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Foreword

Complex, volatile, and uncertain—this is the new reality of our world today that
now causes us to rethink how we anticipate, manage, and shape desired outcomes
as, and preferably before, they happen. Where behaviors were once determined by
fixed and known outcomes or end-states, set far downstream, today’s behaviors
struggle to keep up with an ever-changing environment where the end-state or
destination is as obscured as the road and the journey ahead of it. The signs are less
clear and the choice of paths more than we can manage or possibly know. By all
accounts, we no longer enjoy the sanctity of what former U.S. Secretary of Defense
Donald Rumsfeld often referred to as the Known—Knowns, and have skipped clear
past the Known—Unknown domain, and landed squarely in Unknown—Unknown
territory, but not for the reasons one might think.

It is not that we lack the understanding or even the capacity to rationalize the
complex nature of the changing world around us. Rather much the opposite. We’ve
become very aware that the speed and the nature of change have now outstripped
our ability to manage it deliberately using the same orthodox methods. Take for
instance today’s highly charged information-driven environment. While it may
have brought the world closer together, and this is a good thing, the downside is
that we now live in a world where data overload makes the simplest bits of
information difficult to see even when placed directly in front of us. And when we
do see, we don’t truly know. The challenge we face in this new era will be in
methodically transforming the Unknown—Unknown space back to its more man-
ageable semi-state—the Known-Unknown—a state albeit fluid, but with more
predictable outcomes.

So how do we stay ahead of a constantly evolving landscape where not only will
we face a mountain of data coming at us from every source imaginable (and some
not so obvious), but we aren’t even sure where to begin, or how to interpret what
we find actually has relative value, or how quickly we should act before the value is
lost? And when we do act, how confident are we with the quality and reliability of
what governments and defense and security agencies often refer to as actionable
intelligence? The reality is that as much as there are noteworthy examples where
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actionable intelligence saved the day, there are just as many instances, if not more,
where it all went horribly wrong because we simply trusted that it was good
enough. Trust, but verify, as former US President Ronald Reagan used to say; and
in today’s fast-paced chaotic environment, a robust and highly intuitive verification
process is fundamental.

In much the same way a pilot flying today’s extraordinarily sophisticated air-
craft, who when encountering a complex flight dynamics problem, is trained to trust
his or her instruments when the natural sensory cues suggest he or she do otherwise,
dealing with today’s complex problems requires an equally robust and highly
federated system of inputs and validations to reduce the risks of making irreversible
or fatal mistakes. This isn’t a criticism on present-day piloting skills, but rather an
acknowledgment that flying these incredibly sophisticated machines is far easier to
do with the best decision-support tools at the pilot’s disposal. Our security envi-
ronment is no different.

Today’s security environments are so multifaceted that the simplest of errors in
judgment or a missing piece or an action out of sequence can have severe conse-
quences. Moreover, where there was once a clear demarcation both in time and
space between, for example, military and civilian objectives, present-day joint and
combined operations now include a variety of state-sponsored and independent
actors, each with specific requirements that further complicate the decision-making
process. The demands on near flawless evidence-based decision making are so
extraordinarily high that tolerance for getting it wrong is virtually zero. Even if
To err is human, forgiveness will surely not be divine when the stakes are so high.
Possessing the right intelligence tools at the right time and for the right circum-
stances is paramount.

Recent Advances in Computational Intelligence in Defense and Security offers a
very practical and intuitive glimpse into the leading-edge science of predicative
analysis in complex problem sets. Using the most advanced Computational
Intelligence (CI) tools and techniques ranging from game theory—to fuzzy logic—
to swarm intelligence (and much more), CI provides both the discipline and depth
to help us foresee and more effectively deal with many of today’s and tomorrow’s
seemingly intractable problems. It is the perfect marriage of art and science, much
in the same way early Artificial Intelligence was envisioned to be—a combination
of both the human experience and machine logic with highly intuitive and
multi-layered rule-based precision.

And finally, while the case studies used in this book may be focused, for the
most part, on Defense and Security, I encourage you to think of CI in a much
broader context. And don’t be fooled by the book’s technical flavor either. While it
may appear to be written by scientists for scientists, it is very much highly rec-
ommended reading for the person(s) who seek to better understand, manage, and
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shape the complex environments that surround them with the help of some of the
most powerful decision-support tools around today. So enjoy the book and see
firsthand the power of Computational Intelligence and begin to imagine the
applications and potential it has to offer in your world.

Rick Pitre
Brigadier-General (Retired)
Royal Canadian Air Force, CD
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Recent Advances in Computational
Intelligence in Defense and Security

Rami Abielmona, Rafael Falcon, Nur Zincir-Heywood
and Hussein Abbass

1 Introduction

Given the rapidly changing and increasingly complex nature of global security, we
continue to witness a remarkable interest within the defense and security commu-
nities in novel, adaptive and resilient techniques that can cope with the challenging
problems arising in this domain. These challenges are brought forth not only by the
overwhelming amount of data reported by a plethora of sensing and tracking modal-
ities, but also by the emergence of innovative classes of decentralized, mass-scale
communication protocols and connectivity frameworks such as cloud computing
[5], sensor and actuator networks [7], intelligent transportation systems [1], wear-
able computing [2] and the Internet of Things [6]. Realizing that traditional tech-
niques have left many important problems unsolved, and in some cases, not ade-
quately addressed, further efforts have to be undertaken in the quest for algorithms
and methodologies that can accurately detect and easily adapt to emerging threats.
Computational Intelligence (CI) [4] lies at the forefront of many algorithmic
breakthroughs that we are witnessing nowadays. This vibrant research discipline
offers a broad set of tools that can deal with the imprecision and uncertainty prevalent
in the real world and can effectively tackle ill-posed problems for which traditional
(i.e., hard computing) schemes do not provide either a feasible or an efficient solu-
tion. The term CI is not exclusive to a single methodology; rather, it acts as a large
umbrella under which several biologically and linguistically motivated techniques
have been developed [3]—some of them enjoying unprecedented popularity these
days [4]. CI has expanded its traditional foundation (pillared on artificial neural net-
works, fuzzy systems and evolutionary computation) to accommodate other related
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2 R. Abielmona et al.

problem-solving approaches that have recently emerged and also functionally pursue
the same goals of tractability, robustness and low solution cost [3, 4], including but
not withstanding: rough sets, multi-valued logic, connectionist systems, swarm intel-
ligence, artificial immune systems, granular computing, game theory, deep learning
and the hybridization of the aforementioned systems.

As arecognition of the influence CI algorithms are increasingly having upon the
security and defense realm, the IEEE Computational Intelligence Society (CIS) cre-
ated a Task Force on Security, Surveillance and Defense' (SSD) in February 2010
to showcase recent and ongoing efforts in the application of CI methods to the SSD
domain. The flagship event organized by the Task Force, as a forum to exchange ideas
and contributions in these topics, is the IEEE Symposium on Computational Intel-
ligence for Security and Defense Applications (CISDA), which originated in 2007
and has been annually held since 2009. Other related initiatives are the Computa-
tional Intelligence for Security, Surveillance and Defense (CISSD) Special Session
held at WCCI 2010/2014 and at SSCI 2011/2013; the Soft Computing applied to
Security and Defense (SoCoSaD) Special Session organized under ECTA 2014; the
Workshop on Genetic and Evolutionary Computation in Defense, Security and Risk
Management held during GECCO 2014 and 2015; and the Canadian Tracking and
Fusion Group (CTFG) annual workshops since 2011.

This volume is another endeavour undertaken by the IEEE CIS SSD Task Force
and a step in the right direction of consolidating and disseminating the role of CI
techniques in the design, development and deployment of security and defense solu-
tions. The book serves as an excellent guide for surveying the state of the art in CI
employed within SSD projects or programs. The reader will find in its pages how
CT has contributed to solve a wide range of challenging problems, ranging from the
detection of buried explosive hazards in a battlefield to the control of unmanned
underwater vehicles, the delivery of superior video analytics for protecting criti-
cal infrastructures or the development of stronger intrusion detection systems and
the design of military surveillance networks, just to name a few. Defense scientists,
industry experts, academicians and practitioners alike (mostly in computer science,
computer engineering, applied mathematics or management information systems)
will all benefit from the wide spectrum of successful application domains compiled
in this volume. Senior undergraduate or graduate students may also discover in this
volume uncharted territory for their own research endeavors.

We received 53 initial submissions in November 2014 as a response to the Call
for Book Chapters, out of which 25 were accepted following the recommendations
emanating from the peer-review process conducted by the Technical Program Com-
mittee composed of 74 experts and researchers in the field from 22 countries. The 25
accepted chapters were co-authored by 75 contributors from the following countries:
Australia (2), Belgium (1), Canada (24), China (1), Cuba (3), India (5), Italy (9),
Saudi Arabia (1), Singapore (3), Spain (7), Thailand (3), Tunisia (1), UK (2) and
USA (13). It is important to note that 73 % of the contributors are affiliated with
academic institutions, 17 % with industry and the remaining 10 % with government.

Thttp://www.ieeeottawa.ca/ci/ssdtf/.
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1.1 Volume Organization

The book is structured into five major parts corresponding to the themes that natu-
rally emerged out of the accepted contributions, i.e., physical, cyber and biometric
security, situational/threat assessment and mission planning/resource optimization.
They are representative of five strategic areas within defense and security that evi-
dence the burgeoning interest of the CI community in developing cutting-edge solu-
tions to entangled problems therein.

Part I: Physical Security and Surveillance [4 chapters]

The problem of detecting buried explosive hazards using forward-looking infrared
and ground-penetrating radar sensors is described in Chap. 2 “Computational intel-
ligence methods in forward-looking explosive hazard detection”. The authors elabo-
rate on the prescreening phase (detection of candidate points in the image) and then
on the classification phase. They report the performance of different approaches in
the latter phase, ranging from kernel methods to more advanced algorithms like deep
belief and convolutional networks to learn new image space features and descriptors.

In the Chap.3 entitled “Classification-driven video analytics for critical
infrastructure protection”, the authors are concerned with alleviating the burden of
an operator that constantly monitors several video feeds to detect suspicious activi-
ties around a secured critical infrastructure. The automated solution proposed in this
chapter extracts the objects of interest (i.e., car, person, bird, ship) from the image
using an iteratively updated background subtraction method, then the object is classi-
fied by an artificial neural network (ANN) coupled to a temporal Bayesian filter. The
next step is determining the behavior of the object, e.g., entering a restricted zone
or stopping and dropping an object. Relevant alerts are issued to the operator should
a suspicious event be identified. The authors tried their approach in the automated
monitoring of a dumpster, a doorway and a port.

A model-based event correlation framework for critical infrastructure surveil-
lance is put forward in Chap. 4 “Fuzzy decision fusion and multiformalism modeling
in physical security monitoring”. The framework named DETECT (DEcision Trig-
gering Event Composer & Tracker) stores detected threat scenarios using event trees
and then recognizes those scenarios in real time. A multiformalism approach for
the evaluation of fuzzy detection probabilities using fuzzy operators upon Bayesian
Networks and Generalized Stochastic Petri Nets is presented. The authors consid-
ered a threat scenario of a terrorist attack in a metro railway station to illustrate the
applicability of their methodology.

Chapter 5 “Intelligent radar signal recognition and classification” investigates a
classification problem for timely and reliable identification of radar signal emitters
by implementing and following an ANN-based approach. The idea is to determine
the type of radar given certain characteristics of its signal described by a group of
attributes (some of them having missing values). Two separate approaches were con-
sidered. In the first one, missing values are removed using listwise deletion and then
a feedforward neural network is used for classification. The other approach leans
on a multiple-imputation method to produce unbiased estimates of the missing data
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before it is passed to the ANN. In both cases, competitive classification accuracies
were obtained.

Part II: Cyber Security and Intrusion Detection Systems [S chapters]
Chapter 6 “An improved decision system for URL accesses based on a rough fea-
ture selection technique” addresses corporate security; in particular, internal security
breaches caused by employees accessing dangerous Internet locations. The authors
propose a classification system that detects anomalous and potentially insecure sit-
uations by learning from existing white (allowed) and black (forbidden) URL lists.
It then decides whether an unseen new URL should be allowed or denied. The sys-
tem’s performance is boosted by the removal of irrelevant features (guided by rough
set theory) and handling class imbalances, with a reported classification accuracy
reaching about 97 %.

Chapter7 “A granular intrusion detection system using rough cognitive net-
works”, the authors designed an intrusion detection system from a Granular Com-
puting angle to classify network traffic as either normal or abnormal. The proposed
methodology relies on rough cognitive networks (RCNs), a recently introduced gran-
ular system that combines the causal representation inherent to fuzzy cognitive maps
with the imprecision-handling abilities provided by rough set theory. The RCN para-
meters are learned from data using Harmony Search as the underlying optimization
engine. RCNs were evaluated against seven other traditional classifiers and were
found to be a competitive model that produces high detection rates and low false
alarm rates.

Chapter 8 “NNCS: randomization and informed search for novel naval cyber
strategies” argues that software security can be improved by providing adequate
degrees of redundancy and diversity to counter both hardware and software faults.
The proposed scheme relies on component rule bases written in a schema-based Very
High Level Language. Deviations from the constructed model are likely indicators
of a cyber attack. The authors illustrate the benefits of their proposal with a battle
management example.

Developing classifiers that can identify sophisticated types of cyber attacks is
the main goal of Chap. 9 “Semi-supervised classification system for the detection of
Advanced Persistent Threats”. The authors define an anomaly score metric to detect
the most anomalous subsets of traffic data. The human expert is then required to label
the instances within this set, after which a classifier is built based on both labeled and
unlabeled data. Genetic programming, decision trees and support vector machines
were independently used to construct the classifier.

Chapter 10 “A benchmarking study on stream network traffic analysis using active
learning” aims at comparing the performance of previously existing active learning
and query budgeting strategies as well as an adaptive ANN approach on streaming
network traffic to detect malicious network activity such as botnets. The analysis
revolves around two new metrics that account for class imbalance as well as the
traditional accuracy and detection rate measures. Results are quite encouraging and
confirm that the Hoeffding Tree classifier behaves particularly well on the data sets
under consideration.
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Part I1I: Biometric Security and Authentication Systems [5 chapters]
Handwritten signatures have long been used as an authentication system given that
they are intrinsically endowed with specificity related to an individual. In Chap. 11
“Visualization of handwritten signatures based on haptic information”, the authors
discuss how to integrate haptic technologies to capture other aspects like kinesthetic
and tactile feedback from the user. The study is centered around visualizing and
understanding the internal structure of the haptic data (position, force, torque and
orientation) in an unsupervised fashion. Special emphasis is made on several dimen-
sionality reduction methods, including CI-based ISOMAP and Genetic Program-
ming.

Reducing the number of false positives in a biometric identification system is at
the heart of Chap. 12 “Extended metacognitive neuro-fuzzy inference system for bio-
metric identification”. The authors introduce a neurofuzzy inference system along
with a sequential evolving learning algorithm as a cognitive component of an archi-
tecture that also features a metacognitive component. The latter is responsible for
actively regulating the learning of the cognitive component by deciding what, when
and how to learn from the available data. The proposed architecture is first bench-
marked on a set of medical datasets and then on two real-world biometric security
applications, namely signature verification and fingerprint recognition. The compar-
ison with four other authentication systems confirms that the proposed architecture
yields a superior performance.

Travel documentation at this time relies either on paper documents or on elec-
tronic systems requiring connectivity to core servers and databases for verification
purposes. Chapter 13 “Privacy, security and convenience: biometric encryption for
smartphone-based electronic travel documents” proposes a new paradigm for issu-
ing, storing and verifying travel documents. This smartphone-based approach enables
anew kind of biometric checkpoint to be placed at key points throughout the interna-
tional voyage that does not require storage of biometric information, which simplifies
things from a policy and privacy perspective. The authors expect their architecture
to enhance system security as well as the privacy and convenience of international
travelers.

Digital watermarking allows enforcing authenticity and integrity of an image,
which is a major security concern for many industries. The optimization of the
embedding parameters for a bi-tonal watermarking system is pursued in Chap. 14 “A
dual-purpose memory approach for dynamic particle swarm optimization of recur-
rent problems”. The authors propose a memory-based Dynamic Particle Swarm
Optimization method. This memory can operate in either generative or regression
mode and is implemented via a Gaussian Mixture Model of candidate solutions
estimated in the optimization space, which provides a compact representation of
previously found PSO solutions. Results indicate that the computational burden of
this watermarking problem is reduced by up to 90.4 % with negligible impact on
accuracy.

Chapter 15 “Risk assessment in authentication machines” presents an approach
for building a risk profiler for use in authentication machines. The proposed risk
profiler provides a risk assessment at all phases of the authentication machine
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life-cycle. The key idea is to utilize the advantages of belief networks to solve large-
scale multi-source fusion problems. The authors have extended the abilities of belief
networks by incorporating Dempster-Shafer Theory measures. The main goal is to
increase the reliability of security risk assessment for authentication machines using
the computational-intelligence-based fusion of results from different models, met-
rics, and philosophies of decision-making under uncertainty.

Part I'V: Situational Awareness and Threat Assessment [5 chapters]

To counter piracy attempts, maritime operators need to quickly and effectively
allocate some mobile resources (defender units) to assist a target given the avail-
able information about the attackers. In Chap. 16 “Game theoretical approach for
dynamic active patrolling in a counter-piracy framework”, the authors introduce a
decision support system (DSS) to that end. The DSS has been designed using Game
Theory in order to handle the attractiveness of targets and model strategies for attack-
ers and defenders. Game Theory has proved to be a robust tool to identify the best
strategy for the defenders given the information and capabilities of opponents. In
the proposed framework, the optimal strategy is modeled as the equilibrium of a
time-varying Bayesian-Stackelberg game.

A naval mine is an underwater explosive device meant to damage or destroy sur-
face ships or submarines. An influence mine is a type of naval mine that is trig-
gered by the influence of a vessel or submarine rather than requiring direct contact
with it. The ship classification unit (SCU) of an influence mine determines whether
the sensed vessel is a target or not, which will cause it to detonate accordingly. In
Chap. 17 “mspMEA: the microcones separation parallel multiobjective evolutionary
algorithm and its application to fuzzy rule-based ship classification”, the author uses
a parallel multiobjective evolutionary algorithm (MOEA) based on the concept of
microcones to speed up the optimization of the fuzzy rule-based classifiers used to
emulate the SCU contained in modern influence mines. A speedup factor of 16.58 %
was achieved over a cone-based MOEA algorithm.

Detecting a target in a Synthetic Aperture Radar (SAR) image is a challenging
issue since SAR images do not look similar to optical images at all. In Chap. 18
“Synthetic aperture radar (SAR) automatic target recognition (ATR) using fuzzy
co-occurrence matrix texture features”, the authors put forward a methodology for
detecting three types of military vehicles from SAR images without using any pre-
processing methods. The texture features generated from the fuzzy co-occurrence
matrix are passed on to a multi-class SVM and to a radial basis function (RBF) neural
network. The ensemble average is utilized as an information fusion tool. The classi-
fication results are superior to those obtained via gray level co-occurrence matrices.

Text mining techniques are important for security and defense applications since
they allow detecting possible threats to security and public safety (such as mentions
of terrorist activities or extremist/radical texts). Chapter 19 “Text mining in social
media for security threats” discusses information extraction techniques from social
media texts (Twitter in particular) and showcases two applications that make use of
these techniques: (1) extracting the locations mentioned in tweets and (2) inferring
the users’ location based on all the tweets generated by each user. The former task
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is accomplished via a sequence-based classifier followed by disambiguation rules
whereas the latter is tackled through deep neural networks.

The increasing worldwide use of mobile devices has also sparked a growing num-
ber of malware apps that should be automatically flagged and vetted by security
researchers. Chapter 20 “DroidAnalyst: synergic Android framework for static and
dynamic app analysis” features an automated web-based app vetting and malware
analysis framework for Android devices that integrates the synergy of static and
dynamic analysis to improve the accuracy and efficiency of the identification process.
DroidAnalyst generates a unified analysis model that combines the strengths of the
complementary approaches with multiple detection methods to boost the app code
analysis. Machine learning methods such as random forests are employed to gener-
ate a set of features with multiple detection methods based on the static and dynamic
module analysis.

Part V: Strategic/Mission Planning and Resource Management

[6 chapters]

Chapter 21 “Design and development of intelligent military training systems and
wargames” elaborates on an architectural approach for designing composable, multi-
service and joint wargames that can meet the requirements of several military estab-
lishments. This architecture is realized by the design and development of common
components that are reused across applications and variable components that are
customizable to different training establishments’ training simulators. Some of the
important CI techniques (such as fuzzy cognitive maps, game trees, case-based rea-
soning, genetic algorithms and fuzzy rule-based systems) that are used to design
these wargame components are explained with suitable examples, followed by their
applications to two specific cases of Joint Warfare Simulation System and an Inte-
grated Air Defence Simulation System for air-land battles.

Due to operational requirements, helicopters are now being frequently used for
missions beyond what their original design permits. There is thus the need to moni-
tor their usage and more accurately determine the life of its critical components. The
methodology outlined in Chap. 22 “Improving load signal and fatigue life estimation
for helicopter components using computational intelligence techniques” enables the
prediction of the load signals (i.e., the time-varying measurement of the load) on the
helicopter components using existing flight data and avoiding the installation of addi-
tional sensors. The prediction is performed by means of CI techniques (e.g., fuzzy
sets, neural networks, evolutionary algorithms) and statistical techniques (e.g., resid-
ual variance analysis). The predicted load signals then form the basis for estimating
the fatigue life of the component, i.e., the length of time that the component can be
safely operated with minimal or acceptable risk of failure. The presented techniques
certainly attained a more accurate prediction of the peak values in the load signal.

Defense and security organizations rely on the use of scenarios for a wide range of
activities. Scenarios normally take the form of linguistic stories, whereby a picture of
a context is painted using storytelling principles. In Chap. 23 “Evolving narrations of
strategic defense and security scenarios for computational scenario planning”, the
authors illustrate how evolutionary computation techniques can be used to evolve
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different narrations of a strategic story. A representation of a story is put forth that
allows evolution to operate on it in a simple manner. Through a set of linguistic
constraints and transformations, it is guaranteed that any random chromosome gets
transformed into a unique coherent and causally consistent story. The same repre-
sentation could be used to design simulation models that evaluate these stories. The
proposed approach paves the way for automating the evaluation process of defense
and security scenarios on multiple levels of resolution, starting from a grand strategic
level down to a tactical level.

Chapter 24 “A review of the use of computational intelligence in the design of
military surveillance networks” surveys the state of the art in the application of CI
methods to design various types of sensor networks, including wireless/fixed sensor,
mobile ad hoc and cellular networks, as these constitute the backbone for realiz-
ing Intelligence, Surveillance and Reconnaissance (ISR) military operations. The
authors also list important defense and security applications of these networked sys-
tems, review the CI methods and their usage and outline a number of research chal-
lenges and future directions.

Given the prolific number of sensing modalities available nowadays, determin-
ing on which platform a sensor should be mounted to collect measurements dur-
ing the next observation period is far from being a trivial task. Chapter 25 “Sensor
resource management: intelligent multi-objective modularized optimization method-
ology and models” proposes a new sensor tasking framework named OPTIMA that
aims at solving this problem. OPTIMA features a Sensor Resource Analyzer mod-
ule and a Sensor Tasking Algorithm (Tasker) module. The latter leans on multiob-
jective evolutionary optimization methods to consider timing constraints, resolution
and geometric differences among the sensors with the goal of fulfilling some tasking
requirements related to maximizing the available sensor resources for search, opti-
mizing sensor resources for tracking and better defending the high-priority assets.

Chapter 26 entitled “Bio-inspired topology control mechanism for unmanned
underwater vehicles” addresses the problem of having a group of unmanned under-
water vehicles (UUVs) cooperatively self-organize in order to protect valued assets
in unknown 3D underwater spaces. The topology control mechanism is rooted in
particle swarm optimization and employs Yao-graph-inspired metrics to craft its
fitness function. The self-organization protocol only requires neigborhood-limited
UUYV information to collectively guide the UUVs to make movement decisions in
these unknown 3D spaces. The algorithm is able to provide a user-defined level of
protection for different maritime vessel applications. The proposed methodology is
illustrated with three examples: (1) uniform coverage of the underside of a mar-
itime vessel; (2) plane formation to cover a given dimension in the 3D space and
(3) forming a sphere around a given asset such as a fully submerged submarine while
maintaining connectivity.

Our hope is that the wealth of technical contributions gathered in this book helps
create further momentum and drive forward many other theoretical and practical
aspects of the fascinating synergy between CI methods and the defense and security
problem spaces. Enjoy the reading!
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Computational Intelligence Methods
in Forward-Looking Explosive Hazard
Detection

Timothy C. Havens, Derek T. Anderson, Kevin Stone, John Becker
and Anthony J. Pinar

Abstract This chapter discusses several methods for forward-looking (FL) explo-
sive hazard detection (EHD) using FL infrared (FLIR) and FL ground penetrating
radar (FLGPR). The challenge in detecting explosive hazards with FL sensors is
that there are multiple types of targets buried at different depths in a highly-cluttered
environment. A wide array of target and clutter signatures exist, which makes detec-
tion algorithm design difficult. Recent work in this application has focused on fusion
methods, including fusion of multiple modalities of sensors (e.g., GPR and IR),
fusion of multiple frequency sub-band images in FLGPR, and feature-level fusion
using multiple kernel and iECO learning. For this chapter, we will demonstrate
several types of EHD techniques, including kernel methods such as support vec-
tor machines (SVMs), multiple kernel learning MKL, and feature learning methods,
including deep learners and iECO learning. We demonstrate the performance of sev-
eral algorithms using FLGPR and FLIR data collected at a US Army test site. The
summary of this work is that deep belief networks and evolutionary approaches to
feature learning were shown to be very effective both for FLGPR and FLIR based
EHD.

Keywords Sensor fusion * Explosive hazard detection + Aggregation * Multiple
kernel learning * Deep learning * Fuzzy integral
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1 Introduction

An important goal for the U.S. Army is remediating the threats of explosive haz-
ards as these devices cause uncountable deaths and injuries to both Civilians and
Soldiers throughout the world. Since 2008, explosive hazard attacks in Afghanistan
have wounded or killed nearly 10,000 U.S. Soldiers; worldwide, explosive devices on
average cause 310 deaths and 833 wounded per month [25]. Systems that detect these
threats have included ground-penetrating-radar (GPR), infrared (IR) and visible-
spectrum cameras, and acoustic technologies [9, 10, 37]. Past research has exam-
ined both handheld and vehicle-mounted systems and much progress has been made
in increasing detection capabilities [7, 14]. Forward-looking (FL) systems are an
especially attractive technology because of their ability to detect hazards before
they are encountered; standoff distances can range from a few to tens of meters.
A drawback of forward-looking systems is that they are not only sensitive to explo-
sive devices, unexploded ordnance (UXO), and landmines, but also to other objects,
both above and below the ground. Because these sensors are standoff sensors, the
area being examined for targets is much larger than with downward-looking sys-
tems. Thus, clutter is a serious concern. Furthermore, the explosive hazard threat is
very diverse—they are made from many different materials, including wood, plastic,
and metal, and come in many different shapes and sizes—and this threat continues to
evolve. This means that it is nearly impossible to detect explosive hazards solely by a
modeling-based approach, and, hence, computational intelligence (CI) methods are
very appropriate. Previous work has shown that if forward-looking infrared (FLIR)
or visible-spectrum imagery is combined with L-band FLGPR, false alarm (FA)
rates can be reduced significantly [2, 16, 18, 19, 44, 45]. Hence, we focus on CI
methods for sensor-fused forward-looking detection of explosive threats, comparing
CI to other machine learning approaches.

The structure of the remainder of this study is as follows. Section 2.2 describes
the preprocessing of the sensor data into a format that is ready for prescreening
and feature extraction. The prescreener algorithms are described in Sect. 2.3, and
the feature extraction is detailed in Sect. 2.4. In Sect. 3 we describe kernel learning
methods, including support vector machine (SVM)-based methods, multiple kernel
(MK) methods, and a fuzzy integral-based MK learner. Methods that learn the fea-
tures implicitly, such as deep belief networks (DBNS), convolutional neural networks
(CNNs), and iECO feature learning, are described in Sect. 4. Results for the various
learning algorithms will be presented in the respective parts of Sects.3 and 4. We
summarize in Sect. 5. Table 1 contains the acronyms used in this chapter. Next, we
describe the sensing technologies used to demonstrate the various EHD algorithms
in this chapter.
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Table1 Acronyms

UXxo Unexploded ordnance EHD Explosive hazard detection

GPR Ground-penetrating radar IR Infrared

FL forward looking DL Downward looking

LW long-wave MW Mid-wave

UTM Universal traverse mercator CI Computational intelligence

FA False alarm ROC Receiver operating characteristic

MK Multiple kernel SK Single kernel

MKLGL | MK learning-group lasso SVM Support vector machine

FIMKL | Fuzzy integral MKL CNN Convolutional neural network

RBM Restricted Boltzmann machine DBN Deep belief network

CFAR | Constant false-alarm rate NAUC | Normalized area under the curve

iECO Improved evolution constructed CLAHE | Contrast-limited adaptive histogram
equalization

HOG Histogram of oriented gradients LBP Local binary patterns

MSER | Maximally stable extramal regions | GMM Gaussian mixture models

SIFT Scale-invariant feature transform AOI Area of interest

2 Explosive Hazard Detection: Background Knowledge

2.1 Sensing Technologies for FLEHD

FLGPR GPR has long been an interest to the U.S. Army for EHD, and downward-
looking (DL) systems have been shown to be very effective in operational scenarios.
However, DL systems fail to provide a standoff range from the threat; the array is
located directly above the threat upon detection. Hence, there has been much focus on
improving standoff distances by using FL systems. FLGPR aims to improve standoff
by aiming the GPR array forward, often with the center of the beam aimed 10-15 m
in front of the vehicle. Since the angle of incidence at which the beam hits the ground
surface is important for penetration—the more orthogonal the beam is to the surface,
the better the ground penetration—the arrays are usually built on some type of boom
above the vehicle. Still, due to the geometry of the FL problem, much array energy is
lost to specular reflection from the ground surface. Hence, FLGPR signal-fo-noise
ratios (SNRs) are not nearly as good as with DLGPR systems. Furthermore, the
index of refraction of the soil is significantly different than that of the air, which
causes a refraction—or bending—of the radar beam at the ground surface, further
complicating image formation. These, and other challenges, mean that FLGPR-based
EHD is not as simple as looking for local regions of high intensity; more complex
EHD strategies are necessary. We talk about several approaches in this chapter.
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Fig. 1 FLGPRs under research and development for use in EHD. a ALARIC L-B and FLGPR.
b L/X-Band FLGPR

Many FLGPR systems have been designed specifically for EHD, including the
two shown in Fig. 1. View (a) shows the ALARIC system, which combines an L-
band FLGPR and a visible spectrum imaging system, while (b) shows an FLGPR that
combines L- and X-band radar arrays. The FLGPR results shown in this chapter will
focus on data recorded with the L/X-band system shown in Fig. 1b. The government-
furnished FLGPR data is composed of complex radar data as well as motion data of
the vehicle from several lanes at an arid U.S. Army test site.

FLIR While numerous frequency ranges in the infrared portion of the electromag-
netic spectrum have been investigated for EHD, e.g., mid-wave IR (MWIR) and com-
binations of IR bands for “disturbed earth” detection, we focus on recent advance-
ments in anomaly detection in long-wave IR (LWIR). However, without loss of gen-
erality the vast majority of mathematics and algorithms discussed herein are natu-
rally applicable to both MWIR and LWIR imagery with little-to-no change. LWIR
or thermal imagers are passive (i.e., they do not require illuminators) and detect
infrared radiation in approximately the 8—14 wm wavelength. Objects with a tem-
perature above absolute zero emit infrared radiation in this range at their surface.
The amount of emitted thermal radiation increases with temperature. The exact rela-
tionship between an object’s temperature and the amount of emitted thermal radia-
tion depends on the emissivity, a quantity representing a material’s ability to emit
thermal radiation that varies with wavelength. A thermal imager actually sees not
only the emitted radiation of the object, but also transmitted radiation, i.e., radia-
tion from an external source which passes through the object toward the imager,
and/or reflected radiation, i.e., radiation from an external source which reflects off
the object toward the imager. These factors complicate assigning absolute tempera-
ture values to objects. However, in EHD we can exploit the fact that buried objects
will likely possess a different thermal conductivity, thermal capacity, or density than
the surrounding soil, resulting in either a cooling or warming of the soil immediately
surrounding the object. This most often leads to a change in temperature at the sur-
face above the object and results in a measurable change in the amount of emitted



Computational Intelligence Methods in Forward-Looking ... 17

Fig. 2 Example of thermal scarring in FLIR with targets of varying difficulty at a fixed vehicle
stand off distance. (left) NVESD FLEHD multi-sensor ground vehicle platform, (top row) LWIR
and (bottom row) MWIR imagery. Columns are different (center aligned) targets co-registered in
MWIR and LWIR. Note, the MWIR camera has a higher resolution (more pixels on target)

thermal radiation compared to areas of the ground free of such objects. Figure 2
shows this phenomenon, referred to in many circles as thermal scarring.

However, FLIR is not without flaw. One challenge is diurnal cross-over, the time-
period during which the buried object comes to near thermal equilibrium with its
surroundings making targets, for all intents, unidentifiable. Another factor is the dif-
ference in emitted radiance seen at the soil surface (even for the same soil compo-
sition and object) varies based on factors such as the amount of incident thermal
radiation, which is dependent on time of day, time of year, and current weather con-
ditions. These are just some of the factors that emphasize the need to include and
fuse different sensing technologies to solve this extremely challenging real-world
problem.

The FLIR data used in our experiments was collected from two cameras. The first
camera, called DVE, was uncooled and used the DRS Infrared Technologies U6000
microbolometer detector which has a spectral response of 8—14 wm. The DVE cam-
era captured 8-bit single channel imagery with a resolution of 640 X 480, and hor-
izontal and vertical fields of view of 40 and 30°, respectively. The second camera
was a SELEX L20, which produces a 16 bit single channel image with resolution
640 x 512. The SELEX camera had a spectral response of 8—10 pm, and horizontal
and vertical fields of view of 15 and 12°, respectively. Both cameras were mounted
on a mast at the back of the vehicle as shown in Fig. 2. The mast height was approxi-
mately 3.35 m and had a downward look angle of 6.3°. An inertial navigation system
was mounted next to the cameras, and the time at which each image was captured
was recorded. This allowed precise georeferencing using the dense 3D scene recon-
struction technique described in [46].

The government-furnished data consists of numerous runs from three lanes at an
arid U.S. Army test site. The number of targets per lane varied from 44 to 79, and
the area of the lanes ranged from 3,600—4,200 square meters. Emplaced targets were
buried between 1-6in. deep, and varied in metal content (some had no metal).
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2.2 Sensor Processing

FLGPR Preprocessing We use a backpropagation procedure to form the radar
images (see [15] for a detailed description of the imaging algorithm). In brief,
the radar images are formed by coherently summing successive backpropagation
images, accounting for platform motion effects on phase and beam pattern effects.
The images are formed on a 2.5 cm-spaced grid for each antenna polarization. We
also apply a phase correction to the L-band FLGPR to account for vehicle motion
during the swept-frequency transmission [4]. The end results of the FLGPR imaging
and preprocessing are complex images for each of the L- and X-band polarizations
on a rectangular grid coordinate system. In Sect. 2.3, we discuss how we take each
FLGPR image I,(u, v) and indicate candidate detections.

FLIR Preprocessing Numerous algorithms have been applied to the government-
furnished FLIR data for preprocessing. However, these algorithms are not the subject
of investigation in this chapter as they are not focused on CI. The reader can refer
to [3, 42, 43, 46] for more details. In general, these preprocessing algorithms are
focused on deinterlacing, denoising, and global or local contrast enhancement. For
the DVE images, preprocessing typically consists of deinterlacing, denoising, and
contrast limited adaptive histogram equalization (CLAHE) [3]. For the SELEX, the
16-bit data was converted to 8-bit by contrast stretching, with saturation limits at
0.05 and 99.95 percent of the original pixel values, so the resulting values filled the
entire 16-bit range. After contrast stretching the pixel values were divided by 256
and CLAHE was run. Next we describe how the initial hit locations are determined.

2.3 Prescreeners

Prescreener is a term used for a weak detection scheme by which candidate detections
are found and passed on to stronger classification algorithms. The main ideas are to
(i) reduce the computational load of the classificaiton algorithms, and (ii) improve
classification accuracy by only training on target-like candidate detections.

FLGPR Prescreener The result of the radar preprocessing method described in the
Sect. 2.2 is a coherently integrated image (i, v), where (u, v) are the image coordi-
nates: one image for each polarization of the L-band FLGPR (HH and V'V polariza-
tions) and one image of the X-band FLGPR (VV polarization). It is well known that
penetration depth increases with wavelength; hence, the L-band will have a deeper
penetration than the X-band radar. Thus, we use the L-band radar as the detection
radar for the method proposed here; although, we will show results for X-band detec-
tion and classification too.

The prescreening detector is the first algorithm that indicates candidate detection
locations—a block diagram is shown in Fig.3a. In [15], we proposed two meth-
ods to indicate the presence of a target, both of which could be considered to be
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Fig. 3 a Block diagram of prescreener detection algorithm. b Elliptical convolution kernels used
in prescreener. Detection is indicated by comparing the distribution of pixel intensities in inner
ellipse to the distribution of pixel intensities in outer halo [15]

a constant FA rate (CFAR) detector. The first prescreener indicates a hit by taking
the mean of the pixels in the inner ellipse and comparing that to the mean of the
pixels in the outer halo (as shown in Fig. 3b. Essentially, the prescreener identifies
regions that have values that are higher than the surrounding regions. The second
prescreener uses a signed Bhattacharyya distance between the distributions of the
pixel values in the center region and outer halo to indicate a hit. For a more detailed
description of these prescreeners, see [15]. In our experiments, we have determined
the following prescreener parameters to be good choices for this system: down-range
radius = 0.25 m; cross-range radius = 0.5 m; and halo width = 0.75 m. These values
are related to the impulse-response of the FLGPR system and to expected target sizes.
Furthermore, for this chapter we will only present results for the difference-of-means
prescreener, which has been shown to be more effective than the Bhattacharyya pre-
screener for FLGPR data [15].

One could simply threshold the output of the prescreener to indicate a detection;
however, this can result in many detections in one local region. Hence, we use a max-
imum order-filter with a 3 m (cross-range) by 1m (down-range) rectangular kernel
to reduce the presence of closely grouped hits. The prescreeners are rough first-look
algorithms for indicating candidate detections—they merely indicate if a region of
pixels is different in intensity than the surrounding pixels. They do not, however,
consider higher-level features, such as texture or shape, that might indicate better
the difference between clutter and true detections. Hence, at each detection location,
we then extract a set of shape- or texture-based features, described in Sect. 2.4.
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FLIR Prescreener In [2], we outlined a FLIR prescreener for EHD which was later
extended to FLGPR in [46]. This prescreener consists of an ensemble of trainable
size-contrast (CFAR) filters, i.e., local dual sliding window detectors. Each size-
contrast filter has seven parameters: the inner window height and width, the pad
height and width (which determine the size of the outer window), a Bhattacharyya
distance threshold, a squared difference between the mean values threshold, and three
state parameters, referred to as DType (which determines whether the detector will
trigger only on bright on dark regions, dark on bright regions, or both). At each
pixel, the mean and variance of the inner and outer windows are computed, the
Bhattacharyya distance and squared difference between the mean values is calcu-
lated and these two values are compared against their corresponding threshold. If
both values are greater than their threshold, and the DType condition is met, then
the corresponding detector fires. When a detector fires, it projects the inner window
center pixel coordinate into UTM coordinates. Next, a clustering algorithm is run
on all UTM coordinates generated from individual frames. Specifically, mean-shift,
a mode seeking clustering algorithm, with an Epanechnikov kernel is used. Mean-
shift was chosen as the application requires a fast clustering algorithm (in the offline
training phase, the algorithm has to run hundreds of thousands of times on potentially
large data sets: 10,000+ points) that also does not require the user to set the number
of clusters. We have compare mean-shift results to the basic sequential algorithmic
scheme and did not see a significant different in performance. Herein, this clustering
step is referred to as spatial mean-shift, and it results in candidate hit locations. Next,
mean-shift is run a second time on the hit locations from the combination of multiple
frames (this is referred to as temporal mean-shift). Each mean-shift step requires two
parameters: the kernel bandwidth and the minimum number of points around a peak
in order to keep that cluster. Mean-shift works by performing gradient ascent on the
kernel density estimator,

N
fo) = YK (xi=), K (=) = k(g =), M

i=1

where K is the kernel function, N is the number of data points, and normalizing
constants have been omitted for brevity. Taking the gradient of this function with
respect to x and setting it to zero results in the following (well known) iterative update
equation:

XL (= x1?) x
K (Il - xl12)

where, kK’ (x) denotes the derivative of k (x) with respect to x, and ¢ denotes the itera-
tion. For the Epanechnikov kernel with bandwidth parameter /4, the update equation

reduces to: 5
xeL Xi 1-Y 0<v<h
X =——, k,,,(v)= h - T 3
t+1 |L| D ( ) {0 else ( )

2

Xtt1
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Fig. 4 Illustration of FLIR prescreener, which uses an ensemble of detectors (trained under dif-
ferent criteria) and spatial and temporal weighted mean-shift

where L is the set of all points for which k,,, is non-zero and | - | is cardinality.
Mean-shift is initialized at every hit location, and the update procedure is run until
convergence. For this application, convergence is defined as a change of less than
1 cm between updates (remember that the points are in UTM coordinates). Refer
to [46] for additional algorithm speedups. Figure 4 illustrates the proposed FLIR
prescreener.

A genetic algorithm (GA) is used to learn the detector parameters. To this end,
we explored two methodologies. The first, referred to as one-per-rate, trains a single
detector for each desired detection rate. The primary objective of the GA is to achieve
the desired detection rate with the secondary objective of minimizing the false alarm
rate (FAR). In [2], 19 detectors were trained at desired detection rates ranging from
0.05 to 0.95 in step sizes of 0.05. The idea behind training many detectors is that
the resulting ROC curve after fusion should be better than if a single detector were
trained and only its thresholds allowed to vary. The second method, referred to as
one-per-target, trains a single detector for each ground truth encounter in the train-
ing data. The primary objective of this GA is to detect the specific target with the
secondary objective of minimizing the FAR. For both cases, weighted mean-shift is
used to fuse the detectors (each trained with a different objective function). A weight
is learned for each detector using separable covariance matrix adaptation evolution
strategy such that the normalized area under the curve (NAUC) is maximized on the
training data. Reference [2] reports the learned detector parameters and aggregation
weights for a prior experiment.

In [46], a few improvements to the above FLIR prescreener were outlined. The
first improvement was allowing confidence information to be passed from the size-
contrast filter to the spatial mean-shift step and from the spatial mean-shift step to
the temporal mean-shift step. Previously, UTM coordinates resulting from a size-
contrast filter triggering were treated identically during spatial mean-shift. However,
this discards the Bhattacharyya distance and mean difference information which is
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useful for locating the strongest response, which generally corresponds to the center
of the object. Likewise, information about the peaks found during spatial mean-shift,
such as the number of points surrounding each peak, could be useful for the temporal
mean-shift step. To remedy this, mean-shift was replaced with weighted mean-shift
in both steps, and two new parameters were added to each detector to control whether
confidence information is passed on. This leaves it up to the GA to decide if the con-
fidence information is useful. The second improvement was the introduction of a dif-
ferent grouping algorithm as an alternative to weighted mean-shift. The alternative
method, also proposed in [46], is an ordered filter approach inspired by the MUFL
FLGPR prescreener introduced in [16]. Lastly, the separable CMA-ES optimization
for finding weights for the weighted mean-shift step which combines detectors was
eliminated as it tended to overfit the training data. Instead, three heuristics were used
to generate weights, and the set of weights which performs best in terms of NAUC
on the training data was chosen. The first method assigns equal weight to all detec-
tors; the second method assigns weights based on detection rate and the third method
assigns weights based on FAR.

2.4 Feature Extraction

While our FLIR and FLGPR prescreeners achieve relatively high positive detec-
tion rates, meaning they often do better than what an expert can identify visually,
they still suffer from an unacceptable FAR (relative to U.S. Army requirements). In
order to address this deficiency, we have explored, extended and created a number
of new image space features and descriptors, including convolutional neural net-
works (CNNs) [43], improved Evolution COnstructed iIECO) features [38], “soft”
(importance map weighted) features [42], histogram of cell-structured Gabor energy
filter and Shearlet filter bank responses [38, 46], histogram of gradients (HOG) [32]
and local binary pattern (LBP) [15, 17, 35] and “soft” edge histogram descriptor
features [2, 46]. In [2], additional anomaly evidence map features in FLIR were pro-
posed, which include features from maximally stable extremal regions (MSERs) [33]
and Gaussian mixture models (GMMs) [41] for change detection. Unlike a CFAR
(or size-contrast) filter, which is often utilized as a local contrast feature, the above
image space features focus on texture and shape. In addition, we do not use features
“directly”, e.g., a single image gradient. Instead, high(er)-level image space descrip-
tors are formed by “pooling” features within a given spatial area of interest (AOI),
e.g., HOGs, LBPs, or edge descriptors. Furthermore, it is important to not just sim-
ply extract features and pool their values over a large spatial AOI as that often leads
to ambiguous configurations of patterns. Instead, we preserve the spatial properties
of image patterns by using a cell-structured (partially overlapping to allow patterns
to drift some in translation across detections) grid for a given AOL It is usually of
great benefit to extract features at different scales in a given AOI, e.g., multi-scale
HOG. Convention is to concatenate these multi-scale and multi-cell features together
into a single long feature vector of high dimensionality and let a classifier (or fea-
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Fig. 5 Multiple cell-structured configurations for feature extraction at a single scale to preserve
the spatial context of features. Note that cells are not shown as overlapping for visual simplicity

ture selection algorithm) learn which are most relevant to a particular task at hand.
Figure 5 shows the use of multiple cells at a single scale.

The first feature introduced is the LBP. The LBP is a sort of texture or pattern
feature and it is calculated at each pixel according to

n

LBP, =Y s (iy —i.)2",
k=0

where LBP, is the LBP code, i. is the window center value, i, is the value of the
kth neighbor and function s(x) is 1 if x > 0 and 0 otherwise. Ojala extended the
LBP for neighborhoods of different shapes and sizes [35]. The circular (radius r)
neighborhood version, LBP,, , includes bilinearly interpolating values at non-integer
image coordinates. Ojala also observed that there is a limited number of transitions
or discontinuities in the circular presentation of 3 X 3 texture patterns and that these
uniform patterns, LBP! , are fundamental properties of local image texture, meaning
they provide the vast rﬁajority of all patterns (accounting for 90 % at u = 2). The u
stands for no more than u# 0-1 or 1-0 transitions, e.g., 00011110 has 2 transitions
and 00101001 has 5 transitions. Last, the LBP is turned into a descriptor by binning
the patterns into a histogram over an AOI. For example, for # = 2 there are only 59
patterns (thus histogram bins) for a neighborhood of size 8. In addition, Ojala put
forth a rotation robust version that consists of shifting the binary patterns until there
is a 1 in the first digit [35]. This reduces the number of patterns for a neighborhood
size of 8 to only 9. Last, most normalize the resultant histogram by its £, or £,-norm.

Another feature is the famous HOG, popularized by David Lowe in the scale
invariant feature transform (SIFT); however it was first explored by Edelman in the
context of wet science and later popularized by Dalal-Triggs for HOG-based person
detection [11]. Itis important to note that SIFT technically consists of keypoint detec-
tion, a feature descriptor and detection. The HOG (the feature descriptor in SIFT)
involves the extraction of a gradient vector per pixel in an image. For a given AOI,
one computes the magnitude of each gradient, ||(dI(x,y)/0x, dl(x,y)/dy)||, and its
respective orientation. A histogram of B bins (a user defined or learned parameter)
is specified and each pixel’s gradient magnitude, per cell, is added to the bin with
respect to its orientation. For example, for 360° and 8 bins each bin spans 45° and for
a cell structured configuration of 4 X 4 we obtain a 128-length feature vector. Note,
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convention involves bilinearly interpolating each gradient magnitude for the closest
and next closest bin. Also, while SIFT identifies and then rotates the descriptor with
respect to its major orientation bin(s), this is an optional step that the user must deter-
mine relative to the given detection task at hand. In our FLEHD investigations, we
do not perform the rotation step.

In [46], we proposed a “soft” edge histogram descriptor feature. The edge his-
togram descriptor is inspired by the MPEG-7 edge histogram descriptor, which has
five simple convolution operators that represent vertical, horizontal, diagonal, anti-
diagonal and non-directional edge classes. The operators for the first four classes
closely resemble the standard Sobel and Prewitt edge operators. At each pixel, the
five operators are applied and the absolute value of the response to each is computed.
The pixel is assigned to the class of the operator generating the largest response. In
[46], we extended this feature to make it less sensitive to noise. We allow a pixel to
contribute to all classes by creating a histogram at each pixel location and we accu-
mulate the individual pixel histograms inside a window to form the final descriptor.
A pixel’s histogram is constructed by computing the absolute value of the response
to each of the edge convolution operators and then dividing each of those values by
the sum, i.e. taking the /; norm. Linear interpolation is performed to distribute the
pixel’s contribution between the edge classes and the non-edge class by comparing
the sum of the absolute values of the operator responses to the edge threshold. If the
sum is greater than or equal to the edge threshold then the non-edge class is assigned
zero. Otherwise, the non-edge class is assigned one minus the fractional value of
the sum divided by the edge threshold, and that fractional value is multiplied to the
value of each of the edge classes in the histogram. We introduced a further change,
the addition of two new edge masks; making the total descriptor length seven. We
extract two edge histogram descriptors per cell using edge thresholds of 15 and 35.
Therefore, edge histogram descriptor gives 7 X 2 = 14 features per cell.

In [40, 42], we created a softened version of the HOG, LBP, and edge histogram
descriptor based on the extraction and utilization of an importance map. An impor-
tance map, one per each image, is simply a [0, 1]-valued image that is the same size
as the original image. Each pixel in an importance map informs us about the rele-
vance or significance of that pixel for a given task at hand. The importance map is
used to weight features, such as HOGs and LBPs, as they are added to a descriptor
like a histogram. The motivation for importance maps is that current image space
descriptors unfortunately extract both background (e.g., clutter, tire tracks, foliage,
etc.) and foreground (target) information. In many cases, the number of encountered
foreground features are extremely few relative to the background information and
their presence in the descriptor can be dwarfed. Most researchers ignore this fact
and pass the problem down the processing pipeline. That is, most extract all features
in an AOI and leave it up to the classifier or feature selection to determine what
is important. Instead, our goal is to extract feature-rich information in target areas
and more-or-less ignore extraneous information in other parts of an AOL In [40],
Scott and Anderson used this philosophy and showed improvement in aircraft detec-
tion in remote satellite imagery across different parts of the world and times of the
year based on importance-weighted multi-scale texture and shape descriptors. Their
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importance maps were based on fuzzy integral-based fusion of differential morpho-
logical map profiles for soft object extraction. In [42], we extend this technique to
FLEHD, introducing a new way to derive an importance map for FLIR. In FLIR, we
are interested in detecting circular or elliptical (due to perspective deformation in FL
imagery) shapes for anomaly detection. Hence, we exploited this information and
created a frequency and orientation selective bank of Gabor energy filters, which we
later reduced down to a single Shearlet filter, to build an importance map. The real-
valued Gabor or Shearlet image is normalized between min and max across an AOL
It is then blurred with a Gaussian kernel to spread out the filter response, as many
features reside at or around the edges of an object. The result is then re-normalized,
according to its min and max, back into [0, 1] (values that represent the relative worth
of different pixels in the AOI relative to the task at hand). The soft HOG, LBP, and
edge histogram descriptor features are calculated as before, however as these fea-
tures are being added to their respective bins in the histogram they are multiplied
by their corresponding per-pixel importance map weights E(x,y). The features that
we describe in this section can now be used to further reduce the number of FAs by
training classifiers to indicate prescreener hits as either FAs or true-positives. Next
we discuss kernel methods that can accomplish this task.

3 Kernel Methods for EHD

Consider some non-linear mapping function ¢ : x — ¢(x) € Rk, where Dy is the
dimensionality of the transformed feature vector x. With kernel clustering, we do
not need to explicitly transform x, we simply need to represent the dot product ¢(x) -
¢(x) = k(x,x). The kernel function x can take many forms, with the polynomial
k(x,y) = x"y+1)? and radial-basis-function (RBF) k(x,y) = exp(c||x—y||?) being
two of the most well known. Given a set of n objects X, we can thus construct an nXn
kernel matrix K = [K; = k(x;, x;)]"™". This kernel matrix K represents all pairwise
dot products of the feature vectors associated with n objects in the transformed high-
dimensional space—called the Reproducing Kernel Hilbert Space.

The main goal of kernel methods is to transform the feature vectors x such that
the new representations, ¢(x), are advantageous to the classification problem. We
present three methods for learning classifiers in kernel spaces, SVM, MKLGL, and
FIMKL, which we now describe.

3.1 Single Kernel

One of the most popular kernel methods for classification is the SVM. The SVM
attempts to find an optimal separating hyperplane between two classes of training
data; for the case of EHD, we use it to find a hyperplane between features that
describe FAs and those of true positives. For a detailed description of the SVM,
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see [8]. The single-kernel SVM (SKSVM) is defined as
max {1Ta - %(a oy) K(ao y)} , (4a)

subject to
0<a<C,i=1,...,n; al'y =0, (4b)

where y is the vector of class labels, 1 is the n-length vectors of 1s, K = [k (X;, xj)] €
R™" js the kernel matrix, and o indicates the Hadamard product [5]. The value
C determines how many errors are allowed in the training process [8]. Note that
SKSVM reduces to the linear SVM for the kernel x(x;, x;) = xl.ij (which is simply
the Euclidean dot product).

