
Chapter 1
FPGA Versus Software Programming: Why,
When, and How?

Dirk Koch, Daniel Ziener, and Frank Hannig

This chapter provides background information for readers who are interested in
the philosophy and technology behind FPGAs. We present this from a software
engineer’s viewpoint without hiding the hardware specific characteristics of FPGAs.
Like it is very often not necessary to understand the internals of a CPU when
developing software or applications (as in some cases a developer does not even
know on which kind of CPU the code will be executed), this chapter should not be
seen as compulsory. However, for performance tuning (an obvious reason for using
accelerator hardware), some deeper background behind the used target technology
is typically needed.

This chapter compromises on the abstraction used for the presentation and
it provides a broader picture on FPGAs, including their compute paradigm, their
underlying technology, and how they can be used and programmed. At many places,
we have added more detailed information on FPGA technology and references to
further background information. The presentation will follow a top-down approach
and for the beginning, we can see an FPGA as a programmable chip that, depending
on the device capacity, provides thousands to a few million bit-level processing
elements (also called logic cells) that can implement any elementary logic function
(e.g., any logic gate with a hand full inputs). These tiny processing elements are laid
out regularly on the chip and a large flexible interconnection network (also called
routing fabric with in some cases millions of programmable switches and wires
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between these processing elements) allows to build more complex digital circuits
from those logic cells. This allows implementing any digital circuit, as long as it fits
the FPGA capacity.

1.1 Software and Hardware Programmability

Programmability allows it to adapt a device to perform different tasks using the same
physical real estate (regardless of whether it is a CPU or FPGA). This is useful
for sharing resources among different tasks and therefore for reusing resources
over time, for using the same device for various applications (and hence allowing
for lower device cost due to higher volume mass production), and for allowing
adaptations and customizations in the field (e.g., fixing bugs or installing new
applications).

1.1.1 Compute Paradigms

We all have heard about CPUs, GPUs, FPGAs and probably a couple of further
ways to perform computations. The following paragraphs will discuss the distinct
models, also known as compute paradigms, for the most popular processing options
in more detail.

Traditional von Neumann Model

The most popular compute paradigm is the von Neumann model where a processor
fetches instructions (stated by a program counter), decodes them, fetches operands,
processes them by an Arithmetic logic unit (ALU) and writes them to a register
file or memory. This takes (1) considerable resources (i.e. real estate) on the chip
for the instruction fetch and decode units, (2) power these units take, and (3) I/O
throughput for getting the instruction stream into the processor. This is known as
the von Neuman bottleneck that in particular arises if instructions and data transfers
to memory share the same I/O bus. This might need throttling down the machine
because instructions cannot be fetched fast enough. All modern processors follow a
Harvard architecture with separate caches for instructions and data which, however,
still has many of the shortcomings of the von Neumann model. An illustration of the
von Neumann model is given in Fig. 1.1a.

Vector Processing and SIMD

One major approach applied to many popular processors for improving the work
done per instruction was adding vector units. As shown in Fig. 1.1b, a vector unit
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Fig. 1.1 Compute paradigms. (a) Traditional von Neumann model with a CPU decoding an
instruction stream, fetching operands, processing them and writing results. (b) Vector processing
achieves higher throughput by processing multiple values in parallel by sharing the same
instruction stream (i.e. the same control flow). Multiple vector units can work in parallel on
different data items, which is the model deployed in GPUs. (c) Reconfigurable datapath on
an FPGA. Instead of performing different instructions on a single ALU, a chain of dedicated
processing stages is used in a pipelined fashion. If resources and I/O throughput permit, the pipeline
might also use vector processing or multiple pipelines may process in parallel

performs multiple identical operations on a set of input operands simultaneously,
so the effort for instruction fetching and decoding is amortized on more actual
processing work. Famous examples for vector extensions are the MMX technology
introduced by Intel in their Pentium processors in 1997, followed by AMD with
3DNow! and ARM with the NEON vector extension in the ARM Cortex-A series.
Vector units are also referred to as Single Instruction Multiple Data (SIMD) units.
While vector processing is promising from an architectural point of view, it is
challenging for compilers to harness this kind of computing and much of the code
using vector units is written by hand using assembly language.
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GPU Processing

For further improving processing performance (mostly driven by video processing
for computer games), large amounts of lightweight vector processing elements have
been integrated in Graphics Processor Units (GPUs). Here, lightweight means a
simple instruction fetch and decode unit for controlling the vector units for improved
performance-per-energy levels. However, communication between cores (or with
the host machine) is done through global shared memory (i.e., each core can access
any of the on-board GPU memory). As a consequence, with many hundreds of
vector units on a single GPU, the required memory bandwidth of GPUs is enormous
and despite a significant amount of on-chip caches. High-end GPUs factor this in by
providing hundreds of gigabytes of memory throughput which takes a considerable
amount of energy. For example, according to Vermij et al. [VFHB14], about half
the energy is used by the shared memory, the L2 Cache, on-chip communication,
and by the memory controllers over a series of benchmarks running on a GPU. As
a reference, the corresponding power breakdown for a Xeon E5-2630 showed that
“around 50% of the energy goes to the three levels of cache, and another 20% to
30% is spent on the memory controllers” [VFHB14].

