38, 40]. These models are executed at run time to determine if the target
is acquired and record the decisions made by the pilot for analysis.

DEVS Framework
Discrete Event System Specification (DEVS) is a universal formalism for discrete
event dynamical systems [16, 17]. DEVS offers an expressive framework for
modelling, design, analysis and simulation of autonomous and hybrid systems.
Because of its system theoretic basis, DEVS is a universal formalism for discrete
event dynamical systems. The DEVS framework enables a large system to be
specified by hierarchically decomposing the system into modules called Atomic or
Component Models, each having the internal structure and the state transition [15,
16]. The specification of the coupling between the component models and the
hierarchy structure of the atomic models corresponds to the Network or Coupled
model of the DEVS formalism [14–18]. DEVS environments are implemented over
middleware systems such as HLA, RMI, and CORBA. DEVS exhibits concepts of
systems theory and modeling and supports capturing the system behavior from the
physical and behavioral perspectives that are implemented using CI techniques
(Fig. 4).

A mission objective (goal) set by the instructor is designed within a contextual
setting and also describing the scenario and settings within which the training is
imparted and the trainees are assessed. The lesson plans are designed using all the
four types of learning depending upon the nature of lessons and training to be
imparted [41, 42]. The lesson plans are designed based on the domain knowledge
that is explicitly represented by ontology of the warfare resources, aircraft, weapons,
performance characteristics, constraints, weather, and terrain information. The les-
son plans are dynamically adapted by asking relevant questions on the concepts of
learning from the ontology and reasoning based on the answers to change the lesson
plans accordingly. The goals are decomposed as tasks, and sub-tasks in a

Fig. 4 Agent architecture for
JWSS
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hierarchical manner, indicating the roles of the armed services, support organizations
and people who would be collaborating to collectively achieve the objective. Case
based Planning and Reasoning can be used to retrieve the past cases and adapted to
the future mission plans [43–49]. The sequence and timing diagrams of the tasks are
generated and these are associated with the resource constraints and resolution of
conflicts. The assessment of the trainees is done by evaluating the plans made by the
trainees to meet the goals. The Learning Management sub-system (LMS) in this
simulator architecture (JWSS) is responsible for planning the lessons for the trainees,
storing and updating the contents, evaluate the trainees and also learn from the
behavior of the trainees for further lesson planning. The LMS consists of three
prominent agents: Instructor agent, Learning agent and Evaluation agent. The
Instructor agent is composed of a Lesson Planner that identifies a goal for the
trainees, composes the lesson plan from the learning objects and given to all the
trainees. The trainees decompose the task into a number of independent tasks that are
to be achieved by each of the teams, in order to achieve the objectives of the goal.
The Instructor agent updates the state of a lesson plan and creates a scenario that is
based upon the information received from weather, terrain and deployment agent
and provides an information service to the world agent after its own process of
reasoning. This information is then used by other agents such as Manual Observation
Post (MOP), Pilot, Unmanned Air Vehicle (UAV), Identification Friend/Foe (IFF),
Radar Warning Receiver (RWR), Missile Warning Receiver (MWR), Laser Warn-
ing Receiver (LWR), Mission Planning, Sensor Performance, Target Acquisition
and Damage Assessment and Computation (Fig. 3a, b).

4 Computational Intelligence Techniques in Designing
JWSS

JWSS has been designed in the military domain for training, analysis, to generate
strategic scenarios for forecasting, creating what-if scenarios and evaluating
effectiveness of military operations and procedures.

4.1 Design of a Joint Services Military Ontology

Ontologies are specifications of the conceptualisation and corresponding vocabu-
lary used to describe a domain [18, 50]. It is an explicit description of a domain and
defines a common vocabulary as a shared understanding. It defines the basic
concepts and their relationships in a domain as machine understandable definitions.
We design a military ontology consisting of a formal and declarative representation
which includes the vocabulary (or names) for referring to the terms of army, navy
and airforce and the logical statements that describe what the terms are, how they
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are related to each other, and how they can or cannot be related to each other
(Figs. 5, 6). Ontology therefore provides a vocabulary for representing and com-
municating knowledge about some aspect of military training and a set of rela-
tionships that hold among the terms in that vocabulary. The main purpose of
ontology is, however, not to specify the vocabulary relating to an area of interest
but to capture the underlying conceptualisations [51–56]. Noy and McGuinness
[41] have identified five reasons for the development of ontology:

• to share common understanding of the structure of information amongst people
or software agents;

• to enable reuse of domain knowledge;
• to make domain assumptions explicit;
• to separate domain knowledge from the operational knowledge;
• to analyse domain knowledge.

Fig. 5 Mission planning simulator in agent-oriented architectures

Fig. 6 Steps in conducting a military wargame and the application of CI techniques
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Three main challenges in designing reusable learning objects are (i) intelligence;
(ii) sharable; and (iii) dynamic. This is overcome by developing semantic metadata
for providing intelligence to learning objects; developing content packaging for
enhancing the sharability of learning objects and developing learning object
repository with ontologies and Semantic Web technologies for making learning
objects more dynamic [57–60]. To meet these challenges the following method-
ological steps are followed to design and develop the online environment of
learning object repository.

• Stage 1: To develop a metadata framework which integrates the most suitable
metadata as well as proposed pedagogical and military metadata elements that
can be applied to a variety of learning objects.

• Stage 2: To apply a content packaging standard that packages learning objects
together so they can be exported to and retrieved from various learning man-
agement systems.

• Stage 3: To identify the ontology (i.e. a common vocabulary of terms and
concepts) for construction education and to develop a Semantic Web environ-
ment that will increase sharability of objects within construction domains.

In the design of the JWSS, military domain knowledge is represented and stored
as ontology in Protégé (Fig. 7a, b). Protégé is a freely available, open-source
platform that provides a suite of tools to construct domain models and
knowledge-based applications that use ontologies [61–63]. At its core, Protégé
implements a rich set of knowledge-modeling structures and actions that support
the creation, visualization, and manipulation of ontologies in various representation
formats (including the Web Ontology Language, OWL and Resource Description
Framework (RDF)). Protégé can be customized to provide domain-friendly support
for creating knowledge models and entering data. Further, Protégé can be extended
by way of a plug-in architecture and a Java-based Application Programming
Interface (API) for building knowledge-based tools and applications (Fig. 8).

Fig. 7 Architecture of the LMS for dynamically composing joint operations lesson plans
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Protégé can load OWL/RDF ontologies, edit and visualise classes and proper-
ties; execute reasoners such as description logic classifiers and edit OWL indi-
viduals for SemanticWeb. Protégé is widely used for modelling of simple
applications to high-tech, high-powered applications. It also offers support to
ontology libraries and OWL language. Military ontology for joint operations is
designed and developed for the JWSS using Protégé. While metadata of learning
objects describe the artifacts of learning objects that are shared by diverse domains,
an ontology represents a knowledge domain that shares the relationships of learning
objects within a specific context.

Reasoning the Ontology
One of the main reasons for building an ontology-based application is to use a
reasoner to derive additional truths about the concepts. A reasoner is a piece of
software able to infer logical consequences from a set of asserted facts or axioms.
The notion of a semantic reasoner generalises that of an inference engine, by
providing a richer set of mechanisms to work with. The inference rules are com-
monly specified by means of an ontology language, and often a description lan-
guage. Many reasoners use first-order predicate logic to perform reasoning;
inference commonly proceeds by forward chaining and backward chaining. In the
JWSS, reasoning helps in formulating questions for testing the understanding of
related concepts. This is used to evaluate the competency of trainees, lessons
planned and perform a gap analysis so that new lessons can be generated to fill the
gaps [64–67].

4.2 Strategic Planning Wargames Using Fuzzy Cognitive
Maps

Strategic Planning is a multi-dimensional assessment of a situation where several
geo-political, economic and military dimensions are evaluated before arriving at

Fig. 8 Ontology based Instructor agent to dynamically plan adaptable lessons based on
competency gaps
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course of actions. Existing relationships between countries can be described from a
variety of perspectives, such as historical, respectful, friendly, neighboring, cultural,
traditions, ideological, religious, trade, political, and economic aspects. One way to
build these relationships is to strengthen the economic relationships, wherein the
decision maker takes into consideration many factors and variables that influence
the promotion of these relationships, prominent among them being economic
relationship. This information and these factors are diversified and may involve
different dimensions and the challenges in Strategic Planning lie in recognizing,
finding and extracting the underlying relations and strengths of influence of these
different variables. A conscientious decision maker who takes responsibility for
promoting and strengthening bilateral economic relationships needs access to
information that is fuzzy and qualitative. Military options are usually the method of
last resort, and a brute-force approach that is often the result of a trigger that evolves
over states and time domain when the geo-political options fail. This basic concept
of the information is represented as a linguistic variable whose values are words
rather than numbers across different domains including the political and investment
domains. Due to nature of the problem, data from different domains that is
imprecise, ill-structured, uncertain and ambiguous needs to be modeled. A fuzzy
ontology that represents the geo-political, historical, respectful, friendly, neigh-
boring, cultural, traditions, ideological, religious, trade, and political, military and
economic ties is constructed using Protégé software. This Ontology is useful for
acquiring and sharing knowledge, building a common consensus and constructing
knowledge-based systems that can be used to build sub-schemas to represent the
perspectives of the stakeholders, and reason the ontology for hidden and underlying
relationships and their strengths of influence. Fuzzy Cognitive Maps (FCM) are
fuzzy graph structures for representing causal reasoning with a fuzzy relation to a
causal concept [68]. Fuzzy cognitive maps are especially applicable in the soft
knowledge domains such as political science, military science, history, international
relations, and Strategic Planning Wargames. Fuzzy logic generated from fuzzy
theory and FCM is a collaboration between fuzzy logic and concept mapping. FCM
is used to demonstrate knowledge of the causality of concepts to define a system in
a domain starting with fuzzy weights quantified by numbers or words [69]. As a
soft-system modeling and mapping approach, FCM combines aspects of qualitative
methods with the advantages of quantitative (causal algebra) methods. In a FCM,
the positive (+) and the negative (−) signs above each arrowed line provide a causal
relationship whereby each fuzzy concept is linked with another one. In this sense,
the FCM is a cognitive map of relations between the elements (e.g., concepts,
events, resources) that enables the computation of the impact of these elements on
each other, where the theory behind that computation is fuzzy logic. Since FCMs
are signed fuzzy non-hierarchic digraphs [69], metrics can be used for further
computations, and causal conceptual centrality in cognitive maps can be defined
with adjacency-matrix [68] (Fig. 9).
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The various steps in constructing an FCM for representing a crisis situation are:

(1) Identification of factors and representing them as concepts
(2) Specification of relationships among concepts
(3) Defining the levels of all factors,
(4) Defining the intensities of causal effects,
(5) Identify changeable factors versus dependent factors,
(6) Simulating the fuzzy cognitive map,
(7) Modifying the fuzzy cognitive map,
(8) Simulating the modified fuzzy cognitive map, and
(9) Deriving the Conclusions from Reasoning.

FCMs for various crisis situations are constructed and used for assessing value
of targets, prioritization of targets, and evaluating effects-based operations. In the
JWSS, strategic planning considers all the concepts represented in fuzzy ontology,
qualitative attributes of selecting the Course of Action (CoA), weaponeering
principles of damage computation, reasoning the ontology and generating the
course of actions.

4.3 Adaptive Lesson Plans Using Game Trees

The adaptability of the game playing depending on the background and training
needs of different users is selected by two main cognitive criteria memory and
learning. The competency level required by the lesson plan is compared with the
competency level of the trainee. The gap is reduced by reasoning the ontology
concepts and choosing the lesson plans that are represented in a concept-map and

Fig. 9 Assessing the bridge target value in forward edge of battle area (FEBA) operation and
course of action analysis
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implemented as a concept-graph. The trainee is now switched to a new lesson that
matches with the competency of the lessons. The lesson plans for the Army, Navy
and Air Force and Joint operations which demand inter-disciplinary domain
knowledge are organized as a concept graph. The starting node for the trainee is
identified based on the competency level and based on the various preliminary
questions, the Instructor agent reasons from the ontology concept-graph and
composes the new lesson plan by traversing it to reduce the competency gap
(Fig. 10).

Consider a training exercise for military operations in which the trainees from
different branches of specializations with different skills, prior training and field
operations are assigned tasks of a campaign (Table 1). These tasks are assigned to
the trainees with the intent of teaching concepts, examples, and field cases which
are then evaluated in the field training. The prior training is used to compute the
trainee competency factor, and the lesson plan initially assigned has the training
competency level. The gap which is the difference between the two values is used to
decide the switched lesson plan so that the semantic distance is minimised. The
military ontology is used to traverse the concept-map that is implemented as a
concept graph, and is used to adapt the lesson plans for the trainee with the goal of
minimising the semantic gap in the lessons chosen. The quantitative answers for the
different tasks given to the trainees are calculated by wargaming the tasks and

Fig. 10 Architecture of agents in JWSS and screens depicting the army, air and naval tasks for
trainees

Table 1 Classification of
live, virtual and constructive
simulations

People Systems Operation Simulation

Real Real Simulated Live

Real Simulated Simulated Virtual

Simulated Simulated Simulated Constructive
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generating the mission success factors for the two lessons: one that is conven-
tionally computed using databases, and the other that uses ontology [41]. Consider
the cases of two trainees (named Trainee 1 and Trainee 3) with different game
scenarios and lesson plans from the same training system.

Trainee 1: To understand and evolve different strategies to gather Location
based Intelligence necessary as pre-curser to destroy the target (Fig. 11).

Trainee 3: To understand the concepts in Mission Planning and Air Tasking
operations (Fig. 12).

The mission success factor for Trainee 1 increased from 7.2 to 9.3 and from 5.3
to 9.8 on running the JWSS wargame by using the military ontology. The ontology
requirements found an importance in military simulators mainly because of the
Joint Warfare operations that are introduced in the course of training. These values
may or may not have increased as much with the individual service wargames. This
gives an intuitive indication of synergy in joint wargames that demand a much
greater understanding of the warfare concepts and applying them in joint missions
that surpass the boundaries of individual wargames (Table 2).

Fig. 11 T-001 Game scenario lesson plans generated for Trainee 1

Fig. 12 T-003 Game scenario lesson plans generated for Trainee 3
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4.4 Case Based Planning and Adaptation of Missions

In case-based planning (CBP), previously generated plans are stored as cases in
memory and can be reused to solve similar planning problems in the future. CBP
can save considerable time over planning from scratch (generative planning), thus
offering a potential (heuristic) mechanism for handling intractable problems. One
drawback of CBP systems has been the need for a highly structured memory that
requires significant domain engineering and complex memory indexing schemes to
enable efficient case retrieval. Computational intelligence techniques based on
Rough-Fuzzy hybridization techniques are used to retrieve past mission plans that
meet the military goals and/or effects to meet the present military objectives and
software components that are stored as a case-base. These are implemented in the
JWSS system for effective planning (Fig. 13).

4.5 Optimal Deployment of Resources and Weapon-Target
Optimisation Using Genetic Algorithms

In deriving an optimal deployment strategy of resources against a perceived threat
scenario, a intelligent strategy that mitigates the risk of the threat while minimizing
the damage to own resources is developed using genetic algorithms. Another
sub-system that uses GA for optimization is the platform-weapon-target matching
that maximizes the estimated damage to a given target. Genetic algorithms provide
an evolutionary approach towards solving the problem at hand by aiming to
improve the fitness of each successive generation of possible solutions, mimicking
the process of natural selection on a suitably simplistic scale. Unlike other
search-based optimization procedures such as Hill Climbing or Random Search,
GAs have consistently achieved good performance in terms of balancing between
the two conflicting objectives of any search procedure, which are the exploitation of
the best solution and the exploration of the search space. An initial population of

Fig. 13 Case base of missions plans and retrieval of relevant missions using rough-fuzzy
techniques
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individuals (positions of deployment, considering the constraints of performance,
detection probability of sensors, terrain and weather conditions;
Platform-Weapon-Target damage effectiveness based on the physical hard-points
and effectiveness of the weapons against a given target) is required as a starting
point for the optimization process. To this effect, we seed a uniformly distributed
population within the desired bounds of the solution space. A fitness function
(maximizing the effective target detection) is then defined, which assigns a score to
every member of the current generation based on the evaluation of relevant char-
acteristics, which in this case are the total volume enclosed by the network of
sensors, with given detection and communication capabilities. The fittest individ-
uals from this pool are identified for creating the next generation via the chosen
implementations of selection and crossover functions, which dictate the process of
reproduction and survival of individuals. A mutation factor is also specified for the
genome to reduce the chances of the solution converging towards a local maximum.
For every individual, a convex hull is stretched over the point cloud formed by the
nodes in three dimensional space to form a polyhedron. The volume of this poly-
hedron not only serves as the initial score for the individual prior to constraint
checking, but its visualization can also be used to identify shadow zones as well as
highlight nodes surplus to requirements in achieving the given objective. For the
duration of the optimization phase, we assume that the transmission and detection
ranges for all nodes are omni-directional and isotropic by default. Node and
medium characteristics are then used to compute the distortions to the coverage
spheres of each node. As Delaunay triangulation is used to form the convex hull for
each individual, every node has three neighbors, without accounting for any
redundancy requirements. Once the optimization is complete and a solution is
obtained, the direction vectors of antennas on each node can be specified, taking
into consideration its neighbors and face coverage specifications.

Since shadow zones in such a scenario are essentially holes in the coverage shell,
penalties are required on the raw scores to discourage such arrangements from
participating in the evolution of the genome. In every successive generation, the
score of the best-fit individual is expected to improve due to selective breeding. As
the score stagnates with respect to average change in fitness, generation, or time, the
algorithm terminates with an optimal solution as its output.

4.6 Red Teaming Using Intelligent Agents and Computer
Generated Forces

Red teaming is the practice of viewing a problem from an adversary or competitor’s
perspective. The goal of most red teams is to enhance decision making, either by
specifying the adversary’s preferences and strategies or by simply acting as a
devil’s advocate. Red teaming may be more or less structured, and a wide range of
approaches exists. These techniques help analysts and policy-makers stretch their
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thinking through structured techniques that challenge underlying assumptions and
broaden the range of possible outcomes considered. Alternative analysis includes
techniques to challenge analytic assumptions (e.g. ‘devil’s advocacy’), and those to
expand the range of possible outcomes considered (e.g. ‘what-if analysis,’ and
‘alternative scenarios’). Collective behavior is the result of evolutionary processes
that shape behavior to modify and respond to environmental conditions (Gordon
2014). Investigating how these algorithms evolve can show how diverse forms of
collective behavior arise from their function in diverse environments. An assessed
deployment of the enemy’s ground defence, air defence, with inputs from ESM
missions, ground picture images from unmanned systems, and other human, and
electronic intelligence, developing triggers from strategic games, a
military-geo-political, economic, trades, and cultural map using fuzzy cognitive
maps is developed. Strategic Course of Action (CoA) analysis is developed by
considering the plausible CoA of the Red teaming analysis Missions are then
planned against targets that are prioritized against the back-drop of the assessed red
team. An assessment of the situation is made by using a game theoretic framework
is built which is then given to the commanders as a specific scenario for analysis.
The CI techniques used in modeling the Red teaming are behavioral game theory,
cognitive process modeling, multi-agent systems, Markov decision process and
social networks modeling. These factors are used in conjunction with the FCMs to
predict the plausible next CoAs the adversary would take in order to react to the
developing scenario. Bayesian Belief networks, Dempster-Shafer theory,
Belief-Desire-Intention model to represent the epistemic states of red teaming
agents, Influence diagrams for decision making, modal logics and deduction
techniques are used in red teaming’s possible world assessment.

4.7 Automatic Target Recognition by Unmanned Systems

In the JWSS, a list of targets and information obtained from various sensors,
ELINT, COMINT and HUMINT is stored in a specialized database called Target
Folder. Automatic Target Recognition (ATR) refers to the use of computer pro-
cessing to detect and recognize target signatures in sensor data. The sensor data are
usually an image from a forward-looking infrared camera, electro-optic sensor,
synthetic-aperture radar, television camera, or laser radar, although ATR techniques
can be applied to non-imaging sensors as well. ATR has become increasingly
important in modern defense strategy because it permits precision strikes against
certain tactical targets with reduced risk and increased efficiency, while minimizing
collateral damage to other objects. If computers can be made to detect and rec-
ognize targets automatically, the workload of a pilot can be reduced and the
accuracy and efficiency of the pilot’s weapons can be improved. An overview of the
CI techniques that are used in ATR is shown in Fig. 14. An image enhancement
technique based on Blind De-convolution algorithm to improve the image quality
followed by edge enhancement algorithms that adaptively enhance the edges and
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wipe off blurriness in the image is implemented in the JWSS. The de-blurring
results of the proposed algorithm and retrieval of plausible matching images using
Content based image retrieval (CBIR) proved better than the conventional tech-
niques. Using either the color, shape or texture features separately to compare and
retrieve images with crisp equal weights was found to be ineffective. Instead, a
fuzzy combination of the color, shape and texture features to design a better query
retrieval system is implemented, where the feature weights are assigned depending
upon the different conditions when the image was taken. This methodology based
on Fuzzy techniques was very effective in identifying the target images obtained
from UAV missions and has been implemented in the JWSS to model the effec-
tiveness of UAV missions [38] (Fig. 15).

Fig. 14 Process of GA and integrating GA with Fuzzy logic system

Fig. 15 Computational Intelligence techniques in ATR, and image recognition and detection in
UAV/UCAV missions in JWSS
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4.8 Design of Game Rules Using Fuzzy Rule Based Systems

Crisp rules use the cookie cutter function to identify the damages caused from the
weapons. We design and develop a fuzzy cookie cutter damage function that
generates rules that are used to game the missions and assess the damages caused to
targets and own resources. Traditional approaches to wargame simulations use
classical logic for damage assessment. Classical two-valued logic system, crisp set
theory and crisp probability on which the damage assessment is based, are inade-
quate and insufficient for dealing with real-life war scenario that involves com-
plexity and different sources of uncertainty. Damage assessment for a target done
using cookie-cutter function gives the probability of damage of a target. Crisp
cookie-cutter function states that a target is damaged inside a circle of specified
radius r, and no damage occurs outside it

d x, yð Þ=1, x2 + y2 ≤ r2

0, otherwise

where, d(x, y) is the damage function of the point target by a weapon whose point of
impact is (x, y) [3] The target is assumed to be completely damaged within the circle
of radius r and no damage occurs outside r. The notion of probability stems from,
and depends on, the idea of repeated trials. Under identical and repeatable labo-
ratory conditions conducted on simple models, this probabilistic notion readily
applies; but, in real-world systems, experiments are rarely identical and repeatable.
Therefore, for the subjective assessment of complex military systems, probability
has its limitations. Fuzzy Logic is the logic behind approximate reasoning instead
of exact reasoning. As knowledge acquisition in wargames design and development
is obtained from pilots and defence analysts, it is usually true that facts and rules are
neither totally certain nor totally consistent due to the varied experience sets of the
pilots. This leads to the reasoning processes used by experts in certain situations as
approximate. The theory of fuzzy sets is used to help assess uncertain information
derived from this approximate reasoning process. Structural damage can be con-
sidered as a linguistic variable with values such as “severely damaged,” or
“moderately damaged.” These are meaningful classifications but not clearly
defined. With the use of fuzzy sets, however, we can quantify such terminology and
apply it in a meaningful way to help solve a complex problem. An evident
advantage of the fuzzy set approach is the possibility of representing numeric and
linguistic variables in a uniform way and of using a formalized calculus to
manipulate these variables. For example, consider a large area-target of size of 550
ft to be attacked, where the fuzzy variables target-ground contrast 80 %, the
terrain, rated 8, is fairly smooth, aircraft altitude is 900 ft, aircraft range is 5000 ft is
flying at 100 knots speed. The target identification factor for this target is seen as
“good” with value 7.3295. In this mission, on firing the rules for inference, the
offset from the desired point of impact is 29 m, considered “less”(i.e. fairly accurate
targeting); weapon-target match is 6 (average), “good” target identification factor
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7.3295, the relative damage caused is 28.9187 which is a “moderate” damage to the
target.

In the JWSS, AI based techniques such as a fuzzy rule-based system to design
the game rules in a mission planning and evaluation system [70]. The conventional
crisp cookie cutter function used to compute the probabilistic damage caused to a
target is replaced by a fuzzy cookie-cutter function, which takes into account many
physical parameters before assessing the possibilistic damage caused to the target.
This methodology of damage assessment computation of targets using fuzzy rule
bases gave realistic results, comparable with the experts’ judgements, in field
training.

4.9 Environment Modeling in JWSS

It receives information from weather, terrain and deployment agent and provides an
information service to the world agent after its own process of reasoning. This
information is then used by other agents such as Manual Observation Post (MOP),
Pilot, Unmanned Air Vehicle (UAV), Identification Friend/Foe (IFF), Radar
Warning Receiver (RWR), Missile Warning Receiver (MWR), Laser Warning
Receiver (LWR), Mission Planning, Sensor Performance, Target Acquisition and
Damage Assessment and Computation. The weather agent is an important agent
that that has functions such as Get_Visibility(), Get_Temperature() and Get
CloudCover(). The weather agents’s reasoning has been designed using ANFIS, a
neuro-fuzzy hybridization technique that is used to predict the Mission_Suc-
cess_Factor(), considering the weather conditions along the mission route [50, 71].

Surface aviation weather observations include weather elements and forecasts
pertaining to flying. A network of airport stations provides routine up-to-date
surface weather information. Upper-air weather data is received from sounding
balloons (radiosonde observations) and pilot weather reports that furnish temper-
ature, humidity, pressure, and wind data. Aircraft in flight also report turbulence,
icing and height of cloud tops. The weather radar provides detailed information
about precipitation, winds, and weather systems. Doppler technology allows the
radar to provide measurements of winds through a large vertical depth of the
atmosphere. Terminal Doppler weather radars are used to alert and warn airport
controllers of approaching wind shear, gust fronts, and heavy precipitation which
could cause hazardous conditions for take-off, landing and diversion. Low-level
wind shear alert systems provide pilots and controllers with information on haz-
ardous surface wind conditions (on and near airbases) that create unsafe operational
conditions. Visible, infrared and other types of images of clouds are taken from
weather satellites in orbit. Weather is a continuous, multi-dimensional,
spatio-temporally data intensive, dynamic and partly chaotic process. Traditionally,
two main approaches for weather forecasting are followed: Numerical Weather
Prediction and Analogue forecasting. For the JWSS application, it is needed to
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consider the past weather conditions at given places of operation and predict the
weather for simulation of mission tasks in real-time. In this paper, the ANFIS
neuro-fuzzy hybridization technique is used to predict the weather conditions along
the mission route and study the effects of weather in the virtual warfare scenario
analysis in terms of pilot decisions in mission planning, performance of sensors,
and target identification and damage assessment.
A Neuro-Fuzzy Hybridization Approach to Weather Prediction
The weather agent has been designed using ANFIS to give the predicted Mis-
sion_Success_factor in weather constraints. In the following section, the
neuro-fuzzy hybridization approach will be discussed. Both neural networks and
fuzzy systems are dynamic, parallel processing systems that estimate input–output
functions [6–8]. They estimate a function without any mathematical model and
learn from experience with sample data. It has also been proven that (1) any
rule-based fuzzy system may be approximated by a neural net and (2) any neural
net (feed-forward, multilayered) may be approximated by a rule-based fuzzy sys-
tem. Fuzzy systems can be broadly categorized into two families. The first includes
linguistic models based on collections of IF–THEN rules, whose antecedents and
consequents utilize fuzzy values. The Mamdani model falls in this group where the
knowledge is represented as it is shown in the following expression.

Ri: If X1 is Ai
1 and X2 is Ai

2 . . . . . . ..and Xn is Ai
m, then y

i is Bi

The second category, which is used to model the Weather prediction problem is
the Sugeno-type and it uses a rule structure that has fuzzy antecedent and functional
consequent parts. This can be viewed as the expansion of piece-wise linear partition
represented as shown in the rule below.

Ri: If X1 is Ai
1 and X2 is Ai

2 . . . . . . ..and Xn is Ai
m, then y

i = a10 + ai1X1 + . . . .. + ainXn

A
∼
∩ B

∼
= x, μ

A
∼
∩ B

∼ xð Þ
� �

jμ
A
∼
∩ B

∼ xð Þ= μ
A
∼ xð Þ∧ μ

B
∼ xð Þ=min μ

A
∼ xð Þ, μ

B
∼ xð Þ

� �� �
ð1Þ

The conjunction “and” Operation between fuzzy sets known as Linguistics, for
the implementation of the Mamdani rules is done by employing special Fuzzy
Operators called T-Norms [6]. The ANFIS uses by default the Minimum T-Norm
which is the case here and it can be seen in the above equations. The approach
approximates a nonlinear system with a combination of several linear systems, by
decomposing the whole input space into several partial fuzzy spaces and repre-
senting each output space with a linear equation. Such models are capable of
representing both qualitative and quantitative information and allow relatively
easier application of powerful learning techniques for their identification from data.
They are capable of approximating any continuous real-valued function on a
compact set to any degree of accuracy. This type of knowledge representation does
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not allow the output variables to be described in linguistic terms and the parameter
optimization is carried out iteratively using a nonlinear optimization method.

Fuzzy systems exhibit both symbolic and numeric features. Neuro-fuzzy com-
puting is a judicious integration of the merits of neural and fuzzy approaches,
enables one to build more intelligent decision-making systems. Neuro-fuzzy
hybridization is done broadly in two ways: a neural network equipped with the
capability of handling fuzzy information [termed fuzzy-neural network] and a fuzzy
system augmented by neural networks to enhance some of its characteristics like
flexibility, speed, and adaptability [termed neural-fuzzy system]. ANFIS is an
adaptive network that is functionally equivalent to a fuzzy inference system and
referred to in literature as “adaptive network based fuzzy inference system” or
“adaptive neuro-fuzzy inference system” (Fig. 3). In the ANFIS model, crisp input
series are converted to fuzzy inputs by developing triangular, trapezoidal and sig-
moid membership functions for each input series. These fuzzy inputs are processed
through a network of transfer functions at the nodes of different layers of the network
to obtain fuzzy outputs with linear membership functions that are combined to obtain
a single crisp output the predicted Mission_Success_Factor, as the ANFIS method
permits only one output in the model. The following Eqs. 2–4 correspond to tri-
angular, trapezoidal and sigmoid membership functions (Figs. 16, 17).

μsðX)=
0 if X < a
(X− a) (̸c− a) if X ∈ [a, c)
ðb−X) (̸b− c) if X ∈ [c, b]
0 if X > b

8>><
>>:

ð2Þ

Fig. 16 Weather agent’s architecture and behaviors
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μsðX)=

0, if X ≤ a
ðX− a) (̸m− a), if X ∈ (a, m)
1, if X ∈ [m, n]
ðb−X) (̸b− n), if X ∈ (n, b)
0, if X ≥ b

8>>>><
>>>>:

ð3Þ

f x; a, cð Þ = 1
1+ e− aðx− cÞ ð4Þ

Weather conditions of interest to JWSS [19, 21, 22, 71] are classified as Pre-
cipitation (Drizzle, Rain, Snow, Snow-grains, Ice crystals, Ice pellets and Hail),
Obscuration (Mist, Fog, Dust, Sand, Haze, Spray, Volcanic ash, Smoke) and Others
(Dust/Sand whirls, Squalls, Funnel cloud, Tornado or Water spout, Sandstorm,
Dust-storm). Temperature, Clouds, Height of cloud base, Wind speed and direction,
Icing, Precipitation, Visibility, Fog, Mist, Rain, Thunderstorm, Haze, dust/sand
whirls and squall speeds are quantified using linguistic fuzzy variables. Target
Identification factor: Rapid and certain target detection and identification are the
dominant factors in the success of all air-to-ground attacks. The ability of tactical
fighters to penetrate enemy defenses and to acquire and identify ground targets
successfully within weather constraints is a keystone of success in a mission. It has
been observed that aerial observers respond to targets in a manner indicating that
detection/ identification represents a continuum rather than discrete phenomena. At
one extreme the response is based on the ability to merely discriminate the exis-
tence of a military object among non-military objects (detection) [26–28]. At the
other extreme the observer can describe the object in precise detail (identification).
Factors considered for computing the Target Identification factor are target size,

Fig. 17 ANFIS architecture
to design the weather agent
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percent contrast, illumination, terrain, weather conditions, altitude and speed of the
aircraft at time of target acquisition. Target Size: As target size increases, proba-
bility of correct target identification increases. It may vary from small to large
tactical targets, including personnel, trucks, and tanks to big targets as bridges,
runways and taxi-tracks. Contrast: Target/Ground Brightness Contrast is expressed
as a percentage. Illumination: Detection performance increases as illumination
increases. Effects of decreases in illumination occurring after sunset and before
sunrise are very important and need to be considered. Terrain: Types of terrain
have been defined in terms such as number of slope changes per unit area and
average slope change. Four different terrain types have been defined-fairly smooth,
moderately rough, rough, and very rough. As the roughness of terrain increases,
percent terrain view decreases, and decrease in detection performance is observed.
Weather: Temperature, humidity, and wind effects the performance of sensors
(such as Radars) deployed, where as conditions such as Precipitation, icing, wind,
visibility, fog, rain, date and time of operation, clouds, and storm effect the pilots’
decisions in planning and executing the missions. Altitude: The relationship
between altitude and target detection/identification is normally one in which there is
assumed to be an optimal altitude; above and below this optimum altitude, detection
is reduced. As altitude increases, detection performance decreases. As altitude is
increased beyond an optimal point, detection probability falls off rapidly.

Data on all these factors are collected from meteorological department databases,
handbooks and experimental field trials and heuristic knowledge from experts and
defense analysts (in questionnaire form) are collected and recorded. They are then
represented as decision matrices and decision trees which form the basis to design
the membership functions and rules. The rules are then executed in the mission
processing module and defuzzified to obtain the damage to target. These results are
then compared to the expected output and fine-tuned before storing in the rule base.
A decision to include the new rule or not is provided to the commander. Missions
and results of the missions are stored as a case-base for retrieval and reuse of
missions plans in new situations. The fuzzy linguistic variables used in the design
of the game rules are as follows:

Mission_Success_Factor (with weather constraints): [1–10] {Very Low:
[0.0–3.5]; Low with Moderate Risk [2.5–5.5]; Medium with Controllable Risk
[4.5–7.5]; High with Moderate Risk [6.5–8.0]; Very High with Low Risk
[7.5–10.0]} Temperature: [Very Low, Low, Moderate, High, Very High]
Fog-Haze: [Shallow, Patches, Low Drifting, Blowing, Showers, Thunderstorm,
Freezing, Partial] Wind-Speed: [Light, Moderate, Heavy] Clouds/Cloud Base:
[Shallow, Patches, Low Drifting, Blowing, Showers, Thunderstorm, Partial];
[Height (ft)] Visibility: [Low, Medium, Clear] Turbulence: [Clear, Low, Medium,
Heavy] Storm/Squalls: [Clear, Low, Medium, Heavy] Sky Cover: [Clear, Few,
Scattered, Broken, Overcast, Vertical Visibility] Terrain: [1–100] {Fairly Smooth
[0–22]; Moderately Rough [14–49]; Rough [45–81]; Very Rough [75–100]}.
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Target Size (in feet): {Very small: [0–100]; Small: [70–190]; Medium sized:
[160–300]; Large: [270–400]; Fairly Large: [360–500]; Extremely Large:
[450–900]} Damage: Offset (in meters): {Very Less:[0–23]; Less: [16–36];
Medium: [34–57]; Large: [56–80]; Very Large [78–100]} Weapon Target Match:
[0–10] {Poor: [0–3.6]; Average: [3.36–6.669]; Good: [6.73–14.2]}

Target Identification Factor: [0–10] {Very poorly identified: [0–1.19]; Poorly
identified [0.96–2.43]; Average identification [2.34–5.61]; Good identification
[5.43–7.55]; Excellent identification [7.35–10]} Relative Damage (Damage rel-
ative to intended damage): [0–100] {Mild: [0–18]; Moderate: [16–36]; Average:
[34–57]; Severe: [56–80]; Fully Damaged: [78–96]}.

Data from meteorological database is used to train the network to apply a hybrid
method whose membership functions and parameters keep changing until the
weather forecast error is minimized (Fig. 5a, b). Then the resulting model is applied
to the test data of the mission time and places en-route from take-off base, target and
landing base.

5 Results Discussion

The fuzzy variables are used to calculate the Mission success factor based on the
prevailing weather conditions generated by the ANFIS model, target identification
factor and firing of the rules to compute the relative damage to the target. Offset is
calculated using actual altitude, actual vertical flight path angle, actual wind speed
and observed altitude, observed altitude, observed vertical flight path angle,
observed wind speed by the weapon system trajectory calculation module and the
aircraft speed as the input variables (Table 5). Offset is a measure of induced error,
wind induced error, and vertical flight path angle induced error.

Case Mission ID # 001: Consider a large area-target of size of 550 ft to be
attacked, where the fuzzy variables target-ground contrast 80 %, the terrain, rated
8, is fairly smooth, aircraft altitude is 900 ft, aircraft range is 5000 ft is flying at 100
knots speed. The target identification factor for this target is computed as “good”
with value 7.32. (In the tables below * denotes the Missions planned and executed
when considering the Weather conditions.)

