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Preface

The present book includes extended and revised versions of a set of selected papers
from the Sixth International Joint Conference on Computational Intelligence (IJCCI
2014). IJCCI was sponsored by the Institute for Systems and Technologies of
Information, Control and Communication (INSTICC). This conference was held in
Rome, Italy, from October 22 to 24, 2014.

IJCCI was technically co-sponsored by IEEE Computational Intelligence Soci-
ety, co-sponsored by International Federation of Automatic Control (IFAC), and
held in cooperation with the ACM Special Interest Group on Artificial Intelligence
(ACM SIGART), Association for the Advancement of Artificial Intelligence
(AAAI), Asia Pacific Neural Network Assembly (APNNA), European Society for
Fuzzy Logic and Technology (EUSFLAT), International Neural Network Society,
and the International Fuzzy Systems Association.

Since its first edition in 2009, the purpose of the International Joint Conference
on Computational Intelligence (IJCCI) has been to bring together researchers,
engineers, and practitioners in computational technologies, especially those related
to the areas of fuzzy computation, evolutionary computation, and neural compu-
tation. IJCCI is composed of three co-located conferences with each one specialized
in one of the aforementioned areas. Namely:

• International Conference on Evolutionary Computation Theory and Applications
(ECTA)

• International Conference on Fuzzy Computation Theory and Applications
(FCTA)

• International Conference on Neural Computation Theory and Applications
(NCTA)

Their aim is to provide major forums for scientists, engineers, and practitioners
interested in the study, analysis, design, and application of these techniques to all
fields of human activity.
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In ECTA, modeling and implementation of bio-inspired systems, both theoret-
ically and in a broad range of application fields, is the central scope. Considered as
a subfield of computational intelligence focused on optimization problems, evolu-
tionary computation is associated with systems that use computational models of
evolutionary processes as the key elements in design and implementation, i.e.,
computational techniques which are inspired by the evolution of biological life in
the natural world. A number of bio-inspired models have been proposed, including
genetic programming, genetic algorithms, evolution strategies, evolutionary pro-
gramming, swarm optimization, and ant colony optimization.

In FCTA, results and perspectives of modeling and implementation of fuzzy
systems, in a broad range of fields, are presented and discussed. Fuzzy computation,
based on the theory of fuzzy sets and fuzzy logic, is dedicated to the solution of
information processing, system analysis, knowledge extraction from data, and
decision problems. Fuzzy computation is taking advantages of the powerful
available technologies to find useful solutions for problems in many fields, such as
medical diagnosis, automated learning, image processing and understanding, and
systems control.

NCTA is focused on modeling and implementation of neural-based computation
and related issue as those dealing with artificial neural networks and brain’s
structure issued architectures. Neural computation and artificial neural networks
have seen a continuous explosion of interest in recent decades, and are being
successfully applied across an impressive range of problem domains, including
areas as diverse as finance, medicine, engineering, geology, and physics, providing
appealing solutions to problems as varied as prediction, classification,
decision-making, or control. Numerous architectures, learning strategies and
algorithms have been introduced in this highly dynamic field in the last couple of
decades.

The joint conference IJCCI received 210 paper submissions from 51 countries,
of which 15 % were presented as full papers. The high quality of the papers
received imposed difficult choices in the review process. To evaluate each sub-
mission, a double-blind paper evaluation method was used: each paper was
reviewed by at least two experts from the independent international Program
Committee, in a double-blind review process, and most papers had three reviews or
more. This book includes revised and extended versions of a strict selection of the
best papers presented at the conference.

On behalf of the Conference Organizing Committee, we would like to thank all
participants. First of all to the authors, whose quality work is the essence of the
conference, and to the members of the Program Committee, who helped us with
their expertise and diligence in reviewing the papers. As we all know, producing a
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post-conference book, within the high technical level exigency, requires efforts of
many individuals. We wish to thank also all the members of our Organizing
Committee, whose work and commitment were invaluable.

April 2015 Juan Julian Merelo
Agostinho Rosa
José M. Cadenas
António Dourado
Kurosh Madani
Joaquim Filipe
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Evolutionary Tuning of Optimal PID
Controllers for Second Order Systems Plus
Time Delay
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Abstract PID stands for ‘‘proportional, integral, derivative’’ The PID controller is
the most widely used industrial device for monitoring and controlling processes.
Those three elements are the basics of a PID Controller. Each one performs a
different task and has a different effect on the functioning of a system. The expected
behavior of a system depends of the setting of those parameters. There are alter-
natives to the traditional rules of PID tuning, but there is not yet a study showing
that the use of heuristic algorithms it is indeed better than using classic methods of
optimal tuning. This is developed in this paper. An evolutionary algorithm MAGO
(Multidynamics Algorithm for Global Optimization) is used to optimize the con-
troller parameters minimizing the ITAE performance index. The procedure is
applied to a set of benchmark problems modeled as Second Order Systems Plus
Time Delay (SOSPD) plants. The evolutionary approach gets a better overall per-
formance comparing to traditional methods (Bohl and McAvoy, ITAE-Hassan,
ITAE-Sung), regardless the plant used and its operating mode (servo or regulator),
covering all restrictions of the traditional methods and extending the maximum and
minimum boundaries between them.
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1 Introduction

The order of a system specifies the number of integrations between the input and
the output of the system being controlled (i.e., the plant). There is only a propor-
tional relation between the input and the output in a zero-order system (this is zero
integrations). A first order system takes into account that proportional relationship
and also the rate (velocity) of the output. Besides these two relations, in a second-
order system there is also a proportional relation between the input and the
acceleration of the output. The difficulty of learning and using a control system
increases with the order of the plant. The dynamics of a second order system is
typical of many real-world control tasks and is more representative of problems that
have inertia. The inertial dynamic properties are described as lags of the plant and
alter the shape of the output. Additionally, in real systems could be the presence of
time delays. Time delays are due to the time of transmission information through
some medium. Time delays affect only the temporal relation between input and
output and have no effect on the shape of the actual response, relative to the
immediate input. Most real plants are modeled as second order systems with both
lags and time delays. This behavior is a challenge for control systems. The problem
of controlling Second Order System Plus time Delay (SOSPD) is recognized as
difficult [1].

In [2], a comparative study of performance of different tuning classical methods
for PID (proportional-integral-derivative) controllers is achieved. This study con-
cludes that tuning methods that require a SOSPD model perform better than those
that require a First Order Lag Plus time Delay model (FOLPD). O’Dwyer [3]
reports that 90 % of the tuning rules developed are based on a model of first and
second order plus time delay. Current trends in controller parameter estimation
minimize an integral performance criterion. The most frequently tuning rules used
are not based on an integral performance criterion. The optimal tuning rules based
on second-order models are just 14 of the 84 reported until 2009. In general, those
rules are based on several conditions of the parameters defining the process model.
The SOSPD model was selected in this paper as representing the plants in order to
compare the performance of a heuristic algorithm with the “best” techniques
developed for PID controllers optimal tuning. For SOSPD general models 147
tuning rules have been defined based on the ideal PID structure [3]. In [4, 5] the
performance and robustness of some tuning rules are evaluated, and a complete
analysis of the methods of tuning controllers based on SOSPD is made. Each of the
developed tuning rules for PID controllers has only been applied to a certain group
of processes. Usual tuning methodologies, such as design based on the root locus,
pole-zero cancellation, location of the closed-loop poles, among others, require
cumbersome procedures and specialized knowledge. Additionally, most methods
for optimal tuning of SOSPD require extra system information from experiments
carried out directly on the plant; activities that are not always possible to perform
because the presence of extreme stresses and oscillations which may create insta-
bility and damage to the system.

4 J.-A. Hernández-Riveros et al.



The studies mentioned suggest the lack of a general rule for tuning PID con-
trollers. Due to the large number of existing tuning rules it is necessary to find a
tuning method that best satisfies the requirements of each problem and also ensures
optimal values for the controller parameters according to the selected performance
criterion.

There is a trend to develop new methods for tuning PI and PID controllers [5–7],
posed as a nonlinear optimization problem. In reviewing the literature is found that
evolutionary algorithms (EA) are applied to the tuning of controllers on particular
cases and not in the general cases as in this paper. Nor are compared with traditional
methods that minimize some tuning performance index [8–11]. This implies that
although there are alternatives to the traditional rules of tuning, there is not yet a
study showing that the use of heuristic algorithms it is indeed better than using the
traditional rules of optimal tuning. Hence, this matter is addressed. Other applica-
tions of the EA in control systems, among them, are system identification [12] and
optimal configuration of sensors [13]. The use of an EA for tuning PID controllers
in processes represented by SOSPD models is proposed in this paper.

This paper is concerned with PID controllers for processes modeled as SOSPD,
optimizing the ITAE (Integral of Time Multiplied by Absolute Error) and not
requiring additional system information.

EA are a proven tool for solving nonlinear systems and optimization problems.
The weaknesses of these algorithms are in the large number of control parameters of
the EA to be determined by the analyst and the lack of a solid mathematical
foundation [14]. Looking address these weaknesses arise recently the Estimation of
Distribution Algorithms, EDA [15]. These algorithms do not use genetic operators,
but are based on statistics calculated on samples of the population, which is con-
stantly evolving. This variant when introduce statistics operators provides a strong
way to demonstrate the evolution. Nevertheless, they are difficult to manage and do
not eliminate the large number of control parameters of classical EA. Set a classic
EA is itself a difficult optimization problem; the analyst must try with probabilities
of crossover, mutation, replication, operator forms, legal individuals, loss of
diversity, etc. Whereas, the EDA require expert skills as the formulation of
simultaneous complex distributions or the Bayesian networks structure. For its part,
Multi dynamics Algorithm for Global Optimization (MAGO) also works with
statistics from the evolution of the population [16]. MAGO is a heuristic algorithm
resulting from the combination of Lagrangian Evolution, Statistical Control and
Estimation of Distribution. MAGO has shown to be an efficient and effective tool to
solve problems whose search space is complex [17] and works with a real-valued
representation. MAGO only requires two parameters provided by the analyst: the
number of generations and the population size. The traditional EA, additionally to
the number of generations and the population size requires from the user the def-
inition of the selection strategy, the individuals’ representation, probabilities of
mutation, crossover, replication, as well as, the crossover type, the locus of
crossing, among others. Depending of its design, some EA also have extra
parameters of tuning as control variables, number of branch and nodes, global step
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size, time constant, etc. [18]. Because of that, MAGO becomes a good choice as a
tool for solving controller tuning as an optimization problem.

The results obtained by MAGO are compared with traditional tuning methods
not requiring additional system information. The ITAE is optimized to penalize
the error. As it is further shown, the system model used makes no difference for the
MAGO, because only input and output signals from the closed loop system are
required to calculate the controller parameters. Regardless of the relationship
between the parameters of the system (time delay, constant time, etc.) the results
obtained by MAGO overcome those from the traditional methods of optimal tuning.

This paper begins with an introduction of controller parameters estimation and
performance index calculation. The tuning of PID controllers on SOSPD using both
the traditional methods and the evolutionary algorithm MAGO follow. A results
analysis and some conclusions come after.

2 PID Controller Tuning

The control policy of an ideal PID controller is shown in Eq. (1), where E(s) =
(R(s)–Y(s)). The current value Y(s) of the controlled variable is compared to its
desired value R(s), to obtain an error signal E(s) (feedback). This error is processed
to calculate the necessary change in the manipulated variable U(s) (control action).

U sð Þ=Kc 1+
1
Tis

+Tds
� �

E sð Þ ð1Þ

Some rules of tuning controllers are based on critical system information, on
reaction curves and on closed loop tests [19].

This paper is concerned to PID controllers for processes modeled as SOSPD,
optimizing the ITAE and not requiring additional system information.

In [3], it is indicated that 20.7 % of the rules of tuning PID controllers have been
developed from SOSPD models (with or without a zero in the numerator). This
implies 84 rules, 66 of them do not include the zero in the numerator. Of these, only
14 optimize an integral performance criterion, from which 4 rules propose selecting
controller parameters by means of tables and other 6 require additional system
information (ultimate gain, Ku; ultimate frequency, Tu). There are only 4 tuning
rules that optimize an integral performance criterion and are only function of the
SOSPD parameters. For regulators these rules are: Bohl and McAvoy, Minimum
ITAE—Hassan, Minimum ITAE—Sung; for servomechanisms: Minimum ITAE—
Sung. Table 1 shows the summary of the study, the chosen rules are shadowed. The
equations for the calculation of proportional gain, Kc; integral time, Ti and
derivative time, Td can be consulted in [20–23]. These tuning rules define
restrictions on the behavior of the plant, expressed in the range of validity.
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Table 1 Tuning methods for PID controllers optimizing an integral criterion on SOSPD system

Method Type of
operation

Type
of plant

Range of pertinence Observation

Minimum IAE
—Wills

Regulator (6) Tm2 = τ = 0.l Tml Requires critical
system information
(Ku, Tu)

Minimum IAE
—López

Regulator (5) 0.5 < ξ < 4; 0.1 < τ/
Tml < 10

Tuningrule base
on tables

Minimum IAE
—Shinskey

Regulator (6) Tm2/(Tm2 + τ) = 0.25,
0.5, 0.75

Requires critical
system information
(Ku. Tu)

Minimum IAE
—Kang

Regulator (6) τ/Tinl, Tm2/Tml Tuningrule base
on tables

Minimum
ITAE—López

Regulator (5) 0.5 < ξ < 4; 0.1 < τ/
Tml < 1

Tuningrule base
on tables

Bohl and Mc
Avoy

Regulator (6) 0.12 < Tml/Tm2 < 0.9;
0.l < τ/Tml < 0.5

Tuningrule
requiring only
SOSPD model
parameters

Minimum
ITAE—Hassan

Regulator (5) 0.5 < ξ < 2; 0.1 < τ/
Tml < 4

Tuningrule
requiring only
SOSPD model
parameters

Minimum
ITAE—Sung

Regulator (5) 0.05 < τ/Tml < 2 Tuningrule
requiring only
SOSPD model
parameters

Nearly
minimum IAE,
ISE, ITAE—
Hwang

Regulator (5) 0.6 < ξ < 4.2; 0.2 < τ/
Tml < 2

Requires critical
system information
(Ku, Tu)

Minimum IAE
—Wills

Servomechanism (6) Tm2 = τ = 0.l Tml Requires critical
system information
(Ku, Tu)

Minimum IAE
—Gallier and
Otto

Servomechanism (5) &
(6)

0.05 < τ/2Tml < 4 Tuningrule base
on tables

Minimum
ITAE—Wills

Servomechanism (6) Tml = Tm2; τ = 0.l Tml Requires critical
system information
(Ku, Tu)

Minimum
ITAE—Sung

Servomechanism (5) 0.05 < τ/Tml < 2 Tuningrule
requiring only
SOSPD model
parameters

Nearly
minimum IAE,

ISE, ITAE—
Hwang

Servomechanism (5) 0.6 < ξ < 4.2; 0.2 < τ/
Tml < 2

Requires critical
system information
(Ku, Tu)

Evolutionary Tuning of Optimal PID Controllers … 7



2.1 Performance Criteria of PID Controllers

The criterion used for tuning a controller is directly related to the expected per-
formance of the control loop. It can be based on desired characteristics of the
response, in time or frequency. Searching for a way to quantify the behavior of
control loops led to the establishment of performance indexes based on the error
signal, e(t) (feedback). The objective is to determine the controller setting that
minimizes the chosen cost function. The parameters are optimal under fixed per-
formance criteria. Of these, the best known are the so-called integral criteria [19],
defined in Eqs. (2) and (3).

Integral of Absolute Error IAE=
Z ∞

0
eðtÞj jdt ð2Þ

Integral of Time Multiplied by Absolute Error ITAE=
Z ∞

0
t eðtÞj jdt ð3Þ

Where the error is given by: e tð Þ= r tð Þ− y tð Þ ð4Þ

r(t) is the reference value, and y(t) is the current value of the controlled variable,
both expressed in time.

2.2 Plant Parameters and Performance Indexes

To compare the performance of the studied controllers it is necessary to tune them
with the same plants. The plant models used are given in Eqs. (5) and (6), [24].

GðsÞ= Kpe− τms

T2
m1s2 + 2ξmTm1s+1

ð5Þ

GðsÞ= Kpe− τms

ð1+ Tm1sÞð1+Tm2sÞ ð6Þ

The following considerations are taken for Eq. (5): Kp = 1, τm = 1, ξ = 1 and
Tm1 ranging from 1, 10 and 20. For Eq. (6), the following considerations are taken:
Kp = 1, τm = 1, Tm1 = 1 and Tm2 = a*Tm1, where a ≤ 1. Tables 2 and 3 presents

Table 2 Transfer functions
of plants 1, Eq. (5), for the
tuning

Servomechanism Regulator

Gp1 servo1ðsÞ= e− s

s2 + 2s+1
Gp1 reg1ðsÞ=Gp1 servo1ðsÞ

Gp1 servo2ðsÞ= e− s

100s2 + 20s+1
Gp1 reg2ðsÞ=Gp1 servo2ðsÞ

Gp1 servo3ðsÞ= e− s

400s2 + 40s+1
Gp1 reg3ðsÞ=Gp1 servo3ðsÞ

8 J.-A. Hernández-Riveros et al.



a set of transfer functions according to the parameter values of each plant given by
Eqs. (5) and (6).

The values of the PID controller parameters for each selected tuning rules are
presented, further on, on Table 4. The parameters are calculated according to the
formulas proposed for each kind of plant. The selected methods for tuning con-
trollers minimize the integral performance criterion, ITAE. Therefore, in Table 4,
besides the values of controller parameters, the ITAE is also reported. The ITAE is
calculated in all cases using the commercial software MATLAB® function “trapz”.

Table 3 Transfer functions
of plants 2, Eq. (6), for the
tuning

Servomechanism Regulator

Gp2 servo1ðsÞ= e− s

ð1+ sÞð1+ 0.1sÞ Gp2 reg1ðsÞ=Gp2 servo1ðsÞ
Gp2 servo2ðsÞ= e− s

ð1+ sÞð1+ 0.5sÞ Gp2 reg2ðsÞ=Gp2 servo2ðsÞ
Gp2 servo3ðsÞ= e− s

ð1+ sÞð1+ sÞ Gp2 reg3ðsÞ=Gp2 servo3ðsÞ

Table 4 PID controller parameters

Plant (2) PID operating as regulator ITAE
Kc Ti Td
B&M MAGO B&M MAGO B&M MAGO B&M MAGO

GP2-reg1(s) 1.7183 1.4296 1.8978 1.5433 1.8988 0.3341 7.7760 3.1052
GP2-reg2(s) 1.0300 1.4656 1.4164 1.5552 1.6702 0.5597 6.8722 3.6071
GP2-reg3(s) 0.3092 1.8527 0.5854 1.7791 0.7286 0.7575 3.8073 3.6738
Plant (2) PID operating as servomechanism ITAE

Kc Ti Td
Hassan MAGO Hassan MAGO Hassan MAGO Hassan MAGO

GP2-servo1(s) NC* 0.5658 NC* 1.6705 NC* 1.0318 NC* 72.6860
GP2-servo2(s) NC* 0.2731 NC* 1.0966 NC* 0.4871 NC* 69.4943
GP2-servo3(s) NC* 0.9074 NC* 2.0666 NC* 0.5258 NC* 63.2413
Plant (1) PID operating as servomechanism ITAE

Kc Ti Td
SUNG MAGO SUNG MAGO SUNG MAGO SUNG MAGO

GP1-servo1(s) 1.2420 1.2318 2.0550 2.1167 0.6555 0.6050 2.0986 2.0486
GP1-servo2(s) 9.0500 10.3237 18.009 16.8942 4.9386 5.5162 3.7911 2.8532
GP1-servo3(s) 16.4953 19.7929 35.689 29.7905 9.5595 10.7718 3.7937 2.7827
Plant (1) PID operating as regulator ITAE

Kc Ti Td
SUNG MAGO SUNG MAGO SUNG MAGO SUNG MAGO

GP1-reg1(s) 1.8160 1.8557 1.9120 1.7563 0.7073 0.7518 3.8100 3.6623
GP1-reg2(s) 12.8460 17.3252 16.7995 7.4691 −1.99e

− 6
2.3730 894.5522 3.6427

GP1-reg3(s) 21.8276 31.8262 37.7393 11.0993 −1.17e
− 4

3.7005 314.5554 4.4240

NC* = Not converged
B&M* = Bohl and McAvoy
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For the Hassan method, the controller parameter values are not reported because
there was no convergence in the closed loop system response for the selected plants
given by Eq. (5), operating as regulator.

3 Tuning Optimal PID Controllers Using an Evolutionary
Algorithms

Different solutions there may exist in optimization problems, therefore a criterion
for discriminating between them, and finding the best, is required. The tuning of
controllers that minimize an integral performance criterion can be seen as an
optimization problem, inasmuch as the ultimate goal is to find the combination
of parameters Kc, Ti and Td, such that the value of the integration of a variable of
interest is minimal (error between the actual output of the plant and the desired
value).

EA are widely studied as a heuristic tool for solving optimization problems.
They have shown to be effective in problems that exhibit noise, random variation
and multimodality. Genetic algorithms, for example, have proven to be valuable in
both obtaining the optimal values of the PID controller parameters, and in com-
putational cost [23]. One of the recent trends in EA is Estimation of Distribution
Algorithms [15]. These do not use genetic operators but are based on statistics from
the same evolving population. The Multidynamics Algorithm for Global Opti-
mization (MAGO) [16] also works with statistics from the evolving population.
MAGO is autonomous in the sense that it regulates its own behavior and does not
need human intervention.

3.1 Optimization and Evolutionary Algorithms

There are techniques used to obtain better results (general or specific) for a problem.
The results can greatly improve the performance of a process, which is why this
kind of tools is known as optimization. When speaking of an optimization problem
is to minimize or maximize depending of the design requirements.

These mean representative criteria of the system efficiency. The chosen criterion
is called objective function. The design of an optimization problem is subject to
specific restraints of the system, decision variables and design objectives, which
leads to an expression such that the optimizer can interpret. Given its nature of
global optimizer, an evolutionary algorithm (EA) is used in this work. EA have
been used in engineering problems [25] and the tuning of PID controllers [8, 26].
The late is the case tries in this work, where successful results have been obtained.
The tuning of controllers that minimize an objective function can be formulated as
an optimization problem; it is a case of optimal control [27]. The optimal control

10 J.-A. Hernández-Riveros et al.



consists in selecting a control structure (including a PID controller) and adjusts its
parameters such that a criterion of overall performance is minimized. In the case of
a PID controller Eq. (1), the ultimate goal is to find the combination of the Kc, Ti
and Td parameters, given some restrictions, such that the value of the integral of a
variable of interest (error between the plant’s actual output and the desired value or
control effort) is minimal. The problem consists of minimizing an objective func-
tion, where its minimum is the result of obtaining a suitable combination of the
three parameters of PID controller.

3.2 Multidynamics Algorithm for Global
Optimization—MAGO

MAGO inspires by statistical quality control for a self-adapting management of the
population. In control charts it is assumed that if the mean of the process is out of
some limits, the process is suspicious of being out of control. Then, some actions
should be taken to drive the process inside the control limits [28]. MAGO takes
advantage of the concept of control limits to produce individuals on each generation
simultaneously from three distinct subgroups, each one with different dynamics.
MAGO starts with a population of possible solutions randomly distributed
throughout the search space. The size of the whole population is fixed, but the
cardinality of each sub-group changes in each generation according to the first,
second and third deviation of the actual population. The exploration is performed
by creating new individuals from these three sub-populations. For the exploitation
MAGO uses a greedy criterion in one subset looking for the goal.

In every generation, the average location and the first, second and third devia-
tions of the whole population are calculated to form the groups. The first subgroup
of the population is composed of improved elite which seeks solutions in a
neighborhood near the best of all the current individuals. N1 individuals within one
standard deviation of the average location of the current population of individuals
are displaced in a straight line toward the best of all, suffering a mutation that
incorporates information from the best one. The mutation is a simplex search as the
Nelder–Mead method [18] but only two individuals are used, the best one and
the trial one. A movement in a straight line of a fit individual toward the best one
occurs. If this movement generates a better individual, the new one passes to the
next generation; otherwise its predecessor passes on with no changes. This method
does not require gradient information. For each trial individual Xi

(j) at generation j a
shifted one is created according to the rule in Eq. (7).

XðjÞ
T =XðjÞ

i +FðjÞðXðjÞ
B −XðjÞ

m Þ
FðjÞ = SðjÞ  SðjÞ

�� �� ð7Þ
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where XðjÞ
B is the best individual, XðjÞ

m is an individual randomly selected. To incor-
porate information of the current relations among the variables, the factor F(j)

depending on the covariance matrix is chosen in each generation. S(j) is the popu-
lation covariance matrix at generation j. This procedure compiles the differences
among the best individuals and the very best one. The covariance matrix of the
current population takes into account the effect of the evolution. This information is
propagated on new individuals. Each mutant is compared to his father and the one
with better performance is maintained for the next generation. This subgroup, called
Emergent Dynamics, has the function of making faster convergence of the algorithm.

The second group, called Crowd Dynamics, is formed by creating N2 individuals
from a uniform distribution determined by the upper and lower limits of the second
deviation of the current population of individuals. This subgroup seeks possible
solutions in a neighborhood close to the population mean. At first, the neighbor-
hood around the mean can be large, but as evolution proceeds it reduced, so that
across the search space the population mean is getting closer to the optimal. The
third group, or Accidental Dynamics, is the smaller one in relation to its operation
on the population. N3 individuals are created from a uniform distribution
throughout the search space, as in the initial population. This dynamic has two
functions: maintaining the diversity of the population, and ensuring numerical
stability of the algorithm.

The Island Model Genetic Algorithm also works with subpopulations [29]. But
in the Island model, more parameters are added to the genetic algorithm: number of
islands, migration size, migration interval, which island migrate, how migrants are
selected and how to replace individuals. Instead, in MAGO only two parameters are
needed: number of generations and population size. On another hand, the use of a
covariance matrix to set an exploring distribution can also be found in [30], where,
in only one dynamics to explore the promising region, new individuals are created
sampling from a Gaussian distribution with an intricate adapted covariance matrix.
In MAGO a simpler distribution is used.

To get the cardinality of each dynamics, consider the covariance matrix of the
population, S(j), at generation j, and its diagonal, diag(S(j)). If Pob(j) is the set of
potential solutions being considered at generation j, the three groups can be defined
as in Eq. (8), where: XM(j) = mean of the actual population. If N1, N2 and N3 are
the cardinalities of the sets G1, G2 and G3, the cardinalities of the Emergent
Dynamics, the Crowd Dynamics and the Accidental Dynamics are set, respectively,
and Pob(j) = G1 U G2 U G3.

12 J.-A. Hernández-Riveros et al.
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This way of defining the elements of each group is dynamical by nature. The
cardinalities depend on the whole population dispersion in the generation j.
The Emergent Dynamics tends to concentrate N1 individuals around the best one.
The Crowd Dynamics concentrates N2 individuals around the mean of the actual
population. These actions are reflected in lower values of the standard deviation in
each of the problem variables. The Accidental Dynamics, with N3 individuals,
keeps the population dispersion at an adequate level. The locus of the best indi-
vidual is different from the population’s mean. As the evolution advances, the
location of both the best individual and of the population’s mean could be closer
between themselves. This is used to self-control the population diversity. Figure 1
shows the flow diagrams of a traditional evolutionary algorithm and the MAGO.
Following is MAGO’s pseudo code.

1: j = 0, Random initial population generation uniformly
  distributed over the search space. 
2: Repeat. 
3: Evaluate each individual with the objective function. 
4: Calculate the population covariance matrix and the
   first, second and third dispersion. 
5: Calculate the cardinalities N1, N2 and N3 of the groups
  G1, G2 and G3. 
6: Select N1 best individuals, modify them according to
  Eq (7), make them compete and translate the winners
  towards the best one. Pass the fittest to the
  generation j + 1. 
7: Sample from a uniform distribution in hyper-rectangle
   [LB(j), UB(j)] N2 individuals, pass to generation j+ 1. 
8: Sample N3 individuals from a uniform distribution over 
   the whole search space and pass to generation j+1. 
9: j = j + 1 
10: Until an ending criterion is satisfied. 
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3.3 Statement of the Problem

An EA represents a reliable approach when adjusting controllers is proposed as an
optimization problem [25]. Given their nature of global optimizers, EA could face
non-convex, nonlinear and highly restrictive optimization problems [7, 31, 32].
The MAGO has been shown as a very efficient instrument to solve problems in a
continuous domain [17]. Thus, the MAGO is applied as a tool for estimating the
parameters of a PID controller that minimizes an integral performance index. In the
case where the system is operating as servomechanism, the control problem consists
of minimizing the integral of the error multiplied by the time (ITAE). This involves
finding the values for the parameters Kc, Ti y Td, such that the system gets the
desired r(t) value as fast as possible and with few oscillations. In the case where the
system operates as a regulator, the reference is a constant R, but the control problem
is also to minimize the ITAE index. This implies, again, finding the values of the
parameters Kc, Ti and Td, but the goal in this mode is that at the appearance of a
disturbance the system returns as quickly as possible to the point of operation. The
optimization problem is defined in Eq. (9).

JðKc, Ti, Td|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
x

Þ= min
x

JITAE =
Z ∞

0
t e tð Þj jdt

� �
ð9Þ

3.4 Evolutionary Design of PID Controller

The controller design is made for the modes servo and regulator. For the servo, a
change in a unit step reference is applied. For the regulator, the same change is

Fig. 1 Scheme of: a Evolutionary algorithm, b MAGO

14 J.-A. Hernández-Riveros et al.



applied but as a unit step disturbance to the second-order plant. The controllers are
tuned for the six plants defined in Tables 2 and 3. The two parameters of MAGO:
number of generations (ng) and number of individuals (n), are very low and fixed
for all cases (ng = 150, n = 100). MAGO is a real-valued evolutionary algorithm,
so that the representation of the individual is a vector containing the controller
parameters. The parameters are positive values in a continuous domain (Table 5).

The fitness function is in Eq. (9). The error is calculated as the difference
between the system output and the reference signal. The error is calculated for each
point of time throughout the measurement horizon. MAGO does not use genetic
operators as crossover or mutation. The adaptation of the population is based on
moving N1 individuals to the best one with a Simplex Search, creating N2 indi-
viduals over the average location of the actual population and creating N3 indi-
viduals through a uniform distribution over the whole search space, as previously
discussed.

3.5 Controller Parameters and Performance Indexes

The comparison between the PID controller parameters obtained with the traditional
tuning rules and the MAGO algorithm are shown in Table 4. These values minimize
the ITAE. Figure 2 illustrates the time response, in closed loop, for the plants given
in Tables 2 and 3. Figure 3 illustrates the time response of the plants defined by
Eq. (6), given in Table 3. For this mode of operation, in the literature review, no
tuning rule has been found that could compute the PID controller parameters
requiring only the parameters of the plant. However, with MAGO is possible to find
controller parameters that minimize the ITAE, without additional information and
regardless of the operating mode. The closed-loop system simulations from which
the controller was tuned using the MAGO are presented.

4 Analysis of Results

The study of traditional tuning methods shows that despite the large amount of
available tuning rules, there is no one that is effective for the solution of all control
problems based on SISO systems. It is evident that a single tuning rule applies only
to a small number of problems. A tendency to develop new methods for tuning PID
controllers [5–7, 32] has been noticed. The most recent are focused on controller’s
parameter calculation achieving a desired performance, where this index is one of

Table 5 Structure of the
evolutionary individual

Kc Є R+ Ti Є R+ Td Є R+
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Fig. 2 Time response of the plants given by Eqs. (5) and (6), operating as servomechanism and
regulator

16 J.-A. Hernández-Riveros et al.



those mentioned before (IAE, ITAE). Table 4 shows the results when tuning PID
controllers for different plant models based on Eqs. (5) and (6). The parameters
obtained minimize the ITAE criterion. In the case of plants based on the model of
Eq. (5), when the system operates as servomechanism, the tuning rules used are
those proposed by Sung. Obtaining an ITAE close to 3, the response behavior of the
system is a smooth one, free of oscillations (Fig. 2). For the system operating as a
regulator the rules by Sung are employed. In this case the ITAE value is consid-
erably higher for plants Gp1_servo3 and Gp1_servo2, and the system presents
oscillations. From this result, it has to be concluded that the rules proposed by Sung
are a good choice for the system operating as a servomechanism; while for the case
where the system operates as a regulator the use of these rules should be
reconsidered.

On another hand, in the case of plants operating as regulators, whose model is
given by the Eq. (6), the rules proposed by Bohl and McAvoy were used to
calculate the controller parameters. The results for this experiment are reported in
Table 4.

The response of the closed loop system is smooth using the parameters found by
this method. The value for the ITAE performance index, in all cases, is below 10.
Due to the features that the control problem has, where the objective is to minimize
a function by a suitable combination of controller parameters which can be
expressed as a function of cost, the solution is presented as an optimization prob-
lem. The algorithm MAGO is used to calculate the controller parameters seeking to
minimize the ITAE.

The results, reported in Table 4, are compared with those obtained by the tra-
ditional tuning rules.

The results obtained by MAGO were very satisfactory for all cases. The ITAE
performance index is low when the controller parameters are calculated by the
MAGO, whatever the plant is represented by Eqs. (5) or (6), and for the two modes
of operation, servo and regulator. Additional to the above, the responses of closed
loop systems where the controller parameters are obtained using the MAGO could
be observed in Fig. 2. These responses are softer and exhibit less oscillation with
respect to the response where controllers are calculated with traditional methods. It
can be appreciate in the Sung case as regulator, that the addressed problem has a big
variability. Table 4 also reports the results obtained for the plant based on Eq. (6).

Fig. 3 Response to step change in the input of the plant 2, Eq. (6), as servomechanism (MAGO
only)
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For this case no comparative data are available, because the only traditional tuning
rule found that minimizes the performance index ITAE and requires no additional
system information is proposed by Hassan (Table 1). However, in the experiments
with this tuning rule it was not possible to obtain convergence to a real value of the
parameters of the controller and thus it was not possible to calculate the ITAE.
Whereas with MAGO, requiring only the minimum information of the model, it
was possible to find the controller parameters reaching an acceptable answer,
because in a finite time less than the open-loop system settling time the reference
value is achieved, Fig. 3.

5 Conclusion

A method for optimal tuning of PID controllers through the evolutionary algorithm
MAGO has been successfully developed and implemented. The process resolves
the controller tuning as an optimization problem. MAGO calculates the parameters
of PID controllers minimizing the ITAE performance index, and penalizing the
error between the reference value and the output of the plant. It must be noted that
the PID controller tuning was made for SOSPD, without additional knowledge of
the plant.

The results showed that MAGO, operating on servo and regulator modes, gets a
better overall performance comparing to traditional methods [20–22]. Each of these
traditional methods is restricted to certain values on the behavior of the plant and is
limited to an only one type of operation. The solution obtained with the evolu-
tionary approach cover all these restrictions and extends the maximum and mini-
mum between them. Finally, it should be noted that the MAGO successful results
are obtained regardless of, both, the plant or controller models used.
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Evolution of Graphs for Unsupervised
Learning

Christina Chrysouli and Anastasios Tefas

Abstract In this paper, we propose a novel method which adopts evolutionary

techniques so as to optimize a graph structure. The method that was developed has

been applied in clustering problems, where spectral graph clustering technique has

been used. In order to use evolutionary algorithms initial population has been cre-

ated consisting of nearest neighbor graphs and variations of these graphs, which

have been properly altered in order to form chromosomes. Since it was observed

that initial population is crucial for the performance of the algorithm, several tech-

niques have been considered for the creation. A fitness function was used in order to

decide about the appropriateness of the chromosomes. The major advantage of our

approach is that the algorithm is generic and can be used to all problems that are,

or can be, modeled as graphs, such as dimensionality reduction and classification.

Experiments have been conducted on a traditional dance dataset and other multidi-

mensional datasets, providing encouraging results.

Keywords Spectral clustering ⋅ Similarity graphs ⋅ Evolutionary algorithms

1 Introduction

The aim of clustering is to discover the natural grouping of a dataset, such that sim-

ilar samples are placed in the same group, while dissimilar samples are placed into

different ones. Clustering has been used in order to solve a diversity of problems,

including bioinformatics, data mining, image analysis, information retrieval etc. A

detailed survey on clustering applications can be found in [1] and a more recent study

in [2].
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Spectral graph clustering is widely used and have received a lot of attention nowa-

days, as it can be applied to a wide variety of practical problems, such as computer

vision and speech analysis. Spectral graph clustering [3] refers to a class of graph

techniques, that rely on eigenanalysis of the Laplacian matrix of a similarity graph,

aiming to divide graph nodes in disjoint clusters. In all clustering techniques, and

thus also in spectral clustering, nodes that originate from the same cluster should

have high similarity values, whereas nodes from different clusters should have low

similarity values. In [4] the authors summarize some of the applications of spectral

graph clustering.

So far, some evolutionary-based approaches to the problem of clustering have

been proposed throughout the years. In [5] the authors proposed a genetic algorithm

in order to search for the cluster centers by minimizing a clustering metric, while in

[6] authors aim to find the optimal partition of the data, using a genetic algorithm,

without searching all possible partitions. A more detailed survey of evolutionary

algorithms for clustering is presented in [7].

In the proposed approach, similarity graphs are evolved, which have been trans-

formed properly in order to play the role of the chromosomes in the employed genetic

algorithm [8]. In order to use evolutionary algorithms we construct the initial pop-

ulation with the aid of k-nearest neighbor graphs which, then, are transformed to

one-dimensional binary strings and undergo genetic operators.

The remainder of this paper is organized as follows. In Sect. 2, the problem that

we attempt to solve is stated and some general aspects that concern the algorithm

are discussed, including similarity graph construction, and spectral clustering issues.

Section 3, presents the proposed evolutionary algorithm in detail. In Sect. 4, exper-

imental results of the algorithm are described. Finally, in Sect. 5, conclusions are

drawn and future work is discussed.

2 Problem Statement

Clustering is the process of partitioning a usually large dataset into groups, according

to a similarity (or dissimilarity) measure. The goal is to place samples that have a

small distance from each another, to the same cluster, whereas samples that are at a

large distance from each another are placed to different clusters. Clustering is usually

not a trivial task, as the only information we have about the data, is the data itself. In

order to obtain some information about the structure of the data, we usually construct

similarity matrices.

2.1 Similarity Functions and Similarity Graphs

Similarities of data samples can be represented as a similarity graph G = (V ,E),
where V , E represent vertices (or nodes) and edges of the graph, respectively. If
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we assume that each vertex vi represents a data sample, then two nodes vi, vj are

connected if the similarity si,j between them is positive or larger than a threshold,

and the edge is weighted by si,j. The problem of clustering may now be reformulated

as finding a partition of the graph such that the weights within a cluster have high

values, whereas weights between different clusters have low values.

Before constructing a similarity graph, we need to define a similarity function on

the data. The most common similarity function 𝐒 is the Gaussian similarity function

(heat kernel). Heat kernel between two graph nodes is defined as:

𝐒 = 𝐡𝐢,𝐣 = 𝐞𝐱𝐩
⎛
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where 𝜎 is a parameter that defines the width of the neighborhood.

Generally, the most common choice of similarity graphs are k-nearest neighbor

graphs (to be called k-nn graphs) because of their simplicity as well as their sparsity.

The aim of a k-nn graph 𝐀 is to connect node vi with node vj if vj is among the k
nearest neighbors of vi. This results in a directed graph which is easily transformed to

an undirected by simply ignoring the directions of the edges. In the proposed method,

an undirected graph was used, in order to construct the similarity graph.

However, it is well known that spectral clustering is very sensitive to the choice of

the similarity graph that is used for constructing the Laplacian [9]. Indeed, selecting

a fixed k parameter for the k-nn graph is very difficult and different values lead to

dramatically different clusterings. Optimizing the clustering over the graph structure

is not a trivial task, since the clustering criteria are not differentiable with respect to

the graph structure. Thus, we propose in this paper to use evolutionary algorithms in

order to optimize specific clustering criteria, that are considered as fitness functions,

with respect to the underlying graph, which is transformed to a chromosome solution.

2.2 Spectral Graph Clustering

Spectral graph clustering [3], refers to a class of graph techniques, which rely on the

eigenanalysis of a matrix, in order to partition graph nodes in disjoint clusters and is

commonly used in many clustering applications [4].

Let 𝐃 be a diagonal N × N matrix having the sum dii =
∑

j Wi,j on its main diag-

onal. Then, the generalized eigenvalue problem is defined as:

(𝐃 −𝐖)𝐯 = 𝜆𝐃𝐯, (2)

where 𝐖 is the adjacency matrix, and 𝐯, 𝜆 are the eigenvectors and eigenvalues

respectively.
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Fig. 1 The 𝐒 matrix represents the full similarity matrix constructed using (1). The 𝐀 matrix

represents a k-nn graph, which has undergone genetic operators. The ⊙ operator performs element-

wise multiplication, resulting in a sparse matrix 𝐖, which only contains elements in places where

𝐀 matrix contains elements

Although many variations of graph Laplacians exist [9], we focus on the normal-

ized graph Laplacian 𝐋 [10] defined as:

𝐋 = 𝐈 − 𝐃−1∕2𝐖𝐃−1∕2
(3)

where 𝐖 is the adjacency matrix, with wi,j = wj,i ≥ 0, 𝐃 is the degree matrix and 𝐈
is the identity matrix. The smallest eigenvalue of 𝐋 is 0, which corresponds to the

eigenvector 𝐃−1∕2𝟏. The 𝐋 matrix is always positive semi-definite and has n non-

negative real-valued eigenvalues 𝜆1 ≤ ⋯ ≤ 𝜆n. The computational cost of spectral

clustering algorithms is quite low when matrices are sparse. Luckily, we make use

of k-nn graphs which are in fact sparse.

In the proposed method, we perform eigenanalysis on 𝐋 matrix, where 𝐖 is

defined as:

𝐖 = 𝐒⊙ 𝐀, (4)

𝐒 represents the full similarity matrix obtained using (1) and 𝐀 represents an undi-

rected k-nn matrix, which is a sparse matrix. The ⊙ operator performs element-wise

multiplication. This process results in a sparse matrix 𝐖, only containing elements

in places where 𝐀 matrix contains elements. An example of the ⊙ operator is illus-

trated in Fig. 1. Eigenvalues are always ordered increasingly, respecting multiplici-

ties, and the first k eigenvectors correspond to the k smallest eigenvalues. Once the

eigenanalysis has been performed and the new representation of the data has been

obtained, the k-means algorithm is used in order to attach a cluster to every data

sample.

3 The Proposed Algorithm

In order to partition a dataset into clusters, spectral graph clustering has been applied

on evolving k-nn similarity graphs. In more detail, we evolve a number of k-nn simi-

larity graphs with the aid of a genetic algorithm, in order to optimize the structure of

the graph, by optimizing a clustering criterion. In this paper, clustering criteria were
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employed as fitness functions. Moreover, k-nn similarity graphs are transformed

properly into chromosome solutions, in order to be used in the genetic algorithm.

Let J be a clustering criterion that depends on the similarity graph 𝐖. However,

the optimization problem is not convex and moreover the fitness function is not dif-

ferentiable with respect to𝐖. Since 𝐒 is considered constant after selecting a specific

similarity function and through the definition of 𝐖 in (4), the optimization problem

is defined as:

optimize
𝐀

J(𝐀), (5)

where 𝐀i,j ∈ 0, 1 is a k-nn graph.

3.1 Construction of Initial Population

In our algorithm, we use the sparse matrices that originate from k-nn graphs, result-

ing in an initial population that consists of matrices with binary elements. In this

method, a Gaussian function has been employed as a similarity measure, in order

to obtain the similarity matrix 𝐒, which is calculated pairwise for all the data in a

database of our choice, using (1). Our experiments showed that the value of 𝜎 has a

decisive role to the performance of the algorithm, thus, several, arbitrary rules exist;

in the proposed method, we have used multiples of the data diameter.

First, we calculate k-nearest neighbor matrices 𝐀, with k = 3,… , 8, which consti-

tute the backbone of the initial population. Next step is to enrich the population with

nearly k-nearest neighbor matrices. In order to achieve that, we alter the k-nearest

neighbor matrices that have already been calculated, by converting a small propor-

tion of 0’s, from 𝐀 matrices, to 1’s and vice versa. This process guarantees that the

proportion of 1’s and 0’s will remain the same in the new matrix. It is important not

to alter the k-nn graphs completely, so as to keep all the good properties. Finally, a

small proportion of completely random matrices are added, in order to increase the

population diversity, in which the number of 1’s are equal to the number of 1’s that

a 5-nn graph would have.

From the various experiments conducted, we have concluded that the selection

of the parameter k of the nearest neighbor graphs is crucial to the clustering results,

as illustrated in Fig. 2. Figure 2a presents a dataset that consists of two classes with

each one having a different color. Figure 2b, c represent the clustering results when

a 3 and a 5-nearest neighbor graph were used, respectively.

Before proceeding to the algorithm, we must define the way that the k-nn matrices,

and variants of these matrices, in the initial population are transformed into chromo-

somes, thus, we need to define how a square matrix becomes a one-dimensional vec-

tor. As the k-nn graphs 𝐀 are constructed in such a way to be symmetrical, we may

only keep the elements of the upper triangular matrix, with no loss of information.

Then, the remaining elements are accessed in rows, forming the one-dimensional

vector (Fig. 3).
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Fig. 2 The effect of k-nearest neighbor graphs in clustering. In Fig. 2a the two classes of the dataset

are presented. Figure 2b, c represent the clustering results when a 3 and a 5-nearest neighbor graph

were used, respectively. Notice the difference in clustering results especially when the data are close

to both classes

Fig. 3 The way a k-nn graph 𝐀 is transformed into a, one-dimensional vector, chromosome. We

only keep the elements of the upper diagonal, as the matrix is constructed to be symmetric, resulting

in a matrix like the one in the middle. Then, this matrix is accessed horizontally, in order to obtain

the desirable result, the chromosome

3.2 Optimization of the Solutions

The novelty of the proposed algorithm is based on the way that we select to optimize

the solutions of the problem, by optimizing a clustering criterion J, as previously

defined in (5). Clustering criteria are divided into two main categories, internal and

external criteria. The calculation of internal criteria implies that we have no prior

knowledge about the data and we can only depend on quantities and features inherent
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to the dataset, whereas calculation of external criteria implies that we have some

knowledge about the dataset in advance (i.e. ground truth).

In the recent literature, many different clustering criteria [11] have been pro-

posed. Some of the most common internal criteria are Calinski-Harabasz index [12],

Davies-Bouldin index [13] and Dunn’s index [14], whereas some external criteria are

purity [15], F-measure [16], a measure based on Hungarian algorithm [17] and nor-

malized mutual information [18]. Some of the aforementioned internal criteria have

been used both for optimization and evaluating the performance of the algorithm,

whereas the external criteria only for evaluation.

As the value of such criteria cannot be optimized, without the use of derivatives,

we have employed evolutionary techniques in order to solve this problem. The opti-

mization is performed by altering the chromosomes or, else, by altering the k-nn

similarity matrices 𝐀 as in (2).

3.3 The Genetic Cycle

Evolutionary algorithms solve problems based on operators inspired from biology.

The first step of the genetic algorithm is to select the chromosomes which will

undergo the crossover operator. For this purpose, a roulette wheel method has been

employed [19], where a probability is associated with each chromosome, based on

the value of the fitness function: the higher the value, the higher the probability to

be selected. The probability pi of the ith chromosome to be selected, if fi is its fitness

value is defined as:

pi =
fi

ΣN
j=1fj

. (6)

Next, we combine the selected chromosomes, based on the crossover rate which

was set to 0.7, in order to produce new ones. In the proposed algorithm, a single

crossover point is randomly selected for every set of chromosomes and the sub-

sequences that are formed are exchanged respectively. Then, we randomly choose

a small proportion of the chromosomes, based on the mutation rate which was set

to 0.4, to undergo mutation, that is the random change of some elements of a chro-

mosome. In order to guarantee that the newly produced chromosomes will not have

been altered too much we perform mutation by converting 1% of 0’s to 1’s and vice

versa.

After the application of genetic operations to the chromosomes, the new gener-

ation has been formed. In order to perform spectral clustering (Sect. 2.2), we need

to reconstruct the k-nearest neighbor matrix 𝐀, which will consist of binary digits,

from the one-dimensional vector chromosome. Then we apply the similarity matrix

𝐒 on 𝐀 using the ⊙ operator, in order to obtain the 𝐖 as illustrated in Fig. 1. Spectral

clustering [10] may now be performed on 𝐋 as in (3).
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The next step is to calculate the fitness values of all the newly produced chro-

mosomes, and place them along with the parent-chromosomes. Then, elitism is per-

formed: we sort all chromosomes, with the fittest being on the top, and we keep only

those chromosomes with the highest fitness value, so as the number of the chromo-

somes kept to remain unchanged after every generation.

The proposed algorithm terminates when a maximum of 50 generations has been

reached, or when the optimized criterion has not been altered for 5 consecutive gen-

erations.

4 Experiments

In order to evaluate the proposed algorithm, we have conducted several experiments

using 3 different datasets and exploiting several input parameters. The characteristics

of the datasets used, are described in Table 1.

Datasets “Movie 1” and “Movie 2” consist mainly of facial images originate from

movies, detected using a face detector. In the experiments the images were scaled, in

order to have the same size, considering all the detected facial images of the movie

clip and using a mean bounding box, from all bounding boxes that the face detec-

tor provided. A problem that might arise is that of anisotropic scaling: the images

returned by the detector might have different height and width, which is problematic

when scaling towards a mean bounding box, thus we calculate the bigger dimension

of the bounding box and then we take the square box that equals this dimension cen-

tered to the original bounding box center. Lastly, the initial “Folk dances” dataset

consists of videos of 5 different traditional dances: Lotzia, Capetan Loukas, Ramna,

Stankena and Zablitsena with 180, 220, 220, 201 and 192 videos respectively, from

which histograms were extracted according to [20]. An example of the dataset is

illustrated in Fig. 4.

The size of the populations remained unchanged for all the experiments conducted

and was set to 200 chromosomes. Every experiment was executed 3 times, so the

results presented here are the average of these runs. We should highlight here that,

in every experiment, only one clustering criterion c is being optimized. The values

of the rest of the criteria are also calculated during every experiment only for eval-

uation reasons. In other words, the values of the rest of the criteria are not their best

Table 1 Datasets used

Dataset Duration Classes Size of # of

dataset features

Movie 1 02 ∶ 06 ∶ 21 21 1, 222 152× 152

Movie 2 01 ∶ 44 ∶ 31 41 1, 435 150× 150

Folk dances – 5 1012 1000
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Fig. 4 An example of Ramna dance, from the “Folk dances” dataset

values as if they were being optimized themselves. Instead, their values depend on

the clustering obtained by optimizing the criterion c. Moreover, the optimization of

a single criterion does not necessarily mean that the rest of the criteria will also be

improved, especially when the way in which the criteria are calculated differs a lot.

In tables presented here, we have attempted to summarize some of the results

of the datasets. The results of the proposed method are represented under the label

“best”, while “5nn” represent the results of the clustering if the 5-nn graph would

have been employed to the data. For Tables 2, 3 and 4 the criterion being optimized

is highlighted. The 𝜎 parameter is the heat kernel parameter as in (1) and C is the

Table 2 Folk dances dataset. Optimizing Calinski-Harabasz criterion

𝜎 C Calinski-Harabasz Davies-Bouldin NMI Purity

Best 5nn Best 5nn Best 5nn Best 5nn

0.45 5 77.803 40.665 2.116 3.317 0.32 0.255 0.468 0.434

0.9 5 71.026 38.309 2.745 3.252 0.281 0.271 0.441 0.434

1.8 5 74.923 43.649 2.292 3.013 0.312 0.291 0.469 0.463

Table 3 Movie 1. Optimizing Calinski-Harabasz criterion

𝜎 C Calinski-Harabasz Davies-Bouldin Hungarian Purity

Best 5nn Best 5nn Best 5nn Best 5nn

5000 21 161.239 121.659 1.165 1.162 20.922 20.758 0.468 0.475
15000 21 161.011 123.922 1.208 1.103 21.495 21.167 0.462 0.477
20000 21 149.195 121.413 1.169 1.072 21.113 20.404 0.459 0.475



30 C. Chrysouli and A. Tefas

Table 4 Movie 2. Optimizing Calinski-Harabasz criterion

𝜎 C Calinski-Harabasz Davies-Bouldin Hungarian Purity

Best 5nn Best 5nn Best 5nn Best 5nn

25 40 81.917 70.737 1.240 1.204 15.889 15.447 0.400 0.398

50 41 76.269 69.302 1.144 1.257 16.353 15.819 0.410 0.408

75 41 78.449 66.245 1.226 1.200 16.121 15.981 0.401 0.402
150 40 82.090 66.393 1.183 1.248 16.167 15.772 0.403 0.391

number of clusters. We observe that in almost all cases the external criteria agrees

with the internal optimized criterion that the clustering that was performed did actu-

ally grouped the data better than if the 5-nn graph would have been employed. In

most cases, the other internal criterion also agrees to this conclusion.

5 Conclusion

We have presented a novel algorithm that makes use of evolutionary algorithms in

order to achieve good clustering results, with the aid of nearest neighbor graphs. It

is important to remark that the algorithm is general and can be used to manipulate a

wide variety of different problems, such as clustering and dimensionality reduction.

The technique of using nearest neighbor graphs as initial population appears to yield

satisfactory results, in terms of both internal and external criteria.

In the future, we aim to improve the proposed evolutionary algorithm, by opti-

mizing even different criteria, or even use multiple of them in order to decide which

chromosome is best. We shall also focus our efforts on creating an even better ini-

tial population, for example by including more than only random variations of the

nearest neighbor graphs.
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Sequence Analysis with Motif-Preserving
Genetic Algorithm for Iterated Parrondo
Games

Degang Wu and Kwok Yip Szeto

Abstract Comparison of simple genetic algorithm with motif preserving genetic
algorithm is made for the sequence analysis of Parrondo games, which is an analogue
to the flashing Brownian ratchet in non-equilibrium statistical physics. The original
Parrondo game consists of two individual games: game A and game B. Here game
A is a coin-tossing game with winning probability pA slightly less than half, so that
its persistent usage will be losing in the long run. Game B has two coins, and an
integer parameter M . If the current cumulative capital (in discrete unit) is a multiple
of M , an unfavorable coin with winning probability pb < 0.5 is used, otherwise a
favorable coin with winning probability pg > 0.5 is used. Game B is also a losing
game if played alone. Paradoxically, combination of game A and game B could lead
to a winning game, either through random mixture, or deterministic switching. The
resolution of this paradox can be made using Markov Chain analysis [1]. In this
paper, we are interested in the analysis of finite deterministic switching sequences
of N Parrondo game, so the number of possible sequences is 2N . For small N ,
exhaustive search and backward induction have been applied successfully to short
sequences. However, for long but finite deterministic sequence, the optimal ordering
of games requires the use of combinatorial optimization techniques. Here we employ
genetic algorithm to find the optimal game sequence. The structure found in short
sequences using a problem-independent genetic algorithm, such as ABABB, is a
motif. Using these motifs we invent motif-preserving point mutation operator and
one-point crossover operator to exploit the structure of the optimal game sequences
for large N . We show by numerical results the adapted motif-preserving genetic
algorithm has great improvement in solution quality over simple genetic algorithm.
The techniqueofmotif preservinggenetic algorithmcanbe applied to similar problem
in sequence analysis once the condition of optimality is defined.
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1 Introduction

The Parrondo paradox of combining two losing games when played alone into a
winning one is the invention inspired by the flashing ratchet [2]. In the original setting,
the two games are game A and B, so that when the sequence of games contains
only A or B will lead to loss, but a skillful combination, be it a random mixture,
or a periodic one, can lead to positive gain. This paradox invented by Parrondo is
resolved usingMarkov Chain analysis, and can also be described by discrete Fokker-
Planck equation, thus amore rigorous relation between Parrondo game andBrownian
ratchet was established [3, 4]. The simplest version of Parrondo game can be defined
by four parameters, (pA, pg, pb, M). Here one can imagine these two games are two
slot machines installed in a casino. In both slot machines, the gambler will win one
or lose one dollar in each game played. The gambler observes that if he continues
playing on one slot machine, he will lose. On the other hand, he may end up winning
if he once in a while changes his choice of slot machine. Here the parameter pA

is 0.5 − ε is the winning probability of slot machine A and ε is a small number
which can be interpreted as the commission charged by the casino. The other slot
machine is rather tricky, as the casino will give a bad coin with winning probability
pb < 0.5 to the gambler if his cumulative capital in discrete unit is divisible by M .
Otherwise the casino will give a good coin with winning probability pg > 0.5 to the
gambler though very likely he will still lose if he keeps playing on the same slot
machine. The question one likes to resolve is the way the gambler will win most
if he decides to play N games on these two slot machines, which he now called C
and D. Of course, if he knows which slot machine gives him the game A, and the
other giving him the game B and also the parameter M , then he can get the optimal
winning sequence. For example, if the C slot machine gives him the slightly unfair
coin pA, and D slot machine gives him the tricky slot machine with pb = 0.1 − ε and
pg = 0.75 − ε, which are the parameters used most commonly in Parrondo paradox,
then the gambler can win optimally by the following strategy: when his cumulative
capital is divisible by M , then he plays on the C slot machine since his winning
probability is pA = 0.5 − ε > pb = 0.1 − ε. When his cumulative capital is not
divisible by M , then he plays on the D slot machine, since his winning probability is
pg = 0.75 − ε > pA = 0.5 − ε. The problem facing the gambler is that he does not
know which slot machine C stands for even if he knows the mathematical analysis
of the Parrondo paradox. In this situation, what sequence of C and D should he
plays? This is the problem of sequence analysis with the objective of maximizing
the expected gain for the gambler after N games, when he does not know the nature
of slot machine, albeit he knows the mathematics of Parrondo paradox.

This interesting problem in analyzing long but finite sequence of Parrondo
games is a combinatorial optimization problem. For N games of A and B, the solu-
tion space is 2N . For small N , exhaustive search and backward induction suffice.
For example, with the above standard setting of parameters in Parrondo paradox,
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(pA = 0.5, pg = 0.75, pb = 0.1, M = 3), and N = 5, the short sequence ABABB
is optimal in terms of expected gain, though in actual realizations both CDCDD and
DCDCC may be losing. The gambler can use CDCDD or DCDCC to try and with
some luck he can also identify correctly the slot machines with the game A and
B. However, for longer sequences of games, this may not be optimal and we may
use genetic algorithm for the search of optimal gain sequence. There has been other
techniques used, such as dynamical programming by Dinis [5]. It is worth noting that
greedy algorithms do not work in finding the optimal game sequence for a long finite
length. Multi-player versions of the games have been proposed, and they exhibit
counterintuitive phenomena resembling those observed in game, control, and opti-
mization theories or economics.Many researchers have found that greedy algorithms
or strategies may lead to suboptimal or even losing solutions in these models [6–8].
Optimization problems of this type warrant the use of meta-heuristic algorithm such
as genetic algorithms [9, 10].

The successful application of genetic algorithm has been demonstrated in fields
such as biology [11–13], clusters [14–16] and glass transition [17] in condensed
matter physics. In engineering, genetic algorithm has also been used with good
results in problems such as cyclic-steam oil production optimization problem [18],
speed control of brushless DC motor [19], airport scheduling [20], mobile robot
motion control [21],modeling adaptive agents in stockmarkets [22, 23], and traveling
salesman problem [24].

In this paper, we aim at developing a good version of genetic algorithm for
sequence analysis for long sequence of games,making use ofmotifs found from short
sequences. We start with Dinis algorithm for sequence of moderate length so as to
gain insight of the structure of the optimal sequences, thereby collecting a database
of good motifs. We then propose motif-preserving evolution operators (mutation and
one-point crossover operators), coupled with an appropriate motif-preserving popu-
lation initialization procedure to find the optimal sequence for longer game sequence.
By motif-preserving condition, we mean that we impose certain constraints on the
patterns that are observed in the optimal sequences of moderate length in the search
process for longer sequence. In order to assess the effect of the constraints on the
quality of the solution, we first use simple genetic algorithm as a benchmark sampling
method in order to justify the adaptive approach we use later. Our paper is organized
as follows. We first define the Parrondo game and the Dinis algorithm that reveals
motifs found in the optimal sequence of moderate length in Sect. 2. We then propose
the motif-preserving genetic operators: mutation and one-point crossover, as well as
the motif-preserving population initialization procedure in Sect. 3. We summarize
the design of the numerical experiments and their results in Sects. 4 and 5. In Sect. 6,
we conclude with some comments on possible application of our motif preserving
genetic algorithm for analysis of other sequences.



36 D. Wu and K.Y. Szeto

2 Parrondo Games

The original Parrondo game consists of two individual coin tossing games, namely
game A and game B. Game A has only one coin, whose winning probability is
pA = 1/2 − ε, where ε is a small and positive number. Let X (t) be the cumulative
capital of the player at time t , an integer. If the player keeps playing game A, the
average capital satisfies

〈X (t + 1)〉 = 〈X (t)〉 + 2pA + 1 (1)

where 〈·〉 is understood as ensemble average. Game B has two coins, one “good”
coin and one “bad” coin. Game B has an integer parameter M . If X (t) is a multiple
of M , then X (t + 1) is determined by the “bad” coin with winning probability pb =
1/10 − ε, otherwise the “good” coin with winning probability pg = 3/4 − ε is used.
Similar to game A, if the player keeps playing game B only, the average capital
satisfies

〈X (t + 1)〉 = 〈X (t)〉 + 2[π0(t)pb + (1 − π0(t))pg] − 1 (2)

which explicitly depends onπ0(t), the probability that the capital X (t) = 0 mod M .
Harmer and Abbott [25] showed that game B is a losing game when pb = 1/10 − ε,
pg = 3/4 − ε and M = 3, with positive ε. In this paper, we only discuss the case
when M = 3. There is a recent article discussing the phase diagram of the more
complex situation where the games are two B games with different M [1]. Such
extended Parrondo game with multiple M exhibits interesting phenomena such as
weak and strong Parrondo effects when the sequence is infinite.

If we model the Parrondo game as a discrete-time Markov chain as in [26], we
can define the probability vectorπ(t) ≡ (π0(t), π1(t), π2(t))T (forM = 3). Accord-
ingly, the transition matrix for game A is

ΠA =
⎡
⎣

0 1 − pA pA

pA 0 1 − pA

1 − pA pA 0

⎤
⎦ (3)

such that the time evolution equation is π(t + 1) = ΠAπ(t). Similarly, the transition
matrix for game B is

ΠB =
⎡
⎣

0 1 − pg pg
pb 0 1 − pg

1 − pb pg 0

⎤
⎦ (4)

Parrondo game can be played according to a deterministic finite game sequence such
as ABABB, so at the end of the sequence, the probability vector π(5) is

π(5) = ΠBΠBΠAΠBΠAπ(0). (5)
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Algorithm 1: Calculate the expected return for game sequence {Si }.
function expected return({Si })

g ← 0
π = [1, 0, 0]T
for t ← 1, N do

if St = A then
g ← g + πT [2pA − 1, 2pA − 1, 2pA − 1]T
π ← ΠAπ

else
g ← g + πT [2pb − 1, 2pg − 1, 2pg − 1]T
π ← ΠBπ

end if
end for
return g

end function

Parrondo game has a seemingly paradoxical property that while game A and
B are losing when they are played individually, the stochastic mixture of game A
and B, or playing according to a deterministic sequence may lead to a winning
combined game for small positive value of ε. For the detailed analysis of this paradox,
please refer to [26]. For a finite game sequence with length N , the expected return at
the end of the game sequence can be computed by Algorithm 1. Our task is to find the
finite game sequence that has maximum cumulative gain. The expected return per
game in the stationary state for a periodic sequence with length N can be computed
using Algorithm 1 with two minor modifications: the initial value of π should be the
equilibrium distribution of the transition matrix Πα(1)Πα(2) · · · Πα(N ) and the final
value of g should be divided by N .

Sequences up to period 12 have been studied using symbolic manipulators and
exhaustive search [27], and the periodic sequenceABABB, or any of its permutations,
has come up as the best in the sense that it provides the highest returns in the stationary
state. However, exhaustive search for optimal sequences of finite length N is not
feasible for large N . Using dynamic programming, Dinis discovered that optimal
sequences with finite N “consist of several repetitions of the ABABB motif flanked
by brief pieces of other sequences. Dinis [5] For example, the optimal sequence for
N = 20 with initial condition X (t) = 0 and ε = 0 is AB ABABBABABBABABB
ABB. In fact, the structure of the optimal sequences is more specific: they are strings
of AB and ABB. From these results, we have the following definition:

Definition 1 A game sequences is said to have a special structural-property if it is
made of AB and/or ABB substrings exclusively.

Straightforward implementation of Dinis algorithm requires storage space that
scales as N , in order to store all the numerical results from all intermediate steps.
Moreover, the algorithm approximates two-dimensional plane with a discrete square
grid (In [5], a 2000 × 2000 grid was used for each step). The error in the expected
payoff due to grid approximationwill accumulate across time and the total error in the
expected payoff at the end of the sequence is at least a linear function of N . The effect
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of this error to the correctness of the optimal sequence has not been investigated.
The approximation therefore constraints the computation of optimal sequences for
large N . This suggests that heuristic algorithms such as GA that demands much
less space and does not require approximation in the expected payoff are useful
for optimal sequences with long length. Moreover, by definition, Dinis’ algorithm
does not provide any information of the suboptimal sequence. In contrast, while
searching for the optimal solution, GA also efficiently samples many suboptimal
solutions, which provide insights in the relation between the structure of a sequence
and its performance.

3 Motif-Preserving Genetic Algorithm

3.1 Representation

If we map game A to 0 and map game B to 1, a game sequence with length N can
be mapped to a binary string with the same length, and the order of the binary val-
ues corresponds to the order the games are played. The objective function is given
by Algorithm1. For example, the game sequence ABABB is encoded as 01011. For
game sequences that are strings ofABandABB, an auxiliary representation is useful:
0 for AB and 1 for ABB. For example, game sequence ABABB is encoded as 01 in
this auxiliary representation. However, game sequences under this auxiliary repre-
sentation vary in length from sequence to sequence. To distinguish these two kinds
of representations, we call the one that maps game A to 0 the original representation.

3.2 Simple Genetic Algorithm

A simple genetic algorithm is used as the reference.
In the initialization, each locus of each chromosome is set to 1 or 0 with equal

probability. The new population P ′ is generated from the last one using deterministic
tournament: from previous generation, randomly draw k chromosomes with equal
probability, and select the one with the highest fitness value. This process is repeated
until the new population has the same number of chromosomes as the previous
population. The one-point crossover operator is denoted by xover(), and its rate is
denoted by pc. The mutation rate per bit is denoted by pm .
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Algorithm 2: “Simple” Genetic Algorithm.

procedure SGA
init(P) � P for the population
repeat

P ← det tournament(P, k)
for i = 0,size(P)/2-1 do

if rand()< pc then
xover(P(2i), P(2i + 1))

end if
end for
for i = 0,size(P)-1, j = 0, N − 1 do

if rand()< pm then
flip(P(i, j))

end if
end for
evaluate(P) � update the fitness values

until Stopping criteria satisfied
end procedure

3.3 Motif-Preserving Mutation Operator

If a chromosome has special structural property, we can apply a mutation operator
that preserves this property. We propose a motif-preserving mutation operator in
Algorithm 3.

Algorithm 3: Motif-Preserving Mutation Operator.

function SPMutate(c) � c for a chromosome
c′ ← originToAux(c)
for j = 0,size(c′)−1 do

if rand()< pm then
flip(c′( j)) � c′( j) is the j-th locus of c′
c ←auxToOriginal(c′)

end if
end for
return c

end function

However, when we use Algorithm 3, wemust check if the sequence after mutation
has length N . We therefore need an algorithm for chromosome repair, using first a
conversion function auxToOriginal(c′). This function converts c′ in the auxiliary
representation back to a chromosome in the original representation, which is not
always possible because the converted chromosome in original form may have a
length greater or less than N . If size(c) > N , we then pop 01 or 011 from the back
of c until size(c) < N . We append 01 or 011 to the back of c such that size(c) = N .
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3.4 Motif-Preserving Crossover Operator

If a chromosome has special structural property, we can apply an adapted one-
point crossover operator that preserves this propose. The motif-preserving one-point
crossover operator is shown in Algorithm 4.

Algorithm 4: Motif-preserving one-point crossover operator.

procedure SPXover(c1, c2)
c

′
1 ← auxRepre(c1)

c
′
2 ← auxRepre(c2)

x Pt ← chooseXPt(c
′
1, c

′
2)

xover(c
′
1, c

′
2, x Pt)

c
′
1 ← fixChromosome(c

′
1)

c
′
2 ← fixChromosome(c

′
2)

c1 ← auxToOriginal(c
′
1)

c2 ← auxToOriginal(c
′
2)

end procedure

Here the function chooseXPt decides the crossover point in the auxiliary repre-
sentation such that the two children chromosomes in the original representation are
either one bit longer or shorter than N. The function fixChromosome lengthens or
shortens the chromosome by mutating 01 to 011, 011 to 01, converting 011 to 0101,
or converting 0101 to 011.

3.5 Motif-Preserving Genetic Algorithm

In order to replace the mutation operator and one-point crossover operator with the
motif-preserving versions, the chromosomes must have special structural property
at all time. For this purpose, a motif-preserving initialization routine is propose in
Algorithm 5.

As we will show later, this initialization routine per se greatly improves the qual-
ity of the initial chromosomes. In this paper, the motif-preserving genetic algorithm
(SPGA) refers to ones that run in the framework of Algorithm 2, with population ini-
tialized by Algorithm 5, the mutation operator replaced by Algorithm 3 and the one-
point crossover operator replaced by Algorithm 4. This combination of algorithms
in SPGA reduces the search space substantially. One concern about this reduction is
that it might fragment the solution space into disjoint subspace. We will discuss this
issue in Sect. 5.
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Algorithm 5: Motif-Preserving Initialization.

procedure SPInit(P)
for each ci in P do

empty ci
append 01 or 011 randomly to c until size(c)==N

end for
end procedure

4 Experimental Design

For comparison of the relative efficiency of the various components of our genetic
algorithm, we consider the following versions of GAs.

• SGANoX: A GA that uses only the mutation operator, with uniform initialization
and no crossover operators

• SGANoXwSPInit: SGANoX with motif-preserving initialization
• SGA: Simple Genetic Algorithm, with uniform initialization, standard mutation
operator and one-point crossover operator

• SGAwSPInit: SimpleGeneticAlgorithmwithmotif-preserving initialization, stan-
dard mutation operator and one-point crossover operator

• SPGANoX: motif-preserving mutation only genetic algorithm with
motif-preserving initialization and motif-preserving mutation operator, but with-
out crossover

• SPGA: motif-preserving genetic algorithm with motif-preserving initialization,
motif-preserving mutation operator and motif-preserving crossover operator

For simplicity, whenwe use the term SGAs, wemean the group of SGA, including
SGANoX, SGA, SGANoXwSPInit, SGAwSPInit. Similarly, when we use the term
SPGAs, we mean the group of SPGA, including SPGANoX, SPGA.

The size of the population, NP , will be set to 100 for all versions of GAs. The
size of the tournament, k, defined in Algorithm 2 in the deterministic tournament
selection process will be set to 10. The crossover rate, pc and the mutation rate per
bit, pm , both defined in Algorithm 2, will be chosen individually for each GA such
that each GA has good performance.

5 Results and Analysis

First we investigate the effect of imposing motif-preserving evolution operators and
population initialization on search space. Exhaustive search is not an option for
sequences as long as N = 80. Instead we use SGA to perform a biased sampling
on the search space by just running SGA with pm = 0.02 and pc = 1.0. The selec-
tion mechanism in SGA biases towards chromosomes having higher fitness values.
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Fig. 1 Fitness probability density, approximated by histograms, for game sequences that satisfy
special structural property and those who do not. Only distinct chromosomes are counted. Game
sequences satisfying special structural property are strongly grouped together in terms of fitness
values and they are among the chromosomes having the highest fitness values

Every chromosome that appears during 200 generations of evolution from 50 inde-
pendent experiments are collected as samples to construct the fitness histogram and
normalized to become the fitness probability density as shown in Fig. 1. We see two
distinct probability density in the figure. The fitness distribution for game sequences
satisfying special structural property are strongly grouped together at high fitness
values, and they are among the chromosomes having fitness values mostly higher
than the highest fitness of the probability density for sequences without special struc-
ture property. From this observation, we conclude that imposing motif-preserving
evolution operators and population initialization on search space will not fragment
the search space. Furthermore, the usage of motif-preserving evolution operators
and population initialization can be justified due to the overall higher fitness value
obtained.

Next we compare the performances of the various GAs mentioned in the last
section on the search for optimal sequence of with N = 80. We first calculate the
true expected return of the optimal sequence usingDinis’ algorithm.We thenmeasure
the performance of various GAs by the optimality gap, the difference between the
expected return of the optimal sequence and the expected return of the chromosome
with the highest fitness value. We show the optimality gap as a function of number of
generations in Fig. 2. The values of pm and pc are chosen on the basis of performance.

The motif-preserving initialization alone contributes significantly to the perfor-
mance, as can be seen from the relative performances of SGANoX and SGA with or
without motif-preserving population initialization in Fig. 2. In the case of problem-
independent GAs, one-point crossover operator contributes to the early edge in per-
formance. The problem-dependent motif-preserving GAs generally perform better.
SPGANoX outperforms SGAwSPInit. SPGA performs the best.
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Fig. 2 Optimality gap as a
function of number of
generations for N = 80.
Every curve is an average
from 100 independent
experiments. Y-axis is in
log-scale. The gap is smallest
for SPGA, indicating it is the
best performing GA

Since there is no guarantee that optimal game sequence will be obtained after
200 generations, we therefore need to assess the average quality of the best solutions
after 200 generations. For N = 80, the optimal game sequence is

ABXXXXXXXXXXXXXXXABB, (6)

where X stands for ABABB. We call those AB (or ABB) substring that are not able
to form ABABB with adjacent substring ungrouped AB (or ABB).

A typical suboptimal but still good solution resulted fromSPGAshas the following
structure:

XXXXXXABBXXXXABBXXXABXAB, (7)

which possesses the right number ofAB andABB substrings, and the SPGAsmanage
to figure out the overall structure. From this observation, we expect that a problem-
specific local search can obtain the real optimal solution from the best solution
obtained from SPGAs. In this context, we may introduce some alternative quality
measures by the following enquiries:

1. Has the right number of AB and ABB been reached? (Here the right number
refers to the number in the optimal sequence.) If not, calculate the deviation by

d1(s) = |NAB(s) − NAB(s∗)| + |NABB(s) − NABB(s∗)|, (8)

where NAB(s) (NABB(s)) is the number of AB (ABB respectively) and s∗ is the
optimal sequence.

2. If the right number of AB and ABB has been reached, has the right number
of ungrouped AB and ABB been reached? (Here, the right number again refers
to the number in the optimal sequence.) If N ∗

AB(s) (N ∗
ABB(s)) is the number

of ungrouped AB (ABB respectively) and s∗ is the optimal sequence, then this
deviation can be written as
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Table 1 Statistics of the best chromosomes obtained by variousGAs at the end of 200-th generation
for N = 80

GA variant Prs d1(s) d2(s)

SGANoX 97/100 3.60825 7.87629

SGA 96/100 3.48958 6.84375

SGANoXwSPInit 97/100 4.89691 8.17526

SGAwSPInit 100/100 4.75 6.47

SPGANoX 100/100 0.25 0.89

SPGA 100/100 0.00 0.54

Data are collected from 100 independent experiments for each GA variant. The best chromosomes
obtained from SGAs do not necessarily satisfy the special structural property, and therefore the
numbers of instances of best chromosomes that satisfy the property are indicated. The quantity Prs
stands for the Probability that Structural property is observed over 100 independent experiments.
In the calculation of the quality measure, d1(s) and d2(s) for the case of SGA, we only count those
chromosomes satisfying the special structural property

d2(s) = |N ∗
AB(s∗) − N ∗

AB(s)| + |N ∗
ABB(s∗) − N ∗

ABB(s)|. (9)

For both measures, the smaller the values of d1(s) and d2(s) the higher is the
quality of the sequence. We show the statistics of the best chromosomes obtained by
various GAs at the end of 200-th generation in Table1. Data are collected from 100
independent experiments for each GA variant. As can be seen from the table, SPGAs
are better at figuring out the structure of the optimal sequence than other GAs.

We see that formedium size sequence (N = 80), our SPGA is good approximation
to Dinis analysis, as shown in Fig. 2. Thus for medium size sequence, we do not see
the advantage of our SPGA algorithm.

We now apply the same set of GAs on searching for the optimal sequences with
longer length N . The values of pm and pc are the same as those used before. Note that
the exact optimal sequence with length N = 200 is not easily available as straight-
forward implementation of Dinis algorithm needs huge amount of storage space and
exhaustive search will require even more. Thus, we use an alternative measure of
performance: we record the highest fitness value in the population as a function of
the number of generations, averaged over 50 independent experiments and see which
GA yields the best result. The performances of various GAs as a function of number
of generation when searching for optimal sequence with length N = 200 are shown
in Fig. 3. We see that SPGAs outperform problem-independent SGAs. In fact, for
SGAs with motif-preserving initialization, the average best fitness value drops as
the number of generation increases. Let us compare this curious feature of decreas-
ing average fitness of SGAs for large N (= 200) with the results for small N (= 80)
shown in Fig. 2. The optimality gaps are all decreasing with generation number in
Fig. 2, implying that the average fitness of all GAs are increasing. We also see that
SGAs are able to take advantage of the good quality initial chromosomes resulted
from the structural-preserving initialization. However, when N is large, as shown in
Fig. 3 for N = 200, SGAs no longer have the ability in exploiting the good quality
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Fig. 3 Average best fitness
as a function of number of
generations for N = 200.
Every curve is an average
from 50 independent
experiments

of the initial chromosomes. In Fig. 3, we observe the merging of several curves at
large generation number:

1. SPGA(♦) merges with SPGANoX(�)
2. SGAwSPInit (◦) merges with SGA(�)
3. SGANoX(•) merges with SGANoXwSPInit(�);
We see from1 that SPGAwith crossover operator, does not have noticeable advantage
over SPGANoX in terms of best fitness value in the population, suggesting motif-
preserving crossover operator does not provide additional advantage for large-size
problem. From 2we see that for SGA, the special initialization with motif preserving
features is irrelevant for large N . From 3, we see similar effect as 2 without crossover
for SGA, when N is large.

In Table2, we see the average of the best fitness values at the end of 200-th
generation and the standard deviation. Not only do SPGAs (SPGANoX and SPGA)
achieve higher best fitness value, they also have smaller standard deviation in the best
fitness value, which means that SPGAs are more reliable. Moreover, SPGANoX and
SPGA have similar performance statistically, suggesting motif-preserving crossover
operator does not provide noticeable additional advantage for large-size problem.

Results for optimal sequence search with length N = 300 exhibit similar quali-
tative features (Table3). SPGAs outperform SGAs in terms of average best fitness

Table 2 Best fitness values statistics for N = 200 at the end of the experiment

GA variant Avg. best fitness Stand. deviat.

SGANoX 12.1 0.231

SGA 13.4 0.250

SGANoXwSPInit 12.1 0.228

SGAwSPInit 13.3 0.273

SPGANoX 15.01 0.0805

SPGA 15.00 0.0978

Data are collected from 50 experiments
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Table 3 Best fitness values statistics for N = 300 at the end of the experiment

GA variant Avg. best fitness Stand. deviat.

SGANoX 15.9 0.364

SGA 18.0 0.360

SGANoXwSPInit 15.9 0.348

SGAwSPInit 17.7 0.334

SPGANoX 21.90 0.0907

SPGA 21.97 0.0893

Data are collected from 50 experiments

value. SGAs are not able to exploit the good quality chromosomes resulted from the
motif-preserving initialization. Similar to the case of N = 200, the motif-preserving
crossover operator does not provide additional benefit in performance.

6 Conclusions and Future Work

In this work on sequence analysis, we have developed a systematic way to solve
the combinatorial optimization problem using genetic algorithm. We first explore
the solution space using a problem-independent simple genetic algorithm to sample
good but suboptimal solutions. Then we design a way to identify structures shared
among the good candidate solutions. We call these structures the motifs, borrowing
the terminology in bioinformatics.Nextwe incorporate thesemotifs bymodifying the
one-point mutation operator and the one-point crossover operator, resulting in motif-
preservinggenetic algorithm.Thismethodof sequence analysis canbe summarized in
a meta-algorithm: first a problem-independent simple genetic algorithm is employed
to sample the good solutions, and then techniques such as text-mining are used to
automatically extract the structures shared among the good solutions, and finally
an adaptive motif-preserving genetic algorithm is crafted to exploit the knowledge
extracted and find a better solution more efficiently.

In this paper, the above meta-algorithm is tested on the analysis of long but
finite Parrondo game sequences. Several numerical experiments to evaluate the rel-
ative efficiency of several genetic algorithms incorporating various features deemed
important fromobservation of small N optimal sequences have been designed andwe
discover that the proposed motif-preserving initialization routine offers high-quality
candidate solutions. Compared to the various simple genetic algorithms, we have
also observed that both motif-preserving mutation operator and one-point crossover
operator improve the performance substantially. Indeed, SPGAs are consistently bet-
ter at figuring out the structure of optimal sequence for medium-size problem, e.g.
N = 80 than simple genetic algorithm and motif-preserving crossover operator pro-
vides noticeable additional advantage, but then this turns out to yield little advantage
for large-size problems, e.g. N = 200. This observation could be useful in using
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genetic algorithm to discover the structures of sequences for different lengths. In
general, our analysis using genetic algorithm for Parrondo game sequences can be
extended to the analysis of sequences fromother fields. For the futureworks,we could
develop a permutation-based evolution operator to further improve the performance
of SPGAs.

From our numerous numerical experiments we may conclude that our motif-
preserving genetic algorithm is useful in searching for the optimal sequence for
Parrondo games. This is important for applications in other sequence analysis for
which a good solution, not the mathematically optimal one, is needed. In the con-
text of Parrondo game, for very long sequence, when Dinis algorithm is not easily
implemented, our SPGA does provide a good solution efficiently. For application
in other sequences, we must clearly define the condition of optimality and then use
the meta-algorithm proposed in this work to obtain a good solution: first analyze
the motif in short sequences where exhaustive search provide the optimal solution,
followed by incorporating these motifs to obtain a good solution for long sequence
with motif-preserving genetic algorithm.
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Evolutionary Learning of Linear Composite
Dispatching Rules for Scheduling

Helga Ingimundardottir and Thomas Philip Runarsson

Abstract A prevalent approach to solving job shop scheduling problems is to com-

bine several relatively simple dispatching rules such that they may benefit each other

for a given problem space. Generally, this is done in an ad-hoc fashion, requiring

expert knowledge from heuristics designers, or extensive exploration of suitable

combinations of heuristics. The approach here is to automate that selection by trans-

lating dispatching rules into measurable features and optimising what their contribu-

tion should be via evolutionary search. The framework is straight forward and easy to

implement and shows promising results. Various data distributions are investigated

for both job shop and flow shop problems, as is scalability for higher dimensions.

Moreover, the study shows that the choice of objective function for evolutionary

search is worth investigating. Since the optimisation is based on minimising the

expected mean of the fitness function over a large set of problem instances which

can vary within the set, then normalising the objective function can stabilise the

optimisation process away from local minima.

Keywords Job shop scheduling ⋅ Composite dispatching rules ⋅ Evolutionary

search

1 Job Shop Scheduling

The job-shop scheduling problem (JSP) deals with the allocation of tasks of compet-

ing resources where the goal is to optimise a single or multiple objectives—in partic-

ular minimising a schedule’s maximum completion time, i.e., the makespan, denoted

Cmax. Due to difficulty in solving this problem, heuristics are generally applied.

Perhaps the simplest approach to generating good feasible solutions for JSP is by
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applying dispatching rules (DR), e.g., choosing a task corresponding to longest or

shortest processing time, most or least successors, or ranked positional weight, i.e.,

sum of processing times of its predecessors. Ties are broken in an arbitrary fashion

or by another heuristic rule. Combining dispatching rules for JSP is promising, how-

ever, there is a large number of rules to choose from, thus its combinations rely on

expert knowledge or extensive trial-and-error process to choose a suitable DR [21].

Hence given the diversity within the JSP paradigm, there is no “one-rule-fits-all” for

all problem instances (or shop constraints), however single priority dispatching rules

(SDR) based on job processing attributes have proven to be effective [8]. The classi-

cal dispatching rules are continually used in research; a summary of over 100 classi-

cal DRs for JSP can be found in [16]. However, careful combinations of such simple

rules, i.e., composite dispatching rules (CDRs) can perform significantly better [12].

As a consequence, a linear composite of dispatching rules for JSP was presented in

[10]. There the goal was to learn a set of weights, w via ordinal regression such that

h(xj) =
⟨
w ⋅ 𝝓(xj)

⟩
, (1)

yields the preference estimate for dispatching job j that corresponds to post-decision

state xj, where 𝝓(xj) denotes the feature mapping (cf. Sect. 4). In short, Eq. 1 is a

simple linear combination of features found using a classifier which is trained by

giving more weight to instances that are preferred w.r.t. optimality in a supervised

learning fashion. As a result, the job dispatched is the following,

j∗ = argmax
j

{
h(xj)

}
. (2)

A more popular approach in recent JSP literature is applying genetic algorithms

(GAs) [17]. However, in that case an extensive number of schedules need to be eval-

uated, and even for low dimensional JSP, it can quickly become computationally

infeasible. GAs can be used directly on schedules [1, 3, 4, 13, 22], however, then

there are many concerns that need to be dealt with. To begin with there are nine

encoding schemes for representing the schedules [3], in addition, special care must

be taken when applying cross-over and mutation operators in order for schedules

to still remain feasible. Moreover, in case of JSP, GAs are not adapt for fine-tuning

around optima. Luckily a subsequent local search can mediate the optimisation [4].

The most predominant approach in hyper-heuristics, a framework of creating new
heuristics from a set of predefined heuristics, is genetic programming [2]. Dispatch-

ing rules based genetic algorithms (DRGA) [5, 15, 23] are a special case of genetic

programming [14], where GAs are applied indirectly to JSP via dispatching rules,

i.e., where a solution is no longer a proper schedule but a representation of a sched-

ule via applying certain DRs consecutively.

There are two main viewpoints on how to approach scheduling problems, (a) local

level by building schedules for one problem instance at a time; and (b) global level

by building schedules for all problem instances at once. For local level construction

a simple construction heuristic is applied. The schedule’s features are collected at
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each dispatch iteration from which a learning model will inspect the feature set to

discriminate which operations are preferred to others via ordinal regression. The

focus is essentially on creating a meaningful preference set composed of features and

their ranks as the learning algorithm is only run once to find suitable operators for

the value function. This is the approach taken in [10]. Expanding on that work, this

study will explore a global level construction viewpoint where there is no feature set

collected beforehand since the learning model is optimised directly via evolutionary

search. This involves numerous costly value function evaluations. In fact it involves

an indirect method of evaluation whether one learning model is preferable to another,

w.r.t. which one yields a better expected mean.

2 Outline

In order to formulate the relationship between problem structure and heuristic effi-

ciency, one can utilise Rice’s framework for algorithm selection [18]. The framework

consists of four fundamental components, namely,

Problem Space or Instance Space P ,

set of problem instances;

Feature Space F ,

measurable properties of the instances in P;

Algorithm Space A ,

set of all algorithms under inspection;

Performance Space Y ,

the outcome for P using an algorithm from A .

For a given problem instance x ∈ P with k features 𝝓(x) = {𝜙1(x),… , 𝜙k(x)} ∈ F
and using algorithm a ∈ A the performance is y = Y(a,𝝓(x)) ∈ Y , where Y ∶
A ×F ↦ Y is the mapping for algorithm and feature space onto the performance

space. [11, 19, 20] formulate JSP in the following manner: (a) problem space P is

defined as the union of N problem instances consisting of processing time and order-

ing matrices given in Sect. 3; (b) feature space F , which is outlined in Sect. 4. Note,

these are not the only possible set of features, however, they are built on the work

by [10, 19] and deemed successful in capturing the essence of a JSP data structure;

(c) algorithm space A is simply the scheduling policies under consideration and

discussed in Sect. 5; (d) performance space is based on the resulting Cmax. Different

fitness measures are investigated in Sect. 5.1; and (e) mapping Y is the step-by-step

scheduling process.

In the context of Rice’s framework, and returning to the aforementioned

approaches to scheduling problems, then the objective is to maximise its expected

heuristic performance, i.e.,



52 H. Ingimundardottir and T.P. Runarsson

(a) Local level

max
P′

⊂P
𝔼 [Y (a,𝝓(x))] (3)

where x ∈ P ′
and algorithm a is obtained via ordinal regression based on the

feature space F , i.e., F |P′ ↦ A , such as the approach taken in [10], and will

be used as a benchmark for the following,

(b) Global level

max
a∈A

𝔼 [Y (a,𝝓(x))] (4)

where training data x ∈ P is guided by its algorithm a, i.e., A ↦ P . This will

be the focus of this study.

Note that the mappings 𝝓 ∶ P ↦ F and Y ∶ A ↦ Y are the same for both para-

digms.

The paper concludes in Sect. 6 with discussion and conclusions.

3 Problem Space

For this study synthetic JSP and its subclass, permutation flow shop problem (PFSP),

the scheduling task considered here is where n jobs are scheduled on a set of m
machines, i.e., problem size n × m, subject to the constraint that each job must follow

a predefined machine order and that a machine can handle at most one job at a time.

The pair (j, a) refers to the operation of dispatching job j on machine a. As a result,

a total of 𝓁 = n ⋅ m sequential operations need to be made for a complete schedule.

The objective is to schedule the jobs so as to minimize the maximum completion

times, Cmax, also known as the makespan. For a mathematical formulation of JSP

the reader is recommended [10].

There are two fundamental types of problem classes: non-structured versus struc-

tured. Firstly there are the “conventional” structured problem classes, where problem

instances are generated stochastically by fixing the number of jobs and machines,

as well as processing times are i.i.d. and sampled from a discrete uniform distri-

bution from the interval I = [u1, u2], i.e., p ∼ U (u1, u2). Two different processing

time distributions are explored, namely Pj.rnd where I = [1, 99] and Pj.rndn where

I = [45, 55], referred to as random and random-narrow, respectively. The machine

order is a random permutation of all of the machines in the job-shop.

Analogous to Pj.rnd and Pj.rndn the problem classes Pf .rnd and Pf .rndn, respec-

tively, correspond to the structured PFSP problem classes, however with a homo-

geneous machine order permutation. Secondly, there are structured problem classes

of PFSP which are modelled after real-world flow-shop manufacturing namely job-

correlated Pf .jc where job processing times are dependent on job index and
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Table 1 Problem space distributions used in Sect. 5

Name Size N
train

N
test

Note

Permutation flow shop problem (PFSP)

P6×5
f .rnd 6 × 5 500 – Random

P6×5
f .rndn 6 × 5 500 – Random-narrow

P6×5
f .jc 6 × 5 500 – Job-correlated

P10×10
f .rnd 10 × 10 – 500 Random

P10×10
f .rndn 10 × 10 – 500 Random-narrow

P10×10
f .jc 10 × 10 – 500 Job-correlated

Job shop problem (JSP)

P6×5
j.rnd 6 × 5 500 – Random

P6×5
j.rndn 6 × 5 500 – Random-narrow

P10×10
j.rnd 10 × 10 – 500 Random

P10×10
j.rndn 10 × 10 – 500 Random-narrow

Note Problem instances are synthetic and each problem space is i.i.d. and ‘–’ denotes not available

independent of machine index. Problem instances for PFSP are generated using [24]

problem generator.
1

For each JSP and PFSP class N
train

and N
test

instances were generated for training

and testing, respectively. Values for N are given in Table 1. Note, difficult problem

instances are not filtered out beforehand, such as the approach in [24].

4 Feature Space

When building a complete JSP schedule, a job is placed at the earliest available time

slot for its next machine while still fulfilling constraints that each machine can han-

dle at most one job at a time, and jobs need to have finished their previous machines

according to its machine order. Unfinished jobs are dispatched one at a time accord-

ing to some heuristic. After each dispatch the schedule’s current features are updated.

Features are used to grasp the essence of the current state of the schedule. As seen in

Table 2, temporal scheduling features applied in this study are given for each possi-

ble post-decision state. An example of a schedule being built is given in Fig. 1, where

there are a total of five possible jobs that could be chosen to be dispatched by some

dispatching rule. These features would serve as the input for Eq. 1.

It’s noted that some of the features directly correspond to a SDR commonly used

in practice. For example, if the weights w in Eq. 1 were all zero, save for w6 = 1,

then Eq. 2 yields the job with the highest 𝜙6 value, i.e., equivalent to dispatching

rule most work remaining (MWR).

