
Noise Sensitivity of an Information Granules
Filtering Procedure by Genetic Optimization
for Inexact Sequential Pattern Mining

Enrico Maiorino, Francesca Possemato, Valerio Modugno
and Antonello Rizzi

Abstract One of the most essential challenges in Data Mining and Knowledge

Discovery is the development of effective tools able to find regularities in data. In

order to highlight and to extract interesting knowledge from the data at hand, a key

problem is frequent pattern mining, i.e. to discover frequent substructures hidden in

the available data. In many interesting application fields, data are often represented

and stored as sequences over time or space of generic objects. Due to the presence

of noise and uncertainties in data, searching for frequent subsequences must employ

approximate matching techniques, such as edit distances. A common procedure to

identify recurrent patterns in noisy data is based on clustering algorithms relying on

some edit distance between subsequences. However, this plain approach can produce

many spurious patterns due to multiple pattern matchings on close positions in the

same sequence excerpt. In this paper, we present a method to overcome this draw-

back by applying an optimization-based step lter that identifies the most descriptive

patterns among those found by the clustering process, and allows to return more

compact and easily interpretable clusters. We evaluate the mining systems perfor-

mances on synthetic data in two separate cases, corresponding respectively to two

different (simulated) sources of noise. In both cases, our method performs well in

retrieving the original patterns with acceptable information loss.

Keywords Granular modeling ⋅ Sequence data mining ⋅ Inexact sequence match-

ing ⋅ Frequent subsequences extraction ⋅ Evolutionary computation

E. Maiorino (✉) ⋅ F. Possemato ⋅ A. Rizzi

Department of Information Engineering, Electronics and Telecommunications (DIET),

SAPIENZA University of Rome,Via Eudossiana 18, 00184 Rome, Italy

e-mail: enrico.maiorino@uniroma1.it

V. Modugno

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG), SAPIENZA

University of Rome, Via Ariosto 25, 00185 Rome, Italy

e-mail: valerio.modugno@uniroma1.it

© Springer International Publishing Switzerland 2016

J.J. Merelo et al. (eds.), Computational Intelligence,

Studies in Computational Intelligence 620, DOI 10.1007/978-3-319-26393-9_9

131

132 E. Maiorino et al.

1 Introduction

Nowadays, sequence data mining is a very interesting field of research that is going

to be central in the next years due to the growth of the so called “Big Data” chal-

lenge. Moreover, available data in different application fields consist in sequences

(for example over time or space) of generic objects. Generally speaking, given a

set of sequences defined over a particular domain, a data mining problem consists in

searching for possible frequent subsequences (patterns), relying on inexact matching

procedures. In this work we propose a possible solution for the so called approxi-
mate subsequence mining problem, in which we admit some noise in the matching

process. As an instance, in computational biology, searching for recurrent patterns

is a critical task in the study of DNA, aiming to identify some genetic mutations or

to classify proteins according to some structural properties. Sometimes the process

of pattern extraction returns sequences that differ from the others in a few positions.

Consequently, the choice of an adequate dissimilarity measure becomes a critical

issue when we are designing an algorithm able to deal with this kind of problems.

Handling sequences of objects is another challenging aspect, especially when the

data mining task is defined over a structured domain of sequences [1, 2] Thinking

data mining algorithms as a building block of a wider system facing a classification

task, a reasonable way to treat complex sequential data is to map sequences to ℝd

vectors by means of some feature extraction procedures in order to use classifica-

tion techniques that deal with real valued vectors as input data [3–7]. The Granular

Computing (GrC) approach [8] offers a valuable framework to fill the gap between

the input sequence domain and the features space ℝd
and relies on the so-called

information granules that play the role of indistinguishable features at a particular

level of abstraction adopted for system description. The main objective of Granular

modeling consists in finding the correct level of information granulation that best

describes the input data [9].

2 Frequent Substructures Mining and Matching Problem

The problem of sequential patterns mining was first introduced by Agrawal and

Srikant [10] in a specific context: starting from a dataset of sequences of customer

transactions, the objective consists in mining for sequential patterns in such dataset.

In a dataset of sequences of customer transactions, the general object 𝛼i of each

sequence consists of the following fields: customer-id, transaction-time and the set

of items purchased in the transaction. Agrawal et al. [10] introduce for the first time

the notion of itemset as a non-empty set of items. This problem is often viewed as the

discovery of “association rules”, that is strictly dependent on the task of mining fre-

quent itemsets. In [11], the authors propose the very first algorithm able to generate

significant association rules between items in databases. Manager of supermarkets

as well as e-commerce websites have to make decisions about which products to put

Noise Sensitivity of an Information Granules Filtering Procedure . . . 133

on sale, how to design coupons and customize the offers in order to maximize their

profits. This problem raises the need to analyze past transactions and predict future

behaviors.

All the studies in this field are based on the notion of market-basket model of

data [12]. It is used to describe relationship between items and baskets, also called

“transactions”. Each basket consists in an itemset and it is assumed that the number

of items in a basket is much smaller than the total number of items.

The market-basket model (also known as a priori-like) asserts that each itemset

cannot be frequent if its items are not frequent or equivalently any super-pattern of

infrequent patterns cannot be frequent. Using this principle Agrawal and Srikant

proposed the AprioriAll algorithm in [10]. Their approach aims to extract fre-

quent sequential patterns and is based on a candidate generation and test paradigm.

Note that during the mining procedure, candidate frequent sequential patterns can

be obtained only by joining shorter frequent sequential patterns. An example of a

sequential pattern is “5 % of customers bought {Apple, Orange, Flour, Coffe} in one

transaction, followed by {Coffee, Sugar} in a later transaction”. The weakness of

the algorithm is that a huge set of candidate sequences are generated requiring an

enormous amount of memory and many repeated database scans. This behavior gets

worse with increasing size of sequences in the database.

