
Herbert Bos
Fabian Monrose
Gregory Blanc (Eds.)

 123

LN
CS

 9
40

4

18th International Symposium, RAID 2015
Kyoto, Japan, November 2–4, 2015
Proceedings

Research in Attacks,
Intrusions, and Defenses

Lecture Notes in Computer Science 9404

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Herbert Bos • Fabian Monrose
Gregory Blanc (Eds.)

Research in Attacks,
Intrusions, and Defenses
18th International Symposium, RAID 2015
Kyoto, Japan, November 2–4, 2015
Proceedings

123

Editors
Herbert Bos
Computer Science Department
Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Fabian Monrose
University of North Carolina at Chapel Hill
Chapel-Hill, NC
USA

Gregory Blanc
Télécom SudParis
Université Paris-Saclay
Evry
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26361-8 ISBN 978-3-319-26362-5 (eBook)
DOI 10.1007/978-3-319-26362-5

Library of Congress Control Number: 2015953803

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Welcome to the proceedings of the 18th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID). Over the past 18 years, RAID has estab-
lished itself as a highly influential venue with a prime focus on attacks and defenses.
We believe that this year was no different, and that the conference once again offered a
great program in this increasingly important field of research.

We had a large number of submissions, with 119 papers that met the anonymity and
formatting guidelines, considerably more than in previous years. Interestingly, authors
from European-, US-, and Asian-based institutions each accounted for about one third
of the submissions. In terms of the accepted papers, the balance shifted slightly in favor
of EU- and US-based authors, but not by much.

The Program Committee (PC) selected 28 papers, representing an acceptance rate of
23.5 %. The papers were reviewed using a double-blind reviewing process, ensuring
that the reviewers were unaware of the authors or their affiliations until after the
selection was finalized. All papers that were on-topic and met the formatting
requirements received at least three reviews and the final selection was made during an
in-person meeting in Washington DC in August. We thank the authors of both accepted
and rejected papers for submitting their papers to RAID.

As always, the bulk of the meeting was spent discussing papers where the reviews
from the PC were not in agreement. The task at hand was not only to identify those
papers that were ready for publication, but to also identify promising work that could
be improved before the camera-ready deadline. Out of the 28 selected papers, several
were assigned shepherds to ensure that the camera-ready version addressed all the
reviewers’ concerns and suggested improvements. In many cases, these papers received
several rounds of additional feedback by their shepherds.

In selecting PC members, we strived to introduce new talent to the RAID confer-
ence. Similar to the year before, our goal was to form a PC that included researchers
who had not served on the RAID PC more than once in the past few years, and also had
a proven track record in terms of top-tier publications. We also made a deliberate
attempt to introduce a number of younger researchers, while balancing that with more
senior members in the field. Our hope was that in doing so, the younger researchers
would gain invaluable experience by serving on the PC, and could help shape the
direction of future RAID conferences.

It goes without saying that we are indebted to the RAID 2015 PC for selflessly
dedicating their time to the process of selecting papers and providing detailed feedback
to authors. Serving as a PC member is a hard task, and we believe the recognition for
these efforts is often overlooked. For this reason, and to encourage PC members to
write critical, yet constructive, reviews, we decided to award an “Outstanding
Reviewer” prize to Manos Antonakakis (Georgia Tech) and Konrad Rieck (University
of Göttingen). The procedure was that we encouraged PC members to rate each other’s
reviews. While many reviewers received positive ratings, Konrad and Manos edged out

all others with their thoughtful and very helpful reviews and we congratulate them with
their well-deserved awards!

There are so many other people we need to thank. First, we would like to thank the
general chair, Youki Kadobayashi, and his team for the wonderful organization. Until
one has been closely involved with a conference, it is hard to appreciate everything that
the local arrangements chair has to do, and this conference was no exception. We are
very grateful to Kazuya Okada for the job well done. A massive thanks is also owed to
Gregory Blanc for handling the publications and making sure that every paper con-
formed to the format required by Springer, and to Giorgos Vasiliadis for being such a
good publicity chair that we had even more submissions than last year. In addition to
RAID’s main conference, we had a very interesting poster session organized by Sanjay
Rawat. The poster session included posters from many of the accepted papers as well as
posters that were selected by the poster chair. Finally, we thank the very active and
helpful Steering Committee.

We hope that you enjoyed RAID conference as much as we enjoyed putting the
event together. A great set of papers, covering a wide range of topics, this is what
makes RAID truly special.

Finally, none of this would be possible without the generous support by our
sponsors: Deloitte Tohmatsu Risk Services, Farsight, TAPAD, NTT Communications
and Asterisk Research. We are also grateful to Tateishi Science and Technology
Foundation for their generous support. We greatly appreciate their help and their
continued commitment to a healthy research community in security.

September 2015 Herbert Bos
Fabian Monrose

VI Foreword

Organization

Organizing Committee

General Chair

Youki Kadobayashi Nara Institute of Science and Technology, Japan

Local Arrangements Chair

Kazuya Okada Nara Institute of Science and Technology, Japan

Program Committee Chair

Herbert Bos Vrije Universiteit Amsterdam, The Netherlands

Program Committee Co-chair

Fabian Monrose University of North Carolina at Chapel Hill, USA

Poster Chair

Sanjay Rawat Vrije Universiteit Amsterdam, The Netherlands

Publication Chair

Gregory Blanc Télécom SudParis, Université Paris-Saclay, France

Publicity Chair

Giorgos Vasiliadis FORTH, Greece

Program Committee

Manos Antonakakis Georgia Institute of Technology, USA
Elias Athanasopoulos FORTH, Greece
Herbert Bos Vrije Universiteit Amsterdam, The Netherlands
Gabriela Ciocarlie SRI International, USA
Lucas Davi Intel CRI-SC at TU Darmstadt, Germany
Tudor Dumitras University of Maryland, USA
Petros Efstathopoulos Symantec Research Labs, USA
William Enck North Carolina State University, USA
Bryan Ford EPFL, Switzerland
Aurélien Francillon Eurécom, France
Flavio Garcia University of Birmingham, UK
Chris Kanich University of Illinois at Chicago, USA

Christopher Kruegel UC Santa Barbara, USA
Andrea Lanzi University of Milan, Italy
Corrado Leita LastLine Inc., USA
Brian Levine University of Massachusetts Amherst, USA
Fabian Monrose University of North Carolina at Chapel Hill, USA
Zachary Peterson California Polytechnic State University, San Luis

Obispo, USA
Georgios Portokalidis Stevens Institute of Technology, USA
Niels Provos Google Inc., USA
Konrad Rieck University of Göttingen, Germany
William Robertson Northeastern University, USA
Christian Rossow Saarland University, Germany
Andrei Sabelfeld Chalmers University of Technology, Sweden
Stelios Sidiroglou-Douskos MIT, USA
Patrick Traynor University of Florida, USA
XiaoFeng Wang Indiana University, USA
Dongyan Xu Purdue University, USA

External Reviewers

Benjamin Andow North Carolina State University, USA
Orlando Arias University of Central Florida, USA
Daniel Arp University of Göttingen, Germany
Andrei Bacs Vrije Universiteit Amsterdam, The Netherlands
Musard Balliu Chalmers University of Technology, Sweden
Henry Carter Georgia Institute of Technology, USA
Tom Chothia University of Birmingham, UK
Andrei Costin Eurécom, France
Dimitrios Damopoulos Stevens Institute of Technology, USA
Hamid Ebadi Chalmers University of Technology, Sweden
Gurchetan Grewal University of Birmingham, UK
Per Hallgren Chalmers University of Technology, Sweden
Daniel Hausknecht Chalmers University of Technology, Sweden
Panagiotis Ilias FORTH, Greece
Kangkook Jee NEC Laboratories America, USA
Jill Jermyn Columbia University, USA
Lazaros Koromilas FORTH, Greece
Christopher Liebchen Technische Universität Darmstadt, Germany
Sergio Maffeis Imperial College London, UK
Adwait Nadkarni North Carolina State University, USA
Susanta Nanda Symantec Research Labs, USA
Martin Ochoa Singapore University of Technology and Design,

Singapore
Mihai Ordean University of Birmingham, UK
Panagiotis Papadopoulos FORTH, Greece
Thanasis Petsas FORTH, Greece

VIII Organization

Andreea Radu University of Birmingham, UK
Moheeb Abu Rajab Google Inc., USA
Bradley Reaves University of Florida, USA
Raphaël Rieu-Helft Imperial College London, UK
Merve Sahin Eurécom, France
Brendan Saltaformaggio Purdue University, USA
Nolen Scaife University of Florida, USA
Daniel Schoepe Chalmers University of Technology, Sweden
Alexander Sjösten Chalmers University of Technology, Sweden
Kevin Z. Snow University of North Carolina at Chapel Hill, USA
Dean Sullivan University of Central Florida, USA
Adrian Tang Columbia University, USA
Sam Thomas University of Birmingham, UK
Steeve Van Acker Chalmers University of Technology, Sweden
Giorgos Vasiliadis FORTH, Greece
Victor van der Veen Vrije Universiteit Amsterdam, The Netherlands
Andrew M. White University of North Carolina at Chapel Hill, USA
Fabian Yamaguchi University of Göttingen, Germany
Vinod Yegneswaran SRI International, USA
Man-Ki Yoon University of Illinois at Urbana-Champaign, USA

Steering Committee

Marc Dacier (Chair) Qatar Foundation/Qatar Computing Research
Institute, Qatar

Davide Balzarotti Eurécom, France
Hervé Debar Télécom SudParis, Université Paris-Saclay, France
Deborah Frincke DoD Research, USA
Ming-Yuh Huang Northwest Security Institute, USA
Somesh Jha University of Wisconsin, USA
Erland Jonsson Chalmers University of Technology, Sweden
Engin Kirda Northeastern University, USA
Christopher Kruegel UC Santa Barbara, USA
Wenke Lee Georgia Institute of Technology, USA
Richard Lippmann MIT Lincoln Laboratory, USA
Ludovic Mé CentraleSupélec, France
Robin Sommer ICSI/LBNL, USA
Angelos Stavrou George Mason University, USA
Alfonso Valdes SRI International, USA
Giovanni Vigna UC Santa Barbara, USA
Andreas Wespi IBM Research, Switzerland
S. Felix Wu UC Davis, USA
Diego Zamboni CFEngine AS, Mexico

Organization IX

Sponsors

Deloitte Tohmatsu Risk Services Co., Ltd. (Gold level)
Farsight Security, Inc. (Silver level)
Tapad Inc. (Silver level)
NTT Communications Corporation (Bronze level)
Asterisk Research, Inc. (Bronze level)

X Organization

Contents

Hardware

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 3
Khaled N. Khasawneh, Meltem Ozsoy, Caleb Donovick,
Nael Abu-Ghazaleh, and Dmitry Ponomarev

Physical-Layer Detection of Hardware Keyloggers 26
Ryan M. Gerdes and Saptarshi Mallick

Reverse Engineering Intel Last-Level Cache Complex Addressing
Using Performance Counters . 48

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 66
Pinghai Yuan, Qingkai Zeng, and Xuhua Ding

Networks

Haetae: Scaling the Performance of Network Intrusion Detection
with Many-Core Processors . 89

Jaehyun Nam, Muhammad Jamshed, Byungkwon Choi, Dongsu Han,
and KyoungSoo Park

Demystifying the IP Blackspace . 111
Quentin Jacquemart, Pierre-Antoine Vervier, Guillaume Urvoy-Keller,
and Ernst Biersack

Providing Dynamic Control to Passive Network Security Monitoring. 133
Johanna Amann and Robin Sommer

Hardening

Probabilistic Inference on Integrity for Access Behavior Based
Malware Detection . 155

Weixuan Mao, Zhongmin Cai, Don Towsley, and Xiaohong Guan

Counteracting Data-Only Malware with Code Pointer Examination 177
Thomas Kittel, Sebastian Vogl, Julian Kirsch, and Claudia Eckert

Xede: Practical Exploit Early Detection . 198
Meining Nie, Purui Su, Qi Li, Zhi Wang, Lingyun Ying, Jinlong Hu,
and Dengguo Feng

http://dx.doi.org/10.1007/978-3-319-26362-5_1
http://dx.doi.org/10.1007/978-3-319-26362-5_2
http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://dx.doi.org/10.1007/978-3-319-26362-5_4
http://dx.doi.org/10.1007/978-3-319-26362-5_5
http://dx.doi.org/10.1007/978-3-319-26362-5_5
http://dx.doi.org/10.1007/978-3-319-26362-5_6
http://dx.doi.org/10.1007/978-3-319-26362-5_7
http://dx.doi.org/10.1007/978-3-319-26362-5_8
http://dx.doi.org/10.1007/978-3-319-26362-5_8
http://dx.doi.org/10.1007/978-3-319-26362-5_9
http://dx.doi.org/10.1007/978-3-319-26362-5_10