GPU processing can work well on data parallel problems, like most graphics
processing tasks that work on independent pixels or vertices, but problems that
require computing a global result, synchronization will be needed as described in the
following Sect. 1.1.2. For example in Fig. 1.1, the executed program is an unrolled
loop (meaning we skipped any loop control instructions) that accumulates a result
together. While we might be able to distribute the compute problem to parallel
vector units, as illustrated in Fig. 1.1b (meaning that different processing elements
compute a different part of the problem), we still have to accumulate a final result
over all used vector units (see the ACC accumulate instruction in the examples that
computes RO D RO C RI). Depending on the problem, the synchronization effort
can actually exceed the processing time and the GPU cores will spend more time on
synchronization spinlocking than actually on providing useful work.

FPGA Datapath

As FPGAs can implement any digital circuit, they can implement architectures that
follow the von Neuman, the vector, or the GPU model. This is in many cases a
reasonable way to use FPGAs technology to implement another programmable
architecture on top of the FPGA fabric. The FPGA will then mimic another
programmable core (e.g., a well known CPU or a specialized programmable device)
that is then programmed with rather conventional software developing techniques.
This concept is known as hardware overlays and is covered in more detail in
Chap. 15.6 for a systolic processor array. This is a computer architecture using
small CPU-like processing elements that typically have little local memory and a
next neighbor communication infrastructure. Note that the capacity of today’s high
density FPGAs allows easily to host several hundred 32-bit processors including a
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suitable infrastructure (with memories, on chip networks, and I/O peripherals) on
a single device. A vector overlay is available with the MXP Matrix Processor from
VectorBlox Computing Inc. That vector processor can deliver for some applications
a 100� speedup over a baseline FPGA softcore processor and the design process is
purely carried out using software programming.1

A way we can look at a processor is similar to having a universal worker who
works off a job list (its program). However, if we take this analogy and compare
it with how we perform industrial mass production, then we see that a different
approach has been proven to perform much better: the assembly belt. The way
an assembly belt production is orchestrated is to locate highly specialized and
optimized workers (or machines) along a network of conveyor belts that move the
product to produce (e.g., a car) and materials across the factory. This is exactly the
idea behind the FPGA datapath paradigm where specialized processing elements
form a processing pipeline and instead of material, data is streamed between and
through these processing elements. As shown in Fig. 1.1c, there is no instruction
stream and the original instruction sequence is decomposed in a chain of simple
arithmetic operators. Consequently, there is no need for instruction fetch or decode,
this is encoded directly into the structure of the datapath.

When arranging a factory for efficient production, this can include a very
complex arrangement of workers, machines, and conveyor belts. Similarly, mapping
certain computations onto an FPGA might need a complex arrangement of process-
ing elements (or accelerator modules) with multiple processing pipelines that might
split or join. Due to the enormous flexibility of the reconfigurable interconnection
network provided by the FPGA, we can map virtually any communication depen-
dency between processing elements (e.g., streaming, broadcast, multicast, bus-based
communication, or even networks on chip). To summarize this: with FPGAs, we
can tailor the machine to the problem, while with CPUs/GPUs we can only tailor
the implementation to the machine.

While the clock frequency of such a processing pipeline on an FPGA is rather low
with commonly only a few 100 MHz, we can start a new iteration in each operational
cycle. A CPU, in contrast, has to rush through all instructions of a loop body before
the next iteration can be started. So with longer pipelines, the speedup of a datapath
implemented on an FPGA can be enormous. For example, the Maxeler OpenSPL
compiler (which is introduced in Chap. 5) uses several of the High-Level Synthesis
(HLS) techniques that are described in more detail in Chap. 2. Starting from a Java-
like description, this compiler can automatically generate processing pipelines with
eventually over a thousand pipeline stages on a single FPGA. And the Maxeler
compiler is further able to exploit multiple chained FPGAs for implementing even
larger pipelines.

As the clock frequency of processors is not likely to increase significantly
and because the improvement in the micro architecture will probably not result
in major performance increases, we cannot expect to see substantial single core

1http://vectorblox.com/about-technology/applications/.

http://vectorblox.com/about-technology/applications/
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(or thread) performance boosts in the near future. However, to fulfill demands for
more performance, parallel execution has to be applied. In the last paragraph, it was
described that parallel processing might often work well on GPUs for computing
data parallel problems by distributing the problem to many GPU cores that then
perform the same program but on different input data. This can be seen as horizontal
scaling (or horizontal parallelism), because instead of running sequentially through
a piece of code on one core, multiple cores are working side-by-side in this
model. This can, of course, be applied to FPGAs. In addition, FPGAs allow for
further vertical scaling (or vertical parallelism) where different processing elements
perform different operations (typically in a pipelined fashion). If we assume, for
example, a sequence of instructions in a loop body, it is not easy to parallelize the
loop body by executing the first half of the instructions on one CPU and the other
half of the instructions on another CPU. On an FPGA, however, this can be applied
to any extend and all the way to individual instructions, as it is the case in an FPGA
datapath. In other words, parallelizing an algorithm to FPGAs can in some cases
be much easier performed than it would be possible for a multi core processors or
GPUs. And with a rising demand for parallelizing algorithms it is more and more
worth looking into FPGA programming.