In [13] a new algorithm named GSP (Generalized Sequential Patterns) is intro-

duced. The authors propose a breadth-first search and bottom-up method to obtain

the frequent sequential pattern. Moreover, they introduce a time constraint that fixes

the minimum and maximum delay between adjacent elements in the candidate pat-

terns and the possibility for items to be present in a set of transactions in a fixed time

window. GSP overcomes the performances of the APrioriAll algorithm [10] reduc-

ing the number of candidate sequential patterns. However, all a priori-like sequential

pattern mining methods tend to behave badly with large datasets, because they may

generate a large set of candidate subsequences. Moreover, for such algorithms, multi-

ple scans of the database are needed, one for each length of the candidate patterns and

this becomes very time consuming for mining long patterns. Finally, another prob-

lem occurs with long sequential patterns: a combinatorial number of subsequences

are generated and tested.

To overcome these problems, in [14], a new algorithm named SPADE is intro-

duced. The authors use a similar approach of GSP, however they use a vertical data

format and divide the mining problem into smaller sub-problems reducing signif-

icantly the number of database scans required. In [15, 16] the authors introduce

two algorithms FreeSpan and PrefixSpan. They are based on a completely different

approach than APrioriAll and GSP: the pattern-growth approach for mining sequen-

tial patterns in large datasets. Each time new sequential patterns are generated, the

whole dataset of sequences is projected into a set of smallest projected datasets using

the extracted sequential patterns and bigger sequential patterns are grown in each

projected dataset analyzing only locally frequent fragments. PrefixSpan introduces

new techniques to reduce the size of the projected datasets.

134 E. Maiorino et al.

All presented works describe search techniques for mining non-contiguous

sequences of objects. However, these approaches are not ideal when the objective

is to extract frequent sequential patterns, in which the contiguity of the component

objects plays a fundamental role in the information extraction.

In particular, in computation biology, even though techniques for mining sequen-

tial noncontiguous patterns have many uses, they are not appropriate for many

applications. Computational biology community has developed a lot of methods for

detecting frequent patterns, that in this field are called motifs. Moreover, working

with real-world data, the presence of some noise must be taken into account in the

designing of the matching procedure [17–20]. In many fields and particularly in a

biological context, patterns should have long lengths and high supports, but stan-

dard sequential pattern mining approaches tend to discover a large amount of “low

quality” patterns, i.e. patterns having either short lengths or low supports. It is easy

to observe that genome sequences contain errors, so it is unlikely that long sub-

sequences generated from the same origin will be exactly identical. Moreover, the

increase of the minimum number of occurrences of a subsequence in a database,

in case of exact matching, obliges to accept shorter and shorter subsequences, with

the possibility to obtain a massive quantity of data with a less specific meaning. In

such cases, exact matches techniques can give only short and trivial patterns. So, by

allowing some mismatches, it is possible to discover valuable sequential patterns,

with longer length and higher approximate supports. Some works [17, 18] use Ham-

ming distances to search for recurrent motifs in data. Other works employ suffix tree

data structure [21], suffix array to store and organize the search space [22] or use a

GrC framework for the extraction of frequent patterns in data [23].

The algorithm presented in [24] uses a suffix-three data structure to mine frequent

approximate contiguous subsequences (also called substrings). The procedure fol-

lows a “break-down-and-build-up” strategy. The “break-down” step aims at search-

ing, by means of a suffix-tree based algorithm, for the longest subsequences which

repeat, with an exact match, in the whole database. These subsequences represent

the initial sequences (called strands), which will be iteratively assembled into longer

strands by using a local search algorithm. The “build-up” step groups the obtained

strands, forming the set from which all approximate subsequences will be identified.

The algorithm [25] uses a similar approach as [24], but taking into account the

quality of sequential patterns. Good quality patterns can be obtained by balancing

pattern length and pattern support. Short patterns are undesirable, particularly when

sequences are long, since the meaning is less specific. Patterns with low supports are

not desirable too, since they can be trivial and may not describe general phenomena.

Thus, the algorithm is biased toward the search for longer subsequences, character-

ized by a sufficient frequency. It makes use of a suffix array to store and organize in

a lexicographic order the search space (i.e., the set of subsequences). The search on

such a suffix array follows a prefix extension approach, meaning that frequent sub-

sequences are individuated analyzing the prefixes of the input sequences, tolerating

inexactness during the evaluation.

Noise Sensitivity of an Information Granules Filtering Procedure . . . 135

Computational biology community has developed a lot of algorithms for min-

ing frequent motifs using the Hamming distance as similarity measure. YMF [17] is

based on the computation of the statistical significance of each motif, but its perfor-

mances decrease as the complexity of motifs increases. Weeder [18] is a suffix-tree-

based algorithm and is faster than YMF, because it considers only certain types of

mismatches for the motifs, however it can not be used for different types of motifs.

Another algorithm, MITRA [19], is a mismatch-tree-based approach and uses heuris-

tics to prune the space of possible motifs.

Analysis and interpretation of time series is another challenging problem that

many authors try to solve [26, 27]. Some works consider the problem of mining

for motifs in time series databases in several applications: from the analysis of stock

prices to the study of the ECG in medicine, to the analysis of measures from sensors.

In particular in [28] it is showed how to discretize a time series, in order to obtain a

sequence of symbols, defined over a fixed alphabet and use well known motif min-

ing algorithms. However, in the discretization process, a lot of information is lost.

Moreover, this algorithm uses exact matching procedures for mining patterns and is

unusable in real cases with noisy data. In Chiu et al. [29] present another algorithm,

based on [20], that considers the presence of noise in data. However, also in this

case, a simple model of mismatches is considered. In [30] the algorithm FLAME is

presented. It consists in a suffix-tree-based technique and can be used also with time

series data sets, by converting such data into a sequence of symbols, discretizing the

numeric data. All these approaches suffer from the loss of information during the

discretization procedure.