Attack Detection I

Preventing Exploits in Microsoft Office Documents Through Content
Randomization . 225

Charles Smutz and Angelos Stavrou

Improving Accuracy of Static Integer Overflow Detection in Binary 247
Yang Zhang, Xiaoshan Sun, Yi Deng, Liang Cheng, Shuke Zeng,
Yu Fu, and Dengguo Feng

A Formal Framework for Program Anomaly Detection 270
Xiaokui Shu, Danfeng (Daphne) Yao, and Barbara G. Ryder

Web and Net

jÄk: Using Dynamic Analysis to Crawl and Test Modern
Web Applications . 295

Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden,
and Christian Rossow

WYSISNWIV: What You Scan Is Not What I Visit 317
Qilang Yang, Dimitrios Damopoulos, and Georgios Portokalidis

SDN Rootkits: Subverting Network Operating Systems
of Software-Defined Networks . 339

Christian Röpke and Thorsten Holz

Android

AppSpear: Bytecode Decrypting and DEX Reassembling for Packed
Android Malware . 359

Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li,
Wenjun Hu, and Dawu Gu

HELDROID: Dissecting and Detecting Mobile Ransomware 382
Nicoló Andronio, Stefano Zanero, and Federico Maggi

Continuous Authentication on Mobile Devices Using Power Consumption,
Touch Gestures and Physical Movement of Users . 405

Rahul Murmuria, Angelos Stavrou, Daniel Barbará, and Dan Fleck

Privacy

Privacy Risk Assessment on Online Photos . 427
Haitao Xu, Haining Wang, and Angelos Stavrou

XII Contents

http://dx.doi.org/10.1007/978-3-319-26362-5_11
http://dx.doi.org/10.1007/978-3-319-26362-5_11
http://dx.doi.org/10.1007/978-3-319-26362-5_12
http://dx.doi.org/10.1007/978-3-319-26362-5_13
http://dx.doi.org/10.1007/978-3-319-26362-5_14
http://dx.doi.org/10.1007/978-3-319-26362-5_14
http://dx.doi.org/10.1007/978-3-319-26362-5_15
http://dx.doi.org/10.1007/978-3-319-26362-5_16
http://dx.doi.org/10.1007/978-3-319-26362-5_16
http://dx.doi.org/10.1007/978-3-319-26362-5_17
http://dx.doi.org/10.1007/978-3-319-26362-5_17
http://dx.doi.org/10.1007/978-3-319-26362-5_18
http://dx.doi.org/10.1007/978-3-319-26362-5_19
http://dx.doi.org/10.1007/978-3-319-26362-5_19
http://dx.doi.org/10.1007/978-3-319-26362-5_20

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 448
Johanna Ullrich and Edgar Weippl

Evaluating Solutions

Evaluation of Intrusion Detection Systems in Virtualized Environments
Using Attack Injection . 471

Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
Samuel Kounev, Alberto Avritzer, and Matthias Luft

Security Analysis of PHP Bytecode Protection Mechanisms 493
Dario Weißer, Johannes Dahse, and Thorsten Holz

Radmin: Early Detection of Application-Level Resource Exhaustion
and Starvation Attacks . 515

Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos Stavrou

Towards Automatic Inference of Kernel Object Semantics
from Binary Code . 538

Junyuan Zeng and Zhiqiang Lin

Attack Detection II

BotWatcher: Transparent and Generic Botnet Tracking. 565
Thomas Barabosch, Adrian Dombeck, Khaled Yakdan,
and Elmar Gerhards-Padilla

Elite: Automatic Orchestration of Elastic Detection Services
to Secure Cloud Hosting . 588

Yangyi Chen, Vincent Bindschaedler, XiaoFeng Wang, Stefan Berger,
and Dimitrios Pendarakis

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks . . . 615
Lukas Krämer, Johannes Krupp, Daisuke Makita, Tomomi Nishizoe,
Takashi Koide, Katsunari Yoshioka, and Christian Rossow

Author Index . 637

Contents XIII

http://dx.doi.org/10.1007/978-3-319-26362-5_21
http://dx.doi.org/10.1007/978-3-319-26362-5_22
http://dx.doi.org/10.1007/978-3-319-26362-5_22
http://dx.doi.org/10.1007/978-3-319-26362-5_23
http://dx.doi.org/10.1007/978-3-319-26362-5_24
http://dx.doi.org/10.1007/978-3-319-26362-5_24
http://dx.doi.org/10.1007/978-3-319-26362-5_25
http://dx.doi.org/10.1007/978-3-319-26362-5_25
http://dx.doi.org/10.1007/978-3-319-26362-5_26
http://dx.doi.org/10.1007/978-3-319-26362-5_27
http://dx.doi.org/10.1007/978-3-319-26362-5_27
http://dx.doi.org/10.1007/978-3-319-26362-5_28

Hardware

Ensemble Learning for Low-Level
Hardware-Supported Malware Detection

Khaled N. Khasawneh1, Meltem Ozsoy2, Caleb Donovick3,
Nael Abu-Ghazaleh1(B), and Dmitry Ponomarev3

1 University of California, Riverside, CA, USA
{kkhas001,naelag}@ucr.edu

2 Intel Corporation, Santa Clara, CA, USA
meltem.ozsoy@intel.com

3 Binghamton University, Binghamton, NY, USA
{cdonovi1,dima}@cs.binghamton.edu

Abstract. Recent work demonstrated hardware-based online malware
detection using only low-level features. This detector is envisioned as a
first line of defense that prioritizes the application of more expensive
and more accurate software detectors. Critical to such a framework is
the detection performance of the hardware detector. In this paper, we
explore the use of both specialized detectors and ensemble learning tech-
niques to improve performance of the hardware detector. The proposed
detectors reduce the false positive rate by more than half compared to
a single detector, while increasing the detection rate. We also contribute
approximate metrics to quantify the detection overhead, and show that
the proposed detectors achieve more than 11x reduction in overhead
compared to a software only detector (1.87x compared to prior work),
while improving detection time. Finally, we characterize the hardware
complexity by extending an open core and synthesizing it on an FPGA
platform, showing that the overhead is minimal.

1 Introduction

Malware continues to be a significant threat to computing systems at all scales.
For example, AV TEST reports that 220,000 new malicious programs are regis-
tered to be examined every day and around 220 million total malware signatures
are available in their malware zoo in the first quarter of 2014 [2]. Moreover,
detection is becoming more difficult due to the increasing use of metamorphic
and polymorphic malware [37]. Zero-day exploits also defy signature based sta-
tic analysis since their signatures have not been yet encountered in the wild.
This necessitates the use of dynamic detection techniques [9] that can detect
the malicious behavior during execution, often based on the detection of anom-
alies, rather than signatures [4,16]. However, the complexity and difficulty of
continuous dynamic monitoring have traditionally limited its use.

This research was partially supported by the US National Science Foundation grants
CNS-1018496 and CNS-1422401.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 3–25, 2015.
DOI: 10.1007/978-3-319-26362-5 1

4 K.N. Khasawneh et al.

Recent work has shown that malware can be differentiated from normal
programs by classifying anomalies in low-level feature spaces such as hardware
events collected by performance counters on modern CPUs [3,6]. We call such
features sub-semantic because they do not rely on a semantic model of the mon-
itored program. In recent work, a classifier trained using supervised learning to
differentiate malware from normal programs while the programs run was intro-
duced [23]. To tolerate false positives, this system is envisioned as a first step in
malware detection to prioritize which processes should be dynamically monitored
using a more sophisticated but more expensive second level of protection.

The objective of this paper is to improve the classification accuracy of sub-
semantic malware detection, allowing us to detect malware more successfully
while reducing the burden on the second level of protection in response to false
positives. We base our study on a recent malware data set [21]; more details are
presented in Sect. 2. We pursue improved detection using two approaches. First,
we explore, in Sect. 3, whether specialized detectors, each tuned to a specific
type of malware, can more successfully classify that type of malware. We find
that this is indeed the case, and identify the features that perform best for each
specialized detector. Second, in Sect. 4, we explore how to combine multiple
detectors, whether general or specialized, to improve the overall performance of
the detection. We also evaluate the performance of the ensemble detectors in
both offline and online detection.

To quantify the performance advantage from the improved detection, we
develop metrics that translate detection performance to expected overhead in
terms of the second level detector (Sect. 5). We discover that the detection per-
formance of the online detection is substantially improved, reducing the false pos-
itives by over half for our best configurations, while also significantly improving
the detection rate. This advantage translates to over 11x reduction in overhead of
the two-level detection framework. We analyze the implications on the hardware
complexity of the different configurations in Sect. 6. We compare this approach
to related work in Sect. 7.

This paper makes the following contributions:

– We characterize how specialized detectors trained for specific malware types
perform compared to a general detector and show that specialization has
significant performance advantages.

– We use ensemble learning to improve the performance of the hardware detec-
tor. However, combining specialized detectors is a non-classical application of
ensemble learning, which requires new approaches. We also explore combining
general detectors (with different features) as well as specialized and general
detectors.

– We evaluate the hardware complexity of the proposed designs by extending
the AO486 open core. We propose and evaluate some hardware optimizations.

– We define metrics for the two-level detection framework that translate detec-
tion performance to expected reduction in overhead, and time to detection.

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 5

2 Approach and Evaluation Methodology

Demme et al. [6] showed that malware programs can be classified effectively
by the use of offline machine learning model applied to low-level features; in
this case, the features were the performance counters of a modern ARM proces-
sor collected periodically. Subsequently, Ozsoy et al. [23] explored a number
of low-level features, not only those available through performance counters,
and built an online hardware-supported, low-complexity, malware detector. Such
low-level features are called sub-semantic since they do not require knowledge
of the semantics of the executing program. The online detection problem uses
a time-series window based averaging to detect transient malware behavior. As
detection is implemented in hardware, simple machine learning algorithms are
used to avoid the overhead of complex algorithms. This work demonstrated that
sub-semantic features can be used to detect malware in real-time (i.e., not only
after the fact).

The goal of this work is to improve the effectiveness of online hardware-
supported malware detection. Better machine learning classifiers can identify
more malware with fewer false positives, substantially improving the perfor-
mance of the malware detection system. To improve detection, we explore using
specialized detectors for different malware types. We show that such specialized
detectors are more effective than general detectors in classifying their malware
type. Furthermore, we study different approaches for ensemble learning: com-
bining the decisions of multiple detectors to achieve better classification. In this
section, we overview the approach, and present the methodology and experimen-
tal details.

2.1 Programs Used for This Study

We collected samples of malware and normal programs to use in the training,
cross validation and testing of our detectors. Since the malware programs that
we use are Windows-based, we only used Windows programs for the regular
program set. This set contains the SPEC 2006 benchmarks [12], Windows system
binaries, and many popular applications such as Acrobat Reader, Notepad++,
and Winrar. In total 554 programs were collected as the non-malware component
of the data.

Our malware programs were collected from the MalwareDB malware set [21].
We selected only malware programs that were found between 2011–2014. The
malware data sets have a total of 3,690 malware programs among them.

The group of regular and malware programs were all executed within a virtual
machine running a 32-bit Windows 7 with the firewall and security services for
Windows disabled, so that malware could perform its intended functionality.
Moreover, we used the Pin instrumentation tool [5] to gather the dynamic traces
of programs as they were executed. Each trace was collected for a duration of
5,000 system calls or 15 million committed instructions, whichever is first.

The malware data set consists of five types of malware: Backdoors, Password
Stealers (PWS), Rogues, Trojans, and Worms. The malware groups and the

6 K.N. Khasawneh et al.

Table 1. Data set breakdown

Total Traning Testing Cross validation

Backdoor 815 489 163 163
Rogue 685 411 137 137
PWS 558 335 111 111
Trojan 1123 673 225 225
Worm 473 283 95 95
Regular 554 332 111 111

regular programs were divided into three sets; training (60 %), testing (20 %)
and cross-validation (20 %). Table 1 shows the content of these sets.

We note that both the number of programs and the duration of the profiling
of each program is limited by the computational overhead; since we are collecting
dynamic profiling information through Pin [5] within a virtual machine, collec-
tion requires several weeks of execution on a small cluster, and produces several
terabytes of compressed profiling data. Training and testing is also extremely
computationally intensive. This dataset is sufficiently large to establish the fea-
sibility and provide a reasonable evaluation of the proposed approach.