1.1.2 Flexibility and Customization

Programming is used to solve specific tasks and the target platform (e.g., a processor
or an FPGA) has to support running all tasks. We could say that virtually all
available programmable platforms are Turing complete and therefore that we are
(at least in theory) able to solve any task on virtually any programmable platform
(assuming that we are not bound by memory). However, depending on the problem
or algorithm that we want to solve, different programmable platforms are better
suited than others. This is of course the reason for the large variety of programmable
platforms. The following list states the benefits of some programmable architec-
tures:

CPUs are specifically good when dealing with control-dominant problems. This is
for example the case when some code contains many if-then-else or case
statements. A lot of operating systems, GUIs, and all sorts of complex state
machines fall into this category. Furthermore, CPUs are very adaptive and good
at executing a large variety of different tasks reasonably well. Moreover, CPUs
can change the executed program in just a couple of clock cycles (which is
typically much less than a microsecond).

GPUs perform well on data-parallel problems that can be vectorized (for using
the single instruction multiple data (SIMD) units available on the GPU thread
processing elements) and for problems that need only little control flow and
little synchronization with other threads or tasks. This holds in particular for
floating-point computations, as heavily used in graphics processing. However
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for synchronization, typically spinlocking techniques are used that can take
considerable performance and programming effort [RNPL15]

FPGAs achieve outstanding performance on stream processing problems and
whenever pipelining can be applied on large data sets. FPGAs allow for a tight
synchronized operation of data movement (including chip I/O) and processing
of various different algorithms in a daisy-chained fashion. This often greatly
reduces the need for data movement. For example, in a video processing
system, we might decompress a video stream using only on-FPGA resources
while streaming the result over to various further video acceleration modules
without ever needing off-chip communication. This not only removes possible
performance drops if we are I/O bound (e.g., if we have to occupy the memory
subsystem for storing temporary data in a CPU-based system) but also helps
in saving power. Please note that very often it takes much more power to
move operands (or any kind of data) into a processing chip than performing
computations on those operands.
Another important property of FPGAs is that they can implement any kind
of register manipulation instruction directly. For example, most cryptographic
algorithms require simple bit fiddling operations that can take a CPU tens to
hundreds of cycles for performing all the needed bit-mask and shift opera-
tions (for, lets say, a 32-bit register value). On FPGAs however, each bit is
directly accessible without any instruction and constant shift operations are
implemented by the interconnection network and shift operations do not even
take any FPGA logic resources (e.g., logic cells). In other words, FPGAs
do not follow the restrictions of a pre-defined instruction set and computer
organization. FPGAs allow us thinking in mathematical expressions and all
sorts of operations rather than in a fixed register file and a collection of
predefined instructions (as in all CPUs). For example, if we want to implement
a modulo 10 Gray-code counter, we can build this directly in logic and use a
small 4-bit register for storing the count state.

As can be seen, there is not a clear winning compute platform and depending on
the problem and requirements, one or the other is better. In practice, there is also a
human factor involved as it needs skilled people to program the different compute
platforms. While there are many software developers, there are far less GPU or
FPGA programmers, as can be observed on basically any job portal website. The
intention of this book is to tackle exactly this issue and helping in making FPGAs
accessible to software engineers.

A big difference in hardware and software programming platforms exists in the
ability to control the structure and architecture of the programming platform. If we
take a CPU or GPU, then a vendor (e.g., Intel, AMD, NVIDIA, or ARM) took
decisions on the instruction set architectures, the organization and sizes of caches,
and the capabilities of the I/O subsystem. In contrast when using FPGAs, there
is much more freedom. If we need, for example, an operation for computing the
correlation of a motion estimate vector, we can simply generate the corresponding
logic and the correlation of one or many pixels can be computed in a single cycle,
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if needed. If an algorithm requires a certain amount of on-chip memory, we can
allocate the exact corresponding number of memory blocks. For FPGAs, we are
basically only limited by the available resources, but much less by architectural
decisions of the FPGA vendor. And with devices providing millions of logic cells,
thousands of arithmetic blocks, and tens of megabytes of on-chip memory, the limit
is very low today.2

The need for flexibility can be discussed from a more system level perspective:
with the exponential rise of capacity available on a single chip, we typically want
to build more complex systems which implies the need for more heterogeneous
compute platforms. This can be observed for the various compute resources
including multicore CPUs, GPUs, and accelerators that are available in recent SoCs
(System on Chips) targeting mobile phones or tablet PCs. However, by predefining
an SoC architecture, we define its major characteristics and limit the level at which
an equipment manufacturer can differentiate the final product. FPGAs, however,
provide much more flexibility and they allow tailoring a large and complex SoC
exactly to the needs of the application. This is relevant when considering very large
chips in the future that should serve various different application domains. In this
situation, FPGAs might utilize much better the available real estate on the chip due
to their great customization abilities.

1.1.3 The Cost of Programmability

Unfortunately, programmability does not come for free. In a CPU, for example,
we might have 100 possible instructions, but we will only start one machine
instruction in each operational cycle, hence leaving probably most parts of the ALU
underutilized.

Similarly on an FPGA, we typically cannot use all available functional blocks of
the FPGA fabric in real-world applications and the routing between these blocks
is carried out by a switchable interconnection network consisting of eventually
many millions of programmable multiplexers that would not be needed when
implementing the interconnection of a non-programmable digital circuit (i.e. an
ASIC). In addition to real estate on the chip, all these switches will slow down the
circuit and draw some extra power. All this would not be needed when connecting
gates and functional blocks directly by wires, as it is the case for dedicated integrated
circuits (i.e. ASICs).

