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Abstract. Integrity protection has proven an effective way of malware
detection and defense. Determining the integrity of subjects (programs)
and objects (files and registries) plays a fundamental role in integrity
protection. However, the large numbers of subjects and objects, and
intricate behaviors place burdens on revealing their integrities either
manually or by a set of rules. In this paper, we propose a probabilis-
tic model of integrity in modern operating system. Our model builds on
two primary security policies, “no read down” and “no write up”, which
make connections between observed access behaviors and the inherent
integrity ordering between pairs of subjects and objects. We employ a
message passing based inference to determine the integrity of subjects
and objects under a probabilistic graphical model. Furthermore, by lever-
aging a statistical classifier, we build an integrity based access behavior
model for malware detection. Extensive experimental results on a real-
world dataset demonstrate that our model is capable of detecting 7,257
malware samples from 27,840 benign processes at 99.88 % true positive
rate under 0.1 % false positive rate. These results indicate the feasibility
of our probabilistic integrity model.

Keywords: Probabilistic graphical model · Integrity protection ·
Malware

1 Introduction

In spite of considerate effort by security researchers and engineers, attackers
continue to craft malicious code (malware). A recent security threat report by
Symantec states that there were more than 317 million new pieces of malware
created in 2014, which is 26 % more than in 2013 [27]. Being faced with ever-
growing and increasingly sophisticated malware, it is important to develop more
effective defenses from essential perspectives of security [28].

Integrity protection has proven an effective way of malware detection and
defense [4,7,23,28]. Determining the integrity of subjects and objects is funda-
mental to integrity protection [26]. The integrity of a subject or an object refers
to the trustworthiness of its contents. Integrity is typically divided into levels,
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e.g., trusted and untrusted, high and low, etc. Integrity protection aims at pre-
venting trusted objects from being accessed inappropriately, e.g., it forbids an
untrusted program from writing a trusted file. Prior work manually defines the
number of integrity levels, and assigns integrity levels to subjects and objects
either manually or by rules. For example, previous work usually defines two
integrity levels [4,7,26]. Learning from previous attacks, Sun et al. treat Media
players and games as having low integrity [26], LOMAC treats system files as
having high integrity, and builds on a rule that assigns a subject a low integrity,
if it read an object with low integrity [7]. Windows Vista treats Internet Explorer
as having low integrity, and Vista files as having high integrity [11]. It is feasible
to define integrity levels either manually or by rules, when the number of subjects
and objects is small, and the behaviors of subjects are simple. However, given
hundreds of thousands subjects and objects in a modern operating system, it
is challenging and error-prone to assign integrity levels to all of them manually.
And, given the intricate behaviors of subjects, it is neither flexible nor adaptive
to assign integrity levels to them by rules.

This paper aims to determine integrity levels for all system subjects, i.e., pro-
grams, and system objects, i.e., files and registries, based on access behaviors of
benign programs. Our method builds on two primary security policies, “no read
down” and “no write up”. These two policies, first proposed by Biba [4], have
become the basis of integrity protections in modern operating systems [7,12,26].
These policies make connections between integrity levels and access behaviors.
Our method determines the integrity levels of subjects and objects based on these
connections. Unlike earlier work, it makes no assumption of the total number of
integrity levels and needs no knowledge obtained from previous attacks.

The integrity level of system subjects and objects may change in different exe-
cutions and contexts. We model integrity levels as random variables to capture
their uncertainties. Meanwhile, each observation of access behavior, involving a
pair of system subject and object, implies an ordering of their integrity levels
between them, according to “no read down” and “no write up” security policies.
This ordering of integrity level defines a joint integrity level (joint distribution)
of the subject-object pair. Thus, we build a probabilistic generative model to
capture these connections, and derive the joint distribution of the integrity lev-
els of each pair, based on observations of access behaviors of benign programs.
To obtain the integrity levels of each subject and object, we aggregate the joint
integrity level of each pair to build a pairwise Markov network. We then employ
message passing based inference on this pairwise Markov network, i.e., loopy
belief propagation, to obtain integrity levels of all subjects and objects.

Furthermore, we employ a statistical classifier to build an integrity based
access behavior model for malware detection. We conduct a set of experiments
to evaluate our model by comparing with baseline models, on a data set con-
sisting of 27,840 executions of 534 benign programs and 7,257 executions of
malicious programs. Our encouraging results demonstrate the usefulness of our
access behavior model for malware detection based on determined integrity
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levels, and the feasibility of our model on determining integrity levels for system
subjects and objects.

The contributions of this paper are summarized as follows:

– Modeling integrity level of system subjects and objects under two primary
security policies. We propose a probabilistic generative model to capture the
connection between the joint integrity level of each pair of system subjects
and objects, and observations of access behaviors of benign programs, corre-
sponding to “no read down”and “no write up” security policies.

– Probabilistic graphical model on joint integrity levels of all subject-object
pairs. We build a probabilistic graphical model, pairwise Markov network, to
characterize joint integrity levels of all pairs, and leverage a message passing
based inference to further characterize integrity levels of all subjects and
objects.

– An integrity based access behavior model for malware detection. We employ
a statistical classifier, random forest, to build an access behavior model for
malware detection, based on integrity levels of accessed objects of programs.

– Extensive experimental results on a real data set demonstrate the feasibility
and capability of our model. On a data set consisting of 27,840 executions
of 534 benign programs and 7,257 executions of malicious programs, our
experimental results of malware detection exhibit a 99.88 % true positive
rate at 0.1 % false positive rate.

The paper is organized as follows. We first introduce the background and
related work in Sect. 2. We then explain our probabilistic integrity model and
inference, and our model of malware detection in Sect. 3. After demonstrating
our experimental results in Sect. 4, Sect. 5 concludes our work and states future
work.