1
Both code, written in C++, and problem instances used in their experiments can be found at: http://

www.cs.colostate.edu/sched/generator/.

http://www.cs.colostate.edu/sched/generator/
http://www.cs.colostate.edu/sched/generator/
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Table 2 Feature space F for

P given the resulting

temporal schedule after

dispatching an operation (j, a)

𝝓 Feature description

𝜙1 Job j processing time

𝜙2 Job j start-time

𝜙3 Job j end-time

𝜙4 When machine a is next free

𝜙5 Current makespan

𝜙6 Total work remaining for job j
𝜙7 Most work remaining for all jobs

𝜙8 Total idle time for machine a
𝜙9 Total idle time for all machines

𝜙10 𝜙9 weighted w.r.t. number of assigned tasks

𝜙11 Time job j had to wait

𝜙12 Idle time created

𝜙13 Total processing time for job j
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Fig. 1 Gantt chart of a partial JSP schedule after 15 operations: Solid boxes represent previously

dispatched jobs, and dashed boxes represent the jobs that could be scheduled next. Current Cmax
denoted as dotted line
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5 Experimental Study

The optimum makespan
2

is denoted Copt

max, and the makespan obtained from the

heuristic model by Cmodel

max . Since the optimal makespan varies between problem

instances the performance measure is the following,

𝜌 ∶=
Cmodel

max − Copt

max

Copt

max
⋅ 100% (5)

which indicates the percentage relative deviation from optimality. Throughout a

Kolmogorov-Smirnov test with 𝛼 = 0.05 is applied to determine statistical signif-

icance between methodologies.

Inspired by DRGA, the approach taken in this study is to optimise the weights w
in Eq. 1 directly via evolutionary search such as covariance matrix adaptation evo-

lution strategy (CMA-ES) [7]. This has been proven to be a very efficient numerical

optimisation technique.

Using standard set-up of parameters of the CMA-ES optimisation, the runtime

was limited to 288 h on a cluster for each training set given in Sect. 3 and in every

case the optimisation reached its maximum walltime.

5.1 Performance Measures

Generally, evolutionary search only needs to minimise the expected fitness value.

However, the approach in [10] was to use the known optimum to correctly label

which operations’ features were optimal when compared to other possible operations

(Fig. 2). Therefore, it would be of interest to inspect if there is any performance

edge gained by incorporating optimal labelling in evolutionary search. Therefore,

two objective functions will be considered, namely,

ESCmax
∶= min𝔼[Cmax] (6)

ES
𝜌

∶= min𝔼[𝜌] (7)

Main statistics of the experimental run are given in Table 3 and depicted in Fig. 3 for

both approaches. In addition, evolving decision variables, here weights w for Eq. 1,

are depicted in Fig. 4.

In order to compare the two objective functions, the best weights reported were

used for Eq. 1 on the corresponding training data. Its box-plot of percentage relative

deviation from optimality, defined by Eq. 5, is depicted in Fig. 2 and Table 4 present

its main statistics; mean, median, standard deviation, minimum and maximum val-

ues.

2
Optimum values are obtained by using a commercial software package [6].
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Fig. 2 Box-plot of training

data for percentage relative

deviation from optimality,

defined by Eq. (5), when

implementing the final

weights obtained from

CMA-ES optimisation, using

both objective functions

from Eqs. (6) and (7), left
and right, respectively
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Table 3 Final results for CMA-ES optimisation; total number of generations and function evalu-

ations and its resulting fitness value for both performance measures considered

(a) w.r.t. Eq. 6

P #gen #eval ESCmax

j.rnd 4707 51788 448.612

j.rndn 4802 52833 449.942

f.rnd 5088 55979 571.394

f.rndn 5557 61138 544.764

f.jc 5984 65835 567.688

(b) w.r.t. Eq. 7

P #gen #eval ES
𝜌

j.rnd 1944 21395 8.258

j.rndn 1974 21725 8.691

f.rnd 4546 50006 7.479

f.rndn 2701 29722 0.938

f.jc 1625 17886 0.361

In the case of Pf .rndn, Eq. 6 gave a considerably worse results, since the opti-

misation got trapped in a local minima, as the erratic evolution of the weights in

Fig. 4a suggest. For other problem spaces, Eq. 6 gave slightly better results than Eq. 7.

However, there was no statistical difference between adopting either objective func-

tion. Therefore, minimisation of expectation of 𝜌, is preferred over simply using the

unscaled resulting makespan.
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Fig. 3 Fitness for optimising (w.r.t. Eqs. (6) and (7) above and below, receptively), per generation

of the CMA-ES optimisation

5.2 Problem Difficulty

The evolution of fitness per generation from the CMA-ES optimisation of Eq. 7 is

depicted in Fig. 3. Note, all problem spaces reached their allotted computational time

without converging. In fact Pf .rnd and Pj.rndn needed restarting during the optimi-

sation process. Furthermore, the evolution of the decision variables w are depicted

in Fig. 4. As one can see, the relative contribution for each weight clearly differs

between problem spaces. Note, that in the case of Pj.rndn (cf. Fig. 4b), CMA-ES

restarts around generation 1,000 and quickly converges back to its previous fitness.

However, lateral relation of weights has completely changed, implying that there are

many optimal combinations of weights to be used. This can be expected due to the

fact some features in Table 2 are a linear combination of others, e.g. 𝜙3 = 𝜙1 + 𝜙2.

5.3 Scalability

As a benchmark, the linear ordinal regression model (PREF) from [10] was created.

Using the weights obtained from optimising Eq. 7 and applying them on their 6 × 5
training data. Their main statistics of Eq. 5 are reported in Table 4 for all training

sets described in Table 1. Moreover, the best SDR from which the features in Table 2

were inspired by, are also reported for comparison, i.e., most work remaining (MWR)

for all JSP problem spaces, and least work remaining (LWR) for all PFSP problem

spaces.

To explore the scalability of the learning models, a similar comparison to Sect. 5.2

is made for applying the learning models on their corresponding 10 × 10 testing

data. Results are reported in Table 5. Note, that only resulting Cmax is reported as the

optimum makespan is not known and Eq. 5 is not applicable.
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Fig. 4 Evolution of weights of features (given in Table 2) at each generation of the CMA-ES opti-

misation. Note, weights are normalised such that ||w|| = 1. a Minimise w.r.t. Eq. 6. b Minimise

w.r.t. Eq. 7
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Table 4 Main statistics of percentage relative deviation from optimality, 𝜌, defined by Eq. 5 for

various models, using corresponding 6 × 5 training data

(a) P6×5
j.rnd

Model Mean Med sd Min Max

ESCmax
8.54 10 6 0 26

ES
𝜌

8.26 10 6 0 26

PREF 10.18 11 7 0 30

MWR 16.48 16 9 0 45

(b) P6×5
j.rndn

ESCmax
8.68 11 6 0 31

ES
𝜌

8.69 11 6 0 31

PREF 10.00 11 6 0 31

MWR 14.02 13 8 0 37

(c) P6×5
f .rnd

ESCmax
7.44 7 5 0 23

ES
𝜌

7.48 7 5 0 34

PREF 9.87 9 7 0 38

LWR 20.05 19 10 0 71

(d) P6×5
f .rndn

ESCmax
8.09 8 2 0 11

ES
𝜌

0.94 1 1 0 4

PREF 2.38 2 1 0 7

LWR 2.25 2 1 0 7

(e) P6×5
f .jc

ESCmax
0.33 0 0 0 2

ES
𝜌

0.36 0 0 0 2

PREF 1.08 1 1 0 5

LWR 1.13 1 1 0 6

6 Discussion and Conclusions

Data distributions considered in this study either varied w.r.t. the processing time

distributions, continuing the preliminary experiments in [10] , or w.r.t. the job order-

ing permutations—i.e., homogeneous machine order for PFSP versus heterogeneous

machine order for JSP. From the results based on 6 × 5 training data given in Table 4,

it’s obvious that CMA-ES optimisation substantially outperforms the previous PREF

methods from [10] for all problem spaces considered. Furthermore, the results hold

when testing on 10 × 10 (cf. Table 5), suggesting the method is indeed scalable to

higher dimensions.

Moreover, the study showed that the choice of objective function for evolutionary

search is worth investigating. There was no statistical difference from minimising the
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Table 5 Main statistics of Cmax for various models, using corresponding 10 × 10 test data

(a) P10×10
j.rnd

Model Mean Med sd Min Max

ESCmax
922.51 914 73 741 1173

ES
𝜌

931.37 931 71 735 1167

PREF 1011.38 1004 82 809 1281

MWR 997.01 992 81 800 1273

(b) P10×10
j.rndn

ESCmax
855.85 857 50 719 1010

ES
𝜌

855.91 856 51 719 1020

PREF 899.94 898 56 769 1130

MWR 897.39 898 56 765 1088

(c) P10×10
f .rnd

ESCmax
1178.73 1176 80 976 1416

ES
𝜌

1181.91 1179 80 984 1404

PREF 1215.20 1212 80 1006 1450

LWR 1284.41 1286 85 1042 1495

(d) P10×10
f .rndn

ESCmax
1065.48 1059 32 992 1222

ES
𝜌

980.11 980 8 957 1006

PREF 987.49 988 9 958 1011

LWR 986.94 987 9 959 1010

(e) P10×10
f .jc

ESCmax
1135.44 1134 286 582 1681

ES
𝜌

1135.47 1134 286 582 1681

PREF 1136.02 1135 286 582 1685

LWR 1136.49 1141 287 581 1690

fitness function directly and its normalisation w.r.t. true optimum (cf. Eqs. (6) and

(7)), save for Pf .rndn. Implying, even though ES doesn’t rely on optimal solutions,

there are some problem spaces where it can be of great benefit. This is due to the fact

that the problem instances can vary greatly within the same problem space [11]. Thus

normalising the objective function would help the evolutionary search to deviate

from giving too much weight for problematic problem instances.

The main drawback of using evolutionary search for learning optimal weights

for Eq. 1 is how computationally expensive it is to evaluate the mean expected fit-

ness. Even for a low problem dimension 6-job 5-machine JSP, each optimisation

run reached their walltime of 288 h without converging. Now, 6 × 5 JSP requires 30

sequential operations where at each time step there are up to 6 jobs to choose from—

i.e., its complexity is O(nn⋅m) making it computationally infeasible to apply this

framework for higher dimensions as is. However, evolutionary search only requires



Evolutionary Learning of Linear Composite . . . 61

the rank of the candidates and therefore it is appropriate to retain a sufficiently accu-

rate surrogate for the value function during evolution in order to reduce the number of

costly true value function evaluations, such as the approach in [9]. This could reduce

the computational cost of the evolutionary search considerably, making it feasible to

conduct the experiments from Sect. 5 for problems of higher dimensions, e.g. with

these adjustments it is possible to train on 10 × 10 and test on for example 14 × 14
to verify whether scalability holds for even higher dimensions.
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risk assessment of contracting some particular occupational diseases. The proposed
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1 Introduction

In many countries, spending for health systems has been gradually increasing in
recent years, both in absolute terms and relative to Gross Domestic Product (GDP),
because of the greater attention to welfare, and of the increase of life expectancy.
Moreover in many countries the working life has been prolonged, and consequently
exposure to risk factors has been extended, increasing the possibility of techno-
pathies development.

Employee health care is gaining attention by both private and public companies,
as well by OHS (Occupational Health and Safety) organizations worldwide. In fact,
part of the public costs dedicated to healthcare can be reduced by monitoring and
controlling workplaces hazards. In this scenario, an interesting challenge is to apply
data mining, classification methods and knowledge discovery techniques to perform
occupational health risk assessment. To this aim, several studies show that the
application of computational intelligence techniques can lead to reveal the existence
of structures in the data difficult to detect with other approaches. For example, in [1]
have been developed a decision support system for employee healthcare, while in
[2] have been applied clustering techniques to medical data to predict the likelihood
of diseases. In [3] artificial neural networks have been applied for occupational
diseases incidence forecast.

The goal of the work depicted in this paper is the development of a software
application, based on computational intelligence techniques, for predicting the
likelihood of contracting a disease as a function of some characteristics of both the
worker and the working environment. In the following we describe the classification
systems developed to this aim, showing the results yielded on a specific occupational
diseases database. This database contains data collected over a decade by the Local
Health Authority of the Italian Lombardy region. As a first processing step, the
available dataset was filtered by considering only the most common diseases,
identifying a set of features potentially related to the classification task at hand.
A suited classification system relying on cluster analysis is the core procedure of the
machine learning engine. In order to automatically determine both the parameters
(features’ weights) of the dissimilarity measure between patterns and to identify the
best structural complexity of the classification model (number of clusters), a genetic
algorithm has been employed to synthetize the best performing classifier.

2 Data Processing

The data set has been extracted from the archive of occupational diseases collected
by the Local Health Authority (ASL) as part of the National System of Surveillance
“MalProf”, managed by the National Institute for Insurance against Accidents at
Work (INAIL). The data set contains records for each pathology collected from
ASL, storing information on registry of the worker, on his work history and his
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pathologies. For each worker more than one record may be present in the archive (a
single record for each pathology).

In order to develop and test the whole prediction system, a first data set has been
defined by considering only the cases of the Lombardy Italian region recorded in
the period 1999–2009. Moreover, in order to simplify pattern’s structure, only
records related to workers with a single pathology and an occupational history
consisting of a single working activity have been considered. This data set has been
cleaned removing ambiguous records and inconsistent or missing data. This first
preprocessing step yielded a data set of 3427 records as shown in Table 1; as a
further filtering, the records associated with diseases scarcely represented (i.e.
below 5 % threshold) were not considered, yielding the final data set of 2722
records, covering about 80 % of cases, highlighted with colored background in
Table 1.

The final available data set has been partitioned into three subsets by random
stratification: the training set (50 % of the total number of available patterns,
denoted with STR), the validation set (25 %, SVAL) and the test set (the remaining
25 %, STEST). Table 2 shows the distribution of diseases and their labels as integer
number codes.

The similarity between the subjects was evaluated through a distance function
based on six features (Table 3), 3 numerical and 3 categorical, identified by both a
preliminary analysis of data and a priori knowledge in the field.

Worker’s profession is coded by a pair of characters based on the Italian version
of the classification system ISCO. The International Standard Classification of
Occupations (ISCO) is a tool for organizing jobs into a clearly defined set of groups

Table 1 Pathologies statistics in the considered data base

Disease N. of records
Cumulative

N. of records 
Freq. Cumulative Freq.

Hearing loss 1493 1493 0.436 0.436 
Spinal diseases 334 1827 0.097 0.533 
Musculoskeletal disor-
ders (excluding spinal 
diseases) 

288 2115 0.084 0.617 

Tumors of the pleura 
and peritoneum

232 2347 0.068 0.685 

Carpal tunnel syn-
drome  

199 2546 0.058 0.743 

Skin diseases 176 2722 0.051 0.794 

Disorders of the ear 
(except hearing loss) 

137 2859 0.040 0.834 

Mental illness 98 2957 0.029 0.863 
Diseases of the respira-
tory system 

76 3033 0.022 0.885 

Other diseases 394 3427 0.115 1
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according to the tasks and duties undertaken in the job. The economic activity of the
company is coded by a pair of characters based on the Italian version of the NACE
classification system. NACE (Nomenclature des Activités Économiques dans la
Communauté Européenne) is a European industry standard classification system
similar in function to Standard Industry Classification (SIC) and North American
Industry Classification System (NAICS) for classifying business activities.

3 The Adopted Classification Systems

In order to design an algorithm able to evaluate the probability of contracting an
occupational disease as a function of some characteristic of the worker, of his work
history and of his work environment, the risk prediction problem has been refor-
mulated as a classification problem. The classification system is a clustering based
one, trained in a supervised fashion to discover clusters in STR. All algorithms were
coded in C++ language.

Table 2 Pathologies sorted by raw frequencies in descending order

Pathologies Training set Validation set Test set

1—Hearing loss 747 373 373
54.89 % 54.77 % 54.85 %

2—Spinal diseases 167 84 83
12.27 % 12.33 % 12.21 %

3—Musculoskeletal disorders 144 72 72
10.58 % 10.57 % 10.59 %

4—Tumors of the pleura and peritoneum 116 58 58
8.52 % 8.52 % 8.53 %

5—Carpal tunnel 99 50 50
7.27 % 7.34 % 7.35 %

6—Skin diseases 88 44 44
6.47 % 6.47 % 6.47 %

Total 1361 681 680
100 % 100 % 100 %

Table 3 Features

Code Meaning Data Type

x1 Age of the worker at the time of disease assessment (years) Numerical
x2 Duration of the working period (months) Numerical
x3 Age at the beginning of the working period (years) Numerical
x4 Gender Categorical
x5 Profession carried out by the worker Categorical
x6 Company’s economic activity Categorical
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3.1 Basic Algorithm

The core procedure for the synthesis of a classification model consists in clustering
STR by the well–known k-means algorithm [4]. To this aim, an ad hoc dissimilarity
measure δ between patterns was defined as a convex linear combination of inner
dissimilarity measures δi between homologues features:

δðu, vÞ= ∑
N

i=1
piδiðu, vÞ ð1Þ

where N is the number of the features (six in our case) and pi ∈ℜ; pi ∈ ½0, 1� is the
relative weight of the i-th feature.

The δiðu, vÞ distance between patterns u and v relative to the i-th feature have
been defined differently on the basis of the considered feature type, which can be
continuous or categorical (discrete nominal) values:

• for age (in years) and the duration of the activity (in months), δi is the Euclidean
distance normalized in the unitary interval [0,1];

• for gender and economic activity of the company, in the case of concordance
δi = 0, otherwise δi = 1 (simple match);

• for the job of the individual, in the case of concordance of both characters δi = 0,
in the case of concordance of only the first character δi = ½, otherwise δi = 1.

The overall classification system has been designed to automatically determine
the weights pi of the dissimilarity measure (1) and the optimal number of clusters K,
in order to maximize the classification accuracy:

f1 = accuracy=
1
Sj j ∑x∈ S

hðωx, ωKxÞ ð2Þ

where:
S is the labelled pattern set on which is computed the accuracy;
Ω = {hearing loss, spinal diseases, musculoskeletal disorders, tumors of the pleura
and peritoneum, carpal tunnel syndrome, skin diseases} is the considered label set;
ωx ∈Ω is the pathology of worker x∈ S (ground true class label);
ωKx ∈Ω is the label assigned by the classification model to x;

hðωx, ωKxÞ=1 if ωx =ωKx;

hðωx, ωKxÞ=0 if ωx ≠ωKx;

In order to perform this optimization task, we have developed a suited imple-
mentation of a genetic algorithm [5]. The generic individual of the population
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subject to evolution by genetic operators is formed of two data structures (sections)
[6] for a total of 7 parameters to be optimized:

1. a vector of 6 real numbers in the range [0, 1], corresponding to the weights
associated with the features in the distance function δ;

2. an integer between 2 and a maximum value fixed in the system parameters,
corresponding to the number of clusters to be used for training set clustering.

From one generation to the next, each individual in the GA is evaluated by a
fitness function defined as the accuracy (2), computed on SVAL. The selection is
simulated using a roulette wheel operator. The crossover and mutation affect the
entire individual, formed by six weights and the number of clusters.

The individuals of the initial population of the GA are generated as random
samples. For each individual, a k-means clustering procedure is performed on the
training set with distance weights fixed in the first section of the individual’s genetic
code and setting the number of clusters as the integer number stored in the second
section. Once obtained a partition of the STR, each cluster is assigned with a unique
label, defined as the most frequent pathology in the cluster. Successively the fitness
is computed as the classification accuracy on the validation set, according to (2).

Reproduction, crossover and mutation are applied to the individuals of the GA to
evolve the population, until a stop criterion based on a maximum number of
generations is met. The algorithm is summarized in Table 4.

Table 4 Summary of the basic algorithm

Input parameters
– Maximum number of clusters: Kmax
– Number of population’s individuals in the GA: Pop
– Number of generations of GA: nGeneration.
1. Reading data from STR and SVAL
2. Initialization (Generation = 0)
For j = 1 to Pop

• Random assignment of weights pi of the 6 features and of the value K ≤ Kmax

• Clustering of the elements of STR into K clusters using the distance function (Eq. 1) in the
individual j
• Evaluation of the fitness function (2) or (3) on SVAL
3. For q = 1 to nGeneration

• Application of elitism
• Repeat
– Selection of individuals of the old population by roulette wheel operator
– Crossover between pairs of the selected individuals
– Mutation with a low probability on each element
– Clustering of STR in K clusters using the distance function (1) with the parameters encoded in
the individual
– Evaluation of the fitness function (2) or (3) on SVAL
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The distribution of pathologies in the data set shows that class labels (diseases)
are not well balanced, and this could distort the values of fitness by giving excessive
importance to the most frequent pathologies. Therefore, it is introduced a fitness
function variant aiming to equally weight all misclassifications, regardless of their
number. The new fitness (Eq. 3) is given by the weighted accuracy, i.e. the mean
value of the percentages of correct answers for each pathology:

f2 = accuracyweighted =
1
Ωj j ∑

ω∈Ω

1
Sωj j ∑x∈ S

hðωx, ωKxÞ ð3Þ

where:
Sω is the subset of S of all elements associated with pathology ω∈Ω (Sω⊂S). Tests
were performed with both fitness functions, and the results have been compared. In
the following, we will refer to this version as BA (Basic Algorithm).

3.2 CBA: A Variant of the Basic Algorithm

The basic algorithm leads to the formation of clusters containing more than one
disease. The label associated with the cluster coincides with the most frequent
pathology in it. This procedure cannot assure the presence of at least one cluster for
each class. To make sure that all the pathologies are represented in the final clas-
sification model, a second version of the proposed classification system has been
designed.

For this purpose, the training set STR has been partitioned into six subsets, one
for pathology. The new algorithm runs six cluster analyses in parallel, one for each
of the six subsets of STR. As a consequence, each cluster will contain patterns
associated with a unique class label and will consequently be directly labeled (see
Fig. 1). The union of the six sets of labeled clusters originated will be directly
employed for the classification model definition.

Fig. 1 Examples of clusters labelling by BA (left) and CBA (right) class assignment rule
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The way a generic individual in the GA is coded has been adapted to the new
algorithm. In particular, the second part of the individual no longer contains a single
integer, but six distinct integers, each representing the number of clusters to be
determined in cluster analysis performed in parallel on each subset of the training
set (one for each class label). The initialization step of the first generation of the GA
is similar to the BA initialization step. As for the previous version, we considered
both the fitness functions f1 and f2 computed on SVAL (Eqs. (2) and (3)) for indi-
vidual fitness evaluation. In the following, we will refer to this version as CBA
(Class-aware Basic Algorithm).

3.3 The NCBA Algorithm

Both BA and CBA are designed to face an exclusive classification problem, where
the final classification model is intended to assign a unique class label to the input
pattern, where classes are considered as mutually exclusive. However, as in the case
of any clinical diagnostic system, the presence of risk factors for a particular disease
does not exclude logically that the same worker could develop another pathology as
well. For this reason, we have developed a new classification approach where class
labels are considered as non-exclusive. To this aim, a specific classification model
is trained for each class (pathology) included in the data set at hand. Once syn-
thetized, the classification model Mi will act as a recognizer for the i-th pathology.
The synthesis of Mi is based on a re-labeling procedure of the original training set.
Specifically, considered the i-th class label ωi, each pattern in Str originally
belonging to a class different from ωi will be associated with a common code (for
instance “0”), while ωi will be re-encoded with a different one (for example “1”).

Let S ið Þ
tr be the re-encoded training set. Mi will be synthetized by the CBA variant,

starting from S ið Þ
tr . Thus, each cluster will contain patterns associated with a unique

class label and will consequently be directly labeled. All the classification models
(six in our case) will be embedded in an ensemble of classifiers as an overall
diagnostic tool, conceived as a set of classifiers working in parallel on the same
input pattern, able to recognize more than one possible pathology at the same time.

Note that this approach allows the introduction of new pathologies, without the
necessity to train again the classifier on the whole available dataset. For this reason,
this last version is characterized by much better scalability properties, in terms of
computational cost of the training procedure, as well as the requirements for a
parallel implementation on a distributed system.

The generic individual of the population of the GA has been adapted to the new
algorithm; in particular, the second part of the individual contains two integers, the
first representing the number of clusters to use in the cluster analysis of sick
subjects, the second integer represents the number of clusters to use in the cluster
analysis of healthy subjects. The two cluster analysis are performed in parallel, as in
CBA. The initialization step of the first generation of the GA is similar to the
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previous algorithms. As concerns this last version, we considered only the fitness
functions f2 (Eq. 3) computed on SVAL for individual fitness evaluation.

The whole training algorithm is depicted in Fig. 2.

4 Results

Let us consider a generic diagnostic test conceived to screen people for a disease.
The test outcome can be positive (predicting that the person is affected by the
considered disease) or negative (predicting that the person is healthy). The test
result for each subject may or may not match the subject’s actual status. We can
have the following outcomes:

• True positive: sick people correctly diagnosed as sick
• False positive: healthy people incorrectly identified as sick
• True negative: healthy people correctly identified as healthy
• False negative: sick people incorrectly identified as healthy

Given the content of the dataset, formed only by workers affected by at least one
pathology, for each disease we consider as healthy the workers not affected from
that particular pathology. Table 5 shows an example of the usual representation of
these values by the confusion table in the case of the pathology “1-hearing loss”
using BA with the fitness function f1. The columns “Positive to test” and “Negative
to test” of Confusion tables contain the number of workers that the test predicts
respectively as sick (i.e. affected by the disease in question) or healthy (i.e. affected

Fig. 2 The NCBA algorithm
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by other diseases). The rows “Actual positive” and “Actual negative” contain the
number of those who actually are, respectively, sick and healthy.

The confusion tables allow a better understanding than mere proportion of
correct guesses (accuracy). Especially when dealing with diagnostic tools, the
average accuracy is not a reliable metric for the real performance of a classifier,
because it will yield misleading results if the data set is unbalanced. For example, if
there were 95 sick-labelled patterns and only 5 healthy ones in the data set, the
classifier could be biased easily into classifying all the samples as sick. The overall
accuracy would be 95 %, but in practice the classifier would have a 100 %
recognition rate for the sick class and a 0 % recognition rate for the wealthy class.
For these reasons, we reported for all experiments the overall confusion table
containing the average values for all classes.

We have conducted 5 series of experiments, the first two with BA using both the
fitness functions f1 and f2, the third and fourth series with CBA using the fitness f1
and f2, the fifth series related to NCBA with the fitness f2.

All experiments were conducted using the GA by evolving a population of 100
individuals for 50 generations. All performances reported in the following tables are
computed on the test set. Data in all the following tables refer to the best individual
found by the genetic optimization.

As concerns the first test (BA with f1), the maximum number of clusters was
fixed to 20. In Table 6 the first six columns represents the confusion tables for the
disease specified in the column header, while the last one contains the average
values of the first six columns.

The results of the second experiment, employing BA with fitness f2, are shown in
Table 7. Also in this test the maximum number of clusters was fixed to 20.

The number of clusters of the best individual after the last generation is 20, of
which 13 are labeled as “1—hearing loss”, 2 as “2—spinal diseases”, 1 as “3—
musculoskeletal disorders”, 2 as “ 4—tumors of the pleura and peritoneum”, 1 as
“5—carpal tunnel” and 1 as “ 6—skin diseases.”

Table 5 Confusion table for
pathology “1-hearing loss”—
BA using f1

Positive to test Negative to test

Actual positive True positives False negatives
351 22

Actual negative False positives True negatives
124 183

Table 6 Summarized data of the confusion tables—BA with f1

Pathology Average values
1 2 3 4 5 6

True positives 351 36 0 32 23 13 75.8
False positives 124 56 0 8 30 7 37.5
False negatives 22 47 72 26 27 31 37.5
True negatives 183 541 608 614 600 629 529.2
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In the third experiment, based on CBA with fitness f1, the maximum number of
clusters was fixed to 20 for each pathology. The total number of clusters in the best
individual is 36, with the following class distribution: 20 are labelled as “1—
hearing loss”, 6 as “2—spinal diseases”, 2 as “3—musculoskeletal disorders”, 4 as
“4—tumors of the pleura and peritoneum”, 2 as “5—carpal tunnel” and 2 as “6—
diseases of the skin”. In Table 8 are summarized the data of the six tables of
confusion (one for disease).

In the fourth experiment CBA with fitness f2 has been tested. As in the third
experiment, the maximum number of clusters was fixed to 20 for each pathology. In
correspondence of the best individual after the last generation, the total number of
clusters was 71, with the following class distribution: 18 are labeled as “1—hearing
loss”, 10 as “2—spinal diseases”, 7 as “3—musculoskeletal disorders”, 11 as “4—
tumors of the pleura and peritoneum”, 15 as “5—carpal tunnel”, 10 as “6—skin
diseases”. The results for this experiment are shown in Table 9.

The fifth experiment was based on the NCBA algorithm with fitness f2. This
algorithm provides a distinct classifier for each disease. For each one the maximum

Table 7 Summarized data of the confusion tables—BA with f2

Pathology Average values
1 2 3 4 5 6

True positives 338 35 14 32 21 12 75.3
False positives 115 29 30 17 34 3 38.0
False negatives 35 48 58 26 29 32 38.0
True negatives 192 568 578 605 596 633 528.7

Table 8 Summarized data of the confusion tables—CBA with f1

Pathology Average values
1 2 3 4 5 6

True positives 312 42 12 35 1 19 70.2
False positives 127 59 19 15 20 19 43.2
False negatives 61 41 60 23 49 25 43.2
True negatives 180 538 589 607 610 617 523.5

Table 9 Summarized performances of the confusion tables—CBA with f2

Pathology Average values
1 2 3 4 5 6

True positives 210 44 17 35 30 25 60.2
False positives 48 61 45 30 89 46 53.2
False negatives 163 39 55 23 20 19 53.2
True negatives 259 536 563 592 541 590 513.5
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number of clusters was fixed to 50 for sick subjects and 50 for healthy subjects. The
results are shown in Table 10.

Table 11 shows the genetic code of the best individual produced by the GA for
each experiment. The first six parameters encode the weight of the features (nor-
malized values) and the other parameters encode the clusters number. For the
NCBA algorithm, in Table 11 are shown only the results of the two best performing
classifiers: “1—hearing loss” and “4—tumors of the pleura and peritoneum”.

Table 10 Summarized performances of the confusion tables—NCBA algorithm with f2

Pathology Average values
1 2 3 4 5 6

True positives 314 62 56 54 44 38 94.7
False positives 84 88 204 73 116 110 112.5
False negatives 59 21 16 4 6 6 18.7
True negatives 223 509 404 549 514 526 454.2

Table 11 Chromosome of GAs

BA, f1 BA, f2 CBA,
f1

CBA,
f2

NCBA, f2
hearing loss

NCBA, f2 tumors of
the pleura

Feature x1 1.000 1.000 0.870 0.660 1.000 1.000
Feature x2 0.041 0.134 0.894 0.709 0.352 0.455
Feature x3 0.078 0.346 0.569 1.000 0.514 0.269
Feature x4 0.592 0.519 1.000 0.196 0.450 0.147
Feature x5 0.189 0.220 0.280 0.726 0.237 0.911
Feature x6 0.265 0.076 0.096 0.141 0.118 0.107
N. clusters 10 20 – – – –

N. clusters
pathology 1

– – 20 18 – –

N. clusters
pathology 2

– – 6 10 – –

N. clusters
pathology 3

– – 2 7 – –

N. clusters
pathology 4

– – 4 11 – –

N. clusters
pathology 5

– – 2 15 – –

N. clusters
pathology 6

– – 2 10 – –

N. clusters sick – – – – 48 47
N. clusters
healthy

– – – – 44 41
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Another significant tool for performance analysis, commonly used in the eval-
uation of diagnostic tests, consists in the use of sensitivity, specificity, positive
predictive value and negative predictive value, defined in Table 12.

In Table 13a–f are shown the diagnostic test’s indicators relative to the six
considered diseases, while in Table 14 the averages values are summarized for a
better insight of comparison between the adopted algorithms.

As we can see in the Table 13a–f, the first experiment (BA using f1) shows for
the subset “hearing losses” (the most frequent class in the considered dataset) a very
high sensitivity value (0.941) and the specificity presents a value close to 0.6. For
all the other pathologies the sensitivity is about 0.5, except for “3—musculoskeletal
disorders” that presents a value of 0 because the pathology was never predicted by
the algorithm, and the specificity is close to 1. These first results show that function
f1 privileges the most frequent pathology. In the second experiment (BA with f2),
the sensitivity no longer has null values. Specificity and sensitivity have values
similar to the ones in the previous experiment.

The third experiment (CBA with f1) shows performance values in general
slightly worse compared to BA. However, there is an improvement for the sensi-
tivity of some pathologies.

The fourth experiment (CBA with f2) shows that the use of the second version of
the fitness function f2 compared to f1 has led to an improvement of the sensitivity,
except for the group “hearing losses”. Regarding the specificity, for all pathologies
the values are greater than 0.84.

The fifth experiment (NCBA algorithm) shows performance values in general
slightly better compared to the other algorithms. For all pathologies the sensitivity
is greater than 0.74 and the specificity is greater than 0.66.

Table 14 (average values on all pathologies of diagnostic test’s indicators)
allows a quick comparison between the performance of the algorithms. This table
shows how the NCBA algorithm presents the highest sensitivity. Regarding the
specificity and the negative and positive predictive values, we have substantially
similar behaviours for the five experiments. The high values, close to unity in all
experiments, for specificity and negative predictive values can be considered very
interesting. As regard to execution time, the CBA and NCBA algorithms have
better performance by reducing the time to a third compared to BA, because
clustering procedures are performed on smaller data sets. The performances are
stable over multiple runs, assuring a good reliability to the results. Note that in
general for the groups “hearing loss” (the largest group) and “tumors of the pleura
and peritoneum” (more severe disease) the results are better than for other diseases,
including the sensitivity and the positive predictive value.

Table 12 Diagnostic Tests
indicators

Sensitivity = True positive/Actual positive
Specificity = True negative/Actual negative
Positive predictive value = True positive/Positive to test
Negative predictive value = True negative/Negative to test
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Table 13 Diagnostic test’s indicators

a Diagnostic test’s indicators relative to “1—hearing loss”

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2
Sensitivity 0.941 0.906 0.836 0.563 0.842
Specificity 0.596 0.625 0.586 0.844 0.726
Negative predictive value 0.893 0.846 0.747 0.614 0.791
Positive predictive value 0.739 0.746 0.711 0.814 0.789
Average values 0.792 0.781 0.720 0.709 0.787
b Diagnostic test’s indicators relative to “2—spinal diseases”

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2
Sensitivity 0.434 0.422 0.506 0.530 0.747
Specificity 0.906 0.951 0.901 0.898 0.853
Negative predictive value 0.920 0.922 0.929 0.932 0.960
Positive predictive value 0.391 0.547 0.416 0.419 0.413
Average values 0.663 0.711 0.688 0.695 0.743
c Diagnostic test’s indicators relative to “3—musculoskeletal disorders”

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2
Sensitivity 0.000 0.194 0.167 0.236 0.778
Specificity 1.000 0.951 0.969 0.926 0.664
Negative predictive value 0.894 0.909 0.908 0.911 0.962
Positive predictive value 0.000 0.318 0.387 0.274 0.215
Average values 0.474 0.593 0.608 0.587 0.655
d Diagnostic test’s indicators relative to “4—tumors of the pleura and peritoneum”

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2
Sensitivity 0.552 0.552 0.603 0.603 0.931
Specificity 0.987 0.973 0.976 0.952 0.883
Negative predictive value 0.959 0.959 0.963 0.963 0.993
Positive predictive value 0.800 0.653 0.700 0.538 0.425
Average values 0.825 0.784 0.811 0.764 0.808
e Diagnostic test’s indicators relative to “5—carpal tunnel”

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2
Sensitivity 0.460 0.420 0.020 0.600 0.880
Specificity 0.952 0.946 0.968 0.859 0.816
Negative predictive value 0.957 0.954 0.926 0.964 0.988
Positive predictive value 0.434 0.382 0.048 0.252 0.275
Average values 0.701 0.675 0.490 0.669 0.740
f Diagnostic test’s indicators relative to “6—skin diseases”

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2
Sensitivity 0.295 0.273 0.432 0.568 0.864
Specificity 0.989 0.995 0.970 0.928 0.827
Negative predictive value 0.953 0.952 0.961 0.969 0.989
Positive predictive value 0.650 0.800 0.500 0.352 0.257
Average values 0.722 0.755 0.716 0.704 0.734
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5 Conclusions

In this chapter we compare three different classification systems designed to face
the health risk prediction problem in workplaces, aiming in developing a software
application to help reducing costs in performing clinical trials on all the interested
workers. First results are encouraging and suggest further improvements. In par-
ticular, it is important to underline that good negative predictive values can be
considered a prerequisite for the practical use of the above classification systems in
a suited automatic screening procedure, since a negative classification for a given
worker is sufficient to reliably ascertain his health status. By examining the features
weights (Table 11), no explicit ranking can be deduced, since there is no accordance
between the considered algorithms. However, in all the experiments, only the
economic activity of the company (feature x6) seems less important than the other
features, suggesting to replace this feature with others more related with the clas-
sification problem at hand.

References

1. Mukherjee, C., Gupta, K., Nallusamy, R.: A decision support system for employee healthcare.
In: Third International Conference on Services in Emerging Markets (2012)

2. Paul, R., Md. Latiful Hoque, A.S.: Clustering medical data to predict the likelihood of diseases.
In: IEEE—Fifth International Conference on the Digital Information Management (ICDIM)
(2010)

3. Huang, Z., Yu, D., Zhao, J.: Application of neural networks with linear and nonlinear weights in
occupational disease incidence forecast. In: Circuits and systems. IEEE APCCAS 2000 (2000)

4. Jane, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs
(1988)

5. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Search Methodologies. Springer,
New York (2005)

6. Savinov, A.A.: Mining possibilistic set-valued rules by generating prime disjunctions. In
PKDD’99, 3rd European Conference on Principles and Practice of Knowledge Discovery in
Databases, vol. 1704, pp. 536–541. Springer (1999)

Table 14 Diagnostic test’s indicators—average values

BA, f1 BA, f2 CBA, f1 CBA, f2 NCBA, f2

Sensitivity 0.447 0.461 0.427 0.517 0.840
Specificity 0.905 0.907 0.895 0.901 0.795
Negative predictive value 0.929 0.923 0.906 0.892 0.947
Positive predictive value 0.503 0.574 0.460 0.442 0.396
Average values 0.696 0.716 0.672 0.688 0.744

Occupational Diseases Risk Prediction by Genetic Optimization … 77



A Statistical Approach to Dealing
with Noisy Fitness in Evolutionary
Algorithms

J.J. Merelo, Zeineb Chelly, Antonio Mora, Antonio Fernández-Ares,
Anna I. Esparcia-Alcázar, Carlos Cotta, P. de las Cuevas and Nuria Rico

Abstract In most computer games as in life, the outcome of a match is uncertain

due to several reasons: the characters or assets appear in different initial positions

or the response of the player, even if programmed, is not deterministic; different

matches will yield different scores. That is a problem when optimizing a game-

playing engine: its fitness will be noisy, and if we use an evolutionary algorithm

it will have to deal with it. This is not straightforward since there is an inherent

uncertainty in the true value of the fitness of an individual, or rather whether one
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chromosome is better than another, thus making it preferable for selection. Several

methods based on implicit or explicit average or changes in the selection of indi-

viduals for the next generation have been proposed in the past, but they involve a

substantial redesign of the algorithm and the software used to solve the problem. In

this paper we propose new methods based on incremental computation (memory-

based) or fitness average or, additionally, using statistical tests to impose a partial

order on the population; this partial order is considered to assign a fitness value

to every individual which can be used straightforwardly in any selection function.

Tests using several hard combinatorial optimization problems show that, despite an

increased computation time with respect to the other methods, both memory-based

methods have a higher success rate than implicit averaging methods that do not use

memory; however, there is not a clear advantage in success rate or algorithmic terms

of one method over the other.

Keywords Evolutionary algorithms ⋅ Noisy optimization problems ⋅ Dynamic

problems

1 Introduction

In our research on the optimization of the behavior of bots or game strategies, we

have frequently found that the fitness of a bot is noisy, in the sense that repeated eval-

uations will yield different values [1] which is a problem since fitness is the measure

used to select individuals for reproduction. If we look at it in a more general setting,

noise in the fitness of individuals in the context of an evolutionary algorithm has

different origins. It can be inherent to the individual that is evaluated; for instance,

in [1] a game-playing bot (autonomous agent) that includes a set of application rates

is optimized. This results in different actions in different runs, and obviously differ-

ent success rates and then fitness. Even comparisons with other individuals can be

affected: given exactly the same pair of individuals, the chance of one beating the

other can vary in a wide range. In other cases like the one presented in the MADE

environment, where whole worlds are evolved [2] the same kind of noisy environ-

ment will happen. When using evolutionary algorithms to optimize stochastic meth-

ods such as neural networks [3] using evolutionary algorithms the measure that is

usually taken as fitness, the success rate, will also be noisy since different training

schedules will result in slightly different success rates.

The examples mentioned above are actually included in one of the four categories

where uncertainties in fitness are found, fitness functions with intrinsic noise. These

four types include also, according to [4] approximated fitness functions (originated

by, for instance, surrogate models); robust functions, where the main focus lies on

finding values with high tolerance to change in initial evaluation conditions, and

finally dynamic fitness functions, where the inherent value of the function changes

with time. Our main interest will be in the first type, since it is the one that we have

actually met in the past and has led to the development of this work.
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At any rate, in this paper we will not be dealing with actual problems; we will

try to simulate the effect of noise by adding to the fitness function Gaussian noise

centered in 0 and 𝜎 = 1, 2, 4. We will deal mainly with combinatorial optimization

functions with noise added having the same shape and amplitude, that we actually

have found in problems so far. In fact, from the point of view of dealing with fitness,

these are the main features of noise we will be interested in.

This paper is an extension of [5]. The main problem found in those set of experi-

ments was the amount of evaluations needed to find a solution to the problem; while

an individual was in the population, it was re-evaluated (re-sampled). However, sta-

tistically a limited amount of evaluations is usually enough to make meaningful, and

statistically significant, comparisons. That is why in this paper we have done two

kind of improvements: improve speed, because implementation always matters [6],

and limit the amount of evaluations while checking if the results achieved (mainly

success rate) remain the same.

The rest of the paper is structured as follows: in the next section we describe the

state of the art in the treatment of noise in fitness functions. The method we propose

in this paper, called Wilcoxon Tournament, will be shown in Sect. 4; experiments

are described and results shown in Sect. 5; finally its implications are discussed in

the last section of the paper.

2 State of the Art

The most comprehensive review of the state of the art in evolutionary algorithms

in uncertain environments was done by [4], although recent papers such as [7–9]

include a brief update of the state of the art. In that first survey of evolutionary opti-

mization by Jin and Branke in uncertain environments that uncertainty is categorized

into noise, robustness, fitness approximation and time-varying fitness functions, and

then, different options for dealing with it are proposed. In principle, the approach

presented in this paper was designed to deal with the first kind of uncertainty, noise

in fitness evaluation, although it could be argued that there is uncertainty in the true

fitness as stated in the third category. In any case it could be applied to other types

of noise, since it depends more on the shape and intensity of noise than the origin.

In the same situation, a noisy fitness evaluation, several solutions have been pro-

posed and explained in the survey [4]. These will be explained next. For scientists

not concerned on solving the problem of noise, but on a straightforward solution of

the optimization problem without modification of existing tools and methodologies,

a usual approach is just to disregard the fact that the fitness is noisy and use what-

ever value is returned by a single evaluation or after re-evaluation each generation.

This was the option in our previous research in games [1, 10, 11] and evolution of

neural networks [3, 12] and leads, if the population is large enough, to an implicit
averaging as mentioned in [4]. In fact, selection used in evolutionary algorithms is

also stochastic, so noise in fitness evaluation will have the same effect as random-

ness in selection or a higher mutation rate, which might make the evolution process
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easier and not harder in some particular cases [7]. In fact, Miller and Goldberg proved

that an infinite population would not be affected by noise [13] and Jun-Hua and Ming

studied the effect of noise in convergence rates [14], proving that an elitist genetic

algorithm finds at least one solution, although with a lowered convergence rate. But

real populations are finite, so the usual approach to dealing with fitness with a degree

of randomness is to increase the population size to a value bigger than would be

needed in a non-noisy environment. In fact, it has been recently proved that using

sex, that is, crossover, is able to deal successfully with noise [15], while an evolu-

tionary algorithm based on mutation would suffer a considerable degradation of per-

formance. However, crossover is part of the standard kit of evolutionary algorithms,

so using it and increasing the population size has the advantage that no special pro-

vision or change to the implementation has to be made, just different values of the

standard parameters.

Another more theoretically sound way is using a statistical central tendency indi-

cator, which is usually the average. This strategy is called explicit averaging by Jin

and Branke and is used, for instance, in [14]. Averaging decreases the variance of

fitness but the problem is that it is not clear in advance what would be the sample

size used for averaging [16]. Most authors use several measures of fitness for each

new individual [17], although other averaging strategies have also been proposed,

like averaging over the neighbourhood of the individual or using resampling, that

is, more measures of fitness in a number which is decided heuristically [18]. This

assumes that there is, effectively, an average of the fitness values which is true for

Gaussian random noise and other distributions such as Gamma or Cauchy but not

necessarily for all distributions. To the best of our knowledge, other measures like

the median which might be more adequate for certain noise models have not been

tested; the median always exists, while the average might not exist for non-centrally

distributed variables. Besides, most models keep the number of evaluations fixed

and independent of its value, which might result in bad individuals being evaluated

many times before being discarded; some authors have proposed resampling, that

is, re-evaluate the individuals a number of times to increase the precision in fitness

[19, 20], which will effectively increase the number of evaluations and thus slow

down the search. In any case, using average is also a small change to the overall

algorithm framework, requiring only using as new fitness function the average of

several evaluations. We will try to address this in the model presented in this paper.

These two approaches that are focused on the evaluation process might be com-

plemented with changes to the selection process. For instance, using a threshold

[20, 21] that is related to the noise characteristics to avoid making comparisons

of individuals that might, in fact, be very similar or statistically the same; this is

usually called threshold selection and can be applied either to explicit or implicit

averaging fitness functions. The algorithms used for solution, themselves, can be

also tested, with some authors proposing, instead of taking more measures, testing

different solvers [22], some of which might be more affected by noise than others.

However, recent papers have proved that sampling might be ineffective [9] in some

types of evolutionary algorithms, adding running time without an additional benefit

in terms of performance. This is one lead we will use in the current paper.
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Any of these approaches do have the problem of statistical representation of the

true fitness, even more so if there is not such a thing, but several measures that rep-

resent, as a set the fitness of an individual. This is what we are going to use in this

paper, where we present a method that uses resampling via an individual memory

and use either explicit averaging or statistical tests like the non-parametric Wilcoxon

test. First we will examine and try to find the shape of the noise that actually appears

in games; then we will check in this paper what is the influence on the quality of

results of these two strategies and which one, if any, is the best when working in

noisy environments.

3 Noise in Games: An Analysis

In order to measure the nature of noise, we are going to use the data that is available to

us, fitness evaluations in the Planet Wars game, that has been used as a framework for

evolving strategies, e.g., [1], and other game contents, e.g., [23]. In this game when

one player invades a planet the outcome depends deterministically on the number of

ships each player has; however, players are positioned randomly with the constraint

that they should be far enough from each other; other than that, any planet in the

game can be an initial position. The planetary map is also random, chosen from 100

possibilities. Besides, in the strategy used in that game by our bot [24], actions are

not deterministic, since every player is defined by a set of probabilities to take one

course of action.

In order to have enough measures to model the noise, an evolutionary algorithm

with standard parameters was run with the main objective of measuring the behavior

of fitness. A sample of ten individuals from generation 1 and another 10 from gener-

ation 50 were extracted. The fitness of each individual was measured 100 times. The

main intention was also to see how noise evolved with time. Intuitively we thought

that, since the players become better with evolution, the noise and thus the standard

deviation would decrease. However, what we found is shown in Fig. 1, which shows

a plot of the standard deviation in both generations and illustrates the fact that the

spread of fitness values is bigger as the evolution proceeds, going from around 0.15

to around 0.20. This result might be a bit misleading since the average values of the

fitness increase at the same time, but it implies that the noise level might be around

20 % of the signal in these kind of problems.

By taking these measures, we were also interested in checking whether, in fact, the

normal distribution is the best fit for the fitness measures, thus making averages of

fitness appropriate for modeling the whole set of fitness measures. We tested three

distributions: Gamma, Weibull and normal (Gaussian) distribution after doing an

initial test that included (and discarded) Cauchy and Exponential. All this analysis

was done using the library fitrdist in R, and data as well as scripts needed to

do it are publicly available in the GitHub repository. After trying to fit these three

distribution to data in generation 1 and 50, we analyzed goodness-of-fit using the
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Fig. 1 Boxplot of standard deviation of noise fitted to a normal distribution, left for the first gen-

eration and right for the 50th. Fitness averages around 1

same package and the gofstat function. This function yields several measures of

goodness, including the Akaike Information Criterion and the Kolmogorov-Smirnov

statistic.

What we found was that, in all cases, Gamma is the distribution that better fits the

data. That does not mean that the noise effectively follows this distribution, but that

it is, of all distributions, the one that best fits the data. In fact, just a few individuals

have a good fit (to 95 % accuracy using the Kolmogorov-Smirnov), and none of them

in generation 50. The fit for an individual in the first generation that does follow that

distribution (individual 8) is shown in Fig. 2. The main difference between Gamma

and Gaussian is that Gamma is skewed, instead of being centered about a particular

value.

This figure also shows that, even if it is skewed, its skewness is not too high which

makes it close to the standard distribution (which is considered a good approximation

if k > 10). However, it is interesting to note the skewness inherent in the distribution

as a feature of noise, at least in this particular game.

Some interesting facts that can be deduced from these measures is that in general,

fitness is skewed and its standard deviation has a high value, up to 20 % in some

cases. Besides, it follows a gamma distribution, which, if we want to model noise

accurately, should be the one used. However, we are rather interested in the overall

shape of noise so since the skewness parameter of the gamma distribution is rather
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Fig. 2 Fit of the fitness value of an individual in the first generation of the evolutionary algorithm

to a gamma distribution, showing an histogram in the top left corner, CDFs in the bottom left corner
and quantile-quantile and percentile-percentile plots in the right hand side

high we will use, in this paper, a Gaussian noise to simulate it; Gaussian is a good

approximation of Gamma for high values of the skewness parameter. This will be

used in the experiments shown in Sects. 5 and 4.

4 Fitness Memory and Statistical Significant Differences

As indicated in the previous section, most explicit averaging methods use several

measures to compute fitness as an average, with resampling, that is, additional

measures, in case comparisons are not statistically significant. In this paper we will

introduce a fitness memory, which amounts to a resampling every generation an

individual survives. An individual is born with a fitness memory of a single value,

with memory size increasing with survival time. This is actually a combination

of an implicit and an explicit evaluation strategy: younger individuals are rejected
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outright if their fitness computed after a single evaluation is not enough to participate

in the pool, while older ones use several measures to compute average fitness, which

means that averages will be a more precise representation of actual value. As evo-

lution proceeds, the best individuals will, effectively, have an underlying non-noisy

best value. We will call this method Extended Temporal Average or ETA. However,

since average is a single value, selection methods might, in fact, pick as the best

individuals some that are not if the comparison is not statistically significant; this

will happen mainly in the first and middle stages of search, which might effectively

eliminate them from the pool or not adequately represent individuals that consti-

tute, in fact, good solutions. That is why we introduce an additional feature: using

Wilcoxon test [25] for comparing not the average, but all fitness values attached to

an individual. This second method introduces a partial order in the population pool:

two individuals might be different (one better than the other) or not [26]. There are

many possible ways of introducing this partial order in the evolutionary algorithm;

however, what we have done is to pair individuals a certain number of times (10, by

default) and have every individual score a point every time it is better than the other

in the couple; its score will be decreased by one if it is the worse one. An individual

that is better that all its couples will have a fitness of 20; one whose comparisons are

never significant according to the Wilcoxon test will score exactly 10, the same as if

it wins as many times as it loses, and the one that always loses will score 0. We will

call this method Partial order Wilcoxon-test, or WPO for short.

Initial tests, programmed in Perl using Algorithm::Evolutionary [27]

(available with an open source license
1
) were made with these two types of algo-

rithms and the Trap function [26], showing the best results for the WPO method and

both of them being better that the implicit average method that uses a single eval-

uation per individual, although they needed more time and memory. Since it does

not need to perform averages or make additional fitness measures every generation,

it is twice as fast as the next method, the one that uses explicit average fitness. An

exploration of memory sizes
2

(shown in Fig. 3 for a typical run) showed that they

are distributed unevenly but, in general, there is no single memory size overcoming

all the population. Besides, distribution of fitness
3

shows a distribution with most

values concentrated along the middle (that is, fitness equal to 10) or individuals that

cannot be compared with any other, together with a few with the highest fitness and

many with the lowest fitness. Besides showing that using the partial order for indi-

vidual selection is a valid strategy, it also shows that a too greedy selection method

would eliminate many individuals that might, in fact, have a high fitness. This will be

taken into account when assigning parameter values to the evolutionary algorithm

that will be presented next.

1
http://git.io/a-e.

2
Published at http://jj.github.io/Algorithm-Evolutionary/graphs/memory/.

3
http://jj.github.io/Algorithm-Evolutionary/graphs/fitness-histo/.

http://git.io/a-e
http://jj.github.io/Algorithm-Evolutionary/graphs/memory/
http://jj.github.io/Algorithm-Evolutionary/graphs/fitness-histo/
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Fig. 3 (Left) 3D plot of the distribution of memory sizes for a single execution of the Wilcoxon-

test based partial order. (Right) 3D plot of the distribution of fitness values along time for the WPO

method on the Trap function. a Memory size. b Fitness distribution

5 Results

ETA and WPO have been tested using two well-known benchmarks, the deceptive

bimodal Trap [28] function and the Massively Multimodal Deceptive Problem [29]

(MMDP). We chose to use just these two functions because they have different fit-

ness landscapes, are usually difficult for an evolutionary algorithm and have been

extensively used for testing other kind of operators and algorithms. In Sect. 5.1 we

will show results with no limitations on the number of evaluations; then we will show

results limiting the number of evaluations in Sect. 5.2.

5.1 Noisy Fitness, Unlimited Evaluations

Several methods were tested: a baseline algorithm without noise to establish the time

and number of evaluations needed to find the solution, a 0-memory (implicit average)

method that uses noisy fitness without making any special arrangement, ETA and

WPO. Evolutionary algorithm parameters and code for all tests were the same, except

in one particular case: we used 2-tournament with 50 % replacement, 20 % mutation

and 80 % crossover, p = 1024 and stopping when the best was found or number of

evaluations reached. This was 200 K for the Trap, which used 40 as chromosome

size, and 1 M for MMDP, which used 60 as chromosome size; these parameters are

shown in Table 1. We have also used an additive Gaussian noise centered in zero and

different 𝜎, which is independent of the range of variation of the fitness values. By

default, noise will follow a normal distribution with center in 0 and 𝜎 = 1, 2.
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Table 1 Common evolutionary algorithm parameters

Parameter Value

Chromosome length 40 (Trap) 60 (MMDP)

Population size 1024

Selection 2 tournament selection

Replacement rate 50 %

Mutation rate 20 %

Crossover rate 80 %

Max evaluations 200 K (Trap) 1 Million (MMDP)

Stopping criterion Non-noisy best found or maximum number of

evaluations reached

All tests use the Algorithm::Evolutionary library, and the scripts are

published, as above, in the GitHub repository, together with raw results using the

serialization language YAML and processed results as R scripts and .csv files.

The evolutionary algorithm code used in all cases is exactly the same except for

WPO, which, since it uses the whole population to evaluate fitness, needed a special

reproduction and replacement library. This also means that the replacement method

is not exactly the same: while WPO every generation replaces 50 % of the individu-

als, the rest evaluateS new individuals before replacement and eliminateS the worst

512 (50 % of the original population). Replacement is, thus, less greedy in the WPO

case, but we do not think that this will have a big influence on the results (although it

might account for the bigger number of evaluations obtained in some cases), besides,

it just needed a small modification of code and was thus preferred for that reason.

All values shown are the result of 30 independent runs.

The results for different noise levels are shown in Fig. 4. The boxplot on the left

hand side compares the number of evaluations for the baseline method and the three

methods with 𝜎 = 1. The implicit average method (labelled as 0-memory) is only

slightly worse than the baseline value of around 12 K evaluations, with the ETA and

WPO methods yielding very similar values which are actually worse than the 0-

memory method. However, the scenario on the right, which shows how the number

of evaluations scales with the noise level, is somewhat different. While the 0-memory

method still has the smallest number of evaluations for successful runs, the success

rate degrades very fast, with roughly the same and slightly less than 100 % for 𝜎 = 2
but falling down to 63 % for 0-memory and around 80 % for ETA and WPO (86 and

80 %). That is, best success rate is shown by the ETA method, but the best number

of evaluations for roughly the same method is achieved by WPO.

These results also show that performance degrades quickly with problem diffi-

culty and the degree of noise, that is why we discarded the 0-memory method due

to its high degree of failure (a high percentage of the runs did not find the solution)

with noise= 10 % max fitness and evaluated ETA and WPO over another problem,

MMDP with similar absolute 𝜎, with the difference that, in this case, 𝜎 = 2 would



A Statistical Approach to Dealing with Noisy Fitness in Evolutionary Algorithms 89

Fig. 4 (Left) Comparison of number of evaluations for the 4-Trap x 10 function and the rest of the

algorithms with a noise 𝜎 equal to 1. (Right). Plot of average number of evaluations for different

methods: 0 memory (black, solid), ETA (red, dashed), WPO (blue, dot-dashed). a Memory size. b
Fitness distribution

be 20 % of the max value, which is close to the one observed experimentally, as

explained in the Sect. 3. The evolutionary algorithm for MMDP used exactly the

same parameters as for the Trap function above, except the max number of evalu-

ations, which was boosted to one million. Initial tests with the 0-memory method

yielded a very low degree of success, which left only the two methods analyzed in

this paper for testing with MMDP. Success level was in all cases around 90 % and

very similar in all experiments; the number of evaluations is more affected by noise

and shown in Fig. 5. In fact, WPO and ETA have a very similar number of evalu-

ations. It is statistically indistinguishable for 𝜎 = 2, and different only at the 10 %

level (p-value= 0.09668) for 𝜎 = 1, however, if we take the time needed to reach

solutions into account, ETA is much faster since it does not apply 10 * 1024 statis-

tical tests every generation. However, WPO is more robust, with a lower standard

deviation, in general, at least for high noise levels. However, both methods obtain

good results with a much higher success rate than the implicit fitness (0-memory)

method. Besides, ETA and WPO incorporate explicit fitness evaluation naturally

into the population resampling only surviving individuals. This accounts for a pre-

dictable behavior of the algorithm, since the number of evaluations per generation

is exactly the population size, which is important for optimization processes with a

limited budget.

5.2 MMDP with Limited Evaluations

As indicated in the state of the art resampling, that is, performing new evaluations,

is only necessary in the case statistical significance is not met. If two individuals are
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Fig. 5 Number of evaluations for successful runs ETA and WPO needed for solving the MMDP

problem with 10 blocks and different noise levels, 𝜎 = 1, 2

different enough, the comparison will be significant even if they have only one fit-

ness value. That is why some authors [9] have proved that resampling is not needed.

However, as indicated above, an increasing number of evaluations will be needed

as generations proceed. This is due to the fact that, as shown in the noise study in

Sect. 3, 𝜎 increases with time and it becomes increasingly difficult to take apart differ-

ent inherent values of the fitness. That is the main reason that has led us to performed

resampling every generation in this work. However, it is quite clear that this resam-

pling should not proceed unchecked beyond what is statistically reasonable, hence

we have performed experiments limiting the maximum number of evaluations to 30,

and evaluated its impact in performance. We have repeated the experiments adding

lines of code that skip making a new evaluation if the vector of fitness measures

has reached length 30. Code is, as usual, available in the repository https://github.

com/JJ/algorithm-evolutionary-examples. Experiment results and log are under the

directory ECTA-book. Results are shown in Figs. 6 and 7.

Please note that the unlabelled boxplots in Figs. 6 and 7 have the same values as

the ones shown in Fig. 5. In fact, we should look at the columns labelled lted, for

limited. First, the number of evaluations in Fig. 6 does not significantly change. It is

essentially the same for ETA and slightly less for WPO (median 68610 for unlimited

evaluations, 66550 for limited) but the difference is not significant; it is not significant

https://github.com/JJ/algorithm-evolutionary-examples
https://github.com/JJ/algorithm-evolutionary-examples
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Fig. 6 Number of evaluations for successful runs ETA and WPO, with and without limitation of

evaluations needed for solving the MMDP problem with 10 blocks and 𝜎 = 1. Please note that y
axis is algorithmc, for clarity

Fig. 7 Number of evaluations for successful runs ETA and WPO, with and without limitation of

evaluations needed for solving the MMDP problem with 10 blocks and 𝜎 = 2. Please note that, for

the sake of clarity, the y axis is logarithmic

either in success rate, which is essentially the same. However, with a higher noise

level, shown in Fig. 7, number of evaluations is higher and in this case the difference

is significant (the limited version averages 231400 evaluations while the unlimited

averages 126700).

It should be noted that the average number of evaluations increases even if the

number of evaluations per individual decreases. This means that, in some cases, this

limitation makesworse individuals pass to the next generation, decreasing the quality

of evolutionary search, and making it slower. In general, our conclusion here is that

the number of evaluations in WPO should be kept unlimited or, at least, limited to a

high value. It might increase slightly the performance of the algorithm at low noise

levels, but it will result in worse performance for higher noise levels.
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6 Conclusions

In this paper we have introduced two methods to deal with the problem of noisy

fitness functions. The two methods, ETA, based on re-evaluation of surviving indi-

viduals and WPO, which uses the Wilcoxon test to compare a sample of individuals

and partial-order them within the population, have been tested over two different

fitness functions and compared with implicit average (or 0-memory) methods, as

well as among themselves; we have also tried to limit the number of evaluations and

generally checked its influence in results. In general, memory-based methods have

much higher success rate than 0-memory methods and the difference increases with

the noise level, with 0-memory methods crashing at noise levels close to 20 % while

ETA and WPO maintain a high success level. Limiting the number of evaluations,

in general, has an impact that is very lightly positive or negative.

It is difficult to choose between the two proposed methods, ETA and WPO. How-

ever, ETA is much faster since it avoids costly statistical analysis. In a profiling of

the WPO method we have discovered that the vast majority of program time is spent

computing the Wilcoxon test, so times are of a different order of magnitude. It also

has a slightly higher success rate, and the number of evaluations it needs to find

the solution is only slightly worse; even if from the point of view of the evolution-

ary algorithm it is slightly less robust and slightly worse, it compensates the time

needed to make more evaluations with the fact that it does not need to perform sta-

tistical tests to select new individuals. So, in general, using a central and fast statistic

such as the average will be preferred, either from the time or number of evaluations

point of view, to using the Wilcoxon test.

However, this research is in its initial stages. The fact that we are using a cen-

trally distributed noise apparently gives ETA an advantage since, in fact, comparing

the mean of two individuals will be essentially the same as doing a statistical com-

parison, since when the number of measures is enough, statistical significance will

be reached. In fact, with a small difference ETA might select as better an individ-

ual whose fitness is actually the same, something that would be correctly spotted by

WPO, but, in fact, since there is an average selective pressure this is not going to

matter in the long run. Using higher selective pressures might make a difference, but

this is something that will have to be tested.

It might matter in different situations, for instance in numerical optimization prob-

lems and also when noise follows a uniform distribution; behavior might in this case

be similar to when noise levels are higher. These are scenarios that are left for future

research, and destined to find out in which situations WPO is better than ETA and

the other way round.

Besides exploring noise in different problems and modelling its distribution, we

will explore different parameters in the model. The first one is the number of compar-

isons in WPO. Initial explorations have proved that changing it from 5 to 32 does not

yield a significant difference. Looking for a way to speed up this method would also

be important since it would make its speed closer to ETA. It might be an improvement

to use Wilcoxon at the selection stage, not as we do know at the fitness computaton



A Statistical Approach to Dealing with Noisy Fitness in Evolutionary Algorithms 93

stage. All these research questions open new research avenues that will be explored

in the future, along with testing with fuzzy selection techniques and using clustering

for selecting tournament sets.
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Abstract This paper investigates a Particle Swarm with dynamic topology and a
conservation of evaluations strategy. The population is structured on a
2-dimensional grid of nodes, through which the particles interact and move
according to simple rules. As a result of this structure, each particle’s neighbour-
hood degree is time-varying. If at given time step a particle p has no neighbours
except itself, p is not evaluated until it establishes at least one link to another
particle. A set of experiments demonstrates that the dynamics imposed by the
structure provides a consistent and stable behaviour throughout the test set when
compared to standard topologies, while the conservation of evaluations significantly
reduces the convergence speed of the algorithm. The working mechanisms of the
proposed structure are very simple and, except for the size of the grid, they do not
require parameters and tuning.
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1 Introduction

The Particle Swarm Optimization (PSO) algorithm is a population-based
meta-heuristic for binary and real-valued function optimization inspired by the
swarm and social behavior of organisms in bird flocks and fish schools [4]. The
optimization is performed by a swarm of candidate solutions, called particles, which
move around the problem’s search space guided by mathematical rules that define
their velocity and position at each time step. Each particle’s velocity vector is
influenced by its best known position and by the best known positions of its
neighbors. The neighborhood of each particle—and consequently the flow of
information through the population—is defined a priori by the population topology.

The reason why the swarm is interconnected is the core of the algorithm: the
particles communicate so that they acquire information on the regions explored by
other particles. In fact, it has been claimed that the uniqueness of the PSO algorithm
lies in the interactions of the particles [5]. As expected, the population topology
deeply affects the balance between exploration and exploitation and the conver-
gence speed and accuracy of the algorithm.

The population can be structured on any possible topology, from sparse to dense
(or even fully connected) graphs, with different degrees of connectivity and clus-
tering. The classical and most used population structures are the lbest (which
connects the individuals to a local neighbourhood) and the gbest (in which each
particle is connected to every other individual). These topologies are well-studied
and the major conclusions are that gbest is fast but is frequently trapped in local
optima, while lbest is slower but converges more often to the neighborhood of the
global optima.

Since the first experiments on lbest and gbest structures, researchers have tried to
design networks that hold the best traits given by each structure [9]. Some studies
also try to understand what makes a good structure. For instance, Kennedy and
Mendes [5] investigate several types of topologies and recommend the use of a
lattice with von Neumann neighbourhood (which results in a connectivity degree
between that of lbest and gbest).

Recently, dynamic structures have been introduced in PSO for improving the
algorithm’s adaptability to different fitness landscapes and overcome the rigidity of
static structures, like [7], for instance. Fernandes et al. [1] try a different approach
and propose a dynamic and partially connected von Neumann structure with
Brownian motion. In this paper, we use the same model but a strategy for the
conservation of function evaluations [8] is introduced in order to make the most of
the underlying structure and reduce convergence speed. A formal description of the
dynamic network is given here, opening the way for more sophisticated dynamics.

In the proposed topology, n particles are placed in a 2-dimensional m-nodes grid
where m> n. Every time-step, each individual checks its von Neumann neighbor-
hood and, as in the standard PSO, updates its velocity and position using the
information given by the neighbours. However, while the connectivity degree of the
von Neumann topology is k = 5 the degree of the proposed topology is variable in
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the range 1≤ k≤ 5. Furthermore, the structure is dynamic: in each time-step, every
particle updates its position on the grid (which is a different concept from the
position of the particle on the fitness landscape) according to a pre-defined rule that
selects the destination node. The movement rule, which is implemented locally and
without any knowledge on the global state of the system, can be based on stigmergy
[2] or Brownian motion.

As stated above, the connectivity degree k of each particle in each time-step is
variable and lies in the range 1≤ k≤ 5. Depending on the size of the grid, there may
be particles with k = 1. These particles without neighbors (except the particle itself)
do not learn from any local neighbourhood at that specific iteration. Therefore, it is
expected that they continue to follow their previous trajectory in the fitness land-
scape. Taking into account these premises, the algorithm proposed in this study
does not evaluate the position of the particles when k = 1. Regardless of the loss of
informant intrinsic to a conservation of evaluations policy, we hypothesize that the
strategy is particularly suited for the proposed dynamic topology (in which the
particles are sometimes isolated from the flow of information) and the number of
function evaluations required for meeting the stop criteria can be significantly
reduced. Furthermore, it is the structure of the population and the position of the
particles at a specific time-step that decides the application of the conservation rule
and not any extra parameter or pre-defined decision rule.

A classical PSO experimental setup is used for the tests and the results
demonstrate that the proposed algorithm consistently improves the speed of con-
vergence of the standard von Neumann structure without degrading the quality of
solutions. The experiments also demonstrate that the introduction of the conser-
vation strategy reduces significantly the convergence speed without affecting the
quality of the final solutions.

The remaining of the paper is organized as follows. Section 2 describes PSO and
gives an overview on population structures for PSOs. Section 3 gives a formal
description of the proposed structure. Section 4 describes the experiments and
discusses the results and, finally, Sect. 5 concludes the paper and outlines future
research.

2 Background Review

PSO is described by a simple set of equations that define the velocity and position
of each particle. The position of the ith particle is given by X ⃗i = ðxi, 1, xi, 2, . . . x1,DÞ,
where D is the dimension of the search space. The velocity is given by
V ⃗i = ðvi, 1, vi, 2, . . . v1,DÞ. The particles are evaluated with a fitness function f ðX ⃗iÞ
and then their positions and velocities are updated by:
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vi, dðtÞ= vi, dðt− 1Þ+ c1r1 pi, d − xi, dðt− 1Þð Þ+ c2r2 pg, d − xi, dðt− 1Þ� � ð1Þ

xi, dðtÞ= xi, dðt− 1Þ+ vi, dðtÞ ð2Þ

were pi is the best solution found so far by particle i and pg is the best solution
found so far by the neighborhood. Parameters r1 and r2 are random numbers
uniformly distributed in the range [0, 1] and c1 and c2 are acceleration coefficients
that tune the relative influence of each term of the formula. The first term is known
as the cognitive part, since it relies on the particle’s own experience. The last term is
the social part, since it describes the influence of the community in the trajectory of
the particle.

In order to prevent particles from stepping out of the limits of the search space,
the positions xi, dðtÞ are limited by constants that, in general, correspond to the
domain of the problem: xi, dðtÞ∈ ½−Xmax,Xmax�. Velocity may also be limited
within a range in order to prevent the explosion of the velocity vector:
vi, dðtÞ∈ ½−Vmax,Vmax�.

For achieving a better balancing between local and global search, Shi an
Eberhart [12] added the inertia weight ω as a multiplying factor of the first term of
Eq. 1. This paper uses PSOs with inertia weight.

The neighbourhood of the particle defines the value of pg and is a key factor in
the performance of PSO. Most of the PSOs use one of two simple sociometric
principles for defining the neighbourhood network. One connects all the members
of the swarm to one another, and it is called gbest, were g stands for global. The
degree of connectivity of gbest is k = n, where n is the number of particles. Since all
the particles are connected to every other and information spreads easily through
the network, the gbest topology is known to converge fast but unreliably (it often
converges to local optima).

The other standard configuration, called lbest (where l stands for local), creates a
neighbourhood that comprises the particle itself and its k nearest neighbors. The
most common lbest topology is the ring structure, in which the particles are
arranged in a ring structure (resulting in a degree of connectivity k = 3, including
the particle). The lbest converges slower than the gbest structure because infor-
mation spreads slower through the network but for the same reason it is less prone
to converge prematurely to local optima. In-between the ring structure with k = 3
and the gbest with k = n there are several types of structure, each one with its
advantages on a certain type of fitness landscapes. Choosing a proper structure
depends on the target problem and also on the objectives or tolerance of the
optimization process.

Kennedy and Mendes [5] published an exhaustive study on population structures
for PSOs. They tested several types of structures, including the lbest, gbest and von
Neumann configuration with radius 1 (also kown as L5 neighborhood). They also
tested populations arranged in randomly generated graphs. The authors conclude
that when the configurations are ranked by the performance the structures with
k = 5 (like the L5) perform better, but when ranked according to the number of
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iterations needed to meet the criteria, configurations with higher degree of con-
nectivity perform better. These results are consistent with the premise that low
connectivity favors robustness, while higher connectivity favors convergence speed
(at the expense of reliability). Amongst the large set of graphs tested in [5], the Von
Neumann with radius 1 configuration performed more consistently and the authors
recommend its use.

Alternative topologies that combine standard structures’ characteristics or
introduce some kind of dynamics in the connections have been also proposed.
Parsopoulos and Vrahatis [9] describe the unified PSO (UPSO), which combines
the gbest and lbest configurations. Equation 1 is modified in order to include a term
with pg and a term with pi and a parameter balances the weight of each term. The
authors argue that the proposed scheme exploits the good properties of gbest and
lbest.

Peram et al. [10] proposed the fitness-distance-ratio-based PSO (FDR-PSO),
which defines the neighbourhood of a particle as its k closest particles in the
population (measured by the Euclidean distance). A selective scheme is also
included: the particle selects nearby particles that have also visited a position of
higher fitness. The algorithm is compared to a standard PSO and the authors claim
that FDR-PSO performs better on several test functions. However, the FDR-PSO is
compared only to a gbest configuration, which is known to converge frequently to
local optima in the majority of the functions of the test set.

More recently, a comprehensive-learning PSO (CLPSO) was proposed [7]. Its
learning strategy abandons the global best information and introduces a complex
and dynamic scheme that uses all other particles’ past best information. CLPSO can
significantly improve the performance of the original PSO on multimodal problems.
Finally, Hseigh et al. [3] use a PSO with varying swarm size and solution-sharing
that, like in [7], uses the past best information from every particle.

A different approach is given in 1. The authors describe a structure that is based
on a grid of m nodes (with m> n) on which the particles move and interact. In this
structure, a particle, at a given time-step, may have no neighbours except itself. The
isolated particles will continue to follow its previous trajectory, based on their
current information, until they find another particle in the neighbourhood. There-
fore, we intend to investigate if the loss of information caused by not evaluating
these particles is overcome by the payoff in the convergence speed.

Common ways of addressing the computational cost of evaluating solutions in
hard real-world problems are function approximation [6], fitness inheritance [11]
and conservation of evaluations [8]. Due to the underlying structure of the proposed
algorithm, we have tested a conservation policy similar to the GREEN-PSO pro-
posed by Majercik [8]. However, in our algorithm the decision on evaluating or not
is defined by the position of the particle in the grid (isolated particles are not
evaluated) while in the GREEN-PSO the decision is probabilistic and the likelihood
of conserving a solution is controlled by a parameter.

The following section gives a formal description of the proposed network and
presents the transition rules that define the model for dynamic population structures.
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3 Partially Connected Structures

Let us consider a rectangular grid G of size q× s≥ μ, where μ is the size of the
population of any population-based metaheuristics or model. Each node Guv of the
grid is a tuple ⟨ηuv, ζu, v⟩, where ηuv ∈ f1, . . . , μg∪ f∙g and ζuv ∈ ðD×ℕÞ∪ f∙g for
some domain D. The value ηuv indicates the index of the individual that occupies
the position ⟨u, v⟩ in the grid. If ηuv = ∙ then the corresponding position is empty.
However, that same position may still have information, namely a mark (or clue)
ζuv. If ζuv = ∙ then the position is empty and unmarked. Please note that when
q × s = μ, the topology is a static 2-dimensional lattice and when q× s= μ and
q = s the topology is the standard square grid graph.

In the case of a PSO, the marks are placed by particles that occupied that
position in the past and they consist of information about those particles, like their
fitness ζ f

uv or position in the fitness landscape, as well as a time stamp ζtuv that
indicates the iteration in which the mark was placed. The marks have a lifespan of
K iterations, after which they are deleted.

Initially, Guv = ð∙, ∙Þ for all ⟨u, v⟩. Then, the particles are placed randomly on the
grid (only one particle per node). Afterwards, all particles are subject to a move-
ment phase (or grid position update), followed by a PSO phase. The process (po-
sition update and PSO phase) repeats until a stop criterion is met.

The PSO phase is the standard iteration of a PSO, comprising position and
velocity update. The only difference to a static structure is that in this case a particle
may find empty nodes in its neighbourhood.

In the position update phase, each individual moves to an adjacent empty node.
Adjacency is defined by the Moore neighborhood of radius r, so an individual i at
ρgðiÞ= ⟨u, v⟩ can move to an empty node ⟨u′, v′⟩ for which L∞ ⟨u, v⟩⟨u′, v′⟩

� �
≤ r. If

empty positions are unavailable, the individual stays in the same node. Otherwise, it
picks a neighboring empty node according to the marks on them. If there are no
marks, the destination is chosen randomly amongst the free nodes.

With this framework, there are two possibilities for the position update phase:
stimergic, whereby the individual looks for a mark that is similar to itself; and
Brownian, whereby the individual selects an empty neighbor regardless of the
marks. For the first option, let ℕ⟨u, v⟩= ⟨uð1Þ, vð1Þ⟩

�
, . . . ⟨uw, vw⟩g be the collection

of empty neighboring nodes and let i be the individual to move. Then, the indi-
vidual attempts to move to a node whose mark is as close as possible to its own
corresponding trait (fitness or position in the fitness landscape, for instance) or to an
adjacent cell picked at random if there are no marks in the neighborhood. In the
alternative Brownian policy, the individual moves to an adjacent empty position
picked at random. In either case, the process is repeated for the whole population.

For this paper, the investigation is restricted to the Brownian structure. The
algorithm is referred in the remaining of the paper has PSO-B, followed by the grid
size q× s. An extension of the PSO-B is constructed by introducing a conservation
of function evaluations (cfe) strategy. If at a given time-step a particle has no

102 C.M. Fernandes et al.



neighbors, then the particle is updated but its position is not evaluated. This version
of the algorithm is referred to as PSO-Bcfe. The following section describes the
results attained by the PSOs with dynamic structure and Brownian movement, with
and without conservation of function evaluations and compares them to the standard
topology.

4 Experiments and Results

An experimental setup was constructed with eight benchmark unimodal and mul-
timodal functions that are commonly used for investigating the performance of
PSO. The functions are described in Table 1. The dimension of the search space is
set to D = 30 (except Schaffer, with D = 2). In order to obtain a square grid graph
for the standard von Neumann topology, the population size n is set to 49 (which is

Table 1 Benchmarks for the experiments

Function Mathematical representation Range of search/Range
of initialization

Stop
criteria

Sphere f1
f1ðx⃗Þ= ∑

D

i=
x2i

− 100, 100ð ÞD
50, 100ð ÞD

0.01

Rosenbrock f2
f2ðx ⃗Þ= ∑

D− 1

i=1
ð100ðxi+1 − x2i Þ2 + ðxi − 1Þ2 ð− 100, 100ÞD

ð15, 30ÞD
100

Rastrigin f3
f3ðx ⃗Þ= ∑

D− 1

i=1
ðx2i − 10 cosð2πxiÞ+10Þ − 10, 10ð ÞD

2.56, 5.12ð ÞD
100

Griewank f4
f4ðx ⃗Þ=1+ 1

4000 ∑
D

i=1
x2i − ∏

D

i=1
cos xiffi

i
p
� � − 600, 600ð ÞD

300, 600ð ÞD
0.05

Schaffer f5
f5ðx ⃗Þ=0.5+

sin
ffiffiffiffiffiffiffiffiffiffi
x2 + y2

p� �2
− 0.5

1.0+ 0.001ðx2 + y2Þð Þ2
− 100, 100ð Þ2

15, 30ð Þ2
0.00001

Weierstrass f6
f6ðx⃗Þ= ∑

D

i=1
∑
kmax

k =0
½ak cos 2πbkðxi +0.5Þ� ��� 	

−D ∑
kmax

k=0
½ak cosð2πbk ⋅ 0.5Þ�,

a=0.5, b=3, kmax=20

− 0.5, 0.5ð ÞD
0.5, 0.2ð ÞD

0.01

Ackley f7
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within the typical range of PSO’s swarm size). The acceleration coefficients were
set to 1.494 and the inertia weight is 0.729, as in [13]. Xmax is defined as usual by
the domain’s upper limit and Vmax = Xmax. A total of 50 runs for each experiment
are conducted. Asymmetrical initialization is used (the initialization range for each
function is given in Table 1).

Two experiments were conducted. Firstly, the algorithms were run for a limited
amount of function evaluations (147000 for f1 and f5, 49000 for the remaining) and
the fitness of the best solution found was averaged over 50 runs. In the second
experiment the algorithms were run for 980000 evaluations (corresponding to
20000 iterations of standard PSO with n = 49) or until reaching a stop criterion. For
each function and each algorithm, the evaluations required to meet the criterion was
recorded and averaged over the 50 runs. A success measure is defined as the
number of runs in which an algorithm attains the fitness value established as the
stop criterion.

Tables 1 and 2 compare PSO-B with the standard PSO (with von Neumann
topology): Table 1 gives the averaged best fitness found by the swarms while
Table 2 gives, for each algorithm and each function, the averaged number of
iterations required to meet the criterion, and the number of runs in which the
criterion was met.

The best fitness values are similar in both configurations. In fact, the differences
are not statistical significant except for function f1, for which PSO-Bcfe signifi-
cantly better than PSO. (For the statistical tests comparing two algorithms,
non-parametric Kolmogorov-Smirnov tests (with 0.05 level of significance) have
been used.) As for the convergence speed, PSO-B is faster in every test function.
The results are significantly different in f1, f2, f3, f5, f6 and f8. PSO-B and the
standard PSO attain similar fitness values, but PSO-B is faster.

The main hypothesis of this paper is that a conservation of evaluations strategy
further improves the convergence speed of the dynamic topology. Moreover, we
also expect that PSO-Bcfe performance is less affected when the size of the grid is
increased. Large grid sizes result in large rates of isolated particles, deprived from
social information, which reduces the convergence speed of the algorithm. By not
evaluating these particles, the computational effort can be significantly reduced,
hopefully without degrading the overall performance. In order to investigate these
hypotheses, we have compared PSO-B and PSO-Bcfe, while varying the size of the
grid (Table 3).

Table 4 shows the average fitness values attained by PSO-B and PSO-Bcfe with
different grid sizes. Table 5 displays the average number of function evaluations
required to meet the stop criteria as well as the number of successful runs. The
performance according to the fitness values is very similar, with no significant
differences between the algorithm in every function except f1 (in which PSO-Bcfe is
significantly better). When considering the number of function evaluations (i.e., the
convergence speed), PSO-Bcfe is significantly better or statistically equivalent in
every function.

The results confirm that PSO-Bcfe is able to improve the convergence speed of
PSO-B without degrading the accuracy of the solutions. The loss of information
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Fig. 1 PSO-B and PSO-Bcfe. Function evaluations required to meet stop criteria when using grids
with different sizes
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that results from conserving evaluations is clearly overcome by the benefits of
reducing the computational cost per iteration.

In the case of f1, PSO-Bcfe also significantly improves the quality of the solu-
tions, namely with larger grids. The proposed scheme seems to be particularly
efficient in unimodal landscapes, but further tests are required in order to confirm
this hypothesis and understand what mechanisms make PSO-Bcfe so efficient in
finding more precise solutions for the sphere function.

The differences in the convergence speed of the algorithm are particularly
noticeable when the grid is larger. While PSO-B’s speed tends to decrease when the
grid size increases, the behavior of PSO-Bcfe, is much more stable, and in some
functions it is even faster when the grid is expanded.

Figure 1 graphically depicts the above referred observations. When the grid size
grows from 8 × 8 to 20 × 20, PSO-B’s convergence speed degrades consistently,
except in function f5, where the behavior is more irregular. PSO-Bcfe, on the other
hand, is sometimes faster with larger grids. When its convergence speed decreases
with size (f8, for instance), it scales better than PSO-B.

5 Conclusions

This paper proposes a general scheme for structuring dynamic populations for the
Particle Swarm Optimization (PSO) algorithm. The particles are placed on a grid of
nodes where the number of nodes is larger than the swarm size. The particles move
on the grid according to simple rules and the network of information is defined by
the particle’s position on the grid and its neighborhood (von Neumann vicinity is
considered here). If isolated (i.e., no neighbors except itself), the particle is updated
but its position is not evaluated. This strategy may result in some loss of infor-
mation, but the results show that the payoff in convergence speed overcomes the
loss of information: the convergence speed is increased in the entire test set, while
the accuracy of the algorithm (i.e., the averaged final fitness) is not degraded by the
conservation of evaluations strategy.

The proposed algorithm is tested with a Brownian motion rule and compared to
the standard static topology. The conservation of evaluations strategy results in a
more stable performance when varying the grid size. Removing the strategy from
the proposed dynamic structure results in a drop of the convergence speed when the
size of the grid increases in relation to the swarm size.

The present study is restricted to dynamic structures based on particles with
Brownian motion. Future research will be focused on dynamic structures with
stigmergic behavior based on the fitness and position of the particles.
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A Dissimilarity Learning Approach
by Evolutionary Computation for Faults
Recognition in Smart Grids

Enrico De Santis, Fabio Massimo Frattale Mascioli, Alireza Sadeghian
and Antonello Rizzi

Abstract In a modern power grid known also as a Smart Grid (SG) its of paramount

importance detecting a fault status both from the electricity operator and consumer

feedback. The modern SG systems are equipped with Smart Sensors scattered within

the real-world power distribution lines that are able to take a fine-grain picture of the

actual power grid status gathering a huge amount of heterogeneous data. The Com-

putational Intelligence paradigm has proven to be a useful approach in pattern recog-

nition and analysis in facing problems related to SG. The present work deals with

the challenging task of synthesizing a recognition model that learns from heteroge-

neous information that relates to environmental and physical grid variables collected

by the Smart Sensors on MV feeders in the real-world SG that supplies the entire city

of Rome, Italy. The recognition of faults is addressed by a combined approach of a

multiple weighted Dissimilarity Measure, designed to cope with mixed data types

like numerical data, Time Series and categorical data, and a One-Class Classification

technique. For Categorical data the Semantic Distance (SD) is proposed, capable of

grasping semantical information from clustered data. The faults model is obtained

by a clustering algorithm (k-means) with a suitable initialization procedure capa-

ble to estimate the number of clusters k. A suited evolutionary algorithm has been

designed to learn from the optimal weights of the Dissimilarity Measure defining a

suitable performance measure computed by means of a cross-validation approach. In

the present work a crisp classification rule on unseen test patterns is studied together

with a soft decision mechanism based on a fuzzy membership function. Moreover
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a favorable discrimination performance between faults and standard working con-

dition of the (One-Class) classifier will be presented comparing the SD with the

well-known Simple Matching (SM) Distance for categorical data.

Keywords Evolutionary optimization ⋅ One class classification ⋅ Faults recogni-

tion ⋅ Concept learning

1 Introduction

The Smart Grid (SG) is one of the best technological breakthrough concerning effi-

cient and sustainable management of power grids. According to the definition of the

Smart Grid European Technology Platform a SG should “intelligently integrate the
actions of all the connected users, generators, consumers and those that do both,
in order to efficiently deliver sustainable economic and secure electricity supply”

[1]. To reach that global goal the key word is the “integration” of technologies and

research fields to add value to the power grid. The SG can be considered an evo-

lution rather than a “revolution” [2] with improvements in monitoring and control

tasks, in communications, in optimization, in self-healing technologies and in the

integration of the sustainable energy generation. This evolution process is possible

if it will be reinforced by the symbiotic exchange with Information Communications

Technologies (ICTs), that, with secure network technologies and powerful computer

systems, will provide the “nervous system” and the “brain” of the actual power grid.

Smart Sensors are the fundamental driving technology that together with wired and

wireless network communications and cloud systems are able to take a fine grained

picture not only of the power grid state but also of the surrounding environment.

At this level of abstraction, the SG ecosystem acts like a Complex System with an

inherent non-linear and time-varying behavior emerging from heterogeneous ele-

ments with high degree of interaction, exchanging energy and information. Compu-

tational Intelligence (CI) techniques can face complex problems [3] and is a natural

way to “inject” intelligence in artificial computing systems taking inspiration from

the nature and providing capabilities like monitoring, control, decision making and

adaptations [4].

An important key issue in SGs is the Decision Support System (DSS), which is

an expert system that provides decision support for the commanding and dispatch-

ing system of the power grid. The information provided by the DSS can be used

for Condition Based Maintenance (CBM) in the power grid [5]. Collecting hetero-

geneous measurements in modern SG systems is of paramount importance. As an

instance, the available measurements can be used for dealing with various impor-

tant pattern recognition and data mining problems on SGs, such as event classifi-

cation [6], or diagnostic systems for cables and accessories [7]. On the basis of the

specific type of considered data, different problem types could be formulated. In

[8] authors have established a relationship between environmental features and fault

causes. A fault cause classifier based on the linear discriminant analysis (LDA) is
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proposed in [9]. Information regarding weather conditions, longitude-latitude infor-

mation, and measurements of physical quantities (e.g., currents and voltages) related

to the power grid have been taken into account. The One-Class Quarter-Sphere SVM

algorithm is proposed [10] for faults classification in the power grid. The reported

experimental evaluation is however performed on synthetically generated data only.

This paper addresses this topic, facing the challenging problem of faults prediction

and recognition on a real distribution network, in order to report in real time possible

defects, before failures can occur, or as an off-line decision making aid, within the

corporate strategic management procedures. The data set provided by ACEA Dis-

tribuzione S.p.a (ACEA is the company managing the electrical network feeding the

whole province of Rome, Italy) collects all the information considered by company’s

field experts as related to the events of a particular type of faults, namely Localized

Faults (LF). This paper follows our previous work [11] where the posed problem

of faults recognition and prediction is framed as an unsupervised learning problem

approached with the One Class Classification (OCC) paradigm [12] because of the

availability only of positive or target instances (faults patterns). This modeling prob-

lem can be faced by synthesizing reasonable decision regions relying on a k-means

clustering procedure in which the parameters of a suited dissimilarity measure and

the boundaries of decision regions are optimized by a Genetic Algorithm, such that

unseen target test patterns are recognized properly as faults or not. This paper focuses

on two important issues: (i) the initialization of k-means with an automatic proce-

dure in order to find the optimal number k of clusters; (ii) to find a more reliable

dissimilarity measure for the categorical features of the faults patterns; to this aim,

the Semantic Distance (SD) is adopted, addressing the problem of better grasping

the semantic content of a well-formed cluster. The paper is organized as follows.

Section 2 deals with a bird’s eye view on the “ACEA Smart Grid Pilot Project”

of which this study is based. A brief review of the faults patterns is given in

Sect. 3.1, while in Sect. 3.2 will be introduced the OCC system for fault recogni-

tion. In Sect. 3.3 is described the k-means initialization algorithm. In Sect. 3.4 is

presented the weighted dissimilarity measure and the proposed SD for categorical

features. A novel approach to associate a reliability measure to an hard decision about

a test pattern based on a fuzzy membership function is presented in Sect. 4. In Sect. 5

it is shown and discussed the experimental results in terms of classifications per-

formances comparing the well-known Simple Matching measure with the proposed

Semantic Distance for categorical attributes. Finally, in the Sect. 6, conclusions are

drawn.

2 The ACEA Smart Grid Project

The following work is a branch of a general project, the “ACEA Smart Grid project”

[13]. The aim is to develop an automated tool for diagnostic, recognition and analysis

of fault states in the powergrid managed by the ACEA distribution company. The

process flow diagram is depicted in Fig. 1 where it is shown how raw data coming
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Fig. 1 Process flow diagram describing the “ACEA Smart Grid Project”. Those last two post-

processing stages (gray boxes), belonging to the work packages set of the overall project, are not

discussed in this paper

from the SSs is transformed into meaningful information in order to support business

strategies. After a preliminary preprocessing stage on data, operated together with

the ACEA experts, the faults dataset is used as input for the herein presented OCC

which by means of an evolutionary strategy is in charge of learning typical fault

scenarios. A clustering technique is adopted to define the model of the proposed

OCC. The synthesized partition is used also for post-processing purposes, such data

analysis and visualization (the lower branch in Fig. 1).

3 The One Class-Classification Approach for Faults
Detection

3.1 The Fault Patterns

The ACEA power grid is constituted of backbones of uniform section exerting radi-

ally with the possibility of counter-supply if a branch is out of order. Each backbone

of the power grid is supplied by two distinct Primary Stations (PS) and each half-

line is protected against faults through the breakers. The underlined SG is equipped

with Secondary Stations (SSs) located on Medium Voltage (MV) lines, each ones

fed by a PS able to collect faults data. A fault is related to the failure of the electri-

cal insulation (e.g., cables insulation) that compromises the correct functioning of

(part of) the grid. Therefore, a LF is actually a fault in which a physical element of

the grid is permanently damaged causing long outages. LFs must be distinguished

from both: (i) “short outages” that are brief interruptions lasting more than 1 s and

less than 3 min; (ii) “transient outages” in which the interruptions don’t exceed 1 s.

