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Abstract This paper investigates a Particle Swarm with dynamic topology and a
conservation of evaluations strategy. The population is structured on a
2-dimensional grid of nodes, through which the particles interact and move
according to simple rules. As a result of this structure, each particle’s neighbour-
hood degree is time-varying. If at given time step a particle p has no neighbours
except itself, p is not evaluated until it establishes at least one link to another
particle. A set of experiments demonstrates that the dynamics imposed by the
structure provides a consistent and stable behaviour throughout the test set when
compared to standard topologies, while the conservation of evaluations significantly
reduces the convergence speed of the algorithm. The working mechanisms of the
proposed structure are very simple and, except for the size of the grid, they do not
require parameters and tuning.
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1 Introduction

The Particle Swarm Optimization (PSO) algorithm is a population-based
meta-heuristic for binary and real-valued function optimization inspired by the
swarm and social behavior of organisms in bird flocks and fish schools [4]. The
optimization is performed by a swarm of candidate solutions, called particles, which
move around the problem’s search space guided by mathematical rules that define
their velocity and position at each time step. Each particle’s velocity vector is
influenced by its best known position and by the best known positions of its
neighbors. The neighborhood of each particle—and consequently the flow of
information through the population—is defined a priori by the population topology.

The reason why the swarm is interconnected is the core of the algorithm: the
particles communicate so that they acquire information on the regions explored by
other particles. In fact, it has been claimed that the uniqueness of the PSO algorithm
lies in the interactions of the particles [5]. As expected, the population topology
deeply affects the balance between exploration and exploitation and the conver-
gence speed and accuracy of the algorithm.

The population can be structured on any possible topology, from sparse to dense
(or even fully connected) graphs, with different degrees of connectivity and clus-
tering. The classical and most used population structures are the lbest (which
connects the individuals to a local neighbourhood) and the gbest (in which each
particle is connected to every other individual). These topologies are well-studied
and the major conclusions are that gbest is fast but is frequently trapped in local
optima, while lbest is slower but converges more often to the neighborhood of the
global optima.

Since the first experiments on lbest and gbest structures, researchers have tried to
design networks that hold the best traits given by each structure [9]. Some studies
also try to understand what makes a good structure. For instance, Kennedy and
Mendes [5] investigate several types of topologies and recommend the use of a
lattice with von Neumann neighbourhood (which results in a connectivity degree
between that of lbest and gbest).

Recently, dynamic structures have been introduced in PSO for improving the
algorithm’s adaptability to different fitness landscapes and overcome the rigidity of
static structures, like [7], for instance. Fernandes et al. [1] try a different approach
and propose a dynamic and partially connected von Neumann structure with
Brownian motion. In this paper, we use the same model but a strategy for the
conservation of function evaluations [8] is introduced in order to make the most of
the underlying structure and reduce convergence speed. A formal description of the
dynamic network is given here, opening the way for more sophisticated dynamics.

In the proposed topology, n particles are placed in a 2-dimensional m-nodes grid
where m> n. Every time-step, each individual checks its von Neumann neighbor-
hood and, as in the standard PSO, updates its velocity and position using the
information given by the neighbours. However, while the connectivity degree of the
von Neumann topology is k = 5 the degree of the proposed topology is variable in
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the range 1≤ k≤ 5. Furthermore, the structure is dynamic: in each time-step, every
particle updates its position on the grid (which is a different concept from the
position of the particle on the fitness landscape) according to a pre-defined rule that
selects the destination node. The movement rule, which is implemented locally and
without any knowledge on the global state of the system, can be based on stigmergy
[2] or Brownian motion.

As stated above, the connectivity degree k of each particle in each time-step is
variable and lies in the range 1≤ k≤ 5. Depending on the size of the grid, there may
be particles with k = 1. These particles without neighbors (except the particle itself)
do not learn from any local neighbourhood at that specific iteration. Therefore, it is
expected that they continue to follow their previous trajectory in the fitness land-
scape. Taking into account these premises, the algorithm proposed in this study
does not evaluate the position of the particles when k = 1. Regardless of the loss of
informant intrinsic to a conservation of evaluations policy, we hypothesize that the
strategy is particularly suited for the proposed dynamic topology (in which the
particles are sometimes isolated from the flow of information) and the number of
function evaluations required for meeting the stop criteria can be significantly
reduced. Furthermore, it is the structure of the population and the position of the
particles at a specific time-step that decides the application of the conservation rule
and not any extra parameter or pre-defined decision rule.