One of the drawbacks of using the above SVM formulation is that it treats each
datum equally; hence, when there is an imbalance between the number of datum in
each class, then the SVM decision boundary is driven primarily by the data from
the class with more data points. This is a problem in explosive hazards detection as
there are typically many more FA detections than there are true positives—the true
positives only comprise a small overall area of the lane. To attack this issue, we use
a formulation of the SVM for imbalanced data which uses a different error cost for
positive (C*) and negative (C™) classes. Specifically, we change the constraints of
the kernel SVM formulation at (4) to

0<aq<CHVily,=+1; 0<a; < C,Vily,=-1; a’y = 0; 5)

where C* is the error constant applied to the positive class and C~ is the error
constant applied to the negative class. In our application, the positive class is true
positives and the negative class is FAs. We set C* = n~ /nt and C~ = 1, where n~
is the number of objects in the negative class and n* is the number of objects in the
positive class. This essentially allows for fewer errors in the true positive class.

We use LIBSVM to efficiently solve the SKSVM problem [6]. The output of LIB-
SVM is a classifier model that contains the vector @ and the bias b. A measured
feature vector x can be classified by computing

y =sgn lz a;y;k(X;, X) — b] , 6)
i=1

where sgn is the signum function. We now show the application of SKSVM to our
FLEHD problem.

Application of SKSVM to FLGPR EHD Figure 6 shows selected results of train-
ing the SKSVM on FLGPR lanes A, B, and D, and testing on Lane C. The results are
compared to random performance, which is the ROC achieved by uniform random
selection of hit locations at given FA rates. View (a) shows the prescreener ROC
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Fig.6 ROC curves showing testing performance of (a) FLGPR prescreener, and SKSVM classifier
with RBF kernel for (b) single HOG feature and (¢) combination of HOG and LBP features. Percent
NAUC improvements are shown for each of the L-band (HH and VYV polarizations) and X-band
FLGPRs. The performance of a uniform random detector is shown by the dotted line. a Prescreener.
b L-HH: 21 %; L-VV: 32 %; X: 64 %. ¢ L-HH: 20 %; L-VV: 36 %; X: 7%

curve for Lane C for the three FLGPR sensors, while views (b) and (¢) show the
results of using the SKSVM classifier to reject FAs. The kernel used for this experi-
ment is the RBF kernel, which is well-known to be effective for most data. View (b)
shows the ROC curve using only the HOG feature, while view (c) shows the results
when combining the HOG and LBP features. As the figure illustrates, the SKSVM is
able to reduce the number of FAs significantly. Interestingly, the combination of fea-
tures is detrimental to SKSVM performance for the X-band FLGPR. This is because
the addition of the LBP feature to the SKSVM for the X-band radar results in over-
training (the training or resubstitution results are nearly perfect), which negatively
affects the test lane performance.

3.2 Multiple Kernel

MKL extends the idea of kernel classification by allowing the use of combinations
of multiple kernels. The kernel combination can be computed in many ways, as long
as the combination is a Mercer kernel [34]. In this chapter we assume that the kernel
K is composed of a weighted combination of pre-computed kernel matrices, i.e.,

K=Y oK, )
k=1

where there are m kernels and o, is the weight applied to the kth kernel. The com-
posite kernel can then be used in the chosen classifier model; we will use the SVM.
Thus, MKL SVM extends the SKSVM optimization at (4) by also optimizing over
the weights o,
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' 1 m
rglelzlm‘?x{lra— E(aoy)T <; o-kKk>(aoy)}, (8a)

subject to (typically)
0<aq,<C,i=1,...,n; a’y =0, (8b)

where A is the domain of o. Note that this is the same problem as SKSVM if the
kernel weights are assumed constant [28]. This property has been used by many
researchers to propose alternating optimization procedures for solving the min-max
optimization problem. That is, solve the inner maximization for a constant kernel
K, and then update the weights o, to solve the outer minimization, and repeat until
convergence. We use the optimization procedure proposed by Xu et al. called MKL
group lasso (MKLGL) [47]. This method is efficient as it uses a closed-form (i.e.,
non-iterative) solution for solving the outer minimization in (8a);

f2/(]+P)
o, = k — k=1,...,m, (9a)
<ka 1szp/<l+p>> /p
fi=op(a -y Ka-y), (9b)

where p is the norm on the domain constraint, ||o|[, =1, p > 1.

We further modify the MKLGL algorithm, as we did for SKSVM, to allow for
unbalanced classes—i.e., we apply the constraints C* and C~ as shown at (5). The
MKLGL training algorithm is outlined in Algorithm 1. The MKLGL is simple to
implement and is efficient as the update equations for o, are closed-form. MKL can
be thought of as a classifier fusion algorithm. It can find the optimal kernel among a
set of candidates by automatically learning the weights on each kernel. The individ-
ual kernels can be computed in many ways—see our previous papers on this topic
for more discussion on the formation of the kernel matrices [15, 17].

Algorithm 1: MKLGL Classifier Training [47]

Data: (x;,y;) - feature vector and label pairs; K, - kernel matrices
Result: a, 6, - MKLGL classifier solution
Initialize o, = 1/m, k = 1, ..., m (equal kernel weights)
while not converged do
L Solve unbalanced SKSVM for kernel matrix K = X, | 6,K;
Update kernel weights by Eq. (9)

Application of MKLGL to FLGPR EHD The MKLGL algorithm is applied in the
same way as the SKSVM—it acts to classify prescreener hits as either FAs or true
positives. Figure 7 shows results of the MKLGL classifier using an ensemble of RBF
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Fig. 7 ROC curves showing testing performance of (a) FLGPR prescreener, and MKLGL clas-
sifier for (b) single HOG feature and (c) combination of HOG and LBP features. Percent NAUC
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kernels on the same training and testing lanes as shown for SKSVM in Fig. 6. The
NAUC results show that the MKLGL is able to match and sometimes improve upon
the results obtained using the SKSVM. The MKLGL improvement of the L-band
VV NAUC is especially noteworthy.

3.3 Fuzzy Integral-Based Multiple Kernel (FIMKL)

The Fuzzy Integral-based MK (FIMKL) [22, 23] extends MKL by using a non-linear
aggregation operator, the fuzzy integral (FI). The fusion of information using the
Sugeno or Choquet FI has a rich history; for a recent review, see [1]. Depending on
the problem domain, the input to the FI can be experts, sensors, features, similari-
ties, pattern recognition algorithms, etc. The FI is defined with respect to the fuzzy
measure (FM), a monotone and often normal capacity. With respect to a set of m
information sources, X = {x, ..., x,,}, the FM encodes the (often subjective) worth
of each subset in 2X. For a finite set of sources, X, the FM is a set-valued function
g : 2¥ — [0, 1] with the following conditions:

1. (Boundary condition) g(¢) = 0,
2. (Monotonicity) If A, B C X with A C B, then g(A) < g(B).

Note, if X is an infinite set, there is a third condition guaranteeing continuity and
we often assume g(X) = 1 (although it is not necessary in general). Numerous FI
formulations have been proposed to date for generalizability, differentiability, and to
address different types of uncertain data [1]. In [22, 23], we investigated the Sugeno
and Choquet FIs for MKL. We proposed a solution based on sorting at the matrix
level. Assume each kernel matrix K has a numeric “quality.” This can be computed,
for example, by computing the classification accuracy of a base-learner that uses
kernel K, (or by a learning algorithm like a GA). Let v, € [0, 1] be the kth kernel’s
qualiry. These qualities can be sorted, v(j) > V) = ... 2 V,,. Given m base Mercer
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kernels, {x, ..., k,,}, FM g, and a sorting vy, > V) 2 ..o 2 Vi, the difference-in-
measure Choquet FI is computed by

m

Ky = Y Gry = Gatot) Ke)y = D, @Kl 7 € 11,0m), (10)
k=1 k=1

where ; = (G, = Goi-1))» Griy = 8 ({Xp(1ys -+ 2%y })s Groy = 0, and #(i) is a
sorting on X such that h(x,)) > ... > h(x,,)- The MK formulation at (10) pro-
duces a Mercer kernel as multiplication by positive scalar and addition are positive
semidefinite (PSD) preserving operations. Since (10) involves per-matrix sorting, it
can be compactly written in a simpler (linear algebra) form, i.e., K = Y" | @ K 1)

Prior works in MKL rely on the relatively linear convex sum (LCS) formulation.
It is often desired due to its advantage in optimization, e.g., MKLGL. Both FIMK
and LCS MK are of type convex sum, i.e., w, € R’ and ZZLI w, = 1. However,
one is linear, the other is not, and the weights are derived from the FM. The Cho-
quet FI is capable of representing a much larger class of aggregation operators. For
example, it is well known that the Choquet FI can produce, based on the selection
of FM, the maximum, minimum, ordered weighted average (OWA), order statistics,
etc. However, the machine learning LCS form is simply m weights anchored to the
individual inputs. The LCS is a subset (one of the aggregation operators) of the FI.

In [22, 23], we reported improved SVM accuracies and lower standard devia-
tions over the state-of-the-art MKLGL on publicly available benchmark data. We
proposed a GA, called FIGA, based on learning the densities for the Sugeno A-FM.
In that work we demonstrated that the GA approach is more effective than MKLGL,
even in light of the fact that our GA approach used far fewer component kernels.
In particular, the FIGA approach achieved a mean improvement of nearly 10 % over
MKLGL on the Sonar data set. The performance of FIGA comes at a cost though,
as MKLGL is much faster in terms of actual running time than FIGA. We also saw
that FIGA using a combination of FM/FIs is somewhat more effective than the FIGA
LCS form. These findings are not surprising as our intuition tells us that the nonlin-
ear aggregation allowed by the FM/FI formulation is more flexible than just the LCS
aggregation; hence, these results reinforce our expectation. Overall, these results are
not surprising as different data sets require different solutions, and while an LCS may
be sufficient for a given problem, it may not be appropriate for a different problem.
Also, it should be noted that the FM/FI formulation includes LCS aggregation as a
subset of its possible solutions; hence, when LCS is appropriate the FM/FI aggrega-
tion can mimic the LCS. In summary, the learner (GA vs GL) appears to be the most
important improvement factor, followed by a slight improvement by using the non-
linear FM/FI aggregation versus LCS. While FIMKL has not been applied to date
for EHD, this computational intelligence method is reviewed as it is an improvement
to classical MKL and stands to be of relevance and benefit to EHD.
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4 Deep Learners and Feature Learning for EHD

Deep learning architectures were initially designed to mimic the human brain, more
specifically, the neocortex [36]. This part of the brain has been shown to have six lay-
ers and a forward-backward structure to classify image data collected by the eye [26].
In brief, deep learning architectures extend “shallow” neural networks by adding
multiple hidden layers—these additional layers act as generalized feature detectors.
Deep learning algorithms have been shown to perform very well on a variety of
classification tasks, such as facial recognition [29], document classification [30], and
speech recognition [39]. We will present results for two types of deep learning archi-
tectures: deep belief networks (DBNs) and convolutional neural networks (CNNs).

4.1 Deep Belief Networks

DBNSs are a type of deep learning network formed by stacking Restricted Boltzmann
Machines (RBMs) in successive layers to reduce dimensionality, making a com-
pressed representation of the input. DBNs are trained layer by layer using greedy
algorithms and information from the previous layer. In this subsection, we will first
discuss RBMs and how to train them, then move on to training DBNs.

RBMs are simple binary learners that consist of two layers: one visible and one
hidden. The visible layer is the input layer and typically consists of an n-length vec-
tor of normalized values. The hidden layer is the feature representation layer. The
defining equation of the RBMs is the energy equation,

E(w,h) = =b"v —c¢"h — v/ Wh, (11)

where v is the input vector, h is the hidden feature vector, b and ¢ are the visible and
hidden layer biases, respectively, and W is the weight matrix that connects the layers.
It should be noted that weights only exist between the hidden and visible layers, that
is to say, that the nodes in either layer are not interconnected. v is the input and used
to train hidden layer h as

h =o(c+ WTv). (12)

The hidden layer is then used to reconstruct the visible layer in the same manner,

A = o(b + Wh). 13)

recon

The reconstruction of the visible layer v is then used in (12) to form h and

then the weight update is calculated as

recon recon
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Fig. 8 Illustration of DBN (b)
trammgl: nqnzll?ers mh ‘decoder ~ T (0)
rectangies in lcateF e (a) I reconstruction X,g.,,! reconstruction X,ge,,
number of neurons in each .. L - T
layer. a Pretraining. 1RBM I : Wi : Wi'+ey
b Unrolling. ¢ Fine tuning L2 oy 40 | 40 |
\ | AT | AT
1 w. 1 7% Wo'+e
| 11 2 o2y y 273
1 40 jv v 1 [__20 |codellayer 20
Y et il S A
.- _! _____ . ! Y 172) | \7 Wo+ey
[ J' 40 ], [ ]
1 1 : ¢ 174 ! Wi+e,q
I | I
I input vector x 1 I input vectorx | input vector x
L RBM, | _ _ _ _encoder,

AW = e (], ~ W), 14

recon )
where € is the learning rate. Iterated over several epochs, this weight update performs
a type of gradient descent called contrastive divergence [36].

To form a DBN, layers of RBMs are stacked as shown in Fig. 8a, where the hidden
layer of the lower RBM becomes the input/visible layer of the next RBM. Once the
input RBM is trained, its reconstructed hidden layer h is used to create the visible
layer of the next RBM by

recon

Vor1 = O-(Cn + threcon,n) (15)

where n denotes the layer number. The (n+ 1)th RBM is now trained and this cycle is
repeated for the number of layers desired. After all layers have been trained, the DBN
is typically then mirrorred to make an encoder-decoder as shown in Fig. 8b [21]. An
input to the encoder-decoder thus produces a reconstruction of itself, where

encoder: X, = W,X,; (16a)

. — w7 .
decoder: X, .onn-1 = W, _ Xpoconns (16b)

and x; € R? is the input vector and Xreconl = Xrecon € R4 is the reconstruction.
Note that the final hidden layer in the encoder is the first layer in the decoder, x,, | =
X, econns1» Where n is the number of RBMs in the DBN. Fine-tuning of the weight
matrices can be performed as shown in Fig. 8c. This fine-tuning is often done using
stochastic gradient descent (backpropagation) or Hinton’s up-down algorithm [20].
Note that this gives the DBN more flexibility as the weight matrices are adjusted for
each of the encoder and decoder.
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Application of DBNs to FLGPR EHD To apply DBNs to the FLEHD problem, we
take the extracted features from each prescreener hit location in the training data and
apply the DBN to learn the representation of the FAs; this is due to the imbalance
between the number of FA and target examples in the training data. The reconstruc-
tion root mean-square error (RMSE),

d

RMSE = \| Y (% = Xpoeoms) (17)
i=1

of the DBN is thus a measure of how well an input feature vector matches to the
learned representation of the FAs—true positives ideally have high RMSE and false
positives ideally have low RMSE. Hence, the RMSE can be directly used as the
confidence of a true positive in the ROC curve. The DBNs for the results here are
trained on three lanes of data and then tested on a separate lane (in essence, 4-fold
cross-validation).

Since DBNs are flexible in their construction, we tested many different architec-
tures, learning rates, and epoch limits. The best DBN we found for overall EHD
performance was a network that uses two hidden layers of sizes 40 and 20, giving
a full encode-decode stack architecture of [x 40 20 40 x,,.,, ], where X is the d X 1
input feature vector and X,,.,, is the d X 1 reconstruction (see Fig. 8). The learning
rate is 0.9, and 30 epochs of contrastive divergence was used for RBM training.

Several combinations of features were tested with the DBN classifier. Figure 9
illustrates selected results from our comprehensive evaluation of DBNs for FLGPR
EHD. These ROC curves show the performance of the DBN classifier on Lane C
(training on Lanes A, B, and D). The percent NAUC improvements clearly show
that the DBN significantly improves NAUC, by up to 85% for the case of the
X-band FLGPR using HOG & LBP features (note that the X-band FLGPR also has
the most room for improvement in this case).
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Fig.9 ROC curves showing testing performance of a FLGPR prescreener, and DBN classifiers for
b single HOG feature and ¢ combination of HOG and LBP features. Percent NAUC improvements
are shown for each of the L-band (HH and V'V polarizations) and X-band FLGPRs. The perfor-
mance of a uniform random detector is shown by the dotted line. a Prescreener. b L-HH: 28 %;
L-VV:52%; X:53%. ¢ L-HH: 23 %; L-VV: 52 %; X: 85 %
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Input: Feature maps: Feature maps: Feature maps: Feature maps: Output:
28 x 28 24 x24 x 6 12x12x6 8x8x12 4x4x12 2x1

Fig. 10 Illustration of a convolutional neural network [31, 36]

4.2 Feature Learning

Convolutional Neural Networks CNNs are a type of neural network with a unique
architecture. Inspired by the visual system, these networks consist of alternating
convolutional and sub-sampling layers. The convolutional layers generate feature
maps by convolving kernels over the data from the previous layers and then the sub-
sampling layers downsample the feature maps [36]. CNNs work directly on the 2D
data as opposed to most other forms of deep networks which reorganize the data into
1D feature vectors. Figure 10 illustrates a convolutional neural network.
The Ith convolutional layer is generated from a jth feature map by

d=o(l+ Y d x k), (18)

ieM!
J

where ¢ is the activation function, usually hyperbolic tangent or sigmoid, b; is a
scalar bias, MJI is an index vector of feature maps i in layer [ — 1, x is the 2D convo-

lution operator and kl’“ is the kernel used on map i in layer / — 1. A sub-sample layer
[ is generated from a feature map j by

ajl. = down(ajl._l,Nl), (19)

where down is a down-sampling function, such as mean-sampling, that
down-samples by factor N’ [36]. The output layer is then generated by

0=’ + W°x,), (20)

where x, denotes a feature vector concatenated from the feature maps of the previous
layer, b? is a bias vector, and W° is a weight matrix. The parameters to be learned are
thus kfj, bl, b° and W°. Gradient descent is used to learn these parameters and this
can be eff{ciently performed through the use of convolutional backpropagation [36].
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Fig. 11 ROC curves showing testing performance of a FLGPR prescreener, and b CNN classifier
using the HOG feature. Percent NAUC improvements are shown for each of the L-band (HH and
VYV polarizations) and X-band FLGPRs. The performance of a uniform random detector is shown
by the dotted line. a Prescreener. b L-HH: 13 %; L-VV: 1.4 %; X: 28 %

Application of CNNs to FLGPR EHD Unlike the SVM, MKLGL, and DBN, the
CNN operates on 2D feature maps. Fortunately, the HOG, LBP, and FFST are all
2D features and thus can be used as input for the CNN; we also used the raw image
data (imagelet) surrounding each prescreener hit as input to the CNN. The output of
the CNN is a 2-element vector—one element to indicate FA and one to indicate true
positive. As shown in Fig. 10, we use two convolutional layers and two subsampling
layers. The learning rate was 0.9 and 350 epochs were used for training, which were
shown to be good choice in a more comprehensive parameter study we performed.
Figure 11 shows selected results from our comprehensive evaluation of CNNs for
FLGPR EHD. These ROC curves show the performance of the CNN classifier on
Lane C (training Lanes A, B, and D). As is evidenced by the percent NAUC improve-
ment values, the CNN is the least effective of the classifiers that we have applied to
the FLGPR EHD. Furthermore, many of the results (which we do not show) that we
compiled using the CNN were very poor. Hence, we do not recommend the CNN at
this time for FLGPR EHD.

Application of CNNs to FLIR EHD In [43], CNNs were evaluated for EHD in FLIR
imagery. Image chips extracted at prescreener alarm locations were fed directly as
input to a CNN. CNN classification results were compared to a baseline algorithm
which extracted five hand-engineered feature sets and performed classification using
a SVM. Due to the lack of training data for training a conventional deep CNN model,
two alternative CNN approaches were explored.

The first approach used a deep CNN model pre-trained on the ImageNet dataset
[12]. This model is referred to herein as DPT-CNN, and was made available through
the open source python package DeCAF [13]. DPT-CNN uses the architecture
proposed by Krizhevsky et al. in [27], which won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). The architecture consists of five convo-
lutional layers, some followed by Rectified Linear Unit (ReLLU) activation, response
normalization, and max pooling, followed by three fully connected layers. The last
fully connected layer is fed to a 1000-way softmax function.
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DPT-CNN was trained on the ILSVRC2012 training data, which consisted of
more than 1.2 million training images from 1000 object classes. It was shown in
[13] that values from intermediate layers of this pre-trained network work well as
features for new vision tasks. Specifically, tasks with small amounts of training data,
where a deep CNN trained directly performed poorly. For our tests, the alarm image
chips were input to DPT-CNN, and intermediate values were saved at six stages.
These intermediate values were used to train a SVM which was evaluated the same
way as the baseline algorithm. The first two sets of intermediate values came from
the second and first fully connected layers after ReLU activation. These are referred
to as FC7-ReLU and FC6-ReLU, respectively. The ReLU activation takes the form
¢(v) = max(0,v). The next two intermediate values, POOL5 and CONVS5, came
from the last convolutional layer. CONVS is before max-pooling, and POOLS is after
pooling. The last two sets, RNORM1 and POOL1, came from the first convolutional
layer. RNORM 1 is after pooling and response normalization. POOL1 is after pooling
but before response normalization.

The fully connected layer outputs, which no longer convey spatial position, were
not expected to be useful for this EHD task since position in the image chip is
extremely important. The POOLS and CONVS5 features do retain some spatial infor-
mation. The RNORM1 and POOL1 features retain more, but since they are not deep
features they may not be as descriptive. Table 2 shows the NAUC results for the
DPT-CNN features, as well as for the baseline algorithm and the best individual
baseline feature, for a three lane leave-one-lane-out cross validation test using two
FLIR cameras.

As expected, the fully connected layer features did not perform well. Performance
improved significantly when moving to the POOLS features, and again when moving
to the CONVS features. The CONVS5 features compared well with the top performing
hand-engineered image feature, multi-scale HOG, even outperforming it on Lane A.
Surprisingly, the POOL1 features scored better overall than the CONVS features on
the DVE camera image chips, but show a pronounced drop on the SELEX image
chips.

Table 2 DPT-CNN: DVE/Selex cameras: NAUC at 0.01 FA /m?

Feature All lanes Lane A Lane B Lane C

FC7-ReLU 0.435/0.451 0.321/0.355 0.420/0.418 0.556/0.573
FC6-ReLLU 0.479/0.469 0.353/0.365 0.480/0.454 0.598/0.582
POOLS5 0.557/0.501 0.404/0.386 0.600/0.500 0.658/0.609
CONV5 0.615/0.566 0.471/0.423 0.655/0.604 0.712/0.662
RNORM1 0.623/0.525 0.454/0.389 0.709/0.553 0.699/0.624
POOL1 0.624/0.519 0.458/0.386 0.710/0.545 0.695/0.617
BASE: HOG 0.645/0.584 0.453/0.421 0.722/0.615 0.753/0.708
BASE: ALL 0.677/0.610 0.496/0.445 0.766/0.652 0.762/0.727
CONVS + BASE | 0.676/0.607 0.508/0.449 0.748/0.649 0.764/0.714

*Bold indicates best result for each camera and lane
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The DPT-CNN results indicated that a deep CNN model was not necessary to
achieve good performance on this FLIR EHD task. This was not particularly surpris-
ing since the task requires little in the way of translation, scale, or orientation invari-
ance. The primary difficulty is intra-class variation. Thus, a second CNN approach
using a shallow CNN trained directly using the image chips was pursued. The shal-
low architecture consists of a single convolutional layer followed by an output layer
containing a single neuron followed by the sigmoid activation function. The out-
put of the sigmoid was used as the alarm confidence value. For all experiments,
weights were learned using stochastic gradient descent (SGD) with momentum and
the cross entropy error function. To address class imbalance, for each training pat-
tern presentation an example was chosen randomly from either the true target class
or the false alarm class with equal probability. Evaluation was performed using the
same methodology as for DPT-CNN.

In [24], Jarrett et al. found that the single most important factor for recogni-
tion accuracy in a CNN model, considering architecture choices such as activation
function, sub-sampling type, and response normalization, was the use of a rectify-
ing non-linearity. While they used the absolute value function (AVF), the ReLU in
Krizhevskys architecture performs a similar operation. Therefore, the first exper-
iment evaluated performance when using either no non-linearity, ReLU, or AVF
following the convolutional layer. These results are presented in Table 3. Both acti-
vations improved performance. AVF performed better than ReLU, and was chosen
for further experiments.

We next investigated forcing the convolutional filters to have zero-mean and zero-
phase. The intuition being that only the non-dc frequency characteristics are impor-
tant, and that shifting of the output is meaningless for classification. To enforce
these characteristics, transformation functions were inserted before the variables in
question were used. The transformation functions modify their inputs to enforce
the desired constraint. During SGD learning, derivatives are propagated through
the transformations. For example, if the original convolutional layer is OUTPUT =
CONV(INPUT,X), to enforce zero-mean for the kernel X the expression becomes
OUTPUT = CONV(INPUT,G(X)), where G(X) modifies X to have the zero-mean
characteristic. No significant performance improvement was seen from enforcing
either constraint.

Table 3 Rectifying Nonlinearity: DVE Camera: NAUC at 0.01 FA /m?

Convolution | None, # filters Rel U, # filters AVF # filters
filter radius

4 8 16 4 8 16 4 8 16
3 0492 |0.482 |0.503 |0.519 |0.517 |0.499 |0.555 [0.573 | 0.566
5 0.508 |0.510 |0.509 |0.550 [0.552 |0.565 |0.600 |0.602 |0.603
7 0487 |0.483 |0475 |0.555 |0.545 0.537 [0.596 | 0.580 | 0.592

*Bold indicates best result for each filter radius
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Table 4 Learning in freq domain: DVE camera: NAUC at 0.01 FA /m?

Convolution | Spatial—# of filters Frequency—+# of filters
filter radius

4 8 16 4 8 16
3 0.555 0.573 0.566 0.636 0.636 0.640
5 0.600 0.602 0.603 0.617 0.619 0.618
7 0.596 0.580 0.592 0.614 0.613 0.619

*Bold indicates best result for each filter radius

We then experimented with learning the convolutional filters’ frequency domain
representations instead of their spatial domain representations. This was done by
using the inverse FFT as a transformation function. Table 4 shows the results for
learning the convolutional filters in the frequency domain versus the spatial domain.
Zero-mean and zero-phase were enforced in the frequency domain. A slight perfor-
mance improvement was seen across all combinations.

Based on these results, shallow CNN networks with eight zero-mean, zero-phase
filters learned in the frequency domain were scored on the DVE and SELEX data.
Table 5 shows the per lane results for various kernel radii, as well as the DPT-CNN
and baseline results for comparison. Overall, the shallow CNN results were very
similar to those of DPT-CNN. The shallow CNN achieved a slightly better overall
result on DVE, and a slightly worse overall result on SELEX when comparing to
the CONVS features of DPT-CNN. When comparing to the POOL1 and RNORM1
features, the shallow CNN SELEX result is much better. The baseline algorithm,
which includes features that cannot be expressed via convolution, outperforms both
CNN approaches.

iECO Feature Learning In [38], the algorithm improved Evolutionary COnstructed
(iECO) feature descriptors (referred to hereafter as simply iECO) was put forth for
FLIR-based EHD. The iECO algorithm is a feature learning technique that looks to

Table 5 Shallow CNN: NAUC at 0.01 FA/m?
DVE camera SELEX camera
Alllanes |Lane A |Lane B |Lane C |Alllanes |[Lane A |Lane B |Lane C

CNN 0.635 0.464 0.734 0.700 0.562 0.397 0.626 0.656
radius 3
CNN 0.616 0.478 0.694 0.670 0.559 0.413 0.611 0.645
radius 5
CNN 0.612 0.460 0.697 0.673 0.557 0.409 0.628 0.626
radius 7

Pre- 0.624 0.458 0.710 0.695 0.566 0.423 0.604 0.662
trained
CNN

Baseline |0.677 0.496 0.766 0.762 0.610 0.445 0.652 0.727

*Bold indicates best result
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exploit important cues in data that often elude non-learned (often referred to as “hand
crafted”) features such as HOGs, LBPs and edge histogram descriptors. Each hand
crafted feature is ultimately an attempt to more-or-less sculpt (force) a signal/image
into some predisposed mathematical framework which may or may not reveal the
information that a user/system needs. Instead of coming to the table with a limited
set of tools and trying to make everything look like a nail, iECO learns the tool based
on the task at hand.

While the field of deep learning has demonstrated state-of-the-art performance,
the ECO (and iECO respectively) work of Lillywhite et al. has the advantage over
CNN s of interpretability (it is not a black box) and it does not predispose the solu-
tion to that of convolution. At its core, ECO is the GA-based learning and (ensemble-
based) use of a population of chromosomes that are compositions of functions (image
processing transformations). Each chromosome is of variable length and the goal is
to learn the image transformations and respective parameters relative to some task.
An advantage of this approach, versus CNN:ss, is that it makes use of a relatively wide
set of different heterogeneous image transformations to seek a new tailored solution.
In [38] we used 19 different image transformations which range from a Harris corner
detector to a square root, Hough circle, median blur, rank transform, LoG, mathe-
matical morphology and Shearlet and Gabor spatial frequency domain filtering, just
to name a few. In many cases, emergent behaviour arises and the chromosomes can
be manually examined and studied, potentially revealing additional domain informa-
tion such as what features or physics in IR or GPR are most important for a task like
EHD. Figure 12 shows the iECO process (not learning, but application of iECO to a
given AOI).
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Fig.12 iECO applied to a prescreener hit in FLIR. Learned iECO chromosomes, in different pop-
ulations, are applied to the input image. Finally, different descriptors are extracted relative to each
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In iECO, we address a shortcoming of the ECO features— the so-called
“features” which are the unrolling of image pixels into a single vector. ECO suffers
from the curse of dimensionality and the naive unrolling does not intelligently take
into account various spatial and scale cues. In [38], we extract ECO features relative
to different high-level descriptors and cell-structured configurations. Specifically, we
explored the HOG, EHD and statistical features; which include the local mean, stan-
dard deviation, kurtosis, /,-norm, and the difference between the local values and
their corresponding global values. A separate GA population is maintained and a
separate search is conducted relative to each high-level descriptor. iECO, like CNN
learning is not a computationally trivial task. As a result, we have not yet attempted
to learn the different populations in a single simultaneous algorithm. Furthermore,
in [38] we showed that each descriptor learns/prefers different chromosomes that
have varying fitness values. With respect to classification, we experimented with
taking a single best chromosome per descriptor (highest fitness), taking the top 50 %
of chromosomes relative to each descriptor, and the identification of the top 5 most
diverse chromosomes (which is currently a manual process). Our results indicate that
the concatenation of multiple chromosome features leads to improved performance.
Furthermore, we showed that if one pipeline is applied to a different descriptor than
it was learned for, then the result is a significant drop in performance (fitness). This
is interesting as it tells us that iECO appears to learn a tailored pre-processing of
imagery relative to each descriptor in order to better highlight salient information.
Figure 13 shows different learned iECO pipelines.

In [38], we introduced constraints on each individual’s chromosome to help pro-
mote population diversity and prevent infeasible solutions. This allows us to search
for quality solutions faster and it typically results in shorter length chromosomes
that are computationally simpler to realize (which is important for a real-time causal
EHD system). In ECO, there are no direct mechanisms incorporated into the GA,
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Fig. 13 iECO on FL LWIR. a Average iECO output of four chromosomes across 50 different
buried targets. Each image is scaled to [0, 1] for visual display and they are shown in Matlab jetmap
color coding, where blue is 0 and red is 1. These images show that diversity exists across chro-
mosomes and different aspects of targets are learned, e.g., local contrast, orientation specific edge
information, etc. b Output of highest fitness chromosones for each descriptor for a single target.
These images show that each descriptor prefers a different iECO pipeline. a Average iECO output.
b Different iECO populations
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Fig. 14 Vertically averaged ROC curves with 95 % confidence intervals. a Testing lane 1. b Testing
lane 2

outside of mutation, to promote diversity in the population. In [38], we introduced
diversity promoting constraints that consider the uniqueness and complexity of the
ECQO’s search space. We designed a set of diversity promoting constraints that define
what percentage of the population is allowed overlapping genes at each layer of the
individual’s gene segment. Next, we addressed the issue of the occurrence of the
same gene back-to-back. Such a scenario is undesirable, e.g., it does not typically
make sense to perform a rank transform back-to-back. In addition, this increases the
computational complexity of the system as a consequence of the unnecessary image
transforms. We combat this by collapsing consecutive uses of the same gene type,
i.e., if any gene occurs more than once consecutively then only the first occurrence
is retained. Elitism is used in iECO.

In summary, in [38] we showed that the above diversity promoting constraints
and the combination of high-level image descriptors leads to the discovery of sig-
nificantly higher quality solutions for EHD. We showed that iECO continuously
identifies higher performance solutions, i.e., an impressive drop in the FAR for a
given PDR, populations are more diverse, which was verified manually, and the
resultant chromosomes are significantly shorter and thus give rise to a simpler system
(computationally and memory utilization-wise) to realize. Figure 14 is ROC results
for iECO versus ECO features. iECO clearly outperforms ECO.

5 Conclusions

This chapter described the EHD problem and various methods for preprocessing,
prescreening, and false rejection for FLGPR and FLIR. The methods discussed for
FLGPR-based EHD were SKSVM, MKLGL, DBNs, and CNNs. The best overall
detection and classification method for the FLGPR was the DBN using a combination
of HOG and LBP features, showing up to 85 % improvement in NAUC. The weakest
FLGPR-based method was the CNN. In the future, we are going to investigate more
advanced CNN architectures and training methods for CNNs as applied to FLGPR
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EHD. Several EHD methods were discussed for FLIR-based detection, including
baseline SVM detection, CNNs, and iECO feature learning. Several CNN architec-
tures were tested. While the CNN architectures showed promise, especially those that
use frequency-domain AVF filters, the baseline SVM-based feature-fusion approach
outperformed the CNN. Lastly, iECO feature learning was demonstrated for FLIR-
based EHD. In the future, we aim to further apply our fuzzy integral-based multiple
kernels methods for EHD as FIMKL has been shown to be superior to MKLGL for
benchmark data sets. We also aim to extend the deep learning approaches for online
and active learning for EHD.
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Classification-Driven Video Analytics
for Critical Infrastructure Protection

Phillip Curtis, Moufid Harb, Rami Abielmona and Emil Petriu

Abstract At critical infrastructure sites, either large number of onsite personnel, or
many cameras are needed to keep all key access points under continuous obser-
vation. With the proliferation of inexpensive high quality video imaging devices,
and improving internet bandwidth, the deployment of large numbers of cameras
monitored from a central location have become a practical solution. Monitoring a
high number of critical infrastructure sites may cause the operator of the surveil-
lance system to become distracted from the many video feeds, possibly missing key
events, such as suspicious individuals approaching a door or leaving an object
behind. An automated monitoring system for these types of events within a video
feed alleviates some of the burden placed on the operator, thereby increasing the
overall reliability and performance of the system, as well as providing archival
capability for future investigations. In this work, a solution that uses a background
subtraction-based segmentation method to determine objects within the scene is
proposed. An artificial neural network classifier is then employed to determine the
class of each object detected in every frame. This classification is then temporally
filtered using Bayesian inference in order to minimize the effect of occasional
misclassifications. Based on the object’s classification and spatio-temporal prop-
erties, the behavior is then determined. If the object is considered of interest,
feedback is provided to the background subtraction segmentation technique for
background fading prevention reasons. Furthermore any undesirable behavior will
generate an alert, to spur operator action.
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1 Introduction

The use of video feeds within surveillance applications is becoming quite popular
due to the increased demand for ensuring the security of buildings and other
infrastructures, as well as the declining cost and increased precision of digital video
cameras. The increased usage of multiple video sources to cover a large perimeter
surrounding a critical infrastructure imposes a large burden on the system operators,
who cannot physically concentrate on simultaneously observing all the remotely
distributed video feeds. This leads to fatigued, stressed, and overworked operators
who end up possibly missing important events [1].

The increased processing power, and reduced costs, of current computing
technologies can be used to help solve this problem, mainly through the application
of computer vision (CV) and computational intelligence (CI) techniques. Video
analytics pairs CV with CI in order to understand the activities occurring and
behaviors exhibited by the various actors within video feeds. Using CV techniques,
objects can be detected and extracted from the video stream. These objects can then
be classified based on supervised learning techniques, and their behavior monitored
for undesirable events. Beyond this work, semantic analysis of the segmented
objects [2] can be applied in order to improve the prediction of intent and threat that
is imparted to the infrastructure.

The operator can then be alerted when these undesirable events occur through
the annotation of the video stream, as well as other alert mediums, to indicate this
fact so that a decision on the potential response can be made. By providing these
alerts to the operator, attention can be directed to specific events from a single video
feed among many, thereby improving operator response to undesirable events that
may be otherwise delayed or missed due to distractions or fatigue.

The solution proposed in this work uses a background subtraction method of
extracting objects of interest, which is updated adaptively based on the classes
detected and observed behavior. After the objects have been extracted from the
scene, an artificial neural network (ANN) classifier combined with a temporal
Bayesian filter is used to classify the object. The behavior of the classified object,
such as entering a restricted zone, stopping, and abandoning another object, is
determined. Based on these behaviors, alerts and annotations to the video are
enacted (if necessary), and the information is fed back into the background sub-
traction model. This feedback of information is used to keep objects belonging to
classes of interest in the foreground model, even when the object becomes
stationary.

The proposed solution is capable of detecting several behaviors of interest in
surveillance activities, including restricted zone intrusion by objects of select
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classes (e.g. car, person, bird, or maritime vessel), abandoned object detection and
stopped object detection, while handling the issues of background fading inherent
in most background subtraction techniques. It is implemented using C++, in-part
using the open source OpenCV library [3].

The rest of this work is structured as follows. Section 2 briefly reviews relevant
works. Section 3 unveils the proposed behavior-driven classification methodology
and Sect. 4 illustrates its application within critical infrastructure protection. Sec-
tion 5 sheds light on the empirical evaluation before some final conclusions and
future directions are elaborated upon in Sect. 6.

2 Literature Review

The first subsection reviews a subset of classification techniques found in the
literature, while relevant computer vision techniques are discussed in the second
subsection.

2.1 Classification Techniques

Classifiers exist in two different flavors: unsupervised and supervised. Unsuper-
vised techniques extract knowledge from a scene without a priori knowledge, and
are typically used for clustering data and discovering interesting properties of the
input data. Supervised classifiers, however, involve training the classifier, through a
reinforcement machine learning technique, by introducing many labelled samples
of each class that is needed to be identified. For each class, the data is typically
processed by extracting a feature vector that is then fed into the classifier. There
are several supervised classification techniques that are commonly used for image
and video processing, with the most popular being the support vector machine
(SVM), boosted classifiers, k-nearest neighbor (kNN), and the artificial neural
network (ANN).

The SVM is a binary classifier that maps the feature vector into a multi-
dimensional vector space and defines a partition (the classification threshold) such
that the margin of classification between each class within the vector space is
maximal [4, 5]. By ensuring the distance between the feature vectors representing
classes is maximal, discrimination of features representing each class is made easier,
and determining which class an object belongs to becomes the detection of which
side of the hyper-planar class partition the feature vector lies. To form a multiclass
classifier using SVMs, several strategies are employed, such as using an ensemble
of binary SVMs in a one versus one or one versus all methods. In a one versus one
strategy, an SVM is trained to discriminate between each pair of classes, and a
voting strategy is used to decide on the outcome. In a one versus all strategy, there
is an SVM for each class used to determine membership to the class or not.
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The resulting class is the result with the dominant outcome. Finally, [6] introduces a
technique for optimizing the direct multiclass SVM, instead of having to decom-
pose the problem into many binary SVMs.

Boosted classifiers use many weak classifiers, such as a decision tree with only a
few branches that are only slightly better than random chance. These weak clas-
sifiers are then combined to produce a stronger result [7, 8]. These classifiers are
typically fast and simple to use, allowing for much parallelization, but at the cost of
longer training periods. An example of boosted classifiers within the field of
computer vision is the Voila Jones object detector [9]. This detector uses Haar
wavelet based features within the Adaboost framework to successfully detect faces,
and other objects, within images.

The kNN algorithm is perhaps one of the simplest to implement, as it classifies a
new data sample by assigning it the class of the most common class among its k
nearest neighbors. Some strategies may enforce weighting the contribution of each
neighbor according to its distance to the new data sample. With large high
dimensional datasets however, determining the kNN becomes computationally
expensive, and so techniques to approximate the kNN have been developed.
FLANN [10, 11] is one such technique that is commonly used to approximate the
kNN algorithm in computer vision problems.

ANN:Ss are inspired from neural biology, and are quite flexible in modelling any
desired system [12, 13]. They consist of several inter-networked neurons. An
individual neuron accepts a weighted combination of input values that get pro-
cessed by a typically non-linear activation function to generate an output value; it is
the weights and biases for all the neurons in the network that get adapted during
training based on the desired output. The multi-layer perceptron (MLP) is a feed
forward type ANN that can be trained by back-propagation techniques, and it is
widely used for classification tasks due to its simple structure, computational effi-
ciency, and ability to approximate any function to within defined error bounds [14].

2.2 Computer Vision Techniques

Determining image content can occur in several different ways. One way is to
perform segmentation that selects regions of the image based on spatio-temporal
properties, followed by classification of the segments. Another way is to use a
windowing methodology with a detector in order to locate and classify objects that
are of interest.

Segmentation is the clustering of regions sharing similar spatio-temporal prop-
erties, such as color, texture, location, and motion that may be performed by
supervised, or unsupervised, methods. Image segmentation techniques, such as the
watershed algorithms [15] and k-means clustering [16, 17], only use spatial prop-
erties of a single image to perform the segmentation. While producing good results,
they tend to take an extensive amount of computational time, and are not directly
suitable for segmenting video streams. Moreover, they may result in an over
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segmentation (i.e. each object having one or more segments), or an under seg-
mentation (i.e. fewer segments than objects) depending on scene complexity and
parameters employed. On the other hand, video streams can take temporal prop-
erties into consideration, thereby using the additional information to minimize the
computational resources required for segmentation, while at the same time pro-
viding more information to mitigate over, and under, segmentation.

Some video segmentation techniques [18-20] rely on performing an accurate
segmentation based on the first frame using slower image-based techniques, and
then track the intra-frame changes, refining the segmentation in each subsequent
frame. These techniques work well in situations with minimal amounts of object
motion between frames, however, when there are significant changes, such as the
introduction of new objects, a reinitialization of the segmentation may be necessary,
due to a breakdown in the corresponding regions between frames. In situations
where this occurs frequently, the goal of reducing segmentation-related computa-
tional resources by tracking changes between frames is prevented.

Other methods, such as the GrabCut [21], CamShift [22], and MILTrack [23]
algorithms require a region to be selected that initializes the video segmenter model
to track this selected region within each frame of the video. The selected region is
identified in subsequent frames by applying the learned region model, which creates
a heat map of possible locations that the region may lay in the new frame. The
region is then extracted either through an application of maximum a posteriori
estimation or through traditional thresholding. These techniques work well at
tracking specific individual objects, but do not fare well at detecting, extracting and
tracking generalized classes of objects.

Feature point based techniques; such as SIFT [24], SURF [25], and ORB [26],
identify interesting features within a scene, and characterize them through their
local spatial properties. By comparing the properties of these features between
frames, it is possible to determine where each feature point has moved. In order to
detect objects, along with their classes and localizations, these feature points must
be combined with other techniques, such as a bag of visual words, a classification
algorithm, and a windowing technique [27]. These techniques require much com-
putational time to determine the vectors for each key point, and obtaining a precise
bounding box of the objects of interest may prove difficult, with the advantage
being that they simplify the feature correspondence problem between frames while
reducing the volume of data processed in subsequent analysis.

Other techniques model the scene stochastically, taking advantage of the
time dimension, such that when a new object is introduced, it can more easily
be detected. Mixture of Gaussians (MoG) belongs to such a class of techniques
[28-30]. The MoG algorithm works by modelling each pixel using a mixture of
Gaussian distributions, such that when a value for a particular pixel is observed that
does not match any of the existing Gaussians for that pixel; it is flagged as con-
taining something new, and belonging to the foreground. After a certain amount of
time, these foreground values are modelled as Gaussians in the background model.
This allows the background model to adapt to changing illumination or a dynamic
scene. While this integration of foreground objects into the background model may



50 P. Curtis et al.

be beneficial in some situations, it becomes a problem when the object of interest
becomes part of the background when stationary, as this object may exhibit
behaviors that are being monitored. Additionally, these techniques tend to require a
relatively static scene, with any illumination variation occurring slowly, and using a
stationary camera. Some research has been made in providing methods to model
dynamic backgrounds [31] with illumination invariance [32, 33] characteristics.
Figure 1 demonstrates the fade to background problem. In Fig. 1a, the scene is
static containing no objects of interest. This becomes integrated into the background
model. Sometime later, a person enters the scene, shown in Fig. 1b. In Fig. 1c, the
person moves a little bit more and then stops; after some time, the person is fully
integrated into the background model, precluding their representation in the fore-
ground model in Fig. 1d. If persons are the class of interest in this scenario, then this

Fig. 1 Demonstrating fade to

background problem (a)
(b)
(0
(d)
(e)
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is undesirable behavior, as once an object is integrated into the background model, it
is not extracted, and therefore is effectively invisible to the computer vision algo-
rithm. For objects belonging to classes of interest it is desirable to prevent this.
Figure le shows the person moving again, and hence the person appears in the
foreground model at locations where the person has not been previously observed.

3 Proposed Solution

The proposed solution is based on three interconnected modules (see Fig. 2) which
include an object extraction module, a classification module, and a behavior engine
that generates feedback to the object extraction module, as well as the annotated
output frame and any necessary system alerts. Sections 3.1, 3.2, and 3.3 discuss the
three respective modules of proposed solution.

3.1 Object Extraction

The object extraction technique that has been employed (see Fig. 3) uses a back-
ground subtraction based approach. This is followed by a dilating morphological
operation to fill in possible gaps, and then a standard 8-wise connected components
labelling algorithm is applied to the foreground model. A Kalman tracker combined
with a nearest neighbor matching technique is utilized to perform correspondence
of detected objects between frames.

The background subtraction based segmenter is the MoG technique [30]
previously described in Sect. 2.2 that models the variations of each pixel in the
scene over time by a mixture of Gaussian distributions. Any measurement that does
not fit into these distributions is considered as an anomaly, and labelled as
belonging to a foreground object. As there may be holes in the foreground model,

Video Frame

Tracked Objects

Object Extraction Classification

Classified Tracked Objects

Background Model

Annotated Frame

Behavior Engine Alerts

Training Frame

Fig. 2 Block diagram illustrating the proposed solution
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Fig. 3 Block diagram illustrating the object extraction process

due to the moving object being similar in color to the background model in some
locations, a dilation morphological operator is applied that fills in these smalls gaps,
following which each pixel in the resulting model is grouped together using an
8-wise connect components labelling algorithm, and a rectilinear bounding box is
then fitted for each labelled object. In order to prevent the background model from
incorporating objects that are of interest, the learning parameter is set to zero when
the video frame is first introduced, and then set back to its regular value when the
training image for that particular frame has been decided by the behavior engine, as
detailed in Sect. 3.3. The Kalman tracker is then used to predict the locations of
bounding boxes that previously detected objects will have in the current frame.
Corresponding matches between frames is performed by a greedy nearest neighbor
algorithm using the Euclidean distance of bounding boxes obtained from objects
extracted in the current frame and those predicted by the Kalman tracker.

3.2 Classification

The classifier architecture, as shown in Fig. 4, contains a feature extractor that
produces a feature vector based on the current appearance for each tracked object.
These feature vectors are then fed into a parallel bank of Multi-Layer Perceptron
(MLP) ANN binary classifiers. The final classification is chosen using a one versus
all strategy, where the highest activation level among the active classifiers is chosen
as the winner. If no classifiers reach the threshold of classification, then the object is
deemed as belonging to an unknown class. Using a parallel bank of MLPs allows
for the easy addition/removal/retraining of any particular class, at the expense of a
higher computational burden.

The output from the ANN classifier is then fed into a temporal Bayesian clas-
sification filter. As the Bayesian filter requires many positive classifications to
reinforce the belief in the resulting classification, this minimizes the impact of
temporary misclassifications; effectively minimizing the false positive and negative
classification rates produced by the overall system.
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Fig. 4 Block diagram illustrating the classification process

The features that are provided to the ANN classifier are extracted from the
contents of a subimage defined by the object’s bounding box. The first feature is the
mean color corrected red, green and blue (RGB) values of the subimage. To gen-
erate the color corrected image, two factors are initially calculated using the mean
greyscale value,grey, the mean red channel value, red, and the mean green channel
value, green, as shown in (1). These factors are then applied to each r row and
¢ column pixel location in the red (I;eq), green (Jgreen), and blue () channels of
the image to create the color corrected image, 1., as shown in (2). The second
feature is a greyscale version of the subimage that has been rescaled to 4 X 4 pixels
in size, and the final feature is a black and white thresheld version of the greyscale
image using the OTSU algorithm [34], which is then resampled, with each pixel
representing the corresponding ratio of the positively thresheld pixels against the
total number of pixel represented by the new subsampled pixel. An example of the
extraction of these features is shown in Fig. 5. This results in a total feature vector
length of 35 elements. The latter are then normalized to be between —1 and 1, with
the normalization limits chosen based on the range observed for each parameter in
the dataset used for training.

Fig. 5 Demonstrating the feature vectors extracted from a scene: a the subimage defined by a
detected objects bounding box, b the first feature, ¢ the second feature, and d the third feature
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(fi .fr)=grey- (1 jred. 1/green) (1)
Icor(rs C) = (Ired(r7 C)*fl Igreen(ra C)*f2 Iblue(r7 C)*fl ) (2)

The ANN is a simple feed forward (FF) type MLP that has input, hidden, and
output layers. The output layer has 2 neurons with binary output values in the range
of 0—1 to indicate that the object belongs to the class for the first output neuron, and
similarly to indicate that the object does not belong to the class for the second
output neuron. Each classifier has a different number of hidden layer neurons that
was found via the training process. By using a short feature vector, the speed of the
classification is improved, at the cost of potentially higher misclassification rates.

The classes that are currently classified by the MLP classifier’s binary output are
bird, person, car, and maritime vessel. These classes were trained using a combi-
nation of the Visual Object Classes Challenge—Pattern Analysis, Statistical Mod-
elling, and Computational Learning (PASCAL) [35] dataset of 2007 and 2008, and
an internally maintained dataset of images for the targeted categories. While the
PASCAL dataset contains annotations for person, bird, cat, cow, dog, horse, sheep,
aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table,
potted plant, sofa, and monitor, the four aforementioned classes were chosen since
persons and cars are typically objects that are of interest for critical infrastructure
protection applications, while birds and maritime vessels are of concern within
maritime situational awareness applications.

Matlab’s scaled conjugate gradient back-propagation method [36] was used for
training since the dataset is quite large and this method can tackle such data with
low memory consumption. The trained configuration was then implemented in a
custom optimized C++ module. Table 1 shows the training and testing results of

Table 1 Results of training and testing for each of the NN classifiers

- Q
1 =5 ) < ~la = _ _ _
B EF | SlREE|EE|E IR
Q
Tr | 12684 | 962 | 463 | 3.7 | 492 | 0.8
Person
Ts | 14976 | 598 | 219 | 281 | 340 | 160
Maritime | IT | 12889 | 988 | 382 | 118 | 500 | 001
Vessel "7 12976 | 965 | 118 | 382 | 492 | 0.76
Tr | 6904 | 983 | 385 | 115 | 500 | 0.01
Car
Ts | 6347 | 897 | 86 | 414 | 477 | 237
Tr | 6904 | 986 | 443 | 57 | 500 | 0.03
Bird
Ts | 6347 | 895 | 132 | 308 | 463 | 3.7

(Tr Training; Ts Testing; AC Accuracy; CC Correct classification; TP True positive; FN False
negative; TN True negative; FP False negative)
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Fig. 6 TP, TN, FP, FN 60
Values of testing on unseen 50

images
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30 M Person
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the designed classifiers. The classifiers were capable of classifying a significant
number of images that contain an object of a targeted category. As shown in Fig. 6,
the person classifier had the highest false positive rate Xj ,, for the kth object, Oy ,,
at frame n being chosen based on the highest activation output of all the classifiers
being used, while ensuring that there is a sufficient delta, a, between the activation
levels. If there is no single class dominant or if the dominant class has an activation
level below a threshold, f, then the classification of the object is considered to be
unknown, as in (3).

. ANN;(Ox.n) > P,
X, = 2 MXANNOen)}s | 4NN, (0, )~ ANN(Op)| > aiti (3)
unknown, otherwise

To prevent the effect of temporary misclassifications in the form of false posi-
tives and false negatives, a Bayesian inference predictor, (4), has been implemented
to perform temporal filtering of the ANN classifier output, where P(X,, |0,,) is the
probability that the object belongs to class X at time n given the current observation
0,, L(X,10,) is the likelihood that the observation O results in the classification X
for the current observation at time n (which is determined by the normalized output
of the ANN classifier) and P(X,,_;l0,_;) is the probability that the object belongs to
class X observation O at the previous instant in time, n—1.