In this mission, on firing the rules for inference, the offset from the desired point
of impact is 29 m, considered “less”(i.e. fairly accurate targeting); weapon-target
match is 6 (average), “good” target identification factor 7.32, the relative damage
caused is 28.92 which is a “moderate” damage to the target. We consider two
scenarios of weather conditions at the given place and time or the mission plan
(Fig. 2). Weather conditions are identified based on the place and time of missions.
The ANFIS model computes the Mission_Success_Factor as 8.4 when no weather
conditions are considered, and reduces to 3.7 when weather conditions are con-
sidered in the JWSS (Table 3). These conditions also reduce the Relative Damage
from 28.91 to 13.55 (Table 5) and offset of the weapon hitting away from the
intended target increased from 29.03 to 37.54 (Table 6).
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Case Mission ID # 002: Another mission planned by the commander where a
similar target is chosen with the fuzzy variables as shown in Tables 3 and 4. While
the offset has reduced to 6 m, considered “very less” (i.e. very accurate targeting),
choosing a different weapon system and delivery improved the weapon-target
match to 9 (“good”), and mode of weapon delivery 9, the target identification factor
also improved to 8.033 (considered “excellent”), and the relative damage caused is
88.74, which is a “substantial” damage to the target (Tables 4 and 5). Weather
conditions are again identified based on the place and time of missions. The ANFIS
gives the Mission_Success_factor as 9.8 when no weather conditions are consid-
ered, and reduces to 7.1 when weather conditions are considered in the JWSS
(Tables 3 and 4). These conditions also reduce the Relative Damage from 28.91 to
13.55 (Table 5) and offset of the weapon hitting away from the intended target
increased from 6.07 to 12.05 (Table 6). These attributes form the antecedents of the
fuzzy rule and the consequent is shown in the last column of the tables. For all the
missions that the pilots plan in the wargame exercises, these fuzzy game rules are
used to infer the expected damage caused to the target. These missions form a part
of a case-base which is used as part of the ‘learning’ by the system for future
instructional use.

5.1 Modeling Pilot Agents in Air Warfare Simulation
System

Advances in combat aircraft avionics and onboard automation, information from
onboard and ground sensors and satellites, pose a threat in terms of data and
cognition overload to the pilot. Under these conditions, decision making becomes a
difficult task.

Table 5 Fuzzy rules to compute the Relative damage to target

MissionID Offset
(meters)

Target
radius
(km)

Weapon-target
match

Weapon
delivery
mode

Target
identification
factor

Relative
damage

# 001 29.03 0.09 6 6 7.32 28.91
#001* 37.54 0.09 6 6 5.67 13.55
# 002 6.07 90.0 9 9 8.03 88.74
#002* 12.65 90.0 9 9 6.43 65.92
*denotes the Missions planned and executed when considering the Weather conditions
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The factors identified in Table 7 are representative of the two pilots P1 and P2,
who differ mainly in Information Processing and decision making, Risk taking and
Reaction to stress which are typically identified personality traits. Data collected
using clinical and psychometric tests for all the pilots are stored in the Pilot’s
database. These (fuzzy) attribute values from the pilot’s database are fuzzified and
used to determine the pilot’s personality as one of the inputs to the ANFIS tool
(Table 8).

5.2 Data Mining Techniques and Reasoning in Wargame
Results Analytics

Having designed and developed the JWSS as an exploratory, battlefield experi-
mentation, test-bed using an inner-sourcing, product-line architecture that supports
multi-resolution models and a wargame process customization script to cater to
various military training establishments, this test-bed serves as a platform for
mission analysis, and doctrine analysis, using data mining and pattern analysis
techniques. Digital Battlefield simulation and experimentation uses data mining
techniques such as association, clustering, classification, learning, decision trees
and rules that provide insights into the doctrines and their effectiveness [72]. Each
of these methods use CI techniques, in turn, to arrive at realistic rules for doctrine
assessment and evaluation (Fig. 18).
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6 Case Study: Joint Warfare Analyses and Integrated Air
Defence

Joint Warfare Simulation System has been designed and developed to meet the
training and operational analysis requirements of military officers. It provides a
platform for deployment of resources, weapon target matching, weaponeering
assessment, force planning, force execution, damage assessment, quantitative
results analysis and displaying reasoning for generating outcomes. As a training
platform it can be used to train military officers in various roles in formulating and
evaluating strategies and decision making processes, at tactical and operational
levels of warfare. For operational analysis version, this can be used to find out the
effectiveness and performance of various weapon systems, weapon delivery plat-
forms, force multipliers, and sensors in a simulated battlefield scenario between two
or more opposing forces.

JWSS has been designed and developed as a test-bed to simulate wide range of
military air operations such as counter air missions, counter surface force opera-
tions, air defense missions, and combat support operations [2] between two or more

Sensor to Shoot 
Time

Total Rounds  
Fired 

Hits Achieved 

Exposure Time 

Fig. 18 Battlefield experimentation, results analysis and doctrine analysis using data mining
techniques
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opposing forces. It provides a platform for deployment of resources, weapon target
matching, weaponeering assessment, force planning, force execution, damage
assessment, quantitative results analysis and displaying reasoning for generating
outcomes which is crucial for debriefing and learning purpose. It also computes the
attrition rates, statistics of various operations & in-depth history of various events
generated during the simulation which helps in analysis and validation of tactics
and various operational objectives. This application when configured in training
mode, trains military officers in planning missions to meet the objectives such as
destruction of a synthetically generated target like an airfield, vital bridge, nodal
point, or army installations. It uses extensive set of game rules to simulate wide
range of operations. This application can also be configured as an analytical tool for
operational analysis at the tactical levels for decision making. In the first phase of
conducting any wargame exercise, the mission objectives are outlined to define
which facets of enemy activity are to be affected by the mission. Based on these
tactical objectives, with the study of target folder, suitable target damage criteria,
force and ordnance requirements are defined to achieve the desired level of damage.
In the third phase, combat models are used to define the type and quantity of
weapons needed to produce the required level of damage, based on the desired
mean point of impact and target elements. The outputs of this phase are essential
inputs to execution planning. The Execution Planning phase assign missions to
specific units, perform attack and support force packaging, determine attack timing,
and outline communications and coordination requirements (C2/C3 structures).
Detailed mission planning is also done in this phase. In Force Execution and
Combat assessment phase, the missions are executed in simulation manager using
game rules, acquisition models and damage assessment models and the results are
assessed to determine if the objectives have been met, or re-strike is required. Some
of the salient features of this simulation system are: Multi-Team War Scenario
Analysis System, Training Toolkit, Tactical Deployment Evaluation & Decision
Making Tool, Operational Analysis Tool to Evaluate Performance & Effectiveness
of Aircraft, sensors, Weapon Systems and Missions, Electronic Warfare & Logistics
Support, Weather and Terrain effects with customized GIS, Quantitative Evaluation
of Mission Objectives and Plans, “What-If” Scenario Analysis. Screen shots of the
JWSS software are show in Fig. 19.

Fig. 19 Joint warfare simulation system as a common test-bed for multiple training products
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7 Conclusions

In this paper, we have presented a Joint Warfare Simulation System, a digital
battlefield test-bed, in which a war scenario between two or more opposing forces
can be simulated. The planners plan various offensive and defensive emissions
which are gamed against the perceived threat using the JWSS to assess the mission
effectiveness. Some of the major components of the design are the joint forces
scenario databases, military ontology, resource databases that contain the perfor-
mance characteristics of weapons, sensors, missiles, aircraft, naval platforms, air
and ground defence systems, target analysis, resource deployment, mission plan-
ning, target damage assessment and results analysis. Fuzzy sets and systems are
used to represent the damage assessment techniques, game rules are designed using
adaptive neuro-fuzzy systems, software agents are used to build on-board intelligent
pilot model, where the pilot agent uses mission ontology to plan his mission
automatically. An automated decision tool to generate the decisions of the pilot in
various situations is also built in the system by considering the cognitive and
behavioural characteristics of the selected pilot from the pilot database. Fuzzy
Cognitive maps to represent the pilots’ plans are implemented and NNs to model
the pilots decision making ability. Mission Plans are automatically generated by
specifying the mission objective, which in turn generates all the plausible courses of
action, with varying mission costs and risks and utilising resource in the inventory.
Military logistics planning is also done by the system to automatically generate the
most efficient routes using AI techniques. This utilises the entire road/rail/air data
during peace times and war times. Generation of automated mission plans, evalu-
ating the effectiveness of mission plans, Red-teaming, Threat perception of the
enemy, modeling counter-insurgency operations, are designed using computer
generated forces and semi-automated forces with propositional, probabilistic and
possible world approaches and evolutions using swarm optimisation techniques.
Ontology to represent the common knowledge-base and representation of the
adaptive lesson plans is implemented as part of the system. The conventional
damage models built using cookie-cutter approximation are replaced by Fuzzy
damage functions. These models are built and implemented as Joint Warfare
Simulation systems that can be customised to meet the varying needs of the trai-
nees. Weather and Environment variables are an important factor to consider in the
assessment of mission plans and generate results. These are modeling using ANFIS.
A Weapon-Platform-Target system that helps in matching and assigning the
resources to targets is an important part of the Wargames that is matched using
fuzzy inference systems. A Weaponeering tool that estimates the number of
weapons to destroy a target with a given assurance level is developed. A Weapon
target matching using GA and a tool to aid the planner in Optimal Deployment of
sensors and resources is implemented using GA.
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Improving Load Signal and Fatigue Life
Estimation for Helicopter Components
Using Computational Intelligence Techniques

Catherine Cheung, Julio J. Valdés and Jobin Puthuparampil

Abstract The accurate estimation of helicopter component loads is an important

factor in life cycle management and life extension efforts. This chapter explores con-

tinued efforts to utilize a number of computational intelligence algorithms, statisti-

cal and machine learning techniques, such as artificial neural networks, evolutionary

algorithms, fuzzy sets, residual variance analysis, and others, to estimate some of

these helicopter dynamic loads. For load prediction using indirect computational

methods to be practical and accepted, demonstrating slight over-prediction of these

loads is preferable to ensure that the impact of the actual load cycles is captured by

the prediction and to incorporate a factor of safety. Subsequent calculation of the

component’s fatigue life can verify the slight over-prediction of the load signal. This

chapter examines a number of techniques for encouraging slight over-prediction and

favoring a conservative estimate for these loads. Estimates for the main rotor nor-

mal bending on the Australian S-70-A-9 Black Hawk helicopter during a left rolling

pullout at 1.5 g manoeuvre were generated from an input set consisting of thirty stan-

dard flight state and control system parameters. The results of this work show that

when using a combination of these techniques, a reduction in under-prediction and

increase in over-prediction can be achieved. In addition to load signal estimation, the

component’s fatigue life and load exceedances can be estimated from the predicted

load signal. In helicopter life cycle management, these metrics are more useful per-

formance measures (as opposed to mean squared error or correlation of the load

signal), therefore this chapter describes the process followed to calculate these mea-

sures from the load signal using Rainflow counting, material specific fatigue data

(S-N curves), and damage theory. An evaluation of the proposed techniques based

on the fatigue life estimates and/or load exceedances is also made.
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1 Introduction

Operational requirements are significantly expanding the role of aircraft fleets in

many countries. Particularly in military helicopter fleets, this expansion has resulted

in aircraft flying missions that are beyond the original design usage. Therefore, the

current life usage estimation for the fatigue critical components may no longer have

the required low probability of failure, or conversely, operational lives could be

expanded if actual mission flight load spectra were found to be considerably less

severe. Due to such change in usage, there is a need to monitor individual aircraft

usage, compare it with the original design usage spectrum to more accurately deter-

mine the life of critical components.

For helicopters, which constantly operate in a complex dynamic and highly vibra-

tory loading environment, there are a number of structural components that have a

specified fatigue life, that is, the length of time that the component can be safely oper-

ated with minimal or acceptable risk of failure. These components experience low-

magnitude high-cycle fatigue as well as large-magnitude low-cycle fatigue caused

by the oscillating loads of the main rotor and/or tail rotor systems. In the dynamic

system of helicopters, typically encompassing the rotor system, flight control link-

ages and the rotor masts (but excluding the engines, driveshafts, and transmission),

the fatigue life of the components is known as the component retirement time. These

retirement times are traditionally determined using the safe life methodology which

assumes that the probability of a crack forming in a component during its service

lifetime remains below an acceptable level [1].

Monitoring loads on individual aircraft (or platform) in a fleet has the potential to

lead to more reliable and safer exploitation of the platform, optimized and extended

usage of the component and platform operational lives, better platform usage and

fleet management, and reduced maintenance and life cycle costs. Currently, load

monitoring and fatigue life monitoring in helicopters is rarely performed directly.

The most common method for tracking helicopter usage is simply by monitoring

flight hours. The loads on the components are then assumed to be the same as those

derived during aircraft certification based on full-scale fatigue tests and instrumented

flight tests. However, these load assumptions can differ from reality on an individual

platform basis, and may even be aggravated when platforms assume different roles

than the ones for which they were initially designed and tested for thus affecting

safety and economic efficient usage. Therefore, monitoring loads on individual air-

craft in a fleet has the potential to lead to an increased and safer exploitation of each

platform, with increased efficiency, better platform usage and fleet management, and

reduced life cycle costs.

While measuring dynamic component loads directly is possible through installed

sensors, the installation and operation of a sensor suite on an individual aircraft basis

is challenging and expensive, and therefore seldom implemented. Traditional mea-

surement systems for dynamic components include slip rings or telemetry systems;

however, these methods have not proven reliable—they introduce a considerable

amount of noise, are difficult to maintain, and pose the risk of loss of sensor signal
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during flight. Therefore, a robust and accurate process to indirectly estimate these

loads could be a practical alternative, which can be used to complement existing

methods or supplement sensor data in the future when these measurement methods

are proven reliable. The implementation of computational intelligence techniques to

this problem is a natural fit, given the complexity of the load signals and influence

of numerous factors (e.g. aircraft altitude, aircraft speed, engine torque, etc.). Load

estimation methods can utilize data obtained from existing aircraft instrumentation,

such as standard flight state and control system (FSCS) parameters, to minimize the

need for additional sensors and accordingly avoiding the substantial costs associated

with installing, maintaining and monitoring additional instrumentation.

Although the use of computational intelligence algorithms (most commonly

neural networks and regression methods) has been explored by others to indirectly

(i.e. without the use of additional sensors) estimate loads or fatigue lives in aircraft

components, the developed methodologies have not been reliable and accurate for an

in-service application. The methodology presented in this chapter enables the pre-

diction of the load signals on components of a helicopter, using existing flight data

and avoiding the use of additional sensors. We refer to the time-varying measurement

of the load by the helicopter instrumentation as the load signal or load-time signal in

this work. The prediction is performed through the use of computational intelligence

algorithms, statistical and machine learning techniques, such as artificial neural net-

works, evolutionary algorithms, fuzzy sets, residual variance analysis, and others.

There is an important pre-processing stage including data synchronization, appropri-

ate standardization, time dependencies assessment, sampling, relevance evaluation

(feature selection), cleaning, and load signals information content characterization.

The importance of these steps is crucial and previous modelling attempts that did not

consider them failed. The predicted load signals then form the basis for estimating

the fatigue life of the component.

Preliminary work exploring the use of computational intelligence techniques for

estimating helicopter loads on the Australian S-70A-9 Black Hawk (Fig. 1) showed

that reasonably accurate and correlated predictions could be obtained [2, 3]; how-

ever, these efforts had a tendency to under-predict the target signal. If these predic-

tions were then used for calculating component retirement times, an under-predicted

Fig. 1 S-70A-9 Australian

Army Black Hawk
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load signal would indicate a less severe loading and therefore the fatigue damage

associated with that load signal would be underestimated, posing a potential safety

risk. While an over-predicted signal would provide a conservative estimate for the

component’s remaining life, to avoid excessive reductions to the component’s fatigue

life, an overly conservative estimate is also undesirable; in order for load prediction

and fatigue life estimation using computational intelligence techniques to be useful

and accepted, demonstrating slight over-prediction is preferable to ensure that the

impact of the actual load cycles is captured by the prediction. In this chapter, a num-

ber of techniques are introduced and explored to improve the load prediction, directly

addressing the under-prediction tendency previously encountered. The fatigue life of

the component can then be estimated from the predicted load signal. In helicopter life

cycle management, this metric is a more useful performance measure (as opposed to

mean squared error or correlation of the load signal). This work therefore evolved to

attain a complete approach to load monitoring which includes estimating the load-

time signal and calculating the subsequent fatigue life, being particularly devoted to

rotating components and avoiding the use of additional sensors, which is specifically

challenging when dynamic components are considered. Initial results calculating the

fatigue damage accumulation based on load signal predictions using a simplified

methodology established a process to evaluate load signal predictions [4, 5].

This chapter describes continued efforts to improve the load-time signal predic-

tions by using several different techniques to encourage some over-prediction and

thereby favor conservative estimates. These techniques include (i) altering the sam-

pling scheme of the training and testing sets, and (ii) implementing alternative error

functions. The specific problem was to estimate the main rotor normal bending

(MRNBX) on the Australian Army Black Hawk helicopter using only flight state

and control system (FSCS) variables during the rolling pullout flight condition. The

process followed to calculate the fatigue life from the load signal using Rainflow

counting, material specific fatigue data (S-N curves), and damage theory is also

described. An evaluation of the proposed techniques based on fatigue life measures

is made. The objective of this work is to explore the effectiveness of these techniques

to generate slightly over-predicted load signals and conservative component fatigue

life estimates.

The chapter is organized as follows: Sect. 2 describes the test data, Sect. 3 explains

the methodology that was followed, Sect. 4 describes the two techniques explored

for favoring conservative estimates, Sect. 5 details the computational intelligence

techniques used for search and modelling, Sect. 6 explains the fatigue life estimation

process, Sect. 7 highlights the key results and Sect. 8 presents the conclusions.

2 Black Hawk Flight Loads Survey Data

A joint program between the United States Air Force and the Australian Defence

Force, implemented in the year 2000, consisted of a flight loads survey for the

S-70A-9 Black Hawk (UH-60 variant). The flight tests covered a broad range of

steady state and transient flight conditions at various gross weights, altitudes and air-
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Table 1 Black Hawk flight

state and control system

(FSCS) parameters

Mnemonic Description

VCASBOOM Air speed (boom)

LOADFACT Vertical acceleration, load

factor at CG

ATTACK Angle of attack (boom)

SIDESLIP Sideslip angle (boom)

PITCHATT Pitch attitude

PITCHRAT Pitch rate

PITCHACC Pitch acceleration

ROLLATT Roll attitude

ROLLRAT Roll rate

ROLLACC Roll acceleration

HEAD180 Heading

YAWRAT Yaw rate

YAWACC Yaw acceleration

LGSTKP Longitudinal stick/cyclic position

LATSTKP Lateral stick/cyclic position

PEDP Directional pedal position

COLLSTKP Collective stick position

STABLAIC Stabilator position

NR % of max main rotor speed

ERITS Retreating tip speed

MRQ Main rotor shaft torque

TRQ Tail rotor drive shaft torque

NO1QPCT No. 1 Engine torque

NO2QPCT No. 2 Engine torque

NO1T45 No. 1 Eng power lever (temp)

NO2T45 No. 2 Eng power lever (temp)

HBOOM Barometric altitude (boom)

FAT Temperature (Kelvin)

HD Altitude (height density)

ROCBOOM1 Barometric rate of climb (boom)

craft configurations. A total of 65 hours of flight test data was obtained from the sur-

vey, which included the measurements from 321 strain gauges (249 on the airframe

and 72 on dynamic components). Flight State and Control System (FSCS) parame-

ters were also simultaneously acquired, as well as data from accelerometers and other

sensors installed at numerous locations on the aircraft. The data used for this work

were the FSCS parameters and the strain gauge measurements on the dynamic com-

ponents of the aircraft. Full details of the instrumentation and flight loads survey are

provided in [6].
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One of the key aspects of this research is to rely solely on data from the FSCS

parameters to determine helicopter dynamic loads and component fatigue life, as

these FSCS parameters are already recorded by the flight data recorder found on most

helicopters. There were thirty FSCS parameters recorded on the Black Hawk heli-

copter during the flight loads survey. The thirty FSCS parameters on the Black Hawk

that were examined are listed in Table 1. The main rotor normal bending (MRNBX)

was selected as the target output. This gage measured the normal bending on the

main rotor blade cuff. From over 50 flight conditions, rolling left pullout at 1.5 g

was selected for this work. This manoeuvre is a relatively severe and dynamic flight

condition that should present a greater modelling challenge since there is consider-

able variation in the parameter values through each recording. The FSCS parameters

were sampled at 52 Hz, while the main rotor sensors recorded at a higher frequency

of 416 Hz, so the main rotor sensor data was downsampled to match the FSCS para-

meter frequency.

3 Methodology for Load Signal Prediction

The overall goal of this work was to develop computational models to generate accu-

rate predictions for helicopter loads using flight state and control system (FSCS)

parameters. The use of existing flight data (FSCS parameters) means that the costly

installation and maintenance of additional sensors can be avoided. A variety of com-

putational intelligence techniques, including statistical and machine learning meth-

ods, were implemented for load signal prediction. The general process followed for

the load time signal prediction is depicted in Fig. 2. From the instrumented aircraft

data, the FSCS parameters and sensor measurements were extracted as the input

parameters and the target parameter respectively. Computational intelligence tech-

niques were then applied to learn models which predict the component load signal

from the FSCS parameters.

The application of computational intelligence and machine learning techniques

to develop these models for load signal prediction occurred in two phases: (i) data

exploration: characterization of the internal structure of the data and assessment of

the information content of the predictor variables (in particular their relation to the

target variable); and (ii) modelling: build models relating the dependent and the pre-

dictor variables. The load signal predictions were then used to calculate the fatigue

life of the component. This methodology is illustrated in Fig. 3.

Fig. 2 Component load signal prediction from FSCS parameters
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Fig. 3 Methodology for load signal prediction and fatigue life estimation

The data exploration phase is a key pre-processing stage that includes data syn-

chronization, appropriate standardization, time dependencies assessment, sampling,

relevance evaluation (feature selection), cleaning, and load signals information con-

tent characterization. These steps are important in order to extract the most relevant

predictive information from the data. Typically the recorded FSCS parameters are

not chosen with load signal estimation in mind and from this point of view they

contain noise, spurious interactions and other unwanted effects. They distort and

bury useful dependencies which also are often weak and indirect. Data exploration

is essential in order to identify these dependencies and extract load signal properties

for improving the results of the modelling process. Moreover, it provides knowl-

edge which allows a better understanding of the inner fabric and particularities of

the physical system.

In the data exploration phase, the time dependencies within the FSCS parameters

and the target variables were explored through the use of phase space methods and

residual variance analysis (the Gamma test). These techniques were applied in order

to find subsets of predictor variables with relevant function relationships with respect

to the target variable, as well as for determining time-lagged structures involving

those subsets. They are important for assessing how past events influence future tar-

get variable values. Using the Gamma test, it was determined in [3, 7] that 5 time

lags (i.e. for a given time t, lagged values at {t, t−1,… , t−5}) were required to best

estimate the behavior of the system from the 30 FSCS parameters. From this result,
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a total of 180 predictor variables (30 parameters × 5 time lags) would be necessary

to train the machine learning algorithm. Five time lags at the FSCS sampling rate of

52 Hz corresponds to about 180◦ or half of one revolution of the main rotor’s rota-

tion. The next stage in the process was to explore the relevant information in the data

using the Gamma test and multi-objective genetic algorithms (MOGA). Through the

application of MOGA, binary masks were generated which identify which of the 180

predictor values have the greatest influence on the target signal. The most promising

subsets (or masks) were then selected as inputs and used as a base for model search

in the modelling stage.

During the modelling stage, computational techniques were implemented to build

models relating the target variable to the subset of predictor variables (as identi-

fied in the data exploration stage). In particular, neural networks were used, trained

with evolutionary computation techniques (differential evolution (DE)). Initial work

[2, 3] explored the use of different modeling techniques for this application, includ-

ing M5 model trees, local linear regression, genetic programming, and neural net-

works, but the neural network framework consistently provided better results and so

this technique was pursued.

3.1 Gamma Test (Residual Variance Analysis)

The Gamma test, developed by [8–10], is an algorithm that assists in the creation of

data-driven models of smooth systems. This technique aims to estimate the amount

of noise present in a given dataset (its variance), wherein noise is recognized as

any source of variation in the output (target) variable that cannot be explained by a

smooth transformation (model) relating the output with the input (predictor) vari-

ables. The critical piece of information provided by the Gamma test is whether it is

possible to successfully find (fit) a smooth model to the dataset. Since model search

through data mining is a time consuming, computationally expensive procedure, it is

beneficial to have an estimate of the amount of determinism carried by the variables

involved in the process and a quantitative upper bound for the best error that could be

expected from a smooth model using the selected predictors, that is, an indication as

to whether it is hopeful or hopeless to try to learn a model using the given predictors.

The Gamma test can also help gauge the complexity of the underlying data and if it

is necessary for more explanatory variables to be incorporated, in order to provide

an improved model. If the test outputs a small gamma estimate value, it suggests that

a smooth deterministic dependency can be expected.

If X = {x0,… , xn} is a set of candidate predictor variables of a target variable y
their functional relationship could be expressed as y = f (x0,… , xn) + r where f is a

(deterministic) model and r a residual variable representing noise, random variation

or unaccounted determinism not captured by X. Under the assumptions of continuity

and smoothness (bounded partial derivatives), the Gamma test produces an estimate

of the variance associated to r using only the available (training) data. Normaliza-

tion of this variance into a parameter referred to as the vRatio (Vr) allows for the
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comparison of r-variances across datasets. Another important value calculated by

the Gamma test is the so-called gradient, G, which is a measure of the complexity

associated with the system.

The Gamma test is a versatile tool which can be employed in numerous ways

during data exploration. In this work, it was used to determine the number of time

lags which are relevant in the prediction of the future target sensor values, and most

notably, to determine the subset of lagged FSCS variables with the largest predic-

tion potential (therefore, the best candidates for building predictive models). The

Gamma test techniques were used for an extensive data exploration for different tar-

get sensors under different flight conditions, in an effort to find the optimal subsets

of the lagged FSCS variables while simultaneously minimizing Vr (large prediction

power), G (low complexity), and number of predictor variables (denoted by #). This

task is accomplished by means of an evolutionary computation framework using

multi-objective genetic algorithms with <Vr,G, #> as three simultaneous objectives

to minimize.

3.2 Simplified Methodology

While the application of these techniques in the data exploration phase enables much

useful information to be extracted from the data, this approach is fairly complex and

computationally intensive. Therefore, recent efforts [4] incorporating the fatigue life

estimation steps simplified the whole methodology to expedite the entire estimation

process. The simplified version of the methodology is shown in Fig. 4, where the

original 30 FSCS parameters are used as inputs without any time lags to a scaled

conjugate gradient (SCG) neural network model to predict the main rotor normal

Fig. 4 Simplified

methodology
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bending. Application of this simplified methodology is the most direct and straight-

forward method of modelling the target load signal and estimating the component

fatigue life from the 30 FSCS parameters. Results from both the full and simplified

methodologies are presented in this work.

4 Techniques for Conservative Estimates

4.1 Training Set Construction

The dataset used for training a neural network should capture all of the fundamental

dynamics of the system, if the resulting learnt model is to be capable of making

accurate predictions with previously unseen data. A common practice in machine

learning to eschew this problem is to use 50–90 % of the available data for training,

with the remaining for testing. However, this greedy approach is highly impractical

with tremendously large data sets, as is the case in this study. To keep computing

times realistic, two alternative methods were used in constructing the training sets:

the k-leaders sampling, and the biased sampling.

The k-means clustering [11] method is employed to consolidate a training set of

practical size ensuring that the sample is still statistically representative of the entire

dataset. A training set of 2000 clusters was formed via the k-means algorithm applied

using Euclidian distance, from which the data vector closest to the centroid of each

cluster was chosen as the k-leader, resulting in 2000 k-leaders. As every data vector

is part of a cluster with a representative k-leader, this algorithm ensures that every

multivariate vector in the initial dataset is represented in the training sample while

producing samples of computationally manageable sizes.

A second sampling technique to form the training and testing sets was explored.

A biased sampling technique was introduced in previous work [12, 13] and is used

again here. In an unbiased sampling scheme, the statistical distribution of the train-

ing and testing sets would ideally be equivalent. For the helicopter load estimation

problem though, this need not be the case, as upper and lower values in the target

signal contribute significantly more damage towards the component than the inter-

mediate values. To capture this difference in importance, a biased sampling scheme

was devised where the training set purposely contains far more tuples associated with

these classes of special interest than would be present in the natural distribution of

the data. This, in theory, would (i) drive the learning process towards capturing these

extremities more accurately, and (ii) lead the network to over-predict the intermedi-

ate values.

The threshold defining these regions, or classes, was set as a function of the mean

and standard deviation of the target signal: the data points exceeding the mean plus

1 standard deviation belonged to the ‘high’ class, those whose values were below the

mean minus 1 standard deviation fell in the ‘low’ class, and the remaining data was

assigned to the ‘medium’ class. The distribution between the high, medium, and low
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Fig. 5 Distribution of

training data. The x-axis

plots the peak values in

terms of the number of

standard deviations from the

mean (mean at 0)

classes in the training set was set as 0.4, 0.2 and 0.4 respectively with the purpose

of steering the process towards the extreme classes. For MRNBX rolling pullout,

the distribution of the data points in the training set for the two sampling schemes

(k-leaders and biased) is shown in Fig. 5.

For the simplified version of the methodology, a traditional 90/10 % partitioning

between training and testing sets was used without any structural sampling. Models

were typically trained from a 90 % subset of the data, while the remaining 10 % was

used for testing.

4.2 Alternative Error Functions

The second method attempted to encourage conservative estimates for helicopter

loads uses alternate error functions instead of mean squared error (MSE) for the

neural network to minimize during its training.

An asymmetric fuzzy-based error function was introduced in [13] and is described

in Eq. 1:

E (x,T) = 1
S(x,T)

− 1 (1)

where S(x,T) is a membership function of predicted values x with respect to the class

defined by a target value T . For T ≥ 0, S(x,T) is defined piecewise by Eq. 2:

S(x,T) =
⎧
⎪
⎨
⎪⎩

(1 + (𝛼u|x − T|))−1 if x < T
1 if x ≥ T & |x − T| <= 𝜀

(1 + (𝛼o|x − T|))−1 if x ≥ (T + 𝜀)
(2)
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Fig. 6 Fuzzy membership

function. The top plot shows

the fuzzy membership

function with two sets of

parameter values

(𝜀 = 0.15, 𝛼u = 10, 𝛼o = 1
and 𝜀 = 0.05, 𝛼u = 5, 𝛼o = 3)

to illustrate the effect of

changing each parameter.

The bottom plot shows the

resulting error function for

each set of parameters

The parameters of the S function ({𝜀, 𝛼u, 𝛼o} ∈ ℜ+
) can be varied in order to

stimulate slight to moderate over-prediction (that is, conservative estimates, provided

that the target variable represents a helicopter load). The membership function, S,

with two sets of parameter values and the resulting error functions can be seen in

Fig. 6. This asymmetric error function contrasts with the standard mean squared error

(MSE) measure which is symmetric and therefore does not differentiate under and

over-prediction (Fig. 7). Variants of the asymmetric error function were attempted

with the parameter settings listed in Table 2.

Another error function that was implemented in this work is the symmetric mod-

ified absolute percentage error (SMAPE) given by Eq. 3,

SMAPE = n−1
n∑

i=1

||yi − fi||
|yi|+|fi|

2

(3)

where yi is the ith observed data point, and fi is the corresponding prediction [14].

This function is not symmetric despite its name and over-prediction results in a
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Fig. 7 Comparison of three

error functions: mean

squared error (MSE),

symmetric modified absolute

percentage error (SMAPE),

and fuzzy-based asymmetric

error function

(𝜀 = 0.15, 𝛼u = 10, 𝛼o = 1)

Table 2 Parameter values

for asymmetric error function
Parameter Values

𝜀 0.15, 0.1, 0.05, 0
𝛼u 10, 5, 3
𝛼o 10, 5, 3, 1

smaller error than under-prediction by the same amount (e.g. for y = 100 and f = 110
yields SMAPE = 9.5%, while for y = 100 and f = 90 yields SMAPE = 10.3%).

The three error functions are plotted in Fig. 7.

5 Neural Network Training Methods

Training neural networks involves an optimization process, typically focused on min-

imizing an error measure. This operation can be done using a variety of approaches

ranging from deterministic methods to stochastic, evolutionary computation (EC)

and hybrid techniques. Since asymmetric and other error functions were used in this

study, traditional deterministic (gradient descent) methods could not be used, as the

partial derivatives of the error surface are not provided. Consequently, differential

evolution (an EC technique) was the primary learning technique used in this work.

Differential evolution (DE) [15, 16] is a type of evolutionary algorithm which

uses populations of individual real-valued vectors and subjects them to an evolution

process. Although less frequently utilized than genetic algorithms, it has proven its

effectiveness in complex optimization problems, outperforming other approaches

[17, 18]. The general methodology is as follows:

step 0 Initialization: Create a population P of random vectors in ℜn
, and decide

upon an objective function f ∶ ℜn → ℜ and a strategy S , involving vector

differentials.

step 1 Choose a target vector from the population 𝑥
𝑡

∈ P .
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step 2 Randomly choose a set of other population vectors V = {𝑥
1

, 𝑥
2

,…} with

a cardinality determined by strategy S .

step 3 Apply strategy S to the set of vectors V ∪ {𝑥
𝑡

} yielding a new vector 𝑥
𝑡
′ .

step 4 Add 𝑥
𝑡

or 𝑥
𝑡
′ to the new population according to the value of the objective

function f and the type of problem (minimization or maximization).

step 5 Repeat steps 1–4 to form a new population until termination conditions are

satisfied.

There are several variants which can be classified using the notation DE/x/y/z,
where x specifies the vector to be mutated, y is the number of vectors used to compute

the new one and z denotes the crossover scheme. Let F be a scaling factor, Cr ∈ ℜ
be a crossover rate, D be the dimension of the vectors, P be the current population,

Np = card(P) be the population size, 𝑣i, i ∈ [1,Np] be the vectors of P , 𝑏P ∈ P
be the population’s best vector w.r.t. the objective function f and r, r0, r1, r2, r3, r4, r5
be random numbers in (0, 1) obtained with a uniform random generator function

rnd() (the vector elements are 𝑣ij, where j ∈ [0,D)). Then the transformation of each

vector 𝑣i ∈ P is performed by the following steps:

step 1 Initialization: j = (r ⋅ D), L = 0
step 2 while(L < D)
step 3 if ((rnd() < Cr)||L == (D − 1))

/* create a new trial vector. For example, as: */

𝑡ij = 𝑏Pj + F ⋅ (𝑣r1j + 𝑣r2j − 𝑣r3j − 𝑣r4j)
step 4 j = (j + 1) mod D
step 5 L = L + 1
step 6 goto 2

step 7 stop

Many particular strategies have been proposed that differ in the way the trial vector

is constructed (step 3 above). In this chapter the DE/rand/1/exp strategy was used as

it has worked well for most problems (see Sect. 5.1 for experimental settings). This

strategy is formulated as shown in step 3 above.

A powerful deterministic optimization technique for training neural networks

is the scaled conjugate gradient (SCG) algorithm, which aims to minimize mean

squared error as its objective function. The classical conjugate gradient method

is based on constructing vectors that satisfy orthogonality and conjugacy condi-

tions and do not require the Hessian matrix of second partial derivatives [19]. Line

minimization is used with the purpose of estimating the step size along the chosen

direction. However, the scaled conjugate gradient method introduces an adaptive

parameter to modify the step size by considering the behavior of the second deriva-

tive information. The result of this adaptive parameter is to scale the step size, hence

the name, scaled conjugate gradient [20].
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Table 3 Experimental

settings for DE
Parameter Value

Population size 20

F 0.5

CR 0.8

ri rnd([0, 1])

Range of x0i [−3, 3]
Strategy DE/rand/1/exp

5.1 Experimental Settings

Single-hidden layer neural networks with either 10 or 11 neurons in the hidden layer

were trained and tested. A linear transfer function was used for the output layer and a

hyperbolic tangent transfer function for the hidden layer. The networks were trained

using DE with the settings listed in Table 3. The configurations and settings for the

neural networks were selected on the basis of recommended values from literature,

previously used settings that led to good results, or simply to cover the allowable

parameter range.

Similar to the procedure conducted in past studies, the data goes through a stan-

dardization procedure as a pre-processing stage [7]. All of the input variables (FSCS

parameters) are converted to z-scores with all variables having a mean of zero and

a standard deviation of one. If xi is a variable with mean, xi, and standard deviation,

si, then the z-score transform, zi, is given by Eq. 4:

zi =
xi − xi
si

(4)

Standardization allows the values of all variables to be measured in units of their

own standard deviation, with respect to a common mean of zero, which makes direct

comparisons easy. Moreover, since the variance of all variables is the same (i.e. one),

the influence of each variable in similarities, distances, etc. is the same. The target

variable undergoes the same standardization procedure; however, once the model

has been created and applied to the testing data, the target variable goes through

the reverse process to become unstandardized so that it can be used for damage

estimation.

6 Fatigue Life Estimation and Load Exceedance Curves

Based on the load-time signal predictions, the resulting fatigue life and load

exceedance curves were calculated. These estimates followed the traditional algo-

rithm of estimating fatigue damage: counting the number of load cycles at relevant

amplitudes, relating the load amplitudes and number of cycles to fatigue failure from
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Fig. 8 Fatigue life analysis

material data (S-N curve), and finally applying fatigue damage accumulation theory

(i.e. Palmgren-Miner’s Rule). The process described in [4] was followed, in particu-

lar, Rainflow counting, the material specific S-N curve, and Palmgren-Miner’s linear

damage rule as shown in Fig. 8.