In the following, we present a clustering-based subsequences mining algorithm

that can be used with general sequence databases, choosing a suited similarity mea-

sure, depending on the particular application. Moreover, most methods focus only on

the recurrence of patterns in data without taking into account the concept of “infor-

mation redundancy”, or, in other words, the existence of overlapping among retrieved

patterns [31]. Frequent pattern mining with approximate match is a challenging prob-

lem starting from the definition itself: even if one ignores small redundant patterns,

there might be a huge number of large frequent redundant patterns. This problem

should be taken in consideration, in a way that only some representatives of such

patterns should survive after the mining process.

3 The Proposed Algorithm

In this work we present a new approximate subsequence mining algorithm called

FRL-GRADIS (Filtered Reinforcement Learning-based GRanular Approach for DIs-

crete Sequences) [32] aiming to reduce the information redundancy of RL-GRADIS

[33] by executing an optimization-based refinement process on the extracted pat-

terns. In particular, this paper introduces the following contributions:

136 E. Maiorino et al.

1. our approach finds the patterns that maximize the knowledge about the process

that generates the sequences;

2. we employ a dissimilarity measure that can extract patterns despite the presence

of noise and possible corruptions of the patterns themselves;

3. our method can be applied on every kind of sequence of objects, given a properly

defined similarity or dissimilarity function defined in the objects domain;

4. the filtering operation produces results that can be interpreted more easily by

application’s field experts;

5. considering this procedure as an inner module of a more complex classification

system, it allows to further reduce the dimension of the feature space, thus better

addressing the curse of dimensionality problem.

This paper consists of three parts. In the first part we provide some useful definitions

and a proper notation; in the second part we present FRL-GRADIS as a two-step

procedure, consisting of a subsequences extraction step and a subsequences filter-

ing step. Finally, in the third part, we report the results obtained by applying the

algorithm to synthetic data, showing a good overall performance in most cases.

4 Problem Definition

Let  = {𝛼i} be a domain of objects 𝛼i. The objects represent the atomic units of

information. A sequence S is an ordered list of n objects that can be represented by

the set of pairs

S = {(i → 𝛽i) | i = 1,… , n; 𝛽i ∈ },

where the integer i is the order index of the object 𝛽i within the sequence S. S can

also be expressed with the compact notation

S ≡ ⟨𝛽1, 𝛽2,… , 𝛽n⟩

A sequence database SDB is a set of sequences Si of variable lengths ni. For example,

the DNA sequence S = ⟨G,T ,C,A,A,T ,G,T ,C⟩ is defined over the domain of the

four amino acids  = {A,C,G,T}.

A sequence S1 = ⟨𝛽′1, 𝛽
′
2,… , 𝛽

′
n1
⟩ is a subsequence of a sequence S2 = ⟨𝛽′′1 , 𝛽

′′
2 ,… ,

𝛽
′′
n2
⟩ if n1 ≤ n2 and S1 ⊆ S2. The position 𝜋S2 (S1) of the subsequence S1 with respect

to the sequence S2 corresponds to the order index of its first element (in this case the

order index of the object 𝛽
′
1) within the sequence S2. The subsequence S1 is also said

to be connected if

𝛽
′
j = 𝛽

′′
j+k ∀j = 1,… , n1

where k = 𝜋S2 (S1). Two subsequences S1 and S2 of a sequence S are overlapping if

S1 ∩ S2 ≠ ∅.

Noise Sensitivity of an Information Granules Filtering Procedure . . . 137

In the example described above, the complete notation for the sequence

S = ⟨G,T ,C,A,A,T ,G,T ,C⟩ is

S = {(1 → G), (2 → T), (3 → C),…}

and a possible connected subsequence S1 = ⟨A,T ,G⟩ corresponds to the set

S1 = {(5 → A), (6 → T), (7 → G)}.

Notice that the objects of the subsequence S1 inherit the order indices from the con-

taining sequence S, so that they are univocally referred to their original positions in

S. From now on we will focus only on connected subsequences, therefore the con-

nection property will be implicitly assumed.

4.1 Pattern Coverage

The objective of this algorithm is to find a set of frequent subsequences of objects

named as patterns. A pattern 𝛺 is a subsequence of objects ⟨𝜔1, 𝜔2,… , 𝜔|𝛺|⟩, with

𝜔i ∈ , that is more likely to occur within the dataset SDB. Patterns are unknown

a priori and represent the underlying information of the dataset records. Moreover,

each sequence is subject to noise whose effects include the addition, substitution and

deletion of objects in a random uncorrelated fashion and this makes the recognition

of recurrent subsequences more challenging.

Given a sequence S ∈ SDB and a set of patterns 𝛤 = {𝛺1,… , 𝛺m}, we want to

determine a quality criterion for the description of S in terms of the pattern set 𝛤 . A

connected subsequence C ⊆ S is said to be covered by a pattern 𝛺 ∈ 𝛤 iff d(C, 𝛺) ≤
𝛿, where d(⋅, ⋅) is a properly defined distance function and 𝛿 is a fixed tolerance

(Fig. 1). The coverage (𝛿)
𝛺
(S) of the pattern 𝛺 over the sequence S is the union set

of all non-overlapping connected subsequences covered by the pattern. We can write,


(𝛿)
𝛺
(S) =

⋃

i

[

Ci ⊆ S s.t. d(Ci, 𝛺) ≤ 𝛿 ∧ Ci ∩ Cj = ∅ ∀ i ≠ j
]

. (1)

Fig. 1 Coverage of the pattern 𝛺 over the subsequence C ⊆ S with tolerance 𝛿. Black boxes and

gray boxes represent respectively the covered and the uncovered objects of the sequence S. Notice

that if 𝛿 > 0 the sequences 𝛺 and C need not to be of the same length

138 E. Maiorino et al.

Formally, this set is still not well defined until we expand on the meaning of the

property

Ci ∩ Cj = ∅, (2)

which is the requirement for the covered subsequences to be non-overlapping. Indeed,

we need to include additional rules on how to deal with these overlappings when

they occur. To understand better, let us recall the example of the DNA sequences

presented above, where the dissimilarity measure between two sequences is the Lev-

enshtein distance. The set of all covered subsequences Ci (in this context referred to

as candidates) by the pattern 𝛺 over the sequence S will consist only of sequences

with values of length between |𝛺| − 𝛿 and |𝛺| + 𝛿. Indeed, these bounds correspond

respectively to the extreme cases of deleting and adding 𝛿 objects to the subsequence.