2 Background and Related Work

2.1 Integrity Protection

Integrity protection has been demonstrated to be an effective way of protecting
modern operating systems [7,12,23,26]. It determines when information flows are
allowed based on the integrity levels of subjects and objects. One of the most
fundamental and well-known integrity protection models is the Biba model [4],
which defines policies as follows.

– A subject is allowed to read an object only if its integrity is lower than or
equal to that of the object (no read down).

– A subject is allowed to write an object only if its integrity is higher than or
equal to that of the object (no write up).

The Biba model provides security policies for integrity protection, and was
initially proposed as a mandatory access control (MAC) model in military, gov-
ernment systems. We refer to “no read down” as NRD, and “no write up” as
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NWU in the following paper. However, Biba is too restrictive for modern oper-
ating systems [21]. Follow-up research aimed to build a more applicable model
from two perspectives: (1) Determine the integrity level of subjects and objects.
(2) Devise policies for these integrity levels.

Prior work assigns integrity levels to subjects and objects, and devises policies
under integrity levels either manually or by rules [7,23,26]. LOMAC is a Linux
extension of Biba model. It defines two integrity levels, high and low. System
files are assigned high integrity levels and the network is assigned a low integrity
level. LOMAC changes the integrity level of subjects and objects according to
the low water mark principle, i.e., if a subject with high integrity reads an object
with low integrity, the integrity of the subject is assigned to low [7]. This pro-
vides a mechanism of capturing changes of integrity levels of subjects and objects
dynamically. However, its way of determining static integrity levels of subjects
and objects relies on limited rules. Sun et al. devise elaborate rules to assign
integrity levels, either high or low, to subjects and objects, and define policies
based on their experiences on benign and malicious information flow [26]. In
their later work, they apply integrity protection with similar policies into soft-
ware installation, and propose a Secure Software Installer to prevent untrusted
software from modifying files used by trusted software [25]. Their rules require
a large number of examples of both attacks and defenses. Although these rules
may provide an effective protection, it is expensive to devise such rules, and
difficult to make them flexible enough to deal with newly emerging attacks and
benign programs. Hsu et al. provide a framework for recovering from malicious
programs and their effects based on integrity. They focus on the NRD policy,
because they do not aim to prevent malware but only to recover from intru-
sions [12]. Mao et al. leverage graph centrality to measure the importance of
systems subjects and objects, which is treated as a proxy for integrity [20]. How-
ever, there is still a gap between the importance of graph structure and integrity
in operating systems. Beside these efforts by security researchers, one commercial
example is the Mandatory Integrity Control (MIC) in Windows Vista. It labels
the integrity levels of file objects as either Low, Medium, High, or System. As a
default, critical Vista files are labeled System, other objects are labeled Medium,
and Internet Explorer is labeled Low. MIC designs policies to enforce security
with the help of user account control (UAC) [1,11,19]. However, it highly relies
on judgment of users, which makes it unusable for ordinary users [3].

Previous integrity protection model suffer from two shortcomings. Firstly, it
is difficult to determine the integrity levels of all subjects and objects, as there are
hundreds of thousands and intricate behaviors between them. Prior work usually
manually assigns integrity levels to a small subset of subjects and objects based
on their experiences in attacks, and then uses a rule-based approach to determine
others [7,11,25,26]. Unlike prior work, which predefines the number of possible
integrity levels, we make no assumption about the number of integrity levels in
operating systems, but determine it from access behaviors of benign programs.
We aim to determine the integrity level for each subject and object, relying on
knowledge of benign programs, but not malicious programs. Secondly, manda-
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tory control policies and manually devised rules cannot accommodate real-world
operation very well without the introduction of numerous exceptions in the face
of crafty attackers and diverse benign programs. We employ a statistical classi-
fier to extract policies for benign and malicious programs with respect to their
access behaviors under our integrity levels.

2.2 Behavior Based Malware Detection

Prior work on behavior based malware detection usually employs heuristic, rule-
based or statistical learning algorithms to construct behavior models or specifica-
tions for programs [2,6,8,16,17]. It successfully trades false positives off against
false negatives. However, it relies on statistical discriminations between benign
and malicious programs only, and neglects the essence of malware from a secu-
rity perspective, i.e., violations of security policies. Our method leverages the
integrity level of objects involved in access behaviors, which pays more attention
to violations of security policies of programs. Under the integrity level derived
from our model, we observe discriminations not only in statistics, but also from
a security perspective in our experimental results.

3 Methodology

3.1 Overview

In this section, we present our method for deriving integrity levels of system
subjects and objects, and malware detection. It consists of two components:
(1) Probabilistic integrity model and inference. (2) Malware detection utilizing
the integrity levels. Figure 1 illustrates the framework of our method in this
paper.
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Fig. 1. Framework of our method for deriving integrity levels and malware detection

Since the integrity levels of system subjects (programs) and objects (files
or registries) may change in different executions and contexts, we represent the
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integrity levels as random variables to capture their uncertainties in real oper-
ating systems. The first component of our method, probabilistic integrity model
and inference, consists of two steps: (i) Given all observed access behaviors,
we infer the joint integrity level (joint distribution) of each subject-object pair,
under proposed a probabilistic generative model for access behaviors. Depend-
ing on which of the two primary security policies NRD and NWU applies, each
observed access behavior implies an ordering of the integrity levels of a subject-
object pair. The possible orderings include <, =, >. Moreover, the orderings
within a subject-object pair implies its joint integrity level (joint distribution).
(ii) We aggregate the joint distributions of integrity levels for all pairs of subjects
and objects to construct a pairwise Markov network (pMN) that provides a joint
distribution of integrity levels for all subjects and objects. Our goal is to charac-
terize the distribution of the integrity levels of each subject and object from the
pMN. Furthermore, we employ loopy belief propagation (loopy BP), a message
passing approximate inference algorithm, to infer the marginal distributions of
the integrity levels for subjects and objects.

