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Abstract. With the recent advent of new devices with embedded sen-
sors, Human Activity Recognition (HAR) has become a trending topic
in the last years because of its potential applications in pervasive health
care, assisted living, exercise monitoring, etc. Most of the works on HAR
either require from the user to label the activities as they are performed
so the system can learn them, or rely on a trained device that expects
a “typical” ideal user. The first approach is impractical, as the training
process easily become time consuming, expensive, etc., while the second
one drops the HAR precision for many non-typical users. In this work
we propose a “crowdsourcing” method for building personalized mod-
els for HAR by combining the advantages of both user-dependent and
general models by finding class similarities between the target user and
the community users. We evaluated our approach on 4 different pub-
lic datasets and showed that the personalized models outperformed the
user-dependent and general models when labeled data is scarce.

Keywords: Activity recognition · Wearable sensors · Accelerometer ·
Model personalization

1 Introduction

In the last years Human Activity Recognition (HAR) [1] has gained a lot of
attention because of its wide range of applications in several areas such as health
and elder care, sports, etc. [2–4]. Inferring the current activity being performed
by an individual or group of people can provide valuable information in the
process of understanding the context and situation in a given environment and
as a consequence, personalized services can be delivered. Recently, the use of
wearable sensors has become the most common approach to recognize physical
activities because of its unobtrusiveness and ubiquity –specifically the use of
accelerometers [4–6] because they are already embedded in several devices and
they raise less privacy concerns than other types of sensors.

One of the problems in HAR systems is that the labeling process for the
training data tends to be tedious, time consuming, difficult and prone to errors.
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This problem has really hindered the practical application of HAR systems,
limiting them to the most basic activities, for which a general model is enough,
as is the case for the pedometer function or alerting the user who spends too much
time quiet sitting down; both functions now available in some fitting devices and
smartwatches.

On the other hand, when trying to offer personalized HARs, there is the
problem that at the initial state of a system there is little or no information at
all (in our case, sensor data and labels). In the field of recommender systems
(e.g., movie, music, book recommenders) this is known as the cold-start problem
[7] and it includes the situation when there is a new user but nothing or little is
known about him/her, in which case it becomes difficult to recommend an item,
service, etc. It also encompasses the situation when a new item is added to the
system but since no one has yet rated, purchased or used that item, then it is
difficult to recommend it to the users.

In this work, we will focus in the situation when there is a new user in the
system and we want to infer his/her physical activities from sensor data with
high accuracy even when there is little information about that particular user,
assuming that the system already has data from many other users and also
that their associated data is already labeled. We are thus attempting to use a
“crowdsourcing” approach which consists in using collective data to fit personal
data. The key insight in our approach is that instead of building a model with all
the data from all other users, we will use the scarce labeled data from the target
user to select a subset of the other users’ data based on class similarities to build
a personalized model. The rational behind this idea is that the way people move
varies between individuals so we want to exclude instances from the training set
that are very different from those of the target user in order to remove noise.

This paper is organized as follows: Sect. 2 presents some related work.
Section 3 details the process of building a Personalized Model. The experiments
are described in Sect. 4. Finally in Sect. 5 we draw our conclusions.

2 Related Work

From the reviewed literature, broadly three different types of models in HAR
can be identified–namely: General, User-Dependent, and Mixed models.

General Models (GM): Sometimes also called User-Independent Models, Imper-
sonal Models, etc. and from now on we will refer to them as GMs. For each
specific user i a model is constructed using the data from all other users j, j �= i;
the accuracy is calculated testing the model with the data from user i.

User-Dependent Models (UDM): They are also called User-Specific Models, here
we will refer to them as UDMs. In this case, individual models are trained and
evaluated for a user using just her/his own data.

Mixed Models (MM): In [8] they call them Hybrid models. This type of model
tries to combine GMs and UDMs in the hope of adding their respective strengths,
and usually is trained using all the aggregated data without distinguishing
between users.
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There are some works in HAR that have used the UDM and/or GM approach
[9–11]. The disadvantages of GMs are mostly related to their lack of precision,
because the data from many dissimilar users is just aggregated. This limits the
GM HAR systems to very simple applications such as pedometers and detec-
tion of long periods of sitting down. The disadvantages of UDM HAR systems
are related to the difficulties of labeling the specific users’ data, as the train-
ing process easily become time consuming and expensive, so in practice users
avoid it.