P(X,-1]0,-1) - L(X,|0,)
(Xn—llon—l) 'L(anon) + (1 _P(Xn—llon—l)) : (1 _L(Xn|0n))

P(Xn|0n)= P (4)

The object’s current class is decided by the dominant probability out of all
classes, including the unknown object class. Note that when the output of the MLP
is unknown, the Bayesian temporal filter is not updated in order to prevent situa-
tions that the classifier does not recognize, such as uneven lighting or occlusion,
from suppressing the current classification of the object.
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Table 2 A.n example # MLP classification Bayesian filter output

demonstrating the output

effec.tlveness of Bayegan Class Prob. Class Prob.

filtering on classification
1 Unknown 0.50 Unknown 0.50
2 Person 0.60 Person 0.60
3 Car 0.75 Car 0.67
4 Person 0.68 Person 0.52
5 Person 0.75 Person 0.76
6 Person 0.69 Person 0.88
7 Bird 0.6 Person 0.83

An example demonstrating the effectiveness that Bayesian filtering has on the
classification of an object is shown in Table 2. This scenario catalogs the classi-
fication of a person object for 7 successive instances in time, with the MLP clas-
sification output and the Bayesian classification filter output. As can be observed,
the object is first detected with an unknown classification. In the second frame, the
correct classification of person with a probability of 0.6 is produced from the MLP,
and similarly for the Bayesian filter. At frame 3, the person is misclassified as a car
with a probability of 0.75, the Bayesian filter output is car, but with a lower
probability due to dissimilar classes reducing the confidence of classification. At the
4th, 5th, and 6th instances of time, the MLP output class is person with a varying
probabilities, these repeated observations increase the confidence in the objects
class being a person within the Bayesian classification filter, resulting in an output
classification of person at 0.88 probability at time 6. At time 7, the MLP yields a
misclassification with the output being bird with probability of 0.6. This only
slightly lowers the Bayesian output of person slightly to 0.83. This example shows
that temporary misclassification from the MLP do not affect the long term classi-
fication of an object thanks to the Bayesian classification filter, as long as there have
been repeated measurements from the correct classification to reinforce the class
belief.

3.3 Behavior Engine

The behavior engine module, as shown in Fig. 7, consists of a behavior analysis
unit that looks for specific behavior from certain classes of tracked objects, fol-
lowed by an annotation unit that generates an operator output in the form of an
annotated video frame and alerts, as well as a unit that generates a training frame for
feedback into the object extractor module.

The behavior analyzers that are currently implemented include intrusion detec-
tion, abandoned object, and counting object analyzers. The intrusion detection
analyzer monitors for the intrusion of a restricted zone (e.g. a preselected subregion
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Fig. 7 Block diagram illustrating the behavior engine

of the image bounded by a polygon) by an object from a selected class, or classes.
When objects of the selected class are detected within this zone, it triggers an alert.
The abandoned object analyzer monitors for the separation of a smaller object from
a larger parent object of a specific class, or classes, within a particular predefined
subregion of the image space that is defined by a polygon. When this smaller object
remains stationary for a period of time within the monitoring zone, and it is sep-
arated by the parent object of a particular class, an alert is triggered. The counting
object analyzer counts the number of objects from a particular class or classes that
has crossed a predefined subregion of the image space indicated by a bounding
polygon.

The annotation unit marks up the video stream, highlighting objects and classes
of interest, as well as providing alerts based on the behavior analysis. The training
frame creation unit generates the training frame based on the background model, the
current frame, and the objects of interest produced from the behavioral analysis
unit, such that the background subtraction will not integrate objects of interest into
the background module. For the case of maritime vessels, as the wake generated in
the water is also considered foreground and part of the maritime vessel object
segment by the object extraction module. For objects of this class, the wake is
filtered using a color based filter (as a wake is generally light gray to white), thereby
allowing the integration of the wake into the background model, limiting future
detections to only the maritime vessel itself, and not the wake, while still preventing
the vessel from fading into the background. The produced training frame is then fed
back into the object extraction module, and the background model is adjusted
appropriately.

4 Case Studies: Critical Infrastructure Protection

In this work, three scenarios are considered. The first scenario, shown in Fig. 8a,
consists of monitoring a pair of dumpsters for their unauthorized usage. The second
scenario, shown in Fig. 8b, consists of monitoring a doorway for unauthorized
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Fig. 8 Demonstrating the three considered scenarios of a monitoring of a dumpster, b monitoring
of a doorway for suspicious activities, and ¢ monitoring of a port for maritime vessels

access. The final scenario, shown in Fig. 8c, monitors the entrance way of a port for
maritime vessels. In each scenario, the region of interest for monitoring intrusion is
a polygon that is drawn on the images in blue.

4.1 Scenario 1: Monitoring of a Dumpster

In this scenario, the dumpster is located at the rear of a building that will have
infrequent vehicular traffic. The region around the dumpster will be monitored for
objects of type person intruding within that zone, as when this occurs there may be
somebody putting garbage in the dumpster. When the operator receives the alert,
they must make a decision as to whether the person is authorized to use the
dumpster. Furthermore, as there is vehicular traffic expected, cars should not cause
alerts, but they should be prevented from fading into background, as cars should not
be permanent residents of the scene.

This scenario commences when a car enters from the bottom left corner and
drives up to the dumpster. A person then exits the car, grabs a bag of garbage,
tosses it into the garbage bin, and then drives away to the right. The car should still
be detected and classified, but it should not cause an alert, nor should it fade into the
background model. Furthermore, a person by the dumpster indicates a condition
that should be handled by an operator to ensure the person is authorized to use that
resource, and as a result an alert will be sent under this situation. The alert will
cease once the condition is alleviated, which occurs when the person leaves the
intrusion zone; when he enters the car and drives away.

4.2 Scenario 2: Monitoring of a Doorway

In this scenario, a doorway is monitored for intrusion by objects of type person.
When an object of type person is detected within this zone, an alert will be sent to
the operator, as this may indicate a possible attempt to access the building by an
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unauthorized individual. Additionally, objects of class person will have their recent
tracking history kept, indicated by the path followed by the bounding box centroid,
annotated for the operator to view the direction that the person came from where
they have visited. Furthermore, the abandonment of suspicious objects by a person
within this zone will be monitored, as this may indicate a potential danger.

This scenario commences when a person walks in from the right. This person
stops at the door, drops a bag, and then proceeds to walks away towards the left of
the scene. An alert should be triggered when the person intrudes upon the moni-
tored zone, which will cease when the he leaves it. Furthermore, after a period of
time, the abandoned bag left by the door by the person should trigger an abandoned
object alert. Throughout the whole scenario, the tracking history of the person
should be displayed indicating the path followed, and as the bag does not belong to
a known class, its classification should remain unknown. Both the abandoned object
and the person should not be integrated into the background model.

4.3 Scenario 3: Monitoring of a Port

In this final scenario, a port is monitored for intrusion of maritime vessels. Maritime
vessels are the object of interest, and as a result they should not fade into the
background model. When maritime vessels enter the port region, this will trigger an
alert to the operator, who should follow up by making sure that they are authorized
to access this particular zone. Furthermore, as it may be of interest to the operator to
determine the path that maritime vessels follow and as such the recent tracking
history indicating the centroid of the bounding box is shown for each maritime
vessel detected. Finally, any wake included with the segmented maritime vessel
should be integrated into the background model.

This scenario commences with a maritime vessel coming from the right hand
side, and entering the port. When the vessel crosses into the intrusion zone, an alert
is generated. Furthermore, a recent track history is displayed for this maritime
vessel, indicating where it has recently been located within the video feed.

5 Experimental Results

The scenarios described in Sect. 4 were captured using three different cameras and
frame rates. The first camera is a Vivotek security camera, capturing at a variable
frame rate at a resolution of 640 x 480, which was used to acquire the video of
Scenario 1. The second camera is a Logitech webcam, capturing at 30 fps at a
resolution of 640 x 480, which was used to acquire the video of Scenario 2. The
video in Scenario 3 was acquired from archival footage, and has a resolution of
848 x 480 at 30 fps. Each video was saved in the MP4 video format, and subse-
quently processed offline to allow for the repeatability and thorough analysis of the
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results. This is not to state that the system can only operate offline; in fact the
proposed system is capable of operating online in real-time in a wide range of
situations. The video processing algorithm was implemented in optimized C++,
using a combination of OpenCV and in-house libraries. The first three subsections
detail the results obtained from each of the three scenarios.

5.1 Scenario 1

The key moments of the first scenario are shown in Fig. 9, where the first column
contains the frame number for the corresponding row, the second column contains
the annotated output video frames, the third column contains the detected objects,
and the fourth column contains the feedback training frames. The car comes into
view and is classified as unknown in frame 246. In frame 249, it is correctly classified
as a car; notice that it has not been introduced into the background model. The car
continues moving until frame 297, where it stops. Notice that the car crossing into
the intrusion polygon does not trigger an alert, hence highlighting that the behavioral
module correctly distinguishes between classes when processing behaviors. In frame
387, an object that has been correctly classified as a person has exited the car with a
garbage bag in hand and is about to toss it into the dumpster. In frame 390, an alert is
generated as an intrusion has been detected by an object classified as a person, which
causes the intrusion polygon to alternate between blue, green, and red. In frame 447,
the person has reentered the car, and drives away in frame 479. Notice that in the
training images, the regions of the image that correspond to unknown objects, cars,
and persons have not been introduced into the feedback training image, thereby
preventing objects of potential interest from being incorporated into the background
model, even with the car being stationary for over 42 s.

Table 3 provides key moments of the classifier performance of the car object in
Scenario 1. The first column is the frame number that the classification took place
in, the second column indicates the classification of the object from the previous
frame (unknown with a probability of 0.5 by default for new objects), the third
column indicates the output classification and probability of the MLP ANN clas-
sifier, the fourth column is the current classification after the temporal Bayesian
inference filter has been integrated with the MLP ANN observation. The object is
first detected at frame 245, when it is classified as unknown with probability of
1.0000 by the MLP ANN classifier. As previously mentioned, since the Bayesian
temporal filter is not updated upon an unknown classification, the resulting clas-
sification is still unknown with a probability of 0.5000. This situation remains
unchanged until frame 249, when the MLP ANN finally recognizes the object as a
car with a probability of 0.9997. The output to the Bayesian filter becomes car with
a probability of 0.9997. In the following frame (#250), the MLP ANN classifier
produces another classification of car with a probability of 0.9997. This results in
the reinforcement of the Bayesian belief that the object is a car, but now with a
probability of 1.0000. In frame 285, the MLP ANN classifier produces a



Classification-Driven Video Analytics ... 61

#

Annotated Frame Segmented Image Training Image
s W A s '

E

P

246

249

297

387

390

447

479

Fig. 9 Demonstrating the annotation, segmentation, and training images with their corresponding
video frame # of key moments that occurred during Scenario 1
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Table 3 Demonstrating key instances in the classification of the car object in Scenario 1

Frame # Previous classification MLP ANN classifier Current classification
classification
Class Prob. Class Prob. Class Prob.
245 Unknown 0.5000 Unknown 1.0000 Unknown 0.5000
249 Unknown 0.5000 Car 0.9997 Car 0.9997
250 Car 0.9997 Car 0.9997 Car 1.0000
285 Car 1.0000 Person 0.9997 Car 1.0000

misclassification with the class being person with a probability of 0.9997. Due to
the high belief that the Bayesian temporal classification filter currently has, the
resulting probability is still car with probability of 1.0000, thereby preventing the
misclassification from affecting the culminating classification, and any potential
action based on that classification.

These are demonstrably the expected results based upon the description made of
the scenario in Sect. 4.1, as well as the expected system behavior, illustrates the
correct operation of the classification-driven video analytics system.

5.2 Scenario 2

The key moments of the second scenario are shown in Fig. 10, using the same
column order as previously defined for Fig. 9. In frame 239, a person enters the
frame from the right and is initially misclassified as a bird. By frame 244, this
individual is now mostly in the scene and is correctly classified as a person. In
frame 276, he enters the region by the door, triggering an intrusion alert, causing the
outlining polygon to alternate between blue, green, and red. In frame 326, the
individual stops for a bit, and drops a bag. By frame 401, he has walked away from
the door, but the bag has been identified as an unknown object, still triggering the
intrusion alert. In frame 459, this unknown object has been determined to be an
abandoned object, which has created yet another alert, indicated by the thicker red
boundary around the object with an ‘A’ drawn in the interior. At frame 459, the
person has completely left the scene and the abandoned object is still triggering
both the intrusion alert, as well as the abandoned object alert. Furthermore, a track
in green indicating the individual’s center of gravity over time has been traced
through the scene. Finally, all objects corresponding to the person and unknown
classes have not been fed back into the training image, while other classes have,
such as when the individual was misclassified as a bird in frame 239, due to the
interest being on persons and unknown objects. This keeps both of the monitored
objects, person and unknown, from being integrated into the background model,
thereby allowing the detection, tracking, and behavior analysis to take place for
objects of these classes in subsequent frames.
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Fig. 10 Demonstrating the annotation, segmentation, and training images with their corresponding
video frame # of key moments that occurred during Scenario 2
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Table 4 Demonstrating key instances in the classification of the person object in Scenario 2

Frame # Previous classification MLP ANN classifier Current classification
classification

Class Prob. Class Prob. Class Prob.
217 Unknown 0.5000 Unknown 1.0000 Unknown 0.5000
231 Unknown 0.5000 Bird 0.7470 Bird 0.7470
232 Bird 0.7470 Unknown 1.0000 Bird 0.7470
244 Bird 0.7470 Person 0.9310 Person 0.8206
245 Person 0.8206 Person 0.9271 Person 0.9831
246 Person 0.9831 Person 0.9995 Person 1.0000
271 Person 1.0000 Bird 0.8311 Person 1.0000

Table 4 provides key moments of the classifier performance of the person object
in Scenario 2. The organization is identical to that previously described for Table 3.
In this scenario, the person object first enters the scene at frame 217, where it is
classified as unknown with a probability of 1.0000. However in frame 231, this
object is misclassified as bird with a probability of 0.7470 by the MLP ANN
classifier, resulting in the output classification of bird by the Bayesian temporal
filter. The following frame, the MLP ANN resumes its classification of the object as
unknown with a probability of 1.0000, but as previously discussed, the Bayesian
temporal classification filter is not updated when the MLP ANN classification is
unknown. In frame 244, the MLP ANN classifier finally correctly classifies the
output as a person with probability of 0.9310, which results in the output of the
Bayesian filter of person with a probability of 0.8206. In each of the two following
frames, number 245 and 246, the MLP ANN classifier produces a classification of
person with probabilities of 0.9271 and 0.9995 respectively. This reinforces the
Bayesian belief that the correct classification is person with the probabilities
evolving to 0.9831 and 1.0000 in those two successive frames. In frame 271, the
MLP ANN classifier produces a misclassification of bird with a probability of
0.8311, which does not affect the Bayesian belief that the object is a person with a
probability of 1.0000, thereby further demonstrating the benefit of the temporal
Bayesian classification filter.

Again, these results demonstrate the correct operation of the classification-driven
video analytics system by following the expected behavior as presented in Scenario
2 described in Sect. 4.2.

5.3 Scenario 3

As with Fig. 9 from Scenario 1, Fig. 11 illustrates the key moments in Scenario 3.
This scenario begins with a maritime vessel approaching from the right hand side of
the scene. The object extraction algorithm does not initially detect the object when
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Annotated Frame Segmented Image Training Image

Fig. 11 Demonstrating the annotation, segmentation, and training images with their corresponding
video frame # of key moments that occurred during Scenario 3

it is introduced in frame 355, due to the object having much similarity with the
background, and what is not similar is small, and hence discarded as noise.
However on frame 496, the object is finally detected, and successfully classified as
a maritime vessel, where it is prevented from being integrated into the background
model, as shown in the corresponding training image. The vessel travels for a while,
and enters the intrusion zone about the port in frame 1052, thereby triggering an
alert. Furthermore, the tracking history is annotated, as indicated by the line that
follows the maritime vessel’s bounding box centroid. In frame 1281, the vessel is
part way through the intrusion zone, where the alert is still being raised, and the
tracking history is still being shown. In frame 1418, the vessel is almost out of the
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Table 5 Demonstrating key instances in the classification of the maritime vessel object in
Scenario 3

Frame # | Previous classification MLP ANN classifier Current classification
classification
Class Prob. Class Prob. Class Prob.
496 Unknown 0.5000 | Maritime vessel |0.5671 |Maritime vessel |0.5671
506 Maritime vessel |0.6872 | Unknown 0.5269 | Maritime vessel |0.6872
612 Maritime vessel |0.9997 | Maritime vessel |0.8485 | Maritime vessel | 1.0000

intrusion zone, with the alert still being raised. By frame 1621, the vessel has
completely left the scene, and the alert has ceased. Furthermore the recent tracking
history for the vessel is still being displayed. Notice that the track does not intersect
with the edge of the scene, as the object becomes too small, and is dropped, before
it completely leaves the scene. Finally, during each instance shown, when the object
is classified as maritime vessel, the vessel is not integrated into the background
model, but the wake is introduced to the training frame, allowing for the possibility
of still monitoring it if it ceases motion and stops, while ignoring the wake.

Table 5 provides key moments of the classifier performance of the maritime
vessel object in Scenario 3, with the organization being identical to that previously
described for Table 3 from Scenario 1. As previously shown in Fig. 11, the object is
first detect in frame 496, and is assigned the maritime vessel class with probability
0.5671. Until frame 506, the belief in the maritime vessel class has been reinforced
to a level of 0.6872, when the MLP returns a classification of unknown with a level
of 0.5269. As previously described, unknown classification does not change the
values of the Bayesian classification filter; hence the classification is still maritime
vessel with the previous probability. By frame 612, the object has been completely
reinforced through repeated measurements to be of class maritime vessel with
probability of 1.0000, with no misclassifications, aside from the occasional
unknown, from occurring.

The results presented in this subsection indicate that the classification-driven
video analytics system is able to operate in both land-based and maritime-based
environments. Additionally, the expected outcome of Scenario 3 described is
Sect. 4.3 was met, further verifying the correct operation of the system.

6 Conclusion

The proposed classification-driven video analytics system correctly extracts inter-
esting objects from the scene. It then tracks, classifies, determines the behavior of
these objects. Finally, the system provides relevant alerts to the operator so that a
potential action can be determined and eventually enacted. The performance of the
proposed system was demonstrated in the three scenarios presented in Sect. 4 of this
work. Furthermore, the system was shown to operate effectively in different types of
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operational environments, namely land based (Scenarios 1 and 2) and maritime
based (Scenario 3).

In the proposed object extraction module, objects of interest are extracted based
on the MoG background subtraction technique. A combination of Kalman tracking
and greedy nearest neighbor matching is then used to track these objects throughout
an image sequence, which is clearly demonstrated in the results where a track is
drawn that follows the motion of the person through the scene in Scenario 2, and a
track is drawn that follows the motion of the maritime vessel in Scenario 3. These
tracked objects are then classified. The proposed classification module contains four
accurate parallel ANN classifiers for the following classes: car, person, bird, and
maritime vessel in a one versus all configuration. In order mitigate the inevitable
small amounts of misclassification, and improve both the reliability and stability of
the end classification; a temporal Bayesian filter is applied to reduce the effect of
these occasional misclassifications. This was demonstrated in Scenario 1 where the
car was misclassified as a person in frame 285, but the output from the Bayesian
filter was still a car, and additionally demonstrated in Scenario 2 where the person
was initially considered a bird in frame 231, but later confirmed to be a person in
frame 244.

After the objects have been classified, they are processed by the proposed
behavior analysis module. In Scenario 1 that monitors the dumpster; cars do not
trigger an intrusion alert, but are still monitored. On the other hand, the person does
trigger the intrusion alert, thereby demonstrating that behavior can be determined
for each object on a per class basis. In Scenario 2, the person crosses into the
intrusion region, which triggers an alert. Furthermore, the person leaves a bag
behind, which continues the intrusion alert, while also producing an abandoned
object alert, further demonstrating the capability of the system to simultaneously
monitoring for different types of behaviors. In Scenario 3, the maritime vessel enters
the intrusion zone triggering an alert.

The knowledge of behaviors and object classes is fed back into the MoG seg-
menter by adjusting the training image to not contain objects that are of interest for
the particular monitoring application, and hence reducing the chance of forgetting,
or not observing, interesting objects that could be of highest importance for critical
infrastructure protection. Furthermore, in Scenario 3, the wake is introduced into
the background model, while preventing the vessel from being integrated,
demonstrating the efficacy of a color based filter for handling features with uniform
color profiles such as wake.

Future enhancements are being planned for the current system. Firstly, the
segmenter will be enhanced to handle more dynamic scenes with camera move-
ment, which will permit a greater range of applicable scenarios. Secondly, the
computer vision techniques will be made more illumination-invariant such that they
can handle greater light variation across the scene, which will improve performance
within a wider variety of uncontrolled environments. The classification module will
be enhanced to handle more classes of objects, as well as determine additional
properties of classes. Finally, the addition of further in-depth behavior analysis
capability will be developed, such as vandalism and fire detection.
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Abstract Modern smart-surveillance applications are based on an increasingly
large number of heterogeneous sensors that greatly differ in size, cost and reliability.
System complexity poses issues in its design, operation and maintenance since a
large number of events needs to be managed by a limited number of operators.
However, it is rather intuitive that redundancy and diversity of sensors may be
advantageously leveraged to improve threat recognition and situation awareness.
That can be achieved by adopting appropriate model-based decision-fusion
approaches on sensor-generated events. In such a context, the challenges to be
addressed are the optimal correlation of sensor events, taking into account all the
sources of uncertainty, and how to measure situation recognition trustworthiness.
The aim of this chapter is twofold: it deals with uncertainty by enriching existing
model-based event recognition approaches with imperfect threat modelling and with
the use of different formalisms improving detection performance. To that aim, fuzzy
operators are defined using the probabilistic formalisms of Bayesian Networks and
Generalized Stochastic Petri Nets. The main original contributions span from sup-
port physical security system design choices to the demonstration of a multifor-
malism approach for event correlation. The applicability of the approach is
demonstrated on the case-study of a railway physical protection system.
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1 Introduction

In modern society, the assurance of a secure environment is of paramount impor-
tance due to the growing risk factors threatening critical infrastructures. For that
reason, the number and the diversity of sensors used in modern wide-area surveil-
lance are continuously increasing [1]. The types of sensors include environmental
probes (e.g., measuring temperature, humidity, light, smoke, pressure and acceler-
ation), intrusion sensors (e.g., magnetic contacts, infrared/microwave/ultrasound
motion detectors) Radio-Frequency Identifiers (RFID), geographical position
detectors, Smart-cameras and microphones with advanced audio-video analytics
capabilities and Chemical Biological Radiological Nuclear and explosive (CBRNe)
detectors.

Different types of sensing units are often integrated in smart-sensors that can be
part of a Wireless Sensor Networks (WSN); these sensors can also feature on-board
‘intelligence’ through programmable embedded devices with dedicated operating
systems, processors and memory [2, 3].

Such a wide range of sensors provides a large quantity of heterogeneous
information. The information supports Physical Security Information Management
(PSIM) operators by using pre-processing, integration and reasoning techniques. In
a contrary case, there is a serious risk of overwhelming the operators with
unnecessary warnings or alarms: they would not be able anymore to perform their
task and they could underestimate critical situations [4, 5].

In such a context, (semi-)automatic situation recognition becomes essential. The
reliability assurance of sensor networks has been dealt with several approaches, first
of them the sensor information fusion approach. There are many scientific works in
this field [6, 7, 8]; this notwithstanding, this chapter focuses on multiformalism
technique that, at the best of our knowledge, has received little attention by the
scientific community.

However, not much work has been done in the research literature to develop
frameworks and tools aiding surveillance operators to take advantage of recent
developments in sensor technology. In other words, most researchers seem to
ignore the apparent paradox according to which more complex is the sensing
system, more complex are the tasks required to manage and verify their alarms by
the operators.

The challenges to be addressed are the optimal correlation of sensor events,
taking into account all the sources of uncertainty (i.e. imperfect threat modelling,
sensor false alarm probability, etc.), and how to measure situation recognition
trustworthiness. Those challenges can only be addressed using fuzzy probabilistic



Fuzzy Decision Fusion and Multiformalism ... 73

modelling approaches since ‘exact’ modelling do not allow to represent those
uncertainties.

We have addressed the issue of automatic situation recognition by developing a
framework for model-based event correlation in infrastructure surveillance. The
framework—named DETECT (DEcision Triggering Event Composer & Tracker)—
is able to store in its knowledge base any number of threat scenarios described in
the form of Event Trees, and then recognize those scenarios in real-time, providing
early warnings to PSIM users [9, 10].

In this paper, we adopt a model-based evaluation approach supporting the
quantitative assessment of DETECT effectiveness in reducing the number of false
alarms and in increasing the overall trustworthiness of the surveillance system. The
evaluation is dependent on sensor technologies and scenario descriptions, and it is
based on stochastic modelling techniques. Some mappings are performed from
Event Trees to other formalisms like Fault Trees (FT), Bayesian Networks (BN),
Petri Nets (PN) and their extensions. Those formalisms are widespread in
dependability modelling and allow engineers to perform several useful analyses,
including ‘what if” and ‘sensitivity’, accounting for false alarms and even sensor
hardware faults.

The choice of these formalisms relies on a comparison of their modelling power
and efficiency: a complete report about this comparison is in [11]. In brief, FTs are
very easy to build and analyse, but they have a limited modelling power. On the
other hand, PNs feature a great expressive power but they are limited by the
well-known state-space explosion problem. BNs represent a good trade-off between
those two extremes. The practice of multiformalism modelling, i.e. the integration
of different formal modelling languages into a single composed model, has proven
to be effective in several applications of dependability [12] and safety [13] evalu-
ation. This paper describes a multiformalism approach for the evaluation of
detection probabilities using Bayesian Networks and Generalized Stochastic Petri
Nets (GSPN).

Generally speaking, the method used for the analysis, which is the main original
contribution of this paper, allows to:

e Support design choices in terms of type and reliability of detectors, redundancy
configurations, scenario descriptions.

e Demonstrate the effectiveness of the overall approach in practical surveillance
scenarios, in terms of improved trustworthiness in threat detection with respect
to single sensors;

e Define fuzzy event-correlation operators able to detect threat events in noisy
environments;

e Define multiformalism approaches for event correlation allowing the combined
exploitation of modelling power and solution efficiency of different formalisms.

A threat scenario of a terrorist attack in a metro railway station is considered, to
show the practical application of the methodology.

The rest of this paper is structured as follows. Section 2 provides an overview of
the related literature on DETECT and trustworthiness evaluation of surveillance
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systems. Section 3 describes the general fuzzy process used for the analysis. Sec-
tion 4 customizes the general process to the Bayesian Networks modelling for-
malism as well as to Petri Nets (Sect. 5). Section 6 presents a multiformalism
approach exploiting the power of both BNs and GSPNs. Section 7 introduces the
case-study application using a metro-railway threat scenario. Section 8 summarizes
the results of the analyses and discusses the achievements. Finally, Sect. 9 provides
conclusions and hints about future developments.

2 Background
2.1 Related Works

The first concept of DETECT has been described in [9], where the overall archi-
tecture of the framework is presented: it includes the composite Event Description
Language (EDL), the modules for the management of detection models and the
scenario repository. In [10], an overall system including a middleware for the
integration of heterogeneous sensor networks is described and applied to railway
surveillance case-studies. Reference [14] discusses the integration of DETECT in a
PSIM system [15], presenting the reference scenario that will be also used in this
paper. To detect redundancies while updating the scenario repository (off-line issue)
and to increase the robustness of DETECT with respect to imperfect modelling
and/or missed detections (on-line issue), distance metrics between Event Trees are
introduced in [16].

A survey of state-of-the-art in physical security technologies and advanced
surveillance paradigms, including a section on PSIM systems, is provided in [17].
Contemporary remote surveillance systems for public safety are also discussed in
[18]. Technology and market-oriented considerations on PSIM can be also found in
[19, 20].

In [21] the authors address the issue of providing fault-tolerant solutions for
WSN, using event specification languages and voting schemes; however, no
model-based performance evaluation approach is provided. A similar issue is
addressed in [22], where the discussion focuses on different levels of
information/decision fusion on WSN event detection using appropriate classifiers
and reaching a consensus among them in order to enhance trustworthiness.
Reference [23] describes a method for evaluating the reliability of WSN using the
FT modelling formalism, but the analysis is limited to hardware faults (quantified
by the Mean Time Between Failures, MTBF) and homogenous devices (i.e. the
WSN motes). Performance evaluation aspects of distributed heterogeneous
surveillance systems are instead addressed in [24], which only lists the general
issues and some pointers to the related literature. Reference [25], about the trust-
worthiness analysis of sensor networks in cyber-physical system, is apparently one
of the most related to the topics of this paper, since it focuses on the reduction of
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false alarms by clustering sensors according to their locations and by building
appropriate object-alarm graphs; however, the approach is quite different from the
one of DETECT and furthermore it applies to homogeneous detectors. Another
general discussion on the importance of the evaluation of performance metrics and
human factors in distributed surveillance systems can be found in [26]; however, no
hints are provided in that paper about how to perform such an evaluation on real
systems.

Regarding the dependability modelling approach used in this paper, it is based
on the results of the comparison among formalisms (i.e. Fault Trees, Bayesian
Networks and Stochastic Petri Nets) in terms of modelling power and solving
efficiency that has been reported in [11], and also applied in [13] to a different
case-study using an approach known as ‘multiformalism’. Some applications to
physical security are in [27, 28] respectively exploiting GSPNs and BNs.

In recent years, the scientific community has also attempted to raise the
abstraction level of modelling approaches and to combine high-level modelling
with formal methods using model-driven techniques. These approaches rely on
meta-modelling and model-transformation techniques: UML-CI is proposed to
model critical infrastructures focusing on management aspects [29]; CIP_VAM is a
recent UML profile addressing the physical protection of critical infrastructures and
providing tool support for the automatic generation of vulnerability models based
on Bayesian Networks [30]; SecAM extends MARTE and MARTE-DAM in order
to allow security specification and modelling of critical infrastructures and to enable
survivability analysis [31].

2.2 Event Description Language

Threats scenarios are described in DETECT using a specific Event Description
Language (EDL) and stored in a Scenario Repository. In such a way, it is possible
to store permanently all scenarios using an interoperable format (i.e. XML).
A high-level architecture of the framework is depicted in Fig. 1.

A threat scenario expressed by EDL consists of a set of basic events detected by
the sensing devices. An event is a happening that occurs at some locations and at
some points in time. Events are of course related to sensor data (i.e. temperature
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Fig. 1 The DETECT framework
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higher than a pre-set threshold). Events are classified as primitive events and
composite events.

A primitive event is a condition on a specific sensor that is associated with some
parameters (e.g., event identifier, time of occurrence). A composite event is a
combination of primitive events using specific operators. Each event is denoted by
an event expression, whose complexity grows with the number of involved events.
Given the expressions Ej, E», ...,E,, each application on them through any
operator is still an expression. Event expressions are represented by Event Trees,
where primitive events are the leaves, and internal nodes represent EDL operators.

DETECT can support the composition of complex events in EDL through a
Scenario GUI (Graphical User Interface), used to draw threat scenarios using a
user-friendly interface. Furthermore, in the operational phase, a model manager
macro-module has the responsibility of performing queries on the Event History
database for the real-time feeding of detection models corresponding to threat
scenarios, according to predetermined policies. Those policies, namely parameter
contexts, are used to set a specific consumption mode of the occurrences of the
events collected in the database.

The EDL is based on the Snoop event algebra [32], considering the following
operators: OR, AND, ANY, SEQ. As an example, Fig. 2 shows a simple event tree
representing the scenario (E; AND E,) OR Ej;.

The semantics of the Snoop operators are as follows:

e OR. Disjunction of two events E; and E,, denoted (E; OR E,). It occurs when at
least one of its components occurs.

e AND. Conjunction of two events E; and E,, denoted (E; AND E,). It occurs
when both events occur (the temporal sequence is ignored).

e ANY. A composite event, denoted ANY (m,E},E,, ...,E,), where m < n. Tt
occurs when m out of n distinct events specified in the expression occur (the
temporal sequence is ignored).

e SEQ. Sequence of two events E; and E,, denoted (E; SEQ E). It occurs when
E, occurs provided that E; has already occurred. This means that the time of

occurrence of E; has to be less than the time of occurrence of E,.

Fig. 2 A simple event tree
OR
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Furthermore, temporal constraints can be specified on operators, to restrict the
time validity of logic correlations. In order to take into account appropriate event
consumption modes and to set how the occurrences of primitive events are pro-
cessed, four parameter contexts are defined. Given the concepts of initiator (the first
constituent event whose occurrence starts the composite event detection) and ter-
minator (the constituent event that is responsible for terminating the composite
event detection), the four different contexts are described as follows: (1) Recent,
only the most recent occurrence of the initiator is considered; (2) Chronicle, the
(initiator, terminator) pair is unique. The oldest initiator is paired with the oldest
terminator; (3) Continuous, each initiator, starts the detection of the event; and
(4) Cumulative, all occurrences of primitive events are accumulated until the
composite event is detected.

The effect of the operators is then conditioned by the specific context in which
they are placed. When a composite event is recognized, the output of DETECT
consists of:

the identifier(s) of the detected/suspected scenario(s)l;
the temporal value related to the occurrence of the composite event (corre-
sponding to the event occurrence time of the last component primitive event,
given by the sensor timestamp);

e an alarm level (optional), associated with scenario evolution (used as a progress
indicator and set at design time);

e other information depending on the detection model (e.g., ‘likelihood’ or ‘dis-
tance’, in case of heuristic detection).

3 Fuzzy Decision Modelling Process

The advantage of the modelling and analysis activity is twofold. On one hand, it can
be used during the design phase since it allows to evaluate quantitatively different
design options for sensing and decision mechanisms allowing cost/effectiveness
trade-off in protection systems design. In fact, the sensing strategies can differ in the
number of sensors, in their reliability and/or their event detection performance;
decision options are related to the logics that can be applied for correlating primitive
events. On the other hand, the model can be used at run-time due to the possibility
of tuning the models using data collected in the operational phase (i.e. event history
log files merged with operator feedback about false negative/positive), allowing
incremental refinement of detection models.

'The difference between detected and suspected scenario depends on the partial or total matching
between the real-time event tree and the stored threat pattern.
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Fig. 3 The modelling and analysis process

Figure 3 shows how the aforementioned objectives can be achieved in an

integrated process, in which both the monitored and monitoring systems are rep-
resented using probabilistic modelling formalisms.

Fuzzy model evaluation enables two possibilities:

When used at design-time, the analyses can be used to compute the probability
of having an alarm and its confusion matrix (i.e. the false positive and false
negative probabilities). Such information can be used to improve the system by
using more accurate or redundant sensors.

When used at run-time, the detected events can be used as the evidence in the
models. In such a way, the probability that the configuration of the primitive
events is representative of the composite event (i.e. the threat scenario) can
be dynamically adapted. Consequently, alarms can be generated only when the
confidence in the detection is greater than a certain threshold.

It is essential to develop an appropriate modelling methodology supporting the

design phase. In the context of surveillance systems trustworthiness evaluation,
models of interest can be structured in layers as depicted in Fig. 4.

The three layers of fuzzy models are:

Event layer: this layer is devoted to modelling the actual cause-consequence
relations in real environments. It determines how complex situations can be
broken down into basic events. It is usually the output of physical security
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Fig. 4 Fuzzy model layered

structure -
Detection Layer

Sensing Layer

Event Layer

surveys, vulnerability analysis and risk assessment. In its most trivial form, it is
constituted by the sequence of basic events associated with a threat scenario.

e Sensing layer: this layer models the sensors as objects with their characteristics
(e.g., event detection capabilities, hardware reliability, detection performance)
and the basic sensing actions with respect to the events identified in the lower
layer.

e Decision layer: this layer addresses the (probabilistic) combination of simple
events using EDL operators. It is important to notice that this layer is built on
top of the Sensing layer, since it does not deal with events occurring in the
reality but with the ones generated by the sensing system. Those events can be
different according to sensor types, deployment granularity, and detection
performance.

In this context, some general concepts can be refined. Let us define: A, the set of
the alarms associated to threat scenarios; S, the set of the sensors; E, the set of the
events that can occur in the real environment; a € A, e € E, s € S.

4 Instantiating the Process with Bayesian Networks

In this Section, we instantiate the process schema shown in Fig. 5 using the BN
formalism, which is especially suited to be adopted in situation recognition sce-
narios like the one we are addressing in this paper.
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Fig. 5 Customization of the process to the BN formalism

4.1 Process Customization

The customization of the process presented in Sect. 3 to the BN formalism is
provided in Fig. 5.
Three different indexes can be computed by solving the BN model [33]:

e Prior probability, P(a), that is the likelihood of occurrence of an alarm before
any evidence relevant to the alarm has been observed. This index is the prob-
ability that an alarm is raised and it may be used at the design time of a PSIM
system to predict the expected alarm rate, provided that the rate of primitive
events is known a priori (or somehow predictable).

e Posterior probability, P(a | e, s), that is the conditional probability that an alarm
is raised after some evidence is given. This index represents the probability of
having an alarm in specific conditions, e.g., when some events happen (e.g.,
intrusion) and some others are generated by the surveillance system (e.g., sensor
failure). It is useful at both design- and run- times. When used at design time it
can be used to evaluate the performance of the detection system (i.e. the con-
fusion matrix®). Also, the Posterior probability may be used to perform a

?In this case of event detection, the confusion matrix accounts for binary events which can be frue
(i.e. occurred) or false. In DETECT, the positive false probability is given by P(a = true | e = false)
while the negative false probability is P(a = false | e = true).
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‘what-if” analysis to evaluate the performance degradation in case of sensor
failures. When used at run-time, a posterior analysis on the model fed with real
evidence of events and/or sensor failures may provide a surveillance operator
with alerts if probabilities are higher than a certain threshold.

e Likelihood, P(e | a, s), that is the probability of observing an element of E(real
threat scenario) given evidence in A and S. In practice, it can be used to
determine the probability that the alarm is trustworthy given that it has been
generated. This kind of analysis is useful at run-time since it can support the
decision making of the operators.

In the customization of the general process, prior-probability is used for
design-time analysis while likelihood and posterior analysis are used in the context
of run-time analysis.

4.2 Fuzzy BN Model Structure

The layered model presented in Sect. 3 is implemented by a Bayesian Network
where the BN nodes modelling the elements of the Event Layer are at the bottom,
the ones representing the Sensing Layer are in the middle, the ones translating EDL
operators in the Detection Layer are on the top.

The mapping between EDL and BN is based on the following rules.

BN_RI1: for each event e € E, a Boolean BN node N(e) is created: the variable is
‘true’ when the related attack event e occurs, ‘false’ otherwise. Let pr(e)
be the probability of occurrence of the event (computed by the ratio of
the occurrence period T(e) and the reference time unit), the Conditional
Probability Table (CPT) of this kind of node is represented in Table 1.

BN_R2: for each sensor s € S, a ternary {true, false, unknown} BN node N(s) is
created: the variable is ‘true’ when the sensor s is working properly,
‘false’ otherwise. Assuming pr(e) is the probability that the sensor is
failed, the CPT of this kind of node is represented in Table 2. The value
of pr(e) is computed by the formula MTBF(s)(MTBF(s) + MTTR(s))

Table 1 CPT of the node N(e)
translating event

True False

pr(e) 1-pr(e)

Table 2 CPT of the node N(s)
translating sensors

True False

L-pr(s) pr(s)
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Fig. 6 BN pattern for the Nys.e)
sensing layer {true, false,unknown}
N(e) N(s)
{true, false} {ok, down}
Table 3 CPT of Np(s,e) BN N(e) N(s) Np(s.e)
node True False Unknown
False Down 0 0 1
False Ok fop(s) 1-fpp(s) 0
True Down 0 0 1
True Ok 1-fup(s) fnp(s) 0

BN_R3:

BN_R4:

where MTBF(s) is the Mean Time Between Failures and MTTR(s) is the
Mean Time To Repair of the sensor.

When a sensor s S is in charge of detecting an event ¢ E, a ternary
{true, false, unknown} BN node Np(s, e) is created having as parents
both N(s) and N(e) as in Fig. 6. The variable is ‘true’ when the sensor
s detects the event, ‘false’ if it is detecting an event not occurring,
unknown if no information comes from the sensor. Assuming fip(s) and
Jfpp(s) respectively the false negative and the false positive probabilities,
the CPT of this kind of node is represented in Table 3.

for each a A, a ternary {true, false, unknown/BN node is generated,
namely N(a). The Parents and the CPT of these nodes are determined
according to the position of the operator inside the detection tree and to
the nature of the operator:

a. let Pr(a) and P4(a) be the sets of the events and of the alarms on the
event tree preceding a. The set of the parents of N(a) is Np(s, x) N(y)
where x Pg(a), s is in charge of detecting x, and y Pa(a);

b. the CPTs are built according to the nature of the operator. Bayesian
Networks allow the definition of operators implementing either
‘sharp’ or ‘fuzzy’ logics, including AND (Table 4), ANY (Table 5),
noisy-AND (Table 6).

The DETECT framework allows associating a certain amount of uncertainty to

operators,

implementing a sort of fuzzy event composition. This is easily modelled

with BN using the so-called ‘noisy logic gates’, in which the correlation of events is
affected by a ‘modelling confidence’ error:0 < k < 1. In case of error (with prob-
ability k), we suppose an equal probability distribution for all the other cases. As an
example, Table 6 describes the CPT for the noisy-AND operator.
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Table 4 CPT of the AND
operator

Table 5 CPT of the ANY
operator

83
El E2 AND
True False Unknown
False False 0 1 0
False True 0 1 0
False Unknown 0 1 0
True False 0 1 0
True True 1 0 0
True Unknown 0 0 1
Unknown False 0 1 0
Unknown True 0 0 1
Unknown Unknown 0 0 1
El E2 E3 ANY
True |False | Unknown
True True True 1 0 0
True True False 1 0 0
True True Unknown |1 0 0
True False True 1 0 0
True False False 0 1 0
True False Unknown |0 0 1
True Unknown | True 1 0 0
True Unknown | False 0 0 1
True Unknown | Unknown |0 0 1
False True True 1 0 0
False True False 0 1 0
False True Unknown |0 0 1
False False True 0 1 0
False False False 0 1 0
False False Unknown |0 1 0
False Unknown | True 0 0 1
False Unknown | False 0 1 0
False Unknown | Unknown |0 0 1
Unknown | True True 1 0 0
Unknown | True False 0 0 1
Unknown | True Unknown |0 0 1
Unknown | False True 0 0 1
Unknown | False False 0 1 0
Unknown | False Unknown |0 0 1
Unknown | Unknown | True 0 0 1
Unknown | Unknown | False 0 0 1
Unknown | Unknown | Unknown |0 0 1
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Ta.ble 6 CPT of the El E2 Noisy-AND

noisy-AND operator True False Unknown
False False k/2 1-k k/2
False True k/2 1-k k/2
False Unknown k/2 1-k k/2
True False k/2 1-k k/2
True True 1-k k/2 k/2
True Unknown k/2 k/2 1-k
Unknown False k/2 1-k k/2
Unknown True k/2 k/2 1-k
Unknown Unknown k/2 k/2 1-k

Please note that, as combinatorial formalisms, Fault Trees and Bayesian Net-
works cannot precisely model the SEQ operator since they do not allow taking into
account state and time dependent properties. To overcome such a limitation, more
powerful formalisms are needed, like Dynamic Bayesian Networks or Petri Nets.
However, it is possible to approximate an SEQ operator by an AND. In fact, since
the SEQ requires the occurrence of events in a certain order, the set of cases in
which e.g., SEQ(EI, E2) is true is a subset of the set in which AND(EI, E2) is true.
Thus, by substituting the SEQ with AND in the trustworthiness model, we are
overestimating the false positive rate for the specific scenario.

5 Instantiating the Process with Petri Nets

In this Section we instantiate the process schema shown in Fig. 3 using the GSPN
formalism [34], which introduces a higher level of complexity but it is able to cope
with all cases of situation recognition, including the ones that can only be
approximated by BNs.

5.1 Process Customization

The customization of the process presented in Sect. 3 to the GSPN formalism is
provided in Fig. 7.

In the context of this work, analysing a GSPN means evaluating the steady-state
probability of threat detection. In particular, two different steady-state measures are
relevant and widespread in most GSPN applications: mean number of tokens in
places and throughput of transitions. These measures can be used for the scope of
this work in two different contexts:
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Fig. 7 Customization of the process using the GSPN formalism

e @design-time, there is no observation of occurred events, the GSPN measures
computing P(a) are evaluated without an initial marking.

e @run-time, by setting the correct initial marking both P(a | e, s) and P(el a, )
probabilities can be computed.

5.2 Fuzzy GSPN Model Structure

The layered model presented in Sect. 3 is replaced by a GSPN model where the
GSPN subnets translating elements of the Event Layer are at the bottom, the ones
representing the Sensing Layer are in the middle, and the ones translating EDL
operators in the Detection Layer are on the top. The model structure is a simpli-
fication of the model introduced in [27].

The mapping between EDL and GSPN is based on the following rules.

GSPN_RI1: for each event e E, a GSPN pattern is generated as shown in Fig. 8.
The pattern is constituted by a place Pl(e) and an exponentially dis-
tributed timed transition 7r(e) connected by two arcs (ordinary and
inhibitor). The rate of the transition is set to 1/T(e) (the inverse of the
occurrence period of e).
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Fig. 8 Event GSPN pattern Pl (e)

GSPN_R2:

GSPN_R3:

GSPN_R4:

Tr(e)

for each sensor s S, a GSPN pattern is generated as shown in Fig. 9.
The rule generates the Net(s) subnet constituted by two places and two
timed stochastic transitions representing the classical up-down model
for components subject to failure and repair.

when a sensor s S is in charge of detecting an event e E, the subnet
Net(s,e) of Fig. 9 is used, that represents the appropriate pattern. This
subnet is connected to the one translating the Event layer using the
place Pl(e). In Net(s,e), only the false negative probability is shown to
keep the model simple. It is important to underline that the model
needs the specification of the time Tp(s,e) for completing the detection
of the event e by sensor s: this value is the inverse of the rate of the
Detecting transition. The detection network ends with a place D(s,e),
containing a token if the event e is detected by the sensor s.

for each a € A, a GSPN subnet is generated:

a. let Pg(a) and P4(a) respectively be the sets of the events and of the
alarms on the event tree that precede a. The GSPN subnet trans-
lating a is connected to the D(s,e) places of the nets translating
elements of Pg(a) and to the D(a) places of the nets translating
elements of Py(a);

Fig. 9 Sensor related Net(s,e)

GSPN patterns
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Fig. 10 GSPN pattern for the
AND operator
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Fig. 11 GSPN pattern for the D(a) ~
SEQ operator i
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b. the specific subnets implementing the EDL detecting operators in
GSPN are built according to the nature of the operators. Some
examples are: ordinary AND (Fig. 10), SEQ operator (Fig. 11), and
noisy-AND operator (Fig. 12). All the nets are built under the
hypothesis that the operator works on the event e/ and the result of
al (another detection operator).

To fully translate EDL into a GSPN models, further subnets are required to reset
properly the network. The details of such ‘control networks’ as well as the criteria
of analysis are discussed in reference [27].
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Fig. 12 GSPN pattern of the
noisy AND

D(el,s1) D(al)
6 A Multiformalism Unifying Process

This section provides a possible approach based on a multiformalism paradigm.
Multiformalism is a technique in which more formal languages are jointly
employed to model a (typically complex) system. In the context of this work, two
different ways to translate EDL into BN and GSPN models have been presented,
each one with specific strengths and limitations.

By exploiting the advantages of both languages, it is possible to define a solution
process for EDL associating the most suitable formalism for each sub-tree. In
particular, we focus our attention on the following points: (1) BNs are easier to
analyze, scale better with respect to model size and are easier to analyze during
run-time; moreover, BN models allow easier modeling of false-positive detection
behaviors; (2) GSPNs are able to deal with time both in explicit (e.g., duration of
detection activities) and implicit (e.g., precise sequence of events) forms.

A simple exploitation of these criteria in the construction of a multiformalism
approach is based on the following solution steps:

1. Each minimal sub-tree st of the EDL tree model containing a SEQ operator, and
that is not contained in another sub-tree, is translated into a GSPN mode Net(st).

2. Each Net(st) is solved and the probability of detecting the sub-tree pr(st) is
evaluated.

3. The overall EDL model is translated into a BN where each st is translated into a
BN node N(st) having the CPT in the form described in Table 7.

4. The BN model is solved.

The translation and solution process described above is applied to the case-study
scenario in next Section.

Table 7 CPT of the N(st)
SEQ-subtree

True False

pr(st) 1-pr(st)
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7 Modelling Trustworthiness in a Specific Scenario

The effectiveness of the modelling approach described in the previous section is
demonstrated in this section using a case-study in the mass-transit domain. Mass
transit systems are vulnerable to many threats, including terrorist attacks. For this
reason, surveillance systems for mass-transit feature a growing number of hetero-
geneous sensing devices. In such a context, the quantitative evaluation of model
trustworthiness and sensitivity to sensor faults is very important. In fact, such a
model-based design allows to improve the robustness of surveillance systems and to
reduce the number of unnecessary alerts. In particular, at design time, the results of
the model analysis provide valuable information to assess the level of redundancy
and diversity required to the sensors. That allows designers to find the most
appropriate configuration complying with performance targets specified in client
requirements. In fact, feedbacks from the model evaluation suggest changes about
sensor dislocation and sensing technologies. An estimation of detection model
trustworthiness is also important during operation to define confidence thresholds
for triggering high-level warnings and even automatic response actions.

Let us consider a threat scenario similar to the chemical attack with Sarin agent
occurred in the Tokyo subway on March 20, 1995, which caused 12 fatalities and
5500 injured [35]. The technologies available to early detect and assess the threat
include intelligent cameras, audio sensors and specific standoff CWA (Chemical
Warfare Agents) detectors. For several reasons (inner technology, installation
environment, etc.), the single events reported by these sensing devices can feature
non-negligible levels of false alarms, and hence cannot be simply trusted. There-
fore, events detected by the sensors are correlated in a threat scenario representa-
tion, which has been already introduced in reference [14]. The current CWA
detection technologies include Ion Mobility Spectroscopy (IMS), Surface Acoustic
Wave (SAW), Infrared Radiation (IR), etc. They are employed in ad hoc standoff
detectors, characterized by different performances. One of the most accurate
devices, the automatic scanning, passive, and IR sensor can recognize a vapour
cloud from several kilometres with an 87 % detection rate. As already mentioned, it
is possible to combine heterogeneous sensors (e.g., IMS/SAW and IR) to detect the
same event, and to correlate their detections according to appropriate criteria, either
logical, temporal, and/or spatial.

The threat scenario is a CWA attack on a subway platform. Let us assume the
following set of events that are very likely to occur in such a scenario:

1. Attackers drop the CWA that spreads in the surrounding environment.
2. Contaminated passengers start to fall-down.
3. Around the contaminated area, other people scream and run away.

3

It is assumed that the subway station is equipped with smart-cameras (i.e. ‘in-
telligent’ cameras with video-analytics), microphones (i.e. audio sensors with audio
pattern recognition), plus both IMS/SAW and IR CWA detectors. The scenario can
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be formally described by means of the notation “sensor description (sensor ID) ::
event description (event ID)”:

Intelligent Camera (S1) :: Fall of person (EI)
Intelligent Camera (S1) :: Abnormal running (E2)
Intelligent Camera (S2) :: Fall of person (El)
Intelligent Camera (S2) :: Abnormal running (E2)
Audio sensor (S3) :: Scream (E3)

IMS/SAW detector (S4) :: CWA detection (E4)

IR detector (S5) :: CWA detection (E4)

The Event Tree model of the CWA threat scenario is depicted in Fig. 13.

The OR operators correlate the events “person falling” and “person running”,
detectable by two redundant intelligent cameras monitoring the platform. The other
child node (E3-S3)of the ANY operator represents the event “person screaming”
detectable by the intelligent microphone. When 2 out of these 3 events are detected
in a certain (limited) time frame, the situation can be reliably considered abnormal
so that a warning to the operator can be issued. The SEQ operator represents the
upward CWA spread detectable by two redundant CWA sensors, installed at dif-
ferent levels. Finally, the AND operator at the top of the tree represents the com-
posite event associated with the complete CWA threat scenario. In the following,
two different models are proposed and compared: a BN model generated according
to the rules described in Sect. 4 and a multiformalism model generated using the
algorithm presented in Sect. 6 as well as the transformation rules in Sects. 4 and 5.

AND |
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4 *
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/
rd LN / \
\
OR OR h Y E4-54 E4-55
A _— \ 4 F
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E1-51 E2-51 E1.52 E2-52 E3-53 ‘
i | N |

Fig. 13 Event tree associated to the CWA threat scenario
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7.1 The BN Model

As described in the previous section, an event occurrence can be ‘true’ with a
probability p, or false with a probability /-p. Each sensor can be available (i.e.
working properly) with a probability g, or unavailable (i.e. not working properly)
with a probability 1-g. Each event detected by a sensor can be ‘true’, ‘false’, or
‘unknown’ according to event occurrence and the availability of the sensor at the
time the event is occurring. Moreover each sensor, for each detected event, has a
couple of values finp and fpp which are the sensor false-negative and false-positive
probabilities. For the sake of brevity, only the BN model is built and analysed
according to the modelling methodology described in the previous sections. The
three parts of the model are depicted in Figs. 14, 15 and 16.

The Event Layer (Fig. 14) is constituted by a node E that represents the actual
CWA attack, while E1, E2, E3 and E4 are the primitive events that can be detected
by the sensors.

The interface between the Event Layer and the Sensor Layer is the set of E1, E2,
E3 and E4 nodes. In the Sensor Layer (Fig. 15), there are five nodes (S1, S2, S3, S4
and S5) representing sensors, and seven nodes (E1_S1, E2_S1, E1_S2, E2_S2,
E3_S3, E4_S4 and E4_S5) representing the sensed events.

Finally, the overall BN model is represented in Fig. 17: as already stated, the
SEQ operator has been implemented by an AND operator, introducing a modeling
error.