The last ones can be caused, for example, by a transient fault of a cable’s electrical

insulation of very brief duration not causing a blackout.
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The proposed one-class classifier is trained and tested on a dataset composed by

1180 LFs patterns structured in 21 different features. The features belong to differ-

ent data types: categorical (nominal), quantitative (i.e., data belonging to a normed

space) and times series (TSs). The last ones describes the sequence of short outages

that are automatically registered by the protection systems as soon as they occur.

LFs on MV feeders are characterized by heterogeneous data, including weather con-

ditions, spatio-temporal data (i.e., longitude-latitude pairs and time), physical data

related to the state of power grid and its electric equipments (e.g., measured currents

and voltages), and finally meteorological data. The whole database was provided by

ACEA and contains data concerning a temporal period of 3 years across 2009–2011.

This database was validated, by cleaning it from human errors and by completing in

an appropriate way missing data. A detailed description of the considered features

is provided in Table 1.

3.2 The OCC Classifier

The main idea in order to build a model of LF patterns in the considered SG is to use

a clustering technique. In this work a modified version of k-means is proposed, capa-

ble to find a suitable partition P = {1,2,… ,k} of data set and to determine at the

same time the optimal number of clusters k. The main assumption is that similar sta-

tus of the SG have similar chances of generating a LF, reflecting the cluster model.

The OCC System is designed to find a proper decision region, namely the “faults

space”,  , relying on the positions of target patterns denoting the LFs. A (one-class)

classification problem instance is defined as a triple of disjoint sets, namely training

set (tr), validation set (vs), and test set (ts), all containing fault pattern instances.

Given a specific parameters setting, a classification model instance is synthesized on

tr and it is validated on vs. Finally, performance measures are computed on ts. As

depicted in the functional model (see Fig. 2) this paradigm is objectified by designing

the OCC classifier as the composition of three modules wrapped in an optimization

block. In order to synthesize the LF region, the learning procedure is leaded: (1)

by the clustering module that operate an hard partition of tr; (2) by the validation

module operating on vs, designed to refine the LF boundaries; the decision rule

(that leads the task of the patterns assignment) is based on the proximity of the LF

pattern at hand to the clusters representatives. Thus the core of the OCC system is

the dissimilarity measure d ∶  ×  → ℝ+
, reported in Sect. 3.4, that depends on a

weighting parameter vector w. For this reason the proposed (One-Class) classifier

fully belongs to the Metric Learning framework [14]. The decision regions B(Ci)
are derived from a “cluster extent” measure 𝛿(Ci) characterizing the Ci clusters and

summed to a tolerance parameter 𝜎 (thus B(Ci)=𝛿(Ci)+ 𝜎) that together to the dis-

similarity weights belongs to the search space for the optimization algorithm. Here

Ci is the ith cluster (i = 1, 2,… , k) and 𝛿(Ci) is the average intra-cluster dissimilarity.

The overall decision regions is the union of the k hyperspheres, that is:



118 E. De Santis et al.

Ta
bl
e
1

C
o
n
s
id

e
r
e
d

fe
a
tu

r
e
s

r
e
p
r
e
s
e
n
ti

n
g

a
fa

u
lt

p
a
tt

e
r
n

F
e
a
tu

r
e

D
a
ta

ty
p
e

D
e
s
c
r
ip

ti
o
n

(
1
)

D
a
y

s
ta

r
t

D
a
y

in
w

h
ic

h
th

e
L

F
w

a
s

d
e
te

c
te

d

(
2
)

T
im

e
s
ta

r
t

T
im

e
s
ta

m
p

(
m

in
u
te

s
)

in
w

h
ic

h
th

e
L

F
w

a
s

d
e
te

c
te

d

(
1
2
)

C
u
r
re

n
t

o
u
t

o
f

b
o
u
n
d
s

Q
u

a
n

ti
ta

ti
v
e

(
I
n
te

g
e
r
)

T
h
e

m
a
x
im

u
m

o
p
e
r
a
ti

n
g

c
u
r
r
e
n
t

o
f

th
e

b
a
c
k
b
o
n
e

is
le

s
s

th
a
n

o
r

e
q
u
a
l

to
6
0

%
o
f

th
e

th
r
e
s
h
o
ld

“
o
u
t

o
f

b
o
u
n
d
s
”
,

ty
p
ic

a
ll

y
e
s
ta

b
li

s
h
e
d

a
t

9
0

%
o
f

c
a
p
a
c
it

y

(
1
1
)

#
S

e
c
o
n
d
a
r
y

S
ta

ti
o
n
s

(
S

S
s
)

N
u
m

b
e
r

o
f

o
u
t

o
f

s
e
r
v
ic

e
s
e
c
o
n
d
a
r
y

s
ta

ti
o
n
s

d
u
e

to
th

e
L

F

(
3
)

P
r
im

a
r
y

S
ta

ti
o
n

(
P

S
)

c
o
d
e

U
n
iq

u
e

b
a
c
k
b
o
n
e

id
e
n
ti

fi
e
r

(
4

)
P

ro
te

c
ti

o
n

tr
ip

p
e
d

T
y

p
e

o
f

in
te

r
v
e
n

ti
o

n
o

f
th

e
p
ro

te
c
ti

v
e

d
e
v
ic

e

(
5
)

V
o
lt

a
g
e

li
n
e

C
a
te

g
o

r
ic

a
l

(
S

tr
in

g
)

N
o
m

in
a
l

v
o
lt

a
g
e

o
f

th
e

b
a
c
k
b
o
n
e

(
6
)

T
y
p
e

o
f

e
le

m
e
n
t

E
le

m
e
n

t
th

a
t

c
a
u

s
e
d

th
e

d
a
m

a
g
e

(
1

7
)

C
a
b

le
s
e
c
ti

o
n

S
e
c
ti

o
n

o
f

th
e

c
a
b

le
,
if

a
p

p
li

c
a
b

le

(
7
)

L
o
c
a
ti

o
n

e
le

m
e
n
t

E
le

m
e
n
t

p
o
s
it

io
n
in

g
(
a
e
r
ia

l
o
r

u
n
d
e
rg

ro
u
n
d
)

(
8

)
M

a
te

r
ia

l
C

o
n

s
ti

tu
e
n

t
m

a
te

r
ia

l
e
le

m
e
n

t
(
C

U
,

A
L

)

(
9

)
P

r
im

a
r
y

s
ta

ti
o

n
fa

u
lt

d
is

ta
n

c
e

D
is

ta
n

c
e

b
e
tw

e
e
n

th
e

p
r
im

a
r
y

s
ta

ti
o

n
a
n

d
th

e
g
e
o

g
ra

p
h

ic
a
l

lo
c
a
ti

o
n

o
f

th
e

L
F

(
1
0
)

M
e
d
ia

n
p
o
in

t
F

a
u

lt
lo

c
a
ti

o
n

c
a
lc

u
la

te
d

a
s

m
e
d

ia
n

p
o

in
t

b
e
tw

e
e
n

tw
o

s
e
c
o

n
d

a
r
y

s
ta

ti
o

n
s

(
1
3
)

M
a
x
.

te
m

p
e
r
a
tu

r
e

M
a
x
im

u
m

re
g
is

te
r
e
d

te
m

p
e
r
a
tu

r
e

(
1
4
)

M
in

.
te

m
p
e
r
a
tu

r
e

M
in

im
u
m

re
g
is

te
r
e
d

te
m

p
e
r
a
tu

r
e

(
1
5
)

D
e
lt

a
te

m
p
e
r
a
tu

r
e

Q
u

a
n

ti
ta

ti
v
e

(
R

e
a
l)

D
iff

e
r
e
n
c
e

b
e
tw

e
e
n

th
e

m
a
x
im

u
m

a
n
d

m
in

im
u
m

te
m

p
e
r
a
tu

r
e

(
1
6
)

R
a
in

M
il

li
m

e
te

r
s

o
f

ra
in

fa
ll

in
a

p
e
r
io

d
o
f

2
h

p
r
e
c
e
d
in

g
th

e
L

F

(
1
8
)

B
a
c
k
b
o
n
e

E
le

c
tr

ic
C

u
r
r
e
n
t

E
x
tr

a
c
te

d
fe

a
tu

r
e

f
ro

m
T

im
e

S
e
r
ie

s
o
f

e
le

c
tr

ic
c
u
r
r
e
n
t

v
a
lu

e
s

th
a
t

fl
o
w

s
in

a
g
iv

e
n

b
a
c
k
b
o
n
e

o
f

th
e

c
o
n
s
id

e
r
e
d

p
o
w

e
r

g
r
id

.
I
t

is
th

e
d
iff

e
r
e
n
c
e

b
e
tw

e
e
n

th
e

a
v
e
r
a
g
e

o
f

th
e

c
u
r
r
e
n
t’

s
v
a
lu

e
,

in
tw

o

c
o
n
s
e
c
u
ti

v
e

te
m

p
o
r
a
l

w
in

d
o
w

s
o
f

1
2

h
e
a
c
h

o
n
e
,

b
e
fo

r
e

th
e

fa
u
lt

(
1
9
)

I
n
te

r
r
u
p
ti

o
n
s

(
b
r
e
a
k
e
r
)

S
e
q
u
e
n
c
e

o
f

o
p
e
n
in

g
e
v
e
n
ts

o
f

th
e

br
ea

ke
rs

in
th

e
p
r
im

a
r
y

s
ta

ti
o

n

(
2

0
)

P
e
te

r
s
e
n

a
la

r
m

s
T

S
(
I
n
te

g
e
r
s

s
e
q
u
e
n

c
e
)

S
e
q
u
e
n

c
e

o
f

a
la

r
m

s
d

e
te

c
te

d
b
y

th
e

d
e
v
ic

e
c
a
ll

e
d

“
P

e
te

r
s
e
n
’s

c
o

il
”

d
u

e
to

lo
s
s

o
f

e
le

c
tr

ic
a
l

in
s
u
la

ti
o
n

o
n

th
e

p
o
w

e
r

li
n
e

(
2
1
)

S
a
v
in

g
in

te
r
v
e
n
ti

o
n
s

S
e
q
u
e
n
c
e
s

o
f

d
e
c
is

iv
e

in
te

r
v
e
n
ti

o
n
s

o
f

th
e

P
e
te

r
s
e
n
’s

c
o
il

w
h
ic

h
h
a
v
e

p
r
e
v
e
n
te

d
th

e
L

F



A Dissimilarity Learning Approach by Evolutionary Computation . . . 119

Fig. 2 Block diagram depicting the optimized classification model synthesis

 =
k⋃

i=1
B(Ci) (1)

In Fig. 3 is depicted one hypersphere model.

In this work in addition to the weights w and the 𝜎 parameters the search space

is completed by a 𝛾 parameter controlling the proposed k-means initialization algo-

rithm (see Sect. 3.3). Finally it is defined the search space, constituted by the all

model’s parameters, as p = [w, 𝜎, 𝛾].
In this work the representative of the cluster, denoted as ci = R(i), is the Min-

SOD [15]. So for each cluster Ci the representative one will be chosen as the pattern

that belongs to the considered cluster and for which the sum of distances from the

other patterns of the cluster has the lower value. A cluster representative ci can be

considered as a prototype of a typical fault scenario individuated in tr.The decision

rule to establish if a test pattern is a target pattern or not is performed computing its

overall dissimilarity measure d from the representatives of all clusters Ci and veri-

fying if it falls in the decision region (see Fig. 3) built up on the nearest cluster. A

standard Genetic Algorithm is used in the learning phase in order to minimize the

Fig. 3 Cluster decision region and its characterizing parameters
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Fig. 4 Composition of the

chromosome

trade-off between a performance measure (we specify the nature of such a measure in

the experiments section) on vs and the threshold 𝜎

′
value by means of the following

Objective Function:

f (p) = 𝛼A(vs) + (1 − 𝛼) 𝜎′
, (2)

where 𝛼 ∈ [0, 1] is an external parameter controlling the importance in minimiz-

ing A(vs) versus 𝜎
′
. In other words, 𝛼 is a meta-parameter by which it is possible

to control the relative importance in minimizing A(vs) or in minimizing the over-

all faults decision region extent. 𝜎
′

is the threshold value normalized with respect

to the diagonal D of the hypercube (see Sect. 3.4) of the overall space: 𝜎
′ = 𝜎∕D.

As concerns the chromosome coding (see Fig. 4), each individual of the population

consists in the weights ws, s = (1, 2,… ,Nw) associated to each feature, where Nw
is the number of the considered features, the value 𝜎 that is the threshold added

at each “cluster extent” measure during the validation phase and the 𝛾 parameter

mentioned above. The overall number of genes in an individual’s chromosome is

therefore l=Nw + 2. The functional dependencies between the discussed parameters,

in the proposed OCC system, are:

⎧
⎪
⎨
⎪
⎩

kopt = kopt(w, 𝛾)
𝜎i = 𝜎i(kopt,w)
A = A(w, 𝜎i),

(3)

where kopt is the optimum number of clusters found by the k-means initialization

algorithm described in the next section and A is the performance measure of the

proposed (One-Class) classifier. The subscript index i covers the general case, not

studied here, in which can be instantiated distinct thresholds values for different clus-

ters.

3.3 The k-Means Initialization Algorithm

It is well known that the k-means behavior depends critically on both the number k
of clusters, given as a fixed input, and on the position of the k initial clusters repre-

sentatives. In the literature there are a wide range of algorithms for the initialization

of the centroids of the k-means, each with its pros and cons [16–18]. The initial-

ization criterion of centroids, here proposed, was initial inspired by [19]. The work

is based on the idea to choose as centroids, the patterns that are furthest from each

other. The provided version of the algorithm takes into account also the presences

of outliers. To verify if the candidate centroid is an outlier we designed a simple



A Dissimilarity Learning Approach by Evolutionary Computation . . . 121

decision rule defined by parameters: a, an integer value, and b, a real valued number

ranging [0, 1]. The parameter a indicates the minimum number of patterns that must

enter in the circumference with center the pattern candidate as centroid and radius

given by b ∗ dPmax, where dPmax is the distance between the furthest pattern in the

whole dataset. Hence if within the distance b ∗ dPmax there are more than a patterns

then the candidate centroid is not an outlier. Other inputs to the overall algorithm

are a scale parameter 𝛾 , the Dissimilarity Matrix (DM) 𝐃 and the number of initial

centroids kini. The algorithm tries to calculate the best positions of the centroids and

their final number kopt possibly decreasing the provided initial number (kini). The

main steps are the following:

Algorithm input: The initial number of centroids kini, the dissimilarity matrix 𝐃, the 𝛾 ∈ [0, 1]
parameter, a,b, dPmax.

Algorithm output: the kopt centroids.

Choose a random pattern pi among those available in tr and compute the pattern pj furthest

away from it.

while centroid== not found do
if pj is not an outlier then

choose pj as the first centroid;

centroid= found;

else
choose as pj the next pattern among those furthest away from pi;

centroid= not found;

end
end
Choose as second centroid the pattern pa furthest away from pj.

while centroid== not found do
if pa is not an outlier then

choose it as the as second centroid;

centroid= found;

else
choose as pa the next pattern furthest away from pj;

centroid= not found

end
end
while k < kini do

choose as a possible centroid the pattern pn whose sum of the distances to the other cen-

troids, found earlier, is maximum;

if pn is not an outlier then
choose it as the other centroid; k = k + 1;

else
choose the next pattern whose sum of the distances to the other centroids found earlier,

is maximum;

end
end
Calculate dCmax = d(pj, pa) as the distance between the first two centroids. Given the external

parameter 𝛾 ∈ [0, 1]
for i= 1; i < k; i++ do



122 E. De Santis et al.

for j= 1; j < k; j++ do
if d(pi, pj) ≤ 𝛾 ∗ dCmax then

delete randomly one of the two considered centroid, k = kini − 1;

end
end

end
return the kopt = k centroids.

The k-means with the proposed representatives initialization can be seen as an

hybrid between a k-clustering and a free clustering algorithm where, once fixed an

initial number of centroids, it returns an optimal number of centroids less or equal

to the initial ones.

3.4 The Weighted Custom Dissimilarity Measure

The dissimilarity function between two patterns is of paramount importance in data

driven modeling applications. Given two patterns x and y the wighted dissimilarity

measure adopted in the proposed classifier is:

d(x, y;W) =
√

(x ⊖ y)WWT (x ⊖ y)T ) (4)

d(x, y;W) ∈ [0,D]

where (x ⊖ y) is a Component-Wise dissimilarity measure, i.e. a row vector contain-

ing the specific differences between homologues features. W is a diagonal square

matrix of dimension Nw × Nw, in which Nw is the number of weights. In Eq. 4 the

maximum value for d is the diagonal of the hypercube, that is: D =
√

∑Nw
i=1 w2

i , where

wi are the features weights. The inner specific dissimilaritiy functions differ each

other depending on the nature of each feature as explained in the following.

Quantitative (real). Given two normalized quantitative values vi, vj the distance

between them is the absolute difference: di,j =∣ vi − vj ∣.
As regards the features “Day start” and “Time start” the distance is calculated

through the circular difference. The value of these features is an integer number

between 1 and 365 (total days in 1 year) for the former and between 1 and 1140 (total
minutes in 1 day) for the latter. The circular distance between two numbers is defined

as the minimum value between the calculated distance in a clockwise direction and

the other calculated in counter clockwise (Fig. 5).

Categorical (nominal). Categorical attributes, also referred to as nominal attributes,

are attributes without a semantically valid ordering (see Table 1 for the data treated as

nominal). Let’s define ci and cj the values of the categorical feature for the patterns ith
and jth, respectively. A one well-suited solution to compute a dissimilarity measure

for categorical features is the Simple-Matching (SM) distance:
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Fig. 5 Sketch of circular domains for “Day start” and “Time start” features

di,j =

{
1 if ci ≠ cj

0 if ci = cj.
(5)

When measuring pattern-cluster dissimilarities (i.e. in the assignment of a pattern

to a clusters) the Semantic Distance (SD) introduced in Sect. 3.4.1 is used.

Times Series. TSs are characterized by a non-uniform sampling since they repre-

sent sequences of asynchronous events. As a consequence, usually they don’t share

the same length. TSs are represented as real valued vectors containing the differ-

ences between short outages timestamps and the LF timestamp considered as a com-

mon reference. These values are normalized in the range [0, 1], dividing the values

obtained by the total number of seconds in the temporal window considered. In order

to measure the distance between two different TSs (different in values and size), we

use the Dynamic Time Warping (DTW) [20].

3.4.1 Semantic Distance for Categorical Data

The task of calculating a good similarity measure between categorical objects is

challenging because of the difficulties to establish meaningful relations between

them. The distance between two objects computed with the simple matching sim-

ilarity measure (Eq. 5) is either 0 or 1. This often results in clusters with weak intra-

similarity [21] and this may result in a loss of semantic content in a partition gen-

erated by a clustering algorithm. As concerns k-modes [22] algorithm, in the lit-

erature several frequency-based dissimilarity measures between categorical object

are proposed [23, 24]. The proposed dissimilarity measure for categorical objects is

a frequency-based dissimilarity measure and follows the work [25] in which a fea-

tures weighted k-modes algorithm is studied, where the weights are related to the

frequency value of a category in a given cluster.

Let Ni,j be the number of instances of the ith value of the considered categorical

feature Fcc in the cluster jth (Cj) and let’s define Nmax,j = max(N1,j,…Nn,j), where n
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Fig. 6 In this cluster the

Yellow feature value is

completely missing

is the number of the different values of Fcc present in Cj. We can finally define the

SD between a categorical feature of the pattern Ph (FccPh) and the cluster Cj as:

dFccPh,Cj
= 1 − Wi,j, with dFccPh,Cj

∈ [0, 1] (6)

where Wi,j =
Ni,j

Nmax,j
is the fraction of values of the ith category of the considered cat-

egorical feature in the jth cluster with respect to the number of values of the most

frequent category.

The SD takes into account the statistical information of a given cluster and it is

used like a pattern-cluster dissimilarity measure. Unlike the SM distance, the SD

can span in the real valued range [0, 1]. Note that this distance is characterized by

the statistical properties of the specific cluster under consideration. The SD can be

intended as a “local metric”, since each cluster is characterized by its own statistic

distribution of categorical values and thus it is characterized by its own weights that

can change from one cluster to another.

For example, let us consider a categorical feature coding for one of four possible

colors (red, green, blue or yellow) and let us consider the cluster depicted in Fig. 6. By

means of Eq. (6) it is possible to compute the values of Wi,L for each color (nominal

attribute value), represented or not in the considered cluster and then the SD:

{
WR,L = 10

10
,WG,L = 3

10
,WB,L = 5

10
if Color ∉ CL => WColor,L = 0

∙ if the value of FccPh is red: dFccPh,CL
= 1 − 10

10
= 0

∙ if the value of FccPh is green: dFccPh,CL
= 1 − 3

10
= 7

10
∙ if the value of FccPh is blue: dFccPh,CL

= 1 − 5
10

= 1
2

∙ if the value of FccPh is yellow: dFccPh,CL
= 1 − 0

10
= 1

4 Reliability Evaluation

Beside the Boolean decision rule regarding if a new test pattern is a fault or not

(see Sect. 3.2), it is operatively reasonable to provide the user an additional measure

that quantifies the reliability of a decision. For this purpose we equip each cluster

i with a suitable membership function denoted in the following as 𝜇
i
(⋅). In other



A Dissimilarity Learning Approach by Evolutionary Computation . . . 125

words it generates a fuzzy set over i. The membership function is able to quantify

the uncertainty (expressed by the membership degree in [0, 1]) of a decision about

the recognition of a test pattern. Membership values close to either 0 or 1 denote

“certain” and thus reliable hard decisions. If the membership degree is close to 0.5

there is no clear distinction about the hard decision. For this purpose, we used a

parametric sigmoid model for 𝜇
i
(⋅), which is defined as follows:

𝜇
i
(x) = 1

1 + exp((d(ci, x) − bi)∕ai)
, (7)

where ai, bi ≥ 0 are two parameters specific to i, and d(⋅, ⋅) is the dissimilarity mea-

sure (4). The shape parameters of the herein sigmoidal function are: (i) ai that con-

trols the steepness, the lower the value, the faster the rate of change; (ii) bi that is

used to center the function in the input domain. If a cluster (that models a typical fault

situation found in the training set) is very compact, then it describes a very specific

fault scenario. Therefore, no significant variations should be accepted to consider

test patterns as members of this cluster. The converse is also true. If a cluster is char-

acterized by a wide extent, then we might be more tolerant in the evaluation of the

membership. Accordingly, the parameter ai is set equal to 𝛿(i). On the other hand,

we can define bi = 𝛿(i) + 𝜎i∕2. This allows us to position the part of the sigmoid

that changes faster right in-between the area of the decision region determined by

the dissimilarity values falling in [B(i) − 𝜎i,B(i)].

5 Experimental Results

5.1 Test on k-Means Initialization Algorithm

The proposed initialization algorithm has been tested on a toy problem, where pat-

terns are generated from three distinct Gaussian distributions, as depicted in Fig. 7.

Setting the initial number of centroids Kini = 10, the proposed algorithm converges

to an optimal number of clusters equal to 3 (see also Fig. 8).

5.2 Tests on ACEA Dataset

In this section we report on the first tests of the proposed (One-Class) classifier sys-

tem on real data. The synthesized classification model should be able to correctly

recognize fault patterns and at the same time avoid raising wrong alarm signals,

recognizing faults system’s measurements corresponding to normal operating condi-

tions. The proposed (One-Class) classifier generates both hard and soft decisions on

each test pattern. In cases of a hard decision we evaluate the recognition performance
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Fig. 7 Patterns distribution in the considered toy problem

Fig. 8 a Centroids found before the close representatives removal step, with kini = 10. b The final

optimal centroids (Kopt = 3)

by means of the Confusion Matrix extrapolating the False Positive Rate (FPR), the

True Positive Rate (TPR) and the Accuracy (A) [26]. On the other hand, in soft deci-

sion cases the correctness of the classifier is quantified by computing the area under

the Receiver Operating Characteristic (ROC) curve (AUC) [26] generated by con-

sidering the membership degree as a suitable “score” assigned by the classifier to

the test pattern. The performance measure (2) that guides the evolution of the model

parameters by means of the GA is the accuracy elaborated by the Confusion Matrix.

The search space for the 𝛾 parameter that controls the number of retrieved cluster is

selected in the real valued interval [0.1, 1], while the initial number of cluster kini is

fixed to 15. The adopted GA performs stochastic uniform selection, Gaussian muta-

tion and scattered crossover (with crossover fraction of 0.7). It implements a form
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of elitism that imports the two fittest individuals in the next generation; the popu-

lation size is kept constant throughout the generations and equal to 50 individuals.

The stop criterion is defined by considering a maximum number of iterations (200)

and checking the variations of the best individual fitness.

Since non-faults patterns (negative instances) are not available in the ACEA

dataset, in order to properly measure system performances, negative instances are

formed by randomly generating, with a uniform distribution, each feature value char-

acterizing a fault pattern (see Sect. 3.1 for details on the features). In close coopera-

tion with the ACEA experts, following their precious advice the LF model is trained

on the features 1–4 and 6–18 (described in Table 1). The training set is composed of

532 fault patterns; in the validation set we have 470 fault patterns and 500 non-fault

patterns; finally for the test set we have 82 fault patterns and 300 non-fault patterns.

Table 2 reports the results of six simulations carried out for three distinct values of

the alpha parameter (𝛼 = [0.3, 0.5, 0.7]) and for each one it is compared to the perfor-

mance achieved using the Simple Matching (SM) distance and the Statistic Distance

(SD). According to the definition in [26] where “the AUC of a classifier is equivalent
to the probability that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance” the test performed with 𝛼 = 0.3
and using the SD for categorical variables (Sim. 1) achieves clearly the best result

with an AUC value of 92.1 %. Moreover, as we claim the classifier shows the better

true positive rate (TPR= 96.3 %) and the lower false alarms rate measured through

the false positive rate (FPR= 35.5 %). Also the Accuracy (A) is good in the previous

case, meaning that the hard classification works well. Results from Table 2 show also

how the classifier performs better in terms of AUC in every case in which is used

the SD. Hence in general terms the Sim. 1 achieves a favorable Decision Region that

characterizes a much better faults patterns, with a much more limited extension in

the whole input domain, thus avoiding to cover non-faults patterns. To confirm this

interpretation we have computed an index that measures the compactness and sepa-

rability of clusters (the lower the better), namely the Davies-Bouldin index [27], on

the training set partitions (DB in Table 2). For Sim. 1 the DB index is 9.53 compared

to the reported worst case in terms of the AUC in which the DB is 14.61. Figure 9

shows the first two components of the Principal Component Analysis (PCA) com-

Table 2 Results of the simulations obtained with the Semantic Distance (SD) and Simple Match-

ing (SM) for several values of 𝛼 parameter in the fitness function (Eq. (2))

Sim. Distance 𝛼 ki kopt FPR TPR AUC 𝛾 A DB

1 SD 0.3 15 3 35.5 % 96.3 % 92.1 % 0.5201 75.3 % 9.53

2 SM 0.3 15 9 44.3 % 83.2 % 71.3 % 0.5011 64.6 % 14.61

3 SD 0.5 15 6 41.4 % 92.7 % 85.2 % 0.4041 67.8 % 12.80

4 SM 0.5 15 7 46.1 % 96.3 % 82.1 % 0.4113 67.8 % 10.04

5 SD 0.7 15 8 42.6 % 96.3 % 84.8 % 0.4898 70.2 % 15.13

6 SM 0.7 15 8 60.9 % 98.8 % 78.1 % 0.4905 58.7 % 14.13
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Fig. 9 The first two components of the PCA elaborated over the Dissimilarity Matrix 𝐃 con-

structed from the ACEA dataset containing both fault and non-fault patterns. Figure b is obtained

with the DM weighted with the dissimilarity weights w carried out from Sim. 1 (see Table 2).

a Unitary weights, b non-unitary weights

puted on the overall ACEA dataset in the case of: (a) Dissimilarity Matrix (DM)

weighted with unitary weights, (b) DM weighted with weights retrieved from Sim.

1. Within the Sim 1 settings the OCC accomplishes the best performance retrieving

3 clusters (visible in Fig. 9a). The PCA computed in the weighted case shows how

the OCC transforms the (PCA of the) dissimilarity space separating better the fault

patterns (positive instances) from the non-fault patterns (negative instances).

6 Conclusions

In this paper we propose a MV lines faults recognition system as the core element

of a Condition Based Maintenance procedure to be employed in the electric energy

distribution network of Rome, Italy, managed by ACEA Distribuzione S.p.A. By

relying on the OCC approach, the faults decision region is synthesized by partition-

ing the available samples of the training set. A suited pattern dissimilarity measure

has been defined in order to deal with different features data types. The adopted

clustering procedure is a modified version of k-means, with a novel procedure for

centroids initialization. A genetic algorithm is in charge to find the optimal value of

the dissimilarity measure weights, as well as two parameters controlling the initial

centroids positioning and the fault decision region extent, respectively. According to

our tests, the new proposed method for k-means initialization shows a good reliabil-

ity in finding automatically the best number of clusters and the best positions of the

centroids. Furthermore, the proposed SD for categorical features subspaces performs

better than the plain SM distance when used to define a pattern to cluster dissimi-

larity measure. Since faults decision region is synthesized starting from each cluster

decision region, this measure has a key role in defining a proper inductive inference
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engine, and thus in improving the generalization capability of the recognition sys-

tem. Future works will be focused on the possibility to evaluate other clustering algo-

rithms and different global optimization schemes. Lastly, tests results performed on

real data make us confident about further systems developments possibility, towards

a final commissioning into the Rome electric energy distribution network.
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Noise Sensitivity of an Information Granules
Filtering Procedure by Genetic Optimization
for Inexact Sequential Pattern Mining

Enrico Maiorino, Francesca Possemato, Valerio Modugno
and Antonello Rizzi

Abstract One of the most essential challenges in Data Mining and Knowledge

Discovery is the development of effective tools able to find regularities in data. In

order to highlight and to extract interesting knowledge from the data at hand, a key

problem is frequent pattern mining, i.e. to discover frequent substructures hidden in

the available data. In many interesting application fields, data are often represented

and stored as sequences over time or space of generic objects. Due to the presence

of noise and uncertainties in data, searching for frequent subsequences must employ

approximate matching techniques, such as edit distances. A common procedure to

identify recurrent patterns in noisy data is based on clustering algorithms relying on

some edit distance between subsequences. However, this plain approach can produce

many spurious patterns due to multiple pattern matchings on close positions in the

same sequence excerpt. In this paper, we present a method to overcome this draw-

back by applying an optimization-based step lter that identifies the most descriptive

patterns among those found by the clustering process, and allows to return more

compact and easily interpretable clusters. We evaluate the mining systems perfor-

mances on synthetic data in two separate cases, corresponding respectively to two

different (simulated) sources of noise. In both cases, our method performs well in

retrieving the original patterns with acceptable information loss.
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1 Introduction

Nowadays, sequence data mining is a very interesting field of research that is going

to be central in the next years due to the growth of the so called “Big Data” chal-

lenge. Moreover, available data in different application fields consist in sequences

(for example over time or space) of generic objects. Generally speaking, given a

set of sequences defined over a particular domain, a data mining problem consists in

searching for possible frequent subsequences (patterns), relying on inexact matching

procedures. In this work we propose a possible solution for the so called approxi-
mate subsequence mining problem, in which we admit some noise in the matching

process. As an instance, in computational biology, searching for recurrent patterns

is a critical task in the study of DNA, aiming to identify some genetic mutations or

to classify proteins according to some structural properties. Sometimes the process

of pattern extraction returns sequences that differ from the others in a few positions.

Consequently, the choice of an adequate dissimilarity measure becomes a critical

issue when we are designing an algorithm able to deal with this kind of problems.

Handling sequences of objects is another challenging aspect, especially when the

data mining task is defined over a structured domain of sequences [1, 2] Thinking

data mining algorithms as a building block of a wider system facing a classification

task, a reasonable way to treat complex sequential data is to map sequences to ℝd

vectors by means of some feature extraction procedures in order to use classifica-

tion techniques that deal with real valued vectors as input data [3–7]. The Granular

Computing (GrC) approach [8] offers a valuable framework to fill the gap between

the input sequence domain and the features space ℝd
and relies on the so-called

information granules that play the role of indistinguishable features at a particular

level of abstraction adopted for system description. The main objective of Granular

modeling consists in finding the correct level of information granulation that best

describes the input data [9].

2 Frequent Substructures Mining and Matching Problem

The problem of sequential patterns mining was first introduced by Agrawal and

Srikant [10] in a specific context: starting from a dataset of sequences of customer

transactions, the objective consists in mining for sequential patterns in such dataset.

In a dataset of sequences of customer transactions, the general object 𝛼i of each

sequence consists of the following fields: customer-id, transaction-time and the set

of items purchased in the transaction. Agrawal et al. [10] introduce for the first time

the notion of itemset as a non-empty set of items. This problem is often viewed as the

discovery of “association rules”, that is strictly dependent on the task of mining fre-

quent itemsets. In [11], the authors propose the very first algorithm able to generate

significant association rules between items in databases. Manager of supermarkets

as well as e-commerce websites have to make decisions about which products to put
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on sale, how to design coupons and customize the offers in order to maximize their

profits. This problem raises the need to analyze past transactions and predict future

behaviors.

All the studies in this field are based on the notion of market-basket model of

data [12]. It is used to describe relationship between items and baskets, also called

“transactions”. Each basket consists in an itemset and it is assumed that the number

of items in a basket is much smaller than the total number of items.

The market-basket model (also known as a priori-like) asserts that each itemset

cannot be frequent if its items are not frequent or equivalently any super-pattern of

infrequent patterns cannot be frequent. Using this principle Agrawal and Srikant

proposed the AprioriAll algorithm in [10]. Their approach aims to extract fre-

quent sequential patterns and is based on a candidate generation and test paradigm.

Note that during the mining procedure, candidate frequent sequential patterns can

be obtained only by joining shorter frequent sequential patterns. An example of a

sequential pattern is “5 % of customers bought {Apple, Orange, Flour, Coffe} in one

transaction, followed by {Coffee, Sugar} in a later transaction”. The weakness of

the algorithm is that a huge set of candidate sequences are generated requiring an

enormous amount of memory and many repeated database scans. This behavior gets

worse with increasing size of sequences in the database.

In [13] a new algorithm named GSP (Generalized Sequential Patterns) is intro-

duced. The authors propose a breadth-first search and bottom-up method to obtain

the frequent sequential pattern. Moreover, they introduce a time constraint that fixes

the minimum and maximum delay between adjacent elements in the candidate pat-

terns and the possibility for items to be present in a set of transactions in a fixed time

window. GSP overcomes the performances of the APrioriAll algorithm [10] reduc-

ing the number of candidate sequential patterns. However, all a priori-like sequential

pattern mining methods tend to behave badly with large datasets, because they may

generate a large set of candidate subsequences. Moreover, for such algorithms, multi-

ple scans of the database are needed, one for each length of the candidate patterns and

this becomes very time consuming for mining long patterns. Finally, another prob-

lem occurs with long sequential patterns: a combinatorial number of subsequences

are generated and tested.

To overcome these problems, in [14], a new algorithm named SPADE is intro-

duced. The authors use a similar approach of GSP, however they use a vertical data

format and divide the mining problem into smaller sub-problems reducing signif-

icantly the number of database scans required. In [15, 16] the authors introduce

two algorithms FreeSpan and PrefixSpan. They are based on a completely different

approach than APrioriAll and GSP: the pattern-growth approach for mining sequen-

tial patterns in large datasets. Each time new sequential patterns are generated, the

whole dataset of sequences is projected into a set of smallest projected datasets using

the extracted sequential patterns and bigger sequential patterns are grown in each

projected dataset analyzing only locally frequent fragments. PrefixSpan introduces

new techniques to reduce the size of the projected datasets.



134 E. Maiorino et al.

All presented works describe search techniques for mining non-contiguous

sequences of objects. However, these approaches are not ideal when the objective

is to extract frequent sequential patterns, in which the contiguity of the component

objects plays a fundamental role in the information extraction.

In particular, in computation biology, even though techniques for mining sequen-

tial noncontiguous patterns have many uses, they are not appropriate for many

applications. Computational biology community has developed a lot of methods for

detecting frequent patterns, that in this field are called motifs. Moreover, working

with real-world data, the presence of some noise must be taken into account in the

designing of the matching procedure [17–20]. In many fields and particularly in a

biological context, patterns should have long lengths and high supports, but stan-

dard sequential pattern mining approaches tend to discover a large amount of “low

quality” patterns, i.e. patterns having either short lengths or low supports. It is easy

to observe that genome sequences contain errors, so it is unlikely that long sub-

sequences generated from the same origin will be exactly identical. Moreover, the

increase of the minimum number of occurrences of a subsequence in a database,

in case of exact matching, obliges to accept shorter and shorter subsequences, with

the possibility to obtain a massive quantity of data with a less specific meaning. In

such cases, exact matches techniques can give only short and trivial patterns. So, by

allowing some mismatches, it is possible to discover valuable sequential patterns,

with longer length and higher approximate supports. Some works [17, 18] use Ham-

ming distances to search for recurrent motifs in data. Other works employ suffix tree

data structure [21], suffix array to store and organize the search space [22] or use a

GrC framework for the extraction of frequent patterns in data [23].

The algorithm presented in [24] uses a suffix-three data structure to mine frequent

approximate contiguous subsequences (also called substrings). The procedure fol-

lows a “break-down-and-build-up” strategy. The “break-down” step aims at search-

ing, by means of a suffix-tree based algorithm, for the longest subsequences which

repeat, with an exact match, in the whole database. These subsequences represent

the initial sequences (called strands), which will be iteratively assembled into longer

strands by using a local search algorithm. The “build-up” step groups the obtained

strands, forming the set from which all approximate subsequences will be identified.

The algorithm [25] uses a similar approach as [24], but taking into account the

quality of sequential patterns. Good quality patterns can be obtained by balancing

pattern length and pattern support. Short patterns are undesirable, particularly when

sequences are long, since the meaning is less specific. Patterns with low supports are

not desirable too, since they can be trivial and may not describe general phenomena.

Thus, the algorithm is biased toward the search for longer subsequences, character-

ized by a sufficient frequency. It makes use of a suffix array to store and organize in

a lexicographic order the search space (i.e., the set of subsequences). The search on

such a suffix array follows a prefix extension approach, meaning that frequent sub-

sequences are individuated analyzing the prefixes of the input sequences, tolerating

inexactness during the evaluation.
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Computational biology community has developed a lot of algorithms for min-

ing frequent motifs using the Hamming distance as similarity measure. YMF [17] is

based on the computation of the statistical significance of each motif, but its perfor-

mances decrease as the complexity of motifs increases. Weeder [18] is a suffix-tree-

based algorithm and is faster than YMF, because it considers only certain types of

mismatches for the motifs, however it can not be used for different types of motifs.

Another algorithm, MITRA [19], is a mismatch-tree-based approach and uses heuris-

tics to prune the space of possible motifs.

Analysis and interpretation of time series is another challenging problem that

many authors try to solve [26, 27]. Some works consider the problem of mining

for motifs in time series databases in several applications: from the analysis of stock

prices to the study of the ECG in medicine, to the analysis of measures from sensors.

In particular in [28] it is showed how to discretize a time series, in order to obtain a

sequence of symbols, defined over a fixed alphabet and use well known motif min-

ing algorithms. However, in the discretization process, a lot of information is lost.

Moreover, this algorithm uses exact matching procedures for mining patterns and is

unusable in real cases with noisy data. In Chiu et al. [29] present another algorithm,

based on [20], that considers the presence of noise in data. However, also in this

case, a simple model of mismatches is considered. In [30] the algorithm FLAME is

presented. It consists in a suffix-tree-based technique and can be used also with time

series data sets, by converting such data into a sequence of symbols, discretizing the

numeric data. All these approaches suffer from the loss of information during the

discretization procedure.

In the following, we present a clustering-based subsequences mining algorithm

that can be used with general sequence databases, choosing a suited similarity mea-

sure, depending on the particular application. Moreover, most methods focus only on

the recurrence of patterns in data without taking into account the concept of “infor-

mation redundancy”, or, in other words, the existence of overlapping among retrieved

patterns [31]. Frequent pattern mining with approximate match is a challenging prob-

lem starting from the definition itself: even if one ignores small redundant patterns,

there might be a huge number of large frequent redundant patterns. This problem

should be taken in consideration, in a way that only some representatives of such

patterns should survive after the mining process.

3 The Proposed Algorithm

In this work we present a new approximate subsequence mining algorithm called

FRL-GRADIS (Filtered Reinforcement Learning-based GRanular Approach for DIs-

crete Sequences) [32] aiming to reduce the information redundancy of RL-GRADIS

[33] by executing an optimization-based refinement process on the extracted pat-

terns. In particular, this paper introduces the following contributions:



136 E. Maiorino et al.

1. our approach finds the patterns that maximize the knowledge about the process

that generates the sequences;

2. we employ a dissimilarity measure that can extract patterns despite the presence

of noise and possible corruptions of the patterns themselves;

3. our method can be applied on every kind of sequence of objects, given a properly

defined similarity or dissimilarity function defined in the objects domain;

4. the filtering operation produces results that can be interpreted more easily by

application’s field experts;

5. considering this procedure as an inner module of a more complex classification

system, it allows to further reduce the dimension of the feature space, thus better

addressing the curse of dimensionality problem.

This paper consists of three parts. In the first part we provide some useful definitions

and a proper notation; in the second part we present FRL-GRADIS as a two-step

procedure, consisting of a subsequences extraction step and a subsequences filter-

ing step. Finally, in the third part, we report the results obtained by applying the

algorithm to synthetic data, showing a good overall performance in most cases.

4 Problem Definition

Let  = {𝛼i} be a domain of objects 𝛼i. The objects represent the atomic units of

information. A sequence S is an ordered list of n objects that can be represented by

the set of pairs

S = {(i → 𝛽i) | i = 1,… , n; 𝛽i ∈ },

where the integer i is the order index of the object 𝛽i within the sequence S. S can

also be expressed with the compact notation

S ≡ ⟨𝛽1, 𝛽2,… , 𝛽n⟩

A sequence database SDB is a set of sequences Si of variable lengths ni. For example,

the DNA sequence S = ⟨G,T ,C,A,A,T ,G,T ,C⟩ is defined over the domain of the

four amino acids  = {A,C,G,T}.

A sequence S1 = ⟨𝛽′1, 𝛽
′
2,… , 𝛽

′
n1
⟩ is a subsequence of a sequence S2 = ⟨𝛽′′1 , 𝛽

′′
2 ,… ,

𝛽

′′
n2
⟩ if n1 ≤ n2 and S1 ⊆ S2. The position 𝜋S2 (S1) of the subsequence S1 with respect

to the sequence S2 corresponds to the order index of its first element (in this case the

order index of the object 𝛽
′
1) within the sequence S2. The subsequence S1 is also said

to be connected if

𝛽

′
j = 𝛽

′′
j+k ∀j = 1,… , n1

where k = 𝜋S2 (S1). Two subsequences S1 and S2 of a sequence S are overlapping if

S1 ∩ S2 ≠ ∅.



Noise Sensitivity of an Information Granules Filtering Procedure . . . 137

In the example described above, the complete notation for the sequence

S = ⟨G,T ,C,A,A,T ,G,T ,C⟩ is

S = {(1 → G), (2 → T), (3 → C),…}

and a possible connected subsequence S1 = ⟨A,T ,G⟩ corresponds to the set

S1 = {(5 → A), (6 → T), (7 → G)}.

Notice that the objects of the subsequence S1 inherit the order indices from the con-

taining sequence S, so that they are univocally referred to their original positions in

S. From now on we will focus only on connected subsequences, therefore the con-

nection property will be implicitly assumed.

4.1 Pattern Coverage

The objective of this algorithm is to find a set of frequent subsequences of objects

named as patterns. A pattern 𝛺 is a subsequence of objects ⟨𝜔1, 𝜔2,… , 𝜔|𝛺|⟩, with

𝜔i ∈ , that is more likely to occur within the dataset SDB. Patterns are unknown

a priori and represent the underlying information of the dataset records. Moreover,

each sequence is subject to noise whose effects include the addition, substitution and

deletion of objects in a random uncorrelated fashion and this makes the recognition

of recurrent subsequences more challenging.

Given a sequence S ∈ SDB and a set of patterns 𝛤 = {𝛺1,… , 𝛺m}, we want to

determine a quality criterion for the description of S in terms of the pattern set 𝛤 . A

connected subsequence C ⊆ S is said to be covered by a pattern 𝛺 ∈ 𝛤 iff d(C, 𝛺) ≤
𝛿, where d(⋅, ⋅) is a properly defined distance function and 𝛿 is a fixed tolerance

(Fig. 1). The coverage (𝛿)
𝛺

(S) of the pattern 𝛺 over the sequence S is the union set

of all non-overlapping connected subsequences covered by the pattern. We can write,


(𝛿)
𝛺

(S) =
⋃

i

[
Ci ⊆ S s.t. d(Ci, 𝛺) ≤ 𝛿 ∧ Ci ∩ Cj = ∅ ∀ i ≠ j

]
. (1)

Fig. 1 Coverage of the pattern 𝛺 over the subsequence C ⊆ S with tolerance 𝛿. Black boxes and

gray boxes represent respectively the covered and the uncovered objects of the sequence S. Notice

that if 𝛿 > 0 the sequences 𝛺 and C need not to be of the same length
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Formally, this set is still not well defined until we expand on the meaning of the

property

Ci ∩ Cj = ∅, (2)

which is the requirement for the covered subsequences to be non-overlapping. Indeed,

we need to include additional rules on how to deal with these overlappings when

they occur. To understand better, let us recall the example of the DNA sequences

presented above, where the dissimilarity measure between two sequences is the Lev-

enshtein distance. The set of all covered subsequences Ci (in this context referred to

as candidates) by the pattern 𝛺 over the sequence S will consist only of sequences

with values of length between |𝛺| − 𝛿 and |𝛺| + 𝛿. Indeed, these bounds correspond

respectively to the extreme cases of deleting and adding 𝛿 objects to the subsequence.

In case of two overlapping candidates Ci and Cj, in order to satisfy the property (2) of

the coverage 
(𝛿)
𝛺

(S), we have to define a rule to decide which subsequence belongs

to the set 
(𝛿)
𝛺

(S) and which does not. Candidates with smaller distances from the

searched pattern 𝛺 are chosen over overlapping candidates with higher distances. If

the two overlapping candidates have the same distance the first starting from the left

is chosen, but if also their starting position is the same the shorter one (i.e. smaller

length value) has the precedence.

A coverage example in the context of the DNA sequences is shown in Fig. 2.

The coverage of the pattern 𝛺 = ⟨A,G,G,T⟩ over the sequence S is 
(𝛿)
𝛺

(S) =
⟨A,C,G,T⟩ ∪ ⟨G,G,T⟩ ∪ ⟨A,C,G,G,T⟩.

Similarly, the compound coverage of the pattern set 𝛤 is defined as


(𝛿)
𝛤

(S) =
⋃

𝛺∈𝛤

(𝛿)
𝛺

(S). (3)

It is important to notice that, in this case, this set can include overlapping subse-

quences only if they belong to coverages of different patterns (i.e. it is assumed that

different patterns can overlap). For example consider the case shown in Fig. 3. The

coverage 
(𝛿)
{𝛺1,𝛺2}

(S) for the patterns 𝛺1 = ⟨A,G,G,T⟩ and 𝛺2 = ⟨G,T ,C⟩ is equal

to 
(𝛿)
{𝛺1,𝛺2}

(S) = ⟨A,G,G,T ,C⟩.

G G T T A C G T CT C G G G A C G G T GT C T G G C A A C G G T CT T G

A G G T A G G T A G G T

Fig. 2 Coverage examples in the case of DNA sequences. The searched pattern ⟨A,G,G,T⟩ is

found 3 times with tolerance 𝛿 ≤ 1 using the Levenshtein distance. The three occurrences show

all the edit operations allowed by the considered edit distance, respectively objects substitution,

deletion and insertion
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A C G T CCA C T T C G G G

A G G T

G T C Ω2

Ω1

S

Fig. 3 Example of the compound coverage of multiple symbols, where the symbols ⟨G,T ,C⟩ and

⟨A,G,G,T⟩ have Levenshtein distances from the corresponding subsequences equal to 0 and 1,

respectively. Notice that different symbols can cover overlapping subsequences, while competing

coverages of the same symbol are not allowed and only the most similar subsequence is chosen

5 The Mining Algorithm

In this section, we describe FRL-GRADIS, as a clustering-based sequence min-

ing algorithm. It is able to discover clusters of connected subsequences of variable

lengths that are frequent in a sequence dataset, using an inexact matching procedure.

FRL-GRADIS consists in two main steps:

∙ the symbols alphabet extraction, which addresses the problem of finding the most

frequent subsequences within a SDB. It is performed by means of the clustering

algorithm RL-GRADIS [33] that identifies frequent subsequences as representa-

tives of dense clusters of similar subsequences. These representatives are referred

to as symbols and the pattern set as the alphabet. The clustering procedure relies on

a properly defined edit distance between the subsequences (e.g. Levenshtein dis-

tance, DTW, etc.). However, this approach alone has the drawback of extracting

many superfluous symbols which generally dilute the pattern set and deteriorate

the interpretability of the produced pattern set.

∙ the alphabet filtering step deals with the problem stated above. The objective is to

filter out all the spurious or redundant symbols contained in the alphabet produced

by the symbols extraction step. To accomplish this goal we employ a heuristic

approach based on evolutionary optimization over a validation SDB.

One of the distinctive features of this algorithm is its generality with respect to the

kind of data contained in the input sequence database (e.g., sequences of real num-

bers or characters as well as sequences of complex data structures). Indeed, both steps

outlined above take advantage of a dissimilarity-based approach, with the dissimi-

larity function being a whatever complex measure between two ordered sequences,

not necessarily metric.

In the following, we first describe the main aspects of the symbols alphabet extrac-

tion procedure, then we present the new filtering method. For more details on the

symbols alphabet construction we refer the reader to [33].
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5.1 Frequent Subsequences Identification

Consider the input training dataset of sequences  = {S1, S2,… , S| |} and a prop-

erly defined dissimilarity measure d ∶  ×  → ℝ between two objects of the train-

ing dataset (e.g., Levenshtein distance for strings of characters). The goal of the sub-

sequences extraction step is the identification of a finite set of symbols

e = {𝛺1, 𝛺2,… , 𝛺|e|
},

1
computed using the distance d(⋅, ⋅) in a free clustering

procedure. The algorithm we chose to accomplish this task is RL-GRADIS which

is based on the well-known Basic Sequential Algorithmic Scheme (BSAS) cluster-

ing algorithm [33]. Symbols are found by analysing a suited set of variable-length

subsequences of  , also called n-grams, that are generated by expanding each input

sequence S ∈  . The expansion is done by listing all n-grams with lengths varying

between the values l
min

and l
max

. The parameters l
min

and l
max

are user-defined and

are respectively the minimum and maximum admissible length for the mined pat-

terns. The extracted n-grams are then collected into the SDB  . At this point, the

clustering procedure is executed on  . For each cluster we compute its representa-

tive, defined by the Minimum Sum of Distances (MinSOD) technique [33, 34], as

the element having the minimum total distance from the other elements of the clus-

ter. This technique allows to represent the corresponding clusters by means of their

most characteristic elements.

The quality of each cluster is measured by its firing strength f , where f ∈ [0, 1].
Firing strengths are used to track the dynamics describing the updating rate of the

clusters when the input stream of subsequences  is analyzed. A reinforcement

learning procedure is used to dynamically update the list of candidate symbols based

on their firing strength. Clusters with a low rate of update (low firing strength) are

discarded in an on-line fashion, along with the processing of the input data stream

 . RL-GRADIS maintains a dynamic list of candidate symbols, named receptors,
which are the representatives of the active clusters. Each receptor’s firing strength

(i.e. the firing strength of its corresponding cluster) is dynamically updated by means

of two additional parameters, 𝛼, 𝛽 ∈ [0, 1]. The 𝛼 parameter is used as a reinforce-
ment weight factor each time a cluster  is updated, i.e., each time a new input

subsequence is added to . The firing strength update rule is defined as follows:

f () ← f () + 𝛼(1 − f ()). (4)

The 𝛽 parameter, instead, is used to model the speed of forgetfulness of receptors

according to the following formula:

f () ← (1 − 𝛽)f (). (5)

1
The subscript “e” stands for “extraction” as in extraction step.
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The firing strength updating rules shown in Eqs. (4) and (5) are performed for each

currently identified receptor, after the analysis of each input subsequence. Therefore,

receptors/clusters that are not updated frequently during the analysis of  will likely

have a low strength value and this will cause the system to remove the receptor from

the list.

5.2 Subsequences Filtering

As introduced above, the output alphabet e of the clustering procedure is generally

redundant and includes many spurious symbols that make the recognition of the true

alphabet quite difficult.

To deal with this problem, an optimization step is performed to reduce the alpha-

bet size, aiming at retaining only the most significant symbols, i.e. only those that

best resemble the original, unknown ones. Since this procedure works like a filter,

we call the output of this optimization the filtered alphabetf and, clearly, f ⊂ e
holds. Nevertheless, it is important for the filtered alphabet’s size not to be smaller

than the size of the true alphabet, since in this case useful information will be lost. Let

𝛤 ⊂ e be a candidate subset of symbols of the alphabet e and S ∈  a sequence

of a validation SDB  . We assume the descriptive power of the symbols set 𝛤 , with

respect to the sequence S, to be proportional to the quantity |(𝛿)
𝛤

(S)| (cfr Eq. 3),

i.e. the number of objects 𝛽i ∈ S covered by the symbols set 𝛤 . In fact, intuitively,

a lower number of uncovered objects in the whole SDB by 𝛤 symbols can be con-

sidered as a clue that 𝛤 itself will likely contain the true alphabet. The normalized

number of uncovered objects in a sequence S by a pattern set 𝛤 corresponds to the

quantity

P =
|S| − |(𝛿)

𝛤

(S)|
|S|

, (6)

where the operator | ⋅ | stands for the cardinality of the set. The term P assumes the

value 0 when the sequence S is completely covered by the pattern set 𝛤 and the value

1 when none of the symbols in 𝛤 are present in the sequence S. Notice that 
(𝛿)
𝛤

(S)
depends on the parameter 𝛿 which represents the tolerance of the system towards the

corruption of symbols’ occurrences caused by noise.

On the other hand, a bigger pattern set is more likely to contain spurious patterns

which tend to hinder the interpretability of the obtained results, so smaller set sizes

are to be preferred. This property can be described with the normalized alphabet size

Q = |𝛤 |

|e|
, (7)

where e is the alphabet of symbols extracted by the clustering procedure described

in the last section. Clearly, the cardinality of e represents an upper bound for the
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size of the filtered alphabet, so the term Q ranges from 0 to 1. The terms P and Q
generally show opposite trends, since a bigger set of symbols is more likely to cover

a bigger portion of the sequence and vice versa.

Finding a tradeoff between these two quantities corresponds to minimizing the

convex objective function

G(𝛿)
S (𝛤 ) = 𝜆Q + (1 − 𝜆)P (8)

where 𝜆 ∈ [0, 1] is a meta-parameter that weighs the relative importance between

the two constributions. It is easy to verify that

0 ≤ G(𝛿)
S (𝛤 ) ≤ 1. (9)

More generally, for a validation SDB  , the global objective function is the mean

value of G(𝛿)
S (𝛤 ) over all sequences Si ∈  , hence

G(𝛿)

(𝛤 ) =

∑

1≤i≤||
G(𝛿)

Si
(𝛤 )

||
(10)

and the best symbols set after the optimization procedure is

f = argmin
𝛤⊂e

G(𝛿)
S (𝛤 ). (11)

To solve the optimization problem described by Eq. (11) we employ a standard

genetic algorithm, where each individual of the population is a subset 𝛤 of the

extracted alphabet e = {𝛺1,… , 𝛺|e|
}. The genetic code of the individual is

encoded as a binary sequence E of length |e| of the form

E
𝛤

= ⟨e1, e2,… , e|e|
⟩ (12)

with

ei =
{

1 iff 𝛺i ∈ 𝛤

0 otherwise
.

It is important not to mistake genetic codes with the SDB sequences described earlier,

even if they are both formally defined as ordered sequences.

Given a validation dataset  and a fixed tolerance 𝛿, the fitness value F(E
𝛤

) of

each individual E
𝛤

is computed as the following affine transformation of the objec-

tive function introduced in the last paragraph

F(E
𝛤

) = 1 − G(𝛿)

(𝛤 ) (13)
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The computation is then performed with standard crossover and mutation operators

between the binary sequences and the stop condition is met when the maximum

fitness does not change for a fixed number N
stall

of generations or after a given max-

imum number N
max

of iterations. When the evolution stops, the filtered alphabet

f = ̃
𝛤 is returned, where ̃

𝛤 is the symbols subset corresponding to the fittest indi-

vidual E
̃
𝛤

.

6 Tests and Results

In this section, we present results from different experiments that we designed to test

the effectiveness and performance of FRL-GRADIS in facing problems with varying

complexity.

6.1 Data Generation

We tested the capabilities of FRL-GRADIS on synthetic sequence databases com-

posed of textual strings. For this reason, the domain of the problem is the English

alphabet

 = {A,B,C,… ,Z}.

Modeled noise consists in all cases of random characters insertions, deletions and

substitutions to the original string. For this reason a natural choice of dissimilarity

measure between sequences is the Levenshtein distance, that measures the minimum

number of edit steps necessary to transform one string of characters into another.

We conducted two different classes of tests, which accounted for two kinds of noise,

respectively symbols noise and channel noise, presented in the following paragraphs.

6.1.1 Symbols Noise

This kind of noise simulates those situations in which symbols are altered during

the composition of the sequence. In fact, each instance of a symbol being added to

the data sequence has a fixed probability of being mutated by one addition, deletion

or modification of its objects. Moreover, a variable number of uncorrelated objects

are added between contiguous instances of symbols in the sequence, to simulate the

presence of irrelevant data separating actual symbols. The detailed process of data

generation is described below:

1. the true symbols alphabet
t
is generated. This alphabet consists ofN

sym
symbols

with lengths normally distributed around the mean value L
sym

. Each character is

chosen in  with uniform probability and repeated characters are allowed;
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2. a training SDB  and a validation SDB  respectively composed of N
tr

and N
val

sequences are generated. Each of these sequences is built by concatenatingN
symseq

symbols chosen randomly from 
t
. Notice that generally N

symseq
> N

sym
so there

will be repeated symbols;

3. in each sequence, every symbol will be subject to noise with probability 𝜇. The

application of noise to a symbol in a sequence corresponds to the deletion, sub-

stitution or insertion of one character to that single instance of the symbol. This

kind of noise is referred to as intra-pattern noise;

4. a user-defined quantity of random characters is added between instances of sym-

bols in each sequence. This noise is called inter-pattern noise. Such quantity

depends on the parameter 𝜂 that corresponds to the ratio between the number

of characters belonging to actual symbols and the total number of character of

the sequence after the application of inter-pattern noise, that is,

𝜂 =
(# symbol characters)
(# total characters)

.

Notice that the amount of inter-pattern noise is inversely proportional to the value

of 𝜂.

6.1.2 Channel Noise

In this case we simulate a noise affecting an hypotetical channel through which the

sequence is transmitted. This kind of noise alters the objects in a uncorrelated man-

ner, without keeping track of the separation between symbols.

In this case we generate the original SDB  and  in the same manner as

described in steps 1 and 2 of Sect. 6.1.1. The noise is then added to these datasets

by iterating through the objects of the sequence and altering each object with a fixed

probability p. The alteration consists with equal probability in either:

∙ the substitution of the object with another randomly chosen object;

∙ the deletion of the object;

∙ the addition of another randomly chosen object to the right of the current object

position in the sequence.

The generated datasets  and  are then ready to be used as input of the FRL-

GRADIS procedure. Notice that the true alphabet
t
is unknown in real-world appli-

cations and here is used only to quantify the performance of the algorithm.

6.2 Quality Measures

We now introduce the quality measures used in the following tests to evaluate the

mining capabilities of the FRL-GRADIS algorithm. These measures are computed
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for the resulting alphabets obtained from both the extraction and the filtering steps

presented in Sect. 5, in order to highlight the improvement made by the filtering

procedure (i.e. the improvement of FRL-GRADIS over RL-GRADIS).

The redundance R corresponds to the ratio between the cardinality of the alphabet

 and the true alphabet 
t
, that is,

R = ||

|
t
|

(14)

Clearly, since the filtering step selects a subset 
f
(filtered alphabet) of the extracted

alphabet 
e
, we always have that

R
f
< R

e
.

The redundance measures the amount of unnecessary symbols that are found by a

frequent pattern mining procedure and it ranges from zero to infinite. When R > 1
some redundant symbols have been erroneously included in the alphabet, while when

R < 1 some have been missed, the ideal value being R = 1.

It is important to notice that the redundancy depends only on the number of sym-

bols reconstructed, but not on their similarity with respect to the original alphabet.

For this purpose we also introduce the mining error E, defined as the mean dis-

tance between each symbol 𝛺i of the true alphabet 
t
and its best match within the

alphabet , where the best match means the symbol with the least distance from

𝛺i. In other words, considering 
t
= {𝛺1,… , 𝛺|

t
|} and  = { ̃

𝛺1,… ,
̃
𝛺||}, the

mining error corresponds to

E =
∑

i d(𝛺i,
̃
𝛺(i))

|
t
|

(15)

where

̃
𝛺(i) = argmin

̃
𝛺∈

d(𝛺i,
̃
𝛺).

This quantity has the opposite role of the redundancy, in fact it keeps track of the

general accuracy of reconstruction of the true symbols regardless of the generated

alphabet size. It assumes non-negative values and the ideal value is 0. For the same

reasons stated above the inequality

E
f
≥ E

e

holds, so the extraction procedure’s mining error constitutes a lower bound for the

mining error obtainable with the filtering step.
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6.3 Results

We executed the algorithm multiple times for different values of the noise parame-

ters, to assess the different response of FRL-GRADIS to increasing amounts of noise.

Most parameters have been held fixed for all the tests and they are listed in Table 1.

As a first result, we present the synthetic tests performed by adding varying quan-

tities of symbols noise to the data sequences, performed with 𝜇 = 0.5 and variable

amounts of inter-pattern noise 𝜂. It means that about half of the symbols in a sequence

are subject to the alteration of one character and increasing amounts of random char-

acters are added between symbols in each sequence. The results obtained with this

configuration are shown in Figs. 4 and 5.

The redundancy plot in Fig. 4 shows an apparently paradoxical trend of the extrac-

tion procedure’s redundancy: with decreasing amounts of inter-pattern noise (i.e.

increasing values of 𝜂) the extraction algorithm performs more poorly, leading to

higher redundancies. That can be easily explainable by recalling how the clustering

procedure works.

Higher amounts of inter-pattern noise mean that the frequent symbols are more

likely to be separated by random strings of characters. These strings of uncorre-

lated characters generate very sparse clusters with negligible cardinality that are

very likely to be deleted during the clustering’s reinforcement step. Clusters cor-

responding to actual symbols, instead, are more active and compact, their bounds

being clearly defined by the noise characters, and so they are more likely to survive

the reinforcement step.

In case of negligible (or non-existent) inter-pattern noise, instead, different sym-

bols are more likely to occur in frequent successions that cause the generation of

many clusters corresponding to spurious symbols, obtained from the concatenation

Table 1 Fixed parameters adopted for the tests

Parameter Value Parameter Value

N
tr

50 N
val

25

N
sym

5 N
symseq

10

l
min

4 l
max

12

𝛿 1 𝜆 0.5

N
pop

100 N
elite

0.1

p
cross

0.8 p
mut

0.3

N
max

100 N
stall

50

The parameter 𝛿 corresponds to the tolerance of the Levenshtein distance considered when calcu-

lating the coverage as in Eq. (1) while 𝜆 weighs the two terms of the objective function of Eq. (8).

The values shown in the second part of the table refer to the genetic algorithm’s parameters. N
pop

corresponds to the population size, N
elite

is the fraction of individuals who are guaranteed to survive

and be copied to the new population in each iteration, p
cross

and p
mut

are respectively the crossover

and mutation probabilities. The evolution terminates if N
evol

iterations have been performed or if

for a number N
stall

of iterations the maximum fitness has not changed
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Fig. 4 Plot of the

redundance R of the

extraction (RL-GRADIS)

and filtering (FRL-GRADIS)

steps with variable

inter-pattern noise and

𝜇 = 0.5
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variable inter-pattern noise
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of parts of different symbols. The filtering procedure overcomes this inconvenience,

as it can be seen from Fig. 4 that it is nearly not affected by the amount of inter-pattern

noise. As it is evident, the filtering procedure becomes fundamental for higher val-

ues of the parameter 𝜂, where the clustering produces highly redundant alphabets

that would be infeasible to handle in a real-world application. Figure 5 shows that

the mining error after the filtering procedure remains mostly the same for all values

of 𝜂, which means that the system is robust to the moderate alteration of the input

signal.

In the second pool of tests we show the response of the system to increasing quan-

tities of channel noise p. In Fig. 6 and 7 are shown the redundance and the mining

error measured for different values of p. While FRL-GRADIS shows slightly higher

mining error levels than RL-GRADIS, its redundancy is still significantly lower and,
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Fig. 6 Plot of the redundance R of the extraction (RL-GRADIS) and filtering (FRL-GRADIS)

steps with variable channel noise. Error bars represent the standard deviation over 3 runs of the

algorithm with the same parameters
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Fig. 7 Plot of the mining error E of the extraction (RL-GRADIS) and filtering (FRL-GRADIS)

steps with variable channel noise. Error bars represent the standard deviation over 3 runs of the

algorithm with the same parameters

to a large extent, insensitive to the quantity of noise in the system. Clearly, lower

mining error levels are obtainable by setting suitable values of the parameter 𝜆 (at

the expense of resulting redundancy) or stricter convergence criteria of the genetic

algorithm (at the expense of convergence time).

In general, we can conclude that the system allows for a remarkable synthesis of

the extracted alphabet despite of a modest additional mining error.
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7 Conclusions

In this work we have presented a new approach to sequence data mining, focused

on improving the interpretability of the frequent patterns found in the data. For this

reason, we employed a two-steps procedure composed of a clustering algorithm, that

extracts the frequent subsequences in a sequence database, and a genetic algorithm

that filters the returned set to retrieve a smaller set of patterns that best describes

the input data. For this purpose we introduced the concept of coverage, that helps in

recognizing the true presence of a pattern within a sequence affected by noise. The

experiments were performed on two cases of synthetic data affected by two different

sources of noise. The results have shown a good overall performance and lay the

foundations for improvements and further experiments on real data.
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A Shuffled Complex Evolution Algorithm
for the Examination Timetabling Problem

Nuno Leite, Fernando Melício and Agostinho C. Rosa

Abstract In this work two instances of the examination timetabling problem are

studied and solved using memetic algorithms. The first is the uncapacitated single-

epoch problem instance. In the second problem instance two examination epochs are

considered, with different durations. The memetic algorithm, named Shuffled Com-

plex Evolution Algorithm, uses a population organized into sets called complexes
which evolve independently using a recombination and local search operators. Pop-

ulation diversity is preserved by means of the recombination operator and a special

solution update mechanism. Experimental evaluation was carried out on the public

uncapacitated Toronto benchmarks (single epoch) and on the ISEL–DEETC depart-

ment examination benchmark (two epochs). Results show that the algorithm is com-

petitive on the Toronto benchmarks, attaining a new lower bound on one benchmark.

In the ISEL–DEETC benchmark, the algorithm attains a lower cost when compared

with the manual solution.
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1 Introduction

The Examination Timetabling Problem (ETTP) is a combinatorial optimisation

problem which objective is to allocate course exams to a set of limited time slots,

while respecting some hard constraints, such as respect maximum room capacity,

guarantee room exclusiveness for given exams, guarantee that no students will sit

two or more exams at the same time slot, guarantee exam ordering (e.g., larger exams

must be scheduled at the beginning of the timetable), among others [19]. The ETTP

is a multi-objective problem in nature as several objectives (reflecting the various

interested parties, e.g., students, institution, teachers) are considered [5]. However,

due to complexity reasons, the ETTP has been dealt as a single-objective problem.

A second type of constraints, named soft constraints, are also considered but there

is no obligation to observe them. The optimisation goal is usually the minimisation

of the soft constraints violations.

The ETTP, as other problems (e.g. Course timetabling) belong to the general

class of timetabling problems which include Transportation and Sports timetabling,

Nurse scheduling, among others. In terms of complexity, University timetabling

problems belong to the NP-complete class of problems [22]. In the past 30 years,

several heuristic solution methods have been proposed to solve the ETTP. The meta-
heuristics form the most successful methods applied to the ETTP. These are mainly

divided into two classes [24]: single-solution based meta-heuristics and population-

based meta-heuristics. Single-solution meta-heuristics include algorithms such as

simulated annealing, tabu search, and variable neighbourhood search. Population-

based meta-heuristics include genetic algorithms, ant colony optimisation, particle

swarm optimisation and memetic algorithms. Particle swarm optimisation

integrates the larger branch named Swarm Intelligence [15]. In Swarm Intelligence

the behaviour of self-organised systems (e.g., frog swarm in a swamp, fish swarm,

honeybee mating) is simulated. For a recent survey of approaches applied to the

ETTP see [22]. Population-based approaches, especially hybrid methods that

employ single-solution meta-heuristics in an exploitation phase, have shown to be

efficient approaches for the timetabling problem. These hybrid methods are named

Memetic Algorithms [21], and integrate the larger branch known as Memetic Com-

puting. In the literature, several population-based methods were proposed for solving

the ETTP: ant colony [11], particle swarm optimisation [8], fish swarm optimisation

algorithm [25, 26], and honeybee mating optimisation [23].

In previous research undertaken [16], the ETTP was approached by an adaptation

of the Shuffled Frog-Leaping Algorithm (SFLA) [14]. The SFLA is, by its turn, based

on the Shuffled Complex Evolution (SCE) approach [12]. Both are evolutionary

algorithms (EA) containing structured populations and an efficient exploitation

phase (local search). They were successfully applied to Global optimisation prob-

lems. An important feature that must be observed when designing an EA-based

approach is the diversity management [20], as a poor population diversity leads the

algorithm to stagnate prematurely. Another emergent approach that uses a structured
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population is the Cellular Genetic Algorithm (cGA) [3], which promotes a smooth

actualization of solutions through the population, therefore maintaining the diversity.

In [17], the authors proposed a memetic algorithm for solving the ETTP. The

method, coined SCEA—Shuffled Complex Evolution Algorithm, inherits features

from the SCE and SFLA approaches, namely the population is organized into sub-

populations called complexes (memeplexes in SFLA). Population diversity is main-

tained in the SCEA using both a crossover operator and a special solution update

mechanism. The method is hybridised with the single-solution method Great Deluge

Algorithm (GDA) [13]. The GDA is a simulated annealing variant which comprises

a deterministic acceptance function of neighbouring solutions.

The SCEA is applied to the uncapacitated Toronto benchmarks [7], comprising

13 ETTP real instances (single examination epoch), and also to the uncapacitated

ETTP instance of the Department of Electronics, Telecommunications and Computer

Engineering at the Lisbon Polytechnic Institute (ISEL–DEETC), which comprises

two examination epochs. The second problem is a new problem emerged from prac-

tice, where two examination epochs are considered, with different number of time

slots allotted for each epoch.

In the present work, the two-epoch problem is tackled using a new model with

the objective of spreading away exams in the first epoch that conflict with exams in

the second epoch.

The paper is organized as follows. Section 2 presents the ETTP formulations of

the considered ETTP instances. In Sect. 3 we describe the proposed memetic algo-

rithm for solving the ETTP. Section 4 presents simulation results and analysis on the

algorithm performance. Finally, conclusions and future work are presented in Sect. 5.

2 Problem Description

In this section the two studied examination timetabling problems, namely the single-

epoch and the two-epoch problems, are described.

2.1 The Single-epoch Problem

In the single-epoch problem there exists a single examination epoch comprising

a fixed number of time slots. The problem formulation given next was adapted

from [9]. Given a set of examinations,  = {e1, e2,… , e||}, and a set of time slots,

 = {1, 2,… , | |}, the optimisation goal is to find the optimal timetable repre-

sented by the set h of ordered pairs (t, e) where t ∈  and e ∈  . The obtained

timetable is called feasible if it satisfies all hard constraints. Otherwise, the timetable

is said to be unfeasible. Table 1 describe the hard and soft constraints of the ETTP

instances analysed in this work.

The following additional symbols were defined:
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Table 1 Hard and soft constraints of the uncapacitated ETTP

Constraint and Type Explanation

H1 (Hard) There cannot exist students sitting for more than one exam

simultaneously

H2 (Hard) A minimum distance between the two exams of a course must be

observed

S1 (Soft) Exams should be spread out evenly through the timetable

∙ C = (cij)||×|| (Conflict matrix), is a symmetric matrix of size || where each

element, denoted by cij (i, j ∈ {1,… , ||}), represents the number of students at-

tending exams ei and ej. The diagonal elements cii denote the total of students

enrolled in exam ei;
∙ Ns, is the total number of students;

∙ tk (tk ∈  ) denotes the assigned time slot for exam ek (ek ∈ ).

The model presented next represents an Uncapacitated Exam Proximity problem

(UEPP) [9], where the classroom seating capacity is not considered.

minimise f = 1
Ns

4∑

i=0
wi+1 u2∣q=| |,N=i (1)

where

u2∣q=| |,N=x =
1
2

| |−(x+1)∑

k=1

||∑

i=1

||∑

j=1
cij𝜀ik𝜀jk+(x+1) , (2)

∀k where k mod | | ≠ 0 ,

subject to

| |∑

k=1

||∑

i=1

||∑

j=1
cij𝜀ik𝜀jk = 0 . (3)

Equation (1) represents the standard soft constraint S1 as proposed by Carter et al. [7].

Function f counts the number of students having 0–4 free timeslots between exams,

penalising more the conflicting exams that are close to each other. The weighting

factors are w1 = 16, w2 = 8, w3 = 4, w4 = 2, and w5 = 1.

In (2), 𝜀jk ∈ {0, 1} is a binary quantity with 𝜀jk = 1 if exam ej is assigned to time

slot k. Otherwise, 𝜀jk = 0. Equation (3) represents the hard constraint H1, that is, a

timetable is feasible if (3) is satisfied.

2.1.1 Toronto Datasets.

For evaluation purposes, the single-epoch Uncapacitated Toronto benchmarks, Ver-

sion I [22], were used.
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2.2 The Two-epoch Problem

The two-epoch problem is an extension of the standard problem where two exam-

ination epochs of different lengths are considered instead of just a single epoch. A

snapshot of timetables having two epochs is given in Tables 5 and 6. A new hard

constraint (constraint H2 in Table 1) is specified in the two-epoch problem for guar-

anteeing a minimum number of time slots between the two examinations of the same

course, in order to give the necessary study time, exam correction and proofing.

In the two-epoch problem formulation, the following terms were added to the

single-epoch problem formulation:

∙ set of time slots of the second examination epoch,  = {| | + 1, | | + 2,… , | |
+ ||};

∙ Crelax = (crelaxij )||×|| (Relaxed conflict matrix), is a relaxed version of the conflict

matrix C. This matrix is used in the generation of the second examination epoch.

Further details are given below;

∙ uk (uk ∈ ) denotes the assigned time slot for exam ek (ek ∈ ) in the second

examination epoch.

The hard constraint H2 is specified by:

uk − tk ≥ Lmin, (4)

where Lmin is the minimum time slot distance between the first and second epoch

exams of a given course.

The devised algorithm for solving the two-epoch problem executes the following

steps:

1. Divide the two-epoch problem into two distinct single-epoch problems. Solve

the second epoch problem by considering the standard single-epoch formulation

presented in Sect. 2.1, but using the relaxed conflict matrix, Crelax.

2. Then, solve the first epoch problem using a variation of the standard formulation

given in Sect. 2.1, in order to be able to spread out first epoch exams from con-

flicting exams in the second epoch. In addition, the constraint H2, defined by (4),

is also included in the extended formulation. More details are given next.

3. At the end of the optimisation step, join the two timetables forming the two-epoch

timetable that respects both constraints H1 and H2. The cost of the two-epoch

timetable is the sum of the costs of the individual timetables.

Some final details are now given. In the ISEL–DEETC dataset, the second epoch

is more constrained than the first epoch, having less time slots (18 and 12 time slots,

respectively, for the first and second epochs). In order to be possible to generate

feasible initial solutions for the second epoch, some entries (with very few students

enrolled) were set to zero, resulting in a relaxed conflict matrix. However, this pre-

processing is problem dependent and for that reason not obligatory.



156 N. Leite et al.

2.2.1 The Extended Exam Proximity Problem

The UEPP model presented earlier by Eqs. (1)–(3) is now extended in order to relate

first epoch exams with second epoch exams. As mentioned in the introduction, the

goal of using this extended model is to devise a two-epoch optimisation algorithm

that could spread away first epoch exams from conflicting exams in the second epoch,

in a neighbourhood of 0–4 time slots. The extended UEPP is presented next.

minimise fepoch1 =
1
Ns

4∑

i=0
wi+1 u2extended ∣q=| |+1,N=i,K=i+1 (5)

where

u2extended ∣q=| |+1,N=x,K=l =
1
2

| |−(x+1)+l∑

k=1

||∑

i=1

||∑

j=1
cij𝜀ik𝜀jk+(x+1) , (6)

∀k where k mod | | + 1 ≠ 0 . (7)

Figure 1 illustrates how the proximity cost function represented by (5) is computed.

We mention that while the timetables were optimised using the fitness function

specified in (5) and (1), respectively, for the first and second epochs, in the collected

results the fitness function published in [18] is used instead, that only considers con-

flicts from two consecutive time slots, and do not consider conflicts on Saturdays.

This later measure is used in order to be able to compare results with the method

published in [18].

Course 1 · · · 14 15 16 17 18 19 20 21 22 23 · · · 30

Mon · · · Tue Wed Thu Fri Sat Mon Tue Wed Thu Fri · · · Sat

ALGA x · · · x · · ·

Pg · · · x · · · x

AM1 · · · · · ·

FAE · · · x . .
. · · ·

ACir · · · x · · ·

First epoch Second epoch

Fig. 1 Exam proximity cost computation for the two-epoch problem. When computing the first

epoch proximity cost, an extended version of the chromosome is considered, having more five peri-

ods from the second epoch, marked in greyscale. The goal of using this extended model is to spread

away first epoch exams that conflict with exams in the second epoch in a neighbourhood of zero to

four time slots away
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A final detail relates to the necessary modification of the algorithm in order to in-

clude the hard constraint H2 in the first epoch optimisation. Modified versions of the

initialisation procedure, the crossover and the neighbourhood operators, that work

with feasible timetables satisfying both hard constraints, H1 and H2, were applied.

2.2.2 ISEL–DEETC Dataset

The problem instance considered in this work is the DEETC timetable of the win-

ter semester of the 2009/2010 academic year. This benchmark data is detailed in

[17, 18].

3 Shuffled Complex Evolution Algorithm for Examination
Timetabling

In this section we describe the SCEA algorithm for solving the ETTP. The SCEA

is based on ideas from the SCE [12] and the SFLA [14] approaches. In the SCE,

the population is organized into complexes whereas in the SFLA it is organized into

memeplexes. In the text, we use these two terms interchangeably.

In the SCE and SFLA approaches, global search is managed as a process of natural

evolution. The sample points form a population that is partitioned into distinct groups

called complexes (memeplexes). Each of these evolve independently, by searching

the space into different directions. After completing a certain number of generations,

the complexes are combined, and new complexes are formed through the process of

shuffling. These procedures enhance survivability by a sharing of information about

the search space, constructed independently by each complex [12].

The SCEA main steps are illustrated in Fig. 2, whereas the SCEA local search

step is depicted in Fig. 2. The main loop of SCEA is identical to the SCE and SFLA

main loop, where complexes are formed by creating random initial solutions that

span the search space. Here, instead of points, the solutions correspond to complete

and feasible timetables.

The local search step (Fig. 2b) was fully redesigned from the SCE and SFLA

methods, in order to operate with ETTP solutions. Like the SFLA, we maintain the

best and worst solutions of the memeplex, denoted respectively as Pb and Pw, and

elitism is achieved by maintaining the best global solution, denoted as Pg. The local

search step starts by selecting, randomly, and according with crossover probability

cp, two parent solutions, P1 and P2, for recombination in order to produce a new

offspring. P1 must be different from the complex’s best solution. The solution P1 is

recombined with solution P2 (see the crossover operation depicted in Fig. 3) and the

resulting offspring replaces the parent P1. After this, the complex is sorted in order

of increasing objective function value. The crossover operator was adapted from the

crossover operator of [2, 23].
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(a) (b)

Fig. 2 Shuffled complex evolution algorithm: a Main algorithm steps; b SCEA local search step

After the crossover, a solution in the complex is selected for improvement

according to an improvement probability, ip. The solution is improved by employing

the local search meta-heuristic GDA (Great Deluge Algorithm) [13]. The template

of GDA is presented in Algorithm 3.1.

The selection of the solution to improve is made on the group of the top t best

solutions. The exploitation using GDA is done on a clone of the original solution,

selected from this group. If the optimised solution is better than the original, then

it will replace the complex’s worst solution. This updating step in conjunction with

the crossover operator guarantees a reasonable diversity, in an implicit fashion.

The GDA was integrated in the SCEA in the following fashion. We use as the

initial solution s0 the chosen solution to improve. The level LEVEL is set to the

fitness value of this initial solution s0. The search stops when the water level is equal

to the solution fitness.
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(a) (b)

(c)

Fig. 3 Crossover between P1 and P2. The resulting solution P1 in (c) is the result of combining

the solution P1 (a) with other solution P2 (b). The operator inserts into P1, at a random time slot

(shown dark shaded in (a) and (c)), exams chosen from a random time slot from solution P2 (shown

dark shaded in (b)). When inserting these exams (shown light gray in (c)), some could be infeasible

or already existing in that time slot (respectively, the case of e8 and e11 in (c)). These exams are not

inserted. The duplicated exams in the other time slots are removed

3.1 Solution Construction

The construction of the initial feasible solutions is done by a heuristic algorithm

which uses the Saturation Degree graph colouring heuristic [7].

3.2 GDA’s Neighbourhood

In the local search with GDA we used the Kempe chain neighbourhood [10].

3.3 Two-epoch Feasibility

In order to be able to execute the SCEA on the two-epoch problem, we have to imple-

ment a different version of the initialisation procedure, and the crossover and neigh-

bourhood operators, that could manage the hard constraint H2 mentioned in Sect. 2.

This different version is executed in the first epoch generation, while the original

version is executed in the second epoch generation.
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Algorithm 1: Template of the Great Deluge Algorithm.

1: Input:
2: − s0 // Initial solution

3: − Initial water level LEVEL
4: − Rain speed UP // UP > 0
5: s = s0; // Generation of the initial solution

6: repeat
7: Generate a random neighbour s′

8: If f (s′ ) < LEVEL Then s = s′ // Accept the neighbour solution

9: LEVEL = LEVEL − UP // update the water level

10: until Stopping criteria satisfied

11: Output: Best solution found.

4 Experiments

4.1 Settings

The algorithm is programmed in the C++ language using the ParadisEO frame-

work [24]. The hardware and software specifications are: Intel Core i7-2630QM,

CPU @ 2.00 GHz × 8, with 8 GB RAM; OS: Ubuntu 14.04, 64 bit; Compiler used:

GCC v. 4.8.2. The parameters of SCEA are: Population size F = 24, Memeplex

count m = 3, Memeplex size n = 8 (no sub-memeplexes were defined), and Number

of time loops (convergence criterion) L = 100000000. The number of best solutions

to consider for selection on a complex is given by t = n∕4 = 2. The Great Deluge

parameter, UP, was set to: UP = 1e − 7. The crossover and improvement probabili-

ties, respectively, cp and ip, were set equal to 0.2 and 1.0. The parameter values were

chosen empirically. To obtain our simulation results, the SCEA was run five times

on each instance with different random seeds. The running time of the algorithm was

limited to 24 h to all datasets except for the Toronto’s pur93 benchmark. For this

larger dataset, the running time was limited to 48 h.

4.2 Single-epoch Problem

Tables 2 and 3 show the best results of the SCEA on the Toronto datasets as well as a

selection of the best results available in the literature. The listed methods, dated until

2008, include only results validated by [22]. In the last two rows of each table, the

TP and TP (11) indicate, respectively, the total penalty for the 13 instances and the

total penalty except the pur93 and rye92 instances. For the SCEA we present the

lowest penalty value fmin, the average penalty value fave, and the standard deviation

𝜎 over five independent runs. For the reference algorithms we present the best and

average (where available) results and the number of runs. From the analysed works



A Shuffled Complex Evolution Algorithm . . . 161

Table 2 Simulation results of SCEA and comparison with selection of best algorithms from

literature

Instance Carter et al.

(1996) [7]

Burke and

Bykov

(2006) [4]

Abdullah et al. (2009) [1]

(five runs)

Burke et al.

(2010) [6]

fmin fmin fmin fave fmin
car91 7.10 4.42 4.42 4.81 4.90

car92 6.20 3.74 3.76 3.95 4.10

ear83 36.40 32.76 32.12 33.69 33.20

hec92 10.80 10.15 9.73 10.10 10.30

kfu93 14.00 12.96 12.62 12.97 13.20

lse91 10.50 9.83 10.03 10.34 10.40

pur93 3.90 – – – –

rye92 7.30 – – – –

sta83 161.50 157.03 156.94 157.30 156.90
tre92 9.60 7.75 7.86 8.20 8.30

uta92 3.50 3.06 2.99 3.32 3.30

ute92 25.80 24.82 24.90 25.41 24.90

yor83 41.70 34.84 34.95 36.27 36.30

TP (11) 327.10 301.36 300.32 306.36 305.80

TP 338.30 – – – –

Values in bold represent the best results reported. “–” indicates that the corresponding instance is

not tested or a feasible solution cannot be obtained

Table 3 Simulation results of SCEA (continuation)

Instance Abdullah et al.

(2010) [2]

Demeester et al. (2012) [10]

(ten runs)

SCEA (five runs)

fmin fmin fave fmin fave 𝜎

car91 4.35 4.52 4.64 4.41 4.45 0.03

car92 3.82 3.78 3.86 3.75 3.77 0.01

ear83 33.76 32.49 32.69 32.62 32.69 0.07

hec92 10.29 10.03 10.06 10.03 10.06 0.03

kfu93 12.86 12.90 13.24 12.88 13.00 0.13

lse91 10.23 10.04 10.21 9.85 9.93 0.12

pur93 – 5.67 5.75 4.10 4.17 0.05

rye92 – 8.05 8.20 7.98 8.06 0.06

sta83 156.90 157.03 157.05 157.03 157.03 0.00

tre92 8.21 7.69 7.79 7.75 7.80 0.05

uta92 3.22 3.13 3.17 3.08 3.15 0.05

ute92 25.41 24.77 24.88 24.78 24.81 0.02

yor83 36.35 34.64 34.83 34.44 34.73 0.17

TP (11) 305.40 301.02 302.42 300.62 301.42
TP – 314.74 316.37 312.70 313.65
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that mention running times, the registered computation ranges in the interval [several

minutes—1 h, several hours (12 h maximum)].
The best results obtained by SCEA are competitive with the ones produced by

state-of-the-art algorithms. It attains a new lower bound on the yor83 dataset. We

also observe that the SCEA obtains the lowest sum of average cost on the TP and

TP (11) quantities, and the lowest sum of best costs on the TP quantity, for the

Toronto datasets. This demonstrates that SCEA can optimise very different datasets

with good efficiency. A negative aspect of SCEA is the time taken compared with

other algorithms. The time taken is a reflex of the high diversity of the method mixed

with the low decreasing rate UP. A low UP value is needed in order for the GDA to

find the best exam movements. If the UP value is higher, the optimisation is faster

but with worse results, because the initial, larger conflict, exams are scheduled into

sub optimal time slots, and thus the remainder exams, as the GDA’s level decreases,

could not be scheduled in the optimal fashion.

4.3 Two-epoch Problem

For the ISEL–DEETC, we compare the automatic solution with a manual solution

available from the ISEL academic services. The Lmin parameter was set to Lmin = 10
(first and second epoch examinations of a given course are 10 time slots apart).

Table 4 presents the costs for the manual solution and the automatic solution pro-

duced by the SCEA. The SCEA could generate timetables with lower cost compar-

ing with the manual solution. We note that SCEA optimised the merged timetable

comprising the five timetables and not the individual timetables, so in some cases,

some programs timetables have worse cost (e.g., MEIC, 2nd epoch). The results pro-

duced in the first epoch, are comparable with the results published in [18]. Tables 5

and 6 illustrate, respectively, the manual and automatic solutions for the most diffi-

cult timetable, the LEETC timetable.

Table 4 Number of clashes for the manual and automatic solutions in DEETC dataset

Timetable Manual sol. Automatic sol.

1st ep. 2nd ep. 1st ep. 2nd ep.

LEETC 287 647 238 550

LEIC 197 442 171 418

LERCM 114 208 125 195

MEIC 33 63 23 66

MEET 50 144 23 124

Combined 549 1163 447 1060
Sum 1712 1507

For the automatic solution, the best cost out of five runs is presented
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5 Conclusions

We presented a memetic algorithm that combines features from the SCE and the

GDA meta-heuristics. The experimental evaluation of the SCEA shows that it is com-

petitive with state-of-the-art methods. In the set of the 13 instances of the Toronto

benchmark data it attains the lowest cost on one dataset, and the lowest sum of best

and average cost with a low standard deviation. The algorithm main disadvantage is

the time taken on the larger instances. Further studies should address the diversity

management in order to accelerate the algorithm while maintaining a satisfactory

diversity. As future research, we intend to apply our solution method to the instances

of the 1st Track (Examination Timetabling) of the 2nd International Timetabling

Competition (ITC2007), which contain more hard and soft constraints.
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Static and Dynamic Methods for Fuzzy
Signal Processing of Sound
and Electromagnetic Environment Based
on Fuzzy Observations
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Abstract The real observed data in sound and electromagnetic waves often contain
fuzziness due to confidence limitations in sensing devices, permissible errors in the
experimental data, and quantizing errors in digital observations. In this study, by
paying attention to the specific signal in the real sound and electromagnetic envi-
ronment, which exhibits complex probability distribution forms, a signal processing
method is considered for estimating the probability distribution and the fluctuation
wave form of the specific signal based on the observation with fuzziness. First, a
static signal processing method is considered for predicting the probability distri-
bution of electromagnetic wave leaked from several kinds of electronic information
equipment in the real working environment based on the observed fuzzy data of the
sound. Next, a dynamic state estimation method is proposed for estimating only
the specific signal by removing background noise based on the fuzzy observation
data in the sound environment under the existence of background noise. The
effectiveness of the theoretically proposed static and dynamic signal processing
methods is experimentally confirmed by applying those to real data in the sound
and electromagnetic environment.
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1 Introduction

The Probability distribution of a specific signal in the real sound and electromag-
netic environment can take various forms, not necessarily characterized by a
standard Gaussian distribution. This is due to the diverse nature of factors affecting
the properties of the signal [1]. Therefore, it is necessary for the estimation of the
evaluation quantities such as the peak value, the amplitude probability distribution,
the average crossing rate, the pulse spacing distribution, and the frequent distri-
bution of occurrence etc. of the specific signal, to consider the lower order statistical
properties of the signal such as mean and variance as well as the higher order
statistics associated with non-Gaussian properties.

On the other hand, the observed data often contain fuzziness due to confidence
limitations in sensing devices, permissible errors in the experimental data, and
quantizing errors in digital observations [2]. For reasons of simplicity, many pre-
viously proposed estimation methods have not considered fuzziness in the observed
data under the restriction of Gaussian type fluctuations [3–7]. Although several state
estimation methods for a stochastic environment system with non-Gaussian fluc-
tuations and many analyses based on Gaussian Mixture Models have previously
been proposed [8–12], the fuzziness contained in the observed data has not been
considered in these studies. Therefore, it is desirable to develop a method that is
flexible and is applicable to ill-conditioned fuzzy observations.

In this study, a new estimation theory is proposed for a signal based on
observations with non-Gaussian properties, from both static and dynamic view-
points by regarding the observation data with fuzziness as fuzzy observations.

First, a static signal processing method considering not only linear correlation
but also the higher order nonlinear correlation information is proposed on the basis
of fuzzy observation data, in order to find the mutual relationship between sound
and electromagnetic waves leaked from electronic information equipment. More
specifically, a conditional probability expression for fuzzy variables is derived by
applying probability measure of fuzzy events [13] to a joint probability function in a
series type expression reflecting various correlation relationships between the
variables. By use of the derived probability expression, a method for estimating
precisely the correlation information based on the observed fuzzy data is theoret-
ically proposed. On the basis of the estimated correlation information, the proba-
bility distribution for a specific variable (e.g. electromagnetic wave) based on the
observed fuzzy data of the other variable (e.g. sound) can be predicted.