The cycle counting method that was used in this work identified all relevant load

amplitudes and respective cycle counts directly from the component’s load-time sig-

nal. The information obtained from the cycle counting method could then be mapped

directly to the S-N curve model to determine the cycles to failure and/or used to con-

struct a load exceedance plot.

6.1 Fatigue Damage Accumulation

The developed methodology approximates the S-N curve through the use of the

Defence Science and Technology Organisation’s (DSTO)/Sikorsky’s S-N curve

model [21] and respective required parameters. This model was based on component

fatigue testing carried out at a particular mean or steady stress and constant ampli-

tude loading. This model was adopted since it was considered to be the closest to a

working model which could be easily and practically applied. The DSTO/Sikorsky

model uses the parametrization in Eq. 5 to evaluate the lifetime of components [21]:

S
SE

= 1.0 + 𝛽

N𝛾

(5)

where:

∙ S is the stress amplitude, or in this case using Black Hawk data, the load ampli-

tude [in-lbs];

∙ N is the lifetime (number of cycles) associated with a load amplitude represent-

ing (N ∗ 106) cycles;
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∙ SE is the endurance/fatigue limit described in the same units as S [in-lbs]. Load

amplitudes (S) below the value of SE are not considered to be damaging to the

material. For MRNBX installed on the main rotor blade cuff, the mean endurance

limit was 54,000 in-lbs [6];

∙ 𝛽 is a positive constant associated with the material; 𝛽 = 0.05 for the Beta Tita-

nium material of the main rotor blade cuff [21]; and

∙ 𝛾 is another positive constant associated with the fatigue behavior of the mater-

ial; 𝛾 = 1.2 for Beta Titanium [21]. The component retirement time is then the

reciprocal of the total damage.

The Palmgren-Miner’s rule is a commonly used theory to compute damage accu-

mulation for high cycle fatigue loading cases, combining multiple cycles of different

load amplitudes and being used in conjunction with a selected S-N curve model.

The resulting damage rate reflects the effective damage accumulation as a fraction

of allowable damage accumulation to failure of the component material, i.e., con-

sumed to total life to failure of the component. This damage rate can be solved from

the several groups of counted load cycles of different amplitudes and the correspond-

ing cycles to failure from the S-N curve given by Eq. 6,

Dnew = Dold +
∑

Si∈S

n(Si)
N(Si)

(6)

where Dnew is the damage rate, Dold is any previous damage accumulated on the

material, n is the number of cycles counted with the Rainflow cycle counting at

a given load amplitude (Si), and N is the number of cycles to failure for the load

amplitude exerted on the material (Si), determined from the S-N curve.

It should be noted that there are two major assumptions to the Palmgren-Miner’s

rule. The first of which is that the sequence of loading is not considered important.

The second assumption is that the rate of damage accumulation is considered to

be independent of stress level, even though it is well known that mean stress has

an important effect on fatigue life, especially with regards to crack nucleation and

propagation. Despite these two important shortcomings, the Palmgren-Miner’s rule

is still the most commonly used theory to determine damage accumulation for heli-

copter components because of its simplicity and since more complicated models do

not always generate more accurate predictions.

6.2 Load Exceedance Curves

Load or stress exceedance curves plot the number of times a load range or ampli-

tude has been exceeded in a given amount of time [22]. These curves represent the

sequence of loads or stresses experienced by a component or structure during its

service and are commonly analyzed in aircraft life cycle management. The informa-

tion for the load amplitude and number of exceedances is derived from the Rainflow

counting step in the fatigue life estimation process. These plots were used to evaluate

the load-time signal predictions since the fatigue damage accumulation was minimal.
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7 Results

The original set of 30 FSCS parameters was expanded to 180 predictors to include

their time history data (as discussed in Sect. 3). Two different sampling schemes (k-

leaders and biased) were used to form the training and testing sets. Through multi-

objective genetic algorithms and the Gamma test, reduced subsets (masks) of pre-

dictor variables were identified and the most promising masks were used to build

models estimating the main rotor normal bending (MRBNX) for the left rolling pull-

out flight condition. The models were feed-forward neural networks that used DE to

select the network weights with the exception of the models using the simplified

methodology which used SCG to train the network. Ensemble models were formed

for the neural networks using DE by a simple average of the top performing individ-

ual models, while the results for the simplified method represent the output of only

the top performing model.

7.1 Training Set Construction Results

Previous work presented results of applying the biased sampling scheme to the

load predictions for the main rotor normal bending (MRNBX) and for the main

rotor pushrod (MRPR1) for the rolling pullout flight condition [12]. That work dif-

fered slightly in that it used deterministic methods, particle swarm optimization, and

hybrids of these methods for determining the neural network weights, whereas in

this work we have restricted neural network learning to DE because of the alterna-

tive error functions implemented.

It should be noted that the data exploration phase, generated different masks that

varied with the type of training set used. For MRNBX rolling pullout, the most

promising mask used for modelling contained 17 variables (of the 180 possible vari-

ables) for the k-leaders training set; in contrast, the biased training set’s mask con-

tained 68 variables (of the 180 possible variables). As seen from Table 4 listing these

predictors, only 5 different FSCS parameters and their time lags are included in the

k-leaders masks while 27 of the 30 FSCS parameters and their time lags are included

in the biased sampling masks. Another noteworthy point is that the collective stick

position (COLLSTKP) and No. 1 engine torque (NO1QPCT) are the only two FSCS

parameters common to both sets of masks. Although the main rotor shaft torque

(MRQ) and tail rotor shaft torque (TRQ) feature prominently in the k-leaders mask,

these two parameters are noticeably absent from the biased sampling mask, which is

particularly interesting given that previous studies examining the masks generated

by the MOGA-Gamma test stressed the importance of these two parameters [7].

Figure 9 compares the load predictions for the baseline case of k-leader sampling

and biased sampling using DE for training and MSE as the error function. The dashed

vertical lines differentiate between different flight recordings collected over several

days. It is evident through the significant amount of variation in the time signal,
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Table 4 Comparison of masks from k-leaders and biased sampling

K-leaders sampling Biased sampling

17 FSCS parameters 68 FSCS parameters

COLLSTKP (t, t-2) COLLSTKP (t, t-1, t-3, t-4) PEDP (t-1, t-5)

MRQ (t, t-1, t-2, t-3, t-4, t-5) NO1QPCT (t-3, t-4, t-5) STABLAIC (t-1, t-2)

TRQ (t, t-2, t-3, t-4, t-5) NO2QPCT (t-1, t-3, t-4, t-5) NR (t-1)

NO1QPCT (t-2, t-3) PITCHATT (t-1, t-4, t-5) ERITS (t-1, t-3)

HD (t, t-4) PITCHRAT (t, t-2, t-3, t-4, t-5) TRQ (t-3, t-5)

ROLLATT (t, t-1, t-2, t-3, t-5) NO1T45 (t, t-1, t-2)

ROLLRAT (t, t-3, t-4) NO2T45 (t-2)

ROLLACC (t, t-2, t-3, t-4, t-5) HBOOM (t-3)

YAWRAT (t, t-1, t-4) FAT (t-1)

YAWACC (t-3) LOADFACT (t-5)

ROCBOOM1 (t-1, t-2, t-3, t-4,

t-5)

ATTACK (t-2)

SIDESLIP (t-1, t-4, t-5) HEAD180 (t, t-4)

LGSTKP (t-4) VCASBOOM (t-5)

LATSTKP (t-2, t-3, t-5)

Refer to Table 1 in Sect. 2 for description of FSCS parameter abbreviations

that the rolling pullout manoeuvre is prone to considerable dissimilarity between

each flight recording, due to factors such as aircraft configuration, pilot, and envi-

ronmental conditions. Additionally, it can be seen that individual flight records are

non-homogeneous; in other words, data from a flight record is not just one flight con-

dition exclusively. This is a consequence of recording highly dynamic manoeuvres,

as there is a high probability that the recording includes the helicopter’s steady state

condition immediately prior to and following the manoeuvre, and the transitions into

and out of the manoeuvre (in addition to the manoeuvre itself).

Table 5 shows the statistics calculated for the load signal predictions in all the

cases explored in this work. The normalized RMSE is simply the RMSE normalized

by the absolute range (difference between maximum and minimum) of the observed

values, RMSE∕(ymax − ymin). In a cursory effort to help better evaluate the different

techniques in terms of the goal of slight over-prediction for this work, some ‘over-

prediction statistics’ were generated. The first measure, N′∕N, is the ratio of number

of over-predicted test samples (N′
) to total number of test samples (N). Ideally this

measure would have a value N′∕N = 1, meaning that every test sample was over-

predicted. The second measure, RMSE′
, is the RMSE for only the samples (N′

) that

were over-predicted. RMSE reflects the average magnitude of the over-prediction and

it should ideally be a ‘moderate’ value, signifying a slight amount of over-prediction.

Additional work should be conducted to understand what constitutes a ‘moderate’

RMSE. These two measures were determined by mean-centering the observed and

predicted signals, then comparing the absolute value of the resulting predicted and

observed signals.
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Fig. 9 Effect of different

sampling schemes. These

load signal plots show the

variation of the MRNBX

moment with time over a

series of flight records, the

boundaries of which are

indicated by the dashed
vertical lines. The load

values vary cyclically

between 0–50,000 in-lb. The

sampling frequency is 52 Hz,

so this plot shows about 96 s

of data. Top plot shows the

baseline results for MRNBX

rolling pullout with k-leaders

sampling in the training set

and neural network learning

by DE. Bottom plot shows

the results for MRNBX

rolling pullout using biased

sampling and NN learning

by DE
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As seen in Fig. 9, the baseline case (k-leaders training with an MSE error func-

tion) yields a prediction for MRNBX rolling pullout that largely under-predicts the

target signal and has poor coverage. The prediction from the biased sampling using

MSE as the error function shows significant improvement at the peak values of large

magnitude and with improved coverage. It is not surprising that the peak values with

smaller magnitude were not predicted as well since the training set was constructed

to favor the large magnitude values. Figure 10 shows magnified sections of these

two cases. From these plots, it is evident that the phase of the load signal estimates

using k-leaders is much more accurate than the phase prediction using biased sam-

pling, a behavior which is also reflected in the lower correlation values of the biased

sampling (Table 5). This pattern is consistently observed across the three different

error functions. This behavior is not surprising since the k-leaders training set was

formed to preserve the probability distribution and to closer represent statistically

the properties of the original data. The biased sampling training set, on the other

hand, was formed to skew the probability distribution of the original data so that the

extreme values could be learned more easily and consequently the training set was
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Table 5 Load signal prediction metrics

Sampling

method

Error

function

NN training Correlation Normalized

RMSE (%)

Over-prediction Statistics

N′∕N RMSE
′

Biased MSE DE 0.091 18.0 0.55 5709

Biased SMAPE DE 0.142 33.7 0.85 11449

Biased Asymmetric DE 0.302 11.8 0.45 2812

K-leaders MSE DE 0.323 13.5 0.24 3503

K-leaders SMAPE DE 0.303 22.4 0.64 10871

K-leaders Asymmetric DE 0.423 13.9 0.44 4734

90/10 split MSE SCG 0.277 18.1 0.06 3529

Fig. 10 Magnified plots.

These load signal plots show

the variation of the MRNBX

moment with time over a

series of flight records, the

boundaries of which are

indicated by the dashed
vertical lines. The load

values vary cyclically

between 0–35,000 in-lb. The

sampling frequency is 52 Hz,

so this plot shows about 2 s

of data. The top plot shows a

magnified section of

MRNBX rolling pullout with

k-leaders sampling in the

training set and neural

network learning by DE. The

bottom plot shows a

magnified section for

MRNBX rolling pullout

using biased sampling and

NN learning by DE
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not a statistical representation of the data and was less likely to promote learning of

the phase of the load signal.

Comparing the values in Table 5, it appears that there is an increase in the over-

prediction ratio (N′∕N) when the biased sampling training (0.55) is used instead of
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the k-leaders training (0.24). However the normalized RMSE decreases using biased

training, suggesting that the overall prediction is less accurate than the k-leaders pre-

diction, even though visual inspection of the plots would support the contrary. MSE

is affected by both amplitude and phase differences between the target and predicted

signals. Even if the amplitudes are of equivalent magnitude, a small phase shift or

misalignment causes a large increase in MSE values (as well as a drop in correlation).

However, if the target and predicted signals are in phase, MSE is mostly affected by

amplitude differences, with smaller impact on correlation values. Since the k-leaders

prediction is more correlated and in phase with the target signal, we believe that its

overall RMSE is relatively low even though it is clear that many of the amplitudes

are significantly under-predicted. Since the prediction using biased training is less

correlated and not as closely in phase with the target signal, the RMSE errors due to

this shift are more prominent leading to a higher overall RMSE. We have seen these

trends in previous work [12, 13], where the better prediction did not always result in

a lower RMSE, which is in part why it was important to implement more accurate

and appropriate measures to evaluate the different techniques, including the fatigue

life estimation.

7.2 Alternative Error Functions

The fuzzy-based asymmetric-error function described in Sect. 4.2 was introduced

briefly in previous work [13] using Cartesian genetic programming. In this work, we

explore in more depth the parameters of this function and also introduce the SMAPE

error function as an alternative error function. The predictions for MRNBX rolling

pullout using these two error functions with k-leaders training are shown in Fig. 11.

For the asymmetric error function, the predictions show significant improve-

ment over the baseline case (Fig. 9 top plot) in terms of coverage although under-

prediction of the peak values of large magnitude was still common. For the SMAPE

function, the predictions show much more over-prediction but the level of over-

prediction is somewhat erratic and extreme at times. Unfortunately, there are no

parameters to vary in the SMAPE function to try to better control the model in terms

of level of over-prediction. From Table 5, again the number of over-predicted points

(N′
) increases using the alternative error functions. The large RMSE′

value for the

SMAPE error function reflects the significant levels of over-prediction seen in the

load signal plot.

7.3 Combinations of Techniques

Naturally, it is possible to combine the two suggested methods: biased sampling

with SMAPE, and biased sampling with the fuzzy asymmetric error function. These

results are shown in Fig. 12. Combining the two techniques did not necessarily pro-
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Fig. 11 Effect of alternative

error functions. These load

signal plots show the

variation of the MRNBX

moment with time over a

series of flight records, the

boundaries of which are

indicated by the dashed
vertical lines. The load

values vary cyclically

between 0–50,000 in-lb. The

sampling frequency is 52 Hz,

so this plot shows about 96 s

of data. Top plot shows the

predictions using the

asymmetric error function

with k-leaders training.

Bottom plot shows the results

for MRNBX rolling pullout

using SMAPE with k-leaders

training
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vide a more accurate prediction. The predictions with biased training and the asym-

metric error function show considerable under-prediction of all peak values. In con-

trast, the predictions with the SMAPE function and biased training, much like the

results using SMAPE and k-leaders, shows much over-prediction with considerable

margins at the large amplitude peak values. From Table 5, the large RMSE′
value of

the over-predicted points reflects the significant level of over-prediction by the mod-

els trained with the SMAPE error function and the biased training set. In both cases

(biased training with SMAPE and biased training with fuzzy asymmetric error) the

number of over-predicted points increased over the baseline case (k-leaders training

with MSE). It is interesting that while the load signal prediction for the models using

biased training and asymmetric error did not seem satisfactory upon visual inspec-

tion, the ‘over-prediction statistics’ seem to indicate quite a good result with almost

1/2 of the points over-predicted and a low to moderate RMSE′
. It is very likely that

the points forming the set of over-predicted points (N′
) did not include many of the

peak values and the classification of N′
points does not differentiate between points

that are large magnitude peaks, small magnitude peaks, or non-peak values at all. In

future, this measure could be refined further to focus solely on the peak values.
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Fig. 12 Effect of combining

alternative error functions

with biased training. These

load signal plots show the

variation of the MRNBX

moment with time over a

series of flight records, the

boundaries of which are

indicated by the dashed
vertical lines. The load

values vary cyclically

between 0–50,000 in-lb. The

sampling frequency is 52 Hz,

so this plot shows about 96 s

of data. The top plot shows

the predictions using the

asymmetric error function

with biased training. The

bottom plot shows the results

using SMAPE with biased

training
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7.4 Simplified Methodology Results

For the simplified version of the methodology, a traditional 90/10 % partitioning

between training and testing sets was used without any structural sampling. Mod-

els were typically trained from a 90 % subset of the data, while the remaining 10 %

was used for testing. Figure 13 shows the results of the load prediction using the sim-

plified version of the methodology with the standard 30 FSCS parameters and scaled

conjugate gradient neural network training. The number of samples plotted in Fig. 13

is considerably lower than the number plotted for the other models since the testing

set is only 10 % of the whole data set. The prediction is relatively weak with many

of the magnitude peaks under-predicted and the coverage is poor. From Table 5, the

number of over-predicted points are very few (N′∕N = 0.06) which is less than the

baseline case of k-leaders training with MSE. As mentioned earlier, the application

of this simplified methodology is the most direct method of modelling the target load

signal and estimating the component fatigue life from the 30 FSCS parameters. We
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Fig. 13 Load prediction for

simplified method and SCG

learning. These load signal

plots show the variation of

the MRNBX moment with

time over a series of flight

records, the boundaries of

which are indicated by the

dashed vertical lines. The

load values vary cyclically

between 0–40,000 in-lb. The

sampling frequency is 52 Hz,

so this plot shows about 15 s

of data -10000
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included these results to show the results that could be obtained using a relatively

straight-forward method in a computational intelligence framework.

7.5 Load Exceedance Plots

Based on the load signal predictions in the different cases, the fatigue damage accu-

mulation was calculated by following the process described in Sect. 6. However, the

endurance limit of the Black Hawk main rotor blade cuff where the MRNBX gage

was located is 54,000 in-lbs. As can be seen from the load signal plots, most of

the load values were well below this endurance limit, and while the fatigue dam-

age is based on the load amplitudes as opposed to peak load values, very few of the

load cycles experienced during the analyzed flights were damaging. Therefore the

resulting fatigue damage accumulation in all cases was minimal and consequently

calculation of fatigue damage errors is not useful in this particular case and these

values are not provided.

Instead of the fatigue damage accumulation, the load exceedance curve was gen-

erated for each case to illustrate the stress history. The load exceedance curves gener-

ated for the different cases allow for a better assessment of the techniques employed

to improve the load signal predictions, similar to what the fatigue damage accumu-

lation results would have demonstrated. These plots are shown in Fig. 14. Since the

training and testing sets were different for each sampling method (k-leaders, biased,

90/10), there are separate plots for each sampling method.

These load exceedance plots show on a semi-log scale the number of times the

MRNBX moment exceeded certain load amplitudes in the testing set. The small

magnitude, frequent loads appear at the left side of the plot progressing to the large

magnitude, less frequent loads at the right hand side of the plot. Normally, a load

exceedance plot would represent a significant amount of aircraft flying hours (e.g.

1000 flight hours), but in this case, it is limited to approximately 100 s at best of flight
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Fig. 14 Load exceedance

plots. The top plot shows the

load exceedance curves for

k-leaders training using

MSE, SMAPE, and

asymmetric error functions.

The middle plot shows the

load exceedance curves for

biased training using MSE,

SMAPE, and asymmetric

error functions. The bottom
plot shows the load

exceedance curve for the

simplified method using

SCG training and MSE 10
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in the left rolling pullout manoeuvre, due to the fact that only one flight condition

is included in the study at the moment, resulting in a reduced data set. In future, the

full range of flight conditions could be analyzed using this methodology to develop

a more accurate and complete picture of the component loads.

The features of importance in predicting the load exceedance curve are a close

matching, slightly over-predicted curve particularly in the large magnitude load

amplitude range, since these are the loads that would be damaging. Accuracy in pre-

dicting the curve in the small magnitude load amplitude range is not so critical. The

results from the model generated by the simplified method using SCG training, MSE,

and the 30 FSCS parameters (Fig. 14 bottom plot) yield a curve that under-predicts

the load amplitude exceedances, more noticeably as the load amplitudes increase.

These results are consistent with the load signal plots that showed significant under-

prediction of the peak magnitudes.

The results from the ensemble models generated by k-leaders training (Fig. 14 top

plot) show under-predicted curves for both MSE and fuzzy asymmetric error func-

tions, again with obvious underestimation of the number of occurrences of large

amplitude loads. The models using SMAPE were successful in over-predicting the

load exceedance curve and thus providing a ‘conservative’ estimate, however, as the

load amplitudes increased these models predicted a large number of additional load

exceedances that were not present in the observed signal. Such significant overesti-

mation of the load magnitudes would result in extremely conservative (i.e. reduced)

fatigue lives for the component.

The ensemble models built using the biased training set (Fig. 14 middle plot)

showed more promising results. While the models using biased training and the

fuzzy asymmetric error function showed significant under-prediction of the load

exceedance curve which is consistent with the load signal plots, the curves generated

using MSE and SMAPE both demonstrated over-prediction of the load exceedance

curve and most importantly at the larger load amplitudes. The results using MSE

and biased training showed a close matching load exceedance curve with some over-

prediction, while the curve from SMAPE and biased training showed much larger

margins of over-prediction. Both of these sets of models under-predicted the number

of exceedances at the smaller amplitude loads, but again this result is not consid-

ered important since the loads are small and mostly non-damaging. Overall, visual

inspection of the load exceedance plots indicate that the most closely predicted curve

with some over-prediction was generated by the models using biased training and the

MSE error function.

To compare the different cases using a quantified measure, several error measures

were calculated to provide a more complete understanding of the model behavior.

Evaluation of each model is conducted through a pairwise comparison of the load

exceedance of a prediction against its observed counterpart using 2 different metrics:

normalized RMSE and an integral error. The integral error of the load exceedance

curves is calculated according to Eq. 7.
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Table 6 Load exceedance plot results

Sampling method Error function NN training Normalized

RMSE (%)

Integral error (%)

Biased MSE DE 11.9 −28.9
Biased SMAPE DE 7.1 −4.0
Biased Asymmetric DE 29.7 −67.9
k-leaders MSE DE 25.9 −56.9
k-leaders SMAPE DE 5.3 10.5

k-leaders Asymmetric DE 12.9 −34.4
90/10 MSE SCG 24.3 −52.4

error =
∫ ypredicted − ∫ yobserved

∫ yobserved
(7)

In each error measure, for each pairwise comparison, only the range of moments

common to the pair is used in the evaluation. In other words, the comparison range

is from 0 in-lbs to the highest moment value present in both the predicted and the

observed load exceedance. These results are shown in Table 6.

Looking at the error values in Table 6, it would appear that the models using

SMAPE yielded the smallest errors (both normalized RMSE and integral error).

However it is important to highlight that both error measures evenly weight the dif-

ferent load amplitude magnitudes, so that the low magnitude load amplitudes are

considered equally with the large magnitude load amplitudes, even though in prac-

tice as was stated earlier, the large magnitude amplitudes are more critical since they

are the loads that would be most damaging. Furthermore since the errors could only

be calculated for load amplitudes common to both the observed load exceedance

curve and the particular predicted curve, the largest load amplitudes included were

28,000 in-lbs for the biased training curves, 42,000 in-lbs for the k-leaders training

curves, and 18,000 in-lbs for the simplified training curve. Consequently the large

margin of over-prediction of the large magnitude load amplitudes by the SMAPE

models was not captured in these error values.

8 Concluding Remarks

In continuing efforts to improve aircraft usage and availability, reduce the cost

of maintenance, and improve safety of aircraft fleets, the ability to monitor and

track loads and fatigue life on critical components accurately is essential. Indirect

methods to estimate loads on these components is a practical alternative to costly

and maintenance-intensive measurement systems. The application of computational

intelligence algorithms, statistical and machine learning techniques, such as artificial

neural networks, evolutionary algorithms, fuzzy sets, and residual variance analysis
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to estimate some of these helicopter dynamic loads has led to promising results. This

work explored a number of different computational techniques to encourage slight

over-prediction of helicopter load signals, in particular different training set con-

struction techniques and minimizing several different error functions in the model

training process. The results found that the presented techniques certainly provided

some improvement over the previous results, particularly an increase in the num-

ber of over-predicted points and more accurate prediction of the peak values in the

load signal. There was also considerable improvement over the results obtained by

the simplified method which did not incorporate any structural sampling for forming

the training set. The results achieved in this study are quite encouraging as reason-

ably accurate and correlated models were found for the specified flight condition in

spite of the complexity of the manoeuvre. In addition, the overall quality of the pre-

dictions improved through the use of the explored techniques as under-prediction of

the signal was less frequent.

It was hoped that continuing the methodology to include estimation of the fatigue

life would provide a practical and quantifiable metric to evaluate the different tech-

niques; however, the dataset analyzed in this work did not contain enough damaging

load cases to result in any significant fatigue damage. Without having fatigue dam-

age that could be calculated, it was a challenge to find suitable error measures to

quantitatively capture the desired behavior of the models since the objective of this

particular study was building models that slightly over-predicted the load signal. The

load exceedance plots that were generated though, still provided valuable insight into

the ability of the different models to generate accurate predictions of the component

loads.

Future work will aim to expand the amount of data analyzed, including more flight

conditions and in particular flight conditions featuring load amplitudes exceeding the

component’s endurance limit to result in some fatigue damage. A sensitivity study

could be implemented to gauge the change in output for a given change in individual

input. It would be interesting to compare the results of this study with the masks

generated through the data exploration phase of the methodology. Continuing work

will also be directed at further improving the predictions by exploring additional

error functions and combinations of techniques to encourage conservative load and

fatigue life predictions.
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Evolving Narrations of Strategic Defence
and Security Scenarios for Computational
Scenario Planning
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Abstract Defence and security organisations rely on the use of scenarios for a wide

range of activities; from strategic and contingency planning to training and experi-

mentation exercises. In the grand strategic space, scenarios normally take the form

of linguistic stories, whereby a picture of a context is painted using storytelling prin-

ciples. The manner in which these stories are narrated can paint different mental

models in planners’ minds and open opportunities for the realisation of different

contextualisations and initialisations of these stories. In this chapter, we review some

scenario design methods in the defence and security domain. We then illustrate how

evolutionary computation techniques can be used to evolve different narrations of a

strategic story. First, we present a simple representation of a story that allows evolu-

tion to operate on it in a simple manner. However, the simplicity of the representation

comes with the cost of designing a set of linguistic constraints and transformations to

guarantee that any random chromosome can get transformed into a unique coherent

and causally consistent story. Second, we demonstrate that the representation being

utilised in this approach can simultaneously serve as the basis to form a strategic

story as well as the basis to design simulation models to evaluate these stories. This

flexibility fulfils a large gap in current scenario planning methodologies, whereby the

strategic scenario is represented in the form of a linguistic story, while the evaluation

of that scenario is completely left for the human to subjectively decide on it.
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1 Introduction

Scenario planning is a powerful tool for defence and security organisations and to

develop robust and adaptive system and strategies. Computational scenario planning

attempts to fully automate the scenario planning process where work can be grouped

into tactical level and strategic level planning [1].

The tactical level scenario planning relies on building computational models of

complex environments; and new scenarios are subsequently generated by sampling

the parameter space. Recent years have reported notable progress in scenario plan-

ning at this level using computational intelligence (CI) techniques including multi-

agent simulation [2], or incorporated with evolutionary computation (EC) to better

explore the parameter space in which applications include MEBRA [3] and Alam’s

work [4] in risk assessment, Bui’s work in military logistic management [5], Xiong’s

work in project scheduling [6], and Amin’s work in air-traffic control [7].

At the strategic level, scenarios normally take the form of linguistic stories,

whereby a picture of a context is painted using storytelling principles. The man-

ner these stories are narrated can paint different mental models in planners’ minds

and open opportunities for the realisation of different contextualisations and initiali-

sations of these stories. Therefore, creating a scenario of strategic level is similar to

writing a story about some possible future [1]. DARPA established the Narrative Net-

works project to study how storytelling can affect human cognition and behavior thus

national and military security. Existing computational storytelling techniques have

been applied and attracted significant attention in training and education [8], enter-

tainment industry [9, 10], and related strategic planning [1, 11–15]. Section 2 pro-

vides a literature review in computational storytelling techniques in which few work

have been observed in automatically generating story-like scenarios in the defence

and security domain [1, 11].

However, a bottleneck in this process is that strategic scenarios normally take

the form of a story written in a natural language which are developed manually.

To transform this story into a computational environment, or to fully automate the

process of creating different narrations of that story to better explore the strategic

space, is currently a holy grail of computational scenario planning.

This chapter overcomes this challenge by proposing an evolutionary computation

approach to automate the narrations of a strategic story. The proposed solution offers

an automated method that can create variations and different narrations of strategic

stories. This will allow different contextualisation of the same stories and produce a

tool to better explore the subset of the strategic space of interest.

One difficulty is to design a simple representation of a strategic story that allows

evolution to operate on it in a simple manner. However, the simplicity of the repre-

sentation comes with the cost of designing a set of linguistic constraints and trans-

formations to guarantee that any random chromosome can get transformed into a

unique coherent and causally consistent story.
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We overcome this difficulty in two steps: (1) extracting the linguistic constraints

of a strategic story in our interested domain and representing them computation-

ally; (2) encoding a story narration into a genome and transforming it into a unique

text-form story through genotype-phenotype mapping, in which the above linguistic

constraints serve as reference of coherence and causal consistence.

Another difficulty is to evaluate thus evolve these strategic stories from human

planners’ perspective, while humans are fatigued easily. To alleviate human fatigue,

methods including improving evaluation or fitness input interfaces, and reducing

population and generation sizes of EC have been used. However, this can deterio-

rate the performance of EC [16]. So a promising solution is still to predict human

evaluations using surrogate models [16, 17].

We overcome the above difficulty in another two steps: (3) conducting a human-

based evaluation experiment to collect human subjective evaluations of some gen-

erated strategic stories; (4) building surrogate models based on the above-collected

data.

The representation utilized in step (2) can simultaneously serve as the basis for

step (3), which is to form a strategic story as well as the basis to design simulation

models to evaluate these stories. This flexibility fulfil a large gap in current scenario

planning methodologies, whereby the strategic scenario is represented in the form

of a linguistic story, while the evaluation of that scenario is completely left for the

human to subjectively decide on it.

This chapter is organised as follows:

Section 2 reviews existing work in computational storytelling and, especially, the

human-guided evolutionary storytelling field.

Section 3 addresses step (1) by proposing a story parsing method that can extract

the linguistic constraints of a strategic story in the form of a dependence network in

our domain of interest.

Section 4 addresses step (2) by encoding a story narration as a linear permuta-

tion of events and the temporal and spatial information involved, and proposing a

genotype-phenotype mapping mechanism. This mapping transforms a random per-

mutation into a unique text-form story, in which the linguistic constraints extracted

in step (1) serve as a reference of coherence and causal consistency.

Section 5 defines the objective and subjective metrics of strategic stories for the

surrogate models. To obtain subjective metrics data, a human evaluation experiment

in step (3) is discussed in Sect. 6.1. Different story narrations are generated based

on the permutation representation proposed in step (2), and evaluated by humans.

Section 6.2 addresses step (4) by building surrogate models of human story evalua-

tion based on the data collected in the above human evaluation experiment.

Finally, step (1)–(4) are synthesized to serve an automatic and evolutionary story

narration process discussed in Sect. 7, whereby EC is designed to better explore the

subset of strategic space. An experimental study is carried out to test the perfor-

mance of this evolutionary story narration approach in its capability to evolve good

narrations of strategic scenarios.
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2 Related Work

Techniques used in existing computational storytelling applications and related work

to the human-guide evolutionary storytelling approach are discussed.

2.1 Techniques in Computational Storytelling

A knowledge perspective generalised from Ciarlini’s work in 2010 [18] is adopted

to classify existing computational storytelling applications. The template-, rule-, and

formal grammar-based approaches can be categorised under the declarative way of

specifying story control knowledge, and the transitional search, CBR and population-

based approaches under the embedded approaches.

Template-Based Approach. A template refers to a linear sequence of world states

and/or actions that must be implemented by the storytelling system, represented in

ontology [19] or logic [18, 20–25]. A story produced using this approach is the

instantiation of a certain template. A template describes knowledge about “features

that enhance user experience” [25], “authorability and authorial intent” [24], or

“landmarks to decompose story generation in order to address scalability issues”

[25]. Templates may appear as: “thematic frames” [20], “frameworks of emotional

states in audience” [21], “linear scripts for scenes” [22], “sets of state propositions”

[24], “theme-based planning operators” [19], “state trajectory constraints” [25], “pre-

defined plots” [18].

Rule-Based Approach. In a storytelling system that use AI planning, a rule serves

as the search operator to inform the system as to how to achieve certain goals. This

approach has become the key to realise “interactivity” in interactive storytelling (IS)

or interactive drama—a highly thriving research area in computational storytelling

in which the audience plays an active part in the composition of a story [26]—and

enjoyed wide applications [10, 18–25, 27–33].

Formal Grammar-Based Approach. A story grammar explicitly expresses the

operations and the semantic relationships of the story building blocks (such as the

states of the objects, actions performed by the characters in the story) in formal gram-

mar [34]. By deriving the story grammar, different strings of story elements can be

generated. Then, by instantiating each building block in a derived string with the

corresponding entities and relationships in the knowledge of the story world—the

static schema [18]—a story can be composed. Applications of this type include the

works of Prince [35], Colby [36], Lee [37] and, recently, of Bui [1, 12] and Wang

[38], with the work of Bui [1] focusing on generating user preference scenarios for

strategic planning of military logistics systems and future air traffic management.

Traditional Search Approach. This approach regards storytelling as problem solv-

ing using a classical search [39], such as searching through a tree or network [40, 41],
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or searching guided by heuristics [32, 33, 42]. Every solution found during the

search—an action sequence or trajectory of the search—is a generated story.

Case-Based Reasoning (CBR) Approach. A story generated using this approach

is a sequence of cases—a case is a structured representation of existing stories—

or subordinate building blocks in a case recorded during the CBR process [9, 11,

43–45].

Population-Based Approach. This approach applies different types of EC to collect

stories—the individuals—with desirable features, such as coherence, creativity and

interestingness [1, 12–14, 38].

Declarative approaches have advantages in terms of “ease of understanding, con-

ciseness of expression, modularity and ease of validation” [25] and authors can

directly express their authorial intent, which is lacking in embedded

approaches. However, the implicitness in story knowledge representation in the

embedded approaches can relieve the author’s burden to some degree. For instance,

the challenge of “quantifying the qualitative”—explicitly and formally representing

authentic story features—can be avoided by implicitly embedding the constituents

of these features in the search, reasoning or learning strategies.

The CBR approach and the template-based approach can produce human-like sto-

ries, while the stories may be lacking in diversity [12, 38, 46]. The rule-, traditional

search- and formal grammar-based approaches can produce comparatively diversi-

fied stories and stories with certain authentic features: believability [29] and interac-

tivity [10] with the rule-based approach; creativity [28], tension [33] and suspense

[32] etc. in the traditional search-based approach; and coherence using the formal

grammar-based approach [1, 12, 38]. However, the quality of the stories may vary:

the rule-based approach can hardly produce interesting stories by simply recording

simulated events [46]; the formal grammar-based approach may produce dull stories

without other mechanism to guide the grammar derivation [12, 38]; and the authen-

tic features captured by objective measures (such as heuristic functions) in the tradi-

tional search-based approach “need to be assessed, either singly or in combination,

by human readers” [47].

The population-based approach can benefit from the implicit self-feedback loop

introduced by EC in which stories generated in one iteration contribute to subsequent

generations of improved stories and this process can rely on human feedback to guide

evolutionary dynamics. Therefore, this chapter adopts a population-based approach.

2.2 Existing Work on Human-Guided Evolutionary
Storytelling

Regular Grammar-Based Evolutionary Storytelling. Bui [12] represented an

existing “fabula model” [48] into a regular grammar [34]—the story grammar—

which describes the causal relations between different types of events in stories.

Then, simple stories can be generated and evolved by deriving the story grammar
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and further applying grammar evolution guided by human-in-the-loop evaluation of

generated stories. The results show that this system can evolve stories with accumu-

lated good features such as interestingness and creativity. However, only simple sto-

ries with a single character can be generated because capturing long-distance causal

dependency is a challenge for regular grammar while, in a complex story which pos-

sesses multiple characters and branches, it is usual that one story line is interrupted

by another before returning to the original one and continuing to unfold whereby a

long-distance causal relationship emerges.

Tree Adjoining Grammar-Based Evolutionary Storytelling. Wang [38] used tree

adjoining grammar (TAG) and TAG-guided genetic programming (TAG3P) [49] to

generate and evolve complex stories in order to deal with the problem that regular

grammar is incapable of capturing long-distance dependency. However, the results

indicate that it might not be sufficient to use a story structure that holds only one

level of complexity—one that only focuses on the causality between events. Also,

this approach applies full human-in-the-loop evaluation and, consequently, problems

such as human fatigue and user inconsistency emerge.

GL-2 Grammar-Based Evolutionary Storytelling. Bui [1] proposed an expressive

GL-2 grammar for representing practical story-like scenarios to address the problem

in his previous work [12] that regular grammar only captures causal relationships

between events from the point of view of a single story character. He introduced a set

of scenario building blocks: Events, Time, Location, Objects, Actions and Relations.

The task of scenario generation then becomes a task of generating the networks of

these scenario building blocks and relationships. This approach can evolve natural

disaster scenarios for future air traffic management from a human’s perspective.

However, as has been mentioned by the author, GL-2 is not expressive enough

to represent relations between two groups of events as possible in causal relations.