A classical PSO experimental setup is used for the tests and the results
demonstrate that the proposed algorithm consistently improves the speed of con-
vergence of the standard von Neumann structure without degrading the quality of
solutions. The experiments also demonstrate that the introduction of the conser-
vation strategy reduces significantly the convergence speed without affecting the
quality of the final solutions.

The remaining of the paper is organized as follows. Section 2 describes PSO and
gives an overview on population structures for PSOs. Section 3 gives a formal
description of the proposed structure. Section 4 describes the experiments and
discusses the results and, finally, Sect. 5 concludes the paper and outlines future
research.

2 Background Review

PSO is described by a simple set of equations that define the velocity and position
of each particle. The position of the ith particle is given by X ⃗i = ðxi, 1, xi, 2, . . . x1,DÞ,
where D is the dimension of the search space. The velocity is given by
V ⃗i = ðvi, 1, vi, 2, . . . v1,DÞ. The particles are evaluated with a fitness function f ðX ⃗iÞ
and then their positions and velocities are updated by:

Particle Swarm Optimization with Dynamic Topology … 99



vi, dðtÞ= vi, dðt− 1Þ+ c1r1 pi, d − xi, dðt− 1Þð Þ+ c2r2 pg, d − xi, dðt− 1Þ� � ð1Þ

xi, dðtÞ= xi, dðt− 1Þ+ vi, dðtÞ ð2Þ

were pi is the best solution found so far by particle i and pg is the best solution
found so far by the neighborhood. Parameters r1 and r2 are random numbers
uniformly distributed in the range [0, 1] and c1 and c2 are acceleration coefficients
that tune the relative influence of each term of the formula. The first term is known
as the cognitive part, since it relies on the particle’s own experience. The last term is
the social part, since it describes the influence of the community in the trajectory of
the particle.

In order to prevent particles from stepping out of the limits of the search space,
the positions xi, dðtÞ are limited by constants that, in general, correspond to the
domain of the problem: xi, dðtÞ∈ ½−Xmax,Xmax�. Velocity may also be limited
within a range in order to prevent the explosion of the velocity vector:
vi, dðtÞ∈ ½−Vmax,Vmax�.

For achieving a better balancing between local and global search, Shi an
Eberhart [12] added the inertia weight ω as a multiplying factor of the first term of
Eq. 1. This paper uses PSOs with inertia weight.

The neighbourhood of the particle defines the value of pg and is a key factor in
the performance of PSO. Most of the PSOs use one of two simple sociometric
principles for defining the neighbourhood network. One connects all the members
of the swarm to one another, and it is called gbest, were g stands for global. The
degree of connectivity of gbest is k = n, where n is the number of particles. Since all
the particles are connected to every other and information spreads easily through
the network, the gbest topology is known to converge fast but unreliably (it often
converges to local optima).

The other standard configuration, called lbest (where l stands for local), creates a
neighbourhood that comprises the particle itself and its k nearest neighbors. The
most common lbest topology is the ring structure, in which the particles are
arranged in a ring structure (resulting in a degree of connectivity k = 3, including
the particle). The lbest converges slower than the gbest structure because infor-
mation spreads slower through the network but for the same reason it is less prone
to converge prematurely to local optima. In-between the ring structure with k = 3
and the gbest with k = n there are several types of structure, each one with its
advantages on a certain type of fitness landscapes. Choosing a proper structure
depends on the target problem and also on the objectives or tolerance of the
optimization process.

Kennedy and Mendes [5] published an exhaustive study on population structures
for PSOs. They tested several types of structures, including the lbest, gbest and von
Neumann configuration with radius 1 (also kown as L5 neighborhood). They also
tested populations arranged in randomly generated graphs. The authors conclude
that when the configurations are ranked by the performance the structures with
k = 5 (like the L5) perform better, but when ranked according to the number of
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iterations needed to meet the criteria, configurations with higher degree of con-
nectivity perform better. These results are consistent with the premise that low
connectivity favors robustness, while higher connectivity favors convergence speed
(at the expense of reliability). Amongst the large set of graphs tested in [5], the Von
Neumann with radius 1 configuration performed more consistently and the authors
recommend its use.