& B P
O

E

%

Fig. 14 Event layer of the CWA Bayesian network

Ep s@ "Q EQ

Fig. 15 Sensing layer of the CWA Bayesian network
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Fig. 16 Detecting layer of the CWA Bayesian network
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Fig. 17 BN model of the CWA threat scenario

7.2 The Multiformalism Model

F. Flammini et al.

Ro

Since there is a single SEQ sub-tree, related to the SEQ operator and the E4-S4 and
E4-S5 nodes, the multiformalism model is obtained by replacing this sub-tree with

the GSPN depicted in Fig. 18.

A slightly different GSPN model is depicted with respect to the proposed pat-
terns, to make the model analysable by a steady-state construction of the tangible

state-space in case of an observed attack.

This model is solved by computing the throughputs of the transitions det and
nondet, representing the rates of detection and non-detection of the attack event
respectively. Let th(det) and th(nondet) be the values of these transitions. We are
interested in evaluating PT and PF that are respectively the posterior probability of
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Fig. 18 GSPN model of the SEQ-AND sub-tree

detecting and not detecting by the SEQ operator. These indices are computed as
follows:

PT =th(det) /(th(nondet) + th(det))
PF =th(nondet) /(th(nondet) + th(det))

Once the GSPN model is solved, the entire sub-tree may be collapsed into a BN
node. In other words, the st sub-model in the original BN network (Fig. 19)
becomes a single BN node as in Fig. 20.

In this last model, the SEQ_AND node is associated the CPT in Table 8, while
the AND node on top of the BN replaces—with respect to the full BN model—its
CPT with the one in Table 9 (GSPN do not easily support multi-value models).

8 Evaluation and Discussion of the Results

The model has been evaluated using the parameters summarized in Table 10, where
(non-conditional) probabilities refer to a standard time frame of 1 h. Parameters
have been assigned realistic pseudo-data, since exact values depend on risk
assessment results, specific sensor technology as well as operational reports from
the real environment. Some parameters apply only to the BN model, some only to
the multiformalism model, while others to both.
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Fig. 19 Original CWA BN model
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Fig. 20 Reduced CWA BN model
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Table 8 Reduced SEQ-AND g SEQ_AND
node CPT
True False
True PT PF
False 0 1
Table.9 CPT of the top SEQ_AND ANY AND
event in the reduced model True False Unknown
False False 0 1 0
False True 0 1 0
False Unknown 0 1 0
True False 0 1 0
True True 1 0 0
True Unknown 0 0 1
Table 10 CWA model parameters
Name Description Model | Node Value
attackProb | Probability of having a CWA attack Both BN/E 10°°
running Probability of a running man in normal | Both BN/E1 4% 107"
conditions (not related to an attack)
falling Probability of a falling man in normal | Both BN/E2 1073
conditions (not related to an attack)
screaming Probability of a scream in normal Both BN/E3 5% 1073
conditions (not related to an attack)
U, Unavailability of sensor 1 Both BN/S1 2x 107
U, Unavailability of sensor 2 Both BN/S2 2% 107
Us; Unavailability of sensor 3 Both BN/S3 1074
Uy Unavailability of sensor 4 BN BN/S4 2x107°
Us Unavailability of sensor 5 BN BN/S5 107°
MTBF, Mean time between failures of sensor Multi GSPN/T4 199996 h
4
MTBFs Mean time between failures of sensor Multi GSPN/T6 399996 h
5
MTTR, s Mean time to repair of sensors 4 and 5 | Multi GSPN/T3 4h
GSPN/T5
TD, Time of detection of sensor 4 Multi GSPN/T4 0.083 h
TDs Time of detection of sensor 5 Multi GSPN/T4 0.014 h
Sfp11 Sensor false positive probability of Both 3x 1072
Sfp12 sensor 1 (resp. 2) when sensing event
1 BN/E1_S1
Sfng; Sensor false negative probability of Both BN/E1_S2 |2 x 1072
Sfinrz sensor 1 (resp. 2) when sensing event
1

(continued)



96

Table 10 (continued)
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Name Description Model | Node Value
Sfp21 Sensor false positive probability of Both 2% 1072
Sfp2z sensor 1 (resp. 2) when sensing event
2 BN/E2_S1
Sfno; Sensor false negative probability of Both BN/E2_S2 |3 x 1072
Sfnzz sensor 1 (resp. 2) when sensing event
2
Sfpss Sensor false positive probability of Both 2 x 1072
sensor 3 when sen.sing event.?ﬁ. BN/E3_S3 -
Sfinzs Sensor false negative probability of Both 1.2 x 10
sensor 3 when sensing event 3
Sfpas Sensor false positive probability of BN 0.8 x 1072
sensor 4 when sensing event 4 1(3}1;1/) 1;4/—15;‘
Sfingy Sensor false negative probability of Both GSPN /I9 02 x 1072
sensor 4 when sensing event 4
Sfpss Sensor false positive probability of BN 0.7 x 1072
sensor 5 when sensing event 5 BN/ES_S5
S Sensor fal five probability of | Both | CobNA2 T3 1072
fitss ensor false negative probability o ol GSPN/t10 3 X

sensor 5 when sensing event 5

8.1 CWA Scenario Analysis Using the BN Model

At design-time, the evaluation addresses both prior and posterior probabilities. The
distribution of prior probability of the model is reported in Table 11, that also
highlights the related meaning at the PSIM system level, regarding the specific
scenario. Posterior probability analysis has been performed to evaluate the confu-
sion matrix (see Table 12). The left column represents the evidence, that can be true
(CWA threat happening) or false. The other columns represent the probability of
CWA alarm being generated:

e ‘Alarm on’, which can be a true positive, tp, or false positive, fp, depending

whether the evidence is ‘true’ or ‘false’, respectively

e ‘Alarm off’, which can be a p or a fp, depending whether the evidence is ‘false’
or ‘true’, respectively)

e Inactive, due to the unavailability of essential sensors.

The results show that the rate of alarms, in general, and the probability of fp and
Jn in particular, are largely acceptable, according to recent ergonomics studies [5].

Table 11 Prior probability Value
distribution of the CWA

scenario

Meaning Probability
True Alarm on 2273 x 107°
False Alarm off 0.999977
Unknown Alarm inactive 2.7 x 1077
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Table 12 Confusion matrix

) Evidence Alarm on Alarm off
of the CWA scenario True 0.995 (1p) 0.22 % 10+ (fn)
False 0.5 x 107 (fp) 0.999978 (1p)
Table 13 Robustnes.s W.it.h Sens. Event (E) Alarm on Alarm off
respect to sensor availability s1 — 0982 062 x 10
False 0.005 0.99997
Unknown 0.013 238 x 1073
S2 True 0.982 0.62 x 107°
False 0.005 0.99997
Unknown 0.013 2.38 x 1073
S3 True 0.994 0.257 x 107°
False 0.004 0.99994
Unknown 0.002 343 x 107°
S4 True 0 0
False 0.003 0.9972
Unknown 0.997 0.0028
S5 True 0 0
False 0.002 0.9969
Unknown 0.998 0.0031

In particular, fp are much less than the ones generated by single sensors. The
evaluation of those parameters is essential to ensure system effectiveness and
usability in real environments. More sophisticated analyses can be performed on the
model to evaluate the robustness of the design. The first set of posterior probability
evaluations aims at computing the confusion matrices in presence of single sensor
failures; this is accomplished by setting S/-S5 evidences one by one in the BN
model to ‘false’ (i.e. sensor off). Table 13 summarizes the results of such analysis.

The second robustness analysis aims at validating the event tree with respect to
variations in threat patterns: specifically, we consider the case when some features
(El, E2, E3) are not present and therefore we calculate fn when E1, E2, E3 events
are false. The results of such posterior probability analysis are reported in Table 14.

Table 14 Robustness with

> w Unobserved event Alarm on Alarm off
respect to scenario variations 1 0.9934 0.0066
E2 0.9941 0.0059
E3 0.9938 0.0062
Table 15 'Confusi'on matrix Evidence Alarm on Alarm off
of the multiformalism model Troe 0.8589 () 0.141 ()
False 0 (fp) 1 (tn)
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8.2 CWA Scenario Analysis Using the Multiformalism
Model

First, the PT and PF values of the GSPN model related to the st sub tree have been
computed: PT equals to 0.859, while PF is 0.141. These values are used in the CPT
of the substituting BN node. Table 15 reports the confusion matrix of the whole BN
model where the SEQ_AND sub-tree has collapsed into a single BN node.

The differences between the confusion matrix of Table 15 and the one reported
in Table 12 are due to the absence of false-positive effects of the GSPN, as well as
to the more realistic evaluation with the introduction of detection times and of the
exact SEQ operator model in the GSPN.

9 Conclusions and Future Work

In this paper, we have provided a structured trustworthiness modelling approach
especially suited to surveillance systems featuring situation recognition capabilities
based on Event Trees, which is the threat specification formalism used in the
DETECT framework.

The effectiveness of the approach described in this paper is twofold. At design
time, the results of the analysis provide a guide to support the choice and
deployment of sensors with respect to risk assessment results. At run-time, trust-
worthiness indices can be associated to detection models and hence to alarms
reported to the operators, accounting for sensor performance and reliability. Fur-
thermore, at run-time: sensor status (e.g., events detected, hardware failures, etc.)
can be used for the on-line updating of performance and reliability indices; the
feedback of the operators over a significant time period can be used to fine-tune
trustworthiness parameters: e.g., the fp probability can be estimated by counting the
average number of false alerts generated by single sensors or by DETECT and by
normalizing that number according to the reference time frame. Fuzzy correlation
operator and multiformalism technique address a greater modelling power and
solving efficiency.

Future developments will address the following issues: evaluation results are
going to be extended using further models and simulation campaigns, data coming
from on-the-field experimentations and long-term observations is going to be
integrated in the models and used to validate them.
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Intelligent Radar Signal Recognition
and Classification

Ivan Jordanov and Nedyalko Petrov

Abstract This chapter investigates a classification problem for timely and reliable
identification of radar signal emitters by implementing and following a neural net-
work (NN) based approach. A large data set of intercepted generic radar signals,
containing records of their pulse train characteristics (such as operational frequencies,
modulation types, pulse repetition intervals, scanning period, etc.), is used for this
research. Due to the nature of the available signals, the data entries consist of a mixture
of continuous, discrete and categorical data, with a considerable number of records
containing missing values. To solve the classification problem, two separate
approaches are investigated, implemented, tested and validated on a number of case
studies. In the first approach, a listwise deletion is used to clean the data of samples
containing missing values and then feed-forward neural networks are employed for
the classification task. In the second one, a multiple imputation (MI) model-based
method for dealing with missing data (by producing confidence intervals for unbiased
estimates without loss of statistical power, i.e. by using all the available samples) is
investigated. Afterwards, a feedforward backpropagation neural network is trained to
solve the signal classification problem. Each of the approaches is tested and validated
on a number of case studies and the results are evaluated and critically compared. The
rest of the chapter is organised as follows: the next section (Introduction and Back-
ground) presents a review of related literature and relevant background knowledge on
the investigated topic. In Sect. 2 (Data Analysis), a broader formulation of the
problem is provided and a deeper analysis of the available data set is made. Different
statistical transformation techniques are discussed and a multiple imputation method
for dealing with missing data is introduced in Sect. 3 (Data Pre-Processing). Sev-
eral NN topologies, training parameters, input and output coding, and data trans-
formation techniques for facilitating the learning process are tested and evaluated on a
set of case studies in Sect. 4 (Results and Discussion). Finally, Sect. 5 (Conclusion)
summarises the results and provides ideas for further extension of this research.
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1 Introduction and Background

What an irony of fate when Robert Watson-Watt was pulled over in a RADAR
(RAdar Detection And Ranging) speed trap during his visit in Canada in the late
1950s. He joked that had he known radar would be used for speed traps, he would
never have invented it. Nowadays, this is what most people associate the radar with,
but when Watson-Watt invented his primitive radar system in the mid 1930s, it was
secretly developed for military purposes. Later, in 1940, it played a vital role in the
Battle of Britain, providing early warning of incoming Luftwaffe bombers. During
the World War II, USA scientists made the Watson-Watt’s radar a lot smaller, more
efficient and reliable. This made possible a compact radar unit to be used for
warning fighter pilots of enemy aircraft approaching from behind. Also, four of
these units were carried on each of the nuclear bombs dropped over Hiroshima and
Nagasaki to monitor the bomb distance to the ground, so that detonation could be
triggered at a pre-set altitude for maximum destruction. Vigorous development of
radar technology after the war led to a wide range of military applications for
detecting, locating, tracking, and identifying objects, for surveillance, navigation
and weapon guidance purposes for terrestrial, maritime, and airborne systems at
small to medium and large distances (from ballistic missile defence systems to fist
sized tactical missile seekers) [1].

Later, civilian applications emerged and became wide-spread. This began in air
traffic control systems to guide commercial aircrafts in the vicinity of the airports
and during their flight and in the sea navigation, used by ships in maritime collision
avoidance systems. Nowadays, radars are beginning to serve the same role for the
automobile and trucking industries in self-braking systems in cars, crash avoidance
and parking assist [2, 3].

Police traffic radar are used for enforcing speed limits; airborne radars are used
not only for weather forecast, large-scale weather monitoring, prediction and
atmospheric research, but also for environmental monitoring of forestry conditions
and land usage, water and ice conditions, pollution control, etc.; space-born (both
satellite and space shuttle) serve for space surveillance and planetary observation; in
sport they are used for measuring the speed of tennis and baseball serves [1].

A basic block-scheme of a radar system is shown in Fig. 1. Radars are con-
sidered to be “active” sensors, as they use their own source of illumination
(a transmitter) for locating targets. They transmit energy towards a target and then
catch the reflected signal to identify the target. The problem is that (especially for a
long range radars) a powerful transmitter and very sensitive receiver are needed
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Fig. 1 A block diagram of a basic radar system. Radars operate by transmitting electromagnetic
energy toward targets and processing the observed echoes
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because the energy spreads out on its way to the target, scatters on reflection and
further spreads out on its way back (in general, the decrease of the received signal is
proportional to the fourth power of the target distance). The radars range, resolution
and sensitivity are generally determined by their transmitter and waveform gener-
ator. Although the typical radar systems operate in the microwave region of the
electromagnetic spectrum with frequency range of about 200 MHz to about 95 GHz
(with corresponding wavelengths of 0.67 m to 3.16 mm), there are also radars that
function at frequencies as low as 2 MHz and as high as 300 GHz [4].

The application of the Doppler effect revolutionized the cosmology enabling
Doppler spectroscopy to become a powerful tool for finding extrasolar planets and
proving the expansion of the universe (the light spectrum of stars (or galaxies)
receding from us exhibits redshift (increased bandwidth and reduced frequencies),
and blueshift (higher frequencies and lower bandwidth) if they are moving towards
us), but also expanded dramatically the use of radiolocation radars. For the Doppler
radars, the reflection from an approaching target electromagnetic wave exhibits
higher frequency than the transmitted one and vice versa, a moving away target
returns lower frequency wave. The difference between the sent and received fre-
quencies can then be used to estimate the target speed. The problem is that this
difference is a very small one, e.g., an incoming target with a 100 km/h increases
the received frequency by less than le-6, which needs very precise circuits to
measure.

A Doppler weather radar with a parabolic antenna situated within a large tiled
dome is shown in Fig. 2 [5]. A system with such a radar can measure the distance
and lateral speed of falling rain drops, hail particles, or snowflakes, allowing
forecasters to predict storms’ evolving locations. The presence of debris in the air is
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Fig. 2 A Doppler weather
radar (Photo Brownie
Harris/Corbis)

used in similar radar systems to detect tornadoes and define their location, velocity
and direction, allowing projections of their movement in real time.

The classical radar imaging uses its antenna to focus a radio frequency beam on
a target and capture its reflection to create the image. To work over a long-range it
requires powerful transmitters and sensitive receivers because of the way the
transmitted energy spreads out on its way to the target and then scatters on
reflection. Also, to achieve higher resolution of the image, it needs narrower beams
which means that the airborne or space-born platform will need much larger
antenna than it could carry. The application of a synthetic aperture technique solves
this problem by enabling the use of a smaller antenna through simulating a virtual
one with aperture defined by the travel distance of the physical antenna.

The use of the Doppler effect further enhanced the angular resolution in
synthetic-aperture radars (SAR) [6] enabling them to acquire surprisingly clear and
crisp images [7]. The SAR have been long used on planes and satellites (Fig. 3) for
military reconnaissance, mapping ground terrain with intelligence imagery,
revealing enemy facilities for enhancing situational awareness and all this in any
type of weather, in total darkness and through cloud cover and foliage [8, 69]. They
also proved to be very useful in diverse range of civil applications, e.g., in earth-
quake damage assessment [9], ice [10] and snow monitoring [11], oceanography,
polar ice caps and coastal regions imagery, oil pollution monitoring, solid earth
science, hydrology, ecology and planetary science [12, 13].
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Fig. 3 JAXA’s ALOS-2
Earth-observation radar sat
may help the Japanese navy
keep track of ship movements
in the region. Photo JAXA
Concept

Another type developed especially to look underground and through walls is the
Ground-penetrating radar (GPR), also known as surface-penetrating radar
(SPR) [14]. GPR has recently proved to be efficient non-invasive technology with
applications in archaeology [15, 16], mining—for both identifying underground rock
strata and monitoring instabilities [14, 17], and for optimal irrigation and pollution
monitoring [18, 19]. It has been also used for helping police, emergency response
and firefighters ‘to see’ through building walls to locate hostages or help people
trapped by fire or under a rubble of a collapsed building [20]. Its ability to see under
surface metallic and non-metallic objects makes it useful mapping tool for detection
and localisation of underground cables and pipes [21], and buried objects of his-
torical and archaeological importance [22].

The IEEE standard letter nomenclature for the common nominal radar bands is
given in Table 1, [23]. The millimetre wave band is sometimes further decomposed
into approximate sub-bands of 3646 GHz (Q band), 46-56 GHz (V band), and
56-100 GHz (W band). The lower frequency bands are usually preferred for longer
range surveillance applications due to the low atmospheric attenuation and high
available power, and vice versa the higher frequencies tend to be used for shorter
range applications and higher resolution, due to the smaller achievable antenna
beam widths for a given antenna size, higher attenuation, and lower available power
[1]. The radars from the first category (considered a form of radar radiolocation) are
capable of covering distances of up to hundreds of kilometres (using high-power
transmitters concentrated in a relatively narrow radio bandwidth) and the second
group covers radar systems that operate at low power levels, over much smaller
distances.
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Based on their characteristics, features and application areas, radars can be

classified in terms of the following criteria [24]:

purpose and function: surveillance, tracking, guidance, reconnaissance,
imaging, data link;

frequency band: radar systems have been operating at frequencies as low as
2 MHz and as high as 300 GHz (see Table 1). Criteria for frequency selection
for surveillance radar can be found in [4, 25];

waveform: continuous wave, pulsed wave, digital synthesis;

beam scanning: fixed beam, mechanical scan (rotating, oscillating), mechanical
scan in azimuth, electronic scan (phase control, frequency control and mixed in
azimuth/elevation), mixed (electronic-mechanical) scan, multi-beam
configuration;

location: terrestrial (stable, mobile), marine-borne, air-borne, space-borne;
spectrum of collected data: range (delay time of echo), azimuth (antennae
beam pointing, amplitude of echoes), elevation (3D—radar, multifunctional,
tracking), height (derived by range and elevation), intensity (echo power), radar
cross section (RCS)—(derived by echo intensity and range), radial speed
(measurement of differential phase along the time on target due to the Doppler
effect—it requires a coherent radar), polarimetry (phase and amplitude of echo
in the polarisation channels: horizontally transmitted—HH, horizontally
received—HYV, VH, VV), RCS profiles along range and azimuth (high resolu-
tion along range, imaging radar);

configuration: monostatic (same antenna with co-located transmitter and
receiver), bi-static (two antennas), multistatic (one or more spatially dispersed
transmitters and receivers). Further detail on variety of radar configurations can
be found in [26];

signal processing: coherent (Moving Target Detector/Pulse-Doppler/Super-
resolution Signal Processor/Synthetic Aperture Radars (SAR)), non-coherent
(integration of envelope signals, moving window, adaptive threshold (Constant
False Alarm Rate (CFAR)) and mixed [6];

Table 1. Letter nomenclature  g,,q Frequencies Wavelengths

for nominal radar frequency

bands (IEEE, 2003) HF 3-30 MHz 100-10 m
VHF 30-300 MHz 10-1 m
UHF 300 MHz-1 GHz 1-0.3 m
L 1-2 GHz 0.3-0.15 m
S 2-4 GHz 15-7.5 cm
C 4-8 GHz 7.5-3.75 cm
X 8-12 GHz 3.75-2.5 cm
Ku 12-18 GHz 2.5-1.67 cm
K 18-27 GHz 16.7-11.1 mm
Ka 27-36 GHz 11.1-7.5 mm
Q, V, W 36-300 GHz 7.5-1 mm
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e transmitter and receiver technologies: antenna—reflector plus feed, array
(planar, conformal), corporate feed; transmitter—magnetron, klystron, wide-
band amplifiers (high-power travelling wave tubes (TWT)), solid state; and
receiver—analogue and digital technologies, base band, intermediate frequency
sampling, low-power TWT;

e area of application: large-scale weather forecast and monitoring, air traffic
control and guidance (terminal area, en route, collision avoidance, airport
apron); police traffic radar used for enforcing speed limits; air defence;
anti-theatre ballistic missile defence; vessel traffic surveillance; remote sensing
(application to crop evaluation, geodesy, astronomy, defence); environmental
monitoring of forestry conditions and land usage; pollution control; geology and
archaeology (ground penetrating radar); meteorology (hydrology, rain/hail
measurement); study of atmosphere (detection of micro-burst and gust,
wind profilers); space-born altimetry for measurement of sea surface height;
acquisition and tracking of satellites; monitoring of space debris; marine—
navigation and ship collision avoidance; others [5, 12—15].

Radar detection, classification and tracking of targets against a background of
clutter and interference are considered as “the general radar problem”. For military
purposes, the general radar problem includes searching for, interception, localisa-
tion, analysis and identification of radiated electromagnetic energy, which is
commonly known as radar Electronic Support Measures (ESM). They are consid-
ered to be a reliable source of valuable information regarding threat detection, threat
avoidance, and, in general, situation awareness for timely deployment of
counter-measures [27, 28]. A list of ESM abbreviations is given in Table 2.

A real-time identification of the radar emitter associated with each intercepted
pulse train is a very important function of the radar ESM. Typical approaches
include sorting incoming radar pulses into individual pulse trains [29], then com-
paring their characteristics with a library of parametric descriptions, in order to get
list of likely radar types. This can be very difficult task as there may be radar modes

Table 2 Commonly adopted

Abbreviation Meaning

ESM abbreviations -
EwW Electronic warfare
MOP Modulation on pulse
PA Pulse amplitude
PDW Pulse descriptor word
PPI Pulse-to-pulse interval
PRI Pulse repetition interval
PD Pulse duration
PW Pulse width
RF Radio frequency
TOA Time of arrival
ST Scanning type
SP Scan period
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for which there is no record in ESM library; overlaps of different radar type
parameters; increases in environment density (e.g., Doppler spectrum radars,
transmitting hundreds of thousands of pulses per second); agility of radar features,
such as radio frequency and scan, pulse repetition interval, etc.; multiplication and
dispersion of the modes for military radars; noise and propagation distortion that
lead to incomplete or erroneous signals [30].

1.1 Neural Networks in Radar Recognition Systems

There are wide variety of approaches and methods used for radar emitter recog-
nition and identification. For example, [31] investigate a specific emitter identifi-
cation technique applied to ESM data and by analysing the radar pulses try to
extract unique features for each radar, which can be later used for identification.
A wavelet transform is employed in [32] for the feature extraction phase in radar
signal recognition, as in [33], where they use it before employing probabilistic
support vector machines SVMs for the radar emitter recognition task. SVMs are
also used in [8, 34] for solving a similar problem. In [35] the authors focus their
research on the estimation of a common modulation from a group of intercepted
radar pulses and use it as a basis for specific emitter identification. A variety of
novel radar emitter recognition algorithms, incorporating clustering and competitive
learning, and investigating their advantages over the traditional methods are pro-
posed in [32, 36-42, 70-73].

Among those approaches, a considerable part of the research in the area
incorporates NN, due to their parallel architecture, fault tolerance and ability to
handle incomplete radar type descriptions and inconsistent and noisy data [43]. NN
techniques have previously been applied to several aspects of radar ESM processing
[28], including Pulse Descriptor Word (PDW) sorting [44, 45] and radar type
recognition [46]. More recently, many new radar recognition systems include NNs
as part of a clutter reduction system to improve the information managed by
automatic identification systems, such as the detection, positioning, and tracking of
surrounding ships [47], or as a key classifier [48-52]. Some examples of NN
architectures and topologies used for radar identification recognition and classifi-
cation based on ESM data include Multilayer Perceptron (MLP) [43], Radial Basis
Function (RBF) neural networks as a signal detector [46, 53], a vector neural
network [54], and a single parameter dynamic search neural network [50].

In many cases, the NNs are hybridised with other techniques, including fuzzy
systems [55], clustering algorithms [29, 56], wavelet packets [32, 57], or Kalman
filters [30]. When implementing their “What-and-Where fusion strategy” [30] use
an initial clustering algorithm to separate pulses from different emitters according to
position-specific parameters of the input pulse stream, and then apply fuzzy
ARTMAP (based on Adaptive Resonance Theory (ART) neural network) to clas-
sify streams of pulses according to radar type, using their functional parameters.
They also complete simulations with a data set that has missing input pattern
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components and missing training classes and then incorporate a bank of Kalman
filters to demonstrate high-level performance of their system on incomplete,
overlapping and complex radar data. In [48] higher order spectral analysis (HOSA)
techniques are used to extract information from low probability of intercept
(LPI) radar signals to produce 2D signatures, which are then fed to a NN classifier
for detecting and identifying the LPI radar signal. The work presented in [49]
investigates the potential of NNs (MLPs) when used in Forward Scattering Radar
(FSR) applications for target classification. The authors analyse collected radar
signal data and extract features, which are then used to train NN for target classi-
fication. They also apply K-Nearest Neighbour classifier to compare the results
from the two approaches and conclude that the NN solution is superior. In [58] an
approach combining rough sets (for data reduction) and NN as a classifier is pro-
posed for radar emitter recognition problem, while [59] combines wavelet packets
and neural networks for target classification.

The common denominator of all referenced approaches is that they use pre-
dominantly supervised NN learning. This means that there is an available data set
(or it is on-line collected), on which the NN can be trained and later used to
determine the type of the radar emitters detected in the environment. During the
training, the NN is presented with labelled samples from the available dataset and
the NN weights are adjusted in order to minimise the difference between the NN
output and the available target (supervised learning). This difference is expressed by
an error function that is minimised by adjusting the NN weights. One of the most
popular methods for training is backpropagation (BP), but, as it uses Newton and
quasy-Newton deterministic minimisation methods, it could become trapped in a
local minimum and in this way to converge to a suboptimal training. Another
drawback of the BP algorithm is that it can, sometimes, be slow and unstable. After
training, the NN is tested for its ability to generalise, in other words, its ability to
correctly classify samples that have not been shown during the learning process.

Among other considerations, the complexity of the training includes selecting
the way of showing the samples to the network (i.e. how the training data set is
organised and presented to the NN—‘batch mode’, ‘on-line mode’, etc.). Another
important question is when to stop the training—achieving a zero error function
does not always lead to an optimal training. The reality shows that at some point of
the learning process, the NN starts to memorise rather than to generalise—this
happens when the NN starts to overfit. In order to avoid the overfitting, an addi-
tional data subset (called validation subset), is used in parallel with the training set.
Initially, the errors on both sets will decrease, but at some point the validation error
will start to rise, while the training error will continue to decrease. This point is an
indication of overfitting and the training should be stopped, with the current weights
assumed to be optimal. This training approach is known as split sample training,
where the available dataset is split in training, validation and testing subsets. There
are also other training approaches, such as k-fold crossover, or bootstrapping, each
with their own specific advantages and drawbacks [43]. One advantage of the k-fold
crossover, for example, is that it can be applied when limited number of samples is
available for training.
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In addition, often before approaching training, the available data set needs to be
pre-processed, e.g., [60] use feature vector fusion before feeding the NN classifier.
Radar signal processing has specific features that differentiate it from most other
signal processing fields. Many modern radars are coherent, meaning that the
received signal, once demodulated to baseband, is complex-valued rather than
real-valued and as it can be seen from Table 2, many of the collected data is
categorical. Another specificity of the radar data sets is that there are usually many
missing or incomplete data. Therefore, the problems of representation and statistical
pre-processing of the available dataset are very important steps that need to be
considered, before starting the actual training. This may also include transformation
techniques, such as linear discriminant analysis and principal component analysis,
in order to reduce the dimensionality of the problem and dispose of redundant
information in the dataset.

1.2 Dealing with Missing Data

According to statistical analysis, the nature of missing data can be classified into
three main groups [61-63]: missing completely at random (MCAR), where the
probability that an observation is missing is unrelated to its value or to the value of
any other variables; missing at random (MAR)—that missingness does not depend
on the value of the observed variable, but on the extent of the missingness corre-
lation with other variables that are included in the analysis (in other words, the
cause of missingness is considered); and missing not at random (MNAR)—when
the data are not MCAR or MAR (missingness still depends on unobserved data).
The problem associated with MNAR is that it yields biased parameter estimates,
while MCAR and MAR analysis yield unbiased ones (at the same time the main
consequence of using MCAR is loss of statistical power), [63].

Dealing with missingness requires an analysis strategy leading to least biased
estimates, while not losing statistical power. The problem is these criteria are
contradictory and in order to use the information from the partial data in samples
with missing data (keeping up the statistical power), and substituting the missing
data samples with estimates, inevitably brings bias.

The most popular approaches in dealing with missing data generally fall in three
groups: Deletion methods; Single imputation methods; and Model-based methods
[62, 64, 65].

Deletion methods include pairwise and listwise deletion. The pairwise deletion
(also called “unwise” deletion) keeps as many samples as possible for each analysis
(and in this way uses all available information for it), resulting in incomparable
analysis, as each is based on different subsets of data, with different sample sizes
and different standard errors. The listwise deletion (also known as complete case
analysis) is a simple approach, in which all cases with missing data are omitted. The
advantages of this technique include comparability across the analyses and it leads
to unbiased parameter estimates (assuming the data is MCAR), while its main
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disadvantage is that there may be substantial loss of statistical power (because not
all information is used in the analysis, especially if a large number of cases is
excluded).

The single imputation methods include mean/mode substitution, dummy vari-
able method, and single regression. Mean/mode substitution is an old procedure,
currently rejected due to of its intrinsic problems, e.g., it adds no new information
(the overall mean stays the same), reduces the variability, and weakens the
covariance and correlation estimates (it ignores relationship between variables). The
dummy variable technique uses all available information about missing observa-
tion, but produces biased estimates. In the regression approach, linear regression is
used to predict what the missing value should be (based of the available other
variables) and then uses it as an actual value. The advantage of this technique is that
it uses information from the observed data, but overestimates the model fit and the
correlation estimates, and weakens the variance [62].

Most popular, “modern” model-based approaches, fall into two categories:
multiple imputation (MI) and maximum likelihood (ML) methods (often referred to
as full-information maximum likelihood), [63]. Their advantage is that they model
the missingness and give confidence intervals for estimates, rather than relying on a
single imputation. If the assumption for MAR holds, both groups of methods result
in unbiased estimates (i.e., tend to “preserve” means, variances, co-variances,
correlations and linear regression coefficients) without loss of statistical power.

ML identifies a set of parameter values that produces the highest (log) likelihood
and estimates the most likely value that would result in the observed data. It has the
advantage that both complete and incomplete cases are used, in other words, it
utilises all of the information and produces unbiased parameter estimates (with
MCAR/MAR data). The MI approach involves three distinct steps: first, sets of
plausible data for the missing observations are created and these sets are filled in
separately to create many ‘completed’ datasets; second, each of these datasets is
analysed using standard procedures for complete datasets; and thirdly, the results
from previous step are combined and pooled into one estimate for the inference.
The aim of the MI process is not just to fill in the missing values with plausible
estimates, but also to plug in multiple times these values by preserving important
characteristics of the whole dataset. As with most multiple regression prediction
models, the danger of overfitting the data is real and can lead to less generalisable
results than would have been possible with the original data [66].

The advantage of the MI technique is that it provides more accurate variability
by making multiple imputations for each missing value (it considers both variability
due to sampling and variability due to imputation) and its disadvantage is that it
depends on the correctly specified model. Also, it requires cumbersome coding, but
the latter is not an issue due to the existence of easy to use off-shelf software
packages. For the purpose of this investigation, a free, open source R statistical
software is used.
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2 Data Analysis

For the purpose of this research, a data set composed of 29,094 intercepted generic
data samples is used. Each of the captured signals is pre-classified by experts in one
of 26 categories, in regards to the platform that can carry the radar emitter (aircraft,
ship, missile, etc.) and in one of 142 categories, based on the functions it can
perform (3D surveillance, weather tracking, air traffic control, etc.).

Each data entry represents a list of 12 recorded pulse train characteristics (signal
frequencies, modulation type, pulse repetition intervals, etc. that will be considered
as input parameters), a category label (specifying the radar function and being
treated as system output) and a data entry identifier (for reference purposes only)
(Table 3).

A more comprehensive summary of the data distribution is presented in Table 4,
where an overview of the type, range and percentage of missing values for the
recorded signal characteristics is given. The collected data consists of both
numerical (integer and float) and categorical values, therefore coding of the cate-
gorical fields to numerical representations will be required during the data
pre-processing stage. Also, due to the large number of missing values for some of
the parameters, approaches for handling of missing data will be considered.

3 Data Pre-processing

The pre-processing of the available data is of a great importance for the subsequent
machine learning stage and usually can significantly affect the overall success or
failure of the application of a given classification algorithm. In this context, the
main objective of this stage is to analyse the available data for inconsistencies,
outliers and irrelevant entries and to transform it in a form that could facilitate the
underlying mathematical apparatus of the machine learning algorithm and lead to
an overall improvement of the classifier’s performance.

3.1 Data Cleaning and Imputation

Data cleaning (also known as data cleansing or scrubbing) deals with detecting and
removing errors and inconsistencies from data, in order to improve its quality [67].
The most important tasks carried out on this stage would include identification of
outliers (entries that are significantly different from the rest and could be a result of
an error), resolving of data inconsistencies (values that are not consistent with the
specifications or contradict expert knowledge), dealing with missing data (removing
the missing values, assigning those values to the attributes’ mean, using statistical
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Table 4 Data description and percentage of missing values

Field Field description Type | Categories | Missing
(%)

D Reference for the line of data I - -

FN Function performed by the radar (‘3D’—3D C 142 1.35

surveillance, ‘AT"—airtraffic control,
‘SS’—surface search, ‘WT"—weather
tracker, etc.)

RFC Type of modulation used by the radar to C 12 20.75
change the frequency of the radar from pulse
to pulse (‘A’—agile, ‘F’—fixed, etc.)

RFmin Min frequency that can be used by the radar R - 11.15
RFmax Max frequency that can be used by the radar | R - 11.15
PRC Type of modulation used by the radar to C 15 15

change the Pulse Repetition Interval
(PRI) of the radar from pulse to pulse
(‘F"—fixed, etc.)

PRImin Min PRI that can be used by the radar R - 46.70
PRImax | Max PRI that can be used by the radar R - 46.70
PDC Type of modulation used by the radar to C 5 12.92

change the pulse duration of the radar from
pulse to pulse (‘S’—stable)

PDmin Min pulse duration that can be used by the R - 46.05
radar

PDmax Max pulse duration that can be used by the R - 46.05
radar

ST Scanning type—method that the radar uses C 28 11.33

to move the antenna beam (‘A’—circular,
‘B’—bidirectional, ‘W’ —electronically
scanned, etc.)

SPmin Min scan period that can be used by the radar | R - 59.35
SPmax Max scan period that can be used by the radar | R - 59.35

In column “Type”: I—integer; C—categorical; R—real values

algorithms to predict the missing values) or removing redundant data in different
representations.

At this stage of the pre-processing phase, two data sets are prepared. For the
purposes of the first two case studies (presented later in this chapter), a data set only
containing samples with complete data values is extracted, with the data that could
not have been fully intercepted and recognised removed by applying listwise
deletion. The second data set (used for the final case study) is received after
applying multiple imputation, performed as described below.
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3.2 Dealing with Missing Data—Data Imputation

To estimate the values of the missing multivariate data, a sequential imputation
algorithm, presented in [68] is used. According to it, if the available data set is
denoted with Y and the complete subset with Y., the procedure starts from the
complete subset to estimate sequentially the missing values of an incomplete
observation Y*, by minimizing the covariance of the augmented data matrix
Y* = [Y,., x*]. Subsequently the data sample x* is added to the complete data
subset and the algorithm continues with the estimate of next data sample with
missing values.

Implementations in R of the original algorithm (available under the function
name “impSeq”) and two modifications of it (namely “impSeqRob” and
“impNorm”) are considered and tested. As the original algorithm uses the sample
mean and covariance matrix, it is vulnerable to the presence of outliers, but this can
be enhanced by including robust estimators of location and scatter (which is rea-
lised in the “impSeqRob” function). However, the outlyingness metric can be
computed for a complete dataset only, therefore the sequential imputation of the
missing data is done first and then the outlyingness measure is computed and used
to define whether the observation is an outlier or not. If the measure does not exceed
a predefined threshold, the observation is included in the next stage of the algo-
rithm. In our investigation, however, the use of modified “impSeqRob” and
“impNorm” versions did not produce better results when tested on complete dataset
(which may be simply due to the lack of outliers), so the “impSeq” function was
adopted.

After employing MI on the data samples with missing continuous values, a
second dataset of 15656 observations is received, which is more than double the
size of the first dataset. Table 5 shows the inputted values produced by the MI
algorithm for the sample subset, presented previously in Table 3.

3.3 Data Coding and Transformation

This stage of the pre-processing aims to transform the data into a form that is
appropriate for feeding to the selected classifier and would facilitate faster and more
accurate machine learning.

In particular, a transformation known as coding is applied to convert the cate-
gorical values presented in the data set into numerical ones. Three of the most
broadly applied coding techniques are investigated and evaluated—continuous,
binary and introduction of dummy variables.

For the first type of coding, each of the categorical values is substituted by a
natural number, e.g., the 12 categories for the RFC input are encoded with 12
ordinal numbers, the 15 PRC categories—with 15 ordinal numbers, etc. A sample
of data subset coded with continuous values is given in Table 6.
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Binary coding, wherein each non-numerical value is substituted by log,N (where
N is the number of categories taken by that variable) new binary variables (i.e.
taking value of either O or 1), is illustrated in Table 7 for 32 categories.

Finally, the non-numerical attributes are coded using dummy variables. In par-
ticular, every N levels of a categorical variable are represented by introducing
N dummy variables. An example of dummy coding for 32 categorical levels is
shown in Table 8.

Taking into account the large number of categories presented for the categorical
attributes in the input data set (Table 4), continuous and binary codings are con-
sidered for transforming the input variables. On the other hand, binary and dummy
variable codings are chosen for representing the output parameters.

Finally, in order to balance the impact of the different input parameters on the
training algorithm, data scaling is used. Correspondingly, each of the conducted
experiments in this chapter is evaluated using 3 forms of the input data set: the
original data (with no scaling); normalised data (scaled attribute values within [0, 1]
interval); and standardised data (i.e. scaling the attribute values to a zero mean and
unit variance). A sample binary coded and standardised data subset is given in
Table 9.

Table 7 Example of binary coding for 32-level categorical variable

Original category Encoded variables

Index Label B1 B2 B3 B4 B5
1 2D’ 0 0 0 0 0
2 3D’ 0 0 0 0 1
3 ‘AN’ 0 0 0 1 0
16 | cs’ 0 1 1 1 1
32 ‘ME’ 1 1 1 1 1

Table 8 Example of dummy coding for 32-level categorical variable

Original category Encoded variables

Index |Label |DI |D2 |[D3 |D4 |D5 |~ |pl6 |~ [D32
1 2D’ 1 0 0 0 0 -0 -0

2 3D’ 0 1 0 0 0 = o = o

3 ‘AN 0 0 1 0 0 = o = o
16 )css Jo Jo Jo Jo Jo [~ | o
32 MEE (o o o fo Jo [+ Jo L
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3.4 System Training

The investigated neural network topologies include one hidden layer, with fully
connected neurons in the adjacent layers and batch-mode training. For a given
experiment with P learning samples, the error function is presented as:

||Mr~

1 P
where for each sample p = 1, ..., P and each neuron of the output layeri =1, ..., L,
a pair (x; t;) of NN output and target values, respectively, is defined.

4 Results and Discussion

A number of experiments are designed, implemented, executed and evaluated to
test and validate the performance of the proposed intelligent system for identifi-
cation and classification of radar signals. Two separate approaches are considered
and the related results are grouped and presented in the following two case studies.
MATLAB® and its Statistics, Neural Networks and Global Optimisation toolboxes
are used for coding and running of all the experiments.

4.1 Case Study 1—Listwise Deletion and Feedforward
Neural Networks

For the purposes of the first case study, samples that contain incomplete data (i.e.
data that was not fully intercepted or recorded) are removed from the considered
data set, resulting in a subset of 7693 complete data samples of radar signal values.

Subsequently, depending on the experiment to be performed, the samples are
sorted by experts in several groups of major interest according to their application.
In two classes for the first two experiments (“Civil” and “Military”), and in 11
classes for the purpose of the final one (4 from the “Civil” and 7 from the “Mili-
tary” application areas).

A randomly selected, no missing data sample subset (after listwise deletion) is
presented in Table 10. Its first column (the ID attribute) is retained for referencing
purposes only and it is not used during the classifier’s training.

Next, a coding transformation (as described in Sect. 3.2) is applied to convert the
categorical values in the data set to numerical ones. Taking into account the large
number of categories in the inputs (Table 4), continuous and binary codings are
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considered for transforming the input variables. On the other hand, binary and
dummy variable representations are used for transforming the output parameters.

In order to balance the impact of the different input parameters on the training
algorithm, data scaling is applied. Respectively, each of the experiments conducted
for the purposes of this case study is evaluated using three forms of the input data
set—the data itself (with no scaling), after normalisation (i.e., scaling the attribute
values to fall within a specific range, for example [0 1]), and after standardisation
(i.e. scaling the attribute values to a zero mean and unit variance). A sample binary
encoded and normalised data subset is given in Table 11.

The investigated NN topologies include one hidden layer, with fully connected
neurons in the adjacent layers and batch-mode training. For a given experiment
with P learning samples, the error function is given with Eq. 1. Supervised NN
learning with Levenberg-Marquardt algorithm and tangent sigmoid transfer func-
tion is used. A split-sample technique using randomly selected 70 % of the available
data for training, 15 % for validation and 15 % for testing, and mean squared error
(MSE) is adopted for evaluating the learning performance. The stopping criteria is
set to 500 training epochs, gradient reaching less than 1.0e-06 or if 6 consequent
validation checks fail, whichever occurs first.

For the purposes of the first experiment, the categorical attributes of the input
data are coded with consecutive integers. In this way a total of 12 input variables
are received (Table 6). Two neural network topologies are examined—12-10-1 (12
neurons in the input, 10 neurons in the hidden and 1 neuron in the output layers)
and 12-10-2, where the output parameter is coded as one binary neuron taking
values 0 (“Civil”) and 1 (“Military”) for the first topology and 2 binary neurons,
taking values 10 (“Civil”) and 01 (“Military”) for the second topology (Fig. 4).
The performance of each of the topologies is investigated, evaluated and compared
after training with the original, normalised and standardised data. The results are
summarised in Table 12 and Fig. 5.

The second experiment investigates two additional NN topologies: 22-22-1 and
22-22-2, where the output parameter is again coded by one binary neuron (0 for
“Civil” and 1 for “Military”) for the first topology and by two binary neurons for
the second one (/0 for “Civil” and 01 for “Military”). Again, the performance of
each of the topologies is investigated, evaluated and compared using the original
data, after normalisation and after standardisation. The results are summarised in
Table 13.

Similarly to the first experiment, sample confusion matrices are presented in
Fig. 6 for a 22-22-2 NN classifier trained with standardised input data. A very high
accuracy of 84.3 % on the testing data set is achieved after 114 epochs and acti-
vation of the validation check stopping criteria (unsatisfactory performance on the
validation data set in six successive iterations).

The final experiment in this case study investigates a broader output space of 11
classes (4 from the “Civil” and 7 from the “Military” domain) and evaluates a
22-22-11 NN classifier with unscaled, normalised and standardised training data
using dummy variable coded outputs. Summary of the obtained results is presented
in Table 14 and a sample confusion matrix for the investigated classifier with
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Fig. 4 Investigated NN topologies for case study 1: 12 neurons in the input layer; 10 in the
hidden; and 1 (a), or 2 (b) neurons in the output layer

Table 12 Classification performance (over the testing set) for continuous input coding and
12-10-N topologies with no data scaling, after normalisation and after standardisation

NN topology Inputs scaling Classification accuracy (%)
12-10-1 No scaling 78.12

Normalisation 80.82

Standardisation 80.76
12-10-2 No scaling 80.14

Normalisation 81.60

Standardisation 82.18

Table 13 Classification performance (over the testing set) for binary input coding and 22-22-N

topologies with no data scaling, after normalisation and after standardisation

NN topology Inputs scaling Classification accuracy (%)
22-22-1 No scaling 81.90

Normalisation 83.34

Standardisation 83.01
22-22-2 No scaling 81.77

Normalisation 83.90

Standardisation 84.30
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Fig. 5 Classification results for 12-10-2 NN classifier with normalised input data and a validation
stop after 118 epochs. The values in green specify the correctly classified samples for each class
(10—Civil, 01—Military)

standardised input training data is given in Fig. 7, where a good recognition rate of
67.49 % can be observed.

Although a straightforward comparison with radar classification studies reported
by other authors might be misleading, due to the different data sets, model
parameters and training methods used, the achieved results appeared to be strongly
competitive when compared to the ones reported in [30, 32, 48, 49, 60]. Further-
more, additional improvement is expected, if further statistical pre-processing
techniques, missing data handling routines, NN topologies or training algorithm
parameters are investigated (as shown in the next two case studies).
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Fig. 6 Classification results for 22-22-2 NN classifier with normalised input data and a validation

stop after 114 epochs. The values in green specify the correctly classified samples for each class
(10—“Civil”, 01—"Military”)

Table 14 Classification performance (over the testing set) for binary input coding and 22-22-11
topology with no data scaling, after normalisation and after standardisation

NN topology Inputs scaling Classification accuracy (%)
22-22-11 No scaling 61.94

Normalisation 66.70

Standardisation 67.49
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Fig. 7 Classification results for 22-22-11 NN classifier with standardised data on 7 military (M/
—“Multi-function”, M2— “Battlefield”, M3— “Aircraft”, M4—“Search”, M5—“Air Defense”,
M6—“Weapon” and M7— “Information”) and 4 civil classes (CI—“Maritime”, C2—“Airborne
Navigation”, C3—“Meteorological” and C4— “Air Traffic Control”)

4.2 Case Study 2—Multiple Imputation and Feedforward
Neural Networks

The second case study follows the same sequence of experiments and NN
topologies, as introduced in the first study, however, this time an extended dataset,
received after multiple imputation of the missing data values (as described in
Sect. 3) is used.

For the purposes of the first experiment in this study, the categorical attributes of
the input data are coded with consecutive integers. Two NN topologies are
examined—12-10-1 and 12-10-2, where the output parameter is coded as one
binary neuron taking values 0 (“Civil”) and 1 (“Military”) for the first topology
and 2 neurons, taking binary values 10 (“Civil”) and 01 (“Military”) for the second
one.
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The performance of each of the topologies is investigated, evaluated and com-
pared using training with the original data (no pre-processing), and after normali-
sation and standardisation. The results are summarised in Table 15 showing up to
5 % accuracy improvement for the case introducing imputation.

Sample confusion matrices for a 12-10-2 NN classifier trained with normalised
input data and a validation stop activated after 106 epochs are given in Fig. 8. They
demonstrate improved accuracy rates (especially for the “Military” class) when
compared to the case studies using listwise deletion to cope with the incomplete
data samples (Fig. 5).

The second experiment in this study investigates two additional NN topologies
—22-22-1 and 22-22-2, where the output is again coded by one binary neuron
(0 for “Civil” and I for “Military”) for the first topology and by two binary
neurons for the second one (/0 for “Civil” and 01 for “Military”).

The NN performance for each of the topologies is investigated, evaluated and
compared using the original, normalised and standardised data for both the cases—
with and without imputed values. The performance results are summarised in
Table 16, again showing improved NN performances for the cases with imputed
data.

The final experiment investigates a broader output space of 11 classes (4 “Civil”
and 7 “Military”) and evaluates 22-22-11 NN classifiers with the original, nor-
malised and standardised training data, and with dummy variable coded outputs.
Summary of the obtained results when training on data subsets with and without
imputation is presented in Table 17.

Sample confusion matrices for the imputed 22-22-11 NN case, trained with
standardised input data and a validation stop activated after 98 epochs are presented
in Fig. 9. Although the results seem slightly inferior to the listwise deletion case
(Fig. 7), they give higher statistical confidence because of the increased number of
samples.

It can also be seen from Fig. 9 that although the accuracy of the NN classifier is
relatively the same (compared to the NN trained after listwise deletion (Fig. 7)), the

Table 15 Classification performance (over the testing set) for continuous input coding and
12-10-N topologies with no data scaling, after normalisation and after standardisation

Topology Input data % Accuracy
No imputation With imputation
12-10-1 No scaling 78.1 83.3
Normalised 80.8 84.5
Standardised 80.8 85.2
12-10-2 No scaling 80.1 82.1
Normalised 81.6 83.6
Standardised 82.1 84.5

Comparison between NN training with data received after listwise deletion and after multiple
imputation



Intelligent Radar Signal Recognition and Classification 129

Training Confusion Matrix Validation Confusion Matrix

Output Class
Output Class

Civil Military Civil Military
Target Class Target Class
Test Confusion Matrix All Confusion Matrix
10
8 2
- 2 01
S E
3 3
Ciil  Military Civil  Military
Target Class Target Class

Fig. 8 Classification results for imputed data case for 12-10-2 NN classifier with normalised input
data and a validation stop after 106 epochs. The values in green specify the correctly classified
samples for each class (/10—"“Civil”, 01—"Military”)

number of hits is largely increased and with a better distribution. This is especially
evident for the ‘M7’ class, for which there were no hits in the case without
imputation. The best accuracy is again achieved for the ‘M4’ and ‘CI’ classes, but
the more important achievement as a result of the imputation is the uniform

Table 16 Classification performance (over the testing set) for binary input coding and 22-22-N
topologies with no data scaling, after normalisation and after standardisation

Topology Input data % Accuracy
No imputation With imputation

22-22-1 No scaling 81.9 85.6
Normalised 83.3 87.3
Standardised 83.1 87.2

22-22-2 No scaling 81.8 84.8
Normalised 83.9 85.0
Standardised 84.3 86.8

Comparison between NN training with data received after listwise deletion and after multiple
imputation
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Table 17 Classification performance (over the testing set) for binary input coding and 22-22-11
topology with no data scaling, after normalisation and after standardisation

Topology Input data % Accuracy
No imputation With imputation
22-22-11 No scaling 61.9 66.1
Normalised 66.7 66.4
Standardised 67.5 66.7

Comparison between NN training with data received after listwise deletion and after multiple

imputation

distribution of correctly classified samples. As illustrated in Fig. 7, the class
accuracy variance for the classification with no missing data is very high, from O to
87.9 %, whereas in the case using imputed data (Fig. 9), it is between 22.6 and
87.4 %. In other words, while keeping the best accuracy almost the same, the
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Fig. 9 Classification results for inputed data and 22-22-11 NN classifier with standardised data on
7 military (MI1—“Multi-function”, M2—*“Battlefield”, M3—“Aircraft”’, M4—“Search”, M5
—“Air Defense”, M6—“Weapon” and M7— “Information”) and 4 civil classes (CI—“Mar-
itime”, C2— “Airborne Navigation”, C3— “Meteorological” and C4—“Air Traffic Control”)
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minimum accuracy is improved by more than 22 %. This should be attributed to the
greater number of available training and testing samples as a result of the impu-
tation, which increases the statistical power of the dataset and subsequently
improves the classification performance of the NN.

5 Conclusion

Reliable and real-time identification of radar signals is of crucial importance for
timely threat detection, threat avoidance, general situation awareness and timely
deployment of counter-measures. In this context, this chapter investigates the
potential application of NN-based approaches for timely and trustworthy identifi-
cation of radar types, associated with intercepted pulse trains.

A number of experiments are designed, implemented, executed and evaluated for
testing and validating the performance of the proposed intelligent systems for
solving the investigated classification tasks. The different experiments study a
variety of NN topologies, data transformation techniques and missing data handling
approaches.

The simulations are divided in two broad case studies, each of which conducts
several sub-experiments. In the first one, all the signals are pre-classified by experts
into between 2 and 11 classes, depending on the experiment, and then a listwise
deletion is used to clean the data from incomplete samples. As a result, very
competitive classification accuracy of about 81, 84 and 67 % is received for the
different recognition tasks.

In the second one, a study applying a multiple imputation model-based approach
for dealing with the large number of missing data (contained in the available radar
signals data set) is investigated. The experiments conducted for the purposes of the
first case study are repeated, but this time using the imputed data set for training of
the classifiers. An improved accuracy of up to 87.3 % is achieved. The results are
compared and critically analysed, showing overall improved accuracy when the NN
are trained on the larger subset with imputed values.

Although a straightforward comparison to radar classification studies, reported
by other authors might be misleading, due to the different data sets, model
parameters, data transformations, training and optimisation methods used, the
achieved results are strongly competitive to the ones reported in [30, 42, 48, 49,
52, 60].