Once we characterize the integrity levels, we extract feature vectors to describe
access behaviors of programs. Resorting to a statistical classifier, we build a model
of malware detection, that accounts for the security meanings of access behaviors.
In this paper, we focus on system subjects and objects, i.e., programs, files and
registries.

3.2 Probabilistic Integrity Model

Probabilistic Integrity and Pairwise Relationship. It is not easy to deter-
mine the exact integrity level of subjects and objects. For example, due to the
varying behaviors and intents, a program may exhibit different integrity levels in
different executions and contexts. Meanwhile, accessed by these programs, the
integrity level of a file or registry may be changed according to security policies,
e.g., low/high water mark principle [7], etc. We capture these uncertainties by
modeling the integrity level of subjects and objects as random variables, and
make two primary assumptions in this paper.

Primary assumptions: (1) We assume the integrity level of each subject or
object i is a random variable I(i) ∈ {L,H}, where L and H indicate low and high
integrity levels. (2) We assume observed access behaviors of benign programs
obey security policies NRD and NWU to ensure a secure operating system.

For each subject-object pair (s, o), we denote their joint integrity level as a
random variable JI(s, o), where P (JI(s, o) = (x, y)) = P (I(s) = x, I(o) = y),
x, y ∈ {L,H}. Meanwhile, given a pair of integrity levels (x, y), we say that
x < y if x = L and y = H. Hence, there are three possible orderings between a
pair of s and o considering their integrity levels, i.e., I(s) < I(o), I(s) = I(o),
I(s) > I(o). Note that, the integrity level of s may be higher than that of o
in one execution, but lower than that of o in another execution. Therefore, we
represent the order between s and o as a random variable EI(s, o) with three
possible values, i.e., EI(s, o) ∈ {I(s) < I(o), I(s) = I(o), I(s) > I(o)}. Thus, we
obtain P (JI |EI) by P (JI |EI) = P (EI |JI)P (JI)

P (EI) ∝ P (EI |JI)P (JI) as follows.
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(1) If EI is I(s) < I(o), then,

P (JI = (L,H)|EI) = 1; otherwise, 0. (1)

(2) If EI is I(s) = I(o), then,

P (JI = (L,L)|EI) = P (LL), P (JI = (H,H)|EI) = P (HH); otherwise, 0,
(2)

where P (LL) = P (JI=(L,L))
P (JI=(L,L))+P (JI=(H,H)) , P (HH) = P (JI=(H,H))

P (JI=(L,L))+P (JI=(H,H))

(3) If EI is I(s) > I(o), then,

P (JI = (H,L)|EI) = 1; otherwise, 0. (3)

Probabilistic Generative Model for Access Behavior. An access event is
an observed access behavior. We refer to system call events related to files or
registries as access events. Each access event involves a subject and an object,
and we divide all access events into two types, read and write, according to their
information flows [13].

One execution of a program s consists of a set of access events. In each
execution, there are three possible access behaviors between a subject s and an
object o, i.e., Read-only (r), Write-only (w), Read & Write (r & w) [13]. Thus,
once s accesses o, we represent the access behavior of s on o as a random variable
with three possible values, and s takes one of three possible access behaviors on
o in each execution. We denote the probabilities that s reads-only, writes-only,
and reads & writes o as Pr(s, o), Pw(s, o), and Pr&w(s, o).

Furthermore, for a program s with different executions, we assume the access
behavior of s in one execution is independent of its behavior in other exe-
cutions. We define Acc(s, o) to be the access behavior of s on o among all
executions, consisting of Nr,(s,o), Nw,(s,o) and Nr&w,(s,o), which are the num-
ber of executions that s reads-only, writes-only and reads & writes, and they
obey a multinomial distribution, i.e., Acc(s, o) = (Nr,(s,o), Nw,(s,o), Nr&w,(s,o)) ∼
Multi(N(s,o), Pr(s, o), Pw(s, o), Pr&w(s, o)), where N(s,o) is the total number of
executions of program s that accesses object o.

With our second primary assumption, the relationship between the access
behavior of s on o and their integrity levels can be interpreted as follows: If I(s) <
I(o), then s reads-only o, i.e., Pr(s, o) = 1 and Pw(s, o), Pr&w(s, o) = 0; if I(s) >
I(o), then s writes-only o, i.e., Pw(s, o) = 1 and Pr(s, o), Pr&w(s, o) = 0; if I(s) =
I(o), then s can perform any of behaviors, i.e., 0 < Pr(s, o), Pw(s, o), Pr&w(s, o) <
1. However, as mandatory security policies, there may exist violations of them in
commercial operating systems [21]. Our model allows violations of security poli-
cies by assuming the distribution of access behavior of s on o not only depends on
the order of integrity levels between them, but also on the distribution of access
behavior under violations. We assume the distribution of access behavior under
violations is identical to that under equal integrity, i.e., I(s) = I(o). Thus, the
distribution of all access behaviors is derived by combining that under order of
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integrity levels and that under violations, which results in a random variable T
representing the prior distribution of the distribution of access behavior. Based
on the above analysis and assumptions, we build a probabilistic generative model,
which is a hierarchical Bayesian model, for the access behavior of programs and
accessed objects with their integrity levels as shown in Fig. 2. Assumptions of
conditional probabilities in the model are presented in Eqs. (4)–(7).