2.2 Feature Selection

There are numerous features present at the architecture/hardware level that
could be used. We use the same features as Ozsoy et al. [23], to enable direct
comparison of ensemble learning against a single detector. For completeness, we
describe the rationale behind these features:

– Instruction mix features: these are features that are derived from the types
and/or frequencies of executed opcodes. We considered four features based on
opcodes. Feature INS1 tracks the frequency of opcode occurrence in each of
the x86 instruction categories. INS3 is a binary version of INS1 that tracks
the presence of opcodes in each category. The top 35 opcodes with the largest
difference (delta) in frequency between malware and regular programs were
aggregated and used as feature (INS2). Finally, INS4 is a binary version of
INS2 indicating opcode presence for the 35 largest difference opcodes.

– Memory reference patterns: these are features based on memory addresses
used by the program. The first feature we consider in this group is MEM1,
which keeps track of the memory reference distance in quantized bins (i.e.,
creates a histogram of the memory reference distance). The second feature we
consider (MEM2) is a simpler form of MEM1 that tracks the presence of a
load/store in each of the distance bins.

– Architectural events: features based on architectural events such as cache
misses and branch predictions. The features collected were: total number

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 7

of memory reads, memory writes, unaligned memory accesses, immediate
branches and taken branches. This feature is called ARCH in the remainder
of the paper.

The features were collected once every 10,000 committed instructions of the
program, consistent with the methodology used by earlier works that use this
approach [6,23]. These prior studies demonstrated that classification at this fre-
quency effectively balances complexity and detection accuracy for offline [6] and
online [23] detection. For each program we maintained a sequence of these feature
vectors collected every 10 K instructions, labeled as either malware or normal.

3 Characterizing Performance of Specialized Detectors

In this section, we introduce the idea of specialized detectors: those that are
trained to identify a single type of malware. First, we explore whether such
detectors can outperform general detectors, which are detectors trained to clas-
sify any type of malware. If indeed they outperform general detectors, we then
explore how to use such detectors to improve the overall detection of the system.

We separate our malware sets into types based on Microsoft Malware Protec-
tion Center classification [19]. We use logistic regression for all our experiments
because of the ease of hardware implementation [13]. In particular, the collected
feature data for programs and malware is used to train logistic regression detec-
tors. We pick the threshold for the output of the detector, which is used to
separate a malware from a regular program, such that it maximizes the sum of
the sensitivity and specificity. For each detector in this paper, we present the
threshold value used.

Training General Detectors. A general detector should be able to detect all
types of malware programs. Therefore, a general detector is trained using a data
set that encompasses all types of malware programs, against another set with
regular programs. We trained seven general detectors, one for each of the feature
vectors we considered.

Training Specialized Detectors. The specialized detectors are designed to
detect a specific type of malware relative to the regular programs. Therefore, the
specialized detectors were trained only with malware that matches the detector
type, as well as regular programs, so that it would have a better model for
detecting the type of malware it is specialized for. For example, the Backdoors
detector is trained to classify Backdoors from regular programs only. We chose
this approach rather than also attempting to classify malware types from each
other because false positives among malware types are not important for our
goals. Moreover, types of malware may share features that regular programs do
not have and thus classifying them from each other makes classification against
regular programs less effective.

Each specialized detector was trained using a data set that includes regular pro-
grams and the malware type that the specialized detector is built for. On the other

8 K.N. Khasawneh et al.

hand, the general detectors were trained using all the training data sets that we
used for the specialized detectors combined plus the regular programs. In exper-
iments that evaluate specialized detectors, the testing set (used for all detectors
in such experiments including general detectors) consists only of normal programs
and the specialized detector malware type. The reasoning for this choice is that
we do not care about the performance of the specialized detector on other types of
malware; if included these malware types would add noise to the results.

3.1 Specialized Detectors: Is There an Opportunity?

Next, we investigate whether specialized detectors outperform general detectors
when tested against the malware type they were trained for. Intuitively, each
malware type has different behavior allowing a specialized detector to more
effectively carry out classification. Moreover, the detectors in this section were
evaluated using the offline detection approach explained in Sect. 4.3.

General Vs. Specialized Detectors. We built specialized detectors for five
types of malware which are Backdoor, PWS, Rogue, Trojan and Worm. Each of
the seven general detectors’ performance was compared against the performance
of each specialized detectors in detecting the specific malware type for which the
specialized detector was trained. Moreover, each comparison between specialized
and general detectors used the same testing set for both of the detectors. The
testing set includes regular programs and the malware type that the specialized
detector was designed for.

Figures 1a, b show the Receiver Operating Characteristic (ROC) curves sepa-
rated by type of malware using the general detector and the specialized detectors
which were built using MEM1 features vector. Table 2 shows the Area Under
the Curve (AUC) values for the ROC curves that resulted from all the compar-
isons between the general and specialized detectors in each feature vector. The
ROC curves represent the classification rate (Sensitivity) as a function of false
positives (100-Specificity) for different threshold values between 0 and 1. We
found that in the majority of the comparisons, the specialized detectors indeed
perform better than or equal to the general detector.

There were some cases where the general detector outperforms the special-
ized detectors for some features. We believe this behavior occurs because the
general detector is trained using a larger data set than the specialized detector
(it includes the other malware types). There are only a limited number of cases
where the generalized detector outperforms the specialized ones for a specific
feature. In most of these cases, the detection performance is poor, indicating
that the feature is not particularly useful for classifying the given malware type.

Estimating the opportunity from deploying specialized detectors compared to
general detectors is important since it gives an intuition of the best performance
that could be reached using the specialized detectors. Thus, we compared the per-
formance of the best performing general detector against the best specializeddetec-
tor for each type of malware. Figure 2a shows the ROC curves of the INS4 general

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 9

Fig. 1. MEM1 detectors performance

Table 2. AUC values for all general and specialized detectors

Backdoor PWS Rogue Trojan Worm

INS1 General 0.713 0.909 0.949 0.715 0.705
Specialized 0.715 0.892 0.962 0.727 0.819

INS2 General 0.905 0.946 0.993 0.768 0.810
Specialized 0.895 0.954 0.976 0.782 0.984

INS3 General 0.837 0.909 0.924 0.527 0.761
Specialized 0.840 0.888 0.991 0.808 0.852

INS4 General 0.866 0.868 0.914 0.788 0.830
Specialized 0.891 0.941 0.993 0.798 0.869

MEM1 General 0.729 0.893 0.424 0.650 0.868
Specialized 0.868 0.961 0.921 0.867 0.871

MEM2 General 0.833 0.947 0.761 0.866 0.903
Specialized 0.843 0.979 0.931 0.868 0.871

ARCH General 0.702 0.919 0.965 0.763 0.602
Specialized 0.686 0.942 0.970 0.795 0.560

detector (best performing general detector) while Fig. 2b shows the ROC curves for
the best specialized detectors. In most cases, the specialized detectors outperform
the general detector, sometimes significantly. Table 3 demonstrates this observa-
tion by showing that the average improvement opportunity using the AUC values
is about 0.0904, improving the AUC by more than 10 %. Although the improve-
ment may appear to be modest, it has a substantial impact on performance. For
example, the improvement in Rogue detection, 8 % in the AUC, translates to a 4x
reduction in overhead according to the work metric we define in Sect. 5.2).

10 K.N. Khasawneh et al.

Fig. 2. Opportunity size: best specialized vs. best general detector

Table 3. Improvement opportunity: area under curve

General Specialized Difference

Backdoor 0.8662 0.8956 0.0294
PWS 0.8684 0.9795 0.1111
Rogue 0.9149 0.9937 0.0788
Trojan 0.7887 0.8676 0.0789
Worm 0.8305 0.9842 0.1537
Average 0.8537 0.9441 0.0904

These results make it clear that specialized detectors are more successful than
general detectors in classifying malware. However, it is not clear why different
features are more successful in detecting different classes of malware, or indeed
why classification is at all possible in this subsemantic feature space. To attempt
to answer this question, we examined the weights in the Θ vector of the logistic
regression ARCH feature specialized detector for Rogue and Worm respectively.
This feature obtains 0.97 AUC for Rogue but only 0.56 for Worm (see Table 2).
We find that the Rogue classifier discovered that the number of branches in
Rogue where significantly less than normal programs while the number of mis-
aligned memory addresses were significantly higher. In contrast, Worm weights
were very low for all ARCH vector elements, indicating that Worms behaved
similar to normal programs in terms of all architectural features. Explaining the
fundamental reasons behind these differences in behavior is a topic of future
research.

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 11

4 Malware Detection Using Ensemble Learning

Starting from a set of general detectors (one per feature) and a set of specialized
detectors, our next goal is to explore how to compose these detectors to improve
overall detection; such composite detectors are called ensemble detectors [8].
A decision function is used to combined the results of the base detectors into a
final decision. Figure 3 illustrates the combined detector components and overall
operation.

Fig. 3. Combined detector

The general technique of combining multiple detectors is called ensemble
learning; the classic type considers combining multiple independent detectors
which are trained to classify the same phenomena [8]. For example, for malware
detection, all the general detectors were designed to detect any type of malware.
Thus, ensemble learning techniques apply to the problem of combining their
decisions directly.

On the other hand, for the specialized detectors, each detector is trained to
classify a different phenomena (different type of malware); they are each answer-
ing a different classification question. Given that we do not know if a program
contains malware, let alone the malware type, it is not clear how specialized
detectors can be used as part of an overall detection solution. In particular,
its unclear whether common ensemble learning techniques, which assume detec-
tors that classify the same phenomena, would successfully combine the different
specialized detectors.

In order to solve this problem, we evaluated different decision functions to
combine the specialized detectors. We focused on combining techniques which
use all the detectors independently in parallel to obtain the final output from the
decision function. Since all the detectors are running in parallel, this approach
speeds up the computation.

4.1 Decision Functions

We evaluated the following decision functions.

– Or’ing: If any of the detectors detects that a given input is a malware then
the final detection result is a malware. This approach is likely to improve
sensitivity, but result in a high number of false positives (reduce selectivity).

12 K.N. Khasawneh et al.

– High Confidence: This decision function is an improved version of the or’ing
decision function. In particular, the difference is that we select the specialized
detector thresholds so that their output will be malware only when they are
highly confident that the input is a malware program. Intuitively, specialized
detectors are likely to have high confidence only when they encounter the
malware type they are trained for.

– Majority Voting: The final decision is the decision of the majority of the
detectors. Thus, if most of them agreed that the program is a malware the
final decision will be that it is a malware program.

– Stacking (Stacked Generalization): In this approach, a number of first-
level detectors are combined using a second-level detector (meta-learner) [33]).
The key idea, is to train a second-level detector based on the output of first-
level (base) detectors via cross-validation.

The stacking procedure operates as follows: we first collect the output of each of
the base detectors to form a new data set using cross-validation. The collected
data set would have every base detector decision for each instance in the cross-
validation data set as well as the true classification (malware or regular program).
In this step, it is critical to ensure that the base detectors are formed using a
batch of the training data set that is different from the one used to form the
new data set. The second step is to treat the new data set as a new problem,
and employ a learning algorithm to solve it.

4.2 Ensemble Detectors

To aid with the selection of the base detectors to use within the ensemble detec-
tors, we compare the set of general detectors to each other. Figure 4 shows the
ROC graph that compares all the general detectors. We used a testing data set
that includes the testing sets of all types of malware plus the regular programs
testing set. The best performing general detectors use the INS4 feature vector;
we used it as the baseline.

Fig. 4. General detectors comparison

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 13

We tested different decision functions and applied to them different selec-
tions of base detectors. An ROC curve based on a cross-validation data set was
generated for each base detector to enable identification of the best threshold
values for the base detectors. Subsequently, the closest point on the ROC curve
to the upper left corner of the graph, which represents the maximum Sensi-
tivity+Specificity, was selected since the sensitivity and specificity are equally
important. However, for the High confidence decision function, the goal is to
minimize the false positives. Therefore, we selected the highest sensitivity value
achieving less than 3 % false positive rate. Since the output of logistic regression
classifier is a probability between 0 and 1, the threshold value is a fraction in
this range.