Also, the problem of full human-in-the-loop evaluation still remains unsolved.

Common to all the above grammar-based approach is the difficulty in confining

the generate stories in a particular domain. We conjecture that a possible solution is

to establish a pragmatic story parsing (aka analysing) tool that can assist the finding

of the structure of stories (or the linguistic constraints)—one that is easy for EC to

manipulate—in any domain of interest.

Implementation of Evolutionary Story Narrating in Children Story Domain.

To overcome the above problems, Wang [13–15] proposed an evolutionary story

narrating approach and demonstrated an implementation of this approach in chil-

dren’s stories. The research highlighted the effectiveness of this approach in terms

of accumulating good story narrations with minimum human involvement during the

interactive story evolution. The evolution is guided by surrogate models of human

evaluation which are built from the data collected from a human-based evaluation

experiment. The surrogate models can also incorporate diversified human opinions

in story evaluation. While this evolutionary story narrating approach can be applied

to other domains, the above implementation focused on children’s narration. The

chromosome may need to incorporate different information of events when repre-

senting stories in another domain. For instance, the previous chromosome may not
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be suitable for representing practical scenarios since “a practical scenario may not

require a character at all” [1] or it would not produce coherent and causally-related

events by manipulating the characters.

This chapter extends the above implementation and attempts to apply the evo-

lutionary story narrating approach to strategic scenario generation in defence and

security domain.

3 Parsing Strategic Stories into Dependence Networks

This section addresses step (1) of our EC approach to automate the narrations of a

strategic story. We propose to extract the linguistic constraints of a strategic story in

our domain of interest and represent them computationally in a dependence network.

The proposed method can extract a dependence network from an existing English

text-form story. Based on a strong consensus among narratologists, a story is repre-

sented as a sequence of events [50]. These events—the nodes in the network—are

connected by dependence relations, the links. Although we can further group events

thus extract hierarchical dependence networks [13, 15], we focus on story narrating

on the event level in this chapter.

An event-level dependence network is obtained in two steps: parameterised event

extraction and dependent relation building.

3.1 Parameterised Event Extraction

The event definition in [13, 15] is used in this chapter: an event is a predicate that

denotes an action, state, or occurrence in a story; it is bound by a position in the tem-

poral dimension, possesses a spatial situation in the story world and has participants

as parameters.

A clause can be regarded as the minimum unit of our defined event (505, 506 in

[51]). Therefore, events can be extracted by tracing the verbs or verb phrases in each

of the clauses in a English text-form story. We revise the TimeML event annotation

guidelines [52] and provide rules for event recognition in Appendix A.

An ontology of event parameters is proposed in [15] and demonstrated as follows

to extract further information related to an event, which covers “when, where, who

and what are involved in an event”. The event parameters also serve as identifiers for

dependent relation building.

∙ Time is a temporal expression that denotes when the event happened.

∙ Space is the spatial expression denoting where this story happened in which a

concrete thing is involved, such as “the forest” in “in the forest”.

∙ Character is an active participant that can perform actions to change the states of

the story world.
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∙ Description is a description of a concrete thing in the story world that indicate an

participant’s identity or state.

∙ Topic is an abstract thing or concept mentioned in the story which can be repre-

sented by a sequence of events in the context, such as a new situation.

∙ Object is a concrete thing in the story world that is not a character, a description,

a concrete thing in a time parameter.

“Time” and “Space” parameters are firstly extracted by tracking particular noun

phrases (NPs), prepositional phrases (PPs), adverbial phrases (ADVs) and subordi-

nating clauses (SBARs) listed in [15], Chap. 4.

“Character”, “Description”, “Topic” and “Object” parameters are denoted by

noun phrases (NPs) (44, 54 in [51]). Extracting them requires a process of coref-

erence resolution, or a Character parameter may not be identified merely because it

does not appear in the same label in the story, for instance “soldiers” may appear

as “army” or “land forces”. Although the participants of events are not shuffled in

the final generated narrations, these parameters are still extracted as identifiers for

dependent relation building.

Due to the strategy to reduce redundancy in natural language, some extracted

events may be missing the temporal and spatial background information. This may

pose difficulties for the reader to make sense of the whole story when we produce

new story narrations by shuffling these events. Therefore, we also add the implicit

Time parameters
1

to the events to complete the missing background information.

The implicit Time parameter of an event is assigned to that of the previous narrated

event in the original story, or that of the next event if it is the first event in the story.

3.2 Dependent Relation Building

A dependent relation is defined upon a pair of events in which one event serves as

one of the enabling conditions of the other. It can be identified from a counter-factual

test [53].

To minimise the effect of human subjectivity on the dependent relation building

process to some degree, we propose a set of general rules for dependent relation

building. For event 2 to be determined as being dependent on event 1, three major

constraints need to be met: firstly, event 1 must occur before event 2 in the story;

secondly, event 2 must share at least one participant with event 1; thirdly, event 1

must be the nearest event to event 2, and any previous event—may be more than

one—that is the nearest event that shares one of the participants of event 2 will be

identified as an enabling event.

The above general rules may be subject to revision and may facilitate automatic

implementation of building the dependent relations between events. However, this

1
In this chapter, the implicit Space parameter of an event is not added because it involves a concrete

thing—a participant including a Character or an Object—in the story, while the participants of

events are left untouched in a generated narration.
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Fig. 1 An example of story dependence network extracted from a made-up strategic story: the nodes

labeled by integers denote the events labeled by their occurrence order in the story; and each directed

line labeled by the shared participant(s) denotes a dependent relation from one of the enabling

conditions of an event to the events

can be a challenging task. For one thing, time reasoning is required to infer the tem-

poral order of all the events in the story. The occurrence order of events cannot be

determined based on their representation order in the text-form story because the

events in a story may not be narrated in the order of their actual occurrence in the

story world. In linguistics, this phenomenon is referred to as “two basic temporalities

of narrative” [54]. For another, the shared participant in event 2 should be aware of

the happening of event 1. The complexity of this problem provides challenge that

requires further research. As a result, a manual dependent relation building method

based on the general rules has been adopted at this stage.

3.3 Preliminary Event Grouping

An event is further combined with the events that serve as some grammatical compo-

nents in order to make its meaning complete and compact. These events serve as its

subject, object, complement, appositive, modifier, time-denoting adverbial, space-

denoting adverbial, or direct cause or effect represented in non-finite adverbial sub-

clauses which include -ing clauses, -ed clauses and to-infinitive clauses. Chapter 4

in [15] provides the detailed rules.

Figure 1 illustrates an example of a dependence network extracted from a made-

up strategic scenario in defence and security domain discussed in this chapter.

3.4 Computational Representation of Dependence Network

The story dependence network is represented in the following data structures:

“event_relation”, “time string” and “space string” list.

Event Information. The event information is described in the ID, TIME, SPACE

members in the “event_relation” structure, and the“event string”, “time string”,

“space string” structures.
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Fig. 2 An example instance

of “event_relation” data

structure

(a) (b)

Every object of “event_relation” structure (see Fig. 2) is based on an event in the

story. ID denotes the occurrence order (beginning from 0) of this event in the story;

TIME is assigned to the occurrence order (beginning from 1) of the Time parameter

of this event in the story; SPACE is assigned to the occurrence order (beginning

from 1) of the Space parameter of this event in the story unless this event contains

no explicit Space parameter in which case the SPACE is assigned to 0 (see the second

“event_relation” object in Fig. 3 for an instance).

Every object of “event string”, “time string” and “space string” structure provides

the text-form of the major part, the Time parameter and Space parameter of this

event, respectively. The integer label at the beginning of the string corresponds to

the ID, TIME and SPACE member in the “event_relation” structure, respectively.

Dependent Relation Information. The “event_relation” structure also includes two

members that represent the information of dependent relations in the story: PAR-

ENTS and KIDS which incorporates the IDs of the events that enabled this event

and were enabled by this event, respectively.

A dependent relation is expressed and built up from the basis event of an

“event_relation” instance to each of the events whose ID have been included in the

KIDS member, or from each of the events whose ID have been included in the PAR-

ENTS member to the basis event. Four dependent relations are expressed in Fig. 2:

(a)

(b)

(c) (d)

Fig. 3 An example of computational representation of story dependence network
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the ones from event No. 1, 2 and 3 to 4, each described in the PARENTS member;

and the one from event No.4 to 5, which is described in the KIDS member.

Figure 3 illustrates the computational representation of the story dependence net-

work.

4 Story Narrating as Permutation Problem

This section addresses step (2) of our EC approach to automate the narrations of a

strategic story. We encode a story narration with flashback
2

into a linear permutation

representation of events and their temporal and spatial information.

Different narrations can be automatically produced by shuffling the event order

and the temporal and spatial information in the original story. Time and space pro-

foundly influence the way in which we build mental models of a story. Sternberg

[55] suggests that we should consider the story-discourse relationship (the time of

what is told and the telling) in terms of the universals of suspense, curiosity, and sur-

prise. Therefore, automatic story narrating can open opportunities for the realisation

of different contextualisations and instantiations of stories.

Also, we propose a genotype-phenotype mapping mechanism to transform a ran-

dom permutation into a unique text-form story, whereby the linguistic constraints

extracted in Sect. 3 (step (1) of the EC-based automatic story narration approach)

serve as reference of coherence and causal consistence.

4.1 Encoding Story into Genome

We impose the following constraints to control the coherence in the generated story

narrations, so that humans can provide a comparatively objective evaluation of them.

A story is told by combining a forward narration and flashback of the events in the

story dependence network. Firstly, randomly choose a layer in the story dependence

network as a threshold layer which is the meeting point of the forward and flashback

narration; secondly, all events with smaller layer values are narrated in the forward

direction, which means an event will only be narrated when all the events in its

PARENTS events have been narrated; thirdly, events with bigger layer values are

narrated in a flashback way, which means an event will only be narrated when all the

events in its KIDS events have been narrated; finally, the narration will end at the

event with the threshold layer value.

2
A flashback is a story played backward. It can be a full flashback in which the whole story is played

backward, or a partial flashback in which a subset of events are played backward, with the rest of

the events played forward.
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Fig. 4 An example of genotype: the white genes denote the events in the dependence network; the

highlighted light grey genes denote the layers, the dark grey genes the temporal information in the

story, and the green genes the spatial information

We use a linear permutation to encode a new story narration with flashback

generated from the story dependence network. This representation can incorporate

information about the order of events, temporal and spatial information, and layer

threshold that indicates the conjunction of forward and flashback narration. This

can be achieved by assigning unique value ranges to different types of information.

Figure 4 provides a genotype of a generated narration example.

4.2 Obtaining Text-Form Story from Genotype-Phenotype
Mapping

However, the order of events in the simply generated permutation may not conform

to the above constraints. Therefore, we design a genotype-phenotype mapping that

transforms a random chromosome into a unique coherent and causally consistent

story.

A random permutation is firstly transformed into a valid genome that conforms to

the above constraints. The dependent relation information represented in the depen-

dence network’s event_relation list—the PARENTS and KIDS members—serves as

the reference for checking if the constraints are fulfilled. The pseudo code for the

transformation process is illustrated in Fig. 5.

The text-form story can then be obtained by extracting the first layer gene, the

list of event genes, time and space genes, then enumerating the text representation

of each of the events one after another in the order of their positions in the event list.
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Fig. 5 Pseudo code of permutation transformation process

The text-form of the Time and Space parameter—the corresponding “time string”

and “space string”—is added to the beginning and end of the “event string”, respec-

tively. The text-form of the shared Time parameter in adjacent events is omitted in

the latter event to avoid redundancy. This process is illustrated in Figs. 6 and 7.
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Fig. 6 Story information

extracted from example

genotype

(a)

(b)

(c) (d)

Fig. 7 Extraction of text

representation of event from

example genotype

(b)(a)

5 Story Metrics Selection

It is a challenging task to quantify the quality of a story [12], so it is practical to apply

human subjective evaluation. We conjecture that human subjective evaluation of a

story is affected by the underlying objective metrics that reflect the properties of this

story. This section defines the objective and subjective metrics for story evaluation

for the human evaluation experiment in step (3).

5.1 Subjective Story Metrics

The story quality is further classified into the following four subjective story met-

rics. We stop at this level of sub-categorisations considering the efficiency and data

fusion problems. Coherence reflects “a global representation of story meaning and

connectedness,” [56] and makes a story understandable to the reader [57]. Novelty
reflects the unexpectedness and rule-breaking degree of a story. If we say that the

above two metrics reflect a readers’s global impression of a story after understanding

is achieved, interestingness may indicate the dynamics of a human’s appreciation

of a story before full comprehension is achieved [58].
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5.2 Objective Story Metrics

Four objective story metrics representing the quantitative features of a story narration

are defined.

disOfFlashback is defined as the distance of the flashback feature, DOF, of a

story narration compared with the original story. Let DNLN the dependence network

layer number, and TL the threshold layer; DOF is calculated as

DOF = DNLN − TL
DNLN

(1)

consistEventOrder is the consistency of the event order, CE, of a story narration

with the event order of the original story. Let SCOSEO the sorting cost to the original

story’s event order, and n is the number of events in the dependence network. The

sorting cost is calculated using bubble sort.

CE = SCOSEO
n × (n − 1)∕2

(2)

consistT refers the consistency of the arrangement of temporal information, CT,

of a story narration with that of the original story. Let TTCOS be the times of tempo-

ral information change from the original story, and NTS number of temporal expres-

sions in the story.

CT = 1 − TTCOS
NTS

(3)

consistS refers to the consistency of the arrangement of spatial information, CS,

of a story narration with that of the original story. Let TSCOS be the times of spatial

information change from the original story, and NSS number of spatial expressions

in the story.

CS = 1 − TSCOS
NSS

(4)

These metrics serve as the mechanism that manipulate the degrees of mental pic-

ture change of a reader [54] during story narration.

6 Surrogate Models of Human Story Evaluation

This section addresses steps (3) and (4) to solve the second difficulty in the EC-based

automatic story narration approach in terms of how to evaluate thus evolve strategic

stories from human planners’ perspective with reduced human involvement.

The permutation-based representation utilized in Sect. 4 (step (2) of the EC-based

automatic story narration approach) serves as the basis for forming a strategic story

narration as well as the basis for designing simulation models to evaluate these

stories. In step (3), different story narrations are generated and evaluated by humans
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to collect subjective metrics of them. In step (4), surrogate models of human evalu-

ation are built by mapping the objective story metrics to the subjective story metrics

whose data is collected from this human evaluation experiment.

6.1 Human Evaluation Experiment

Story Narration Sample Story Narration Sample are generated based on the

dependence network extracted from a made-up strategic scenario in the defence and

security domain. The story has been inspired by real life events and was strategic

relevance.

It is July 2030. An Ebola virus outbreak took place in Country Wagaga. Country
Bagaga produced a treatment for Ebola. Bagaga is a powerful developed country.
Wagaga is a developing weaker country. Bagaga refused to help Wagaga with the
Ebola treatment. In the beginning of August 2030, Wagaga declared war on Bagaga.
In the middle of August, land forces from Wagaga and Bagaga started to engage.
A number of soldiers from Wagaga became infected with the virus. During com-
bat, Wagaga soldiers transferred the virus to Bagaga’s soldiers as Bagaga’s soldiers
advance in Wagaga’s land. It is end of August, Bagaga’s soldiers advanced deep in
Wagaga’s lands. The Ebola virus spread very fast in Bagaga’s soldiers. Wagaga’s
soldiers managed to go behind Bagaga’s lines and cut their logistic supply of the
virus treatment. It is beginning of September, the Bagaga’s army is surrounded with
Wagaga’s army. Bagaga need to design strategies to manage the new situation.

16 story narrations are selected: 13 from randomly generating 3000 story narra-

tions, 2 from intentionally fixing the consistT and consistS metrics,
3

and one original

story. This sample incorporates big variance in the values of their objective metrics

in the following steps: firstly, the value space [0, 1] of the objective metrics is firstly

divided into two ranges: “LOW” for values in [0,0.5) and “HIGH” for those in [0.5,

1]; and, then, 16 story narrations with all the possible value range permutations are

selected. The permutations and values objective metrics of the 16 selected story nar-

rations in the sample are listed in Tables 1 and 2.

Subjective Evaluation Data Collection. The subjective evaluation data is collected

through the scores given by one human participant who is presented with a printed

version of the story narration sample.

The participant is required to read the story narrations in the sample one after

another and provide his evaluations of the particular story narration after reading it.

This is completed in a continuous time slot of a day where a break less than 5 min

is allowed. The experimental location is consistent in the same quiet room in order

to maintain constant environmental situation; and the participant is not constrained

in terms of the time he needs to finish reading one narration. The order in which the

story narrations in the sample are read is shuffled to minimise any learning effects.

3
Using pure random generation, slim chances (

4
7!×6!

) can be expected to obtain a narration that

possesses comparatively high values of consistT and consistS at the same time.
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Table 1 Permutations of objective metrics in story narration sample in human-based evaluation

experiment

No. DOF CE CT CS

1 LOW LOW LOW LOW

2 LOW LOW LOW HIGH

3 LOW LOW HIGH LOW

4 LOW LOW HIGH HIGH

5 LOW HIGH LOW LOW

6 LOW HIGH LOW HIGH

7 LOW HIGH HIGH LOW

8 LOW HIGH HIGH HIGH

9 HIGH LOW LOW LOW

10 HIGH LOW LOW HIGH

11 HIGH LOW HIGH LOW

12 HIGH LOW HIGH HIGH

13 HIGH HIGH LOW LOW

14 HIGH HIGH LOW HIGH

15 HIGH HIGH HIGH LOW

16 HIGH HIGH HIGH HIGH

Table 2 Values of objective metrics in story narration sample in human-based evaluation

experiment

No. DOF CE CT CS

1 0.333 0.476 0.000 0.143

2 0.417 0.419 0.333 0.571

3 0.417 0.486 1 0.143

4 0.417 0.381 0.667 0.571

5 0.000 0.952 0.167 0.286

6 0.333 0.638 0.167 0.714

7 0.167 0.743 0.667 0.143

8 0.000 1.000 1.000 1.000

9 1.000 0.019 0.000 0.286

10 0.667 0.305 0.167 0.714

11 0.917 0.143 0.667 0.000

12 0.583 0.438 0.667 0.714

13 0.667 0.562 0.000 0.000

14 0.583 0.714 0.167 0.714

15 0.750 0.505 0.667 0.286

16 0.750 0.571 0.667 0.571
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The human participant is required to give a score (ranging from 0 to 10 in which 0

denoting an extremely undesirable story narration and 10 a great one from the human

participant’s perspective) to each of the subjective metrics of a story narration.

The first narration in the above sample with comparatively low scores—2 for

coherence, 3 for novelty and 3 for interestingness—is presented as follows.

In the middle of August, Bagaga need to design strategies to manage the new
situation. The Bagaga’s army is surrounded with the Wagaga’s army.

It is July 2030. Wagaga’s soldiers cut Bagaga’s soldiers’ logistic supply of the
virus treatment. Wagaga’s soldiers managed to go in Bagaga’s soldiers.

In the beginning of September, Wagaga is a developing weaker country. Bagaga
is a powerful developed country. An Ebola virus outbreak took place in Country
Wagaga. Country Bagaga produced a treatment for Ebola. Bagaga refused to help
Wagaga with the Ebola treatment.

During combat, as Bagaga’s soldiers advances, Wagaga declared war on Bagaga.
It is end of August. Land forces started to engage in Wagaga’s land. A number of
soldiers became infected with the virus behind Bagaga’s lines.

In the beginning of August 2030, Wagaga soldiers transferred the virus to
Bagaga’s soldiers deep in Wagaga’s land.

It is July 2030. Bagaga’s soldiers advanced fromWagaga. The Ebola virus spread
very fast from Wagaga and Bagaga.

6.2 Building Surrogate Models

The collected subjective metrics data is firstly normalised to remove difference in

value ranges. For each subjective metrics, the scores of all the 16 narrations in the

story narration sample are divided by his score of the eighth story narration in the

story narration sample (the original story).

We build a set of individual surrogate models for story evaluation, each capturing

the mapping between a particular subjective metrics and all the objective metrics of

a story narration.

The notation used in the multiple linear regression model represented in Eq. (5) is

explained as follows: Y is an n × 1 vector representing n cases of observed data about

a subjective story metrics which is collected from the above experiment in the form

of human evaluation scores for n story narrations in the sample; 𝛽 is a 5 × 1 vector

of regression coefficients each of which denotes an objective story metrics’ weight

in determining the value of a subjective story metrics, including the intercept; X is a

matrix that gives all the observed values of the objective story metrics; e is the n × 1
vector of statistical errors; and yi = x′i𝛽 + ei is the ith row of Eq. (5), where i denotes

the ith case of the observed data—data of the ith generated story narration.

Y = X𝛽 + e. (5)

Table 3 shows the results of the surrogate model for each subjective metrics.
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Table 3 Linear regression models of subjective metrics as surrogate model

Subjective metrics DOF CE CT CS Intercept

Coherence 0.483 0.985 3.465 3.240 0.988

Novelty 3.261 3.493 2.665 1.176 1.954

Interestingness 2.791 3.557 2.962 1.515 1.828

7 Multi-objective Evolutionary Story Narration

In this section, EC is designed to better explore the subset of strategic space, with

the step (1)–(4) discussed above synthesized to serve an automatic and evolutionary

story narration process.

Step (1): The linguistic constraints extracted in Sect. 3 from a strategic story serve

as reference for coherence and causal consistence for the genotype-phenotype map-

ping in step (2).

Step (2): The permutation-based representation discussed in Sect. 4 serves as the

genotype, with a genotype-phenotype mapping provided to guarantee that any ran-

dom chromosome can get transformed into a unique coherent and causally consistent

story. This representation serves as the basis to form a strategic story as well as the

basis to design simulation models to evaluate stories for step (3).

Step (3): The evaluation of strategic stories is completely left for the human to

subjectively decide on it. A human evaluation experiment discussed in Sect. 6.1 col-

lected data of subjective metrics of a story sample set from humans, with the corre-

sponding objective metrics of the story recorded.

Step (4): The surrogate models were obtained in Sect. 6.2 based on the data col-

lected in step (3). They serve as the objective functions of EC. Each of the surrogate

models can predict a human’s subjective evaluation of a story narration regarding a

particular metrics from the corresponding objective metrics.

The details of the EC are given as follows.

7.1 Elitism Strategy

The elitism strategy in NSGA-II [59] is applied to maintain elitist solutions in the

population during the evolutionary story narrating process. A binary tournament

selection based on the crowding distance is used to select parents from the population

for crossover and mutation.

7.2 Genetic and Search Operators

The genetic and search operators used in the multi-objective evolutionary story nar-

rating process in this paper are listed below.
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∙ Crossover operators: the partially mapped (PMX), order (OX) and cycle

(CX) crossovers in [60] which can maintain the validity of the permutation after

crossover.

∙ Mutation operators: the inversion, insertion, displacement and reciprocal

exchange operators explained in [60].

7.3 Experimental Study of Evolutionary Process

An experimental study is discussed to test the performance and understand the effects

of the multi-objective evolutionary story narrating process elaborated above. After

testing the performance of the story evolutionary process under different parameter

settings, the following are selected. Comparatively big population size and diver-

sified crossover and mutation operators are selected to incorporate diversity in the

objective metrics discussed in Sect. 5.2 given the redundancy in the layer genes.

∙ Population size: 1000

∙ Generation limit: 5000

∙ Crossover rate: 0.8 where the PMX, OX and CX crossover operators share equal

probabilities

∙ Mutation rate: 0.2 where the inversion, insertion, displacement and reciprocal

exchange mutation operators share equal probabilities

Figure 8 presents a comparison of the distributions of objective metrics of the

story narration individuals in the initial and final population annotated by “-init” and

“-final”, respectively. From CE, CT and CS, the surrogate model of human evalua-

tion tends to guide the evolutionary process to converge to story narrations whose

orders of events, temporal and spatial information are more consistent with those of

DOF−init −final CE−init −final CT−init −final CS−init −final

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e 
M

et
ric

s 
V

al
ue

Objective Metrics

Fig. 8 Objective metrics distributions of initial and evolved story narrations
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Fig. 9 Transition of values of subjective metrics during evolutionary process, a coherence, b nov-

elty, c interestingness

the original story. This effect is especially obvious in CT and CS whereby random

narrations in the initial population hardly achieve high values while the majority of

the evolved narrations possess high values. It is also interesting to notice the diver-

sity for the DOF metrics, which indicates a possible preference in flashback in the

evolved narrations.

The transition of the coherence, novelty and interestingness subjective metrics

during the evolutionary process is illustrated in Figs. 9 and 10. Figure 9 includes plots

of the minimum, average and maximum values of the objective functions among

the story narrations in the population of each generation as evolution proceeds; and

Fig. 10 demonstrates the transition of the non-dominated fronts during the evolution-

ary process whereby non-dominated fronts in the subsequent generations are denoted

by the cross points with bigger size.

The evolutionary process succeeded in evolving story narrations, i.e., collecting

story narrations with improved quality in terms of the approximated coherence, nov-

elty and interestingness subjective metrics, reflected in the increasing trend in the

plots in the two figures.
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Fig. 10 Transition of non-dominated fronts in subjective metrics dimension during evolutionary

process: non-dominated fronts in subsequent generations are denoted by cross points with big-

ger sizes, a coherence-nonvelty-interestingness, b coherence-nonvelty, c coherence-interestingness,

d nonvelty-interestingness

Figure 10 reveals possible trade-offs between coherence and novelty, and between

coherence and interestingness, while a possible linear relationship between novelty

and interestingness in human story evaluation.

What follows below is one of best evolved narrations corresponding to a non-

dominated front in the final population of evolution. The values of the subjective

metrics assigned by the surrogate models are 7.477 for coherence, 9.773 for novelty

and 9.803 for interestingness, with the values of the objective metrics 0.583 for DOF,

0.714 for CE, 1.0 for CT and 0.714 for CS.

Bagaga is a powerful developed country. It is July 2030. An Ebola virus outbreak
took place in Country Wagaga. Country Bagaga produced a treatment for Ebola.
Wagaga is a developing weaker country. Bagaga refused to help Wagaga with the
Ebola treatment.
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In the beginning of August 2030, Wagaga declared war on Bagaga. Land forces
started to engage from Wagaga and Bagaga.

In the beginning of September, Bagaga needed to design strategies to manage the
new situation. The Bagaga’s army was surrounded with the Wagaga’s army. It is
end of August. Wagaga’s soldiers cut Bagaga’s soldiers’ logistic supply of the virus
treatment. Wagaga’s soldiers managed to go behind Bagaga’s lines. The Ebola virus
spread very fast in Bagaga’s soldiers. Bagaga’s soldiers advanced in Wagaga’s land.

During combat, as Bagaga’s soldiers advanced, Wagaga soldiers transferred the
virus to Bagaga’s soldiers deep in Wagaga’s land.

In the middle of August,a number of soldiers became infected with the virus from
Wagaga.

Compared with the original story presented in Sect. 6.1, this narration possesses

a certain degree of flashback and thus it may trigger human curiosity about possible

causes and effects of an event or possible current states of the world. The change

of temporal information further changes the order of events thus the context of the

scenario. For instance, a scenario is depicted from “In the beginning of September,

Bagaga needed to design strategies to manage the new situation.” to “Bagaga’s sol-

diers advanced in Wagaga’s land.” which says Bagaga’s army was surrounded, his

supply of medical treatment was then cut, followed by the army chased and unfortu-

nately infected with Ebola virus. It may be inferred that when Bagaga’s army were

surrounded then cut supply of Ebola treatment, they had not been infected with the

virus yet, which is different from the original story whereby they were surrounded

after being infected with the virus and possibly because of ill soldiers who slowed

down the army’s progress.

8 Conclusion

This chapter presents the first automation of the narration of a strategic defence and

security scenario, written in the form of a natural language story. By designing appro-

priate computational models to explore a strategic space defined by a story in natural

language, it will be simpler to automate the computational scenario planning cycle.

In other words, we will be able to automate the evaluation process of defence and

security scenarios on multiple levels of resolution, starting from a grand strategic

level down to a tactical level. Results show the effectiveness of this approach in

collecting story narrations with improved quality in coherence, novelty or interest-

ingness. This work holds enormous potential in anticipating and resolving further

risks, outbreaks, and potential conflict, which could assist in awareness raising and

training of military defence organisations.

Further work may include synthesising multiple strategic stories or scenarios in

our domain of interest into one dependence network and generate thus evolve scenar-

ios using this evolutionary-based automatic storytelling approach with more diver-

sity accordingly.
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Appendix A: Event Recognition

The following grammatical components in a clause are identified as events.

(E1) VERB without predicative complement: all “tensed or untensed verbs”

[52] and idiomatic expression (e.g., show up), prepositional verb (e.g., depend on)

and phrasal-prepositional verb (e.g., catch up with) [51].

(E2) Predicative complement with NP as the head: predicative complement

whose head is a noun phrase (NP) and the verb belongs to one of the follow-

ing classes: copulative predicates (e.g., to be, seem), inchoative predicates (e.g.,

become), aspectual predicates (e.g., begin, continue, end, finish), change of state

predicates (e.g., retire, appoint, elect, resign), predicates of evaluation and descrip-

tion (e.g., consider, describe, depict, evaluate) [52]. For instance, “became a good

guy” in “He became a good guy.” or “was elected president of the country” in “She

was elected president of the country.”

(E3) Predicative complement withADJECTIVE as the head: predicative com-

plement whose head is an adjective and the verb belongs to one of the following

classes: the above-mentioned copulative predicates, inchoative predicates, aspectual

predicates, change of state predicates and predicates of evaluation and description,

as well as causative predicates (e.g., cause, make) and predicates of perception (e.g.,

look, hear) [52]. For instance, “looks nice” in “The dress looks nice.” or “made

happy” in “The cake made the boy happy.”

(E4) Predicative complement with PP as the head: predicative complement

whose head is a prepositional phrase (PP) and the verb belongs to the classes that

belong to copulative predicates, inchoative predicates, aspectual predicates, change

of state predicates and predicates of evaluation and description, causative predicates

and predicates of perception as has been listed in TimeML event annotation standard

[52]. For instance, “is in good mood” in “She is in good mood.”, “was behind the

tree” in “Cinderella was behind the tree”.
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A Review of the Use of Computational
Intelligence in the Design of Military
Surveillance Networks

Mark G. Ball, Blerim Qela and Slawomir Wesolkowski

Abstract This chapter is a review of how computational intelligence methods have
been used to help design various types of sensor networks. We examine wireless
sensor networks, fixed sensor networks, mobile ad hoc networks and cellular net-
works. The goal of this review is to describe the state of the art in using compu-
tational intelligence methods for sensor network design, to identify current research
challenges and suggest possible future research directions.

Keywords Sensor network ⋅ Surveillance ⋅ Wireless sensor network ⋅
MANET ⋅ Cellular network ⋅ Computational intelligence ⋅ Evolutionary
optimization ⋅ Fuzzy logic ⋅ Neural networks

1 Introduction

A key challenge in military operations is the ability to carry out intelligence,
surveillance and reconnaissance (ISR). ISR can be achieved from fixed assets such
as long range radars or surveillance cameras, or moving assets such as aircraft,
satellites or unmanned aerial vehicles (UAVs), or a combination of both. There is a
large variety of sensors enabling the creation of sophisticated systems of systems
(where the lower-level system is each sensor) such as sensor networks (SNs). In
general, an SN is a network of nodes which allows the monitoring of the envi-
ronment via each node’s one or more sensors. Sensors perceive their environment
via a variety of sensors from video cameras to motion sensors to various radars.
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SNs such as wireless sensors networks (WSNs) [1, 2], Mobile Ad hoc Networks
(MANETs) [3, 4] and cellular networks (CNs) [5] have been extensively studied in
the open literature. Fixed sensor networks (FSNs) have not been studied to a great
degree, given their primary military application domain. WSNs, MANETs and
FSNs are critical for military ISR. Given some similarities between CNs and FSNs,
we will also examine relevant CN research.

Enabling technologies are important in devising and managing sensor networks.
A recurring theme in sensor network research is how to obtain the best overall
situation awareness (SA) or picture from a variety of surveillance systems working
cooperatively. SA may be improved by ensuring that sensor resolution is appro-
priate to the intended target type by scheduling different sensors to provide com-
plimentary coverage (notably by using data from one sensor to queue another) or by
maximizing the size of the area covered by the sensor network.

For WSNs, given each sensor node’s limited size, another important consider-
ation is sensor power optimization. Computational intelligence (CI) methods are
used in a variety of these sensor technologies, sensor coordinating technologies and
systems of systems analyses [6]. Operations research and analysis has been used in
the systems of systems analysis of sensor networks such as sensor placement,
number of sensors, type of sensors, energy-aware protocols, power efficiency and
optimization in sensor networks, network topology control, as well as
sensor-embedded efficient clustering-based algorithms for data aggregation, and
routing [7–12]. This chapter will summarize the state of the art in the use of
computational intelligence to carry out operational analysis of SNs and will illus-
trate the importance of this work in the military and security domains. This survey
will also summarize the types of problems studied and identify research gaps by
suggesting new research directions.

This chapter is organized in the following manner. In Sect. 2, we will provide a
general overview of the field and define most terms. In Sect. 3, we will discuss
WSNs given that they distinguish themselves from other networks by their need to
conserve battery power. Section 4 will summarize Large Sensor Networks (LSNs)
which will group three similar groups of sensor networks: FSNs (e.g., the North
Warning System in Canada and the United States), CNs (e.g., AT&T’s cellular
network in the United States) and MANETs (e.g., Survivable, Adaptive Networks
known as SURAN initiated by the Defense Advanced Research Projects Agency—
DARPA [13]). Section 5 concludes with a discussion on linkages between SNs and
common research challenges.

2 General Overview of Sensor Networks

In this section, we will discuss SN categorization, as well as define the common
terms used in the paper.
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2.1 Types of Networks

First, we will define and discuss several different sensor network types. The sensor
networks we will examine include WSNs, FSNs, MANETs, and CNs.

Wireless Sensor Networks consist of a large number of miniaturized electronic
devices equipped with wireless communication capabilities and processing power.
These small devices, namely sensor nodes, can sense, actuate, process information,
communicate among themselves thus providing significantly a higher sensing
capability compared to each individual sensor node. Individual sensor nodes are
generally equipped with non-rechargeable batteries and are considered expendable
i.e., sensor nodes are typically not recovered when their batteries are depleted.
A WSN usually needs one or more data sink nodes which are powerful transmission
nodes with high computational power and energy resources, enabling them to reach
a destination node or base station. These sink nodes could be mobile depending on
the specific application. Taking into account the scarce energy resources of typical
sensor nodes, a major WSN challenge is the requirement to extend the network
lifetime by exploiting energy-aware design principles and power optimization
schemes.

Fixed sensors are the surveillance and reconnaissance assets most common to
military operations which operate over large distances (from kilometers to thou-
sands of kilometers). These include any stationary sensor, such as primary radar
installations. We also include satellite based sensors in this category. Even though
these sensors are in motion, their trajectory cannot be altered as part of normal
sensing operations. This results in repeated coverage pattern analogous to a very
large, though slowly repeating, fixed sensor. When several of these sensor nodes are
used together to provide improved SA, they become a Fixed Sensor Network.

Mobile Ad hoc Networks are dynamic, self-configurable and highly adaptive
multi-node networks equipped with mobile devices connected by wireless links.
MANETs are rapidly deployable, autonomous networks, which do not require a
fixed infrastructure. Mobile nodes are free to move independently in any direction
over large areas. Thus, they can be deployed and used in remote areas (e.g., to help
with disaster relief), and battlefields of various sizes. FSNs and MANETs can be
considered large networks as compared to WSNs. Thus, LSNs will encompass
FSNs and MANETs.

CNs can also be considered LSNs due to many similarities they share with
FSNs. CNs are made up of linked cellular base stations. Cellular telephones connect
wirelessly to cellular base stations, which are in turn connected to a larger telephone
network (of wired and cellular telephones). Each base station has a range from one
to ten kilometers depending on its location, and the network of base stations in
aggregate provides coverage of an entire service area. While our focus is on
surveillance rather than communications networks, the CN coverage problem is
similar and, therefore, a review of the methods used to address this problem in the
cellular industry will be carried out highlighting salient points relevant to LSNs.
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The foremost metric by which sensors, sensor networks, or cellular networks are
measured is network coverage. Three types of coverage will be studied [14]:
blanket, barrier and sweep. Blanket coverage is the total surface area covered and is
constant in time as long as all sensors remain functional. Ideally blanket coverage
would encompass the entire area of interest (AOI). Barrier coverage is obtained by a
line of sensors with some amount of overlap such that a target is not able to pass
through the line undetected. The North Warning System (NWS) [15] is an example
of an FSN which provides barrier coverage. Sweep coverage begins with barrier
coverage but moves the barrier across an AOI over time, resulting in a total area
covered that is akin to blanket coverage. An example could be a MANET helping in
search and rescue; i.e., the search starts at the last known location of a missing plane
and then expands in various directions in a sweeping action. Blanket coverage is the
easiest form of coverage to measure as it is simply the total surface area within
range of the SN.

Figure 1 illustrates a few common examples of sensor network types useful in
the military and security domain. Figure 1a shows the barrier coverage provided by
the NWS. The figure shows the area covered by the NWS radars based on publicly
available radar locations [15] and ranges [16, 17].