AccTEID

JI

Fig. 2. A generative model for the access behavior with integrity levels

Equation (4) presents a Dirichlet prior D of the integrity ordering to deal
with the lack of a sufficient number of observations in the data set. Equation (5)
indicates the categorical distribution of the integrity ordering, where the proba-
bility of I(s) < I(o), I(s) = I(o), and I(s) > I(o) are d1, d2, and d3 respectively.
Before presenting the multinomial distribution of access behaviors with para-
meters t1, t2, and t3 in Eq. (7), Eq. (6) presents the prior T of this multinomial
distribution conditioning on the integrity ordering, which aims to model access
behaviors by combining both the security policies, i.e., NRD and NWU, and
potential violations in commercial operating systems. Combining with the rela-
tionship between EI and JI as shown in Eqs. (1)–(3), this generative model pro-
vides a way to model the access behavior with joint integrity level of subjects and
objects. Moreover, it offers a way to infer the joint integrity level JI(s, o) given
observations of access behaviors, which is presented in the following subsection.

D = (d1, d2, d3) ∼ Dir(α1, α2, α3), (4)
EI |D ∼ Cat(3, d1, d2, d3), (5)

T = (t1, t2, t3)|EI ∼

⎧
⎪⎨

⎪⎩

Dir(1 + β1, β2, β3), if I(s) < I(o),
Dir(β1, β2, β3), if I(s) = I(o),
Dir(β1, 1 + β2, β3), if I(s) > I(o),

(6)

Acc|T ∼ Multi(N, t1, t2, t3). (7)

Probabilistic Graphical Model on Integrity. Our goal is to characterize the
integrity level of each subject and object by marginal distributions, i.e., P (I(s))
and P (I(o)). To achieve this goal, we need to aggregate the joint integrity levels
of all pairs of subjects and objects, and calculate the marginal integrity distribu-
tion for subjects and objects. We achieve this goal using a probabilistic graphical
model, or more accurately, pairwise Markov network (pMN). Pairwise Markov
networks are the simplest subclass of Markov networks. A pMN is an undirected
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probabilistic graphical model G(V,E,Ψ), where V is a set of nodes representing
random variables, E is a set of edges representing relationships between nodes
with factors defined in Ψ, each edge is associated with a factor over a pair of
nodes [14]. In our problem, the pMN is a bipartite graph, where each node rep-
resents the integrity level of a subject or object, a subject is connected with an
object if there exists an observed access event associated with them. There is
no edge between two subjects or two objects. Meanwhile, we encode the joint
integrity level JI for each pair of subject and object into each edge, the factor on
each edge is joint integrity level JI . Figure 3 illustrates an example of a pMN con-
sisting of four pairs of subjects and objects. Since the bipartite graph constructed
from a real data set contains loops, we compute an approximate inference on the
integrity level of each subject and object as shown in the following subsection.

R1P2F2P1F1
JI(P1,F1) JI(P1,F2) JI(P2,F2) JI(P2,R1)

Fig. 3. An example of pairwise Markov network

3.3 Probabilistic Inference

Inference on Joint Integrity Level of Each Pair. Under the generative
model shown in Fig. 2, the Bayes estimator P̂E for the integrity ordering given
access events is

P̂E = P (EI |Acc) =
∑

D,T

P (EI ,D, T |Acc),∝
∑

D,T

P (Acc|T )P (T |EI)P (EI |D)P (D),

=
∑

T

P (Acc|T )P (T |EI)
∑

D

P (EI |D)P (D). (8)

More specifically, the probabilities of all possible orderings are

P̂EI
(<) = P (< |Acc) =

α1

α1 + α2 + α3

(β1 + β2 + β3)(Nr + β1)
β1(N + β1 + β2 + β3)

/Σ, (9)

P̂EI
(=) = P (= |Acc) =

α2

α1 + α2 + α3
/Σ, (10)

P̂EI
(>) = P (> |Acc) =

α3

α1 + α2 + α3

(β1 + β2 + β3)(Nw + β2)
β2(N + β1 + β2 + β3)

/Σ, (11)

where Σ = α1
α1+α2+α3

(β1+β2+β3)(Nr+β1)
β1(N+β1+β2+β3)

+ α2
α1+α2+α3

+ α3
α1+α2+α3

(β1+β2+β3)(Nw+β2)
β2(N+β1+β2+β3)

.
More details of the derivation are presented in Appendix.

Our estimator P̂ (JI(s, o)) for the joint distribution of integrity levels is,

P̂ (JI(s, o)) = P (JI(s, o)|Acc) =
∑

EI(s,o)

P (JI(s, o)|EI(s, o))P (EI(s, o)|Acc).

(12)
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Inference on Integrity Level of Subject and Object. There exist loops in
our pairwise Markov network. Hence, the estimation of marginal distributions
for such graphs is known to be NP-complete. Loopy belief propagation provides
an approximate and efficient way of inference based on message passing. It has
proven to be a successful at inferring on marginal distributions over loopy graph
in various domains, such as object tracking in computer vision, error-correcting
code, etc [14]. In particular, researchers have applied loopy belief propagation to
solve problems in security area by modeling them as classification problems [18,
29]. We apply this method to our problem to infer the probabilistic integrity
level of each subject and object.

R1P2F2P1F1

mF1P1(I(P1))

mP1F1(I(F1))

mP1F2(I(F2))

mF2P1(I(P1))

mF2P2(I(P2))

mP2F2(I(F2))

mP2R1(I(R1))

mR1P2(I(P2))

Fig. 4. Message passing of loop belief propagation on the pMN shown in Fig. 3

The loopy belief propagation works as follows. Each node sends messages to
its adjacent nodes, as shown in Fig. 4, according to

mij(xj) =
∑

xi∈{low,high}
πi(xi)Ψij(xj |xi)

∏

k∈N(i)\j

mki(xi), (13)

where mij(xj), i ∈ N(j) indicates the message from adjacent nodes of node j,
πi(xi) is the prior of node i. Ψij(xi|xj) is the conditional probability of integrity
level of xi given that of xj , which is derived as follows.