The cross-validation data set used for the general detectors includes all types
of malware as well as regular programs. However, for the specialized detector,
it only includes the type of malware the specialized detector designed for and
regular programs. We consider the following combinations of base detectors:

– General ensemble detector: combines only general detectors using classical
ensemble learning. General ensemble detectors work best when diverse fea-
tures are selected. Therefore, we use the best detector from each feature
group (INS, MEM, and ARCH), which are INS4, MEM2, and ARCH respec-
tively. Table 4 shows the threshold values for the selected base detectors which
achieves the best detection (highest sum of sensitivity and specificity). Fur-
thermore, the best threshold value is 0.781 for the stacking second-level detec-
tor.

– Specialized ensemble detector: combines multiple specialized detectors. For
each malware type, we used the best specialized detector. Thus, we selected
the specialized detectors trained using MEM1 features vector for Trojans,
MEM2 for PWS, INS4 for Rogue, and INS2 for both Backdoor and Worms.
The selected threshold values of the selected detectors are shown in Table 5.
In addition, the threshold value for the stacking second-level detector is 0.751.

Table 4. General ensemble base detectors threshold values

INS4 MEM2 ARCH

Best threshold 0.812 0.599 0.668
High confidence threshold 0.893 0.927 0.885

Table 5. Specialized ensemble base detectors threshold values

Backdoor PWS Rogue Trojan Worm

Best threshold 0.765 0.777 0.707 0.562 0.818
High confidence threshold 0.879 0.89 0.886 0.902 0.867

14 K.N. Khasawneh et al.

Table 6. Mixed ensemble base detectors threshold values

INS4 Rogue Worm

Best threshold 0.812 0.707 0.844
High confidence threshold 0.893 0.886 0.884

– Mixed ensemble detector: combines one or more high performing specialized
detectors with one general detector. The general detector allows the detection
of other malware types unaccounted for by the base specialized detectors. In
addition, this approach allows us to control the complexity of the ensemble
(number of detectors) while taking advantage of the best specialized detectors.
In our experiments, we used two specialized detectors for Worms and Rogue
built using INS4 features vector because they performed significantly better
than the general detector for detecting their type. The threshold values of
the base detectors are shown in Table 6. The threshold value for the stacking
second-level detector is 0.5.

4.3 Offline Detection Effectiveness

As discussed in Sect. 2.2, each program is represented as multiple feature
instances collected as the program executes. To evaluate the offline detection
of a detector, a decision for each vector in a program is made. If most of the
decisions of that program records are malware, then the program is detected as
malware. Otherwise, the program is detected as regular program.

Table 7 shows the sensitivity, specificity and accuracy for the different ensem-
ble detectors using different combining decision functions. Also, it presents the
work and time advantage, which represent the reduction in work and time to
achieve the same detection performance as a software detector; these metrics
are defined in Sect. 5.2. The specialized ensemble detector using stacking deci-
sion function outperforms all the other detectors with 95.8 % sensitivity and only
4 % false positive, which translates to 24x work advantage and 12.2x time advan-
tage. The high confidence OR function also performs very well. This performance
represents a substantial improvement over the baseline detector.

The Or’ing decision function results in poor specificity for most ensembles,
since it results in a false positive whenever any detector encounters one. Majority
voting was used only for general ensembles as it makes no sense to vote when the
detectors are voting on different questions. Majority voting performed reasonably
well for the general ensemble.

For the general ensemble detector, Stacking performs the best, slightly
improving performance relative to the baseline detector. The majority voting
was almost as accurate as stacking but results in more false positives. The mixed
ensemble detector did not perform well; with stacking, it was able to significantly
improve specificity but at low sensitivity.

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 15

Table 7. Offline detection with different combining decision functions

Decision Sensitivity Specificity Accuracy Work Time

function advantage advantage

Best – 82.4% 89.3% 85.1% 7.7 3.5

general

General
ensemble

Or’ing 99.1% 13.3% 65.0% 1.1 1.1

High
confidence

80.7% 92.0% 85.1% 10.1 3.7

Majority
voting

83.3% 92.1% 86.7% 10.5 4.1

Stacking 80.7% 96.0% 86.8% 20.1 4.3

Specialized
ensemble

Or’ing 100% 5% 51.3% 1.1 1.1

High
confidence

94.4% 94.7% 94.5% 17.8 9.2

Stacking 95.8% 96.0% 95.9% 24 12.2

Mixed
ensemble

Or’ing 84.2% 70.6% 78.8% 2.9 2.2

High
confidence

83.3% 81.3% 82.5% 4.5 2.8

Stacking 80.7% 96.0% 86.7% 20.2 4.3

4.4 Online Detection Effectiveness

The results thus far have investigated the detection success offline: i.e., given
the full trace of program execution. In this section, we present a moving window
approach to allow real-time classification of the malware. In particular, the fea-
tures are collected for each 10,000 committed instructions, and classified using
the detector. We keep track of the decision of the detector using an approxima-
tion of Exponential Moving Weighted Average. If during a window of time of
32 consecutive decisions, the decision of the detector reflects malware with an
average that crosses a preset threshold, we classify the program as malware.

We evaluate candidate detectors in the online detection scenario. The perfor-
mance as expected is slightly worse for online detection than offline detection,
which benefits from the full program execution history. The overall accuracy, sen-
sitivity, and specificity all decreased slightly with online detection. The result of
the online detection performance are in Table 8.

5 Two-Level Framework Performance

One of the issues of using a low-level detector such as the ensemble detector we
are trying to implement, lacking the sophistication of a rich-semantic detector, is
that false positives are difficult to eliminate. Thus, using the low-level detector on

16 K.N. Khasawneh et al.

Table 8. Online detection performance

Sensitivity Specificity Accuracy

Best general 84.2 % 86.6 % 85.1 %
General ensemble (Stacking) 77.1 % 94.6 % 84.1 %
Specialized ensemble (Stacking) 92.9 % 92.0 % 92.3 %
Mixed ensemble (Stacking) 85.5 % 90.1 % 87.4 %

its own would result in a system where legitimate programs are sometimes identi-
fied as malware, substantially interfering with the operation of the system. Thus,
we propose to use the low-level detector as the first level of a two-level detection
(TLD) system. The low-level detector is always on, identifying processes that
are likely to be malware to prioritize the second level. The second level could
consist of a more sophisticated semantic detector, or even a protection mecha-
nism, such as a Control Flow Integrity (CFI) monitor [39] or a Software Fault
Isolation (SFI) [31] monitor, that prevents a suspicious process from overstep-
ping its boundaries. The first level thus serves to prioritize the operation of the
second level so that the available resources are directed at processes that are
suspicious, rather than applied arbitrarily to all processes.

In this section, we analyze this model and derive approximate metrics to
measure its performance advantage relative to a system consisting of a software
protection only. Essentially, we want to evaluate how improvements in detection
translate to run-time capabilities of the detection system. Without loss of gen-
erality, we assume that the second level consists of a software detector that can
perfectly classify malware from normal programs, but the model can be adapted
to consider other scenarios as well.

The first level uses sub-semantic features of the running programs to clas-
sify them. This classification may be binary (suspicious or not suspicious) or
more continuous, providing a classification confidence value. In this analysis,
we assume binary classification: if the hardware detector flags a program to be
suspicious it will be added to a priority work list. The software detector scans
processes in the high priority list first. A detector providing a suspicion index
can provide more effective operation since the index can serve as the software
monitoring priority.

5.1 Assumptions and Basic Models

In general, in machine learning the percentage of positive instances correctly
classified as positives is called the Sensitivity (S). The percentage of correctly
classified negative instances is called the Specificity (C). Applied to our system,
S is a fraction of malware identified as such, while C is a fraction of regular
programs identified correctly. Conversely, the misclassified malware is referred to
as False Negatives - FN, while the misclassified normal programs are referred as

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 17

False Positives -FP. For a classification algorithm to be effective, it is important
to have high values of S and C.

We assume a discrete system where the arrival rate of processes is N with
a fraction m of those being malware. We also assume that the effort that the
system allocates to the software scanner is sufficient to scan a fraction e of the
arriving processes (e ranges from 0 to 1). Note that we derive these metrics for a
continuous system for convenience of derivation. Assuming a system with large
N this approach should not affect the derived expected values.

In the base case a software scanner/detector scans a set of running programs
that are equally likely to be malware. Thus, given a detection effort budget e,
a corresponding fraction of the arriving programs can be covered. Increasing
the detection budget will allow the scanner to evaluate more processes. Since
every process has an equal probability of being malware, increasing the effort
increases the detection percentage proportionately. Thus, the detection effective-
ness (expected fraction of detected malware) is simply e.

Clearly, this is a first-order model in that they use simple average values for
critical parameters such as the effort necessary to monitor a processes. However,
we believe the metrics are simple and useful indicators to approximately quantify
the computational performance advantage obtained in a TLD system as the
detection performance changes.

5.2 Metrics to Assess Relative Performance of TLD

In contrast to the baseline model, the TLD works as follows. The hardware
detector informs the system of suspected malware, which is used to create a
priority list consisting of these processes. The size of this suspect list, ssuspect,
as a fraction of the total number of processes is:

ssuspect = S · m + (1 − C) · (1 − m) (1)

Intuitively, the suspect list size is the fraction of programs predicted to be mal-
ware. It consists of the fraction of malware that were successfully predicted to
be malware (S · m) and the fraction of normal programs erroneously predicted
to be malware (1 − C) · (1 − m).

Work Advantage. Consider a case where the scanning effort e is limited to
be no more than the size of the priority list. In this range, the advantage of the
TLD can be derived as follows. Lets assume that the effort is k · ssuspect where
k is some fraction between 0 and 1 inclusive. The expected fraction of detected
malware for the baseline case is simply the effort, which is k ·ssuspect. In contrast,
we know that S of the malware can be expected to be in the ssuspect list and
the success rate of the TLD is k ·S. Therefore, the advantage, Wtld, in detection
rate for the combined detector in this range is:

Wtld =
k · S

k · ssuspect =
S

S · m + (1 − C) · (1 − m)
(2)

18 K.N. Khasawneh et al.

The advantage of the TLD is that the expected ratio of malware in the
suspect list is higher than that in the general process list under the following
conditions. It is interesting to note that when S + C = 1, the advantage is 1
(i.e., both systems are the same); to get an advantage, S + C must be greater
than 1. For example, for small m, if S = C = 0.75, the advantage is 3 (the
proposed system finds malware with one third of the effort of the baseline). If
S = C = 0.85 (in the range that our sub-semantic features are obtaining), the
advantage grows to over 5.

Note that with a perfect hardware predictor (S = 1, C = 1), the advantage
in the limit is 1

m ; thus, the highest advantage is during “peace-time” when m
approaches 0. Under such a scenario, the advantage tends to S

1−C . However, as
m increases, for imperfect detectors, the size of the priority list is affected in two
ways: it gets larger because more malware processes are predicted to be malware
(true positives), but it also gets smaller, because less processes are normal, and
therefore less are erroneously predicted to be malware (false positives). For a
scenario with a high level of attack (m tending to 1) there is no advantage to
the system as all processes are malware and a priority list, even with perfect
detection, does not improve on arbitrary scanning.

Detection Success Given a Finite Effort. In this metric, we assume a
finite amount of work, and compute the expected fraction of detected malware.
Given enough resources to scan a fraction a of arriving processes, we attempt to
determine the probability of detecting a particular infection.

We assume a strategy where the baseline detector scans the processes in
arbitrary order (as before) while the TLD scans the suspect list first, and then,
if there are additional resources, it scans the remaining processes in arbitrary
order.

When e <= ssuspect, analysis similar to that above shows the detection
advantage to be (S

ssuspect
). When e >= ssuspect, then the detection probability

can be computed as follows.

Dtld = S + (1 − S) · e · N − N · ssuspect
N · (1 − ssuspect)

. (3)

The first part of the expression (S) means that if the suspect list is scanned, the
probability of detecting a particular infection is S (that it is classified correctly
and therefore is in the suspect list). However, if the malware is misclassified (1−
S), malware could be detected if it is picked to be scanned given the remaining
effort. The expression simplifies to:

Dtld = S +
(1 − S) · (e − ssuspect)

1 − ssuspect
(4)

Note that the advantage in detection can be obtained by dividing Dtld by
Dbaseline which is simply e.