Potential areas for further extension of this research include investigation of
additional statistical transformation techniques, such as Principal Component
Analysis (PCA), Non-Linear Principal Component Analysis (NLPCA), and Linear
Discriminant Analysis, for decreasing the dimensionality of the problem and
increasing the separability between the classes. In terms of classifiers, we presented
supervised learning and classification, but unsupervised learning techniques (such
as self-organising maps (SOM)) can also be considered, as well as varying other
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training parameters and exploring additional NN topologies. Finally, additional
classes can be introduced, in order to achieve more specific classification of the
intercepted radar data.
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An Improved Decision System
for URL Accesses Based on a Rough
Feature Selection Technique

P. de las Cuevas, Z. Chelly, A.M. Mora, J.J. Merelo
and A.L Esparcia-Alcazar

Abstract Corporate security is usually one of the matters in which companies invest
more resources, since the loss of information directly translates into monetary losses.
Security issues might have an origin in external attacks or internal security failures,
but an important part of the security breaches is related to the lack of awareness
that the employees have with regard to the use of the Web. In this work we have
focused on the latter problem, describing the improvements to a system able to detect
anomalous and potentially insecure situations that could be dangerous for a com-
pany. This system was initially conceived as a better alternative to what are known
as black/white lists. These lists contain URLs whose access is banned or dangerous
(black list), or URLSs to which the access is permitted or allowed (white list). In this
chapter, we propose a system that can initially learn from existing black/white lists
and then classify a new, unknown, URL request either as “should be allowed” or
“should be denied”. This system is described, as well as its results and the improve-
ments made by means of an initial data pre-processing step based on applying Rough
Set Theory for feature selection. We prove that high accuracies can be obtained even
without including a pre-processing step, reaching between 96 and 97 % of correctly
classified patterns. Furthermore, we also prove that including the use of Computa-
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tional Intelligence techniques for pre-processing the data enhances the system perfor-
mance, in terms of running time, while the accuracies remain close to 97 %. Indeed,
among the obtained results, we demonstrate that it is possible to obtain interest-
ing rules which are not based only on the URL string feature, for classifying new
unknown URLs access requests as allowed or as denied.

Keywords Computational intelligence * Rough sets * Feature selection « Corporate
security policies * Internet access control * Data mining * Blacklists and whitelists

1 Introduction

Security is an inclusive term that refers to a diversity of steps taken by individuals,
and companies, in order to protect computers or computer networks that are con-
nected to the Internet. The Internet was initially conceived as an open network facil-
itating the free exchange of information. However, data which is sent/received over
the Internet travel through a dynamic chain of computers and network links and, as a
consequence, the risk of intercepting and changing the data is high. In fact, it would
be virtually impossible to secure every computer connected to the Internet around
the world. So, there will likely always be weak links in the chain of data exchange
[7]. Yet, companies have to find out a way for their employees to safely interact with
customers, clients, and anyone who uses the Internet while protecting internal confi-
dential information. Companies have, also, to alert the employees from the Internet
misuse while doing their job.

Most of the time, employees have a misguided sense of security and believe that
itis an IT problem, a purely technical issue, and they naively believe that an incident
may never happen to them [36]. Actually, the employees’ web misuse is one of the
main causes of security breaches [3], so that making them security-conscious has
become a security challenge.

The reality is that every department must be involved in readiness planning and
establishing security policies and procedures to minimize their risks. Such strategies
are mainly handled by means of Corporate Security Policies (CSPs) which basically
are a set of security rules aiming at protecting company assets by defining permis-
sions to be considered for every different action to be performed inside the security
system [19].

The basic idea behind these CSPs is usually to include rules to either allow or
deny employees’ access to non-confident or non-certified websites, which are ref-
erenced by their URLSs in this chapter. Moreover, several web pages might be also
controlled for productivity or suitability reasons, given the fact that the employees
who connect to these might have working purposes or not. In fact, some of the CSPs
usually define sets of allowed or denied web pages or websites that could be accessed
by the company employees. These sets are usually included in two main lists; a white
list (referring to “permitted”) and a black list (referring to “non-permitted”). Both
lists, the white and the black, act as a good and useful control tools for those URLs
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included in them, as well as for the complementary. For instance, the URLs which
are not included in a white list will automatically have a denial of access [24].

The aim of this paper is going beyond this traditional and simple decision mak-
ing process. By using black and/or white lists, we either allow or deny users’
requests/connection based, only, on the URLs provided in the lists. Yet, updating
these lists is a never ending task, as numerous malicious websites appear every day.
For instance, Netcraft reports from November of 2014 [30] showed that there are
about 950 million active websites. But McAfee reported [27] that, at the end of the
first quarter of 2014, there were more than 18 million new suspect URLs (2 million
associated domains), and also more than 250 thousand new phishing URLs (almost
150 thousand associated domains).

With this situation in mind, in this chapter, our aim is to define a tool for auto-
matically making allow or deny decisions with respect to URLS that are not included
in the aforementioned lists. This decision would be based on that made for similar
URL accesses (those with similar features), but instead of using only the URL strings
included in the lists, we will consider other parameters of the request/connection.

For this reason, the problem has been mapped to a classification problem in which
we start from a set of unlabelled patterns that model the connection properties from
a huge amount of actual' URL accesses, known as sessions. After that, we assign a
label to many of them, considering a set of actual® security rules (CSPs) defined by
the Chief Security Officer (CSO) in the company. This was the approach followed in
[28], and which we extend in this chapter.

In order to extract conclusions from the resulting studied dataset and to properly
apply a classification algorithm, a pre-processing step is needed. In fact, to obtain an
accurately trained classifier, there is a need to extract as much information as possi-
ble from the connections that the employees normally make throughout the workday.
This translates into high computational requirements, which is why we introduce in
this paper techniques for data reduction. More precisely, we aim to apply a feature
selection technique to extract the most important features from the data at hand.
Among the well known feature selection techniques proposed in literature, we pro-
pose to use a Computational Intelligence method: the Rough Set Theory (RST) [31].
RST has been experimentally evaluated with other leading feature selection tech-
niques, such as Relif-F and entropy-based approaches in [18], and has been shown
to outperform these in terms of resulting classification performance.

After pre-processing and based on the reduced dataset, we will apply several clas-
sification algorithms, testing them and selecting the most appropriate one for this
problem. The selected classifier should be capable of dealing with our data while
producing high accuracies and being lightweight in terms of running time. More-
over, as we want to further test the reliability of the results, in this work we propose
different experimental setups based on different data partitions. These partitions are
formed either by preserving the order of the data or by taking the patterns in arandom

ITaken from a log file released to us by a Spanish company.
2The set of rules has been written by the same company, with respect to its employees.
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way. Finally, given that the used data presents unbalance, we aim to apply balancing
techniques [16] to further guarantee the fairness of our obtained results.

In this chapter, we want to improve the accuracies obtained in our previous work
[28], as well as see if the new incorporated method (namely Rough Sets) for feature
selection yields to better rules. This is meant to be done not only by applying RST
for feature selection, but also by improving the quality of the original data set, by
means of erasing information that may be redundant.

The rest of the paper is structured as follows. Next section describes the state of
the art related to Data Mining (DM), Machine Learning (ML), and Computational
Intelligence (CI) techniques applied to corporate security. Also, related works about
URL filtering will be reviewed. Data description is detailed in Sect. 3. Then, Sect. 4
describes the basic concepts of Rough Set Theory for feature selection which we have
used for data pre-processing. Section 5 gives an overview of the followed methodol-
ogy, as well as the improvements done after our first results obtained in [28]. Then
Sect. 6 depicts the results, and discusses the obtained rules which are different for
every used classifier. Finally, conclusions and future trends are given in Sect. 7.

2 State of the Art

Our work tries to obtain a URL classification tool for enhancing the security in the
client side, as at the end we want to get if a certain URL is secure or not, having as ref-
erence a set of rules (derived from a CSP) which allow or deny a set of known HTTP
requests. For this, different techniques belonging to Data Mining (DM), Machine
Learning (ML), and Computational Intelligence, have been applied. This section
gives an overview in a number of solutions given to protect the user, or the com-
pany, against insecure situations.

First, as we want to add a good pre-processing phase to our system, in order to
improve it, Sect. 2.1 gives an overview of the state of the art related to data analysis
and pre-processing. Then, in Sect. 2.2 we try to analyse similar systems, as well as
define which advantages our system provides.

2.1 Data Analysis and Pre-processing

Performing DM means analyzing the database we have [12] which in our case is a
log of HTTP requests. The work discussed in [45] presents an exhaustive review of
works which study database cleaning and their conclusion is that a database with
good quality is decisive when trying to obtain good accuracies; a fact which was
also demonstrated in [6]. To analyse the data that we have at hand, we have based
our work on two main processes: data pre-processing on the URL dataset and the
application of balancing techniques depending on the data.

While performing data pre-processing, we have focused first on the kind/type of
data included in the HTTP requests in the log file that is used as input file. We realised
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that many URL strings are redundant in the dataset and thus we aimed to eliminate
them which is seen a cleaning approach.

Many cleaning techniques have been proposed in literature [45] in order to guar-
antee the good quality of a given dataset. Most of these techniques are based on
updating a database by adding or deleting instances to optimize and reduce the ini-
tial database. These policies include different operations such as deleting the out-
dated, redundant, or inconsistent instances; merging groups of objects to eliminate
redundancy and improve reasoning power; re-describe objects to repair incoheren-
cies; check for signs of corruption in the database and controlling any abnormalities
in the database which might signal a problem. Working with a database which is
not cleaned can become sluggish and without accurate data users will make unin-
formed decisions. In this work, we have maintained the our HTTP request dataset by
focusing on a specific kind of data that should be eliminated: redundant URL strings.
Section 5.3.1 explains in detail the process that we have adopted to eliminate these
redundant data.

Still with the data pre-processing task, we have focused as a second step on check-
ing the importance of the set of features presented in the HTTP requests log file. Thus
we tried to select the most informative features from the initial feature set. At this
point, we have introduced an extra technique, a data reduction technique, that was
not included in our first work presented in [28]. Feature reduction is a main point
of interest across a wide variety of fields and focusing on this step is crucial as it
often presents a source of significant information loss. Many techniques were pro-
posed in literature to achieve the task of feature reduction and they can be categorized
into two main heads; techniques that transform the original meaning of the features,
called the “transformation-based approaches”, and the second category is a set of
semantic-preserving techniques known as the “selection-based approaches”.

Transformation based approaches, also called “feature extraction approaches”,
involve simplifying the amount of resources required to accurately describe a large
set of data. Feature extraction is a general term for methods that construct combina-
tions of variables to represent the original set of features but with new variables while
still describing the data with sufficient accuracy. The transformation based tech-
niques are employed in situations where the semantics of the original database will
not be needed by any future process. In contrast to the semantics-destroying dimen-
sionality reduction techniques, the semantics-preserving techniques, also called
“feature selection techniques”, attempt to retain the meaning of the original feature
set. The main aim of this kind of techniques is to determine a minimal feature subset
from a problem domain while retaining a suitably high accuracy in representing the
original features [23]. In this work, we mainly focus on the use of a feature selec-
tion technique, instead of a feature extraction technique, as it is crucial to preserve
the semantics of the features in the URL data that we dispose at hand, and among
them, select the most important/informative ones which nearly preserve the same
performance as the initial feature set.

Yet it is important to mention that most feature selection techniques proposed
in the literature suffer from some limitations. Most of these techniques involve the
user for the task of the algorithms parameterization and this is seen as a significant
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drawback. Some feature selectors require noise levels to be specified by the user
beforehand, some simply rank features leaving the user to choose their own subset.
There are those that require the user to state how many features are to be chosen, or
they must supply a threshold that determines when the algorithm should terminate.
All of these require the user to make a decision based on its own (possibly faulty)
judgment [17]. To overcome the shortcomings of the existing methods, it would
be interesting to look for a method that does not require any external or additional
information to function appropriately. Rough Set Theory (RST) [31], which will be
deeply explained in Sect. 4, can be used as such tool.

As previously stated and apart from applying a data pre-processing process, we
aim to apply balancing techniques, depending on the distribution of patterns per
class, in order to ensure the fairness of our results. This is due to the fact that using
“real data”® may yield to highly unbalanced data sets [5]. This is our case, as the log
file includes a set of URL accesses performed by humans, and indeed we obtained an
unbalanced dataset. In order to deal with this kind of data there exist several methods
in literature known as balancing techniques [5]. These methods can be categorized
into three main groups [16]:

o Undersampling the over-sized classes: This category aims at reducing the consid-
ered number of patterns for the classes with the majority.

o Oversampling the small classes: This category aims at introducing additional (nor-
mally synthetic) patterns in the classes with the minority.

o Modifying the cost associated to misclassifying the positive and the negative class:
This category aims at compensating the unbalance in the ratio of the two classes.
For example, if the imbalance ratio is 1:10 in favour of the negative class, the
penalty of misclassifying a positive example should be 10 times greater.

Techniques belonging to the first group have been applied to some works, fol-
lowing a random undersampling approach [14]. However, those techniques have the
problem of the loss of valuable information.

Techniques belonging to the second group have been so far the most widely used,
following different approaches, such as SMOTE (Synthetic Minority Oversampling
Technique) which is a method proposed in [4] for creating ‘artificial’ samples for the
minority class in order to balance the amount of them, with respect to the amount of
samples in the majority class. However this technique is based on numerical compu-
tations, considering different distance measures, in order to generate useful patterns
(i.e., realistic or similar to the existing ones).

The third group implies using a method in which a cost can be associated to the
classifier accuracy at every step. This was done for instance in [1], where a Genetic
Programming (GP) approach was used in which the fitness function was modified
in order to consider a penalty when the classifier makes a false negative (an element
from the minority class was classified as belonging to the majority class). However
almost all the approaches deal with numerical (real, integer) data.

3Data which was gathered from the real world, and was not artificially generated.
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For our purposes, we will focus on techniques of the first and second group, as
we will use state-of-the-art classifiers. Details about the balancing techniques used
in our work will be explained in Sect. 5.2.

2.2 Related Work and Contribution

The works that we are interested in are those which scope is related with the users’
information and behaviour, and the management (and adaptation) of Information or
Corporate Security Policies (ISPs).

In this line, in [13] a combined biometrics signals with ML methods in order
to get a reliable user authentication in a computer system was proposed. In [20] a
method was presented named user-controllable policy learning in which the user
gives feedback to the system every time that a security policy is applied, so these
policies can be refined according to that feedback to be more accurate with respect
to the user’s needs.

On the other hand, policies could be created for enhancing user’s privacy, as pro-
posed in [9], where a system able to infer privacy-related restrictions by means of a
ML method applied in a social network environment was defined. The idea of infer-
ring policies can be also considered after our results, given the fact that we are able to
obtain new rules from the output of the classifiers, but in the scope of the company,
and focused on ISPs.

In the same line, in [21, 22] a system was proposed which evolves a set of com-
puter security policies by means of GP, taking again into account the user’s feedback.
Furthermore, the work presented in [37] took the same approach as the latter men-
tioned work, but also bringing event correlation into it. The two latter works are
interesting in our case, though they are not focused on company ISPs; for instance,
our case with the allowed or denied HTTP requests.

Furthermore, it is worth mentioning a tool developed in [15], taking the approach
of “greylisting”, and which femporarily rejects messages that come from senders
who are not in the black list or in the white list, so that the system does not know
if it is a spam message or not. And, like in our approach, it works trying to have a
minimal impact on the users.

Finally, a system named MUSES (from Multiplatform Usable Endpoint Security
System) [29] is being developed under the European Seventh Framework programme
(FP7). This system will include event treatment on the user actions inside a company,
DM techniques for applying the set of policies from the company ISP to the actions,
allowing or denying them, CI techniques for enhancing the system performance, and
ML techniques for improving the set of rules derived from these policies, according
to user’s feedback and behaviour after the system decisions [34]. The results of this
work could be applied in this system, by changing the pre-processing step, due to
the fact that the database is different. But overall, our conclusions can be escalated
to be included in such a system.

In the next Section, we will describe the problem we aim to solve, in addition to
the data from which the data sets are composed.
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3 Problem and Data Description

The problem to solve is related with the application of corporate security policies in
order to deal with potential URL accesses inside an enterprise. To this end a dataset
of URL sessions (requests and accesses) is analysed. These data are labelled with
the corresponding permission or denial for that access, following a set of rules. The
rules themselves act as a mix between a black list and a white list. The problem is
then transformed into a classification one, in which every new URL request will be
classified, and thus, a grant or deny action will be assigned to that pattern.

The analysed data come from an access. log of the Squid proxy application
[38], in a real Spanish company. This open source tool works as a proxy, but with
the advantage of storing a cache of recent transactions so future requests may be
answered without asking the origin server again [43].

Every pattern, namely an URL request, has ten associated variables. These pat-
terns are described in Table 1 in which we have indicated the type of each variable;
either if it is numeric or nominal/categorical. The table has, however, not only ten
but eleven described variables. This is due to the fact that we decided to consider the
‘Content Type’ of the requested web page as a whole, but also its Main Content Type
(MCT) separately. By adding more information through a new feature, we intended
to see if more general rules could be obtained by the classifiers, given that there are
less possible values for an MCT than for a whole ‘Content Type’.

Table 1 Independent variables corresponding to a URL request through HTTP

Variable name Description Type Rank
http_reply_code Status of the server response Categorical | 20 values
http_method Desired action to be performed | Categorical | 6 values
duration_milliseconds |Session duration Numerical integer in
[0,357170]
content_type Media type of the entity-body Categorical | 85 values
sent to the recipient
content_type_MCT Main Content Type of the Categorical | 11 values
media type
server_or_cache_ IP address Categorical | 2343 values
address
time connection hour (in the day) Date 00:00:00 to
23:59:59
squid_hierarchy It indicates how the next-hop Categorical | 3 values
cache was selected
bytes Number of transferred bytes Numerical | integer in
during the session [0,85135242]
client_address IP address Categorical | 105 values
URL Core domain of the URL, not Categorical | 976 values

taking TLD into account
The URLs are parsed as detailed in Sect. 5.1
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The dependent variable or class is a label which inherently assigns a decision
(and so the following action) to every request. This can be: ALLOW if the access is
permitted according to the CSPs, or can be DENY, if the connection is not permitted.
These patterns are labelled using an ‘engine’ based in a set of security rules, that
specify the decision to make. This process is described in Sect. 5.1.

These data were gathered along a period of two hours, from 8.30 to 10.30 am
(30 min after the work started), monitoring the activity of all the employees in a
medium-size Spanish company (80-100 people), obtaining 100,000 patterns. We
consider this dataset as quite complete because it contains a very diverse amount of
connection patterns, going from personal to professional issues. Moreover, results
derived from the experiments and which are described in Sect. 6 show that this quan-
tity of data might be big enough, but a more accurate outcome would be given with,
for instance, a 24 h long log.

Later on, Sect. 5 will describe how the data coming from the proxy log is labelled
due to the application of the aforementioned rules, and the result will be an initial
URL dataset with 12 features. Then, at this stage and after describing the data, it
seems necessary to describe the technique that we have used for the URL data pre-
processing. Rough Set Theory for feature selection is depicted in the next Section.

4 Rough Set Based Approach for Feature Selection

As previously mentioned, it is important to perform data pre-processing on the initial
URL dataset. To do so, it seems necessary to think about a technique that can, on the
one hand, reduce data dimensionality using information contained within the dataset
and, on the other hand, be capable of preserving the meaning of the features. Rough
Set Theory (RST) [31] can be used as such a tool to discover data dependencies and
to reduce the number of attributes contained in the URL dataset using the data alone,
requiring no additional information [17]. In this Section, the basic concepts of RST
for feature selection are highlighted.

4.1 Preliminaries of Rough Set Theory

Data are represented as a table where each row represents an object and where each
column represents an attribute that can be measured for each object. Such table
is called an “Information System” (IS). Formally, an IS can be defined as a pair
IS = (U,A) where U = {x,x,,...,x,} is a non-empty, finite set of objects called
the universe and A = {a,,a,, ..., a;} is a non-empty, finite set of attributes. Each
attribute or feature a € A is associated with a set V, of its value, called the domain
of a. We may partition the attribute set A into two subsets C and D, called condition
and decision attributes, respectively [31].
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Let P C A be a subset of attributes. The indiscernibility relation, denoted by
IND(P), is an equivalence relation defined as: IND(P) = {(x,y) € UX U :Va €
P,a(x) = a(y)}, where a(x) denotes the value of feature a of object x. If (x,y) €
IND(P), x and y are said to be indiscernible with respect to P. The family of all equiv-
alence classes of IND(P) (Partition of U determined by P) is denoted by U /IND(P).
Each element in U/IND(P) is a set of indiscernible objects with respect to P. Equiv-
alence classes U/IND(C) and U/IND(D) are called condition and decision classes.

For any concept X C U and attribute subset R C A, X could be approximated by
the R-lower approximation and R-upper approximation using the knowledge of R.
The lower approximation of X is the set of objects of U that are surely in X, defined
as: R(X) = |J{E € U/IND(R) : E C X}. The upper approximation of X is the set of
objects of U that are possibly in X, defined as: I_Q(X) =|J{E€ U/INDR) : EnX #
@}. The boundary region is defined as:

BND(X) = R(X) — R(X)

If the boundary region is empty, that is, ﬁ(X) = R(X), concept X is said to be
R-definable. Otherwise X is a rough set with respect to R.

The positive region of decision classes U/IND(D) with respect to condition
attributes C is denoted by POS.(D) where:

POS.(D) = |_JR(X)

The positive region POS.(D) is a set of objects of U that can be classified with
certainty to classes U/IND(D) employing attributes of C. In other words, the positive
region POS..(D) indicates the union of all the equivalence classes defined by IND(P)
that each for sure can induce the decision class D.

4.2 Reduction Process

The aim of feature selection is to remove unnecessary features to the target concept.
It is the process of finding a smaller set of attributes, than the original one, with
the same or close classification power as the original set. Unnecessary features, in
an information system, can be classified into irrelevant features that do not affect
the target concept in any way and redundant (superfluous) features that do not add
anything new to the target concept.

RST for feature selection is based on the concept of discovering dependencies
between attributes. Intuitively, a set of attributes Q depends totally on a set of
attributes P, denoted P — (), if all attribute values from Q can be uniquely deter-
mined by values of attributes from P. In particular, if there exists a functional depen-
dency between values of Q and P, then Q depends totally on P. Dependency can be
defined in the following way: For P, Q C A, Q dependson Pinadegreek (0 < k < 1),
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denoted P —, Q,if k = yp(Q) = |POSp(Q)|/|U|; If k = 1 Q depends totally on P, if
k < 1 O depends partially (in a degree k) on P, and if k = 0 Q does not depend on P.

RST performs the reduction of attributes by comparing equivalence relations gen-
erated by sets of attributes. Attributes are removed so that the reduced set, termed
“Reduct”, provides the same quality of classification as the original. A reduct is
defined as a subset R of the conditional attribute set C such that yz(D) = y(D).
Thus, a given data set may have many attribute reduct sets. In RST, a reduct with
minimum cardinality is searched for; in other words an attempt is made to locate a
single element of the minimal reduct set. A basic way of achieving this is to gen-
erate all possible subsets and retrieve those with a maximum rough set dependency
degree. However, this is an expensive solution to the problem and is only practical for
very simple data sets. Most of the time, only one reduct is required as, typically, only
one subset of features is used to reduce a data set, so all the calculations involved
in discovering the rest are pointless. Another shortcoming of finding all possible
reducts using rough sets is to inquire about which is the best reduct for the classifi-
cation process. The solution to these issues is to apply a heuristic attribute selection
method [46].

Among the most interesting heuristic methods proposed in literature, we mention
the QuickReduct algorithm [35] presented by Algorithm 1.

Algorithm 1 The QuickReduct Algorithm

1: C: the set of all conditional features;
2: D: the set of decision features;

3 R<{}

4: do

5: T<«R

6: Vxe(C-R);

70 i ypyp (D) > 1(D);
8: T < R U {x};

9: end if

10: R«T;

11: until yz(D) == y-(D)
12: return R

The QuickReduct algorithm attempts to calculate a reduct without exhaustively
generating all possible subsets. It starts off with an empty set and adds in turn, one at
a time, those attributes that result in the greatest increase in the rough set dependency
metric. According to the QuickReduct algorithm, the dependency of each attribute is
calculated and the best candidate is chosen. This process continues until the depen-
dency of the reduct equals the consistency of the data set. For further details about
how to compute a reduct using the QuickReduct algorithm, we kindly invite the
reader to refer to [35].
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5 Followed Methodology

Before classification techniques are applied, a data pre-processing step has been per-
formed. First, the raw dataset is labelled according a set of initial corporate security
rules, i.e., every pattern is assigned to a label indication if the corresponding URL
request/access would be ALLOWED or DENIED considering these rules. This step
is necessary in order to transform the problem into a classification one. However,
in order to apply the rules they must be transformed from their initial format into
another one that can be applied in our programs, a hash or map. This is described
in Sect. 5.1. This Subsection also details how the patterns of the navigation data log
(URL sessions) are parsed, in order to build a hash to perform the matting/labelling
process.

At the end of the ‘parsing’ phase, the two hashes are compared in order to obtain
which entries of the log should be ALLOW or DENY, known as the labelling step.
This is similar to perform a decision process in a security system. This step results in
that there are 38972 pattern belonging to class ALLOW (positive class) and 18530
of class DENY (negative class), so just a 67.78 % of the samples belong to the major-
ity class. This represents a very important problem, since a classifier that is trained
considering these proportions is supposed to classify all the samples as ALLOW,
getting a theoretically quite good classification accuracy equal or greater than 68 %.
However, in Sect. 6 we will see that, despite the fact that some denied patterns are
classified as allow, the overall performance of the classifiers is better than expected.

It is worth to mention that there is not the same amount of patterns in the two
classes. This means that the dataset is unbalanced, and therefore Sect. 5.2 describes
the balancing techniques used for dealing with this situation. Finally, in Sect. 5.3 we
explain the applied methods in the pre-processing phase. What we want to prove
is that by adding this phase, it enhances the results of our previous work presented
in [28].

Based on the generated pre-processed and balanced dataset and as a final step, a
supervised classification process [25] has been conducted. For this step, Weka Data
Mining Software [42] has been used, in order to select the best set of classifiers in
order to deal with these data. These classifiers will be further tested in Sect. 6.

5.1 Building the Dataset

In previous sections, it was stated that the data to work with was not originally pre-
sented in the form of a dataset. Instead, ‘raw’ data was gathered. In order to have the
data in the form of a dataset, ready to be pre-processed, as well as being adequate to
act as an input for the classifiers, a parsing process must be performed.

First, in this work we have considered Drools [41] as the tool to create and manage
rules in a business environment. This so called Business Rule Management System
(BRMS) has been developed by the JBoss community under an Apache License
and it is written in Java. Though this platform consists of many components; here
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(@) (b)
rule "name"
) srules = (
attributes
rule =>{
when field => xxx
/* Left Side of the Rule .
Ny relation => xxx
value => xxx
then action => [allow, deny]
/* Right Side of the )  CENY
Rule */ !

end i

Fig. 1 a Structure of a rule in Drools Expert. b Resulting rule, after the parsing, in a global hash
of rules

we focus on Drools Expert and the Drools Rule Language (DRL, [40]). Then, the
defined rules for a certain company are included in a file with a . dr1 extension;
the file that needs to be parsed to obtain the final set of rules. To obtain the needed
knowledge from the rules file, it is necessary to know the format of this type of
language, because it is essential for the parsing process.

In Fig. 1a, we display the typical rule syntax in DRL. Two main parts should be
obtained from the parsing method that will be applied: both left and right sides of the
rule, taking into account that the left side is where the company specifies the condi-
tions required to apply the action indicated in the right side. Also, for describing the
conditions, Squid syntax is used (see Sect. 3), having thus the following structure:
squid: Squid (conditions) . Finally, from the right side of the rule, the ALLOW
or DENY label to apply on the data which matches with the conditions, will be
extracted. The parser that we have implemented applies two regular expressions,
one for each side of the rule, and returns a hash with all the rules with the conditions
and actions defined. The ‘before and after’ performing the parsing over the .dr1l
file is presented in Fig. 1.

Then, the log file is analysed. Usually, the instances of a log file have a number of
fields (which will be later referred as features/attributes of a connection pattern), in
order to have a registration of the client who asks for a resource, the time of the day
when the request is made, and so on. In this case, we have worked with an access.log
(see Sect. 3) file, converted into a CSV format file so it could be parsed and trans-
formed in another hash of data. All ten fields of the Squid log yield a hash like the
one depicted in Fig. 2. Once the two hashes of data were created, they were com-
pared in such a way that for each rule in the hash of rules, it was determined how
many entries in the data log hash are covered by the rule, and so they were applied
the label that appears as ‘action’ in the rule.

Among the tasks to be performed, is the one to extract from a whole URL the
part that was more interesting for our defined purposes. It is important to point
out that in a log with thousands of entries, an enormous variety of URLs can be
found, since some can belong to advertisements, images, videos, or even some oth-
ers does not have a domain name but are given directly by an IP address. For this
reason, we have taken into account that for a domain name, many subdomains (sepa-
rated by dots) could be considered, and their hierarchy grows from the right towards
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Fig. 2 Hash in Perl with an $logdata = (

example entry. The actual entry =>{

hash used for this work has a http_reply_code => xxx
total of 100,000 entries, with httpmethod => xxx
more than a half labelled as

durationmiliseconds => xxx
content_type_MCT => XxXx
content_type => Xxx

ALLOW or DENY after the
comparing process

server_or_cache_address => xxx
time => xxx
squid-hierarchy => xxx
bytes => xxx
url => xxx
client_address => xxx
b
)i

the left. The highest level of the domain name space is the Top-Level Domain
(TLD) at the right-most part of the domain name, divided itself in country code
TLDs and generic TLDs. Then, a domain and a number of subdomains follow the
TLD (again, from right to left). In this way, the URLSs in the used log are such as
http://subdomain...subdomain.domain. TLD/ other_subdirectories. However, for the
ARFF* file to be created, only the domain (without the subdomains and the TLD)
should be considered, because there are too many different URLs to take into con-
sideration. Hence, applying another regular expression, the data parser obtains all
the core domains of the URLSs, which makes 976 domains in total.

5.2 Balancing the Dataset

While analysing the data, we observed that more than half of the initial amount of
patterns are labelled, and that the ratio is 2:1 in allows to denies. The 2:1 ratio means
that the data is unbalanced, and therefore we have performed different approaches
from the first and second groups of data balancing techniques, which were introduced
in Sect. 2.1:

o Undersampling: we will randomly remove samples of the majority class until the
amount in both classes are similar. In other words, we will reduce the amount of
‘denied’ patterns by a half.

e Oversampling: we will introduce more samples in the minority class, in order
to get a closer number of patterns in both classes. This has to be done due to
the impossibility of creating synthetic data when dealing with categorical values,
given that there is not a proper distance measure between two values in a category.
Actually, since the number of samples in the majority class is almost twice the
minority one, we have just duplicated all of those belonging to the minority class.

4Format of Weka files.
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5.3 Pre-processing the Data

Section 2.1 explains that having a good quality database is crucial when good accu-
racy values are required. For this reason, we have maintained the dataset by per-
forming a removal of patterns in the log which we found as redundant and applied a
feature selection technique, based on Rough Sets.

5.3.1 Erasing Redundant Information

The first thing to do is studying the data in order to look for the patterns that are
repeated. Hence, after having analysed the log of connecting patterns, we stud-
ied the field squid_hierarchy and saw that had two possible values: DIRECT or
DEFAULT_PARENT. The Squid FAQ reference [39], and the Squid wiki [44] explain
that, as a proxy, the connections are made, firstly to the Squid proxy, and then, if
appropriate, the request continues to another server. These connections are regis-
tered in Squid in the same way, with the same fields, with the exception of the client
and server IP addresses. From the point of view of classification, if one of these two
entries happens to be in the training file, and the other in the testing file, it would
mean that the second would be correctly classified because of all the attribute values
that both have in common. However, this also means that the good percentages that
we obtained may not be real, but biased. That is why the second step is about remov-
ing entries that we called “repeated” (in the explained sense). This step is performed
over the original, unbalanced, dataset. After the removal, a new file was created.

5.3.2 Performing Feature Selection

For pattern classification, our learning problem has to select high discriminating
features from the input database which corresponds to the URL information dataset.
To perform this task, we apply rough set theory.

Technically, we may formalize our problem as an information system where uni-
verse U = {x},x,, ..., Xy} is a set of pattern identifiers, the conditional attribute set
C = {c;,¢,, ..., cy} contains each feature of the information table to select and the
decision attribute D of our learning problem corresponds to the class label of each
pattern. The input database has a single binary decision attribute. Hence, the deci-
sion attribute D has binary values d: either the HTTP request is allowed or denied.
The condition attribute feature D is defined as follows:

D = {Allow, Deny}
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For feature selection, we apply the rough QuickReduct algorithm which was pre-
viously explained in Sect.4.2. First of all, the dependency of the entire database
7c(D) is calculated. To do so, the algorithm has to calculate the positive region for
the whole attribute set C: POS-(D). Once the consistency of the database is mea-
sured, the feature selection process starts off with an empty set and moves to cal-
culate the dependency of each attribute ¢ apart: y.(D). The attribute ¢ having the
greatest value of dependency is added to the empty set. Once the first attribute c is
selected, the algorithm adds, in turn, one attribute to the selected first attribute and
computes the dependency of each obtained attributes couple y,. ., (D). The algorithm
chooses the couple having the greatest dependency degree. The process of adding
each time one attribute to the subset of the selected features continues until the depen-
dency of the obtained subset equals the consistency of the entire database already
calculated; i.e., y-(D).

From the initial dataset containing 12 features and after applying the rough feature
selection technique, we obtained a list of 9 features. The features kept after the feature
selection process are the following:

« http_reply_code

e duration_miliseconds

e content_type

e server_or_cache_address
o time

« bytes

e url

o client_address

On the contrary, the following features were erased by applying Rough Set for
feature selection:

« http_method
« content_type_ MCT
« squid_hierarchy

In Sect. 6.2, we will show that by applying rough set theory for selecting the most
important features is a good way of maintaining the good quality of the database,
and the system performance will improve significantly.

5.4 Classification Methods

The choice of the classifiers to apply and would be admitted before we make a test
selection phase — known as a ‘pre-selection phase’ — is based on two main require-
ments. First and as our goal consists of obtaining a set of rules able to classify
unknown URL connection requests, we need classifiers based on decision trees or
rules, so that we can study their output in addition to their accuracy. Second and as
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mentioned in Sect. 3, the features of the data used for this work are mainly categori-
cal, but also numerical. Thus, among the classifiers based on trees or rules, we need
classifiers that are able to handle these types of features. Consequently, we made a
first selection over all the classifiers in Weka which complied with these require-
ments.

Yet, it is important to mention that previously in [28], we studied a set of classifiers
that may be applied to the nature of our dataset; classifiers that fit our requirements.
The selected classifiers are indeed based on the obtained good classification accu-
racy. In fact, we demonstrated that the classifiers that lead to better classification
results were:

J48 This classifier generates a pruned or unpruned C4.5 decision tree. Described
for the first time in 1993 by [33], this machine learning method builds a decision
tree selecting, for each node, the best attribute for splitting and create the next
nodes. An attribute is selected as ‘the best’ by evaluating the difference in entropy
(information gain) resulting from choosing that attribute for splitting the data. In
this way, the tree continues to grow till there are not attributes anymore for further
splitting, meaning that the resulting nodes are instances of single classes.

Random Forest This manner of building a decision tree can be seen as a random-
ization of the previous C4.5 process. It was stated by [2] and consist of, instead
of choosing ‘the best’ attribute, the algorithm randomly chooses one between a
group of attributes from the top ones. The size of this group is customizable in
Weka.

REP Tree Is another kind of decision tree, it means Reduced Error Pruning Tree.
Originally stated by [32], this method builds a decision tree using information
gain, like C4.5, and then prunes it using reduced-error pruning. That means that
the training dataset is divided into two parts: one devoted to make the tree grow
and another for pruning. For every subtree (not a class/leaf) in the tree, it is
replaced by the best possible leaf in the pruning three and then it is tested with
the test dataset if the made prune has improved the results. A deep analysis about
this technique and its variants can be found in [10].

NNge Nearest-Neighbor machine learning method of generating rules using non-
nested generalised exemplars, i.e., the so called ‘hyperrectangles’ for being mul-
tidimensional rectangular regions of attribute space [26]. The NNge algorithm
builds a ruleset from the creation of this hyperrectangles. They are non-nested
(overlapping is not permitted), which means that the algorithm checks, when a
proposed new hyperrectangle created from a new generalisation, if it has con-
flicts with any region of the attribute space. This is done in order to avoid that an
example is covered by more than one rule (two or more).

PART It comes from ‘partial’ decision trees, for it builds its rule set from them [11].
The way of generating a partial decision tree is a combination of the two afore-
mentioned strategies “divide-and-conquer” and ““separate-and-conquer”, gaining
then flexibility and speed. When a tree begins to grow, the node with lowest infor-
mation gain is the chosen one for starting to expand. When a subtree is complete
(it has reached its leaves), its substitution by a single leaf is considered. At the
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end the algorithm obtains a partial decision tree instead of a fully explored one,
because the leafs with largest coverage become rules and some subtrees are thus
discarded.

These methods will be deeply tested on the dataset (balanced and unbalanced) in
the following section.

6 Results

This section presents the obtained results for the different configurations of the exper-
imental setup. First, Sect. 6.1 depicts the first results, summarising what was proved
in [28]. This means that, for the chosen classifiers, described in Sect. 5.4, results
are displayed for the dataset when it is in its initial—unbalanced—form, as well as
after the balancing process. At the end of this Subsection, we introduce the results
obtained once the dataset is released from the redundant patterns. Then, Sect. 6.2
presented the results obtained when applying rough set theory as a feature selection
technique to the balanced generated dataset. This subsection justifies that the use
of rough sets enhances the system performance in terms of both execution/running
time and classification accuracy. Finally, examples of the obtained rules which were
taken from the classifiers’ output, are discussed in Sect. 6.3.

6.1 Results About Classification

Several experiments have been conducted, once a subset of classification methods
has been chosen (see Sect.5.4). In order to better test the methods, two different
divisions (training-test) have been done; namely 90-10 % and 80-20 %. Also, it is
worth mentioning that we have included Naive Bayes in the result tables, as it is
normally used as a reference classifier in classification problems [12].

Moreover, the way in which those divisions were built has been considered as:
randomly built, or sequentially built. We say that the training and test files were ran-
domly built when the patterns are taken from the original dataset and, by generating
a random number, they have a certain probability to belong to the training file, and
another to belong to the test file. On the contrary, the training and test files are built
sequentially when the patterns inside them strictly follow the same order in time as
the original dataset, before being divided. The aim of the sequential division is to
compare if the online activity of the employees, considering URL sessions, could be
somehow “predicted”, just using data from previous minutes or hours. In the case of
the random distribution of patterns, we have done three different pairs of training-
test files. These files have been built considering that similar patterns (in the whole
dataset) are placed in the same file, in order to avoid biasing the classification.
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Table 2 Percentage of correctly classified patterns for the unbalanced dataset with 12 features

80 % Training—20 % Test 90 % Training—10 % Test
Random (mean) | Sequential Random (mean) | Sequential

Naive Bayes 91.60 + 1.25 85.53 92.89 +0.12 83.84
J48 97.56 + 0.20 88.48 97.70 £ 0.15 82.28
Random Forest | 97.68 + 0.20 89.77 97.63 +0.13 82.59
REP Tree 9747 £0.11 88.34 97.57 +0.01 83.20
NNge 97.23 +£0.10 84.41 97.38 + 0.36 80.34
PART 97.06 + 0.19 89.11 97.40 £0.16 84.17

As stated in Sect. 5.2, the dataset presents unbalance in the data due to the fact
that there are more patterns classified as ‘allow’ than ‘deny’. Therefore, two data
balancing methods have been applied to all the files to get similar pattern amounts
in both classes: undersampling (random removal of ALLOW patterns) and oversam-
pling (duplication of DENY patterns).

Classification results for the unbalanced data are presented in Table 2. Mean and
standard deviation are shown for the three different tests done in the random pattern
distribution approach.

As it can be seen from Table 2, all five classifiers achieved a high performance
classifying in the right way the test dataset. Also, having low values of standard
deviation means that the obtained accuracies are stable; and this can be seen from
the obtained results as well.

For a 80-20 % division, results based on the sequential data have lower values than
those obtained from the random data, but still they are considered as good (> 85 %).
This is due to the occurrence of new patterns from a certain time. Some requests may
happen just at one specific time of the day, or in settled days. Then, the classifier may
not find enough similarity in the patterns to correctly classify the entries in the test
file. On the other hand, the loss of 5 to 6 points in the results of the 90-10 % division
is somehow expected as it reinforces the previous mentioned hypothesis.

The classifier that lightly stands out over the others is Random Forest, being the
best in almost every case for randomly made divisions, and it also has good results
for sequentially made divisions. However, if we focus on the standard deviation, REP
Tree is the chosen one, as its results present robustness.

Once balancing is performed, resulting datasets were used as inputs for the same
classifiers, and results are shown in Tables 3 and 4. Table 3 shows the classifiers’
accuracy for the balanced dataset with 12 features, applying undersampling tech-
nique, and Table 4, with the application of oversampling technique. For each one,
the 90-10 % and 80-20 % divisions were also made.

Applying Undersampling In comparison with those results from Table 2, these go
down one point (in the case of randomly made divisions) to six points (sequen-
tial divisions). The reason why this happens is that when randomly removing
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Table3 Percentage of correctly classified patterns for the balanced dataset with 12 features, apply-

ing undersampling technique
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80 % Training—20 % Test 90 % Training—10 % Test
Random (mean) | Sequential Random (mean) | Sequential

Naive Bayes 91.30 £ 0.20 84.94 91.74 £ 0.13 85.43
J48 97.05 + 0.25 84.29 96.85 + 0.35 76.44
Random Forest | 96.61 +0.17 88.59 96.99 +0.13 79.98
REP Tree 96.52 +0.13 85.54 96.55 +0.10 77.65
NNge 96.56 + 0.42 85.28 96.33 + 0.05 81.93
PART 96.19 + 0.14 85.16 96.09 + 0.10 79.70

Table4 Percentage of correctly classified patterns for the balanced dataset with 12 features, apply-

ing oversampling technique

80 % Training—20 % Test 90 % Training—10 % Test
Random (mean) | Sequential Random (mean) | Sequential

Naive Bayes 91.18 £ 0.16 82.35 91.77 £ 0.28 81.81
J48 97.40 + 0.03 85.66 97.37 + 0.06 74.24
Random Forest | 97.16 +0.19 89.03 97.25 +0.33 81.33
REP Tree 97.13 £ 0.25 85.41 97.14 + 0.09 76.81
NNge 96.90 + 0.28 83.46 96.91 + 0.06 78.73
PART 96.82 + 0.09 84.50 96.68 +0.11 78.16

ALLOW patterns, we really are losing information, i.e., key patterns that could
be decisive in a good classification of a certain set of test patterns.

Applying Oversampling Here we have duplicated the DENY patterns so their num-
ber could be up to that of the ALLOW patterns. However, it does not work as
well as in other approaches which uses numerical computations for creating the
new patterns to include in the minority class. Consequently, the results have been
decreased.

In both cases, it is noticeable that if we take the data in a sequential way, instead
of randomly, results will decrease. Also, it is clear that due to the fact that perform-
ing undersampling some patterns are lost while in the case of oversampling they all
remain, and this leads to have better results with the oversampling balancing tech-
nique. Then, in this case the algorithm with best performance is J48, though Random
Forest follows its results very closely in random datasets processing, and REP Tree,
which is better than the rest when working with sequential data. Nevertheless, gen-
erally speaking and given the aforementioned reasons, performing data balancing
methods decreases the results.

Once this first study is finished, the next step is to erase the duplicated requests.
And then, we test the obtained reduced dataset to see if it has some influence on
the results. As it seems that the best results are obtained for an unbalanced dataset,
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Table5 Percentage of correctly classified patterns for unbalanced data, after the removal of entries
that could lead to misclassification

80 % Training—20 % Test 90 % Training—10 % Test
Random (mean) | Sequential Random (mean) | Sequential

Naive Bayes 93.01 +£0.32 82.61 93.09 +£ 0.91 83.04
Random Forest | 96.97 + 0.47 91.03 96.79 + 0.97 80.60
1438 96.90 + 0.26 87.78 96.50 + 1.00 84.49
NNge 96.21 + 0.28 81.17 96.11 £ 1.13 81.92
REP Tree 96.97 + 0.40 87.75 96.62 + 0.87 85.57
PART 96.84 + 0.18 86.68 96.55 + 0.87 83.61

and also for a training-test random division, we choose this configuration for the
following experiments.

The results are displayed in Table 5. We can see that the results slightly decrease
in comparison to the ones obtained originally, but they are still good, and definitely
better than Naive Bayes.

The way it happened for the original datasets, results for files with the patterns
taken consecutively lower significantly. And as previously explained, this happens
due to the possible loss of information. Best results are obtained by both Random
Forest and REP Tree classifiers, with a 96 % of accuracy.

First, we concluded that not balancing the dataset was better for obtaining good
results, also that taking the samples randomly instead of a sequential way is more
adequate. Finally, we noticed that we have successfully reduced the dataset and did
not lose good accuracies. For this reason, the dataset with the redundant patterns
erased is the chosen one to perform the feature selection. Results are described in
next subsection.

6.2 Results About Feature Selection

In this section, our aim is to prove two hypotheses. First, we want to prove that
applying rough set theory for feature selection reduces the running time when testing
the classifiers. Second and based on the reduced feature set of data, we want to prove
that the accuracies remain the same, or even improve in comparison to the original
set of features.

The resulting reduced dataset, from the previous subsection, was used to test the
same chosen classifiers, plus JRip. This is a classifier which consists of a propo-
sitional rule learner, the so-called Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) algorithm. It was proposed in [8] as an improved version of
the Incremental Reduced Error Pruning (IREP) algorithm. The reason why this JRip
classifier was added to the list, is because we cannot compare the size of the trees
for the Random Forest classifier, as the size of the forest is chosen when running it.
Then, we added JRip for making the comparison more complete.
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All the experiments were made with the same computer, in the following con-
ditions: Toshiba Laptop with Inte]™Core i7-3630QM, CPU@2.40 GHzXx §; RAM
3.8 GB; operating system 64 bit Ubuntu Linux 14.04 LTS; and Weka version 3.6.10,
with 3 GB assigned for memory usage. Table 6 shows the results of the compari-
son between performance before and after applying feature selection. Though the
complexity of the trees generated by the classifiers grows after applying fea ture
selection, even obtaining more rules for PART classifiers, the running time lowers
by an average of 40 %.

Now, if we focus on the results of the accuracies which are summarised in Table 7,
we notice that the classification accuracies are nearly the same. This comparison was
made in the same conditions which are unbalanced datasets, and with a 10 fold cross-
validation technique for training-test.

Moreover, results in Table 8 show the same behaviour as for previous experi-
ments. Results from this table are compared to those obtained from Table 2. This is
because both tables are sharing nearly the same conditions, except that each one has
a specific number of features.

We can see that, for example, for a division of 80 % training—20 % test, the results
after feature selection are better for the Random Forest and PART classifiers. Only

Table 6 Comparison between rule/tree complexity and running times (in seconds) for the initial
data set, which had 12 features, and the resulting one, having 9 features, after applying Rough Set
Theory for feature selection

12 features 9 features
J48 Size of the tree 8113, 1.7 + 0.41 (s) Size of the tree 10191, 1.17 + 0.17 (s)
Random Forest | 10 trees, 3.32 + 0.61 (s) 10 trees, 2.28 + 0.19 (s)
REP Tree Size of the tree 8317, 1.40 = 0.31 (s) | Size of the tree 8817, 0.87 + 0.10 (s)
NNge 1341 exemplars, 66.65 + 4.04 (s) 1294 exemplars, 64.18 + 3.76 (s)
PART 966 rules, 40.28 + 2.12 (s) 998 rules, 37.34 + 1.67 (s)
JRip 87 rules, 164.99 + 72.29 (s) 64 rules, 115.48 + 60.88 (s)

Table7 Comparison between the obtained accuracies for the initial data set, which had 12 features,
and the resulting one, having 9 features, after applying Rough Set Theory for feature selection

12 features 9 features
Naive Bayes 92.30 +0.15 92.19 + 0.09
J48 97.37 +£0.29 97.36 + 0.30
Random Forest 97.61 +0.24 97.62 + 0.25
REP Tree 97.34 + 0.25 97.35 +0.25
NNge 97.15 +£0.25 97.13 +£0.25
PART 97.34 +0.26 97.26 + 0.25
JRip 92.84 + 091 91.97 +1.25
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Table 8 Percentage of correctly classified patterns for the unbalanced dataset with 9 features

80 % Training—20 % Test 90 % Training—10 % Test

Random (mean) | Sequential Random (mean) | Sequential
J48 97.10 £ 0.23 87.83 97.33 + 0.80 84.51
Random Forest | 97.61 + 0.49 88.06 97.76 + 0.83 83.71
REP Tree 97.17 £ 0.15 87.79 97.39 + 0.58 85.73
NNge 96.63 + 0.50 82.18 9727 +1.12 80.94
PART 97.24 +£0.12 87.88 97.29 + 0.86 85.11

NNge seems to generate lower classification results, but still considered as interesting
as it is higher than 96 %.

Finally, we have proved our first hypothesis: applying Rough Set Theory for fea-
ture selection significantly improves the computational cost of the system. Also, we
proved that our second hypothesis is also true, because the obtained accuracies after
applying rough set theory for feature selection are the same, even slightly better, than
the ones obtained before the pre-processing phase.

6.3 Discussion About the Obtained Rules

One of the main objectives of this chapter is to find a method (classifier) that can
build rules not dependent on the URL, in order to get a behaviour quite different
from the classical black and white lists. Thus, it could made a decision about new
connection requests based on other, more general, features.

In the performed experiments, the majority of the obtained rules/trees are based
on the URL in order to discriminate between the two classes. However, we also found
several ones which consider other variables/features rather than the URL itself to
make the decision. For instance:

IF server_or_cache_address = "173.194.34.225"
AND http_method = "GET"

AND duration_milliseconds > 52

THEN ALLOW

IF server_or_cache_address = "173.194.78.103"
THEN ALLOW

IF content_type = "application/octet-stream"
AND server_or_cache_address = 192.168.4.4
AND client_address = 10.159.86.22

THEN ALLOW
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IF server_or_cache_address = "173.194.78.94"
AND content_type MCT = "text"

AND content_type = "text/html"

AND http_reply_code = "200"

AND bytes > 772

THEN ALLOW

In their presented format, these rules are considered adequate to fulfill our pur-
poses, since they are somehow independent of the URL to which the client requests to
access. Thus, it would be potentially possible to allow or deny the access to unknown
URLS just taking into account some parameters of the request.

When the features considered in the rule can be known in advance, such as
http_method, or server_or_cache_address, for instance, the decision
could be made in real-time, and thus, a granted URL (whitelisted) could be DENIED,
or the other way round.

Tree-based classifiers also yield to several useful branches in this sense, but they
have not been plotted here because of the difficulty for showing/visualizing them
properly.

Focusing on the presented rules, it can be noticed that almost all of them
also depend on very determining features/values, such as server_or_cache_
address, or even on the client_address, what we have called ‘critical fea-
tures’. These features create several non-useful rules, mainly in the case of the client
IP address, because it will not be correct to settle that a specific IP can or cannot
access to some URLs.

Thus, we have conducted two additional experiments in this line by removing,
first, the url feature in a new dataset, and second, erasing the three critical features:
url, server_or_cache_address and client_address from the dataset.
Then we have trained again the classifiers. These experiments have been performed
over the unbalanced data, considering a 10-fold cross validation test.

The results of classification accuracies in each of the two tests are shown in
Table 9.

As expected, and as it can be seen in Table 9, the percentages of accuracy have
been decreased. Results are more influenced and decrease in the case where three
features have been discarded. However, the results are still quite good, having in
mind that the remaining features are more general than those removed.

Table 9 Percentage of correctly classified patterns for the unbalanced dataset without the set of
critical features, namely URL, server_or_cache_address, and client_address

Without URL feature Without URL and IP addresses features

148 93.62 90.53
Random Forest | 94.42 91.75
REP Tree 92.58 89.61
PART 93.40 88.25

JRip 87.45 85.60
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In addition, it is worth to analyse the set of rules that the classifiers> have generated
as models. Thus, having a look at these other rules, in the case without url (i.e., 11
features), the rules are pretty similar to those presented before. Thus, we can find,
among the most important rules (in the sense that the classification accuracy depends
in a big part on them) the following ones:

IF bytes >= 1075
AND time >= 29633000
AND time <= 30031000

AND client_address = "10.159.52.182"

AND content_type_MCT = "image"

AND content_type = image/jpeg

THEN DENY

IF server_or_cache_address = "173.194.66.121"
AND client_address = "192.168.4.4"

AND time <= 33603000
THEN ALLOW

IF client_address = "10.159.188.11"
AND bytes <= 2166
AND content_type_MCT = "text"

THEN ALLOW

These rules, actually most of them in the generated model, still depend on the rest
of critical features (server and client IP addresses). Due to this reason, we conducted
the second experiment omitting these variables. In this case the generated rules by
all the classifiers are closer to what we aimed to obtain. Some examples of relevant
rules (those with high influence in the obtained accuracy) are the following:

IF http_reply _code = "200"

AND content_type = "application/json"
AND time <= 33635000

AND bytes <= 3921

THEN ALLOW

IF content_type = "text/plain"

AND duration_milliseconds >= 7233.5

THEN DENY

IF content_type = "application/octet-stream"

AND bytes <= 803
THEN ALLOW

3Trees can be deployed as rules.
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IF bytes <= 1220

AND time <= 33841000

AND http_reply_code = "404"

AND squid_hierarchy = DEFAULT_PARENT
AND duration_milliseconds <= 233

AND bytes <= 722

THEN ALLOW

As it can be seen these are more general rules which could be much more useful
for classifying new, previously unknown, URL access requests in a company. These
rules could be taken as a reference to build a decision system. However, there are still
some considerations that should be taken into account since all the rules have been
created using a very specific data. Thus, there are several rules that cannot be used
as they are specific for some other companies, and should be supervised somehow
(maybe by an expert).