Ψij(xi|xj) ∝ P (xi, xj) = P̂ (JI(xi, xj)) =
∑

EI (xi,xj)

P (J(xi, xj)|EI(xi, xj))P (EI(xi, xj)|Acc).

(14)

Substituting Eqs. (1)–(3), (9)–(11) into Eq. (14), we can easily derive the con-
ditional probability Ψij(xi|xj). The message mij(xj) reveals that how the node
i thinks about the level of node j. In each iteration, the message of all nodes
will be updated. The order of message updating is not important. The iteration
stops when the message of nodes converge, i.e., there is no significant changes of
messages between iterations, or when a sufficient number of iterations is reached.
Then, we compute the marginal distribution of integrity for each node, a.k.a. the
belief of node, as follows.

bi(xi) = Cπi(xi)
∏

k∈N(i)

mki(xi), (15)

where C is a normalization constant to ensure that the integrity probabilities add
up to 1, i.e.,

∑
xi∈{L,H} bi(xi) = 1. Here, bi(L) and bi(H) indicate probabilities

that i has low and high integrity level respectively.
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3.4 Malware Detection

There exist violations in commercial modern operating systems under NRD and
NWU security policies [21]. In order to accommodate violations, we employ a
statistical learning technique to extract more adaptive security policies for mal-
ware detection. Before we describe this technique, we first show how to recover
the integrity level of subjects and objects under the probabilistic notation.

Integrity Level. The integrity levels of subjects and objects are recovered by
taking into account the probability that the subject/object has high integrity,
i.e., P (I(i) = H), which is the belief of a subject/object bi(H). We sort subjects
and objects by their beliefs of bi(H) in decreasing order, and assign the integrity
level to all subjects and objects from the highest to the lowest. We treat the
subjects and objects with same beliefs as having the same integrity level. The
ranking positions under the sort are treated as the integrity levels of subjects
and objects.

Malware Detection. For program i, we create a feature vector Xi for it. The
feature vector is similar to [20], but with column normalization. More specifically,
Xi is

Xi =
[
x(file,read)

i ,x(file,write)
i ,x(reg,read)

i ,x(reg,write)
i

]
, (16)

x(k,l)
i =

[
x

(k,l)
i1 , ..., x

(k,l)
ir , ..., x

(k,l)

iL(k)

]
. (17)

Here x
(k,l)
ir is the fraction of objects of type k ∈ {file, registry} accessed under

operation l ∈ {read,write} at integrity level r. x(k,l)
i is the vector of these frac-

tions at all integrity levels. L(k) is the total number of integrity levels of objects
of type k.

Once we create feature vectors for both benign and malicious processes,
we train a statistical classifier to build an access behavior model for malware
detection.

3.5 Time Complexity

The main time complexity of malware detection model consists of two parts:
(1) Integrity determination. (2) Malware classification.

To analyze the time complexity of the first part, we assume the number of
edges is E in our pairwise Markov network, which corresponds to the number
of subject-object pairs. Our model employ loopy belief propagation, which is a
iterative algorithm running in O(4E(s+1)), where s is the number of iterations.
In each iteration, we need to calculate messages on both directions of each edge,
and each direction contains two types of messages, i.e., L and H. That is the
reason of the constant before the number of edges. We observe s � E1. Hence,
1 In fact, we find s is about 7 in our experiments.
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we can say, our probabilistic integrity model run in the linear time to the number
of edges in our pairwise Markov network, i.e., O(E).

The time complexity of malware classification depends on the statistical clas-
sifier we employ, we analyze it in our experimental results.

4 Experimental Evaluation

4.1 Evaluation Methodology

To evaluate our model, we design a set of experiments to empirically answer three
questions: (1) Do the determined integrity levels support malware detection from
a perspective of security policies? (2) What is the performance of our malware
detection model? (3) What is the running time of our probabilistic integrity
model in experiments?

Experimental Settings. Benign programs: We employ Process Monitor [22]
to collect the access behaviors of programs under eight different users’ normal
usages without interfering with their daily usages, which run on systems run-
ning Microsoft Windows XP SP3. Among eight users, two of them are male
undergraduates who were working on their final year projects, and six others are
graduates consisting of one female student and five male students, whose behav-
iors include writing, programing, web surfing, etc. The data collection takes place
over periods of 7 to 16 days, and we finally obtain access behaviors of 27,840
executions from 534 benign programs.

Malicious programs: We download a collection of 270 K malware samples
from VxHeaven, which is a website providing information about viruses [30]. We
randomly select 9 K samples, run them in our sandbox which is with Windows
XP SP3 on VMWare without network connection, and monitor their behaviors
with Process Monitor. After running each sample for five minutes, we revert the
virtual machine to a clean snapshot so that different samples do not interfere
with each other. Since not all samples exhibit file or registry access activities, we
finally obtain access behaviors of 7,257 malware samples. The families of final
malware samples are listed in Table 1.