Alternative topologies that combine standard structures’ characteristics or
introduce some kind of dynamics in the connections have been also proposed.
Parsopoulos and Vrahatis [9] describe the unified PSO (UPSO), which combines
the gbest and lbest configurations. Equation 1 is modified in order to include a term
with pg and a term with pi and a parameter balances the weight of each term. The
authors argue that the proposed scheme exploits the good properties of gbest and
lbest.

Peram et al. [10] proposed the fitness-distance-ratio-based PSO (FDR-PSO),
which defines the neighbourhood of a particle as its k closest particles in the
population (measured by the Euclidean distance). A selective scheme is also
included: the particle selects nearby particles that have also visited a position of
higher fitness. The algorithm is compared to a standard PSO and the authors claim
that FDR-PSO performs better on several test functions. However, the FDR-PSO is
compared only to a gbest configuration, which is known to converge frequently to
local optima in the majority of the functions of the test set.

More recently, a comprehensive-learning PSO (CLPSO) was proposed [7]. Its
learning strategy abandons the global best information and introduces a complex
and dynamic scheme that uses all other particles’ past best information. CLPSO can
significantly improve the performance of the original PSO on multimodal problems.
Finally, Hseigh et al. [3] use a PSO with varying swarm size and solution-sharing
that, like in [7], uses the past best information from every particle.

A different approach is given in 1. The authors describe a structure that is based
on a grid of m nodes (with m> n) on which the particles move and interact. In this
structure, a particle, at a given time-step, may have no neighbours except itself. The
isolated particles will continue to follow its previous trajectory, based on their
current information, until they find another particle in the neighbourhood. There-
fore, we intend to investigate if the loss of information caused by not evaluating
these particles is overcome by the payoff in the convergence speed.

Common ways of addressing the computational cost of evaluating solutions in
hard real-world problems are function approximation [6], fitness inheritance [11]
and conservation of evaluations [8]. Due to the underlying structure of the proposed
algorithm, we have tested a conservation policy similar to the GREEN-PSO pro-
posed by Majercik [8]. However, in our algorithm the decision on evaluating or not
is defined by the position of the particle in the grid (isolated particles are not
evaluated) while in the GREEN-PSO the decision is probabilistic and the likelihood
of conserving a solution is controlled by a parameter.

The following section gives a formal description of the proposed network and
presents the transition rules that define the model for dynamic population structures.

Particle Swarm Optimization with Dynamic Topology … 101



3 Partially Connected Structures

Let us consider a rectangular grid G of size q× s≥ μ, where μ is the size of the
population of any population-based metaheuristics or model. Each node Guv of the
grid is a tuple ⟨ηuv, ζu, v⟩, where ηuv ∈ f1, . . . , μg∪ f∙g and ζuv ∈ ðD×ℕÞ∪ f∙g for
some domain D. The value ηuv indicates the index of the individual that occupies
the position ⟨u, v⟩ in the grid. If ηuv = ∙ then the corresponding position is empty.
However, that same position may still have information, namely a mark (or clue)
ζuv. If ζuv = ∙ then the position is empty and unmarked. Please note that when
q × s = μ, the topology is a static 2-dimensional lattice and when q× s= μ and
q = s the topology is the standard square grid graph.

In the case of a PSO, the marks are placed by particles that occupied that
position in the past and they consist of information about those particles, like their
fitness ζ f

uv or position in the fitness landscape, as well as a time stamp ζtuv that
indicates the iteration in which the mark was placed. The marks have a lifespan of
K iterations, after which they are deleted.

Initially, Guv = ð∙, ∙Þ for all ⟨u, v⟩. Then, the particles are placed randomly on the
grid (only one particle per node). Afterwards, all particles are subject to a move-
ment phase (or grid position update), followed by a PSO phase. The process (po-
sition update and PSO phase) repeats until a stop criterion is met.

The PSO phase is the standard iteration of a PSO, comprising position and
velocity update. The only difference to a static structure is that in this case a particle
may find empty nodes in its neighbourhood.