Fig. 1 A few examples of sensor networks with military and security applications
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Figure 1b represents one example of a WSN: AOI covered by pan-tilt-zoom
(PTZ) cameras that have a limited range. Cameras may detect activity in the AOI
depending on the target size and type, given a rotatable restricted field of view for
each camera [18]. In this figure, each camera has a “zoomed out” and “zoomed in”
range represented by the inner and outer circles respectively. The zoomed out
instantaneous field of view (FOV) is shown in blue and the zoomed in FOV in red.
These sensors are attempting to provide blanket coverage, although some gaps in
coverage are visible, and only a small portion of the AOI is covered at any given
time. Sensors are often modelled as unchanging circular projections on a two
dimensional map. This approximation does not necessarily hold (depending on the
application) for sensors similar to a PTZ which have a FOV that is non-circular and
moveable in three dimensions.

Figure 1c illustrates another WSN example: small wireless magnetic sensors
spread along a dirt road and used for vehicle detection [19]. This WSN essentially
provides blanket coverage of the road; however, assuming the target is travelling on
the road from one direction or the other, this WSN can also be seen as a series of
barriers. In this case fairly large coverage gaps could be allowed while still being
able to detect a truck passing through. In contrast, a set of PTZ cameras intended to
detect a person on city streets (e.g., in London, United Kingdom) would have to be
able to cover a very large portion of a potentially large AOI.

2.2 Network Characteristics

In this section, we will discuss SN characteristics and the importance of each in
analysis. Table 1 summarizes the characteristics of studied sensor networks by
extending Table 1 from [2] and adopting most of their terminology. We subdivide
sensor networks into WSNs, FSNs, CNs and MANETs.

Table 1 first examines the sensor and base station characteristics. Miniaturization
is a key technology enabling WSNs: sensor size is on the order of centimeters or
smaller [2, 20, 21]. Cellular base stations are antennae or groups of antennae
positioned on top of a cell tower or a building, while large sensors vary in size from
a handheld camera to an antenna array the size of a large field [22]. WSNs com-
pensate for their small size (and accordingly limited power) by being deployed in
large numbers (typically hundreds or thousands [23]) over a relatively small area
(up to a few city blocks). Fixed sensor networks are typically made up of sensors
that were designed to be used individually to cover a large area (up to thousands of
square kilometers). Cellular networks cover entire countries and the number of base
stations required to do so is consequently large, even though the range of individual
stations can be relatively large (on the order of tens of square kilometers). Passive
sensors, such as cameras, only receive information while active sensors, such as
radars, send out a pulse and wait for a return. Heterogeneous networks are made up
of multiple types of sensors ideally providing complementary information. The ad
hoc nature of MANETs leads them to be heterogeneous and cellular base stations
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must be homogeneous to communicate with phones i.e., use the same communi-
cation protocols. The mix of sensors in WSNs and LSNs depends on the application
type. Fixed sensor nodes and cellular base stations are always placed at predeter-
mined locations, while MANET nodes may be located anywhere given that they are
mobile [24, 25]. WSN node locations may be predetermined but the nodes are
typically deployed in a large group and often spread out randomly [1]. Once
deployed, MANET nodes remain mobile, while cellular bases stations are fixed.
WSN nodes are sometimes capable of autonomous movement, limited by their
power supply. Other WSN nodes may be stationary or may be transported by the
medium they are embedded in. Fixed sensor nodes are typically stationary but may
be moved between uses [26], or in some cases, as part of their use (such as synthetic
aperture radar [27]). Satellite or air-based sensors begin to blur the line between
fixed sensor networks and MANETs as they are collecting data while in motion,
though their movements are planned.

Sensor networks may be used to study entities that are distributed (weather) or
localized (individuals), cooperative or not. Cellular nodes are the exception as they
make contact with individual phones that want to be connected. Similarly sensor
networks may be used in low or high threat environments i.e., from cities in
countries at peace to battlefields. Cellular networks do exist in conflict zones where
they may be attacked, but they are not designed to withstand an attack. Most targets
of interest for each network are most likely mobile although WSNs may be
embedded in an entity to monitor changes in that entity.

Communication refers to the link between the individual sensor and its network.
For cellular networks the communication is between base stations and the com-
munication backbone, which is wired, as opposed to the wireless communications it
enables. WSNs and MANETs rely on wireless communications as part of their
operations [24]. FSNs are typically wired, though wireless communication (e.g., via
satellites) may be part of the chain.

Large fixed sensors typically send their data to some central repository for
processing. Cellular base stations do some of the processing, but rely on the net-
work switching subsystem to make a connection. In the case of WSNs and
MANETs, at least some of the processing is expected to take place at the nodes
though it may be distributed.

Fixed sensors and cellular base stations have either their own power sources or
use power from an electric grid ensuring continuous operation. WSN nodes are
usually powered by small batteries that have a limited lifetime. MANET sensors are
powered by the platform that carries them, which typically needs to be refuelled
periodically; therefore, energy-awareness is important although it is not a primary
concern as it is in WSNs [21, 28].
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2.3 Discussion

While the focus of the remainder of this paper will be on the research carried out in
each of the network categories, this section will provide the overall context by
discussing linkages across the various network types. We will also provide a
summary of numerous CI techniques that have been applied to each network type.
The goal is to highlight similarities and differences between SN types.

Sensor networks are often treated as synonymous with WSNs. WSNs are an
emerging technology that is receiving much attention in research and development.
On the other hand, the concept of large-scale sensors, such as networks of radar
stations is difficult to find in the literature despite being a well-known problem in
defence and security domains.

For example, Kulkarni et al. [6] identifies four challenges faced by WSNs:
(1) the wireless ad hoc nature of the network, (2) mobility and changes in network
topology, (3) energy limitations of nodes, and (4) physical node distribution. Of
these, only the last is a common concern of fixed large-scale sensor networks. On
the other hand, MANETs and WSNs share many challenges except that MANETs
cover much larger areas. Consistent with the third WSN challenge, a common goal
with MANETs is to minimize the energy consumed, often by minimizing the
movement of mobile sensors or, in the case of small nodes, improving the data
communications efficiency, in order to extend the lifetime of the network. This is
not a significant concern for FSNs. Instead, FSNs generally look to maximize the
coverage area while minimizing installation and operations costs [29, 30]. These are
the same objectives generally faced by cellular networks. In situations where all
sensors (or cellular base stations) are identical, the number of stations is used as a
proxy for cost [31–34]. The general relationships between these different types of
networks are summarized in Fig. 2.

Fig. 2 Network relationships
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Table 2 summarizes how various optimization methods have been applied to
different sensor network applications in the literature, while Table 3 examines the
optimization objectives that have been addressed with these methods. The numbers
in these tables correspond to the references at the end of this chapter. Optimization
methods include CI methods such as genetic algorithms (GA), multi-objective GAs,
Swarm Intelligence (including Ant Colony Optimization and Particle Swarm
Optimization), other heuristics such as tabu search as well as non-CI methods such
as greedy algorithms or linear programming. In all cases where coverage is being
used as an objective, it is blanket coverage (as defined in [14]) that is being
measured.

There are several ways in which the competing objectives of maximum coverage
and minimum cost are reconciled. Some studies use multiobjective optimization,
resulting in a Pareto front of solutions [5, 30, 31, 35]. Others assign weights to
create a combined objective function [34, 36, 37]. Several studies also treat one or
the other as a constraint, either fixing the number of sensors (and thus the cost) and
determining the maximum area coverage [30, 38–42], or fixing a minimum allowed
coverage and determining the required number of sensors [29, 33].

Sensor locations are generally dealt with in one of three ways. The most
restrictive is to allow sensors to be placed at predetermined locations, which may be

Fig. 3 Recurring themes across network types
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appropriate when the sensors require some pre-existing infrastructure or specific
terrain (e.g., FSNs and CNs). The most general is to allow sensors to appear at any
location within the area of interest. When location is treated as a continuous
variable, we refer to this case as a high-resolution grid. For the intermediate case, a
low-resolution grid, sensors could be placed at the vertices of a grid with a finite
number of points.

Various CI and data modelling methods are grouped in Fig. 3 based on the type
of network they were used for. This diagram also identifies in red how sensor and
base station locations were handled. In addition, many studies use methods to deal
with conflicting objectives like multiobjective optimization (to create Pareto fronts
of non-dominated solutions) and single-objective optimization with a weighted sum
of several objectives. These two options are shown in green.

3 Wireless Sensor Networks

3.1 Background

The emergence of WSNs is a result of the development of small-size embedded
microcomputer-based systems, which support a wide range of sensors. WSNs use a
large number of small, inexpensive sensors instead of a smaller number of powerful
sensors. As shown in Fig. 4, the main components of a wireless sensor node are: the
sensor, embedded controller, memory unit, communication device and power
supply. Sensing, actuating, communicating and processing capabilities of sensor
nodes enable their capabilities to self-organize and communicate in the deployed
areas. The low cost, miniaturized size and easy deployment, makes sensor nodes
attractive for use in military applications with versatile requirements. Different
sensor node architectures can be chosen based on the application requirements.
Several comprehensive overviews of the research in the field have been written [1,
20, 21, 43, 44].

Some key points are that each sensor node, in addition to its sensing capability,
has limited processing and data transmission capabilities. However, they are mainly
deployed in large numbers, thus their computational load can be shared across all or
a subset of nodes to save energy resources and extend the lifetime of the WSN. An
example of effective use and conservation of the nodes’ energy is to organize
neighbouring sensor nodes into local clusters using a technique such as the
Low-Energy Adaptive Clustering Hierarchy (LEACH) proposed by Heinzelman
et al. [9], where each cluster is assigned to a cluster head. The cluster head gathers
the sensed data from its cluster members and performs data processing and
aggregation prior to transmission of the data to the sink node. Moreover, the cluster
head role can be rotated between cluster nodes thus ensuring that the energy load is
distributed evenly.
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Individual sensor nodes can be considered expendable: the nature of wireless
nodes requires them to be battery powered and when the battery dies, nodes are
typically assumed to be irrecoverable [45]. The energy efficiency, which is closely
related to the lifetime of the WSN, is one of the main constraints in the design of
sensor nodes [46]. Thus, conserving battery life by minimizing the amount of work
done by each node becomes a priority. Military applications may be data intensive
and/or require WSNs to be deployed over large timeframes, thus making energy
efficiency an important design characteristic. Energy-efficient topology control
algorithms, data aggregation, routing, schedule-based protocols, sensor modes of
operation (e.g., active, idle, sleep) can be all used to extend sensor network oper-
ation [47]. Furthermore, a WSN also has to be tolerant to the loss of individual
sensors by exploiting redundant deployment of nodes, and/or use of a handoff
mechanism, which enables the transfer of services to healthy neighbourhood sensor
nodes to restore and maintain the connectivity of a failed link to a sink or desti-
nation node [48]. The Quality of Service (QoS) attributes of WSNs such as event
detection, delay (latency of a sensor response), bandwidth (limited number of
channels and data rate transmission capabilities typically in ranges of 250 kbit/s or
less), etc. differ based on the choice of hardware/software platform for specific
WSN applications [20, 49, 50]; however, they are important factors to be consid-
ered during the WSN design and deployment stages.

The scalability of WSN architectures and protocols based on the number of
sensors deployed is another important aspect to be considered, especially for mil-
itary applications given the necessity to deploy WSNs in settings from small vil-
lages to large battlefields. Based on WSN application requirements, the densities of
sensors in specific deployed areas might be non-homogeneous, and the network
should be able to adapt to such changes in configuration. Moreover, as WSN
dynamics change due to the depletion of energy resources of individual sensor
nodes or different assigned tasks, the network must still be able to self-configure,
adapt and remain operational [51, 52].

Fig. 4 Sensor node
architecture
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3.2 Defence and Security Applications

Arampatzis et al. [23] provide a survey of WSN applications including a section on
military applications where the areas of interest are not limited to information
collection only, but also include enemy tracking, battlefield surveillance and target
classification via networks consisting of sensor nodes equipped with seismic and
acoustic sensing capabilities. He et al. [19] tackle an important aspect of WSN use
in surveillance missions, where the sensors are deployed in large numbers with the
ability to detect and track vehicles in a region of interest (1) in an energy-efficient
manner, where only a subset of sensors nodes are active and monitoring at any one
time, while the rest are in low power mode, and (2) in a stealthy manner, where the
sensor network has a low probability of being detected given that sensors use
minimal communications in the absence of events. Thus, by considering a trade-off
between energy consumption and surveillance performance as a system design
parameter, the sensor network is highly functional and long lasting while being
adaptable to changes.

Đurišić et al. [53] examines some WSN military applications ranging in scale
from sensors deployed across a large area such as a battlefield to detect infrared,
chemical, or acoustic signatures, to multi-sensor systems used for perimeter pro-
tection to sensor networks worn by soldiers to monitor their vital functions. Liu
et al. [54] test their Simulator for Wireless Ad hoc Networks against a scenario
depicting chemical agent dispersal in an urban area. Although their chemical plume
dispersion model has been simplified, it still illustrates the importance of networked
chemical detection sensors.

Afolabi et al. [55] discuss viable options in combining different advanced
technologies, such as UAVs and wireless sensing devices to enhance surveillance
capabilities. The cooperation and integration of UAVs in a WSN improves the
performance of surveillance missions by using an efficient deployment of sensor
nodes; where the maximum coverage is attempted with the least possible number of
nodes via equilateral triangulation (this type of grid has the smallest overlapping
area as compared to grids based on squares or hexagons) [56]. Thus, the addition of
UAVs may provide a relatively inexpensive surveillance solution when linked with
deployed sensor nodes to cover a specific region of interest.

Song et al. [57] analyze the performance of Passive Infrared (PIR) sensors and
their use as WSNs for surveillance systems. For example, these systems can be used
for tracking intruders by detecting the movement of the temperature gradient
between the warm person and their cooler surroundings. Processing data from PIR
sensors is efficient with an output as simple as “nothing detected” or “movement
detected” compared to a vision-based device, which would require a larger onboard
memory and computational power due to more complex data processing required
for image processing.

Finally, sensor networks can be used in conjunction with UAVs in applications
such as collaborative surveillance missions (e.g., to aid military troops during
combat operations) including the detection and tracking of enemy forces or the
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detection of hazardous biological, chemical, and/or explosive vapor [58]. Naturally,
this merging of UAVs and WSNs leads to the necessity of studying how WSNs and
MANETs (discussed in Sect. 4.3) could interact and the research challenges this
would bring. This topic will be discussed in more detail in Sect. 4.5.

3.3 Review of Methods and Applications

A common goal for WSNs is to maximize the lifetime of the network, while
meeting the application requirements. In particular, energy-aware design to ensure
the prolonged life of surveillance missions should be of interest in WSN design
[19]. While efficient network topology control [9] exploits the redundant deploy-
ment of sensor nodes, it restricts the set of nodes which are considered neighbors of
a given node to overcome the energy limitations; hence, minimizing the number of
retransmissions required to deliver data to the receiver (by only a few selected
nodes). Similarly, sensor nodes communicate with a sink node (or base station) via
multi-hop paths, thus in-network processing is also used to reduce the amount of
data sent (thus reducing overhead) throughout the network [1, 51].

The reduced overhead is achieved by lowering the number of messages for-
warded throughout the network by applying data aggregation principles within
sensor nodes. Benefits of data aggregation depend on the sensor nodes’ configu-
ration. If the sensors are configured in a radial configuration as shown in Fig. 5a
where all the sensor nodes are one hop away from the sink, data aggregation is not
beneficial. However, in the case shown in Fig. 5b, where the sensor nodes are more
than one hop away from the sink, data aggregation at intermediate nodes leads to
lower message overhead.

For WSNs, the choice of sensor node configuration, i.e. flat versus hierarchical,
depends on the application and the size of the deployed network. In flat networks all
nodes are considered equal and the main emphasis of network topology is power
usage control. However, the scalability of a network due to non-homogeneity
remains a concern. In hierarchical networks, the emphasis is on the backbone or
cluster connected topology, which takes advantage of heterogeneity and aids in
constructing a self-organizing network. A large-scale WSN deployment, in the case

Fig. 5 Data aggregation:
a radial configuration,
b feasible configuration
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of battlefield and/or long-term missions would need to take into account the
energy-awareness of a network, thus most likely utilizing hierarchical network
topology.

The overall network coverage and energy efficiency depends on many factors
including the existence of powerful mobile or fixed nodes (with lasting energy
resources, a powerful processing core and transmission range) acting as intermediate
nodes within a deployed sensor network. As an example, if energy constrained nodes
transmit at longer distances frequently, the sensors’ energy resources will be quickly
depleted leading to node failures and sensor network lifetime reduction. However, if
the role of transmission is taken by powerful nodes with considerable (or
rechargeable) energy resources, prolonged operation of a network is possible. This is
one of the reasons why node-based local clustering, data aggregation and in-network
processing would be important for a viable and long lasting WSN [9, 59].

Jourdan and de Weck [5] aim to maximize the total sensor coverage, as well as
the lifetime of the network. This was done by randomly deploying the available
sensors to create individuals in a Multi-objective Genetic Algorithm (MOGA). This
is one of the rare cases of truly optimizing across multiple objectives; in fact
addressing this gap is stated as part of their motivation. To measure network life-
time, they assumed that each sensor sends its data to a primary receiver once for
each “sensing cycle.” However due to multi-hoping, sensors may need to relay data
other than their own. Each of these transmissions depletes some of the sensor’s
energy. The lifetime of the network is determined by the number of sensing cycles
before any one sensor’s energy is completely depleted. They concluded that a
network of sensors whose communications range is more than double their sensing
range is most efficient in a cluster configuration. A cluster allows multiple paths
from any sensor in the cluster to the sink node. Otherwise, a hub and spoke
configuration is more efficient.

Other studies [36, 38] aim to maximize sensor coverage while minimizing the
movement of sensors (and thus the energy expenditure) after an initial random
deployment. A weighting factor is used by Jiang et al. [36] to treat both objectives
as one, while fuzzy logic [38] allows a move if the coverage state is improved, and
sometimes allows a move if the coverage state is to remain the same. GA calcu-
lations are done at the nodes based on information exchanged with neighbours [36].
As processing consumes less energy than communications, this method is more
energy efficient than having all nodes report their locations to a central processor
which would then determine the new locations and send them back to the nodes.

Osmani et al. [38] also measure the resulting “message complexity,” which is the
number of messages exchanged; however, they don’t treat it as an objective to be
optimized by the algorithm. Minimizing the movement of wireless sensors is an
important military objective given that battery power is at a premium. Deployed
WSNs should thus try to adjust their position only when there is a higher likelihood
of obtaining more information by moving than by staying in the current position
(e.g., based on analysis of previously sensed data).

Liu et al. [54] provide a scalable framework for the simulation of sensor net-
works, and its use for studying the performance of routing algorithms. In this case,
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the authors were not attempting to optimize the network, but rather to demonstrate
that their simulator for wireless ad hoc networks (SWAN) could be used to measure
network capacity and performance of routing algorithms in sensor networks. Cal-
culating the coverage of the network is outside of their scope; however, it should be
a concern in the initial network layout. Their simulation environment allows pro-
posed network configurations to be tested before being deployed. This way when a
WSN is later implemented, it can use the most efficient configuration to route data
to the sink.

Howard et al. [41] and Zou and Chakrabarty [42] simulate virtual forces (or
potential fields) acting on the sensors, pushing them to spread out. Howard et al.
[41] use a friction force to prevent the nodes from spreading out indefinitely, while
Zou and Chakrabarty [42] apply a repelling force between nodes within some
threshold distance and an attraction force between nodes outside some larger
threshold distance.

The incremental development algorithm [40] addresses the issue of WSN cov-
erage area; however, it assumes that the sensor nodes are deployed one at a time,
which might not be a feasible solution in case of military applications (e.g., for
large-scale deployment of thousands of nodes).

3.4 Research Challenges

WSNs place a premium on energy efficiency with transceiver and processor being
the main energy consuming blocks. Energy scavenging utilizing solar cells,
vibration and/or other alternative means to recharge sensor’s battery needs to be
considered since it may change network design. In certain applications, the number
of nodes could be reduced given that fewer nodes might be assumed to have their
batteries depleted. Minimizing the unnecessary transmission (and reception) of data
and processing performed by sensor nodes is essential due to the limited energy
resources.

Secure messaging is required due to the threat of cyber-attacks on military
surveillance systems. This issue is not discussed often in the WSN literature.
However, it needs to be addressed in particular where the security breach in the
network might cause casualties of friendly military troops on the battlefield. Butun
et al. [60] elaborates on Intrusion Detection Systems (IDS) initiatives in addressing
future WSN security concerns such as jamming, flooding attacks, eavesdropping,
etc. which might degrade and incapacitate WSNs. However, due to the limited
energy resources and computational capabilities of WSN nodes, access control
techniques used for traditional wired and/or wireless network security do not apply
[61]. The use of existing or new CI techniques to detect security threats to WSNs
would pose a challenge especially when considered in conjunction with scarce
energy resources of sensor nodes. Thus, there should be more research in secure
communications of devices with limited energy capacity and into techniques to help
WSNs thwart cyber-attacks.
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The design and deployment of WSNs has many challenges with respect to
network fault tolerance, lifetime, self-organization, scalability, node hardware/
software considerations, feasible network architectures and between-node com-
munication protocols to be adopted under different scenarios [62]. All of these
characteristics are difficult to accommodate into a single optimal WSN solution.
Thus, application-specific purpose-built WSNs should be studied. Furthermore,
based on the overall trade-offs, selecting adequate design parameters of choice,
which could provide an optimal solution with respect to cost and performance,
poses another complex and interesting WSN design challenge, due to the dynamics
and diverse requirements of military applications [2, 55, 58, 63].

The WSN design requirements could be different when considering the deploy-
ment of WSN for non-critical or peacetime missions, where the security of the
network and its lifetime are not of prime importance. WSN challenges related to
energy efficiency, sensor node battery life (energy scavenging), control topology,
in-network processing and self-organization in order to prolong a lifetime of network,
while at the same time conforming to the (required) guaranteed network connectivity
and security aspect of networks might differ considerably. Consequently, comparing
network architectures of nodes built for high threat environments versus low threat
environments (i.e., commercial off-the-shelf sensor nodes) would provide interesting
insights into militaryWSN design (e.g., would commercial off-the-shelf sensor nodes
be good enough for a given peacetime application?).

Moreover, over-the-air firmware upgrade of sensor nodes under different cir-
cumstances (e.g., tactical military sensor network in remote large-scale areas) to
accommodate different functionality of versatile sensor nodes, could be considered
in future research.

WSNs may also be combined in various ways with LSNs in order to create more
comprehensive SA. Currently, there is increasingly more research being done into
the use of WSNs in conjunction with one or more UAVs or other assets. The UAVs
in those cases might be the WSN information recipients and further relay the sensed
data to base stations. How WSNs might increase the effectiveness of single or
multiple UAVs (and even MANETs) could be of considerable interest. Further-
more, how WSNs would improve the SA of LSNs should also be studied since
depending on the application, LSNs might not be able to gather all relevant data
(e.g., from a battlefield).

4 Large Sensor Networks

4.1 Background

Large Sensor Networks include networks of sensors typically associated with
defence and security, such as MANETs made up of airborne sensors or FSNs of
large early warning radar systems. These are used for homeland security, rogue
aircraft detection, drug smuggling detection, etc. LSNs also include many civilian

680 M.G. Ball et al.



sensors such as air traffic control, Automatic Identification System (AIS) [64], and
satellite-based sensors [65, 66]. While the sensors are sophisticated, the networking
aspect is not well studied. The fusion of data gathered from multiple sources should
be a topic of interest ensuring that they may complement each other in the most
efficient way possible. Like WSNs, these networks aim to provide the maximum
coverage possible. Unlike WSNs, the replacement cost of a single sensor is a
significant concern, while the energy expenditure is not.

While some of these large sensors are often used alone, the military should be
interested in the ability of multiple sensors to provide a combined SA that is greater
than the sum of its parts. Combining sensors with different sensing regimes, such as
radar and optical sensors, allows the confirmation of detected objects between
sensors and the detection of objects that might be visible in one medium but not
others. Accordingly, if the coverage areas of multiple sensors overlap, then one
sensor might be able to provide information that was missed by another. However,
this overlap also represents a reduction in the total coverage area that could have
been achieved by the same sensors if they were separated. Another approach to
multi-sensor surveillance could be the use of a wide-area coarse resolution sensor to
provide initial detections that are then followed up by a smaller area, higher res-
olution sensor.

A very large scale sensor network, the Distant Early Warning (DEW) Line
created a radar barrier by placing sites along the “most northerly practicable part of
North America” [67]. The NWS used many of the same sites [15]. Figure 6 shows
how the main line of sites was not significantly altered during the transition from
the DEW Line to the NWS.1

As part of LSNs, we also study methods used to optimize CN coverage.
Although CNs are used for communication rather than surveillance, the base sta-
tions in each CN must be able to detect a cellular phone within their coverage area
and, therefore, the placement of these base stations is analogous to the placement of
sensors as both represent some type of coverage within a given radius of an
installation. The goal of both CNs and FSNs is typically to maximize the amount of
coverage provided by a network of installations (whether cell towers or radars)
while minimizing the number of installations required.

4.2 Fixed Sensor Networks

Sakr and Wesolkowski adapt their MOGA to optimize across three objectives,
while also accounting for multiple types of sensors [30]. In their implementation,
each sensor type was characterized by a unique coverage radius and cost. Their
objectives were to maximize the total coverage, minimize the total cost, and min-
imize the amount of coverage overlap. They assumed a fixed number of sensors,

1This figure was created in Google Maps [68, 69] using data from [15] and [70].
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which had the effect of reducing the search space. Although this work was framed
in the context of a WSN, the methodology has more in common with FSNs.
Specifically, it is limited to ten total sensors, and neither energy constraints nor the
ability of sensors to move are accounted for. While the sensors modelled could
indeed be wireless, this does not affect the methodology or results in this case. This
research further shows the usefulness of creating different network architectures
based on the emphasized objectives. The work could be extended more specifically
for WSNs by including an objective to examine energy consumption. Another
aspect of interest to FSNs would be to look at particular types of overlap coverage
(e.g., overlap by two or three sensors). From a defence perspective, it is significant

Fig. 6 DEW and NWS sites
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that this work accounts for a network of dissimilar sensors, although in this case the
sensors are assumed to be redundant rather than complementary—hence the
objective of minimizing, rather than maximizing, overlap. This work could be
extended to seek to maximize the overlap of dissimilar sensors, while maintaining
maximum coverage. In this case, increasing the limit on the total number of sensors
would likely be required.

Oh et al. [31] examine the coverage by several sensors of different types. Each
type of sensor is defined by a size and shape of its coverage area and each sensor
can be placed anywhere on a grid; however, their algorithm does not allow the
possibility of rotation of the coverage area about the sensor location. Their
objectives are to maximize the coverage, to minimize the number of sensors used,
to maximize a weight function based on a user-assigned sensor preference, and to
minimize the distance of a randomly located target to the sensors. The objective of
minimizing the number of sensors may be intended as a proxy for minimizing the
total cost; however, another interpretation may be that a smaller number of sensors
would be more manageable for the analyst receiving the data. The sensor preference
function is unique. This could also be a proxy for cost although it is intended to be
more situation dependant. Matching the right sensor to the intended target is an
important consideration for defence surveillance, and this metric allows sensors to
be ranked based on their appropriateness to the mission, while not exclusively
considering the best sensor.

Church and ReVelle [39] set their objective as maximizing the number of people
within a given service radius of any facility. They suggest solving this problem
separately for a different number of facilities, essentially creating a Pareto front
through a brute force approach. While this work was not presented in the context of
surveillance, the number of people within a service radius could be substituted with
the number of targets within a sensor range. This is a different perspective from
which to look at the surveillance problem, and maximizing the number of targets in
sensor range would be a preferable goal to maximizing the area coverage; however,
it is also only measurable if target locations are known within some degree of
certainty.

Miranda et al. [71] are not concerned with the implementation of an SN, but
instead they address the problem of prioritising tasks assigned to available sensors
using information provided by other sensors in the network. Their goal was to
adjust priorities of radar tasks in such a way as to allow more effective scheduling;
however, they have no metric for the effectiveness of the schedule. They specifi-
cally chose an example where their fuzzy logic algorithm performs differently from
a hard logic version. The key point of this research is that sensors in a network can
be used to inform the way in which other sensors belonging to the network can be
used most efficiently. The priority of a sensing task was updated based on the
current track quality on a target, the estimated hostility level of the target, the degree
of threat, the appropriateness of the sensing platform’s weapons systems, and the
relative position of the target. All of this information is updated as awareness of the
target improves.
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Much of the work we have reviewed focuses on determining the ideal placement
of sensors; however, CI methods can also be used in the data analysis that is
required of a network of cooperating sensors. For example, Amato et al. [72] use
neural networks to distinguish the movement of objects within a video from
apparent movement due to the motion of the sensor itself. The United States Navy
Cooperative Engagement Capability (CEC) does address the networking of mul-
tiple sensors but the network is not planned ahead of time, rather it combines the
information provided by any available sensor in the same area [73]. The Brazilian
system for vigilance of the Amazon region (SIVAM) similarly fuses data for
environmental monitoring, air traffic control, and law enforcement [74]. These are
large scale networks that combine elements of fixed and mobile sensors.

4.3 Mobile Ad hoc Networks

MANETs are flexible, dynamic, self-configuring (connected) mobile wireless
multi-hop systems, which have become increasingly common for use in the areas
where the deployment of a fixed wireless infrastructure is challenging. The appli-
cability of MANETs is indispensable for use in network-centric warfare (NCW),
which requires mission-critical systems to be highly robust and reliable. Hence,
network design and analytical techniques are applied to design MANETs for use in
NCW [75].

As a result of their wireless mobility, self-configuration and flexibility to be
deployed in remote (or difficult to access) areas, MANETs are appropriate for
numerous commercial and military applications such as natural disaster assistance,
battlefield ISR, and surveillance and reconnaissance missions [24, 76]. A fixed
wireless infrastructure is usually neither practical nor feasible in battlefield sce-
narios; as a result mobile wireless networks such as MANETs are essential for the
rapid deployment and establishment of networks, consisting of adaptable, self-
configurable mobile wireless nodes with real-time data, voice and video commu-
nications capabilities. The MANET system concept is instrumental in the devel-
opment of vehicular ad hoc networks (VANET) and flying ad hoc networks
(FANET), which are specialized MANETs. While in MANETs and VANETs, the
focus is on moving nodes such as land vehicles, a FANET is a special form of
MANET which addresses the concept of flying mobile nodes, i.e., multi-UAV
systems [77].

The advantage of FANETs is in providing a more resilient and cost-effective
solution compared to single UAV. Additionally, a FANET may extend the cov-
erage area, survivability of a network, and speed of operation depending on the
number of UAV systems included [78]. Nevertheless, due to high mobility of flying
nodes and network dynamics (e.g., constantly changing node location), challenges
exist with respect to multi-hop routing protocols. As an example, in airborne tactile
networks, as speed increases, the successful delivery of the transmitted information
(from all nodes to all nodes) drops [79]. Thus, the need for better interoperability of
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network layers is paramount such as for example leveraging link layer information
for better cross-layer multi-hop routing decisions [80].

Sethi and Udagata [81] propose an efficient routing algorithm inspired by Ant
Colony Optimization (ACO) techniques. The so called Ant-Efficient (Ant-E)
algorithm improves the reliability of packet delivery by controlling the overhead
and local transmission. The packets are divided into data and control packets, where
data packets use information stored in the routing tables to reach the destination
node. On the other hand, control packets, such as forward ant (FANT) and back-
ward ant (BANT) are agents which are used to update the routing table and traffic
information throughout the network. Lekova et al. [82] propose a delay tolerant
event notification service utilizing fuzzy logic-based reasoning for sparse MANET
networks in case of emergency or rescue situations, capable of capturing uncer-
tainties in modeled data.

There are many similarities between MANETs and WSNs. For example, both
network types do not need a fixed infrastructure and are self-configurable (adapt-
able to changes in network topology). They also rely on multi-hop routing for
dissemination of data among network nodes. Power consumption is an important
consideration in both MANETs and WSNs although of much more critical
importance in WSNs. In comparison to WSNs, nodes in MANETs are typically
equipped with more powerful and refuelable power systems.

On the other hand, some of the differences between MANETs and WSNs
concern the number of nodes and their deployed densities. WSNs usually have
many more nodes than MANETs; thus, scalability, while not a big concern in
MANETs, can be an issue in WSNs. Moreover, while only a few nodes could be
mobile in WSNs, usually all nodes are mobile in a MANET. Redundant deploy-
ment of nodes makes the use of data aggregation and in-network processing
essential in WSNs, while it is mostly irrelevant in MANETs.

4.4 Cellular Networks

The objective in CN base station placement is to maximize the coverage area or the
amount of cellular traffic served [5]. Studies also define a QoS level that must be
achieved [35]. The trade-off is to minimize the required number of base stations
while maximizing coverage. The CN coverage area is a similar objective to that
used in surveillance networks, while traffic served is analogous to the number of
targets detected. In contrast, the QoS calculation is not directly applicable to LSNs
because in an LSN the communications infrastructure is separate from the sensors.

Meunier et al. [35] use three different types of base stations, distinguished by their
antenna types: omnidirectional, small directive, and large directive. This is analogous
to a sensor network that has access to omnidirectional, narrow FOV and wide FOV
sensors. In addition, sites with directive base stations are allowed to have between one
and three base stations. In addition to three objectives (minimize the number of sites,
maximize the amount of traffic served, andminimize the interference fromoverlapping
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cells), they also consider two constraints: covering the entire area, and having a han-
dover area between cells. The handover area is an area of cell coverage overlap which
enables a moving cell phone user to be switched between the cell they are leaving and
the cell they are entering. While the objectives would have to be adapted for use with
sensor networks, the ability to account formultiple sensor types is important in defence
applications.

Amaldi et al. [37] define an installation cost associated with each potential base
station site, rather than with the base station itself. This accounts for a range of
considerations such as pre-existing infrastructure or remote, difficult to access,
locations. This same concept is important for sensor networks, where an ideal
location from a coverage perspective may not be as important as taking advantage
of an infrastructure left behind by an older network.

4.5 Current Research Challenges

CEC [73] and SIVAM [74] incorporate inputs from multiple sensors but there is no
indication that SIVAM sensor locations were optimized for most efficient coverage,
and CEC focusses on fusing data from onboard sensors from all ships in a group,
whose locations will also not be based on optimum coverage.

The logic that is used to move sensors after an initial random deployment could
be modified to determine optimal placement of sensors before deployment, simply
not accounting for movement from initial positions. However this may be over-
complicating the determination of ideal sensor locations.

It is difficult to measure how different systems should cooperate to provide the
best overall SA. Using maritime surveillance as an example, suppose that satellites
provide extensive coverage but no identification of vessels that aren’t broadcasting
legitimate AIS signals [64], while aircraft equipped with a visual sensor may be
able to provide identification [83] if they know where to search. Some mix of both
systems (or alternatives) is almost certainly the best approach, but while area
coverage is easy to measure, the value added by covering the same area with more
than one sensor depends on the targets being sought.

Just as the NWS replaced the DEW Line, the NWS will eventually need to be
updated, replaced, or abandoned. If a replacement is considered, it may be useful to
consider new locations for the radars. While global warming and technological
advancement may make it possible to move the radar line farther north, advances in
the radar technology may allow the radars to achieve the same capability while
being positioned farther south. Well-defined objective functions should be used to
capture the specific requirements of the mission. CI methods that were not available
during the previous planning iterations could then be used to determine the best
locations for the radars.

The convergence of MANETs and WSNs could be a unique dynamic system
solution with “high resolution” sensing capabilities and mobility. The integration of
such a system could pose a great challenge in itself. Taking into consideration that
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VANETs and FANETs (UAVs) are also part of MANETs, the amount of available
information, data dissemination and processing could prove to be very challenging.
Finding effective CI techniques to be used and applied in the separation of “noisy
data” from essential data for mission-critical scenarios should be of interest.

5 Future Directions

We have examined large fixed sensors, as well as mobile sensors with limited
movement capability relative to their sensing range (WSNs) or large possible
movements (MANETs). In a defence and security system of systems approach, both
LSNs and WSNs should work together with patrolling sensors (e.g., foot patrols or
aircraft-mounted sensors), all the way to polar-orbiting satellites. The fact that that
these mobile sensors may move significantly compared to their sensing range
introduces significant challenges in making a comparison to stationary sensors and
thus finding a proper mix. Very few studies [30, 31, 35] allow different types of
sensors or base stations to work together, and in these cases it is only the shapes and
sizes of the coverage areas that are considered. Approaches from similar
resource-based fields such as fleet mix computation [84] could also be adopted.

Optimal use of sensor networks continues to be a challenge. Handoff between
sensors for the purposes of maintaining a track is discussed in [85]. The authors
assume that all sensors are omnidirectional and the motivation behind handing off
the tracking duty is that non-necessary sensors can sleep and conserve energy. How
would this translate to large networks where sensors may be of different types, may
be directional, and may have gaps in coverage where a target might temporarily
disappear, but where energy conservation is not a driving concern?

Much of the work on WSNs focuses on the movement of sensors into position
after an initial deployment, but to conserve energy sensors are rarely moved once
they are in position [86]. LSNs also have varying levels of mobility; however, their
movement tends to be an aspect of their use, rather than deployment. These range
from movement while in use (such as satellite-based radar [65, 66] and Airborne
Warning and Control Systems—AWACS [87, 88]), to movement between uses
(moveable radars such as Russia’s P-18 [26, 89] or Belarus’ Vostok-D [90]), to no
movement (permanent radar installations [16, 17]). Sensors that move after initial
deployment introduce the complication that instantaneous coverage is not enough to
measure their utility. It would also be advantageous for these various systems to be
used together and so finding the correct sensor mix is another important challenge.