Table 1. Number of malware samples in each family

Family Samples Family Samples Family Samples Family Samples

Backdoor 25 Trojan-Banker 75 Trojan-Clicker 37 Trojan-

PSW

216

Trojan-Spy 768 Trojan-

Dropper

128 Trojan-

GameThief

278 Trojan-IM 3

Trojan-

Mailfinder

5 Trojan-

Ransom

2 Trojan.Win32 575 Virus.BAT 1

Virus.JS 3 Virus.MSIL 18 Virus.MSWord 3 Virus.Multi 24

Virus.NSIS 1 Virus.Win32 2527 Virus.WinHLP 5 Worm.BAT 12

Worm.MSIL 4 Worm.Win32 2547
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Training and testing sets: Because the executions of benign programs are
collected from eight users, we set up eight experiments. In each experiment, we
select the executions of benign programs from one user as a benign testing set,
and those from seven other users as benign training set. We infer the probabilistic
integrity level of objects from the benign training set. Meanwhile, we randomly
select 80 % malware samples as a malicious training set and the remaining ones
as a malicious testing set. We repeat the experiment 20 times. The results of 20
repetitions are averaged and illustrated in the following subsections.

Hyperparameters: To avoid priors dominating the data in our generative
model as shown in Eqs. (4) and (6), we choose Jeffreys priors, i.e., α1, α2, α3,
β1, β2, and β3 are equal to 0.5, which are non-informative priors and invariant
under transformation [9].

New objects: It is very common to come across new objects which do not
appear in the training set. For example, objects are newly created by processes
in the testing set. We employ a heuristic method to assign probabilistic integrity
level to new objects, which is similar to the approach in [20], but from a prob-
abilistic perspective. More specifically, we assign probabilistic integrity level to
new objects according to the directory it is stored in. The probability that the
new object has high integrity level equals to the probability that its parent
directory has high integrity level, which equals to the highest probability that
the child objects of the parent directory have high integrity level.

Statistical classifier : We employ random forests, implemented in Scikit-
learn [24], as our classifier. Random forests is an ensemble learning method for
classification (and regression) that operate by constructing a multitude of deci-
sion trees at training time. It not only exhibits the same advantage of decision
trees, but also overcomes the main disadvantage of decision trees, namely over-
fitting [5]. Moreover, we observe that the results are comparable in performance
to other classifiers, e.g., k-nearest neighbors, logistic regression, and support vec-
tor machine. We do not demonstrate them in this paper considering page limits.

Baseline. We compare our method to two baseline models for determining
integrity levels. The first baseline model (B1) strictly obeys NRD and NWU,
which forms a lattice constructed from access behaviors of benign programs. The
lattice consists of partial orders of integrity levels between subjects and objects
determined by observed access events under NRD and NWU. The layers in the
hierarchical structure of the lattice indicate integrity levels. Figure 5 illustrates
the lattice constructed from our data set of benign programs. We observe four
layers in this hierarchical structure, which indicates four possible integrity levels
of subjects and objects. The lattice is shown as integrity levels increasing from
bottom to top. We employ B1 because it is a mandatory integrity protection,
which relies solely on NRD and NWU security policies.

The second baseline model (B2) is the importance based malware detec-
tion model introduced in [20]. It assigned importance values to all subjects and
objects by examining their structures in a dependency network, and employed
statistical classifiers to detect malware based on the assigned importance values



168 W. Mao et al.

Fig. 5. The lattice constructed from access events of benign programs in our data set.
GSCC stands for giant strongly connected component, GIN represents in-neighbors of
the GSCC but without any edge from the GSCC, and GOUT represents out-neighbors
of the GSCC but without any edge to the GSCC. Each small node indicates either a
subject (program) or an object (file or registry).

of objects. The reason for choosing B2 is that this paper has similar goal with
that, although there is a gap between importance values and integrity levels.

4.2 Integrity Levels and Security Policies

To explore the appropriateness of the derived integrity levels, we examine the dif-
ferences exhibited between benign and malicious programs from the perspective
of their compliance to security policies NRD and NWU. That is, we investigate
the violations of security policies for benign and malicious processes based on the
derived integrity levels. We define a violation of NRD or NWU when a process
reads an object with low integrity level, and writes an object with high integrity
level.

Let p be a process, Or be the set of reading objects of p, Ow be the set
of writing objects of p, or ∈ Or, ow ∈ Ow. Strictly, according to the NRD and
NWU policies, the integrity levels of p, or and ow should satisfy I(p) ≤ I(or) and
I(p) ≥ I(ow), i.e., I(p) − I(or) ≤ 0 and I(ow) − I(p) ≤ 0. Because of difficulty
in determining I(p), we employ a proxy I(ow) − I(or) ≤ 0, by summing up the
two criteria, to examine violations. A violation happens to the process p when
I(ow) − I(or) > 0. We refer to a violation as a pair of reading and writing
objects where the integrity level of the reading object is lower than that of
the writing object. If the determined integrity levels of objects are correct, few
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violations would appear in benign processes, while many violations would appear
in malicious processes.

We examine violations in processes by two simple indicators based on our
proxy for violation: (1) Fraction of violation. In each execution, we count the
fraction of violations among all pairs of reading objects and writing objects,
e.g.,

∑
or,ow

1(I(ow)−I(or)>0)

|Or||Ow| , where 1() is an indicator function, |Or| and |Ow|
are the sizes of set Or and Ow. (2) Largest violation. This refers to the difference
between the lowest integrity level of all reading objects and the highest integrity
level of all writing objects in one execution, e.g., maxor,ow

I(ow) − I(or). These
two simple indicators demonstrate why the integrity levels of objects are useful to
detect malware from a perspective of security policies. Figure 6 exhibits fraction
of violations, while Fig. 7 illustrates largest violations, for benign and malicious
processes w.r.t. integrity levels of access objects determined by baselines and our
model, in terms of box plots. These results are obtained from all testing sets of
eight experiments which are presented in the above subsection. A box plot splits
these results into quartiles. The interquartile range box represents the middle
50 % of the results. The whiskers, extending from either side of the box, represent
the ranges for the bottom 5 % and the top 5 % of the results.