Next, a dynamic state estimation method for estimating a specific signal based
on fuzzy observations with the existence of background noise is proposed in a
recursive form suitable for use with a digital computer. More specifically, by paying
attention to the power state variable for a specific signal in the sound environment, a
new type of signal processing method for estimating a specific signal on a power
scale is proposed. In the case of considering the power state variable, a physical
mechanism of contamination by background noise can be reflected in the state
estimation algorithm by using the additive property between the specific signal and
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the background noise. There is a restriction for power state variables fluctuating
only in the non-negative region (i.e., any fluctuation width around the mean value
has necessary to tend zero when the mean value tends zero), and it is obvious that
the Gaussian distribution and Gaussian Mixture Models regarding the mean and
variance as independent parameters are not adequate for power state variables. The
proposed method positively utilizes Gamma distribution and Laguerre polynomial
suitable to represent the power state variable, which fluctuates only within the
positive region [14].

The effectiveness of the theoretically proposed static and dynamic fuzzy signal
processing methods for estimating the specific signal is experimentally confirmed
by applying those to real data in the sound and electromagnetic environment.

2 Static Signal Processing Based on Fuzzy Observations
in Sound and Electromagnetic Environment

2.1 Prediction for Probability Distribution of Specific Signal
from Fuzzy Fluctuation Factor

The observed data in the real sound and electromagnetic environment often contain
fuzziness due to several factors such as limitations in the measuring instruments,
permissible error tolerances in the measurement, and quantization errors in digi-
tizing the observed data. In this study, the observation data with fuzziness are
regarded as fuzzy observations.

In order to evaluate quantitatively the complicated relationship between sound
and electromagnetic waves leaked from an identical electronic information equip-
ment, let two kinds of variables (i.e. sound and electromagnetic waves) be x and y,
and the observed data based on fuzzy observations be X and Y respectively. There
exist the mutual relationships between x and y, and also between X and Y .
Therefore, by finding the relations between x and X, and also between y and Y ,
based on probability measure of fuzzy events [13], it is possible to predict the true
value y (or x) from the observed fuzzy data X (or Y). For example, for the prediction
of the probability density function PsðyÞ of y from X, averaging the conditional
probability density function Pðy jXÞ on the basis of the observed fuzzy data X,
PsðyÞ can be obtained as:PsðyÞ= ⟨Pðy jXÞ⟩X . The conditional probability density
function Pðy jXÞ can be expressed under the employment of the well-known Bayes’
theorem:

Pðy jXÞ= PðX, yÞ
PðXÞ ð1Þ

The joint probability distribution PðX, yÞ is expanded into an orthonormal
polynomial series on the basis of the fundamental probability distribution P0ðXÞ
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and P0ðyÞ, which can be artificially chosen as the probability function describing
approximately the dominant parts of the actual fluctuation pattern, as follows:

P X, yð Þ=P0 Xð ÞP0 yð Þ ∑
∞

m=0
∑
∞

n=0
Amnφm Xð Þϕn yð Þ,

Amn ≡ ⟨φm Xð Þϕn yð Þ⟩,
ð2Þ

where ⟨ ⋅ ⟩ denotes the averaging operation with respect to the random variables.
The information on the various types of linear and nonlinear correlations between X
and y is reflected in each expansion coefficient Amn. When X is a fuzzy number
expressing an approximated value, it can be treated as a discrete variable with a
certain level difference. Therefore, as P0ðXÞ, the generalized binomial distribution
with a level difference interval hX can be chosen [1]:

P0 Xð Þ=
NX −MX

hX

� �
!

X −MX
hX

� �
! NX −X

hX

� �
!
p

X −MX
hX

X 1− pXð Þ
NX −X
hX ,

pX ≡
μX −MX

NX −MX
, μX ≡ ⟨X⟩,

ð3Þ

where MX and NX are the maximum and minimum values of X. Furthermore, as the
fundamental probability density function P0 yð Þ of y, the standard Gaussian distri-
bution is adopted:

P0 yð Þ= 1ffiffiffiffiffiffiffiffiffiffi
2πσ2y

q e
−

y− μyð Þ2
2σ2y , μy ≡ ⟨y⟩ , σ2y ≡ ⟨ y− μy

� �2
⟩. ð4Þ

The orthonormal polynomials φm Xð Þ and ϕn yð Þ with the weighting functions
P0ðXÞ and P0 yð Þ can be determined as [1]

ϕm Xð Þ= NX −MX

hX

� �ðmÞ
m !

( )− 1
2 1− pX

pX

� �m
2 1
hmX

∑
m

j=0

m !
m− jð Þ ! j ! − 1ð Þm− j pX

1− pX

� �m− j

NX −Xð Þ m− jð Þ X −MXð Þ,

X nð Þ ≡X X − hXð Þ ⋅ ⋅ ⋅ X − n− 1ð ÞhXð Þ , X 0ð Þ ≡ 1
� �

,

ð5Þ

φn yð Þ= 1ffiffiffiffiffi
n !

p Hn
y− μy
σy

� �
; Hermite polynomial. ð6Þ
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Thus, the predicted probability density function PsðyÞ can be expressed in an
expansion series form:

Ps yð Þ=P0 yð Þ ∑
∞

n=0
⟨

∑
∞

m=0
Amnϕm Xð Þ

∑
∞

m=0
Am0ϕm Xð Þ

⟩Xφn yð Þ. ð7Þ

2.2 Estimation of Correlation Information Based on Fuzzy
Observation Data

The expansion coefficient Amn in (2) has to be estimated on the basis of the fuzzy
observation data X and Y, when the true value y is unknown. Let the joint proba-
bility distribution of X and Y be P(X, Y). By applying probability measure of fuzzy
events [13], PðX,YÞ can be expressed as:

P X,Yð Þ= 1
K

Z
μY yð ÞP X, yð Þ dy, ð8Þ

where K is a constant satisfying the normalized condition: ∑
X
∑
Y
P X,Yð Þ=1. The

fuzziness of Y can be characterized by the membership function
μY yð Þð= expf− αðy− YÞ2g, α; a parameter).

Substituting (2) in (8), the following relationship is derived.

P X,Yð Þ= 1
K
P0 Xð Þ ∑

∞

m=0
∑
∞

n=0
Amnanφm Xð Þ,

an =
Z

e− α y− Yð Þ2P0 yð Þϕn yð Þ dy.
ð9Þ

The conditional N-th order moment of the fuzzy variable X is given from (9) as

⟨XN jY⟩= ∑
X
P X j Yð Þ =

∑
X
XNP X, Yð Þ
P Yð Þ

=
∑
X
P0 Xð ÞXN ∑

∞

m=0
∑
∞

n=0
Amnanϕm Xð Þ

∑
∞

n=0
A0nan

.

ð10Þ
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After expanding XN in an orthogonal series expression, by considering the
orthonormal relationship of φm Xð Þ, (10) is expressed explicitly as

⟨XN j Y⟩=
∑
∞

m=0
∑
∞

n=0
dNmAmnan

∑
∞

n=0
A0nan

,

XN ≡ ∑
N

m=0
dNmϕm Xð Þ, dNm ; appropriate constant

� �
.

ð11Þ

The right side of the above equation can be evaluated numerically from the fuzzy
observation data. Accordingly, by regarding the expansion coefficients Amn as
unknown parameters, a set of simultaneous equations in the same form as in (11)
can be obtained by selecting a set of N and/or Y values equal to the number of
unknown parameters. By solving the simultaneous equations, the expansion coef-
ficients Amn can be estimated. Furthermore, using these estimates, the probability
density function PsðyÞ can be predicted from (7).

3 Dynamic Signal Processing Based on Fuzzy
Observations in Sound Environment

3.1 Formulation of Fuzzy Observation Under Existence
of Background Noise

Consider a sound environmental system with background noise having a
non-Gaussian distribution. Let the specific signal power of interest in the envi-
ronment at a discrete time k be xk, and the dynamical model of the specific signal
be:

xk +1 =Fxk +Guk, ð12Þ

where uk denotes the random input power with known statistics, and F, G are
known system parameters and can be estimated by use of the system identification
method [15] when these parameters cannot be determined on the basis of the
physical mechanism of system.

The observed data in the real sound environment often contain fuzziness due to
several factors, as indicated earlier. Therefore, in addition to the inevitable back-
ground noise, the effects of the fuzziness contained in the observed data have to be
considered in developing a state estimation method for the specific signal of
interest. From a functional viewpoint, the observation equation can be considered as
involving two types of operation:
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1. The additive property of power state variable with the background noise can
be expressed as:

yk = xk + vk ,
where it is assume that the statistics of the background noise power vk are
known in advance.

2. The fuzzy observation zk is obtained from yk . The fuzziness of zk is charac-
terized by the membership function μzkðykÞ.

3.2 State Estimation Based on Fuzzy Observation Data

To obtain an estimation algorithm for the signal power xk based on the fuzzy
observation zk , the Bayes’ theorem for the conditional probability density function
can be considered [9].

Pðxk j ZkÞ= Pðxk, zk j Zk− 1Þ
Pðzk j Zk− 1Þ , ð13Þ

where Zkð≡ ðz1, z2, . . . , zkÞÞ is a set of observation data up to a time k. By applying
probability measure of fuzzy events [13] to the right side of (13), the following
relationship is derived.

Pðxk j ZkÞ=
R∞
0 μzk ðykÞPðxk, yk j Zk− 1ÞdykR∞
0 μzk ðykÞPðyk j Zk− 1Þdyk

. ð14Þ

The conditional probability density function of xk and yk can be generally
expanded in a statistical orthogonal expansion series.

Pðxk , yk j Zk− 1Þ=P0ðxk j Zk− 1ÞP0ðyk j Zk− 1Þ
∑
∞

m=0
∑
∞

n=0
Bmnθ

ð1Þ
m ðxkÞθð2Þn ðykÞ,

ð15Þ

Bmn ≡ ⟨θð1Þm ðxkÞθð2Þn ðykÞ j Zk− 1⟩, ð16Þ

where the functions θð1Þm ðxkÞ and θð2Þn ðykÞ are the orthogonal polynomials of degrees
m and n with weighting functions P0ðxk j Zk− 1Þ and P0ðyk j Zk − 1Þ, which can be
artificially chosen as the probability density functions describing the dominant parts
of Pðxk j Zk − 1Þ and Pðyk jZk− 1Þ. These two functions must satisfy the following
orthonormal relationships:

Z ∞

0
θð1Þm ðxkÞθð1Þm0 ðxkÞP0ðxk j Zk− 1Þdxk = δmm0 , ð17Þ
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Z ∞

0
θð2Þn ðykÞθð2Þn0 ðykÞP0ðyk j Zk− 1Þdyk = δnn0 . ð18Þ

By substituting (15) into (16), the conditional probability density function
Pðxk j ZkÞ can be expressed as:

Pðxk j ZkÞ=
∑
∞

m=0
∑
∞

n=0
BmnP0ðxk j Zk− 1Þθð1Þm ðxkÞInðzkÞ

∑
∞

n=0
B0nInðzkÞ

ð19Þ

with

InðzkÞ≡
Z ∞

0
μzk ðykÞP0ðyk j Zk − 1Þθð2Þn ðykÞdyk . ð20Þ

Based on (19), and using the orthonormal relationship of (17), the recurrence
algorithm for estimating an arbitrary N-th order polynomial type function fNðxkÞ of
the specific signal can be derived as follows:

f N̂ðxkÞ≡ ⟨ fNðxkÞ jZk⟩

=
∑
N

m=0
∑
∞

n=0
BmnCNmInðzkÞ

∑
∞

n=0
B0nInðzkÞ

,
ð21Þ

where CNm is the expansion coefficient determined by the equality:

fNðxkÞ= ∑
N

m=0
CNmθ

ð1Þ
m ðxkÞ. ð22Þ

In order to make the general theory for estimation algorithm more concrete, the
well-known Gamma distribution is adopted as P0ðxk j Zk − 1Þ and P0ðyk j Zk− 1Þ,
because this probability density function is defined within positive region and is
suitable to the power state variables.

P0ðxk j Zk− 1Þ=PΓðxk;m*
xk , s

*
xkÞ,

P0ðyk j Zk− 1Þ=PΓðyk;m*
yk , s

*
yk Þ

ð23Þ
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with

PΓðx;m, sÞ≡ xm− 1

ΓðmÞsm e−
x
s,

m*
xk ≡ ðx*kÞ2 ̸ Γk, s*xk ≡ x*k m̸

*
xk ,

x*k = ⟨xk j Zk − 1⟩, Γk ≡ ⟨ðxk − x*kÞ2 j Zk − 1⟩,

m*
yk ≡ ðy*kÞ2 ̸Ωk, s*yk ≡ y*k m̸

*
yk ,

y*k = ⟨yk j Zk − 1⟩= x*k + ⟨vk⟩,

Ωk ≡ ⟨ðyk − y*kÞ2 j Zk− 1⟩ =Γk + ⟨ðvk − < vk > Þ2⟩.

ð24Þ

Then, the orthonormal functions with two weighting probability density func-
tions in (23) can be given in the Laguerre polynomial [14]:

θð1Þm ðxkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðm*

xk Þm!
Γðm*

xk +mÞ

s
L
ðm*

xk
− 1Þ

m ðxk
s*xk

Þ,

θð2Þn ðykÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðm*

yk Þn!
Γðm*

yk + nÞ

s
L
ðm*

yk
− 1Þ

n ðyk
s*yk

Þ.
ð25Þ

As the membership function μzk ðykÞ, the following function suitable for the
Gamma distribution is newly introduced.

μzkðykÞ= ðz− β
k eβÞyβk expf−

β

zk
ykg, ð26Þ

where βð>0Þ is a parameter. Accordingly, by considering the orthonormal con-
dition of Laguerre polynomial [14], (20) can be given by

InðzkÞ= z− β
k eβ

Γðm*
ykÞðs*yk Þm

*
yk

ΓðMkÞDMk
k

Z ∞

0

yMk − 1
k

ΓðMkÞDMk
k

e−
1
Dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðm*

ykÞn!
Γðm*

yk + nÞ

s
∑
n

r=0
dnrLðMk − 1Þ

r ð yk
Dk

Þdyk

=
z− β
k eβ

Γðm*
yk Þðs*yk Þm

*
yk

ΓðMkÞDMk
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðm*

yk Þn!
Γðm*

yk + nÞ

s
dn0

ð27Þ
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with

Mk ≡m*
yk + β, Dk ≡

s*yk zk
βs*yk + zk

, ð28Þ

where dnr (r = 0, 1, 2, …, n) are the expansion coefficients in the equality:

L
ðm*

yk
− 1Þ

n ðyk
s*yk

Þ= ∑
n

r=0
dnrLðMk − 1Þ

r ð yk
Dk

Þ. ð29Þ

Especially, the estimates for mean and variance can be obtained as follows:

xk̂ ≡ ⟨xk j Zk⟩

=
∑
∞

n=0
fB0nC10 +B1nC11gInðzkÞ

∑
∞

n=0
B0nInðzkÞ

,
ð30Þ

Pk ≡ ⟨ðxk − xk̂Þ2 j Zk⟩

=
∑
∞

n=0
fBonC20 +B1nC21 +B2nC22gInðzkÞ

∑
∞

n=0
B0nInðzkÞ

ð31Þ

with

C10 =m*
xk s

*
xk , C11 = −

ffiffiffiffiffiffiffi
m*

xk

q
s*xk ,

C20 = x ̂2k − 2m*
xk s

*
xkfxk̂ − ðm*

xk +1Þs*xkg−m*
xk ðm*

xk +1Þs* 2
xk ,

C21 = 2
ffiffiffiffiffiffiffi
m*

xk

q
s*xkfxk̂ − ðm*

xk +1Þs*xkg,

C22 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*

xk ðm*
xk +1Þ

q
s*xk .

ð32Þ

Finally, by considering (12), the prediction step which is essential to perform the
recurrence estimation can be given by

x*k+1 ≡ ⟨xk+1 j Zk⟩=Fxk̂ +G⟨uk⟩,

Γk+1 ≡ ⟨ðxk+1 − x*k +1Þ2 j Zk⟩
=F2Pk +G2

⟨ðuk − ⟨uk⟩Þ2⟩.
ð33Þ

By replacing k with k+1, the recurrence estimation can be achieved.
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4 Application to Sound and Electromagnetic Environment

4.1 Prediction of Sound and Electric Field in PC
Environment

By adopting a personal computer (PC) in the real working environment as specific
information equipment, the proposed static method was applied to investigate the
mutual relationship between sound and electromagnetic waves leaked from the PC
under the situation of playing a computer game. In order to eliminate the effects of
sound from outside, the PC was located in an anechoic room (cf. Fig. 1). The RMS
value (V/m) of the electric field radiated from the PC and the sound intensity level
(dB) emitted from a speaker of the PC were simultaneously measured. The data of
electric field strength and sound intensity level were measured by use of an elec-
tromagnetic field survey mater and a sound level meter respectively. The slowly
changing non-stationary 600 data for each variable were sampled with a sampling
interval of 1 (s). Two kinds of fuzzy data with the quantized level widths of 0.1
(v/m) for electric field strength and 5.0 (dB) for sound intensity level were obtained.

Based on the 400 data points, the expansion coefficients Amn were first estimated
by use of (11). Furthermore, the parameters of the membership functions in (8) for
sound level and electric field strength with rough quantized levels were decided so
as to express the distribution of data as precisely as possible, as shown in Figs. 2
and 3. Next, the 200 sampled data within the different time interval which were
non-stationary different from data used for the estimation of the expansion coeffi-
cients were adopted for predicting the probability distributions of (i) the electric
field based on sound and (ii) the sound based on electric field.

The experimental results for the prediction of electric field strength and sound
level are shown in Figs. 4 and 5 respectively in a form of cumulative distribution.
From these figures, it can be found that the theoretically predicted curves show
good agreement with experimental sample points by considering the expansion
coefficients with several higher orders.

For comparison, the generalized regression analysis method [1] without using
fuzzy theory was applied to the fuzzy data X and Y . The prediction results are shown
in Figs. 6 and 7. As compared with Figs. 4 and 5, it is obvious that the proposed
method considering fuzzy theory is more effective than the previous method.

Electromagnetic 
Field Survey 
Meter 

500mm 

Sound Level 
Meter 

Personal 
Computer

20mm 
Fig. 1 A schematic drawing
of the experiment
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Fig. 2 Membership function
of sound level

Fig. 3 Membership function
of electric field

Fig. 4 Prediction of the
cumulative distribution for the
electric field strength based on
the fuzzy observation of
sound
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Fig. 5 Prediction of the
cumulative distribution for the
sound level based on the
fuzzy observation of electric
field

Fig. 6 Prediction of the
cumulative distribution for the
electric field strength by use
of the extended regression
analysis method

Fig. 7 Prediction of the
cumulative distribution for the
sound level by use of the
extended regression analysis
method
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4.2 Estimation of Specific Signal in Sound Environment

In order to examine the practical usefulness of the proposed dynamic signal pro-
cessing based on the fuzzy observation, the proposed method was applied to the real
sound environmental data. The road traffic noise was adopted as an example of a
specific signal with a complex fluctuation form. Applying the proposed estimation
method to actually observed data contaminated by background noise and quantized
with 1 dB width, the fluctuation wave form of the specific signal was estimated. The
statistics of the specific signal and the background noise used in the experiment are
shown in Table 1.

Figures 8, 9 and 10 show the estimation results of the fluctuation wave form of
the specific signal. In this estimation, the finite number of expansion coefficients

Table 1 Statistics of the specific signal and the background noise

Statistics of specific signal Statistics of background noise
Mean
(watt/m2)

Standard deviation
(watt/m2)

Mean
(watt/m2)

Standard deviation
(watt/m2)

2.9×10−5 2.8×10−5 2.9×10−5 1.4×10−6

Fig. 8 State estimation
results for the road traffic
noise during a discrete time
interval of [1, 100] s, based on
the quantized data with 1 dB
width

Fig. 9 State estimation
results for the road traffic
noise during a discrete time
interval of [101, 200] s, based
on the quantized data with
1 dB width
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Bmnðm, n≤ 2Þ was used for the simplification of the estimation algorithm. In these
figures, the horizontal axis shows the discrete time k, of the estimation process, and
the vertical axis expresses the sound level taking a logarithmic transformation of
power-scaled variables, because the real sound environment usually is evaluated on
dB scale connected with human effects. For comparison, the estimation results
calculated using the usual method without considering any membership function
are also shown in these figures. Since Kalman’s filtering theory is widely used in
the field of stochastic system [4–6], this method was also applied to the fuzzy
observation data as a trail.

The results estimated by the proposed method considering the membership
function show good agreement with the true values. On the other hand, there are
great discrepancies between the estimates based on the standard type dynamical
estimation method (i.e., Kalman filter) without consideration of the membership
function and the true values, particularly in the estimation of the lower level values
of the fluctuation.

The squared sum of the estimation error is shown in Table 2. These results
clearly show the effectiveness of the proposed method for application to the
observation of fuzzy data.

Fig. 10 State estimation
results for the road traffic
noise during a discrete time
interval of [201, 300] s, based
on the quantized data with
1 dB width

Table 2 Root-mean squared
error of the estimation (in
dBA)

Proposed method Kalman filterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

k =1
ðxk − x̂kÞ2

s
0.90 2.52
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5 Conclusions

In this study, a new method for estimating a specific signal embedded in fuzzy
observations has been proposed from two viewpoints of static and dynamic signal
processing. The nonlinear correlation of higher order as well as the linear corre-
lation between the specific signal and observations has been considered in order to
derive the estimation method. More specifically, in order to treat fuzzy observation
data on the sound and electromagnetic waves, by applying probability measure of
fuzzy events to the probability expression, a prediction method of the probability
distribution of sound and electromagnetic waves based on the fuzzy observations
has been theoretically derived. Next, an estimation method of the fluctuation wave
of the specific signal based on the fuzzy observation data under the existence of
background noise has been derived.

The proposed approach is still at the early stage of study, and there are left a
number of practical problems to be continued in the future. For example, the
proposed method has to be applied to many other actual data of sound and elec-
tromagnetic environment. Furthermore, the proposed theory has to be extended to
more complicated situations involving multi-signal sources, and an optimal number
of expansion terms in the proposed estimation and prediction algorithms of
expansion type has to be found.
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The Ordinal Controversy and the Fuzzy
Inference System Through an Application
and Simulation to Teaching Activity
Evaluation

Michele Lalla and Tommaso Pirotti

Abstract The handling of ordinal variables presents many difficulties in both the

measurements phase and the statistical data analysis. Many efforts have been made

to overcome them. An alternative approach to traditional methods used to process

ordinal data has been developed over the last two decades. It is based on a fuzzy

inference system and is presented, here, applied to the student evaluations of teach-

ing data collected via Internet in Modena, during the academic year 2009/10, by a

questionnaire containing items with a four-point Likert scale. The scores emerging

from the proposed fuzzy inference system proved to be approximately comparable

to scores obtained through the practical, but questionable, procedure based on the

average of the item value labels. The fuzzification using a number of membership

functions smaller than the number of modalities of input variables yielded outputs

that were closer to the average of the item value labels. The Center-of-Area defuzzi-

fication method showed good performances and lower dispersion around the mean

of the value labels.

Keywords Ordinal scales ⋅ Likert scale ⋅ Student evaluation ⋅ Fuzzification ⋅
Defuzzification

1 Introduction

The analysis of an ordinal variable presents some difficulties deriving from the nature

of the collected data, which is not quantitative. Even some simple statistical indica-

tors, such as the sample average and standard deviation of a variable, are not mean-

ingful quantities to represent data [1, 2]. In the context of regression analysis, the

dependent ordinal variable requires specific models, such as ordinal logit models
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[3–5], while the independent ordinal variables could be introduced in the models

both directly as it is and transformed into dummy variables, one for each modal-

ity. Many procedural efforts have been made to improve measurement tools aimed

at obtaining more accurate quantities in order to move beyond the few techniques

offered by nonparametric statistics, such as the thermometer and Juster scales. How-

ever, none of the traditional methods allow for transformation of the nature of the

qualitative variables into quantitative variables.

Over the last two decades, a new class of models, termed the fuzzy inference

system (FIS), has been developed based on the mathematical theory of fuzzy sets,

which was originally proposed to represent indeterminacy and to formalize qualita-

tive concepts that generally have no precise boundaries [6]. Therefore, FIS may be an

ideal tool to process ordinal data because it allows for handling these data with fewer

restrictions than traditional statistical techniques, even though some ontological and

intrinsic issues remain unsolved, such as the unidimensionality of the measured con-

cept or the equidistance (or the fixed distance) between the modalities of the scale.

The purpose of the present paper is twofold. Firstly, it briefly discusses the lim-

its of some statistical indices in representing synthetically ordinal variables, which

constitute the current or traditional procedures. Secondly, the fuzzy approach, based

on the FIS, is applied to data concerning student evaluations of teaching activity

(SETA). In fact, our data set contains prevailingly ordinal information from an online

survey conducted by the University of Modena and Reggio Emilia, for the Acad-

emic Year 2009/2010. The data analysis was restricted to the evaluated courses in

the “Economics and International Management” degree program of the Faculty of

Economics. The fuzzy approach through FIS offers a clear advantage over traditional

methods because it is highly flexible in handling data and avoids the usual complica-

tions related to measurement methodology. For example, the FIS permits handling of

both the four- or five-point Likert scale and any other type of scale without theoret-

ical difficulties and great flexibility with a large variety of solutions. A comparison

between the results obtained from current procedures and the proposed FIS will be

analyzed and described, illustrating the strengths and weaknesses of both. A fuzzy

inference model may well be a new and different way to analyze ordinal variables

and, specifically, student evaluations of teaching activity.

2 Background of Ordinal Scale

The objective of the measurements process is to obtain information that is valid (i.e.,

it succeeds in evaluating what it is intended to evaluate), reliable (i.e., the results can

be reproduced upon replication of the procedure, yielding identical or very similar

values), and precise (i.e., the multiples or submultiples of the unit of measurement

are contained by the available device). Given that it is not always possible to estab-

lish or find the unit of measurement of social concepts, preciseness remains a real

difficulty of each intensity concept’s evaluation, which is generally classified on the

basis of its nature and preciseness [7], where the lowest level is based on discrim-
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ination (nominal) and the subsequent level is based on an order relation (ordinal).

The basic assumptions of almost all ordinal scales are (1) the unidimensionality of

the surveyed concept, (2) the location of the concept on a continuum, (3) the non-

equidistance between the modalities constituting the observable level of the intensity

of the concept. However, in practice, this latter assumption is often violated to obtain

the sum or the mean of the scores for two or more items. Therefore, the validity of

these operations makes ordinal scales equivalent to interval scales, which constitutes

a real difficulty of the traditional approach.

Many techniques of scales have been developed since the 1920 s to study atti-

tudes and, to a lesser extent, psychophysical and psychometric behavior [8–11].

The ordinal scales most used in practice are ‘summated’ scales and one of the first

successful procedures to obtain an ordinal variable, whose values denote the inten-

sity level of its denoted concept, was proposed by Likert [12] to measure attitudes

and opinions through statements. The intensity of each statement was rated with

graduated response keys (modalities), originally seven: strongly agree, mildly agree,

agree, uncertain, disagree, mildly disagree, and strongly disagree (seven-point Likert

scale). Subsequently, the alternatives containing “mildly” were dropped, obtaining

a five-point scale. The neutral point presents a theoretical and empirical, unsolved

issue because many empirical results do not give strong indications about the advis-

ability of its presence/absence. However, it is often eliminated, assuming that (1) it

attracts people who are careless, lazy or have no opinion, (2) respondents tend toward

one of the two nearest alternatives, (3) respondents who really are neutral, randomly

choose a polar alternative [13].

Let i be an index denoting the interviewed subject. Let j be an index denoting a

concept, and k, a statement or item about the jth concept. The corresponding score,

yijk, belongs to {1, … , M} ⊂ ℕ for any statement favorable to the concept and it

belongs to {M, … , 1} ⊂ ℕ for any statement not favoring the concept, where M is

the number of points of the scale (5 or 7) and ℕ is the set of natural numbers. The

jth concept is often measured through Kj items (variables), forming a battery and

semantically connected to it. Each item, k, has a Likert scale with Mk modalities,

in general, but often Mk is the same for all items. The answer of the ith respondent

gives an outcome xijk in (1, 2, 3, 4 [, 5, 6, 7]). The sum (xij) or the mean (x̄ij) of the

Kj natural numbers yields a measure of the intensity of the jth concept

(a) xij =
∑Kj

k=1
xijk or

(b) x̄ij = (1∕Kj)
∑Kj

k=1
xijk (1)

The sum is sometimes rescaled to one (or ten), yij, through the expression yij = (xij −
xmin, j)∕(xmax, j − xmin, j), for the ith individual and the jth concept, where the xmin, j
and xmax, j are, respectively, the maximum and the minimum of xij in the data set.

However, this calculus is not admissible as the average and the sum because the

device generates only ordinal data.
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The semantic differential scale is another ordinal scale [14, 15] and in its usual or

standard format, it consists of a set of seven categories, but they may vary in number,

associated with bipolar adjectives or phrases. For each bipolar item, the respondent

indicates the extent to which one descriptor represents the concept under examina-

tion. The semantic differential scale is aimed at measuring direction (with the choice

of one of two terms, such as ‘useful’ or ‘useless’) and extent/amount (by selection

of one of the provided categories expressing the intensity of the choice). The vol-

ume of measurements is generally high and the interpretation of the results of word

scales is theoretically based on three factors (‘evaluation’, ‘potency’, and ‘activity’),

which involves fairly complex analyses requiring expensive data-processing proce-

dures. Therefore, the objectives of these theoretical scales may necessarily involve

long-term research, limiting their applicability or often subjecting them to simplified

analysis and thus reducing some of their potential [16].

The Stapel scale is a ten-point non-verbal rating scale, ranging from +5 to −5
without a zero point and measuring direction and intensity simultaneously. It has

been clearly stated that “it cannot be assumed that the intervals are equal or that rat-
ings are additive” [17], but the Stapel scale is often used under the same assumptions

as the Likert scale. With respect to semantic differential, the Stapel scale presents

(measures) each adjective or phrase separately and the points are identified by num-

ber (but frequently the scale positions of the semantic differential are numbered too).

The use of a ten-point scale is more intuitive and common than the seven-point scale.

The self-anchoring scale is another type of ordinal scale and, in its usual or stan-

dard format, it consists of a graphic, non-verbal scale, such as the ten-point ladder

scale [18, 19], where respondents are asked to define their own end points (anchors).

The best is at the top, if the ladder is in vertical position (case 1), or at the right, if the

ladder is in horizontal position (case 2). The worst is at bottom in the first case and

on the left in the second case. It is a direct outgrowth of the transactional theory of

human behavior in which the ‘reality world’ of each of us is always to some extent

unique, the outcomes of our perceptions being conceived as ongoing extrapolations

of the past related to sensory stimulation. The scale may solve some problems and

biases typical of category scales, but it is often used as fixed anchoring rating scale,

where the anchor of the scale is already defined, assuming, implicitly, the existence

of an objective reality. However, the two strategies seem psychometrically equiva-

lent, although there are some differences between them (see, among others, [20]).

The feeling thermometer scale was developed by Aage R. Clausen for social

groups and was first used in the American National Election Survey (ANES) [21]. It

was later modified by Weisberg and Rusk [22]. Basically, its format is like a segment

of a 0-to-100-degree temperature scale, which reports some specific values. In the

evaluation of political candidates, it was “a card listing nine temperatures through-
out the scale range and their corresponding verbal meanings as to intensity of ‘hot’
or ‘cold’ feelings was handed to the respondent” [22].

Roughly speaking, the Stapel, self-anchoring, and feeling thermometer scales are

structurally similar to thermometer scales that have a long history, although they are

often ascribed to Crespi [23, 24] as cited, for example, by Bernberg [25]. However,
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the thermometer scales used in social sciences do not provide values on interval

scales, as does a thermometer used to measure temperatures.

The Juster scale is a technique for predicting the purchase of consumer durables

consisting of an 11-point scale, like a decimal scale. It is used for each question

asking people to assign probabilities to the likelihood of their adopting the described

behavior on that question [26, 27].

Among other ordinal scales, there is the Guttman scale, which is a method of dis-

covering and using the empirical intensity structure among a set of given indicators

of a concept. The Bogardus social distance scale measures the degree to which a

person would be willing to associate with a given class of people - such as an ethnic

minority [28].

There is no rationale in the practice of handling the figures assigned to the modal-

ities of an ordinal scale as real numbers, also under the assumption of equidistance

between the categories, as that distance is not necessarily equal to 1. It is possible

to envisage the selection of a modality as an output of a normal variable underly-

ing a random discriminatory process, which could justify the use of equations (1)

exploiting the properties of the normal random variables. However, if the modalities

are subordinate only to a relation order, the use of the sum and the mean remains

problematic.

3 Student Evaluation of Teaching Activity

The students’ opinions about teaching activity rose to the attention of the academic

administrations in the 1920 s and some US universities such as Harvard, the Univer-

sity of Washington and Texas, Purdue University, and other institutions, introduced

student evaluations as a standard practice [29]). Since then, many aspects have been

largely investigated, such as the reliability, validity, unbiasedness, efficiency, and

efficacy of SETA. Moreover, many more universities in the US and other countries

have also introduced the practice of evaluating teachers and course organization.

3.1 The Course-Evaluation Questionnaire

In Italy, the evaluation of university teaching activities and research is regulated by

Law no. 370 (of 19/10/1999, Official Gazette, General Series, no. 252 of 26/10/1999),

which also does not allow administrations failing to comply with it to apply for cer-

tain grants. The same law established the National Committee for University System

Evaluation (Comitato Nazionale di Valutazione del Sistema Universitario, CNVSU),

replacing the Observatory for University System Evaluation. A research group of the

CNVSU [30] proposed a standard course evaluation questionnaire with a minimum

set (battery) of fifteen items for all universities. Each item includes the following

four-point Likert scale: 1○ Definitely no, 2○ No rather than yes, 3○ Yes rather than no,
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Table 1 Questionnaire items with median (md), mean (x̄), standard deviation (𝜎), and number

of valid cases (n) for the “Economics and International Management” degree program: Academic

Year 2009/2010

Questionnaire items—Total

n = 4537
Acronym md x̄ 𝜎 n

S. II—Organization of this course
I01: Adequacy of the Work Load

required by the course

AWL 7 7 2 4500

I02: Adequacy of the Teaching

Materials

ATM 7 7 2 4472

I03: Usefulness of Supplementary

Teaching Activity (STA)

USTA 7 7 2 2503

I04: Clarity of the Forms and rules

of the Exams

CFE 7 7 2 4429

S. III—Elements concerning the teacher
I05: Reliability of the Official Schedule

of Lectures

ROSL 7 8 2 4460

I06: Teacher Availability

for Explanations

TAE 7 8 2 4442

I07: Motivation and Interest

generated by Teacher

MIT 7 7 2 4449

I08: Clarity and Preciseness of the

Teacher’s Presentations

CPTP 7 7 2 4427

S. IV—Lecture room and resource room
I09: Adequacy of the Lecture Room ALR 7 7 2 4444

I10: Adequacy of the Room and

Equipment for STA

ARESTA 7 7 2 2475

S. V—Background-interest-satisfaction
I11: Sufficiency of Background

Knowledge

SBK 7 7 2 4442

I12: Level of Interest in the

Subject matter

LIS 7 7 2 4444

I13: Level of Overall Satisfaction

with the course

LOS 7 7 2 4418

S. VI—Organization of all courses in the degree program
I14: Adequacy of the Total Work

Load of current courses

ATWL 7 6 2 4452

I15: Feasibility of the Total

Organization (lect. & exams)

FTO 7 6 2 4445

4○ Definitely yes (CNVSU scale). A traditional item-by-item analysis was generally

carried out, using means and variances of numerical values obtained by translat-

ing the categories (or labels) into a ten-point scale as follows: 1○ = 2, 2○ = 5, 3○ = 7,

4○ = 10, hereinafter referred to as numeric values of labels [31]. One could argue that

the absence of a mid value on this ordinal scale could violate the linearity assumption
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and the mean and variance analysis cannot validly be used. Moreover, the meaning of

the labels might not be clear to all students. Consequently, the intensities, or degree

of certainty, associated with these labels often correspond to a high level of vague-

ness; investigations of these topics are reported elsewhere [32, 33].

In the Academic Year 2004/2005, the Committee for Technical Evaluation of the

University of Modena and Reggio Emilia adopted the questionnaire proposed by

CNVSU [30] and in the Academic Year 2005/2006, it introduced the online survey

for SETA [34]. Some minor changes involved a slight modification of the wording

of some items (to make their meaning clearer) and the order of the items (to reduce

the halo effect). The overall questionnaire contained seven sections, but Sections I

(personnel data, containing information about the course, teacher, and some student

characteristics) and VII (remarks and suggestions, listing nine items with dichoto-

mous choices) are not presented here.

Sections from II to VI represent the core of the questionnaire and contain a

15-item battery with the four-point Likert scale to achieve the standard evaluation

(Table 1).

The current procedure generates the evaluation of a single item or domain, which

is performed using the traditional procedure of averaging (over the sample) the

numerical labels or the assigned values corresponding to a ten-point scale

x̄jk = (1∕n)
∑n

k=1
xijk (2)

Although the items included in a domain are assumed to have the same importance in

the arithmetic mean, one could argue that certain variables indicating the efficiency

of the course are more important than others. To take into account these differences,

one approach is to use a weighted average. Still, the choice of the weights is a con-

troversial point due its arbitrariness. Moreover, it could be noted that the median,

which is the correct statistical index for ordinal variables, is less informative of the

mean in summarizing the distribution of the answers, as is evident, but questionable,

from the data reported in Table 1 for the academic year 2009/2010 in the Economics

and International Management degree program of the Faculty of Economics.

4 Background of Fuzzy Inference System

The structure and functioning of a FIS follow a sequence of hierarchical steps [35,

36] involving: (i) issue identification, (ii) fuzzification of input variables, (iii) block

rules construction, (iv) block rules aggregation, (v) defuzzification of output vari-

able(s), and (vi) model tuning. They will be illustrated through an empirical appli-

cation to the data described above.
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4.1 The Fuzzy Inference System for Teaching Evaluation

Issue identification (i) involves a stepwise procedure that could be carried out

through a top-down or bottom-up strategy. In the first case, it is similar to a sci-

entific inquiry. It starts from the output variables and attempts to identify macro-

indicators—possibly including multiple input variables—that can adequately explain

the output. The macro-indicators are subsequently broken down into smaller indica-

tors that include fewer variables. The stepwise process continues until the single

input variables are isolated. The final product is a modular tree-patterned system,

where several fuzzy modules are interlinked. In the bottom-up strategy, the input

variables are already available, as is the case examined here, and the goal consists

in subsequently aggregating them. Each aggregation generates a fuzzy module. The

various modules are interlinked with each other. The final emerging arrangement is

like a tree-patterned structure generating a single (or multiple) output(s). An example

of the latter is the model considered for SETA, which includes the 15-item battery

and item aggregation, from input to final output (Fig. 1). The variables enter the sys-

tem at different levels of importance, which heavily affects the final output. Roughly

speaking, the approach corresponds to a weighted average, where the weights are

unknown and higher for variables entering the last steps. The aggregating function

is generally unknown and not necessarily linear, as in a weighted average. In the FIS,

each aggregation of variables gives an intermediate solution, which is a fuzzy set

variable and it does not have necessarily a particular meaning attached to it. Some-

times, however, the intermediate variables do have a useful meaning. For example,

the aggregation of AWL and ATM generates the new intermediate fuzzy variable

OMW (Organization of Materials and Workload), while the aggregation of USTA

and CFE generates the new intermediate fuzzy variable OEE (Organization of Exer-

cises and Exams). In a subsequent step, the aggregation of OMW and OEE generates

OC (Organization of the Course). The merging of fuzzy modules will continue up to

the aggregation of OC with TTC (Total Teaching Capability), obtaining SET (Stu-

dent Evaluation of Teacher). To account for student satisfaction, SET is aggregated

with LOS, the level of overall satisfaction of students, obtaining SETS (Student Eval-

uation of Teacher plus Satisfaction). The adopted level of inclusion involves a strong

influence of satisfaction on SETS, while a mitigation of its effect could be obtained,

firstly, by combining TTC or OC with LOS and, secondly, by merging the result with

OC or TTC, as reaffirmed in the comments on the results reported below.

The fuzzification of input, (ii), involves the specifications concerning the shapes

and the number of the membership functions (mf) for the input variables. A member-

ship function defines the extent to which each value of a numerical variable belongs

to some specified categorical labels. In the following, we briefly describe the most

popular approaches used to determine their shapes [37, 38]. (1) The survey approach

determines the shapes of the membership functions based on information from a

specifically designed sample. For this purpose, a common choice is to use empirical

sampling distributions from the particular collected data concerning the intensity

of the value labels. (2) The comparative judgment approach defines the functions
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Fig. 1 The structure of the Fuzzy Inference System for student evaluation of teaching activity

through a comparison of stimuli and some given features or prototypes. (3) The

expert scaling approach characterizes the function in accordance with the subjective

experience of an expert. (4) The formalistic approach selects functions with specific

mathematical properties. (5) Machine-learning builds up the functions from a set of

past data (training and testing data set) and transfers the same structure to the present

and future.

The aim of SETA is to collect student opinions about the teachers and the course

organization. Therefore, approach (1) is preferable because it allows for direct mea-

surement of the meaning that students attribute to the linguistic options/categories
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on the 15-item battery. In particular, each sampled student should assign scores for

each category of the CNVSU scale denoted by a label, for each of the 15-items. This

permits construction of frequency polygons, which give approximate representations

of the vagueness level of the category choices. The polygons translate the decimal

value of each category into a corresponding membership level for the population.

This strategy could be costly, as all surveys are costly, and it presents some degree

of difficulty due to the nuisance, laboriousness, and repetitiveness of the task. Actu-

ally, each student should assign scores for 15 × 4 elements. In fact, the evaluation

of the same four response options is repeated fifteen times, the number of items on

the CNVSU questionnaire. As a consequence, the procedure requires a large sam-

ple of students and a well-designed strategy for data collection. Moreover, given that

the empirical frequency polygons are somewhat irregular, their final shapes could be

determined taking into account method (2) in order to smooth and simplify the forms

of the frequency polygons with respect to both the theoretical constraints and the

aims of the FIS. In general, the frequency polygons are well fitted by probability dis-

tribution, such as normal, gamma, and beta [39], but they are also well approximated

by triangular (a, 𝛼, 𝛽) or trapezoidal (a, b, 𝛼, 𝛽) shapes centered about the means of

the score distributions for each modality. With respect to other strategies, approach

(3) is inadequate for teaching evaluation because the experts’ opinions might not

match those of students. Approach (4) does not fit our purposes simply because a

priori mathematical properties do not necessarily fit the reality of our data (although

in many situations they are recommended as they produce smoothed and tractable

functions). Finally, approach (5) also appears to be inappropriate because past data

on the numerical values for the scale categories are not available and are probably

not time-invariant.

The membership functions of some input variables for the FIS, in Fig. 1, could be

deduced from the survey carried out in October 2000, where the modalities of eight

items were evaluated by students using a decimal scale [32, 33]. Only eight items

(seven of them about the teacher) were available out of fifteen, but the scores refer to

different formats and ten years have already passed. Therefore, a simple fuzzification

was adopted, assuming as membership functions trapezoidal or triangular shapes and

considering the symmetry about some specific values in the decimal scale range or

the value labels of the modalities (inter alia [40–43]). In fact, the relative frequency

polygons could be well approximated by triangular shapes centered about the means

of the score distributions for each category. The triangularization of the membership

functions of the input variable is a common practice, but it involves a right-angled

triangle for the first and the last modality, i.e., the first and the last triangle. Hence,

the following types of fuzzification were considered. The first type used three mem-

bership functions (mf3); this number is lower then the number of modalities (4) to

allow the activation of two membership functions for the internal modalities. The tri-

angular fuzzy numbers (a, 𝛼, 𝛽) had peaks a ∈ {2, 6, 10} and the left width 𝛼 was

equal to the right width 𝛽, i.e., 𝛼 = 𝛽 = 4, as in Fig. 2 generated by “fuzzyTECH”

[44]. The domain of the membership functions ranged from 2 to 10 and the response

of the FIS was restricted to the interval [2, 10] because the traditional means of

the numerical values attributed to the CNVSU scale categories, D = {2, 5, 7, 10},
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Fig. 2 Fuzzification of an input variable using three triangles as membership functions (mf)

Fig. 3 Fuzzification of an input variable using four triangles as membership functions (mf)

clearly ranged from 2 to 10. Note that there are also many other possible choices and

modifications of the shapes for improvement of the performances of the FIS.

There is also the possibility of using trapezoidal fuzzy numbers.

For example, the first membership function is a trapezoidal fuzzy number,

(a, b, 𝛼, 𝛽), with peak (a = 2, b = 3), left width 𝛼 = 0 and right width 𝛽 = 3. The

second function is triangular shaped (a, 𝛼, 𝛽), with peaks a = 6, left width 𝛼 = 3,

and right width 𝛽 = 3. The third, which is also the last, would be a trapezoidal fuzzy

number (a, b, 𝛼, 𝛽) again, with peak (a = 9, b = 10), left width 𝛼 = 3 and right

width 𝛽 = 0. The structure with two trapezoids, at the extremes of the decimal scale,

could emphasize the FIS scores towards the upper and lower bounds of the support

in some defuzzification methods [33]. However, it was not used here.

The second type used four membership functions (mf4). This number was equal

to the number of modalities, implying that, in the absence of any other information

out of the symmetry and the range of numeric values of the CNVSU scale categories,

the triangular fuzzy numbers (a, 𝛼, 𝛽) had peaks coinciding with the numeric values

a = (2, 4. ̄6, 7. ̄3, 10) and the left width 𝛼 was equal to the right width 𝛽, i.e., 𝛼 = 𝛽 =
2. ̄6, as generated by “fuzzyTECH” [44] in Fig. 3. In this case, the most natural pattern

may appear to be a fuzzification with peaks in a = (2, 5, 7, 10) and different values

of the left width 𝛼 and the right width 𝛽. In other terms, the membership function

associated with a fixed modality is represented by a triangle with the peak centered

on its value on the scale and the amplitude ranging from the first lower to the first

upper modality. However, it may tend to confine the results strictly to the selected

modalities and the FIS does not work completely, but only through the rule-blocks,

thus partially losing its nature.
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In formal terms, the following could be stated. The indices j and k of xijk are sum-

marized in a single index l to simplify the formalism. Therefore, let xil, l = 1, … , L,

be the input variables (L = 15 in the examined case) provided by the i−th student

with range Ul and let y be the output variable with range V . Let M(l) be the num-

ber of categories of xl. Generally, such a number could change from one variable to

another, but in this case, M(l) = 4 (the number of CNVSU scale options/categories)

for all l = 1, … , L. Therefore, in general, an effective fuzzification of input requires

a number of membership functions greater than one and less than M(l). Moreover,

each category of xl is described by a fuzzy number, Al
j(l), ∀j(l) ∈ [1, … , M(l)], and

the set Al = {Al
1, … , Al

M(l) } denotes the fuzzy input xl, while the fuzzy output of y
is defined by B = {B1, … , BM(y) } where M(y) denotes the number of membership

functions (or categories or modalities) for y. Each set has a membership function:

𝜇Al
j(l)
(x) ∶ Ul → [0, 1] 𝜇Bm

(x) ∶ V → [0, 1] (3)

The construction of rule-blocks, (iii), concerns the relationships between the input

linguistic variables and output linguistic variables. It involves a multicriteria situa-

tion, described by a number of rules like:

Rs ∶ IF [x1 is A1
j(1) ⊗…⊗ xL is AL

j(L)] THEN (y is Bm) (4)

for all combinations of j(l) ∈ [1, … , M(l)] and m ∈ [1, … , M(y)]. The left-hand

side of THEN is the antecedent (protasis or premise) and the right-hand side is the

consequent (apodosis or conclusion). The symbol ⊗ (otimes) denotes an aggrega-

tion operator, one of several t-norms (if the aggregation is an AND operation) or

t-conorms (if the aggregation is an OR operation). The aggregation operator, AND,

that was chosen, produces a numerical value 𝛼s,m ∈ [0, 1] and the latter represents

the execution of the antecedent in rule Rs. The 𝛼s,m number should be applied to

the consequent membership function of Bm, in order to calculate the output of each

rule. The AND aggregation operator was used once again, but in a slightly differ-

ent context: ⊗ works on a number and the membership function of a fuzzy set Bm,

whereas in the case of the Rs rule, it is applied on two numbers [45, 46]. An example

of the rule-block is presented for the fuzzy module OMW (organization of material

and workload) aggregating AWL and ATM (Fig. 1) and using the numeric values

instead of labels, for the sake of brevity (three membership functions):

∙ IF AWL is mf1 and ATM is mf1, THEN OMW is mf1

∙ IF AWL is mf1 and ATM is mf2, THEN OMW is mf2

∙ IF AWL is mf1 and ATM is mf3, THEN OMW is mf3

∙ IF AWL is mf2 and ATM is mf1, THEN OMW is mf2

∙ IF AWL is mf2 and ATM is mf2, THEN OMW is mf3

∙ IF AWL is mf2 and ATM is mf3, THEN OMW is mf4

∙ IF AWL is mf3 and ATM is mf1, THEN OMW is mf3

∙ IF AWL is mf3 and ATM is mf2, THEN OMW is mf4

∙ IF AWL is mf3 and ATM is mf3, THEN OMW is mf5.

It is possible to generate these rules automatically through an algorithm, but an expert may express

them in a form that more closely fits the reality.
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The aggregation of rule-blocks, (iv), is the step of the evidential reasoning incorporating the

process of unification of the outputs of all the rules in a single output Y . For every rule (Rs) involved

in the numerical inputs, 𝜇(𝛼s,m ⊗ Bm), a different output is obtained. These membership functions

of fuzzy sets have to be aggregated by an OR operation using a t-conorm. The most frequently used

are the max conorm, the probabilistic conorm, and the Lukasiewicz conorm usually known as the

bounded sum. Now, the response of a module is ready, but it is still in a fuzzy form. If the module

needs to be aggregated with other modules, the aggregation process continues. Otherwise, it is an

output module, even if it is not the last output module, implying that it needs to be changed back

into a number to provide an easy understanding of the system response.

Defuzzification of output, (v), is the process that maps the output fuzzy set 𝜇B(y) into a crisp

value, yij, for the ith student and jth fuzzy module or concept; i.e., it concentrates the vagueness

expressed by the polygon resulting from the activated output membership functions into a single

summary figure that best describes the central location of an entire polygon. There is no universal

technique to perform defuzzification, i.e., to summarize this output polygon by a number, as each

algorithm exhibits suitable properties for particular classes of applications [47]. The selection of

a proper method requires an understanding of the process that underlies the mechanism generat-

ing the output and the meaning of the different possible responses on the basis of two criteria: the

“best compromise” and the “most plausible result”. Moreover, in an ordinal output, with modal-

ities described by linguistic expressions, their corresponding real values are always given by the

membership definitions, where the understanding of their meaning plays a key role.

For the first criterion, one of the most popular methods is the Center-of-Maxima (CoM), which

yields the best compromise between the activated rules [45]. Given that more than one output mem-

bership function could be activated or evaluated as a possible response for the ith student and jth
fuzzy module or concept, let MF; ij be the number of output-activated membership functions. Let

yijm be the abscissa of the maximum in the mth activated output membership function. If the latter

has a maximizing interval, yijm will be the median of this interval. The final output crisp value,

yCoM; ij, is given by an average of membership maxima weighted by their corresponding level of

activation, 𝜇out; k,

yCoM; ij =
∑MF; ij

m=1
𝜇out;m yijm

/ ∑MF; ij

m=1
𝜇out;m (5)

The method of the center of area/gravity (CoA/G) was excluded because it cannot reach the extremes

of the range [2, 10]without fuzzification of input and output on an interval wider than [2, 10], which

may seem unnatural. In fact, it would have been possible to pick a more suitable fuzzification of

the input, but, in general, FIS might produce an output greater than the maximum or lower than

the minimum of the scale. However, with singleton membership functions, CoA and CoM methods

provide the same results.

For the second criterion, the Mean-of-Maxima (MoM) method yields the most plausible result,

determining the system output only for the membership function with the highest resulting degree

of the support. If the maximum is not unique, i.e., it is a maximizing interval, the mean of the latter

will be given as the response

yMmM; ij = max
l<=m<=MF; ij

(yijm) (6)

This approach selects the typical value of the terms that is most valid, instead of balancing out the

different inference results [45]. Therefore, it is often used in pattern recognition and classification

applications, as in the case of an ordinal output whose modalities are described by linguistic expres-

sions, because the most plausible solution is more appropriate instead of the mean. There are many

other sophisticated defuzzification strategies, but they are rarely used in practice.

In addition, the sensitivity analysis, (vi), is a possible sixth step that may be carried out to adapt

the FIS to the real situations that it would represent. The FIS is handled as a parametric model, relat-

ing input variables to membership functions, to fuzzy rules, to hedges operations, to aggregations,

and so on. The tuning of the performance of the FIS is carried out by means of four steps: (1) defi-

nition of the objective functions for the output fuzzy variables; (2) changes of parameters for input

data, membership functions, and fuzzy rules; (3) validation of results by comparing the objective
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functions and output functions; (4) repetition of steps (2) and (3) until the difference between the

objective and output functions is smaller than the chosen error criterion.

5 Empirical Results

The academic year 2009/2010 was fixed as the reference date and the degree program in Economics

and International Management was selected out of three undergraduate degree programs of the

Faculty of Economics. Some restrictions were imposed to the overall dataset of 4537 (evaluating)

students (Table 1), even if some analyses suggesting such restrictions are not reported here for the

sake of brevity. The course-teacher is a unique combination because the same teacher may teach

more than one course and in the same course there may be more than one teacher. Five courses had

less than twenty evaluating students and these courses were thus eliminated, leading to a reduction

of 55 cases. In practice, the score provided by just one student is also useful for the teacher, but

a sufficiently large sample is preferable for each single course-teacher to compare the mean of the

value labels with the output of a FIS.

The complete elimination of nonresponses is not the ideal strategy as it is too costly, it implies

a loss of cases and biases the estimates because nonresponses do not randomly occur. However,

considering the nature of SETA data, if all items concerning the teacher (I01-I08, I13), or all items

concerning the organization (I09, I10, I14, I15), were missing in a case, that case was dropped.

Fifty-four cases were lost through this control, prevailingly owing to missing values for all items

referring to the teacher. Background knowledge (I11) was used to replace the level of interest in the

subject matter (I12) when the latter was missing and vice versa; if both were missing, they were

replaced with the mean of teacher items. Therefore, they did not involve a loss of cases. If in the

15-item battery there were more than 8 (threshold) missing values in a single case (student), that

case was dropped: 17 cases crossed the threshold. In the end, a total of 4411 cases were used.

The remaining missing values were replaced on the basis of the available data for each single

case and considering that an evaluating student expressed an opinion about three main areas (Fig. 1):

Student evaluation of teacher plus satisfaction (SETS), student’s perception of own position (SPOP),

and total evaluation of facilities and organization (TEFO). For each student, i, the kth item belonging

to a certain area with a missing value was replaced with the mean of the values for the non-missing

items of the same area provided by the same student and not by the mean of the kth item for the total

sample, as is usual. For example, let I02(i), which belongs to SETS, be missing; it was then replaced

by the mean of [I01(i), I03(i), I04(i), I05(i), I06(i), I07(i), I08(i), I13(i)]. Let I02(i) and I13(i) be

missing; they were then replaced by the mean of [I01(i), I03(i), I04(i), I05(i), I06(i), I07(i), I08(i)].
The rationale of this procedure relies on the core of the evaluation process, which is the evaluator.

Therefore, the value used in the substitution is anchored to his/her average level of judgment and

not to the average level of the total sample. The number of replaced values varied from one item to

another, ranging from 0.1 % to 1 %, except for supplementary teaching activity (I03) and adequacy

of the room and equipment for the supplementary teaching activity (I10), as those activities were

not always present in a course, implying an obvious high rate of absence of evaluations for that

particular item.

5.1 Student Evaluations of Teachers

The analysis has been prevailingly restricted to the subsystems concerning the student evaluations

of teachers (SET) and SET plus satisfaction (SETS), as indicated in Fig. 1, for the sake of brevity

and owing to the possibility to simulate the input data, as indicated below. The traditional evaluation

of teachers currently in use, from the ith student, is given by the mean of the value labels assigned
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Table 2 Output data: mean (x̄set; i) and fuzzy outputs for different conditions (3 or 4 membership

functions in the fuzzification of input, CoM and MoM methods in the defuzzification of output)

x̄set; i xCoM3; i x̄set; i − xCoM4; i x̄set; i − xMoM3; i x̄set; i − xMoM4; i x̄set; i −
xMoM4; i

xCoM3; i xCoM4; i xMoM3; i

10.00 10.00 0.00 10.00 0.00 10.00 0.00 10.00 0.00

9.63 10.00 0.37 10.00 0.37 10.00 0.37 10.00 0.37

9.00 10.0 1.00 10.00 1.00 10.00 1.00 10.00 1.00

9.00 8.48 0.52 8.67 0.33 7.71 1.29 8.86 0.14

8.63 9.77 1.14 10.00 1.37 10.00 1.37 10.00 1.37

8.00 8.37 0.37 7.46 0.54 7.71 0.29 7.71 0.29

7.63 8.09 0.46 7.49 0.14 7.71 0.08 7.71 0.08

7.00 7.52 0.52 7.19 0.19 7.71 0.71 7.71 0.71

6.50 5.89 0.61 5.43 1.07 6.57 0.07 5.43 1.07

6.00 6.57 0.57 6.36 0.36 6.57 0.57 7.71 1.71

5.33 4.51 0.82 4.81 0.52 5.43 0.10 4.29 1.04

4.11 3.57 0.54 3.52 0.59 4.29 0.18 3.14 0.97

3.00 2.86 0.14 3.29 0.29 3.14 0.14 3.14 0.14

3.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00

2.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00

to the four modalities of each item:

(a) x̄set; i = (x01; i +⋯ + x08; i)∕8
(b) x̄sets; i = (x01; i +⋯ + x08; i + x13; i)∕9 (7)

Note that x̄set; i is examined and reported in the tables below, while x̄sets; i is referred to only in the

comments.

The output of a FIS, xFIS; i, depends on the decisions taken at each step. Specifically, the CoM

method used in the defuzzification step, with 3 or 4 membership functions in the fuzzification of

input, CoM3 or CoM4, generated xCoM3; i and xCoM4; i, respectively. Analogously, the MoM method

used in the defuzzification step, with 3 or 4 membership functions in the fuzzification of input,

MoM3 or MoM4, generated xMoM3; i and xMoM4; i, respectively. The fuzzy data process was carried

out using the support of “fuzzyTECH” [44]. An example of the output for different values of the

output range [2, 10] is given in Table 2, which also reports the differences between the mean of the

value labels, x̄set; i, and the four fuzzy evaluations.

The rank of course-teachers may be a useful tool to identify critical situations, where to offer

suggestions to the teacher or to urge him/her to improve his/her behavior, the scope of the program,

the organization of teaching materials, exercises or exams, and so on. For this purpose, an item-

by item analysis could help persons in charge of academic organization and/or teachers, but here

the results are limited only to the overall evaluation of the teacher. The first and last positions

of the rank are reported in Table 3. The mean of the value labels, x̄set, was lower than the fuzzy

outputs (x̄CoM3, x̄MoM3, x̄CoM4, x̄MoM4). The CoM3 fuzzy evaluations were higher than those obtained

by the mean of the value labels and the mean of differences was 0.55, with the lowest standard

deviation (sd) being 0.45. The MoM3 provided crisp values that were close to CoM3 evaluations

and closer to x̄set; i. In fact, the mean difference was 0.41 (sd = 0.63). Assuming the mean of the value
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Table 3 First and last five teachers in the rank obtained through the mean of the value labels (x̄set)
with fuzzy outputs for different conditions (3 or 4 membership functions in the fuzzification of

input, CoM and MoM methods in the defuzzification of output)

Order Teacher n x̄set x̄CoM3 x̄MoM3 x̄CoM4 x̄MoM4

1 Xy01 109 8.38 8.89 8.70 8.89 9.23

2 Xy02 21 8.33 8.71 8.60 8.72 9.05

3 Xy03 168 8.30 8.87 8.81 8.93 9.19

4 Xy04 43 8.30 8.81 8.70 8.79 9.07

5 Xy05 69 8.28 8.83 8.65 8.78 9.15

… … … … … … … …
37 Xy37 44 6.38 6.82 6.94 6.55 6.67

38 Xy38 114 6.36 6.82 6.91 6.53 6.85

39 Xy39 90 6.33 6.78 6.68 6.56 6.92

40 Xy40 90 6.22 6.59 6.77 6.38 6.53

41 Xy41 121 6.16 6.61 6.56 6.32 6.73

Total 4411 7.32 7.87 7.73 7.81 8.18

labels as a benchmark, x̄set; i, the differences proved to be slightly higher than 5 %, on the average.

Moreover, the fuzzification with 4 membership functions did not work as well as the fuzzification

with 3 membership functions because the outputs generally showed an increase in the differences

with respect to x̄set; i. Opposite results were obtained by CoM4 and MoM4, i.e., the CoM4 fuzzy

evaluations yielded crisp values closer to x̄set; i than those yielded by MoM4. In fact, the means of

the differences with respect to x̄set; i were 0.49 (sd = 0.64) and 0.86 (sd = 0.99), respectively. Note

that the fuzzification “centered” on the modalities tended to reduce the vagueness and to restrict

the output to a single modality, as the effective fuzzy mechanism was not activated and worked

prevailingly only with the rule-blocks.

The fuzzy outputs, xFIS; i, and the mean of the value labels, xset; i, for the ith student measure

the same concept, i.e., the performance of a teacher. Therefore, they should be correlated and an

analysis of the relationships between the different fuzzy outputs and x̄set; i clarifies the structure of

some differences. The scatter-plots of fuzzy evaluations of teachers (SET) against the mean of the

corresponding value labels are reported in Fig. 4. The estimates of the linear regression parameters

between the four dependent variables (xCoM3; i, xMoM3; i, xCoM4; i, xMoM4; i) on x̄set; i, as the independent

variable, are reported in Table 4 and the corresponding residuals are plotted in Fig. 5. If xFIS; i and

x̄set; i are the same, one can expect a slope (𝛽1) of the regression line equal to 1 and an intercept

(𝛽0) equal to 0: in the tables their estimates are denoted b1 and b0, respectively. The results of the t-

tests on estimated slopes and intercepts showed that these hypotheses were always rejected, but the

relationships were always approximately linear. The assumption of constant variance was refused

in all models and the coefficients of determination were sufficiently high.

The result closer to the hypotheses, notwithstanding their rejection, was given by CoM3, which

showed a distribution of residuals with an undesirable shape, but more concentrated than other

fuzzy outputs having the lowest standard deviation: sd(res)=0.45. MoM3 provided a distribution

of residuals that was more acceptable than that of CoM3, but it was also slightly more dispersed:

sd(res)=0.63. Correspondence between the mean of the value labels and the fuzzy outputs by CoM4

and MoM4 was poorer in terms of the slope and the shapes or dispersion of residuals: sd(res-

CoM4)=0.58 and sd(res-MoM4)=0.95. Therefore, as expected, FIS works better when the number

of membership functions for each xil input variable is lower than its number of modalities, M(l).
Reasonably, the number of input membership functions for the xil input variable should range from
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Fig. 4 Output fuzzy variables against the mean of the value labels. a SETCoM3. b SETMoM3. c (c)

SETCoM4. d SETMoM4

Table 4 Parameter estimates for the regression of fuzzy outputs on the mean of the value labels

(real data)

Dependent b0 SE(b0) t(b0 = 0) b1 SE(b1) t(b1 = 1) R2 Heta

SET CoM3 0.367 0.031 11.72 1.026 0.004 6.12 0.932 0

SET MoM3 0.848 0.044 19.34 0.940 0.006 −10.28 0.854 0

SET CoM4 −0.711 0.041 −17.53 1.164 0.005 30.38 0.913 0

SET MoM4 −0.426 0.066 −6.41 1.176 0.009 19.83 0.799 0

a
Breusch-Pagan test for heteroskedasticity, where H0 is constant variance

2 to [M(l) − 1]. For fuzzy output ordinal variables, MoM is more suitable than CoM because it

chooses the most plausible result among the possible MF; ij results, while, in general, a weighted

average of the possible MF; ij results have no meaning for an ordinal variable.

5.2 Simulated Data: All Possible Input Patterns

The mean of the value labels and of the FIS outputs yielded measurements that often did not coin-

cide, as noted regarding the results in Tables 3–4. The differences between the mean of the FIS

outputs and the mean of the value labels were statistically different from zero for both the total

sample and the single course teacher. However, the surveyed data did not present all the possible
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Fig. 5 Distributions of residuals for the four regression models. a 3-input membership functions/

CoM. b 3-input membership functions/MoM. c 4-input membership functions/CoM. d 4-input

membership functions/CoM

combinations of input values because many evaluation patterns were frequently repeated and others

were never expressed by students. Therefore, the previous analysis was repeated using a simulated

dataset, which contained all the possible combinations of the values of the input variables.

The generation of the dataset considered the output termed SETS in Fig. 1, although the more

attention was focused on SET. Given that for SETS there were nine input variables and there were

four modalities for each variable, the various possible combinations were given by four raised to

nine (or 4 to the 9th power) equal to 262144. Each combination corresponded to an evaluation of a

potential student, which was different from the other 262143.

In the simulated dataset, the input variables are perfectly uncorrelated to each other, as each

pattern appears once, while in the surveyed datasets there are often a correlation because the input

variables are like paired variables or repeated measurements. The differences between the fuzzy

outputs and the mean of the value labels have been plotted in Fig. 6. Differing from the above results,

CoM3 showed a distribution of residuals with an acceptable shape and it was more concentrated

than other fuzzy outputs. The resulting differences were less marked than those observed in the

surveyed data: xCoM3 − x̄set = 0.22 (sd=0.44), xMoM3 − x̄set = 0.28 (sd = 0.65), xCoM4 − x̄set = 0.20
(sd=0.78), xMoM4 − x̄set = 0.20 (sd = 0.93).

Analogously, the parameters of the regression between the fuzzy outputs (xCoM3; i, xMoM3; i,
xCoM4; i, xMoM4; i), as dependent variables, on the mean of the value labels, x̄set; i, as the indepen-

dent variable, were estimated (Table 5) and the corresponding residuals are shown in Fig. 7. The

usual hypotheses about the parameters were tested, with the slope equal to 1 and the intercept

equal to 0, and rejected. Again, the assumption of constant variance was refused in all models

and the coefficients of determination were sufficiently high. In a different direction, the result

closest to the hypotheses, notwithstanding their rejection, was given by MoM3, which showed a

distribution of residuals with an acceptable shape, though less concentrated [sd(res − MoM3) =
0.61] than in the case of CoM3 [sd(res − CoM3) = 0.32]. Moreover, CoM3 showed a bimodal
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Fig. 6 Distributions of differences between the fuzzy outputs and the mean of the value labels

(x̄set;i). a 3-input membership functions/ CoM. b 3-input membership functions/MoM. c 4-input

membership functions/CoM. d 4-input membership functions/CoM

Table 5 Parameter estimates for the regression of fuzzy outputs on the means of the value labels

(simulated data)

Dependent b0 SE(b0) t(b0 = 0) b1 SE(b1) t(b1 = 1) R2 Heta

SET CoM3 −1.540 0.004 −420.2 1.293 0.001 487.1 0.946 0

SET MoM3 −0.947 0.007 −134.6 1.205 0.001 177.7 0.806 0

SET CoM4 −3.622 0.006 −562.6 1.577 0.001 605.5 0.913 0

SET MoM4 −3.623 0.008 −473.1 1.637 0.001 506.7 0.866 0

a
Breusch-Pagan test for heteroskedasticity, where H0 is constant variance

distribution. As for the surveyed data, the correspondence between the mean of the value labels and

the fuzzy outputs by CoM4 and MoM4 was poorer in the slope, but CoM4 showed a better coeffi-

cient of determination and shape of the histogram of residuals than MoM4: sd(res − CoM4) = 0.50,

sd(res − MoM4) = 0.66. However, this was not the same for SETS, in which the coefficients of

determination decreased by about 50 %. These substantial differences mainly depended on the struc-

ture of the tree reported in Fig. 1, where satisfaction (LOS) is combined directly with SET involving

a high weight of LOS on the fuzzy output for SETS and the absence of correlation between LOS

and x̄set; i increased the reduction of the determination coefficients. In fact, with the surveyed data,

this reduction was not observed because it was negligible, for in that case, LOS was correlated with

other input variables and the output of various fuzzy modules. A possible solution to remedy this

discrepancy could consist in the combination of LOS with a fuzzy module in a previous node of

the tree illustrated in Fig. 1; for example, LOS could be grouped with CLC, TSR or TTC.
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Fig. 7 Distributions of residuals for the four regression models estimated using the simulated

dataset

Many other decisions should be made in steps (iii) and (iv), the construction and aggregation

of rule-blocks, which could change the output of a FIS, but those examined here are structurally

issue-/ situation-/ dependent and represent the more important decisions for any FISs.

6 Comments and Remarks

FIS offers the possibility of handling verbal terms via approximately quantitative values and avoids

some methodological issues inherent in traditional procedures concerning the measurement of con-

cepts and the consequent limitation of statistical data analysis of ordinal, but also nominal variables.

For example, the use of the mean (sample average) becomes irrelevant because the response of the

FIS could be maintained as ordinal. However, if a numerical output is desired, as in the case-study

presented here, then many problems still hold conceptually, but some of them are operatively irrel-

evant as the vagueness weakens the sharpness. In other words, by construction, the nature of the

fuzzy inputs mitigates the certainty that we would normally have about the distances of the num-

bers on a given scale. Therefore, the issue concerning the value attributed to a modality (e.g. 7

assigned to “ 3○ Yes rather than no” leading to questions like “Why 7 and not 7.5 or 6.5 or 8 or 6”)

is less restrictive because the fuzzification spreads the choice over the support, even if all choices

affect the output. In any case, the FIS-based approach could represent a bridge between qualitative

and quantitative analysis for a consistent treatment of concepts that are measured differently. This

potentiality would be useful in many fields of application.
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In the social sciences an attribute or concept is often measured by a scale, i.e., a battery of several

items, which are generally statements based on a logical or empirical structure and semantically

linked to the attribute to be measured [28]. Each item provides a set of ordered options (Likert or

thermometer type) for the responses of individuals and the intension of the attribute is evaluated

through the sum or the average of the numeric values of labels corresponding to the selected options

from the set of options provided for each item of the battery, as indicated in Eq. 1. However, these

latter equations violate the assumption of nonlinearity defining an ordinal variable [48], implying

a transition of an ordinal scale to an interval scale. In fact, the operations involved in Eq. 1 are not

admissible for ordinal variables, as the items constituting the battery are measured at the ordinal

level. The opposite point of view asserts that “the numbers do not know where they come from”

[49], suggesting the possibility for a wide use of any mathematical and statistical technique for

ordinal data analysis. There are scientists who opt for a compromise solution and are more open

to use of the parametric approach as an exploratory strategy for analysis of the ordinal variables to

discover and to describe some structural relationship for the phenomena under observation, serving

at least as orientation and not as an exact impact evaluation [4, 50]. Even the original propounder

of this theory of measurement wrote: “for this’illegal’ statisticizing there can be invoked a kind

of pragmatic sanction: in numerous instances it leads to fruitful results” (p. 26) [51]. FIS does not

present any problems in the application of the analogous operations of Eq. 1 and the final results

belong to the same level of measurement, i.e., it provides an ordinal response, which is a true and

valuable advantage, although this response does not bring out the ordinal level of measurement as

it depends on the starting domain. If the starting domain is defined through meaningless numbers,

the domain of the FIS outcome will also have meaningless numbers. This topic still requires much

work and calibration as concerns the isomorphism between the numbers and the intensions of an

attribute.

FIS, however, also presents difficulties at each construction step. In the identification of the

issue (step i), the order in which the input variables are aggregated in the system affects the output.

Particularly, input variables in the first nodes of the tree affect the output less than those forming

the subsequent nodes. Moreover, the exponential explosion of the number of rules limits the input

of fuzzy modules to two or three variables. The fuzzification of input (step ii) is not a straight-

forward step and leaves a kind of indeterminacy. The construction of block rules (step iii) is a

subjective process open to criticism by all, as there is no rule to make rules. In fact, the heuris-

tic fuzzy rules constitute a controversial issue. Certainly, the flexibility derived from these rules

allows for adequately representing the actual phenomenon, but for this same reason, the choices

of the decision-maker play a key role in the pattern of combinations involving the wording of the

items. There are many methods and possibilities for the aggregation of block rules (step iv), but

they must be selected on the bases of the knowledge of their functioning. Defuzzification (step v)

also offers a large variety of techniques that might puzzle final users, although it can be seen as not

being a part of the core of a FIS or of the fuzzy set theory [47].

Overall, the FIS generates reasonable and reliable results, showing remarkable flexibility and

more manageability than the official evaluation systems, in spite of discrepancies with respect to

the means of the value labels, which are the official results used by the persons in charge of acad-

emic organization. However, part of this manageability could originate from the arbitrary choices

required by the construction steps, especially from the heuristic fuzzy rules (if − then rules) and

from the fuzzy inference method (selection of aggregation’s operators for precondition and conclu-

sion). Despite some unavoidable degree of arbitrariness in some modeling choices, the results were

satisfactory. The final outcomes resembled those of the traditional procedure, but the values were

slightly higher than those of the official evaluations. The procedure illustrated above represents

the initial steps to construct an FIS of teaching activity that is adequate and accounts for the com-

plexity and the multiform aspects of the observed phenomenon. The results point out that even a

raw and approximate system, like the four-point Likert-like scale, can provide reasonable evalua-

tions of the courses. This implies an advantage of this procedure because public statistics tend to

prefer an objective and transparent strategy, since the method of calculation is known in advance

and does not involve subjective intervention. On the other hand, the FIS could also be transparent
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if the subjective decisions are made known to the final users and everyone accepts them. However,

the procedure is more complicated and it is difficult to comprehend all the details of its functioning.

Therefore, a public institution may prefer a procedure characterized by a transparency and simplic-

ity of the strategy to be applied.
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Unsatisfiable Formulae of Gödel Logic
with Truth Constants and 𝜟 Are Recursively
Enumerable

Dušan Guller

Abstract This paper brings a solution to the open problem of recursive enumerability

of unsatisfiable formulae in the first-order Gödel logic. The answer is affirmative

even for a useful expansion by intermediate truth constants and the projection oper-

ator𝛥𝛥𝛥. The affirmative result for unsatisfiable prenex formulae of G𝛥

∞ has been stated

in [1]. In [2], we have generalised the well-known hyperresolution principle to the

first-order Gödel logic for the general case. We now propose a modification of the

hyperresolution calculus suitable for automated deduction with explicit partial truth.

Keywords Gödel logic ⋅ Resolution ⋅ Many-valued logics ⋅ Automated deduction

1 Introduction

Current research in many-valued logics is mainly concerned with left-continuous

t-norm based logics including the three fundamental fuzzy logics: Gödel,

Łukasiewicz, and Product ones. From a syntactical point of view, classical many-

valued deduction calculi are widely studied, especially Hilbert-style ones. In addi-

tion, a perspective from automated deduction has received attractivity during the last

two decades. A considerable effort has been made in development of SAT solvers for

the problem of Boolean satisfiability. SAT solvers may exploit either complete solu-

tion methods (called complete or systematic SAT solvers) or incomplete or hybrid

ones. Complete SAT solvers are mostly based on the Davis-Putnam-Logemann-

Loveland procedure (DPLL) [3, 4] or resolution proof methods [5–7], improved

by various features, [8]. t-norm based logics are logics of comparative truth: the

residuum of a t-norm satisfies, for all x, y ∈ [0, 1], x → y = 1 if and only if x ≤ y.

Since implication is interpreted by a residuum, in the propositional case, a formula of
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the form 𝜙 → 𝜓 is a consequence of a theory if ‖𝜙‖𝔄 ≤ ‖𝜓‖𝔄 for every model 𝔄 of

the theory. Most explorations of t-norm based logics are focused on tautologies and

deduction calculi with the only distinguished truth degree 1, [9]. However, in many

real-world applications, one may be interested in representation and inference with

explicit partial truth; besides the truth constants 0, 1, intermediate truth constants

are involved in. In the literature, two main approaches to expansions with truth con-

stants, are described. Historically, the first one has been introduced in [10], where

the propositional Łukasiewicz logic is augmented by truth constants r̄, r ∈ [0, 1],
Pavelka’s logic (PL). A formula of the form r̄ → 𝜙 evaluated to 1 expresses that the

truth value of 𝜙 is greater than or equal to r. In [11], further development of eval-

uated formulae, and in [9], Rational Pavelka’s logic (RPL)—a simplification of PL,

are described. Another approach relies on traditional algebraic semantics. Various

completeness results for expansions of t-norm based logics with countably many

truth constants are investigated, among others, in [12–18].

Concerning the three fundamental first-order fuzzy logics, the set of logically

valid formulae is 𝛱2-complete for Łukasiewicz logic, 𝛱2-hard for Product logic,

and 𝛴1-complete for Gödel logic, as with classical first-order logic. Among these

fuzzy logics, only Gödel logic is recursively axiomatisable. Hence, it was neces-

sary to provide a proof method suitable for automated deduction, as one has done

for classical logic. In contrast to classical logic, we cannot make shifts of quanti-

fiers arbitrarily and translate a formula to an equivalent (satisfiable) prenex form. In

[2, 19], we have generalised the well-known hyperresolution principle to the first-

order Gödel logic for the general case. Our approach is based on translation of a

formula of Gödel logic to an equivalent satisfiable finite order clausal theory, con-

sisting of order clauses. We have introduced a notion of quantified atom: a formula a
is a quantified atom if a = Qx p(t0,… , t

𝜏

) where Q is a quantifier (∀, ∃); p(t0,… , t
𝜏

)
is an atom; x is a variable occurring in p(t0,… , t

𝜏

); for all i ≤ 𝜏, either ti = x or x
does not occur in ti (ti is a free term in the quantified atom). The notion of quantified

atom is all important. It permits us to extend classical unification to quantified atoms

without any additional computational cost. Two quantified atoms Qx p(t0,… , t
𝜏

) and

Q′x′ p′(t′0,… , t′
𝜏

) are unifiable if Q = Q′
, x = x′, p = p′, and the left-right sequence

of free terms of Qx p(t0,… , t
𝜏

) is unifiable with the left-right sequence of free terms

of Q′x′ p′(t′0,… , t′
𝜏

) in the standard manner. An order clause is a finite set of order

literals of the form 𝜀1 ⋄ 𝜀2 where 𝜀i is an atom or a quantified atom, and ⋄ is the

connective ≖ or ≺. ≖ and ≺ are interpreted by the equality and standard strict linear

order on [0, 1], respectively. On the basis of the hyperresolution principle, a calcu-

lus operating over order clausal theories, has been devised. The calculus is proved

to be refutation sound and complete for the countable case with respect to the stan-

dard G-algebra G = ([0, 1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,≖≖≖,≺≺≺, 0, 1) augmented by binary operators

≖≖≖ and ≺≺≺ for ≖ and ≺, respectively. As another step, one may incorporate a count-

able set of intermediate truth constants c̄, c ∈ (0, 1), to get a modification of the

hyperresolution calculus suitable for automated deduction with explicit partial truth

[20]. We shall investigate the so-called canonical standard completeness, where the

semantics of Gödel logic is given by the standard G-algebra G and truth constants

are interpreted by’themselves’. We say that a set {0, 1} ⊆ X of truth constants is
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admissible with respect to suprema and infima if, for all ∅ ≠ Y1,Y2 ⊆ X and
⋁⋁⋁

Y1 =
⋀⋀⋀

Y2,
⋁⋁⋁

Y1 ∈ Y1,
⋀⋀⋀

Y2 ∈ Y2. Then the hyperresolution calculus is refuta-

tion sound and complete for a countable order clausal theory if the set of all truth

constants occurring in the theory, is admissible with respect to suprema and infima.

This condition obviously covers the case of finite order clausal theories. As an inter-

esting consequence, we get an affirmative solution to the open problem of recursive

enumerability of unsatisfiable formulae in Gödel logic with intermediate truth con-

stants and the projection operator 𝛥𝛥𝛥 ∶ [0, 1] ⟶ [0, 1],

𝛥𝛥𝛥 a =
{

1 if a = 1,
0 else;

which strengthens a similar result for prenex formulae of G𝛥

∞ stated in Conclusion

of [1].

The paper is organised as follows. Section 2 gives the basic notions and notation

concerning the first-order Gödel logic. Section 3 deals with clause form translation.

In Sect. 4, we propose a hyperresolution calculus with truth constants and prove its

refutational soundness, completeness. Section 5 brings conclusions.

2 First-Order Gödel Logic

Throughout the paper, we shall use the common notions and notation of first-

order logic.
1

By L we denote a first-order language. We assume truth constants—

nullary predicate symbols 0, 1 ∈ PredL , arL (0) = arL (1) = 0; 0 denotes the false

and 1 the true in L . Let ℂL ⊆ (0, 1) be countable. In addition, we assume a

countable set of nullary predicate symbols CL = {c̄ | c̄ ∈ PredL , arL (c̄) = 0, c ∈
ℂL } ⊆ PredL . 0, 1, c̄ ∈ CL are called truth constants. We denote TconsL =
{0, 1} ∪ CL ⊆ PredL . LetX ⊆ TconsL . We denoteX = {0 | 0 ∈ X} ∪ {1 | 1 ∈ X} ∪
{c | c̄ ∈ X ∩ CL } ⊆ [0, 1]. ByFormL we designate the set of all formulae ofL built

up from AtomL and VarL using the connectives: ¬, negation, Δ, Delta, ∧, conjunc-

tion, ∨, disjunction, →, implication, and the quantifiers: ∀, the universal quantifier, ∃,

the existential one. In addition, we introduce new binary connectives ≖, equality, and

≺, strict order. We denote Con = {¬,Δ,∧,∨,→,≖, ≺}. By OrdFormL we designate

the set of all so-called order formulae of L built up from AtomL and VarL using the

connectives in Con and the quantifiers: ∀, ∃.
2

In the paper, we shall assume that L
is a countable first-order language; hence, all the above mentioned sets of symbols

and expressions are countable. By varseq(𝜙), vars(varseq(𝜙)) ⊆ VarL , we denote

the sequence of all variables of L occurring in 𝜙 which is built up via the left-

1
Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Sect. 2.

2
We assume a decreasing connective and quantifier precedence: ∀, ∃, ¬, Δ, ∧, →, ≖, ≺, ∨.

http://ii.fmph.uniba.sk/~guller/sci15.pdf
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right preorder traversal of 𝜙. For example, varseq(∃w (∀x p(x, x, z) ∨ ∃y q(x, y, z))) =
w, x, x, x, z, y, x, y, z, |w, x, x, x, z, y, x, y, z| = 9.

Gödel logic is interpreted by the standard G-algebra augmented by binary opera-

tors ≖≖≖ and ≺≺≺ for ≖ and ≺, respectively.

G = ([0, 1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,𝛥𝛥𝛥,≖≖≖,≺≺≺, 0, 1)

where ∨∨∨ | ∧∧∧ denotes the supremum | infimum operator on [0, 1];

a⇒⇒⇒ b =
{

1 if a ≤ b,
b else; a =

{
1 if a = 0,
0 else;

a≖≖≖ b =
{

1 if a = b,
0 else; a≺≺≺ b =

{
1 if a < b,
0 else.

Recall that G is a complete linearly ordered lattice algebra; ∨∨∨ | ∧∧∧ is commutative,

associative, idempotent, monotone; 0 | 1 is its neutral element; the residuum operator

⇒⇒⇒ of ∧∧∧ satisfies the condition of residuation:

for all a, b, c ∈ G, a∧∧∧ b ≤ c ⟺ a ≤ b⇒⇒⇒ c; (1)

Gödel negation satisfies the condition:

for all a ∈ G, a = a⇒⇒⇒ 0; (2)

the following properties, which will be exploited later, hold
3
:

for all a, b, c ∈ G,

a∨b∧c = (a∨b)∧(a∨c), (distributivity of∨ over∧) (3)

a∧(b∨c) = a∧b∨a∧c, (distributivity of∧ over∨) (4)

a⇒(b∨c) = a⇒b∨a⇒c, (5)

a⇒b∧c = (a⇒b)∧(a⇒c), (6)

(a∨b)⇒c = (a⇒c)∧(b⇒c), (7)

a∧b⇒c = a⇒c∨b⇒c, (8)

a⇒(b⇒c) = a∧b⇒c, (9)

((a⇒b)⇒b)⇒b = a⇒b, (10)

(a⇒b)⇒c = ((a⇒b)⇒b)∧(b⇒c)∨c, (11)

(a⇒b)⇒0 = ((a⇒0)⇒0)∧(b⇒0). (12)

An interpretation I for L is a triple
(
UI , {fI | f ∈ FuncL }, {pI | p ∈

PredL }
)

defined as follows: UI ≠ ∅ is the universum of I ; every f ∈ FuncL

3
We assume a decreasing operator precedence: , 𝛥𝛥𝛥, ∧∧∧, ⇒⇒⇒, ≖≖≖, ≺≺≺, ∨∨∨.
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is interpreted as a function fI ∶ U
arL (f )
I

⟶ UI ; every p ∈ PredL is interpreted

as a [0, 1]-relation pI ∶ U
arL (p)
I

⟶ [0, 1]; particularly, 0I = 0, 1I = 1, for all

c̄ ∈ CL , c̄I = c. We denote tcons(𝜙) = {0, 1} ∪ (preds(𝜙) ∩ CL ) ⊆ TconsL and

tcons(T) = {0, 1} ∪ (preds(T) ∩ CL ) ⊆ TconsL .

3 Translation to Clausal Form

We firstly define a notion of quantified atom. Let a ∈ FormL . a is a quantified atom

of L iff a = Qx p(t0,… , t
𝜏

) where p(t0,… , t
𝜏

) ∈ AtomL , x ∈ vars(p(t0,… , t
𝜏

)),
either ti = x or x ∉ vars(ti). QAtomL ⊆ FormL denotes the set of all quantified

atoms of L . Let Qx p(t0,… , t
𝜏

) ∈ QAtomL and p(t′0,… , t′
𝜏

) ∈ AtomL . We denote

boundindset(Qx p(t0,… , t
𝜏

)) = {i | i ≤ 𝜏, ti = x} ≠ ∅.

Let I = {i | i ≤ 𝜏, x ∉ vars(ti)} and r1,… , rk, ri ≤ 𝜏, k ≤ 𝜏, for all 1 ≤ i < i′ ≤ k, ri <
ri′ , be a sequence such that {ri | 1 ≤ i ≤ k} = I. We denote

freetermseq(Qx p(t0,… , t
𝜏

)) = tr1 ,… , trk ,

freetermseq(p(t′0,… , t′
𝜏

)) = t′0,… , t′
𝜏

.

We further introduce conjunctive normal form (CNF) in Gödel logic. In con-

trast to two-valued logic, we have to consider an augmented set of literals appear-

ing in CNF formulae. Let l, 𝜙 ∈ FormL . l is a literal of L iff either l = a or l =
b → c or l = (a → d) → d or l = a → e or l = e → a or l = a → Δf or l = Δf → a,

a, f ∈ AtomL − TconsL , b ∈ AtomL − {0, 1}, c ∈ AtomL − {1}, d ∈ (AtomL −
TconsL ) ∪ {0}, e ∈ QAtomL , {b, c} ⊈ TconsL . The set of all literals of L is desig-

nated as LitL ⊆ FormL . 𝜙 is a conjunctive | disjunctive normal form of L , in sym-

bols CNF | DNF, iff either 𝜙 ∈ TconsL or 𝜙 =
⋀

i≤n
⋁

j≤mi
lij | 𝜙 =

⋁
i≤n

⋀
j≤mi

lij,
lij ∈ LitL .

We finally introduce order clauses in Gödel logic. Let l ∈ OrdFormL . l is an

order literal of L iff l = 𝜀1 ⋄ 𝜀2, 𝜀i ∈ AtomL ∪ QAtomL , ⋄ ∈ {≖, ≺}. The set of all

order literals of L is designated as OrdLitL ⊆ OrdFormL . An order clause of L
is a finite set of order literals of L . An order clause {l1,… , ln} is written in the form

l1 ∨⋯ ∨ ln. The order clause ∅ is called the empty order clause and denoted as□. An

order clause {l} is called a unit order clause and denoted as l. We designate the set of

all order clauses of L as OrdClL . Let l, l0,… , ln ∈ OrdLitL and C,C′ ∈ OrdClL .

We define the size of C as |C| =
∑

l∈C |l|. By l ∨ C we denote {l} ∪ C where l ∉ C.

Analogously, by l0 ∨⋯ ∨ ln ∨ C we denote {l0} ∪⋯ ∪ {ln} ∪ C where, for all i, i′ ≤
n, i ≠ i′, li ∉ C and li ≠ li′ . By C ∨ C′

we denote C ∪ C′
. C is a subclause of C′

, in

symbols C ⊑ C′
, iff C ⊆ C′

. An order clausal theory of L is a set of order clauses

of L . A unit order clausal theory is a set of unit order clauses.
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Let 𝜙, 𝜙

′ ∈ OrdFormL , T ,T ′
⊆ OrdFormL , S, S′ ⊆ OrdClL , I be an inter-

pretation for L , e ∈ SI . C is true in I with respect to e, written as I ⊧e C,

iff there exists l∗ ∈ C such that I ⊧e l∗. I is a model of C, in symbols I ⊧ C,

iff, for all e ∈ SI , I ⊧e C. I is a model of S, in symbols I ⊧ S, iff, for all

C ∈ S, I ⊧ C. 𝜙
′ | T ′ | C′ | S′ is a logical consequence of 𝜙 | T | C | S, in sym-

bols 𝜙 |T |C | S ⊧ 𝜙

′ |T ′ |C′ | S′, iff, for every model I of 𝜙 | T | C | S for L ,

I ⊧ 𝜙

′ |T ′ |C′ | S′. 𝜙 | T | C | S is satisfiable iff there exists a model of 𝜙 | T | C |
S for L . 𝜙 | T | C | S is equisatisfiable to 𝜙

′ | T ′ | C′ | S′ iff 𝜙 | T | C | S is satisfiable

if and only if 𝜙
′ | T ′ |C′ | S′ is satisfiable. We denote tcons(S) = {0, 1} ∪ (preds(S) ∩

CL ) ⊆ TconsL . Let S ⊆F OrdClL . We define the size of S as |S| =
∑

C∈S |C|. l is a

simplified order literal ofL iff l = 𝜀1 ⋄ 𝜀2, {𝜀1, 𝜀2} ⊈ TconsL , {𝜀1, 𝜀2} ⊈ QAtomL .

The set of all simplified order literals ofL is designated as SimOrdLitL ⊆ OrdLitL .

We denote SimOrdClL = {C |C ∈ OrdClL ,C ⊆ SimOrdLitL } ⊆ OrdClL . Let ̃f0 ∉
FuncL ; ̃f0 is a new function symbol. Let 𝕀 = ℕ × ℕ; 𝕀 is an infinite countable set of

indices. Let ̃ℙ = {p̃i | i ∈ 𝕀} such that ̃ℙ ∩ PredL = ∅; ̃ℙ is an infinite countable set

of new predicate symbols.

From a computational point of view, the worst case time and space complexity

will be estimated using the logarithmic cost measurement. Let A be an algorithm.

#OA (In) ≥ 1 denotes the number of all elementary operations executed by A on an

input In.

3.1 Substitutions

We assume the reader to be familiar with the standard notions and notation of sub-

stitutions.
4

Let X = {xi | 1 ≤ i ≤ n} ⊆ VarL . A substitution 𝜗 of L is a mapping

𝜗 ∶ X ⟶ TermL . 𝜗 may be written in the form x1∕𝜗(x1),… , xn∕𝜗(xn). We denote

dom(𝜗) = X ⊆F VarL and range(𝜗) =
⋃

x∈X vars(𝜗(x)) ⊆F VarL . The set of all

substitutions of L is designated as SubstL . Let Qx a ∈ QAtomL . 𝜗 is applicable to

Qx a iff dom(𝜗) ⊇ freevars(Qx a) and x ∉ range(𝜗|freevars(Qx a)). We define the appli-

cation of 𝜗 to Qx a as (Qx a)𝜗 = Qx a(𝜗|freevars(Qx a) ∪ x∕x) ∈ QAtomL . Let 𝜀 and 𝜀

′

be expressions. 𝜀
′

is an instance of 𝜀 of L iff there exists 𝜗

∗ ∈ SubstL such that

𝜀

′ = 𝜀𝜗

∗
. 𝜀

′
is a variant of 𝜀 of L iff there exists a variable renaming 𝜌

∗ ∈ SubstL
such that 𝜀

′ = 𝜀𝜌

∗
. Let C ∈ OrdClL and S ⊆ OrdClL . C is an instance | a vari-

ant of S of L iff there exists C∗ ∈ S such that C is an instance | a variant of

C∗
of L . We denote InstL (S) = {C |C is an instance of S of L } ⊆ OrdClL and

VrntL (S) = {C |C is a variant of S of L } ⊆ OrdClL .