This technology gap between FPGAs and ASICs was quantified by Kuon
and Rose in [KR06]. Considering the same 90 nm fabrication process, an FPGA

2The limit is probably less what is available, but what is affordable. The high capacity flagship
devices of the two major FPGA vendors Xilinx and Altera typically cost over 10 k US$. So the limit
is often not a technological, but an economical one. However when Xilinx for example introduced
its new Series-7 FPGAs, the smallest Kintex-7 device (XC7K70T) provided at a price tag below
100 US$ significantly more resources than its Virtex-2 flagship (XC2V8000) a decade ago. So in
other words, what is far too expensive today might be well affordable very soon.
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consisting of logic cells (based on lookup tables and flip-flops) would be on
average 35� bigger (in terms of area) as the ASIC counterpart over a large set
of examined benchmark circuits. However, by introducing additional dedicated
functional blocks, such as multipliers and memory blocks, the gap in area can be
reduced to �18�. For the performance it was found that FPGAs are 3–4� slower
than their ASIC counterparts and they also draw about 10� more power.

However, due to high volume mass production, more advanced processes are
commonly used that result in a lower monetary cost, better energy efficiency,
and higher performance which all can offset much of the cost related to FPGA
programmability. Furthermore, programmability removes underutilization if some
tasks are used only very seldom. Due to re-programmability, the same physical
resources can be shared and consequently resources can be better utilized as it would
be possible with dedicated circuits for each task.3 On a more macroscopic level, this
shares some ideas behind cloud computing. The virtualization of servers in a cloud
data center comes at a price that pays off because it commonly allows running a
lower number of physical machines for a given load scenario.

The Impact of Technology Scaling

The probably most important driving factors in semiconductor technology today is
energy efficiency and power density. We all know about the astonishing progress
in silicon process technology which was firstly described by Moore’s law [Moo65]
that predicts an exponential growth of the transistor count on a chip (i.e. a doubling
approximately every 18 months). Even given that chips for computing cannot be
directly compared with memory chips, we can get a glimpse of what is possible
today when calculating the number of transistors in a memory card that we plug
into our phones, which can easily exceed a 100 billion transistors. However, while
the density was (and still is) growing exponentially, power consumption per area
stayed constant, which is known as Dennard scaling [DGnYC74]. In other words,
the energy efficiency per logic cell was also exponentially improving. Unfortunately,

3Most available FPGAs in these days can be partially reconfigured. This allows some parts of
the FPGA to be operational (e.g., a CPU controlling and managing the system and a memory
controller) while changing some accelerator modules. Partial reconfiguration can be used for a
time-multiplexing of FPGA resources (e.g., if a problem does not fit the device). This helps for
better utilizing an FPGA (and hence allowing for using a smaller and therefore cheaper and less
power hungry device). This technique can also be used to speed-up computations. Then, instead of
providing a chain of smaller modules concurrently on the FPGA, we might use reconfiguration
to load only the module currently needed, such that we have more resources available for
each module. This can then be used for exploiting a higher level of parallelization, which in
turn can eventually speedup processing significantly. Finally, partial reconfiguration can be used
for implementing dynamically instantiating hardware modules in a system (e.g., for creating a
hardware thread at runtime). More comprehensive information on partial runtime reconfiguration
is provided in [Koc13].
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this has slowed down in recent years and the power density (i.e. power per surface)
of many chips today is way beyond the power density of the hops that we use for
cooking in our kitchens.

As the power density cannot exceed the thermal design of the chip and the
surrounding system (the power used by a chip ends up in heat), the important
question today is not only how many transistors can be squeezed on a chip, but
how many of them are allowed to be powered and operational (or at what speed)
without exceeding a given thermal budget. This phenomena is known as dark
silicon [GHSVC11]. However, if we are restricted by power rather than by transistor
count on a chip, the cost of reconfigurability in terms of area is becoming a minor
issue as all the unused resources make a programmable chip kind of dark anyway.

Economical Aspects

There are economical aspects that can pay for the extra cost of programmability.
First of all, programmability allows faster time-to-market for products because
being able to quickly develop, test, modify, and produce a product allows partic-
ipating in higher profitable market windows. Programmability also allows for an
after-sales business (e.g., by providing updates) and longer operation of equipment.
The latter aspect was actually one of the major economical enablers for the
success of FPGA technology. The internet hype and with it the fast development
of technology and standards made it necessary to update network equipment in the
field. However, for this application, CPUs had been far too slow and ASICs took
too long to design and were not flexible enough. To overcome this, FPGAs had been
(and are still) the ideal platform to power major parts of the internet infrastructure.

1.2 What Are FPGAs?

FPGAs (Field Programmable Gate Arrays) are digital chips that can be programmed
for implementing arbitrary digital circuits. This means that FPGAs have first to be
programmed with a so called configuration (often called a configuration bitstream)
to set the desired behavior of the used functional elements of the FPGA. This
can be compared to processors which are able to execute arbitrary programs after
loading the corresponding machine code into some memory. Without loading any
executable code, the processor is unable to perform any useful operation. Translated
to FPGAs, an FPGA without a proper configuration does nothing. Only after the
configuration step, the FPGA is able to operate with the desired behavior encoded
into the configuration. FPGAs are an example for PLDs (Programmable Logic
Devices). FPGAs have a significant market segment in the microelectronics and,
particularly in the embedded system area. For example, FPGAs are commonly
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used in network equipment, avionics,4 automotive, automation, various kinds of
test equipment, medical devices, just to name some application domains. While
currently only a tiny share of FPGAs are used for data processing in data centers,
this is likely going to change in the near future as FPGAs not only provide very high
performance, but they are also extremely energy efficient computing devices. This
holds in particular when considering big data processing. For example, Microsoft
recently demonstrated a doubling of the ranking throughput of their Bing search
engine by equipping 1632 servers with FPGA accelerators which only added an
extra 10 % in power consumption [PCCC14]. In other words, Microsoft was able to
improve the energy efficiency by 77 % while providing faster response times due to
introducing FPGAs in their data centers.