In case of two overlapping candidates Ci and Cj, in order to satisfy the property (2) of

the coverage 
(𝛿)
𝛺
(S), we have to define a rule to decide which subsequence belongs

to the set 
(𝛿)
𝛺
(S) and which does not. Candidates with smaller distances from the

searched pattern 𝛺 are chosen over overlapping candidates with higher distances. If

the two overlapping candidates have the same distance the first starting from the left

is chosen, but if also their starting position is the same the shorter one (i.e. smaller

length value) has the precedence.

A coverage example in the context of the DNA sequences is shown in Fig. 2.

The coverage of the pattern 𝛺 = ⟨A,G,G,T⟩ over the sequence S is 
(𝛿)
𝛺
(S) =

⟨A,C,G,T⟩ ∪ ⟨G,G,T⟩ ∪ ⟨A,C,G,G,T⟩.
Similarly, the compound coverage of the pattern set 𝛤 is defined as


(𝛿)
𝛤
(S) =

⋃

𝛺∈𝛤

(𝛿)
𝛺
(S). (3)

It is important to notice that, in this case, this set can include overlapping subse-

quences only if they belong to coverages of different patterns (i.e. it is assumed that

different patterns can overlap). For example consider the case shown in Fig. 3. The

coverage 
(𝛿)
{𝛺1,𝛺2}

(S) for the patterns 𝛺1 = ⟨A,G,G,T⟩ and 𝛺2 = ⟨G,T ,C⟩ is equal

to 
(𝛿)
{𝛺1,𝛺2}

(S) = ⟨A,G,G,T ,C⟩.

G G T T A C G T CT C G G G A C G G T GT C T G G C A A C G G T CT T G

A G G T A G G T A G G T

Fig. 2 Coverage examples in the case of DNA sequences. The searched pattern ⟨A,G,G,T⟩ is

found 3 times with tolerance 𝛿 ≤ 1 using the Levenshtein distance. The three occurrences show

all the edit operations allowed by the considered edit distance, respectively objects substitution,

deletion and insertion

Noise Sensitivity of an Information Granules Filtering Procedure . . . 139

A C G T CCA C T T C G G G

A G G T

G T C Ω2

Ω1

S

Fig. 3 Example of the compound coverage of multiple symbols, where the symbols ⟨G,T ,C⟩ and

⟨A,G,G,T⟩ have Levenshtein distances from the corresponding subsequences equal to 0 and 1,

respectively. Notice that different symbols can cover overlapping subsequences, while competing

coverages of the same symbol are not allowed and only the most similar subsequence is chosen

5 The Mining Algorithm

In this section, we describe FRL-GRADIS, as a clustering-based sequence min-

ing algorithm. It is able to discover clusters of connected subsequences of variable

lengths that are frequent in a sequence dataset, using an inexact matching procedure.

FRL-GRADIS consists in two main steps:

∙ the symbols alphabet extraction, which addresses the problem of finding the most

frequent subsequences within a SDB. It is performed by means of the clustering

algorithm RL-GRADIS [33] that identifies frequent subsequences as representa-

tives of dense clusters of similar subsequences. These representatives are referred

to as symbols and the pattern set as the alphabet. The clustering procedure relies on

a properly defined edit distance between the subsequences (e.g. Levenshtein dis-

tance, DTW, etc.). However, this approach alone has the drawback of extracting

many superfluous symbols which generally dilute the pattern set and deteriorate

the interpretability of the produced pattern set.

∙ the alphabet filtering step deals with the problem stated above. The objective is to

filter out all the spurious or redundant symbols contained in the alphabet produced

by the symbols extraction step. To accomplish this goal we employ a heuristic

approach based on evolutionary optimization over a validation SDB.

One of the distinctive features of this algorithm is its generality with respect to the

kind of data contained in the input sequence database (e.g., sequences of real num-

bers or characters as well as sequences of complex data structures). Indeed, both steps

outlined above take advantage of a dissimilarity-based approach, with the dissimi-

larity function being a whatever complex measure between two ordered sequences,

not necessarily metric.

In the following, we first describe the main aspects of the symbols alphabet extrac-

tion procedure, then we present the new filtering method. For more details on the

symbols alphabet construction we refer the reader to [33].

140 E. Maiorino et al.

5.1 Frequent Subsequences Identification

Consider the input training dataset of sequences  = {S1, S2,… , S| |} and a prop-

erly defined dissimilarity measure d ∶  ×  → ℝ between two objects of the train-

ing dataset (e.g., Levenshtein distance for strings of characters). The goal of the sub-

sequences extraction step is the identification of a finite set of symbols

e = {𝛺1, 𝛺2,… , 𝛺|e|
},

1
computed using the distance d(⋅, ⋅) in a free clustering

procedure. The algorithm we chose to accomplish this task is RL-GRADIS which

is based on the well-known Basic Sequential Algorithmic Scheme (BSAS) cluster-

ing algorithm [33]. Symbols are found by analysing a suited set of variable-length

subsequences of  , also called n-grams, that are generated by expanding each input

sequence S ∈  . The expansion is done by listing all n-grams with lengths varying

between the values l
min

and l
max

. The parameters l
min

and l
max

are user-defined and

are respectively the minimum and maximum admissible length for the mined pat-

terns. The extracted n-grams are then collected into the SDB  . At this point, the

clustering procedure is executed on  . For each cluster we compute its representa-

tive, defined by the Minimum Sum of Distances (MinSOD) technique [33, 34], as

the element having the minimum total distance from the other elements of the clus-

ter. This technique allows to represent the corresponding clusters by means of their

most characteristic elements.