Let E be a set of expressions. 𝜗 is a unifier of L for E iff E𝜗 is a singleton

set. Let 𝜃 ∈ SubstL . 𝜃 is a most general unifier of L for E iff 𝜃 is a unifier of

L for E, and for every unifier 𝜗 of L for E, there exists 𝛾

∗ ∈ SubstL such that

𝜗|freevars(E) = 𝜃|freevars(E)◦𝛾
∗
. By mguL (E) ⊆ SubstL we denote the set of all most

general unifiers of L for E. Let E = E0,… ,En, Ei ⊆ 𝖠i, either 𝖠i = TermL or

4
Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Appendix, Sect. 5.1.

http://ii.fmph.uniba.sk/~guller/sci15.pdf
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𝖠i = AtomL or 𝖠i = QAtomL or 𝖠i = OrdLitL . 𝜗 is a unifier of L for E iff, for

all i ≤ n, 𝜗 is a unifier of L for Ei. 𝜃 is a most general unifier of L for E iff 𝜃 is

a unifier of L for E, and for every unifier 𝜗 of L for E, there exists 𝛾
∗ ∈ SubstL

such that 𝜗|freevars(E) = 𝜃|freevars(E)◦𝛾
∗
. By mguL (E) ⊆ SubstL we denote the set of

all most general unifiers of L for E.

Theorem 1 (Unification Theorem) Let E = E0,… ,En, either Ei ⊆F TermL or
Ei ⊆F AtomL . If there exists a unifier of L for E, then there exists 𝜃∗ ∈ mguL (E)
such that range(𝜃∗|vars(E)) ⊆ vars(E).

Proof By induction on ‖vars(E)‖; a modification of the proof of Theorem 2.3 (Uni-

fication Theorem) in [21], Sect. 2.4, pp. 5–6. □

Theorem 2 (Extended Unification Theorem) Let E = E0,… ,En, either Ei ⊆F

TermL or Ei ⊆F AtomL or Ei ⊆F QAtomL or Ei ⊆F OrdLitL , boundvars(E) ⊆
V ⊆F VarL . If there exists a unifier of L for E, then there exists 𝜃∗ ∈ mguL (E)
such that range(𝜃∗|freevars(E)) ∩ V = ∅.

Proof A straightforward consequence of Theorem 1. □

3.2 A Formal Treatment

Translation of a formula or a theory to CNF and clausal form, is based on the fol-

lowing lemma:

Lemma 1 Let n
𝜙

, n0 ∈ ℕ, 𝜙 ∈ FormL , T ⊆ FormL .

(I) There exist either J
𝜙

= ∅ or J
𝜙

= {(n
𝜙

, j) | j ≤ nJ
𝜙

}, J
𝜙

⊆ {(n
𝜙

, j) | j ∈ ℕ}, a
CNF 𝜓 ∈ FormL∪{p̃j | j∈J𝜙}, S𝜙 ⊆F SimOrdClL∪{p̃j | j∈J𝜙} such that

(a) ‖J
𝜙

‖ ≤ 2 ⋅ |𝜙|;
(b) either J

𝜙

= ∅, S
𝜙

= {□} or J
𝜙

= S
𝜙

= ∅ or J
𝜙

≠ ∅,□ ∉ S
𝜙

≠ ∅;
(c) there exists an interpretation 𝔄 for L and 𝔄 ⊧ 𝜙 if and only if there

exists an interpretation 𝔄′ for L ∪ {p̃j | j ∈ J
𝜙

} and 𝔄′
⊧ 𝜓 , satisfying

𝔄 = 𝔄′|L ;
(d) there exists an interpretation 𝔄 for L and 𝔄 ⊧ 𝜙 if and only if there

exists an interpretation 𝔄′ for L ∪ {p̃j | j ∈ J
𝜙

} and 𝔄′
⊧ S

𝜙

, satisfying
𝔄 = 𝔄′|L ;

(e) |𝜓| ∈ O(|𝜙|2); the number of all elementary operations of the translation
of 𝜙 to 𝜓 , is in O(|𝜙|2); the time and space complexity of the translation
of 𝜙 to 𝜓 , is in O(|𝜙|2 ⋅ (log(1 + n

𝜙

) + log |𝜙|));
(f) |S

𝜙

| ∈ O(|𝜙|2); the number of all elementary operations of the translation
of 𝜙 to S

𝜙

, is in O(|𝜙|2); the time and space complexity of the translation
of 𝜙 to S

𝜙

, is in O(|𝜙|2 ⋅ (log(1 + n
𝜙

) + log |𝜙|));
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(g) if 𝜓 ∉ TconsL , then 𝜓 =
⋀

i≤n
𝜓

Di, Di is a factor, J
𝜙

≠ ∅, for all i ≤ n
𝜓

,
∅ ≠ preds(Di) ∩ ̃ℙ ⊆ {p̃j | j ∈ J

𝜙

}, for all i < i′ ≤ n
𝜓

, lits(Di) ≠ lits(Di′ );
(h) if S

𝜙

≠ ∅, {□}, then J
𝜙

≠ ∅, for all C ∈ S
𝜙

, ∅ ≠ preds(C) ∩ ̃ℙ ⊆ {p̃j | j ∈
J
𝜙

};
(i) for all a ∈ qatoms(𝜓), there exists j∗ ∈ J

𝜙

and preds(a) = {p̃j∗};
(j) for all j ∈ J

𝜙

, there exists a sequence x̄ of variables of L and p̃j(x̄) ∈
atoms(𝜓) satisfying, for all a ∈ atoms(𝜓) and preds(a) = {p̃j}, a = p̃j(x̄);
if there exists a∗ ∈ qatoms(𝜓) and preds(a∗) = {p̃j}, then there exists
Qx p̃j(x̄) ∈ qatoms(𝜓) satisfying, for all a ∈ qatoms(𝜓) and preds(a) =
{p̃j}, a = Qx p̃j(x̄);

(k) for all a ∈ qatoms(S
𝜙

), there exists j∗ ∈ J
𝜙

and preds(a) = {p̃j∗};
(l) for all j ∈ J

𝜙

, there exists a sequence x̄ of variables of L and p̃j(x̄) ∈
atoms(S

𝜙

) satisfying, for all a ∈ atoms(S
𝜙

) and preds(a) = {p̃j}, a =
p̃j(x̄); if there exists a∗ ∈ qatoms(S

𝜙

) and preds(a∗) = {p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(S

𝜙

) satisfying, for all a ∈ qatoms(S
𝜙

) and preds
(a) = {p̃j}, a = Qx p̃j(x̄);

(m) tcons(𝜓) = tcons(S
𝜙

) ⊆ tcons(𝜙).

(II) There exist JT ⊆ {(i, j) | i ≥ n0} and ST ⊆ SimOrdClL∪{p̃j | j∈JT} such that

(a) either JT = ∅, ST = {□} or JT = ST = ∅ or JT ≠ ∅,□ ∉ ST ≠ ∅;
(b) there exists an interpretation 𝔄 for L and 𝔄 ⊧ T if and only if there

exists an interpretation 𝔄′ for L ∪ {p̃j | j ∈ JT} and 𝔄′
⊧ ST, satisfying

𝔄 = 𝔄′|L ;
(c) if T ⊆F FormL , then JT ⊆F {(i, j) | i ≥ n0}, ‖JT‖ ≤ 2 ⋅ |T|,

ST ⊆F SimOrdClL∪{p̃j | j∈JT},|ST | ∈ O(|T|2); the number of all elemen-
tary operations of the translation of T to ST , is in O(|T|2); the time and
space complexity of the translation of T to ST , is in O(|T|2 ⋅ log(1 + n0 +
|T|));

(d) if ST ≠ ∅, {□}, then JT ≠ ∅, for all C ∈ ST, ∅ ≠ preds(C) ∩ ̃ℙ ⊆ {p̃j | j ∈
JT};

(e) for all a ∈ qatoms(ST ), there exists j∗ ∈ JT and preds(a) = {p̃j∗};
(f) for all j ∈ JT , there exists a sequence x̄ of variables of L and p̃j(x̄) ∈

atoms(ST ) satisfying, for all a ∈ atoms(ST ) and preds(a) = {p̃j},
a = p̃j(x̄); if there exists a∗ ∈ qatoms(ST ) and preds(a∗) = {p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(ST ) satisfying, for all a ∈ qatoms(ST ) and preds
(a) = {p̃j}, a = Qx p̃j(x̄);

(g) tcons(ST ) ⊆ tcons(T).

Proof Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Sect. 3.3, Lemma 1, for a proof.

In Table 1, for every form of l ∈ LitL , an equisatisfiableC ∈ SimOrdClL is assigned.

In Tables 2, 3, 4, 5 and 6, interpolation rules for all the connectives are proposed,

which translation is based on. The lemma is proved. □

http://ii.fmph.uniba.sk/~guller/sci15.pdf
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Table 1 Translation of l to C
Case l C l C
1 a a ≖ 1 |a| |a| + 2 ≤ 3 ⋅ |l|
2 a → 0 a ≖ 0 |a| + 2 |a| + 2 ≤ 3 ⋅ |l|
3 c̄ → b c̄ ≺ b ∨ c̄ ≖ b |b| + 2 2 ⋅ |b| + 4 ≤ 3 ⋅ |l|
4 a → c̄ a ≺ c̄ ∨ a ≖ c̄ |a| + 2 2 ⋅ |a| + 4 ≤ 3 ⋅ |l|
5 a → b a ≺ b ∨ a ≖ b |a| + |b| + 1 2 ⋅ |a| + 2 ⋅ |b| + 2 ≤ 3 ⋅ |l|
6 (a → 0) → 0 0 ≺ a |a| + 4 |a| + 2 ≤ 3 ⋅ |l|
7 (a → b) → b b ≺ a ∨ b ≖ 1 |a| + 2 ⋅ |b| + 2 |a| + 2 ⋅ |b| + 3 ≤ 3 ⋅ |l|
8 a → d a ≺ d ∨ a ≖ d |a| + |d| + 1 2 ⋅ |a| + 2 ⋅ |d| + 2 ≤ 3 ⋅ |l|
9 d → a d ≺ a ∨ d ≖ a |a| + |d| + 1 2 ⋅ |a| + 2 ⋅ |d| + 2 ≤ 3 ⋅ |l|
10 a → Δb a ≖ 0 ∨ b ≖ 1 |a| + |b| + 2 |a| + |b| + 4 ≤ 3 ⋅ |l|
11 Δb → a b ≺ 1 ∨ a ≖ 1 |a| + |b| + 2 |a| + |b| + 4 ≤ 3 ⋅ |l|
a, b ∈ AtomL − TconsL , c̄ ∈ CL , d ∈ QAtomL

The described translation produces order clausal theories in some restrictive form,

which will be utilised in inference using our order hyperresolution calculus to get

shorter deductions in average case. Let P ⊆
̃ℙ and S ⊆ OrdClL∪P. S is admissible iff

(a) for all a ∈ qatoms(S), preds(a) ⊆ P;

(b) for all p̃ ∈ P, there exists a sequence x̄ of variables of L and p̃(x̄) ∈ atoms(S)
satisfying, for all a ∈ atoms(S) and preds(a) = {p̃}, a is an instance of p̃(x̄) of

L ∪ P; if there exists a∗ ∈ qatoms(S) and preds(a∗) = {p̃}, then there exists

Qx p̃(x̄) ∈ qatoms(S) satisfying, for all a ∈ qatoms(S) and preds(a) = {p̃}, a is

an instance of Qx p̃(x̄) of L ∪ P.

(a) and (b) imply that for all Qx a,Q′x′ a′ ∈ qatoms(S), if preds(a) = preds(a′), then

Q = Q′
, x = x′, boundindset(Qx a) = boundindset(Q′x′ a′).

Theorem 3 Let n0 ∈ ℕ, 𝜙 ∈ FormL , T ⊆ FormL . There exist J𝜙T ⊆ {(i, j) | i ≥ n0}
and S𝜙T ⊆ SimOrdClL∪{p̃j | j∈J

𝜙

T }
such that

(i) there exists an interpretation 𝔄 forL and 𝔄 ⊧ T, 𝔄 ⋰⊧ 𝜙 if and only if there
exists an interpretation 𝔄′ for L ∪ {p̃j | j ∈ J𝜙T } and 𝔄′

⊧ S𝜙T , satisfying 𝔄 =
𝔄′|L ;

(ii) if T ⊆F FormL , then J𝜙T ⊆F {(i, j) | i ≥ n0}, ‖J
𝜙

T ‖ ∈ O(|T| + |𝜙|), S𝜙T ⊆F

SimOrdClL∪{p̃j | j∈J
𝜙

T }
, |S𝜙T | ∈ O(|T|2 + |𝜙|2); the number of all elementary

operations of the translation of T and 𝜙 to S𝜙T , is in O(|T|2 + |𝜙|2); the time
and space complexity of the translation of T and 𝜙 to S𝜙T , is in O(|T|

2 ⋅ log(1 +
n0 + |T|) + |𝜙|2 ⋅ (log(1 + n0) + log |𝜙|));

(iii) S𝜙T is admissible;
(iv) tcons(S𝜙T ) ⊆ tcons(𝜙) ∪ tcons(T).

Proof Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Sect. 3.3, Theorem 3, for a

proof. □

http://ii.fmph.uniba.sk/~guller/sci15.pdf
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Table 4 Unary interpolation rules for →

Case Laws

𝜃 = 𝜃1 → 0

Positive interpolation
p̃i(x̄) → (𝜃1 → 0)

(p̃i(x̄) → 0 ∨ p̃i1 (x̄) → 0) ∧ (𝜃1 → p̃i1 (x̄))
(9), (8) (25)

|Consequent|= 8 + 2 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 13 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Positive interpolation
p̃i(x̄) → (𝜃1 → 0)

{p̃i(x̄) ≖ 0 ∨ p̃i1 (x̄) ≖ 0, 𝜃1 → p̃i1 (x̄)}
(26)

|Consequent|= 6 + 2 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 15 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Negative interpolation
(𝜃1 → 0) → p̃i(x̄)

((p̃i1 (x̄) → 0) → 0 ∨ p̃i(x̄)) ∧ (p̃i1 (x̄) → 𝜃1)
(11) (27)

|Consequent|= 8 + 2 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 13 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Negative interpolation
(𝜃1 → 0) → p̃i(x̄)

{0 ≺ p̃i1 (x̄) ∨ p̃i(x̄) ≖ 1, p̃i1 (x̄) → 𝜃1}
(28)

|Consequent|= 6 + 2 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 15 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Table 5 Unary interpolation rules for ∀ and ∃
Case

𝜃 = ∀x 𝜃1
Positive interpolation

p̃i(x̄) → ∀x 𝜃1
(p̃i(x̄) → ∀x p̃i1 (x̄)) ∧ (p̃i1 (x̄) → 𝜃1)

(29)

|Consequent|= 6 + 2 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 13 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Positive interpolation
p̃i(x̄) → ∀x 𝜃1

{p̃i(x̄) ≺ ∀x p̃i1 (x̄) ∨ p̃i(x̄) ≖ ∀x p̃i1 (x̄), p̃i1 (x̄) → 𝜃1}
(30)

|Consequent|= 10 + 4 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 15 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Negative interpolation
∀x 𝜃1 → p̃i(x̄)

(∀x p̃i1 (x̄) → p̃i(x̄)) ∧ (𝜃1 → p̃i1 (x̄))
(31)

|Consequent|= 6 + 2 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 13 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Negative interpolation
∀x 𝜃1 → p̃i(x̄)

{∀x p̃i1 (x̄) ≺ p̃i(x̄) ∨ ∀x p̃i1 (x̄) ≖ p̃i(x̄), 𝜃1 → p̃i1 (x̄)}
(32)

|Consequent|= 10 + 4 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 15 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|
𝜃 = ∃x 𝜃1

Positive interpolation
p̃i(x̄) → ∃x 𝜃1

(p̃i(x̄) → ∃x p̃i1 (x̄)) ∧ (p̃i1 (x̄) → 𝜃1)
(33)

|Consequent|= 6 + 2 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 13 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

(continued)
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Table 5 (continued)

Case

Positive interpolation
p̃i(x̄) → ∃x 𝜃1

{p̃i(x̄) ≺ ∃x p̃i1 (x̄) ∨ p̃i(x̄) ≖ ∃x p̃i1 (x̄), p̃i1 (x̄) → 𝜃1}
(34)

|Consequent|= 10 + 4 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 15 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Negative interpolation
∃x 𝜃1 → p̃i(x̄)

(∃x p̃i1 (x̄) → p̃i(x̄)) ∧ (𝜃1 → p̃i1 (x̄))
(35)

|Consequent|= 6 + 2 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 13 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Negative interpolation
∃x 𝜃1 → p̃i(x̄)

{∃x p̃i1 (x̄) ≺ p̃i(x̄) ∨ ∃x p̃i1 (x̄) ≖ p̃i(x̄), 𝜃1 → p̃i1 (x̄)}
(36)

|Consequent|= 10 + 4 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 15 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Table 6 Unary interpolation rules for Δ
Case

𝜃 = Δ𝜃1
Positive interpolation

p̃i(x̄) → Δ𝜃1
(p̃i(x̄) → Δp̃i1 (x̄)) ∧ (p̃i1 (x̄) → 𝜃1)

(37)

|Consequent|= 5 + 2 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 13 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Positive interpolation
p̃i(x̄) → Δ𝜃1

{p̃i(x̄) ≖ 0 ∨ p̃i1 (x̄) ≖ 1, p̃i1 (x̄) → 𝜃1}
(38)

|Consequent|= 6 + 2 ⋅ |x̄| + |p̃i1 (x̄) → 𝜃1| ≤ 15 ⋅ (1 + |x̄|) + |p̃i1 (x̄) → 𝜃1|

Negative interpolation
Δ𝜃1 → p̃i(x̄)

(Δp̃i1 (x̄) → p̃i(x̄)) ∧ (𝜃1 → p̃i1 (x̄))
(39)

|Consequent|= 5 + 2 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 13 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Negative interpolation
Δ𝜃1 → p̃i(x̄)

{p̃i1 (x̄) ≺ 1 ∨ p̃i(x̄) ≖ 1, 𝜃1 → p̃i1 (x̄)}
(40)

|Consequent|= 6 + 2 ⋅ |x̄| + |𝜃1 → p̃i1 (x̄)| ≤ 15 ⋅ (1 + |x̄|) + |𝜃1 → p̃i1 (x̄)|

Corollary 1 Let n0 ∈ ℕ,𝜙 ∈ FormL , T ⊆ FormL . There exist J𝜙T ⊆ {(i, j) | i ≥ n0}
and S𝜙T ⊆ SimOrdClL∪{p̃j | j∈J

𝜙

T }
such that

(i) T ⊧ 𝜙 if and only if S𝜙T is unsatisfiable;
(ii) if T ⊆F FormL , then J𝜙T ⊆F {(i, j) | i ≥ n0}, ‖J𝜙T ‖ ∈ O(|T| + |𝜙|),

S𝜙T ⊆F SimOrdClL∪{p̃j | j∈J
𝜙

T }
, |S𝜙T | ∈ O(|T|2 + |𝜙|2); the number of all ele-

mentary operations of the translation of T and 𝜙 to S𝜙T , is in O(|T|2 + |𝜙|2);
the time and space complexity of the translation of T and 𝜙 to S𝜙T , is in
O(|T|2 ⋅ log(1 + n0 + |T|) + |𝜙|2 ⋅ (log(1 + n0) + log |𝜙|));

(iii) S𝜙T is admissible;
(iv) tcons(S𝜙T ) ⊆ tcons(𝜙) ∪ tcons(T).
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Proof Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Sect. 3.3, Corollary 1, for a

proof. □

4 Hyperresolution over Order Clauses

In this section, we propose an order hyperresolution calculus with truth constants

operating over order clausal theories.

4.1 Order Hyperresolution Rules

At first, we introduce some basic notions and notation concerning chains of order lit-

erals. A chain 𝛯 of L is a sequence 𝛯 = 𝜀0 ⋄0 𝜐0,… , 𝜀n ⋄n 𝜐n, 𝜀i ⋄i 𝜐i ∈ OrdLitL ,

such that for all i < n, 𝜐i = 𝜀i+1. 𝜀0 is the beginning element of 𝛯 and 𝜐n the ending

element of 𝛯 . 𝜀0 𝛯 𝜐n denotes 𝛯 together with its respective beginning and ending

element. Let 𝛯 = 𝜀0 ⋄0 𝜐0,… , 𝜀n ⋄n 𝜐n be a chain of L . 𝛯 is an equality chain of

L iff, for all i ≤ n, ⋄i =≖. 𝛯 is an increasing chain of L iff there exists i∗ ≤ n such

that ⋄i∗ =≺. 𝛯 is a contradiction of L iff 𝛯 is an increasing chain of L of the form

𝜀0 𝛯 0 or 1𝛯 𝜐n or 𝜀0 𝛯 𝜀0. Let S ⊆ OrdClL be unit and 𝛯 = 𝜀0 ⋄0 𝜐0,… , 𝜀n ⋄n 𝜐n
be a chain | an equality chain | an increasing chain | | a contradiction of L . 𝛯 is

a chain | an equality chain | an increasing chain | a contradiction of S iff, for all

i ≤ n, 𝜀i ⋄i 𝜐i ∈ S. Let ̃𝕎 = {w̃i | i ∈ 𝕀} such that ̃𝕎 ∩ (FuncL ∪ {̃f0}) = ∅; ̃𝕎 is an

infinite countable set of new function symbols. Let L contain a constant (nullary

function) symbol. Let P ⊆
̃ℙ and S ⊆ OrdClL∪P. We denote GOrdClL = {C |C ∈

OrdClL is closed} ⊆ OrdClL , GInstL (S) = {C |C ∈ GOrdClL is an instance of

S of L } ⊆ GOrdClL , ordtcons(S) = {0 ≺ 1} ∪ {0 ≺ c̄ | c̄ ∈ tcons(S) ∩ CL }∪ {c̄ ≺
1 | c̄ ∈ tcons(S) ∩ CL } ∪ {c̄1 ≺ c̄2 | c̄1, c̄2
∈ tcons(S) ∩ CL , c1 < c2} ⊆ GOrdClL .

A basic order hyperresolution calculus is defined as follows. The first rule is a

central order hyperresolution one with obvious intuition.

(Basic order hyperresolution rule) (41)

l0 ∨ C0,… , ln ∨ Cn ∈ S
𝜅−1

n⋁

i=0
Ci ∈ S

𝜅

;

l0,… , ln is a contradiction of L𝜅−1.

We say that
⋁n

i=0 Ci is a basic order hyperresolvent of l0 ∨ C0,… , ln ∨ Cn. The

second rule is an auxiliary one which ensures a total order over derived atoms.

http://ii.fmph.uniba.sk/~guller/sci15.pdf
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(Basic order trichotomy rule) (42)

a, b ∈ atoms(S
𝜅−1), {a, b} ⊈ TconsL

a ≺ b ∨ a ≖ b ∨ b ≺ a ∈ S
𝜅

.

a ≺ b ∨ a ≖ b ∨ b ≺ a is a basic order trichotomy resolvent of a and b. The next two

rules order a quantified atom and its ground instances.

(Basic order ∀ -quantification rule) (43)

∀x a ∈ qatoms∀(S
𝜅−1)

∀x a ≺ a𝛾 ∨ ∀x a ≖ a𝛾 ∈ S
𝜅

;

t ∈ GTermL
𝜅−1
, 𝛾 = x∕t ∈ SubstL

𝜅−1
, dom(𝛾) = {x} = vars(a).

∀x a ≺ a𝛾 ∨ ∀x a ≖ a𝛾 is a basic order ∀-quantification resolvent of ∀x a.

(Basic order ∃ -quantification rule) (44)

∃x a ∈ qatoms∃(S
𝜅−1)

a𝛾 ≺ ∃x a ∨ a𝛾 ≖ ∃x a ∈ S
𝜅

;

t ∈ GTermL
𝜅−1
, 𝛾 = x∕t ∈ SubstL

𝜅−1
, dom(𝛾) = {x} = vars(a).

a𝛾 ≺ ∃x a ∨ a𝛾 ≖ ∃x a is a basic order ∃-quantification resolvent of ∃x a. The last

two rules introduce a witness with respect to infimum | supremum, as a ground term

with a new function symbol, between a derived quantified atom and an atom | a

quantified atom.

(Basic order ∀-witnessing rule) (45)

∀x a ∈ qatoms∀(S
𝜅−1), b ∈ atoms(S

𝜅−1) ∪ qatoms(S
𝜅−1)

a𝛾 ≺ b ∨ b ≖ ∀x a ∨ b ≺ ∀x a ∈ S
𝜅

;

w̃ ∈ ̃𝕎 − FuncL
𝜅−1
, ar(w̃) = |freetermseq(∀x a), freetermseq(b)|,

𝛾 = x∕w̃(freetermseq(∀x a), freetermseq(b)) ∈ SubstL
𝜅

, dom(𝛾) = {x} = vars(a).

a𝛾 ≺ b ∨ b ≖ ∀x a ∨ b ≺ ∀x a is a basic order ∀-witnessing resolvent of ∀x a and b.

(Basic order ∃-witnessing rule) (46)

∃x a ∈ qatoms∃(S
𝜅−1), b ∈ atoms(S

𝜅−1) ∪ qatoms(S
𝜅−1)

b ≺ a𝛾 ∨ ∃x a ≖ b ∨ ∃x a ≺ b ∈ S
𝜅

;

w̃ ∈ ̃𝕎 − FuncL
𝜅−1
, ar(w̃) = |freetermseq(∃x a), freetermseq(b)|,

𝛾 = x∕w̃(freetermseq(∃x a), freetermseq(b)) ∈ SubstL
𝜅

, dom(𝛾) = {x} = vars(a).

b ≺ a𝛾 ∨ ∃x a ≖ b ∨ ∃x a ≺ b is a basic order ∃-witnessing resolvent of ∃x a and b.

The basic order hyperresolution calculus can be generalised to an order hyperres-

olution one. Intuition behind rules is similar to that in the basic case.
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(Order hyperresolution rule) (47)

k0⋁

j=0
𝜀

0
j ⋄

0
j 𝜐

0
j ∨

m0⋁

j=1
l0j ,… ,

kn⋁

j=0
𝜀

n
j ⋄

n
j 𝜐

n
j ∨

mn⋁

j=1
lnj ∈ SVr

𝜅−1

( n⋁

i=0

mi⋁

j=1
lij
)
𝜃 ∈ S

𝜅

;

for all i < i′ ≤ n,
freevars(

⋁ki
j=0 𝜀

i
j ⋄

i
j 𝜐

i
j ∨

⋁mi
j=1 l

i
j) ∩ freevars(

⋁ki′
j=0 𝜀

i′
j ⋄

i′
j 𝜐

i′
j ∨

⋁mi′

j=1 l
i′
j ) = ∅,

𝜃 ∈ mguL
𝜅−1

(⋁k0
j=0 𝜀

0
j ⋄

0
j 𝜐

0
j , l

0
1,… , l0m0

,… ,

⋁kn
j=0 𝜀

n
j ⋄

n
j 𝜐

n
j , l

n
1,… , lnmn

,

{𝜐00, 𝜀
1
0},… , {𝜐n−10 , 𝜀

n
0}, {a, b}

)
,

dom(𝜃) = freevars
(
{𝜀ij ⋄

i
j 𝜐

i
j | j ≤ ki, i ≤ n}, {lij | 1 ≤ j ≤ mi, i ≤ n}

)
,

a = 𝜀

0
0, b = 1 or a = 𝜐

n
0, b = 0 or a = 𝜀

0
0, b = 𝜐

n
0,

there exists i∗ ≤ n suchthat ⋄i∗0 =≺ .

(⋁n
i=0

⋁mi
j=1 l

i
j

)
𝜃 is an order hyperresolvent of

⋁k0
j=0 𝜀

0
j ⋄

0
j 𝜐

0
j ∨

⋁m0
j=1 l

0
j ,… ,

⋁kn
j=0 𝜀

n
j ⋄

n
j

𝜐

n
j ∨

⋁mn
j=1 l

n
j .

(Order trichotomy rule) (48)

a, b ∈ atoms(SVr
𝜅−1), {a, b} ⊈ TconsL

a ≺ b ∨ a ≖ b ∨ b ≺ a ∈ S
𝜅

;

vars(a) ∩ vars(b) = ∅.

a ≺ b ∨ a ≖ b ∨ b ≺ a is an order trichotomy resolvent of a and b.

(Order ∀-quantification rule) (49)

∀x a ∈ qatoms∀(S
𝜅−1)

∀x a ≺ a ∨ ∀x a ≖ a ∈ S
𝜅

.

∀x a ≺ a ∨ ∀x a ≖ a is an order ∀-quantification resolvent of ∀x a.

(Order ∃-quantification rule) (50)

∃x a ∈ qatoms∃(S
𝜅−1)

a ≺ ∃x a ∨ a ≖ ∃x a ∈ S
𝜅

.

a ≺ ∃x a ∨ a ≖ ∃x a is an order ∃-quantification resolvent of ∃x a.

(Order ∀-witnessing rule) (51)

∀x a ∈ qatoms∀(SVr
𝜅−1), b ∈ atoms(SVr

𝜅−1) ∪ qatoms(SVr
𝜅−1)

a𝛾 ≺ b ∨ b ≖ ∀x a ∨ b ≺ ∀x a ∈ S
𝜅

;



230 D. Guller

freevars(∀x a) ∩ freevars(b) = ∅,
w̃ ∈ ̃𝕎 − FuncL

𝜅−1
, ar(w̃) = |freetermseq(∀x a), freetermseq(b)|,

𝛾 = x∕w̃(freetermseq(∀x a), freetermseq(b)) ∪ id|vars(a)−{x} ∈ SubstL
𝜅

,

dom(𝛾) = {x} ∪ (vars(a) − {x}) = vars(a).

a𝛾 ≺ b ∨ b ≖ ∀x a ∨ b ≺ ∀x a is an order ∀-witnessing resolvent of ∀x a and b.

(Order ∃-witnessing rule) (52)

∃x a ∈ qatoms∃(SVr
𝜅−1), b ∈ atoms(SVr

𝜅−1) ∪ qatoms(SVr
𝜅−1)

b ≺ a𝛾 ∨ ∃x a ≖ b ∨ ∃x a ≺ b ∈ S
𝜅

;

freevars(∃x a) ∩ freevars(b) = ∅,
w̃ ∈ ̃𝕎 − FuncL

𝜅−1
, ar(w̃) = |freetermseq(∃x a), freetermseq(b)|,

𝛾 = x∕w̃(freetermseq(∃x a), freetermseq(b)) ∪ id|vars(a)−{x} ∈ SubstL
𝜅

,

dom(𝛾) = {x} ∪ (vars(a) − {x}) = vars(a).

b ≺ a𝛾 ∨ ∃x a ≖ b ∨ ∃x a ≺ b is an order ∃-witnessing resolvent of ∃x a and b.

Let L0 = L ∪ P, a reduct of L ∪ ̃𝕎 ∪ P, and S0 = ∅ ⊆ GOrdClL0
| OrdClL0

.

LetD = C1,… ,Cn,C
𝜅

∈ GOrdClL∪ ̃𝕎∪P |OrdClL∪ ̃𝕎∪P, n ≥ 1.D is a deduction of

Cn from S by basic order hyperresolution iff, for all 1 ≤ 𝜅 ≤ n, C
𝜅

∈ ordtcons(S) ∪
GInstL

𝜅−1
(S), or there exist 1 ≤ j∗k ≤ 𝜅 − 1, k = 1,… ,m, such thatC

𝜅

is a basic order

resolvent of Cj∗1
,… ,Cj∗m

∈ S
𝜅−1 using Rule (41)–(46) with respect to L

𝜅−1 and S
𝜅−1;

D is a deduction of Cn from S by order hyperresolution iff, for all 1 ≤ 𝜅 ≤ n, C
𝜅

∈
ordtcons(S) ∪ S, or there exist 1 ≤ j∗k ≤ 𝜅 − 1, k = 1,… ,m, such that C

𝜅

is an order

resolvent of C′
j∗1
,… ,C′

j∗m
∈ SVr

𝜅−1 using Rule (47)–(52) with respect to L
𝜅−1 and S

𝜅−1

where C′
j∗k

is a variant of Cj∗k
∈ S

𝜅−1 of L
𝜅−1; L

𝜅

and S
𝜅

are defined by recursion on

1 ≤ 𝜅 ≤ n as follows:

L
𝜅

=
{

L
𝜅−1 ∪ {w̃} in case of Rule (45), (46) | (51), (52),

L
𝜅−1 else, a reduct of L ∪ ̃𝕎 ∪ P;

S
𝜅

= S
𝜅−1 ∪ {C

𝜅

} ⊆ GOrdClL
𝜅

| OrdClL
𝜅

,

SVr
𝜅

= VrntL
𝜅

(S
𝜅

) ⊆ OrdClL
𝜅

.

D is a refutation of S iff Cn = □. We denote

cloBH (S) = {C | there exists a deduction of C from S
by basic order hyperresolution} ⊆ GOrdClL∪ ̃𝕎∪P,

cloH (S) = {C | there exists a deduction of C from S
by order hyperresolution} ⊆ OrdClL∪ ̃𝕎∪P.

4.2 Refutational Soundness and Completeness

We are in position to prove the refutational soundness and completeness of the order

hyperresolution calculus. At first, we list some auxiliary lemmata.
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Lemma 2 (Lifting Lemma) Let L contain a constant symbol. Let P ⊆
̃ℙ and S ⊆

OrdClL∪P. Let C ∈ cloBH (S). There exists C∗ ∈ cloH (S) such that C is an instance
of C∗ of L ∪ ̃𝕎 ∪ P.

Proof Technical, analogous to the standard one. □

Lemma 3 (Reduction Lemma) Let L contain a constant symbol. Let P ⊆
̃ℙ and

S ⊆ OrdClL∪P. Let {
⋁ki

j=0 𝜀
i
j ⋄

i
j 𝜐

i
j ∨ Ci | i ≤ n} ⊆ cloBH (S) such that for all S ∈

S el({{j | j ≤ ki}i | i ≤ n}), there exists a contradiction of {𝜀i
S (i) ⋄

i
S (i) 𝜐

i
S (i) | i ≤ n}

⊆ GOrdClL∪ ̃𝕎∪P. There exists ∅ ≠ I∗ ⊆ {i | i ≤ n} such that
⋁

i∈I∗ Ci ∈ cloBH (S).

Proof Technical, analogous to the one of Proposition 2, [22]. □

Lemma 4 (Unit Lemma) Let L contain a constant symbol. Let P ⊆
̃ℙ and S ⊆

OrdClL∪P. Let □ ∉ cloBH (S) = {
⋁k

𝜄

j=0 𝜀
𝜄

j ⋄
𝜄

j 𝜐
𝜄

j | 𝜄 < 𝛾}, 𝛾 ≤ 𝜔. There exists S ∗ ∈
S el({{j | j ≤ k

𝜄

}
𝜄

| 𝜄 < 𝛾}) such that there does not exist a contradiction of
{𝜀𝜄

S ∗(𝜄) ⋄
𝜄

S ∗(𝜄) 𝜐
𝜄

S ∗(𝜄) | 𝜄 < 𝛾} ⊆ GOrdClL∪ ̃𝕎∪P.

Proof Technical, a straightforward consequence of König’s Lemma and

Lemma 3. □

Let {0, 1} ⊆ X ⊆ TconsL . X is admissible with respect to suprema and infima iff,

for all ∅ ≠ Y1,Y2 ⊆ X and
⋁⋁⋁

Y1 =
⋀⋀⋀

Y2,
⋁⋁⋁

Y1 ∈ Y1,
⋀⋀⋀

Y2 ∈ Y2.

Theorem 4 (Refutational Soundness and Completeness) LetL contain a constant
symbol. Let P ⊆

̃ℙ, S ⊆ OrdClL∪P, tcons(S) be admissible with respect to suprema
and infima.□ ∈ cloH (S) if and only if S is unsatisfiable.

Proof Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Sect. 4.2, Theorem 4, for a

proof. □

Consider S = {0 ≺ a} ∪ {a ≺

1
n
| n ≥ 2} ⊆ OrdClL , a ∈ PredL − TconsL ,

arL (a) = 0. tcons(S) is not admissible with respect to suprema and infima; for {0}
and {1

n
| n ≥ 2},

⋁⋁⋁
{0} =

⋀⋀⋀
{1
n
| n ≥ 2} = 0, 0 ∉ {1

n
| n ≥ 2}. S is unsatisfiable; both

the cases ‖a‖𝔄 = 0 and ‖a‖𝔄 > 0 lead to 𝔄 ⊭ S for every interpretation 𝔄 for L .

However, □ ∉ cloH (S). So, the condition on tcons(S) being admissible with respect

to suprema and infima, is necessary.

Corollary 2 Let L contain a constant symbol. Let n0 ∈ ℕ, 𝜙 ∈ FormL , T ⊆

FormL , tcons(T) be admissible with respect to suprema and infima. There exist
J𝜙T ⊆ {(i, j) | i ≥ n0} and S𝜙T ⊆ SimOrdClL∪{p̃j | j∈J

𝜙

T }
such that tcons(S𝜙T ) is admis-

sible with respect to suprema and infima; T ⊧ 𝜙 if and only if □ ∈ cloH (S𝜙T ).

Proof By Corollary 1 for n0, 𝜙, T , there exist

J𝜙T ⊆ {(i, j) | i ≥ n0}, S
𝜙

T ⊆ SimOrdClL∪{p̃j | j∈J
𝜙

T }

http://ii.fmph.uniba.sk/~guller/sci15.pdf
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Table 7 An example: 𝜙 = ∀x (q1(x) → 0.3) → (∃x q1(x) → 0.5)

and Corollary 1(i,iv) hold for𝜙, T , S𝜙T ; we have tcons(T) is admissible with respect to

suprema and infima, tcons(S𝜙T ) ⊆ tcons(𝜙) ∪ tcons(T); tcons(𝜙) ⊆F TconsL , tcons(S𝜙T )
is admissible with respect to suprema and infima; we have T ⊧ 𝜙 if and only if S𝜙T
is unsatisfiable; by Theorem 4 for {p̃j | j ∈ J𝜙T }, S𝜙T , S𝜙T is unsatisfiable if and only if

□ ∈ cloH (S𝜙T ); T ⊧ 𝜙 if and only if □ ∈ cloH (S𝜙T ). The corollary is proved. □
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In Table 7, we show that 𝜙 = ∀x (q1(x) → 0.3) → (∃x q1(x) → 0.5) ∈ FormL is

logically valid using the proposed translation to order clausal form and the order

hyperresolution calculus.

5 Conclusions

In the paper, we have proposed a modification of the hyperresolution calculus from

[2, 19] which is suitable for automated deduction with explicit partial truth. The

first-order Gödel logic is expanded by a countable set of intermediate truth constants

c̄, c ∈ (0, 1). We have modified translation of a formula to an equivalent satisfiable

finite order clausal theory, consisting of order clauses. An order clause is a finite set

of order literals of the form 𝜀1 ⋄ 𝜀2 where 𝜀i is an atom or a quantified atom, and ⋄
is the connective ≖ or ≺. ≖ and ≺ are interpreted by the equality and standard strict

linear order on [0, 1][0, 1], respectively. We have investigated the so-called canonical

standard completeness, where the semantics of Gödel logic is given by the standard

G-algebra and truth constants are interpreted by ‘themselves’. The modified hyper-

resolution calculus is refutation sound and complete for a countable order clausal

theory if the set of truth constants occurring in the theory, is admissible with respect

to suprema and infima. This condition covers the case of finite order clausal theories.

As an interesting consequence, we get an affirmative solution to the open problem of

recursive enumerability of unsatisfiable formulae in Gödel logic with truth constants

and the projection operator 𝛥𝛥𝛥.

Corollary 3 The set of unsatisfiable formulae ofL is recursively enumerable.

Proof Let 𝜙 ∈ FormL . Then 𝜙 contains a finite number of truth constants and

tcons({𝜙}) is admissible with respect to suprema and infima. The statement 𝜙

is unsatisfiable, is equivalent to {𝜙} ⊧ 0. Hence, the problem that 𝜙 is unsatisfi-

able can be reduced to the deduction problem {𝜙} ⊧ 0 after a constant number of

steps. Let n0 ∈ ℕ. By Corollary 2 for n0, 0, {𝜙}, there exist J0{𝜙} ⊆ {(i, j) | i ≥ n0},

S0{𝜙} ⊆ SimOrdClL∪{p̃j | j∈J0{𝜙}}
and tcons(S0{𝜙}) is admissible with respect to suprema

and infima, {𝜙} ⊧ 0 if and only if□ ∈ cloH (S0{𝜙}); if {𝜙} ⊧ 0, then□ ∈ cloH (S0{𝜙})
and we can decide it after a finite number of steps. This straightforwardly implies

that the set of unsatisfiable formulae of L is recursively enumerable. The corollary

is proved. □

References

1. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Theorem proving for prenex Gödel logic with Delta:

checking validity and unsatisfiability. Log. Methods Comput. Sci. 8 (2012)

2. Guller, D.: An order hyperresolution calculus for Gödel logic—General first-order case. In:

Rosa, A.C., Correia, A.D., Madani, K., Filipe, J., Kacprzyk, J. (eds.) IJCCI 2012—Proceedings

of the 4th International Joint Conference on Computational Intelligence, Barcelona, Spain, 5–7

October 2012, pp. 329–342. SciTePress (2012)



234 D. Guller

3. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215

(1960)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.

ACM 5, 394–397 (1962)

5. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41

(1965)

6. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234

(1965)

7. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving.

Harper and Row Publishers Inc, New York (1985)

8. Biere, A., Heule, M.J., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Frontiers in

Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

9. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Springer (2001)

10. Pavelka, J.: On fuzzy logic I, II, III. Semantical completeness of some many-valued proposi-

tional calculi. Math. Logic Q. 25, 45–52, 119–134, 447–464 (1979)

11. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. The Springer

International Series in Engineering and Computer Science. Springer, US (1999)

12. Esteva, F., Godo, L., Montagna, F.: The ŁΠ and ŁΠ 1
2

logics: two complete fuzzy systems

joining Łukasiewicz and product logics. Arch. Math. Log. 40, 39–67 (2001)

13. Savický, P., Cignoli, R., Esteva, F., Godo, L., Noguera, C.: On product logic with truth-

constants. J. Log. Comput. 16, 205–225 (2006)

14. Esteva, F., Godo, L., Noguera, C.: On completeness results for the expansions with truth-

constants of some predicate fuzzy logics. In: Stepnicka, M., Novák, V., Bodenhofer, U. (eds.)

New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT

Conference, Ostrava, Czech Republic, September 11–14, 2007, Volume 2: Regular Sessions,

Universitas Ostraviensis, pp. 21–26 (2007)

15. Esteva, F., Gispert, J., Godo, L., Noguera, C.: Adding truth-constants to logics of continuous

t-norms: axiomatization and completeness results. Fuzzy Sets Syst. 158, 597–618 (2007)

16. Esteva, F., Godo, L., Noguera, C.: First-order t-norm based fuzzy logics with truth-constants:

distinguished semantics and completeness properties. Ann. Pure Appl. Logic 161, 185–202

(2009)

17. Esteva, F., Godo, L., Noguera, C.: Expanding the propositional logic of a t-norm with truth-

constants: completeness results for rational semantics. Soft Comput. 14, 273–284 (2010)

18. Esteva, F., Godo, L., Noguera, C.: On expansions of WNM t-norm based logics with truth-

constants. Fuzzy Sets Syst. 161, 347–368 (2010)

19. Guller, D.: A generalisation of the hyperresolution principle to first order Gödel logic. In:

Computational Intelligence—International Joint Conference, IJCCI 2012 Barcelona, Spain,

October 5–7, 2012 Revised Selected Papers. Studies in Computational Intelligence, vol. 577,

pp. 159–182. Springer (2015)

20. Guller, D.: An order hyperresolution calculus for Gödel logic with truth constants. In: Rosa,

A.C., Dourado, A., Correia, K.M., Filipe, J., Kacprzyk, J. (eds.) FCTA 2014—Proceedings

of the 6th International Joint Conference on Computational Intelligence, Rome, Italy, 22–24

October 2014, pp. 37–52. SciTePress (2014)

21. Apt, K.R.: Introduction to logic programming. Technical Report CS-R8826, Centre for Math-

ematics and Computer Science, Amsterdam, The Netherlands (1988)

22. Guller, D.: On the refutational completeness of signed binary resolution and hyperresolution.

Fuzzy Sets Syst. 160, 1162–1176 (2009). Featured Issue: Formal Methods for Fuzzy Mathe-

matics. Approximation and Reasoning, Part II



A Fuzzy Approach for Performance
Appraisal: The Evaluation of a Purchasing
Specialist

Hatice Esen, Tuğçen Hatipoğlu and Ali İhsan Boyacı

Abstract One of the most important issues faced in organizations is the objective
performance measure of employees who have a crucial role in the success of the
production/service processes. Performance appraisal is vital since it helps to clarify
whether the company is going in line with the predetermined objectives. Perfor-
mance appraisal is the evaluation of the general performance level of personnel
according to the previously determined targets and/or performance factors. The
main purpose of performance appraisal is not only to increase the performance of
employees, but also to unite the individual targets with the company’s targets.
Performance appraisal requires evaluation and decision making in uncertain envi-
ronments involving multiple factors. In this paper, a performance appraisal model is
constructed to deal with the uncertainty and also to objectively measure the
employees’ performances. The criteria used in the model are defined in terms of the
fuzzy numbers and linguistic variables. The three main criteria of the performance
appraisal model are decision making and leadership, communication and relations,
and technical skills. The model is applied in the purchasing department of a
company operating in the automotive industry. The developed model has the
flexibility to be applied in different departments with a modification in the criteria
under the title of “Technical skills”.
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1 Introduction

Human resources management is a discipline involving the auditing, directing,
organizing, planning and developing of strategies about the improvement,
employment and supply of human resources which is essential for a competitive
advantage in companies [1]. Since successful human resources management leads
to better performance, it brings a competitive advantage by increasing the efficiency
within organizations [2]. The first step of successful human resources management
is the objective performance appraisal of employees which is the most dynamic one
among all the company resources.

Setting salaries and making promotion decisions should not be the only purposes
of an effective Performance appraisal programme. It should help in the construction
of a performance improvement plan which includes leading from the department
manager to improve and develop employee skills. Thus, it can be put in the same
category with training which aims to improve the performance by considering the
future and developing efficient programmes [3].

There are two important and difficult tasks in organizations; to determine the
achievement of the personnel in their jobs and their capabilities. For each employee,
the expectations, senses of duty, capabilities, knowledge/talent, and working dis-
ciplines are different. Because of these natural differences, their performances are
also different. All workers may not satisfy their duties. So, managers naturally want
to learn the abilities and the success of the personnel working for them. Perfor-
mance appraisal criteria are needed to be able to measure the satisfaction level of
the targets by the personnel [4].

Generally, performance appraisal is based on the individual’s characteristics,
behavioral criteria, and the results and aims about the job. However, two common
important errors are made about the criteria of performance appraisal. The first one
is wrongly assuming that the criteria are only related to the job. Some indicators
should be defined to represent the objectives of the work. A universal criteria
bundle doesn`t exist. The work analysis should be used in the identification of
performance criteria of a job title. Secondly, a selected criterion of work perfor-
mance should be measured correctly and precisely.

Existing methods like graphic rating scale, group order ranking or individual
ranking don`t consider the uncertainty and imprecision of factors used in service
evaluation [5]. Performance appraisal generally consists of assessment and decision
making under uncertainty, based on multiple factors of a quantitative and qualita-
tive nature, temporal and resource constraints, varying tactics and strategies,
domain-specific knowledge and information asymmetries, etc. Fuzziness generally
exists in most human perception and thinking [3].

The evaluation process should be as objective as possible to prevent mental
anguish and satisfy the expectations of employees. In most cases, the impossibility
of complete objectivity leads the evaluators to be completely subjective which
causes a mistrust in their authority [6].
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In this study, a fuzzy modeling approach is employed to deal with the problems
mentioned above and to evaluate the employees` performance objectively. A per-
formance appraisal model involving three main and sixteen sub-criteria was
developed. The main criteria are Decision Making and Leadership, Communication
and Relations, and Technical skills. The proposed model can be used for different
departments with a modification in the job title which is under the main criteria of
“Technical skills”. The model can objectively define and give weights to the criteria
for all job titles.

The main objectives of the study can be summarized as follows;

(1) Evaluating and ranking the employees based on Decision Making and Lead-
ership, Communication and Relations, and Technical skills criteria

(2) Supporting the managers in determination of training needs, career planning,
promotions, and fair payoff by providing information about the employees`
performance and capabilities/skills.

(3) The model allows flexibility to be used for different job titles by changing the
criteria under the main criterion of “Technical skills”.

(4) The model gives weights to each criterion which is a lacking feature in the
current performance appraisal models.

(5) Since performance appraisal is a decision making process, it involves uncer-
tainty. To deal with this uncertainty and objectively measure the employees`
performances, the criteria of the model are defined as fuzzy numbers and
linguistic variables.

The purchasing department can be counted as one of the most difficult areas of
the evaluation. The competitive environment forces the companies to evaluate their
operations and decrease the costs by continuously improving them. The purchasing
cost is one of the biggest sources of expenditure in companies. It usually amounts to
40–70 % of a firm’s sales volume (depending upon the degree of vertical integration
in the industry) which makes it a possible source to increase the competitiveness of
companies [7]. The duty of the purchasing department is to improve the efficiency
of the supply chain by communicating with the suppliers. The performance measure
of the purchasing department is quite important because of its critical role [8].

Due to the reasons explained above and to understand the model better, the
criteria of the purchasing specialist position are defined and weighted.

The paper is organized as follows; a literature survey is given in the second part
entitled performance appraisal. In the third part of the study the methodology,
Fuzzy Analytic Hierarchy Process (AHP), is explained. In the fourth section, the
proposed performance appraisal model is detailed. The last section of the study is
comprised of the results and comments about the application.
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2 Performance Appraisal

Performance appraisal is the assessment of employees’ achievement in their work
according to the previously determined reachable level specific to the employee
and/or the performance criteria. It is an important source of continuous improve-
ment for companies which assess the performance of the employees in the right
manner. As a social rule states in organizations, organizational goals should direct
the individual behavior of the employees. In the same direction, performance
appraisal should also be done with the aim of increasing the performance of
employees in line with the organization’s policies [9].

Cleveland et al. stated that there are four main purposes of performance
appraisal; making a distinction among workers, distinguishing the strong and weak
sides of employees, evaluating the human resources system of the organization, and
setting a base for the management decisions [10].

The points that should be considered during the performance appraisal studies
are;

• The purposes and aims of the appraisal should be clearly explained to
employees

• The performance targets expected from employees should be described to them.
• The performance targets should be reachable, understandable and objective.
• The appraisal should be fair and balanced. Enough a sufficient level of objec-

tivity and limited subjectivity should be guaranteed in the appraisal to be able to
satisfy the employees’ demands [11].

Several methods exist in the literature for human performance appraisal. The
most popular ones are graphic rating scale, force distribution, behaviorally anchored
rating scale, management by objectives, 360° evaluation method, etc. But these
methods don’t provide a good analysis of data and they lack the ability to handle the
uncertainties and ambiguities in the data [12].

In the paper by Shaout and Shammari (1998), a good application offuzzy set theory
is represented for multi-attribute performance appraisal for facultymembers [13]. The
idea of using acceptability as a criterion in the evaluation of performance appraisal
methods is tested in Hedge and Teachout’s study (2000). They compare four different
performance appraisal techniques in terms of the user acceptability and the differences
in rater acceptance [14]. In Lefkowitz‘s (2000) study, a literature review is conducted
about the supervisor interpersonal effect and performance appraisals [15]. An
examination of the effects of social context on the appraisal process and a relevant
literature review is given in the study by Levy and Williams (2004) [16]. A fuzzy
group decision making system- fuzzy group decision support system (FGDSS) is
developed in the study by Chang et al. (2007) to find a solution for the appraisal
problem of military officers’ performance [17]. By using the Decision Making The-
ory, a flexible 360-degree performance appraisal model is proposed in the study by
Andrés et al. (2010). In their model, the management team is allowed to know how to
combine the individual opinions [18]. Moon et al. (2010) present a new ranking
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procedure to rank order the performance of candidates applying for promotion in a
military organization in Korea. The metric distance and fuzzy mean value are used in
the ranking procedure which allows the combination of the scores of each evaluator
[19].

Manoharan et al. (2011) show that an integrated tool like fuzzy multi-attribute
decision making (FMADM), with fuzzy analytic hierarchy process (FAHP), and
fuzzy quality function deployment (FQFD) can be used as a supporting tool for the
performance appraisal system [3]. Spence and Keeping (2011) discuss a phe-
nomenon labeled as conscious rating distortion which occurs when managers
evaluate the employees with motives other than accuracy. They apply regulatory
focus theory to study performance ratings [20]. Barone and DeCarlo (2012)
investigate the factors of the effect of performance trends on the salesperson
evaluations of practicing sales managers [21]. Min-peng et al. (2012) create per-
formance indicators based on the factors like morality, ability, diligence, and per-
formance. Then, AHP is used to find the weight of every indicator. After that, fuzzy
evaluation method is applied in the construction of a performance appraisal model
to be able to measure the Research and Development performance of engineers
[22]. Subjective evaluations from different appraisal sources are weighted and
combined with a mathematical model developed in the study by Sepehrirad et al.
(2012) in a 360-degree performance appraisal. They categorize the performance
appraisal criteria by using Delphi method and according to the characteristics of the
National Iranian Productivity Organization (NIPO). The importance of each
appraisal criterion is calculated with fuzzy AHP technique [23].

Espinilla et al. (2013) develop an integrated model for 360-degree performance
appraisal which can handle the heterogeneous information and give a final verbal
evaluation for each employee. The model aggregated the interaction among criteria
and the relevance of reviewers by using the averages of weights [24]. In Gürbüz and
Albayrak’s study (2014), a new hybrid method including Analytical Network
Process and Choquet Integral is used to evaluate the employees’ performances
doing the same task. They employ the proposed method for marketing department
employees and show the performance appraisal model. The criteria of their model
are experience, marketing ability, salary/satisfaction, social power, educational
level, marketing politics, management politics, salary politics and ability of
managing the changes [6]. An online fuzzy based decision support system is
developed by Samuel et al. (2014) to evaluate human resource performance. The
delays and biases present in the orthodox performance appraisal systems in orga-
nizations are managed with a computational method in their study [25].

3 Fuzzy Analytic Hierarchy Process Method

In Analytical Hierarchy Process, a flexible and structured methodology, complex
decision variables are structured into a hierarchical framework to solve and analyze
them [26]. Human thinking and judgment are ambiguous and it is not meaningful to
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represent them with point numbers. Interval judgments better represent them than
precise value judgments. Thus, the priority between decision variables is decided
according to the triangular fuzzy numbers. The final priority weights are found with
synthetic extent analysis method and this is called fuzzy extended AHP [27]. Thus,
using fuzzy theory in AHP is more reasonable and effective than classic AHP.

There are various AHP methods related to the fuzziness, while the most popular
one is Chang’s approach. Chang established the extent analysis method (EAM) for
synthetic values of pair wise comparisons with the use of triangular fuzzy numbers
(TFNs) [28]. The triangular fuzzy conversion scale, given in Table 1, is used in the
appraisal model of this paper.

Let X = x1, x2, . . . , xnf g be an object set, and U = u1, u2, . . . , umf g be a goal set.
According to the method of Chang’s extent analysis, each object is taken and extent
analysis for each goal, gi, is performed, respectively. Therefore, m extent analysis
values for each object can be obtained, with the following signs:

M1
gi ,M

2
gi , . . . ,M

m
gi i = 1, 2, . . . , n ð1Þ

where all the M j
gi ( j = 1, 2, …, m) are triangular fuzzy numbers.

The steps of Chang’s extent analysis can be given as in the following:
Step 1: The value of fuzzy synthetic extent with respect to the ith object is

defined as

Si = ∑m
j=1 M

j
gi⊗ ∑n

i=1 ∑
m
j=1 M

j
gi

h i− 1
ð2Þ

To obtain ∑m
j=1 M

j
gi , perform the fuzzy addition operation of m extent analysis

values for a particular matrix such that

∑m
j=1 M

j
gi = ∑m

j=1 lj, ∑
m
j=1 mj, ∑m

j=1 uj
� �

ð3Þ

and to obtain ∑n
i=1 ∑

m
j=1 M

j
gi

h i− 1
, perform the fuzzy addition operation of M j

gi

( j = 1, 2, …, m) values such that

Table 1 Triangular fuzzy scale of preference

Relative importance Definition Fuzzy scale Fuzzy reciprocal scale

1 Equal importance (1, 1, 1) (1, 1, 1)
3 Moderate importance (1, 3, 5) (1/5,1/3,1)
5 Strong importance (3, 5, 7) (1/7,1/5,1/3)
7 Demonstrated importance (5, 7, 9) (1/9,1/7,1/5)
9 Extreme importance (7, 9, 9) (1/9,1/9,1/7)
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∑n
i=1 ∑

m
j=1 M

j
gi = ∑n

i=1 li, ∑
n
i=1 mi, ∑n

i=1 ui
� � ð4Þ

and then compute the inverse of the vector in Eq. (4) such that

∑n
i=1 ∑

m
j=1 M

j
gi

h i− 1
=

1
∑n

i=1 ui
,

1
∑n

i=1 mi
,

1
∑n

i=1 li

� �
ð5Þ

Step 2: The degree of possibility of M2 = (l2, m2, u2) ≥ M1 = (l1, m1, u1) is
defined as

V M2 ≥ M1ð Þ = supy≥ x⌊min μM1
xð Þ, μM2

yð Þ⌋ ð6Þ

and can be equivalently expressed as follows:

V M2 ≥M1ð Þ=hgt M1 ∩M2ð Þ

= μM2
dð Þ

1, if m2 ≥m1

0, if l1 ≥ u2
l1 − u2

m2 − u2ð Þ− ðm1 − l1Þ otherwise

8><
>:

ð7Þ

where d is the ordinate of the highest intersection point D between μM1
and μM2

(see
Fig. 1).

To compare M1 and M2, we need both the values of V(M2 ≥ M1) and V
(M1 ≥ M2).

Step 3: The degree possibility for a convex fuzzy number to be greater than k
convex fuzzy numbers Mi (i = 1, 2,…, k) can be defined by.

V M≥M1, M2, . . . , Mkð Þ=V ðM≥M1½ Þ and M≥M2ð Þ and . . . and M≥Mkð Þ�
= minV ðM≥MI  Þ, i=1, 2, . . . , k

ð8Þ

Fig. 1 The intersection
between M1 and M2
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Assume that

d′ Aið Þ = min V Si ≥ Skð Þ. ð9Þ

For k = 1, 2, …, n; k ≠ i. Then the weight vector is given by

W′ = d′ A1ð Þ, d′ A2ð Þ, . . . , d′ Anð Þ� �T ð10Þ

where Ai (i = 1, 2, …, n) are n elements.
Step 4: Via normalization, the normalized weight vectors are

W = d A1ð Þ, d A2ð Þ, . . . , d Anð Þð ÞT ð11Þ

where W is a non fuzzy number [29].

4 Proposed Performance Appraisal Model

Since business environments have become more complicated and are subject to fast
change nowadays, managers should be aware of the importance of allocating enough
time and attention to observe and measure their subordinates’ performance [30].
Performance appraisal is concerned with the measurement and control of individual
performances and integrates them with the organization’s objectives [31].

Performance appraisal is a decision making process which involves uncertanity.
To overcome the uncertanity and evaluate the workers performance objectively, a
performance appraisal model is developed of which the criteria are defined as the
fuzzy numbers and the linguistic variables. The scope of the study is to identify and
objectively weight the criteria for the performance appraisal of each job position.
To explain the model better, the criteria for the purchasing specialist position are
identified and weighted.

The application of the model was done at a company in the automotive supplier
industry in Kocaeli. After meeting with the executives of the company, the
boundaries of the study were determined and a team was created including an
academic expert, a production manager, a human resources manager, a purchase
manager, and a logistics and supply manager.

First of all, the aim, importance and framework of the study was discussed, then
the criteria found by brainstorming was noted in the team’s meeting that was
organized to discuss the criteria to be used in the performance measure. The criteria
draft was evaluated again; whether they can be measured, or they can be repre-
sented by another criterion and whether there are any missing criteria were dis-
cussed. After this evaluation, the criteria were finalized. Every criterion was
described in detail to prevent any misunderstanding about their meaning during
their usage.
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The proposed model makes the performance appraisal by using three main
criteria. These main criteria are Decision Making and Leadership, Communication
and Relations, and Technical skills.

The Decision Making and Leadership, and Communication and Relations cri-
teria and their sub-criteria can be mutually used in the evaluation of all job titles.
The sub-criteria under the main criterion of “Technical skills” changes according to
the job title. To make the model more understandable, the weights used in the
performance appraisal of the job title “Purchasing Specialist” are identified. The
sub-criteria under “Technical skills” are flexible enough to be used for another job
title. The hierarchy belonging to the proposed performance appraisal of “Purchasing
Specialist” in the model can be seen in Fig. 2.

The decision structure has two levels;
First level (Level of determinants): determinants of the performance appraisal are

determined as Decision Making and Leadership (DML), Communication and
Relations (CR) and Technical Skills (TS).

Second level: this level consists of 16 sub-criteria. Six sub-criteria about Decision
Making and Leadership are Problem solving and result orientation (PS), Agility
(AG), Adaptability (AD), Team building and management (TB), Project manage-
ment (PM) and Strategy Elaboration (SE). Four sub-criteria about Communication
and Relations are dealing with organization (DO), Communication (C), International
Mindset (IM) and Interpersonal Skills (IS). Six sub-criteria about Technical Skills
are Negotiation Practice (NP), purchasing tools practice (PT), Financial awareness

Communication

and Relations 

Performance Appraisal 

Decision 

Making and 

Leadership 

Technical skills 

Problem solving and  
result orientation 
Agility 
Adaptability 
Team building and 
management 
Project management 
Strategy elaboration 

Interpersonal skills 
Dealing with 
organization 
Communication 
International mindset 

Negotiation practice 
Financial awareness 
Supply chain knowledge  
Legal awareness 
Budget management 
Purchasing tools practice 

Fig. 2 Hierarchies in the AHP

A Fuzzy Approach for Performance Appraisal … 243



(FA), Supply chain knowledge (SK), Legal awareness (LA) and Budget manage-
ment (BM). The explanation of the sub-criteria is given below:

Decision Making and Leadership

(1) Problem solving and result orientation (PS): Ability to detect, design and
implement solutions adapted to situations and people (evaluate, diagnose)
applying QRQC (Quick Response Quality Control). Identification and weight-
ing of important parameters, identification of causes, priorities and development
of solutions. Ability to achieve results regardless of circumstances, but not at any
cost. Focus on pragmatic and practical tasks and ability to act in the field.
Willingness and ability to meet commitments.

(2) Agility (AG): Ability to combine speed and rationality in decision making
followed by the implementation of an action plan. Ability to react to requests
and situations within the required time constraints. Capability to manage a
heavy work load in a stressed environment and ability to deal with urgencies.

(3) Adaptability (AD): Ability to adapt easily to different working environments.
Functioning in a matrix environment or with occasional apparently contra-
dictory issues. Analysis of problems from several points of view, including the
points of view of others.

(4) Team building and management (TB): Ability to manage and coach people, to
create a team spirit, to establish (common and individual) objectives and to
assess performance and competences. Efficient delegation of appropriate tasks.
Management of structural conflicts. Ability to select and recruit team mem-
bers. Integration of the team inside the structure. Focus on people develop-
ment. Gathering of different personalities and mobilization of them towards a
common objective.

(5) Project management (PM): Ability to plan resources in order to manage a
project successfully according to standards (quality, cost, delivery) for cus-
tomer satisfaction. Establishment of clear, realistic timeframes for goal
accomplishment.

(6) Strategy Elaboration (SE): Ability to anticipate future evolutions (helicopter
view), to define vision, objectives, strategic action plans andmilestones in order to
meet objectives and to implement their strategic plans.

Communication and Relations

(1) Dealing with organization (DO): Ability to deal with organizational com-
plexity, internal and external stakeholders.

(2) Communication (C): Ability “get the point across” and to get the “buy-in” of the
target audience. Selection of the most pertinent information, reliable sources,
appropriate population, the best media. Definition and organization of the con-
tent (according to different cultures and levels) at the appropriate time.
Enhancement of information sharing and feedback. Openness to listen to other
options and to take them into consideration. Ability to analyze complicated
situations.
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(3) International Mindset (IM): Ability to work with people from different cul-
tures. Integration of other cultural values and systems and development of
cultural of open mindedness. Ability to think globally, act locally.

(4) Interpersonal Skills (IS): Ability to develop interactive listening skills and to
give constructive reinforcement. Ability to deal with interpersonal conflict.
Ability to influence in a positive way the work of colleagues through enthu-
siastic communication.

Technical Skills

(1) Negotiation practice (NP): Ability to prepare the negotiation strategy and
tactics based on assessment of company’s levers versus suppliers. Knowledge
of his/her limits and supplier’s decision drivers. Ability to conduct the
negotiation in a professional manner ensuring a win-win deal. Ability to obtain
closure.

(2) Purchasing tools practice (PT): Knowledge of purchasing tools: methodology
tools (commodity matrix, system audit, process audit, initial assessment, etc.),
analysis tools (market surveys, etc.), transaction tools (weekly report, EDI,
MRP system, etc.)

(3) Financial awareness (FA): Understanding of financial reports. Understanding
of management accounting and different methods to establish a price and to
evaluate the financial health of a supplier.

(4) Supply chain knowledge (SK): Ability to use supply chain knowledge to
contribute to the optimization of the supply chain together with the logistics
department and supplier.

(5) Legal awareness (LA): Ability to formalize the contractual relationship in all
domains (confidentiality, development, supplies, equipment etc.). Ability to
manage supplier disputes and major crises with the help of the legal counsel.
Ability to use the law to elaborate his/her commodity strategy.

(6) Budget management (BM): Ability to evaluate all necessary resources and
their costs in order to achieve a target. Ability to manage a budget. Evaluation
and anticipation of the financial impact of new decisions. Management of
situation changes and minimization of excess costs.

The triangular fuzzy conversion scale, given in Table 1, is used in the appraisal
model of this study. Fuzzy pair-wise comparisons of three main decision criteria on
“Performance Appraisal” are presented in Table 2. Then the sub-criteria are pair
wise compared in Tables 3, 4 and 5 respectively and weights are calculated.

As seen in Table 2; SDML = (0.060, 0.103, 0.273), SCR = (0.099, 0.291, 0.819)
and STS = (0.224, 0.605, 1.522) are calculated. Then W′ = (0.089, 0.655, 1.000) is

Table 2 Fuzzy linguistic
preference relation decision
matrix of three main criteria

DML C TS

DML 1 1 1 1/5 1/3 1 1/7 1/5 1/3
C 1 3 5 1 1 1 1/5 1/3 1/1
TS 3 5 7 1 3 5 1 1 1
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obtained and priority weights vector of each main criteria is W = (0.051, 0.376,
0.573)T. Similarly the priority weights vector of each main sub-criteria is seen in
Table 3, W = (0.2347, 0.3411, 0.2700, 0.0491, 0.1052, 0)T, in Table 4 W = (0.351,
0.493, 0, 0.156)T and in Table 5 W = (0.368, 0.291, 0.065, 0.072, 0, 0.204)T.

Table 6 shows the overall or global importance levels of for the main criteria and
sub-criteria. According to these results, the performance appraisal of a purchasing
expert is evaluated as following:

It is further observed that the priority of the main criteria “Technical Skills” with
%57 is highest followed by “Communication and Relations” with %38 while
“Decision Making and Leadership” is just %5.

In the case of the sub-criteria the priority is highest for “Negotiation practice”,
“Purchasing tools practice” and “Budget management” respectively under “Tech-
nical Skills”; “Communication” and “Dealing with organization” among “Com-
munication and relations”; “Agility”, “Adaptability” and “Problem Solving and
Result Orientation” among “Decision Making and Leadership”.

Table 3 Fuzzy linguistic preference relation decision matrix of decision making and leadership

PS AG AD TB PM SE

PS 1 1 1 1/7 1/5 1/3 1/5 1/3 1 3 5 7 1 3 5 5 7 9

AG 3 5 7 1 1 1 1 3 5 3 5 7 3 5 7 7 9 9

AD 1 3 5 1/5 1/3 1 1 1 1 3 5 7 1 3 5 5 7 9

TB 1/7 1/5 1/3 1/7 1/5 1/3 1/7 1/5 1/3 1 1 1 1/5 1/3 1 3 5 7

PM 1/5 1/3 1 1/7 1/5 1/3 1/5 1/3 1 1 3 5 1 1 1 1 3 5

SE 1/9 1/7 1/5 1/9 1/7 1/5 1/9 1/7 1/5 1/7 1/5 1/3 1/5 1/3 1 1 1 1

Table 4 Fuzzy linguistic preference relation decision matrix of communication and relations

DO C IM IS

DO 1 1 1 1/5 1/3 1 3 5 7 1 3 5
C 1 3 5 1 1 1 5 7 9 3 5 7
IM 1/7 1/5 1/3 1/9 1/7 1/5 1 1 1 1/5 1/3 1
IS 1/5 1/3 1 1/7 1/5 1/3 1 3 5 1 1 1

Table 5 Fuzzy linguistic preference relation decision matrix of technical skills

NP PT FA SK LA BM

NP 1 1 1 1 3 5 3 5 7 5 7 9 7 9 9 3 5 7

PT 1/5 1/3 1 1 1 1 3 5 7 3 5 7 5 7 9 1 3 5

FA 1/7 1/5 1/3 1/7 1/5 1/3 1 1 1 1/5 1/3 1 5 7 9 1/7 1/5 1/3

SK 1/9 1/7 1/5 1/7 1/5 1/3 1 3 5 1 1 1 1 3 5 1/5 1/3 1

LA 1/9 1/9 1/7 1/9 1/7 1/5 1/9 1/7 1/5 1/5 1/3 1 1 1 1 1/7 1/5 1/3

BM 1/7 1/5 1/3 1/5 1/3 1 3 5 7 1 3 5 3 5 7 1 1 1
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5 Conclusions

For all organizations, it is vital to use a measurement system that gives the per-
formance levels of individuals. It is important not only to maximize the usage of
employees’ capabilities but also to integrate the employees’ performance with the
aims of the organization [32].

Besides being the most important part of an effective human resources man-
agement strategy, performance appraisal is one of the most important elements to
reach the objectives of organizational management. Performance appraisal should
be used as a tool to direct, stimulate, and increase the motivation and the trust of
workers through the organization. The most important part of the evaluation is to
make it as objective as possible.

The contributions of this study into the literature can be summarized as follows;
1. The proposed model can be used for other job titles in companies by allowing
flexibility in the sub-criteria under the main criterion of “Technical skills”.

The current performance appraisal models don’t weight the criterion assuming
that they all have the same importance. The proposed model has such a structure
and objectivity to satisfy this lack of current models. 3. Performance appraisal is a
decision making process which involves uncertainty. To overcome the uncertainty
and evaluate the workers performance objectively, a performance appraisal model is
developed of which the criteria are defined as the fuzzy numbers and the linguistic
variables.

Table 6 Global importance levels of sub-criteria

Global importance of three main criteria Global importance of sub-criteria Weights

Decision making and leadership (0.051) PS (0.235) 0.012
AG (0.341) 0.017
AD (0.270) 0.014
TB (0.049) 0.002
PM (0.105) 0.005
SE (0) 0.000

Communication and relations (0.376) DO (0.351) 0.132
C (0.493) 0.185
IM (0) 0.000
IS (0.156) 0.059

Technical skills (0.573) NP (0.368) 0.211
PT (0.291) 0.167
FA (0.065) 0.037
SK (0.072) 0.041
LA (0) 0.000
BM (0.204) 0.117
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The evaluation process of the performance can be thought of as a complex
multi-criteria decision making problem considering multiple factors and sub factors
affecting the evaluation. Fuzzy AHP method enables decision-makers to realize a
hierarchical structure and an effective vague assessment of the main and sub fac-
tors’ weights. Hence, we used a fuzzy approach for the evaluation of personnel
performance. By utilizing fuzzy AHP method, the weights of sub factors are
determined subsequently.

By applying the model in a company operating as an automotive supplier, it has
been shown that the model can be used in practice without any difficulty. During
the application, the weighing of the specific criteria used in the performance
appraisal of a purchasing specialist was done. The main criteria are ordered as
Technical Skills, Communication and Relations, and Decision Making and Lead-
ership as a result of the evaluation. The most important sub-criteria are identified as
Negotiation practice, Communication and Purchasing tools practice.

To explain the model better with the help of an example, an application was
conducted in the purchasing department of a company. In future studies, perfor-
mance appraisals of other job titles in the organization will also be developed by
modifying the “Technical skills” criteria. Performance appraisal studies require
sustainability. With the software implementation that is planned to be developed,
usage efficiency of the model is expected to be increased. As a result, company
managers will be able to assess the employees’ performance in an objective, faster
and easier way.
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M-valued Measure of Roughness
for Approximation of L-fuzzy Sets
and Its Topological Interpretation

Sang-Eon Han and Alexander Šostak

Abstract We develop a scheme allowing to measure the “quality” of rough

approximation of fuzzy sets. This scheme is based on what we call “an approxi-

mation quadruple” (L,M, 𝜑, 𝜓) where L and M are cl-monoids (in particular, L =
M = [0, 1]) and 𝜓 ∶ L → M and 𝜑 ∶ M → L are satisfying certain conditions map-

pings (in particular, they can be the identity mappings). In the result of realization

of this scheme we get measures of upper and lower rough approximation for L-fuzzy

subsets of a set equipped with a reflexive transitive M-fuzzy relation R. In case the

relation R is also symmetric, these measures coincide and we call their value by the

measure of roughness of rough approximation. Basic properties of such measures

are studied. A realization of measures of rough approximation in terms of L-fuzzy

topologies is presented.

Keywords L-fuzzy set ⋅ M-relation ⋅ L-fuzzy rough set ⋅ Cl-monoid ⋅ M-valued

measure of inclusion ⋅ (L,M)-fuzzy topology ⋅ (L,M)-fuzzy co-topology

1 Introduction

The concept of a rough subset of a set equipped with an equivalence relation was

introduced by Pawlak [24]. Rough sets found important applications in real-world

problems, and also arouse interest among “pure” mathematicians as an interest-

ing mathematical notion having deep relations with other fundamental mathemat-
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ical concepts, in particular, with topology. Soon after Pawlak’s work, the concept of

roughness was extended to the context of fuzzy sets; Dubois’ and Prade’s paper [7]

was the first work in this direction. At present there is a vast literature where fuzzy

rough sets are investigated and applied. In particular, fuzzy rough sets are studied and

used in [6, 12, 13, 19, 23, 25–27, 36, 38–40] just to mention a few of numerous

works dealing with (fuzzy) rough sets. In our paper [30] we undertook the first, as

far as we know, attempt to measure the degree of roughness of a fuzzy set, or to state

it in another way, to measure, “how much rough” is a given (fuzzy) subset of a set

equipped with a (fuzzy) relation. Here we develop further the approach of measuring

the roughness initiated in [30]. Namely we propose a scheme allowing to measure

the “quality” of rough approximation of fuzzy sets. This scheme is based on what we

call “an approximation quadruple” (L,M, 𝜑, 𝜓) where L and M are cl-monoids (in

particular, L = M = [0, 1]) and 𝜑 ∶ L → M and 𝜓 ∶ M → L are satisfying certain

conditions mappings (in particular, they can be the identity mappings.) In the result

of realization of this scheme we get measures of upper and lower rough approxima-

tion for L-fuzzy subsets of a set equipped with a reflexive transitive M-fuzzy relation

R. In case when the relation R is also symmetric, these measures coincide and we call

their value by the measure of roughness of rough approximation. Basic properties of

such measures are studied. In addition we present an interpretation of measures of

rough approximation in terms of L-fuzzy topologies.

The structure of the paper is as follows. In the next section we recall two notions

which are fundamental for our work, namely a cl-monoid and an M-relation. In the

third section we introduce the measure of inclusion of one fuzzy set into another,

and describe the behavior of this measure.

In Sect. 4 we define operators of upper and lower rough approximation for an L-

fuzzy subset of a set endowed with an M-relation. These operators, as special cases,

contain various rough approximation-type operators used by different authors, see

e.g. [8, 16, 17, 25, 32, 35].

In Sect. 5 we define the measures of upper (A) and lower  (A) rough approx-

imation for an L-fuzzy subset A of a set endowed with an M-relation. Essentially,

(A) is the measure of inclusion of the upper approximation of an L-fuzzy set A
into A, while  (A) is the measure of inclusion of A into its lower approximation.

By showing (A) =  (A) whenever R is symmetric, we come to the measure of

roughness (A) of an L-fuzzy set A.

In Sect. 6 we interpret the operator of measuring roughness of rough approxima-

tion as an (L,M)-fuzzy ditopology (that is a pair of an (L,M)-fuzzy topology  and

an (L,M)-fuzzy  co-topology) on a set X and discuss some issues of this interpre-

tation.

In the last, Conclusion, section we discuss some directions for the prospective

work.
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2 Preliminaries

2.1 Cl-Monoids

Let (L,≤,∧,∨) denote a complete lattice, that is a lattice in which arbitrary suprema

(joins) and infima (meets) exist, see e.g. [9]. In particular, the top 1L and the bot-

tom 0L elements in L exist and 0L ≠ 1L. In our work, the concept of a cl-monoid,

introduced by G. Birkhoff will play a fundamental role:

Definition 1 [1] A tuple (L,≤,∧,∨, ∗) is called a cl-monoid if (L,≤,∧,∨) is a com-

plete lattice and the binary operation ∗∶ L × L → L satisfies conditions:

(0∗) ∗ is monotone: 𝛼 ≤ 𝛽 ⟹ 𝛼 ∗ 𝛾 ≤ 𝛽 ∗ 𝛾 for all 𝛼, 𝛽, 𝛾 ∈ L;

(1∗) ∗ is commutative: 𝛼 ∗ 𝛽 = 𝛽 ∗ 𝛼 for all 𝛼, 𝛽 ∈ L;

(2∗) ∗ is associative: (𝛼 ∗ 𝛽) ∗ 𝛾 = 𝛼 ∗ (𝛽 ∗ 𝛾) for all 𝛼, 𝛽, 𝛾 ∈ L;

(3∗) ∗ distributes over arbitrary joins:

𝛼 ∗
(⋁

i∈I 𝛽i
)
=
⋁

i∈I(𝛼 ∗ 𝛽i) for all 𝛼 ∈ L, for all {𝛽i ∣ i ∈ I} ⊆ L,
(4∗) 𝛼 ∗ 1L = 𝛼, 𝛼 ∗ 0L = 0L for all 𝛼 ∈ L.

Remark 1 Note, that a cl-monoid can be defined also as an integral commutative

quantale in the sense of Rosenthal [28].

Remark 2 In case L = [0, 1] the operation ∗∶ [0, 1] × [0, 1] → [0, 1] satisfying prop-

erties (0∗), (1∗), (2∗) and (4∗) (defined in a slightly different form) for the first time

appeared in Menger’s papers, see e.g. [22] under the name a triangular norm, or a

t-norm. Later t-norms were thoroughly studied by different authors, see e.g. [18, 29].

A t-norm satisfying property (3∗) is called lower semicontinuous.

In a cl-monoid a further binary operation ↦, residium, is defined:

𝛼 ↦ 𝛽 =
⋁

{𝜆 ∈ L ∣ 𝜆 ∗ 𝛼 ≤ 𝛽}.

Residuation is connected with the operation ∗ by the Galois connection:

𝛼 ∗ 𝛽 ≤ 𝛾 ⟺ 𝛼 ≤ (𝛽 ↦ 𝛾),

see e.g. [14]. In the following proposition we collect well-known properties of the

residium:

Proposition 1 (see [14, 15])

(1↦)
(⋁

i 𝛼i
)
↦ 𝛽 =

⋀
i
(
𝛼i ↦ 𝛽

)
for all {𝛼i ∣ i ∈ I} ⊆ L, for all 𝛽 ∈ L;

(2↦) 𝛼 ↦ (
⋀

i 𝛽i) =
⋀

i(𝛼 ↦ 𝛽i) for all 𝛼 ∈ L, for all {𝛽i ∣ i ∈ I} ⊆ L;
(3↦) 1L ↦ 𝛼 = 𝛼 for all 𝛼 ∈ L;
(4↦) 𝛼 ↦ 𝛽 = 1L whenever 𝛼 ≤ 𝛽;
(5↦) 𝛼 ∗ (𝛼 ↦ 𝛽) ≤ 𝛽 for all 𝛼, 𝛽 ∈ L;
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(6↦) (𝛼 ↦ 𝛽) ∗ (𝛽 ↦ 𝛾) ≤ 𝛼 ↦ 𝛾 for all 𝛼, 𝛽, 𝛾 ∈ L;
(7↦) 𝛼 ↦ 𝛽 ≤ (𝛼 ∗ 𝛾 ↦ 𝛽 ∗ 𝛾) for all 𝛼, 𝛽, 𝛾 ∈ L.
In the sequel we will need also the following two lemmas:

Lemma 1 Let (L,≤,∧,∨, ∗) be a cl-monoid. Then for every {𝛼i ∣ i ∈ I} ⊆ L and
every {𝛽i ∣ i ∈ I} ⊆ L it holds

(⋀
i𝛼i

)
↦

(⋀
i𝛽i
)
≥
⋀

i(𝛼i ↦ 𝛽i).

Proof Applying Proposition 1 we have:

(⋀
i𝛼i

)
↦

(⋀
i𝛽i
)
=
⋀

i𝛼i ↦
⋀

j𝛽j =
⋀

j(
⋀

i𝛼i ↦ 𝛽j) ≥
⋀

j(𝛼j ↦ 𝛽j). □

Lemma 2 Let (L,≤,∧,∨, ∗) be a cl-monoid. Then for every {𝛼i ∣ i ∈ I} ⊆ L, and
every {𝛽i ∣ i ∈ I} ⊆ L it holds:

(⋁
i𝛼i

)
↦

(⋁
i𝛽i
)
≥
⋀

i(𝛼i ↦ 𝛽i).

Proof Applying Proposition 1 we have (𝛼i ↦ 𝛽i) ∗ 𝛼i ≤ 𝛽i for each i ∈ I. Let c =
⋀

i(𝛼i ↦ 𝛽i). Then c ∗ 𝛼i ≤ 𝛽i for each i ∈ I. Taking suprema on the both sides of

the above inequality over i ∈ I we get c ∗
⋁

i𝛼i ≤
⋁

i𝛽i and hence, by the Galois

connection,
⋀

i(𝛼i ↦ 𝛽i) ≤
⋁

i𝛼i ↦
⋁

i𝛽i. □

2.2 The Framework of Our Research

In our work we use two apriori independent cl-monoids L = (L,≤L,∧L,∨L, ∗L) and

M = (M,≤M ,∧M ,∨M , ∗M).1 The first one of the cl-monoids, L is the background for

L-fuzzy sets, that is for the objects which we aim to approximate, while the second cl-

monoid, M is used as the set of values taken by the measure to estimate the precision

of the approximation. Apriory these cl-monoids are unrelated. However, in order to

get substantial results about the measure of approximation we need some connections

between cl-monoids L and M. Therefore we assume that there are fixed mappings

𝜑 ∶ L → M and 𝜓 ∶ M → L preserving bottom and top elements of the lattices and

such that

𝜑(
⋀

i
𝛼i) =

⋀

i
(𝜑(𝛼i)) and 𝜓(

⋁

i
𝜆i) =

⋁

i
(𝜓(𝜆i))

for all {𝛼i ∶ i ∈ I} ⊆ L, {𝜆i ∶ i ∈ I} ⊆ M. Besides we require that

𝜑(𝛼 ∗L 𝛽) = 𝜑(𝛼) ∗M 𝜑(𝛽) ∀𝛼, 𝛽 ∈ L and 𝜓(𝜆 ∗M 𝜇) = 𝜓(𝜆) ∗L 𝜓(𝜇) ∀𝜆, 𝜇 ∈ M.

In the result we come to a quadruple (L,M, 𝜑, 𝜓) which will be referred to as an
approximation quadruple. Below we give some examples of approximation quadru-

ples (L,M, 𝜑, 𝜓).
1. L and M are arbitrary homomorphic cl-monoids and 𝜑 ∶ L → M and 𝜓 ∶ M → L

are the corresponding homomorphisms. In particular, 𝜓 may be defined as the

inverse of 𝜑.

1
The subscripts L and M will be usually omitted as soon as it is clear from the context in which

monoid we are working.
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2. L = ([0, 1], ∗) is the unit interval endowed with a lower semicontinuous t-norm ∗
and M = {0, 1} ⊂ [0, 1]. We define 𝜓 ∶ M → L as inclusion and 𝜑 ∶ L → M by

setting 𝜑(1L) = 1M and 𝜑(𝛼) = 0M whenever 𝛼 < 1.

3. M = ([0, 1], ∗) is the unit interval endowed with a lower semicontinuous t-norm

∗ and L = {0, 1} ⊂ [0, 1]. We define 𝜑 ∶ L → M as the inclusion map and 𝜓 ∶
L → M by setting 𝜓(0L) = 1M and 𝜓(𝛼) = 1M whenever 𝛼 > 0.

4. L = ([0, 1], ∗) is the unit interval endowed with a lower semicontinuous t-norm

∗ and a ∈ L, a ≠ 0L, 1L is an idempotent element; M = ({0, a, 1}, ∗) ⊆ L. We

define mapping 𝜓 ∶ M → L as an embedding and mapping 𝜑 ∶ L → M by setting

𝜑(1L) = 1M; 𝜑(𝛼) = a if a ≤ 𝛼 < 1L and 𝜑(𝛼) = 0M if 𝛼 < a.
5. M = ([0, 1], ∗) is the unit interval endowed with a lower semicontinuous t-norm ∗

and a ∈ M, a ≠ 0M , 1M is an idempotent element and L = ({0, a, 1}, ∗) ⊆ L. We

define the mapping 𝜑 ∶ L → M an the embedding and the mapping 𝜓 ∶ M → L
by setting 𝜓(𝜆) = 1L for 𝜆 > a; 𝜓(𝜆) = a if 0M < 𝜆 ≤ a and 𝜓(0M) = 0L.

2.3 M-relations

Definition 2 Let a cl-monoid M and a set X be given. An M-valued relation, or just

an M-relation on a set X is a mapping R ∶ X × X → M.

(r) M-relation R is called reflexive if R(x, x) = 1M for each x ∈ X;
(s) M-relation R is called symmetric if R(x, y) = R(y, x) for all x, y ∈ X;
(t) M-relation R is called transitive if R(x, y) ∗ R(y, z) ≤ R(x, z) ∀x, y, z ∈ X.

A reflexive symmetric transitive M-relation is called an M-equivalence, or a similar-

ity M-relation.

Let 𝐑𝐄𝐋(M) be the category whose objects are pairs (X,R), where X is a set and

R ∶ X × X → M is a transitive reflexive M-relation on it. Morphisms in REL(M) are

mappings f ∶ (X,RX) → (Y ,RY ) such that

RX(x, x′) ≤ RY (f (x), f (x′)) for all x, x′ ∈ X.

Remark 3 In particular cases, notions similar to our concept of an M-valued relation

appear in many papers written by different authors and often under different names

(see e.g. [7, 37]) etc. For the first time it appeared in Zadeh’s paper [41] under the

name “a fuzzy relation”. Zadeh’s fuzzy relation can be described as our M-relation

where M = ([0, 1],≤,∧,∨,∧), that is when M = [0, 1] is viewed as a lattice with

usual order and 𝜑,𝜓 are the identity mappings.
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2.4 L-fuzzy Sets

For completeness we recall that given a complete lattice, in particular a cl-monoid

L, and a set X an L-fuzzy subset, or just an L-subset of X is a mapping A ∶ X → L
(see e.g. [10, 11]). The family of all L-fuzzy subsets of X is denoted LX . Union and

intersections of a family {Ai ∶ i ∈ I} are defined as
⋁

i∈I Ai and
⋀

i∈I Ai. Further, we

recall that given a mapping f ∶ X → Y and L-subsets A ∈ LX and B ∈ LY the image

f (A) ∈ LY of A is defined by f (A)(y) = supx∈f−1(y)A(x) and the preimage f −1(B) ∈ LX

of B is defined by f −1(B)(x) = B(f (x)).
If (L,≤,∧,∨, ∗) is a cl-monoid, and X is a set, then the lattice and the monoidal

structures of L can be pointwise lifted to the L-powerset LX of X. Namely, given

A,B ∈ LX we set A ≤ B iff A(x) ≤ B(x) for all x ∈ X, and define operations on LX by

setting

(A ∧ B)(x) = A(x) ∧ B(x), (A ∨ B)(x) = A(x) ∨ B(x),

(A ∗ B)(x) = A(x) ∗ B(x) ∀x ∈ X.

One can easily notice that in this way (LX ,≤,∧,∨, ∗) becomes a cl-monoid.

3 M-valued Measure of Inclusion of L-fuzzy Sets

Let L, M be cl-monoids and let 𝜑 ∶ M → L satisfy the conditions stated in Sect. 2.2,

that is 𝜑(
⋀

i 𝛼i) =
⋀

i(𝜑(𝛼i)), 𝜑(0M) = 0L, 𝜑(1M) = 1L and 𝜑(𝛼 ∗M 𝛽) = 𝜑(𝛼) ∗L
𝜑(𝛽) for all 𝛼, 𝛽 ∈ M

Definition 3 By setting

A ↪ B = inf
x∈X

𝜑(A(x) ↦ B(x))

for all A,B ∈ LX we obtain a mapping ↪∶ LX × LX → M. Equivalently, ↪ can be

defined by

A ↪ B = 𝜑(inf(A ↦ B)),

where the infimum of the L-fuzzy set A ↦ B is taken in the lattice LX . We call A ↪ B
by the M-valued measure of inclusion of the L-fuzzy set A into the L-fuzzy set B.

As the next proposition shows, the measure of inclusion ↪∶ LX × LX → M has prop-

erties in a certain sense resembling the properties of the residuation:

Proposition 2 Mapping ↪∶ LX × LX → M defined above satisfies the following
properties:
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(1↪)
(⋁

i Ai
)
↪ B =

⋀
i
(
Ai ↪ B

)
for all {Ai ∣ i ∈ I} ⊆ LX , for all B ∈ LX;

(2↪) A ↪ (
⋀

i Bi) =
⋀

i(A ↪ Bi) for all A ∈ LX , for all {Bi ∣ i ∈ I} ⊆ LX;
(3↪) A ↪ B = 1L whenever A ≤ B;
(4↪) 1X ↪ A = 𝜑(inf x A(x)) for all A ∈ LX;
(5↪) (A ↪ B) ≤ (A ∗ C ↪ B ∗ C) for all A,B,C ∈ LX;
(6↪) (A ↪ B) ∗ (B ↪ C) ⊆ (A ↪ C) for all A,B,C ∈ LX;
(7↪)

(⋀
iAi

)
↪

(⋀
iBi

)
≥
⋀

i(Ai ↪ Bi) for all {Ai ∶ i ∈ I}, {Bi ∶ i ∈ I} ⊆ LX .
(8↪)

(⋁
iAi

)
↪

(⋁
iBi

)
≥
⋀

i(Ai ↪ Bi) for all {Ai ∶ i ∈ I}, {Bi ∶ i ∈ I} ⊆ LX .

Proof

(1)
(⋁

i Ai
)
↪B = inf x

(
𝜑

(⋁
i Ai(x)↦B(x)

))
= inf x(𝜑(

⋀
i(Ai(x) ↦ B(x)))) =

⋀
i(

𝜑(inf x
(
(Ai(x) ↦ B(x))

)
)
)
=
⋀

i(Ai ↪ B).
(2) A ↪

⋀
i Bi = inf(𝜑(A(x) ↦

⋀
i Bi(x)) = inf x

(⋀
i
(
𝜑(A(x) ↦ Bi(x)

))
=
⋀

i(inf x
𝜑(A(x) ↦ Bi(x)))) =

⋀
i(A ↪ Bi).