Sometimes, FPGAs are referred to as FPGA technology. This expresses what
target technology for implementing a digital circuit is used. In other words, it allows
distinguishing if the target is an ASIC with logic gates as the building blocks or an
FPGA that provides programmable logic cells. It is quite common to implement
a digital circuit firstly on an FPGA for testing purposes before changing to ASIC
technology when targeting high volume markets.

1.3 How FPGAs Work

So far we have talked mainly about programming an FPGA and what an FPGA
is. This section will reveal its operation. Oversimplified, an FPGA consists of
multiplexers and configuration memory cells that control those multiplexers and
some wiring between them. This is illustrated in Fig. 1.2. It shows a multiplexer, the
most important building block of an FPGA5 and the operation of a multiplexer.

1.3.1 Lookup Table-Based Logic Cells

By connecting configuration memory cells to the select inputs of the multiplexer,
a reconfigurable switch as part of a switch matrix is built, as shown in Fig. 1.2c.
For implementing the actual reconfigurable logic cells, we connect configuration
memory cells to the data inputs. For example, if we want to implement an AND
gate, we will set the top configuration memory cell (connected to the input 11) to 1

4In an article from EETimes it is stated that “Microsemi already has over 1000 FPGAs in every
Airbus A380” (http://www.electronics-eetimes.com/?cmp_id=7&news_id=222914228).
5Despite that FPGAs are basically made from multiplexers, it is a bit ironic that they are not very
good at implementing multiplexers using their reconfigurable logic cells. In the case we want to
implement multiplexers with many inputs, this would cost a considerable number of logic cells.

http://www.electronics-eetimes.com/?cmp_id=7&news_id=222914228
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and the other three cells to 0. Consequently, each logic cell provides a lookup table
that stores the result for the desired Boolean function.

A lookup table (often abbreviated as LUT) can perform any Boolean function.
The only limit is the size of the table, that is given by the number of inputs (with
k D 2 in the figure). If larger functions have to be implemented than what fits in
a single lookup table, the functions are implemented by cascading multiple logic
cells (and therefore multiple lookup tables). For example, if we want to implement
an AND gate with three instead of two inputs, then we implement the AND gate for
two inputs, as described in the previous paragraph. The output is then connected to
one input of another logic cell that again implements an AND gate. The other input
of the second AND gate is then the third input of our 3-input AND gate.

The size of lookup tables found in commercial FPGAs varies from 3 to 6 inputs
depending on the vendor and device family. Figure 1.3 gives more examples for
truth tables of Boolean functions. For a table with k inputs, it takes 2k configuration
memory cells to build the logic cell. The examples in Fig. 1.3 show that the same
logic function can be implemented by permuting inputs. This is used for simplifying
the routing step (see Sect. 1.4.2). Instead of routing to a specific LUT input, it is
sufficient to route to any input while eventually adjusting the table entries.

Usually, the lookup tables in the logic cells are combined with state flip-flops.
These flip-flops are used storing states for FPGA-based circuits (e.g., the state of an
n-bit counter can be stored in the corresponding flip-flops of n logic cells).

1.3.2 Configuration Memory Cells

Depending on the FPGA vendor, the configuration memory cells can be provided as
SRAM cells, which allows fast and unlimited configuration data write processes.
This is the technology used by the FPGA vendors Altera, Lattice, and Xilinx.
SRAM-based FPGAs provide the highest logic densities and best performance.
As SRAM cells are a volatile memory technology, it requires always a device
configuration when powering the device up (which can be seen as a boot phase).
The size of the configuration binary (i.e. the bitstream) can range from a few tens of
kilobytes to a few tens of megabytes. As a consequence, the configuration of a large
FPGA device can take over a second in some systems.

The FPGA vendor Microsemi provides FPGAs that are based on non-volatile
configuration memory cells (Flash or antifuse). These devices are suited for extreme
environments including space or avionics where electronic components are exposed
to higher levels of ionizing radiation (which might impact the state of configuration
memory cells of SRAM-based devices). In addition, these FPGAs are very power
efficient, start immediately, and have better options for implementing cryptographic
systems, because secrets can be stored persistent and securely on the FPGA device
itself. However, the capacity and performance is lower than that of their SRAM
counterparts.
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1.3.3 Interconnection Network (Routing Fabric)

If we look at the technical parameters of an FPGA, we will find much information
about the logic cells, including capacity, features, and performance. However, with
respect to the area occupied on the FPGA die, the interconnection fabric with all
its multiplexers is actually taking more resources than the logic cells themselves
and this information is mostly hidden by the FPGA vendors. Also the performance
of a circuit mapped to an FPGA is much related to the interconnection network.
As a rule of thumb for present FPGAs, we can say that about 2/3 of the latency
of a critical path is spent on reconfigurable interconnections. Note that the allowed
clock frequency is the reciprocal of the critical path delay. This delay is the time
needed for a signal to propagate from a flip-flop output through eventually multiple
levels of logic cells and routing to a flip-flop input (this process has to be completed
before the next clock edge arrives at the flip-flops). The critical path delay is then
the slowest of all paths in a circuit mapped to an FPGA.