The quality of each cluster is measured by its firing strength f , where f ∈ [0, 1].
Firing strengths are used to track the dynamics describing the updating rate of the

clusters when the input stream of subsequences  is analyzed. A reinforcement

learning procedure is used to dynamically update the list of candidate symbols based

on their firing strength. Clusters with a low rate of update (low firing strength) are

discarded in an on-line fashion, along with the processing of the input data stream

 . RL-GRADIS maintains a dynamic list of candidate symbols, named receptors,
which are the representatives of the active clusters. Each receptor’s firing strength

(i.e. the firing strength of its corresponding cluster) is dynamically updated by means

of two additional parameters, 𝛼, 𝛽 ∈ [0, 1]. The 𝛼 parameter is used as a reinforce-
ment weight factor each time a cluster  is updated, i.e., each time a new input

subsequence is added to . The firing strength update rule is defined as follows:

f () ← f () + 𝛼(1 − f ()). (4)

The 𝛽 parameter, instead, is used to model the speed of forgetfulness of receptors

according to the following formula:

f () ← (1 − 𝛽)f (). (5)

1
The subscript “e” stands for “extraction” as in extraction step.

Noise Sensitivity of an Information Granules Filtering Procedure . . . 141

The firing strength updating rules shown in Eqs. (4) and (5) are performed for each

currently identified receptor, after the analysis of each input subsequence. Therefore,

receptors/clusters that are not updated frequently during the analysis of  will likely

have a low strength value and this will cause the system to remove the receptor from

the list.

5.2 Subsequences Filtering

As introduced above, the output alphabet e of the clustering procedure is generally

redundant and includes many spurious symbols that make the recognition of the true

alphabet quite difficult.

To deal with this problem, an optimization step is performed to reduce the alpha-

bet size, aiming at retaining only the most significant symbols, i.e. only those that

best resemble the original, unknown ones. Since this procedure works like a filter,

we call the output of this optimization the filtered alphabetf and, clearly, f ⊂ e
holds. Nevertheless, it is important for the filtered alphabet’s size not to be smaller

than the size of the true alphabet, since in this case useful information will be lost. Let

𝛤 ⊂ e be a candidate subset of symbols of the alphabet e and S ∈  a sequence

of a validation SDB  . We assume the descriptive power of the symbols set 𝛤 , with

respect to the sequence S, to be proportional to the quantity |
(𝛿)
𝛤
(S)| (cfr Eq. 3),

i.e. the number of objects 𝛽i ∈ S covered by the symbols set 𝛤 . In fact, intuitively,

a lower number of uncovered objects in the whole SDB by 𝛤 symbols can be con-

sidered as a clue that 𝛤 itself will likely contain the true alphabet. The normalized

number of uncovered objects in a sequence S by a pattern set 𝛤 corresponds to the

quantity

P =
|S| − |

(𝛿)
𝛤
(S)|

|S|
, (6)

where the operator | ⋅ | stands for the cardinality of the set. The term P assumes the

value 0 when the sequence S is completely covered by the pattern set 𝛤 and the value

1 when none of the symbols in 𝛤 are present in the sequence S. Notice that 
(𝛿)
𝛤
(S)

depends on the parameter 𝛿 which represents the tolerance of the system towards the

corruption of symbols’ occurrences caused by noise.

On the other hand, a bigger pattern set is more likely to contain spurious patterns

which tend to hinder the interpretability of the obtained results, so smaller set sizes

are to be preferred. This property can be described with the normalized alphabet size

Q = |𝛤 |

|e|
, (7)

where e is the alphabet of symbols extracted by the clustering procedure described

in the last section. Clearly, the cardinality of e represents an upper bound for the

142 E. Maiorino et al.

size of the filtered alphabet, so the term Q ranges from 0 to 1. The terms P and Q
generally show opposite trends, since a bigger set of symbols is more likely to cover

a bigger portion of the sequence and vice versa.

Finding a tradeoff between these two quantities corresponds to minimizing the

convex objective function

G(𝛿)
S (𝛤) = 𝜆Q + (1 − 𝜆)P (8)

where 𝜆 ∈ [0, 1] is a meta-parameter that weighs the relative importance between

the two constributions. It is easy to verify that

0 ≤ G(𝛿)
S (𝛤) ≤ 1. (9)

More generally, for a validation SDB  , the global objective function is the mean

value of G(𝛿)
S (𝛤) over all sequences Si ∈  , hence

G(𝛿)

(𝛤) =

∑

1≤i≤||
G(𝛿)

Si
(𝛤)

||
(10)

and the best symbols set after the optimization procedure is

f = argmin
𝛤⊂e

G(𝛿)
S (𝛤). (11)

To solve the optimization problem described by Eq. (11) we employ a standard

genetic algorithm, where each individual of the population is a subset 𝛤 of the

extracted alphabet e = {𝛺1,… , 𝛺|e|
}. The genetic code of the individual is

encoded as a binary sequence E of length |e| of the form

E
𝛤
= ⟨e1, e2,… , e|e|

⟩ (12)

with

ei =
{

1 iff 𝛺i ∈ 𝛤

0 otherwise
.

It is important not to mistake genetic codes with the SDB sequences described earlier,

even if they are both formally defined as ordered sequences.

Given a validation dataset  and a fixed tolerance 𝛿, the fitness value F(E
𝛤
) of

each individual E
𝛤

is computed as the following affine transformation of the objec-

tive function introduced in the last paragraph

F(E
𝛤
) = 1 − G(𝛿)


(𝛤) (13)

Noise Sensitivity of an Information Granules Filtering Procedure . . . 143

The computation is then performed with standard crossover and mutation operators

between the binary sequences and the stop condition is met when the maximum

fitness does not change for a fixed number N
stall

of generations or after a given max-

imum number N
max

of iterations. When the evolution stops, the filtered alphabet

f = 𝛤 is returned, where 𝛤 is the symbols subset corresponding to the fittest indi-

vidual E
𝛤

.