(3) Let A ≤ B. Then A ↪ B = inf x 𝜑(A(x) ↦ B(x)) = inf x (𝜑(1M)) = 1L.
(4) 1X ↪ A = inf x(𝜑(1X ↦ A(x)) = 𝜑(inf x(1X ↦ A(x)) = 𝜑(inf x A(x)) = inf x(𝜑(A

(x))).
(5) A ↪ B= inf x (𝜑(A(x) ↦ B(x))) ≤ inf x (𝜑(A(x) ∗ C(x) ↦ B(x) ∗ C(x))) = A ∗ C

↪ B ∗ C.
(6) A↪B) ∗ (B↪C) = inf x ((𝜑(A(x) ↦ B(x))) ∗ 𝜑 ((B(x) ↦ C(x)))) = inf x(𝜑(A(x)

↦ B(x)) ∗ ((B(x) ↦ C(x))) ≤ inf x (𝜑(A(x) ↦ C(x))) = A ↪ C.
(7) Referring to Lemma 1 for every x ∈ X we have

(⋀

i
Ai(x) ↦

⋀

i
Bi(x)

)
≥ (

⋀

i
(Ai(x) ↦ Bi(x))).

Taking infimum by x and an image by 𝜑 and recalling that 𝜑 preserves meets,

we exchange
⋀

and 𝜑 in the right side of the inequality and get the requested

(⋀

i
Ai

)
↪

(⋀

i
Bi

)
≥

⋀

i
(Ai ↪ Bi).

(8) Referring to Lemma 2 for every x ∈ X we have

(⋁

i
Ai(x) ↦

⋁

i
Bi(x)

)
≥ (

⋀

i
(Ai(x) ↦ Bi(x))).

Taking infimum by x and image by 𝜑 and recalling that 𝜑 preserves meets we

exchange
⋀

and 𝜑 on the left side of the inequality, and get the requested

(⋁

i
Ai

)
↪

(⋁

i
Bi

)
≥

⋀

i
(Ai ↪ Bi).

□
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4 Rough Approximation of an L-fuzzy Set Induced
by a Reflexive TransitiveM-relation

Let L, M be cl-monoids and let 𝜓 ∶ M → L satisfy the conditions stated in Sect. 2.2,

that is 𝜓(
⋁

i 𝜆i) =
⋁
(𝜓𝜆i), 𝜓(0M) = 0L, 𝜓(1M) = 1L and 𝜓(𝜆 ∗L 𝜇) = 𝜓(𝜆) ∗M

𝜓(𝜇) for all 𝜆, 𝜇 ∈ M.

Further, letR ∶ X × X → M be a reflexive transitiveM-relation on a setX andA be

an L-fuzzy subset of the set X, that is A ∈ LX . By the M-rough approximation of the

L-fuzzy set A we call the pair (uR(A), lR(A)) where uR ∶ LX → LX and lR ∶ LX → LX
are respectively operators of upper and lower M-rough approximations of A defined

below.

4.1 Upper Rough Approximation of an L-fuzzy Set Induced
by a Reflexive Transitive M-relation

Given a reflexive transitive M-relation R ∶ X × X → M, we define the upper rough

approximation operator uR ∶ LX → LX by

uR(A)(x) = supx′
(
𝜓(R(x, x′)) ∗ A(x′)

)
∀A ∈ LX , ∀x ∈ X.

Theorem 1 The upper rough approximation operator satisfies the following
properties:

(1u) uR(0X) = 0X;
(2u) A ≤ uR(A) ∀A ∈ LX;
(3u) uR(

⋁
i Ai) =

⋁
i uR(Ai) ∀{Ai ∣ i ∈ I} ⊆ LX;

(4u) uR(uR(A)) = uR(A) ∀A ∈ LX .

Proof Statement (1u) is obvious. To prove (2u) notice that taking into account

reflexivity of the M-relation R we have:

uR(A)(x) = supx′ (𝜓(R(x, x′)) ∗ A(x′)) ≥ 𝜓(R(x, x)) ∗ A(x) = A(x).
We prove property (3u) as follows:

uR(
⋁

i Ai)(x) = supx′ (𝜓(R(x, x′)) ∗ (
⋁

iAi(x′))) = supx′
(⋁

i𝜓(R(x, x′)) ∗
Ai(x′)

)
=
⋁

i
(
supx′𝜓((R(x, x′)) ∗ Ai(x′))

)
=
⋁

i(uR(Ai)(x))=
(⋁

i(uR(Ai)
)
(x).

To prove property (4u) we take into account transitivity of the M-relation and get the

following chain of inequalities:

uR(uR(A))(x) = supx′
(
uR(A)(x′) ∗ 𝜓(R(x, x′))

)

= supx′′ supx′ (A(x′′) ∗ ((𝜓(R(x, x′)) ∗ (𝜓R(x′, x′′)))
≤ supx′′ supx′ (A(x′′) ∗ 𝜓(R(x, x′) ∗ R(x′, x′′))
≤ supx′′A(x′′) ∗ 𝜓(R(x, x′′)) = uR(A)(x).

Since the converse inequality follows from (2u), we get property (4u).
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4.2 Lower Rough Approximation of an L-fuzzy Set Induced
by a Reflexive Transitive M-relation

Given a reflexive transitive M-relation R ∶ X × X → M, we define a lower rough

approximation operator lR ∶ LX → LX by

lR(A)(x) = inf x′
(
𝜓(R(x, x′)) ↦ A(x′)

)
∀A ∈ LX ∀x ∈ X.

Theorem 2 The lower rough approximation operator satisfies the following
properties:

(1l) lR(1X) = 1X;
(2l) A ≥ lR(A) ∀A ∈ LX;
(3l) lR(

⋀
i Ai) =

⋀
i lR(Ai) ∀{Ai ∣ i ∈ I} ⊆ LX;

(4l) lR(lR(A)) = lR(A) ∀A ∈ LX .

Proof Statement (1l) is obvious. We obtain property (2l) as follows:

lR(A)(x) = inf x′ (𝜓(R(x, x′) ↦ A(x′))
≤ 𝜓(R(x, x)) ↦ A(x) = 1M ↦ A(x) = A(x).

We prove property (3l) as follows:

lR(
⋀

iAi)(x) = inf x′
(
𝜓(R(x, x′)) ↦

⋀
iAi(x′)

)

= inf x′
⋀

i
(
𝜓(R(x, x′)) ↦ Ai(x′)

)

=
⋀

iinf x′
(
𝜓R(x, x′) ↦ Ai(x′)

)
=
⋀

ilR(Ai).

To prove property (4l) we take into account transitivity of the M-relation and, apply-

ing Proposition 1, get the following chain of inequalities:

lR(lR(A))(x) = inf x′ (𝜓R(x, x′) ↦ lR(A)(x′))
= inf x′ (𝜓R(x, x′) ↦ inf x′ (𝜓R(x′, x′′) ↦ A(x′′)))
= inf x′ (inf x′′ (𝜓R(x, x′) ∗ 𝜓R(x′, x′′) ↦ A(x′′)))
≥ inf x′′ (𝜓R(x, x′′) ↦ A(x′′)) = lR(A)(x).

Since the converse inequality follows from (2l), we get property (4l). □

Remark 4 Operators similar to our upper and lower approximation operators in spe-

cial cases, in particular when M = L and 𝜑 = 𝜓 is the identity mapping can be found

in the works of several authors, see e.g. [19, 25, 32, 35].

5 M-valued Measure of Roughness of an L-fuzzy Set

5.1 Definitions and Basic Properties of M-valued Measure
of Roughness of an L-fuzzy Set

Let (L,M, 𝜑, 𝜓) be an approximation quadruple and let R be a reflexive transitive

M-relation on a set X.
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Given an L-fuzzy set A ∈ LX we define the measure (A) of its upper rough

approximation by (A) = uR(A) ↪ A and the measure  (A) of its lower rough

approximation by  (A) = A ↪ lR(A).

Theorem 3 If R is also symmetric, that is an equivalence M-relation, then (A) =
 (A) for every L-fuzzy set A.

Proof Note that for the measure of the upper rough approximation we have

(A) = uR(A) ↪ A = 𝜑

(
inf x(uR(A)(x) ↦ A(x))

)

= 𝜑

(
inf x

(
supx′ (A(x) ∗ 𝜓(R(x, x′)) ↦ A(x))

))

= 𝜑

(
inf xinf x′

(
A(x) ∗ 𝜓(R(x, x′)) ↦ A(x)

))

= 𝜑

(
inf x,x′

(
A(x) ∗ 𝜓(R(x, x′)) ↦ A(x)

))
.

On the other hand, for the lower rough approximations we have

 (A) = A ↪ lR(A) = 𝜑

(
inf x(A(x) ↦ lR(A)(x))

)

= 𝜑

(
inf x(A(x) ↦ inf x′

(
𝜓R(x, x′) ↦ A(x)

)
))
)

= 𝜑

(
inf x inf x′ (A(x) ↦ (𝜓(R(x, x′)) ↦ A(x)))

)

= 𝜑

(
inf xinf x′ (A(x) ∗ 𝜓R(x, x′)) ↦ A(x)

)

= 𝜑

(
inf x,x′ (A(x) ∗ 𝜓R(x, x′)) ↦ A(x)

)
.

Since R(x, x′) = R(x′, x) in case R is symmetric, to complete the proof it is suffi-

cient to notice that (𝛼 ∗ 𝛽) ↦ 𝛾 = 𝛼 ↦ (𝛽 ↦ 𝛾) for any 𝛼, 𝛽, 𝛾 ∈ L. Indeed,

(𝛼 ∗ 𝛽) ↦ 𝛾 =
⋁
{𝜆 ∣ 𝜆 ∗ (𝛼 ∗ 𝛽) ≤ 𝛾}, and

𝛼 ↦ (𝛽 ↦ 𝛾) =
⋁
{𝜆 ∣ 𝜆 ∗ 𝛼 ≤ 𝛽 ↦ 𝛾} =

⋁
{𝜆 ∣ (𝜆 ∗ 𝛼) ∗ 𝛽 ↦ 𝛾};

the last equality is justified by Galois connection between ↦ and ∗. □

The previous theorem allows us to introduce the following definition:

Definition 4 Let (L,M, 𝜑, 𝜓) be an approximation quadruple and let R be an equiv-

alence M-relation on a set X and A ∈ LX . The measure of rough approximation of A
is defined by

(A) = uR(A) ↪ A = A ↪ lR(A).

In the next theorem we collect the main properties of the operators  ∶ LX → L and

 ∶ LX → L, and hence also of the operator  ∶ LX → L in case the relation R is

symmetric.

Theorem 4 M-valued measures of roughness of upper and lower rough approxi-
mation ,  ∶ LX → L have the following properties:

1. (0X) = 1L where 0X ∶ X → L is the constant function: 0X(x) = 0L;
2.  (1X) = 1L where 1X ∶ X → L is the constant function: 1X(x) = 1L;
3. (u(A)) = 1L for every A ∈ LX;
4.  (l(A)) = 1L for every A ∈ LX;
5. (

⋁
i Ai) ≥

⋀
i (Ai) for every family of L-fuzzy sets {Ai ∣ i ∈ I} ⊆ LX;
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6.  (
⋀

i Ai) ≥
⋀

i  (Ai) for every family of L-fuzzy sets {Ai ∣ i ∈ I} ⊆ LX.

Proof (1) Referring to Theorem 1 and applying Proposition 2 (3 ↪) we have (A) =
uR(0X) ↪ 0X = 0X ↪ 0X = 1M . (2) Referring to Theorem 2 and applying Proposi-

tion 2 (3 ↪), we have  (A) = 1X ↪ lR(1X) = 1X ↪ 1X = 1M . (3) Referring to The-

orem 1 and applying Proposition 2 (3 ↪), we have

(u(A))) = uR(uR(A) ↪ uR(A) = uR(A) ↪ uR(A) = 1M .

(4) Referring to Theorem 2 and applying Proposition 2 (3 ↪), we have

 (l(A))) = lR(A) ↪ lR(lR(A)) = lR(A) ↪ lL(A) = 1M

(5) Referring to Theorem 1 and applying Proposition 2 (8 ↪), we have


(⋁

iAi
)
= uR

(⋁
iAi

)
↪

⋁
iAi

=
⋁

iuR(Ai) ↪
⋁

iAi ≥
⋀

i(u(Ai) ↪ Ai) =
⋀

i(Ai).

(6) Referring to Theorem 2 and applying Proposition 2 (7 ↪), we have

 (
⋀

i Ai) = (
⋀

i Ai) ↪ l(
⋀

i Ai) =
⋀

iAi ↪
⋀

il(Ai) ≥
⋀

iAi ↪ l(
⋀

iAi).

□

Theorem 5 Let RX ∶ X × X → L and RY ∶ Y × Y → L be reflexive transitive
L-relations on sets X and Y respectively. Further, let f ∶ X → Y be a mapping such
that RX(x, x′) ≤ RY (f (x), f (x′)) for every x, x′ ∈ X. Then X(f −1(B)) ≥ Y (B) and
X(f −1(B)) ≥ Y (B) for every B ∈ LY.

The proof follows from the next sequences of (in)equalities:

X(f −1(B)) = uRX
(f −1(B)) ↪ f −1(B))

= 𝜑

(
inf x(uRX

(f −1(B))(x) ↦ f −1(B)(x))
)

= 𝜑

(
inf x

(
supx′B(f (x)) ∗ 𝜓R(x, x′)

)
↦ B(f (x)))

)

≥ 𝜑

(
inf x

(
supx′B(f (x′) ∗ 𝜓R(f (x), f (x′)))

)
↦ B(f (x))

)

≥ 𝜑

(
inf y

(
sup′y(B(y

′) ∗ 𝜓R(y, y′)) ↦ B(y)
))

= Y (B)

and

X(f −1(B)) = (f −1(B) ↪ lRX
(f −1(B)))

= 𝜑

(
inf x(f −1(B)(x) ↦ lRX

(f −1(B)(x))
)

= 𝜑

(
inf x(B(f (x)) ↦ inf x′ (𝜓R(x, x′) ↦ f −1(x′))

)

= 𝜑

(
inf x infx′ (B(f (x)) ↦ (𝜓R(x, x′)) ↦ B(f (x′)))

)

≥ 𝜑

(
inf x inf x′ (B(f (x)) ↦ (𝜓R(f (x), f (x′)) ↦ B(f (x′)))

)

≥ 𝜑

(
inf y inf y′ (B(y) ↦ (𝜓R(y, y′) ↦ B(y′)))

)
= B ↪ lRY

(B) = Y (B). □
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5.2 Examples of M-valued Measure of Roughness of Rough
Approximation of L-fuzzy Sets

Here we illustrate M-valued measure of approximation in case when L = M =
([0, 1], ∗) where ∗ is one of the basic t-norms: minimum (∗= ∧), Łukasiewicz (∗L)

and product (∗= ⋅) and 𝜑 = 𝜓 = id are the identity mappings. A reader can easily

construct the modifications of these examples for other approximation quadruples

(L,M, 𝜑, 𝜓), in particular, for the ones described in Sect. 2.2, in Examples (1)–(3)

and in case of the t-norm ∧, also in Examples (4)–(5).

Example 1 Let ∗L be the Łukasiewicz t-norm on the unit interval L = [0, 1], that is

𝛼 ∗ 𝛽 = min(𝛼 + 𝛽 − 1, 1)

and ↦L∶ L × L → L be the corresponding residium, that is

𝛼 ↦L 𝛽 = max{1 − 𝛼 + 𝛽, 0}.

Then, given an equivalence L-relation R on a set X and A ∈ LX we have:

(A) = inf
x
inf
x′
(2−A(x)+ A(x′)−R(x, x′));

 (A) = inf
x
inf
x′
(2−A(x)+A(x′)−R(x′, x)).

In particular, if R ∶ X × X → [0, 1] is the discrete relation, that is

R(x, x′) =
{

1 if x = x′
0 otherwise,

we have

(A) = 1 for every A ∈ LX .

On the other hand for the indiscrete relation (that is R(x, x′) = 1 for all x, x′ ∈ X)

(A) = 1 − inf x,x′ ∣ A(x) − A(x′) ∣ for all A ∈ LX .

Example 2 Let ∗= ∧ be the minimum t-norm on the unit interval L = [0, 1], and

↦∶ L × L be the corresponding residium, that is

𝛼 ↦ 𝛽 =
{

1 if 𝛼 ≤ 𝛽

𝛽 otherwise
.
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Then given a reflexive transitive L-relation R on a set X and A ∈ LX we have:

(A) = inf
x
inf
x′
(A(x′) ∧ R(x, x′) ↦ A(x));

 (A) = inf
x
inf
x′
(A(x′) ∧ R(x′, x) ↦ A(x)).

In particular, (A) = 1 for every A ∈ LX in case the relation R is symmetric.

Example 3 Let ∗= ⋅ be the product t-norm on the unit interval [0,1], and ↦∶ L × L
be the corresponding residium, that is

𝛼 ↦ 𝛽 =
{

1 if 𝛼 ≤ 𝛽

𝛽

𝛼

if 𝛼 > 𝛽

.

Then, for a reflexive transitive L-relation we have:

(A) = inf
x
inf
x′
(A(x′) ⋅ R(x, x′) ↦ A(x));

 (A) = inf
x
inf
x′
(A(x′) ⋅ R(x′, x) ↦ A(x)).

In particular

(A) = inf
x
inf
x′
(A(x′) ⋅ R(x, x′) ↦ A(x))

in case R is symmetric.

6 Measure of Roughness of a Fuzzy Set: Ditopological
Interpretation

In this section we briefly discuss an alternative view on the concepts studied in the
work. A reader not interested in the topological aspects of approximation, may omit
this section. A detailed topological analysis of the M-valued measuring of rough
approximation of L-fuzzy sets will be developed in the subsequent paper.

Notice that conditions (2), (4), and (6) of Theorem 4 actually mean that the map-

ping  ∶ LX → M is an (L,M)-fuzzy topology on the set X, while conditions (1),

(3), and (5) of this theorem mean that the mapping  ∶ LX → M is an (L,M)-co-

topology on this set (see e.g. [20, 21, 31, 33, 34]). Since the mappings  and 

are not mutually related via complementation on the lattices L and M (which even

need not exist on the lattice) we may interpret the pair ( ,) as an (L,M)-fuzzy

ditopology on the set X [3].
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Let 𝛼 ∈ M be fixed and let


𝛼

= {A ∣ (A) ≥ 𝛼} and 
𝛼

= {A ∣  (A) ≥ 𝛼}.

Then, applying again Theorem 4, we easily conclude that 
𝛼

satisfies the axioms of

a Chang-Goguen L-fuzzy topology, see [4, 11], and 
𝛼

satisfies the axioms of a

Chang-Goguen L-fuzzy co-topology. Hence for each 𝛼 ∈ L the pair (
𝛼

,
𝛼

) can be

realized as a Chang-Goguen L-fuzzy ditopology on X [2].

From Theorem 5 we conclude that if f ∶ (X,RX) → (Y ,RY ) is a morphism in the

category REL(M) of sets endowed with reflexive transitive M-relations, then

f ∶ (X, X ,X) → (Y , Y ,Y )

is continuous mapping of the corresponding (L,M)-fuzzy ditopological spaces. Thus

we come to the following

Theorem 6 By assigning to every object (X,RX) from the category REL(M) (see
Sect. 2.2) an (L,M)-fuzzy ditopological space (X, X ,X), and interpreting a mor-
phism f ∶ (X,RX) → (Y ,RY ) ofREL(M) as amapping f ∶ (X, X ,X) → (Y , Y ,Y )
we obtain a functor

𝛷 ∶ 𝐑𝐄𝐋(M) → 𝐃𝐢𝐓𝐨𝐩(L,M),

where 𝐃𝐢𝐓𝐨𝐩(L,M) is the category of (L,M)-fuzzy ditopological spaces and their
continuous mappings [3].

Corollary 1 Let 𝛼 ∈ M be fixed. By assigning to every object (X,RX) from the cate-
gory REL(M) a Chang-Goguen L-ditopological space (X,  X

𝛼

,X
𝛼), and realizing

a morphism f ∶ (X,RX) → (Y ,RY ) fromREL(M) as a mapping f ∶ (X, X
𝛼

,X
𝛼) →

(Y , Y
𝛼

,Y
𝛼) we obtain a functor

𝛷
𝛼

∶ 𝐑𝐄𝐋(M) → 𝐃𝐢𝐓𝐨𝐩(L),

where 𝐃𝐢𝐓𝐨𝐩(L,M) is the category of Chang-Goguen L-ditopological spaces and
their continuous mappings.

7 Conclusion

In this paper we proposed an approach allowing to measure the roughness of lower

and upper rough approximation for L-fuzzy subsets of a set endowed with a reflexive

transitive M-relation. The basics of the theory of roughness measure were developed

here. Besides, a natural interpretation of the operator of measure of rough approx-

imation as a fuzzy ditopology was sketched here. However, several crucial issues

concerning this theory remain untouched in this work. As one of the first goals for

the further work we see the development of a consistent categorical viewpoint on the
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measure of rough approximation. In particular, it is important to study the behavior

of the measure of approximation under operations of products, direct sums, quo-

tients, etc., and to research the behavior of the measure of roughness under images

and preimages of special mappings between sets endowed with reflexive transitive

M-relations.

Another interesting, in our opinion, direction of the research is to develop the

topological model of this theory sketched in Sect. 6. The restricted volume of this

work does not allow us to linger on this subject. However, in our opinion the topo-

logical interpretation of the theory could be helpful for further studies.

Besides we hope that the concept of anM-valued measure of rough approximation

will be helpful also in some problems of practical nature, since it allows in a certain

sense to measure the quality of the rough approximation.
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Fuzzy Control of a Sintering Plant Using
the Charging Gates
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Vincenzo Dimastromatteo and Marco Saccone

Abstract The industrial priorities in the automation of the sinter plant comprise

stable production rate at the highest productivity level specially within an integrated

steelwork and classical control scheme may fail due to the complexity of the sinter

process. The paper describes an approach exploiting a fuzzy rule- based expert sys-

tem to control the charging gates of a sinter plant. Two different control strategies are

presented and discussed in details within an innovative advisory system that supports

the plant operators in the choice of the most promising action to do on each gate. A

third strategy that combines the strong points of the two detailed ones is presented

and studied in feasibility. Through a suitable exploitation of real-time data, the advi-

sory system suggests the most promising action to do by reproducing the knowledge

of the most expert operators, supporting the technicians in the control of the plant.

Thus, this approach can also be used to train new plant operator before involving

them in the actual plant operations. The performance of the detailed strategies and

the goodness of the system have been evaluated for long time in the sinter plant of

one of the biggest integrated steelworks in Europe, namely the ILVA Taranto Works

in Italy.
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1 Introduction

Within a steelwork, the sintering process is a central operation in the production

cycle: the treatment is basically a high temperature process that starts from raw mate-

rials mixture (such as fine iron ores) and produces a particular form of agglomerate

material known as sinter, which is one of the material fed to the blast furnace in order

to produce the pig iron, which is subsequently refined in the steel shop to produce

the liquid steel.

The sintering process is articulated into a series of standard operations. A first pre-

liminary task is the acceptation and the storage of the iron-bearing raw materials in

the ore stockyard followed by the crashing and the screening of these raw materials.

Then, the following phases which are more specific of the sintering process can be

pointed out: (I) raw materials are mixed together with water and then granulated into

a pseudo-particles in a rotary mixer drum and then stocked in a feed hopper; (II) after

the hopper, the moistened mix passes through the charging gates and it is accumu-

lated just before a leveler that strips out the exceeding material; thus the moistened

mixture is charging as a layer onto continuously moving pallet-cars called “strand”;

(III) after the ignition of the material close to the charging zone, the burning process

is propagated by chemical reaction thanks to the air sucked through the strand by

the so-called wind boxes, that are depressurised air ducts mounted below the strand;

(IV) at the end of the strand the solidified agglomerate is broken within a crusher

and cooled within a cooler strand; (V) finally the cooled material is conveyed to a

second crusher in order to obtain a suitable size of the particles of the final sinter.

The overall process must be controlled in order to ensure that all the mix is burned

just earlier than being discharged into the crusher. The points at which the flame

front reaches the base of the strand are called “burn-through points” (BTPs). Thus,

among the aims of the control process of the plant, two of them are of considerable

interest and can be summarized as follows: to ensure that the BTPs are aligned in

the transversal direction of the strand and to ensure that this alignment happens just

earlier than the discharge. As a matter of fact, a uniform flame front is guaranteed

to the former condition while the latter one optimizes the production capacity of

the plant. In fact there is an evident waste of productivity of the plant if the BTPs

occur too early compared to the end of the process; analogously, the quality of the

sinter lowers if the burning process is not completed before the discharge and this

fact negatively affects the production rate of the overall steel plant and the following

production stages.

Predictive capabilities have been used to develop control schemes controlling the

speed of the strand. In [1] the prediction of the waste gas temperature is used to

manipulate the strand speed, while in [2] the same variable is controlled using a

process model identified from the observed data. A different perspective is presented

in [3], where the control scheme tries to keep the temperature distribution at the end

of the plant on a pre-defined curve in order to yields a target BTP. Also in this case

the manipulated variable is the strand speed.
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The new approach presented in the paper is based on fuzzy rule-based expert

systems and exploits the charging gates as controlled variables. Two different control

strategies will be presented and discussed as well as an innovative advisory system

that supports the plant operators in the control of the plant.

The paper is organized as follows. Section 2 provides a brief overview on the

techniques to extract the fuzzy rules from the real data and to build the rule-basis.

Section 3 describes the two control strategies while the advisory system is presented

in Sect. 4. Section 5 presents the results of the on-the-plant tests and Sect. 6 pro-

posed a feasibility study for a strategy which, on the basis on the previously achieved

results, integrates the two proposed control approaches. Finally Sect. 7 provides

some concluding remarks.

2 Rules Extraction

When dealing with fuzzy rule-based systems the most important component of the

entire system is the rule basis. In fact, this is the component conveying most of the

system’s knowledge and it contains also the relationships between the variables com-

ing from the field of application. The rule basis is of the utmost importance as it is

the core of the fuzzy inference system: different rule bases can produce antithetical

results although exploiting the same input data and the same mechanism, starting

from the same fuzzy sets and membership functions and procedures for fuzzyfica-

tion of the crisp input data and defuzzification to produce numerical results.

Thus, the most important and exciting task during the design of the system, is

the formalization of a correct and representative rule-basis for the considered appli-

cation, starting from the available knowledge of the phenomenon or process under

consideration and/or from the field expertise and practical knowledge of technical

personnel who continuously handles the system to control.

In the last years, several methods and techniques have been proposed in the lit-

erature to cope with this issue. Heuristic approaches can be found in [4–6], while

examples of clustering-based technique are presented in [7–9]. Other methods are

based on Support Vector Machines (SVM) [10], Genetic Algorithms (GA) [11–13]

or bacterial evolutionary algorithms [14]. Memetic algorithms belong to evolution-

ary algorithms too and they try to emulate cultural evolutions instead of the bio-

logical ones. An application of such techniques to rules extraction can be found in

[15, 16].

Apart from evolutionary algorithms and clustering techniques, neuro-fuzzy meth-

ods [17] as well as data-mining techniques [18] can be applied.

A further approach, to be eventually integrated with the previously cited ones,

is based on the direct interviews of the experts in order to acquire the knowledge

and to understand the best practices that are commonly in use. Starting from the

experts’ knowledge and the best practices, a selection, management and aggregation

of the information must be performed. This task is usually completed taking into

account a trade-off between the dimension of the rule base (usually a small one is
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preferable in order to gain computational efficiency as well as easy interpretation for

further adaptation) and the goodness of the information to embed into the rules. This

approach has been successfully applied by some of the authors in past works [19, 20].

A positive side-effect of this approach consist in the fact that, when heuristic

procedures or automatic techniques (for instance neural networks in the case of

the particular category of the so-called Adaptive Neuro-Fuzzy Inference Systems—

ANFIS [21]) are applied to tune some of the parameters of the FIS on the basis of

the achieved experimental results or of the available data, the new FIS can be eas-

ily interpreted and the tuning operation helps the technicians to improve their own

knowledge of the system under consideration, as it exploits the same kind of formal-

ization they suggested. In the present case, the rules have been heuristically tuned in

order to achieve final satisfactory performance of the process.

3 Control Strategies

Some mathematical models have been developed in order to cope with the dynamic

of the sintering process in an analytical way. A first attempt has been made in [22]

while a different perspective has been developed in [23, 24]. A different approach

based on multiple-valued logic is the core of the present paper and concepts of fuzzy

sets [25], fuzzy control [26–28] and expert systems [29, 30] are used to develop the

strategies and to build the advisory system.

3.1 Overview of the Sintering Machine

The transversal direction of the strand can be divided into four segments denoted by

A, B, C and D. Each of them covers the overall length of the machine and it is about

one meter wide, so that they cover the overall width of the strand. Regarding the

longitudinal direction, three different macro-zones can be pointed out as depicted in

Fig. 1 and described in the following:

∙ charging zone () at the very beginning of the strand;

∙ permeabilities zone () after the ignition hood at the 3rd wind box;

∙ burn-through points zone () at the end of the bed covering a wide area of about

48 m
2
.

Within the macro-zone  the feed hopper, 6 charging gates and 6 infrared sensors

can be found, while the permeability sensors, which take 4 different permeability

measurements along the transversal direction of the strand and that are indicated in

the following as KA, KB, KC, KD, are located within the macro-zone . Finally, in

the last zone () a regular grid of thermocouples has been installed, such as depicted

in Fig. 2 that measures 24 temperature values: among them, the maximum one of
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Fig. 1 Sketch of the macro-zones , and  of the plant

Fig. 2 Sketch of the grid of

thermocouples

23 24 25 26 27 28

C

each segment is the associated BTP, thus finally there are 4 BTP values indicated as

BTPA, BTPB, BTPC, BTPD.

From the point of view of the plant operational practice, it would be advisable

that the maximum value of temperature is reached for all the segments in correspon-

dence to approximately the same distance from the strand end, as this implies that

the sintering process is quite homogeneous in all the portions of the strand itself.

A preparatory statistical analysis conducted on historical data coming from the

plant has put into evidence that the transversal alignment of 𝐵𝑇𝑃 A, … , 𝐵𝑇𝑃D is

related to a specific configuration of𝐾A, … , 𝐾D. Thus, the idea behind the strategies

is to control the charging gates in order to obtain the suitable permeability configu-

ration in the macro-area .

Indeed, as the permeability configuration is supposed to be symmetric, the dif-

ference between the external permeabilities (KA, KD) and the internal ones (KB, KC)

can leads to crucial information about the suitable configuration to be obtained.

Thus, in order to pursue such investigation, the following 4 permeability ratios

(Kr) have been defined:

(r1, r2, r3, r4)T =
(

KA
KD
,

KB
KC
,

KA
KB
,

KD
KC

)T
. (1)
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3.2 Description of the Strategies

Two control strategies have been designed, which both aim at maximizing the

increase of the average permeability. The first strategy (‘a’) takes into account only

this target; the second one (‘b’) takes also into account the stress on the actuator

and tries to minimize the movement of each gate, namely, if more actions involving

different gates are equally physically feasible, this latter strategy suggests the action

that produces the minimum displacement of the gates from their current position.

Variables and symbols for both strategies are summarized in Table 1 and a descrip-

tion of the first strategy (‘a’) is the following:

1. Gates and Infrared Indices: the gate and the infrared values are normalized

using its operative limits (𝐺
min

, 𝐺
max

, 𝐼𝑅
min

, 𝐼𝑅
max

);

2. Control Coefficients: four control coefficients that express the contribution of

each couple of gates (i.e. 1,2 - 2,3 - 4,5 - 5,6) on each segment of the bed are

computed using the above indices;

3. Action Indices: four “action-indices” that contain the information about the oper-

ations to perform on each couple of gates (e.g. a value less than zero indicates

that the gates of a couple need to be closed) are computed and limited between

suitable thresholds (𝑐
min

, 𝑐
max

);

4. Targets Computation: four different target permeability profiles, namely 4 dif-

ferent vectors of 4 entries each, are obtained using the permeability ratios Kr; the

ith element of the ith vector is obtained by imposing Ktarget

𝐾i
(i) = Kt(i) while the

other elements are calculated using Kr; the Eq. (2) show the computations for the

first (i = 1) profile:

Ktarget

𝐾1
(1)

def
= 𝐾

target

A = Kt(1) ≡ 𝐾A (2a)

Ktarget

𝐾1
(2)

def
= 𝐾

target

B = 𝐾

target

A ∕r3 (2b)

Ktarget

𝐾1
(3)

def
= 𝐾

target

C = 𝐾

target

B ∕r2 (2c)

Ktarget

𝐾1
(4)

def
= 𝐾

target

D = 𝐾

target

A ∕r1 (2d)

where the relation (2a) concern the imposed elements (i = 1), while the formulas

(2b–2d) concern the computed elements of the profile;

5. Gaps between Current and Target: for each target profile the gaps between the

current profile and the target is evaluated, obtaining 4 different vectors of 4 entries

each that are computed according to the following equations, where i = 1,… , 4:

Kgaps

𝐾i
(1) = 𝐾A − Ktarget

𝐾i
(1) (3a)

Kgaps

𝐾i
(2) = 𝐾B − Ktarget

𝐾i
(2) (3b)
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Table 1 Symbols used within the control strategies

Symbol Meaning
†

Gt Opening percentage of the gates

IRt Measure of the height of the sinter bed along the transversal direction

Kt Permeability values i.e. Kt = (𝐾1, … , 𝐾4)T ≡ (𝐾A, … , 𝐾D)T

Kr Permeability ratios i.e. Kr ≡ (r1, r2, r3, r4)T

Ktarget

𝐾i
Permeability values computed using Kr by imposing

Ktarget

𝐾i
(i) = Kt(i), i = 1,… , 4

𝐺
min

,𝐺
max

Working range limits of the gates

𝐼𝑅
min

, 𝐼𝑅
max

Minimum and maximum allowed height of the sinter bed

𝑐
min

, 𝑐
max

Suitable thresholds

Y Selected control actions

†
where (⋅)t means that the values are taken at the current time instant i.e. they are on-line values

Kgaps

𝐾i
(3) = 𝐾C − Ktarget

𝐾i
(3) (3c)

Kgaps

𝐾i
(4) = 𝐾D − Ktarget

𝐾i
(4) (3d)

6. Control Amount for each Couple of Gates: for each vector of gaps the control

amount values to be applied on each couple of gates is calculated by obtaining

four vectors with four elements each;

7. Calculate the Feasibility: for each target profile a feasibility coefficient is com-

puted informing if the related action on the couple of gates are physically feasible

or not (e.g. it is required to close a gate that it is already completely closed);

8. Calculate the Increase of the Average Permeability: for each target profile the

gains of the average values are evaluated in order to use these values as perfor-

mance indicators; each of them is related to a vector of control amount values so

that the better the control on the gates the higher will be the index.

9. Select the Actions: among some target profile all equally physically feasible, it

is selected the one which optimizes the performance indicator gaining the four

control amount values denoted by 𝑢12, 𝑢23, 𝑢45 and 𝑢56.

In Fig. 3 the conceptual diagram of control strategy ‘a’ is reported.

The description of strategy ‘b’ is similar to the one of the strategy ‘a’ where the

point 8 is modified as follows:

8. Calculate the Stress on the Actuator: for each target profile, the stress produced

on the actuator is evaluated by summing the overall gaps of the profile
1

in order

to use these values (one for each target profile) as performance indicators; each of

them is related to a vector of control amount values so that the better the control

on the gates the lower will be the index.

1
In fact, the gaps are related to the distance between the current and the desired position of the

gates.
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Gt, Gmin, Gmax
IRt, IRmin, IRmax

cmin, cmax

1
2
3

calculate
indices

Kt 5
calculate
gaps

6
7

control and
feasibility

9 select
actions

u12
u23
u45
u56

4
calculate
target 8

calculate incr.
of av. perm.

Also use Kr as input

Fig. 3 Conceptual scheme of the first control strategy

Thus, the conceptual diagram of the second control strategy is analogous to the

one of the strategy ‘a’ except for the block number 8.

4 Advisory System

The new value of the gates, required to reach the target permeability profile, can be

computed through the following relations:

Gnew(1) = Gt(1) + 0.5 𝑢12 , (4a)

Gnew(2) = Gt(2) + 0.5 𝑢12 + 0.5 𝑢23 , (4b)

Gnew(3) = Gt(3) + 0.5 𝑢23 , (4c)

Gnew(4) = Gt(4) + 0.5 𝑢45 , (4d)

Gnew(5) = Gt(5) + 0.5 𝑢45 + 0.5 𝑢56 , (4e)

Gnew(6) = Gt(6) + 0.5 𝑢56 (4f)

where the coefficient of each term has been set heuristically using the knowledge of

the technicians’ expertise.

Comparing the new values of the gates with the current values, the advisory sys-

tem is able to provide information about the actions to be performed on all of the

charging gates. The actions are also related to a rank number in order to inform about

the most promising of them.

The advisory system is an expert system (ES) founded on multiple-valued logic

with a rule base that reproduce the knowledge of the plant operators. Thus the system

belongs to the larger family of the Fuzzy Rule-Based Expert Systems (FRBES) [31].

The system is designed using the zero-order Takagi-Sugeno-Kang (TSK) model

[32] where the jth fuzzy rule (Rj) of the form “IF ⟨premise⟩ THEN ⟨conclusion⟩” is

given by:



Fuzzy Control of a Sintering Plant Using the Charging Gates 275

Rj∶ IF (x is Ai) AND/OR (y is Bi) THEN zj = cj (5)

where x and y are the inputs, Ai and Bi are fuzzy sets and cj is a crisp adjustable

parameter.

The system evaluates each rule (implication) collecting together the results (aggre-
gation) in order to produce a unique output fuzzy set. The crisp value extracted from

this fuzzy set (defuzzification) represents the output of the entire inference process.

The aggregation and the defuzzification tasks can be merged in a unique operation

in the TSK model as follows:

z =

N∑

j=1
wjcj

N∑

j=1
wj

, with wj = F(𝜇i, 𝜈i) (6)

whereN is the number of rules,wj is the firing strength of the jth rule (i.e. the “degree

of truth” of the ⟨premise⟩), F is the method that implements the AND operator (F is

a t-norm) or the OR operator (F is a t-conorm), 𝜇i is the membership degree of x to

Ai and 𝜈i is the membership degree of y to Bi.

The system is composed of 6 specialized fuzzy inference systems (FISs), one for

each gate (FISi, i = 1,… , 6), whose inputs are the differences 𝛥Gi = Gnew(i) − Gt(i)
(after a proper normalization stage forcing any crisp input to lie in the range [−1, 1]).

Moreover, 𝛥G2 is in input to both the FIS1 and the FIS3 as additional input as

well as 𝛥G5 is in input to both the FIS4 and the FIS6. These additional gaps will be

denoted by the DGN term within the rules.

The FIS2 has 𝛥G1 and 𝛥G3 as additional inputs as well as the FIS5 receives 𝛥G4
and 𝛥G6. These additional gaps will be denoted, respectively, by the DGDx and

DGSx terms within the rules. Table 2 summarizes the inputs of each FIS.

The inputs of the FIS1,3,4,6 are 2 linguistic variables, while the inputs of the FIS2,5
are 3 linguistic variables. For each input variable, 3 linguistic terms (i.e. fuzzy sets)

are defined: ‘Negative’ (NEG), ‘Null’ (NUL) and ‘Positive’ (POS). The membership

functions of all the fuzzy sets are bell-shaped functions whose parameters (𝜇, 𝜎) have

been heuristically set as described in Table 3.

Table 2 Inputs of each fuzzy inference system

𝛥G1 𝛥G2 𝛥G3 𝛥G4 𝛥G5 𝛥G6

FIS1 ∙ ∙
FIS2 ∙ ∙ ∙
FIS3 ∙ ∙
FIS4 ∙ ∙
FIS5 ∙ ∙ ∙
FIS6 ∙ ∙
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Table 3 Characteristic parameters 𝜇 and 𝜎 of the linguistic terms

FIS1,3,4,6 FIS2,5
DG DGN DG DGSx DGDx

NEG −1, 0.34 −1, 0.34 −1, 0.34 −1, 0.34 −1, 0.34
NUL 0, 0.1 0, 0.1 0, 0.16 0, 0.14 0, 0.13
POS 1, 0.34 1, 0.34 1, 0.34 1, 0.34 1, 0.34

Table 4 Rules for the FIS1,3,4,6

DGN is NEG DGN is POS DGN is NUL

DG is NEG −1 0 −1

DG is POS 0 1 1
DG is NUL 0 0 0

The rule bases for the systems have been obtained after fruitful discussions with

the plant operators and considering also the operative practices of the operators too.

All the rules for the FIS1,3,4,6 are shown in Table 4 while in Tables 5, 6 and 7 are

shown the rules for the FIS2,5.

In all the rule bases the numerical value of the output means that the gate must be

closed (−1) or opened (1) or, finally, that no operation must be performed on the gate

(0). The
∏
(x, y) = x ∗ y operator is the t-norm that implements the AND connection

of each rule and the relation (6) is used to defuzzify the inferred output fuzzy set.

Table 5 Rules for the FIS2,5 when DGSx is POS

DGSx is POS

DGDx is NEG DGDx is POS DGDx is NUL

DG is NEG 0 0 −1

DG is POS 0 1 0
DG is NUL 0 0 0

Table 6 Rules for the FIS2,5 when DGSx is NUL

DGSx is NUL

DGDx is NEG DGDx is POS DGDx is NUL

DG is NEG 0 −1 −1

DG is POS 1 0 1
DG is NUL 0 0 0
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Table 7 Rules for the FIS2,5 when DGSx is NEG

DGSx is NEG

DGDx is NEG DGDx is POS DGDx is NUL

DG is NEG −1 0 0
DG is POS 0 0 1
DG is NUL 0 0 0

5 Experimental Results

Two different scenarios have been considered for the plant tests. The first one (“short

period scenario”) takes into account a period of 4 h using the strategy ‘a’ for the first

2 h and the strategy ‘b’ during the last 2 h.

Some characteristic conditions can be highlighted during the tests within this sce-

nario: (a) no stoppage of the strand occurred; (b) the percentages of lime and lime-

stone within the mix were fixed; (c) the ratio between the speed of the drum feeder

and the speed of the strand was constant; (d) the moisture of the mix was kept as

constant as possible.

The qualitative results of the first session showed that the strategy ‘a’ leads to an

actual increment of the average permeability and thus to a better yield of the plant:

this can be assessed considering the lower Internal Return Fines (IRFs) consumption

and thus a lower wet coke consumption.

During the tests, the plant operators confirmed that: (i) the actions proposed by the

system have been always fully safe despite the change of the operational conditions

in which each decision has been taken; (ii) the operations have been always coherent

with the personnel’s expertise. Thus, in the short period the advisory system proved

to behave according to the best practice of the operators. Therefore, it is expected

that, in the long period, the automatic implementation of such system will lead to

improvement of the process performances with a reduction of the operators’ effort.

The second scenario (“long period scenario”) considers a period of 84 h and com-

pares the system behavior during intervals when one of the developed control strate-

gies was applied to intervals when none of them was used and the plant was con-

trolled by exploiting only the expertise of the plant technicians. The detailed descrip-

tion of each period of time is summarized in Table 8.

The long period of eighty-four hours is the best one that can be obtained minimiz-

ing the external influences such as, for example, a different chemical composition in

the mix caused by a different Blend Iron Ore (BIO) in the mix. In Taranto, in fact,

the typical amount of BIO is of 160000–180000 tonnes and they are used within the

mix during a typical period of five days. Thus, the tests have been performed after a

suitable stabilization period after the change of the BIO. Moreover, during the first

day of the long period test a significant stoppage of the strand occurred. In order to

take this fact into account, the results have been computed by using only the data

deriving from a stable condition of the process (i.e. about 90 min after the restart).
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Table 8 Time intervals of the long period tests

Test number Duration (h) Time interval Control strategy

1 12 Day 1 (from 00:00 to 12:00) Technicians expertise

2 12 Day 1 (from 12:00 to 00:00) ‘a’

3 12 Day 2 (from 00:00 to 12:00) Technicians expertise

4 12 Day 2 (from 12:00 to 00:00) ‘b’

5 12 Day 3 (from 00:00 to 12:00) Technicians expertise

6 12 Day 3 (from 12:00 to 00:00) ‘a’

7 12 Day 4 (from 00:00 to 12:00) ‘b’

Let 𝛥S be the amount of the produced sinter (in tonnes), 𝜎
C

the specific coke

consumption (i.e. the amount of the coke consumption—measured in Kg—per tonne

of produced sinter) and 𝜎
IRF

the specific IRF production (i.e. the amount of produced

IRFs production—measured in Kg—per tonne of produced sinter); 3 significant Key

Performance Indicators (KPIs) can be defined as follows (where (⋅)∕h means “per

hour”):

KPI1 i.e. Sinter Production = 𝛥S
h

, (7a)

KPI2 i.e. Wet Coke Consumption =
𝜎

C

h
, (7b)

KPI3 i.e. IRF Production =
𝜎

IRF

h
. (7c)

In order to evaluate the goodness of the results the trends of the KPIs have been

evaluated. In particular, the IRFs production that can be related directly to the yield

of the plant through the following equation:

Yield(%) = 100 − 0.1 𝜎
IRF

. (8)

The results of the long period tests are numerically described in Table 9: using the

strategy ‘a’ an average increment of the produced sinter and an average reduction of

the coke consumption as well as of the IRFs production have been gained. The strat-

egy ‘b’, on the other hand, led to comparable results regarding the coke consumption

and the IRFs production, but caused an average decrement of the productivity.

During both the short and the long period tests the opinions of the technicians have

been taken into account in order to evaluate the practical goodness of the strategies

as well as the KPI’s variations.

The behaviour most frequently used by the plant experts was very similar to that of

the strategy ‘b’ and in contrast with the strategy ‘a’. Indeed, the strategy ‘a’ takes into

account only the average permeability and whenever a variation of the gates posi-

tion is required in order to improve the permeability, the variation is reported to the

gates. This leads to frequent variation in the gates positions and sometimes in abrupt
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Table 9 Experimental results

Control strategy KPI1 KPI2 KPI3

Expertise 4.25 −0.019 6.60
Strategy ‘a’ 2.38 −0.236 −6.75
Expertise −6.25 0.208 4.66

Strategy ‘b’ 1.45 −0.062 −2.50
Expertise −1.18 0.048 2.17

Strategy ‘a’ 3.92 −0.015 −0.43
Strategy ‘b’ −5.76 −0.231 −0.93
Expertise (mean) −1.06 0.08 4.48

Strategy ‘a’ (mean) 3.15 −0.13 −3.59
Strategy ‘b’ (mean) −2.16 −0.15 −1.72

changes. The technicians, on the other hand, use a more conservative approach that

tends to perform slight modification in the gates position and rarely abrupt changes.

Summing up the results of the tests of the two control strategies: strategy ‘a’ gives

better automatic results, but it is less coherent to the technicians’ standard operating

practice, thus they can experience higher efforts in order to follow the plant behavior

when this control strategy is applied. Strategy ‘b’ leads to fairly good results, but it

is more coherent to the standard operating practice.

Finally, it can be noticeable that the advisory system has been designed to be

improved through its use, as the overall software system supports data collection and

analysis. After a longer period of use it will be possible to refine the performances of

the proposed system using the same statistical parameters that supplied the system.

6 ‘Hybrid’ Control Strategy: A Feasibility Study

Considering the results obtained with the two above described control strategies a

third one that combines the strong points of the two developed ones has been investi-

gated. This ‘hybrid’ approach, exploiting the advantages of each developed strategy,

should lead to better results during all the production phases.

The ‘hybrid’ strategy is able to detect the operating conditions in which each of

the two developed ones (‘a’ or ‘b’) is mostly suitable and performs an automatic

switching between them.

The former point has been discussed in depth with the technicians and they agreed

to use of strategy ‘a’/‘b’ when the plant is characterized by low/high productivity.

These conditions can be detected by monitoring the time trend of the KPI1 and the

ratio between the speed of the drum feeder and the speed of the strand. In fact, after a

stoppage, the plant is characterized by a very low speed of the strand while the trend
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Fig. 4 Transition graph of

the ‘hybrid’ strategy

S1 S2

0/0
1/1

0/0

1/1

of the KPI1 is not yet affected by the stoppage. Thus, monitoring only the KPI1 can

be not sufficient to properly detect the correct operating conditions.

The automatic switching can be performed by means of a finite-state machine,

characterized by two states S1 and S2, one input variable in and one output variable

out with the following meaning:

∙ the state S1 and S2 are, respectively, the state where the strategy ‘a’ or ‘b’ is used;

∙ the variable in claims if the switching conditions have been properly detected

(in=1) or not (in=0);

∙ the variable out is more properly the control action on the switch, i.e. it com-

mands (out=1) or not (out=0) the switching between the strategies.

The initial state of the automaton can be S1 as well as S2, depending on the

particular condition of the plant when the ‘hybrid’ strategy starts to operate on the

plant. Whichever the initial state is, the transition graph is depicted in Fig. 4 (where

the notation ⟨in⟩∕⟨out⟩ stands for the couple of values of the variable in and out
and the relation between to each other).

7 Conclusion

A new approach based on fuzzy rule-based expert systems and a new advisory system

to control the charging gates of a sinter plant is presented. Two new control strategies

have been developed and tested on the field.

Strategy ‘a’ is more invasive within the process operational conditions, as it aims

at maximizing the productivity without any kind of trade-off. It can be used when

the plant is characterized by lower productivity (e.g. the plant is restarted after a

stoppage): in these cases the greater the control amount, the shorter the time elapsed

before reaching fair operating conditions.

On the other hand, strategy ‘b’ is more conservative, as it aims at maximizing the

productivity but considers also the stress on the gates’ actuators and produces less

perturbation in the operating conditions with respect to the other strategy. It can be

used when the plant is characterized by higher productivity and the machine shows

a higher sensitivity to the changes on the gates.

Real-time tests are still ongoing at the sinter plant of ILVA S.p.A. (Taranto Works,

Italy) and satisfactory results confirm the goodness of the automatic control system.
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Future work will deal with the plant test of the ‘hybrid’ strategy, that has been

developed in the feasibility study.
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Handling Uncertainty Degrees
in the Evaluation of Relevant
Opinions Within a Large Group

Ana Tapia-Rosero, Robin De Mol and Guy De Tré

Abstract Social media makes it possible to involve a large group of people to

express their opinions, but not all of these opinions are considered to be relevant

from a decision-maker’s point of view. Our approach splits a large group of opinions

into clusters—here, a cluster represents a group of similar opinions over a criterion

specification. Then, these clusters are categorized as more or less relevant taking

into account the decision maker’s point of view over some characteristics—like the

level of togetherness (or cohesion) among opinions, and their representativeness.

However, these characteristics might include some level of uncertainty. Thus, the

aim of this paper is to evaluate relevant opinions taking into account any associated

uncertainty. What follows is to produce a meaningful selection of clusters based on

their evaluation and their uncertainty degree. Finally, this proposal includes the steps

describing the process through an illustrative example.

1 Introduction

Nowadays, a company might involve a large amount of people to share their opin-

ions with regard to their products—e.g., clients of a company expressing their prod-

uct preferences by means of social media. Thereby, in a decision making context, a

company could make decisions in favor of a product that best suits the preferences

of their clients. In this way, a company could gather opinions given by their clients

with regard to a feature like size, weight, color, or usefulness of a product. Although,
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all of these opinions could be considered given by experts, not all of them might

be considered relevant. Hence, this paper intends to identify and evaluate relevant

opinions (from the decision-maker’s point of view) where different points of view

(given by the clients) are present, and some of these opinions are more representative

than others. But, how do we evaluate relevant opinions when uncertainty can stem
from different sources including the accuracy or expertise level of our experts? Here,

the purpose of this paper is twofold. First, our aim is to evaluate relevance through

the wisdom of the crowd in a simplified fashion—i.e., avoiding to be overwhelmed

with a huge amount of opinions. Second, our purpose is to incorporate the level

of present uncertainty as a quality measure. Afterwards, the decision maker will be

able to select a meaningful group of opinions that could lead to make a higher quality

decision (compared to the decision when uncertainty is not taken into account).

Let us consider that a company wants to know the “level of usefulness” (criterion)

of a product (e.g., a smart phone with augmented reality, a wristband with a pedome-

ter or a heart rate monitor, among others). In this way, it is possible to gather this

information from the company’s social media (e.g., the fan page of a company’s prod-

uct) where opinions are given by different levels of knowledge (students, non-experts

and professionals), areas of expertise (engineering, marketing, economics, etc.), and

personal profiles (single, married, parents, etc.). Bearing in mind these profile dif-

ferences, it is desired to differentiate opinions that are considered more important

(or worthy of notice) than others (e.g., the opinion of some specific professionals

versus the opinion of some regular users of a product). Although, incorporating the

number of noticeable opinions in a model might improve the evaluation of relevant

opinions, it is possible that representing the level of expertise of an expert becomes

a subjective value and hence a source of uncertainty.

Using soft computing techniques a person could express his/her preferences

through membership functions setting his/her level of preference over a criterion

(e.g., level of usefulness) by providing some values. These values will be used to

define the attribute criterion in a membership function [7]. For example, an expert

may use expressions like “the usefulness level is above 50 %”, or “the usefulness

level is around 30 %” to express his/her preference. Therefore, it is not necessary

that all the experts have preknowledge on soft computing techniques to represent

their preference P(x) as a matter of degree—i.e., 0 ≤ P(x) ≤ 1 where 0 denotes a

non preferred value, and 1 denotes the highest preference level.

When all membership functions have been gathered, we use a shape-similarity

method [13] to simplify the number of membership functions (representing expert

opinions). In a similar way that an executive summary reduces a longer report,

this method allows a decision-maker to visualize the opinion’s trends instead of all

individual opinions. That is, by grouping membership functions reflecting similar

expert opinions into clusters that could be differentiated based on their attributes.

Some cluster attributes are inherent like the number of membership functions and

its boundaries—approximation to represent a group of expert opinions through its

upper and lower bounds–, among other characteristics with regard to their informa-

tion source (e.g., number of noticeable opinions based on the social media profile

of the experts). Meanwhile, new cluster attributes could be obtained by computing
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inherent attributes. For instance, the cluster boundaries allows us to compute a cohe-
sion measure among the contained membership functions, where a higher value

denotes more togetherness and hence expresses a group of more confident opinions

[14]. It is worth to notice that any cluster with a single membership function will

obtain the highest cohesion value. Therefore, additional attributes like the represen-
tativeness of a cluster—obtained by combining the number of membership functions

and the number of noticeable opinions—was considered in the model to evaluate

relevant opinions presented in [15]. In this paper, considering that uncertainty is

an attribute of information [16], the model to evaluate relevant opinions has been

extended taking into account the uncertainty over the attributes of the clusters (e.g.,

the number of noticeable opinions with regard to their level of expertise).

Herein, we use the logic scoring of preference (LSP) method [4, 8] to obtain

the overall evaluation value for each cluster based on a combination of the cluster

attributes. The LSP method is based on the verbalized approach of the Generalized

Conjunction/Disjunction (GCD) [6], which makes possible to derive GCD aggre-

gators using a verbal specification of the overall importance of the involved cluster

characteristics. Additionally, to deal with the uncertainty between cluster character-

istics we use an extension of the GCD proposed by the authors in [1] that reflects

the overall evaluation and the overall degree of uncertainty through a vector. In this

paper, the vector components are used—by the decision-maker—to select the rele-

vant clusters. Here, it is possible to select one cluster with the best combination of

evaluation and uncertainty degree (i.e., the highest overall evaluation value and the

lowest overall degree of uncertainty), or to select a group of the top clusters.

This proposal identifies relevant opinions from the decision-maker’s point of view

where it is a challenge trying to reflect someone’s point of view accurately. Then,

we combine the uncertainties, associated to the evaluation model inputs (cluster

attributes), to obtain an overall uncertainty degree. Finally, the process produces

a meaningful selection of opinions based on their evaluation and their uncertainty

level. By using soft computing techniques we provide a method to model and handle

relevant opinions under uncertainty, and we studied how a large group of opinions

is reduced to some of them considered to be relevant (by the decision-maker) under

uncertainty as well. An advantage within the scope of this proposal is that it eval-

uates different points of view, given by a large group of people (as preferences),

through social media. Furthermore, the evaluation allows a decision-maker to select

the group of opinions that best suits his/her choice based on the combination of some

cluster attributes under uncertainty.

The remainder of this paper is structured as follows. Section 2 gives some pre-

liminary concepts for representing expert opinions and clustering similar opinions.

Section 3 presents the generalized conjunction/disjunction (GCD) aggregators and

some extensions. Section 4 describes the evaluation of relevant opinions under uncer-

tainty with LSP, based on the GCD aggregators and its extensions. Section 5 presents

an example that illustrates our proposal in a decision-making context. Section 6 con-

cludes the paper and presents some opportunities for future work.
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2 Preliminaries

This section defines preliminary concepts to properly understand the remaining sec-

tions. These include concepts on fuzzy sets for representing expert opinions and

some definitions to cluster similarly shaped membership functions.

2.1 Representing Expert Opinions

A membership function fA(x), from the preference point of view, represents a set of

more or less preferred values of a decision variable x in a fuzzy set A. Hereby, fA(x)
represents the intensity of preference or preference level in favor of value x [2].

In this paper, trapezoidal membership functions are used to represent the expert

preferences over criteria [3]. An advantage of using trapezoidal membership func-

tions is that they could be built with a few input values, i.e., parameters a, b, c, and

d (Eq. 1). Dividing points between the segments, denoted by the aforementioned

parameters, satisfy the relation a ≤ b ≤ c ≤ d among them. Triangular membership

functions are treated as a particular case of trapezium considering that b and c have

equal values.

fA(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 , x ≤ a
x−a
b−a

, a < x < b
1 , b ≤ x ≤ c
d−x
d−c

, c < x < d
0 , x ≥ d

(1)

In this way, trapezoidal membership functions allow experts to denote their pref-

erences using percentages [11, 12]. For instance, experts denoting the usefulness
level of a product, could use expressions like “the usefulness level is above 50 %”

(Fig. 1a) hereby b = 50%, “it is below 50 %” (Fig. 1b) hereby c = 50%, or “it is

between 25 and 50 %” (Fig. 1c) hereby b = 25% and c = 50%. These are cases where

fA(x) = 1 denote the highest level of preference. In a similar fashion, other expres-

sions (given by experts) will lead us to denote the lowest level of preference fA(x) = 0
on the criterion. Triangular membership functions could be used by experts through

expressions “around x” where x denotes the highest level of agreement on the criteria

(x = b = c), and the spread of less preferred values (i.e., between a and d) may vary

among experts (Fig. 1d).

2.2 Clustering Similar Opinions

Considering that we use a shape-similarity method, within this subsection some

definitions proposed in [13] are included to make this paper self-contained. The
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Fig. 1 Trapezoidal membership functions expressing expert preferences through percentages

shape-similarity method assumes that similar opinions are reflected by similarly

shaped membership functions. It uses as inputs several membership functions, repre-

senting the opinion of experts over a specific criterion, and builds clusters of similar

opinions. The shape-similarity method has three phases that could be summarized

as follows:

1. A shape-symbolic notation for each normalized membership function is built,

which depicts a membership function through a sequence of symbolic-characters

(See Definition 1).

2. A similarity measure in the unit interval among shape-symbolic notations is

obtained, where 0 denotes no similarity and 1 denotes full similarity between

them.

3. A clustering step is performed, based on the aforementioned similarity measure

between notations, where it is possible to adjust the clusters from the highest

similarity with the smallest number of membership functions (i.e., where each

cluster contains a single membership function) to a lower similarity containing

the highest possible number of membership functions (i.e., one cluster containing

all the membership functions).

Let Scategory = {+, −, 0, 1, L, I, H} be the set that is used to represent the cat-

egory of a segment in a membership function, and Slength
a linguistic term set used

to represent its relative length on the X-axis compared to the sum of all segments.

Using the aforementioned sets, a symbolic-character is defined as follows:

Definition 1 A symbolic-character is a representation of a segment in a member-

ship function as a pair ⟨t, r⟩ with t ∈ Scategory
and r ∈ Slength

; where t represents the

category of the segment and r depicts its relative length by means of a linguistic

term.

In this way, each segment of the membership function uses a sign {+,−} to rep-

resent its slope, a value {0, 1} to represent its preference level on the criterion (i.e.,

the lowest level or the highest level of preference respectively) and a letter {L, I, H}

to denote a low, intermediate or high point (e.g., a peak in a triangular membership

function corresponds to a high point annotated as H). The linguistic term set Slength

expresses the relative length of the segment on the X-axis by means of labels (Eq. 2).
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Positive slope

<0,M><1,S><0,EL>

X

High preference level

<-,VS>

+ _

0

1

0

A
f (x)

<+,ES>
Low preference level

Negative slope 1

0

Fig. 2 Segments of a trapezium and their corresponding shape-symbolic characters

Slength =
⎧
⎪
⎨
⎪
⎩

ES = “extremely short”, VS = “very short”, S = “short”,

M = “medium”, L = “long”, VL = “very long”,

EL = “extremely long”

⎫
⎪
⎬
⎪
⎭

(2)

Figure 2 shows a trapezoidal membership function with five segments, each

of them represented by a shape-symbolic character. Therefore, the shape-symbolic
notation for this figure could be expressed as ⟨0,EL⟩⟨+,ES⟩⟨1, S⟩⟨−,VS⟩⟨0,M⟩.

Hereafter we will consider that a set of k different clusters C = {C1,… ,Ck} con-

taining similarly shaped membership functions were obtained. Moreover, each clus-

ter Cj will be represented through an array of n attributes.

3 Generalized Conjunction/Disjunction and Some
Extensions

The generalized conjunction disjunction (GCD) operator is a continuous logic func-

tion that integrates conjunctive and disjunctive properties in a single function [9],

denoted as y = x1♢⋯♢xn, xi ∈ [0, 1], i = 1,… , n, and y ∈ [0, 1]. GCD includes

two parameters: the andness and the orness. The andness 𝛼, denotes simultaneity

and expresses the conjunction degree. Meanwhile, the orness 𝜔, denotes replaceabil-

ity and expresses the disjunction degree [10]. These parameters are complementary,

i.e., 𝛼 + 𝜔 = 1. Although GCD can be implemented in several ways [5], within this

paper we will only consider an implementation based on the weighted power means

(WPM) as follows:

x1♢⋯♢xn = (W1x1r +⋯ + Wnxn
r)

1
r , (3)

here Wi denotes the weight assigned to the parameter xi and the parameter r can be

computed as a function of andness 𝛼 using a suitable numerical approximation [4].
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Table 1 Aggregation operators for 17 levels of GCD implemented by WPM

Symbol Orness (𝜔) Andness (𝛼) Exponent r

D 1 0 +∞
D++ 0.9375 0.0625 20.63

D+ 0.8750 0.1250 9.521

D+− 0.8125 0.1875 5.802

DA 0.7500 0.2500 3.929

D−+ 0.6875 0.3125 2.792

D− 0.6250 0.3750 2.018

D−− 0.5625 0.4375 1.449

A 0.5 0.5 1

C−− 0.4375 0.5625 0.619

C− 0.3750 0.6250 0.261

C−+ 0.3125 0.6875 −0.148

CA 0.2500 0.7500 −0.72

C+− 0.1875 0.8125 −1.655

C+ 0.1250 0.8750 −3.510

C++ 0.0625 0.9375 −9.06

C 0 1 −∞
Reprinted from International Journal of Approximate Reasoning, 41(1), Dujmović, J. and

Nagashima, H., LSP method and its use for evaluation of Java IDEs, pp. 3–22, Copyright (2006),

with permission from Elsevier

Table 1 includes, as a reference, the corresponding orness, andness and exponent

r for 17 levels of GCD implemented using WPM. Notice that symbols D and C
correspond to full disjunction (𝜔 = 1), and full conjunction (𝛼 = 1) respectively.

3.1 GCD Verbalized Approach

The GCD verbalized approach [6] facilitates the selection of aggregators by means of

a multi-level overall importance scale. In this approach, the decision-maker specifies

the overall degree of importance for each attribute using a scale with L levels from

“lowest” to “highest” (Table 2). Besides, the overall importance the decision-maker

should provide the selection of simultaneity S or replaceability R.

In the case of n attributes of overall importance, (S1,… , Sn) for simultaneity, the

andness 𝛼 is defined as the mean normalized overall importance:

𝛼 =
(S1 +⋯ + Sn)

nL
, Si ∈ [0,L] (4)
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Table 2 Overall importance

scale with L = 16 levels [6]
Level Overall importance

16 Highest

15 Slightly below highest
14 Very high

13 Slightly above high
12 High

11 Slightly below high
10 Medium-high

9 Slightly above medium
8 Medium

. . . . . .

0 Lowest

Analogously, in the case of replaceability (R1,… ,Rn) the orness 𝜔 is defined as:

𝜔 =
(R1 +⋯ + Rn)

nL
, Ri ∈ [0,L] (5)

Once the level of andness/orness have been given by the decision-maker, it is

necessary to map these into normalized weights W1 + · · · + Wn = 1. Although it is

possible to use the GCD verbalized approach to compute the weights [6], within

this paper we consider that these will be given by the decision-maker as well when

obtaining the appropriate aggregator.

3.2 Extended Generalized Conjunction/Disjunction

A GCD aggregator is usually defined as a function of the form F ∶ [0, 1]n → [0, 1],
but in this paper we use an extension proposed by the authors in [1]. The exten-

sion of GCD, denoted hereafter as EGCD, is defined as a vector function. The

U ∶ ([0, 1], [0, 1])n → ([0, 1], [0, 1]), where the abscissa of an input maps to the

original preference parameter of GCD, and the ordinate corresponds to a degree of

uncertainty. In this way, the output of an EGCD function is a vector where the first

component corresponds to the overall preference evaluation and the second compo-

nent corresponds to the aggregated overall uncertainty.

The output of the EGCD with regard to the degree of uncertainty, depends on the

selected aggregator operator as follows:

∙ In the case of full conjunction (𝛼 = 1), the uncertainty of the lowest input is prop-

agated. Meanwhile in the case of full disjunction (𝜔 = 1), the uncertainty of the

highest input is propagated.



Evaluating Relevant Opinions Under Uncertainty 291

∙ In the case of the neutrality function (𝛼 = 𝜔 = 0.5), which is implemented as the

arithmetic mean, the overall uncertainty also produces the average of the elemen-

tary uncertainties.

∙ In the case of the partial conjunction (𝛼 > 0.5 > 𝜔) and the partial disjunction
(𝛼 < 0.5 < 𝜔), we observe a gradient proportional to the global preference, i.e.,

the overall uncertainty leans to the elementary uncertainty of the preferred inputs.

The implementation of EGCD for aggregators with two inputs is based on the

weighted average function, and it has shown to produce an intuitive output when

dealing with uncertain data. The implementation for aggregators with more than

two inputs needs further research.

In this paper we use this extension considering that sometimes incorporating

inputs in the model (to evaluate relevant opinions) might improve the evaluation

results, but these inputs may also become a source of uncertainty (i.e., considering

that uncertainty is an attribute of information [16]).

4 Evaluating Relevant Opinions Under Uncertainty

With the purpose of evaluating relevant opinions within a large group, our model

uses the LSP method to reflect the decision-maker’s point of view expressing what

he/she considers as relevant opinions. Besides evaluating relevant opinions, we con-

sider that it is important to incorporate the level of present uncertainty as a qual-

ity measure. Thus, the main contribution of this proposal is to provide a method

that allows a decision-maker to make a higher quality selection of relevant opinions

compared to the selection when uncertainty is not taken into account. Therefore, in

this section we describe how to evaluate relevant opinions with LSP, and how to

incorporate the uncertainty by means of an extension of the generalized conjunc-

tion/disjunction (EGCD) aggregator.

On the assumption that similar opinions have been clustered by shape-similarity

as described in Sect. 2.2, a set of k clusters is available. Hence, each cluster Cj is

represented through an array of n attributes ai,j where i is the attribute identifier

and j is the cluster identifier. In this way, each attribute ai,j is a pair ⟨v, u⟩, where

v represents its value and u represents its associated uncertainty. Hereafter, we will

refer to ai,j.v as the value and we will refer to ai,j.u as the uncertainty of the attribute

i in cluster j. Figure 3 depicts the general architecture of our method that has the

following steps:

1. Creation of a System Attribute Tree
This step takes into account the decision-maker’s point of view and it is based

on the set of available attributes of the cluster. The attributes are hierarchically

organized in a tree, and its leaves correspond to the elementary attributes of a

cluster. These are not further decomposed, they have been previously measured,

and their levels of uncertainty have been associated. The root of the tree will
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Fig. 3 Evaluation of relevant opinions under uncertainty from clusters grouped by shape-similarity

lead us to ej denoting the evaluation of cluster j, which is a pair ⟨v, u⟩ where ej.v
corresponds to the overall evaluation value and ej.u corresponds to the overall

uncertainty level.

When intermediate nodes are present, this indicates that the attribute has been

decomposed in more elementary attributes. For example, representativeness has

been decomposed in number of membership functions and number of notice-
able opinions. Figure 4 corresponds to the system attribute tree representing the

decision-maker’s point of view for evaluating relevant opinions under uncer-

tainty.

For readability purposes, Fig. 4 includes the attribute identifiers in parentheses.

Thus, the identifiers for cohesion, representativeness, number of membership

functions and number of noticeable opinions are 1, 2, 2.1 and 2.2 respectively.

2. Definition of Elementary Criteria
Here through functions Gi the decision-maker reflects the acceptable and unac-

ceptable values for each elementary attribute i. Within this step, a member-

ship function f (x) is used to represent the decision-maker’s preference for each

Evaluation of
Relevant Opinions
under Uncertainty

Cohesion (1)

Representativeness (2) 

Number of membership functions (2.1)

Number of noticeable opinions (2.2)

Fig. 4 System attribute tree for evaluating relevant opinions under uncertainty
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Fig. 5 Example of the

decision-maker’s preference

for elementary attribute

“number of membership

functions”

X0

1

10 250 100

f (x)
A

elementary attribute. Figure 5 depicts an example where the decision-maker (by

means of membership function fA(x)) accepts clusters with “at least 10 opinions”,

but he/she prefers “more than 25”. Moreover, clusters with “less than 10 opinions”

are not acceptable.

Once all the elementary criteria G have been defined, it is possible to evaluate

all the cluster attributes that are present in the system attribute tree. For instance,

ei,j = gi(ei,j.v) corresponds to the evaluation of attribute i in cluster j.
3. Creation of an Aggregation Structure

This step establishes the proper aggregation operators and weights reflecting

the decision-maker’s point of view. In this paper, the aggregation operators are

selected using the GCD verbalized approach described in Sect. 3.1, which allows

the decision-maker to use an overall importance scale to represent each attribute.

Additionally, the decision-maker should provide the selection of simultaneity or

replaceability, and the weights for each attribute. Then, the aggregation structure

uses EGCD which gives us a vector ej = (v, u) for cluster j. The vector compo-

nents v and u correspond to the overall evaluation and the overall uncertainty

respectively. For example, in order to obtain the evaluation of cluster Cj with

regard to its representativeness, it is necessary to take into account its compo-

nents (i.e., attributes a2.1,j and a2.2,j) and the level of simultaneity or replaceability

among them. Figure 6 shows the aforementioned evaluation of representativeness
annotated as e2,j. In a similar way, we will obtain the overall evaluation of relevant
opinions for cluster Cj, here we need to aggregate its evaluation components e1,j
and e2,j to obtain ej. The level of simultaneity or replaceability will be given by

the proper selection of the aggregation operators represented as A in this figure.

It is important to notice that this proposal allows to change the input parame-

ters, given by the decision-maker, to accurately represent his/her point of view.

For example, a different result is expected when changing the overall degree of

importance among attributes (i.e., which results in a different selection of aggre-

gators) or changing their weights.

Fig. 6 Example of the

aggregation structure for

elementary attributes 1, 2.1

and 2.2 of cluster Cj

A
eg

a1,j e1,j
1

A
e 2,j

g
a2.1,j e2.1,j

2.1

g
a2.2,j e2.2,j

2.2

j
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4. Selection of Relevant Clusters Under Uncertainty
The selection of relevant clusters is made by the decision-maker, where his/her

decision will be based on the vector that describes each cluster in terms of the

overall evaluation and the overall uncertainty. This proposal keeps these two val-

ues separated, and allows the decision-maker to differentiate among clusters with

the same overall preference, but with different overall uncertainties. Hence, the

selection of relevant opinions (by means of clusters of similar opinions) will give

the decision-maker the possibility to make a selection based on the overall eval-

uation, the overall uncertainty, or a combination of both using LSP (i.e., through

steps 1–3).

Next section describes the aforementioned process, to evaluate relevant opinions

within a large group incorporating an uncertainty degree, by means of an illustrative

example.

5 Illustrative Example

A company wants to know the perceived “level of usefulness” of adding a pedome-

ter (new feature) in a previously well positioned wrist-clock model (product). The

company has a large amount of followers in social media, and the product manager

of the company considers that the opinion given by these followers is important due

to their diversity (i.e., different profiles). Therefore, the company gathered the pref-

erences over the “level of usefulness” using the product’s fan page. In this example,

the product manager will be considered as the decision-maker, and he considers that

all the opinions are important, but those given by athletes are noticeable.

The aforementioned preferences were clustered by the shape-similarity method

presented in Sect. 2.2. Hereby, a set of k = 50 clusters C = {C1,… ,C50} have been

obtained representing a total of t = 120 opinions. For each cluster Cj a set of n
attributes, where each attribute ai,j is given by a pair ⟨v, u⟩ denoting its value v and

its uncertainty u, has been obtained as well.

Example of a Cluster and its Attributes. Figure 7 depicts a cluster Cj and its

attributes. Herein, the attribute i in cluster j is denoted as ai,j = ⟨v, u⟩, where ai,j.v
stands for its value and ai,j.u stands for its uncertainty. This figure illustrates cluster

C50 and the number of membership functions attribute has identifier i = 2.1, its value

is given by the number of membership functions contained in the cluster a2.1,50.v = 5
and considering that the number of represented opinions is well-known there is no

uncertainty associated to this attribute a2.1,50.u = 0. The value and the uncertainty

of the number of noticeable opinions attribute are both 0. These are inherent cluster

attributes.

Additionally, the cohesion attribute has identifier i = 1 and its value and its uncer-

tainty has been obtained by additional computations. That is, the attribute value



Evaluating Relevant Opinions Under Uncertainty 295

Fig. 7 Example of a cluster Cj and its attributes ai,j. The cluster C50 has the following attributes

ai,50: cohesion (i = 1), number of membership functions (i = 2.1), and number of noticeable opin-

ions (i = 2.2)

a1,50.v = 0.7547 has been obtained as the area between the upper and lower bounds,

and its uncertainty a1,50.u = 0.3 has been computed based on the length of the upper-

bound support.

The process presented in Sect. 4, to evaluate relevant opinions within a large

group incorporating an uncertainty degree, is illustrated below through the following

phases:

Step 1. Creation of a System Attribute Tree. The decision-maker considers that the

representativeness of a cluster of similar opinions is given by a combination of the

number of membership functions and the number of noticeable opinions. Addition-

ally, he considers that the evaluation of relevant opinions is given by the cohesion

and the representativeness of the cluster. Therefore, the decision-maker’s point of

view is reflected in the system attribute tree shown in Fig. 8.

Step 2. Definition of Elementary Criteria. The decision-maker’s preferences reflect-

ing his acceptable and unacceptable values were given through trapezoidal member-

ship functions f (x) for each elementary attribute. Thus, fA(x) reflects his preferences

for elementary attribute cohesion, in a similar way fB(x) stands for the number of
membership functions attribute, and fC(x) stands for the number of noticeable opin-
ions attribute. These membership functions are shown in Fig. 9 as a reference.

In this step, the evaluation of the elementary attributes is based on the decision-

maker’s level of preference. Thus, through functions Gi it is possible to determine

the elementary preference score reflecting the acceptable and unacceptable values for

attributes i. Within this step, all the attributes of each cluster will be evaluated using
their corresponding function to reflect the decision-maker’s preferences. Thus, for

Evaluation of
Relevant Opinions
under Uncertainty

Cohesion (1)

Representativeness (2) 

Number of membership functions (2.1)

Number of noticeable opinions (2.2)

Fig. 8 System attribute tree for evaluating relevant opinions within a large group under uncertainty
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Fig. 9 Decision-maker’s preferences for elementary attributes cohesion fA(x), number of member-

ship functions fB(x) and number of noticeable opinions fC(x)

cluster C50 we obtain for the cohesion attribute e1,50 = g1(a1, 50.v) = g1(0.7547) =
1. In a similar way, we obtain e2.1,50 = 1, and e2.2,50 = 0.

It is important to notice that if the attribute value of a cluster lies in a slope of

its corresponding membership function, the evaluation of this attribute could be

obtained using a linear approximation. For instance, let us consider cluster C29 with

cohesion value 0.4455. In this case to evaluate the cohesion e1,29 from the decision-

maker’s point of view, we need to interpolate its value using g1(x) = (x − 0.4)∕(0.6 −
0.4) as follows:

e1,29 = g1(0.4455) =
0.4455 − 0.4
0.6 − 0.4

= 0.2275

Step 3. Creation of an Aggregation Structure. In this example, the decision maker

considers that clusters with a large number of opinions are important, but smaller

clusters with a single opinion given by an athlete (i.e., noticeable opinion) might

be also relevant. Thus, the “representativeness” of a cluster indicates replaceability
(denoted as R) among the number of opinions (i.e., number of membership func-
tions attribute) and those considered noticeable (i.e., number of noticeable opinions
attribute). Moreover, he considers that the “representativeness” is given by the num-
ber of membership functions (R1 = 14 considered as very high and the number of
noticeable opinions (R2 = 12 considered as high). Thus, the aggregator is obtained

using Eq. 5, which is used to obtain the orness or disjunction degree as follows:

𝜔 =
(R1 + R2)

nL
= 14 + 12

2(16)
= 0.8125.

Then using Table 1, on column Orness (𝜔) we look up for the previously obtained

value to obtain the aggregation operator. In this example, the aggregator operator

corresponds to a partial disjunction annotated by the D + − symbol. Finally, the

weights for the elementary attributes of the representativeness should be given. In

the case that the decision-maker considers that the number of membership functions
is equally important as the number of noticeable opinions then both weights are 0.5

(i.e., W2.1 = W2.2 = 0.5).

In a similar way, the aggregator to combine the cohesion and representative-
ness attributes (See Fig. 8) must be obtained. In this example, the decision-maker
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considers that these attributes should be simultaneously satisfied. Then, using Eq. 4

we obtain the andness 𝛼. For instance, with cohesion (S1 = 12 considered “high”)

and representativeness (S2 = 10 considered “medium high”) the 𝛼 = 0.6875 corre-

sponding to the aggregator annotated by the C − + symbol (partial conjunction).

Additionally, the cohesion is considered two times more important than the rep-

resentativeness hence their corresponding weights are W1 = 0.67 and W2 = 0.33.

Figure 10 illustrates the aggregation structure reflecting the decision-maker’s point

of view.

Handling Uncertainty Degrees in the Evaluation of Relevant Opinions within a
Large Group. Using the previously obtained aggregation structure, using EGCD, we

obtain a vector ej representing the overall evaluation of relevant opinions ei and the

overall uncertainty eu for each cluster j. For illustration purposes, let us compute

the overall evaluation of relevant opinions for the cluster given as an example at

the beginning of this section. First, let us evaluate its representativeness given the

selected aggregator D + −. Notice that Table 1 could be used as a reference to obtain

the r exponent used in the implementation of the weighted power means (Eq. 3).

e2,50.v = (0.5(e2.1,50.v)r + 0.5(e2.2,50.v)r)
1
r

e2,50.v = (0.5(1)5.802 + 0.5(0)5.802)
1

5.802

e2,50.v = 0.887393

The uncertainty present in the representativeness attribute is a2,50.u = 0, due to

the uncertainties given by its elementary attributes which are a2.1,50.u = a2.2,50 = 0.

Then, in a similar way, using aggregator C − + we will compute the overall eval-

uation of relevant opinions under uncertainty as follows:

e50.v = (0.67(e1,50.v)r + 0.33(e2,50.v)r)
1
r

e50.v = (0.67(1)−0.148 + 0.33(0.8874)−0.148)
1

−0.148

e50.v = 0.9611

Although the cohesion attribute has uncertainty e1,50.u = 0.3, due to the nature

of the aggregator C − + the uncertainty is propagated as e50.u = 0.1964 based on

the weighted average as mentioned in Sect. 3.2. Thus, the evaluation of cluster C50
is given by e50 as a vector (0.9611, 0.1964) based on the previously obtained values.

Notice, that using this approach it is possible to easily change the input para-

meters, given by the decision-maker, in order to accurately represent his/her point
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of view. For example, if the decision-maker would have changed the given weights

(i.e., 33 % for cohesion and 67 % for representativeness) in the aggregation struc-

ture, the evaluation ej would have been (0.9229, 0.0945). In this case, due to a higher

weight on the representativeness attribute, it becomes a more dominant input for the

partial conjunction C − + operator. What follows is that the uncertainty associated

to the representativeness will get more weight as well, hence reducing the overall

uncertainty.

Step 4. Selection of Relevant Clusters. This step reflects the cluster that best suits

the decision-maker’s evaluation. Here it is possible to select the cluster with the

highest evaluation value, the cluster with the lowest uncertainty value, or the cluster

that satisfies the decision-maker’s point of view as a combination of these two (e.g.,

using LSP through steps 1–3).

Based on the set of clusters used within this example, we obtained several clusters

that perfectly satisfied the decision-maker’s preferences based on the overall evalu-

ation value. However, taking into account the uncertainty the selection of a cluster

representing relevant opinions allowed us to select the one with the lowest overall

uncertainty.

6 Conclusions and Further Work

This paper proposed to handle uncertainty degrees in the evaluation of relevant opin-

ions within a large number of expert opinions. These opinions, that might be gath-

ered through social media, are expressed by means of membership functions setting

their level of preference over a criterion specification (e.g., level of usefulness). We

use a shape-similarity method to cluster similar preferences in order to reduce the

number of evaluations. The evaluation results from selecting the best combination

of cohesion and representativeness within the available clusters from the decision-

maker’s point of view. The cohesion is a measure obtained from computing the area

among the upper and lower bounds of the cluster compared to the total available

area, while its representativeness is given by aggregating the number of member-

ship functions and the number of noticeable opinions. In order to properly reflect

the decision-maker’s point of view this proposal uses the LSP method that builds a

precise representative model of logic aggregation of preferences.

The main advantage of this proposal is that it can handle a large group of opinions

gathered through social media, where the preferences initially given are not modi-

fied and subject to uncertainty degrees. Furthermore, it permits the decision-maker

to select the group of opinions that best suits his/her choice (i.e., given as preferences

in the LSP method) based on the combination of some cluster attributes taking into

account any present uncertainty. Within this paper the cluster attributes are a cohe-

sion measure, the number of membership functions and the number of noticeable

opinions, each of them represented by its value ant its uncertainty.
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Further work will focus in evaluating opinions in organizations, where more than

one decision maker is present. Additionally, evaluating relevant opinions with dif-

ferent strategies, in order to compare them with the presented approach, are subject

to further study.
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Opening the Black Box: Analysing MLP
Functionality Using Walsh Functions

Kevin Swingler

Abstract The Multilayer Perceptron (MLP) is a neural network architecture that is

widely used for regression, classification and time series forecasting. One often cited

disadvantage of the MLP, however, is the difficulty associated with human under-

standing of a particular MLP’s function. This so called black box limitation is due

to the fact that the weights of the network reveal little about structure of the function

they implement. This paper proposes a method for understanding the structure of

the function learned by MLPs that model functions of the class f ∶ {−1, 1}n → ℝm
.

This includes regression and classification models. A Walsh decomposition of the

function implemented by a trained MLP is performed and the coefficients analysed.

The advantage of a Walsh decomposition is that it explicitly separates the contribu-

tion to the function made by each subset of input neurons. It also allows networks to

be compared in terms of their structure and complexity. The method is demonstrated

on some small toy functions and on the larger problem of the MNIST handwritten

digit classification data set.

Keywords Multilayer perceptrons ⋅ Walsh functions ⋅ Network function analysis

1 Introduction

The multilayer perceptron (MLP) [1] is a widely used neural network architecture.

It has been applied to regression, classification and novelty detection problems and

has been extended in various ways to process time varying data, e.g. [2]. In the field

of data mining MLPs are a common choice amongst other candidates such as clas-

sification trees, support vector machines and multiple regression. Due to the wide

variety of tasks for which they are suited, and their ability as universal approxima-

tors, MLPs have become very popular. However, there is one aspect of the MLP that

restricts and complicates its application, and that is the role of the hidden neurons.

A common criticism of the MLP is that its knowledge is not represented in a human
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readable form. The comparison that is often made is with classification or regression

trees, which represent partitions in the input space explicitly in their structure. This

makes human understanding of the underlying function and the reasons behind any

given output quite easy. Given a picture of a classification tree, a human may apply

it to an input pattern without even needing a computer to run the algorithm. This is

far from simple with an MLP.

The hidden units in an MLP act as feature detectors, combining inputs from below

into higher order features that are, in turn, combined by higher layers still. The com-

mon learning algorithms such as back propagation of error [1] have no explicit means

of ensuring that the features are optimally arranged. Different neurons can share the

same feature, or have overlapping representations. In networks where each layer is

fully connected to the one above, every hidden neuron in a layer shares the same

receptive field, so their roles often overlap. This makes analysis even more difficult

as hidden neurons do not have independent roles. The inclusion of additional layers

of hidden neurons compounds the problem further.

Some work has been carried out on the analysis of hidden neurons in MLPs.

For example, [3] used an entropy based analysis to identify important hidden units

(known as principal hidden units) in a network for the purpose of pruning an oversize

hidden layer. [4] proposed a method of contribution analysis based on the products

of hidden unit activations and weights and [5] presented a specific analysis of the

hidden units of a network trained to classify sonar targets.

The question of how to extract rules from multilayer perceptrons has received

more attention and is still a very active field of research. [6] propose a fuzzy rule

extraction method for neural networks, which they call Fuzzy DIFACONN. [7] pro-

pose a clustering based approach to MLP rule extraction that uses genetic algorithm

based clustering to identify clusters of hidden unit activations which are then used

to generate classification rules. [8] use an inversion method to generate rules in the

form of hyperplanes. Inverting an MLP (i.e. finding the inputs that lead to a desired

output) is done by gradient descent and using an evolutionary algorithm. Both [9, 10]

present recent comparative studies of neural network rule extraction, distinguishing

between methods that are decompositional, pedagogical and eclectic. A decompo-

sitional approach extracts rules from the weights and activations of the neural net-

work itself. The pedagogical approach, which is taken in this paper, treats the neural

network as a black box and generates rules based on the outputs generated by the

network in response to a set of input patterns. Eclectic rule extraction combines both

of the aforementioned approaches.

More work has concentrated on choosing the right number of hidden units for

a specific data set. [11] bound the number of weights by the target error size, [12]

bounded the number of hidden units by the number of patterns to be learned, [13]

chose a bound based on the number of output units in the network, and [14] pointed

out that the amount of noise in the training data has an impact on the number of

units used. Some have taken a dynamic approach to network structure discovery,

for example [15] used an information theoretic approach to add or remove hidden

neurons during training. The problem with this approach to training an MLP is that

the existing weights are found in an attempt to minimise error for that number of
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hidden neurons. Adding a new one may mean the existing weights are starting in

a configuration that is unsuitable for a network with more neurons. Other search

methods have also been applied to finding the right structure in an MLP. [16, 17]

used genetic algorithms to search the space of network structures, for example.

When using MLPs (and other machine learning techniques), it is common practice

to produce several models to be used in an ensemble [18]. Due to the random start

point of the weight values and the differences in architecture across the networks in

an ensemble, it is not easy to know whether or not different networks are functionally

different. It is possible to train a number of different MLPs that all implement the

same function (perhaps with differing quality of fit across the weights) with very

different configurations of weight values. For example, one could re-order the hidden

units of any trained network (along with their weights) and produce many different

looking networks, all with identical functionality. One way to compare MLPs is to

compare their outputs, but a structural comparison might also be desirable, and that

is what we present here.

Note the distinction between the structure of an MLP, which is defined by the neu-

rons and connecting weights, and the structure of the function it implements, which

can be viewed in a number of other ways. This paper views the underlying function

implemented by an MLP in terms of the contribution of subsets of input variables.

The number of variables in a subset is called its order, and there are
(n
k

)
subsets of

order k in a network of n inputs. The first order subsets are the single input variables

alone. The second order subsets are each of the possible pairs of variables, and so

on. There is a single order n set, which is the entire set of inputs. Any function can

be represented as a weighted sum of the values in each of these subsets. The weights

(known as coefficients in the chosen analysis) are independent (unlike the weights in

an MLP, whose values are determined to an extent by other weights in the network)

and specific to their variable subset. The first order coefficients describe the effect

of each variable in isolation, the second order coefficients describe the contribution

of variable pairs, and so on. The method for decomposing a neural network function

into separate components described in this paper is the Walsh transform. When the

phrase “network functionality” is used in this paper, it means the form the function

takes in terms of how the interactions between different subsets of input variables

affect each output variable.

Section 2 describes the Walsh transform in some detail. This is followed by a

description of the method for producing Walsh coefficients from a neural network

in Sect. 3. Section 4 introduces some functions that will be used in experiments

described in following sections. Section 5 demonstrates how the method can be used

to track the complexity of MLPs during training and Sect. 6 demonstrates how a par-

tial transform on a small sample from a larger network can provide useful insights.

The Walsh method is compared to other methods of understanding network structure

in Sect. 7. Finally, Sects. 8 and 9 offer some conclusions and ideas for further work.
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2 Walsh Functions

Walsh functions [19, 20] form a basis for real valued functions of binary vectors.

Any function f ∶ {−1, 1}n → ℝ can be represented as a weighted linear sum of

Walsh functions. The Walsh functions take the form of a sequence of bit strings

over {−1, 1}2n where n is the number of variables in the function input. n is known

as the Walsh function order. There are 2n Walsh functions of order n, each 2n bits

long. Figure 1 shows a representation of the order 3 Walsh functions. Each Walsh

function has an index from 1 to 2n, with the jth function being 𝜓j and bit number x
of the jth Walsh function is𝜓j(x). As Fig. 1 shows, the Walsh functions can be viewed

as a matrix of values from {−1, 1} with rows representing each Walsh function and

columns representing each bit.

A Walsh representation of a function f (𝐱) is defined by a vector of parameters, the

Walsh coefficients, 𝜔 = 𝜔0 …𝜔2n−1. Each 𝜔j is associated with the Walsh function

𝜓j, that is a row in the Walsh matrix. Each possible input, 𝐱 is given an index, x,

which is calculated by replacing any −1 in 𝐱 with 0 and converting the result to

base 10. For example if 𝐱 = (1,−1, 1), then x = 5. Each column of the Walsh matrix

corresponds to a value of x.

The Walsh representation of f (𝐱) is constructed as a sum over all 𝜔j. In the sum,

each 𝜔j is either added to or subtracted from the total, depending on the value of the

bit corresponding to x (i.e. column x in the Walsh matrix), which gives the function

for the Walsh sum:

f (𝐱) =
2n∑

j=0
𝜔j𝜓j(x) (1)

Fig. 1 A pictorial

representation of an order 3

Walsh matrix with black
squares representing 1 and

white squares −1. A Walsh

sum is calculated by

summing the product of the

Walsh coefficient associated

with each row by the values

in the column indexed by the

function input

x = 0 1 2 3 4 5 6 7
ψ0
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2.1 Constructing the Walsh Functions

The value of a single cell in the Walsh matrix, 𝜓j(x) is calculated from the binary

representation of the coordinates (j, x), of 𝐣 and 𝐱, and returns +1 or −1 depending on

the parity of the number of 1 bits in shared positions. Using logical notation, a Walsh

function is derived from the result of an XOR (parity count) of an AND (agreement

of bits with a value of 1):

𝜓j(x) = ⊕

n
i=1(xi ∧ ji) (2)

where ⊕ is a parity operator, which returns 1 if the argument list contains an even

number of 1 s and −1 otherwise.

2.2 Calculating the Coefficients—the Walsh Transform

The Walsh transform of an n-bit function, f (𝐱), produces 2n Walsh coefficients, 𝜔x,

indexed by the 2n combinations across f (𝐱). Each Walsh coefficient, 𝜔x is calcu-

lated by

𝜔x =
1
2n

2n−1∑

j=0
f (j)𝜓j(x) (3)

Each of the resulting Walsh coefficients has an index, which defines the set of

input variables over which it operates. Converting the index to a binary representation

over n bits produces a representation of the variables associated with the coefficient

where a 1 in position i indicates that xi contributes to the effect of that coefficient.

For example, over 4 bits, the coefficient 𝜔9 produces a binary word 1001, which tells

us that x1 and x4 contribute to the effect of 𝜔9. The order of a coefficient is defined

as the number of bits it contains that are set to 1. For example, 𝜔2 and 𝜔8 are first

order as they have one bit set to 1, and 𝜔9 is second order. The magnitude of a coeffi-

cient indicates its importance in contributing to the output of the function on average

across all possible input patterns.