(a) Fraction of violation on file objects (b) Fraction of violation on registry objects

Fig. 6. Fraction of violation under integrity levels from baseline and our models

In Fig. 6(a), as we expected, there are fewer violations in benign processes
than in malicious processes, w.r.t. integrity levels of accessed file objects, under
all three models. Using the Kolmogorov–Smirnov (KS) test, we find significant
differences (p � 10−4) between benign and malicious processes under all three
models in Fig. 6(a). The KS test is a nonparametric test to evaluate whether two
samples come from the same population. These results indicate each model can
be used to determine integrity levels. We also find that our model is more able
to discriminate between benign and malicious processes than the two baseline
models, with respect to integrity levels of accessed file objects. This indicates
that our model does a better job at determining integrity levels for file objects.
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With respect to the integrity levels of accessed registry objects, we do not
observe obvious difference between benign and malicious processes in Fig. 6(b),
although significant differences (p � 10−4) are found under KS test. There
are two possible reasons: (1) All models fail to determine the integrity levels of
registry objects. (2) Benign processes do not obey NRD and NWU policies when
they access registry objects.

(a) Largest violation on file objects (b) Largest violation on registry objects

Fig. 7. Largest violation under integrity levels from baseline and our models

Moreover, we explore the difference between benign and malicious processes
according to the largest violation. Figure 7(a) illustrates the largest violations of
benign and malicious processes on file objects, while Fig. 7(b) illustrates those
on registry objects. Since the total number of integrity levels in B1 is much less
than those in other two models, we show the largest violation in logarithmic
scale. Similar results are observed in Fig. 7(a) and (b) compared to Fig. 6(a) and
(b). Meanwhile, we find significant differences (p � 10−4) under the KS test in
all cases. As shown in Fig. 7(a), our model achieves the greatest discrimination
between benign and malicious processes according to integrity levels of accessed
file objects. It implies the ability of our model for malware detection even with
camouflages. However, we find similar failures of all three models in distinguish-
ing malicious programs from benign programs, which due to similar possible
reasons as we aforementioned.

We observe obvious differences between benign and malicious processes by
examining either of these two indicators. However, the fraction of violation may
suffer from mimicry or camouflaged attacks, where malicious processes run under
the cover of some benign processes [10,15]. For example, if malware deliberately
read many file objects with the highest integrity levels, then the numerator in the
fraction of violations will be overwhelmed by the denominator in the fraction,
which leads to as small fraction of violations as benign processes. Compared
with the fraction of violation, the indicator of largest violation is much more
robust. However, one potential failure of the largest violation indicator is false
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positive. There are benign processes which modify objects with high integrity
level while read objects with low integrity level. Usually, these processes are some
special processes, such as system services. We can include them in a whitelist,
and reduce the false positives of the largest violation indicator.

4.3 Detection Results

Although simple indicators, e.g., fraction of violations, largest violation, etc.,
provide us ways of understanding why a model works, they usually fail to
achieve promising performance on malware detection. As presented in Sect. 3.4,
we employ random forests to extract adaptive security policies under determined
integrity levels and build a model for malware detection. With three models for
determining integrity levels, we evaluate their performance on malware detection
with the ROC curve and the area under ROC curve (AUC). We train models
with the benign and malicious training sets, and evaluate them on the benign
and malicious testing sets, as stated in Sect. 4.1.

Table 2 exhibits average true positive rates (TPRs) of three models at specific
false positive rates (FPRs) among all experiments. We choose these four FPRs,
because they are four representative FPRs to evaluate a method of malware
detection in practice. Meanwhile, we emphasis the most outperformed results of
our models compared with baseline models, i.e., 99.88 % TPF at 0.1 % FPR, on
average. In most cases, our model achieves better performance than two baseline
models.

Table 2. Performance under different models of determining integrity level

Model FPR
True Positive Rate (TPR) Average

TPR

B1

0% 0%
0.1% 70.30%
0.5% 89.24%
1.0% 93.76%

B2

0% 83.11%
0.1% 93.94%
0.5% 99.21%
1.0% 99.80%

Our

0% 87.05%
0.1% 99.98% 99.98% 99.95% 99.89% 99.87% 99.94% 99.61% 99.85% 99.88%
0.5% 99.97%
1.0%

U1 U2 U3 U4 U5 U6 U7 U8
0% 0% 0% 0% 0% 0% 0% 0%

92.09% 83.59% 70.30% 76.08% 53.35% 79.79% 64.10% 43.10%
96.75% 91.75% 92.55% 88.50% 86.18% 90.31% 90.98% 76.89%
98.09% 96.64% 95.18% 92.52% 91.85% 91.54% 94.19% 90.08%

99.52% 82.34% 97.58% 98.22% 88.16% 99.40% 0% 99.73%
100% 90.02% 99.27% 99.85% 92.92% 99.53% 70.21% 99.73%
100% 99.60% 99.86% 100% 99.57% 99.66% 95.32% 99.73%
100% 99.93% 100% 100% 99.86% 99.66% 99.16% 99.86%

99.45% 99.49% 99.51% 97.15% 98.30% 99.71% 4.48% 98.31%

99.99% 100% 99.98% 99.98% 99.97% 99.98% 99.89% 99.93%
100% 100% 99.98% 99.99% 99.99% 99.99% 99.94% 99.97% 99.98%

To further compare the performance of the three models, we conduct a
Wilcoxon rank-sum test to evaluate whether one model significantly outperforms
the other in terms of AUC. The Wilcoxon signed-rank test is a non-parametric
statistical hypothesis test used when comparing two related samples to assess
whether their population mean ranks differ. Table 3 illustrates the test statistic
and its significance between each pair of models. A negative value of the test
statistic indicates that the first model performs worse than the second model
shown at the beginning of the row.
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Table 3. Results of Wilcoxon rank-sum tests on AUCs of different models

Models U1 U2 U3 U4 U5 U6 U7 U8 All

B1 v.s.