When coverage has been used as an objective, it usually refers to blanket cov-
erage (as opposed to barrier or sweep [14]). Barrier coverage may be trivial as the
required length is either covered, or not. Sweep coverage allows more area to be
covered over time than would be possible if the sensors were stationary; however,
measuring the effectiveness of this type of coverage remains a challenge. This is
related to the difficulty of evaluating the performance of multiple types of sensors
working together. Moving sensors such as satellites and AWACS provide sweep
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coverage while stationary sensors provide blanket coverage, adding an extra layer
of complexity to their evaluation as parts of a system of systems.

Multiple conflicting objectives are dealt in one of three ways: the first method is
to assign weights to each objective [34, 36, 37]; the second is to treat one or more
objectives as constraints [29, 32, 33, 40, 86]; and the third is to perform a
multi-objective optimization resulting in a Pareto front [5, 30, 31, 35]. The first two
methods are related, as a constraint is equivalent to an objective with an arbitrarily
large weight. No single method is ideal: weights attempt to rate the importance of
each objective based on subjective individual preferences, and a Pareto front rep-
resents a large number of potential solutions from which to choose. A suggested
course of action for future work is to first create the Pareto front and then examine
the solutions using a multi-criteria decision tool [91].

Albeit currently at an infancy level, the convergence of MANETs and WSNs are
instrumental in further development of new opportunities within Internet of Things
(IoT) applications [92] where both technologies can be integrated for monitoring,
public safety, surveillance and security applications. Ubiquitous sensing and the
fast collection of data (supported by MANET and WSN) combined with compu-
tational intelligence could improve sensor network design.

Furthermore, as MANETs and WSNs merge with FSNs and IoT, many new
challenges will arise including managing and processing this large amount of data.
There will be big data analytics challenges where existing data processing methods
do not apply. The shift towards big data in military ISR will require finding new
methodologies capable of removing redundant information while extracting and
processing essential data. The application of sophisticated new CI algorithms will
be required.

Therefore, the synergy of IoT and big data technologies could offer an unpar-
alleled opportunity towards using data driven discovery for military SA. The
amount of data available from multiple sources of information could be used to
predict and prevent natural disasters, potential dangers and threats, contributing to a
safer future [93]. Therefore, leveraging CI methods within IoT and big data ini-
tiatives should be a focus for future military ISR applications [94, 95].
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Sensor Resource Management: Intelligent
Multi-objective Modularized Optimization
Methodology and Models

Boris Kovalerchuk and Leonid Perlovsky

Abstract The importance of the optimal Sensor Resource Management
(SRM) problem is growing. The number of Radar, EO/IR, Overhead Persistent
InfraRed (OPIR), and other sensors with best capabilities, is limited in the stressing
tasking environment relative to sensing needs. Sensor assets differ significantly in
number, location, and capability over time. To determine on which object a sensor
should collect measurements during the next observation period k, the known
algorithms favor the object with the expected measurements that would result in the
largest gain in relative information. We propose a new tasking paradigm OPTIMA
for sensors that goes beyond information gain. It includes Sensor Resource Ana-
lyzer, and the Sensor Tasking Algorithm (Tasker). The Tasker maintains timing
constraints, resolution, and geometric differences between sensors, relative to the
tasking requirements on track quality and the measurements of object characteri-
zation quality. The Tasker does this using the computational intelligence approach
of multi-objective optimization, which involves evolutionary methods.

Keywords Sensor resource management (SRM) ⋅ Multi-objective optimization ⋅
Adaptive models ⋅ Integer linear programming ⋅ Evolutional computing ⋅
Dynamic logic ⋅ Optimization under uncertainty

1 Introduction

The configurations of sensor platforms can include dozens of global radars and
EO/IR sensors (ship-based, sea-based, ground-based, space-based, and air-based)
and thousands of local sensors with different bands and capabilities. The challenge
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and opportunity of the Sensor Resource Management (SRM) is related to a large
difference in resolutions, errors and uncertainties of the sensors. There are situations
where none of the sensors individually can improve certainty/resolution of the
object to the required level. However, it is possible with assigning a pair of sensors
with optimal lines of sights to the object. For instance, the range resolution of radars
could be about 1 cm, but angular resolution could be only 1 km, thus two
orthogonal radars could increase resolution significantly.

This leads to the tasks to optimize sensor resource use across assets in real time
under the operational constraints of each sensor type, and to use for planning.
Among the common SRM goals are: maximizing available sensor resources for
search, optimizing sensor resources for tracking, and, better defending the high
priority assets in a raid environment.

The SRM goals often contradict each other. Consider typical goals: (i) decreas-
ing the overall sensor resource utilization, (ii) increasing the probability that all
threat objects in a raid are tracked, and (iii) decreasing potential overload of sensors
at individual platforms/units. The chances that all these goals will not contradict
each other and all will be satisfied by a particular solution (assignment of sensors)
are low. This consideration leads to the necessity of multi-objective optimization
approach, which is pursued in this work using the computational intelligence
approach.

It is possible that the most resource utilization is a full 100 % load of N sensors at
unit A without any room for handling more areas of interests and objects, while
only 10 % of N sensors at the unit B are used. A more even use/allocation/tasking of
sensors at units A and B, that decreases potential overload of sensors, may require
more sensors, say 60 % at unit A and 60 % at unit B used at time t. In the first
scenario (100:10) at some moment unit A may have not enough sensors to defend
itself not only to track objects of interest, while in the second scenario (60:60) there
is a plenty room for extra load, but more sensors are used. This is another reason for
multi-objective optimization.

There is extensive literature on sensor resource management [3, 5, 8, 9, 11–13,
18–22, 25, 26, 32, 33, 35, 39].

Information gain is one of most actively used approaches in SRM. The relative
information gain is a scalar measure between the prior and posterior probability
density functions p(xk|z1:k−1) and p(xk|z1:k) based on the Renyi o-divergence [12]

Dαðz1: kjjz1: k− 1Þ=
1

α− 1
log ∫

pðxkjz1: kÞ
pðxkjz1: k− 1Þ

� �α
pðxkjz1: k− 1Þdxk

To determine on which object a sensor should collect measurements during the
next observation period k the algorithm in [21] adopts the strategy from [12, 23]
that favors the object whose expected measurements would result in the largest gain
in relative information:
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μv = argmaxvðabΔμv
k Þ

where

abΔμv
k =

Z
pðzμvk jzv1: k − 1ÞDαðzμvk , zv1: k− 1jjzv1: k − 1Þdzμvk

is the expected local information.
This formulation that selects the object with the largest gain in relative infor-

mation has an important weakness of locality: it computes the increase of certainty
of the measurement (at time k) of a given object A by applying itself to a single
sensor S relative to the certainty of measurement at time k−1 recorded in the system
track [18].

We may have a situation where none of the sensors individually will improve
certainty/resolution of object to the required level as shown in Fig. 1a, b. However,
reaching the required certainty is possible with assigning a pair of sensors (radars)
with Lines of Sights (LOS) to the object that are close to be orthogonal as Fig. 1c
shows. In Fig. 1 the blue ellipse shows the original uncertainty of the location of the
object at time k-1. The ellipses of uncertainty of the radars R1 and R2 are narrow
ellipses that have a long intersections with the blue ellipse of the original uncer-
tainty of the object location as shown in Fig. 1a, b. Figure 1c shows that the area of
uncertainty due to overlap of uncertainty areas for R1 and R2 is much smaller with
dramatic information gain. Note that individually both radars R1 and R2 equally
improve relative information gain used in [21].

The proposed approach goes beyond the state of the art described in [21]
including the powerful idea of learning the parameter a in Renyi o-divergence. It
also overcomes a potential conflict between assignments of the sensors to the
objects in the independent assignment of “best” sensors for each object. In the
independent sensor assignment a particular sensor can get conflicting “best”
assignments to two or more objects that are at different locations that the sensor
cannot cover at the same time.

R1

R
2

R
1

R
2

(a) (b) (c)

Fig. 1 Information gain with allocation of single radar versus allocation of two radars to the
object
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In the information gain SRM formulation [21], the state estimation and SRM are
tightly coupled. This leads to the complex models and computational challenges. In
addition it is difficult to change one of the components in a tightly coupled for-
mulation. For instance, it is difficult to add more optimization criteria beyond the
information gain and to incorporate the effect of a new interaction between the
sensors. In general the progress in tracking, discrimination, fusion, and SRM
technologies is not synchronous. Therefore the tightly coupled formulation makes it
difficult to integrate these technologies into a more advanced system. Therefore we
consider the state estimation itself as an external, but connected task to the SRM.

The proposed new sensor tasking system OPTIMA includes a Sensor Resource
Analyzer and the Sensor Tasking models and algorithms (Tasker).

The requirements for the SRM solution are:

1. Minimize the number of sensors for a given coverage, and maximize the
effectiveness of each sensor given its performance and resource constraints.

2. Provide dynamic tasking of sensors where multiple sensors cooperate in search,
detection, tracking, and identification.

3. Maximize the probability of successfully covering all threat objects.

The fusion center can provide requirements for SRM: desired resolution, angle,
band, level of decrease of uncertainties in object characterization, and others. The
challenge is that requirements (1)–(3) likely contradict each other which requires
using a multi-objective optimization approach. The types of questions that the
Sensor Resource Analyzer of the OPTIMA system intends to answer are:

• Will particular configuration C of platforms provide the full coverage of some
areas of interests A with the required capabilities R for tracking and
discrimination?

• What is a minimal configuration C of platforms to provide the full coverage of
some areas of interests A with the required capabilities R for tracking and
discrimination?

• What part of the areas of interest A will not be covered at required capabilities
R for tracking and discrimination if configuration C of platforms will be used?

Sensor coverage can be degraded due to multiple reasons at any time. Natural
environments, engagement conditions, and high noise background can impact
radars and EO/IR sensors. As a result, degradation can take multiple forms: inad-
equate signal to noise ratio, degraded specific range cells and azimuthal directions
in the Field of View (FoV), too much energy on the focal plane of IR sensor,
aspects of degradations compensated by the sensor itself.

Reconstructing the scene degradation from this varying information is a chal-
lenge. As a result inadequate input information can corrupt tracking and discrim-
ination of objects. Information collected from widely distributed sensors can be
used to determine areas where and how sensor coverage is degraded to allocate
alternate resources to compensate. While individual sensors (EO/IR, Radar) can
generally determine when a particular portion of the scene is degraded, the chal-
lenge is in an effective use of this information for efficient sensor tasking. We
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consider tasking sensors in the degraded environment as a generalization of the
sensor resource management (SRM) task for a degraded environment. This means
that input data messages to the SRM describe not only normal, but also degraded
sensor capabilities and the degraded environment.

This paper is organized as follows. Section 2 presents the SRM optimization
models. Section 3 presents translation of tracking and discrimination requirements
into flags and solution of optimization models using Computational Intelligence
techniques. The paper concludes with the description of the related and future work.

As this paper structure shows, it is focused on the conceptual development of
methodology and models. The experimental studies are a subject of a separate work
based on the domain specific extensive input sensor data. Typically these specific
data are outside of scope of other domains. This paper is for a wider audience at
general methodological level. There is also an extensive computational aspect of the
methodology that we address as a separate work.

1.1 OPTIMA System Architecture with Computational
Intelligence Solution

This work proposes a new sensor tasking method for both long-time planning and
for real-time SRM based on Intelligent Multi-objective Modularized Optimization
Model. The SRM system OPTIMA and its context are illustrated in Fig. 2.
The OPTIMA maintains timing constraints, resolution and geometric differences
between the sensors relative to the tasking requirements on track quality and the
measurements of object characterization quality. The solution is based on the
computational intelligence approach that involves evolutionary methods, dynamic
logic, and multi-objective optimization. The system design allows a user to select
the version of an objective function of the minimal configuration such as minimal
number of platforms, minimal cost/value/capabilities of sensor platforms. In the
version of the model presented below, it is assumed that all motions of sensor
platforms are known, as well as the capabilities (possible degraded), and status of
the sensors onboard the platforms.

The OPTIMA Model involves:

• multiple sensors of different types and with varying capabilities.
• sensor locations with respect to the object complex,
• timing constraints
• requirements for track quality, and
• requirements for object measurements characterization (discrimination) quality

Tracking and discrimination may require different sensors and these
multi-objective requirements can change dynamically [1]. Thus the model is
updated with such new input, and the new output is produced (see Fig. 2).
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The uniqueness of this approach is in the use of intelligent multi-objective
optimization of SRM Model with adaptable Integer Linear Programming
(ILP) models, Cramer-Rao Bounds (CRBs) and algorithms accounting for the
association part of tracking and fusion problem. These CRBs able to evaluate object
characterization (classification features) and therefore object values. Another
uniqueness of the approach is in using flags within SRM, which encompass all the
information external to the main goals/task (such as information from tracking
algorithms). These flags are readily computed from available information or
information adaptively estimated in real time. These benefits surpass existing state
of the art and permit more accurate overall sensor coordination.

1.2 Modularized Design

This work follows the modularized design paradigm where tracking, discrimina-
tion, fusion, and SRM as separate, but communicating modules to allow the SRM
algorithm to work when tracking, discrimination and fusion algorithms are
changed/upgraded.

To implement the modularized design, we build a set of integer linear pro-
gramming (ILP) models described below with both continuous and binary variables
that extensively use the concept of the flags. One of the flags is a binary flag,
f(ai,sj,t,r). If sensor sj is capable of covering/observing area of interest ai at the time
interval t with the required resolution r, then f(ai,sj,t,r) = 1, else f(a,s,t,r) = 0.
Another flag is a stochastic flag, which is a probability that sensor sj is capable of
covering/observing area of interest ai at the time interval t with the required reso-
lution r. Flags serve as a mechanism to link tracking, discrimination, fusion mod-
ules, models and algorithms with SRM optimization models and algorithms.

The advantage of this approach is that it allows separating: (i) rigorous formu-
lation of the SRM optimization models (objective functions and constraints),
(ii) multi-objective models that combine them, and (iii) feasible and fast compu-
tations for solving these models.

The OPTIMA system model tasking sensors in the both normal and degraded
environment that is input data messages represent not only normal, but also
degraded sensor capabilities and degraded performance, and environment

Sensor Resource Tasker 
Tracking and 
Discrimination 
Fusion Center        

Tasked sensors

Tasking 
Requirements

data

Sensor Resource Analyzer 

SRM

Fig. 2 Context of sensor
resource management
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description. For instance, instead of entering to the SRM systems the normal res-
olution r of the sensor S another value r-Δ is entered. Such generalization means
that a set of additional input module/modules with appropriate algorithms need to
be developed to generate degradations Δ. Such a module is shown in Fig. 3 as a
block with a red frame. Figure 3 shows also the whole modularized architecture of
the OPTIMA system.

This architecture assumes two types of algorithms: (A1) optimal sensor
assignment for reducing sensor resource utilization using estimated (A2) adaptive
algorithm for working with the first algorithm to support input of sensor metadata
including sensor “health” data, tracking, track correlation data, and data fusion data.
The first algorithm exploits sensor geometry including a possibility that two sensors
observing the same object (at approximately orthogonal geometry) could produce
more accurate results in a shorter time.

The algorithm of the first type solves the problem of optimal sensor assignment.
The algorithm of the second type provides the input data for the first one allowing
the use of tracking and fusion algorithms that are at the level of the Cramer-Rao
Bound (CRB), which sets up the best possible performance accounting for the
associations between sensors, objects, and tracks [28]. These algorithms exploit a
novel technique [27] developed for air-ground radars. In the case of the degraded

Multi-objective 
Optimization                 .
Module  

Input module
(reconstructed 
operation space)

Input/flags computation 
Module for normal and 
degraded environment

External algorithms for
tracking, track correlation,
discrimination and searchDoctrine,

requirements

Single-objective 
optimization
modules  Single-objective 

optimization
modules  Single-objective 

optimization
module  

Algorithm A1 Algorithm A2

Input data, flags

Output module

Pareto vector optimal solutions for planning analyses
and scalarized Pareto vector for real time use 

Fig. 3 Modularized architecture of the SRM OPTIMA system with operation space
characterization
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environment the CRB is computed for the degraded sensor environment by using
the appropriate sensor models in CRB computation.

This architecture combines the mathematical techniques (multi-objective opti-
mization with the analysis of the Pareto border, Integer Liner Programming,
Adaptive methods) and physical considerations (sensor phenomenology and
geometry of locations relative to objects). It allows the addressing of contradictory
requirements that cannot be addressed by the classical optimization methods
without setting up a tradeoff between them in advance. However in the dynamic
environment the tradeoff must be dynamic as well. Thus the optimization algorithm
must adapt to such a dynamic environment in real time, and this is proposed in this
paper via dynamic updates of input data, looping optimization cycles, and the
flexible selection of objective functions.

The main mathematical advantage of this architecture in comparison with the
state of the art is that it decouples tracking and track estimation algorithms/filters
from the optimization and environment estimation. The other advantages of a new
architecture are that it allows:

1. a variety of external tracking and discrimination algorithms by computing
“flags” representing external algorithms,

2. multiple optimization criteria by selecting/changing modules adapting for a
particular scenario,

3. multiple tradeoffs between multiplicity of optimization criteria in multi-objective
setting providing a mathematically rigorous solutions.

These advantages make this modular architecture more adaptable and universal
than other architectures, which is important for practical applications.

The important aspect of modularized design is that it computes flags (parameters
of optimization models) outside of the optimization module and outside of tracking
module as well. This is a buffer idea that has been very successful in many other
areas including computer architecture design with cache memory as a buffer
between the primary memory and CPU. Another example is separation/decoupling
data from computational modules by database management systems. A user can
change/fix the computational module without changing database (DB). Similar
separation was made between a Knowledge Base (KB) and Computational modules
(Reasoning Engines) in Artificial Intelligence.

The modular architecture separates the operation space characterization from
both types of computations: sensor tasking optimization and object tracking and
discrimination. Another advantage of this separation is clearer mathematical for-
mulation of the SRM as an optimization task and use of the powerful techniques
developed in this mathematical area for decades.

Many other popular SRM approaches are tightly integrated with Information
Gain (IG) maximization that gives this single criterion dominance over the other
criteria. Such monocentric approach has fundamental weaknesses. Maximization of
the IG can contradict to minimization of the number of sensors and to the need to
provide relatively even load to different sensors.
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The new approach is free from tight integration while allowing using informa-
tion gain approach too. Information gain criterion is very sensitive to the accuracy
of estimates of probability distributions such as covariance matrixes, accuracy of
tracking data association/correlation and so on. The proposed approach is free from
such unrealistic assumption too.

1.3 Computational Intelligence Methodologies

Biologically-inspired computational intelligence approaches are promising for
SRM modeling. One of the biological inspirations is coming from similarity
between ultimate goals of SRM and the foraging/hunting models in mathematical
ecology that have natural analogy with “hunting” targets. Foraging had already
thousands of years evolution time that it much longer than SRM evolution.

Especially interesting here are the tradeoffs between time and gain observed in
the natural foraging systems, and the respective models and objective functions that
combine them. In one of the models [36, 38] the predator attempts to maximize E/
(h + s), where s is the search time involved. For a range of prey, the predators
average intake rate is

Eaverage ̸ haverage + saverage
� �

,

where Eaverage is the average energy of all prey items in the diet, haverage is the
average handling time and saverage is the average search time.

In terms of SRM models the energy E is in line with a class of gain functions.
The most interesting part of E is the tradeoff between handling time and search
time. The weak part of many bio-inspired methods that they do not go further than
shallow inspiration ending up with algorithms with little interpretation of tradeoffs
borrowed from other fields like formula Eaverage/(haverage + saverage) above.

Beyond the weakness of justification of the optimization criteria, the search of
the optimal solution is also highly heuristic in bio-inspired algorithms. Therefore
we focus on the mathematically rigorous solution as a benchmark for the heuristic
solutions that may have some benefits of faster computations and simplicity.

The key idea of the proposed approach is to combine computational intelligence
techniques (multi-objective optimization based on the Pareto border, Integer Liner
Programming under uncertainty, and Adaptive Learning methods) with physical
considerations (sensor phenomenology and geometry of locations relative to
targets).

The Computational Intelligence methodologies that are applicable to solve the
SRM OPTIMA models are evolutionary computing methods including adaptive
multi-objective optimization that exploit genetic algorithms, colony optimization,
particle swarm optimization, interval, stochastic and fuzzy optimization, and
adaptive dynamic logic of phenomena. A multi-objective evolutionary approach
helps: (1) to speed up funding the Pareto border points, and (2) to explore found
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Pareto points for identifying the “best” ones. Genetic Algorithms (GA) for (1) and
(2) use different fitness functions or different parameters of the same function.
These computational issues are a topic of the separate work.

Contradictory goals of the SRM represented by multiple objective functions
cannot be reached by the classical optimization without setting up a tradeoff
between them and/or constrains in advance. However in the dynamic environment
the tradeoff must be dynamic as well. Thus the optimization algorithm must learn
and adapt to such dynamic environment in real time. This is challenging task with
the growing number of assets, closely spaced objects and real time constrains for
the algorithm. The main idea of the approach is borrowed from nature—the
modularized optimization. Such bio-inspired approach mimics a cooperative team
hunting/foraging in nature with the abilities of dynamic learning, adapting, and
self-tasking.

The existing models in mathematical ecology [24] such as Optimal Foraging
Theory (OFT) and its Digestive Rate Model (DRM) of foraging that are now linked
to the cumulative prospect theory (Tversky, Kahneman, Nobel Prize 2002) of
human decision making under uncertainty are valuable sources of novel ideas to
improve the SRM models under conflicting objective functions. In particular, OFT
and DRM deal with optimizing the tradeoff between foraging times.

The OPTIMA architecture assumes two types of algorithms:

• Algorithms (A1) that provide optimal sensor assignment (including deliberately
reduced sensor utilization to be able to sensor more objects later) using esti-
mated performance including degraded one and

• Algorithms (A2) that support input of sensor data and metadata to A1 including
sensor “health” data, tracking, track correlation data, and data fusion data.

The first class of algorithms exploits sensor geometry including a possibility that
two sensors observing the same object (at approximately orthogonal geometry) can
produce more accurate results in a shorter time. The algorithm of the first type
solves the problem of optimal sensor assignment. The algorithm of the second type
provides the input data for the first one, allowing the use of tracking and fusion
algorithms that are at the level of the Cramer-Rao Bound (CRB) which sets up the
best possible performance accounting for associations between sensors, objects, and
tracks [28]. These algorithms exploit a novel computational intelligence technique
[27] developed for air-ground radars, which have not been applied to the degraded
scenarios.

The proposed SRM methodology for sensor planning includes:

• simulating different input data/scenarios (including different locations of assets
and levels of degradation of sensors),

• analyzing values of all objective functions of interest for the best Pareto
solutions.

Pareto solutions can be very different, e.g., with maximization of objective
functions F1 and F2 the Pareto border may include pairs of their values (0.9, 03) and
(08, 04). In summary the approach consists of: (1) Intelligent SRM models and
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algorithms, (2) Translation of tracking and discrimination requirements to flags for
sensors in the SRM model, (3) the SRM model and algorithm for paired sensors.

1.4 Notation

Below we introduce the notations:

• T is a track.
• G is a object.
• UT is a track ambiguity descriptor (message) at time t in the form of a model

UT (t) = ⟨AT, ΩT⟩, where AT is a set of ambiguity characteristics of the track T
and ΩT is a set of relations on AT at time t.

• UG(t) is a object ambiguity descriptor (message) of the object G at time t in the
form of a model UG = ⟨AG, ΩG⟩, where AG is a set of ambiguity characteristics
of the object G and ΩG is a set of relations on AG at time t.

• The triple E(t) = ⟨UT(t), UG(t), C(t)⟩ is called a sensing environment at time t,
where C(t) is a sensor model (a set characteristics of the sensors C such as
locations, orientations, FOV, resolution, and others).

• M(E(t)) is a vector of measures of environment degradation E(t).
• V(CK) is an environment operator (algorithm) that produces a new environ-

ment EK(t), V(CK) = EK.
• K(E(t) is a tasking operator for sensors (algorithm) at environment E(t), that is

K assigns a new set of characteristics to the sensors CK (sensor model). In these
mathematical terms we need to design a tasking operator K to decrease the
environment degradation, that is M(E(t)) > M(EK(t + 1)). Below the design of
such an operator is provided via a set of single-objective Integer Linear Pro-
gramming (ILP) models and multi-objective optimization models on the top of
ILP models as outlined in Fig. 1.

• {a}j is a set of Areas of Interests (AOI) that sensor sj can observe at time interval
t. Each area of interest may contain an Object Complex (TC). For a
search/scanning sensor only the area can be known, for a tracking sensor an
object complex can be known. aij ∈{a}j is a marked area of interest in {a}j.
Only one area is marked for each sensor. This marking can have different
interpretations depending on the version of sensor tasking. The examples of
interpretations of marked areas are: (1) a marked area a1j is the main focus area
of sensor sj that is assigned by the requirements and tasking objectives, (2) a
marked area a2j is an area that has the best viewing geometry from sj, (3) a
marked area a3j is an area that has the best resolution from sj at time interval t,
(4) a marked area a4j is an area that has the worst resolution from sj at time
interval t.

• r is a resolution of the sensor. Cramer-Rao Bound (CRB) is one of the ways to
assign value to r, because CRB is the error of localization and tracking of an
object with the given sensor. CRB gives the best possibly achievable resolution.
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Also CRB is useful for assigning resolution to discriminate RV and decoy. CRB
can include coordinates and velocities, and in addition, classification features
related to the classification/discrimination probability.

• v is a Field of View (FOV) of a sensor at a particular time.
• f(ai,sj,t,r) is a binary flag, f(ai,sj,t,r) = 1, if sensor sj is capable of

covering/observing area of interest ai at the time interval t with the required
resolution r, else f(a,s,t,r) = 0.

• fs(ai,sj,t,r) is a stochastic flag, f(ai,sj,t,r) ∈[0,1]. It is a probability that sensor sj is
capable of covering/observing the area of interest ai at the time interval t with
the required resolution r.

• p(sj,t,v) is a time to point sensor sj to get FOV v by time t. This requires
changing its line of sight (LOS).

• f*(ai,sj,t,r,v) is a binary flag, f*(ai,sj,t,r,v) = 1, if f(ai,sj,t,r) = 1 and ai is a marked
area aij of sensor sj at the time interval t within FOV v, else f*(ai,sj,t,r,v) = 0. In
other words, If sensor sj observes several AOIs within FOV v then only the
marked AOI will get flag f*(ai,sj,t,r,v) = 1, other AOI ak within the same FOV v
of sensor sj will get f*(ak,sj,t,r,v) = 0. This flag will be used in the optimization
task formulation to minimize the number and cost of the required sensors.

• f*s(ai,sj,t,r,v) is a stochastic flag (probability), f*s(ai,sj,t,r,v) = fs(ai,s,t,r) if and ai
is a marked area aij of sensor sj at the time interval t within FOV v, else f*(ai,sj,t,
r,v) = 0.

• {s}i is a set of sensors that can observe AOI ai at time interval t.
• sij ∈{s}i is a marked sensor in {s}. More than one sensor can be marked for each

area. This sensor can have different interpretations depending on a version of the
sensor tasking interest. The examples of interpretations of marked sensors are:
(1) sensors sj that are assigned to AOI ai by the requirements and tasking
objectives, (2) sensors that have the best viewing geometry to AOI ai, (3) sen-
sors that have the best resolution of AOI ai at time interval t, (4) sensors that
have the worst resolution from sj at time interval t, (5) Aegis radars, and others.

• {gl(sj)} is a set of binary flags, gk(sj) = 1 indicates that sensor sj is of
type/category gk, else gk(sj) = 0. The tasking requirements may include specific
types of sensors, e.g., g1(sj) = 1 can indicate that sj is a staring sensor, g2(sj) = 1
indicates that sj is a scanning sensor (or scanning mode of the sensor), and
g3(sj) = 1 indicates that sj is a sensor on a specific platform.

• {hk(sj,sq)} is a set of binary flags, hk(sj,sq) = 1 indicates that sensors sj and sq
have a specific relationship, e.g., h1(sj,sq) = 1 can indicate that the angle
between their LOSs at time t is in the interval [750,1050] that is close to
orthogonality.

• xijt is a binary variable, xijt = 1 indicates that sensor sj is tasked to observe area
ai for the time interval t, else xijt = 0. Finding values of xijt is the goal of optimal
sensor tasking.

• {cj} is a set of objective function coefficients. The interpretation of these coef-
ficients depends on the specification of the sensor tasking objectives. The
examples of interpretation of {cj} are: (1) costs of the sensors {sj} and their
platforms (2) pointing time, (4) errors of sensors (e.g., covariance matrixes of
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LOS), (5) capability characteristics of sensors such as resolution or sensitivity of
the sensors (6) information gain that the sensors add relative to the current
knowledge of the object complexes, and others.

Coefficients of types (1)–(4) lead to minimization models (min of number of
sensors, min of cost, min of pointing time, min of errors). Coefficients of types
(5)–(6) lead to maximization models (max of capabilities, max of information gain).
In essence we have two opposite categories of objective functions: cost (1–4) and
gain (5–6) with wide interpretations of costs and gains. It is not required to interpret
them literally. The multi-objective approach will allow seeing the optimal value of
each objective function in the context of the values of other objective functions
before a tradeoff between objective functions is made. In contrast the popular
weighting approach combines such objective functions into their weighted sum “in
the dark” without such analysis.

The Pareto multi-objective SRM model that combines models with these
objective functions allows the analysis of the optimal value of each objective
function, in the context of the values of other objective functions, before a tradeoff
between objective functions is made. In contrast, the popular weighting approach
combines objective functions into their weighted sum “in the dark” without such an
analysis. The detailed elaboration of the multi-objective SRM model is a topic of a
separate paper.

1.5 ILP Models for Time T

Consider optimization objective functions for a fixed time:

ext ∑
n

i=1
∑
m

j=1
cj ⋅ f * ai, sj, t, r, v

� �
⋅ xijt

where ext (extremum) stands for max or min with the constraints presented below.
Coverage constraints (all areas of interest {ai} must be covered at least by one

sensor):

∑
m

j=1
f ðai, sj, t, rÞ ⋅ xijt ≥ 1, i=1, 2, . . . ,N

Constrains (all variables that assign sensors to areas at time t must be binary;
sensor either assigned or not to the AOI):

xijt ∈ 0, 1f g, i=1, 2, . . . ,N; j=1, 2, . . . ,M

Sensor types constraints (sensors of all required types g1, g2, …, gK must be
used):
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∑
j: gk sjð Þ=1

xijt ≥ 1, i=1, 2, . . . ,N, k=1, 2, . . . ,K

Sensor relationship constraints (sensors with all required relations h1, h2, …, hL
must be used in required quantities Hil for each AOI ai),

∑
j: hl sj, sqð Þ=1

xijt ≥Hil, i=1, 2, . . . ,N, l=1, 2, . . . ,L

If {cj} are the costs of observing all the areas ai with the object complexes, then
we use the first objective function and minimize the total cost of the observation
under constraints. This will provide the least expensive solution under constraints.
If costs of all sensors are considered to be equal then in fact this objective function
minimizes the total number of sensors. Similarly if {cj} are capabilities of the
sensors, then we minimize total capabilities under constraints.

If {cj} are information gains then we use the second objective function and
maximize the total information gain. Flags f *ðai, sj, t, r, vÞ in the objective function
allow to optimize the use of sensors for the situations when some individual sensors
observe several object complexes within a single FOV avoiding double counting
such sensors.

The coverage constraints require that at least one sensor will be tasked to
observe/cover each area ai with the required resolution of observation. The sensor
type constraints require that at least one sensor of each required type will be used.
These sensor type constraints can be generalized by substituting 1 on the right side
of the inequality with another required number of sensors of type gk.

The relationship constraints allow the incorporation into the optimization model
of multiple desired geometric relationships between the locations of sensors and
objects, such as orthogonality relative to the object. If there are no sufficient
resources to track each objects with two sensors, then we can choose which objects
require two sensors, and which will be tracked with one sensor. The models also
allow dedicating only a small amount of time of the second sensor for tracking the
same object, which significantly increases the resolution in terms of Cramer-Rao
Bounds (CRB) as a function of two parameters: time on object for a sensor from
platform 1, and time on object for a sensor from platform 2. This optimization
framework allows highly modular SRM where some set of modules is responsible
for computing all flags and updating them.

1.6 ILP Model for Larger Time Interval

The optimization model described above assumes a short time interval where all
flags do not change their values significantly. For the larger time intervals this
assumption is not true, the values of flags change dynamically within the larger time
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intervals. This leads to the model modification with additional summation for all
time moments from t = 1 to T:

Objective functions for a longer time interval:

ext ∑
T

t=1
∑
n

i=1
∑
m

j=1
cj ⋅ f * ai, sj, t, r, v

� �
⋅ xijt

with the constraints presented below. If {cj} are costs of observing all areas ai with
object complexes, then we use the first objective function and minimize the total
cost of observation under constraints. This provides the least expensive solution
under constraints. If costs of all sensors are considered to be equal, then in fact this
objective function minimizes the total number of sensors. Similarly if {cj} are
capabilities of the sensors, then we minimize the total capabilities under constraints.

If {cj} are information gains then we use the second objective function and
maximize the total information gain. Flags f *ðai, sj, t, r, vÞ in the objective function
allow optimizing the use of sensors for the situations when some individual sensors
observe several object complexes within a single FOV avoiding double counting
such sensors.

Coverage constraints (all areas of interest {ai} must be covered at least by one
sensor):

∑
m

j=1
f ðai, sj, t, rÞ ⋅ xijt ≥ 1, i=1, 2, . . . ,N, t=1.2, . . . ,T

Binary constrains (all variables that assign sensors to areas at time t must be
binary; sensor either assigned or not to the AOI):

xijt ∈ 0, 1f g, i=1, 2, . . . ,N; j=1, 2, . . . ,M, t=1.2, . . . , T

Sensor types constraints (sensors of all required types g1, g2, …, gK must be
used):

∑
j: gk sjð Þ=1

xijt ≥ 1, i=1, 2, . . . ,N, k=1, 2, . . . ,K, t=1.2, . . . , T

Sensor relationship constraints (sensors with all required relations h1, h2, …, hL
must be used in required quantities Hil for each AOI ai),

∑
j: hl sj, sqð Þ=1

xijt ≥Hil, i=1, 2, . . . ,N, l=1, 2, . . . ,L, t=1, . . . ,T

The coverage constraints require that at least one sensor will be tasked to
observe/cover each area ai, with the required resolution of observation. The sensor
type constraints require that at least one sensor of each required type will be used.
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These sensor type constraints can be generalized by substituting 1 on the right side
of the inequality by another required number of sensors of type gk.

The relationship constraints allow incorporating into the optimization model the
multiple desired geometric relationships between the locations of the sensors and
the objects, such as orthogonality. If there are no sufficient resources to track each
of the objects with two radars, then the algorithm selects objects requiring two
sensors, using attained accuracy and object classifications. The model also allows
dedicating only a small amount of time of the second radar for tracking the same
object, which will also significantly increase track resolution and object charac-
terization. This optimization framework allows the highly modular SRM using
modules that compute flags.

1.7 Stochastic ILP Model for Larger Time Interval

The optimization models described above assume deterministic flags in the
objective functions. Below we present stochastic versions of the objective function
that can explicitly capture uncertainty of the operation space situation. It requires
changing deterministic flags f* to stochastic flags f*s in the objective functions and
constraints:

ext ∑
T

t=1
∑
N

i=1
∑
M

j=1
cj ⋅ f *s ðai, sj, t, r, vÞ ⋅ xijt

with the constraints presented below.
Coverage constraints (all areas of interest {ai} must be covered with confidence

Fi or greater:

∑
m

j=1
f *s ai, sj, t, r, v
� �

⋅ xijt ≥Fi, i=1, 2, . . . ,N, t=1.2, . . . ,T

Binary constrains (all variables that assign sensors to areas at time t must be
binary; sensor either assigned to the AOI or not):

xijt ∈ 0, 1f g, i=1, 2, . . . ,N; j=1, 2, . . . ,M, t=1.2, . . . , T

Sensor relationship constraints (sensors with all required relations h1, h2, …, hL
must be used in required quantities Hil for each AOI ai),

∑
j: hl sj, sqð Þ=1

xijt ≥Hil,

i=1, 2, . . . ,N, l=1, 2, . . . ,L, t=1, . . . , T
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Sensor relationship constraints (sensors with all required relations h1, h2, …, hL
must be used):

∑
j: hl sj, sqð Þ=1

xijt ≥ 1, i=1, 2, . . . ,N, l=1, 2, . . . , L, t = 1, 2, . . . , T

1.8 Sensor Message Constructs and Operation Space
Reconstruction

The algorithm for sensor message constructs is as follows:

1. Select the sensor composition (e.g., two radars of one type, two radars of
another type, and a constellation of 12 EO/IR sensors).

2. Select a representative operation scenario with the sensors listed in (1) above.
Describe these sensors in terms of:

a. UT (track ambiguity descriptor/message) at time t in the form of a model
UT (t) = ⟨AT, ΩT⟩, where AT is a set of ambiguity characteristics of the track
T and ΩT is a set of relations on AT at time t;

b. UG(t) (object ambiguity descriptor/message) of the object G at time t in the
form of a model UG = ⟨AG, ΩG⟩, where AG is a set of ambiguity charac-
teristics of object G and ΩG is a set of relations on AG at time t;

c. E(t) = ⟨UT(t), UG(t), C(t)⟩ triple (sensing environment at time t), where C(t)
is a sensor model (a set characteristics of the sensors C such as locations,
orientations, FOV, resolution, “health”, and others);

d. M(E(t)) (vector of measures of environment degradation E(t));
e. V(CK) (environment operator/algorithm) that produces a new environment

EK(t), V(CK) = EK.