A function of n inputs produces 2n Walsh coefficients, so it is not always possible

to consider the value of each coefficient individually. In this work we look at individ-

ual coefficients and also define some simple aggregate measures for summarising the

results of a Walsh transform. They are the number of non-zero coefficients, which is

taken as a crude measure of overall complexity, and the average magnitude of coef-

ficients at each order, which produces a set of values that measure the contribution

to the function’s output made on average by interactions of each possible order.
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3 Method

In this context, the Walsh transform is not used to understand the training data, but

to understand a neural network that was trained on that data. The analysis is in terms

of the inputs to and the outputs from the network, not its weights or activations,

making this a pedagogical approach. The black box of the neural function is assessed

in terms of its Walsh decomposition. Walsh functions map a vector of binary valued

inputs onto a real valued output, so any function with this structure is amenable to

the analysis. As shown below, multiple output neurons and classification networks

may also be analysed with this approach, so the outputs can be nominal, discrete or

continuous.

As neural networks can generalise and produce an output for any given input pat-

tern, we can generate an exhaustive or randomly sampled data set from which to per-

form the Walsh transform. A full Walsh decomposition, as defined in Eq. 3 requires

an exhaustive sample of the input space. In all but the smallest of networks, this is

unfeasible in an acceptable time period, so the coefficients must be calculated from a

sample. In either case, the sample used to calculate the coefficients is generated from

the whole input space, not just the training data. The significant coefficients (those

that are significantly far from zero) can be very informative about the underlying

structure of the function (in this case, the MLP). The procedure is similar to that of

pedagogical rule discovery in that it treats the MLP as a black box and performs an

analysis on the output values that the network produces in response to input patterns.

The method proceeds as follows:

1. Build a single MLP using your chosen method of design and weight learning;

2. Generate input patterns (either exhaustively or at random) and allow the MLP to

generate its associated output, thus producing (𝐱, f (𝐱)) pairs;

3. Use the resulting (𝐱, f (𝐱)) pairs to perform a Walsh transform using Eq. 3;

4. Analyse the significant coefficient values, 𝜔x.

The method can also be used for MLPs designed for classification rather than

regression. In such cases, there is normally a single output neuron for each class,

with a target output value of one when the input belongs to the neuron’s designated

class and zero otherwise. Properly trained, each neuron represents the probability

of a new pattern belonging to its designated class. Such a network is effectively a

number of related functions (one for each class) with a continuous output between

zero and one. Each output neuron can be analysed in turn using the same procedure.

Step 4, the analysis of the𝜔x values can take many forms. This paper discriminates

between analysis during training (Sect. 5) where the goal is to gain an insight into

the level of complexity a network achieves as learning progresses, and post training

analysis, designed to provide insights into the function of the trained network. The

example of such an analysis in Sect. 6.1 shows how the generalisation ability of a

network may be investigated from the results of the Walsh analysis. The goal of the

analysis is not to generate rules, so this is not another rule extraction method, rather

it is designed to give human insights into the hidden life of the MLP.
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4 Experiments

A set of functions of increasing complexity
1

were chosen to generate data to test this

analysis. They are:

OneMax, which simply counts the number of values set to one across the inputs.

This is a first order function as each variable contributes to the output independently

of any others. The OneMax function is calculated as

f (𝐱) =
n∑

i=1
xi (4)

Vertical symmetry, which arranges the bits in the input pattern in a square and

measures symmetry across the vertical centre line. This is a second order function

and is calculated as

f (𝐱) =
n∑

i=1

n∑

j=1
𝛿ijsij (5)

where 𝛿ij is the Kronecker delta between xi and xj, and sij is 1 when i and j are in

symmetrical positions and 0 otherwise.

K-bit trap functions are defined by the number of inputs with a value of one. The

output is highest when all the inputs are set to one, but when at least one input has a

value of zero, the output is equal to one less than the number of inputs with a value of

zero. For example, in three bits, f (111) = 3 is the function’s maximum, f (000) = 2
produces the next highest output, and f (011) = 0 is a global minimum. A k-bit trap

function over n inputs, where k is a factor of n is defined by concatenating subsets

of k inputs n/k times. Let 𝐛 ∈ 𝐱 be one such subset and c0(𝐛) be the number of bits

in 𝐛 set to zero.

f (𝐱) =
∑

𝐛∈𝐱
f (𝐛) (6)

where

f (𝐛) =
{

c0(𝐛) − 1, if c0(𝐛) > 0
k, if c0(𝐛) = 0 (7)

The first case in Eq. 7, which applies to all but 1 in 2k patterns, could be modelled

with a first order network (a linear perceptron, for example), which is a local mini-

mum in the error space. The ‘trap’ part of the function is caused by the second case

in Eq. 7, which requires the output to be high when all of the inputs have a value of

one. This requires a higher order function, including components at orders from 1 to

k, but only a small proportion of the data (1 in 2k of them) contains any clue to this.

1
Complexity has a specific meaning in this context. It describes the number and order of the inter-

actions between inputs that produce a function’s output.
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5 Analysis During Training

Experiments were conducted to investigate the structure of the function represented

by an MLP as it learns. The MLP used in these experiments had a single hidden layer

and one linear output neuron. The functions described above were used to generate

training data, which was used to train a standard MLP using the error back propa-

gation algorithm. At the end of each epoch (a single full pass through the training

data), a Walsh transform was performed on the predictions made by the network in

its current state.

Summary statistics designed to reflect the complexity of the function the network

has implemented and the level of contribution from each order of interaction were

calculated from the Walsh coefficients. The complexity of the function was calcu-

lated as the number of significant non-zero Walsh coefficients. The size of the contri-

bution from an order of interaction, o was calculated as the average of the absolute

value of the coefficients of order o. Experiment 1 trained networks on the simple

OneMax function (Eq. 4). Figure 2 shows the training error and network complexity

of an MLP trained on the OneMax function. During learning, the network initially

becomes over complex and then, as the error drops, the network complexity also

drops to the correct level.

In experiment 2, an MLP was trained on the symmetry function of Eq. 5, which

contains only second order features. Figure 3 shows the results of analysing the Walsh

coefficients of the network function during learning. Three lines are shown. The

solid line shows the network prediction error over time and the broken lines show

the contribution of the first and second order coefficients in the Walsh analysis of

the network function. Note the point in the error plot where the error falls quickly

corresponds to the point in the Walsh analysis where the second order coefficients

grow past those of first order. Compare this chart to that in Fig. 4, where the same

problem is given to another MLP with the same structure, but which becomes trapped

at a local error minimum, which is a first order dominated approximation to the

Fig. 2 Comparing training

error with network

complexity during learning

of the OneMax function with

an MLP with one hidden

unit. Note that complexity

falls almost 1000 epochs

after the training error has

settled at its minimum
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Fig. 3 Network error and

contribution of first and

second order Walsh

coefficients during training

of an MLP on a second order

function. Note the fall in the

error rate when the second

order coefficients overtake

the first
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Fig. 4 Contribution of first

and second order Walsh

coefficients during training

of an MLP on a second order

function, stuck in a local

minimum
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function. The plot suggests that the higher order components cannot increase their

contribution and that this network is unlikely to improve.

Figure 5 shows the error of an MLP decrease as it learns the 4 bit trap problem

described by Eq. 6. The contribution of the first, second, third and fourth order Walsh

coefficients are each summed and plotted separately. The final, correct configuration

can be seen in the right hand part of the plot, with the first order coefficients hav-

ing the strongest contribution, but with the second, third and fourth also required to

escape the ‘trap’ of the order below. The plot shows the first order coefficients grow-

ing first (as they did in Fig. 3), causing the average error to rise due to the higher

order trap part of the function. The first order components are suppressed by the

high error they cause, but the error doesn’t settle to its lowest point until the first

order coefficients recover the correct level of contribution.
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Fig. 5 The contribution of first, second, third and fourth order Walsh coefficients during training

of an MLP on a the 4-bit trap function plotted with the average error per pass through the data set

(solid line)

Fig. 6 First and second order coefficients of a symmetry counting function. In a the coefficients

are all zero. In b the shade of gray indicates a non zero second order coefficient across the two

pixels with shared gray level. a First order, b second order

5.1 A Second Order Function

In the following experiment, a second order function is investigated. The function is

a measure of pattern symmetry, as defined in Eq. 5. Figure 6a shows the first order

coefficients of a network trained to measure the symmetry of an image. Unsurpris-

ingly, it shows no first order coefficients of importance. Mid grey indicates values

close to zero, which suggests either that the variable that corresponds to the coeffi-

cient is unimportant or that variables are involved at higher orders. The higher order

coefficient values tell us which of these possibilities is true.
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Figure 6b shows the second order coefficients of a Walsh transform of the sym-

metry predicting MLP. The plot is produced by finding pairs of inputs that share a

non-zero second order coefficient and setting them both to the same, unique shade

of gray. Note that the centre column inputs share no second order relationships and

are shaded mid-gray. The others are shaded so that their gray level matches that of

the inputs with which they share a non-zero second order coefficient. The depth of

shade does not indicate the size of the parameter, just that a connection exists. The

shading is to discriminate between input pairs.

It is clear from Fig. 6b that each input is important to the calculation of the func-

tion output, so the interpretation of the zero valued first order coefficients is that the

inputs’ contributions are important, but only at orders above one.

The next experiment described in this paper makes use of partial samples from

both the coefficients and the input space to gain an insight into the structure of an

MLP trained on a pattern recognition task. It also illustrates the way error rates can be

compared to determine how much of the network’s functionality has been explained

by the computed coefficients.

6 Partial Walsh Analysis

For even moderately large numbers of inputs, calculating every Walsh coefficient can

take an impractically long amount of time. In such cases, a partial Walsh analysis can

still be useful. A partial analysis calculates the values of only a small subset of the

Walsh coefficients. An obvious choice for the subset of coefficients to calculate are

those of the lower orders. 𝜔0 is the average output of the function (in this case, the

MLP) across the sampled data. The first order coefficients, 𝜔1, 𝜔2, 𝜔4,… represent

the average contribution of each input in isolation. In general, order k coefficients

represent the additional contribution of each subset of inputs of size k to the function

output. The number of coefficients of order k from a set of inputs of size n is
(n
k

)
,

a figure which rises exponentially with k up to k = n∕2 and then falls exponentially

after that, to the point where there is just one order n coefficient. In general, one might

expect a function to have significant interactions at the lower orders rather than the

higher ones, so the number of coefficients of interest can be said to rise exponentially

with their order.

It is also possible to estimate the Walsh coefficients from a sample of random

input patterns and their associated predicted outputs from the network, rather than

analysing every input pattern exhaustively. As with the calculation of any statis-

tic from a sample, the values gained are estimates, but they can still provide useful

insights into the functioning of a neural network. The number of samples required

to estimate coefficients accurately grows exponentially with their order, so the low

order coefficients can be estimated with smaller samples than the higher order coef-

ficients require.

The values that are found as a result of sampling a small proportion of the Walsh

coefficients can be used to reconstruct an estimate of the function implemented by



314 K. Swingler

the MLP that produced them. This reconstructed function can be used to generate

predictions on the test data. The accuracy of this model will almost always be worse

than that of the MLP but by comparing the respective error rates, the proportion of

MLP’a ability that is captured by the Walsh coefficients can be measured.

6.1 Measuring Generalisation

Generalisation is the ability of an MLP to produce correct outputs for patterns that

were not in its training data. As the weights of the network are difficult to analyse,

the performance of the learned function in areas of input space that are outside those

covered by the training data can be difficult to assess. Test and validation sets perform

this task to a degree, but this paper proposes a new method based on a Walsh analy-

sis where the network is analysed with random input patterns. The use of random

inputs (i.e. patterns where each input takes an independent, uniformly distributed

random value) allows a trained network to be tested on potentially massive test sets.

Of course, these random patterns do not have associated target outputs, but as the

Walsh analysis makes use of only the predicted output from the network, the test

patterns do not need a target (or desired) output. This allows the analysis to explore

a far greater variety of the input/output space of a trained neural network.

The Walsh coefficients of an MLP function are generated by randomly sampling

from the whole input space, not just the part of it covered by the training or test

data. The coefficients give a picture of the general shape of the function, not just

its behaviour on the training or test data. The experiments described in this section

demonstrate the use of a Walsh decomposition of an MLP trained on the MNIST [21]

handwritten digit data set. The goal is not to produce a better classification rate than

those already reported in the literature. The goal is to train some different networks

and use a Walsh analysis to gain an insight into their structure.

6.1.1 Learning the MNIST Data

The MNIST images are made up of 28 × 28 pixels, making 784 inputs, each with a

value from 0 to 255, indicating a grey level in an anti-aliased image. In this work,

input values were passed through a threshold to create binary patterns rather than

the grey level images of the raw MNIST data. A neural network with 784 inputs,

20 hidden units and 10 outputs (1 for each of the digits from 0 to 9) was trained

on the standard MNIST training set, where the images are centred on their centre

of mass. The resulting network implements 10 different functions, each mapping

the input pattern to a continuous output variable that reflects how well the input

pattern matches digits that correspond to its class (i.e. the identity of the digit). These

functions are not independent as they share the weights between the input and hidden

layer. Across a well trained network, the outputs should sum to one. The network
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Fig. 7 First order Walsh coefficients from a network trained on the MNIST data with no added

noise. Grey squares indicate no contribution to classification from a first order component. Greater

depth of black or white indicates stronger contribution (positive or negative)

achieved a correct classification rate of 89 %, which is poor compared to any serious

attempt, but useful for illustration purposes here.

An individual Walsh decomposition for each output neuron based on 50,000 ran-

dom input samples and their associated network output was performed after train-

ing had completed. This produced ten Walsh decompositions. Initially, only the first

order coefficients were calculated. The first order coefficients were plotted on a grid

where the pixel locations from the inputs correspond to the first order coefficients

of the Walsh decomposition, as shown in Fig. 7, in which it is clear that the network

does not even have a very general first order model of the patterns that make each

digit. Take the coefficients for the digit “1”, for example. Very few of the pixels are

used—four or five central pixels have large positive coefficients (making a positive

contribution the output neuron value for class “1”) and there are a small number of

negative (shown in white) pixels to the top left and bottom right which cause pixels in

their respective locations to diminish the output for the class “1” output neuron. This

shows the network to have a reliance (one might argue and over-reliance) on specific

inputs for making a classification. This would manifest itself as a poor ability to cope

with noise in any test data where the specific pixels were altered.

When used to reconstruct a first order approximation to the network’s function,

the first order coefficients alone for this model achieved a root mean squared error

(RMSE) of 0.17, indicating that the first order coefficients have captured a large pro-

portion of the network’s functionality. The RMSE of a decomposition with respect

to the MLP it was derived from is calculated by using Eq. 1 to produce an output

for a number of random samples from the input space, which is compared with the

output from the MLP given the same input. A very low RMSE for a partial decom-

position indicates that the remaining coefficients (those excluded from the partial

decomposition) make very little additional contribution to the function output.

Note that all of the images in this paper are produced by normalising the coeffi-

cients being plotted to a range that causes the colours to vary from white to black.

This leads to some distortion when the range is very small, as there may be a small
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distance between the highest and lowest coefficient. If all coefficients are close to

zero, the highest will still appear black and the lowest white, though in reality they

are all similarly small. This means that you cannot compare one plot with another in

terms of absolute values.

6.1.2 Adding Training Noise

A common method of improving generalisation is to add noise to the input values

in the training data. By randomly flipping 10 % of the input bits each time a pattern

was learned, the correct classification rate on the test data increased to 93 %. The

impact on the first order coefficients can be seen in Fig. 8 where it is clear that some

(but not all) of the digits are now quite clearly identified across more of the input

variables. The coefficients reveal the degree to which some classes have a clearly

defined shape in the network and others do not. Returning to the example of the digit

“1”, Fig. 8 shows how a larger number of central pixels have a positive effect on

the output neuron for class “1”. The white inhibitory pixels are also more clear and

widespread in these figures.

When used to reconstruct a first order approximation to the network’s function,

the first order coefficients alone for this model achieved a root mean squared error

of 0.32, showing the first order coefficients to be responsible for less of the MLP’s

functionality, even though more of them are used. The remaining network function-

ality is of a higher order, leading to the conclusion that this network, which has

better generalisation ability than the first, is more complex in the sense that it relies

on more higher order interactions between the input variables to make its classifica-

tions. Discovering the higher order coefficients of interest is not trivial as significant

coefficients are sparse among all possible coefficients.

Fig. 8 First order Walsh coefficients from a network trained on the MNIST data with 10 % added

noise. The noise ensures that no individual input can be relied upon to produce a correct classifica-

tion, and so produces a model that covers more of the input space, and so is better at generalisation
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6.1.3 Adding Training Jitter

Another method for attempting to improve the generalisation ability of a handwritten

digit classifier is to jitter the training data, which means to shift each training image

a small random number of pixels in a random direction before each is presented to

the network for learning. Each training pattern is learned several times, each time

with a new random shift to its location. This has the effect of blurring the first order

coefficients across the input space, making them less useful for classification. Imag-

ine an extreme case where the digit for “1” is moved to any location in the input

field. No single pixel would be set to 1 (i.e. black) more often than any other when

the input pattern represents a 1, so there would be no useful first order information

in the data. Second order contributions between pixel pairs would be required for a

good classification model. Pairs of pixels that are both set to 1 or both set to 0 when

the input pattern represents “1” would have a positive coefficient and those that dif-

fered would have a negative coefficient. The strongest effect we would expect in the

example of the digit “1” would be positive weights between pixels that were above

and below each other in the image field.

The hypothesis is that an MLP trained on jittered inputs would produce weaker

first order and stronger second order coefficients. To illustrate this point, take a

simpler example than the MNIST data using hand designed digits over 25 pixels

arranged in a 5 × 5 grid. Concentrating on the example for digit “1” and allowing

that digit to be represented by any pattern of three or more black pixels above each

other on an otherwise white background. Figure 9 shows some example “1” digit

images. The other digits (0 and 2–9) were also hand designed and a data set was cre-

ated containing equal numbers of examples of each. The other digits were fixed in

their location, but the “1” digits were placed at random in the input field and given

random lengths of 3, 4, or 5 pixels. After training a neural network to distinguish

between the examples of “1” digits and designs for the other digits from 0 to 9, a full

first and second order Walsh decomposition was performed by sampling random

input patterns and the associated output from the neuron corresponding the class

“1”.

Figure 10 shows the first order coefficients for the output for “1”. Note that there

is very little variation in the values as the value of any individual pixel makes no

consistent contribution to the output. Second order coefficients are not as straight

forward to plot and view as those of first order, as there is one coefficient for every

pair of input variables. To visually represent some of the second order coefficients,

those with the highest absolute values were chosen and plotted as pairs joined with a

Fig. 9 Three examples of

small training patterns for the

digit “1”, varied by location

and length, but maintaining

the vertical quality
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Fig. 10 First order coefficients (left) of a network trained on the randomly placed “1” digits of

Fig. 9, and some examples of large positive (middle) and negative (right) second order coefficients

from the same network

line, as shown in Fig. 10, in which black dots indicate a positive coefficient between

the two inputs and white dots indicate a negative coefficient. Each figure shows a

small number of coefficients (three positive and four negative). It is clear that pairs

of pixels that are in the same vertical line share a positive coefficient and pairs that are

in different columns share a negative coefficient. Not every second order coefficient

has a significant value. As with the first order coefficients, a small number of them are

sufficient to allow correct classifications to be made, so there is no pressure during

training for further weight changes to produce a function where every coefficient has

the expected value.

On a toy example, this is easy to see. On the larger MNIST data, the process is

not as straight forward. This is partly because there are many more second order

coefficients to sample and partly because not all of them need to take a value. As

pointed out above, and as seen in the first order examples before noise is added, a

sparse subset of coefficients are actually needed to reproduce the functionality of

the network and once the error is sufficiently low, there is no pressure to change the

weights further. However, the process was repeated for the MNIST data. An MLP

was trained on the MNIST data and during training, each input pattern was moved

by up to 4 pixels in one of the eight possible directions.

Figure 11 shows the first order coefficients, with the result of the shifted input

patterns clearer to see in some classes than others. The root mean squared error

between the first order Walsh decomposition of this MLP and the output of the MLP

was 0.10, indicating that, contrary to expectations, the network in which the patterns

were shifted around is better able to rely on the pixel values in isolation, rather than

needing higher order coefficients.

6.1.4 Choosing Higher Order Coefficients

The number of coefficients that might be calculated grows exponentially with the

number of variables and the order of the coefficients so it is crucial to choose the

coefficients of to sample carefully. This section discusses some possible heuristics

that might be employed when choosing which higher order coefficients to sample.

The coefficients can be used to approximate the function that the neural network
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Fig. 11 First order coefficients calculated from the output neurons corresponding to each class of

hand written digit from training data subjected to random jitter

has implemented, using Eq. 1 and assuming a zero value for all of the un-calculated

coefficients. The mean difference between the network output and that predicted by

the Walsh decomposition indicates the mean size of the missing coefficients. When

that is sufficiently small, there can be few remaining coefficients to discover.

The best heuristic in most circumstances is to start with the lowest order coeffi-

cients first. In the case of the MNIST data, the first order coefficients accounted for

most of the network’s ability, and so gave a reasonable picture of its functional shape.

The identity of the significant first order coefficients may be used to drive the choice

of second order coefficients. The choice is between an assumption that variables that

are useful at the first order level will also be useful in combination and the opposite

assumption that variables that were found to have no first order contribution might

play their role in higher orders. With human knowledge of the training process, one

might be able to make informed choices as to which pixels might interact.

Another option with image data such as the MNIST set is to calculate coeffi-

cients that join neighbouring pixels. For example, each of the 784 pixels might share

a second order coefficient with any of the remaining 783, but each pixel has only

eight immediate neighbours. By hypothesising that written digits are made by a con-

tinuous stroke and so neighbouring pixels are more likely to interact to influence

classification output, a small field around each pixel can be chosen, greatly reduc-

ing the number of calculations to be made. Second order Walsh coefficients in a

small neighbourhood act as edge detectors, giving negative coefficients at points

where neighbouring pixels that disagree contribute positively to the function output.

This approach shares a great deal with the use of Markov Random Fields for image

processing such as segmentation and edge detection, (see [22] for example). The key

difference in this context is that we are not using the local field to process an image,

but to analyse an MLP that was trained to classify a set of images. If the MLP has not

captured certain features, then the analysis cannot reveal them, so a failure to find

features that might have been expected is not a reflection on the method, but on the

particular MLP’s underlying functional shape.
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7 Comparison with Other Methods

Recent published work in this field, such as the papers mentioned in the introduction,

has concentrated on rule discovery, though what constitutes a rule is quite flexible.

[23], for example build a binary truth table to represent the function of the MLP. The

Walsh method is a pedagogical approach, according to the definitions in [10] as it

treats the MLP as a black box. One of the advantages of the pedagogical approach

is that the rules that are produced are easy to interpret.

The Walsh decomposition approach certainly aids interpretability, but it cannot

be considered a rule extraction algorithm as it does not generate rules. Instead, it

provides insight into the complexity of an MLP, highlighting both the level of com-

plexity, and the variables involved. For example, in the k-bit trap function, it is clear

from an examination of the coefficients that inputs are organised into subsets which

interact within the traps, but that they are independent across traps.

One advantage of the Walsh method is that the coefficients may be easily visu-

alised. Figure 12 shows the coefficients generated from an MLP that has learned a 5-

bit trap function over 30 inputs. The figure is generated by discarding non-significant

coefficients and then sorting the remaining coefficients into combinatorial sequence

so that low order coefficients are at the top of the figure. Each row of the figure rep-

resents a single coefficient as the binary equivalent of its index. For example 𝜔5 is a

second order coefficient with binary representation 101, meaning that the coefficient

measures the interaction between inputs 1 and 3. Dark pixels represent connected

inputs in the figure.

Another advantage of the pedagogical rule extraction approach is that it is portable

across network architectures as it treats the network as a black box. The Walsh

method shares this advantage. A common feature of rule extraction methods is that

they accept a reduction in accuracy in return for a simpler set of rules. The rule set

can be evaluated on the same test data as the MLP that generated the rules and the

Fig. 12 5 bit trap Walsh
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trade-off between accuracy and size of the rule set needs to be managed. To repro-

duce the functionality of the network perfectly with a rule set can require a great

many rules and a large number of exceptions (or rules that apply to a very small

area of input space). The Walsh method shares this limitation, but for different rea-

sons. As the Walsh functions are a basis set, there is no function that they cannot

represent, so there is no network whose behaviour cannot be perfectly reproduced.

Any network with binary inputs can have its behaviour perfectly reproduced by a

Walsh decomposition, but only by a full decomposition from an exhaustive sample

of input,output pairs. This is possible for small networks, but infeasible for networks

with large numbers of inputs. A sample of coefficients must then be calculated from

a sample of data points, which will lead to an approximate representation of the MLP

function.

Classification rules are generally local in that they partition a data set into sub-

spaces that share the same output. This works well when the inputs are numeric as

the conditional part of the rule can specify a range. When the inputs are discrete,

as in the binary case studied here, the rules cannot partition the input space across

a range. In such cases, a rule set may not be the best way to understand a function.

Take the character recognition task for example, we can learn more by visualising

the coefficients (even just those of low order) than by studying a long list of rules.

Walsh coefficients are global as they describe the contribution of an input or group of

inputs across the entire input space. This means that it is not possible to partition the

input space and so derive simple rules. Every coefficient plays a part in calculating

the output from every input pattern. General statements can still be made, however,

but they are of the form “When variable x = 1, the output increases” or “When vari-

ables a and b are equal, the output decreases”. These statements can be generated

directly from the coefficients.

8 Conclusions

An MLP trained on binary input data with either numeric or categorical output neu-

rons can be analysed using Walsh functions. Such an analysis can reveal the relative

complexity of different networks, give an insight into the way the function repre-

sented by an MLP evolves during learning and shed light on which areas of input

space a network has utilised in learning that function. This understanding can help

in understanding how well a network will generalise to new data and where its likely

points of failure may be. An exhaustive Walsh decomposition is only possible for

small networks, but a partial decomposition based on a random sample from the net-

work’s input space can still be used to gain valuable insights into the specific function

learned by an MLP.
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9 Further Work

This work has used Walsh functions as its method of complexity analysis, but other

basis functions–particularly those suitable for real valued inputs–are also worthy of

investigation. As the analysis is not designed to reconstruct the function, merely to

shed light on its structure in a human readable form, it should be possible to use an

information theoretic measure of interaction such as mutual entropy.

The method provides a useful measure of network complexity that is not based on

the number of weights in the network. Training methods that favour simple models

over more complex ones often use parameter counts (in the case of MLP, the weights)

as a measure of complexity. For example, minimum description length (MDL) meth-

ods are often based on parameter counts, but might usefully be adapted to account

for other types of complexity such as that described here. The Walsh analysis reveals

that two networks of equal size do not necessarily share an equal complexity. The

relationship between network complexity and network size is an interesting field of

study in its own right. Of course, this analysis is not restricted to use with MLPs. Any

regression function may be used, but it is well applied to MLPs as they are difficult

to analyse in terms of the structure of their weights alone.

The number of Walsh coefficients to consider grows exponentially with the num-

ber of inputs to the network, so it is not possible to exhaustively calculate every pos-

sible one in a large network. For networks that contain key interactions at a number

of different higher orders, the task of finding the significant coefficients becomes a

great problem. Work on heuristics for finding the significant high order coefficients in

a sparse coefficient space is ongoing. One approach is to build a probabilistic model

of the importance of different neurons and connection orders and sample coefficients

from that model. As more coefficients are found, the quality of the model improves

and allows the faster discovery of others.
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Towards an Objective Tool for Evaluating
the Surgical Skill

Giovanni Costantini, Giovanni Saggio, Laura Sbernini,
Nicola Di Lorenzo and Daniele Casali

Abstract In this paper we present a system for the evaluation of the skill of a
physician or physician student by means of the analysis of the movements of the
hand. By comparing these movements to the ones of a set of subjects known to be
skilled, we could tell if they are correct. We consider the execution of a typical
surgical task: the suture. For the data acquisition we used the HiTEg sensory glove,
then, we extract a set of features from data analysis and classify it by means of
different kind of classifiers. We compared results from an RBF neural network and
a Bayesian classifier. The system has been tested on a set of 18 subjects. We found
that accuracy depends on the feature set that is used, and it can reach 94 % when we
consider a set of 20 features: 9 of them are taken from data of bending sensor, 10
from accelerometers and gyroscopes, and one feature is the length of the gesture.

Keywords Neural networks ⋅ Data glove ⋅ Hand-gesture ⋅ Classification ⋅
Surgery

1 Introduction

It is indubitable for surgeons the need to acquire a certain skill in operating and to
maintain their ability, so to deliver acceptable results. How the skill level can affect
clinical outcomes has been already evidenced [1]. However, a great number of
failure during operations have been time-by-time recorded [2], and tens of operations
have been demonstrated to be necessary before reaching an aimed plateau in the
learning curve [3]. Unavoidably, this results in more or less traumatic consequences
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for patients. Therefore, a key point is to understand if there is the possibility to lower
the number of failures, and to more rapidly acquire the necessary skill.

But, in what the skill relies on, how to evaluate it, and how to reduce the time to
obtaining it?

A skillfully performed operation is based on decision making mixed to dexterity
[4], the amount of their percentages depending on the specialties of surgery.

The evaluation of the skillfulness is mainly due to direct supervision of senior
surgeons who observe both decision making mixed to dexterity of novices and
provides verbal feedbacks [5]. But, this evaluation is prone to human errors and can
potentially rely on bad or biased judgments, hence the need of freeing from human
sensitivity, developing objective criteria. To this aim, objective measurements of
technical skill have been searched, and some answers have been found. In particular,
psychomotor skills have been evaluated considering the reduction in the operation
time [6–10], the corresponding increasing in operation speed [3, 11], the precision
[11], the accordance with a task-specific checklist [12], the force/torque “signatures”
[13–15], and the economy of motion (the number of movements made [16], the
trajectory [15] and the total distance travelled [17]).

Although these psychomotor skills effectively change during the learning curve,
it remains difficult to interpret their real meaning, in absolute values. Consequently,
up to now we have to rely on criteria levels based on expert performance, i.e.
comparing, and revealing the discrepancies, between the gestures performed by
two well defined groups consisting of novice and expert surgeons respectively, as in
[8, 15]. To this aim, we developed and adopted a sensory glove capable to measure
the hand dexterity.

In order to compare different sets of data coming from the different groups,
different mathematical tools can be adopted, such as the Mann–Whitney U test [18],
or the ANOVA [11].

Here, we propone the adoption of a sensory glove and a classifier, with the aim
of recognizing patterns related to skilled surgeon and novices. We do a comparison
between different classifiers and feature sets. The paper is structured as follows: in
the second section we describe the data glove that we used to measure the hand
movements. In the third section we describe the classification system. Finally in the
fourth section we describe the experiment and discuss results.

2 The Sensory Glove

On the basis of our previous experience on bending and inertial sensors [19], we
designed and realized a sensory glove (Fig. 1) suitable for the experiments. The
glove was capable to measure flex/extension of each finger joint by means of
bending sensors (by Flexpoint Inc., South Draper, UT, USA), and the movements
of the wrist by means of inertial units including 3D type accelerometer and gyro-
scope (by SparkFun Electronics, Niwot, CO, USA) [20, 21]. Data from the sensory

326 G. Costantini et al.



glove were acquired and sent to a personal computer, via USB port, by means of an
ad-hoc realized electronic circuitry.

For sake of completeness and to furnish a visual feedback to the user, the hand
movements were reproduced on a computer screen via 3D avatar.

Table 1 identifies the sensors supported by the glove. In particular, two flex
sensors were for the thumb (1–2), and three for the other fingers (3–14), plus 3D
accelerometer (15–17) and 3D gyroscope (18–20) were for the wrist.

3 The Classification System

We asked to each subject to repeat a specific gesture for a given number of times.
After a pre-processing, where data is filtered with a moving average filter, we cut
initial and final parts of data because this data do not describe any movement. Data
are then re-sampled in order to have the same number of samples for every subject.
Every repetition is normalized to the length of 1000 samples, so the whole gesture
is 1000 n samples length, where n is the number of repetitions for the gesture.

We separately took into account information regarding the actual duration of the
gesture.

Data obtained from the 20 sensors are splitted into non-overlapped windows of
W samples. We considered two option for the length of W: the first one is W = 10,
obtaining 100 windows in total, the second one is W = 20, obtaining 50 windows.
Every window is a representation of the state of the system in a specific interval of
time. For example, window 1 represents the beginning of the gesture, from its start
to 1/W of its length. For every window we calculate the mean value of its samples;
every repetition is considered as a different instance. With 20 sensors and 100 (or
50) time-series values, we have a total of 2000 values that can be considered as
features for classification when we use W = 10, or 1000 when we use W = 20. In
addition, we also consider the median value of the time length of the gesture.
Medians of the duration time of the repetitions are shown in Fig. 2. For every one of

Fig. 1 The sensory glove
dressed by the user during the
test phase
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the 18 subjects, the first box represents the median value for the first session, and
the second box the median value for the second session. The first 9 subjects are
expert, while the second 9 are non-expert. This feature can be useful for the clas-
sification due to the fact that the duration for non-experts is often longer.

For the classification, we used a Radial Basis Function (RBF) neural network
and Bayesian Networks. We considered three feature sets: first we consider all
bending sensors, gyroscope and accelerometer data for every window, plus time
length, for a total of 2001 features for W = 10 or 1001 for W = 20. We also made
another test with a subset of the first one, taking only some time windows of some
sensors, for a total of 20 features. We based our selection by adapting feature that
showed to be optimal in our previous work. Finally we considered a third feature
set, which only considers data from accelerometers and gyroscopes, which have
shown to be the most important, to see if and how much performance degrades
when we avoid bending sensors.. All features are normalized as required by neural
networks.

Table 1 List of sensors # Sensor

1 1PIPJ
2 1DIPJ
3 2MCPJ
4 2PIPJ
5 2DIPJ
6 3MCPJ
7 3PIPJ
8 3DIPJ
9 4MCPJ
10 4MCPJ
11 4PIPJ
12 5DIPJ

13 5PIPJ
14 5DIPJ
15 Accelerometer, x axis
16 Accelerometer, y axis
17 Accelerometer, z axis
18 Gyroscope, x axis
19 Gyroscope, y axis
20 Gyroscope, z axis
“1PIPJ” stands for thumb Proximal Interphalangeal Junction
angle, “1 DIPJ” stands for thumb Distal Interphalangeal Junction
angle, “2MCPJ” stands for first finger Met-acarpo Phalangeal
angle, and so on
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4 Experiments and Results

4.1 Experimental Procedure

For the experiment, we involved 18 subjects: 9 of them were skilled surgeons and 9
were novices on their starting learning curve. All of them were asked to perform
the same task: a surgical suture simulated on a plastic material designed to have the
same characteristics of human skin. The gestures always started and finished on the
same rest position. Every subject repeated the gesture 10 times for every session.

Two sessions were recorded for every subject, on two different days, and every
session included 10 repetitions, so we totally collected a total of 360 instances:
180 from skilled and 180 from unskilled subjects.

The duration times of every gesture for every subject were calculated.

4.2 Feature Extraction

Data analysis clearly shows differences between skilled surgeon and novices. For
example, Fig. 3 reports data from sensor 20 (gyroscope, axis z), windowed with
W = 20, in a box-plot. In the axis x we reported the time window (1–50), in axis y the
values from of expert subjects. On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individually.

From the graph, it appears that the trajectory followed by the experts are very
similar: almost all of them behave starting with a value around 1.24, slightly

Fig. 2 Medians of the duration time of the repetitions. The first nine subjects are expert, while the
second nine are non-expert
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increasing, reducing to 1.16, then rising up again to 1.23, at half of the total duration.
Figure 4 reports data from novice subjects: dispersion is higher, and there is no
recognizable standard sequence.

4.3 Feature Selection

The box-plots of the experts report that value dispersion is not identical in time: in
some time instants (for example in the central position of the graph in Fig. 3) it is
very low, while it is higher elsewhere. Moreover, this can change with the sensor.
For example, in Fig. 5 we show the values relative to sensor 1, which is the
proximal interphalangeal junction angle of the thumb. Dispersion of this value is

Fig. 3 Box-plot of sensor 20, for all experts, withW = 20 from time window 1 to 50 (begin to end
of every repetition)

Fig. 4 Box-plot of sensor 20, with W = 20, for all non-experts
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quite high among the experts too. This could mean that the position of the thumb
can vary, and is not a discriminant factor for the recognition of the skill.

In our previous work [22] we discovered a subset of features that gives good
results, by means of the CFS feature selection algorithm [23]. So, we adapted these
features to our conditions. Selected features are described in Table 2.

We randomly selected 12 subjects, with a total number of 240 instances and used
them as training set. Then we tested the classifier with data from the remaining 6

subjects (120 instances). We repeated the test 5 times, with different random
choices for training and test sets, taking care that instances from the same subject
always fell on the same set.

As a comparison we also tested the system with a Bayesian Network classifier.
Results are summarized the following tables. In Tables 3 and 4 we show the
confusion matrix using W = 10 and W = 20, analyzing these data we find that true
positive (TP) rate for experts is 0.87 and 0.88 respectively, while false positive

Fig. 5 Box-plot of sensor 1, for all experts

Table 2 Selected features for the reduced dataset

Sensor Time window (W = 10) Time window (W = 20)

4 (2PIPJ) 1 1
7 (3PIPJ) 30 15
9 (4MCPJ) 84 42
10 (4PIPJ) 36, 100 18, 50
11 (4DIPJ) 30 15
13 (5PIPJ) 48, 62, 64 24, 31, 32
16 (acc.Y) 8, 48, 92, 94 4, 24, 46, 47
17 (acc. Z) 10 5
18 (gyr. X) 42 21
19 (gyr. Y) 90 45
20 (gyr. Z) 26, 28, 34 13, 14, 17
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(FP) rate is 0.17 and 0.19. In Tables 5 and 6 we show the confusion matrices
obtained using the reduced dataset with the 21 features reported in Table 2, we can
see that in this case TP rate for experts increases to 0.91 and 0.98 and FP rate
decreases to 0.30 and 0.16. In Tables 7 and 8 we show the confusion matrices
obtained using only gyroscopes and accelerometers data, we can see that in this
case TP rate for experts decreases to 0.77 and 0.80 and FP rate grows to an
inacceptable rate of 0.53 and 0.68.

Finally, in Table 9 we summarize mean and standard deviation of the accuracy
(number of correctly classified instances/number of instances) with all combina-
tions of window lengths and feature sets, comparing results of RBF with a Bayesian
network.

Table 3 Confusion matrix of RBF with W = 10, using all data

RBF W = 10, all data Classified as expert Classified as novice

Expert 52.4 7.6
Novice 10.2 49.8
Values are the averaged accuracy on the test set of 5 trials (120 instances for every trial: 60 experts
and 60 novices)

Table 4 Confusion matrix of RBF with W = 20, using all data

RBF W = 20, all data Classified as expert Classified as novice

Expert 52.8 7.2
Novice 11.2 48.8
Values are the averaged results of 5 trials (120 instances for every trial: 60 experts and 60 novices)

Table 5 Confusion matrix of RBF with W = 10, using the reduced data set

RBF W = 10, all data Classified as expert Classified as novice

Expert 54.4 5.6
Novice 18.2 41,8
Values are the averaged accuracy on the test set of 5 trials (120 instances for every trial: 60 experts
and 60 novices)

Table 6 Confusion matrix of RBF with W = 20, using the reduced data set

RBF W = 20, all data Classified as expert Classified as novice

Expert 58,8 1.2
Novice 9.6 50.4
Values are the averaged results of 5 trials (120 instances for every trial: 60 experts and 60 novice)
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5 Conclusions

We designed and developed a system for the evaluation of the skill of a surgeon
while performing a suture. We compared different classifiers, different feature sets
and different parameters for feature extraction. The system makes use of a sensory
glove to obtain the exact position of the hand and movements of the fingers.
Features were extracted by averaging the values of the 20 sensors in windows of
W samples, with W = 50 or W = 100. Finally, the median of the duration of the
gesture was added to the feature set. The dataset was classified by means of an RBF
neural network and a Bayesian network. As far as window length is concerned, we
found no significant difference between W = 10 and W = 20, being always around
85 %. A reduced feature set that includes 20 selected features improves the per-
formance up to more than 90 %, but if the dataset is further reduced to only include
data of gyroscope and accelerometers the performance notably decreases to about
60 %. Neural network performs better Bayesian network when using all features
and worse when using 20 features.

Table 7 Confusion matrix of RBF with W = 10, using only data from gyroscopes and
accelerometers

RBF W = 10, Gyr. and Acc. Classified as expert Classified as novice

Expert 46.2 13.8
Novice 32 28
Values are the averaged results of 5 trials (120 instances for every trial: 60 experts and 60 novices)

Table 8 Confusion matrix of RBF with W = 20, using only data from gyroscopes and
accelerometers

RBF W = 20, Gyr. and Acc. Classified as expert Classified as novice

Expert 47.8 12.2
Novice 41 19
Values are the averaged results of 5 trials (120 instances for every trial: 60 experts and 60 novices)

Table 9 Mean and standard deviation of accuracy with Bayesian Network and RBF network,
considering all channels, and the two reduced datasets

Window
length

All features
(%)

20 features
(%)

6 features (only data of gyroscopes and
accelerometers) (%)

RBF

W = 10 85.16 ± 4.5 80,16 ± 6.01 61.83 ± 3.97
W = 20 86.67 ± 5.36 91.01 ± 8.38 55.67 ± 4.06
Bayesian Network

W = 10 78.67 ± 8.29 94,06 ± 2.95 68.46 ± 9.47
W = 20 78.34 ± 5.60 93,66 ± 3.6 65.67 ± 7.49

Towards an Objective Tool for Evaluating the Surgical Skill 333



References

1. Cox, M., Irby, D.M., Reznick, R.K., MacRae, H.: Teaching surgical skills—changes in the
wind. N. Engl. J. Med. 355, 2664–2669 (2006)

2. Poloniecki, J., Valencia, O., Littlejohns, P.: Cumulative risk adjusted mortality chart for
detecting changes in death rate: observational study of heart surgery. BMJ 316, 1697–1700
(1998)

3. Furuya, S., Furuya, R., Ogura, H., Araki, T., Arita, T.: A study of 4,031 patients of
transurethral resection of the prostate performed by one surgeon: learning curve, surgical
results and postoperative complications. Hinyokika kiyo Acta urologica Japonica 52, 609–614
(2006)

4. Spencer, F.: Teaching and measuring surgical techniques: the technical evaluation of
competence. Bull. Am. Coll. Surg. 63, 9–12 (1978)

5. Reiley, C.E., Lin, H.C., Yuh, D.D., Hager, G.D.: Review of methods for objective surgical
skill evaluation. Surg. Endosc. 25, 356–366 (2011)

6. Van Rij, A., McDonald, J., Pettigrew, R., Putterill, M., Reddy, C., Wright, J.: Cusum as an aid
to early assessment of the surgical trainee. Br. J. Surg. 82, 1500–1503 (1995)

7. Hanna, G.B., Shimi, S.M., Cuschieri, A.: Randomised study of influence of two-dimensional
versus three-dimensional imaging on performance of laparoscopic cholecystectomy. Lancet
351, 248–251 (1998)

8. Santosuosso, G.L., Saggio, G., Sora, F., Sbernini, L., Di Lorenzo, N.: Advanced algorithms for
surgical gesture classification. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3596–3600. IEEE 2014

9. Costantini, G., Saggio, G., Sbernini, L., Di Lorenzo, N., Di Paolo, F., Casali, D.: Surgical skill
evaluation by means of a sensory glove and a neural network. In: 6th International Joint
Conference on Computational Intelligence, 22–24 October 2014, Rome, Italy (IJCCI
2014)–Session: 6th International Conference on Fuzzy Computation Theory and
Applications (FCTA 2014), SCITEPRESS–Science and Technology Publications 2014,
pp. 105–10 (2014)

10. Traxer, O., Gettman, M.T., Napper, C.A., Scott, D.J., Jones, D.B., Roehrborn, C.G., et al.: The
impact of intense laparoscopic skills training on the operative performance of urology
residents. J. Urol. 166, 1658–1661 (2001)

11. Derossis, A.M., Fried, G.M., Abrahamowicz, M., Sigman, H.H., Barkun, J.S., Meakins, J.L.:
Development of a model for training and evaluation of laparoscopic skills. Am. J. Surg. 175,
482–487 (1998)

12. Goff, B.A., Lentz, G.M., Lee, D., Houmard, B., Mandel, L.S.: Development of an objective
structured assessment of technical skills for obstetric and gynecology residents. Obstet.
Gynecol. 96, 146–150 (2000)

13. Rosen, J., Solazzo, M., Hannaford, B., Sinanan, M.: Objective laparoscopic skills assessments
of surgical residents using Hidden Markov Models based on haptic information and tool/tissue
interactions. Stud. Health Technol. Inform. 417–23 (2001)

14. Yamauchi, Y., Yamashita, J., Morikawa, O., Hashimoto, R., Mochimaru, M, Fukui, Y., et al.:
Surgical skill evaluation by force data for endoscopic sinus surgery training system. In:
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002, pp. 44–51.
Springer, 2002

15. Tashiro, Y., Miura, H., Nakanishi, Y., Okazaki, K., Iwamoto, Y.: Evaluation of skills in
arthroscopic training based on trajectory and force data. Clin. Orthop. Relat. Res. 467, 546–552
(2009)

16. Taffinder, N., Smith, S., Jansen, J., Ardehali, B., Russell, R., Darzi, A.: Objective
measurement of surgical dexterity-validation of the Imperial College Surgical Assessment
Device (ICSAD). Minim. Invasive Ther. Allied Tech. 7, 11 (1998)

17. Judkins, T.N., Oleynikov, D., Stergiou, N.: Objective evaluation of expert and novice
performance during robotic surgical training tasks. Surg. Endosc. 23, 590–597 (2009)

334 G. Costantini et al.



18. Fraser, S., Klassen, D., Feldman, L., Ghitulescu, G., Stanbridge, D., Fried, G.: Evaluating
laparoscopic skills. Surg. Endosc. 17, 964–967 (2003)

19. Saggio, G.: Mechanical model of flex sensors used to sense finger movements. Sens.
Actuators A 185, 53–58 (2012)

20. Saggio, G., Bocchetti, S., Pinto, G.A., Orengo, G., Giannini, F.: A novel application method
for wearable bend sensors. In: ISABEL2009, 2nd International Symposium on Applied
Sciences in Biomedical and Communication Technologies, Bratislava, Slovak Republic,
24–27 Nov 2009

21. Saggio, G., De Sanctis, M., Cianca, E., Latessa, G., De Santis, F., Giannini, F: Long term
measurement of human joint movements for health care and rehabilitation purposes”. In:
Wireless Vitae09—Wireless Communications, Vehicular Technology, Information Theory
and Aerospace and Electronic Systems Technology, Aalborg (Denmark), pp. 674–678, 17–20
May 2009

22. Costantini, G., Saggio, G., Sbernini, L., Di Lorenzo, N., Di Paolo, F., Casali, D.: Surgical skill
evaluation by means of a sensory glove and a neural network. In: Proceedings of the
International Conference on Neural Computation Theory and Applications (NCTA-2014),
pp 105–110 (2014)

23. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning Hamilton. New
Zealand (1998)

Towards an Objective Tool for Evaluating the Surgical Skill 335



Neurons with Non-standard Behaviors
Can Be Computationally Relevant

Stylianos Kampakis

Abstract Neurons can exhibit many different kinds of behaviors, such as bursting,
oscillating or rebound spiking. However, research in spiking neural networks has
largely focused on the neuron type known as “integrator”. Recent researches have
suggested that using neural networks equipped with neurons other than the inte-
grator, might carry computational advantages. However, there still lacks an
experimental validation of this idea. This study used a spiking neural network with
a biologically realistic neuron model in order to provide experimental evidence on
this hypothesis. The study contains two experiments. In the first experiment the
optimization of the network is conducted by setting the weights to random values
and then adjusting the parameters of the neurons in order to adapt the neural
behaviors. In the second experiment, the parameter optimization is used in order to
improve the network’s performance after the weights have been trained. The results
illustrate that neurons with non-standard behaviors can provide computational
advantages for a network. Further implications of this study and suggestions for
future research are discussed.

1 Introduction

Spiking neural networks have been called the third generation of neural networks
[17]. They have been tested on a variety of machine learning tasks such as unsu-
pervised [3, 19], supervised [2, 7, 8] and reinforcement learning [21]. In many
studies, the neuron model being used is usually an integrate-and-fire neuron or
some of its variants or generalizations, like the leaky integrate-and-fire model and
the spike response model. This is for example the case for the aforementioned
studies.
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However, realistic neuron models can exhibit different behaviors, which the
neural models used in these studies cannot replicate. Izhikevich [10] presents 20
different neural behaviors (Fig. 1) that real neurons can exhibit, while also devel-
oping a model that can support all of these behaviors [9]. According to this clas-
sification, integrate-and-fire neurons are fall into the “integrator” category.

Fig. 1 Different neural behaviors exhibited by real neurons. Electronic version of the figure and
reproduction permissions are freely available at www.izhikevich.com
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Previous researches, such as those mentioned in the first paragraph usually just
try to optimize the weights of the network, and in some cases, some other
parameters, such as synaptic delays.

However, they do not optimize the behaviors of each individual neuron. This is,
of course, difficult to do for a model of limited realism. In fact, the integrate-and-fire
model, and its variants, offer limited flexibility with respect to the set of neural
behaviors they can exhibit. Therefore, it is difficult to obtain computational
advantages for specific tasks (e.g. supervised learning) by trying to adapt the
neurons’ behavior.

However, it could be the case that the flexibility of the model could help it adapt
better to the task at hand. In fact, this model was used by Kampakis [12] in the
context of spiking neural network for a supervised learning task. That research
provided some evidence that different neural behaviors, other than the ones
assumed by the integrate-and-fire neuron, could be useful. More specifically, it was
demonstrated that a spiking neural network could learn the XOR logic gate with
three neurons by using rebound spiking. This is something which could not be
achieved with simple integrators.

Kampakis [13, 14] looked into the issue of the computational power of these
neurons from a theoretical perspective. This study investigated the advantages that
some specific non-standard behaviors can offer. The study focused on oscillators,
bursting neurons and rebound spiking neurons and demonstrated how the use of
these neurons for some particular tasks can reduce the number of synapses or
neurons used in a network. However, a practical investigation was not pursued in
that study. So, it remained unclear how non-standard behaviors could actually be
used in a real setting and whether they would be useful.

Some similar ideas have emerged from other researchers as well. Maul [18]
discussed the idea of a “Neural Diversity Machine”. A neural diversity machine is
an artificial neural network whose neurons can have different types of weights and
activation functions. Nodes with different activation functions in an artificial neural
network can be thought as equivalent to neurons with different behaviors in a
spiking neural network. The inspiration behind this idea is similar to the inspiration
behind the investigation of neurons with non-standard behaviors. However, Neural
Diversity Machines have not been studied in the context of more realistic neuron
models.

There is further justification in the literature to support this idea. First of all,
neural diversity exists in the brain [20] and it has also been suggested that it can be
computationally relevant for neural processing [16]. Secondly, there is evidence
that artificial neural networks whose neurons use different activation functions can
have more power [18]. Finally, Buzsaki et al. [4] have shown that biological
neuronal diversification leads, both to a reduction of the number of neurons used by
a network and to their wiring length.

The idea behind neural diversification is also justified from the perspective of
inductive bias. This was something that was discussed by Kampakis [13, 14]
through the theory of “rational neural processing”. Diverse neural behaviors possess
different inductive biases. This can make some neural behaviors more suitable for
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some tasks. Research conducted by Maul [18] and Cohen and Intrator [5] has
proven that this can be true for artificial neural networks, as well.

However, while it became clear in theory [13, 14] that neural diversity provides
greater flexibility in spiking neurons, which can lead to improved performance, no
practical evidence of that has been provided yet. In the goal of the research outlined
in this study is to provide this practical evidence. The experiments use a spiking
neural network in order to test whether diverse neural behaviors can be computa-
tionally relevant. The network is trained on a supervised learning task by opti-
mizing the parameters that control the neurons’ behavior. Experiment 1 compares a
network with optimized neuron parameters against an unoptimized network.
Experiment 2 combines the parameter optimization with weight training in order to
identify whether parameter optimization can provide any improvements in perfor-
mance beyond weight optimization.

The purpose of this study is to provide some first experimental evidence that
neural diversity can be computationally relevant for spiking neural networks, while
also connecting this evidence with some of the recent research in the field.

2 Theoretical Motivation

This section will describe, in brief, the theoretical justification behind this research.
Kampakis [13, 14] outlined a theoretical framework called “Theory of Rational
Neural Processing”. This theory is based on three main points:

(1) The neural circuits in the brain that lead to cognitive processes over specific
tasks are characterized by specific biases, either in learning or in optimizing.

(2) These biases have been developed in order to optimize over the specific
characteristics of the optimization problems that a neural circuit faces on a
systematic basis.

(3) These biases are caused in the brain by the way that neurons are either con-
nected or by the specifics of their behavior.

According to this theory the various neural behaviors that can be exhibited by
neurons exist because they have been developed to provide computational advan-
tages to different regions in the brain, according to the tasks they perform.

If this theory is correct, then it would be possible to simulate some of these
computational advantages provided by the neural behaviors in an artificial spiking
neural network. However, an additional problem is distinguishing between neural
behaviors that are computationally relevant and those that are biologically relevant.

The term computationally relevant refers to behaviors that can be advantageous
for a task, irrespective of whether they are in the brain or in an artificial neural
network. The term biologically relevant refers to neural behaviors that have been
developed in order to address biological limitations that are not relevant for an
artificial system.
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This study takes the position that using non-standard neural behaviors in com-
putational tasks, such as supervised learning, can indicate whether the advantages
are computationally relevant or biologically relevant.

3 Methods and Data

3.1 Neuron Model

This research used the Izhikevich neuron model. The neuron model of Izhikevich
[9] is described by the following set of equations:

v
0
=0.04v2 + 5v+140− u+ I ð1Þ

u
0
= aðbv− uÞ ð2Þ

The following condition ensures that the membrane voltage is reset after a spike:

if v≥ 30mV, then
v←c

u←u+ d

�
ð3Þ

The letters a, b, and d are dimensionless parameters of the model. I is the input,
v is the voltage of the neuron’s membrane, and u is the recovery variable. The
parameter c is voltage in mV.

Wang [28] proposed an improvement over the original model, which prohibits
the membrane voltage from reaching unrealistically high values. This improvement
was implemented in this research as well. So, the condition from 3 changed to:

if v≥ 30mV, then
v←c

u←u+ d

�

if v≥ 30 then v=30

if v=30 then v= c

ð4Þ

Figure 2 shows examples of different neural behaviors for different values of the
parameters a, b, c and d.

3.2 Neural Architecture

The neural architecture used in this study is the same one as the one used by
Kampakis [12] for the iris classification task and it is shown in Fig. 3.

Neurons with Non-standard Behaviors Can Be Computationally Relevant 341



The architecture consists of two layers. The first layer consists of pairs of
receptive fields with Izhikevich neurons. The receptive fields are comprised of
Gaussian radial basis functions (hence the name “Gauss field” in Fig. 2). The
equation for a receptive field is defined in (5).

Fig. 2 Examples of various neural behaviors for different values of a, b, c and d. Reproduced with
permission from www.izhikevich.com

Fig. 3 Architecture of the
network used for the
supervised learning task as it
was presented in [12]
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f x; σ, cð Þ= e
− x− cð Þ2

2σ2 ð5Þ

In Eq. (5), σ is the standard deviation of the function, and c is the center. The
centers of the receptive fields are uncovered by k-means clustering. The receptive
fields receive the input in the form of a real number. The output of each radial basis
function is fed into its respective input neuron. The output of the receptive field
becomes the variable I in Eq. (1).

Figure 4 shows an example of an input encoded by two receptive fields termed
“Sensor Neuron 1” and “Sensor Neuron 2”. It can be seen that the same input,
causes different responses to the two sensor neurons. This allows the receptive
fields to encode different regions of the input space.

The input layer is fully connected to the output layer. The output is encoded by
using a “winner-takes-all” strategy where the first output neuron to fire signifies the
classification result.

3.3 Supervised Learning Task and Dataset

The chosen supervised learning task is the correct classification of the iris flowers in
Fisher’s iris dataset [6]. There are three iris types: Iris setosa, Iris virginica and Iris
versicolor. Each type is represented in the dataset by 50 instances, for a total of 150
instances.

Each instance contains four attributes: sepal length, sepal width, petal length and
petal width. Only sepal length and sepal width were used, like in [12] because the
rest of the attributes are noisy.

Fig. 4 An input is coded with two different Gaussian receptive fields. (Reproduced from
Kampakis [12])
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3.4 Neural Parameter Optimization Through Genetic
Algorithms

The parameters of the network were optimized through the use of a genetic algo-
rithm. Parameter search is a standard use of genetic algorithms [22]. For example,
recently, Wu et al. [29] used a genetic algorithm for parameter optimization in a
support vector regression task. Tutkun [24] used a real-valued genetic algorithm for
parameter search in mathematical models. Optimization through genetic algorithms
has also been used successfully for optimizing the parameters of neuron models to
experimental data [1, 15, 23].

There are other choices for optimizing neuron model parameters. A compre-
hensive review is provided by Van Geit et al. [26]. Some other choices besides
meta-heuristic optimization include hand tuning, brute force and gradient descent
methods. In practice, hand tuning is infeasible for this case, due to the large number
of tests required for our purpose. Brute force is infeasible as well, due to the large
computational demands required.

Gradient descent methods would require us to specify a differentiable error
function. However, in practice, this seemed to be very difficult. On the other hand,
genetic algorithms make no assumptions about the problem, and provide a very nice
balance between exploitation of found solutions and exploration of new ones.

4 Experimental Setup

4.1 Experiments

This study consisted of two experiments. For the first experiment, two networks are
created. The networks’ weights are initialized by assigning a random set of weights
sampled from the standard normal distribution.

Then, one network is trained by using a genetic algorithm in order to affect the
parameters of each neuron in the network individually. Affecting the parameters
changes the behavior and the response of the neurons. The experimental hypothesis
was whether this can lead to improvements of accuracy, therefore demonstrating
that diverse neural behaviors can be computationally relevant.

The objective function being optimized was the training accuracy on the
supervised learning task. The training and testing is done by using 10-fold
cross-validation. The training accuracy is recorded as the percentage of correct
classifications across the data that were used for training, and the testing accuracy is
recorded as the percentage of correct classifications for the fold that was not used in
the training.

In order to identify whether affecting the parameters of the neurons can lead to
improvements over the accuracy, the network was tested for 25 rounds of 10-fold
cross validation against the network with random (unoptimized) weights.
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In the second experiment the network is trained through a two-step optimization
procedure. The network’s weights are first trained using a genetic algorithm. Then,
the neurons’ parameters are optimized by using the genetic algorithm from the first
experiment in order to improve the accuracy even further. The second experiment is
used in order to examine whether parameter optimization can offer advantages in
addition to standard training over the weights of the network.

It could be the case that any potential improvements in accuracy in the first
experiment might not be significant when compared to standard training that
optimizes the weights only. Therefore, this experiment was devised in order to
explore whether parameter optimization can be computationally relevant when used
in conjunction with standard weight training, or whether any advantages vanish.
For that case, as for the first experiment, the procedure was repeated for 25 rounds
of 10-fold cross validation and the objective function was the training accuracy.

For the second experiment the weights are optimized through the use of a genetic
algorithm. The genetic algorithm used for optimizing the weights had the exact
same configuration as the one in [12]: two populations that ranged from 50 to 100
members each, with crossover ratio 0.6 and 1 elite. The algorithm terminated after
150 generations had passed.

4.2 Parameter Optimization

After the weight optimization, a genetic algorithm is used in both experiments in
order to optimize over the parameters of every neuron in the network, without
affecting the weights.

The algorithm optimizes all the parameters of each neuron (a, b, c and d). The
size of each individual in the population was 36 (this is equal to the sum of the
number of neurons times 4). The manipulation of these parameters allows the
neurons to exhibit many different behaviors, which were shown in Fig. 1.

The tweaking of these parameters not only affects the general behavior, but can
also affect details within each behavior, such as the frequency of bursting, or the
threshold of a neuron [11].

The genetic algorithms were executed by using the genetic algorithm toolbox of
Matlab version 2011Rb. The default settings were used except for the following
parameters: The population was set to 75 and the crossover rate was changed from
the default of 0.8–0.6. This allowed a greater exploration of the parameter space,
which seemed to improve the results in the pilot runs. The number of generations
was set to 50. The upper and lower bounds of the variables were set to the interval
[−100; 100]. The type of mutation was Gaussian and the selection method was
stochastic uniform.

The optimization stopped as soon as the genetic algorithm reached the upper
limit of generations. The parameters of the neurons and the architecture were the
same as the ones used by Kampakis [12].
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5 Results

Table 1 presents the results of the first experiment. The first and the third columns
present the results for the optimized network. The third and fourth columns present
the results from the unoptimized network. The first row presents the mean across all
runs.

Table 2 demonstrates the results of the second experiment. The table shows the
comparison between simple weight training (first two columns) and the two-step
optimization procedure (last two columns). A Wilcoxon signed rank test for the null
hypothesis that the medians of the two populations are unequal has a p-value of
0.0252.

Table 3 shows a comparison with other algorithms published in the literature.
The comparisons include SpikeProp [2], SWAT [27] and MuSpiNN [7]. The
reported scores are all mean averages of the accuracy for the iris classification task.

Table 1 Results of the optimization procedure and the unoptimized neural network

Training
accuracy

Test accuracy (%) Random training (%) Random test (%)

Mean 67.8 60.5 52.3 52.28
Std 15.2 % 3.6 11.8 10.9
Max 98.5 % 97.0 88.9 78.4
Min 55.2 % 46.7 22.2 7.8

Table 2 Comparison between weight training and the two step optimization procedure

Weight (train) (%) Weight (test) (%) Two-step (train) (%) Two-step (test) (%)

Mean 97.0 96 97.7 97.3
Std 1.2 1.9 0.6 2.3

Table 3 Comparison with
other algorithms

Algorithm Neurons Training
accuracy

Test accuracy
(%)

SpikeProp 63 97.4 % 96.1
SWAT 208 97.3 % 94.7
MuSpiNN 17 Not reported 94.5
Two-step 9 97.7 % 97.3
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6 Discussion

From the first experiment it is clear that the parameter optimization leads to
improvements in performance over a randomly initialized network. The difference
between the trained network in both the training accuracy and the test accuracy and
the random network is quite prominent. The optimized network manages to gen-
eralize, obtaining a performance that is clearly better than what would be expected
at random.

From the comparison between simple weight training and the two-step opti-
mization procedure it seems that the parameter optimization can lead to further
improvements in the accuracy after the network’s weights have been trained.
Furthermore, the two-step optimization’s accuracy is comparable to other results
reported in the literature, but it uses fewer neurons.

Therefore, it seems that optimizing the neural behavior of each neuron indi-
vidually can provide improvements in accuracy that might not be achievable by
using weight optimization alone.

7 Conclusion

This study provided evidence that parameter optimization for a biologically plau-
sible neuron model is a feasible strategy to improve the performance of a supervised
learning task. This was done in alignment with recent research that has promoted
the idea that neural networks (biological, spiking and artificial) with heterogeneous
neurons and non-standard behaviors might possess increased computational power.
This study provided additional evidence for this idea by showing that it holds true
for spiking neural networks, as well.

This study provides evidence that biologically simple neuron models, such as the
integrate-and-fire model, might offer limited computational capabilities compared to
more biologically realistic neuron models. Furthermore, the study provided evi-
dence that biologically realistic features in neuron models can be computationally
relevant and that they might provide feasible targets for an optimization procedure
when considering specific tasks, such as supervised learning.

A question worth investigating is whether additional improvements in perfor-
mance could be gained by adding more components that are biologically relevant.
A possible choice, for example, could be to implement more realistic synaptic
dynamics. Furthermore, future research could try to test other coding schemes for
this network and indicate whether different coding schemes could provide advan-
tages for different tasks.

Also, many other issues remain open, such as, how to connect the results for the
spiking neural networks with artificial neural networks and biological networks.
Some further issues include the creation of a mathematical theory that can link these
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different results in neural networks and, also, an investigation of how these results
could be applied in a real setting. Finally, future research could focus on developing
a training algorithm that takes into account neural diversity.
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Single-Hidden Layer Feedforward Neual
Network Training Using Class Geometric
Information

Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas

Abstract Single-hidden Layer Feedforward (SLFN) networks have been proven to

be effective in many pattern classification problems. In this chapter, we provide

an overview of a relatively new approach for SLFN network training that is based

on Extreme Learning. Subsequently, extended versions of the Extreme Learning

Machine algorithm that exploit local class data geometric information in the opti-

mization process followed for the calculation of the network output weights are dis-

cussed. An experimental study comparing the two approaches on facial image clas-

sification problems concludes this chapter.

1 Introduction

Single-hidden Layer Feedforward (SLFN) networks have been proven to be effective

in many pattern classification problems, since they are able to approximate any con-

tinuous function arbitrary well [1]. Extreme Learning Machine is a relatively new

algorithm for Single-hidden Layer Feedforward Neural (SLFN) networks training

[2] that leads to fast network training requiring low human supervision. Conven-

tional SLFN network training algorithms require the input weights and the hidden

layer biases to be adjusted using a parameter optimization approach, like gradient

descend. However, gradient descend-based learning techniques are generally slow

and may decrease the network’s generalization ability, since they may lead to local

minima. Unlike the popular thinking that the network’s parameters need to be tuned,

in ELM the input weights and the hidden layer biases are randomly assigned. The net-

work output weights are, subsequently, analytically calculated. ELM not only tends

to reach the smallest training error, but also the smallest norm of output weights. For
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feedforward networks reaching a small training error, the smaller the norm of weights

is, the better generalization performance the networks tend to have [3]. Despite the

fact that the determination of the network hidden layer output is a result of randomly

assigned weights, it has been shown that SLFN networks trained by using the ELM

algorithm have the properties of global approximators [4]. Due to its effectiveness

and its fast learning process, the ELM network has been widely adopted in many

classification problems, including facial image classification [5–14].

Despite its success in many classification problems, the ability of the original

ELM algorithm to calculate the output weights is limited due to the fact that the net-

work hidden layer output matrix is, usually, singular. In order to address this issue, the

Effective ELM (EELM) algorithm has been proposed in [15], where the strictly diag-

onally dominant criterion for nonsingular matrices is exploited, in order to choose

proper network input weights and bias values. However, the EELM algorithm has

been designed only for a special case of SLFN networks employing Gaussian Radial

Basis Functions (RBF) for the input layer neurons. In [9], an optimization-based reg-

ularized version of the ELM algorithm (RELM) aiming at both overcoming the full

rank assumption for the network hidden layer output matrix and at enhancing the

generalization properties of the ELM algorithm has been proposed. RELM has been

evaluated on a large number of classification problems providing very satisfactory

classification performance.

By using a sufficiently large number of hidden layer neurons, the ELM classifi-

cation scheme, when approached from a Subspace Learning point of view, can be

considered as a learning process formed by two processing steps [16]. The first step

corresponds to a mapping process of the input space to a high-dimensional feature

space preserving some properties of interest for the training data. In the second step,

an optimization scheme is employed for the determination of a linear projection of

the high-dimensional data to a low-dimensional feature space determined by the net-

work target vectors, where classification is performed by a linear classifier. Based on

this observation, the RELM algorithm has been extended in order to exploit sub-

space learning criteria in its optimization process [16, 17]. Specifically, it has been

shown that the incorporation of the within-class and total scatter of the training data

(represented in the feature space determined by the network hidden layer outputs) in

the optimization process followed for the calculation of the network output weights

enhances the network classification performance.

In this Chapter, we provide an overview of the ELM algorithm for SLFN network

training [2, 9]. Extensions of the ELM algorithm exploiting subspace learning cri-

teria on its optimization process are also described. Subsequently, an extension of

the ELM algorithm which exploits local class information in the ELM optimization

problem is described in detail. The so-called Local Class Variance ELM (LCVELM)

algorithm aims at minimizing both the network output weights norm and the within

class variance of the training data in the ELM space, expressed by employing locality

constraints. An experimental study comparing the performance of ELM [2], RELM

[9], MCVELM [16] and LCVELM [18] networks is facial image classification prob-

lems is finally provided.
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The chapter is structured as follows. In Sect. 2 we briefly describe the ELM

algorithms. RELM is described in Sect. 2. In Sect. 4 ELM algorithms exploiting

dispersion information in their optimization problem are described. In Sect. 5, we

describe the LCVELM algorithm exploiting intrinsic graph structures for SLFN net-

work training. Section 7 presents an experimental study evaluating the performance

of ELM-based classification in facial image classification problems.Finally, conclu-

sions are drawn in Sect. 8.

2 Extreme Learning Machine

ELM network has been proposed for SLFN network-based classification [2]. Let

us denote by {𝐱i, ci}, i = 1,… ,N a set of N vectors 𝐱i ∈ ℝD
and the correspond-

ing class labels ci ∈ {1,… ,C}. We employ {𝐱i, ci}, i = 1,… ,N in order to train a

SLFN network. Such a network consists of D input (equal to the dimensionality of

𝐱i), L hidden and C output (equal to the number of classes involved in the classifi-

cation problem) neurons. The number of hidden layer neurons is usually selected to

be much greater than the number of classes [9, 16], i.e., L ≫ C.

The network target vectors 𝐭i = [ti1,… , tiC]T , each corresponding to a training

vector 𝐱i, are set to tik = 1 for vectors belonging to class k, i.e., when ci = k, and

to tik = −1 when ci ≠ k. In ELMs, the network input weights 𝐖in ∈ ℝD×L
and the

hidden layer bias values 𝐛 ∈ ℝL
are randomly assigned, while the network output

weights 𝐖out ∈ ℝL×C
are analytically calculated. Let us denote by 𝐯j the j-th column

of 𝐖in, by 𝐰k the k-th row of 𝐖out and by wkj the j-th element of 𝐰k. Given acti-

vation function for the network hidden layer 𝛷(⋅) and by using a linear activation

function for the network output layer, the output 𝐨i = [o1,… , oC]T of the network

corresponding to 𝐱i is calculated by:

oik =
L∑

j=1
wkj 𝛷(𝐯j, bj, 𝐱i), k = 1,… ,C. (1)

It has been shown [4, 9, 19] that, almost any nonlinear piecewise continuous

activation function 𝛷(⋅) can be used for the calculation of the network hidden layer

outputs, like the sigmoid, sine, Gaussian, hard-limiting and Radial Basis Function

(RBF), Fourier series, etc. The most widely adopted choice is the sigmoid function,

defined by:

𝛷(𝐯j, bj, 𝐱i) =
1

1 + e−(𝐯
T
j 𝐱i+bj)

. (2)

By storing the network hidden layer outputs corresponding to the training vectors

𝐱i, i = 1,… ,N in a matrix 𝜱:
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𝜱 =
⎡
⎢
⎢
⎣

𝛷(𝐯1, b1, 𝐱1) ⋯ 𝛷(𝐯1, b1, 𝐱N)
⋯ ⋱ ⋯

𝛷(𝐯L, bL, 𝐱1) ⋯ 𝛷(𝐯L, bL, 𝐱N)

⎤
⎥
⎥
⎦

, (3)

Equation (1) can be expressed in a matrix form as:

𝐎 = 𝐖T
out𝜱. (4)

ELM [2] assumes that the predicted network outputs are equal to the network targets,

i.e., 𝐨i = 𝐭i, i = 1,… ,N,𝐖out can be analytically calculated by solving the following

set of equation:

𝐖T
out𝜱 = 𝐓 (5)

and are given by:

𝐖out = 𝜱† 𝐓T
, (6)

where 𝜱† =
(
𝜱𝜱T)−1 𝜱 is the Moore-Penrose generalized pseudo-inverse of 𝜱T

and 𝐓 = [𝐭1,… , 𝐭N] is a matrix containing the network target vectors.

3 Regularized Extreme Learning Machine

The ELM algorithm assumes zero training error. In cases where the training data

contain outliers, this assumption may reduce its potential in generalization. In addi-

tion, since the dimensionality of the ELM space is usually high, i.e., in some cases

L > N, the matrix 𝐁 = 𝜱𝜱T
is singular and, thus, the adoption of (6) for the cal-

culation of the network output weights is inappropriate. By allowing small training

errors and trying to minimize the norm of the network output weights, 𝐖out can be

calculated by minimizing [9]:

RELM = 1
2
‖𝐖out‖

2
F + c

2

N∑

i=1
‖𝝃i‖

2
2, (7)

𝐖T
out𝝓i = 𝐭i − 𝝃i, i = 1,… ,N, (8)

where 𝝃i ∈ ℝC
is the error vector corresponding to 𝐱i and c is a parameter denoting

the importance of the training error in the optimization problem.𝝓i is the i-th column

of 𝜱, i.e., the hidden layer output corresponding 𝐱i. That is, 𝝓i is the representation

of 𝐱i in ℝL
. By substituting (8) in RELM (7) and determining the saddle point of

RELM , 𝐖out is given by:

𝐖out =
(
𝜱𝜱T + 1

c
𝐈
)−1

𝜱𝐓T
(9)
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or

𝐖out = 𝜱
(
𝜱T𝜱 + 1

c
𝐈
)−1

𝐓T
(10)

The adoption of (9) for 𝐖out calculation, instead of (6), has the advantage that the

matrices 𝐁 =
(
𝜱𝜱T + 1

c
𝐈
)

and �̃� =
(
𝜱T𝜱 + 1

c
𝐈
)

are nonsingular, for c > 0.

4 Extreme Learning Machine Exploiting Dispersion
Criteria

By allowing small training errors and trying to minimize both the norm of the net-

work output weights and the within-class variance of the training vectors in the fea-

ture space determined by the network outputs, 𝐖out can be calculated by minimiz-

ing [16]:

MCVELM = ‖𝐒
1
2
w𝐖out‖

2
F + 𝜆

N∑

i=1
‖𝝃i‖

2
2, (11)

𝐖T
out𝝓i = 𝐭i − 𝝃i, i = 1,… ,N, (12)

where 𝐒w is the within-class scatter matrix used in Linear Discriminant Analysis

(LDA) [20] describing the variance of the training classes in the ELM space and is

defined by:

𝐒w =
C∑

j=1

∑

i,ci=j

1
Nj

(𝝓i − 𝝁j)(𝝓i − 𝝁j)T . (13)

In (13), Nj is the number of training vectors belonging to class j and 𝝁j =
1
Nj

∑
i,ci=j 𝝓i

is the mean vector of class j. By calculating the within-class scatter matrix in the

ELM space ℝL
, rather than in the input space ℝD

, nonlinear relationships between

training vectors forming the various classes can be better described. By substituting

(12) in MCVELM and determining the saddle point of MCVELM , 𝐖out is given by:

𝐖out =
(
𝝓𝝓T + 1

c
𝐒w

)−1
𝝓𝐓T

. (14)

Since the matrix 𝐁 =
(
𝝓𝝓T + 1

c
𝐒w

)
is not always nonsingular, an additional dimen-

sionality reduction processing step performed by applying Principal Component

Analysis [20] on 𝝓 has been proposed in [16]. Another variants that exploiting the

total scatter matrix of the entire training set and the within-class variance of multi-

modal classes have been proposed in [16, 17], respectively.
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5 Extreme Learning Machine Exploiting Intrinsic Graph
Structures

In this Section, we describe the an extension of the ELM algorithm exploiting local

class dispersion criteria [18]. Similar to the ELM variance described in Sect. 2, the

Local Class Variance ELM (LCVELM) algorithm exploits randomly assigned net-

work input weights𝐖in and bias values 𝐛, in order to perform a nonlinear mapping of

the data in the (usually high-dimensional) ELM space ℝL
. After the network hidden

layer outputs calculation, we assume that the data representations in the ELM space

𝝓i, i = 1,… ,N are embedded in a graph  = { ,  ,𝐖}, where  denotes the graph

vertex set, i.e.,  = {𝝓i}Ni=1,  is the set of edges connecting 𝝓i, and 𝐖 ∈ ℝN×N
is

the matrix containing the weight values of the edge connections. Let us define a

similarity measure s(⋅, ⋅) that will be used in order to measure the similarity between

two vectors [21]. That is, sij = s(𝝓i,𝝓j) is a value denoting the similarity between

𝝓i and 𝝓j. s(⋅, ⋅) may be any similarity measure providing non-negative values (usu-

ally 0 ≤ sij ≤ 1). The most widely adopted choice is the heat kernel (also known as

diffusion kernel) [22], defined by:

s(𝝓i,𝝓j) = exp

(

−
‖𝝓i − 𝝓j‖

2
2

2𝜎2

)

, (15)

where ‖ ⋅ ‖2 denotes the (squared) l2 norm of a vector and 𝜎 is a parameter used in

order to scale the Euclidean distance between 𝝓i and 𝝓j.

In order to express the local intra-class relationships of the training data in the

ELM space, we exploit the following two choices for the determination of the weight

matrix 𝐖:

W (1)
ij =

{
1 if ci = cj and j ∈ i,

0, otherwise,

or

W (2)
ij =

{
sij if ci = cj and j ∈ i,

0, otherwise.

In the above, i denotes the neighborhood of 𝝓i (we have employed 5-NN graphs

in all our experiments). 𝐖(1)
has been successfully exploited for discriminant sub-

space learning in Marginal Discriminant Analysis (MDA) [21], while 𝐖(2)
can be

considered to be modification of 𝐖(1)
, exploiting geometric information of the class

data. A similar weight matrix has also been exploited in Local Fisher Discriminant

Analysis (LFDA) [23]. In both MDA and LFDA cases, it has been shown that by

exploiting local class information enhanced class discrimination can be achieved,

when compared to the standard LDA approach exploiting global class information,

by using (13).
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After the calculation of the graph weight matrix 𝐖, the graph Laplacian matrix

𝐋N×N
is given by [24]:

𝐋 = 𝐃 −𝐖, (16)

where 𝐃 is a diagonal matrix with elements Dii =
∑N

j=1 Wij.

By exploiting 𝐋, the network output weights 𝐖out of the LCVELM network can

be calculated by minimizing:

LCVELM = 1
2
‖𝐖out‖

2
F + c

2

N∑

i=1
‖𝝃i‖

2
2 +

𝜆

2
tr
(
𝐖T

out(𝝓𝐋𝝓
T )𝐖out

)
, (17)

𝐖T
out𝝓i = 𝐭i − 𝝃i, i = 1,… ,N, (18)

where tr(⋅) is the trace operator. By substituting the constraints (18) in LCVELM
and determining the saddle point of LCVELM , the network output weights 𝐖out are

given by:

𝐖out =
(

𝝓
(
𝐈 + 𝜆

c
𝐋
)
𝝓T + 1

c
𝐈
)−1

𝝓𝐓T
. (19)

Similar to (9), the calculation of the network output weights by employing (19) has

the advantage that the matrix 𝐁 =
(

𝝓
(
𝐈 + 𝜆

c
𝐋
)
𝝓T + 1

c
𝐈
)

is nonsingular, for c > 0.

In addition, the calculation of the graph similarity values s(⋅, ⋅) in the ELM space ℝL
,

rather than the input spaceℝD
has the advantage that nonlinear relationships between

the training vectors forming the various classes can be better expressed.

6 Data Classification (Test Phase)

After the determination of the network output weights 𝐖out by using (9), (10), (14)

or (19), a test vector 𝐱t ∈ ℝD
can be introduced to the trained network and the cor-

responding network output is obtained:

𝐨t = 𝐖T
out𝝓t, (20)

where 𝝓t denotes the network hidden layer output for 𝐱t. 𝐱t is finally classified to the

class corresponding to the maximal network output:

ct = argmax
k

otk, k = 1,… ,C. (21)
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7 Experimental Study

In this section, we present experiments conducted in order to evaluate the perfor-

mance of the ELM algorithms described in Sects. 2, 4 and 5. We have employed six

publicly available datasets to this end. These are: the ORL, AR and Extended YALE-

B (face recognition) and the COHN-KANADE, BU and JAFFE (facial expression

recognition). A brief description of the datasets is provided in the following sections.

Experimental results are provided in Sect. 7.3.

In all the presented experiments we compare the performance of the LCVELM

algorithm [18] with that of ELM [2], RELM [9] and MCVELM [16] algorithms.

The number of hidden layer neurons has been set equal to L = 1000 for all the ELM

variants, a value that has been shown to provide satisfactory performance in many

classification problems [9, 16]. For fair comparison, in all the experiments, we make

sure that the the same ELM space is used in all the ELM variants. That is, we first

map the training data in the ELM space and, subsequently, calculate the network out-

put weights according to each ELM algorithm. Regarding the optimal values of the

regularization parameters c, 𝜆 used in the ELM-based classification schemes, they

have been determined by following a grid search strategy. That is, for each classifier,

multiple experiments have been performed by employing different parameter val-

ues (c = 10r, r = −3,… , 3 and 𝜆 = 10p, p = −3,… , 3) and the best performance

is reported.

7.1 Face Recognition Datasets

7.1.1 The ORL Dataset

It consists of 400 facial images depicting 40 persons (10 images each) [25]. The

images were captured at different times and with different conditions, in terms of

lighting, facial expressions (smiling/not smiling) and facial details (open/closed eyes,

with/without glasses). Facial images were taken in frontal position with a tolerance

for face rotation and tilting up to 20◦. Example images of the dataset are illustrated

in Fig. 1.

Fig. 1 Facial images depicting a person from the ORL dataset
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Fig. 2 Facial images depicting a person from the AR dataset

Fig. 3 Facial images depicting a person from the Extended YALE-B dataset

7.1.2 The AR Dataset

It consists of over 4000 facial images depicting 70 male and 56 female faces [26].

In our experiments we have used the preprocessed (cropped) facial images pro-

vided by the database, depicting 100 persons (50 males and 50 females) having a

frontal facial pose, performing several expressions (anger, smiling and screaming),

in different illumination conditions (left and/or right light) and with some occlusions

(sun glasses and scarf). Each person was recorded in two sessions, separated by two

weeks. Example images of the dataset are illustrated in Fig. 2.

7.1.3 The Extended YALE-B Dataset

It consists of facial images depicting 38 persons in 9 poses, under 64 illumination

conditions [27]. In our experiments we have used the frontal cropped images pro-

vided by the database. Example images of the dataset are illustrated in Fig. 3.

7.2 Facial Expression Recognition Datasets

7.2.1 The COHN-KANADE Dataset

It consists of facial images depicting 210 persons of age between 18 and 50 (69%
female, 31%male, 81% Euro-American, 13%Afro-American and 6% other groups)

[28]. We have randomly selected 35 images for each facial expression, i.e., anger,

disgust, fear, happiness, sadness, surprise and neutral. Example images of the dataset

are illustrated in Fig. 4.
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Fig. 4 Facial images from the COHN-KANADE dataset. From left to right: neutral, anger, disgust,

fear, happy, sad and surprise

Fig. 5 Facial images depicting a person from the BU dataset. From left to right: neutral, anger,

disgust, fear, happy, sad and surprise

7.2.2 The BU Dataset

It consists of facial images depicting over 100 persons (60% female and 40% male)

with a variety of ethnic/racial background, including White, Black, East-Asian,

Middle-east Asian, Hispanic Latino and others [29]. All expressions, except the neu-

tral one, are expressed at four intensity levels. In our experiments, we have employed

the images depicting the most expressive intensity of each facial expression. Exam-

ple images of the dataset are illustrated in Fig. 5.

7.2.3 The JAFFE Dataset

It consists of 210 facial images depicting 10 Japanese female persons [30]. Each

of the persons is depicted in 3 images for each expression. Example images of the

dataset are illustrated in Fig. 6.

Fig. 6 Facial images depicting a person from the JAFFE dataset. From left to right: neutral, anger,

disgust, fear, happy, sad and surprise
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7.3 Results

In our first set of experiments, we have applied the competing algorithms on the face

recognition datasets. Since there is not a widely adopted experimental protocol for

these datasets, we randomly partition the datasets in training and test sets as follows:

we randomly select a subset of the facial images depicting each of the persons in each

dataset in order to form the training set and we keep the remaining facial images for

evaluation. We create five such dataset partitions, each corresponding to a different

training set cardinality. Experimental results obtained by applying the competing

algorithms are illustrated in Tables 1, 2 and 3 for the ORL, AR and the Extended

Yale-B datasets, respectively. As can be seen in these tables, the incorporation of

local class information in the optimization problem used for the determination of the

network output weights, generally increases the performance of the ELM network. In

all the cases the best performance is achieved by one of the two LCVELM variants.

By comparing the two LCVELM algorithms, it can be seen that the one exploiting

the graph weight matrix used in MDA generally outperforms the remaining choice.

Table 1 Classification rates on the ORL dataset

ELM (%) RELM (%) MCVELM (%) LCVELM (1) (%) LCVELM (2) (%)

10% 30.78 40.65 41.01 𝟒𝟏.𝟐𝟔 𝟒𝟏.𝟐𝟐
20% 20.67 39.76 41.81 𝟒𝟏.𝟖𝟏 𝟒𝟏.𝟖𝟏
30% 38.17 52.11 55 𝟓𝟓.𝟕𝟖 𝟓𝟓.𝟕𝟖
40% 38.31 53 57 𝟓𝟕.𝟏𝟗 𝟓𝟕.𝟏𝟑
50% 47 77.62 75.54 𝟕𝟕.𝟔𝟗 𝟕𝟕.𝟕𝟕

Table 2 Classification rates on the AR dataset

ELM (%) RELM (%) MCVELM (%) LCVELM (1) (%) LCVELM (2) (%)

10% 66.47 67.79 68.87 𝟔𝟗.𝟏𝟗 𝟔𝟗.𝟏𝟓
20% 70.49 80.24 80.91 80.86 𝟖𝟎.𝟗𝟔
30% 65.26 82.98 81.81 𝟖𝟑.𝟐𝟕 𝟖𝟑.𝟏
40% 75.33 91.9 92.94 𝟗𝟑.𝟎𝟏 𝟗𝟑.𝟎𝟏
50% 80.33 94.16 94.65 𝟗𝟒.𝟗 𝟗𝟒.𝟗

Table 3 Classification rates on the YALE-B dataset

ELM (%) RELM (%) MCVELM (%) LCVELM (1) (%) LCVELM (2) (%)

10% 69.17 𝟕𝟐.𝟐𝟐% 𝟕𝟐.𝟐𝟐% 𝟕𝟐.𝟐𝟐% 72.22%
20% 83.44 84.38 84.38 𝟖𝟓 84.38
30% 82.86 85.36 85.36 𝟖𝟖.𝟐𝟏 85.36
40% 90 92.08 92.08 𝟗𝟐.𝟓 92.08
50% 91 93.5 𝟗𝟒.𝟓 𝟗𝟒.𝟓 𝟗𝟒.𝟓
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Table 4 Classification rates on the facial expression recognition dataset

ELM (%) RELM (%) MCVELM (%) LCVELM (1) (%) LCVELM (2) (%)

COHN-

KANADE

49.8 79.59 80 𝟖𝟎.𝟒𝟏 80

BU 65 71, 57 71, 57 𝟕𝟐 𝟕𝟐, 𝟖𝟔
JAFFE 47.62 58.57 59.05 𝟔𝟎 𝟓𝟗.𝟓𝟐

In our second set of experiments, we have applied the competing algorithms on

the facial expression recognition datasets. Since there is not a widely adopted exper-

imental protocol for these datasets too, we apply the five-fold crossvalidation proce-

dure [31] by employing the facial expression labels. That is, we randomly split the

facial images depicting the same expression in five sets and we use five splits of all

the expressions for training and the remaining splits for evaluation. This process is

performed five times, one for each evaluation split. Experimental results obtained by

applying the competing algorithms are illustrated in Table 4. As can be seen in this

Table, the LCVELM algorithms outperform the remaining choices in all the cases.

Overall, enhanced facial image classification performance can be achieved by

exploiting class data geometric information in the ELM optimization process.

8 Conclusion

In this chapter an overview of Extreme Learning Machine-based Single-hidden

Layer Feedforward Neural networks training has been provided. Extended versions

of the ELM algorithm that exploit (local) class data geometric information in the

optimization process followed for the calculation of the network output weights have

been also described. An experimental study comparing the two approaches on facial

image classification problems has been finally presented, showing that the exploita-

tion of class data geometric information in the ELM optimization process enhances

the performance of the ELM network.
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Mixtures of Product Components Versus
Mixtures of Dependence Trees

Jiří Grim and Pavel Pudil

Abstract Mixtures of product components assume independence of variables given

the index of the component. They can be efficiently estimated from data by means of

EM algorithm and have some other useful properties. On the other hand, by consid-

ering mixtures of dependence trees, we can explicitly describe the statistical relation-

ship between pairs of variables at the level of individual components and therefore

approximation power of the resulting mixture may essentially increase. However,

we have found in application to classification of numerals that both models perform

comparably and the contribution of dependence-tree structures to the log-likelihood

criterion decreases in the course of EM iterations. Thus the optimal estimate of

dependence-tree mixture tends to reduce to a simple product mixture model.

Keywords Product mixtures ⋅ Mixtures of dependence trees ⋅ EM algorithm ⋅
NIST numerals

1 Introduction

In the last decades there is an increasing need of estimating multivariate and mul-

timodal probability distributions from large data sets. Such databases are usually

produced by information technologies in various areas like medicine, image process-

ing, monitoring systems, communication networks and others. A typical feature of

the arising “technical” data is a high dimensionality and a large number of mea-

surements. The unknown underlying probability distributions or density functions

are nearly always multimodal and cannot be assumed in a simple parametric form.

For this reason, one of the most efficient possibilities is to approximate the unknown
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multidimensional probability distributions by finite mixtures and, especially, by mix-

tures of components defined as products of univariate distributions [6, 8, 13, 17, 18,

23]. In case of discrete variables the product mixtures are universal approximators

since any discrete distribution can be expressed as a product mixture [12]. Similarly,

the Gaussian product mixtures approach the universality of non-parametric Parzen

estimates with the increasing number of components. In addition, the mixtures of

product components have some specific advantages, like easily available marginals

and conditional distributions, a direct applicability to incomplete data and the pos-

sibility of structural optimization of multilayer probabilistic neural networks (PNN)

[9, 10, 19, 21, 22].

Nevertheless, the simplicity of product components may become restrictive in

some cases and therefore it could be advantageous to consider more complex mixture

models. A natural choice is to use dependence-tree distributions [3] as components.

By using the concept of dependence tree we can explicitly describe the statistical

relationships between pairs of variables at the level of individual components and

therefore the approximation “power” of the resulting mixture model should increase.

We have shown [7] that mixtures of dependence-tree distributions can be optimized

by EM algorithm in full generality. In the domain of probabilistic neural networks the

mixtures of dependence trees could help to explain the role of dendritic branching

in biological neurons [20].

In this paper we describe first the product mixture model (Sects. 2 and 3). In

Sect. 4 we recall the concept of dependence-tree distribution in the framework of

finite mixtures. In Sect. 5 we discuss different aspects of the two types of mixtures in

a computational experiment—in application to recognition of numerals. The results

are summarized in the conclusion.