6 Tests and Results

In this section, we present results from different experiments that we designed to test

the effectiveness and performance of FRL-GRADIS in facing problems with varying

complexity.

6.1 Data Generation

We tested the capabilities of FRL-GRADIS on synthetic sequence databases com-

posed of textual strings. For this reason, the domain of the problem is the English

alphabet

 = {A,B,C,… ,Z}.

Modeled noise consists in all cases of random characters insertions, deletions and

substitutions to the original string. For this reason a natural choice of dissimilarity

measure between sequences is the Levenshtein distance, that measures the minimum

number of edit steps necessary to transform one string of characters into another.

We conducted two different classes of tests, which accounted for two kinds of noise,

respectively symbols noise and channel noise, presented in the following paragraphs.

6.1.1 Symbols Noise

This kind of noise simulates those situations in which symbols are altered during

the composition of the sequence. In fact, each instance of a symbol being added to

the data sequence has a fixed probability of being mutated by one addition, deletion

or modification of its objects. Moreover, a variable number of uncorrelated objects

are added between contiguous instances of symbols in the sequence, to simulate the

presence of irrelevant data separating actual symbols. The detailed process of data

generation is described below:

1. the true symbols alphabet
t
is generated. This alphabet consists ofN

sym
symbols

with lengths normally distributed around the mean value L
sym

. Each character is

chosen in  with uniform probability and repeated characters are allowed;

144 E. Maiorino et al.

2. a training SDB  and a validation SDB  respectively composed of N
tr

and N
val

sequences are generated. Each of these sequences is built by concatenatingN
symseq

symbols chosen randomly from 
t
. Notice that generally N

symseq
> N

sym
so there

will be repeated symbols;

3. in each sequence, every symbol will be subject to noise with probability 𝜇. The

application of noise to a symbol in a sequence corresponds to the deletion, sub-

stitution or insertion of one character to that single instance of the symbol. This

kind of noise is referred to as intra-pattern noise;

4. a user-defined quantity of random characters is added between instances of sym-

bols in each sequence. This noise is called inter-pattern noise. Such quantity

depends on the parameter 𝜂 that corresponds to the ratio between the number

of characters belonging to actual symbols and the total number of character of

the sequence after the application of inter-pattern noise, that is,

𝜂 =
(# symbol characters)
(# total characters)

.

Notice that the amount of inter-pattern noise is inversely proportional to the value

of 𝜂.

6.1.2 Channel Noise

In this case we simulate a noise affecting an hypotetical channel through which the

sequence is transmitted. This kind of noise alters the objects in a uncorrelated man-

ner, without keeping track of the separation between symbols.

In this case we generate the original SDB  and  in the same manner as

described in steps 1 and 2 of Sect. 6.1.1. The noise is then added to these datasets

by iterating through the objects of the sequence and altering each object with a fixed

probability p. The alteration consists with equal probability in either:

∙ the substitution of the object with another randomly chosen object;

∙ the deletion of the object;

∙ the addition of another randomly chosen object to the right of the current object

position in the sequence.

The generated datasets  and  are then ready to be used as input of the FRL-

GRADIS procedure. Notice that the true alphabet
t
is unknown in real-world appli-

cations and here is used only to quantify the performance of the algorithm.

6.2 Quality Measures

We now introduce the quality measures used in the following tests to evaluate the

mining capabilities of the FRL-GRADIS algorithm. These measures are computed

Noise Sensitivity of an Information Granules Filtering Procedure . . . 145

for the resulting alphabets obtained from both the extraction and the filtering steps

presented in Sect. 5, in order to highlight the improvement made by the filtering

procedure (i.e. the improvement of FRL-GRADIS over RL-GRADIS).

The redundance R corresponds to the ratio between the cardinality of the alphabet

 and the true alphabet 
t
, that is,

R = ||

|
t
|

(14)

Clearly, since the filtering step selects a subset 
f
(filtered alphabet) of the extracted

alphabet 
e
, we always have that

R
f
< R

e
.

The redundance measures the amount of unnecessary symbols that are found by a

frequent pattern mining procedure and it ranges from zero to infinite. When R > 1
some redundant symbols have been erroneously included in the alphabet, while when

R < 1 some have been missed, the ideal value being R = 1.

It is important to notice that the redundancy depends only on the number of sym-

bols reconstructed, but not on their similarity with respect to the original alphabet.

For this purpose we also introduce the mining error E, defined as the mean dis-

tance between each symbol 𝛺i of the true alphabet 
t
and its best match within the

alphabet , where the best match means the symbol with the least distance from

𝛺i. In other words, considering 
t
= {𝛺1,… , 𝛺|

t
|} and  = {𝛺̃1,… , 𝛺̃||}, the

mining error corresponds to

E =
∑

i d(𝛺i, 𝛺̃(i))
|

t
|

(15)

where

𝛺̃(i) = argmin
𝛺̃∈

d(𝛺i, 𝛺̃).

This quantity has the opposite role of the redundancy, in fact it keeps track of the

general accuracy of reconstruction of the true symbols regardless of the generated

alphabet size. It assumes non-negative values and the ideal value is 0. For the same

reasons stated above the inequality

E
f
≥ E

e

holds, so the extraction procedure’s mining error constitutes a lower bound for the

mining error obtainable with the filtering step.

146 E. Maiorino et al.

6.3 Results

We executed the algorithm multiple times for different values of the noise parame-

ters, to assess the different response of FRL-GRADIS to increasing amounts of noise.

Most parameters have been held fixed for all the tests and they are listed in Table 1.

As a first result, we present the synthetic tests performed by adding varying quan-

tities of symbols noise to the data sequences, performed with 𝜇 = 0.5 and variable

amounts of inter-pattern noise 𝜂. It means that about half of the symbols in a sequence

are subject to the alteration of one character and increasing amounts of random char-

acters are added between symbols in each sequence. The results obtained with this

configuration are shown in Figs. 4 and 5.