For UDMs, several techniques have been used to help users label the data,
as it is the weakest link in the process. For example, in [12] a mobile application
was built in which the user can select several activities from a predefined list.
In [13], they first video-recorded the data collection session and then manually
labeled the data. Some other works have used a Bluetooth headset combined
with speech recognition software to perform the annotations [14] whereas in [15]
the annotations were made manually by taking notes. Anyway, labeling personal
activities remains being very time-consuming and undesirable indeed.

From the previous comments, apparently MMs look like a very promising
approach, because they could cope with the disadvantages of both GM and
UDM, but in practice combining the stregths of both has been an elusive goal; as
noted by Lockhart &Weiss [8], no such system has made it to actual deployment.

There have been several works that have studied the problem of scarce labeled
data in HAR systems [16,17] and used Semi-supervised learning methods to deal
with the problem, however they follow a Mixed model approach, i.e., they do
not distinguish between users.

Model personalization/adaptation refers to training and adapting classifiers
for a specific user according to his/her own needs. Building a model with data
from many users and using it to classify activities for a target user will introduce
noise due to the diversity between users. Lane et al. [18] showed that there is
a significant difference for the walking activity between two different groups
of people (20–40 and > 65 years old). Parviainen et al. [19] also argued that
a single general model for activity classification will not perform well due to
individual differences and proposed an algorithm to adapt the classification for
each individual by only requesting binary feedback from the user. In [20] they
used a model adaptation algorithm (Maximum A Posteriori) for stress detection
using audio data. Zheng et al. [21] used a collaborative filtering approach to
provide targeted recommendations about places and activities of interest based
on GPS traces and annotations. They manually extracted the activities from text
annotations whereas in this work the aim is to detect physical activities from
accelerometer data. Abdallah et al. [22] proposed an incremental and active
learning approach for activity recognition to adapt a classification model as new
sensory data arrives. In [23] they proposed a personalization algorithm that
uses clustering and a Support Vector Machine that first, trains a model using
data from user A and then personalizes it for another person B, however they
did not specify how should user A be chosen. This can be seen as a 1 → n
relationship in the sense that the base model is built using data from a specific
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user A and the personalization of all other users is based solely on A. The
drawback of this approach is that user A may be very different from all other
users which could lead to poor final models. Our work differs from this one in
that we follow a n → 1 approach which is more desirable in real world scenarios,
i.e., use data already labeled by the community users to personalize a model
for a specific user. In work [18] they personalize models for each user by first
building Community Similarity Networks (CSN) for different dimensions such
as: physical similarity, lifestyle similarity and sensor-data similarity. Our study
differs from this one in two key aspects: First, instead of looking for inter-user
similarities we find similarities between classes of activities. This is because two
users may be similar overall but still, there may be activities that are performed
very differently between them. Second, we just use accelerometer data to find
similarities since other types of data (age, locations, height, etc.) are usually not
available or impose privacy concerns. Furthermore, we evaluated the proposed
method on 4 different public datasets collected by independent researchers.

In this work we will use an approach that is between GMs and UDMs, so it
could be seen as a variation of Mixed Models, but here we use a small amount of
the user’s available data to select a subset of the other users’ activities instances
to complement the data from the considered user, instead of just blindly aggre-
gating all other users’ data. This selection is made based on class similarities
and the details will be presented in Sect. 3.

3 Personalized Models

In this section we describe how a Personalized Model (PM) is trained for a given
target user ut. A General Model (GM) includes all instances from users Uother,
where Uother is the set of all users excluding the target user ut. In this case there
may be differences between users on how they perform each activity (e.g., some
people tend to walk faster than others) so this approach will introduce noisy
instances to the train set and thus, the resulting model will not be very accurate
when recognizing activities for ut.