B2

-5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -15.47**

B1 v.s.

Our

-5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -15.47**

B2 v.s.

Our

-2.89* -5.41** -0.14 (0.89) -0.81 (0.41) -2.84* -0.77 (0.44) -3.68** -4.25** -5.44**

* Indicates significance under 0.01.

** Indicates significance under 0.0001.

p-value is shown in parenthesis if it is not significant under these two levels.

In Table 3, from column U1 to U8, we perform hypothesis testing on results
of 20 runnings within each experiment. The last column presents the result of
hypothesis testing on results of runnings of all experiments. We observe signifi-
cant improvements of our model compared with baseline models.

Furthermore, Fig. 8 illustrates average ROCs of eight experiments under our
probabilistic integrity level, which provides better understandings of the perfor-
mance.

Fig. 8. Average ROC of eight experi-
ments under our model

Fig. 9. Scatter plot of running time in
seconds against problem size in thou-
sands

4.4 Running Time

The time complexity of the employed classifier, random forests, has been well
studied, which is, mn log n, where m is the number of trees in random forests,
we find m = 10 is optimal in our experiments, n is the number of processes,
a.k.a. data points [5]. Hence, we do not present its running time.

We explore the running time of our probabilistic integrity model, since the
running time of loopy belief propagation in practices varies in different problems.
We vary the problem size, which is the number of subject-object pairs, by ran-
domly selecting different portions of subjects and their involving subject-object
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pairs. Figure 9 illustrates a scatter plot of running time in seconds against prob-
lem size in thousands, and its fitting with linear regression. We observe strongly
linear relationship, supported by significant coefficients and R2 = 0.93 in the lin-
ear regression, between the running time and the problem size. This result verifies
the linear time complexity of our probabilistic integrity model, and demonstrates
the feasibility of a runtime malware detection.

5 Conclusion and Future Work

In spite of considerate effort by security researchers and engineers, it has been
demonstrated that attackers move faster than defenders. This paper presents
a probabilistic model on access behaviors of programs, and integrity levels of
programs, files and registries. We employ probabilistic inferences to determine
integrity levels of these system subjects and objects. Combining with a statistical
classifier, we build a integrity based access behavior model for malware detection.
The encouraging experimental results indicate the feasibility and usefulness of
our model. The linear time complexity of our probabilistic integrity model is both
proofed by our theoretical analysis, and verified by our experimental results.

Our model can be extended to subject and objects in other granularities,
which are constrained by similar security policies. Meanwhile, our model can
be adapted to determine levels of other security attributes, e.g., confidentiality,
according to corresponding security policies, e.g., Bell-LaPadula model.

We believe our probabilistic integrity model will be enhanced, when acquiring
knowledge from both benign and malicious programs. Thus, building a model
to combine access behaviors of both benign and malicious programs will be our
future work.
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Appendix- Derivation of Eq. (8)

P (EI |Acc) ∝ ∑
T P (Acc|T )P (T |EI)

∑
D P (EI |D)P (D), where

∑

D

P (EI |D)P (D) =

⎧
⎪⎨

⎪⎩

∑
D d1P (D) = ED(d1) = α1

α1+α2+α3
, if I(s) < I(o),

∑
D d2P (D) = ED(d2) = α2

α1+α2+α3
, if I(s) = I(o),

∑
D d3P (D) = ED(d3) = α3

α1+α2+α3
, if I(s) > I(o).

(18)
And then,
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(1.) If I(s) < I(o):

P (< |Acc) ∝ α1

α1 + α2 + α3
Δ

∫

T

tNr
1 tNw

2 tNr&w
3

tβ1
1 tβ2−1

2 tβ3−1
3

B(1 + β1, β2, β3)
dT,

=
α1

α1 + α2 + α3
Δ

B(Nr + β1 + 1, Nw + β2, Nr&wβ3)
B(1 + β1, β2, β3)

,

=
α1

α1 + α2 + α3
Δ

β1 + β2 + β3

β1

Nr + β1

N + β1 + β2 + β3
Ω, (19)

where Δ = Γ(N+1)
Γ(Nr+1)Γ(Nw+1)Γ(Nr&w+1) , Ω = B(Nr+β1,Nw+β2,Nr&w+β3)

B(β1,β2,β3)
, and

B(β1, β2, β3) = Γ(β1)Γ(β2)Γ(β3)
Γ(β1+β2+β3)

.
(2.) If I(s) = I(o):

P (= |Acc) ∝ α2

α1 + α2 + α3
Δ

∫

T

t
Nr
1 t

Nw
2 t

Nr&w
3

t
β1−1
1 t

β2−1
2 t

β3−1
3

B(β1, β2, β3)
dT =

α2

α1 + α2 + α3
ΔΩ.

(20)
(3.) If I(s) > I(o):

P (> |Acc) ∝ α3

α1 + α2 + α3
Δ

∫

T

tNr
1 tNw

2 tNr&w
3

tβ1−1
1 tβ2

2 tβ3−1
3

B(β1, β2 + 1, β3)
dT,

=
α3

α1 + α2 + α3
Δ

β1 + β2 + β3

β2

Nw + β2

N + β1 + β2 + β3
Ω.

(21)

Summing up Eqs. (19)–(21), we derive the posterior distribution of EI given Acc,
i.e., P (EI |Acc), as shown in Eqs. (9)–(11).
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