The redundancy plot in Fig. 4 shows an apparently paradoxical trend of the extrac-

tion procedure’s redundancy: with decreasing amounts of inter-pattern noise (i.e.

increasing values of 𝜂) the extraction algorithm performs more poorly, leading to

higher redundancies. That can be easily explainable by recalling how the clustering

procedure works.

Higher amounts of inter-pattern noise mean that the frequent symbols are more

likely to be separated by random strings of characters. These strings of uncorre-

lated characters generate very sparse clusters with negligible cardinality that are

very likely to be deleted during the clustering’s reinforcement step. Clusters cor-

responding to actual symbols, instead, are more active and compact, their bounds

being clearly defined by the noise characters, and so they are more likely to survive

the reinforcement step.

In case of negligible (or non-existent) inter-pattern noise, instead, different sym-

bols are more likely to occur in frequent successions that cause the generation of

many clusters corresponding to spurious symbols, obtained from the concatenation

Table 1 Fixed parameters adopted for the tests

Parameter Value Parameter Value

N
tr

50 N
val

25

N
sym

5 N
symseq

10

l
min

4 l
max

12

𝛿 1 𝜆 0.5

N
pop

100 N
elite

0.1

p
cross

0.8 p
mut

0.3

N
max

100 N
stall

50

The parameter 𝛿 corresponds to the tolerance of the Levenshtein distance considered when calcu-

lating the coverage as in Eq. (1) while 𝜆 weighs the two terms of the objective function of Eq. (8).

The values shown in the second part of the table refer to the genetic algorithm’s parameters. N
pop

corresponds to the population size, N
elite

is the fraction of individuals who are guaranteed to survive

and be copied to the new population in each iteration, p
cross

and p
mut

are respectively the crossover

and mutation probabilities. The evolution terminates if N
evol

iterations have been performed or if

for a number N
stall

of iterations the maximum fitness has not changed

Noise Sensitivity of an Information Granules Filtering Procedure . . . 147

Fig. 4 Plot of the

redundance R of the

extraction (RL-GRADIS)

and filtering (FRL-GRADIS)

steps with variable

inter-pattern noise and

𝜇 = 0.5

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

R
ed

un
da

nc
e

η

Redundance (μ = 0.5)

Extraction (RL−GRADIS)

Filtering (FRL−GRADIS)

Fig. 5 Plot of the mining

error E of the extraction

(RL-GRADIS) and filtering

(FRL-GRADIS) steps with

variable inter-pattern noise

and 𝜇 = 0.5

0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

M
in

in
g

E
rr

or

η

Mining error (μ = 0.5)

Extraction (RL−GRADIS)
Filtering (FRL−GRADIS)

of parts of different symbols. The filtering procedure overcomes this inconvenience,

as it can be seen from Fig. 4 that it is nearly not affected by the amount of inter-pattern

noise. As it is evident, the filtering procedure becomes fundamental for higher val-

ues of the parameter 𝜂, where the clustering produces highly redundant alphabets

that would be infeasible to handle in a real-world application. Figure 5 shows that

the mining error after the filtering procedure remains mostly the same for all values

of 𝜂, which means that the system is robust to the moderate alteration of the input

signal.

In the second pool of tests we show the response of the system to increasing quan-

tities of channel noise p. In Fig. 6 and 7 are shown the redundance and the mining

error measured for different values of p. While FRL-GRADIS shows slightly higher

mining error levels than RL-GRADIS, its redundancy is still significantly lower and,

148 E. Maiorino et al.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

60

70

80

p

R
ed

un
da

nc
e

Redundance

Extraction (RL−GRADIS)

Filtering (FRL−GRADIS)

Fig. 6 Plot of the redundance R of the extraction (RL-GRADIS) and filtering (FRL-GRADIS)

steps with variable channel noise. Error bars represent the standard deviation over 3 runs of the

algorithm with the same parameters

0 0.02 0.04 0.06 0.08 0.1 0.12
−1

0

1

2

3

4

5

6

p

M
in

in
g

E
rr

or

Mining Error

Extraction (RL−GRADIS)

Filtering (FRL−GRADIS)

Fig. 7 Plot of the mining error E of the extraction (RL-GRADIS) and filtering (FRL-GRADIS)

steps with variable channel noise. Error bars represent the standard deviation over 3 runs of the

algorithm with the same parameters

to a large extent, insensitive to the quantity of noise in the system. Clearly, lower

mining error levels are obtainable by setting suitable values of the parameter 𝜆 (at

the expense of resulting redundancy) or stricter convergence criteria of the genetic

algorithm (at the expense of convergence time).

In general, we can conclude that the system allows for a remarkable synthesis of

the extracted alphabet despite of a modest additional mining error.

Noise Sensitivity of an Information Granules Filtering Procedure . . . 149

7 Conclusions

In this work we have presented a new approach to sequence data mining, focused

on improving the interpretability of the frequent patterns found in the data. For this

reason, we employed a two-steps procedure composed of a clustering algorithm, that

extracts the frequent subsequences in a sequence database, and a genetic algorithm

that filters the returned set to retrieve a smaller set of patterns that best describes

the input data. For this purpose we introduced the concept of coverage, that helps in

recognizing the true presence of a pattern within a sequence affected by noise. The

experiments were performed on two cases of synthetic data affected by two different

sources of noise. The results have shown a good overall performance and lay the

foundations for improvements and further experiments on real data.