In the position update phase, each individual moves to an adjacent empty node.
Adjacency is defined by the Moore neighborhood of radius r, so an individual i at
ρgðiÞ= ⟨u, v⟩ can move to an empty node ⟨u′, v′⟩ for which L∞ ⟨u, v⟩⟨u′, v′⟩

� �
≤ r. If

empty positions are unavailable, the individual stays in the same node. Otherwise, it
picks a neighboring empty node according to the marks on them. If there are no
marks, the destination is chosen randomly amongst the free nodes.

With this framework, there are two possibilities for the position update phase:
stimergic, whereby the individual looks for a mark that is similar to itself; and
Brownian, whereby the individual selects an empty neighbor regardless of the
marks. For the first option, let ℕ⟨u, v⟩= ⟨uð1Þ, vð1Þ⟩

�
, . . . ⟨uw, vw⟩g be the collection

of empty neighboring nodes and let i be the individual to move. Then, the indi-
vidual attempts to move to a node whose mark is as close as possible to its own
corresponding trait (fitness or position in the fitness landscape, for instance) or to an
adjacent cell picked at random if there are no marks in the neighborhood. In the
alternative Brownian policy, the individual moves to an adjacent empty position
picked at random. In either case, the process is repeated for the whole population.

For this paper, the investigation is restricted to the Brownian structure. The
algorithm is referred in the remaining of the paper has PSO-B, followed by the grid
size q× s. An extension of the PSO-B is constructed by introducing a conservation
of function evaluations (cfe) strategy. If at a given time-step a particle has no
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neighbors, then the particle is updated but its position is not evaluated. This version
of the algorithm is referred to as PSO-Bcfe. The following section describes the
results attained by the PSOs with dynamic structure and Brownian movement, with
and without conservation of function evaluations and compares them to the standard
topology.

4 Experiments and Results

An experimental setup was constructed with eight benchmark unimodal and mul-
timodal functions that are commonly used for investigating the performance of
PSO. The functions are described in Table 1. The dimension of the search space is
set to D = 30 (except Schaffer, with D = 2). In order to obtain a square grid graph
for the standard von Neumann topology, the population size n is set to 49 (which is

Table 1 Benchmarks for the experiments

Function Mathematical representation Range of search/Range
of initialization

Stop
criteria

Sphere f1
f1ðx⃗Þ= ∑

D

i=
x2i

− 100, 100ð ÞD
50, 100ð ÞD

0.01

Rosenbrock f2
f2ðx ⃗Þ= ∑

D− 1

i=1
ð100ðxi+1 − x2i Þ2 + ðxi − 1Þ2 ð− 100, 100ÞD

ð15, 30ÞD
100

Rastrigin f3
f3ðx ⃗Þ= ∑

D− 1

i=1
ðx2i − 10 cosð2πxiÞ+10Þ − 10, 10ð ÞD

2.56, 5.12ð ÞD
100

Griewank f4
f4ðx ⃗Þ=1+ 1

4000 ∑
D

i=1
x2i − ∏

D

i=1
cos xiffi

i
p
� � − 600, 600ð ÞD

300, 600ð ÞD
0.05

Schaffer f5
f5ðx ⃗Þ=0.5+

sin
ffiffiffiffiffiffiffiffiffiffi
x2 + y2

p� �2
− 0.5

1.0+ 0.001ðx2 + y2Þð Þ2
− 100, 100ð Þ2

15, 30ð Þ2
0.00001

Weierstrass f6
f6ðx⃗Þ= ∑

D

i=1
∑
kmax

k =0
½ak cos 2πbkðxi +0.5Þ� ��� 	

−D ∑
kmax

k=0
½ak cosð2πbk ⋅ 0.5Þ�,

a=0.5, b=3, kmax=20

− 0.5, 0.5ð ÞD
0.5, 0.2ð ÞD

0.01

Ackley f7
f7ðx⃗Þ= − 20exp − 0.2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

∑
D

i=1
x2i

s !

− exp
1
D

∑
D

i=1
cosð2πxiÞ

� 	
+20

+ e

− 32.768, 32.768ð ÞD
2.56, 5.12ð ÞD

0.01

Schwefel f8
f7ðx ⃗Þ=418.9829×D− ∑

D

i=1
xisin x

1
2
i




� � − 500, 500ð ÞD
− 500, 500ð ÞD

3000

Dynamic range, initialization range and stop criteria
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within the typical range of PSO’s swarm size). The acceleration coefficients were
set to 1.494 and the inertia weight is 0.729, as in [13]. Xmax is defined as usual by
the domain’s upper limit and Vmax = Xmax. A total of 50 runs for each experiment
are conducted. Asymmetrical initialization is used (the initialization range for each
function is given in Table 1).