Moreover, some of these features depend on the session itself, i.e., they will be
computed after the session is over, but the idea in that case would be ‘to refine’
somehow the existing set of URLs in the white list. Thus, when a client requests
access to a whitelisted URL, this will be allowed, but after the session is over and
depending on the obtained values, one of these classifiers could label the URL as
DENIED for further requests. This could be a useful decision-aid tool for the Chief
Security Officer (CSO) inside a company, for instance.

7 Conclusions and Future Work

In this paper various classification methods have been applied in order to perform a
decision process inside a company, according to some predefined corporate security
policies. This decision is focused on allowing or denying URL access requests by
considering previous decisions on similar requests, and not having specific rules in
an already defined white/black list for those URLs. Thus, the proposed method would
allow or deny an access to a URL based on additional features rather than the specific
URL string, only. This could be very useful since new URLSs could be automatically
"whitelisted” or "blacklisted’ depending on some of the connection parameters, such
asthe content_type of the access or the TP of the client which makes the request.

To this aim, we have started from a big dataset (100,000 patterns) with employees’
URL requests information, and by considering a set of URL access permissions, we
have composed a labelled dataset (57,000 patterns). Over that set of data, we have
tested several classification methods, after some data balancing techniques have been
applied. Then, the best five classifiers have been deeply proved over several training
and test divisions, and with two methods: by leaving the order in time when the URL
were requested, and by taking them in a random way.
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The results show that classification accuracies are between 95 and 97 %, even
when using the unbalanced datasets. However, they have been diminished because
of the possible loss of data that comes from performing an undersampling (removing
patterns) method; or taking the training and the datasets in a sequential way from the
main log file, due to the fact that certain URL requests can be made only at a certain
time.

After that, we have shown that maintaining the dataset is crucial in order to
improve the performance of the system, mainly, in terms of classification accuracy.
We have shown that by erasing the duplicated data, the accuracies remain inside the
range of 96-97 %, which means that indeed there was redundant information in the
dataset.

The resulting dataset was the one over which we have performed feature selec-
tion by means of rough sets, and we have proved that by selecting the most interest-
ing features we could improve the classification accuracy of the system while being
lightweight in terms of running time. In this way, we can conclude that our proposed
approach has been successful and it would be a useful tool in an enterprise.

Future lines of work include conducting a deeper set of experiments trying to test
the generalisation power of the method, maybe by considering bigger data divisions,
bigger data sets (from a whole day, or a week), or by adding some kind of ‘noise’
to the dataset. Moreover, considering the good classification results obtained in this
work, the next step could be the application of our methodology in the real system
from which data was gathered, counting with the opinion of expert CSOs, in order
to know the real value of the proposal.

The study of other classification methods could be another research branch, along
with the implementation of a Genetic Programming approach, which could deal with
the unbalance problem. This can be done by using a modification of the cost associ-
ated to misclassifying patterns as done in [1].

Finally, we also aim at extracting additional information from the URL string.
This information could be transformed into additional features that could be more
discriminative than the current set of obtained rules. Moreover, a data process involv-
ing grouping data into sessions (such as number of requests per client, or average time
connection) will be also considered.
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A Granular Intrusion Detection System
Using Rough Cognitive Networks

Gonzalo Napoles, Isel Grau, Rafael Falcon, Rafael Bello
and Koen Vanhoof

Abstract Security in computer networks is an active research field since traditional
approaches (e.g., access control, encryption, firewalls, etc.) are unable to completely
protect networks from attacks and malwares. That is why Intrusion Detection Sys-
tems (IDS) have become an essential component of security infrastructure to detect
these threats before they inflict widespread damage. Concisely, network intrusion
detection is essentially a pattern recognition problem in which network traffic pat-
terns are classified as either normal or abnormal. Several Computational Intelligence
(CI) methods have been proposed to solve this challenging problem, including fuzzy
sets, swarm intelligence, artificial neural networks and evolutionary computation.
Despite the relative success of such methods, the complexity of the classification
task associated with intrusion detection demands more effective models. On the other
hand, there are scenarios where identifying abnormal patterns could be a challenge
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as the collected data is still permeated with uncertainty. In this chapter, we tackle the
network intrusion detection problem from a classification angle by using a recently
proposed granular model named Rough Cognitive Networks (RCN). An RCN is a
fuzzy cognitive map that leans upon rough set theory to define its topological con-
structs. An optimization-based learning mechanism for RCNs is also introduced.
The empirical evidence indicates that the RCN is a suitable approach for detecting
abnormal traffic patterns in computer networks.

Keywords Intrusion detection system < Computational intelligence * Granular
computing * Rough set theory * Fuzzy cognitive maps * Rough cognitive networks *
Harmony search

1 Introduction

The 21st century has brought forth a digital age in which we are all immersed.
Up-and-coming information communication and processing paradigms such as the
Internet of Things (IoT) [4], Cloud Computing [47], Software-Defined Networks
[32] and Wearable Computing [25] are increasingly gaining momentum and rapidly
permeating every facet of mankind. These new architectural frameworks bring a
unique set of challenges with them, among which cybersecurity is one of para-
mount importance. The computer systems that constitute the backbone of critical
infrastructure behind a plethora of industrial and societal processes often become
prey to sophisticated malicious attacks that originate at any node in the entangled
World Wide Web. As a result, governments and businesses are adapting their leg-
islative bodies to account for the prevention, detection and mitigation of the risks
and threats associated with these potentially devastating attacks [39].

Intrusion Detection Systems (IDS) [43] have become an essential component of
security infrastructure to detect these threats before they inflict widespread dam-
age, since traditional approaches (e.g., access control, encryption, firewalls, etc.) are
unable to completely protect networks from attacks and malwares. The purpose of an
IDS is to analyze the network traffic, either the incoming one or existing logs of past
traffic activities, and identify anomalous behaviours that could reasonably be taken
as cues of the presence of an intruder in the system. Concisely described, network
intrusion detection is essentially a pattern recognition problem in which network
traffic patterns are classified as either normal or abnormal.

Although traditional statistical techniques have enjoyed success in analyzing traf-
fic flows as part of an IDS operation, the network security research community is
increasingly leaning on Computational Intelligence (CI) solutions due to their ability
to adapt to complex environments, handle noise and uncertainty and remain compu-
tationally tractable and robust.

More recently, the advent of Granular Computing (GrC) [6, 26, 52] as an innov-
ative information representation and processing framework has largely influenced
the way CI systems are being conceived nowadays. This is due to the fact that
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GrC provides reasoning constructs at higher levels of abstraction that better capture
human understanding of the real world. From classification [55] to clustering [51],
time-series prediction [72] and decision making [50], granular models are becom-
ing prominent tools for the analysis of large volumes of data as they operate upon
information granules (i.e., constructs of order higher than plain numeric or symbolic
atoms) and can better represent and manifest the dynamics of human-centric world
modeling.

In this chapter, we tackle network intrusion detection via a GrC model and demon-
strate its advantages over several traditional classification schemes. Our study makes
the following contributions: (1) we model network intrusion detection as a classifi-
cation problem and apply a recently introduced granular model, named “Rough Cog-
nitive Network”(RCN)), to the analysis of archived traffic data in computer networks
for intrusion detection purposes; (2) we put forth a learning mechanism for RCNs
that is based on self-adaptive Harmony Search [44]; (3) we empirically evaluate the
RCN performance in conjunction with that of seven well-established classifiers in
the literature. The experimental evidence confirms that RCNs are a plausible model
to discriminate between normal and abnormal traffic patterns in network data as it
attains high detection rates (i.e., successfully identified abnormalities) and low false
negative rates (misidentified anomalies).

The rest of this chapter is structured as follows. Section 2 briefly surveys relevant
works in intrusion detection systems, with special emphasis on CI-based solutions.
Section 3 elaborates on the two precursor formalisms leading up to RCNs: rough set
theory (RST) and fuzzy cognitive maps (FCMs). Then, the RCN topology learning
and classification inference process are dissected in Sect. 4 while Sect. 5 describes
the proposed optimization-based RCN parameter learning method. The experimen-
tal analysis is unveiled in Sect. 6 before conclusions and future work directions are
outlined in Sect. 7.

2 Related Work

In this section, we briefly review several published works that are relevant to our
study. They provide the necessary background to understand the contents of this
chapter.

2.1 Intrusion Detection Systems

The literature in the IDS arena is quite vast. This field appears often interwoven
with other similar terms such as “network anomaly detection” or “network intrusion
detection” and the common underlying problem has been addressed through a myriad
of techniques. In a recent and comprehensive survey [8] covering publications in
this field from 2000 to 2012, 28 % of the papers surveyed approached IDS from
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a supervised learning angle (i.e., classification), as we do in this chapter. However,
unsupervised learning (via clustering) was the preferred choice of 21 % of the papers
given that labeled data could be scarce and/or difficult to access in certain cases
where privacy concerns impede the sharing of such information.

The statistical methods and systems applied to intrusion detection [45, 61, 66,
79] first construct a general statistic model of the observed traffic data, either via
parametric techniques (which assume the knowledge of the type of probability
distribution is available and then try to learn their parameters) or by means of non-
parametric techniques, which do not lay any assumption on the type of the data
distribution. Once this model has been fitted to the data, any point (traffic pat-
tern) with low probability of having been generated by the underlying data model
is labeled as an outlier and hence flagged as suspicious.

The use of computational intelligence methods in the IDS realm has been well
documented in the 2010 survey compiled by Wu and Banzhaf [73]. Artificial neural
networks (ANNs) [11, 40, 67, 78, 81], fuzzy sets [16, 21, 29, 68], evolutionary com-
putation [5, 18, 24, 31, 38, 57-59], artificial immune systems (AIS) [70, 75], fuzzy
cognitive maps [62—64, 74, 83], rough sets [2, 13, 14] and swarm intelligence (SI)
[19, 20, 29] techniques, all representative methods of the wider CI/Soft Computing
(SC) family, and their hybrids [15, 22, 63, 64, 74] have all been wielded against
complex network traffic datasets to identify attack vectors or suspicious activities
either in a supervised or unsupervised fashion.

2.2 Rough Set Theory in Network Security

Rough sets and fuzzy cognitive maps have been independently applied to network
intrusion detection [8, 73], although the number of reported works thus far is not sig-
nificant compared to the volume of documented applications of other CI techniques.

Chen et al. [13] employ rough set theory in the preprocessing stage of their pro-
posed network intrusion detection scheme in order to remove irrelevant attributes
prior to the operation of the Support Vector Machine (SVM)-based classifier. A
similar use (attribute dimensionality reduction) is evoked by Li and Zhao with their
Fuzzy SVM [41] and by Zhang et al. in the context of their Artificial Immune System
(AIS)-based technique [82], where the number of attributes that describe an antibody
is shortened using the lower and upper approximations of each rough concept. Shri-
vastava and Jain [60] also boost the network traffic classification power of their SVM
via rough-set-based feature selection by dropping 35 irrelevant attributes out of 41
initially gathered to describe the traffic flows in their system. An analogous ratio-
nale is pursued by Sivaranjanadevi et al. in their work [65] and by Poongothai and
Duraiswamy in [53].
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Fuzzy and rough sets are integrated into a partitive clustering engine in [14] to
address network intrusion detection from an unsupervised perspective; the proposed
clustering method yielded superior results compared to other classical unsupervised
techniques.

Finally, rough sets are used in [2] to induce classification rules via the LEM2
algorithm so as to create a potent classifier capable of detecting network intrusions
with high detection rate and low false alarm rate. The classification results of LEM2
are found to be more interpretable and can be obtained in a shorter time than those
of the K-nearest neighbor classifier, which are more accurate yet more resource-
demanding.

2.3 Fuzzy Cognitive Maps in Network Security

Xin et al. [74] derive fuzzy features from the network data and pass them on to a
fuzzy cognitive map (FCM) in order to model more complex attack vectors.

Siraj et al. [63] used FCM and fuzzy rule bases to model causal knowledge
among different intrusion variables in an interpretable fashion. Suspicious events
are mapped to nodes in FCM, which function as neurons that trigger alerts with dif-
ferent weights depicting on the causal relations between them. So, an alert value for a
particular machine or a user is calculated as a function of all the activated suspicious
events at a given time. This value reflects the safety level of that machine or user at
that time.

Siraj et al. [64] chose FCMs and fuzzy rule bases as the vehicles for causal knowl-
edge acquisition within the decision engine of an intelligent IDS deployed at the
Mississipi State University. The system fuses information from a variety of intru-
sion detection sensors. In particular, the FCMs are used at two levels: (i) to model
individual suspicious events such as ‘high login failure’ or ‘SYN flood’ and (ii) to
ascertain the overall impact of various suspicious events (input concepts) for each
host computer and system user (output concepts).

Afterwards, Siraj and Vaughn [62] also leaned upon FCMs to cluster network
intrusion alerts based on discovered similarities among the raw features extracted
from sensor data. The FCM is thus acting as a fusion machine where intrusion evi-
dence for a particular network resource that originates at different clusters is amal-
gamated.

Zhong et al. [83] consider a distributed attack scenario and resort to an FCM to
describe the entities that are part of it as well as their relationships.

The study authored by Jazzar and Bin Jantan [27] focuses on IDS designed around
the Self Organizing Map (SOM) neural network given its ability to process large vol-
umes of data with low computational overhead. Having realized that these systems
still exhibit a high false alarm rate, they coupled the SOM with an FCM in order
to refine the clustering performed by the former approached. The FCM’s role is to
calculate the relevance of odd concepts (neurons) to a network attack. By doing so,
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irrelevant concepts can be left out and other concepts may come to the forefront of
the intrusion analysis.

Krichene and Boudriga [37] devised a methodology to automatically determine
responses to security incidents. The underlying formalism that allows attack identifi-
cation, complexity reduction and response elicitation is termed an incident response
probabilistic cognitive map. These maps differ from traditional FCMs in that they are
capable of modeling different relationships between symptoms, actions and unautho-
rized results as pertaining to a network attack. A function that enables the identifi-
cation of those concepts that are tied to a set of events is also part of the proposed
scheme. The authors illustrate their proposal on a real-world denial of service (DoS)
attack against a web server.

Zaghdoud and Al-Kahtani [80] bring forth a multi-layered architecture for intru-
sion detection and response. They employ an FCM to gauge the impact of a con-
firmed intrusion event belonging to a known class upon the compromised system.
The FCM nodes represent components of the computer network system or security
concepts whereas the edges symbolize the influence exercised by one component
upon another; these influences must be carefully taken into consideration now that a
network intrusion has been confirmed.

2.4 Discussion

Our proposed granular classifier, the Rough Cognitive Network, borrows from both
aforementioned techniques: RST and FCM; however, their synergy is dictated by a
topological arrangement of the FCM nodes into symbolic and higher-order informa-
tion granules, the latter of which correspond to the three RST-based regions (posi-
tive, boundary, negative) of the decision concepts (classes) induced by a similarity
relationship over the set of input attributes in the data set under consideration. To the
best of our knowledge, this hybridization scheme is completely different from previ-
ous efforts to combine both methodologies, and so is certainly the RCN application
to the IDS domain.

3 The Forerunners of Rough Cognitive Networks

As mentioned before, in this paper we design an IDS which uses an RCN for detecting
potentially atypical (and likely dangerous) patterns. One could briefly define an RCN
as a Sigmoid Fuzzy Cognitive Map where concepts represent granules of informa-
tion. In this section, we summarize the mathematical underpinnings behind Rough
Set Theory and Fuzzy Cognitive Maps, which are the two core building blocks of
the granular model proposed in this chapter.
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3.1 Rough Set Theory

Rough Set Theory (RST) is a robust and mature theory for handling uncertainty
in the form of inconsistency in the data [1, 49]. The RST framework employs two
exact set approximations to describe a generic or real-world concept. Let us assume
a decision system S = (U, A U d), where U is a non-empty finite set of objects called
the universe, A is a non-empty finite set of attributes, while d ¢ A denotes the deci-
sion attribute. Any subset X C U can be approximated by two crisp sets: the lower
and upper approximations. These sets are defined as BLX=x€ U : [x]; € X and
B*X =x € U : [x]g N X # @ where the equivalence class [x]; comprises the set of
inseparable objects associated to the target instance x that are described using B C A.

Based on the lower and upper approximations, we can compute the positive,
negative and boundary regions of any concept X. The positive region POS(X) =
B, X includes those objects that are certainly contained in X; the negative region
NEG(X) = U — B*X involves those objects that are certainly not contained in X,
whereas the boundary region BND(X) = B*X — B, X represents the objects whose
membership to the set X is uncertain, i.e., they might be members of X. These
regions are in fact information granules and provide a valuable knowledge when
facing decision-making or pattern classification problems.

Based on the positive, negative and boundary regions, Yao [76] defined two types
of rules: deterministic decision rules for the positive region and undeterministic deci-
sion rules for the boundary region. More recently Yao [77] introduced the three-way
decisions model. Rules constructed from the three regions are associated with dif-
ferent actions [23]. A positive rule suggests a decision of acceptance, a negative rule
makes a decision of rejection and a boundary rule implies a decision of abstaining.
The three-way decisions play an important role in decision-making problems [42].

In the classical RST formulation, the indiscernibility relation is defined as an
equivalence relation; hence, two objects will be inseparable if they are identical with
respect to a set of attributes B C A. The equivalence relation R induces a partition of
the universe U on the basis of the attributes in B. However, this definition is extremely
strict. For example, a decision system with millions of objects will be categorized
as inconsistent if two objects are equivalent but they have different decision classes
(i.e., two experts might have different perceptions about the same observation). But
are two objects really significant in a universe comprised of millions of objects?

To counter the above stringent definition, the equivalence requirement on R is
relaxed. In fact, if we adopt a “weaker” inseparability relation then we could tackle
problems having numerical (or mixed) attributes. Two inseparable objects, according
to some similarity relationship R, will be tossed together in the same set of not identi-
cal (but reasonably similar) instances. Equation 1 shows the indiscernibility relation
adopted in this paper, where 0 < @(x,y) < 1 is a similarity function. This binary rela-
tion determines whether two objects x and y are inseparable or not (i.e., as long as
their similarity degree @(x, y) is greater than or equal to a user-specified threshold &).
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Despite the clear advantages of using this approach to cope with problems having
numerical features, selecting the correct value for the similarity threshold & could be
a challenge.

R yRx & p(x,y) 2 ¢. 9]

If the threshold & = 1 then the similarity relation R will be reflexive, transitive
and symmetric, leading to Pawlak’s model for discrete (nominal) domains. If £ < 1
then the similarity relation will be reflexive and symmetric but not transitive.

Another aspect to be considered when designing a similarity relation is the ade-
quate selection of the similarity function. Equation 2 shows a variant which combines
both numerical and categorical attributes. It provides a more general formulation for
addressing decision-making problems having different features.

IA|

! D @,8(x(0), (7). 2
i=1

@, y) A

In the above equation, A is the set of features describing the problem, 0 < w; < 1
represents the relative importance of the ith attribute, x(7) and y(i) denote the val-
ues of the ith attribute associated with the objects x and y respectively, and 6 is the
attribute-wise similarity function. The greater 0 < @(x,y) < 1, the more similar the
objects x and y. Equations 3 and 4 display the attribute-wise similarity functions
adopted in this research study. The function 6, is used when we want to compare
two values of a discrete attribute, whereas &, is used for comparing two values of a
numerical attribute (L; and H; denote the lowest and highest value of the ith attribute,
respectively).

o= {5153 0
8,(x(@), y(i)) = 1 — w “

Equations 5 and 6 respectively formalize how to compute the lower and upper
approximations of a concept X, where R(x) denotes the similarity class of the object
x. These exact sets are the basis for granulating the available information about the
concept using RST, and they become the core of Granular Fuzzy Cognitive Maps
[48].

BX={xeU:Rx CX}. (5)
B*X = U R(x). (6)
xeX

As a result, an object can simultaneously belong to multiple similarity classes,
so the covering induced by the similarity relation R over the universe U is not nec-
essarily a partition [7]. Therefore, similarity relations do not induce a partition of
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the universe, but rather generate similarity classes. It suggests that an object could
simultaneously belong to different similarity classes, and consequently the instance
x could activate several granular regions. In such cases, the decision-making stage
becomes really difficult for the expert, since it has to consider non-trivial decision
patterns.

3.2 Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCM) are recurrent neural networks for modeling and simu-
lation [34] consisting of concepts and their causal relations. Concepts are equivalent
to neurons denoting objects, variables, or entities related to the system under inves-
tigation whereas the weights associated with the connections among neurons denote
the strength of the causality among such nodes. It should be highlighted that causal
relations are quantified in the range [—1; 1]. This value is the result of the numerical
evaluation of a fuzzy linguistic variable, which is usually assigned by experts during
the modeling phase [36]. The activation value of the neurons is also fuzzy in nature
and regularly takes values in the range [0; 1] although the interval [—1; 1] is used
too. The magnitude of the activation is also meaningful for the model: the higher the
activation value of a map concept, the stronger its influence over the system under
consideration.

Equation 7 mathematically formalizes the rule for updating the activation value of
concepts in an FCM, assuming A° is the initial configuration. This rule is iteratively
repeated until a fixed point attractor or a maximum number of iterations 7 is reached.
At each step t a new state vector is produced, and after a large enough number of
iterations, the map will arrive at one of the following states: (i) fixed equilibrium
point, (ii) limited cycle or (iii) chaotic behavior [35]. If the FCM reaches a fixed-
point attractor, then we can conclude that the map has converged. In such cases,
the final output corresponds to the desired state (i.e., the system response for the
activation vector).

M
AL = £ WAl +w, A, i # . (7)
j=1

In the above equation f(.) represents a monotonically non-decreasing nonlinear
function which is used for transforming the activation value of each concept (the
weighted combination of the activation levels). The most used functions are: the
bivalent function, the trivalent function, and sigmoid variants [10]. In this paper we
will focus on sigmoid functions since it has been shown that they exhibit superior
prediction capabilities [10].
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4 Rough Cognitive Networks

Rough Cognitive Networks (RCNs) [48] are an extension of three-way decision rules
introduced by Yao [76]. In a nutshell, we can define an RCN as a sigmoid FCM where
concepts denote information granules, namely, the RST-derived positive, boundary
and negative regions of the original problem as well as the set of decision classes in
the problem at hand.

The RCN methodology not just allows solving mixed-attribute problems, but also
provides accurate inferences since it uses a recurrent inferential process to converge
to a stable attractor, which comprises the most fitting decision class. It should be
pointed out that the complexity of this model does not depend on the number of
attributes in the decision system, but on the number of decision classes. In this
section, we explain how to learn an RCN from data. Furthermore, we introduce a
supervised learning algorithm for computing the required RCN parameters, which
enhances the value of our proposal.

4.1 Information Granulation and Network Design

As mentioned before, a central aspect when designing an RCN is the process related
to the construction of positive, negative and boundary regions. Let us assume a pat-
tern classification problem and a partition X = X, ..., X, ..., Xy of the universe
U according to the decision attribute, where each subset X, denotes a decision
class and comprises all instances labeled as d;.. These information granules will be
expressed as map concepts. More precisely, input concepts denote positive, negative
and boundary regions associated with each subset X, ; they are subsequently used for
activating the network.

In the RCN model, the output neurons do not influence other neurons since they
are target concepts. Once the FCM inference process is done (this point will be
clarified next), the activation degree of each output concept (decision class) will be
gauged. After the map concepts are defined, we establish causal connections among
such neurons, where the direction and intensity of the causal weights are computed
according to the set of rules below:

« R, : IF C;is P, AND C; is d; THEN w; = 1.0.
« Ry : IF C;is P, AND C; is d.;) THEN w;; = —1.0.
« Ry : IF C;is P, AND C; is P(,) THEN w;; = —1.0.

« Ry : IF C, is N, AND C; is d; THEN w;; = —1.0.

In the above rules, C; and C; denote two map concepts, P, and N are the positive

and negative region for the kth decision respectively, whereas —1 < w; < 1is the



A Granular Intrusion Detection System Using Rough Cognitive Networks 179

causal weight between the cause C; and the effect C;. More precisely, rules R; and
R, define the relation between positive regions and decision neurons. If the positive
region P, is activated (rule 1), then the decision d}, must be stimulated as well, since
we confidently know that objects belonging to the positive region P, will be cate-
gorically members of the concept X;. Accordingly, decisions d,,;, must be inhibited
(rule 2) because an object cannot simultaneously belong to different positive regions.

The third rule follows an analogous reasoning: if a positive region P, is activated
then positive regions unrelated to the decision d, (i.e., P, ) will be inhibited. If the
negative region N, is activated (rule 4), then the map will inhibit the decision, but
we cannot conclude anything about other decisions. Moreover, we incorporated an
additional rule for handling the intrinsic knowledge concerning the RST boundary
regions:

« Rs : IF C; is B, AND C; is d, AND (BND(X,) N BND(X,) # #)) THEN w; = 0.5.

Observe that not all boundary regions are included in the RCN’s topology. This
is dictated by the learning procedure on the training data: if a boundary region is
empty (BND(X,) = ) then the neuron B, will be removed from the modeling in
order to simplify the network topology. On the other hand, we need to establish causal
links between each boundary neuron and decision classes involving some degree of
uncertainty; otherwise the causal connection will be removed from the map as well.

The above topology construction scheme implies that an RCN for a problem with
|D| decision classes will have at most 3|D| input neurons (assuming all boundary
regions are in), |D| decision (output) neurons and 3|D|(1 + |D|) causal relations.
Additionally, for each neuron we add a self-reinforcement connection with causality
w;; = 1 which partially preserves the initial excitation.

4.2 Inference Using Rough Cognitive Networks

The final phase concerns the network exploitation, where the activation value of
input and decision concepts play a pivotal role. In this scheme, to classify a test
instance O;, first the excitation vector A; will be calculated using the similarity class
R(0;) and its relation to each RST-based region. For instance, let us assume that
[POS(X )| = 20, |R(O;)| = 10, whereas the number of objects that belong to the pos-
itive region is given by the expression: |R(0;) N POS(X,)| = 7. This implies that the
activation degree of the neuron P, is 7/20 = 0.35. It denotes the conditional prob-
ability of accepting d,; given the similarity class R(O;), that is Pr(d,|R(0O;)). Analo-
gously, we can compute the activation degree of other input concepts related to each
decision class. Rules Ry — Ry formalize this procedure as follows:

. . 0 _ |R(OH)NPOS(X;)|
'R().IFCilSPkTHENAi—W
. . 0 _ |R(O)NNEG(X,)|

* Ry ¢ IF C;is N THEN A} = FOZERE0
|R(O,))NBND(X,)|

. . 0 _
* Ry : IF C,is B, THEN A; = [BND(X))|
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Once the activation vector A? has been computed, we trigger the FCM inference
rule until a fixed point attractor, or a maximal number of iterations 7 is reached. This
process will stress a pattern using the similarity class of the instance O; to do that,
which is desirable in problems with insufficient positive evidence where selecting
the proper class could be difficult. Afterward one can use the output vector for mak-
ing a decision (e.g., we can sort the alternatives according to the preference degrees
calculated by the map inference process). When dealing with pattern classification
problems, the final output will be the concept having the highest activation, or alter-
natively it could be a random class if the input similarity class only activates negative
and/or boundary regions.

5 Learning Methodology for Rough Cognitive Networks

As mentioned before, the basis for computing the set of positive, negative and bound-
ary regions is the proper estimation of the similarity threshold & in Eq. 1. If this value
is too small then positive regions will be small as well, leading to poor excitation of
neurons. This step is quite important when selecting the most adequate decision: the
higher the activation of the positive region, the more desirable the decision (although
the model will compute the final decision taking into account all the evidence). If this
threshold & is excessively large then boundary regions will be large, thus increasing
the uncertainty.

In this section, we present a learning algorithm for tuning the model parameters,
which is based on the Harmony Search (HS) metaheuristic [44]. The method needs
to adjust two kinds of parameters: the weight w; of each attribute and the similarity
threshold &. This approach leads to a numerical optimization problem with |A| + 1
variables and will be solved using an adaptive variant of the HS procedure.

The HS metaheuristic is a simple-trajectory search method, which only evaluates
one potential solution at a time, instead of evaluating a set of potential solutions (as
it occurs with population-based metaheuristics). This HS design choice is relevant
for our learning methodology since evaluating a solution means computing the set
of lower and upper approximations, which could be computationally expensive as
the number of objects in the training data set increase.

During the optimization phase, the algorithm randomly creates a harmony mem-
ory with size HMS and iteratively improves a new harmony from the HM. If the
improved harmony is better than the worst harmony in the HM, then the new solu-
tion replaces the worst harmony. Despite its algorithmic simplicity, HS suffers from
a serious problem common to other metaheuristics: its search capabilities are quite
sensitive to the specified parameter vector.

For this reason in this paper we adopt an improved variant, called Self-adaptive
Harmony Search (SHS), which is capable of adjusting its own parameters [71].
The SHS method not only alleviates the parametric sensitivity issue, but also sig-
nificantly enhances the accuracy of the solutions. Algorithm 1 shows the pseudo-
code of this metaheuristic, where N is the maximal number of iterations, HMCR
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(Harmony Memory Consideration Rate) is a parameter that controls the balance
between exploitations and exploration, while R; = U —x and R, = x — L, assuming
that L and U respectively denote the lowest and the highest values for each problem
variable in the harmony memory.

On the other hand, PAR is the pitch adjustment rate and determines whether fur-
ther adjustment is required to a harmony drawn from the harmony memory. In this
variant, the PAR factor is linearly decreased over time. Experiments reported by the
authors [71] suggested that moderate size of the harmony memory (e.g., 50) and
large values of HMCR (e.g., 0.9) are adequate choices for these parameters. Based
on these considerations, we used these values during the experiments and simula-
tions performed in the next section. The rand() function draws a random number
uniformly distributed in the unit interval.

Algorithm 1. Self-adaptive Harmony Search
Initialize the memory
FORi=1TON DO
IF rand() < HMCR THEN
Select a random pitchx from the memory
IF rand() < PAR THEN
x=x+rand(R|,R,)
END
ELSE
Xx =Xx+ rand(a, b)
END
Select the worst harmonyy from the memory
IF (y is worse than x) THEN
Replace the worst harmony ywith the new pitchux
END
END
Select the best solution S from the memory
RETURN S

The other component of the optimization problem to be specified is the objective
function. Equation 8 shows the function G(.) used in this study, where the parameters
denote the set of weights W, the similarity threshold & and the set of instances ¢ to
be used for training the model, respectively. On the other hand, Rgy (x) is the
output vector computed by the RCN which is obtained from the similarity threshold
defined by the function R(W, &), whereas the function Y (x) is the known class vector
associated with the instance x and D is the set of decision classes in the problem. It
should be also mentioned that ||.||, refers to a norm (e.g., the L;-norm, L,-norm or
L,-norm) that is used to calculate the error.

N -Y
minimize G(W, &, ¢) = Z I R(W’él)(;)lcTDl (X)”L. (8)
XEP
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If G(W,&,¢) =0 then the RCN, using the similarity relation R, is capable of
recognizing all patterns stored in the training set; otherwise the value 1 — G(W, &, ¢)
stands for the model accuracy. The proposed parameter tuning method not only esti-
mates the introduced parameters, but also allows determining the relevance of each
attribute, which contributes to elicit further knowledge about the problem.

6 Detecting Intrusion in Computer Networks

In this section we study the performance of the proposed granular cognitive network
for detecting abnormal traffic behavior in computer networks. As mentioned before,
this problem can be envisioned as a challenging pattern classification task having two
decision classes: either ‘normal’ or ‘abnormal’. In order to perform our simulations,
we used an improved variant of the NSL-KDD dataset [17] which is a widely used
benchmark when testing IDS [19, 22, 23]. In the following section, we summarize
the most important features of both training and testing NSL-KDD datasets.

6.1 Description of the NSL-KDD Dataset

Perhaps the most popular dataset for evaluating the performance of anomaly detec-
tion models is KDD’99 [30]. The KDD training dataset consists of 4,900,000 net-
work connection vectors, each of which contains 41 features. Such features could
be gathered in three groups: (i) basic features, (ii) traffic features and (iii) content
features.

The first group comprises attributes extracted from a TCP/IP connection, whereas
the second one includes time-based features computed in a window interval (e.g.,
connections in the past 2s having the same destination host or the same service
as the current connection). It should be stated that there are several slow-probing
attacks that scan the ports using a much larger time interval than 2 s and accordingly
these attacks will not produce any intrusion patterns. Finally, the third group contains
features related to attacks having a single connection, which do not have intrusion
frequent sequential patterns. In such cases, attacks are embedded in the data por-
tions of packets, hence forcing the Intrusion Detection System to catch suspicious
behavior in the data portion (e.g., number of failed login attempts) instead of in the
connections.

On the other hand, in the training set each record is labeled as either “normal”
or “abnormal” with exactly one specific attack type (i.e., Probing Attack, Denial of
Service Attack, User to Root Attack and Remote to Local Attack).

It is essential to mention that the KDD’99 dataset was built based on the data
captured in DARPA’98 which has been criticized by McHugh [46]. It suggests that
some of the existing problems in the dataset DARPA’98 remain in KDD’99. More
recently, Tavallaee and collaborators [69] conducted a statistical analysis where two
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important issues were detected. The first important deficiency in the KDD’99 dataset
is the huge number of redundant records (78 and 75 % of records are duplicated in
the train and test set, respectively). Consequently, this will cause learning algorithms
to be biased towards the more frequent records. As a second issue they noticed that
this dataset has poor difficulty level: about 98 % of the records in the train set and
86 % of the records in the test set were correctly classified with 21 learned machines
(7 learners, each trained 3 times with different training sets).

To solve the aforementioned issues, Tavallaee et al. [69] removed all the redun-
dant records in both train and test sets. Moreover, they randomly sampled correctly
classified records in such a way that the number of selected instances from each
difficulty level group is inversely proportional to the percentage of records in the
original dataset. This refinement process gave rise to two improved datasets called
KDDTrain+ and KDDTest+ which include 125,973 and 22,544 records, respec-
tively. As well, they created another test set called KDDTest-21 by removing the
records that were correctly classified by all 21 learners. This dataset contains 11,850
records, which are more difficult to classify. Because of its increasing popularity and
sound verification procedure, we adopted Tavallaee et al’s data sets for our experi-
mentation.

6.2 Numerical Simulations

Next we study the behavior of RCN across the selected dataset. Figure 1 displays
the network topology that allows solving the prediction problem (i.e., where each
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Fig. 1 The proposed Rough Cognitive Network for intrusion detection. The d; concept corre-
sponds to the normal traffic class and the d, concept represents the abnormal traffic class. The P,
B; and N; nodes denote the positive, boundary and negative regions for these two classes, i € {1,2}
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instance is classified as either “normal” or “abnormal”). More exactly, d; = “nor-
mal”, d, = “abnormal”, P; denotes the positive region associated to the ith class, N,
is the negative region related to the ith class while B, is the ith boundary region. Note
that boundary concepts are allowed regardless of the inconsistency of the features in
the target problem because only two decision classes are possible. More explicitly,
if the problem has inconsistent instances, then both classes will be equally affected;
otherwise, the activation value of the (empty) boundary regions will remain inactive
during the inference process.

6.2.1 Comparison with Traditional Classifiers Over KDDTest+

The first experiment consists of studying the prediction ability of our model regard-
ing the following set of traditional classifiers: J48 decision tree [54], NBTree [33],
Random Forest [9], Random Tree [3], Multilayer Perceptron [56], Naive Bayes [28],
and Support Vector Machine [12]. For experimental purposes, we adopted the first
20 % of the records in KDDTrain+ for training all models. Figure 2a summarizes
the accuracy achieved for each learner, whereas Fig. 2b displays some representative
samples of the solution space associated with the similarity threshold to be explored
by the learning algorithm. In other words, Fig. 2b illustrates the performance of our
granular network for different similarity thresholds.

From the above experiment we can conclude that RCN results are competitive
regarding J48 decision tree, Random Forest (RF), NBTree (NBT) and Random Tree
(RT). However, our model outperforms other approaches such as Multilayer Percep-
tron (MLP), Naive Bayes (NB) and Support Vector Machine (SVM).

Next we study other statistics such as those extracted from the confusion matri-
ces. True Negatives (TN) as well as True Positives (TP) correspond to correctly
classified instances, that is, events that are rightly labeled as normal and attacks,
respectively. Alternatively, False Positives (FP) refer to normal events being labeled
as attacks while False Negatives (FN) are attack events incorrectly predicted as nor-
mal events. Table 1 shows such statistics for all classifiers used for comparison across
the selected KDDTest+ dataset.

(a) (b)
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Fig.2 Experiments using datasets KDDTrain+ and KDDTest+. a Accuracy of selected classifiers
and b RCN accuracy as a function of the threshold values in Eq. (1)
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Table 1 Confusion matrix associated with each classifier for the KDDTest+ dataset

TN FP FN TP Detection rate | False alarm

rate
J48 9436 275 3996 8837 0.68 0.02
NB 9010 701 4582 8251 0.64 0.07
NBT 8869 842 3257 9576 0.74 0.08
RF 9452 259 4523 8310 0.64 0.02
RT 8898 813 3011 9822 0.76 0.08
MLP 8971 740 4796 8037 0.62 0.07
SVM 8984 727 4893 7940 0.61 0.07
RCN 8891 820 3150 9683 0.75 0.08

The reader may notice that RCN ranks as the second-best algorithm regarding
the number of FN patterns. In our study we are especially interested in this value
since it denotes the number of abnormal patterns that the IDS was unable to detect,
although most authors prefer systems with high detection rate (i.e., TP/(TP + FN))
and low false alarm rate which is defined as FP/(TN + FP). Nevertheless, in com-
puter networks where high security is required, reducing the false negative rate is
indispensable since only those patterns having normal features will be confidently
allowed.

6.2.2 Comparison with Traditional Classifiers Over KDDTest-21

The second experiment is concerned with investigating the performance of our
RCN model with respect to traditional classifiers, but now using the test set called
KDDTest-21. Figure 3a portrays the classification accuracy achieved for each model
while Fig. 3b displays the performance of the proposed granular network for different
similarity thresholds.
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Fig. 3 Experiments using datasets KDDTrain+ and KDDTest-21. a Accuracy of selected classi-
fiers and b RCN accuracy as a function of the threshold values in Eq. (1)
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Table 2 Confusion matrix associated with each classifier for the KDDTest-21 dataset

TN FP FN TP Detection rate | False alarm

rate
J48 1879 273 3996 5702 0.58 0.12
NB 1460 692 4549 5149 0.53 0.32
NBT 1354 798 3257 6441 0.66 0.37
RF 1895 257 4523 5175 0.53 0.11
RT 1388 764 3008 6690 0.68 0.35
MLP 1426 726 4796 4902 0.50 0.33
SVM 1440 712 4893 4805 0.49 0.33
RCN 1572 580 2824 6874 0.70 0.26

It should be specified that the KDDTest-21 dataset is more complex since it
involves patterns that cannot be correctly classified by all learners. Despite this fact,
our model was able to compute the best accuracy (71 %), notably outperforming the
remaining approaches. However, in a previous experiment the model only achieved
an accuracy of 66 % due to the uncertainty present in the features during the infer-
ence stage (i.e., the overall evidence suggests accepting both decisions). To overcome
this situation, we used the similarity classes pertaining to the K-nearest neighbors
(K = 3) of the test instance O;. In short, we adopted the similarity classes of its neigh-
bors instead of only using the set R(O;) related to the target pattern for activating each
input neuron in the network.

Table2 shows the confusion matrix achieved by each classifier across the
KDDTest-21 test set. In this case, our model computed the highest detection rate
(TP/(TP + FN) = 0.7) and lowest false negative rate (FN /(TP + FN) = 0.29) which
is the desired behavior. It means that the RCN will detect abnormal traffic with high
accuracy, thus reducing the risk of classifying abnormal patterns as normal. In a nut-
shell, such statistics confirm the reliability of our granular classifier (RCN) for intru-
sion detection in complex computer networks. For instance, the reader may observe
that if the false alarm rate is high, then the system will classify normal patterns as
abnormal, but this behavior is preferable in order to avoid potential attacks.

6.2.3 Discussion

Although the above experiments show that RCNs are a suitable approach for address-
ing intrusion detection problems, there are cases where the inference suggests accept-
ing a wrong decision class. This behavior could be a direct result of the strategy
adopted for activating the input concepts, so other ways for estimating the activation
vector could be explored. For example, in Bayesian inference one usually translates
Pr(C|[x]) into Pr(([x]C)Pr(C))/Pr([x]) by the Bayes theorem, which allows a prac-
tical estimation of initial conditions required to trigger the FCM inference process.
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Another aspect to be considered is related to the network weights, since rules
R,—Rs formalize the direction (negative or positive) of each causal connection rather
than its intensity. This means that the granular neural network discussed in this
chapter calculates the decision class based on the initial state A° and the sign of
causal relations, without exploiting the causal intensity. To achieve further perfor-
mance gains, we are currently focused on computing this indicator via a supervised
learning approach.

7 Conclusions

An important aspect in computer networks is how to detect intrusion since traditional
approaches such as access control lists or firewalls are incapable of entirely protect-
ing networks. In order to deal with such problem, several intrusion detection systems
have been proposed; however, increasing the overall performance (e.g., the detec-
tion accuracy) is still an open problem for researchers. More explicitly, an essential
component of intrusion detection systems is the inference algorithm used to classify
network traffic patterns as either normal or abnormal. This problem could be thought
of as a challenging binary classification task since modern intrusion techniques are
sophisticated, so it is difficult to design models being able to distinguish between
normal and abnormal patterns. As an example, frequently hackers attempt simulat-
ing trusted users in computer networks in order to gain access to remote resources.
Such behavior will produce inconsistency in the collected traffic data; that is, objects
that are very similar yet have been labeled as pertaining to different decision classes.

In this chapter we introduced a novel IDS based on Rough Cognitive Networks,
a recently proposed granular neural network for pattern classification. Without loss
of generality, we can define RCN as a Sigmoid Fuzzy Cognitive Map where input
neurons represent information granules whereas output concepts denote decision
classes. It should be remarked that the granulation of information is achieved by
using Rough Sets, since it allows handling uncertainty arising from inconsistency.
Furthermore, with the goal of increasing the reliability of the RCN-based inference
process, we discussed a supervised learning methodology for automatically comput-
ing accurate similarity relations by estimating the proper parameter vector.

In order to measure the performance of our model, we adopted an improved ver-
sion of the NSL-KDD dataset. From numerical simulations it is possible to conclude
that our granular neural network is a suitable approach for detecting abnormal traffic
patterns in computer networks. More precisely, we observed that RCNs are com-
petitive regarding traditional classifiers such as J48 decision tree and Random For-
est, across the simpler dataset (KDDTrain+). However, for the dataset KDDTest-21
the model significantly outperformed the other learners by computing the highest
detection rate (DR = 0.7) and lowest false negative rate (FNR = 0.29). This con-
firms the reliability of the learning methodology put forth in this chapter to boost
the model’s performance. Future work along this front will concentrate on validat-
ing our approach on real computer networks.
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NNCS: Randomization and Informed
Search for Novel Naval Cyber Strategies

Stuart H. Rubin and Thouraya Bouabana-Tebibel

Abstract Software security is increasingly a concern as cyber-attacks become
more frequent and sophisticated. This chapter presents an approach to counter this
trend and make software more resistant through redundancy and diversity. The
approach, termed Novel Naval Cyber Strategies (NNCS), addresses how to
immunize component-based software. The software engineer programs defining
component rule bases using a schema-based Very High Level Language (VHLL).
Chance and ordered transformation are dynamically balanced in the definition of
diverse components. The system of systems is shown to be relatively immune to
cyber-attacks; and, as a byproduct, yield this capability for effective component
generalization. This methodology offers exponential increases in cyber security;
whereas, conventional approaches can do no better than linear. A sample battle
management application—including rule randomization—is provided.

Keywords Battle management - Cybersecurity + Heuristics - Inferential
reasoning + Information dominance - Military strategic planning - Transfer
learning

1 Introduction

Deductive number of computational devices using embedded software is rapidly
increasing and the embedded software’s functional capabilities are becoming
increasingly complex each year. These are predictable trends for industries such as
aerospace and defense, which depend upon highly complex products that require
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systems engineering techniques to create. We also see consumer products as
increasingly relying upon embedded software—such as automobiles, cell phones,
PDAs, HDTVs, etc.

Embedded software often substitutes for functions previously realized in hard-
ware such as custom ICs or the more economical, but slower gate arrays; for
example, digital fly-by-wire flight control systems have superseded mechanical
control systems in aircraft. Software also increasingly enables new functions, such
as intelligent cruise control, driver assistance, and collision avoidance systems in
high-end automobiles. Indeed, the average car now contains roughly seventy
computer chips and 500,000 lines of code—more software than it took to get
Apollo 11 to the Moon and back. In the upper-end cars, in which embedded
software delivers many innovative and unique features, there can be far more code.

However, the great number of source lines of code (SLOC) itself is not a
fundamental problem. The main difficulty stems from the ever-more complex
interactions across software components and subsystems. All too often, coding
errors only emerge after use. Worse still, even good code is increasingly the target
of cyber-attacks. The software testing process must be integrated within the soft-
ware creation process—including the creation of systems of systems in a spiral
development. This follows because in theory, whenever software becomes complex
enough to be capable of self-reference it can no longer be formally proven valid [1].

Cyber threats are growing in number and sophistication [2]. In theory, it is not
possible, in the general case, to produce fault-free software [1, 3]. Attackers have
shown the ability to find and exploit residual faults and use them to formulate
cyber-attacks. Most software systems in use today run substantially similar software
[2]. As a result, successful cyber-attacks can bring down a large number of
installations running similar software. As we share more and more software (e.g.,
through the cloud), the situation can only get worse.

1.1 Background

Complex software underpins the GDP to the extent of about 15 % per year. Clearly,
we need to devote more attention to the processes by which efficient and cyber-safe
software may be created to improve the national economy.

Redundancy and Diversity in Cyber Defense. Redundancy is effective against
hardware faults because such faults are random [2]. However, software faults are
typically due to errors of design and/or implementation. This cannot be addressed
through redundancy.

Software faults are even more serious because they represent opportunities for
exploitation by cyber-attacks. Most seriously, system security software itself can
thus be breached.

However, if the system software is built out of a set of diverse, but functionally
equivalent components, then a single attack will be insufficient to breach the sys-
tem. Again, given the same input to the diverse components, whose behavior on
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this input is known, one would expect the same output. If this is not the case, then a
cyber-attack may be in progress.

Worms, viruses, and other infectious attacks can be countered by various types
of cyber management techniques. The problem stems from the fact that software,
which computes the same function does not need to have the same syntax as is
currently the case. The existence of the same flaw on many computers is routinely
exploited by attackers via Internet worms such as Code Red, which infected over
350,000 systems in just 13 h using a single vulnerability [4]. Hence, the goal is to
introduce more diversity into computer systems. Diversity can be introduced in the
software ecosystem by applying automatic program transformation, which main-
tains the functional behavior and the programming language semantics [2]. In
essence, distinct components can compute the same function—insuring computa-
tional immunity.

Among the technologies that have the potential of mitigating the cyber-attack
risks, “software redundancy” that includes “component diversity” appears to be one
of the rare technologies promising an order-of-magnitude increase in system
security [2]. The essential idea is to have software functionality redundantly
implemented—preventing an attack against any version from being successful
against the remaining versions. This also enables the detection of anomalous
behaviors—including the resolution of novel solutions (i.e., by comparing multiple
runs), which are not attack-based. Forrest et al. [5] argue for security enhancement
through the introduction of diversity. According to Ammann et al. [6], there is a
lack of quantitative information on the cost associated with diversity-based solu-
tions and a lack of knowledge about the extent of protection provided by diversity.
The security enhancement, focused on by this chapter, pertains to the synthesis and
assembly of software components using delimited chance and program
transformation.

Transformation-Based Diversity. Automatic program transformations can
preserve functional behavior and programming language semantics [2]. There are
three techniques, in practice, used to randomize code:

1. Instruction Set Randomization (ISR)—changes the instruction set of the pro-
cessor so that unauthorized code will not run successfully. Cyber-attacks can’t
inject code if they don’t know the true instruction set.

2. Address Space Randomization (ASR)—is used to increase software resistance
to memory corruption attacks. ASR randomizes different regions of the process
address space (e.g., stacks, arrays, strings, etc.). It has been incorporated into the
Windows Vista operating system.

3. Data Space Randomization (DSR)—defends against memory error attacks by
masking and unmasking data so that cyber-corrupted data will not be properly
restored—implying unpredictable results, which are detectable. DSR can ran-
domize the relative distance between two data object, unlike the ASR technique.

Combining Redundancy and Diversity. Novel and efficient intrusion detection
capabilities, not achievable using standard intrusion detection techniques based on
signatures or malware modeling involves the monitoring of a redundant system by
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comparing the behavior of diverse replicas [2]. Any difference in the output
responses of the replicas implies a system failure. Most interestingly, this archi-
tecture enables the development of adaptive controllers. Our approach is adaptive
too, but more sophisticated, as will be seen below.

1. N-Variant Approaches. If the same input is supplied to a set of diversified
variants of the same code, then the cyber-attack will succeed on at most one
variant—making the attack detectable. The problem with this approach, how-
ever, is that the type of attack must be properly anticipated so that it will succeed
on at most one variant. That is, variants must vary in the way in which they will
respond to a particular cyber-attack. This is increasingly unlikely in today’s
world.

2. Multi-Variant Code. This technique prevents cyber-attacks by using diversity. It
executes variants of the same program and compares the behavior of the variants
at synchronization points. Divergence in behavior suggests an anomaly and
triggers an alarm. Unlike the case using the n-variant approaches, the syn-
chronization points serve to mitigate the need for a priori knowledge of the type
of attack because they provide common entry and exit points under which
differences in performance can be measured.

3. Behavioral Distance. One way to beat traditional anomaly-based intrusion
detection systems is to emulate the original system behavior (i.e., mimicry
attacks). Behavioral distance defends against this by using a comparison
between the behaviors of two diverse processes running the same input. A flag is
raised if the two processes behave differently.

1.2 Related Work on Transfer Learning

The redundancy and diversity-based approaches, proposed in this chapter, pertain to
transfer learning theory. They focus on the need to utilize previously-acquired
knowledge to solve problems with greater rapidity and security. They differ from
traditional machine learning methods in that they allow for source and target
domains to be different [7]. Several survey papers on transfer learning have been
published in the last few years; but few apply transfer learning based on compu-
tational intelligence (CI) [8, 9]. Transfer learning, with the support of CI formalisms
such as neural networks, Bayesian networks, fuzzy systems, and genetic algorithms
have been applied in real-world applications. These applications may be subdivided
into the following five categories [9]: (1) Nature language processing [10-12];
(2) Computer vision [13-15]; (3) Biology [16-18]; (4) Finance [19-21]; and,
(5) Business management [22-241].

Deep learning is a fundamental technique for abstract learning using neural
networks [10, 14, 25]. It extracts high-level features, which offer great flexibility in
transfer learning. It rests upon multiple hidden layers, where the output of one layer
is the input to the next layer. Unsupervised learning is used to pre-train each layer.
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Multiple task learning (MTL) is proposed for improving the learning of the target
task(s). It includes a number of hidden layers, which are fewer than in deep neural
networks. In MTL, information contained in other related tasks is used to promote
the performance of the target task [26]. All tasks are trained in parallel using the
shared input and hidden neurons. Separate output neurons, corresponding to each
task, are provided [27]. This leads to redundant outputs and overlapping informa-
tion. To remedy this, Silver and Poirier [28] proposed context-sensitive multiple
task learning (csMTL), where only one neuron is included in the output layer; and,
the input layer also contains a set of contextual inputs, which associates each
training example with a particular task.

Many Bayesian-based transfer learning techniques have been developed in
recent years to address the problems raised by the classifier trained on source data,
which may not be predictive for the target data. To deal with this, [29] proposed a
novel naive Bayes transfer learning classification algorithm. The experimental
results show that the performance of this method increases when the distribution
between the source data and the target data is significantly different. Roy and
Kaelbling [30], developed an approach, where the dataset is first partitioned into a
number of clusters, such that the data for each cluster for all tasks has the same
distribution. Next, one classifier is trained for each partition; all classifiers are then
combined using a Dirichlet process. The Bayesian network is suitable for repre-
senting correlations between features in a decision region. Recently, Oyen and Lane
[18] stated that it is more appropriate to estimate a posterior distribution over
multiple learned Bayesian networks, rather than a single posteriori. They proposed
to extend network discovery in individual Bayesian network learning, for transfer
network learning, by incorporating structural bias into order-conditioned network
discovery techniques.

Fuzzy logic constitutes a major component for Fuzzy Transfer Learning tech-
niques. In [19, 20], a fuzzy-based transductive transfer learning is developed based
on a distribution of data in the source domain, which differs from that in the target
domain. Next, the fuzzy refinement domain adaptation method [21] is improved by
developing a novel fuzzy measure to simultaneously take account of the similarity
and dissimilarity in the refinement process. The emphasis is put on the advantage of
fuzzy logic in knowledge transfer, where the target domain lacks critical infor-
mation and involves uncertainty and vagueness. More recently, the authors of [31]
proposed a framework for fuzzy transfer learning for predictive modeling in
intelligent environments. Genetic algorithms and transfer learning are introduced in
[32]. The approach consists in extending the transfer learning method of producing
a translation function. This process allows for differing value functions, which have
learned to map from source to target tasks. The transfer of inter-task mappings can
reduce the time required for learning a second more complex task.
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1.3 Contribution

This chapter presents an approach to counter this trend and make software more
resistant through redundancy and diversity. The approach that we propose, termed
Novel Naval Cyber Strategies (NNCS), addresses how to immunize
component-based (functional) software. The software engineer programs defining
component rule bases using a schema-based Very High Level Language (VHLL).
Chance and ordered transformation are dynamically balanced in the definition of
diverse components. Deviation from previously defined non deterministic I/O
constraint maps indicates a likely cyber-attack. Redundancy enables simultaneous
recovery in most instances; whereas, diversity prevents against the effectiveness of
attacks. Moreover, the system of systems counts the relative number of diverse
components yielding the same output vector and the relative number of distinct
paths used in the synthesis of the mapping component. The system of systems can
then be applied to previously unseen input vectors to predict output vectors along
with their relative validities. The use of multiple analogies for generalization
enables components to better approximate their defining semantics under a finite
number of constraints. The system of systems will be shown to be relatively
immune to cyber-attacks; and, as a byproduct, yield this capability for effective
component generalization.