References

1. Possemato, F., Rizzi, A.: Automatic text categorization by a granular computing approach:

facing unbalanced data sets. In: The 2013 International Joint Conference on Neural Networks

(IJCNN), pp. 1–8 (2013)

2. Modugno, V., Possemato, F., Rizzi, A.: Combining piecewise linear regression and a granular

computing framework for financial time series classification (2014)

3. Bianchi, F., Livi, L., Rizzi, A., Sadeghian, A.: A granular computing approach to the design

of optimized graph classification systems. Soft Comput. 18, 393–412 (2014)

4. Bianchi, F.M., Scardapane, S., Livi, L., Uncini, A., Rizzi, A.: An interpretable graph-based

image classifier. In: 2014 International Joint Conference on Neural Networks (IJCNN),

pp. 2339–2346. IEEE (2014)

5. Rizzi, A., Del Vescovo, G.: Automatic image classification by a granular computing approach.

In: Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learn-

ing for Signal Processing, pp. 33–38 (2006)

6. Del Vescovo, G., Rizzi, A.: Automatic classification of graphs by symbolic histograms.

In: IEEE International Conference on Granular Computing. GRC 2007, pp. 410–410 (2007)

7. Del Vescovo, G., Rizzi, A.: Online handwriting recognition by the symbolic histograms

approach. In: IEEE International Conference on Granular Computing. GRC 2007, pp. 686–

686 (2007)

8. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Springer (2003)

9. Livi, L., Rizzi, A., Sadeghian, A.: Granular modeling and computing approaches for intelligent

analysis of non-geometric data. Appl. Soft Comput. 27, 567–574 (2015)

10. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh Interna-

tional Conference on Data Engineering, pp. 3–14. IEEE (1995)

11. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large

databases. In: ACM SIGMOD Record, vol. 22, pp. 207–216. ACM (1993)

12. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New

York (2011)

13. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance

Improvements. Springer (1996)

14. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42,

31–60 (2001)

15. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan: frequent pattern-

projected sequential pattern mining. In: Proceedings of the Sixth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, pp. 355–359 (2000)

150 E. Maiorino et al.

16. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Prefixspan: min-

ing sequential patterns efficiently by prefix-projected pattern growth. In: 2013 IEEE 29th Inter-

national Conference on Data Engineering (ICDE), IEEE Computer Society, pp. 0215–0215

(2001)

17. Sinha, S., Tompa, M.: YMF: a program for discovery of novel transcription factor binding sites

by statistical overrepresentation. Nucleic Acids Res. 31, 3586–3588 (2003)

18. Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder web: discovery of transcription factor

binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res. 32, W199–

W203 (2004)

19. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in dna sequences. Bioinfor-

matics 18, S354–S363 (2002)

20. Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput. Biol. 9, 225–242

(2002)

21. Zhu, F., Yan, X., Han, J., Yu, P.S.: Efficient discovery of frequent approximate sequential pat-

terns. In: Seventh IEEE International Conference on Data Mining. ICDM 2007, pp. 751–756.

IEEE (2007)

22. Ji, X., Bailey, J.: An efficient technique for mining approximately frequent substring patterns.

In: Seventh IEEE International Conference on Data Mining Workshops. ICDM Workshops

2007, pp. 325–330. IEEE (2007)

23. Rizzi, A., Possemato, F., Livi, L., Sebastiani, A., Giuliani, A., Mascioli, F.M.F.:

A dissimilarity-based classifier for generalized sequences by a granular computing approach.

In: IJCNN, IEEE, pp. 1–8 (2013)

24. Zhu, F., Yan, X., Han, J., Yu, P.S.: Efficient discovery of frequent approximate sequential pat-

terns. In: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining,

Washington, DC, USA, IEEE Computer Society, pp. 751–756 (2007)

25. Ji, X., Bailey, J.: An efficient technique for mining approximately frequent substring patterns.

In: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops.

ICDMW ’07, Washington, DC, USA, IEEE Computer Society, pp. 325–330 (2007)

26. Fu, A.W.C., Keogh, E., Lau, L.Y., Ratanamahatana, C.A., Wong, R.C.W.: Scaling and time

warping in time series querying. VLDB J. Int. J. Very Large Data Bases 17, 899–921 (2008)

27. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.

In: 18th International Conference on Data Engineering. Proceedings. IEEE, pp. 673–684

(2002)

28. Patel, P., Keogh, E., Lin, J., Lonardi, S.: Mining motifs in massive time series databases.

In: 2002 IEEE International Conference on Data Mining. ICDM 2003. Proceedings. IEEE,

pp. 370–377 (2002)

29. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceed-

ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, ACM, pp. 493–498 (2003)

30. Floratou, A., Tata, S., Patel, J.M.: Efficient and accurate discovery of patterns in sequence data

sets. IEEE Trans. Knowl. Data Eng. 23, 1154–1168 (2011)

31. Matsui, T., Uno, T., Umemori, J., Koide, T.: A new approach to string pattern mining with

approximate match. In: Discovery Science, pp. 110–125. Springer (2013)

32. Maiorino, E., Possemato, F., Modugno, V., Rizzi, A.: Information granules filtering for inexact

sequential pattern mining by evolutionary computation (2014)

33. Rizzi, A., Del Vescovo, G., Livi, L., Frattale Mascioli, F.M.: A new granular computing

approach for sequences representation and classification. In: Proceedings of the 2012 Inter-

national Joint Conference on Neural Networks, pp. 2268–2275 (2012)

34. Del Vescovo, G., Livi, L., Frattale Mascioli, M., Rizzi, A.: On the problem of modeling struc-

tured data with the minsod representative. Int. J. Comput. Theory Eng. 6, 9–14 (2014)

	Noise Sensitivity of an Information Granules Filtering Procedure by Genetic Optimization for Inexact Sequential Pattern Mining
	1 Introduction
	2 Frequent Substructures Mining and Matching Problem
	3 The Proposed Algorithm
	4 Problem Definition
	4.1 Pattern Coverage

	5 The Mining Algorithm
	5.1 Frequent Subsequences Identification
	5.2 Subsequences Filtering

	6 Tests and Results
	6.1 Data Generation
	6.2 Quality Measures
	6.3 Results

	7 Conclusions
	References