In practice, the multiplexers used for carrying out the switching between the
logic cells will be much bigger than the ones shown in Fig. 1.2, with multiplexers
typically providing between 10 and 30 inputs. Furthermore, the interconnection
network provides additional switches for intermediate routing (and not only for
connecting just the logic cell inputs). The FPGA vendors typically provide enough
routing resources to carry out the routing of virtually any design. However, in some
cases, it might be needed to work with lower utilization levels such that the ratio of
routing resources per logic cells is higher which then permits routing the design.

1.3.4 Further Blocks

Today, most FPGAs provide not only logic cells, but a variety of building blocks
(also called primitives). Please note that modules that are implemented in the
FPGA fabric are often called soft-logic or soft-IPs (i.e. intellectual property cores
implemented in the FPGA user logic). Respectively, cores that are provided with the
FPGA fabric are called hardened-logic or hard-IPs.

Commonly provided hard-IPs on FPGAs include I/O blocks (e.g., for connec-
tions to high-speed transceivers which in some cases operate beyond 10 Gbit),
dedicated memory blocks, and primitives providing multipliers (or even small
ALUs). Furthermore, there could be special hardened functional blocks, like for
example a PCIe connection core, DDR memory controllers, or even complete
CPUs. Using hardened CPUs on an FPGA is covered in Sect. 15.2.3 (on page 268).
The idea behind providing hardened IP blocks is their better area, performance
and power ratio, when these blocks are used (because they do not need costly
interconnection network). However, if a certain design leaves these blocks unused,
they are basically wasted real estate (see also Sect. 1.1.3). FPGA vendors provide a
selection of such blocks in order to meet the requirements of most customers.
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1.3.5 How Much Logic is Needed to Implement Certain Logic
Functions

When we develop an algorithm in software for a CPU, we are interested in its
execution time and the memory requirements. In the case of FPGAs, we are not
bound to a temporal domain only, but we have also a spatial domain, which means
that we are also interested in how much real estate a certain logic function or
algorithm will take. This is often not easy to answer and depends on many design
factors. For example, a fully featured 32-bit processor requires about 2000 6-input
lookup tables on a modern SRAM-based FPGA. However, there are area optimized
32 processors that use bit-serial processing and such a processor can be as small
as 200 lookup tables [RVSC10]. Such a processor would easily fit a few thousand
times on a recent FPGA. In bit-serial operation, we are only computing a bit per
clock cycle. Consequently, a 32-bit bit-serial processor is at least 32� slower than
its parallel counterpart when operating at the same clock speed. This example shows
that in hardware design it is often possible to trade processing speed for real estate.
Some behavioral compilers incorporate this automatically for the developer. These
tools allow specifying a certain compute throughput and the tool will minimize
resource usage, or vice versa, it is possible to define the available resources and
the tool maximizes performance.

For integer arithmetic, the cost for addition and subtraction scales linear with the
size of the operands (in terms of bits) and is about one LUT per bit. Please note that
it is common in hardware design to use arbitrarily sized bit vectors (e.g., there is no
need to provide a 32 bit datapath when implementing only a modulo-10 counter).
Comparators scale also linear with about 0.5 LUTs per bit to compare. Multipliers
scale linear to quadratic, depending if we use sequential or full parallel operation.
However, because multipliers can be expensive, there are multiplier blocks available
on most FPGAs in these days. Division and square root is particularly expensive and
should be avoided if possible. Floating point arithmetic is possible on FPGAs, but
here addition and subtraction is more expensive due to the need for normalization
(which is a comma shift operation that is needed if the exponents of two floating
point numbers differ). However, many high-level synthesis tools support floating
point data types and can exploit various optimizations for keeping implementation
cost low. Many high level synthesis tools provide resource (and performance)
estimators to give instantaneous feedback when programming for an FPGA.

This section is not meant to be complete, but is intended to give an introduction
to how hardware can be made reprogrammable. Like with driving a car, where we
do not have to understand thermodynamics, it is not necessary to understand these
low-level aspects when programming an FPGA. The interested reader might find
useful further information in the following books: [HD07, Bob07, Koc13].
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1.4 FPGA Design Flow

The FPGA design flow comprises different abstraction levels which represent the
description of an algorithm or an accelerator core over multiple transformation
steps all the way to the final configuration bitstream to be sent to the FPGA. The
design flow for FPGAs (and ASICs) can be divided into (1) a fronted phase and
(2) a backend phase. The latter phase is typically carried out automatically by CAD
tools (similar to the compilation process for a CPU). A short description about the
backend flow is given in Sect. 2.5 on page 45 and more detailed further down in this
section.

1.4.1 FPGA Front End Design Phase

Similar to the software world, there exists a wide variety of possibilities for
generating a hardware description for FPGAs. All these approaches belong to the
front end design phase and there exists a large ecosystem with languages, libraries,
and tools targeting the front end design. One of the main aims of this book is to give
a broad overview so that a software engineer can quickly narrow a search in this
ecosystem.