In the remainder on the paper, Sect. 2 presents the randomization technique
behind the proposed approach. Section 3 shows the different aspects of the raised
problem. In Sect. 4, a methodology of resolution is developed. Section 5 discusses
the approach and provides some concluding remarks.

2 Randomization

Consider the following problem, where the assigned task is the lossless random-
ization of a sequence of integers [33]. Note that a slightly more complex
(real-world) task would be to randomize a similar sequence of integers, where the
error-metric (tolerance) need not be zero, but is always bounded. Such sequences
arise in the need for all manner of prediction, e.g., from the path of an incoming
missile to the movement of storm tracks, et al. This abstraction underpins the novel
aspects of the Novel Naval Cyber Strategies (NNCS) systems (see below).

1 26 57

. 0 01 41

Randomize 01 234 5 6 (1)
A randomization of (1) is given here by n;;; < 2n; + i. We say that this

randomization is lossless because the associated error-metric (e.g., the 2-norm) is

zero. Randomizations may or may not exist given the operator, operand set, and the

set error-metric bounds. Furthermore, even in cases where randomizations exist,
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they may not be discoverable in the allocated search time on a particular processor
(s) [34]. In view of this, the general problem of randomization is inherently
heuristic.

Clearly, there is no logic that can solve the inductive inference problem [34].
Rather, one needs to define a search space such that the search operators are
adequately informed. The more informed the search operators, the less search that is
required (i.e., successful or not). Here is one possible schema to delimit the search
space in this problem:

n =M {* L+, = (%, L+, =i niy ) (2)
Partially assigning mnemonics, this schema can be described as follows.
n; 41 <int extended — ops njops{i, ni_ } (3)

But, even here, it is apparently ambiguous as to how such a schema might be
found. To answer this question, consider the randomization of the even sequence,
2n, and the odd sequence, 2n + 1. The randomization of these two sequence
definitions is given by 2n + j, j € {0, 1}. Next, note that “+” C ops C extended-ops.
Each replacement, at the right, represents a level of generalization. Generalizations
are not made—except to randomize two or more instances. For example, if the odd
sequence were defined by 2n — 1, then a first-level randomization (i.e., based on the
given mnemonics) of 2n + 1 and 2n — 1 is given by 2n ops 1. Clearly, having
multiple mnemonics can greatly enlarge the search space and result in intractable
solutions. An evolutionary approach to reducing the implied search time is to
perform a gradient search outward from known valid points. Here, search reduction
is obtained by commensurately reducing search diversity. It is claimed that this
process is what enables most of us to solve inferential randomization problems such
as this one, most of the time. The dual constraints of available search time on a
given processor(s) versus the generality of the candidate solution space serves to
dynamically contract or expand the search space.

Notice that the process of randomization not only captures existing instances in a
more compact form, but in so doing embodies similar instances, which may or may
not be valid. The point is that by limiting the degree of generalization, one tightens
the degree of analogy and in so doing, increases the chance of a valid inference. The
inferences found to be valid are fed back to the randomization process. This results
in a more delimited search space and provides for multiple analogies—increasing
the subsequent chance for valid inferences. Moreover, according to Solomonoff
[35-37], the inference of grammars more general than regular grammars is inher-
ently heuristic. The context-free grammar (CFG) is the lowest-level such grammar.
All non-deterministic grammars may be statistically augmented—resulting in
stochastic grammars [38]. Furthermore, where heuristics serve in the generation of
new knowledge and that knowledge serves in the generation of new heuristics, the
amplification of knowledge occurs by way of self-reference [1]! Allowing for the
(self-referential) application of knowledge bases, any practical methodology,
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serving in the discovery of these heuristics, must be domain-general to be cost
effective. The transformative search for randomization is the most general such
methodology because it extracts self-referential knowledge from conditional as well
as procedural knowledge in context [33, 34, 39].

3 Problem Description

The problem is to detect a cyber-attack when it happens and recover from a
cyber-attack while it happens. Software needs to be subdivided into components,
which map a set of input vectors to a non-deterministic set of stochastic output
vectors. Components are defined in terms of other components, which are defined
by rules (Fig. 1).

The behavior of a set of Boolean components or a sequence of procedural
components is not unique. Thus, it is possible to synthesize a diverse set of com-
ponents, which provides the desired security for an arbitrary I/O characterization.

3.1 Justification for I/O Characterization of Software
Components

It is acknowledged that there is software, which cannot be sufficiently characterized
by a non-deterministic stochastic I/O mapping. For example, a component might
draw a picture. Here, a knowledge-based system may be applied to rank the quality
of the component. In a sense, mapping input to desired output(s) is universal—it’s
just that intermediate evaluation code is sometimes needed. Thus, while we will not
address such complexities in this paper, it is to be understood that the methodology
advanced herein is completely compatible with them. In fact, it may be used to
define the intermediate knowledge-based evaluation systems.

Another point of contention pertains to the use of empirical testing instead of, or
in combination with, denotational or axiomatic semantics for program validation.
The recursive Unsolvability of the Equivalence Problem [3] proves that in the

Fig. 1 Recursive rule-based
definition of software
components
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general case it is impossible to prove that two arbitrary programs compute the same
function. Moreover, approaches to program validation based on computational
semantics have proven to be unacceptably difficult to apply in practice. There can
be no theoretical method for insuring absolute validity once a program grows to a
level of complexity to be capable of self-reference [1, 3, 34].

It follows that program validation is properly based on empirical testing, the goal
of which is to cover a maximal number of execution paths using a minimal number
of test cases. This is none other than randomization [33, 34]. Of course, there is no
need to achieve the absolute minimum here—a minimum relative to the search time
required to find the test cases will suffice. In a large enough system of systems, the
methodology advanced herein may be applied to the generation of relatively ran-
dom test cases. Randomization serves to maximize reuse. Reuse is perhaps the best
real-world technique for exposing and thus minimizing the occurrence of program
bugs.

3.2 Random-Basis Testing

Each component saved in the database is associated with one or more I/O test vector
pairings that serve to map a random input vector to correct non deterministic output
vectors. The underpinning principle is that test vectors, which have been sufficiently
randomized, are relatively incompressible. For example, consider the synthesis of a
sort function using LISP (Fig. 2). There are some extraneous details such as
knowing when a particular sequence will lead to a stack overflow, but these are
easily resolved using an allowed execution time parameter. Impressive programs
have been so synthesized—supporting the component-based concept. Notice that
components can be written at any scale—from primitive statements to complex
functions. Given only so much allocated search time, the system will either discover
a solution or report back with failure. This is in keeping with the recursive
Unsolvability of the Halting Problem [3, 34].

Consider such I/O constraints as (32 1) (1 2 3)) (31 2) (1 2 3))). That is, when
(32 1) is input to the sort function, it is required to output (1 2 3). Similarly, when (3
1 2) is input to it, it is required to output the same. Clearly, there is little value in
using a test set such as (((1) (1)) (2 1) (12))(321)(123))((4321)(1234))...).

The problem here is that this test set is relatively symmetric or compressible into
a compact generating function. A fixed-point or random test set is required instead
and the use of such relatively random test sets is called, random-basis testing [40].
While the need for functional decomposition remains, under random-basis testing,
the complexity for the designer is shifted from writing code to writing search
schema and relatively random tests. For example, such a test set here is (((1) (1)) ((2
1)(12)@312)123))((123) 23))). Many similar ones exist. One may also
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( (DEFUN MYSORT (S)
(COND ( (NULL S) NIL)
(T (CONS (MYMIN S (CAR S))
(MYSORT (REMOVE (MYMIN S(CAR S)) S)))))))
? io
(C((132))(1 23))(((321))(123))(((123))(123)))
? (pprint(setq frepos ' ((CRISPY'
(DEFUN MYSORT (S)
(COND (FUZZY ( (NULL S) NIL)
( (ATOM (FUZZY S((FUZZY CAR CDR) S))) NIL))
(T (CONS (MYMIN S(CAR S))
(MYSORT (REMOVE (MYMIN S(CAR S)) S))))))))))
((CRISPY ' (DEFUN MYSORT (S)
(COND (FUZZY ( (NULL S) NIL)
( (ATOM (FUZZY S((FUZZY CAR CDR) S))) NIL))
(T (CONS (MYMIN S(CAR S))
(MYSORT (REMOVE (MYMIN S(CAR S)) S))))))))

; Note that (ATOM S) was automatically programmed using the large
fuzzy function space.

? (pprint (auto frepos 1io))
( (DEFUN MYSORT (S)
(COND( (ATOM S) NIL)
(T(CONS (MYMIN S (CAR S))
(MYSORT (REMOVE (MYMIN S(CAR S)) S)))))))

; Note that each run may create syntactically different, but semanti-
cally equivalent functions:

? (pprint (auto frepos io))
( (DEFUN MYSORT (S)
(COND ( (NULL S) NIL)
(T (CONS (MYMIN S(CAR S))

(MYSORT (REMOVE (MYMIN S(CAR S)) S)))))))

Fig. 2 Function synthesis using random-basis testing

want to constrain the complexity of any synthesized component (e.g., Insertion
Sort, Quicksort, et al.). This can be accomplished through the inclusion of temporal
constraints on the I/O behavior (i.e., relative to the executing hardware and com-
peting software components).
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3.3 Component Definition

There are two categories of components—Boolean components, which return True
or False and procedural components, which compute all other functions and can
post and/or retract information to/from a blackboard. There are two blackboards—a
local blackboard, which is only accessible to local component functions and pro-
cedures as well as those invoked by them and a global blackboard, which is
accessible to all component functions and procedures. The blackboards dynamically
augment the input vectors to provide further context.

All components are composed of rules, each of which consists of one or a
conjunction of two or more Boolean components, which imply one or a sequence of
two or more, procedural components—including global and local RETRACT and
POST. Given an input vector and corresponding output vector(s), the rule base
comprising the component must map the former to that latter at least tolerance
percent of the time. The default tolerance is 100 %. Transformation may also favor
the fastest component on the same I/O characterization. Notice that greater diver-
sification comes at an allowance for less optimization.

3.4 Component Synthesis

A library of universal primitive and macro components is supplied and evolved.
There are three ways that these are retrieved. First, is by name. Second is by
mapping an input vector closer, by some definition (e.g., the 2-norm et al.), to a
desired non deterministic output vector (i.e., hill climbing—non contracting
transformations reducing the distance to a goal state with each substitution). Third
is just by mapping the input vector using contracting and non contracting trans-
formations (i.e., Type O transformation). Hill climbing and Type O transformation
may be combined and occur simultaneously until interrupted. The former accel-
erates reaching a desired output state, while the latter gets the system off of
non-global hills.

Macro components are evolved by chance. They comprise a Very High Level
Language (VHLL). For example, a macro component for predicting what crops to
sow will no doubt invoke a macro component for predicting the weather. Similarly,
a macro component for planning a vacation will likewise invoke the same macro
component for predicting the weather (i.e., reuse) [41].

Test vectors are stored with each indexed component to facilitate the pro-
grammer in their creation and diversification as well as with the overall under-
standing of the components function. While increasing the number of software tests
is generally important, a domain-specific goal is to generate mutually random
ordered pairs [40]. Components in satisfaction of their I/O test vectors are valid by
definition. Non deterministic outputs are not stochastically defined for testing as it
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would be difficult to know these numbers as well as inefficient to run such quan-
titative tests.

As software gets more complex, one might logically expect the number of
components to grow with it. Actually, the exact opposite is true. Engineers are
required to obtain tighter integration among components in an effort to address cost,
reliability, and packaging considerations, so they are constantly working to
decrease the number of software components but deliver an ever-expanding range
of capabilities. Thus, macro components have great utility. Such randomizations
have an attendant advantage in that their use—including that of their constituent
components—implies their increased testing by virtue of their falling on a greater
number of execution paths [33, 34, 42]. The goal here is to cover the maximum
number of execution paths using the relatively fewest I/O tests (i.e., random-basis
testing [40]).

The maximum number of components in a rule, as well as the maximum number
of rules in a component, is determined based on the speed, number of parallel
processors for any fixed hardware capability, and the complexity of processing the
I/O vectors. It is assumed that macro components will make use of
parallel/distributed processors to avoid a significant slowdown. Components that
are not hierarchical are quite amenable to parallel synthesis and testing.

Components may not recursively (e.g., in a daisy chain) invoke themselves. This
is checked at definition time through the use of an acyclic stack of generated calls.
Searches for component maps are ordered from primitive components to a maximal
depth of composition, which is defined in the I/O library. This is performed to
maximize speed of discovery. The components satisfying the supplied mapping
characterization are recursively enumerable.

Software engineers can supply external knowledge, which is captured for the
specification of components. Components are defined using a generalized language
based on disjunction. This is because it is easier to specify alternatives (i.e.,
schemas) in satisfaction of I/O constraints than to specify single instances (e.g., Al
B —->Cthan A - C|B — C; or, A — BIC than A - B | A — C). Moreover, such an
approach facilitates the automatic re-programming of component definitions in
response to the use of similar I/O constraints. The idea is to let the CPU assume
more of the selection task by running a specified number of rule alternates against
the specified I/O constraints. This off-loads the mundane work to the machine and
frees the software engineer in proportion to the processing speed of the machine.
Here, the software engineer is freed to work at the conceptual level; while, the
machine is enabled to work at the detailed level. Each is liberated to do what it does
best. The number of (macro) Boolean components, (macro) procedural components,
and alternate candidate rules is determined by the ply of each and the processing
speed of the machine. Notice that the task of programming component rules is thus
proportionately relaxed. Programming is not necessarily eliminated; rather, it is
moved to ever-higher levels. This is randomization [33]. Furthermore,
component-type rule-based languages have the advantage of being
self-documenting (e.g., IF “Root-Problem” THEN ‘“Newton-Iterative-Method”).
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Novel and efficient development environments can be designed to support the
pragmatics of such programming.

Each run may synthesize semantically equivalent (i.e., within the limits defined
by the I/O test vectors), but syntactically distinct functions (e.g., see the alternative
definitions for MYSORT at the bottom of Fig. 2). Similar diversified components
are captured in transformation rules. Thus, initially diversified components are
synthesized entirely by chance, which of course can be very slow. Chance synthesis
is a continual on-going process, which is necessary to maintain genetic diversity.
But, once transformation rules are synthesized, they are applied to constituent
component rules to create diversified components with great rapidity. The 3-2-1
skew may be applied to favor the use of recently acquired or fired transformation
rules. It uses a logical move-to-the-head ordered search based upon temporal
locality [43]. The acquisition of new components leads to the acquisition of new
transforms. Note that if the system sits idle for long, it enters dream mode via the
3-2-1 skew. That is, it progressively incorporates less recently acquired/fired
transforms in the search for diversified components.

Transformation rules can be set to minimize space and/or maximize speed and in
so doing generalize/optimize. Such optimizations are also in keeping with Occam’s
Razor, which states that in selecting among competing explanations of apparent
equal validity, the simplest is to be preferred. If, after each such transformation, the
progressively outer components do not properly map their I/O characterization
vectors, then it can only be because the pair of components comprising the trans-
formation rule is not semantically equivalent. In this case, the transformation is
undone and the transformation rule and its substituted component are expunged
(i.e., since it has an unknown deleterious I/O behavior). This allows for a proper
version to be subsequently re-synthesized. Components having more-specific
redundant rules have those rules expunged.

Convergence upon correct components and thus correct transforms is assured.
This is superior to just using multiple analogies as it provides practical (i.e., to the
limits of the supplied test vectors) absolute verification at potentially multiple
component levels. Such validation is not in contradiction with the Incompleteness
Theorem as the test vectors are always finite as is the allowed runtime [1].

3.5 Non Monotonic Rules

Non monotonic rules are secondary rules, which condition the firing of primary
rules. They have the advantage of being highly reusable—facilitating the specifi-
cation of complex components. Reuse is a tenet of randomization theory [34]. Both
local and global blackboards utilize posting and retraction protocols. The scope of a
local blackboard is limited to the originating component and all components
invoked by it. For example,
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{Laces: Pull untied laces, Tie: Make bow} — GRETRACT:
(Foot — ware: Shoes are untied); GPOST: (Foot — ware: Shoes are tied)  (4)

The order of the predefined, global and local RETRACT and POST procedures
is, akin to all procedural sequences, immutable.

3.6 Component Redundancy and Diversification

The pattern-matching search known as backtracking can iteratively expand the
leftmost node, or the rightmost node on Open [44]. Results here are not identical,
but are statistically equivalent. If one component is provided with one expansion
search parameter, the other component must be provided with the same search
parameter, or the resultant dual-component search will have some breadth-first,
rather than strictly depth-first characteristics. This will change the semantics
resulting from the use of large search spaces. Clearly, components need to be
transformed with due regard for subtle context to preserve their aggregate seman-
tics. These semantic differences become apparent on input vectors, which are
outside of those used for I/O definition. Their use can result in erroneous com-
munications via the local and/or global blackboards. The system of systems,
described in the technical approach below, evolves such context-sensitive compo-
nents and their transformations.

NNCSs can potentially provide exponentially more security than can a
multi-compiler by finding multiple paths from start to goal states [44, 45]. Under
syntactic differentiation, achieving the same results implies computing the same
component semantics. Under transformational equivalence, one need not compute
the same exact component semantics—only ones that achieve the same results in
the context of other components. Given sufficiently large problem spaces and
sufficient computational power, exponential increases in cyber security can thus be
had. Syntactic differentiation can at best provide only linear increases in cyber
security. Thus, our methodology offers far greater security against cyber-attacks
than can conventional approaches [2].

The transformational process converges on the synthesis of syntactically distinct
components, which are, to the limits of testing, semantically equivalent. Such
components can be verified to be free from attack if their I/O synthesis behavior is
within the specified tolerance. Even so, multiple “semantically equivalent” com-
ponents may compute different output vectors on the same, previously untested
input vectors. Here, diversity enables the use of multiple functional analogies by
counting the number of diverse components yielding the same output vector. It also
allows for a count of the approximate number of recursively enumerable distinct
paths leading to the synthesis of each component. This multiple analogies of
derivation, when combined with multiple functional analogies, provide a relative
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validity metric for voting the novel output vectors. These solution vectors are very
important because they evidence the system capability for learning to properly
generalize by way of exploiting redundancy (i.e., in both function and derivation).
Furthermore, having multiple derivations provides stochastic non deterministic
probabilities. This lies at the root of human imagination and knowledge.

4 Technical Approach

The more constrained the search for knowledge, not only the faster that knowledge
may be discovered, but the faster heuristics aiding in the discovery of that
knowledge may be obtained as well.

4.1 The System of Systems Randomization Methodology

To this point, redundancy and diversification have been discussed in the context of
detecting and recovering from a cyber-attack as well as in the inductive prediction
of outputs for inputs not previously supplied. The methodology that follows is
depicted in Fig. 3.

Component Types. There are two categories of components—Boolean com-
ponents, which return True or False and procedural components, which compute all
other functions. There are two blackboards—a local blackboard and a global
blackboard, which is accessible to all component functions and procedures. The
blackboards dynamically augment the input vectors to provide further context. Two
special predefined components are the non monotonic global and local RETRACT
and POST procedures. Each carries a single well-defined argument found in the I/O
library. The scope of a local blackboard is limited to the originating component and
all components invoked by it. The global blackboard is visible to all components.
Postings and retractions should be made by the most primitive level component as
is practical (i.e., having the lowest maximal depth of composition) to facilitate
efficiency and validity (i.e., minimizing the potential for deleterious side effects).

Component Structure. All components are composed of rules, each of which
consists of one or a conjunction of two or more Boolean components, which imply
one or a sequence of two or more, procedural components—including global and
local RETRACT and POST. Given an input vector and corresponding output vector
(s), the rule base comprising the component must map the former to that latter at
least tolerance percent of the time. The default tolerance, ¢, is 100 %. A Boolean
speed of computation compiler directive, s, when set means that the direction of
transformation favors the component performing at least as fast on the same 1/O
characterization vectors. A Boolean space of computation compiler directive, a, is
similar.
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Fig. 3 A system of systems methodology for NNCS

Macro Component Library. A library consisting of at least universal primitive
and macro components is supplied. I/O test vectors and the maximal depth of
composition are stored with each indexed component. Components may be
retrieved by name, by mapping an input vector closer, by some definition (e.g., the
2-norm et al.), to a desired non deterministic output vector (i.e., hill climbing—non
contracting transformations reducing the distance to a goal state with each substi-
tution), and/or by mapping the input vector (i.e., Type O transformation—con-
tracting and non contracting transformations). Hill climbing and Type 0
transformations are interleaved, since each can benefit the other. Search is termi-
nated upon interrupt.

Component Synthesis. Macro components are evolved by chance. Basically,
Boolean and procedural components are selected from the library at chance and
combined into defining rules based on software engineer defined schemas (see
below). Set the maximum number of components in a rule and the maximum
number of rules in a component—at the primitive level. The maximum number of
such components and such rules is determined by the software engineer in con-
sideration of the capabilities of the executing hardware, the complexity of pro-
cessing the I/O vectors, and any supplied external knowledge (see below). These
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maximums will need to respect macro components if a sufficient number of parallel
processors cannot be had. This may be accomplished by dividing this number by
the maximal depth of composition found in the I/O library. The process iterates
until the supplied I/O vectors are properly mapped within the specified tolerance, or
an interrupt signals failure to do so (whereupon the software engineer may modify
the search specification, or abandon it). Components may not recursively (e.g., in a
daisy chain) invoke themselves. This is checked at definition time through the use
of an acyclic stack of generated calls. Once evolved, macro components are added
to the I/O library. All else being equal, search primitive components before macro
components, as recursively defined (referring to the maximal depth of composition
in the I/O library), for effective I/O maps.

Component Definition. Components are defined using a generalized language
based on disjunction. This is because it is easier to specify alternatives (i.e.,
schemas) in satisfaction of I/O constraints than to specify single instances (e.g., Al
B—>Cthan A - CIB - C;or, A—- BIC than A - B | A — C). The number of
(macro) Boolean components, (macro) procedural components, and alternate can-
didate rules is determined by the ply of each and the processing speed of the
machine. Furthermore, component-type languages have the advantage of being
self-documenting (e.g., IF “Root-Problem” THEN ‘“Newton-Iterative-Method”).
Novel and efficient development environments can be designed to support the
pragmatics of such programming.

Component Schedule. Synthesize components in satisfaction of the I/O test
vectors and s, a, and ¢ by chance. Such synthesis may lead to diverse components
computing the same function. Pairings of such components form transformation
rules, which are saved in a separate base and dynamically ordered using the 3-2-1
skew. Rules are logically moved to the head of their list upon acquisition or firing.
Convergence upon correct components, and thus correct transforms, and so on
follows with scale. A most-specific first agenda mechanism controls the firing of
component rules. Redundant rules, having a more-specific (i.e., superset) of Boo-
lean components, are expunged. The direction of transformation is determined by
compiler directives, based on s, a, and 7. Use of the s and/or a optimization
directives minimizes the potential for diversification. Conversely, decreasing the
t generalization directive maximizes the potential for diversification.

Component Computation. Diverse components are constructed by transfor-
mation, which in turn depends on random component synthesis as a source of
transformation rules. The relative time spent (processors allocated) for each is
dynamically given as follows.

Let, r(t) give the number of novel transformation rules yielded by components
synthesized by chance, over some timeframe, t.

Let, x(t) give the number of novel component rules yielded by transformation
rules, over some timeframe, t.

Note that it could potentially reduce the diversity space; and, it is otherwise
redundant to self-apply transformation rules.
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Then, the percent of time/resources to be spent in transformation rule synthesis is

given by m;ﬁﬁ while, the percent of time/resources to be spent in component

rule synthesis is given by i M0+ here if () + x(t) = 0, t is doubled else 7 is

1) +x(t)+2°
halved. ¢ is initialized to 1.0. Thus, time/resources are proportionately spent where
they were most-recently productive.

Component Diversification. The 3-2-1 skew favors the use of recently acquired
or fired transformation rules. Transformation rules are applied to the (symmetric)
rules comprising a component to yield diversified components. Diversified com-
ponents are realized using at least one diversified rule, which in turn, consists of at
least one diversified component. Duplicate transformation rules are logically moved
to their list head. Every component substitution is verified using the local and
progressively higher I/O characterization vectors and invoking components. In case
of failure, the involved component rule, the involved transformation rule, and the
substituted component are expunged.

Component Validation. Components are verified to be free from attack if their
I/O synthesis behavior is within the specified tolerance. Even so, multiple “se-
mantically equivalent” components may compute different output vectors on the
same, previously untested input vectors. Here, diversity enables the use of Multiple
Functional Analogies (MFA) by counting the number of diverse components
yielding the same output vector. It also allows for a count of the approximate
number of recursively enumerable distinct paths leading to the synthesis of each
component. This is approximated by the number of times that it is derived—
including random and transformational synthesis. This Multiple Analogies of
Derivation (MAD), when combined with the MFA, provide a Relative Validity
Metric (RVM) for voting the novel output vectors. Using the 3-2-1 skew, com-
ponents synthesized from more recently acquired/fired transformation rules are
given a higher relative validity, since they are more likely to be repeatedly derived.
This makes sense because these solutions are immediately needed (i.e., just in time
synthesis) and not stored for possible future use. The MAD for the ith combination
of Boolean components in a rule is given by:

card{component; synthesis}

MAD(i) = (5)

|components|

(Y card{component; synthesis}) /components|
j=1

The greater the MAD, the more likely the novel output vector is to be valid.
The MFA for the ith combination of Boolean components in a rule is given by:

NDO
Y card{component; ; output}
N k=1
MFA (l) - NDO |components| (6)
card{component; ; outputs} /|components|) INDO

k=1 j=1
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where NDO is the number of non-deterministic outputs per component. Hence, the
joint RVM for the ith combination of Boolean components in a rule is given by
combining (5) and (6):

RVM (i) = MAD(i) - MFA(i) (7)

The greater the RVM, the more likely the output is to be valid. Validity is
associated with an RVM > 1. Absolute component validity is predicated on testing
as absolute validity is not necessarily provable [1].

Non Deterministic Outputs. Non deterministic procedural alternatives are
defined to be a member of the specified output vectors. The probability of each
distinct alternative is directly proportional to the number of paths for its synthesis.
This, in turn, is approximated by the number of times that it is derived—including
random and transformational synthesis. Thus, the dynamic stochastic probability for
the jth non deterministic selection for the ith combination of Boolean components
in a rule is given by:

d dural; synthesi
non det prob(i, j) = NDcoar {procedural; synthesis} (8)

Y card{proceduraly synthesis}
k=1

where NDO is the number of non deterministic outputs.

4.2 Proof of Concept

This methodology will be proven to be immune to cyber-attack by two routes. First,
it will be demonstrated that a significant percentage of components can be corrupted
and the system of systems will autonomously discover and report this occurrence
and still return correct outputs. Second, it will be demonstrated that the system of
systems can generalize I/O maps in the form of diverse components that can usually
properly map previously unseen inputs to correct outputs. This is accomplished by
supplying NNCSs I/O vectors, letting it learn diverse component maps, supplying
novel input vectors for similar problems—correct output vectors for which have
never been supplied, and seeing if the system converges on finding correct non
deterministic output vectors. Such a result not only solves the long-standing gen-
eralization problem in CBR [46], but the context-based knowledge extension
problem, previously described in [46—49].

Contemporary components for NNCS will be taken from select newLISP
functions used for the realization of the methodology (e.g., bootstrapping). The
system of systems will automatically generate diverse components from them. The
performance of the system will be rated as a function of scale. It will be shown that
the inferential error rate is inversely proportional to scale. That is, the larger the
domain-specific component base and the more processing power/time allocated, the
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lower the inferential error rate. A cost-benefit analysis of the protection provided by
component diversification can be provided based on an empirical study and pro-
jection of its scalability.

5 (I for Tactical Battle Management

In this section, our prototype NNCS program will be demonstrated as applied to
learning tactical battle management. Here, the focus will be on learning more than
on actual battle management techniques. Indeed, the entire program is being
reworked and moved from a rule-based approach to an algorithmic one to better
capture the nuances of natural language understanding as well as those pertaining to
naval battles. The problem is that although rules are universal [44] and cases are
easy to manage [46—49], neither generic approach can efficiently capture the
structure and knowledge applied in complex decision making.

5.1 Opverview of Battle Management

The goal of battle management is to provide decision superiority to one side, which
then translates into victory over an opponent(s). Successful battle management
requires assessing the context—that is, what is and is not relevant to the outcome of
a battle(s). It also entails logistics, or the allocation of scarce resources where and
when they are needed to provide the necessary advantage. In what follows, this
desired behavior is approximated through a rule-based system having a computa-
tionally intelligent capability to learn. Note that successful learning, in theory at
least, is merely a matter of allocating enough time and space to the algorithm.
However, in practice, a far more programmed structure becomes necessary with
scale. The following example is abridged as necessary.

5.2 NNCS Interactive Learning

Here, a sample run of the first NNCS LISP program will be presented to highlight a
few capabilities. Randomization is performed in “dream mode” (i.e., when the
system would otherwise be idle), where the system applies learned equivalence
rules to itself to randomize its knowledge bases. Not only does this facilitate
contextual matching, because the context and situations are similarly normalized;
but, it also economizes produced actions through randomization. As an example of
the latter, it might substitute automobile for the description of a car. However, a
simple randomization example requires about ten pages, which exceeds the
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allocated space herein. The program is cold-started and is devoid of any domain or
natural language processing knowledge.

Dream Demo. Here is an early battle management executable, which demon-
strates its capability for randomization in dream mode. Note that only, “shorthand
keys”, not the equivalent “narrative phrases”, are shown to conserve space. Gen-
erally, with sizable knowledge bases, dream mode will be measured in hours, but
here we use the minimum of 1 min for demo. Randomization serves to enable
contextual matches that are syntactically distinct, but semantically equivalent. Since
multiple transformations are used, this can be an arbitrarily complex equivalence.
The randomization of actions, for example, allows one to state, “seek shelter,”
instead of (1) find abode with four walls and roof, (2) make path to abode, (3) ...
Not only does this make for convenient communication to human or machine, but
similarly enables practical transformation (e.g., shelter — aircraft hanger versus the
unruly expanded equivalent).

This function uses the 3-2-1 skew to randomly transform a random rule LHS and
RHS. Rules are randomly selected from [0, 0], [0, 1], [0, 2], [0, 3], ..., [0, n], and
holding. Rules LHS and RHS are processed in sequence before selecting the next
rule. The goal is to iteratively minimize the length of each side. This minimizes the
number of questions asked and often provides the best answers. It also conserves
space and thus speeds up the algorithm as well. The following three lists—left-hand
side transformation rules, right-hand side transformation rules, and the rule base,
respectively, were used for brief demonstration of dream mode. A fourth list, or
dictionary, used for table lookups for translation is not shown. In what follows, the
user repeats many queries. This is done to show how the responses evolve with
learning. Also, the CI system has capabilities to reuse answers for non-monotonic
reasoning, which have not been adequately demonstrated for the sake of brevity.
Brief comments have been added for purposes of explanation. As in LISP, each
comment is prefixed with a semicolon.

(Setq LHSCqI’ulCS (((“ ’?) (“ ”)) ((66 e4l Gé tE N3 ”) (“ 2 “t”)) ((“ EE N3 ’7) (“ ’7)) ((“ 29
“X7p”) (Cp” “p)) (X “X”) (“27)))); s1tuat10nal transformation rules of the form,

((LHS) (RHS))
(setq RHSeqrules '(((“~") (~) (727 “p") (") (X “X7) (7))

; action transformation rules, where the matched LHS is transformed into the RHS

(Setq mlebase (((“ 9’) (“ 79)) ((“ 29 “ EEINT3 ”) (“ 99 “ 99 <. 9’)) ((“ EE) “ ER) “ 29 “X” “X”
upa’ “ ”» “ LEINT3 9’) (“ 2 “ i1 u Lt} “X” “X” “p” “ tE) “ 9 < 75)) ((“ 2 “ th) “ tL) “ i3] u 9 < 77)
(“ ’ “ 9 “ et} “X” “X” “X” “p” “X” 113 ”)))) maln I'ule baSe Where the I'ules Of the

form, ((s1tuat10n) (action)) are acquired from user interaction to correct perceived
errors

> (Main)
Sun Jun 28 13:35:43 2015
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Please specify the desired filename, or use “Enter” to prevent saving results

? battle management

The file, “BATTLE MANAGEMENT” is unknown. Do you wish to cold start and
create it (c), or not (n)

?7c¢

The four knowledge bases and keylength have been initialized.
At Sea. Here is the battle management executable, illustrated for the context of
learning decision superiority for a hypothetical naval battle:

Can we continue (yes or no)
7y

Tell me the starting conditions and end with a <CR>

? An enemy submarine has been detected.

The matching sentence is:

An enemy submarine may launch a torpedo against our ship
Is that right

7y

You said that I was correct.

The unique key is “P” ; an automatically created unique identifier

Give me an antecedent and end with a <CR> ; antecedent is a situation

? An enemy submarine has been detected off the port bow.

The matching sentence is: ; the use of similarity metrics found a disjoint semantics
Depth charges can reach enemy submarine at distance

Am I correct

7n

You said no or that you don’t know. ; entering a “dk” would produce the same
result here
What is an equivalent consequent for:
(Press “Enter” to copy and use the shown situation for the action:)
? An enemy submarine has been detected off the port bow
? ; the action and the situation are set to the same here for simplicities sake

The associated right-hand side predicate is:

an enemy submarine has been detected off the port bow

The unique key is “i” ; we set a system parameter was set to show this unique id
Tell me the starting conditions and end with a <CR>

? ; an absent input serves to signal an end to a conjunction of antecedents

The initial (last) context was:

An enemy submarine may launch a torpedo against our ship.
- and -

An enemy submarine has been detected off the port bow.

In my judgement, the following action is likely.
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This is a new action.

The fired consequent in shorthand keys is: (“f” “s”)

The fired consequent in narrative phrases is:

Fire anti-submarine weapon. ; this corresponds to the “f” key

- and -

Turn ship to defend against torpedoes.; this corresponds to the “s” key
The probability is 50 percent; the system derives a probability from the match
Is that last actions meaning correct

7y

Can you give me an exactly equivalent correct context (yes, no, or dk)
7y

Tell me the starting conditions and end with a <CR>

? An enemy submarine is off the port bow.

The matching sentence is:

An enemy submarine has been detected off the port bow
Is that right

7y

You said yes. ; the echo will sometimes appear—just as in natural conversation
The unique key is “i”

Enter a contextual sentence and end with a <CR>

? The danger is that the enemy submarine may torpedo our ship.
The matching sentence is:

An enemy submarine may launch a torpedo against our ship

Is that right
7y

You said that I was correct.

The unique key is “P”

Give me an antecedent and end with a <CR>

? ; an absent input serves to signal an end to a conjunction of antecedents

Can you give me another situation having the same exact meaning (yes, no, or dk)
? n ; this is so it learns semantically equivalent situations for use in matching
Can you restate the action without changing its exact meaning (yes, no, or dk)
?y ; this is so it learns semantically equivalent actions for use in matching

Tell me a proper action, or unknown, and end with a <CR>

? Turn the ship away from the enemy submarine.

The matching sentence is:

An enemy submarine has been detected off the port bow

; this does not mean the same thing

Am I correct
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7n

You said that I was incorrect or that you don’t know.

What is an equivalent antecedent for:

(Press “Enter” to copy and use the shown action for the situation:)

? Turn the ship away from the enemy submarine

? ; the action and the situation are ascribed the same syntax

The associated left-hand side predicate is:; a carriage return here “duplicates”
turn the ship away from the enemy submarine

The unique key is “n”

Tell me a proper action, or unknown, and end with a <CR>

? Launch an anti-submarine weapon.
The matching sentence is:

Fire anti-submarine weapon

Am I right

7y

You said that I was correct.
The unique key is “f”
Tell me a proper action, or unknown, and end with a <CR>

7

Can you restate the action without changing its exact meaning (yes, no, or dk)
7n

There were no cycles in the action sequence.; cycles need be broken for answers
Keep going (yes, no, copy, or append (last action))

7y

Give me an antecedent and end with a <CR>
? An enemy submarine periscope was detected off the port bow.

The found matching sentence is:
An enemy submarine has been detected off the port bow
Is that correct

7y

You said yes.
The unique key is “i”

Enter a contextual sentence and end with a <CR>
?

The initial (last) context was:

An enemy submarine has been detected off the port bow.

Here is what I think is likely.

This is a new action.

The transformed and fired consequent in shorthand keys is: (“f” “s”)
The transformed and fired consequent in narrative phrases is:
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Fire anti-submarine weapon.

- and -

Turn ship to defend against torpedoes.
The probability is 50 percent.

Is that last action semantically correct
Ty

Can you give me another context having the same exact meaning (yes, no, or dk)
7n

Can you give me an exactly equivalent correct action (yes, no, or dk)
7n

The action sequence was acyclic.
Continue (yes, no, copy, or append (last action))

7y

Enter a contextual sentence and end with a <CR>
?

The starting (last) context was:

Enemy submarine detected off starboard bow.

This is a new context for me.

The initial (last) action was:

Shoot back.

The same transformed (last) action is:

Fire back rounds.

Do these consequents have the same meaning (yes, no, or dk)

7y

Could you give me a proper action (yes, no, or dk)

(Or, initially enter “f”, or “final”, for a terminating cycle)
9

ry

Give me a consequent, or unknown, and end with a <CR>

? Sound general quarters

I recall that exact sentence.

The unique key is “h”

Enter an action sentence, or unknown, and end with a <CR>
? Launch anti-submarine weapon.

The matching sentence is:

Fire anti-submarine weapon

Is that right

7y
You agree with me.
The unique key is “f”

Tell me the starting conditions and end with a <CR>
?



218 S.H. Rubin and T. Bouabana-Tebibel

The initial (last) context was:

Fire anti-submarine weapon.

Turn ship to defend against torpedoes.

Fire anti-aircraft guns.

- and -

We are under attack by an enemy submarine enemy tanks and enemy aircraft.
Is this the correct situation

7y

Here is what I think is very probable.

This is novel.

The fired consequent in shorthand keys is:
“f7 “x” “N” “T”)

The fired consequent in narrative phrases is:
Fire anti-submarine weapon.

Turn ship away from enemy submarine.
Fire anti-aircraft guns.

- and -

Fire agm-114r missiles at enemy tanks ashore.
The probability is 75 percent.

Is my last action correct

Ty

Can you give me another proper context having the same exact meaning (yes, no,
or dk)
7n

Can you give me another consequent having the same exact meaning (yes, no, or
dk)
7n

There were no cycles in the action sequence.

Keep going (yes, no, copy, or append (last action))
9

ry

Tell me the starting conditions and end with a <CR>
? The ship is under attack by enemy aircraft, an enemy submarine, and enemy
tanks.

The found matching sentence is:

We are under attack by an enemy submarine enemy tanks and enemy aircraft
Am I right

7y

You said yes.

The unique key is “R”

Tell me the starting conditions and end with a <CR>
?



NNCS: Randomization and Informed Search ... 219

The beginning (last) antecedent was:

We are under attack by an enemy submarine enemy tanks and enemy aircraft.
In my opinion, the following action is improbable.

This is novel.

The fired consequent in shorthand keys is: (“f” “x” “N” “T”)
The fired consequent in narrative phrases is:

Fire anti-submarine weapon.

Turn ship away from enemy submarine.

Fire anti-aircraft guns.

- and -

Fire agm-114r missiles at enemy tanks ashore.

The probability is 25 percent.

Is my suggested action right

Ty

Can you give me an exactly equivalent correct context (yes, no, or dk)
7n

Can you restate the action without changing its exact meaning (yes, no, or dk)
7n

There were no cycles in the action sequence.
Do you want me to keep going (yes, no, copy, or append (last action))
7n

May I take a dream hour now (yes or no)
7n

Do you wish to save the file, “BATTLE MANAGEMENT”
9
Ly

Proceeding to save the file, “BATTLE MANAGEMENT”.

The file, “BATTLE MANAGEMENT” has been saved in the Knowledgebases
folder.

The file, “BATTLE MANAGEMENT” has been saved in the Backups folder.
Semper Fi!

5.3 Summary

Rules can be learned for a computationally intelligent system as was demonstrated
above. However, the non-monotonic reasoning required with scale becomes
unmanageable. Details need to be explicitly programmed—not only in the interests
of efficiency, but because without a sufficient framework, such learning becomes
NP-hard. This then is the pragmatic side—again, despite the universality of
rule-based systems.
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Case-based systems were reviewed for the intelligent capability to generalize the
cases. The case-based version is a better design because it can combine statistical
and formal generalizations and can insure cyber security using multiple processors
vice multiple non-deterministic codes. It is also more scalable. However, even here,
with increasing scale such generalization needs algorithmic knowledge to be valid,
tractable, and in the needed direction. Even a transformative calculus needs
heuristics to squelch combinatoric explosions. The problem is like attempting to
scale the predicate calculus (Prologue) [44]. Eventually, heuristics are needed, or
the back-cut and resolution mechanisms grind to a halt under the combinatorics of
their own expansion [50].

6 Discussion and Concluding Remarks

The Mission critical systems are increasingly subject to operation in hostile envi-
ronments, where cyber-attack is just a click away. The cost of combining redun-
dancy and component diversity is justified by the cost of security failures in mission
critical systems.

The greater the multiplicity of components derived through chance and trans-
formation, the greater their individual reliabilities will be through the use of mul-
tiple analogies. Chance and ordered transformation are dynamically balanced in the
definition of diverse components. Communication occurs, using non monotonic
components, through both a global and local blackboards. Although the method-
ology is self-referential, it is not subject to the limitations imposed by the Incom-
pleteness Theorem [1]. This is because it is inherently heuristic.

In theory, the only competing way to realize the results promised in this chapter
is to apply knowledge to the inference of knowledge. A few approaches here have
met with limited success [50]. The problem is that the knowledge, which is
self-referential, needs proper context for applicability. This context cannot be
generated by the formal system itself due to limitations imposed by the Incom-
pleteness Theorem [1]. Rather, it must be externally supplied, which by definition
necessarily makes it an incomplete set, or it must be heuristic in nature (e.g.,
multiple analogies) to avoid applicability of the Incompleteness Theorem.

A divergent multiple-analogies approach to component synthesis underpins this
chapter. A theoretical consequence of this heuristic approach is that all non-trivial
learning systems must embody an allowance for inherent error in that which may be
learned. Thus, despite the seeming appeal of valid deduction systems (e.g., the
predicate calculus and Japan’s Fifth Generation project [51]), they are inherently
not scalable. The Navy requires scalable software systems, which are relatively
immune to cyber-attack.

The novel technology has been realized in NNCSs for the generation of sym-
metric software for countering cyber-attacks. The problem here pertains to the
acquisition of components along with a methodology for mapping supplied input
vectors to one or more desired stochastic output vectors. These maps need to be
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diverse to thwart cyber-attacks as well as to allow for the use of multiple analogies
to better predict the (non-deterministic) mapping of previously unknown inputs.
This methodology has been realized in newLISP (in view of its superior list pro-
cessing capabilities) as a system of systems. It enables a relative immunity against
cyber-attacks. It can also succeed against a sequence of progressively more com-
plex problems for which no solution has been pre-programmed; although, the
learning mechanism here is not very efficient. Finally, the performance of the
system (i.e., the inferential error rate) is tied to the size of the transformational base
as well as the processing power/time allocated in conjunction with the
schema-definition language. This is unbounded, by any non-trivial metric, because
the Kolmogorov complexity of computational intelligence is unbounded [52].

The value of a successful experiment is that as a result, component software
systems will be able to protect themselves against cyber-attacks. Our methodology
offers exponential increases in cyber security; whereas, conventional approaches
can do no better than linear [45]. Moreover, intelligent software systems are able to
learn outside the bounds specified by supplied I/O constraints—by inductive
inference.
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Abstract Advanced Persistent Threats (APTs) are a highly sophisticated type of
cyber attack usually aimed at large and powerful organisations. Human expert knowl-
edge, coded as rules, can be used to detect these attacks when they attempt to extract
information of their victim hidden within normal http traffic. Often, experts base their
decisions on anomaly detection techniques, working under the hypothesis that APTs
generate traffic that differs from normal traffic. In this work we aim at developing
classifiers that can help human experts to find APTs. We first define an anomaly score
metric to select the most anomalous subset of traffic data; then the human expert
labels the instances within this set; finally we train a classifier using both labelled
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1 Introduction

Advanced Persistent Threats (APTs) are a relatively new concept that has been
defined in many ways. Most of these definitions home in the fact that they are attacks
carried out with a highly sophisticated malware, the development of which requires
dedicated, skilled individuals with expertise in multiple technological fields, as
well as significant financial resources [1]. As befits these characteristics, APTs
are generally addressed to either governments or large companies [2]. Hence, their
detection and prevention are highly relevant, both economically and socially.

In addition to the above, this kind of cyberattacks is becoming both more frequent
and more complex, a fact that has exposed the limitations of traditional security
mechanisms, whose success in detecting such sophisticated threats has been poor.
Examples of recent APTs which went undetected by current security solutions are
Stuxnet [3], Duqu [4], Flame [5], Red October [6] and Miniduke [1, 7].

Although many standard web attack detection tools and apps have been adapted
for the purpose, the very design of these attacks makes them extremely difficult to
detect [8, 9]. Most solutions are based on expert knowledge; the techniques under-
lying these tools are rule-based systems, statistical and correlation methods, manual
approaches and automatic blocking (black lists) [8]. One big shortcoming of these
approaches is that they lack the capability to detect previously-unseen attacks [8].
Thus, building tools and algorithms to assist in the detection of novel APTs has
become of the utmost importance for the security of both companies and states [2].

The rest of the chapter is organized as follows. In Sect.2 we introduce related
work on APT detection and the generalities of the anomaly detection (AD) methods
are described. Our approach is presented in Sect. 3. A description of the character-
istics of the proxy data is presented in Sect. 4. Section 4.2 includes a description of
the proposed metric to assign the anomaly score to the instances. Next, in Sect. 5
the different classification methods considered are described. The specific results of
these methods are presented in Sect. 8. Finally, Sects. 9 and 10 include a discussion
of the results and the conclusions.

2 Related Work

2.1 Anatomy of an APT

In [8, 10] the typical APT strategy is described as follows:

« Attacker gains foothold on victim system via social engineering and malware.

» Attacker then opens a shell prompt on victim system to discover if system is
mapped to a network drive.

« Victim system is connected to the network drive prompting attacker to initiate a
port scan from victim system.
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« Attacker will thereby identify available ports, running services on other systems,
and identify network segments.

o Network map now in hand, attacker moves to targeting VIP victims with high
value assets at their disposal.

In many cases the aim of the attacker once the steps described above have been
accomplished, is to extract information from the source [11]. This is known as exfil-
tration and is deemed to be one of the phases where the APT can be detected [8],
although, as proven by the examples given earlier, this is not always the case [1, 9].

2.2 Detecting APTs

A relevant body of work in the detection of APTs relies on monitoring an organiza-
tion’s network traffic -where HTTP data can be stored using a proxy- and identifying
certain behaviours. This is based on the assumption that many APTs will use the
HTTP protocol for the exfiltration step, given that it is supported by most organi-
zations. For instance, [8] describes how a human expert can detect patterns that an
APT might follow in order to develop countermeasures.

Frequently, detection methods work under the premise that if an APT infects a
given system the behavior of the HTTP requests carried out within it will follow a
different pattern than that existing in the absence of this attack, i.e. HTTP traffic will
follow an anomalous behaviour.

Although it cannot be assumed that this will be always the case, as a cleverly
designed APT will aim at disguising itself to appear as normal as possible, we can
nevertheless expect that APT-induced behaviour will be closer to the anomalous
rather than to the normal behaviour. The work presented here is also based on this
premise.

2.3 Anomaly Detection Methods

Anomaly detection is a relevant problem that has been tackled in diverse research
areas and application domains. Its importance lies with the fact that anomalies in data
translate to significant, and often critical, actionable information in a wide variety
of application domains. For a review of AD techniques the reader is referred to [12],
which covers both those specifically developed for an application and other more
generic ones. Examples of application domains of AD techniques include:

» Cybersecurity: network traffic analysis [13] to detect intrusions.

« Medicine: finding tumours in magnetic resonances [14].

« Banking: credit card fraud detection [15].

» Space: Sensor behaviour analysis to prevent spaceship failure [16].
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Different technical approaches can also be found:

« Classification-based techniques [17]:

— Artificial Neural networks (ANN) [18].
— Bayesian Networks (BN) [19].

— Support vector machines (SVM) [20].
— Rules-based systems [12].

« Detection of n-neighbors [21]:

— Distance to the closest n-neighbors [22].
— Density of the neighborhood [23].

o Clustering-based techniques [24].
o Statistical methods [12]:

— Parametric techniques [25].
— Non parametric techniques [26].

e Other methods:

— Information theory [27].
— Spectral techniques [28].

When selecting an AD method special attention must be paid to the specific char-
acteristics of the problem, such as type of data, type of anomalies sought, compu-
tational capacity of the device and so on. In the cases where many attributes that
describe the behavior of the dataset are available, the detection method should ide-
ally include information on all the attributes. Furthermore, anomalies can be detected
by looking at attributes individually or considering them as an ensemble.

Most AD methods are based on the assignation of an anomaly score (AS) to each
instance of the dataset [12]. This score represents how anomalous a given instance
is. After the assignation of the AS the instances to focus on can be chosen mainly
using two methods : (1) Setting a threshold (t,) and selecting all instances whose
AS is above it, and (2) selecting the N instances with larger AS.

The solution proposed in this work was developed based on the characteristics of
the available data, which are explained in Sect. 4.

3 Proposed Method

As explained earlier, the method presented here utilises the premise that APT-infected
HTTP traffic will tend to be anomalous to help create a classifier for suspicious/non-
suspicious behaviour. This classifier will be trained using data labelled by human
experts and then tested with a new set of data in order to evaluate its performance.
In this way, we aim to model how experts work. The methods used to train the clas-
sifier are Genetic Programming (GP), two Decision Tree Classifiers (DTC), namely
CART and Random Forests, and Support Vector Machines (SVM).
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Fig.1 General diagram of the APT detection process proposed. In the first phase, the most anom-
alous instances (S, or dark set) are detected with the anomaly score (AS) metric defined. In the
second phase the expert labels these instances as suspicious or non-suspicious. In the third phase
the classifier is trained using the labelled instances from the dark set and, possibly, also instances
from the (unlabelled) grey set

Because suspicious instances within HTTP data are rare and the amount of data
available is too large to allow full labelling by the expert, we propose to look only at
the anomalous instances within the available set, where we expect most suspicious
instances will also be concentrated.

Our method, thus, follows these steps:

1. Select the most anomalous instances within the data available (HTTP requests
registered by a proxy)—the dark set

2. Get the human expert to label these instances as suspicious/non-suspicious

. Train a classifier using part of the labelled data in the dark set

4. Test the classifier obtained in the previous step using the remaining data in the
dark set

w

The data that has not been labelled by the human expert (which we will refer to
as the grey set) may also be used for testing purposes.

Step one is based on the definition of a new metric for the assignation of an anom-
aly score to the instances of the set. The proposed metric takes into account more
information available in the data than other metrics found in the literature [29, 30].

Once the expert had studied the dark set and labelled its instances (step 2) a clas-
sification method was applied to label the instances in the grey set (step 3), based on
the human knowledge included in the former. This scheme corresponds to a semi-
supervised classification method, since only knowledge of a part of the data is known.

The three phases of the proposed method can be seen in Fig. 1.

4 Step One: Processing the Data

4.1 Traffic Data

The available data come from an access log of the Squid proxy application from a
real organization. The records correspond to a URL session lasting several hours and
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Table 1 Attributes, types and ranges

Attribute Id Type Range or number of attributes
http reply code cl c 28

http method c2 c 8

Main content type c3 c 153

Bytes c4 n [0, 921701242]
Duration (ms) c5 n [0, 6674481]
Server address - c 7778

Date (days) - n 4

Squid hierarchy - c 2

Client address - c 110

URL (FQDN) co—cll s 8872

The id column indicates those attributes that were selected for the proposed AS metric. FODN
(Fully Qualified Domain Name)

containing 1.1 million instances. Each instance, in turn, has ten associated variables
which can be of three types: numerical, nominal/categorical and string, as follows:

o Numerical (n): duration (ms), date and bytes.

» Categorical/nominal (c): http reply code, http method, content type, server address,
squid hierarchy, and client address.

 String (s): URL.

Since data come from a proxy register, many instances are “duplicated” in all
values but the squid hierarchy (sh) attribute, which indicates if the query goes from
the client to the proxy (sh=DIRECT) or from the proxy to the server (sh=Default
parent). To avoid these duplicated instances all of those with sh=default parent value
were removed, leaving the final set with 637,887 instances. The attributes contained
in the final set are given in Table 1.

4.2 A New Metric for Anomaly Score Assignation

In order to define the proposed metric the most relevant attributes for detecting anom-
alies in the proxy data were selected by a human expert; then it was defined how to
detect abnormal behaviour using these attributes. In this way we obtain a final anom-
aly score value for every instance.