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 19

Time to Detection. Finally, we derive the expected time to detect a malware
given an effort sufficient to scan all programs. In the baseline, the expected value
of the time to detect for a given malware is 1

2 of the scan time. In contrast, with
the TLD, the expected detection time is:

Ttld = S · ssuspect
2

+ (1 − S) · (ssuspect +
(1 − ssuspect)

2
), (5)

The first part of the expression accounts for S of the malware which are correctly
classified as malware. For these programs, the average detection time is half of the
size of the suspect list. The remaining (1 − S) malware which are misclassified
have a detection time equal to the time to scan the suspect list (since that
is scanned first), followed by half the time to scan the remaining processes.
Simplifying the equation, we obtain:

Ttld = S · ssuspect
2

+ (1 − S) · ((1 + ssuspect)
2

), (6)

Recalling that Tbaseline = 1
2 , the advantage in detection time, which is the

ratio Ttld

Tbaseline
is:

Tadvantage = S · ssuspect + (1 − S) · (1 + ssuspect), (7)

substituting for ssuspect and simplifying, we obtain:

Tadvantage =
1

1 − (1 − m)(C + S − 1)
(8)

The advantage again favors the TLD only when the sum of C and S exceeds 1
(the area above the 45 degree line in the ROC graph. Moreover, the advantage
is higher when m is small (peace-time) and lower when m grows. When m tends
to 0, if C + S = 1.5, malware is detected in half the time on average. If the
detection is better (say C + S = 1.8), malware can be detected 5 times faster
on average. We will use these metrics to evaluate the success of the TLD based
on the Sensitivity and Specificity derived from the hardware classifiers that we
implemented.

5.3 Evaluating Two Level Detection Overhead

Next, we use the metrics introduced in this section to analyze the performance
and the time-to-detect advantage of the TLD systems based on the different
hardware detectors we investigated. We selected the work and time advantage
from these metrics to evaluate our detectors as a TLD systems; the first stage
(hardware detector) will report the suspected malware programs to the second
stage to be examined.

The time and work advantages for the online detectors are depicted in Fig. 5
as the percentage of malware processes increases. The specialized ensemble detec-
tor reduced the average time of detection to 1/6.6 of the heavy-software only

20 K.N. Khasawneh et al.

detector that is 2x faster than single general detector when the fraction of mal-
ware programs is low. This advantage was at 1/3.1 when malware intensity
increased to the point where 20 % of the programs are malware (m = 0.2).
In addition, the specialized ensemble detector has the best average time-to-
detection. The amount of work required for detection is improved by 11x by the
specialized ensemble detector compared to using heavy-software detector only
(1.87x compared to the best single detector). Although the general ensemble
detector had a 14x improvement due to the reduction in the number of false
positives, its detection rate is significantly lower than that of the specialized
ensemble due to its lower sensitivity.

(a) Time advantage (b) Work advantage

Fig. 5. Time and work advantage as a function of malware rate

Fig. 6. Detection performance as a function of effort and malware rate

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 21

In Fig. 6, we show the effort required by the online detectors to achieve 50 %
and 80 % detection rate for the different detectors. Note that the effort increases
with the percentage of malware. However, under common circumstances when
the incidence of malware is low, the advantage of effective detection is most
important. We see this for the specialized ensemble detector which is able to
detect 80 % of the malware while scanning less than 10 % of the programs.

6 Hardware Implementation

In this section, we describe the hardware implementation of the ensemble detec-
tors. During the execution of the program, instruction categories are collected
at the feature collection unit (FCU), after the features are sent to prediction
unit (PU) to create the prediction for 10 K periods of committed instructions
and finally online detection unit (ODU) creates a continuous signal with a value
every 10,000 instructions for the executing program during runtime.

The FCU is implemented as an observer of the Reorder Buffer (ROB). ROB is
a processor structure that keeps track of all in-flight instructions in their program
order. The feature collection implementation differs with the type of feature.
For example, for INS4, each ROB entry is augmented with instruction category
information (6 bits). The feature vector used for classification is a bit vector
with a bit for every instruction category. It is updated with each committed
instruction by setting the corresponding category to 1.

We use logistic regression to implement the detectors due to its simplicity.
The PU consists of different logistic regression units, one for each detector.

For the last part of the detection module, we use two counters in order to
keep track of the malware and normal behavior. These counters are incremented
at every 10 K instructions accordingly and subtracted from each other to make
the final decision.

The ensemble detector requires a minimal hardware investment. Taking up
only 2.88 % of logic cells on the core and using only 1.53 % of the power. While the
detector may be lightweight in terms of physical resources, the implementation
required a 9.83 % slow down of frequency. However, while this may seem high, the
vast majority of this overhead comes from collecting the MEM feature vectors;
when we do not collect this feature, the reduction in frequency was under 2 %.
If feature collection was pipelined over two cycles this cost be significantly
reduced or eliminated. Moreover, we could use detectors that use simpler features
to avoid using the MEM feature.

7 Related Work

Malware detection at the sub-semantic level was explored by several studies.
Bilar et al. use the frequency of opcodes that a specific program uses [3]. Oth-
ers use sequence signatures of the opcodes [28,34]. Runwal et al. use similarity
graphs of opcode sequences [27]. However, these works used offline analysis. In

22 K.N. Khasawneh et al.

addition, Demme et al. use features based on performance counters [6] but did
not explore online detection.

Ensemble learning can combine multiple base detectors to take a final decision
for the improved accuracy [32]. The different base detectors are trained to solve
the same problem. In contrast to traditional machine learning approaches that
use the training data to learn one hypothesis, our ensemble approach learns a
set of hypotheses and combines them.

Ensemble learning is attractive because of its generalization ability which is
much powerful than using one learner [7]. In order for an ensemble detector to
work, the base detectors have to be diverse; if the detectors are highly correlated,
there is little additional value from combining them [26]. In this paper, the
diversity is based on different features (general ensemble detector), data sets
(mixed ensemble detector), or both (specialized ensemble detector).

The proposed specialized ensemble detector in this paper combines multiple
specialized detectors and dynamically collects sub-semantic features to perform
online detection. Researchers built ensemble malware detectors [1,10,11,14,17,
18,20,22,24,25,29,30,35,36,38], based on combining general detectors. More-
over, most of them used off-line analysis [1,10,14,25,29,30,35,36]. A few used
dynamic analysis [11,20,24] and some used both static and dynamic analy-
sis [17,18,22]. None of these works uses sub-semantic features or is targeted
towards hardware implementation (which requires simpler machine learning
algorithms). Specialized detectors were previously proposed [15] for use in mal-
ware classification (i.e., labeling malware). Labeling is used to classify collected
malware using offline analysis. This is quite a different application of specialized
detectors than the one we introduce in this paper.

8 Concluding Remarks

We build on Ozsoy et al. [23] work that uses low level features to provide a
first line of defense to detect suspicious processes. This detector then prioritizes
the effort of a heavy weight software detector to look only at programs that are
deemed suspicious, forming a two-level detector (TLD). In this paper, we seek
to improve the detection performance through ensemble learning to increase the
efficiency of the TLD.

We start by evaluating whether specialized detectors can be more effectively
classify one given class of malware. We found out that this is almost true for the
features and malware types we considered. We then examined different ways of
combining general and specialized detectors. We found that ensemble learning
by combining general detectors provided limited advantage over a single general
detector. However, combining specialized detectors can significantly improve the
sensitivity, specificity, and accuracy of the detector.

We develop metrics to evaluate the performance advantage from better detec-
tion in the context of a TLD. Ensemble learning provides more than 11x reduction
in the detection overhead with the specialized ensemble detector. This represents
1.87x improvement in performance (overhead) with respect to Ozsoy et al. [23]

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 23

work previously introduced single detector. We implemented the proposed detec-
tor as part of an open core to study the hardware overhead. The hardware over-
head was minimal: around 2.88 % increase in area, 9.83 % reduction in cycle time,
and less than 1.35 % increase in power. We believe that minor optimizations to the
MEM feature collection circuitry could alleviate most of the cycle time reduction.

Acknowledgements. The authors would like to thank the anonymous reviewers and
especially the shepherd for this paper, Tudor Dumitras, for their valuable feedback and
suggestions, which significantly improved the paper.

References

1. Aung, Z., Zaw, W.: Permission-based android malware detection. Int. J. Sci. Tech-
nol. Res. 2(3), 228–234 (2013)

2. Malware Statistics (2014). http://www.av-test.org/en/statistics/malware/
3. Bilar, D.: Opcode as predictor for malware. Int. J. Electron. Secur. Digit. Forensic

1, 156–168 (2007)
4. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware

malware detection. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy (SP), pp. 32–46 (2005)

5. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V., Hazelwood, K.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the PLDI (2005)

6. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan, S.,
Stolfo, S.: On the feasibility of online malware detection with performance counters.
In: Proceedings of the International Symposium on Computer Architecture (ISCA)
(2013)

7. Dietterich, T.G.: Machine learning research: four current directions. AI Magazine
18, 97–136 (1997)

8. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

9. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008)

10. Eskandari, M., Hashemi, S.: Metamorphic malware detection using control flow
graph mining. Int. J. Comput. Sci. Netw. Secur. 11(12), 1–6 (2011)

11. Folino, G., Pizzuti, C., Spezzano, G.: GP ensemble for distributed intrusion detec-
tion systems. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005.
LNCS, vol. 3686, pp. 54–62. Springer, Heidelberg (2005)

12. Henning, J.L.: Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

13. Hosmer Jr., D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, New York
(2004)

14. Hou, S., Chen, L., Tas, E., Demihovskiy, I., Ye, Y.: Cluster-oriented ensemble
classifiers for intelligent malware detection. In: 2015 IEEE International Conference
on Semantic Computing (ICSC), pp. 189–196. IEEE (2015)

15. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

http://www.av-test.org/en/statistics/malware/

24 K.N. Khasawneh et al.

16. Kruegel, C., Robertson, W., Vigna, G.: Detecting kernel-level rootkits through
binary analysis. In: Proceedings Annual Computer Security Applications Confer-
ence (ACSAC), pp. 91–100 (2004)

17. Liu, J.-C., Song, J.-F., Miao, Q.-G., Cao, Y., Quan, Y.-N.: An ensemble cost-
sensitive one-class learning framework for malware detection. Int. J. Pattern
Recogn. Artif. Intell. 29, 1550018 (2012)

18. Lu, Y.-B., Din, S.-C., Zheng, C.-F., Gao, B.-J.: Using multi-feature and classifier
ensembles to improve malware detection. J. CCIT 39(2), 57–72 (2010)

19. How Microsoft antimalware products identify malware and unwanted software.
www.microsoft.com/security/portal/mmpc/shared/objectivecriteria.aspx

20. Natani, P., Vidyarthi, D.: Malware detection using API function frequency with
ensemble based classifier. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez, G.M.
(eds.) SSCC 2013. CCIS, vol. 377, pp. 378–388. Springer, Heidelberg (2013)

21. Malwaredb Website (2015). www.malwaredb.malekal.com. Accessed May 2015
22. Ozdemir, M., Sogukpinar, I.: An android malware detection architecture based on

ensemble learning. Trans. Mach. Learn. Artif. Intell. 2(3), 90–106 (2014)
23. Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., Ponomarev, D.: Malware

aware processors: a framework for efficient online malware detection. In: Proceed-
ings of the International Symposium on High Performance Computer Architecture
(HPCA) (2015)

24. Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J.: Modeling intrusion
detection system using hybrid intelligent systems. J. Netw. Comput. Appl. 30(1),
114–132 (2007)

25. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to
harden payload-based anomaly detection systems. In: Proceedings of the IEEE
International Conference on Data Mining (ICDM) (2006)

26. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234
(1987)

27. Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and metamorphic
detection. J. Comput. Virol. 8(1–2), 37–52 (2012)

28. Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas,
P.G.: Idea: opcode-sequence-based malware detection. In: Massacci, F., Wallach, D.,
Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 35–43. Springer, Heidelberg
(2010)

29. Shahzad, R.K., Lavesson, N.: Veto-based malware detection. In: Proceedings of the
IEEE International Conference on Availability, Reliability and Security (ARES),
pp. 47–54 (2012)

30. Sheen, S., Anitha, R., Sirisha, P.: Malware detection by pruning of parallel ensem-
bles using harmony search. Pattern Recogn. Lett. 34(14), 1679–1686 (2013)

31. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault
isolation. In: ACM SIGOPS Symposium on Operating Systems Principles (SOSP),
pp. 203–216. ACM Press, New York (1993)

32. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Series in Data Management Systems, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

33. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)
34. Yan, G., Brown, N., Kong, D.: Exploring discriminatory features for automated

malware classification. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013.
LNCS, vol. 7967, pp. 41–61. Springer, Heidelberg (2013)

www.microsoft.com/security/portal/mmpc/shared/objectivecriteria.aspx
www.malwaredb.malekal.com

Ensemble Learning for Low-Level Hardware-Supported Malware Detection 25

35. Ye, Y., Chen, L., Wang, D., Li, T., Jiang, Q., Zhao, M.: Sbmds: an interpretable
string based malware detection system using svm ensemble with bagging. J. Com-
put. Virol. 5(4), 283–293 (2009)

36. Yerima, S.Y., Sezer, S., Muttik, I.: High accuracy android malware detection using
ensemble learning. IET Inf. Secur. (2015)

37. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: Proceedings of
the International Conference on Broadband, Wireless Computing, Communication
and Applications, pp. 297–300 (2010)

38. Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes detection based
on ensemble learning. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua,
Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 468–477. Springer, Heidelberg (2007)

39. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of
the 22nd Usenix Security Symposium (2013)

Physical-Layer Detection
of Hardware Keyloggers

Ryan M. Gerdes(B) and Saptarshi Mallick

Utah State University, Logan, UT 84322, USA
ryan.gerdes@usu.edu, saptarshi.mallick@aggiemail.usu.edu

Abstract. This work examines the general problem of detecting the
presence of hardware keyloggers (HKLs), and specifically focuses on
HKLs that are self-powered and take measures, such as passively tapping
the keyboard line, to avoid detection. The work is inspired by the observer
effect, which maintains that the act of observation impacts the observed.
First, a model for HKLs is proposed, and experimentally validated, that
explains how attaching a HKL necessarily affects the electrical charac-
teristics of the system it is attached to. The model then motivates the
selection of features that can be used for detection. A comparison frame-
work is put forth that is sensitive enough to identify the minute changes
in these features caused by HKLs. Experimental work carried out on
a custom keylogger designed to conceal its presence, at the expense of
reliability, shows that it is possible to detect stealthy and evasive key-
loggers by observing as few as five keystrokes. Optimal attack strategies
are devised to evade detection by the proposed approach and counter-
measures evaluated that show detection is still possible. Environmental
effects on detection performance are also examined and accounted for.