1.1 Estimating Mixtures

Considering distribution mixtures, we approximate the unknown probability distri-

butions by a linear combination of component distributions

P(x|w,𝜣) =
∑

m∈
wmF(x|𝜽m),  = {1,… ,M}, (1)

w = (w1,w2,… ,wM), 𝜽m = {𝜃m1, 𝜃m2,… , 𝜃mN},

where x ∈ X are discrete or real data vectors, w is the vector of probabilistic weights,

 is the component index set and F(x|𝜽m) are the component distributions with the

parameters 𝜽m.
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Since the late 1960s the standard way to estimate mixtures is to use the EM algo-

rithm [4–6, 24–26, 36, 38]. Formally, given a finite set  of independent observa-

tions of the underlying N-dimensional random vector

 = {x(1), x(2),…}, x = (x1, x2,… , xN) ∈ X, (2)

we maximize the log-likelihood function

L(w,𝜣) = 1
||

∑

x∈
log

[
∑

m∈
wmF(x|𝜽m)

]

(3)

by means of the following EM iteration equations (m ∈ , n ∈  , x ∈ ):

q(m|x) =
wmF(x|𝜽m)

∑
j∈ wjF(x|𝜽j)

, w′

m = 1
||

∑

x∈
q(m|x), (4)

Qm(𝜽m) =
∑

x∈

q(m|x)
∑

y∈ q(m|y)
logF(x|𝜽m), 𝜽

′

m = argmax
𝜽m

{
Qm(𝜽m)

}
. (5)

Here the apostrophe denotes the new parameter values in each iteration. One can

easily verify (cf. [6]) that the general iteration scheme (4) and (5) produces nonde-

creasing sequence of values of the maximized criterion (3). In view of the implicit

relation (5) any new application of EM algorithm is reduced to the explicit solution

of Eq. (5) for fixed conditional weights q(m|x).
Considering product mixtures, we assume the product components

F(x|𝜽m) =
∏

n∈
fn(xn|𝜃mn), m ∈  (6)

and therefore Eq. (5) can be specified for variables independently (n ∈  ):

Qmn(𝜃mn) =
∑

x∈

q(m|x)
w′
m||

log fn(xn|𝜃mn), 𝜃

′

mn = argmax
𝜃mn

{
Qmn(𝜃mn)

}
. (7)

The mixtures of product components have some specific advantages as approx-

imation tools. Recall that any marginal distribution of product mixtures is directly

available by omitting superfluous terms in product components. Thus, in case of

prediction, we can easily compute arbitrary conditional densities and for the same

reason product mixtures can be estimated directly from incomplete data without es-

timating the missing values [18]. Product mixtures support a subspace modification

for the sake of component-specific feature selection [10] and can be used for sequen-

tial pattern recognition by maximum conditional informativity [14]. Moreover, the

product components simplify the EM iterations, support sequential version [11] and

increase the numerical stability of EM algorithm.
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2 Multivariate Bernoulli Mixtures

In case of binary data xn ∈ {0, 1} the product mixture model (1), (6) is known as

multivariate Bernoulli mixture based on the univariate distributions

fn(xn|𝜃mn) = (𝜃mn)xn(1 − 𝜃mn)1−xn , 0 ≤ 𝜃mn ≤ 1, (8)

F(x|𝜽m) =
∏

n∈
(𝜃mn)xn(1 − 𝜃mn)1−xn , m ∈ . (9)

The conditional expectation criterion Qmn(𝜃mn) can be expressed in the form

Qmn(𝜃mn) =
∑

𝜉∈n

(∑

x∈
𝛿(𝜉, xn)

q(m|x)
w′
m||

)
log fn(𝜉|𝜃mn),

and therefore there is a simple solution maximizing the weighted likelihood (7):

fn(𝜉|𝜃mn) =
∑

x∈
𝛿(𝜉, xn)

q(m|x)
w′
m||

⇒ 𝜃

′

mn =
∑

x∈
xn
q(m|x)
w′
m||

. (10)

We recall that the multivariate Bernoulli mixtures are not restrictive as an approxi-

mation tool since, for a large number of components, any distribution of a random

binary vector can be expressed in the form (1), (9), (cf. [12]).

In case of multivariate Bernoulli mixtures we can easily derive the structural (sub-

space) modification [8, 10] by introducing binary structural parameters 𝜑mn ∈ {0, 1}
in the product components

F(x|𝜽m) =
∏

n∈
fn(xn|𝜃mn)𝜑mn fn(xn|𝜃0n)1−𝜑mn

, m ∈ . (11)

It can be seen that by setting 𝜑mn = 0 in the formula (11), we can substitute any

component-specific univariate distribution fn(xn|𝜃mn) by the respective common

background distribution fn(xn|𝜃0n). The structural component (9) can be rewritten

in the form

F(x|𝜽m) = F(x|𝜽0)G(x|𝜽m,𝝓m), m ∈ , (12)

where F(x|𝜽0) is a nonzero “background” probability distribution—usually defined

as a fixed product of the unconditional univariate marginals

F(x|𝜽0) =
∏

n∈
fn(xn|𝜃0n), 𝜃0n =

1
||

∑

x∈
xn, n ∈  .
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In this way we obtain the subspace mixture model

P(x|w,𝜣,𝜱) = F(x|𝜽0)
∑

m∈
wmG(x|𝜽m,𝝓m), (13)

where the component functions G(x|𝜽m,𝝓m) include additional binary structural pa-

rameters 𝜑mn ∈ {0, 1}:

G(x|𝜽m,𝝓m) =
∏

n∈

[
fn(xn|𝜃mn)
fn(xn|𝜃0n)

]
𝜑mn

, 𝝓m = (𝜑m1,… , 𝜑mN). (14)

Consequently, the component functions G(x|𝜽m,𝝓m) may be defined on different

subspaces. In other words, for each component we can “choose” the optimal subset

of informative features. The complexity and “structure” of the finite mixture (13) can

be controlled by means of the binary parameters 𝜑mn since the number of parame-

ters is reduced whenever 𝜑mn = 0. Thus we can estimate product mixtures of high

dimensionality while keeping the number of estimated parameters reasonably small.

The structural parameters 𝜑mn can be optimized by means of the EM algorithm

in full generality (cf. [8, 10, 21]) by maximizing the corresponding log-likelihood

criterion:

L = 1
||

∑

x∈
log

[
∑

m∈
wmF(x|𝜽0)G(x|𝜽m,𝝓m)

]

.

In the following EM iteration equations the apostrophe denotes the new parameter

values (m ∈ , n ∈  ):

q(m|x) =
wmG(x|𝜽m,𝝓m)

∑
j∈ wjG(x|𝜽j,𝝓j)

, w′

m = 1
||

∑

x∈
q(m|x), (15)

𝜃

′

mn =
∑

x∈
xn
q(m|x)
w′
m||

, 𝛾

′

mn =
1
||

∑

x∈
q(m|x) log

fn(xn|𝜃
′

mn)
fn(xn|𝜃0n)

. (16)

Assuming a fixed number 𝜆 of component specific parameters we define the optimal

subset of nonzero parameters𝜑
′

mn by means of the 𝜆 highest values 𝛾
′

mn > 0. From the

computational point of view it is more efficient to specify the structural parameters

by simple thresholding

𝜑

′

mn =

{
1, 𝛾 ′

mn > 𝜏

0, 𝛾 ′

mn ≤ 𝜏

,

(

𝜏 ≈
𝛾0
MN

∑

m∈

∑

n∈
𝛾

′

mn

)

where the threshold 𝜏 is derived from the mean value of 𝛾
′

mn by a coefficient 𝛾0. The

structural criterion 𝛾

′

mn can be rewritten in the form:
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𝛾

′

mn = w′

m

1∑

𝜉=0
fn(𝜉|𝜃

′

mn) log
fn(𝜉|𝜃

′

mn)
fn(𝜉|𝜃0n)

= w′

mI(fn(⋅|𝜃
′

mn)||fn(⋅|𝜃0n)). (17)

In other words, the structural criterion 𝛾

′

mn can be expressed in terms of Kullback-

Leibler information divergence I(fn(⋅|𝜃
′

mn)||fn(⋅|𝜃0n)) [29] between the component-

specific distribution fn(xn|𝜃
′

mn) and the corresponding univariate “background”

distribution fn(xn|𝜃0n). Thus, only the most specific and informative distributions

fn(xn|𝜃
′

mn) are included in the components.

It can be verified [10, 21] that, for a fixed 𝜆, the iteration scheme (15)–(17) guar-

antees the monotonic property of the EM algorithm. Recently the subspace mixture

model has been apparently independently proposed to control the Gaussian mixture

model complexity [31] and to estimate Dirichlet mixtures [2].

The main motivation for the subspace mixture model (13) has been the statis-

tically correct structural optimization of incompletely interconnected probabilistic

neural networks [10, 13, 16, 21]. Note that the background probability distribution

F(x|𝜽0) can be reduced in the Bayes formula and therefore any decision-making

may be confined to just the relevant variables. In particular, considering a finite set

of classes 𝜔 ∈ 𝛺 with a priori probabilities p(𝜔) and denoting 
𝜔

the respective

component index sets, we can express the corresponding class-conditional mixtures

in the form:

P(x|𝜔,w,𝜣,𝜱) = F(x|𝜽0)
∑

m∈
𝜔

wmG(x|𝜽m,𝝓m), 𝜔 ∈ 𝛺. (18)

In this way, the Bayes decision rule is expressed in terms of a weighted sum of

component functions G(x|𝜽m,𝝓m) which can be defined on different subspaces:

𝜔

∗ = d(x) = argmax
𝜔∈𝛺

{p(𝜔|x)} = argmax
𝜔∈𝛺

{p(𝜔)
∑

m∈
𝜔

wmG(x|𝜽m,𝝓m)}. (19)

3 Mixtures of Dependence Trees

As mentioned earlier, the simplicity of product components may appear to be lim-

iting in some cases and a natural way to generalize product mixtures is to use

dependence-tree distributions as components [7, 32–34]. Of course, marginal dis-

tributions of the dependence-tree mixtures are not trivially available anymore and

we lose some of the excellent properties of product mixtures, especially the unique

possibility of structural optimization of probabilistic neural networks. Nevertheless,

in some cases such properties may be unnecessary, while the increased complexity

of components could become essential.
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The idea of the dependence-tree distribution refers to the well known paper of

Chow and Liu [3] who proposed approximation of multivariate discrete probability

distribution P∗(x) by the product distribution

P(x|𝜋, 𝛽) = f (xi1 )
N∏

n=2
f (xin |xjn ), jn ∈ {i1,… , in−1}. (20)

Here 𝜋 = (i1, i2,… , iN) is a suitable permutation of the index set  and 𝛽 is the

dependence structure

𝛽 = {((i2, j2),… , (iN , jN))}, jn ∈ {i1, .., in−1}

which defines a spanning tree of the complete graph over the nodes {1, 2,… ,N}
because the edges 𝛽 do not contain any loop. In this paper we use a simplified notation

of marginal distributions whenever tolerable, e.g.,

f (xn) = fn(xn), f (xn|xk) = fn|k(xn|xk).

The above approximation model (20) can be equivalently rewritten in the form

P(x|𝜶,𝜽) =

[ N∏

n=1
f (xn)

][ N∏

n=2

f (xn, xkn )
f (xn)f (xkn)

]

, (21)

because the first product is permutation-invariant and the second product can always

be naturally ordered. Thus, in the last equation, the indices (k2,… , kN) briefly de-

scribe the ordered edges (n, kn) of the underlying spanning tree 𝛽 and we can write

P(x|𝜶,𝜽) = f (x1)
N∏

n=2
f (xn|xkn ), 𝜶 = (k2,… , kN), 𝜽 = {f (xn, xkn )}. (22)

Here 𝜶 describes the dependence structure and 𝜽 stands for the related set of two-

dimensional marginals. Note that all univariate marginals uniquely follow from the

bivariate ones.

The dependence-tree mixtures can be optimized by means of EM algorithm in full

generality, as shown in the paper [7]. Later, the concept of dependence-tree mixtures

has been reinvented in [32–34].

Considering binary variables xn ∈ {0, 1} we denote by P(x|w,𝜶,𝜣) a mixture of

dependence-tree distributions

P(x|w,𝜶,𝜣) =
∑

m∈
wmF(x|𝜶m,𝜽m), x ∈ X, (23)
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F(x|𝜶m,𝜽m) = f (x1|m)
N∏

n=2
f (xn|xkn ,m) (24)

with the two-dimensional marginals 𝜽m = {f (xn, xkn |m), n = 2,… ,N}, the underly-

ing dependence structures 𝜶m and the weight vector w:

𝜣 = {𝜽1,𝜽2,… ,𝜽M}, 𝜶 = {𝜶1,𝜶2,… ,𝜶M}, w = (w1,w2,… ,wM).

The related log-likelihood function can be expressed by the formula

L(w,𝜶,𝜣) = 1
||

∑

x∈
log [

∑

m∈
wmF(x|𝜶m,𝜽m)]. (25)

In view of Eq. (5), the EM algorithm reduces the optimization problem to the

iterative maximization of the following weighted log-likelihood criteria Qm,m ∈ 

with respect to 𝜽m and 𝜶m:

Qm(𝜶m,𝜽m) =
∑

x∈

q(m|x)
w′
m||

logF(x|𝜶m,𝜽m) (26)

=
∑

x∈

q(m|x)
w′
m||

[ log f (x1|m) +
N∑

n=2
log f (xn|xkn ,m) ].

By using usual 𝛿-function notation we can write

Qm(𝜶m,𝜽m) =
∑

x∈

q(m|x)
w′
m||

[
1∑

𝜉1=0
𝛿(𝜉1, x1) log f (𝜉1|m)

+
N∑

n=2

1∑

𝜉n=0

1∑

𝜉kn=0
𝛿(𝜉n, xn)𝛿(𝜉kn , xkn ) log f (𝜉n|𝜉kn ,m)] (27)

and further, using notation

̂f (𝜉n|m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn), ̂f (𝜉n, 𝜉kn |m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn)𝛿(𝜉kn , xkn ),

we can write:

Qm(𝜶m,𝜽m) =
1∑

𝜉1=0

̂f (𝜉1|m) log f (𝜉1|m) (28)

+
N∑

n=2

1∑

𝜉kn=0

̂f (𝜉kn |m)
1∑

𝜉n=0

̂f (𝜉n, 𝜉kn |m)
̂f (𝜉kn |m)

log f (𝜉n|𝜉kn ,m).
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For any fixed dependence structure 𝜶m, the last expression is maximized by the two-

dimensional marginals 𝜽
′

m = {f ′ (𝜉n, 𝜉kn |m), n = 2,… ,N}:

f ′ (𝜉n|m) = ̂f (𝜉n|m), f ′ (𝜉n|𝜉kn ,m) =
̂f (𝜉n, 𝜉kn |m)
̂f (𝜉kn |m)

. (29)

Making substitutions (29) in (28) we can express the weighted log-likelihood crite-

rion Qm(𝜶m,𝜽
′

m) just as a function of the dependence structure 𝜶m:

Qm(𝜶m,𝜽
′

m) =
N∑

n=1

1∑

𝜉n=0
f ′ (𝜉n|m) log f

′ (𝜉n|m)

+
N∑

n=2

1∑

𝜉n=0

1∑

𝜉kn=0
f ′ (𝜉n, 𝜉kn |m) log

f ′ (𝜉n, 𝜉kn |m)
f ′ (𝜉n|m)f

′ (𝜉kn |m)
.

Here the last expression is the Shannon formula for mutual statistical information

between the variables xn, xkn [37], i.e. we can write

(f ′n|m, f
′

kn|m
) =

1∑

𝜉n=0

1∑

𝜉kn=0
f ′ (𝜉n, 𝜉kn |m) log

f ′ (𝜉n, 𝜉kn |m)
f ′ (𝜉n|m)f

′ (𝜉kn |m)
(30)

Qm(𝜶m,𝜽
′

m) =
N∑

n=1
−H(f ′n|m) +

N∑

n=2
(f ′n|m, f

′

kn|m
).

In the last equation, the sum of entropies H(⋅) is structure-independent and there-

fore the weighted log-likelihood criterion Qm(𝜶m,𝜽
′

m) is maximized by means of the

second sum, in terms of the dependence structure 𝜶m.

The resulting EM iteration equations for mixtures of dependence-tree distribu-

tions can be summarized as follows (cf. [7], Eqs. (4.17)–(4.20)):

q(m|x) =
wmF(x|𝜶m,𝜽m)

∑
j∈ wjF(x|𝜶j,𝜽j)

, w′

m = 1
||

∑

x∈
q(m|x), (31)

𝜶
′

m = argmax
𝛼

{ N∑

n=2
(f ′n|m, f

′

kn|m
)
}
, f ′ (𝜉n|m) =

∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn), (32)

f ′ (𝜉n, 𝜉kn |m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn)𝛿(𝜉kn , xkn ), n = 1, 2,… ,N. (33)
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Thus the optimal dependence structure 𝜶
′

m can be found by constructing the

maximum-weight spanning tree of the related complete graph with the edge weights

(f ′n|m, f
′

k|m) [3]. For this purpose we can use e.g. the algorithm of Kruskal [28] or

Prim [35] (cf. Appendix for more details).

The concept of dependence-tree mixtures can be applied to continuous variables

by using bivariate Gaussian densities (cf. [7, 15]).

4 Recognition of Numerals

In recent years we have repeatedly applied multivariate Bernoulli mixtures to recog-

nition of hand-written numerals from the NIST benchmark database, with the aim

to verify different decision-making aspects of probabilistic neural networks (cf. [13,

16]). In this paper we use the same data to compare performance of the product

(Bernoulli) mixtures and mixtures of dependence trees. We assume that the under-

lying 45 binary (two class) subproblems may reveal even very subtle differences

between the classifiers. Moreover, the relatively stable graphical structure of numer-

als should be advantageous from the point of view of dependence-tree mixtures.

The considered NIST Special Database 19 (SD19) contains about 400000 hand-

written numerals in binary raster representation (about 40000 for each numeral). We

normalized all digit patterns to a 32 × 32 binary raster to obtain 1024-dimensional

binary data vectors. In order to guarantee the same statistical properties of the

training- and test data sets, we have used the odd samples of each class for training

and the even samples for testing. Also, to increase the variability of the binary pat-

terns, we extended both the training- and test data sets four times by making three

differently rotated variants of each pattern (by –4, –2 and +2
◦
) with the resulting

80000 patterns for each class.

In order to make the classification test we estimated for all ten numerals the class-

conditional distributions by using Bernoulli mixtures in the subspace modification

(13) and also by using dependence-tree mixtures. Recall that we need 2048 para-

meters to define each component of the dependence-tree distribution (24). The mar-

ginal probabilities of dependence-tree components displayed in raster arrangement

(cf. Fig. 1) correspond to the typical variants of the training numerals. Simultane-

ously, the figure shows the corresponding maximum-weight spanning tree 𝜶m. Note

that the superimposed optimal dependence structure naturally “reveals” how the nu-

merals have been written because the “successive” raster points are strongly corre-

lated.

For the sake of comparison we used the best solutions obtained in a series of

experiments—both for the product mixtures and for the dependence-tree mixtures.

The independent test patterns were classified by means of Bayes decision function

(19). Each test numeral was classified by using mean Bayes probabilities obtained

with the four differently rotated variants. Table 1 shows the classification error based

on the product mixtures (18) as a function of model complexity. Number of para-
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Fig. 1 Mixture of dependence trees for binary data—examples of marginal component probabil-

ities in raster arrangement. Note that the superimposed optimal dependence structure (defined by

maximum-weight spanning tree) reflects the way the respective numerals have been written

Table 1 Recognition of numerals from the NIST SD19 database by mixtures with different number

of product components

Experiment no. I II III IV V VI VII VIII

Components 10 100 299 858 1288 1370 1459 1571

Parameters 10240 89973 290442 696537 1131246 1247156 1274099 1462373

Classif. error in % 11.93 4.28 2.93 2.40 1.95 1.91 1.86 1.84
In the third row the number of parameters denotes the total number of component specific parame-

ters 𝜃mn

meters in the third row denotes the total number of component-specific parameters

𝜃mn (for which 𝜙mn = 1). Similar to Table 1 we can see in Table 3 the classification

error as a function of model complexity, now represented by different numbers of

dependence-tree components.

The detailed classification results for the best solutions are described by the error

matrix in Table 2 (ten class-conditional mixtures with the total number of M=1571

product components including 1462373 parameters) and Table 4 (ten mixtures with

total number of M = 400 dependence tree components including 819200 parame-

ters). As it can be seen the global recognition accuracy (right lower corner) is compa-

rable in both cases. Note that in both tables the detailed frequencies of false negative

and false positive decisions are also comparable.

Roughly speaking, the dependence-tree mixtures achieve only slightly better

recognition accuracy with a comparable number of parameters, but the most complex

model (M = 500) already seems to overfit. Expectedly, the dependence tree mixtures

needed much less components for the best performance but they have stronger ten-

dency to overfitting. The best recognition accuracy in Table 1 (cf. col. VIII) well

illustrates the power of the subspace product mixtures.

The most surprising result of the numerical experiments is the decreasing im-

portance of the component dependence structure during the EM estimation process.

We have noticed that in each class the cumulative weight of all dependence trees

expressed by the weighted sum
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𝜮
′ =

∑

m∈
𝜔

w′

m

N∑

n=2
(f ′n|m, f

′

kn|m
) (34)

is decreasing in the course of EM iterations (cf. Fig. 2). In other words the optimal

estimate of the dependence tree mixture tends to suppress the information contri-

bution of the dependence structures in components, i.e. the component dependence

trees tend to degenerate to simple products. Nevertheless, this observation is prob-

ably typical only for mixtures having a large number of components since a single

product component is clearly more restrictive than a single dependence tree.

5 Conclusions

We compare the computational properties of mixtures of product components and

mixtures of dependence trees in application to recognition of numerals from the

NIST Special Database 19. For the sake of comparison we have used for each of

the considered mixture models the best solution obtained in series of experiments.

The detailed description of the classification performance (cf. Tables 2 and 4) shows

that the recognition accuracy of both models is comparable. It appears that, in our

case, the dependence structure of components does not improve the approximation

power of the product mixture essentially and, moreover, the information contribu-

tion of the dependence structure decreases in the course of EM iterations as shown in

Fig. 2. Thus, the optimal estimate of the dependence tree mixture tends to approach

a simple product mixture model. However, this observation is probably related to

large number of components only.

We assume that the dependence tree distribution is advantageous if we try to fit

a small number of components to a complex data set. However, in case of a large

number of multidimensional components the component functions are almost non-

overlapping [17], the structural parameters tend to fit to small compact subsets of

data and the structurally modified form of the components is less important. We can

summarize the results of comparison as follows:

Table 3 Recognition of numerals from the NIST SD19 database by mixtures with different number

of dependence trees

Experiment No. I II III IV V VI VII VIII

Components 10 40 100 150 200 300 400 500

Parameters 20480 81920 204800 307200 409600 614400 819200 1024000

Classif. error in % 6.69 4.13 2.64 2.53 2.22 2.13 1.97 2.01
For comparable number of parameters the dependence-tree mixtures achieve only slightly better

recognition accuracy
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Table 4 Classification error matrix obtained by means of dependence-tree mixtures (number of

components M = 400, number of parameters: 819200)

Class 0 1 2 3 4 5 6 7 8 9 False

n. (%)

0 19979 11 62 21 18 26 25 2 28 10 1.0

1 5 21981 78 13 74 1 20 155 21 4 1.7

2 22 15 19777 72 26 5 6 35 72 6 1.3

3 20 10 66 20169 1 120 1 20 122 27 1.9

4 12 16 13 4 19245 1 13 52 44 177 1.7

5 25 5 15 157 8 17874 45 9 129 36 2.3

6 100 19 38 25 43 90 19575 1 75 3 2.0

7 17 33 108 24 71 0 0 20367 28 299 2.8

8 18 30 47 167 27 55 22 17 19337 70 2.3

9 12 20 62 74 89 33 3 144 134 19196 2.9

False

p. (%)

1.4 0.7 2.4 2.7 1.8 1.8 0.7 1.6 3.1 3.2 1.97

The last column contains percentage of false negative decisions. The last row contains false positive

rates in percent of the respective class test patterns with the global error rate in bold

Fig. 2 The decreasing

information contribution of

the dependence structure to

the estimated

dependence-tree mixtures

(the first eight iterations of

the ten estimated

class-conditional

distributions). The EM

algorithm tends to suppress

the information contribution

of the dependence structures

to the optimal estimate

In Case of a Large Number of Components

∙ intuitively, the large number of components is the main source of the resulting

approximation power

∙ dependence structure of components does not improve the approximation power

of product mixtures essentially

∙ the total information contribution of the component dependence structures

decreases in the course of EM iterations

∙ the optimal estimate of the dependence tree mixture tends to approach a simple

product mixture model
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In Case of a Small Number of Components

∙ a single dependence tree component is capable to describe the statistical relations

between pairs variables

∙ consequently, the approximation power of a single dependence tree component is

much higher than that of a product component

∙ information contribution of the dependence structure can increase in the course of

EM iterations

∙ dependence structure of components can essentially improve the approximation

quality

In this sense, the computational properties of dependence tree mixtures provide

an additional argument to prefer the product mixture models in case of large multidi-

mensional data sets. A large number of product components in the subspace modifi-

cation (19) seems to outperform the advantage of the more complex dependence-tree

distributions.
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Appendix: Maximum-Weight Spanning Tree

The algorithm of Kruskal (cf. [3, 28]) assumes ordering of all N(N − 1)∕2 edge

weights in descending order. The maximum-weight spanning tree is then constructed

sequentially, starting with the first two (heaviest) edges. The next edges are added

sequentially in descending order if they do not form a cycle with the previously cho-

sen edges. Multiple solutions are possible if several edge weights are equal, but they

are ignored as having the same maximum weight. Obviously, in case of dependence-

tree mixtures with many components, the application of the Kruskal algorithm may

become prohibitive in high-dimensional spaces because of the repeated ordering of

the edge-weights.

The algorithm of Prim [35] does not need any ordering of edge weights. Starting

from any variable we choose the neighbor with the maximum edge weight. This first

edge of the maximum-weight spanning tree is then sequentially extended by adding

the maximum-weight neighbors of the currently chosen subtree. Again, any ties may

be decided arbitrarily since we are not interested in multiple solutions.

Both Kruskal and Prim refer to an “obscure Czech paper” of Otakar Borůvka [1]

from the year 1926 giving an alternative construction of the minimum-weight span-

ning tree and the corresponding proof of uniqueness. Moreover, the Prim’s algorithm

was developed in 1930 by Czech mathematician Vojtěch Jarník (cf. [27], in Czech).

The algorithm of Prim can be summarized as follows (in C-code):
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// Maximum-weight spanning tree construction
//***************************************************************
// spanning tree: {<2,A[2]>,...,<NN,A[NN]>}
// NN........ number of nodes, N=1,2,...,NN
// T[N]...... labels of the defined part of the spanning tree
// E[N][K]... positive weight of the edge <N,K>
// A[K]...... heaviest neighbor of K in the defined subtree
// GE[K]..... greatest edge weight between K and defined subtree
// K0........ the most heavy neighbor of the defined subtree
// SUM....... total weight of the spanning tree
//***************************************************************

for(N=1; N<=NN; N++) {GE[N]=-1; T[N]=0; A[N]=0;}
N0=1; T[N0]=1; K0=0; // initial values
for(I=2; I<=NN; I++) // spanning tree loop
{ FMAX=-1E0;

for(N=2; N<=NN; N++) if(T[N]<1)
{ F=E[N0][N];

if(F>GE[N]) {GE[N]=F; A[N]=N0;} else F=GE[N];
if(F>FMAX) {FMAX=F; K0=N;}

} // end of N-loop
N0=K0; T[N0]=1; SUM+=FMAX;

} // end of spanning tree construction
//***************************************************************
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Recurrent Neural Networks Training
Using Derivative Free Nonlinear Bayesian
Filters

Branimir Todorović, Miomir Stanković and Claudio Moraga

Abstract We have implemented the recurrent neural networks training algorithms
as joint estimation of synaptic weights and neuron outputs using approximate
nonlinear recursive Bayesian estimators. We have considered two nonlinear
derivative free estimators: Divided Difference Filter and Unscented Kalman filter
and compared there computational efficiency and performances to the Extended
Kalman Filter as training algorithms for different recurrent neural network archi-
tectures. Algorithms and architectures were tested on problems of long term,
chaotic time series prediction.

1 Introduction

In this paper we consider the training of Recurrent Neural Networks (RNNs) as
derivative free approximate Bayesian estimation. RNNs form a wide class of neural
networks with feedback connections among processing units (artificial neurons).
Neural networks with feed forward connections implement static input-output
mapping, while recurrent networks implement the mapping of both input and internal
state (represented by outputs of recurrent neurons) into the future internal state.

In general, RNNs can be classified as locally recurrent, where feedback con-
nections exist only from a processing unit to itself, and globally recurrent, where
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feedback connections exist among distinct processing units. The modelling capa-
bilities of globally recurrent neural networks are much richer than that of the simple
locally recurrent networks.

There exist a group of algorithms for training synaptic weights of recurrent
neural networks that are based on the exact or approximate computation of the
gradient of an error measure in the weight space. Well known approaches that use
methods for exact gradient computation are back-propagation through time (BPTT)
and real time recurrent learning (RTRL) [10, 11]. Since BPTT and RTRL are using
only first-order derivative information, they exhibit slow convergence. In order to
improve the speed of the RNN training, a technique known as teacher forcing has
been proposed [10]. The idea is to use the desired outputs of the neurons instead of
the obtained to compute the future outputs. In this way the training algorithm is
focused on the current time step, given that the performance is correct on all earlier
time steps.

However, in its basic form teacher forcing is not always applicable. It clearly
cannot be applied in networks where feedback connections exist only from hidden
units, for which the target outputs are not explicitly given. The second important
case is the training on noisy data, where the target outputs are corrupted by noise.
Therefore, to apply teacher forcing in such cases, a true target outputs of neurons
have to be estimated somehow.

The well-known extended Kalman filter [1], as a second order sequential training
algorithm and state estimator offers the solution to the both stated problems. It
improves the learning rate by exploiting second order information on criterion
function and generalizes the teacher forcing technique by estimating the true out-
puts of the neurons.

The extended Kalman filter can be considered as the approximate solution of the
recursive Bayesian state estimation problem. The problem of estimating the hidden
state of a dynamic system using observations which arrive sequentially in time is
very important in many fields of science, engineering and finance. The hidden state
of some dynamic system is represented as a random vector variable, and its evo-
lution in time fxk , k=1, 2, . . .g is described by a so called dynamic or process
equation:

xk = fkðxk− 1, uk , dkÞ, ð1Þ

where fk : Rnx × nd →Rnx is nonlinear function, and fdk , k=1, 2, . . .g is an i.i.d.
process noise sequence, while nx and nd are dimensions of the state and process
noise vectors respectively. The hidden state is known only through the measure-
ment (observation) equation:

yk = hkðxk , vkÞ, ð2Þ

where hk:Rnx × nv →Rny is nonlinear function, and fvk, k=1, 2, . . .g is an i.i.d.
measurement noise sequence, and ny and nv are dimensions of the measurement and
measurement noise vectors, respectively.
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In a sequential or recursive Bayesian estimation framework, the state filtering
probability density function (pdf) pðxk y̸0: kÞ, (where y0: k denotes the set of all
observations y0: k = fy0, y1, . . . , ykg up to the time step k), represents the complete
solution. The optimal state estimate with respect to any criterion can be calculated
based on this pdf.

The recursive Bayesian estimation algorithm consists of two steps: prediction
and update. In the prediction step the previous posterior pðxk− 1 y̸0: k− 1Þ is pro-
jected forward in time, using the probabilistic process model:

pðxk y̸0: k− 1Þ=
Z

pðxk x̸k − 1Þpðxk− 1 y̸0: k− 1Þdxk, ð3Þ

where the state transition density function pðxk x̸k− 1Þ is completely specified by
f ð ⋅ Þ and the process noise distribution pðdkÞ.

In the second step, the predictive density is updated by incorporating the latest
noisy measurement yk using the observation likelihood pðyk x̸kÞ to generate the
posterior:

pðxk y̸0: kÞ= pðyk x̸kÞpðxk y̸0: k− 1ÞR
pðyk x̸kÞpðxk y̸0: k − 1Þdxk . ð4Þ

This recursive estimation algorithm can be applied to RNN training after rep-
resenting the time evolution of neurons outputs and connection weights, as well as
their observations, in the form of the state space model. The hidden state of the
recurrent neural network xk is a stacked vector of recurrent neurons outputs sk and
connection weights wk. Its evolution in time can be represented by the following
dynamic equation.

sk
wk

� �
=

f ðsk− 1, uk,wk− 1, dsk Þ
wk− 1 + dwk

� �
, ð5Þ

where dsk and dwk represent dynamic noise vectors.
The outputs of the neurons are obtained through the following observation

equation:

yk = hðsk ,wk, vkÞ. ð6Þ

The recurrence relations (3) and (4) are only conceptual solutions and the pos-
terior density pðxk y̸0: kÞ cannot be determined analytically in general. The restrictive
set of cases includes the famous Kalman filter, which represents the optimal
solution of (3) and (4) if the prior state density pðx0 y̸0Þ= pðx0Þ, the process noise as
well as the observation noise densities are Gaussians, and f ð ⋅ Þ and hð ⋅ Þ are linear
functions.

In case of RNN training, f ð ⋅ Þ and hð ⋅ Þ are nonlinear in general and an analytic
solution is not tractable, therefore some approximations and suboptimal solutions
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have to be considered. The well known suboptimal solution is the Extended Kal-
man Filter (EKF), which assumes the Gaussian property of noise and uses the
Taylor expansion of f ð ⋅ Þ and hð ⋅ Þ (usually up to the linear term) to obtain the
recursive estimation for pðxk y̸0: kÞ. The EKF has been successfully applied in RNN
training [7, 8, 9] due to important advantages compared to RTRL and BPTT: faster
convergence and generalization of teacher forcing. Recently, families of new
derivative free filters have been proposed as an alternative to EKF for estimation in
nonlinear systems. Divided Difference Filters (DDF), derived in [6], are based on
polynomial approximation of nonlinear transformations using a multidimensional
extension of Stirling’s interpolation formula. The Unscented Kalman Filter
(UKF) [2, 3] uses the true nonlinear models and approximates the state distribution
using deterministically chosen sample points. Surprisingly, both the DDF and the
UKF result in similar equations which do not require calculation of neither dynamic
nor observation equation Jacobians, and are therefore usually called derivative free
filters [9].

The rest of the paper is organized as follows. In the second section recursive
Bayesian estimator is approximated by linear minimum mean square error estimator
(MMSE), which recursively updates only the first two moments of the relevant
probability densities. The problem that remains to be solved is propagating these
moments through the nonlinear mapping of the process equation and the obser-
vation equation. In the third section we describe three approaches to this problem: a
linearization of the nonlinear mapping using a Taylor series expansion, a derivative
free polynomial approximation using a multidimensional extension of the Stirling’s
interpolation formula and a derivative free unscented transformation. In the fourth
section we give the state space models of three globally recurrent neural networks:
fully connected, Elman and Non-linear AutoRegresssive with eXogenous inputs
(NARX) recurrent neural networks. We trained them by applying approximate
recursive Bayesian joint estimation of the recurrent neurons outputs and synaptic
weights. The results of applying three different estimation algorithms in training
three different architectures of recurrent neural networks are given in the last
section.

2 Linear MMSE Estimation of the Nonlinear State Space
Model

An analytically tractable solution of the problem of recursive Bayesian estimation
framework can be obtained based on the assumption that the state estimator x ̂k can
be represented as a linear function of the current observation yk:

xk̂ =Akyk + bk, ð7Þ

where matrix Ak and vector bk are derived by minimizing mean square estimation
error criterion:
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Rk =
ZZ

ðxk − xk̂ÞTðxk − xk̂Þ ⋅ pðxk, yk y̸0: k− 1Þdxkdyk . ð8Þ

Note that the condition ∂Rk ∂̸bk =0 is equivalent to the requirement that the
estimator is unbiased:

ZZ
ðxk −Akyk − bkÞ ⋅ pðxk, yk y̸0: k− 1Þdxkdyk =0, ð9Þ

from which we obtain bk = x ̂−k −Aky ̂−k , and consequently:

x ̂k = x ̂−k −Akðyk − y ̂−k Þ, ð10Þ

where

x ̂−k =E½xk y̸0: k− 1�=
Z

xkpðxk y̸0: k− 1Þdxk

and

y ̂−k =E½yk y̸0: k− 1�=
Z

ykpðyk y̸0: k− 1Þdyk.

Both the condition ∂Rk ∂̸Ak =0 and the unbiasedness of the estimator result in
the so called orthogonality principle, which states that the estimation error is
orthogonal to the current observation:ZZ

ðxk − x ̂−k −Akðyk − y ̂−k ÞÞðyk − y ̂−k ÞTpðxk, yk y̸0: k− 1Þdxkdyk =0. ð11Þ

From (11) we obtain the matrix Ak =PxkykP
− 1
yk , where

Pyk =E½ðyk − y ̂−k Þðyk − y ̂−k ÞT y̸0: k− 1� ð12aÞ

Pxkyk =E½ðxk − x ̂−k Þðyk − y ̂−k ÞT y̸0: k− 1� ð12bÞ

Note that Pyk must be invertible, that is measurements yk have to be linearly
independent.

Finally, after replacing Ak =PxkykP
− 1
yk we obtain the linear MMSE estimator:

xk̂ = x ̂−k +PxkykP
− 1
yk ðyk − y ̂−k Þ. ð13aÞ

The matrix Mean Square Error (MSE) corresponding to (13a):
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E½ðxk − xk̂Þðxk − xk̂ÞT �=P−
xk −PxkykP

− 1
yk PT

xkyk . ð13bÞ

is used as the approximation of the estimator covariance Pxk ≈E½ðxk − xk̂Þðxk − xk̂ÞT �.
If the dynamic and the observation models are linear and process and obser-

vation noises are Gaussian, the linear MMSE estimator is the best MMSE estimator
and is equal to the conditional mean E½xk y̸0: k�, otherwise it is the best within the
class of linear estimators.

The problem that remains to be solved is the estimation of the statics of a random
variable propagated trough the nonlinear transformation.

x ̂−k =
ZZ

f ðxk− 1, uk, dkÞpðxk− 1 y̸0: k− 1ÞpðdkÞdxk− 1ddk ð14aÞ

P−
xk =

ZZ
ðf ðxk− 1, uk, dkÞ− x ̂−k Þðf ðxk− 1, uk, dkÞ− x ̂−k ÞTpðxk− 1 y̸0: k− 1ÞpðdkÞdxk− 1dvk

ð14bÞ

y ̂−k =
ZZ

hðxk , uk, vkÞpðxk y̸0: k− 1ÞpðvkÞdxkdvk ð14cÞ

P−
yk =

ZZ
ðhðxk, uk, vkÞ− y ̂−k Þðhðxk , uk, vkÞ− y ̂−k ÞTpðxk y̸0: k− 1ÞpðvkÞdxkdvk ð14dÞ

Pxkyk =
ZZ

ðxk − x ̂−k Þðhðxk , uk, vkÞ− y ̂−k ÞTpðxk y̸0: k− 1ÞpðvkÞdxkdvk ð14eÞ

The problem can be considered in a general way. Suppose that x is a random
variable with mean x ̄ and covariance Px. A random variable y is related to x through
the nonlinear function y= f ðxÞ. We wish to calculate the mean y ̄ and the covariance
Py of y.

2.1 Extended Kalman Filter

The extended Kalman filter is based on the multidimensional Taylor series
expansion of f ðxÞ. We shall consider only the first order EKF, obtained by
excluding the nonlinear terms of Taylor series expansion:

f ðxÞ = f ðx ̂+ΔxÞ≈f ðx ̂Þ+ f ′xðx ̂ÞΔx ð15Þ

where f ′xðx ̂Þ= ∂f ∂̸xjx= x̂ is the Jacobian of the nonlinear function and Δx is a zero
mean random variable with covariance Px.
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After linearization of the dynamic equation (1) we obtain the following
approximation:

xk = fkðxk̂− 1, uk, dk̄Þ+Fkðxk− 1 − xk̂− 1Þ+Gkðdk − dk̄Þ, ð16Þ

where

Fk = ∂fkðxk − 1, uk , dkÞ ∂̸xk− 1

��
xk− 1 = xk̂− 1

dk = dk̄

ð17Þ

and

Gk = ∂fkðxk− 1, uk, dkÞ ∂̸dkj xk− 1 = xk̂ − 1

dk = dk̄

, ð18Þ

xk̂− 1 =E½xk− 1 y̸1: k− 1� represents the estimate of the state in time step k-1 and
dk̄ =E½dk� is process noise mean.

Prediction of the state xk̂ − 1 =E½xk− 1 y̸1: k− 1� and prediction covariance
P−
xk =E½ðxk − x ̂−k Þðxk − x ̂−k ÞT y̸0: k− 1� are obtained after applying (14a) and (14b) to

linearized dynamic equation (16):

x ̂−k = f ðxk̂ − 1, uk , dk̄Þ ð19aÞ

P−
xk =FkPxk− 1F

T
k +GkQkGT

k ð19bÞ

where Qk =E½ðdk − dkÞðdk − dkÞT � represents the process noise covariance.
After the linearization of the observation Eq. (2) we obtain:

xk = fkðx ̂−k , vk̄Þ+Hkðxk − x ̂−k Þ+Lkðvk − vk̄Þ, ð20Þ

where

Hk = ∂hkðxk, vkÞ ∂̸xk
��
xk = x ̂−k
vk = vk̄

ð21Þ

and

Lk = ∂hkðxk− 1, vkÞ ∂̸vkj xk = x ̂−k
vk = vk̄

, ð22Þ

and vk̄ =E½vk� is the mean of the observation noise.
The prediction of the observation is given by:
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x ̂−k = hðx ̂−k , vk̄Þ ð23aÞ

and the prediction covariance is:

Pyk =HkP−
xk H

T
k +LkRkLTk ð23bÞ

and cross covariance:

Pxxyk =P−
xk H

T
k ð23bÞ

where Rk =E½vkvTk � is the observation noise covariance.

2.2 Divided Difference Filter (DDF)

In [6] Nørgaard et al. proposed a new set of estimators based on a derivative free
polynomial approximation of nonlinear dynamic and observation equation using
Stirling’s interpolation formula which uses central divided differences. Here we will
consider only second order polynomial approximation, which is for arbitrary
nonlinear function f ðxÞ given by:

f ðxÞ≈f ðx ̄Þ+D  Δxf +
1
2!
D  2Δx f ð24Þ

where D  Δxf and D  2Δxf are the first and second order central divided difference
operators acting on f ðxÞ:

D  Δxf = ðx− x ̄Þ f ðx ̄+ hÞ− f ðh− hÞ
2h

D  2Δxf = ðx− x ̄Þ f ðx ̄+ hÞ− f ðh− hÞ
h2

h is the central difference step size and x ̄, around which we expand f ðxÞ, is the prior
mean of random variable x.

Previous formulation can be extended to the multidimensional case by stochastic
decoupling of random variable x:

z=R− T
x x, ð25Þ

where Rx represents the upper triangular Cholesky factor of the covariance matrix
Px =E½ðx− x ̄Þðx− x ̄ÞT �=RT

x Rx. After decoupling we have:
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f ðxÞ = f ðRT
x zÞ = f  ðzÞ. ð26Þ

Individual components of random variable z are mutually uncorrelated, with
unity variance Pz =E½ðz− z ̄Þðz− z ̄ÞT �= I and consequently we can apply the first
and the second order central difference operators independently to the components
of f  ðzÞ, in order to obtain the following multidimensional central difference
operators:

D  Δzf  =
1
h

∑
n

i=1
Δziμiδi

� �
f  ðz ̄Þ ð27Þ

D 2Δzf  =
1
h2

∑
n

i=1
Δ2

ziδ
2
i + ∑

nx

i=1
∑
nx

j=1
j≠ i

ΔziΔzjðμiδiÞðμjδjÞ

0
BBBB@

1
CCCCAf  ðz ̄Þ ð28Þ

where Δzi represents the ith component of ðz− z ̄Þ. Partial first and second order
difference operators δi and δ2i , and the mean operator μi are defined as:

δif  ðz ̄Þ= f  ðz ̄+ h
2
eiÞ− f  ðz ̄− h

2
eiÞ ð29aÞ

δ2i f  ðz̄Þ= f  ðz ̄+ heiÞ+ f  ðz ̄− heiÞ− 2f  ðz ̄Þ ð29bÞ

μif  ðzÞ=
1
2
ðf  ðz ̄+ h

2
eiÞ+ f  ðz ̄− h

2
eiÞÞ ð29cÞ

where ei is the ith unit vector.
When propagating multidimensional random variable x with prior mean x ̄=E½x�

and covariance Px =E½ðx− x ̄Þðx− x ̄Þ� through nonlinear function y= f ðxÞ, we can
use the second order multidimensional Stirling expansion of () to approximate
posterior mean y ̄=E½y�, covariance Py =E½ðy− y ̄Þðy− y ̄ÞT � and cross covariance
Py =E½ðx− xÞðy− y ̄ÞT �.

Approximation of the mean is given by:

y ̄≈E½f  ðz ̄Þ+D Δxf  +
1
2!
D  2Δxf  �= f ðz ̄Þ+ 1

2
E½D 2Δz

f  �

= f  ðz ̄Þ+ σ2
2h2

ð∑
n

i=1
Δ2

ziδ
2
i Þf  ðz̄Þ

=
h2 − nx
h2

f  ðz̄Þ+ 1
2h2

∑
nx

i=1
ðf  ðz̄+ heiÞ+ f  ðz ̄− heiÞÞ

ð30Þ
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The ith moment of an arbitrary element in Δzi is denoted by σi. All elements are
assumed to be identically distributed therefore their moments are equal. Moreover,
we have E½ðz− z ̄Þðz− z ̄ÞT �= I, that is σ2 = 1, while higher moments depend on the
distribution of Δzi .

Using f  ðz ̄+ heiÞ= f ðRT
x ðz ̄± heiÞÞ= f ðRT

x z ̄± hRT
x eiÞ= f ðx± hRT

x, iÞ, where RT
x, i

represents the ith column of the upper triangular Cholesky factor transpose, we can
rewrite the posterior mean approximation in terms of the prior statistic of x:

y ̄≈
h2 − nx
h2

f ðx ̄Þ+ 1
2h2

∑
nx

i=1
ðf ðx ̄+ hRT

x, iÞ+ f ðx ̄− hRT
x, iÞÞ ð31Þ

After applying the identity y ̄= f ðx ̄Þ+E½y− f ðx ̄Þ�, we obtain the posterior
covariance in the following form:

Py =E½ðy− y ̄Þðy− y ̄ÞT �
=E½ðy− f ðx ̄ÞÞðy− f ðx ̄ÞÞT �−E½y− f ðx ̄Þ�E½y− f ðx ̄Þ�T

=E½ðy− f  ðz ̄ÞÞðy− f  ðz ̄ÞÞT �−E½y− f  ðz ̄Þ�E½y− f  ðz ̄Þ�T
ð32Þ

As a consequence, the approximation of the posterior covariance can be written:

Py =E½D xf  + 1
2!
D  2x f  �.

=E ðD xf  + 1
2!
D  2x f  ÞðD xf  +

1
2!
D  2x f  ÞT

� �
−E D xf  +

1
2!
D  2x f  

� �
E D  xf  +

1
2!
D 2x f  

� �T

=E D  xf  ðD xf  ÞT
� �

+
1
4
E D 2x f  ðD 

2
x f  ÞT

h i
−

1
4
E D  2x f  
h i

E D  2x f  
h iT

ð33Þ

After cancelling the identical terms when subtracted, and discarding the terms
containing cross-differences, as it was explained in [3], we obtain the following
approximation:

Py ≈ σ2 ∑
n

i=1
ðμiδif  ðz ̄ÞÞðμjδjf  ðz ̄ÞÞT +

σ4 − σ22
4

∑
n

i=1
δ2i f  ðz ̄Þðδ2i f  ðz ̄ÞÞT .

=
σ2
4h2

∑
nx

p=1
ðf  ðz̄+ heiÞ− f  ðz ̄+ heiÞðf  ðz ̄+ heiÞ− f  ðz ̄+ heiÞT

+
σ4 − σ22
4h4

∑
nx

p=1
ððf  ðz ̄+ heiÞ+ f  ðz ̄+ heiÞ− 2f  ðz ̄ÞÞ ⋅

ðf  ðz̄+ heiÞ+ f  ðz ̄+ heiÞ− 2f  ðz ̄ÞÞT

ð34Þ
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Using σ2 = 1 and setting h2 = σ4 [3], we have:

Py =
1
4h2

∑
nx

p=1
ðf ðx ̄+ hRT

x, iÞ− f ðx ̄− hRT
x, iÞÞ ⋅

ðf ðx ̄+ hRT
x, iÞ− f ðx ̄− hRT

x, iÞÞT

+
h2 − 1
4h4

∑
nx

p=1
ðf ðx ̄+ hRT

x, iÞ+ f ðx ̄− hRT
x, iÞ− 2f ðx ̄ÞÞ ⋅

ðf ðx ̄+ hRT
x, iÞ+ f ðx ̄− hRT

x, iÞ− 2f ðx ̄ÞÞT

ð35Þ

Since σ4 − σ22 =E½ðΔzÞ4�−E½ðΔzÞ2�2 =Var½ðΔzÞ2�>0, for all distributions, we
always select h2 > 1, and consequently the covariance approximation will always be
positive semi definite.

Nørgaard et al. have derived the alternative covariance estimate as well [6]:

Py =
h2 − nx
h2

ðf ðx ̄Þ− y ̄Þf ðx ̄Þ− y ̄ÞT

+
1
2h2

∑
nx

p=1
ðf ðx ̄+ hRT

x, iÞ− y ̄Þf ðx ̄+ hRT
x, iÞ− y ̄ÞT

+
1
2h2

∑
nx

i=1
ðf ðx ̄− hRT

x, iÞ− y ̄Þf ðx ̄− hRT
x, iÞ− y ̄ÞT

ð36Þ

This estimate is less accurate than (35). Moreover, for h2 < n the last term
becomes negative semi-definite with a possible implication that the covariance
estimate (36) becomes non-positive definite. The reason why this estimate is con-
sidered here is to provide a comparison with the covariance estimate obtained by
the Unscented Transformation described in the next subsection.

The estimate of the cross-covariance matrix is:

Pxy =E½ðx− xÞðf  ðz ̄Þ+D Δzf  − f  ðz̄ÞÞT �=E½RT
x ΔzðD Δzf  ÞT �

=E ∑
nx

i=1
RT
x, iΔzi ∑

n

i=1
Δziμiδif  ðz ̄Þ

� �T
" #

=E ∑
nx

i=1
RT
x, iΔzi ∑

n

i=1
Δziμiδif  ðz ̄Þ

� �T
" #

= σ2 ∑
nx

i=1
RT
x, i μiδif  ðz ̄Þ
	 
T� �

= ∑
nx

p=1
ðf ðx ̄− hsx, pÞ− y ̄Þf ðx ̄− hsx, pÞ− y ̄ÞT

ð37Þ

2.3 Unscented Kalman Filter (UKF)

The unscented transformation [2, 3, 4] is a method for calculating the statistics of a
random variable which undergoes a nonlinear transformation. It is based on the
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intuition that is easier to approximate a probability distribution than arbitrary
function.

Again we consider propagating the nx-dimensional continuous random variable x
with prior mean x ̄=E½x� and covariance Px =E½ðx− x ̄Þðx− x ̄ÞT � through nonlinear
function y= f ðxÞ. To calculate the first two moments of random variable y using
unscented transformation we first select the set of 2nx +1 samples X i called sigma
points with corresponding weights ωi. The weights and sample locations are
selected to accurately capture the prior mean and covariance of a random variable
and to capture the posterior mean and covariance accurately up to and including
second order terms in the Taylor series expansion of the true quantities [3]. Sigma
points and their weights which satisfy previous constraints are given by:

X 0 = x ̄, ω0 = κ ð̸nx + κÞ i=0
X i = x ̄+

ffiffiffiffiffiffiffiffiffiffiffiffi
nx + λ

p
⋅ sx, i ωi =0.5 ð̸nx + κÞ i=1, 2, . . . , nx

X i+ nx = x ̄−
ffiffiffiffiffiffiffiffiffiffiffiffi
nx + λ

p
⋅ sx, i ωi+ nx =0.5 ð̸nx + κÞ i=1, 2, . . . , nx

ð38Þ

where κ∈ℜ is the scaling parameter, sx, i is the ith row or column of the matrix
square root of Px. For weights associated with sigma points it holds ∑2nx

i=0 wi =1.
Note that using this idea is possible to capture the higher order moments of pos-
terior random variable, but at the cost of a larger set of sigma points [3].

After propagating sigma points through the nonlinear function Yi = f ðX iÞ,
approximations of the posterior mean, covariance and cross covariance are:

y ̄= ∑
2nx

i=0
ωiY i ð39aÞ

Py = ∑
2nx

i=0
ωiðYi − y ̄ÞðYi − y ̄ÞT. ð39bÞ

Pxy = ∑
2nx

i=0
ωiðX i − x ̄ÞðYi − y ̄ÞT ð39cÞ

The approximations are accurate to the second order of the Taylor series
expansion of f ðxÞ(third order for Gaussian prior). Errors in the third and higher
moments can be scaled by appropriate choice of scaling parameter κ. When prior
random variable is Gaussian a useful heuristic is to select κ=3− nx [3].

It can be easily verified that for h=
ffiffiffiffiffiffiffiffiffiffi
n+ λ

p
, the estimates of the mean (34) and

the covariance (36) obtained by Stirling’s interpolation formula are equivalent to
the estimates (39a) and (39b) obtained by unscented transformation.

The spread of the selected sigma points depends on dimensionality of prior
random variable and in case of significant nonlinearity of considered mapping f ðxÞ,
it can cause problems by possibly sampling non-local effects. The scaled unscented
transformation was introduced in [5] as a possible solution of this problem. It has
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been shown that sigma point selection and scaling can be combined into a single
step by setting λ= α2ðnx + κÞ− nx, and selecting the sigma points by:

χ0 = x ̄, ωðmÞ
0 = λ ð̸nx + λÞ, ωðcÞ

0 = λ ð̸nx + λÞ+ ð1− α2 + βÞ
χi = x ̄+

ffiffiffiffiffiffiffiffiffiffiffiffi
nx + λ

p
⋅ sx, i ωi =0.5 ð̸nx + λÞ, i=1, 2, . . . , nx

χi+ nx = x ̄+
ffiffiffiffiffiffiffiffiffiffiffiffi
nx + λ

p
⋅ sx, i ωi+ nx =0.5 ð̸nx + λÞ, i=1, 2, . . . , nx

By choosing κ≥ 0 we can guarantee positive semi definiteness of the covariance
matrix. Parameter α controls the spread of sigma points around x ̄ and is a small
number (usually 1.e− 4≤ α≤ 1) to avoid sampling non-local effects in case of
significant nonlinearity. β is a non negative weighting term which can be used to
incorporate knowledge of the higher order moments of the distribution. Optimal
choice for Gaussian prior is β=2 [5].

The true posterior mean and the mean calculated using the unscented transfor-
mation or Stirling’s interpolation agrees exactly to the third order. Errors are
introduced in the forth and higher order terms [3, 6]. The extended Kalman filter
linearization approach calculates the posterior mean which agrees with the true
mean only up to the first order. UKF and DDF calculate the posterior covariance
accurately in the first two terms of Taylor series expansion, with errors only
introduced at the fourth and higher order moments. It was shown in [3] that absolute
term-by-term errors of these higher order moments are consistently smaller for the
nonlinear derivative free approach of UKF and DDF than for the linearized EKF
case. In [6] Nørgaard et al. shows that DDF has slightly smaller absolute error
compared to UKF in the fourth order terms and also guarantees positive semi
definiteness of the posterior covariance.

3 Efficient Implementation of Training Algorithms

In order to apply recursive approximate Bayesian estimators as training algorithms
of recurrent neural networks we need to represent dynamics of RNN in a form of
state space model. In this section we define the state space models of three rep-
resentative architectures of globally recurrent neural networks: Elman, fully con-
nected, and NARX recurrent neural network.

3.1 Elman Network State Space Model

In Elman RNNs adaptive feedbacks are provided between every pair of hidden
units. The network is illustrated in Fig. 1a, and the state space model of the Elman
network is given by equations
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xHk
wO
k

wH
k

2
4

3
5=

f ðxHk− 1,w
H
k− 1, ukÞ

wO
k− 1

wH
k− 1

2
4

3
5+ dxHk

dwO
k

dwH
k

2
4

3
5 ð40aÞ

yk = xOk + vk , xOk = hðxHk ,wO
k Þ ð40bÞ

where xHk represents the output of the hidden neurons in the kth time step, xOk is the
output of the neurons in the last layer, wO

k− 1 is the vector of synaptic weights
between the hidden and the output layer and wH

k− 1 is the vector of recurrent
adaptive connection weights. Note that in the original formulation of Elman, these
weights were fixed. Random variables dxHk , dwO

k
, dwH

k
represent the process noises.

It is assumed that the output of the network xOk = hðxHk ,wO
k Þ is corrupted by the

observation noise vk .

3.2 Fully Connected Recurrent Network State Space Model

In fully connected RNNs adaptive feedbacks are provided between each pair of
processing units (hidden and output). The state vector of a fully connected RNN
consists of outputs (activities) of hidden xHk and output neurons xOk , and their
synaptic weights wH

k and wO
k . The activation functions of the hidden and thee output

neurons are f HðxOk , xHk ,wH
k− 1, ukÞ and f OðxOk , xHk ,wO

k − 1, ukÞ, respectively. The net-
work structure is illustrated in Fig. 1b.

The state space model of the network is given by:

x
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H
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x x
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2,k n  ,k
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Fig. 1 Elman (a) and fully (b) connected RNN
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xOk
xHk
wO
k

wH
k

2
664

3
775=

f OðxOk , xHk ,wO
k− 1, ukÞ

f HðxOk , xHk ,wH
k − 1, ukÞ

wO
k− 1

wH
k− 1

2
664

3
775+

dxOk
dxHk
dwO

k
dwH

k

2
664

3
775 ð41aÞ

yk =H ⋅

xOk
xHk
wO
k

wH
k

2
664

3
775+ vk, H = ½InO × nO 0nO × ðnS − nOÞ� ð41bÞ

The dynamic equation describes the evolution of neuron outputs and synaptic
weights. In the observation equation, the matrix H selects the activities of output
neurons as the only visible part of the state vector, where nS is the number of hidden
states which are estimated: nS = nO + nH + nWO + nWH , nO and nH are the numbers of
output and hidden neurons respectively, nWO is the number of adaptive weights of
the output neurons, nWH is the number of adaptive weights of the hidden neurons.

3.3 NARX Recurrent Neural Network State Space Model

The non-linear AutoRegressive with eXogenous inputs (NARX) recurrent neural
network usually outperforms the classical recurrent neural networks, like Elman or
fully connected RNN, in tasks that involve long term dependencies for which the
desired output depends on inputs presented at times far in the past (Fig. 2).

Here we define the state space model of a NARX RNN. Adaptive feedbacks are
provided between the output and the hidden units. These feedback connection and
possible input connections are implemented as FIR filters. The state vector consists

xk
O

O O

z-1 z-1z-1z-1
u

u
xk-1 uk-1kxk-Δ u

x k-Δ  +1

Fig. 2 NARX recurrent
neural network
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of outputs of the network in Δx time steps xOk , x
O
k− 1,…,xOk−Δx +1, the output w

O
k , and

hidden synaptic wH
k weights.

xOk
xOk − 1
⋮

xOk−Δx +1

wO
k

wH
k

2
6666664

3
7777775
=

f ðxOk − 1, .., x
O
k−Δx

, uk− 1, .., uk−Δu ,wk− 1Þ
xOk− 1
⋮

xOk−Δx +1

wO
k− 1

wH
k− 1

2
6666664

3
7777775
+

dxOk
0
⋮
0
dwO

k
dwH

k

2
6666664

3
7777775

ð42aÞ

The dynamic equation describes the evolution of network outputs and synaptic
weights.

yk =H ⋅

xOk
xOk− 1
⋮

xOk−Δx +1

wO
k

wH
k

2
6666664

3
7777775
+ vk , H = ½InO × nO 0nO × ðnS − nOÞ� ð42bÞ

As in previous examples, nO represents the number of output neurons. nS is the
number of hidden states of the NARX RNN: nS = nO + nWO + nWH , nWO is the
number of adaptive weights of output neurons, nWH is number of adaptive weights
of hidden neurons.

All considered models have nonlinear hidden neurons and linear output neurons.
Two types of nonlinear activation functions have been used in the following tests:
the sigmoidal and the Gaussian radial basis function.

3.4 Square Root Implementation of Recursive Bayesian
Estimators as RNN Training Algorithms

Straightforward implementation of Unscented Kalman Filter and Divided Differ-
ence Filter requires calculation of the prior state covariance matrix, which has
Oðn3 6̸Þ computational complexity. However it is the full covariance matrix of the
estimate which is recursively updated. The square root implementations of UKF
and DDF recursively update the Cholesky factors of the covariance matrices.
Although the general complexity of the algorithms is still Oðn3Þ, they will have
better numerical properties, comparable to the standard square root implementation
of Kalman filter.

The square root implementations of EKF, UKF and DDF are based on three
linear algebra algorithms: matrix orthogonal-triangular decomposition
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(triangularization), rank one update of a Cholesky factor and efficient solution of the
over-determined least square problem.

The orthogonal-triangular decomposition of m× n matrix A (½Q,R�= qrðAÞ)
produces m× n upper triangular matrix R, which is Cholesky factor of ATA, and
m× n unitary matrix Q such that A=Q×R.

Rank one update of a Cholesky factor R, returns upper triangular Cholesky
factor R for which holds:

R  TR =RTR± xxT , ð43Þ

where x is column vector of appropriate length.
For overdetermined least squares problem AX =B, if A is an upper triangular

matrix, then X is simply computed by back substitution algorithm.
Using Cholesky decomposition of the prior covariance Pxk− 1 =RT

xk− 1
Rxk− 1 we can

represent the state and observation prediction covariance in EKF as:

P−
xk =FkRT

xk− 1
Rxk− 1F

T
k +RT

dkRdk = FkRT
xk− 1

RT
dk

� �
⋅ Rxk− 1F

T
k

Rdk

� �
= ðR−

xk Þ
TR−

xk ð44Þ

P−
yk =HkðR−

xk Þ
TR−

xk H
T
k +RT

vkRvk = HkðR−
xk Þ

T RT
vk

h i
⋅ R−

xk H
T
k

Rvk

� �
= ðR−

yk Þ
TR−

yk . ð45Þ

where Rdk and Rvk represent the Cholesky factors of process and observation noise
respectively.

We obtain the recursive update of the estimation covariance Cholesky factor
using the numerically stable Joseph form of the covariance:

Pxk = ðI −KkHkÞðR−
xk ÞTR−

xk ðI −KkHkÞT +KkRT
vkRvkK

T
k .

= ðI −KkHkÞðR−
xk Þ

T KkRT
vk

h i
⋅

R−
xk ðI −KkHkÞT

RvkK
T
k

" #
=RT

xkRxk

ð46Þ

Algorithm: Square Root Extended Kalman Filter

% Initialization

x0̂ =E½x0�,Rx0 =CholðE½ðx0 − x0̂Þðx− x ̂0ÞT �Þ

for k = 1, 2,…
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% State prediction

% Estimate the mean and covariance Cholesky factor of the process noise:
dk̄ ,Rdk
% Calculate Jacobians of a dynamic equation

Fk =
∂f ðxk− 1, uk, dkÞ

∂xk − 1

���� xk− 1 = xk̂− 1

dk = dk̄

,Gk =
∂f ðxk− 1, uk, dkÞ

∂dk

���� xk− 1 = xk̂− 1

dk = dk̄

% State prediction and Cholesky factor of state prediction covariance

x ̂−k = f ðxk̂ − 1, uk , dk̄Þ

R−
xk =QR Rxk− 1F

T
k

Rdk

� �� �

% Observation prediction

% Estimate the mean and covariance Cholesky factor of the observation noise:
vk̄,Rvk
% Calculate Jacobians of a dynamic equation

Hk =
∂hðxk, vkÞ

∂xk

���� xk = x ̂−k
vk = vk̄

,Lk =
∂hðxk , vkÞ

∂vk

���� xk = x ̂−k
vk = v⃗k

% Observation prediction, prediction covariance Cholesky factor and cross
covariance

y ̂−k = hðx ̂−k , vk̄Þ

R−
yk =QR R−

xk H
T
k

Rvk

� �� �

P−
xkyk =P−

xk H
T
k
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% Update

% Kalman gain
Kk = ðP−

xkyk R̸
−
yk Þ ð̸R−

yk Þ
T )

% State estimation

x ̂k = x ̂−k +Kkðyk − y ̂−k Þ

% Estimation covariance Cholesky factor

Rxk =QR R−
xk ðI −KkHkÞT

RvkK
T
k

� �� �

end for
end algorithm

Algorithm: Square Root Unscented Kalman Filter

% Initialization

x0̂ =E½x0�,Rx0 =CholðE½ðx0 − x0̂Þðx− x ̂0ÞT �Þ

for k = 1,2,…

% State prediction

% Estimate the mean and covariance matrix Cholesky factor of process noise:
dk̄ ,Rdk
% Calculate positions and weights of sigma points

λ= α2
ffiffiffiffiffiffiffiffiffiffiffiffi
nx + κ

p
− nx, γ =

ffiffiffiffiffiffiffiffiffiffiffiffi
nx + λ

p
X xk− 1 = xk̂− 1, xk̂− 1 + γRT

xk− 1
, xk̂− 1 − γRT

xk− 1

h i

wðmÞ
0 =

λ

nx + λ
,wðcÞ

0 =wðmÞ
0 + 1− α2 + β,wðmÞ

1 =wðcÞ
1 =

1
2ðnx + λÞ

% State prediction and prediction covariance Cholesky factor
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X −
k = f X k− 1, ukð Þ

x ̂−k =wðmÞ
i X −

k, 0 +wðmÞ
1 ∑

2nx

i=0
X −

k, i + dk̄

R−
xk =Cholupdate QR

ffiffiffiffiffiffiffiffi
wðcÞ
1

q
ðX −

k, 1: 2nx − x ̂−k ÞT
Rdk

" # !
,
ffiffiffiffiffiffiffiffiffiffiffi
jwðcÞ

0 j
q

ðX −
k, 0 − x ̂−k Þ, signðwðcÞ

0 Þ
 !

% Observation prediction

% Estimate the mean and covariance Cholesky factor of the observation noise:
vk̄,Rvk
% Calculate positions and weights of sigma points

λ= α2
ffiffiffiffiffiffiffiffiffiffiffiffi
nx + κ

p
− nx, γ =

ffiffiffiffiffiffiffiffiffiffiffiffi
nx + λ

p
X −

k = x ̂−k , x ̂−k + γðR−
xk ÞT , x ̂−k − γðR−

xk ÞT
h i

wðmÞ
0 =

λ

nx + λ
,wðcÞ

0 =wðmÞ
0 + 1− α2 + β,wðmÞ

1 =wðcÞ
1 =

1
2ðnx + λÞ

% Observation prediction, prediction covariance Cholesky factor and cross
covariance

Y −
k = h X −

k

	 


y ̂−k =wðmÞ
0 Y −

k, 0 +wðmÞ
1 ∑

2nx

i=1
Y −

k, i + vk̄

R−
yk =Cholupdate QR

ffiffiffiffiffiffiffiffi
wðcÞ
1

q
ðY −

k, 1: 2nx − y ̂−k ÞT
Rvk

" # !
,
ffiffiffiffiffiffiffiffiffiffiffi
jwðcÞ

0 j
q

Y −
k, 0 − y ̂−k

	 

, signðwðcÞ

0 Þ
 !

P−
xkyk =wðcÞ

0 ðX −
k, 0 − x ̂−k ÞðY −

k, 0 − y ̂−k ÞT +wðcÞ
1 ∑

2nx

i=1
ðX −

k, i − x ̂−k ÞðY −
k, i − y ̂−k ÞT
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% Update

% Kalman gain

Kk = ðP−
xkyk R̸

−
yk Þ ð̸R−

yk Þ
T

% State estimation

x ̂k = x ̂−k +Kkðyk − y ̂−k Þ

% Estimation covariance Cholesky factor

Rxk =CholupdateðR−
xk , ðKkðR−

yk Þ
TÞi, ′− ′Þ ð4:6:67Þ

end for
end algorithm

Algorithm: Square Root Divided Difference Filter

% Initialization

x0̂ =E½x0�,Rx0 =CholðE½ðx0 − x0̂Þðx− x ̂0ÞT �Þ

for k = 1,2,…

% State prediction

% Estimate the mean and covariance matrix Cholesky factor of process noise:
dk̄ ,Rdk
% Calculate positions and weights of sigma points

X k− 1 = xk̂− 1, xk̂− 1 + hRT
xk− 1

, xk̂− 1 − hRT
xk− 1

h i

wðmÞ
1 =

h2 − nx
h2

,wðcÞ
1 =

1
4h2

,wðmÞ
2 =

1
2h2

,wðcÞ
2 =

h2 − 1
4h2
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% State prediction, prediction covariance Cholesky factor and cross covariance

X −
k = f X k− 1, ukð Þ

x ̂−k =wðmÞ
1 X −

k, 0 +wðmÞ
2 ∑

2nx

i=0
X −

k, i + dk̄

R−
xk =QR

ffiffiffiffiffiffiffiffi
wðcÞ
1

q
ðX −

k, 1: nx −X −
k, nx +1: 2nxÞTffiffiffiffiffiffiffiffi

wðcÞ
2

q
ðX −

k, 1: nx +X −
k, nx +1: 2nx − 2X −

k, 0ÞT
Rdk

2
664

3
775

0
BB@

1
CCA

% Observation prediction

% Estimate the mean and covariance Cholesky factor of the observation noise:
vk̄,Rvk
% Calculate positions and weights of sigma points

X −
k = x ̂−k , x ̂−k + hðR−

xk Þ
T , x ̂−k − hðR−

xk Þ
T

h i

wðmÞ
1 =

h2 − nx
h2

,wðcÞ
1 =

1
4h2

,wðmÞ
2 =

1
2h2

,wðcÞ
1 =

h2 − 1
4h2

% Observation prediction, prediction covariance Cholesky factor and cross
covariance

Y −
k = h X −

k

	 
 ð4:6:102Þ

y ̂−k = ∑
2ny

i=0
wðmÞ
i Y −

k, i + vk̄ ð4:6:105Þ

R−
yk =QR

ffiffiffiffiffiffiffiffi
wðcÞ
1

q
ðY −

k, 1: nx −Y −
k, nx +1: 2nxÞTffiffiffiffiffiffiffiffi

wðcÞ
2

q
ðY −

k, 1: nx +Y −
k, nx +1: 2nx − 2Y −

k, 0ÞT
Rvk

2
664

3
775

0
BB@

1
CCA ð4:6:106Þ

P−
xkyk =

ffiffiffiffiffiffiffiffi
wðcÞ
1

q
ððY −

k, 1: nx −Y −
k, nx +1: 2nxÞR−

xk Þ
T ð4:6:107Þ
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% Update

% Kalman gain

Kk = ðP−
xkyk R̸

−
yk Þ ð̸R−

yk Þ
T

% State estimation

x ̂k = x ̂−k +Kkðyk − y ̂−k Þ

% Estimation covariance Cholesky factor

Rxk =CholupdatefR−
xk ,KkðR−

yk Þ
T , − 1g

end for
end algorithm

4 Examples

In this section we compare derived algorithms for sequential training of RNN. We
have evaluated the performance of algorithms in training three different architec-
tures of globally recurrent neural networks: fully connected RNN, Elman RNN with
adaptive recurrent connections and NARX recurrent neural network. The problem
at hand was the long term prediction of chaotic time series. Implementation of
Divided Difference Filter and Unscented Kalman filter did not required linearization
of the RNN state space models. However, in order to apply Extended Kalman Filter
we had to linearize the RNNs state space models that are to calculate Jacobian of
the RNN outputs with respect to the inputs and synaptic weights. Note that we did
not apply back propagation through time but standard back propagation algorithm
to calculate the Jacobian. This was possible because of the joint estimation of RNN
outputs and synaptic weights.

In the process of the evaluation, recurrent neural networks were trained
sequentially on the certain number of samples. After that they were iterated for a
number of samples, by feeding back just the predicted outputs as the new inputs of
the recurrent neurons. Time series of iterated predictions were compared with the
test parts of the original time series by calculating the Normalized Root Mean
Squared Error (NRMSE):
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NRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

σ2N
∑
N

k=1
ðyk − y ̂−k Þ2

s
ð30Þ

where σ is the standard deviation of chaotic time series, yk is the true value of
sample at time step k, and y ̂−k is the RNN prediction.

Mean and variance of the NRMSE obtained on 30 independent runs, average
time needed for training and number of hidden neurons and adaptive synaptic
weights are given in tables for comparison.

The variance of the process noise ds, k and dw, k were exponentially decayed form
1.e − 1 and 1.e − 3 to 1.e − 10, and the variance of the observation noise vk was
also exponentially decayed from 1.e − 1 to 1.e − 10 during the sequential training.

4.1 Mackey Glass Chaotic Time Series Prediction

In our first example we have considered the long term iterated prediction of the
Mackey Glass time series. We have applied Divided Difference Filter, Unscented
Kalman Filter and Extended Kalman Filter for joint estimation of synaptic weights
and neuron outputs of three different RNN architectures: Elman, fully connected
and non-linear AutoRegressive with eXogenous inputs (NARX) recurrent neural
network.

After sequential adaptation on 2000 samples, a long term iterated prediction of
the next N =100 samples is used to calculate the NRMSE.

Table 1 contains mean and variance of NRMSE obtained after 30 independent
trials of each estimator applied on each architecture. We also give the number of
hidden units, the number of adaptable parameters and time needed for training on
2000 samples. Given these results we can conclude that the NARX network is
superior in both NRMSE of long term prediction and time needed for training,

Table 1 NRMSE of the long term iterated prediction for various RNN architectures and training
algorithms

Mean Var nH nW T[s]

DDF_ELMAN_SIG 0.316 8.77e – 3 10 121 20.88
UKF_ELMAN_SIG 0.419 3.43e – 2 10 121 20.91
EKF_ELMAN_SIG 0.429 5.89e − 2 10 121 14.98
DDF_FC_SIG 0.269 7.15e − 3 10 131 23.43
UKF_FC_SIG 0.465 8.51e − 2 10 131 23.78
EKF_FC_SIG 0.359 8.64e − 2 10 131 17.38
DDF_NARX_SIG 0.0874 2.91e − 4 5 41 5.64
UKF_NARX_SIG 0.119 1.89e − 3 5 41 5.68
EKF_NARX_SIG 0.153 3.37e − 3 5 41 4.76
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compared to other two architectures. As for the approximate Bayesian estimators,
although slightly slower in our implementation, derivative free filters (DDF and
UKF) are consistently better than EKF, that is they produced RNN’s with signifi-
cantly lower NRMSE.

Sample results of long term prediction using NARX network with sigmoidal
neurons, trained using DDF are shown in Fig. 3.

4.2 Hénon Chaotic Time Series Prediction

In our first example, we consider the prediction of the long-term behaviour of the
chaotic Hénon dynamics:

xk =1− 1.4x2k− 1 + 0.3xk− 2 ð31Þ

RNNs with sigmoidal and Gaussian hidden neurons (we call this network
Recurrent Radial Basis Function network—RBF network) were trained sequentially
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Fig. 3 Mackey Glass chaotic time series prediction. Phase plot of xk versus xk−1 and xk−2 for the
Mackey Glass time series and the NARX RMLP iterated prediction (a). Comparison of the original
chaotic time series and the NARX RMLP iterated prediction (b)
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on 3000 samples. After training networks were iterated for 20 samples by feeding
back the current outputs of the neurons as the new inputs. Figures 4 and 5 show
results of prediction using NARX_RBF network trained by DDF on a Hénon
chaotic time series.

It can be seen from Fig. 4a and b, that, although the network was trained only
using sample data chaotic attractor, which occupies small part of the surface defined
by Eq. (31), the recurrent neural network was able to reconstruct that surface closely
to the original mapping (Fig. 4a), as well as to reconstruct the original attractor
(Fig. 4b).

Results presented in Table 2 show that both DDF and UKF produce more
accurate RNNs than EKF with comparable training time.
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Fig. 4 Hénon chaotic time series prediction: Surface and phase plot. Surface plot of the Hénon
and NARX_RRBF map; Dots—chaotic attractor and NARX_RRBF attractor (a). Phase plot of xk
versus xk−1 and xk−2 for the Hénon series and NARX RRBF iterated prediction (b)
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5 Conclusions

We considered the problem of recurrent neural network training as an approximate
recursive Bayesian state estimation. Results in chaotic time series long term pre-
diction show that derivative free estimators Divided Difference Filter and
Unscented Kalman Filter considerably outperform Extended Kalman Filter as RNN
learning algorithms with respect to the accuracy of the obtained network, while
retaining comparable training times.

Experiments also show that of tree considered architectures: Elman, fully con-
nected and non-linear AutoRegressive with eXogenous inputs (NARX) recurrent
neural network, NARX is by far superior in both training time and accuracy of
trained networks in long term prediction.
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Fig. 5 Comparison of the original chaotic time series and the NARX RRBF iterated prediction

Table 2 Results of long term predictions of the Hénon chaotic time series

Mean Var nH nW T[s]

DDF_ELMAN_SIG 1.73e − 2 6.19e − 5 4 25 8.34
DDF_ELMAN_RBF 6.02e − 2 3.89e − 4 3 22 7.76
UKF_ELMAN_SIG 7.29e − 2 9.46e − 3 4 25 8.53
UKF_ELMAN_RBF 7.24e − 2 1.79e − 3 3 22 7.91
EKF_ELMAN_SIG 1.69e − 1 5.17e − 2 4 25 7.69
EKF_ELMAN_RBF 1.01e − 1 7.50e − 3 3 22 7.96
DDF_NARX_SIG 7.46e − 3 3.39e − 6 4 17 6.21
DDF_NARX_RBF 4.36e − 3 4.15e − 6 3 16 5.85
UKF_NARX_SIG 1.28e − 2 2.68e − 5 4 17 6.37
UKF_NARX_RBF 5.72e − 3 7.14e − 6 3 16 6.00
EKF_NARX_SIG 1.57e − 2 1.65e − 5 4 17 5.76
EKF_NARX_RBF 7.07e − 3 1.35e − 6 3 16 6.17

Recurrent Neural Networks Training … 409



References

1. Anderson, B., Moore, J.: Optimal Filtering. Englewood Cliffs, NJ, Prentice-Hall (1979)
2. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In:

Proceedings of the American Control Conference, pp. 1628–1632 (1995)
3. Julier, S.J., Uhlmann, J.K.: A general method for approximating nonlinear transformations of

probability distributions. Technical report, RRG, Department of Engineering Science,
University of Oxford (1996)

4. Julier, S.J.: A skewed approach to filtering. In: SPIE Conference on Signal and Data
Processing of Small Targets, vol. 3373, pp. 271–282. SPIE, Orlando, Florida (1998)

5. Julier, S.J.: The scaled unscented transformation. In: Proceedings of the American Control
Conference, vol. 6, pp. 4555–4559 (2002)

6. Nørgaard, M., Poulsen, N.K., Ravn, O.: Advances in derivative free state estimation for
nonlinear systems, Technical Report, IMM-REP-1998-15. Department of Mathematical
Modelling, DTU (2000)

7. Todorović, B., Stanković, M., Moraga, C.: On-line learning in recurrent neural networks using
nonlinear Kalman Filters. In: Proceedings of the ISSPIT 2003, Darmstadt, Germany (2003)

8. Todorović, B., Stanković, M., Moraga, C.: Nonlinear Bayesian estimation of recurrent neural
networks. In: Proceedings of the IEEE 4th International Conference on Intelligent Systems
Design and Applications ISDA, Budapest, Hungary, pp. 855–860, 26–28 Aug 2004

9. Van der Merwe, R., Wan, E.A.: Efficient derivative-free Kalman Filters for online learning. In:
Proceedings of the ESSAN, Bruges, Belgium (2001)

10. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural
networks. Neural Comput. 1, 270–280 (1989)

11. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent connectionist
networks. TR NU_CCS_90-9. Northeastern University, Boston (1990)

410 B. Todorović et al.



Author Index

B
Boyacı, Ali İhsan, 235

C
Carmona-Cadavid, Cindy-Vanessa, 3
Casali, Daniele, 325
Chelly, Zeineb, 79
Chrysouli, Christina, 21
Colla, Valentina, 267
Costantini, Giovanni, 325
Cotta, Carlos, 79, 97

D
de las Cuevas, P., 79
De Mol, Robin, 283
De Tré, Guy, 283
Di Lorenzo, Nicola, 325
di Noia, Antonio, 63
Dimastromatteo, Vincenzo, 267

E
Esen, Hatice, 235
Esparcia-Alcázar, Anna I., 79

F
Fernandes, Carlos M., 97
Fernández-Ares, Antonio, 79

G
Grim, Jiří, 365
Guller, Dušan, 213

H
Han, Sang-Eon, 251
Hatipoğlu, Tuğçen, 235
Hernández-Riveros, Jesús-Antonio, 3

I
Ikuta, Akira, 171
Ingimundardottir, Helga, 49
Iosifidis, Alexandros, 351

K
Kampakis, Stylianos, 337

L
Lalla, Michele, 189
Laredo, Juan L.J., 97
Leite, Nuno, 151

M
Maiorino, Enrico, 131
Mascioli, Fabio Massimo Frattale, 113
Melício, Fernando, 151
Merelo, Juan Julián, 79, 97
Modugno, Valerio, 131
Montanari, Paolo, 63
Mora, Antonio, 79
Moraga, Claudio, 383

O
Orimoto, Hisako, 171

P
Pirotti, Tommaso, 189
Pitas, Ioannis, 351
Possemato, Francesca, 131
Pudil, Pavel, 365
Pulito, Piero, 267

R
Rico, Nuria, 79
Rizzi, Antonello, 63, 131, 113

© Springer International Publishing Switzerland 2016
J.J. Merelo et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 620, DOI 10.1007/978-3-319-26393-9

411



Rosa, Agostinho C., 97, 151
Runarsson, Thomas Philip, 49

S
Saccone, Marco, 267
Sadeghian, Alireza, 113
Saggio, Giovanni, 325
Santis, Enrico De, 113
Sbernini, Laura, 325
Šostak, Alexander, 251
Stanković, Miomir, 383
Swingler, Kevin, 303
Szeto, Kwok Yip, 33

T
Tapia-Rosero, Ana, 283

Tefas, Anastasios, 21, 351
Todorović, Branimir, 383

U
Urrea-Quintero, Jorge-Humberto, 3

V
Vannocci, Marco, 267

W
Wu, Degang, 33

Z
Zagaria, Michele, 267

412 Author Index


	Preface
	Organization
	Conference Chair
	Program Co-chairs
	Organizing Committee
	ECTA Program Committee
	ECTA Auxiliary Reviewers
	FCTA Program Committee
	FCTA Auxiliary Reviewer
	NCTA Program Committee
	NCTA Auxiliary Reviewers
	Invited Speakers

	Contents
	Part IEvolutionary Computation Theory  and Applications
	1 Evolutionary Tuning of Optimal PID Controllers for Second Order Systems Plus Time Delay
	Abstract
	1 Introduction
	2 PID Controller Tuning
	2.1 Performance Criteria of PID Controllers
	2.2 Plant Parameters and Performance Indexes

	3 Tuning Optimal PID Controllers Using an Evolutionary Algorithms
	3.1 Optimization and Evolutionary Algorithms
	3.2 Multidynamics Algorithm for Global Optimization---MAGO
	3.3 Statement of the Problem
	3.4 Evolutionary Design of PID Controller
	3.5 Controller Parameters and Performance Indexes

	4 Analysis of Results
	5 Conclusion
	References

	Evolution of Graphs for Unsupervised Learning
	1 Introduction
	2 Problem Statement
	2.1 Similarity Functions and Similarity Graphs
	2.2 Spectral Graph Clustering

	3 The Proposed Algorithm
	3.1 Construction of Initial Population
	3.2 Optimization of the Solutions
	3.3 The Genetic Cycle

	4 Experiments
	5 Conclusion
	References

	Sequence Analysis with Motif-Preserving Genetic Algorithm for Iterated Parrondo Games
	1 Introduction
	2 Parrondo Games
	3 Motif-Preserving Genetic Algorithm
	3.1 Representation
	3.2 Simple Genetic Algorithm
	3.3 Motif-Preserving Mutation Operator
	3.4 Motif-Preserving Crossover Operator
	3.5 Motif-Preserving Genetic Algorithm

	4 Experimental Design
	5 Results and Analysis
	6 Conclusions and Future Work
	References

	Evolutionary Learning of Linear Composite Dispatching Rules for Scheduling
	1 Job Shop Scheduling
	2 Outline
	3 Problem Space
	4 Feature Space
	5 Experimental Study
	5.1 Performance Measures
	5.2 Problem Difficulty
	5.3 Scalability

	6 Discussion and Conclusions
	References

	5 Occupational Diseases Risk Prediction by Genetic Optimization: Towards a Non-exclusive Classification Approach
	Abstract
	1 Introduction
	2 Data Processing
	3 The Adopted Classification Systems
	3.1 Basic Algorithm
	3.2 CBA: A Variant of the Basic Algorithm
	3.3 The NCBA Algorithm

	4 Results
	5 Conclusions
	References

	A Statistical Approach to Dealing  with Noisy Fitness in Evolutionary Algorithms
	1 Introduction
	2 State of the Art
	3 Noise in Games: An Analysis
	4 Fitness Memory and Statistical Significant Differences
	5 Results
	5.1 Noisy Fitness, Unlimited Evaluations
	5.2 MMDP with Limited Evaluations

	6 Conclusions
	References

	7 Particle Swarm Optimization with Dynamic Topology and Conservation of Evaluations
	Abstract
	1 Introduction
	2 Background Review
	3 Partially Connected Structures
	4 Experiments and Results
	5 Conclusions
	Acknowledgments
	References

	A Dissimilarity Learning Approach  by Evolutionary Computation for Faults Recognition in Smart Grids
	1 Introduction
	2 The ACEA Smart Grid Project
	3 The One Class-Classification Approach for Faults Detection
	3.1 The Fault Patterns
	3.2 The OCC Classifier
	3.3 The k-Means Initialization Algorithm
	3.4 The Weighted Custom Dissimilarity Measure

	4 Reliability Evaluation
	5 Experimental Results
	5.1 Test on k-Means Initialization Algorithm
	5.2 Tests on ACEA Dataset

	6 Conclusions
	References

	Noise Sensitivity of an Information Granules Filtering Procedure by Genetic Optimization for Inexact Sequential Pattern Mining
	1 Introduction
	2 Frequent Substructures Mining and Matching Problem
	3 The Proposed Algorithm
	4 Problem Definition
	4.1 Pattern Coverage

	5 The Mining Algorithm
	5.1 Frequent Subsequences Identification
	5.2 Subsequences Filtering

	6 Tests and Results
	6.1 Data Generation
	6.2 Quality Measures
	6.3 Results

	7 Conclusions
	References

	A Shuffled Complex Evolution Algorithm for the Examination Timetabling Problem
	1 Introduction
	2 Problem Description
	2.1 The Single-epoch Problem
	2.2 The Two-epoch Problem

	3 Shuffled Complex Evolution Algorithm for Examination Timetabling
	3.1 Solution Construction
	3.2 GDA's Neighbourhood
	3.3 Two-epoch Feasibility

	4 Experiments
	4.1 Settings
	4.2 Single-epoch Problem
	4.3 Two-epoch Problem

	5 Conclusions
	References

	Part IIFuzzy Computation Theory  and Applications
	11 Static and Dynamic Methods for Fuzzy Signal Processing of Sound and Electromagnetic Environment Based on Fuzzy Observations
	Abstract
	1 Introduction
	2 Static Signal Processing Based on Fuzzy Observations in Sound and Electromagnetic Environment
	2.1 Prediction for Probability Distribution of Specific Signal from Fuzzy Fluctuation Factor
	2.2 Estimation of Correlation Information Based on Fuzzy Observation Data

	3 Dynamic Signal Processing Based on Fuzzy Observations in Sound Environment
	3.1 Formulation of Fuzzy Observation Under Existence of Background Noise
	3.2 State Estimation Based on Fuzzy Observation Data

	4 Application to Sound and Electromagnetic Environment
	4.1 Prediction of Sound and Electric Field in PC Environment
	4.2 Estimation of Specific Signal in Sound Environment

	5 Conclusions
	References

	The Ordinal Controversy and the Fuzzy Inference System Through an Application and Simulation to Teaching Activity Evaluation
	1 Introduction
	2 Background of Ordinal Scale
	3 Student Evaluation of Teaching Activity
	3.1 The Course-Evaluation Questionnaire

	4 Background of Fuzzy Inference System
	4.1 The Fuzzy Inference System for Teaching Evaluation

	5 Empirical Results
	5.1 Student Evaluations of Teachers
	5.2 Simulated Data: All Possible Input Patterns

	6 Comments and Remarks
	References

	Unsatisfiable Formulae of Gödel Logic with Truth Constants and  Are Recursively Enumerable
	1 Introduction
	2 First-Order Gödel Logic
	3 Translation to Clausal Form
	3.1 Substitutions
	3.2 A Formal Treatment

	4 Hyperresolution over Order Clauses
	4.1 Order Hyperresolution Rules
	4.2 Refutational Soundness and Completeness

	5 Conclusions
	References

	14 A Fuzzy Approach for Performance Appraisal: The Evaluation of a Purchasing Specialist
	Abstract
	1 Introduction
	2 Performance Appraisal
	3 Fuzzy Analytic Hierarchy Process Method
	4 Proposed Performance Appraisal Model
	5 Conclusions
	References

	M-valued Measure of Roughness  for Approximation of L-fuzzy Sets  and Its Topological Interpretation
	1 Introduction
	2 Preliminaries
	2.1 Cl-Monoids
	2.2 The Framework of Our Research
	2.3 M-relations
	2.4 L-fuzzy Sets

	3 M-valued Measure of Inclusion of L-fuzzy Sets
	4 Rough Approximation of an L-fuzzy Set Induced  by a Reflexive Transitive M-relation
	4.1 Upper Rough Approximation of an L-fuzzy Set Induced by a Reflexive Transitive M-relation
	4.2 Lower Rough Approximation of an L-fuzzy Set Induced  by a Reflexive Transitive M-relation

	5 M-valued Measure of Roughness of an L-fuzzy Set
	5.1 Definitions and Basic Properties of M-valued Measure of Roughness of an L-fuzzy Set
	5.2 Examples of M-valued Measure of Roughness of Rough Approximation of L-fuzzy Sets

	6 Measure of Roughness of a Fuzzy Set: Ditopological Interpretation
	7 Conclusion
	References

	Fuzzy Control of a Sintering Plant Using the Charging Gates
	1 Introduction
	2 Rules Extraction
	3 Control Strategies
	3.1 Overview of the Sintering Machine
	3.2 Description of the Strategies

	4 Advisory System
	5 Experimental Results
	6 `Hybrid' Control Strategy: A Feasibility Study 
	7 Conclusion
	References

	Handling Uncertainty Degrees  in the Evaluation of Relevant  Opinions Within a Large Group
	1 Introduction
	2 Preliminaries
	2.1 Representing Expert Opinions
	2.2 Clustering Similar Opinions

	3 Generalized Conjunction/Disjunction and Some Extensions
	3.1 GCD Verbalized Approach
	3.2 Extended Generalized Conjunction/Disjunction

	4 Evaluating Relevant Opinions Under Uncertainty
	5 Illustrative Example
	6 Conclusions and Further Work
	References

	Part IIINeural Computation Theory  and Applications
	Opening the Black Box: Analysing MLP Functionality Using Walsh Functions
	1 Introduction
	2 Walsh Functions
	2.1 Constructing the Walsh Functions
	2.2 Calculating the Coefficients---the Walsh Transform

	3 Method
	4 Experiments
	5 Analysis During Training
	5.1 A Second Order Function

	6 Partial Walsh Analysis
	6.1 Measuring Generalisation

	7 Comparison with Other Methods
	8 Conclusions
	9 Further Work
	References

	19 Towards an Objective Tool for Evaluating the Surgical Skill
	Abstract
	1 Introduction
	2 The Sensory Glove
	3 The Classification System
	4 Experiments and Results
	4.1 Experimental Procedure
	4.2 Feature Extraction
	4.3 Feature Selection

	5 Conclusions
	References

	20 Neurons with Non-standard Behaviors Can Be Computationally Relevant
	Abstract
	1 Introduction
	2 Theoretical Motivation
	3 Methods and Data
	3.1 Neuron Model
	3.2 Neural Architecture
	3.3 Supervised Learning Task and Dataset
	3.4 Neural Parameter Optimization Through Genetic Algorithms

	4 Experimental Setup
	4.1 Experiments
	4.2 Parameter Optimization

	5 Results
	6 Discussion
	7 Conclusion
	References

	Single-Hidden Layer Feedforward Neual Network Training Using Class Geometric Information
	1 Introduction
	2 Extreme Learning Machine
	3 Regularized Extreme Learning Machine
	4 Extreme Learning Machine Exploiting Dispersion Criteria
	5 Extreme Learning Machine Exploiting Intrinsic Graph Structures
	6 Data Classification (Test Phase)
	7 Experimental Study
	7.1 Face Recognition Datasets
	7.2 Facial Expression Recognition Datasets
	7.3 Results

	8 Conclusion
	References

	Mixtures of Product Components Versus Mixtures of Dependence Trees
	1 Introduction
	1.1 Estimating Mixtures

	2 Multivariate Bernoulli Mixtures
	3 Mixtures of Dependence Trees
	4 Recognition of Numerals
	5 Conclusions
	References

	23 Recurrent Neural Networks Training Using Derivative Free Nonlinear Bayesian Filters
	Abstract
	1 Introduction
	2 Linear MMSE Estimation of the Nonlinear State Space Model
	2.1 Extended Kalman Filter
	2.2 Divided Difference Filter (DDF)
	2.3 Unscented Kalman Filter (UKF)

	3 Efficient Implementation of Training Algorithms
	3.1 Elman Network State Space Model
	3.2 Fully Connected Recurrent Network State Space Model
	3.3 NARX Recurrent Neural Network State Space Model
	3.4 Square Root Implementation of Recursive Bayesian Estimators as RNN Training Algorithms

	4 Examples
	4.1 Mackey Glass Chaotic Time Series Prediction
	4.2 H00E9non Chaotic Time Series Prediction

	5 Conclusions
	References

	Author Index