Two experiments were conducted. Firstly, the algorithms were run for a limited
amount of function evaluations (147000 for f1 and f5, 49000 for the remaining) and
the fitness of the best solution found was averaged over 50 runs. In the second
experiment the algorithms were run for 980000 evaluations (corresponding to
20000 iterations of standard PSO with n = 49) or until reaching a stop criterion. For
each function and each algorithm, the evaluations required to meet the criterion was
recorded and averaged over the 50 runs. A success measure is defined as the
number of runs in which an algorithm attains the fitness value established as the
stop criterion.

Tables 1 and 2 compare PSO-B with the standard PSO (with von Neumann
topology): Table 1 gives the averaged best fitness found by the swarms while
Table 2 gives, for each algorithm and each function, the averaged number of
iterations required to meet the criterion, and the number of runs in which the
criterion was met.

The best fitness values are similar in both configurations. In fact, the differences
are not statistical significant except for function f1, for which PSO-Bcfe signifi-
cantly better than PSO. (For the statistical tests comparing two algorithms,
non-parametric Kolmogorov-Smirnov tests (with 0.05 level of significance) have
been used.) As for the convergence speed, PSO-B is faster in every test function.
The results are significantly different in f1, f2, f3, f5, f6 and f8. PSO-B and the
standard PSO attain similar fitness values, but PSO-B is faster.

The main hypothesis of this paper is that a conservation of evaluations strategy
further improves the convergence speed of the dynamic topology. Moreover, we
also expect that PSO-Bcfe performance is less affected when the size of the grid is
increased. Large grid sizes result in large rates of isolated particles, deprived from
social information, which reduces the convergence speed of the algorithm. By not
evaluating these particles, the computational effort can be significantly reduced,
hopefully without degrading the overall performance. In order to investigate these
hypotheses, we have compared PSO-B and PSO-Bcfe, while varying the size of the
grid (Table 3).

Table 4 shows the average fitness values attained by PSO-B and PSO-Bcfe with
different grid sizes. Table 5 displays the average number of function evaluations
required to meet the stop criteria as well as the number of successful runs. The
performance according to the fitness values is very similar, with no significant
differences between the algorithm in every function except f1 (in which PSO-Bcfe is
significantly better). When considering the number of function evaluations (i.e., the
convergence speed), PSO-Bcfe is significantly better or statistically equivalent in
every function.

The results confirm that PSO-Bcfe is able to improve the convergence speed of
PSO-B without degrading the accuracy of the solutions. The loss of information
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Fig. 1 PSO-B and PSO-Bcfe. Function evaluations required to meet stop criteria when using grids
with different sizes
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that results from conserving evaluations is clearly overcome by the benefits of
reducing the computational cost per iteration.

In the case of f1, PSO-Bcfe also significantly improves the quality of the solu-
tions, namely with larger grids. The proposed scheme seems to be particularly
efficient in unimodal landscapes, but further tests are required in order to confirm
this hypothesis and understand what mechanisms make PSO-Bcfe so efficient in
finding more precise solutions for the sphere function.

The differences in the convergence speed of the algorithm are particularly
noticeable when the grid is larger. While PSO-B’s speed tends to decrease when the
grid size increases, the behavior of PSO-Bcfe, is much more stable, and in some
functions it is even faster when the grid is expanded.

Figure 1 graphically depicts the above referred observations. When the grid size
grows from 8 × 8 to 20 × 20, PSO-B’s convergence speed degrades consistently,
except in function f5, where the behavior is more irregular. PSO-Bcfe, on the other
hand, is sometimes faster with larger grids. When its convergence speed decreases
with size (f8, for instance), it scales better than PSO-B.