Keywords: Physical layer identification · Device fingerprinting ·
Keyloggers · Hardware keylogger

1 Introduction

A hardware keylogger (HKL) is a device, situated between the analog interfaces
of a computer and its keyboard, that recovers the keystrokes transmitted by a
keyboard through the sampling of the electrical impulses transmitted by the key-
board. These devices represent a real and persistent public threat, as evidenced
by the discovery that keylogger-like devices inside point-of-sale terminals at 63
stores were used to steal customer credit card information [34]. When installed
on public computers, HKLs enable identify theft on a wide scale and allow an
attacker to acquire credentials that may be used to gain access to other systems
and services (as a Cal State student did to perpetrate voting fraud [1]). On pri-
vate computers the surreptitious installation of HKLs makes it possible for an
attacker to bypass full disk encryption. These devices are inexpensive and readily
available (the authors found keyloggers for $30–$400, depending on the features,
such as keystroke capacity, point of attachment, size, and wireless transmission

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 26–47, 2015.
DOI: 10.1007/978-3-319-26362-5 2

Physical-Layer Detection of Hardware Keyloggers 27

of recorded keystrokes, from eight manufacturers). Alternatively, the knowledge
required to build an efficient HKL can be obtained in an undergraduate micro-
controllers course or instructions can be procured for free online.

The most popular countermeasure against HKLs is simple visual inspection
[35]; however, this is impractical for large organizations [3] and is complicated by
the fact that keyloggers are increasingly unobtrusive. Indeed, HKLs are available
for embedding inside keyboards [18], inside laptops [19], and as PCI cards [20]
for the expressed purpose of avoiding casual visual detection. Existing non-visual
methods [24] are also only capable of detecting certain types of HKL.

To enable the detection of stealthy and evasive hardware keyloggers we pro-
pose an approach based on the observer effect, which states that the act of
observing must perforce impact the phenomenon being observed [28]. Specifi-
cally, the mere fact that an attacker connects a piece of equipment (the HKL)
to measure the output of a keyboard affects the output of the keyboard. The
mechanism by which this occurs is known as loading, a well known problem
encountered, for example, when attempting to measure the voltage of a high
resistance circuit [25]. For this work we examined a HKL especially designed for
stealth and evasion and found that it impacted keyboard signaling to a measur-
able and detectable degree. In fact, we conjecture that any HKL that recovers
keystrokes via direct measurement of the wired keyboard/PC communication
channel, even those hidden within a keyboard or PC, should be discoverable
using our method.

Within the broader context of the security literature, our work falls into
the category of physical layer identification (PLI), also known as device finger-
printing. In PLI hardware and manufacturing inconsistencies that cause minute
and unique variations in the signaling behavior of devices are utilized for iden-
tification and monitoring purposes [8]. The approach outlined below utilizes
PLI techniques for keylogger detection by having the host computer fingerprint
the keyboard and compare the fingerprint to baseline fingerprints, which were
acquired in the absence of a keylogger, to determine whether a keylogger has
been attached.

1.1 Related Work

Countermeasures for HKLs generally fall into one of four categories: avoidance,
detection, exhaustion, and obfuscation.

An avoidance strategy involves giving the PC input using another method,
such as an onscreen keyboard, whenever sensitive information is called for [35].
This method tends to be tedious, cannot be used while others are nearby, and
is potentially vulnerable to screen capture, though methods have been proposed
to counter the latter threat [29].

Resource exhaustion, wherein spurious keystrokes and commands are
received from/sent to the keyboard so as fill/overwrite its memory, was sug-
gested in [14,24]. While severely resource-constrained HKLs, e.g. a self-powered
HKL that wirelessly transmits keystrokes, may be uniquely vulnerable to this
type of countermeasure, exhaustion is generally an impractical strategy as HKLs

28 R.M. Gerdes and S. Mallick

can have GBs of memory while the clock of the keyboard is on the order of ten
KHz (the author of [24] gives 109 min to fill 64 KB at ≈10 keystrokes per second).

Obfuscation refers to the encryption of keystrokes before they are transmitted
(the keyboard and PC sharing a secret key) or hiding keystrokes in a continuous
flood of random keystrokes (perhaps the PC and keyboard share the seed of a
common pseudo-random number generator). The authors are unaware of either
technique being used in practice.

Current, non-visual, HKL detection methods rely upon changes in timing
or deviations in power caused by the keylogger drawing power from the bus
[24]. These methods, however, are only effective against inline keyloggers; i.e.
those that are connected in serial with the keyboard/computer and actively
intercept and then recreate the signals from the keyboard. Stealthy and eva-
sive keyloggers—i.e. ones that are self-powered, hidden within the keyboard or
connectors, and passively tap the keyboard by being connected in parallel with
it—are undetectable using these approaches.

The possibility of using PLI to detect taps on lines—i.e. eavesdroppers on
wired communications—was first suggested in [13]. Ours is the first work to
directly confirm this conjecture, though in [10] it was demonstrated that changes
to the communication medium (in that case increasing the length of the Ethernet
cable) leads to a perceptible shift in a device’s fingerprint. The reader is referred
to [5,7,12] for an overview of PLI techniques, issues, and results.

1.2 Paper Structure

In the next section we describe the types of keyloggers and set forth a threat
model that characterizes the type of keyloger we hope to detect. We then explain
the workings of the PS/2 protocol to the extent necessary to understand the
operation of keyloggers. A first-order model that explains how a HKL indu-
bitably affects the system it is connected to concludes the section. In Sect. 3, our
architecture for detecting keyloggers is introduced. We then leverage the model
set forth in the previous section to select features to detect the presence of a
HKL. The methods used for the extraction and comparison of features are also
discussed. Experimental validation of the detection methodology is described in
Sect. 4. Details of the keylogger designed to test our approach are given and
experimental procedures discussed. Section 5 considers feature stability due to
changes in the environment and examines the extent to which attacker coun-
termeasures could be employed to evade detection. We conclude with further
avenues of research.

2 Theory of Detection

The types and characteristics of HKL are discussed and a threat model is cho-
sen that maximizes an attacker’s chances of remaining undetected. The PS/2
protocol and physical layer are described to understand how they are leveraged
by HKL designers. The effects a HKL has on transient and steady-state line
voltages are examined through the use of a first-order model.

Physical-Layer Detection of Hardware Keyloggers 29

2.1 Threat Model and Assumptions

Hardware keyloggers may be divided into active and passive types, either of
which may be self-powered or use the resources of the host PC for power. The
active type, sometimes known as inline, sits between (in series with) the keyboard
and host PC and intercepts and regenerates the signaling of the keyboard/PC.
According to [24] these are the most common commercial type of keylogger.
A passive HKL, on the other hand, sits aside (in parallel with) the keyboard/PC
and simply observes the state of the line connecting the two to recover keystrokes.
For the purposes of this work, we consider a HKL stealthy if it does not draw
upon the host PC for power and evasive if it takes measures against a detection
methodology to avoid discovery. The keylogger we studied (modeled on a com-
mercial HKL design [17] and discussed in Sect. 4.1) was passive and stealthy;
evasive variants are considered in Sects. 5.2 and 5.3.

While all of the HKLs we are aware of are based on microcontrollers (uC),
in some circumstances, such as when a special form-factor is called for or in an
attempt reduce energy consumption, an attacker might design an application-
specific integrated circuit (ASIC) HKL. Without loss of generality, as ASICs
and uCs use the same transistor-level technology for interfacing purposes,
our keyloggers were constructed using a uC. This simplified development and
testing significantly as uCs are commonly equipped with enough features
(general-purpose input/output [GPIO] ports, memory, samplers, converters, and
computation abilities) to allow for a flexible HKL design.

Given the success of previous PLI work in identifying wired devices [11],
we chose not to examine active devices as it was thought that they would be
easily discoverable. In fact, a sophisticated PLI approach is probably unnecessary
to detect these devices due to the fact the signals they generate are based on
GPIO ports that do not attempt to reproduce exactly the analog signaling of the
keyboard. This is because GPIO ports know only two outputs, which correspond
to the logic high and low voltage levels of the microcontroller.1 In addition, while
detection methods exist for active keyloggers that may or may not draw power
from the host PC [24], none do for the passive, stealthy variety.

PS/2 keyloggers are used to illustrate the approach as they are simpler and
easier to understand. Because of the electrical and signaling similarities of USB
and PS/2 line drivers, comparable loading effects will be observed when a USB
HKL is connected, so the approach would still be effective for USB keyboards.
In fact, given the relatively higher speed, it should be easier to detect a USB
keylogger, as the HKL load would produce greater distortions at higher frequen-
cies (i.e. because of the slow clock speed of the PS/2 protocol, it is actually more
difficult to detect the presence of a HKL). Host-to-keyboard communication is
also disregarded (both PS/2 and USB keyboard protocols are bi-directional).

Finally, we attached our keyloggers to a tap point in the middle of the PS/2
cable (details given in Sect. 4.2). Because of the low frequencies of the signal-
ing and short distances involved, the lumped element model [26] still holds,
1 In Sect. 5.2 we do examine the case of an evasive HKL designed to defeat our detec-

tion method by reproducing the keyboard’s signal exactly.

30 R.M. Gerdes and S. Mallick

which implies that the actual point of attachment (i.e. inside or outside the key-
board/PC) is immaterial. Thus, our setup mimics an attacker connecting a HKL
to an arbitrary point between the analog interfaces of the keyboard/PC.

In summary, we consider an attacker who has connected a passive PS/2 HKL,
designed to conceal its presence, that recovers keystrokes by measuring the line
state at any point between the keyboard and the PC.

2.2 Overview of PS/2 Protocol

The PS/2 bus consists of power (+5 V DC at 275 mA), ground, data, and clock
lines [4]. During the idle state (i.e. when neither the keyboard or host is trans-
mitting) the clock and data lines are kept at +5 V DC. The keyboard brings
the data line low and then the clock line low to signal its intention to transmit.
The low state corresponds to ground. The data line is sampled on the falling
edge of the clock, which runs between 10–16.7 KHz (Fig. 1a). A passive, stealthy
microcontroller-based keylogger, e.g. a self-powered variant of [17], would be
connected to the ground, clock, and data lines and configured such that a down-
ward voltage transition on the clock line triggers an interrupt routine in which
the data line is sampled to determine whether a one or zero is being transmitted.
Data concerning a keystroke is communicated to the host when a key is pressed
and again when it is released.

Fig. 1. (a) Electrical signal from the keyboard when the SPACE key is pressed (green:
clock line; blue: data line; the clock is offset by 250 mV to aid visualization). Data
is sampled by the host at the falling edge of the clock. (b) A passive HKL modelled
in terms of its input capacitance Ckl and resistance Rkl. The HKL is connected in
parallel with the PC (represented by the load Rpc) and keyboard (represented by the
square-wave voltage source Vkb, with output resistance Rkb) (Color figure online).