3. Describe the items listed in step 2 in the form of messages with a specific
format.

The example of the messages going to the sensing environment at time t, E
(t) = ⟨UT(t), UG(t), C(t)⟩ is a binary or numeric flag fEnergy, which is “too much
energy is on the focal plane”. It is accompanied by additional flags that indicate the
consequences of this degradation such as fSNR, which indicates the decreased SNR,
fdetection which indicates decreased detection sensitivity, frange which indicates that
the range is uncertain, fangle which indicates that the angle and pointing vector are is
uncertain.

In the notation section several flags have been introduced. These flags are used
to define sensor messages and are parts of the messages.

The binary flag f(ai,sj,t,r) indicates whether sensor sj is capable to cover/observe
area ai at the time interval t with the required resolution/capability r. This flag is
computed directly for each value of its variables: the identified areas ai, sensor sj,
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and required resolution/capability r at time t. LOS and FOV with their errors for
sensor sj at time t, location of the AOI ai are used to check if a required
resolution/capability can be reached. If the AOI ai contains a detected moving
object then the known dynamic properties of the trajectory of the object are used to
identify the next location of the AIO ai and to compute flag f for time t + 1. These
properties are derived from the external tracking, track correlation algorithms.
Similarly each sensor resolution relative to objects are derived, other capabilities
and their adequacy relative to required ones are computed.

The flag f*(ai,sj,t,r,v) is directly computed by the algorithm from f(ai,sj,t,r), when
an area a is marked for a sensor sj. The marking of the area is identified from
tasking requirements and tasking doctrine. Flags {gk(sj)} that indicate types of
sensors are computed from the database of specifications of sensors. Relations flags
are computed based on the definitions of the relations. In some cases all flags are
specified in advance. In other cases these flags are computed to achieve the required
resolution of the sensor system. This includes the Monte-Carlo Simulation and the
Cramer Rao Bounds (CRB). The CRBs are computed for each object and sensor, as
well as for each object and a pair of good and degraded sensors as required. If
required it is done by using tracking and fusion algorithms outlined below.

These flags can tell a story: ‘we were unable to track and/or characterize the
object without excess ambiguity’. This information is used to guide the SRM to find
a sensor which can view the object complex, from a less impacted viewing angle, or
in a wavelength that is less susceptible to the degrading agent in the SRM models.

1.9 SRM Model with Orthogonalization

Consider sensors S1, S2,…, Sn. Assume that for each sensor we know the sensor
model M which includes its location, orientation, and capabilities (FOV, resolution,
band, response time, and others). Thus we have models M(S1), M(S2),…,M(Sn).

Assume that there is no single sensor that provides the required resolution for the
area of interest ai. In this situation we search for a pair of sensors (Sk, Sm) that will
have the angle between their LOSs closer to 90° than any other pair of sensors when
pointed to the center of ai (See Fig. 4). In other words, we order all pairs of sensors
according to the dot products of vectors of LOSs and search for the OPIR sensors
with max of dot products,

Arg maxi= 1, n, k = 1: n LOS Sið Þ ⋅LOS Skð Þð Þ

After all these pairs of sensors are found for all areas of interests the algorithm
checks their consistency that is no sensor assigned to two or more areas. If such
inconsistency is found it is resolved by removing a conflicting sensor from the pair
with the least value of dot product and assign the best sensor to this pair that is not
used yet for any object. If the set of such sensors is empty then wait until the busy
sensor will be released from the area ai, or use the round robin method.
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If the center of the area ai is not known or this area is very large then the
algorithm searches a pair of sensors (Sk, Sm), which has “better” angles between
their possible LOSs relative to the several subareas within the area of ai, than any
other pair of sensors. The angles are “better” if they correspond to the largest sets of
points, LSP(Sk, Sm) in the subarea where the angle between LOS(Sk) and LOS (Sm)
is closer to 90o than for any other pair of sensors (“orthogonality” test).

This base algorithm can be enhanced to deal with the motion of platforms and
areas of interests. Specifically the subarea can be selected based on the tracking of
the object in the area ai as shown in Fig. 4. Tracking by nearly orthogonal sensors
such as radars and EO/IR brings significant accuracy improvement.

1.10 Multi-objective SRM Optimization

To resolve the contradictory goals such as decreasing the overall sensor resource
utilization, increasing the probability that all threat objects are tracked, and
decreasing potential overload of sensors at individual platforms/units the
multi-objective optimization approach is used.

The multi-objective optimization model is built on a set of Single-Objective
Tasks (SOT) as shown on Fig. 1. Let F1, F2,…,Fn are objective functions of
respective single-objective SRM tasks.

The optimal solution of SOT1 provides the value f1 of F1. We also can compute
values fi1 of F2, F3, …, Fn for this solution for SOT1. This produces a vector (f11,
f21, f31,…fn1). Similarly values fi and associated values fij are produced for all other
SOTi with objective functions Fi. Each of these vectors constitutes a vector solution.
The Pareto border is a set of all vector solutions that cannot be improved.

Consider an example with two vector solutions {(0.6; 0.2), (0.2; 0.8)} for two
objective functions, F1 and F2 that are maximized. Here the best solution relative to
objective function F1 is 0.6, but it is very weak (0.2) relative to F2. Similarly, the
best solution for the F2 is 0.8, but it is very weak (0.2) for F1. A solution (0.5; 0.5)

ai

S
k

S
m

S1

S
k

S
m

LSP(Sk,Sm)

Sensors with current LOSs Orthogonality test

Fig. 4 Orthogonality test for pairs of sensors
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may exist and be a good tradeoff between these two solutions. These vectors are a
part of the Pareto border.

The advantage of the Pareto approach is that we analyze a much wider set of
possible solutions than a set of “optimal” solutions provided by scalar cost func-
tions such as those based on information gain [18]. In essence, it is better to
introduce cost functions within the Pareto set than without it. The same Pareto
approach is used by us for discrimination, and for the combination of the tracking
and discrimination.

An innovative approach based on the analysis of T-norms [16] allows coming to
the optimal solution by combining several objective functions. To move from the
Pareto boundary to a trade-off solution, multiple fusion (aggregation) operators
have been proposed. The class of fusion operators used in fuzzy logic for the
membership functions is known as T-norms. T-norms can distort the Pareto order
property dissolving the important difference between the nodes [16]. For example,
suppose that W = {(0.0; 0.5), (0.2; 0.8), (0.6; 0.2)} then the best points (Pareto
points) are P = {(0.2; 0.8), (0.6; 0.2)}. First, we need to know that T-norms do not
contradict the Pareto optimum. In fact, a T-norm such as the popular-in-fuzzy-logic
min can add new ‘best” points that do not belong to the Pareto optimum.

Consider W = {(0.0;0.5), (0.2;0.8), (0.6;0.2), (1.0;0.8), (0.9;0.8)}. Here Pareto
optimum includes only (1.0; 0.8), but the T-norm as minimum gives also (0.9; 0.8)
as a best point which is wrong. Now we see how the lack of interpretability is
translated into a lower accuracy of the solution.

Setting up a trade-off preference relation H between alternative vectors (nodes)
in the Pareto set must be consistent with a meaningful preference of assigning a
sensor to objects. Unfortunately relation H rarely is known completely. Each
T-norm serves as a compact approximation of H. However a T-norm can be far
away from modeling H satisfactorily. It is desirable that T-norms preserve the strict
order for all pairs (x,y) that is

x, yð Þ< v, uð Þ⇒T x, yð Þ<T v, uð Þ.

However this is true only for some pairs, e.g.,

0.3; 0.5ð Þ< 0.4; 0.7ð Þ⇒min 0.3; 0.5ð Þ<min 0.4; 0.7ð Þ,

but it is not true for (0.3; 0.5) < (0.4; 0.7), where min(0.3; 0.5) = min(0.3; 0.7).
Thus, T-norms can distort the order dissolving the important difference between the
nodes.

We measure this distortion by introducing a Pareto set distortion factor k2 and
use the least distorted T-norms. Factor k2 computes a ratio of two numbers m and
h = r(r−1)/2: where m is the number of unequal pairs of nodes of the lattice that
have equal T-norm values and (2) h = r(r−1)/2 is the total number of different pairs
of nodes of lattice L that has r nodes. Next we use the quantified Pareto set
distortion factor k3 that is modified factor k2 to address the requirement (3) of
sufficient power of scale given by T-norm [16],
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k2 =
2m

rðr− 1Þ , k3 =
∑11

i=1
2
mi

� �

2
r

� �

where r is the same as for k2 and mi is the number of nodes in the ith subinterval of
the lattice L. The ith component of the sum in k3 gives the number of “glued” pair
nodes of the lattice in the subinterval i. Figure 5 shows lattice distortion factor k1 by
different T-norms. For speeding up computations of the Pareto border, we use the
theory of Monotone Boolean Functions [17]. The main idea of cutting the com-
putation time is finding the attributes that are relatively independent and as such
they can be processed relatively independently in parallel.

1.11 Degraded Sensors and Environment

Helping a degraded IR sensor with a single IR sensor. Figure 6 shows a case
when the first EOIR sensor is degraded and the second sensor can be used instead of
the first one. The second EOIR sensor has a better viewing geometry. However, the
first degraded EOIR sensor S1 cannot guide the second sensor S2 how to change its
FOV, because the first sensor has no range information to the object complex. It has
only 2-D directional information of the line of sight (LOS).

Consider a scenario where at time t the sensor S1 observes an Area of interests
(AOI) ai that contains an object complex. The 3-D center of the ai is already
identified. For instance, it can be done jointly by this sensor S1 and another sensor
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S2 that was available at time t. At the next time t + 1 sensor S1 is downgraded to the
level that another sensor S3 should substitute it to continue accurately tracking the
object complex in aj. The second sensor needs to scan the FOV of the first sensor to
find the Area of Interest (AOI) that contains the objects.

Algorithm outline:

Step 1: Search for a substitute sensor S3 that has the same or very similar capa-
bilities as s1 and similar geometry relative to the AOI aj. It is identified by
the thresholds on differences in distances and FOVs,

Capabð s1ð Þ≈Capab s3ð Þ, Dist s1, s3ð Þ<Tdistance, diffFOV s1, s3ð Þ<TdiffFOV

Step 2: If Step 1 did not find a sensor S3 that satisfy the requirements of Step 1
then the search is conducted under modified relaxed requirements. Sensor
S3 should satisfy only specific capabilities requirements such as resolution.
Let R1 be a resolution that sensor S1 provides for area aj. Another sensor
can be a more powerful sensor located further from aj than S1, but it still
can provide resolution R1,

Resolution S3, aj
� �

≥Resolution S1, aj
� �

=R1.

Additional requirements can be imposed on SNR and on differences in FOV:
diffFOV(S1,S3) < TdiffFOV. The dynamic adjusting requirements can be modeled in
accordance with the Dynamic logic process [15].

Helping degraded IR sensor by selecting two IR sensors. Consider a degraded
sensor S1 which needs to be substituted by other sensors, and there is no simple
solution; that is, there is no other sensor with very similar or better capabilities that
can be quickly reoriented to the same area as S1. The algorithm searches for a pair
of sensors (Sk, Sm) that are able to substitute sensor S1. The idea of the search
algorithm is to find (Sk, Sm) with Lines of Sight (LOS) closest to LOS of S1 within
90o limits.

S1 S2

Fig. 6 Situation with a better viewing geometry for the second sensor and lack of guidance from
the degraded first sensor on the location of the object complex
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∀Si ≠Sk, Si ≠Sm 90◦ ≥ LOS S1ð Þ−LOS Sið Þj jj j≥ LOS S1ð Þ−LOS Skð Þj jj j &

90◦ ≥ LOS S1ð Þ−LOS Sið Þj jj j≥ LOS S1ð Þ−LOS Smð Þj jj j

In other words we order all sensors according to the dot products of vectors of
LOS and search for the sensors with max of dot products,

Arg maxi= 2, n LOS S1ð Þ ⋅LOS Sið Þð Þ

In addition a pair of sensors (Sk, Sm) should have “better” angles between their
possible LOSs, relative to LOS(S1), than any other pair of sensors. The angles are
“better” if they correspond to the largest sets of points, LSP(Sk, Sm), on the LOS
(S1), where the angle between LOS(Sk) and LOS (Sm) is closer to 90o than for any
other pair of sensors (“orthogonality” test).

Now assume that sensor S1 is degraded partially, that is some of its information
is useful not only its LOS. We have already assumed that LOS of S1 carries useful
information, e.g., there are some object detections in its FOV with the given LOS.
This means that it makes sense to continue to observe the environment in the area
captured by FOV of S1. Let the additional uncorrupted information from S1 be the
Direction to the Cluster of Objects (DCT), that is we have vector DCT(S1) in
addition to LOS(S1). Now we can search for the pair of sensors (Sk, Sm) that have
the largest sets of points, LSP(Sk, Sm) on DCT(S1), not only on the LOS(S1). This
increases the accuracy of the information that (Sk, Sm) provides (see Fig. 7).

If we have an uncorrupted DCT(S1) only in the part of the FOV of S1, then a
solution based on DCT is used in this part of the FOV and the solution based on the
LOS(S1) is used in the corrupted part of FOV. In the case of multiple directions to
the Cluster of Objects for sensor S1 the optimal pairs of sensors are computed for
each direction.

Helping degraded radar by selecting two IRs. Now consider a situation when
S1 is a degraded radar, or a radar that observes a too-dense scene and sensors S2, S3
,…, Sn are EOIR sensors that can be used to help or substitute S1, depending on the

Sensors with current LOSs Orthogonality test

S1

Sk

Sm

S1

Sk

Sm

LSP(Sk,Sm)

Fig. 7 Orthogonality test in degraded environment
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level of degradation or complexity of the scene. Assume that radar gives 3-D
location L of the object with acceptable accuracy to point an EOIR sensor. The
algorithm searches for the EOIR sensor with the LOS that is most close to 90° to the
radar LOS, and closest to the location L to provide a better object resolution,

Arg mini= 2, n LOS S1ð Þ ⋅LOS Sið Þð Þ, Arg mini= 2, n L Tð Þ, L Sið Þð Þ.

For two IRs that we consider here the formulation is similar to Task 3.2 relative
to orthogonality of IRs.

Selecting two Radars to help degraded IR. Of the two radars, choose the one
the LOS of which is closest to 900 to the LOS of IR. If location of the object is too
uncertain (from IR data), divide the IR-LOS into two pieces, one—best for the radar
1, and part two—best for the radar 2.

The worst case is when a degraded sensor S1 does not provide any useful
information. In this case LOS (S1) is degraded too. This task is equivalent to a
general task of tasking n−1 sensors and has very little specifics relative to the
general sensor management task to be exploited efficiently. This task is out of the
scope of this paper.

2 Computational Intelligence Solution for SRM Model

2.1 Exact and Heuristic Algorithms

The proposed above ILP SRM models require efficient algorithms to solve them.
The classical Linear Programming models can be solved by the simplex method for
relatively large N and M. For instance, 15 OPIR sensors (N = 15) and 15 areas of
interests (M = 15) lead to 225 variables for each time interval t.

The proposed ILP SRM tasks are NP-hard problems that cannot be solved
exactly when the number of parameters is large. For smaller number of parameters
multiple computational methods solve it exactly [7]. Thus, depending of the size of
the SRM model and time constraints to solve it (planning or real-time tasking)
exact, approximate or heuristic methods are needed.

Multiple generic heuristics can solve the ILP SRM tasks: (1) Tabu search,
(2) Hill climbing, (3) Simulated annealing, (4) Reactive search optimization,
(5) Ant colony optimization, (6) Hopfield neural networks, (7) Genetic algorithms
and others. The last three classes of methods are effective Computational Intelli-
gence methods that have been successful in SRM [2, 10, 30, 31]

The development of a specialized algorithm is also advantageous for the SRM to
get a better performance by taking into account the specifics of the IL SRM models.
This includes using bio-inspired methodologies of Dynamic Logic [15, 27].

The exact algorithms to solve the SRM task include: (1) cutting plane methods
(solving the LP relaxation and adding linear constraints that drive the solution
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towards being integer without excluding any integer feasible points), (2) variants of
the branch and bound method (the branch and cut method combines both branch
and bound and cutting plane methods). The solutions of the LP relaxations give a
worst-case estimate of how far from optimality the returned solution is.

The relaxation method to solve this SRM task consists of converting this discrete
Linear Programming (LP) task to the LP task with continuous variables by sub-
stituting the binary constrains to the constraints where xijt are non-negative numbers
limited by 1 (discrete constraint relaxation),

0≤ xijt ≤ 1, i=1, 2, . . . ,N; j=1, 2, . . . ,M

This classical LP task can be solved by the simplex method for large N and M.
The next step is exploring the vicinities of vertices produced by the simplex
method. This exploration includes finding the feasible binary points in the vicinity,
computing the value of the objective function on them, and selecting the best ones.
The size of the vicinities and the number of simplex vertices to be explored can be
adjusted to minimize the computations.

A simple suboptimal version of this approach is to interpret non-integer com-
ponent of the solution, xijt as a confidence measures that sensor sj should be
assigned to the AOI ai at time t. If such a confidence measure xijt is, say, above 0.8
then we can use rounding of xijt to 1 to get an integer solution. While such use of
rounding is commonly criticized that it does not lead to the optimal solution, but its
deviation from the optimal non-integer solution can be estimated and a suboptimal
reasonable solution can be produced for large datasets using the classical LP
techniques.

2.2 Generalization of ILP SRM Models to Uncertain
Numbers

The natural generalization is coming from the fact that some coefficients and flags
are uncertain in ILP SRM models. This uncertainty can be modeled by defining
coefficients/flags as uncertain numbers given as: (1) intervals, (2) probability dis-
tributions, or (3) fuzzy sets. Respectively it leads to different classes of models and
algorithms of optimization under uncertainty: interval, stochastic, or fuzzy opti-
mization models and algorithms.

In the optimization under uncertainty the key issue is defining and justifying a
way to sum up uncertain numbers (summands in the ILP formulation). The defi-
nition of the sum depends on assumptions and goals. Below we consider three
categories them.
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Case 1: (classical interval math): All points in [a, b] interval are equally belong to
this interval. We are interested only in the low and upper limits of the sum:

a, b½ �+ c, d½ �= a+ c, b+ d½ �.

Case 2: (discrete pdf math): All discrete points are distributed in the [a, b]
interval, that is, for all x and y in [a, b], probabilities p(x) and p(y) are
given and independent from the discrete pdf on [c, d]. We are interested
in the distribution p(w) of sum points in the sum interval [a + c, b + d]
including most likely sums:

p wð Þ= ∑
x+ y=w

p½a, b�ðxÞp½c, d�ðyÞ for all x + y=w

Case 3: (fuzzy math): All points in [a, b] are given with fuzzy logic membership
function m[a,b](x) in [a, b] interval and all points in [c, d] are given with
fuzzy logic membership function m[c,d](x). We are interested in getting a
membership function of the sum points in [a + c, b + d] interval
including a most possible sum.

Zadeh [40] asserts that case 3 must be solved by applying his extension prin-
ciple, described in his 1965 paper, because fuzzy math is based on this principle:

m a, b½ �+ ½c, d� wð Þ=min max m½a, b� xð Þ, m½c, d� yð Þ� �

for all x, y such that x + y = w, where x and y are from [a,b] and [c,d], respectively.
The discussion at BISC in 2014 revealed disagreement on case 3 because the
reference to the extension principle is not sufficient to justify the minmax formula
above. This formula has a status of the hypothesis in general and in ILP SRM
models with uncertain numbers given my membership functions in particular. Our
approach for the case 3 is an adaptation of the case 2 [14].

2.3 Computation of Flags—Parameters of ILP Problem

Computing flags requires translating requirements for tracking in the form of track
accuracy and the uncertainty into the sensor capabilities in terms of the flags. The
similar translation is needed for the discrimination requirements. This translation
allows a user flexibility to use both measurement information and tacit expert
knowledge.

The binary flag f(ai,sj,t,r) indicates whether sensor sj is capable to cover/observe
area ai at the time interval t with required resolution/capability r. This flag is
computed directly for each value of its variables: the identified areas ai, sensor sj,
and required resolution/capability r at time t. LOS and FOV with their errors for
sensor sj at time t, location of the AOI ai are used to check if a required
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resolution/capability can be reached. If the AOI ai contains a detected moving
object then the known dynamic properties of the trajectory of the object are used to
identify the next location of the AIO ai and to compute flag f for time t + 1. These
properties are derived from the external tracking, track correlation algorithms as
outlined in Fig. 1. Similarly each sensor resolution relative to objects is derived
along other required for the model characteristics.

The flag f*(ai,sj,t,r,v) is directly computed from f(ai,sj,t,r), when an area a is
marked for a sensor sj. The marking of the area is identified from tasking
requirements and tasking doctrine. Flags {gk(sj)} that indicate types of sensors are
computed from the database of specifications of sensors. Relations flags are com-
puted based on the definitions of the relations.

Flags can be assumed to be known or computed to achieve the required reso-
lution of the sensor system. This includes the Monte-Carlo Simulation and the
CRBs. The CRBs is computed for each object and sensor, as well as for each object
and a pair of sensors as required. It can also be done by using tracking and fusion
and algorithms outlined below.

2.4 Solutions with CRB and Dynamic Logic

Lambert and Sinno [21] discuss in detail that significant part of errors in tracking
and fusion might originate from incorrect associations between sensors and objects;
and therefore their results using CRBs that do not account for associations are only
approximate. The proposed OPTIMA system uses CRBs with algorithms for
tracking and fusion accounting for the association part of these problems obtained
in [27, 28].

It is well known that the best algorithms currently used for tracking and fusion in
difficult conditions cannot attain the best theoretically possible performance as
specified by the Cramer-Rao Bounds for the given difficult conditions [28]. This
deficiency is due to high computational complexity of current tracking and fusion
algorithms [28, 29]. This limits sensor resource utilization. This fundamental dif-
ficulty of algorithms currently in use has been overcome by a computational
intelligence dynamic logic approach [15, 27].

Dynamic logic starts not from the actual LP model M, but modifies both the
objective function and the constraints of M to produce a model M1, and then solves
M1 as a solution for M. The full dynamic logic methodology process has multiple
stages that generate dynamically a sequence of models M1, M2, …, Mn, where only
model Mn is a solution of M. Models M1 ,M2,…, Mn−1 provide only intermediate
solutions.

Some algorithms for the ILP problem exploit the general idea, which is a core of
the dynamic logic approach described above. The LP relaxation algorithm is in this
category, when some constraints are removed and the objective function is modified
by adding a penalty summand. LP decomposition methods also modify LP
models [37].
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The cutting plane algorithm [6] creates model M2 by adding linear constraints
(called cuts) to the relaxed model M1 to drive the solution to be integer. The relaxed
model M1 removes constraints that variables are integers. The cut removes the
current non-integer solution from a set of feasible solutions to the relaxation. This
process of constructing new models Mi is repeated until an optimal integer solution
is found in model Mn. However, these methods do not change the dimensionality of
the search space and variables beyond converting discrete variables into continuous
ones. The Dynamic Logic approach expands this by pointing out this underused
opportunity. This is a fundamentally biologically inspired approach within the
Computational Intelligence paradigm.

One of the drawbacks of the heuristic computational intelligence approach is in
the difficulties of estimating how far its solution is from the optimal one. Another
drawback is in the uncertainty of the situation, when this algorithm does not find
any solution. In this case we do not know whether the optimal solution does not
exist or just was not found. This is a motivation for developing specialized com-
putational intelligence algorithms for the SRM integer linear programming models.

The dynamic logic idea for solving the SRM ILP model is finding some pre-
liminary candidate solutions, then adding more constrains, and getting more
accurate solutions. In this process we change an optimization criterion to find all
feasible solutions that are under the specified constraints, and then solving the task
again for the feasible solutions under the new constraints.

Within the dynamic logic methodology the original objective function F is not
used at the beginning of the process as an objective function but as a source to
construct a new objective function F1. Similarly, the original constraints C are used
to build new constraints C1. For instance, we can solve the classical LP problem by
removing a constraint that all variables are binary and then search for the binary
solution using the classical solution as guidance.

Similarly the objective function F can be modeled much “rougher” by substi-
tuting coefficients by their interval estimates, e.g., a = 5 is substituted by the
interval [4, 6] in function F1. For instance, if F1 is computed in way where positive
coefficients are taken with their min value from their interval while negative
coefficients are computed with their max value, we will get a lower estimate for
both F and F1. Similarly we can get upper estimates for these functions. In extreme
cases if interval of the coefficient is [0, 10] then low limits means removing this
coefficient from the constraint, which simplifies computations.

3 Applications, Related and Future Work

This paper had shown conceptual advantages of the proposed SRM methodology
and the models relative to known approaches. Known approaches focus on:
(1) tightly integrate SRM with tracking and (2) use a single scalar efficiency cri-
terion such as Information Gain (IG).
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Does it ensure that the new methodology and models will outperform known IG-
based approaches and methods in applications? This question assumes that a single
performance criterion exists that allows us to ask about outperformance. The main
point of our methodology is that this assumption is an extreme simplification of the
SRM situation. In many SRM tasks it is illusion that such single criterion exists.

On the other side when a single criterion such as IG is well justified not just
postulated for an SRM task, the question of outperformance is an incorrect question
too. How other methods can outperform IG if the performance criterion is IG? The
criterion of the outperformance must differ from IG to be able to talk about the
outperformance.

This is exactly the core concept of the proposed methodology—making selection
of criteria a part of the methodology that first decouples SRM from tracking and
discrimination. At the best of our knowledge this is the first systematic attempt of
this kind in SRM. Therefore the direct comparison “apple to apple” with existing
methodologies is not practical at this moment. When more methodologies of this
kind emerge it will be a base for an “apple to apple” comparison.

There are several aspects of the SRM that can be incorporated into the proposed
methodology. One of them is distributed network coordination. Often it leads to the
tradeoff between the rigor of the mathematical formulation of the SRM task and
lack of information for finding the optimum. In other words, it brings additional
optimization criteria such as minimization of communications, and the increase in
system robustness.

An idea of distributed network coordination is discussed in [32, 34] as a way to
minimize communications and increase system robustness. The argument is that in
the traditional approach sensors accept tasking orders from networked tracking
elements that may have only uncertain knowledge about sensor’s capability, lim-
itations and other tasks such as self-defense. In particular, a real-time fuzzy control
algorithm in [32, 33] running on each UAV gives the UAV limited autonomy
allowing it to change course immediately without consulting with any other entity.
In a similar development a resource manager based on fuzzy logic is optimized by
evolutionary algorithms.

In [32, 33] a fuzzy logic resource allocation algorithm enables UAVs to auto-
matically cooperate. The algorithm determines the trajectory and points each UAV
for measurements. This fuzzy logic model takes into account the UAVs’ risk, risk
tolerance, reliability, mission priority for sampling, fuel limitations, mission cost,
and other uncertainties. While the scope of this work differs from our task,
expanding our optimization design to accommodate such factors as mission cost
and related uncertainties is one of the topics of the future work. It is also an
important direction in further development of fuzzy optimization.

The discrete optimization formulation for large-scale sensor selection in
decentralized networks is proposed in [34]. It considers a situation without central
fusion center. Each Fusion Center (FC) communicates only with the neighboring
FCs. Our model can be expanded for this situation too.

The methodology and the OPTIMA class of the SRM optimization models are
quite universal. Therefore, the development and application of multi-sensor fusion
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systems based on these models opens significant opportunities for detection and
classification in a wide range of areas from bio-surveillance, monitoring, fault
diagnostics, medical diagnosis, to cargo inspection, inspection of infrastructure, and
others.

Optimization of the wireless sensors and phone communications is one of them
to increase the efficiency of communications. Others include environment moni-
toring, and management of any business resources: mapping of fires, detecting and
mapping pollutions, air-quality, water-quality by a network of distributed sensors.
Recent accidents with high speed trains motivate development of the SRM in this
area [8]. Maturing and integrating SRM models and algorithms will make solution
of the above outlined problems more efficient.

The resource saving is turned into more accurate monitoring to save electricity,
water, paper, etc. Networked, temperature sensors can automatically map insulation
leaks in buildings and reduce energy waste. Temperature sensors, just like radars
have coverage areas, sensitivity diagrams, etc. The ease of installation leads to the
sensors that discover each other and communicate their measurements. This
requires intelligent and adaptive algorithms such as OPTIMA. The same applies to
irrigation, humidity, insect, soil chemical composition, etc. sensors in agriculture.
Large number of low-cost, solar-powered, mesh-networked humidity and other
sensors placed on a plantation can be optimized to help farmers save water, increase
crop yields and lower cost.

4 Conclusion

Optimal SRM opens the opportunity: (1) to maximize the available sensor resources
for search, (2) to optimize sensor resources for tracking, and, (3) to better defend the
high priority assets. The models and algorithms proposed in this work allow the
decreasing of the overall sensor resource usage, while increasing the probability
that all threat objects in a raid are tracked. In addition, target characterization
(discrimination) is optimized by using the same class of model but with different
parameters (flags) that are specific for discrimination. Our unique approach is in
multi-objective SRM optimization model and algorithms, as well as in the use of
Cramer-Rao Bounds (CRBs), and the algorithms accounting for the association part
of the tracking and fusion problem. These CRBs allow the evaluation of target
characterization (classification features), and therefore target values. Another
uniqueness of our approach is in using the flags within the SRM, which encompass
all of the information external to the main goals of the program (such as the
information from tracking algorithms). These flags are readily computed from the
available information or information adaptively estimated in real time. These
benefits surpass existing state of the art and permit efficient sensor coordination.
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Abstract Unmanned underwater vehicles (UUVs) are increasingly used in maritime

applications to acquire information in harsh and inaccessible underwater environ-

ments. UUVs can autonomously run intelligent topology control algorithms to adjust

their positions such that they can achieve desired underwater wireless sensor network

(UWSN) configurations. We present a topology control mechanism based on particle

swarm optimization (PSO), called 3D-PSO, allowing UUVs to cooperatively protect

valued assets in unknown 3D underwater spaces. 3D-PSO provides a user-defined

level of protection density around an asset and fault tolerant connectivity within the

UWSN by utilizing Yao-graph inspired metrics in fitness calculations. Using only a

limited information collected from a UUV’s neighborhood, 3D-PSO guides UUVs to

make movement decisions over unknown 3D spaces. Three classes of applications

for UWSN configurations are presented and analyzed. In 3D encapsulation class of

applications, UUVs uniformly cover the underside of a maritime vessel. In planar

distribution class of applications, UUVs form a plane to cover a given dimension in

3D space. The third class involves spherical distribution of UUVs such that they are

uniformly distributed and maintain connectivity. Formal analysis and experimental

results with respect to average protection space, total underwater movement, average

network connectivity and fault tolerance demonstrate that 3D-PSO is an efficient tool

to guide UUVs for these three classes of applications in UWSNs.
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1 Introduction

Recent developments in unmanned underwater vehicles (UUVs) have created a rev-

olution in oceanographic science, commercial exploration, and military operations.

Improved battery technology and lower-power consuming electronics allow UUVs to

operate longer in underwater environments and explore larger spaces. Meanwhile,

the reduced cost and increased sophistication of unmanned vehicles have made it

possible for UUVs to cooperatively coordinate their efforts towards solving complex

tasks. Guided by robust network topology control algorithms, teams of unmanned

vehicles can efficiently use available resources and information to explore or protect

areas of interest during various civilian and military tasks. UUVs, which typically

are able to navigate freely within a three-dimensional underwater space, may be

equipped with sensors and communication equipment to monitor its surroundings.

Driven by sea-based economic development, the security of harbors, maritime ves-

sels, and submarines have become important topics. Hostile underwater acts against

coastal facilities, ships, and submarines may be prohibitively difficult to continu-

ously observe with human operators. Therefore, deploying UUVs to quickly detect

possible threats to maritime targets is a practical necessity. Once a UUV detects a

potential threat, it reports to a data collection point via a self-organized underwa-

ter wireless sensor network (UWSN) and allows security forces to take appropriate

countermeasures.

1.1 Challenge of Topology Control in Underwater Conditions

Due to dynamically changing underwater conditions, it may be infeasible to use a

central controller to guide the behavior of UUVs for underwater tasks. In realis-

tic applications, each UUV needs to independently make intelligent choices about

its next movement location to protect critical assets. Autonomous topology control

algorithms allow UUVs to adapt their movements while basing their decisions only on

local information extracted from their surroundings. These algorithms do not require

a centralized infrastructure and, thus, eliminate reliance on unpredictable and under-

provisioned wireless networks. Another challenge for UUVs operating autonomously

in harsh environments is that there is often a high probability of becoming disabled

due to malfunction or attack. Therefore, it is an important goal of a UWSN is to pro-

vide a fault-tolerant topology control mechanism that guides UUVs to automatically

adjust their locations to provide sensor coverage for disabled vehicles.

1.2 Our Existing Research

In the earlier stages of our work, Sahin et al. [1] introduced a force-based genetic

algorithm (FGA) to make intelligent decisions for unmanned mobile vehicles operat-

ing in two dimensional spaces. Urrea et al. [2] implemented dynamical system model
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for (FGA) demonstrating that an autonomous vehicle utilizing our FGA will move-

ment decisions will improve uniformity among all nodes deploying themselves over

an unknown two-dimensional area. This work was extended by using a homogeneous

Markov chain model to systematically demonstrate that groups of autonomous vehi-

cles guided by our FGA have a high probability of achieving desirable geometric con-

figurations [3]. To avoid selfish and less efficient behavior of mobile nodes utilizing

an elitist approach, a new algorithm was presented by combining game theory and

FGA in [4, 5]. In [6], a GA-based topology control algorithm called 3D-GA was intro-

duced to guide the mobile vehicles moving in three dimensional space. We show a

three-dimensional particle swarm optimization (PSO) based topology control mech-

anism, called 3D-PSO [7], to guide the UUVs operating in harsh 3D environments.

We formally proved that 3D-PSO is able to guide UUVs toward a uniform distribution

even when there are significant errors in location information from neighbors. Initial

versions of asset protection algorithms for UWSNs appeared in [8].

1.3 Contribution of This Article

Building on our existing research, we introduce a new topology control mecha-

nism that can provide a user-defined level of protection density and fault tolerant

connectivity by integrating shield density and Yao graph [9] inspired metrics into

our fitness calculations. This new topology control mechanism is then applied to a

class of problems where network sensor protection of valuable water-based assets is

required. We prove that our algorithm is highly robust and can be an effective solu-

tion for 3D encapsulation, and planar and spherical protection classes of problems

with civilian and military applications such as protection of maritime vessels, har-

bors, and submarines. Despite the fact that the geometry of the classes of problems

varies significantly, each UUV running our 3D-PSO can autonomously make mean-

ingful next movement decisions based solely on the information obtained from other

UUVs located within its communication range. We evaluate the performance of our

3D-PSO by measuring the percentage of a target surface or volume that UUVs cover,

the total distance traveled by all vehicles, and the average connectivity of the UWSN.

Formal analysis and simulation experiments demonstrate that our 3D-PSO algorithm

can form a fault tolerant UWSN with a user-defined level of UUV protection around

the assets.

1.4 Article Organization

The rest of this paper is organized as follows. Currently reported research on UUVs,

area protection, and topology control for UWSNs is summarized in Sect. 2. Our

3D-PSO for UUVs moving in a three dimensional space to protect assets are given

in Sect. 3. Section 4 presents the fitness function for 3D-PSO and a formal analysis of
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its coverage and connectivity properties. Performance metrics of our topology con-

trol mechanism are defined in Sect. 5. The results of our simulation experiments are

presented in Sect. 6.

2 Related Work

Early UUV technology was very limited and often required line of site remote con-

trol for underwater vehicles. During the post World War II era, technologies related

to UUVs advanced significantly. In 1957, Stan Murphy created the first autonomous

underwater vehicle (AUV) [10]. For the following years, UUVs have continued to

progress through various preliminary stages. Notably, during the late 1990s, Draper

Laboratory created two testbeds for the U.S Navy that were significant in the devel-

opment of many enabling technologies for underwater applications [11].

Although UUVs have been widely used in many fields, there are still some limita-

tions hindering their widespread deployment. One of the most important challenges

is to develop topology control algorithms that are able to efficiently guide the move-

ment of UUVs. Underwater environmental conditions may change continuously, and

therefore, UUVs need to adjust their positions using topology control algorithms that

are able to accommodate for these changes. Specifically, topology control for UUVs

in a UWSN which has been studied in different contexts. Rodoplu and Meng [12]

introduce a GPS guided location based network topology control algorithm to reduce

the energy consumption of UUVs. Li et al. [13] extend the findings of [12] and intro-

duce a cone based distributed topology control algorithm, which only requires the

directional information of nodes and can reduce the transmission power consumed

by mobile nodes. In [14], a topology control mechanism based on the various aspects

of graph theory is proposed to adjust transmission power levels and maintain a min-

imum k-connectivity which prevents network partitions in a 3D environment. Chen

et al. propose a graph theoretic algorithm to find a balance between a sparse and

dense k-connected graph called the Interference Prediction Based Topology Control

algorithm (IPBTC) for 3D wireless sensor networks [15].