The idea of building a PM is to use the scarce labeled data of ut to select
instances from a set of users Usimilar, where Usimilar is the set of users similar
to ut according to some similarity criteria. Building PMs for activity recognition
was already studied by Lane et al. [18], with the limitations we already explained
in the preceding section. In our approach, we look for similarities per class instead
of a per user basis, i.e., the final model will be built using only the instances
that are similar to those of ut for each class. Procedure 1 presents the proposed
algorithm to build a PM based on class similarities.

The procedure starts by iterating through each possible class c. Within each
iteration, instances of class c from the ut train set τt and all the instances
of class c that belong to all other users are stored in dataall. The function
subset(set, c) returns all the instances in set of class c which are then saved in
datat. Function instances(U) returns all the instances that belong to the set of
users U . Next, all instances in dataall are clustered using k-means algorithm for
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Procedure 1. Build PM
1: T ← {} � Start with an empty train set
2: for c in C do � For each class
3: datat ← subset(τt, c) � τt is the target user’s train set
4: dataother ← subset(instances(Uother), c)
5: dataall ← datat ∪ dataother

6: Cluster dataall using k-means for k = 2..UpperBound and select the optimal k
according to some clustering quality index.

7: S ← arg maxg∈G |datat ∩ g| � G is the set of the resulting k groups
8: T ← T ∪ S ∪ datat

9: end for
10: weight(T) � Assign a weight to each instance such that the importance of τt

increases as more training data of the target user is available.
11: Build model using training set T.

k = 2...UpperBound. For each k, the Silhouette clustering quality index [24] of
the resulting groups is computed and the k that produces the optimal quality
index is chosen. A clustering quality index [25] is a measure of the quality of the
resulting clustering based on compactness and separation. The Silhouette index
was chosen because it has been shown to produce good results with different
datasets [25]. Next, instances from the cluster in which the majority of instances
from datat ended up are added to the final training set T. Also all instances
from datat that ended up in other clusters are added to T to make sure all the
data from ut are used. After the for loop, all instances in T are assigned an
importance weight as a function of the size of τt such that instances from the ut

train set have more impact as more training data is available for that specific
user. The exponential decay function y = (1−r)x was used to assign the weights
where r is a decay rate parameter and x = |τt|. The weight of all instances in T
that are not in τt is set to y and the weight of all instances in τt is set to 1 − y.
Finally, the model is built using T with the new instances’ weights. Note that
the classification model needs to have support for instance weighting. In this
case we used a decision tree implementation called rpart [26], which supports
instance weighting.

4 Experiments and Results

We conducted our experiments with 4 publicly available datasets. D1: Chest
Sensor Dataset [27,28]; D2: Wrist Sensor Dataset [29,30]; D3: WISDM Dataset
[31,32]; D4: Smartphone Dataset [13,33]. For datasets D1 and D2, 16 common
statistical features on fixed length windows were extracted. The features were:
mean for each axis, standard deviation for each axis, maximum value of each
axis, correlation between each pair of axes, mean of the magnitude, standard
deviation of the magnitude, mean difference of the magnitude, and area under
the curve of the magnitude. D3 already included 46 features and D4 already
included 561 extracted features from the accelerometer and gyroscope sensors.
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Several works in HAR perform the experiments by first collecting data from
one or several users and then evaluating their methods using k-fold cross valida-
tion (being 10 the most typical value for k) on the aggregated data. For a k = 10
this means that all the data is randomly divided into 10 subsets of approximately
equal size. Then, 10 iterations are performed. In each iteration a subset is chosen
as the test set and the remaining k − 1 subsets are used as the train set. This
means that 90 % of the data is completely labeled and the remaining 10 % is
unknown, however, in real life situations it is more likely that just a fraction of
the data will be labeled. In our experiments we want to consider the situation
when the target user has just a small amount of labeled data. Our models’ evalu-
ation procedure consists of sampling a small percent p of instances from ut to be
used as the train set τt and use the remaining data to test the performance of the
General Model, User-Dependent Model and our proposed Personalized Model.
To reduce sampling variability of the train set we used proportionate allocation
stratified sampling. We chose p to range between 1 % to 30 % with increments of
1. For each p percent we performed 5 random sampling iterations for each user.