2.3 First-Order HKL Model

To understand the effects of connecting a HKL, and hence aid in our selection
of features for detecting the presence of a keylogger, we modelled the HKL

Physical-Layer Detection of Hardware Keyloggers 31

as a first-order RC circuit (Fig. 1b). The model is meant to capture the non-
zero capacitance, Ckl, and finite input resistance, Rkl, of a uC’s I/O ports and
suggests two ways in which a HKL may affect keyboard signaling.

The first is to notice that when data is transmitted the clock line goes from
+5 V DC to 0 V DC for each bit; in the presence of a HKL this is roughly
equivalent to what is known as the natural response of an RC circuit [26]. The
act of bringing the clock line from the high to low state would ideally result in a
fast downward drop of the line voltage, Vl(t), however, with a keylogger present,
and ignoring the keyboard output resistance for the moment, the line voltage
will approach zero according to Vl(t) = 5 exp (−t/τ), where τ = (Rkl ‖ Rpc)Ckl.
A similar analysis holds for when the clock is driven high (the step response).
The presence of a HKL thus causes changes in the fall and rise time of the circuit.

The differences in fall/rise times in the absence and presence of a HKL,
however, are likely to be small, as the parallel combination of Rkl and Rpc

is likely large (on the order of kΩ) but the capacitance Ckl very small (on
the order of pF), which leads to a time constant τ ∼ ns. To confirm this we
sampled the line voltage of a keyboard with and without a HKL at 40 GS/s using
a Tektronix DPO7254C oscilloscope (see Sect. 4.2 for setup details). Figure 2a
shows the rising portion of the first clock period without (blue) and with (red)
a HKL (the figure is composed of an average of 100 time-aligned signals). Using
the procedures set forth in [15] and these signals, fall/rise times were calculated
without the HKL as 2.0333 × 10−7/1.3731 × 10−6 s and 2.0350 × 10−7 /1.3782
× 10−6 s with. While the fall/rise times are indeed greater in the presence of the
HKL, the difference is small; the record-to-record variation is also substantial,
with 99 % confidence intervals of 1.9801 × 10−7 ± 7.5279 × 10−9 s/1.2760 × 10−6

± 4.3898 × 10−8 s without the HKL and 1.9804 × 10−7 ± 7.5868 × 10−9 s/1.2815
× 10−6 ± 5.1446 × 10−8 s with. For these reasons, we ignore Ckl and examine
the effects of Rkl, alone.2

We note that unless Rkl � Rpc, the voltage drop across the load (the PC) as
seen by keyboard will be decreased by the parallel combination of Rkl and Rpc

(Fig. 2b). This leads to a second way in which a HKL will perturb the system,
namely a decrease of the voltage across the line, Vl. The proof is as follows.

In the absence of a HKL the line voltage is given as

Vl =
Rpc

Rkb + Rpc
Vkb (1)

Allowing Rkl = βRpc, the parallel combination Req = Rkl ‖ Rpc = β
1+β Rpc

results in a new line voltage

V ′
l =

Req

Rkb + Req
Vkb =

Rpc

1+β
β Rkb + Rpc

Vkb ≤ Vl (2)

Eq. 2 is strictly less than Eq. 1 when β �= ∞.
2 In Sect. 5.3 we show that HKLs that do not affect line voltage—i.e. those with

high input impedance—can still be detected because of their affect on the transient
response of the system.

32 R.M. Gerdes and S. Mallick

Fig. 2. (a) The rising portion of the first clock period of a keyboard’s clock line. It
takes the signal longer to transition to the low level when a HKL is present (red) than
when it is not (blue); the same holds for the falling portion. (b) The voltage of the clock
line with (red) and without a HKL (blue) for the lower portion of the first two clock
periods. The level is less due to the loading effects of the HKL (Color figure online).

Given that both the PC and a uC-based HKL likely use the same transistor-
level technology to measure the state of line, we take β ≈ 1. Furthermore, to
measure a voltage we would expect both the PC and HKL to present a very
high resistance, while the keyboard, acting as a voltage source, would present a
comparatively low resistance [26]. Assuming that Rkl and Rpc are approximately
1 MΩ and Rkb approximately 500 Ω the difference in the line voltage when a
HKL is present at Vkb = 5 V would be Vl − V ′

l = 2.5 mV.
Figure 2b shows the lower portion of the first two clock periods of the clock

line in the absence (blue) and presence (red) of a HKL (1000 records were time-
aligned and averaged). As the figure indicates, the line voltage when a HKL is
connected is indeed lower than when it is not and the difference is commensurate
with the above calculation (the difference is also apparent and slightly greater
for the upper portion of the signal). We also observed differences in the change
of voltage for the HKL and no HKL case (i.e. Vl −V ′

l) between keyboards, which
can be explained by assuming that keyboard resistance, Rkb, differs between
keyboards, where a lower Rkb leads to a smaller change in voltage. Similarly, the
low voltage level of clocks for keyboards probably differs due to the fact that
keyboards have different ground path resistances.

Finally, we note that our model assumes that the resistance and capacitance
for a HKL are constant for all frequencies and line voltages, which, in general,
is not the case. Given the low frequency of the PS/2 clock, frequency-dependent
effects are apt to be slight. Changes in the resistance of the HKL, Rkl, for
different line voltages could, however, be noticeable because of the constancy
of the HKL’s input port leakage current over a range of input voltages. For
example, the maximum leakage current of a popular microcontroller is 1µA
over the input voltage range of [0,3.3] V [33]. A HKL built using this uC would
present a resistance of 25 kΩ at 25 mV and 3.3 MΩ at 3.3 V. This suggests that
in searching for the decreases in line voltage that signal the presence of a HKL,
we should focus on the upper level of a signal, as by Eqs. 1 and 2, a larger relative
drop would be produced for larger values of Vkb. The input-voltage dependency

Physical-Layer Detection of Hardware Keyloggers 33

of resistances also opens another avenue for possible detection: a HKL may be
present if the observed deviation of the line voltage for the high and low levels
of the clock is not equal.

3 Physical-Layer Detection of Keyloggers

Having proposed a mechanism by which a HKL may be detected, we introduce an
anomaly detection architecture meant to leverage the mechanism to determine
if a HKL has been attached. We describe its main components, including feature
extraction and feature comparison. The extraction routine will focus on those
areas of the signal most likely to display differences in the presence of a HKL,
while the comparison routine will be sensitive to the slight changes our theory
predicts will result from a HKL but still be robust to noise.

3.1 Proposed Architecture

To detect HKLs using the loading effects outlined above, we propose to incorpo-
rate a physical layer detection engine within the PC to perform anomaly detec-
tion based on the state of the clock line (Fig. 3a). The engine would be situated
between the external keyboard interface of the PC and the internal keyboard
interface so as to detect a HKL connected at any point between, or even inside,
the PC and keyboard. The clock line is monitored because, while the data signal
depends on the keypress, the clock signal is invariant with respect to the key
being pressed; i.e. it is ubiquitous and repetitive. The detection engine consists
of (1) a high-resolution analog-to-digital converter (ADC) or sampler to measure
the clock line, (2) a routine f(·) that extracts features from the sampled data,
(3) a metric d(·) by which to compare features of a newly sampled keypress to a
baseline feature set, and (4) a database to store training and test data. Feature
extraction and comparison are described in the following sections.

As the effect of a HKL on the line state amounts to a few millivolts or tens
of millivolts decrease, it is necessary to employ a high-resolution sampler in the
detector. By excluding transient effects—i.e. changes in fall and rise times—from
the feature set, in addition to the fact that the PS/2 clock is less than 20 KHz,
a comparatively low-speed ADC should prove sufficient. Given an ADC with
an allowable input range of 0–5 V, a 12-bit ADC would achieve a resolution of
≈1.25 mV. Such an ADC can be had for as cheaply as $3.00 [2].

3.2 Feature Extraction

Our detection theory suggests, and is borne out by data, that a HKL will pro-
duce macroscopic effects on the line voltage. As such, it is sufficient to use the
raw voltage measurements for features. We note that principal component analy-
sis, factor analysis, or linear discriminant analysis could be used to reduce the

34 R.M. Gerdes and S. Mallick

Fig. 3. The proposed architecture for detecting hardware keyloggers at the physical
layer. A sampler measures the voltage of the clock line. When a key is pressed the
corresponding samples are processed to check if they match a baseline acquired in the
absence of a HKL. (b) The mean of two periods of the lower portion of the clock signal,
using 1000 records, without (blue) and with (red) a HKL. The dashed lines give the
99 % confidence intervals for the means, which indicates that the line voltage for the
two cases can be seemingly equivalent at times (Color figure online).

number of features or find the most powerful features in the future, though we
did not find these techniques necessary to detect our HKL. As indicated in part
by Fig. 2, we have found that a HKL affects the higher and lower levels of the
clock to a different degree. Because of this, we have opted to extract samples
from the lower and upper portions, and consider each set separately. The latter
effect implies that it is only necessary to use a subset of the samples from each
level for detection purposes. We use the same reasoning to justify the use of only
the keydown portion of the keystroke for detection purposes.

The first step of our feature extraction procedure (f(·) in Fig. 3a) is to obtain
the samples corresponding to the keydown portion of the keystroke from a record.
To accomplish this an alignment routine takes the maximum of the correlation
between a record and a reference signal for the keyboard to indicate the point
in the record at which the reference is best aligned with the keydown signal,
and then returns a contiguous subset of the record containing just the sample
points encompassing the keydown clock signal. The reference signal consists of
the keydown portion of a single record obtained in the absence of a HKL.

From the keydown portion of the record, roughly the first 1.5 periods of the
clock (the entire first period and the upper half of second) are then used with
Algorithms 1 and 2 to obtain the sample points of the lower and upper portions,
respectively, of the truncated the clock signal. These sample points form two
separate distributions to be used in our comparison function (d(·) in Fig. 3a),
discussed next. The extraction procedure allows for the inclusion of some points
belonging to the transient; this allows us to include transient effects not captured
by our model but that could nonetheless serve as distinguishing features.

Physical-Layer Detection of Hardware Keyloggers 35

Algorithm 1. Extract lower level
sample points from clock signal

Input : R (a sample point-by-record
matrix of line measurements
for the clock signal)

Output : S (sample points of R in the
clock’s lower level)

S = ∅;

foreach Ri � R∗,i ∈ R do
{X ⊂ Ri : ∀x ∈ X < mean(Ri)};
{Y ⊂ Ri : ∀y ∈ Y ≤ mean(X)};
{Z ⊂ Ri : ∀z ∈ Z ≤ μ(Y) + σ(Y)} ;
//μ(·) and σ(·) compute the mean and
standard deviation of the elements
S ← S ∪ Z;

Algorithm 2. Extract upper level
sample points from clock signal

Input : R (a sample point-by-record
matrix of line measurements
for the clock signal)

Output : S (sample points of R in the
clock’s upper level)

S = ∅;

foreach Ri � R∗,i ∈ R do
{X ⊂ Ri : ∀x ∈ X > mean(Ri)};
{Y ⊂ Ri : ∀y ∈ Y ≥ mean(X)};
{Z ⊂ Ri : ∀z ∈ Z ≥ μ(Y) − σ(Y)} ;
//μ(·) and σ(·) compute the mean and
standard deviation of the elements
S ← S ∪ Z;

3.3 Feature Comparison

Figure 3b shows the mean (solid) and 99 % confidence intervals (dashed) of 1000
records acquired for a keyboard with a keylogger present (red) and in its absence
(blue). The signals vary with respect to time and that individual signals with
and without the HKL overlap, but that the means, and possibly the variances,
are different when the HKL is connected compared to when it is not. Because
of the overlap and variation observed, a simple distance metric, such as the
Euclidean one, would require a large threshold to keep false positives low, but
would also produce an unacceptable number of false negatives. To accommodate
both variation and overlap we propose to use a distance metric designed for
comparing distributions known as the earth mover’s distance (EMD).3

Put simply, the EMD is a measure of the cost of transforming one histogram
to another [27]. In our case, the sample points extracted from the lower, or
upper, portion of the first 1.5 clock periods serve as the distribution, and we are
interested in the cost of transforming the distribution of a record(s) when the
line is in an unknown state to a baseline built for the keyboard in a known state
(keylogger absent). If the cost is too high—i.e. if the distribution is too far from
the baseline—we assert a HKL has been attached.