Model-Driven and Domain-Specific Design

FPGAs can follow a model driven design approach which is commonly supported
with comfortable and productive GUIs. For example, MATLAB Simulink from
The MathWorks, Inc. and LabVIEW from National Instruments (see also Chap. 4)
allow the generation of FPGA designs and running those designs pretty much
entirely using a computer mouse only. These are out-of-the-box solutions targeting
measurement instruments and control systems of virtually any complexity.

FPGA vendors and third-party suppliers provide large IP core libraries for
various application domains. This will be covered in Chap. 15 for rapid SoC design
using comfortable wizards.

Traditional Programming Languages

FPGAs can be programmed in traditional programming languages or in dialects of
those. An overview of this is given in Chap. 3 along with more detailed examples in
consecutive chapters. An example of a full environment with hardware platforms
(from desktop systems to large data centers) and compilers for Java-like FPGA
programming is provided in Chap. 5. The vast majority of high language design
tools are for C/C++ or its dialects, which is covered in several chapters. This
includes compilers from FPGA vendors in Chap. 6 (OpenCL from Altera Inc.) and
Chap. 7 (Vivado HLS from Xilinx Inc.), as well as chapters on academic open
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source tools. The LegUp tool (developed at the University of Toronto) is presented
in Chap. 10 and the ROCCC toolset (developed at The University of California,
Riverside) is covered in Chap. 11, respectively.

Source-to-Source Compilation

For improving design productivity in specific domains (e.g., linear algebra), there
exist source-to-source compilers that generate from an even higher abstraction level
(commonly) C/C++ code that will then be further compiled by tools as described in
the previous paragraph. Examples of this kind of solution are provided in Chap. 8
with the Merlin Compiler from Falcon Computing Solutions and in Chap. 12
with the HIPAcc tool (developed at the Friedrich-Alexander University Erlangen-
Nürnberg).

One big advantage of approaches operating at higher abstraction levels is not
only that specifying a system is easier and can be done faster; there is also much
less test effort needed. This is because many tools provide correct-by-construction
transformations for specifications provided by the designer.

Low-Level Design

At the other end of the spectrum, there are the lower level Hardware Description
Languages (HDLs) with Verilog and VHDL being the most popular ones. These
languages give full control over the generated hardware. However, these languages
are typically used by trained hardware design engineers and it needs a strong
hardware background to harness the full potential of this approach. A solution that
provides a higher level of abstraction (while still maintaining strong control over
the generated hardware in an easier way than traditional HDLs) comes with the
Bluespec SystemVerilog language and compiler, as revealed in Chap. 9.

The result of the front end design phase is a Register-transfer level (RTL)
description that is passed to the backend flow. All this is described in more detail in
the next section.

1.4.2 FPGA Backend Design Flow

The backend design flow for FPGAs and ASICs looks similar from a distance, as
illustrated in Fig. 1.4. The figure shows a general design flow for electronic designs
with FPGA and ASIC target technologies. The different abstraction levels were
introduced by Gaijski et al. in [GDWL92] and include:

RTL level The Register-Transfer Level is basically an abstraction where all state
information is stored in registers (or whatever kind of memory) and where logic
(which includes arithmetic) between the registers is used to generate or compute
new states. Consequently, the RTL level describes all memory elements (e.g.,
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flip-flops, registers, or memories) and the used logic as well as the connections
between the different memory and logic elements and therefore the flow of data
through a circuit.
RTL specifications are commonly done using hardware description languages
(HDLs). Those languages provide data types, logical and arithmetic operations,
hierarchies, and many programming constructs (e.g., loops) that are known from
software programming languages such as C. However, hardware is inherent
parallel and there is not a single instruction executed at a point in time, but
many modules that will work concurrently together in a system, which is well
supported by HDLs.
We could see the RTL level in analogy to a CPU, where all state information is
stored in registers (or some memory hierarchy) and where the ALU is in charge
of changing the value of registers (or memories). The abstraction level of RTL
is rather low and in an analogy to software, we could say it is comparable to an
abstraction in the range somewhere from assembly to C. However, RTL code is
still well readable and maintainable. As with assembly code, RTL code might
be generated by other compilation processes as an intermediate representation
and might not even be seen by an FPGA developer.

Logic level A synthesis tool will take the RTL description and translate it into a
netlist which is the logic abstraction level. Here, any behavioral description
from the RTL level is translated into registers and logic gates for implementing
elementary Boolean functions. The netlist is a graph where the nodes denote
registers and gates and the edges denote the connecting signals. For example, a
compare between two registers A and B (let’s say from an expression if A =
B then . . . ) will result in an XNOR gate for each bit of the two values A and
B (an XNOR is exactly 1 if both inputs are identical) and an AND gate (or a
tree of AND gates) to check if all the XNOR gates deliver 1 at the output. This
process is entirely carried out by logic compilers but can eventually be guided
(hardware engineers prefer the term “to constrain a design or implementation”)
by the user (e.g., for either generating a small cost-efficient implementation or
a high-performance implementation).
In the case of FPGAs as the synthesis target, there are specific synthesis options
to control which kind of primitive on the FPGA fabric will later be used to
implement a specific memory or piece of logic. For example, a shift register
(which is basically a chain of flip-flops) can be implemented with the flip-flops
after the lookup table function generators, with lookup table primitives that
provide memory functionality, or with a dual-ported memory surrounded with
some address counter logic. Similarly, multiplications can be done by dedicated
multiplier blocks or by generating an array of bit-level multiplier cells (for
example if we run short on multiplier blocks). In most cases, the default settings
for the synthesis tool will work fine and many higher level tools are able to
adjust the logic synthesis process automatically without bothering the designer.