5 Conclusions

This paper proposes a general scheme for structuring dynamic populations for the
Particle Swarm Optimization (PSO) algorithm. The particles are placed on a grid of
nodes where the number of nodes is larger than the swarm size. The particles move
on the grid according to simple rules and the network of information is defined by
the particle’s position on the grid and its neighborhood (von Neumann vicinity is
considered here). If isolated (i.e., no neighbors except itself), the particle is updated
but its position is not evaluated. This strategy may result in some loss of infor-
mation, but the results show that the payoff in convergence speed overcomes the
loss of information: the convergence speed is increased in the entire test set, while
the accuracy of the algorithm (i.e., the averaged final fitness) is not degraded by the
conservation of evaluations strategy.

The proposed algorithm is tested with a Brownian motion rule and compared to
the standard static topology. The conservation of evaluations strategy results in a
more stable performance when varying the grid size. Removing the strategy from
the proposed dynamic structure results in a drop of the convergence speed when the
size of the grid increases in relation to the swarm size.

The present study is restricted to dynamic structures based on particles with
Brownian motion. Future research will be focused on dynamic structures with
stigmergic behavior based on the fitness and position of the particles.

Acknowledgments The first author wishes to thank FCT,Ministério da Ciência e Tecnologia, his
Research Fellowship SFRH/BPD/66876/2009. The work was supported by FCT PROJECT
[PEst-OE/EEI/LA0009/2013], Spanish Ministry of Science and Innovation projects TIN2011-
28627-C04-02 and TIN2011-28627-C04-01, Andalusian Regional Government P08-TIC-03903
and P10-TIC-6083, CEI-BioTIC UGR project CEI2013-P-14, and UL-EvoPerf project.

110 C.M. Fernandes et al.



References

1. Fernandes, C.M., Laredo, J.L.J., Merelo, J.J., Cotta, C., Nogueras, R., Rosa, A.C.:
Performance and scalability of particle Swarms with dynamic and partially connected grid
topologies. In: Proceedings of the 5th International Joint Conference on Computational
Intelligence IJCCI 2013, pp. 47–55 (2013)

2. Grassé, P.-P.: La reconstrucion du nid et les coordinations interindividuelles chez
bellicositermes et cubitermes sp. La théorie de la stigmergie: Essai d’interpretation du
comportement des termites constructeurs, Insectes Sociaux 6, 41–80 (1959)

3. Hseigh, S.-T., Sun, T.-Y, Liu, C.-C., Tsai, S.-J.: Efficient population utilization strategy for
particle swarm optimizers. IEEE Trans. Syst., Man Cybern. Part B 39(2), 444–456 (2009)

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4,
1942–1948 (1995)

5. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the IEEE World Congress on Evolutionary Computation, pp. 1671–1676
(2002)

6. Landa-Becerra, R., Santana-Quintero, L.V., Coello Coello, C.A.: Knowledge incorporation in
multi-objective evolutionary algorithms. In: Multi-Objective Evolutionary Algorithms for
Knowledge Discovery from Databases, pp. 23–46 (2008)

7. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3),
281–296 (2006)

8. Majercik, S.: GREEN-PSO: conserving function evaluations in particle swarm optimization.
In: Proceedings of the IJCCI 2013—International Joint Conference on Computational
Intelligence, pp. 160–167 (2013)

9. Parsopoulos, K.E., Vrahatis, M.N.: UPSO: a unified particle swarm optimization scheme. In:
Proceedings of the International Conference of Computational Methods in Sciences and
Engineering (ICCMSE 2004), pp. 868–887 (2004)

10. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm
optimization. In: Proceedings of the Swarm Intelligence Symposium SIS’03, pp. 174–181
(2003)

11. Reyes-Sierra, M., Coello Coello, C.A.: A study of techniques to improve the efficiency of a
multiobjective particle swarm optimizer. In: Studies in Computational Intelligence (51),
Evolutionary Computation in Dynamic and Uncertain Environments, pp. 269–296 (2007)

12. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of IEEE 1998
International Conference on Evolutionary Computation, pp. 69–73. IEEE Press (1998)

13. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter
selection. Inf. Proc. Lett. 85, 317–325 (2003)

Particle Swarm Optimization with Dynamic Topology … 111


	7 Particle Swarm Optimization with Dynamic Topology and Conservation of Evaluations
	Abstract
	1 Introduction
	2 Background Review
	3 Partially Connected Structures
	4 Experiments and Results
	5 Conclusions
	Acknowledgments
	References