Figures 1, 2, 3 and 4 show the results of averaging the accuracy of all users
for each p percent of data used as train set. For D1 (Fig. 1) the PM clearly
outperforms the other two models when the labeled data is between 1 % and 10 %
(the curve for PM-2 will be explained soon). The GM shows a stable accuracy
since it is independent of the user. For the rest of the datasets the PM shows an
overall higher accuracy except for D2 (later we will analyze why this happened).

Table 1 shows the average number of labeled instances per class for each p
percent of training data. For example for D3 we can see how just using 3 labeled
instances per class the PM achieves a good classification accuracy (≈ 0.8).

Table 2 shows the difference of average overall accuracy and recall (from 1 %
to 30 % of labeled data) between the PM and the other two models. Here we can

Fig. 1. D1: Chest sensor dataset
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Fig. 2. D2: Wrist sensor dataset

Fig. 3. D3: WISDM dataset

see how the PM significantly outperforms the other two models in all datasets
except for the accuracy in D2 when comparing PM - UDM in which case the
difference is negligible. This may be due to the user-class sparsity of the dataset,
i.e., some users just performed a small subset of the activities. This situation will
introduce noise to the PM. In the extreme case when a user has just 1 type of
activity it would be sufficient to always predict that activity. However, the PM
is trained with the entire set of possible labels from all other users in which case
the model will predict labels that are not part of that user. To confirm this, we
visualized and quantified the user-class sparsity of the datasets and performed
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Table 1. Average number of
labeled instances per class.

1 % 5% 10 % 15 % 20%

D1 1 7 14 21 28

D2 1 1 2 3 3

D3 1 2 3 4 5

D4 1 3 6 9 12

Table 2. Difference of average
overall accuracy/recall (from 1 %
to 30 % of labeled data) between
the PM and the other two models.

PM - GM PM - UDM

D1 22.5 %/18.4 % 5 %/8 %

D2 9.3 %/9.4 % −0.80 %/17 %

D3 6 %/7 % 22.15 %/34 %

D4 4 %/4 % 25.5 %/28 %

Fig. 4. D4: Smartphone dataset

further experiments. First we computed the user-class sparsity matrices for each
dataset. These matrices are generated by plotting what activities were performed
by each user. A cell in the matrix is set to 1 if a user performed an activity and
0 otherwise. The sparsity index is computed as 1 minus the proportion of 1’s
in the matrix. In datasets D1 and D4 all users performed all activities giving
a sparsity index of 0. Figures 5 and 6 show the user-class sparsity matrices of
datasets D2 and D3 respectively. D2 has an sparsity index of 0.54 whereas for
D3 it is 0.18. For D2 this index is very high (almost half of the entries in the
matrix are 0) furthermore the number of classes for this dataset is also high (12).
From the matrix we can see that several users performed just a small number
of activities (in some cases just 1 or 2 activities). One way to deal with this
situation is to train the model excluding activities from other users that were
not performed by the target user. Figures 1, 2, 3 and 4 (gray dotted line PM-2)
show the results of excluding types of activities that are not in ut. As expected,
for datasets with low or no sparsity the results are almost the same (with small
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Fig. 5. D2: wrist sensor dataset user-class sparsity matrix

Fig. 6. D3: WISDM dataset user-class sparsity matrix

variations due to random initial k-means centroids). For D2 which has a high
sparsity the accuracy significantly increased. This shows evidence that the user-
class distribution of the dataset has an impact on the PM and that this can be
alleviated by excluding the classes that are not relevant for a particular user.

5 Conclusions

In this work we proposed a method based on class similarities between a col-
lection of previous users and a specific user to build Personalized Models when
labeled data for this one is scarce, getting thus the benefits from a “crowdsourc-
ing” approach, where the community data is fit to the individual case. We used
the small amount of labeled data from the specific user to select meaningful
instances from all other users in order to reduce noise due to inter-user diversity.
We evaluated the proposed method on 4 independent human activity datasets.
The results showed a significant increase in accuracy over the General and User-
Dependent Models for datasets with small sparsity. In the case of datasets with
high sparsity, the performance problems were alleviated in a great extent by
excluding types of activities from other users that were not performed by the
target user.
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