Device Level The netlist from the previous level undergoes several optimization
processes and is now to be implemented by the primitives (lookup tables,
memory blocks, I/O cells, etc.) and the interconnection network of the FPGA.
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In a first step, called technology mapping, the logic gates are fitted into the
lookup tables. For this process, there exist algorithms for minimizing the
number of lookup tables needed (e.g., Chortle [FRC90]). Alternatively there
are algorithms for minimizing the depth of the tree when larger Boolean circuits
have to be fitted into the given LUTs (e.g., FlowMap [CD94]). The last option
results in fewer lookup tables to pass and consequently in lower propagation
delay and therefore in a faster possible clock frequency.
After technology mapping, the primitives will get placed on the FPGA fabric.
This is done with clustering algorithms and simulated annealing in order to
minimize congestion and the distance between connected primitives.
The placed primitives get now routed and the difficulty here is that a physical
wire of the FPGA can only be used exclusively for carrying out the linking of
one signal path. A well-known algorithm for this is called Pathfinder [ME95].
In a nutshell, this algorithm routes each path individually and increases the
cost for each wire segment according to how often it was used. Then by
iteratively restarting the routing process, popular wires get more expensive
which eventually resolves the conflict that multiple paths want to use the same
wire.
The size of the place and route problem is quite large with more than one
million primitives (i.e., logic cells, multipliers, memory blocks, etc.) and much
more than ten million wires, each with about 10–30 possible programmable
connections on recent devices. The tool time for computing all these steps
can in some cases exceed a full day for such large devices and requires a
few tens of gigabytes memory. Luckily, the process runs fully automated and
there are techniques like incremental compilation and design preservation that
allow keeping parts of the physical implementation untouched if only changes
were done in a design. This will then significantly speed up design respins.
In addition, there are tools that support a component-based design flow for
plugging fully pre-implemented modules together to a working system. One
approach for this method is known as hardware linking that works (in analogy
to software linking) by stitching together configuration bitstreams of individual
modules [KBT08]. This allows rapidly building systems without any time
consuming logic synthesis, placement, and routing steps, but requires building
a corresponding module library (e.g., [YKL15]).
The final mapped, placed, and routed netlist is then translated into a con-
figuration bitstream that contains the settings for each primitive and switch
matrix multiplexer (i.e. the values of the configuration memory cells shown
in Fig. 1.2). More details on the low-level implementation can be found in
[BRM99, Bob07, HD07, Koc13].
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1.5 Overview

Most chapters in this book have already been introduced throughout this introduc-
tion. This introduction provides a discussion about compute paradigms and a brief
introduction to FPGA technology. This is followed in Chap. 2 by a presentation of
the theoretical background behind high-level synthesis which allows the generation
of digital circuits directly from languages such as Java or C/C++. Chapter 3 gives
a classification of various HLS approaches and Chaps. 4–12 are devoted to specific
languages and tools including several case studies and small code examples.

Using FPGAs in a programming environment requires operating system services,
some kind of infrastructure, and methods to couple this with a software subsystem.
ReconOS (developed at the University of Paderborn) provides this functionality well
for embedded systems, as presented in Chap. 13, while the LEAP FPGA operating
system is targeting compute accelerators for x86 machines (Chap. 14).

The last two chapters are for software engineers who want to use FPGAs
without designing any hardware by themselves. Chapter 15 provides examples
on how complex systems can be built and programmed on FPGAs following a
library approach. After this, Chap. 16 shows how FPGA technology can be used
to host another programmable architecture that is directly software programmable.
The overall goal of this book is to give software engineers a better understanding
on accelerator technologies in general and FPGAs in particular. We also want to
postulate the message that FPGAs are not only a vehicle for highly skilled hardware
design engineers, but that there are alternative paths for software engineers to
harness the performance and energy efficiency of FPGAs.
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Fig. 1.2 FPGA fabric illustration. (a) The basic building block of an FPGA is a multiplexer. (b)
Its internal operation can be compared with switches of a rail network and exactly one of the inputs
(I) is connected with the output (O) depending on the select input (S). (c) (left) By connecting the
select inputs to configuration memory cells, a switchable routing network is implemented for the
interconnection between the logic cells. (c) (right) By connecting configuration memory cells to
the multiplexer inputs, a lookup table is built that can implement any Boolean logic function for the
lookup table inputs that are connected to the select inputs. For implementing larger combinatorial
circuits, the O output can be connected to further logic cells and for storing states, a register is
provided on the output Q. The values of the configuration memory cells are written during the
configuration of the FPGA. By fitting large quantities of these basic blocks consisting of switch
matrices and logic cells on a chip and connecting them together, we can build a reconfigurable
FPGA fabric that can host any digital circuit
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function A0 ·A1 ·A2 ·A3 (A0 ·A1)+A2 (A2 ·A3)+A1 A3
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Fig. 1.3 Lookup table configuration examples (partly taken from [Koc13])

Fig. 1.4 A general design
flow for FPGA and ASIC
designs with the synthesis
and implementation steps and
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