3 Our 3D-PSO

In this section, we present our particle swarm optimization based algorithm, called

3D-PSO, to guide the movement of UUVs operating in a UWSN. In our mobility model,

each UUV can move freely and autonomously in 3D Cartesian space and is equipped

with a sensor device that can monitor a limited area around a UUV. A set of UUVs

can work together to sense the approach of hostile intruders that attempt to come

near protected assets. Once a UUV detects an unknown object in its sensing area

(e.g., a submersible explosive device, underwater surveillance vehicle, etc.), it will

report the information back to a data collection point such as a surface vessel or
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terrestrial based data center. UUVs must be able to adapt to ever-changing underwater

environmental conditions and maintain connectivity in a UWSN so that urgent sensing

information can be returned to a data collection point in a timely manner.

Initially, 3D-PSO will randomly generate ns candidate solutions, called particles,

inside Ni’s movement area Rmov. Here, ns is the total number of candidate solutions

in the swarm and Rmov is the maximum distance that a UUV can move in a single step.

Each particle in the swarm represents a potential solution that contains the speed and

direction of the next movement for Ni. Using sensors or communication devices, a

UUV can determine the positions of its neighbors, which are located inside its com-

munication area Rcom. The fitness function, presented in Sect. 4 for 3D-PSO has been

developed to evaluate the quality of potential movement locations. Solely based on

information from the neighbors, this fitness function will evaluate the goodness of

each particle and calculate the velocity of each particle for the next generation of

movement decisions. Once the maximum number of generations (itermax) is reached,

node Ni will select the particle location with the best fitness as its next position to

move (only if the fitness is better than the fitness of its current location).

Let La(𝜏) represent the position of particle a in the solution space at generation

𝜏 for 𝜏 ≤ itermax. The position of particle a within the solution space is iteratively

updated by adding a velocity vector 𝜈a to the current position:

La(𝜏 + 1) = La(𝜏) + 𝜈a(𝜏 + 1) (1)

The velocity vector for the next generation 𝜈a(𝜏 + 1) is calculated as:

𝜈a(𝜏 + 1) = 𝜔 × 𝜈a(𝜏) + C1 × 𝜑1 × [pBesta(𝜏) − La(𝜏)] + C2 × 𝜑2 × [gBest(𝜏) − La(𝜏)]
(2)

where 𝜔 is the inertial weight, which linearly decreases over the course of all genera-

tions [16]. C1 and C2 are positive constants which represent the particle’s confidence

level to its own solution and the best solution found in the swarm, respectively. The

variables 𝜑1 and 𝜑2 are uniformly distributed random numbers in the range of [0,1].

pBesta(𝜏) is the solution with the best fitness that particle a has found as of gener-

ation 𝜏. gBest(𝜏) is a solution with the best fitness for all particles found from first

generation, as of generation 𝜏. They are defined as:

F(gBest(𝜏)) = min{F(pBest0(𝜏)),… ,F(pBestns (𝜏))} (3)

where F is the fitness function to evaluate the goodness of a candidate solution and

gBest(𝜏) ∈ {pBest0(𝜏),… , pBestns (𝜏)}.

4 Implementation of Fitness Function for 3D-PSO

Fitness functions (or, objective functions) are used in many heuristic computational

techniques to evaluate candidate solutions. For our 3D-PSO, we use a force-based fit-

ness function to evaluate each particle location for a UUV with respect to its distance
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to a protected object or area as well as the distance of a candidate location to its

neighbors within Rcom. The neighbors positioned closer to a node Ni will have larger

virtual forces (i.e., less preferable) compared to the neighbors distanced farther away

from Ni within Rcom.

In this section, we first introduce two methods that our fault tolerance mechanisms

that 3D-PSO uses to provide a user-defined level of asset protection. Next, we present

three different types of fitness functions that guide UUVs to distribute themselves

for different classes of applications such as 3D encapsulation, planar or spherical

distributions.

4.1 Fault Tolerant Network Topologies

In general, the level of protection required for an asset is based on a tradeoff between

the asset’s level of importance and the likelihood of a fault. In the first fault toler-

ance method that 3D-PSO uses is based on shield density 𝛺, which is a user defined

parameter indicating the preferred distance among UUVs in 3D encapsulation and

planar distribution classes of applications. Figure 1 shows examples of UWSN topolo-

gies that have different shield densities, where For small values of 𝛺, UUVs will be

closer to each other, whereas larger 𝛺 values result in a less tightly packed node

distributions.

The second method that we introduce for fault tolerance is based on Yao graphs [9]

which is used 3D-PSO fitness function to control the number of neighbors for each

UUV. Several geometrical structures using Yao graphs have been proposed for simple

power adjustment problems in 2D and 3D sensor networks [17]. Figure 2a shows an

example of a 2D Yao graph. Here, the circular region around a particle a(𝜏) within

Rcom at generation 𝜏 is divided into p equally spaced Yao partitions that do not inter-

Fig. 1 Examples of shield densities for UUVs with a 𝛺 = 3, and b 𝛺 = 5
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Fig. 2 Examples of Yao graph structure for a 2D, and b 3D spaces

sect with each other. The angle for each region is equal to
2𝜋
p

. For 3D spherical pro-

tection, the fitness function inspired by 3D Yao graphs preserves a minimum desired

number of connections for a node with its neighbors. The initial 2-D version of this

approach has been studied in our previous work where we implemented a differential

evolution algorithm that utilized a Yao graph inspired fitness to uniformly distribute

mobile nodes over an unknown two dimensional area [18]. In our 3D-PSO, as shown

in Fig. 2b, the space for a particle a(𝜏) of node Ni within Rcom has been separated into

several similarly shaped X Yao cones. The angle for each cone, 𝜃, is a user-defined

parameter that can be adjusted in the range of

(
0 < 𝜃 ≤

𝜋

2

]
. A cone x in which at

least one neighbor is located is called an active cone, 𝛶Ni,x
(x = 1,… ,X). Let k be the

user-defined minimum number of active cones for a given UUV. If Y
𝛿,x is the clos-

est neighbor for an active cone x of node Ni, let dmin,p be the distance between the

closest neighbor and node Ni. In our 3D-PSO algorithm, we use only Y
𝛿,x neighbor

in each active cone x to calculate the fitness value of a candidate location. The line

between the closest detected neighbor, Y
𝛿,x, and a candidate location, a(𝜏), is used

as the initial axis to create the Yao partition. Therefore, the orientation of the cones

for each candidate location is highly dynamic and changes in each generation of the

fitness calculation.

4.2 Fitness of 3D-PSO

The fitness Fi for each candidate solution for node Ni with 𝜎i neighbors is defined as

follows:

Fi =
{

Fmax if 𝜎i = 0
min[Fmax,

∑
𝜎i
j fij] otherwise (4)
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where Fmax is the maximum penalty applied to any location that causes a node Ni
to disconnect itself from all its neighbors, and fij is the virtual force applied on Ni
by its neighbor Nj. In this definition, smaller fitness values indicate fitter positions

to move for a given node. Virtual force values applied to a node by its neighbors are

calculated based on the class of problems as presented in the following sections.

In our earlier work [19], we proved that a UUV using 3D-PSO will only move to a

location if this location improves its fitness:

Lemma 1 (Taken from [19]) Using 3D-PSO, the fitness Ft+1 of node Ni at time (t +
1) is better than or at least as good as its fitness Ft at time (t).

4.3 Fitness Function for 3D Encapsulation Class of
Problems

The 3D encapsulation class of problems are defined as using unmanned vehicles to

generate a parabolic surface of protection underneath a floating vessel to detect intru-

sions occurring below the vessel. Typical examples for this class of problem is pro-

tection for underside of ships, floating oil platforms, and other surface based assets.

All UUVs running 3D-PSO will spread out the underside of an asset while maintain-

ing a pre-defined distance 𝛥
𝜔

from the asset surface throughout their deployment.

The fitness fij for 3D encapsulation applications can be calculated as:

fij = 𝜓 ∗ Fpen +

⎧
⎪
⎪
⎨
⎪
⎪⎩

Fpen if 𝜎j = 1
Rcom

dij
− ℸ if 0 < dij < 𝛺

𝜆 ∗ (dij −𝛺) ∗ Fpen if 𝛺 ≤ dij ≤ Rcom
Fpen if dij > Rcom

(5)

where 𝜓 is the difference between the pre-defined target distance to asset surface

𝛥
𝜔

and the current distance between a candidate location and the underside of an

asset. The variable dij is the Euclidean distance between the position of one of the

candidate solutions and a neighboring node Nj. The total number of neighbors within

the Rcom for a neighboring node Nj is 𝜎j. The variable ℸ is defined as
Rcom

𝛺

which

incorporates the desired shield density into the fitness calculation. Fpen is a penalty

fitness for a candidate location which would prevent a neighboring node Nj (with

𝜎j = 1) becoming disconnected from Ni or Ni moving too far from the asset surface.

𝜆 (0 < 𝜆 < 1) is used to scale the fitness penalty for the shield density. Larger values

of 𝛥
𝜔

create a larger protection surface that allows for potential threats to be detected

earlier, but require more UUVs to fully surround the asset.
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Fig. 3 Example of two UUVs separated such that a dij + Rmov < Rcom, and b dij + Rmov ≥ Rcom (grey
shaded area represents the surface that is distanced 𝛥

𝜔

from the protected surface)

Definition 1 In 3D-PSO the penalty fitness Fpen is bounded by Fmax (i.e., Fpen ≤

Fmax).

Definition 2 In 3D-PSO, since two UUVs cannot occupy the same location, dij ≠ 0,

where Fpen ≫
Rcom

dij
for small dij.

The following lemma shows that a UUV at 𝛥
𝜔

distance away from the surface of

a target asset and with only one neighbor will not move further away from the asset

surface.

Lemma 2 If a node Ni with one neighbor Nj, autonomously running 3D-PSO for 3D

encapsulation class of problems, reaches the user-defined distance of 𝛥
𝜔

to the target
surface at time (t), it will maintain this distance at time (t + 1).

Proof (Proof sketch) Typically, the desired distance between a node and a target

surface (i.e., 𝛥
𝜔

) is much larger than the movement distance for a single step of Rmov.

For large target vessels, we can assume that the vessel surface is flat with respect to

the size of a UUV. The surface inside of node Ni’s movement space, which maintains

a distance of 𝛥
𝜔

units to the target surface, is shown in grey in Fig. 3. Based on

Eq. (5), if the distance betweenNi and its neighborNj is less than (𝛺 − Rmov), the best

movement choice for node Ni is the furthest point in the surface of movement which

is depicted in Fig. 3a as Best. When (dij + Rmov) > 𝛺, there exists an arc (marked as a

dashed line in Fig. 3b) representing the next movement locations for node Ni which

will result in zero virtual force between Ni and Nj. Our 3D-PSO will find the best

location for Ni, which will be over the flat surface and 𝛥
𝜔

units away from the target

surface at time (t + 1). Therefore, Ni will not move away from the asset surface.

Let us now consider the case where a node Ni is at a distance of 𝛥
𝜔

units to a

target surface and has multiple neighbors. We can prove that node Ni’s movement

away from the target surface is bounded:
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Theorem 1 Using 3D-PSO, once a node Ni with 𝜎i neighbors (𝜎i > 0) is located 𝛥
𝜔

units away from a target surface at a time (t), it will not move from the target surface
more than 𝜓 ⩽ max[1, 𝜆 ∗ (Rcom −𝛺)] units at time (t + 1).

Proof When all candidate solutions for Ni at time (t + 1) are located 𝛥
𝜔

units away

from the target surface, Ni can select any of the candidates and still maintain the

preferred distance to the target surface. However, if at least one of the candidate

positions of Ni is located (𝛥
𝜔

− 𝜓) units away from the surface (as shown in Fig. 4),

the neighbors of nodeNi can be separated into two groups. The first groupG1 consists

of all 𝜎G1
neighbors which are closer than 𝛺 units (i.e., Nj ∈ G1), whereas the second

group G2 includes 𝜎G2
neighbors that are further than 𝛺 units away from Ni. Since

Ni is located at 𝛥
𝜔

units from the target surface at time (t), using Eq. (5), the fitness

value for Ni, which is only based on its distance to its neighbors, can be calculated as:

Fi(t) =
∑

j∈G1

fij +
∑

k∈G2

fik

=
∑

j∈G1

(
Rcom

dij
− ℸ) + 𝜆 ∗ Fpen

∑

k∈G2

(dik −𝛺)

⩽ 𝜎G1
∗ Fpen + 𝜆 ∗ Fpen

∑

k∈G2

(dik −𝛺)

(6)

On the other hand, for a candidate location La = 𝛥
𝜔

− 𝜓 , the fitness is affected by

both the virtual forces from neighbors and the distance to the target surface (Fig. 4).

The fitness of La will determined as FLa (t) = 𝜎i ∗ 𝜓 ∗ Fpen. Based on Lemma 1, it

will only be possible for node Ni to choose the location La as its next location to

move at time (t + 1), if FLa (t) ≤ Fi(t):

Fig. 4 Example where a

candidate location for the

next step is located between

the node and the target

surface (grey shaded area
represents the surface that is

distanced 𝛥
𝜔

from the

protected surface)
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⇛ 𝜎i ∗ 𝜓 ∗ Fpen ⩽ 𝜎G1
∗ Fpen + 𝜆 ∗ Fpen

∑

k∈G2

(
dik −𝛺

)

⇛ 𝜎i ∗ 𝜓 ⩽ 𝜎G1
+ 𝜆 ∗

( ∑

k∈G2

dik − 𝜎G2
∗ 𝛺

)

⇛ 𝜎i ∗ 𝜓 ⩽ 𝜎G1
+ 𝜆 ∗

( ∑

k∈G2

Rcom − 𝜎G2
∗ 𝛺

)

⇛ 𝜎i ∗ 𝜓 ⩽ 𝜎i − 𝜎G2
+ 𝜆 ∗

( ∑

k∈G2

Rcom − 𝜎G2
∗ 𝛺

)

(7)

When 𝜎G1
or 𝜎G2

equals to zero, Eq. (7) has its maximum value:

𝜎i ∗ 𝜓 ⩽
{

𝜎i if 𝜎G2
= 0

𝜆 ∗ 𝜎i(Rcom −𝛺) if 𝜎G1
= 0 (8)

Therefore, we prove that at time (t + 1), 𝜓 is bounded by 1 or 𝜆 ∗ (Rcom −𝛺),
whichever is greater.

Theorem 1 shows that the maximum value of 𝜓 is bounded bymax[1, 𝜆 ∗ (Rcom −
𝛺)]. A UUV cannot move away from the target surface at any time once it reaches

the surface 𝛥
𝜔

units away from the target. Based on Theorem 1, we can state the

following corollary for the 3D encapsulation class of problems:

Corollary 1 For 3D encapsulation class of problems, once a node Ni running 3D-
PSO is located at 𝛥

𝜔

units away from the target surface (i.e., 𝜓 = 0) at time (t), the
distance between Ni and a target surface is bounded by 𝛥𝜔

± max[1, 𝜆 ∗ (Rcom −𝛺)]
units at time (t+1).

4.4 Fitness for Planar Distribution Class of Problems

Planar distribution class of problems represents the applications where mobile nodes

must be distributed along one Cartesian plane of a 3D space. This type of protec-

tion is used for situations where the boundary between hostile and safe spaces can

be defined along a single plane. A typical example of this would be port or harbor

protection applications, where maritime surface-based or submersible vessels would

need to go through the entrance of a harbor, and afterwards the harbor entrance needs

to be sealed by the UUVs to protect the harbor from hostile entities located outside. In

this class of applications, UUVs utilizing our 3D-PSO will automatically adjust their

locations over the planar surface at the entrance of the harbor to detect potential

intruders. We show in this section that, our 3D-PSO is not confined to any predeter-

mined axis and the protection plane can be oriented arbitrarily. The fitness fij for a

candidate location for node Ni is based on its distance to the protection plane 𝛿p and

the virtual forces inflicted by its local neighbor Nj, which is calculated as:
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fij = 𝔶i ∗ Fpen +

⎧
⎪
⎪
⎨
⎪
⎪⎩

Fpen if 𝜎j = 1
Rcom

dij
− ℸ if 0 < dij < 𝛺

𝜆 ∗ (dij −𝛺) ∗ Fpen if 𝛺 ≤ dij ≤ Rcom
Fpen if dij > Rcom

(9)

where 𝔶i is the norm distance of a candidate location to the 𝛿p plane.

Similar to Theorem 1, if a node Ni is located at the target plane (i.e., 𝔶i = 0) at

time (t), Ni will not move to a location further than max[1, 𝜆 ∗ (Rcom −𝛺)] units

from the target plane at time (t + 1):

Corollary 2 For planar distribution class of problems, once a node Ni running
3D-PSO is located at target plane 𝛿p at time (t), its maximum movement away from
𝛿p is bounded by 𝔶i ≤ max[1, 𝜆 ∗ (Rcom −𝛺)] units at time (t + 1).

In our pervious work [19], we prove that, using 3D-PSO, the mobile nodes will

separate apart and that the sum of the distances among the nodes will only increase

towards a uniform distribution or, if further improvement not possible, stay at the

same locations as the node deployment progresses. This spreading will continue as

long as the distance between neighboring nodes is less than the desired node density

𝛺, as stated by the following theorem:

Theorem 2 (Taken from [19]) Let node Ni running 3D-PSO have 𝜎i neighbors
(𝜎i > 0) and F t+1

i ≤ F t
i , then sum of distances between Ni and its neighboring nodes

will not decrease at time (t + 1) such that
∑

𝜎i
j=1 d

t+1
ij ≥

∑
𝜎i
j=1 d

t
ij for 0 < dij ≤ 𝛺.

For planar distribution class of problems, the following lemma shows that the

virtual force inflicted on Ni by its neighbor Nj will be minimum when the distance

between them is 𝛺 units.

Lemma 3 For a node Ni running 3D-PSO for planar distribution class of problems
with 𝜎i neighbors (𝜎i > 0), the virtual force inflicted by a neighboring node Nj will
be minimum if dij = 𝛺.

Proof If a position for Ni will not cause the degree of a neighbor node Nj to become

zero (i.e., Nj will not be isolated by Ni’s movement), using Eq. (9), the virtual force

inflicted on Ni by its neighbor Nj is reduced as:

fij =

{ Rcom

dij
− ℸ if 0 < dij < 𝛺

𝜆 ∗ (dij −𝛺) ∗ Fpen if 𝛺 ≤ dij ≤ Rcom
(10)

where (Rcom

dij
− ℸ) is a monotonically decreasing function, while (𝜆 ∗ (dij −𝛺) ∗ Fpen)

is a monotonically increasing function. Therefore, when the distance to Nj is equal

to 𝛺, Ni will receive a minimum virtual force from Nj.
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The following theorem shows that UUVs autonomously running 3D-PSO for planar

distribution class of problems will not move to locations farther than 𝛺 units away

from its neighbors.

Theorem 3 Mobile nodes autonomously running 3D-PSO for planar distribution
class of problems will not move to locations farther than 𝛺 units away from its
neighbors.

Proof (Proof sketch) Based on Theorem 2, node Ni will move away from its neigh-

bors to improve its fitness and, hence, the planar area coverage. Based on Lemma 3,

the ideal distance between two neighbors is 𝛺 units. The nodes will not move to the

locations that do not improve their fitnesses as stated in Lemma 1. Therefore, Ni will

move away from its neighbors until its distance to them is 𝛺 units if the protection

space is large enough.

4.5 Fitness for Spherical Distribution Class of Problems

For spherical distribution class of problems (e.g., fully submerged submarine protec-

tion applications), UUVs autonomously running our 3D-PSO surround the underwater

asset and adjust their locations to maintain a spherical surface of protection with the

asset at the center of the sphere. We implemented a 3D Yao graph inspired fitness

function to provide fault tolerant connectivity and a user-defined level of protection

density.

As discussed in Sect. 4.1, a Yao structure can be created by dividing the area

around a mobile node into distinct regions. In 3D spaces, it is not possible to create

Yao partitions that do not have overlapping space. For our 3D-PSO, we developed an

algorithm, called 3D-YAO-PART, to construct conical Yao partitions using a similar

approach given in [17] as presented in Alg.1.
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It is important to show that, even tough the cones overlap with each other, there

is at least one unique UUV at each active cone. The following lemma shows that each

active cone 𝛶Ni,x of node Ni (x = 1,… ,X) will have a unique closest neighbor Y
𝛿,x

to Ni.

Lemma 4 Algorithm 3D-YAO-PART guarantees that, for a node Ni with 𝜎i neigh-
bors, there are no two active cones 𝛶Ni,x and 𝛶Ni,y such that the respective closest
neighbors Y

𝛿,x and Y𝛿,y are the same.

Proof (Proof sketch) In our 3D Yao partition algorithm 3D-YAO-PART, each sorted

neighbor of Ni will be assigned into a cone, and all other neighbors located in the

same cone will be associated with this cone. Suppose two active cones 𝛶Ni,x and 𝛶Ni,y
have the same closest neighbor which is node Nj. In this case, both cones will have

the same axis based on line 7 in Algorithm 1. Since the cone angle 𝜃 is the same in

all cones, the cone 𝛶Ni,x must be the same as 𝛶Ni,y (i.e., two different active cones

will always have different respective closest neighbors). Therefore, it is not possible

to have two different active cones sharing the same closet neighbor to node Ni.

The total number of cones surrounding a submerged asset is bounded by the size

of each cone’s angle, as presented by the following lemma whose proof is presented

in [17]:

Lemma 5 (Taken from [17]) The angle 𝛽 for any two cones must greater than 𝜃∕2,
and the maximum number of cones (i.e., X) is bounded by 2∕[1 − cos(𝜃∕4)].

For fully submerged asset protection applications, our fitness function will guide

the UUVs to create a spherical protection space surrounding the asset. Let ℜ be the

radius of the protection sphere, and Lasset the location of the asset. The radius ℜ
should be smaller than Rcom so that UUVs can communicate with the protected asset

and report information about potential intruders. The fitness function implemented

in our 3D-PSO for spherical distribution applications contains two parts. The first

part, called distance fitness, is determined based on a node’s distance to the closest

neighbor in each Yao cone. The second part of the fitness, called critical fitness,
is used to maintain the minimum of k neighbors for each UUV. For node Ni with a

neighbor Nj, if Nj has k or fewer neighbors, it will send a broadcast message to the

nodes within Rcom. Receiving this message, node Ni will assign a penalty fitness to

all potential movement decisions that will result in Nj having less than k neighbors.

This fitness function can be expressed as:

fij = 𝛬ij
⏟⏟⏟

critical fitness

+
⎧
⎪
⎨
⎪⎩

Fpen if 𝜎j = 1 and dmin,p > Rcom
Rcom

dmin,p
− 1 + 𝜀 ∗∣ di,𝜍 −ℜ ∣ if 0 < dmin,p < 𝛺

𝜆 ∗ (Rcom − dmin,p) ∗ Fpen if 𝛺 ≤ dmin,p ≤ Rcom
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

distance fitness

(11)
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𝛬ij =
{

0 for 𝜎(i) ≥ k
Fpen for 𝜎(i) < k or dcrit > Rcom

(12)

where the di,𝜍 is the Euclidean distance between a candidate solution and the asset

location Lasset, 𝜀 is a scale factor to guide vehicles toward the surface of the spherical

protection space, 𝛬ij is the critical fitness and dcrit is the distance between a candidate

solution and the critical neighbor(s) (𝜎(j) ≤ k).

The following theorem states that, using the fitness given in Eq. (11), UUVs run-

ning 3D-PSO will maintain at least k neighbors:

Theorem 4 If a node Ni running 3D-PSO for fully submerged asset protection has k
or more neighbors at time (t), Ni will maintain k-connectivity from time (t) until the
end of the UWSN deployment.

Proof (Proof sketch) From Eqs. (11) to (12), the critical fitness is assigned the max-

imum penalty if a potential movement location causes node Ni to have less than k
neighbors. Also, the penalty fitness Fpen will be applied to potential locations that

cause a node Ni to move away from its neighbor(s) Nj that rely on node Ni to maintain

k connectivity. Lemma 1 guarantees that the mobile nodes will not move to locations

which do not improve their fitnesses. Therefore, if node Ni can have k connectivity,

it will maintain it throughout the deployment.

5 Our 3D-PSO Performance Metrics

In this section, we evaluate the performance of our 3D-PSO topology control mech-

anism with respect to: (i) area protection coverage, (ii) total UUV movement, and

(iii) average connectivity.

5.1 Area Protection Coverage

Area protection coverage (APC) is the ratio of the area protected by UUVs to the total

space to be protected [8]. It is important to note that the total protection space changes

based on the application class. For example, in 3D encapsulation applications, the

protection space can be any parabolic shape such as the underside of any given ship.

For planar distribution, such as the harbor protection applications, the area of pro-

tection is the physical size of the port entrance whereas for fully submerged assets

APC is a spherical surface that surrounds the entire target.

In order to quantify the coverage of the protected area by a UUV Ni, we create

a projection from the coverage of Ni to the entire protection space and calculate

the size of the protected area as Pi. This way, the overlapping coverage by multiple

nodes are discounted. The percentage of the total space covered by all mobile nodes

is given as:
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APC =
⋃N

i=1 Pi

S
× 100 (13)

where S is the total required protection space, and N is the total number of UUVs.

When APC is 100 %, the space is fully protected.

5.2 Total UUV Movement

Since autonomous mobile nodes have limited energy resources, the total UUV move-

ment (TUM) until achieving a uniform distribution is an important metric to quantify

the performance of our algorithm. The location of Ni and its coordinates at time (t)
can be defined as Li[t] and (xti, y

t
i, z

t
i), respectively. Let d(Li[t − 1],Li[t]) denote the

distance travelled by Ni during a single step (i.e., from time (t − 1) to (t).) TUM(t) for

N UUVs can be defined as:

TUM(t) =
N∑

i=1
d(Li[t − 1],Li[t]) (14)

5.3 Average Connectivity

One of the fundamental problems in dynamic and harsh underwater environments

is achieving and maintaining connectivity among the UUVs [18]. We use average

connectivity for all UUVs to show the effectiveness of our algorithm. Average con-

nectivity Davg is defined as the mean node degree for all UUVs running 3D-PSO. This

metric measures the amount of fault-tolerance existing for UUVs within a UWSN. The

average connectivity at time (t) is given as:

Davg(t) =
∑N

i=1 Di

N
(15)

6 Simulation Experiments

We have developed a Java based simulation environment to evaluate the effectiveness

of 3D-PSO algorithm. The MASON library [20] was used to visualize the experimental

results generated by our software. In our experiments, the default size of the area of

deployment is a cube with dimensions of (100, 100, 100). For all of the experiments,

we defined the maximum movement range for a UUV as Rmov = 5. In order to reduce

stochastic noise in the observed data, all experiments were repeated 30 times and the

results were averaged.
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Fig. 5 Front and top views of encapsulation protection at steps 0, 10, 40, and final step of 200 with

120 UUVs and Rcom = 10

Figure 5 depicts (from the front and top views) 120 mobile nodes which are pro-

viding the encapsulation type of protection, at steps 0, 10, 40, and finally at step 200

with Rcom = 10. In Fig. 5, each shaded sphere represents the Rcom of a UUV located

at its center. Initially, all UUVs are deployed at an entry point under the ship. With-

out loss of generality, this step can be changed to an arbitrary exit point at the naval

vessel from which all UUVs are initially dropped. Each UUV is guided by 3D-PSO to

spread underneath the naval vessel. We can observe from Fig. 5 that the UUVs spread

apart quickly during the initial steps, and that most of the space beneath the ship has

been protected by the time 3D-PSO reaches step 40. After that, the UUVs continue

to make small adjustments to find better locations and improve the coverage of the

protection area.

In Fig. 6a, b, the protected coverage area and the total traveled distance are shown

forRcom values of 8, 10 and 12. We can observe that UUVs almost cover the entire pro-

tection area for Rcom values of 12 and 10 after running 3D-PSO for 80 steps. Approx-

imately 90 % coverage is obtained with Rcom = 8 at step 200. As can be seen from

Fig. 6a, UUVs converge faster when Rcom is larger. Note, however, that larger Rcom
implies more energy consumption by each node. For all cases, the most significant

increase in APC occurs during the first 50 steps.

Figure 6b depicts that the total UUV movement decreases as each experiment pro-

gresses. At the beginning of an experiment, all nodes move apart quickly. As the

experiment continues, UUVs move slower to make smaller adjustments to their posi-

tions. For example, TUM for each step decreases from 450 to 15 from step 0 to 200

for Rcom = 10. Comparing the outcomes from three different Rcom values, we see that
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Fig. 6 APC (a) and TUM

(b) for ship protection using

120 UUVs with Rmov = 5, and

Rcom = 12, 10, and 8

UUVs travel less when Rcom is larger. The UUVs reach a stable distribution and stop

moving at step 200 for Rcom = 12. Similarly, the total UUV movement for all nodes in

a single step is TUM = 190 for Rcom = 8 after step 80, which does not diminish until

the end of each experiment. This indicates that UUVs continue to move back and

forth and try to achieve better locations. This result implies that each UUV guided

by our algorithm considers a larger number of nodes in its neighborhood and makes

more meaningful decisions when Rcom is larger. However, UUVs need to spend more

energy for larger Rcom values. Considering that node movement is the most energy

consuming operation, increasing the Rcom is likely a better use of resources for many

ship protection missions.

Figure 7a–c show the coverage, total UUV movement, and the average connectiv-

ity for different network density (𝛺) values in 3D encapsulation class of protection

problems. From the experiments, when 𝛺 is larger, UUVs can cover larger spaces,

and the coverage is 62, 80 and 99 % for 𝛺 = 8, 9 and 10 at step 200, respectively.

The selected value of the shield density has a large effect on the protection coverage.

For example, when the 𝛺 value decreases from 10 to 9, the coverage is approxi-

mately 20 % smaller; however, the average connectivity Davg for each UUV increases

by almost 400 % (from 1 to 4) based on Fig. 7c. On the other hand, if we compare

𝛺 = 9 and 8, the difference in coverage is approximately 17 %, and theDavg increases

by almost 25 % (from 4 to 5). Figure 7b shows that UUVs with 𝛺 = 8 converges better
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Fig. 7 APC (a), TUM

(b) and average connectivity

(c) for ship protection using

120 UUVs with Rmov = 5,

Rcom = 10 and 𝛺 = 8, 9,

and 10

for the first 50 steps compared to the case of 𝛺 = 9. After step 50, the UUVs are

almost immobile for 𝛺 = 8 and 9, which means that they have reached stable posi-

tions and do not find better positions to move. TUM also decreases as the experiment

progresses, when the shield density reaches 𝛺 = 10, but the rate of decrease is lower

than when 𝛺 is 8 and 9. Larger 𝛺 values require significantly more steps to reach

stable configurations.

Based on Fig. 7a–c, the network reliability is the lowest for 𝛺 = 10 since the

average connectivity Davg ≈ 1. For harsh underwater environments, there is a dis-

tinct possibility that an underwater vehicle may malfunction during a mission and

create a vulnerability for the protected assets. In our experiments, reducing the shield

density (e.g., from 𝛺 = 10 to 9) results in a more compact UWSN, reduced TUM and,

hence, extending UWSN lifespan. Incrementing the shield density also improves the
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Fig. 8 Front and side views for harbor protection using 50 UUVs with Rcom = 10 at steps 0, 10, 40,

and the final step of (200)

average connectivity since more nodes can communicate with each other. However,

the increases in shield density come at the cost of the reduced coverage (nodes are

more concentrated in smaller areas). Also, we notice that while the value for the

shield density 𝛺 is reduced to provide a more robust network, there is a threshold

after which increasing shield density does not improve TUM.

Figure 8 shows the simulation results for 50 UUVs with Rcom = 10 spreading to

protect the entrance of a harbor. To represent more realistic applications, all nodes

are placed at the bottom of the sea floor at the port entrance. This corresponds to a sit-

uation where all UUVs are dropped from a maritime vessel at the entrance of a harbor,

which begin to spread apart after reaching the sea floor. It should be noted that our

3D-PSO does not require a specific initial deployment location and the performance

does not significantly vary for different types of initial deployment conditions. For

example it is possible that the initial starting position for UUVs may at the surface of

the water or at a location close to the shore.

In Fig. 9a, for planar distribution class of problems where an entry to a harbor

to be sealed by the UUVs, we notice that the nodes cover approximately 80 % of the

harbor entrance during the first 40 steps for Rcom = 10. The harbor entry is fully pro-

tected after 100 steps for Rcom values of 10 and 12, while APC = 88% at step 200 for

Rcom = 8. For this class of problems, increasing communication range does improve

the total coverage, however, larger Rcom values significantly improve the rates that

UUVs converge towards a full coverage. This result is expected since the UUVs can

process information from a larger area and make better movement decisions. An

additional benefit of the large Rcom is the higher average connectivity achieved dur-

ing the spreading process.
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Fig. 9 APC (a) and TUM

(b) for port protection using

50 UUVs with Rmov = 5, and

Rcom = 12, 10, and 8

Figure 9b presents TUM values for 50 AUVs with different Rcom values. Here, the

total movement distance for both Rcom = 10 and 12 are almost equal. However, both

are better (i.e., smaller) compared to the case when Rcom = 8. UUVs travel almost

the same distance during the first 50 steps for all planar distribution experiments.

However, when Rcom = 8, the nodes cannot converge to a stable distribution which

indicates that the communication range is insufficiently small for this type of mis-

sion. When the value of Rcom is greater than 10, the distance traveled by all UUVs

does not significantly change; therefore, increasing Rcom above a certain value does

not necessarily reduce TUM and can potentially decrease network lifespan (due to

unnecessary movements) for the planar distribution missions.

Figure 10a shows the network coverage for planar distribution applications with

different shield density values. At step 200, UUVs cover approximately 99, 65, and

35 % for𝛺 values of 10, 9, and 8, respectively. Changing the value of shield density𝛺

can significantly affect the network coverage for planar distribution type of problems.

For example, when the density is reduced by 10 %, the coverage decreases by 30 %.

Figure 10b shows that smaller values of𝛺 results in reduced UUV movement (i.e., the

UUVs become stable quicker). In Fig. 10b, for 50 UUVs, to reach TUM = 20 requires

175, 80 and 20 steps for the 𝛺 values of 8, 9, and 10, respectively.
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Fig. 10 APC (a), TUM

(b) and average connectivity

(c) for port protection using

120 UUVs with Rmov = 5,

Rcom = 10 and 𝛺 = 8, 9,

and 10

The average network connectivity for planar class of problems is presented in

Fig. 10c. Shield density values of 𝛺 = 8, 9, and 10 result in the average network

connectivity of Davg = 8, 4 and 2, respectively. This result matches with the APC

results from Fig. 10a since UUVs with smaller values of 𝛺 cover less planar space.

Also, since all UUVs are close to each other for small values of 𝛺, the connectivity

becomes larger. Compared to 3D encapsulation class, we observe that planar distri-

bution problems are more sensitive to changes in 𝛺 values with respect to network

coverage. However, reducing𝛺 in planar distribution problems does not significantly

reduce TUM (i.e., the network lifespan) nor increase Davg.
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Fig. 11 Submarine protection using 85 UUVs with Rcom = 10 at steps 10, 20, 60, and the final step

of 200

Figure 11 depicts 85 UUVs, each autonomously running our 3D-PSO to surround

a submarine for protection, where each line between two UUVs represents a local

connection. Figure 11a shows that UUVs are initially deployed under the submarine.

At step 60, almost 80 % of the area around the submerged asset has been covered

by the UUVs. Figures 11b show that the network connectivity becomes more sparse

as the experiment progresses, but all UUVs remain connected to each other, and no

network partitions occur.

Figure 12 shows the experimental results for the user-defined minimum connec-

tivity values of k = 2 and 3. In this experiment, we choose the angles for all cones 𝜃

in the Yao graph as 60◦. In Fig. 12a, UUVs using our 3D-PSO with k = 3 cannot cover

the entire protection space, since the larger value of k creates a more tightly bound

network topology. However, as shown in Fig. 12b, UUVs travel less when they oper-

ate with a large minimum connectivity parameter (e.g., k = 3 in our experiment). As

the experiment progresses, TUM decreases for both k = 2 and 3, which indicates that

UUVs reach stable configuration. Figure 12c confirms that using 3D-PSO with a 3D

Yao graph inspired fitness function generates an average network connectivity which

is larger than the user defined k value.

7 Concluding Remarks

In this article, we present a particle swarm optimization (PSO) based topology control

mechanism, called 3D-PSO, allowing UUVs in an underwater wireless sensor network

to cooperatively protect valued assets in unknown 3D spaces. Each UUV running

our 3D-PSO autonomously makes movement decisions using only local neighbor-

hood information. Using our shield density parameter and 3D Yao graph inspired fit-

ness function, our 3D-PSO can provide a user-defined level of protection for different
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Fig. 12 APC (a), TUM

(b) and average connectivity

(c) for submarine protection

using 85 UUVs with

Rmov = 5, Rcom = 10,

𝜃 = 60◦, k = 2 and 3

maritime vessel applications. Three classes of distribution application in UWSNs are

presented and analyzed. In 3D encapsulation class, UUVs uniformly spread over the

underside of maritime vessels to detect any hostile or unexpected underwater intru-

sions. Another application class is the planar distribution of UUVs to create 2D for-

mation for any given dimension of a 3D protection space. In spherical distribution

class of applications, the UUVs form a shpere around a given asset such as a fully

submerged submarine.
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Formal analysis and experimental results for average protection space, total under-

water movement, and average network connectivity demonstrate that our 3D-PSO

can quickly and efficiently spread UUVs apart uniformly in unknown 3D underwater

spaces while providing fault tolerant connectivity within the UWSN.
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