Individual Elements

Because the aim is not to detect anomalies in the behaviour of specific individuals
but rather in the group of users as a whole, we will only consider those attributes
that give information on the latter, rather than on individual behaviour. The final
attributes are those that have a value in the id column in Table 1.
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The FQDN is the attribute that contributes the most information. For this reason,
several characteristics contained in it were also considered relevant by an expert for
the identification of anomalies in the behavior of the set:

o Top Level Domain, TLD (considered as categorical attribute) (c6)
o Length of the core domain (cd) (¢7)

» Vowels/consonants ratio of the full domain (c¢8)

o Numbers/letters ratio of the full domain (c9)

« Sequences of elements of the FODN (c10)

» Popular core domains that appear as subdomains, sd (c11)

For ¢10 the elements of the domains are divided into consonants, vowels, numbers
and symbols.

For c11 the popular domains are extracted from Alexas lists." A list consisting
of 42 domains was constructed taking the 20 most popular (visited) domains of the
country where data was collected (Spain), 11 more from the continent (Europe) and
other 11 from the global list.

Combinations of Elements

As explained in Sect.2, anomalies can be detected by considering each attribute
independently from the others but also considering several attributes as a set. In
this case anomalies were detected by identifying rare values in the combinations of
attributes, independently of the individual values.

For this particular set of data the relevant attributes for detecting anomalies in
their combinations are the four categorical attributes (c12): http reply code, http
method, main content type, and TLD.

The main contribution of the proposed metric as compared to others found in
the literature is the consideration of attributes and characteristics of the logs both
individually and in combination.

Once the relevant attributes for detecting anomalies in these URL connections
were determined, the next step was to define how the anomaly score of each instance
would be assigned.

The total AS of each instance (as;) is composed by the anomaly score of each
attribute or characteristic included (as;) weighed by its relative importance (w;):

cN
as; = Z w; - as;; ey

Jj=cl

The value of the anomaly score of each attribute (as;) is assigned to 0 if the value
adopted is considered normal and to 1 if it is considered anomalous. The question
which arose now was: When are these characteristics considered to have an anom-
alous value? It depends on the nature of the characteristic:

Thttp://www.alexa.com/topsites.
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« Categorical: when the frequency of appearance of the value adopted is very low
(infrequent appearance). For instance, if any of these variables has a value that
appears less than 0.01 % in the whole set, it is considered anomalous. Characteris-
tics within this case are: c1, 2, ¢3, ¢6, c10, c11 and c12. The infrequent threshold
for each case is different.

o Numerical: to find anomalous values in numerical data the parameters of the dis-
tribution are used. A value is considered to be anomalous when it lies outside the
range given by the mean (m) plus (or minus) three times the standard deviation
(0)s (x & [m — 30, m + 30]). In other words, the sample has a normal distribution.
Characteristics within this case are: ¢4, ¢5, ¢7, ¢8 and ¢9.

Two variations of the metric were considered:

(i) Only the individual attributes were considered. In this case, since the expert did
not point out any of the individual attributes to be more relevant than the rest,
all of them contribute with the same importance to the AS metric.

(i1) In addition to the individual attributes, the anomalous combination of attributes
was included. In this case, since the expert indicated that this attribute gives
more information than the individual ones the weight of this characteristic is
larger than those of the individual attributes in the AS metric.

5 Step Two: Data Labelling by Human Expert

After the assignation of the AS index, those instances with larger AS that could
represent an APT (the dark set) were filtered out and an expert determined which
ones were worth of further study (i.e. suspicious instances). Because the dark set is
small compared to the whole original data set, the information given by the expert
is necessarily partial.

Semi-supervised learning (SSL) methods are applicable to this type of scenario:
the known information is used to reach conclusions on the unknown information.
With SSL methods at least some known information about the data is considered.
The hypothesis is that this information can be used for the unknown part of the set
if all data follow the same structure.

6 Step Three: Building Classifiers

We used three different methods to carry out the classification of the instances, as
described below.
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6.1 Genetic Programming

Genetic programming (GP) [31] is a flexible and powerful evolutionary technique
with some features that can be very valuable and suitable for the evolution of classi-
fiers [32]. GP is a subclass of genetic algorithms, which uses mutation and repli-
cation to evolve structures, following Darwinian survival-of-the-fittest principles
[33]. These programs are composed of nodes (mathematical functions) and terminals
(inputs and constants). GP treats individual computer programs as genetic individu-
als potentially capable of recombining or changing to form new individuals [34].
In this work we employed the GPlab toolbox developed by Silva [35].

6.2 Tree Classification Methods

Decision Tree Classifiers (DTC) are used for classification problems in many areas.
Perhaps, the most important feature of DTC’s is their capability to break down a com-
plex decision-making process into a collection of simpler decisions, thus providing
a solution which is often easier to interpret [36]. Decision trees are a classification
tool used for many years.

Two different methods that use DTC are considered here: CART approach, which
employs a single tree and random forests which employ a set of trees and a voting
mechanism.

CART

Classification and Regression Trees (CART) were proposed by Breiman [37]. With
this method the tree is built by growing branches and pruning them iteratively. CART
allows only either a single feature or a linear combination of features at each internal
node [36]. This method is computationally very expensive as it requires the gen-
eration of multiple auxiliary trees, yet it can be a good approach since it is non-
parametric and easy to apply [38].

Random Forest

Random forests are a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribution
for all trees in the forest [39]. Significant improvements in classification accuracy
have resulted from growing an ensemble of trees and letting them vote for the most
popular class.

The common element in all of these procedures is that for the kth tree, a random
vector O, is generated, independent of the past random vectors @,,...,0,_, but with
the same distribution. After a large number of trees is generated, they vote for the
most popular class. These procedures are called random forests [39].
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6.3 Support Vector Machines

Support Vector Machines (SVM) are algorithms used for classification based on the
class hyperplanes [40]. It can be shown that the optimal hyperplane, defined as the
one with the maximal margin of separation between the two classes has the lowest
capacity. It can be uniquely constructed by solving a constrained quadratic optimiza-
tion problem [41].

It is worth emphasizing one important property of this algorithm: both the
quadratic programming problem and the final decision function depend only on dot
products between patterns. This is precisely what lets this method to be generalized
to the nonlinear case.

7 Experimental Setup

Two different frameworks for the experiments were set:

(A) Once instances in the dark set are labelled by the expert as suspicious/non-
suspicious, the different classification methods were trained using these. The
results of the training phase were then tested with the remaining instances (the
gray set) and results were analysed. See Fig. 2 for a graphical representation of
this approach.

(B) The training set was built using the instances marked as suspicious in the dark
set plus a larger number of randomly selected instances from the grey set. The
hypothesis is that instances in the grey set are non-suspicious. The classifiers
thus obtained were tested using one third of the suspicious instances from the
dark set plus a number of (unlabelled) instances from the grey set, which are
assumed to be non suspicious. The latter are replaced on every iteration, so
that the trained classifiers do not overfit to them, but rather learn the labelled
instances. See Fig. 3 for a graphical representation of this approach.

Troining

Classification

Anomaly Score Method

Metric Model Classes

Application

Testing

Fig. 2 Representation of Case A for training only with labelled data and testing with unlabelled
data. S; refers to the total set of data. S, /S, refer to the set of anomalous data and normal data
respectively. S, /S, refer to the suspicious and non-suspicious sets
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Fig.3 Representation of Case B for training and testing considering that the instances not marked
as suspicious by the expert are non suspicious. Original set is divided into 2/3 for training and 1/3
for testing. S refers to the total set of data. S,/S, refer to the set of anomalous data and normal
data respectively. S /S, refer to the suspicious and non-suspicious sets

8 Results

8.1 Anomaly Score Assignation

The levels to consider each of the categorical attributes or characteristics as anom-
alous were:

o Categorical attributes (cl, c2, ¢3 and c6): when they appeared less than 10 times
in the whole set (0.0015 %) their as; was set to 1.

o Sequences of elements in the domain (c10): subsequences of six elements were
considered to find the patters:

— Domains with length less than 6 were directly considered anomalous.
— Domains with a subsequence of elements that only appear once in the whole
set were considered anomalous.

o When popular domains (c11) of the list appeared as subdomains this characteristic
anomaly score was directly set to 1.
» For the combination of elements (c12):

— Its as; was set to 1 when a combination only appear once in the whole set.
— The weight of this parameter was set to w;, = 2 to express its higher indication
of an anomaly with regard to the rest of characteristics.

In the first case, where only the individual attributes were considered to form the
anomaly metric and with all attributes having the same weight, the AS adopted by
the instances was in the [0, 3] interval. Of the total set of 638,887 instances, 29,092
of them did have an as; different from 0. The distribution is shown in Table 2.

In the second case, where the anomalous combination of attributes was also
included in the anomaly metric in addition to all the individual attributes, the
instances adopted an AS value in the interval [0,5]. Of the total set of 638887
instances, 28858 of them did have an as; different from 0. The distribution is shown
in Table 3.
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Table 2 Case (i) Number of As Num. of instances
instances for each AS -
different than 0 1 28,901
179
3 12

Table 3 Case (ii) Number of As
instances for each AS

Num. of instances

different than 0 1 28,532
2 265
3 54
4 6
5

In both cases, to consider the instances that had at least two anomalous fields, the
instances studied were those that had as > 1 in case (i); and as > 2 in case (ii), since
the anomalous combinations had a value of as = 2. Thus, in case (i) there are 191
instances to study (S,); and in case (ii) there are 61 instances to study (S,).

8.2 Assignation of Labels by an Expert

Case (i): From all the instances with as > 1 the expert marked as instances to be
further studied:

06 instances with as; = 2 (36 %)
4 instances with as; = 3 (33 %)

Case (ii): From all the instances with as > 2 the expert marked as instances to be
further studied:

« 32 instances with as; = 3 (59 %)
« 4 instances with as; = 4 (67 %)
« 1 instance with as; = 5 (100 %)

These results indicate that:

(1) Case (i) has percentages lower than 50 % while case (ii) has percentages larger
than 50 %.

(2) Case (ii) has larger percentages of suspicious instances among the detected
anomalous instances.

(3) In case (ii), the percentages of suspicious instances increases for larger AS
values.

This indicates that metric defined in case (ii) is more trustworthy than case (i);
for this reason it was chosen as final metric to set the anomaly score of the instances.
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Table 4 Results GP GP
classification only with
labelled data # (%)
Training TP 85 85.86
FN 14 14.14
N 102 75.56
FP 33 24.44
Table 5 Application of GP
resulting GP model to rest of
data (unlabelled) (%)
Suspicious 95.27
Non-suspicious 4.73

8.3 Application of Classification Methods
to Semi-supervised Data

In order to apply the classification methods described in Sect. 6.1 in the two approa-
ches described in Sect. 7, instances labelled by the expert were considered as known
classification information for the training phase. Combined information from metrics
(1) and (ii) results in 99 instances marked as suspicious (S,) and 135 instances marked
as non-suspicious (S,), since some of the instances where present in both cases.

For Case A the whole dark set (234 labelled instances) was used for training
and the classification model obtained was then tested using the grey set (remaining
unlabelled data, 638,653 instances).

For Case B the data considered for training was two thirds of the total set (425,925
instances), including two thirds of the labelled suspicious data (66 instances). The
unlabelled data included for training and testing have been randomly selected.

Genetic Programming

First of all, GP was applied to only the dark set, or labelled data (Case A). Results
from the best run can be seen in Table 4. Results of the application of the resulting
model to the rest of data (grey set) can be seen in Table 5.

The results of the training phase with the labelled data are not very good, since
many suspicious and non-suspicious instances are not well classified. This happened
even though many configurations were adopted, all them with similar results. Longer
run times also reached similar results. Further, the large number of potentially sus-
picious instances “identified” in the test phase, indicates that the results obtained
are not applicable to the rest of the set, since not such a large number of suspicious
instances can be present in a normal web log session like the one considered.

Considering hypothesis of Case B, the classes are quite unbalanced. This is an
important property of the APT detection problem, since attacks only represent a
small set of the total data. For this reason, options like data undersampling or over-
sampling would distortion this property and were not appropriate for this application
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Table 6 Results from GP classification in Case B

GP
8k
Training TP 54 81.82%
FN 12 18.18 %
TN 7791 97.39 %
FP 209 2.61 %
Testing TP 28 84.85 %
FN 5 15.15%
TN - 97.36 %
FP 16683 2.64 %

[42]. Instead, the fitness function was modified to include weights and take into
account the larger importance of classifying well the minority class, following [42].

The experiments carried out applying GP were done using a reduced dataset,
due to the computational expense of using the whole training dataset. The reduced
set consisted of two thirds of the dark set (labelled) and 8000 (8k) instances from
the grey set (unlabelled data). Several experiments were carried out, considering
different weights for the minority class. The best results can be seen in Table 6.

As has been pointed out by, e.g. [43], GP has scalability issues. Simulation with
a dataset of this size was computationally expensive and experiments with a larger
dataset were considered unfeasible.

CART

CART algorithm is non-parametric, which eased up its application. For Case A the
resulting tree had 33 nodes and a depth of 8. Classification from this tree is shown
in Table 7. Its application to the rest of data is shown in Table 8.

Table 7 Results of CART CART
classification with labelled %
data only # (%)
Training TP 93 93.94
FN 6 6.06
TN 129 95.56
FP 6 4.44
Table 8 Application of CART
resulting CART classifier to %
rest of data (unlabelled) # (%)
Suspicious 23.85
Non-suspicious 76.15
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Table 9 Results from CART classification in Case B

CART
All 12k
Training TP 59 89.39 % 60 90.91 %
FN 7 10.61 % 6 9.09 %
TN - 99.998 % - 99.98 %
FP 10 0.002 % 2 0.02 %
Testing TP 19 57.58 % 27 81.82 %
FN 14 242% 6 18.18 %
TN - 99.996 % - 99.87 %
FP 9 0.004 % 844 0.13%
Table 10 Results of random RE
forests classification only
with labelled data # (%)
Training TP 97 97.98
FN 2 2.02
TN 130 96.3
FP 5 3.7

The high number of suspicious instances detected in the set of unlabelled data is
too large to indicate real suspicious instances, since APTs are infrequent. In addition,
the size of the set makes it unfeasible for an expert to evaluate all its instances. This
indicates that this reduced set does not contain enough information on its own in
order to represent the model via a single tree using the CART method.

To train the method with more information we considered the hypothesis of Case
B. When CART algorithm is trained with two thirds of the data the training results are
very good, yet the number of False Negatives (FN) of the test phase is too large, see
Table 9. Several experiments modifying the size of the training set were performed,
see Table 9 for best results. When the number of training instances is reduced, the
obtained tree is more robust. The resulting tree had 77 nodes and depth 12.

The percentage of FN is only 0.13 % i.e. 844 instances. This small set size makes
it feasible for an expert to evaluate all instances and check the quality of the results.

Random Forests

For the application of Random Forests (RF) to the Case A, several parameters had
to be tuned. After running a few experiments, the parameters with best results were
adopted. Results can be seen in Table 10. Results of the application of this classifi-
cation model to the rest of the set (unlabelled) can be seen in Table 11.

These results show that the identification of the labelled data is quite good, yet
the extrapolation of the classification model to the unlabelled data results in a very
large amount of suspicious instances. This indicates that the model obtained with
the small set of known data does not offer useful results with the remaining set.
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Table 11 Application of the RF

resulting RF model to the

remaining data (unlabelled) # (%)
Suspicious 87.19
Non-suspicious 12.81

For application of Case B it was not possible to do it with the full identification
set (2/3 of the total set) since there were memory issues with the operations. For
this reason, several experiments have been run with different sizes of the training
set. First of all an experiment with same “best size” of the CART experiments were
performed (12k instances). This experiment did not gave good results, as can be seen
in Table 12. Different sizes were checked. Best results are also shown in Table 12.

Support Vector Machines
For this method, given that the resulting dividing hyperplane is only computed in the
projection space, the inputs were normalized in the interval [0,1] to give all them a
priori the same importance.

Results of application of SVM under approach of Case A is shown in Table 13,
while the results of applying the resulting classification model to the rest of the set
is shown in Table 14.

Table 12 Results from RF classification in Case B

RF
12k 100k
Training TP 58 87.87 % 58 87.87 %
FN 8 12.12% 8 12.12%
TN - 98.22 % - 98.95 %
FP 214 1.78 % 1052 1.05 %
Testing TP 18 54.55 % 12 36.36 %
FN 15 4545 % 21 63.63 %
TN - 97.65 % - 98.92 %
FP 14714 2.35% 5816 1.08 %
Tabl.e 13 . Results SYM SVM
classification only with
labelled data # (%)
Training TP 88 88.89
FN 11 11.11
TN 133 98.52
FP 2 1.48
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Table 14 Application of SVM

resulting SVM model to rest

of data (unlabelled) # (%)
Suspicious 43.65
Non-suspicious 56.35

These results show that with this method a still large number of potentially
suspicious instances is found. Like for CART and RF, this amount is too large to
represent real APTs and also for an expert to analyse all them.

For the training phase of SVM in Case B there were memory issues that do not
allow the training with the full training set (2/3 of the total set). A reduced set was
used for training then. The maximum size allowed for operations is 8k unlabelled
instances plus two thirds of the suspicious ones (total of 8066 instances). Results of
the training phase and the testing with the remaining data can be seen in Table 15.

Tables 16 and 17 show the best results (percentages) in cases A and B respectively
for all the classification methods applied.

Comparison

In order to compare all methods tested, a number of runs were carried out so as to
minimize the effects of the randomly selected variables, given that some of these
methods are stochastic. For CART, RF and SVM methods, the configurations with
best results were run 30 times. GP had a a different treatment, since running time

Table 15 Results SVM application

SVM

Training TP 59 89.39%
FN 7 10.61 %
N 8000 100 %
FP 0 0%

Testing TP 25 75.76 %
FN 8 24.24 %
TN - 99.86 %
FP 902 0.14 %

Table 16 Case A: classification results only with labelled data for different methods

GP (%) CART (%) RF (%) SVM (%)
Training TP 85.86 93.94 97.98 88.89
FN 14 6.06 2.02 11.11
TN 75.56 95.56 96.3 98.52
FP 24.44 4.44 3.7 1.48
Testing S 95.27 23.85 87.19 43.65
NS 4.73 76.15 12.81 56.35
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Table 17 Case B: classification results for unlabelled hypothesis for different methods

GP (%) CART (%) RF (%) SVM (%)
Training TP 81.82 90.91 87.87 89.39
FN 18.18 9.09 12.12 10.61
N 97.39 99.98 98.22 100
FP 2.61 0.02 1.78 0
Testing TP 84.85 81.82 54.55 75.76
FN 15.15 18.18 45.45 24.24
N 97.36 99.87 97.65 99.86
FP 2.64 0.13 2.35 0.14

Table 18 Mean running time of the different configurations

GP CART RF SVM

2k 8k All 12k 100k 12k 4k 8k
Training |35-10%s | 183-103s| 185 186's 1180s 765s 370s 810s
Testing | 101s 93s 0.22s 3.1s 42s 48s 223s 324

were much larger (see Table 18). To make the total set of runs feasible run time was
set to one hour. The training set consisted of 1k random instances and 66 suspicions
instances, a population of 50 individuals and 300 iterations.

Two errors were considered for statistical comparison of the four methods: e,
the percentage of false negative instances and e, the percentage of false positive
instances, both obtained during the testing phase. Since we can not assume that errors
have normal distribution, we chose the Kruskal-Wallis statistical test, a non paramet-
ric statistic method.

Both for e; and e, the probability that the results from the different methods
applied follow the same distribution is equal to O (P = 0), meaning that the applied
methods are statistically different.

Thus, since the methods do not follow the same distribution, two parameters were
used to compare them: (1) run time and (2) distribution of errors. Run time is impor-
tant to check the feasibility of each method to be applied online. On the other hand,
errors distribution is important to check the repeatability of each method and con-
figuration.

Mean run time of every configuration can be seen in Table 18. It can be seen that
CART is the fastest method while GP is the slowest one. However, CART, RF and
SVM all have a fast enough run time that make it feasible to run many experiments
and these methods could be a good option for an online application.

The error distribution of the 30 runs of each case is shown in Figs.4 and 5 for
the percentages of False Negative and False Positive instances, both for the testing
phase.
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Error distribution for False Negative Percentage. Order GP, CART, RF, SVM
70 T T T I

l _

20 - =1

10 1 1 1 1
0 1 2 3 4 5

Fig. 4 Representation of error distribution for the percentage of False Negative instances FN in
the testing phase. The order is (1) GP; (2) CART; (3) RF and (4) SVM

In the case of e; (FN), it is seen that CART and SVM have the lowest errors,
which was already seen in the previous results. In addition, in this plot it can also be
seen that these are the methods with larger repeatability (smaller dispersion of the
error). In this case GP has smaller error than RF and both have a similar dispersion
of the error.

In the case of e, (FP) results are similar to the case of ¢;: CART and SVM are
the methods with smaller error and smaller dispersion. For this error GP has a large
error with an even larger dispersion among the runs. RF has a much smaller error
than GP and a small dispersion, but its results are worse than those of CART and
SVM.

9 Discussion

In this work we proposed a new Anomaly Score metric for http log instances, where
the main characteristics that can indicate that an instance is anomalous are considered
together. The expert indicated the interesting features to be considered in this metric.
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Error distribution for False Positive Percentage. Order GP, CART, RF, SVM
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Fig.5 Representation of error distribution for the percentage of False Positive instances FP in the
testing phase. The order is (1) GP; (2) CART; (3) RF and (4) SVM

With this metric, the set of data containing a session of http requests was fil-
tered and the most anomalous instances were selected. This subset (very reduced
from original one) was studied by the expert who indicated the instances considered
suspicious, which are the real aim of the detection.

With this subset of labelled instances two approaches for the design of classifi-
cation methods were designed: considering only the labelled data; and considering
only suspicious data and adopting the hypothesis that the rest are non-suspicious.

To these two scenarios classification is performed with several techniques: genetic
programming (GP), single tree classification (CART), random forests (RF) and sup-
port vector machines (SVM).

The application of GP showed unpromising results for case A and the extrapola-
tion of the model found to the rest of the data, with 95.27 % of suspicious instances
found. In case B, GP performs much better than in case A, having a smaller number
of FP (2.64 %) and a larger percentage of TP in the test phase. This percentage could
represent real suspicious instances yet the total number of resulting instances is too
large to be analysed by an expert.
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The CART method gives good results in the training phase, but when the tree
found was applied to the rest of unlabelled data the number of “potentially” suspi-
cious instances found was too large to represent real suspicious instances. In case B,
several configurations are checked, considering different sizes of the training data.
In case all data of the training set was considered (2/3 of total data), the results of the
training phase are quite good. Yet, in the testing phase there are a 42 % of FN and a
0.004 % of FP. Thus, this configuration is good at avoiding FP, yet it is not good at
detecting the TP.

The other configuration was to consider a subset for training (only 12k instances).
With this configuration, the method reduces the percentage of FN to 18 % but
increases the percentage of FP to 0.13 %. It can be seen that the different config-
urations have different performance and that getting better in one direction implies
getting worse in another one. It remains for the expert to determine which part is more
important, but we would suggest that detecting the known suspicious instances even
at the price of detecting more FP instances is better in these cases. It is important to
consider that even though in the second case the percentage of FP is larger, it still
represents a small subset that can be analysed by the expert.

The application of RF shows that the extrapolation of the classification model
trained with only labelled data gives quite bad results, since the majority of instances
(87 %) are classified as suspicious. This indicates that this model does not represent
the essence of the small set of instances labelled as suspicious.

When RF was applied in case B, something similar to the CART results happens:
the larger the training set the lower the percentage of FN detected in testing phase.
In this case, results both for small set for training (12k) and for a set lager (100k)
give very high percentages of FN: 45 % and 63 % respectively. In addition to this
fact, percentages of FP are larger than in the case of CART, reaching 2.35 % which
represents a very large number of instances to be analysed by the expert.

RF have proved better than single tree like CART in many applications [39].
Nonetheless, this system is quite complex and this makes that even when both algo-
rithms have very similar results in the training phase, the simpler one is more robust
for the testing phase.

The final classification method checked was SVM. This method gives very similar
results to CART. The extrapolation of the model of case A does not lead to good
results in the unlabelled data. Meanwhile, the results of the scenario of case B gives
good results both from training and testing, reaching a 76 % of TP detected and only
a 0.14 % of FP in the testing set.

Since results from CART and SVM are similar and both result in subsets of
potentially-suspicious instances small enough to be analysed by the expert, we have
proceed in this line. An expert analysed both sets of new suspicious instances found
and marked the ones considered in this way. In the subset resulting from CART
method, the expert detected 66.35 % of real-suspicious instances, while in the subset
of SMV method the percentage of real-suspicious was 66.19 %. This analysis indi-
cates that still both methods are comparable in terms of performance once the results
are analysed.
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Considering the case A, it was seen that none of the methods applied had trans-
latable results to the rest of the set. Training results were quite good in all cases
(minimum of 80 % of well classified data), yet the small number of instances used
for training phase (only a 0.037 % of the set) made the models obtained not valid for
the rest of the set with a lot of information not included in the training set.

10 Conclusion and Future Work

APTs are advanced attacks against governments or large companies. For this reason
they are well designed and they are difficult to detect. At the same time, it is interest-
ing in cybersecurity to detect them or at least have a prevention method to minimize
their risks.

Several classification algorithm have been applied to the detection of suspicious
instances for identifying APT attacks. Two main scenarios have been checked: con-
sidering only a small set of labelled data (case A) and considering only a few
known suspicious instances with a larger set of supposedly non-suspicious instances
(case B).

In case A all methods had similar results. However, in case B it was shown that
SVM and CART method outperformed the other two. Considering the complexity
of the problem these two method obtained quite good numbers. The negative side of
this experiments is that we could not make RF and GP methods perform better. The
worse results from RF are probably due to the tuning of the algorithm parameters
while GP issues might fall on the scalability issues of this method.

Results from both cases considered (A and B) show that hypothesis of case A that
the small labelled set is representative of the total set is not valid, since the results
point out many instances as suspicious and that large number is not realistic that
happens in a real set.

On the other hand, hypothesis taken in case B could be more realistic, since most
of the unlabelled instances are non-suspicious. Yet, with this hypothesis, some sus-
picious instances of the unlabelled set can be considered as non-suspicious for the
training phase, biasing this the results obtained.

This makes it obvious that a better treatment of the unlabelled data could improve
the results. An option is to use a recursive labelling method, considering the results
obtained from a method and increasing the labelled set until the identified instances
remain the same.

Another approach in this line could be to use rules defined by the expert to get
the initial set of suspicious instances, and then use this set for the training phase and
check the results.

In a different line, a future work could be to improve the used methods to adjust
them to the problem considered. GP could be used if the evaluation of the fitness
function is sped-up. For RF a finer tuning of the many parameters of the method
could be done to refine the results. Yet, both of these improvements are time requiring
and a hard work. For this reason, they remain for the future.
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Experiments with other configurations or other methods are left for future work.
An option could be a method considering a combination of the proposed methods. It
is important to remark that the large number of instances makes it unfeasible to label
all of them by a human expert. Therefore, the framework for the studies is a semi-
supervised scenario. In this type of scenarios one option is to train several methods
and obtain the conclusions from the results of all the methods together.

An option for overcoming the large amounts of data with which the methods have
to deal. A method, already explored by some authors in other lines, is to work first
with clusters of data or sets of logs, find anomalies within sets, which would mean
that those sets contain anomalous instances, and then proceed to a further study
of only anomalous sets. These method, as general idea, has many advantages, yet,
further work is to be done to apply it to the currently considered scenario.
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A Benchmarking Study on Stream
Network Traffic Analysis Using
Active Learning

Jillian Morgan, A. Nur Zincir-Heywood and John T. Jacobs

Abstract Analyzing network activity as it occurs is an important task since it
allows for the prevention of malicious activity on the host system and the network.
In this work, we investigate the performance of different budgeting strategies, as
well as an adaptive Artificial Neural Network to analyze the activities on streaming
network traffic. Our results show that all of our budgeting strategies (with the
exception of the fixed uncertainty strategy) are suitable candidates for classification
of streaming network traffic where some of the state-of-the-art classifiers achieved
accuracies in the range of 90 % or higher.

Keywords Streaming data - Active learning - Computational intelligence -
Network traffic analysis

1 Introduction

Malicious network activity, such as viruses, denial-of-service attacks, and botnets,
is a growing concern for businesses and the general public alike. Detection of
malicious network activity as it occurs is important since it can assist the network
management teams in preventing further damage on their systems and networks.
Therefore, it is of interest to classify network activity as it is being streamed. With
the use of computational intelligence techniques gaining popularity, many
researchers propose the use of different learning techniques as well as quantifiers in
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order to accurately analyze and classify the network traffic in streaming environ-
ments [1, 2] in order to detect malicious activity [3-5].

Even when using a machine learning algorithm, classification within a streaming
environment poses many challenges. One of the main challenges is that one cannot
have access to all available data in a streaming scenario at once, as in the case of
non-streaming environments such as offline streaming scenarios. Thus, classifica-
tion of streaming data can be quite costly in terms of resources as datasets can grow
to be quite large. Furthermore, because a complete set of data cannot be viewed at
once it is difficult to determine if given data instance attributes (features) are rep-
resentative of others in the same class. Additionally, network traffic patterns can
slowly change over time or even instantaneously. Indeed, such problems are also
exhibited in other streamed datasets. To this end, active learning has often been
implemented to alleviate these issues [6, 7]. Active learning is the task of selecting a
data instance on which to query the true classification label and retrain the learning
algorithm. Selection of labels is not a simple task as one must consider how many
and which labels will represent the entire dataset and allow for the most accurate
prediction of future data instances.

Many researchers in the literature [4, 6—8] determine the success of classification
by measuring the overall accuracy (the number of successful classifications over the
total amount of classifications) of the chosen classification algorithm and active
learning strategy. This is not necessarily the best solution in determining classifi-
cation success as it does not account for class distribution. If a dataset has an
unbalanced distribution of classes then the resulting prediction accuracy may not be
representative of the actual performance of the given classification strategy. Thus, a
performance metric that factors class distribution into account is necessary.

In this work we aim to benchmark the performance of previously existing active
learning and query budgeting strategies as well as an adaptive Artificial Neural
Network approach when performed on network traffic flows, specifically in order to
detect malicious network activity, such as botnets. In evaluating the performance of
these strategies, we include two performance measures; (i) prequential accuracy and
(ii) prequential detection rate.

The remainder of our chapter is organized by discussing related work in Sect. 2.
Detailing the methodology employed in this research in Sect. 3. Presenting and
discussing the evaluations and results in Sect. 4. Finally, we draw our conclusions
and discuss the future work in Sect. 5.

2 Related Work

There are many works on the detection of malicious activity within network traffic,
classification of streaming data, and active learning, as separate topics. However, to
the best of our knowledge there are no works that combine all of these to evaluate
and analyze their performances on the detection of malicious behaviors on network
traffic. It should be noted that, some techniques have been proposed that utilize a
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subset of these ideas. The works most relevant to our study are described in detail
below. In this case, the related works are discussed under three categories; active
learning, streaming data classification, and detection of malicious activity among
network traffic.

2.1 Active Learning

Wang et al. [1] proposes an active learning strategy that utilizes computational
intelligence in the form of fuzzy rough sets combined with a support vector machine
(SVM). This strategy is performed on both binary and multiclass benchmarking
datasets where the performance is evaluated by quantifying accuracy, time costs for
labeling new examples from the data, and paired Wilcoxon rank-sum tests. The
results of this strategy are compared to other existing strategies such as Random
Sampling, SVM Active, and QBC. The researchers conclude that this new strategy
is generally successful when compared to other tested strategies in terms of accu-
racy and the paired Wilcoxin rank-sum tests. However, this comes at a higher time
cost as labeling instances takes longer when using this strategy.

Zliobaite et al. [6], also endeavor to produce new active learning strategies.
However, the active learning strategies they designed were created with the
intention of being used on drifting streaming data. These methods focus on
retraining a learning algorithm when confidence of successful prediction of an
entity falls below a fixed threshold and randomly selecting entities. The selection of
entities to train on was limited by a set budget for querying new labels on which to
train the model. The strategies that were developed were tested on a series of
publicly available big data sets, which were categorized as either being a prediction
or textual dataset. Prediction datasets required a prediction from the classifier and
textual datasets required a recommendation from the classifier. Performance of the
active learning strategies was evaluated by applying these strategies to the Naive
Bayes algorithm and the Hoeffding Tree algorithm. Accuracy of these techniques
using different datasets [6] and labeling budgets (10 and 100 %) was measured [6].
The researchers concluded that the strategies are effective for reducing computation
costs while maintaining performance.

Like the previous researchers, Zhu et al. [7] proposed another active learning
strategy for the implementation of streamed datasets. The strategy they designed
features a weighted-classifier ensemble framework with an emphasis on reducing
variance. The researchers reported that by decreasing the classifier ensemble vari-
ance, the error rate of the classifier ensemble would decrease as well. Thus, a
minimum-variance principle was introduced whereas labels were queried for
instances that produced a high ensemble variance. The combination of a
weighted-classifier ensemble and a minimum-variance principle were employed
over three publically available prediction datasets. Performance of this strategy was
evaluated by determining the accuracy and runtime when using this strategy on
various data chunks and data chunk sizes. These results were then compared to the
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results of simpler solutions. The researchers concluded that their strategy was
effective at dealing with multiclass problems in a streaming environment.

2.2 Streaming Data Classification

Dalal et al. [9] demonstrated various data mining prediction techniques used to
predict user-perceived streamed media quality. The researchers proposed the use of a
nearest neighbor algorithm, in which unlabelled instances in a stream are given the
label (i.e., the normalized user-perceived quality rating) of the instance in the
training set of the instance within the closest distance. The researchers tested this
algorithm using two different types of distance metrics; summary statistics and
dynamic time warping [9]. The algorithm was employed over three different data
streams; a commercial, a movie trailer, and a news segment. The authors measured
performance using hit rates, that is, the percentage of predictions within 0.8 standard
deviations of the normalized user quality rating for the given stream. The researchers
concluded that the chosen techniques performed effectively. They expanded upon
their work further [10] by performing similar tests in real time using Transmission
Control Protocol (TCP) based streams rather than offline using User Datagram
Protocol (UDP) based streams. They conclude that the performance accuracy was
hopeful (falling between 75 to 87 % accuracy) but could be improved further.

Moreover, Cunha et al. [11] evaluated the performance of Naive Bayes and C4.5
Decision Trees algorithms in classifying different failure states when streaming
video data. Specifically, the researchers wanted to be able to predict whether a
server failure was a performance anomaly or was caused by overloading produced
by clients. Performance was measured by; True Positive Rate, False Positive Rate,
Precision, Recall, F-measure, ROC Area, and Root Mean Squared Error. The
researchers concluded that both algorithms were good but C4.5 performed slightly
better than Naive Bayes.

Vahdat et al. [2] designed and developed a framework for employing genetic
programming in order to perform classification on streamed data while maintaining
a labeling budget. They employed artificially generated, as well as publically
available, datasets. They measured the performance not only by the aforementioned
performance metrics but also by prequential accuracy. They conclude that genetic
programming with labeling budgets is an effective method for making classifica-
tions on streaming data.

2.3 Detection of Malicious Behavior Among
Network Traffic

The use of flow-based network traffic in detecting malicious activity among net-
work traffic appears to be quite popular within existing literature. In the work of
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Stevanovic et al.’s [4] study, network traffic was converted into network flows in
which to be classified. To evaluate the validity of using such a technique to detect
malicious activity, a number of classifiers were tested; Naive Bayes, Bayesian
Network, Logistic Regression, Artificial Neural Networks, Support Vector
Machines with a linear kernel, C4.5 decision tree, Random Tree, and Random
Forest. The proposed technique was implemented on a combination of datasets
featuring traffic from Storm and Waledec botnets and normal traffic. In order to
measure performance, they employed precision, recall, F-measure, and a correlation
coefficient. Additionally, they measured the training and classification time when
using each classifier. The researchers concluded that C4.5 Decision Tree, Random
Tree and Random Forest were the most successful algorithms for their task.

Similarly, Nogueira et al. [5] proposed the use of a flow based system in order to
detect botnet activity among network traffic. They employed a Neural Network
model in conjunction with a flow-based system. However, the employed system
also features a user interface to visualize illicit activity that was detected for further
action by an administrator. In identifying botnet activity a feed-forward propagation
neural network with three layers was implemented. Performance was evaluated by
testing the framework on traffic generated by known safe applications such as
Skype. Malicious activity was artificially generated. The authors concluded that the
detection of the botnet activity using their methodology was quite successful.

Hsiao et al. [8] also proposed the use of flow-based network traffic for the
purpose of detecting malicious behavior amongst said traffic. Flows were generated
from network flows collected by the researchers. What differentiates this study from
others is that the authors varied the number of flow attributes and which flow
attributes were presented between experiments. Thus, they created four sets of
attributes to be tested; NetFlow variables, Temporal Variables, Spatial Variables,
and a combination of Temporal and Spatial variables. In these experiments, the
classification algorithms chosen to employ on the flows were as follows: Naive
Bayes, Decision Tree and SVM algorithms. The results showed that using a
combination of temporal and spatial attributes provided the best prediction
accuracy.

On the other hand, Saad et al. [3] implement a slightly different approach to
detecting malicious botnet behavior than the aforementioned studies that share the
same goal. They used not only flow based attributes but also used host-based
attributes (i.e., attributes that are exhibited in communications between hosts). They
employed the following classification algorithms: Nearest Neighbor, Linear Sup-
port Vector Machine, Artificial Neural Network, Gaussian-Based Classifier, and
Naive Bayes. With these methods, the researchers aimed to satisfy three
botnet-detection requirements; adaptability, novelty detection, and early detection.
The authors used a combination of three datasets for their experiments. The first two
datasets were generated by a botnet effected machine where all packets incoming
and outgoing were captured. Each machine was affected with a different botnet;
Storm or Walodec. The third dataset was made up of normal traffic. These datasets
were then combined into one larger dataset in order to simulate a real world
scenario. To determine the performance of the selected methodology the researchers
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adopted four performance metrics: training time, classification time, accuracy, and
classification error. The researchers concluded that the selected methodology did
not sufficiently satisfy the three stated requirements for effectively detecting botnets.

In our previous work [12], we proposed a new framework to detect HTTP-based
botnet activity based on botnet behavior analysis. To achieve this, we employed
machine learning algorithms on flow-based network traffic utilizing NetFlow (via
Softflowd). The proposed botnet analysis system was implemented by employing
two diffent learning algorithms, namely C4.5 and Naive Bayes. Our results showed
that the C4.5 learning algorithm-based classifier obtained very promising perfor-
mance on detecting HTTP-based botnet activity. However, that work did not
employ any streaming or budgeting strategies.

On the other hand, in this paper, we aim to apply and benchmark existing active
learning strategies on network streamed traffic in order to make classification pre-
dictions for malicious network behavior. This approach differs from the afore-
mentioned related work as the previous work has not combined active learning
strategies with the streaming data classification on network traffic. In this paper, we
employ such an approach, specifically to detect botnet activities under a streaming
scenario. We also aim to compare the performance of these strategies with an
adaptive Artificial Neural Network approach and determine which is more effective
in performing the desired task.

Last but not least, we also introduce the use of performance metrics; prequential
accuracy and prequential detection rate. Prequential detection rate has not been used
to measure performance under Massive Online Analysis (MOA) scenarios. Pre-
quential detection rate is a useful metric when unbalanced distributions of classes
are present in a given dataset, because unlike accuracy, prequential detection rate
can reflect the difference of correctly classifying data instances of the smaller
classes in the data. To give an example, if a data set has 99 % of class-normal and
1 % class-malicious, by classifying everything as class-normal, a classifier can reach
100 % accuracy! Even though false positive rates may show the picture a bit clearer,
in streaming environments this kind of metric can be ineffective and cannot measure
the performance correctly. This is important to consider as looking at accuracy
alone can skew how we perceive the performance of our algorithms on an unbal-
anced dataset. We also analyze the prequential values for both accuracy and
detection rate as this allows for us to see how these values change over time.

3 Methodology

In this research, our goal is to utilize the algorithms as discussed in [6], and
determine the success of these algorithms when classifying streamed network traffic
data for detecting malicious botnet behavior. In order to achieve this, we enacted
three major steps: data collection, implementation of learning algorithms in con-
junction with various active learning budgeting strategies, and performance
analysis.
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3.1 Datasets and Features Employed

In this research, four datasets, Table 1, are employed in our evaluations. These are:
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KDD Cup 1999: The KDD Cup 1999 dataset is a simple to classify dataset
that contains malicious and normal network traffic flows, where each instance
to be classified is a connection record [13]. The malicious traffic is broken into
four types; denial of service, unauthorized remote access, unauthorized access
to root commands, and probing. For our purposes, we only aimed to detect
whether or not a connection is malicious, thus, we combined the four attack
types into one class. Even though, it is an old dataset, it is chosen to provide us
with a baseline and reference point for our other results. This dataset is suitable
for this purpose as it is one of the first datasets that was made publically
available for benchmarking computational intelligence techniques for network
security purposes.

NIMS1: The NIMS1 dataset can be retrieved from the Network Information
Management and Security (NIMS) [14]. The dataset is a collection of network
traffic flows. Unlike the other datasets, where we aim to detect malicious
behavior among network traffic, with this dataset, we aim to classify appli-
cation type. Thus, this dataset is chosen to provide us a comparison of results
when aiming to classify different applications on streaming network traffic as
opposed to making classifications between normal and malicious network
behaviors.

ISOT: The ISOT (Information Security and Object Technology) dataset is a
collection of publically available malicious (different botnets) and normal
datasets [15]. These traffic datasets were generated by using a series of
machines with different MAC addresses and IP addresses. The traffic gener-
ated was captured by the open source packet capturing tool, Wireshark,' in
order to combine the smaller datasets into the larger ISOT dataset. Thus, we
employed this dataset to predict whether or not a connection was malicious.
Zeus versus Alexa: This dataset is generated by the NIMS Lab to be used for
botnet detection purposes. To this end, we generated a traffic dataset that
exhibited an approximate balance of malicious and normal network traffic. In
order to generate this dataset, lists of valid malicious and non-malicious

Table 1 Summary of the Instances Attributes Classes

datasets

KDD 99 494 021 42 2
ISOT 2 084 216 16 2
NIMS 713 851 23 11
Zeus versus Alexa 11 468 16 2

'Wireshark; https://www.wireshark.org/.
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Fig. 1 Script functionality for generating web traffic

domain names were obtained [12]. We obtained the list of non-malicious
(normal) domain names from Alexa, a website that ranks the top 500 websites
on the Internet according to page views [16]. Because the domains listed are
some of the most popular domains on the Internet, it is fair to assume that the
traffic generated by accessing these domains is representative of normal,
everyday, network traffic. For the malicious domains, we obtained a list of
domain names that are known to belong to the Zeus botnet [17, 18]. To
simulate web traffic to these domains, a script was written to randomly connect
to either a normal or malicious domain using the wget command in Linux.
These steps are detailed in Fig. 1.

Once the above datasets were obtained, we replayed the traffic on our test bed
network to emulate a real-life scenario of streaming traffic. The streaming traffic is
then converted to flows as the traffic runs and then, the network flows are input to the
streaming classifiers. A network traffic flow is a sequence of network traffic packets
with 5-tuple information over a specific period defined by the Internet Engineering
Task Force [19]. This 5-tuple information includes; the source/destination IP
addresses, source/destination port numbers and the protocol. Usually, in real life, the
router (such as a Cisco router with NetFlow) will do this on the flow. To emulate
such a scenario, we employed the following open source tools to convert the packets
into flows:

e Softflowd: Softflowd? is an open source tool that accepts network packets and
exports them into NetFlow® flows.

e Nfcapd: Nfcapd* captures the exported flows and stores them for further pro-
cessing. The flow data that Nfcapd records are not in a human readable format,
thus, further processing is required.

e Nfdump: NfDump’ takes the recorded flow data and converts it into a human
readable format (Table 1).

2Softflowd: http://www.mindrot.org/projects/softflowd/.

3Netflow: http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html.
4Nfcapd: http://nfdump.sourceforge.net/.

SNfDump: http://nfdump.sourceforge.net/.
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3.2 Learning Algorithms and Budgeting Strategies

As mentioned previously, the goal of our study is to benchmark the performance of
existing active learning strategies on streamed network traffic flows. Thus, in this
section we present the data stream mining tools, the budgeting strategies, and
performance metrics we employed in our evaluations.

3.2.1 Massive Online Analysis

Massive Online Analysis (MOA®) is an open source tool for data stream mining
[20]. It has proved very useful for our study as it is able to simulate a data stream
with a provided input. Furthermore, MOA provides users the ability to implement
the use of various machine learning algorithms and active learning strategies on the
data as it is being streamed. Additionally, MOA includes an Application Pro-
gramming Interface (API) suite that allows for users to create and modify the
functionality of existing code to suit their own evaluation needs.

3.2.2 Labels, Budgeting, and Active Learning

In a real-world streaming network traffic environment, it is assumed that the amount
of incoming data is infinite and dynamic. This means that the data attributes and
how they relate to one another can change over time either slowly (concept drift) or
suddenly (concept shift). Thus it can be assumed that it is of more use to train a
classifier on incoming data than to use a pre-existing model. In this scenario, a
classifier predicts the class of an instance based on the attributes of instances
received prior. Once the prediction has been made, the classifier will query the
actual class from a human provided label. The classifier will then train on the
current instance with the intention of increasing prediction accuracy for future
oncoming instances. In a network streaming environment where one aims to
classify between normal or malicious behavior this would mean that for every flow
that arrived at the network the classifier would have to be provided with its true
classification label (i.e., whether the flow was normal or malicious network traffic
behavior). As mentioned previously, attempting to perform classification tasks on
such a large dataset can be quite costly in terms of human effort (providing true
classification labels) time efficiency and hardware required to handle such large
datasets. Thus, the concept of budgeting is introduced. Budgeting involves limiting
the amount of queries that can be made to retrieve the true classification label of an
instance in a data stream [6]. Active learning incorporates this idea of budgeting but
adds a learning aspect in which the system makes an educated guess on which
classifications labels are most useful to query.

SMOA: http:/moa.cms.waikato.ac.nz/.
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3.2.3 Budgeting and Active Learning Strategies

The budgeting strategies that were chosen for our benchmarking study were chosen
based on the study performed in [6]. We chose to implement the same strategies for
a multitude of reasons. Firstly, work in [6] focuses on developing strategies for
streams with drifts, which is relevant for our study as most network streamed data
will exhibit drifts. Secondly, using the same active learning strategies gives us an
opportunity to compare how the strategies perform on streamed network traffic
datasets as compared to the general prediction and textual datasets used within
Zliobaite et al.’s study [6]. Because we will be comparing our results with the
results of [6], we will also be using budgets of 10 and 100 %. The active learning
strategies that were used in our study are described below.

o Random: This strategy randomly chooses data instances to query for the true
label [6]. No active learning occurs with this simple budgeting strategy, so it
provides an effective baseline for our evaluations.

e Fixed Uncertainty: Queries the true labels of the data instances with a confi-
dence below a given threshold [6].

e Variable Uncertainty: Queries the true labels of the data instances with the
lowest confidence within a variable time interval [6].

e Random Variable Uncertainty: This is a combination of the Random and
Fixed Uncertainty budgeting strategies [6].

e Select Sampling: Queries the true labels randomly with a changing probability
bias [21].

It is important to note that if a query for a true label is necessary then the training
model will be trained on the instance that was queried.

3.24 Learning Algorithms

For our study, we selected three different algorithms to accompany our chosen
active learning strategies for streaming classification. The algorithms chosen are:
(i) Naive Bayes, (ii) Hoeffding Tree, and (iii) Adaptive Artificial Neural Networks.

(i) Naive Bayes

Naive Bayes is a simple probabilistic classifier that is known to perform quite well
considering its simplicity [22]. The classifier makes predictions by assuming that all
attributes of a given instance do not correlate to each other in the probability of a
label being of a given class. Predicting a class using this algorithm is performed by
determining which class (C;, Cs...Cy where k is the total number of classes) has the
highest posterior probability based on the input x:

P(Cilx) > P(Cjlx) for 1 < j <k, j#i (1)
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where:

P(Cilx)P(Ci)

P(Cl) ==

2)

where P(C;lx) is the conditional probability and P(C;) is the prior probability of
class C;.

(ii) Hoeffding Tree

The Hoeffding Tree algorithm, also known as a Very Fast Decision Tree, is a more
complicated algorithm that incorporates the use of decision trees. It was designed to
be used on large data streams where only a subset of the data that passes through is
used to find the best split for the tree. The number of samples included in this subset
to achieve the desired confidence threshold is determined by a dynamic threshold
called a Hoeffding Bound. Hoeglinger et al. [23] describe the Hoeffding Bound as a
principle that says “with a probability of 1 — 6 the true mean of a variable is at least
7 —¢&” where ¢ is the desired error and is described as follows:

_ [RIn(16)
= T (3)

where [ is the current leaf in the decision tree, R is the range of random variables, r,
n is the number of independent observations made so far, and 1 —§ is the error
probability. The described Hoeffding Bound is then used within a decision tree to
determine on which attribute to split. This is done by determining the largest gain
between two attributes. If the largest calculated gain is greater than the e then the
Hoeftding Tree algorithm states that this attribute is the best attribute to split on
with a probability of 1—6 [23].

(iii) Neural Networks

We also employ a well-known bio-inspired computational intelligence technique in
our evaluations in order to systematically benchmark different learning techniques.
To this end, we specifically use adaptive Artificial Neural Networks. Artificial
Neural Networks (ANNs) are learning algorithms that are designed to imitate
real-world biological neural networks. In our work, we use the Pattern Recognition
network with a Multi-layer Perceptron within Matlab’s” Neural Network Toolbox.
In order for our network to work properly with streaming data we implement the
use of the adapt function within Matlab. The adapt function, as we used it in our
experiments, allowed for the neural network to adapt as data was being streamed. In
other words, instead of training our network on a training set, the neural network
would be trained on each data instance as the data (traffic) arrives. This means that a
labeling budget of 100 % is used to train on each instance where the true label is
queried.

"Matlab: http://www.mathworks.com/products/matlab/.
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4 Evaluation and Results

For the purpose of evaluating the performance of our chosen machine learning
algorithms and budgeting strategies on network datasets, two performance metrics
are employed [24]: prequential accuracy and prequential detection rate.

Accuracy of a classifier is described as the total number of correct classifications
over all the classification predictions made (n), that is:

1
Accuracy = » f 7 (4)

where, t, denotes the true positives, and f,, denotes the false negatives.
Similarly, prequential accuracy is the total number of correct classifications over
the total number of classifications made at a given point in time, that is;

(t—1) X preqAcc,—1 + C;

preqACC, = ;

(5)

where ¢ indicates a given time instant, ¢ — 1 indicates the previous time instant, and
C indicates whether or not the classification at the given time point was successful
(C =1 if the classification was correct, or C = 0 if the classification was incorrect).

Although accuracy is used to measure the performance in some works [1, 3,
6-10], its use could be problematic. With the use of unbalanced datasets, where the
number of instances belonging to each class is significantly different, using accu-
racy as a measure of classification performance can be misleading. For example, if
we have a dataset that consists of 98 % normal activity and 2 % malicious activity
and the classification model predicts that all activity is normal then we achieve 98 %
prediction accuracy. However, this result does not indicate successful classification,
as no malicious activity was detected. Therefore, we want to use a performance
metric that accounts for class imbalance in addition to false positive rates. Thus, the
use of prequential detection rate is introduced as a performance metric for our
experiments.

In this research, the detection rate at time ¢ is calculated using Eqgs. 6 and 7:

PRU)= ;'S DR ©)
g=1
where:
_ 1py(t)
DI ) v

where Q is the number of classes, q denotes a particular class, #p indicates true
positives, fn indicates false negatives, and ¢ denotes the given instant in time.
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Similarly, to find the detection rate at any given time, Prequential detection rate is
calculated below Eq. 8, where ¢ denotes the given point in time.

(t—1) X pregDR,_ + DR,

preqDR, = ; (8)
where:
DR(1) = éZjDqu o)
where:
_ (1)
PR = o)+ (19)

4.1 Results of Using Learning Algorithms Together
with Budgeting Strategies

Tables 2, 3, 4, and 5 show the overall results for each labeling when using different
budgets with different classification algorithms (Naive Bayes and Hoeffding Tree)
over the four chosen datasets employed in this research. Classifications predictions
made on the KDD 1999 Cup dataset (Table 2) generally appear to perform the same
regardless of the budget or the learning algorithm chosen, with the exception of
the Hoeffding Tree Algorithm using the Fixed Uncertainty Strategy whereas fewer
correct classifications are made. Furthermore, we see the detection rate make
a dramatic drop from the other detection rates and accuracies presented here.

Table 2 Overall prediction accuracy (ACC) and detection rate (DR) of different budgeting
strategies using KDD 1999 Cup dataset

Performance | Random | Fixed Variable Random variable | Select
metric uncertainty | uncertainty | uncertainty sampling
NB ACC 99.87 94.21 99.73 99.84 99.81
100 % | DR 99.70 92.64 99.62 99.79 99.75
NB ACC 99.90 97.05 99.54 99.47 99.47
10 % |DR 99.14 97.12 99.37 99.29 99.38
HT ACC 99.90 80.46 98.37 99.77 99.86
100 % |DR 99.87 50.38 96.06 99.59 99.81
HT ACC 99.46 81.88 99.36 99.56 99.54
10 % |DR 99.15 53.99 98.84 99.38 99.38

NB indicates Naive Bias and HT indicates Hoeffding Tree
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Table 3 Overal prediction accuracy (ACC) and detetion rate (DR) and of different budgeting
strategies using NIMS dataset

Performance | Random | Fixed Variable Random variable | Select
metric uncertainty |uncertainty | uncertainty sampling
NB ACC 88.73 87.20 90.41 90.72 90.47
100 % | DR 96.42 55.00 96