Specifically, considering samples from only one of the levels, we build a train-
ing distribution Dtrn from the extracted features of a number of records pro-
cured in the absence of a HKL. A test distribution Dtst is then constructed from
records collected from one or more keystrokes. To test for the presence of a HKL
we employ the EMD: if d(Dtst,Dtrn) ≤ T , where T is a threshold, established
to during a training phase, that results in an acceptable number of false posi-
tives, the records are said to have been acquired in the absence of a HKL. This
procedure is followed for every keystroke or series of keystrokes.

The reference signal necessary to extract features from records and the train-
ing distribution for comparing those features to a threshold are stored in the
database of our proposed detection engine.
3 Properly speaking, we use a variant of the EMD for non-normalized histograms,

where we have selected the l1 norm for the ground distance metric [27].

36 R.M. Gerdes and S. Mallick

4 Experimental Setup and Results

Results validating the first-order model given in Sect. 2 are presented. The HKL
designed to conduct experiments on is explained and an overview of our experi-
mental setup and procedures given.

4.1 Keylogger Design

Our HKL was built using a Texas Instruments (TI) Tiva C Series TM4C123G
LaunchPad, which is based on the TI TM4C123GH6PM microcontroller [32]. It
is modeled on [17] (the only commercially available passive HKL we are aware
of) and has similar specifications (e.g. the input leakage currents are the same
order of magnitude). A passive HKL is ipso facto maximally evasive with respect
to current active HKL detection methods. As our methodology relies only on
observing deviations present on the clock line, we did not configure the uC to
sample the data line or even connect it to the data line. One pin on the uC
was set as an input and the uC was configured to issue an interrupt on the
falling edge of the pin; an LED was blinked for each keystroke to verify proper
operation.

In keeping with the premise of the work—to detect passive and stealthy
keyloggers—the uC was powered using the USB bus, not the PS/2 bus; the input
pin was also kept floating to maximize its impedance (i.e. Rkl) and make the
HKL nominally evasive with regards to our detection approach. A floating input
pin is generally discouraged as the input can be easily shifted by environmental
factors such as noise, leading to spurious readings. It was felt, however, that
activating the internal pull-up or pull-down resistors would affect the line voltage
noticeably and therefore bias the experiments in favor of our approach.

4.2 Data Collection

Our experimental setup (Fig. 4a) consisted of a single PC for test and measure-
ment purposes; i.e. the PC measured its own clock line voltage (mimicking our
proposed architecture [Fig. 3a]). As the PC (a Dell Optiplex GX620) lacked a
PS/2 port, a USB-to-PS/2 converter was used to connect the test keyboards.
This had the side benefit of allowing us to attach a USB keyboard to control the
system without interfering with the keyboard under test. To automate the data
collection process a linear motor was setup to press the space bar every 1.2 s
for 0.3 s (a 20 % duty cycle square wave with a period of 1.5 s was used with a
switch to turn the motor on and off).

The line voltage was measured by connecting a sampler to a tap point midway
between the two ends of the PS/2 cable (Fig. 4b). Our choice of sampler was a
Measurement Computing USB-2500 Series DAQ board. The DAQ was configured
to use a full-scale voltage of 10 V and sample at 1 MS/s. Given the board’s 16
bit ADC, we were able to measure signals with a resolution of ≈153µV. Upon
detecting the first falling edge of the clock, the sampler would acquire data for
the next 35 ms. This sampling period allowed us to capture the clock for both

Physical-Layer Detection of Hardware Keyloggers 37

Fig. 4. (a) Experimental setup: the keyboards were secured in place so that the linear
motor struck approximately the same place on the spacebar for each keyboard. (b)
A schematic diagram of the setup. The dashed box represents an electrical tap in the
PS/2 cable that was created by cutting the cable, striping the wires, and then soldering
the exposed wires to binding posts.

the keydown and keyup signals sent by the keyboard, though only the clock
corresponding to the keydown press was used in our analysis.

We collected data from a total of 25 keyboards, consisting of eight different
models, from two manufacturers (Dell and Logitech) and two different places
of manufacture (China and Thailand). For each keyboard 1000 keystrokes were
recorded without the keylogger, followed by another 1000 keystrokes with the
keylogger attached. It took approximately 50 min per keyboard to acquire both
sets of data.

The reference signal, used for aligning signals in the feature extraction proce-
dure (Sect. 3.2), for each keyboard was obtained from the first record captured for
the keyboard without the HKL. Because the clock signal does not vary substan-
tially from keyboard-to-keyboard, the negative (falling) threshold-based trigger
that was set on the sampler to detect the beginning of the clock would consis-
tently initiate the sampling sequence at nearly the same point of the clock signal.
This enabled us to use the same set of sample points for the reference signal and
extraction of the first 1.5 periods of the clock, again, described in Sect. 3.2, for
each keyboard.

4.3 Discussion

The average difference of the line voltage in the absence and presence of the
HKL (i.e. Vl − V ′

l) was found to be 23.7 mV for the upper level of the clock
and 4.11 mV for the lower level. We attribute the difference in the voltage drop
between the two levels to a change in the input resistance. Indeed, according to
[33] the nominal and maximum leakage currents of the uC at 5 V are 30µA and
60µA, respectively, while at 50 mV they are 1 nA and 1µA. This suggests that
Rkl =[83.3 kΩ,166.6 kΩ] at 5 V while at 25 mV, Rkl =[25 kΩ,25 kΩ]. Using the

38 R.M. Gerdes and S. Mallick

maximum leakage currents and assuming a β = 1 with Vkb = 500Ω the predicted
differences, by (1) and (2), would amount to 30 mV and 471µV for the high and
low level, respectively.

While the observed drop in line voltage for the high level roughly corresponds
to the predicted drop, the lower level differs by an order of magnitude. The
observed drop for the lower level could be explained if the leakage current were
10µA, which would produce an expected drop of 3.4 mV. The documentation for
the uC ([33], p. 4) suggests that the leakage current for most GPIO pins is less
than 1µA so perhaps the GPIO pin used in our HKL has a higher than average
leakage current. Another possibility is that, as the datasheet indicates, for input
voltages between –0.3 V to 0 V the maximum leakage current is given as 10µA.
Mismatches in the internal biasing of the uC due to the use of a separate power
supply for the uC, intended to maintain the HKL’s stealth, could conceivably
make the input appear in this range to the uC.

To detect the differences in the line state, distances between a training distri-
bution, built for each keyboard from fixed a number of records, and test distribu-
tions based on varying numbers of records were computed using the EMD metric.
Individual training distributions for the keyboards were built from 25 randomly
selected records captured without the keylogger attached. The EMD implemen-
tation we used requires that the number of sample points in the training and
test distributions be equal. To satisfy this requirement we removed randomly
selected samples from the larger distribution to make it equal in size to the
smaller distribution. For all the test cases—i.e. whatever the number of records
used to build the test distribution—the maximum number of sample points used
was limited to 256 in order to keep the EMD calculation tractable.

Table 1. The equal error rate, and corresponding thresholds, achieved using N records
to build the test distribution (training distribution fixed at 25 records). The left part
of the table gives results for distributions built using the lower clock level while the
right gives results for the upper clock level. We are able to reliably detect the presence
of the HKL, for all 25 keyboards, after 25 keystrokes by observing the lower level and
only 10 keystrokes by observing the upper. Sample points is the nominal number of
sample points used in the EMD calculation.

N EER (%) T Sample EER (%) T Sample

mean max median mean max min points mean max median mean max min points

1 7.56 31.6 2.8 0.001 0.004 0.001 34 2.42 8.40 2.2 0.016 0.125 0.006 32

2 2.92 13.6 0.6 0.002 0.008 0.001 68 0.67 3.20 0.4 0.039 0.250 0.019 65

3 1.86 16.5 0 0.004 0.016 0.002 104 0.22 1.20 0 0.064 0.500 0.031 97

4 0.98 6.4 0 0.004 0.016 0.003 135 0.12 0.08 0 0.084 0.500 0.031 129

5 0.72 7.0 0 0.006 0.031 0.004 167 0.06 1.50 0 0.104 0.500 0.057 161

10 0.32 5.0 0 0.011 0.063 0.004 256 0 0 0 0.173 0.500 0.063 256

15 0.24 4.6 0 0.012 0.063 0.004 256 0 0 0 0.178 0.500 0.125 256

20 0.16 4.0 0 0.012 0.063 0.004 256 0 0 0 0.193 0.500 0.063 256

25 0 0 0 0.012 0.063 0.004 256 0 0 0 0.175 0.500 0.125 256

Physical-Layer Detection of Hardware Keyloggers 39

To evaluate the efficacy of our approach, we calculated the equal error rate
(EER) on a per keyboard basis. Table 1 reports the average, maximum, and
median (the minimum was always zero) EER for test distributions built from
N = {1, 2, 3, 4, 5, 10, 15, 20, 25} consecutive records (training/test distributions
built from the lower level on the left and the upper level on the right). As we
observed a larger voltage drop for the upper level of the clock, we anticipated
that it would be easier to detect the HKL at the higher voltage, and indeed this
was so. However, even with the small differences observed at the lower level, our
approach is able to reliably detect (i.e. achieve an EER = 0) the presence of the
HKL after 25 keystrokes, while for the upper level this same feat is achieved
with only 10 keystrokes. Figure 5a and b show the distances between training
and test distributions, using N = 10 for the high level and N = 25 for the low
level comparisons, along with their respective EER thresholds.

We were able to further lower the number of keystrokes needed to detect
the keylogger to five by fusing the outputs of the upper and lower distance
calculations using unanimous voting. That is, for a set of records to be declared
free of the HKL, the distances for both the upper and lower level distributions
would need to fall within their respective thresholds. To evaluate the fusion of
the distance tests, we established the thresholds needed to guarantee zero false-
positives for each test distribution. Thus, the keylogger could be detected if the
distance for either test distribution built from records captured with the HKL
attached was greater than the specified thresholds. Zero false negatives were
achieved when N = 5 for both high and low level distributions.

5 Feature Stability and Countermeasures

It is shown that while the features used for HKL detection are dependent on the
environment, this dependency can be modelled and thus accounted for. Attacker
countermeasures, both active and passive, are also considered and neutralized.

5.1 Stability of Features

The variability apparent in Figs. 3b, 5a, and b suggests that the line voltage is
a stochastic process. This begs the question: can we track the state of the line
using training data acquired at an earlier time? In an attempt to offer a partial
answer to this question we acquired a second round of data without the keylogger
attached and used the training distributions for the first dataset to calculate the
distance between the two. We found that the distances calculated using the upper
clock level were within the thresholds established for the earlier dataset; i.e. were
able to successfully re-identify that the line was not encumbered with the HKL.
In the case of the lower level, however, the distance between the training and
test distribution were greater than the previously established thresholds; i.e. we
falsely identified the line as having the HKL attached.

We hypothesize that our inability to track the lower line voltage is due to
temperature-induced variations, as such small voltages (≈25 mV for the lower

40 R.M. Gerdes and S. Mallick

Fig. 5. The earth mover’s distance between a training distribution and a test dis-
tribution built from records without a keylogger attached (blue) and with a keylogger
attached (red) for all 25 keyboards (x-axis; records are grouped). EER thresholds shown
in green. Since there is no overlap we are able to detect the HKL. (a) Features extracted
from lower level of clock with N = 25 and (b) features extracted from upper level of
clock with N = 10. The spike in the distance for records 601–700 results from a faulty
keyboard (Color figure online).

clock level) could be shifted by thermal noise over time. However, temperature-
induced changes to the line voltage could be compensated for by employing
noise models to equalize line measurements taken at different temperatures. This
implies that temperature readings need to be recorded when data is taken in
order to take into account the discrepancy between the temperature of new data
and the temperature at which the training data was acquired.

To test the above hypothesis, we performed an experiment wherein temper-
ature sensors (the TI LM35DT [31]) were placed next to four suspected points
of influence; viz. the keyboard under test, the Measurement Computing DAQ
board, the site of PS/2 cable tap, and the uC-based HKL. A National Instru-
ment USB-6008 series DAQ was used to record the output of the sensors. Every
30 s for 24 h4 a key was pressed and the output of the sensors were measured 100
times, in addition to the voltage of the PS/2 clock line. Using 20 % of the cap-
tured data, selected at random, for each of the 23 keyboards as training data we
performed a linear regression on the remaining 80 % using the model F ∼ 1+T ,

4 A slight change was made to our experimental setup to accommodate the duration
of the data runs. Instead of the space bar being manually pressed, a program was
written that toggled the NUMLOCK state. Since the OS state of this key and the
NUMLOCK LED must be consistent, the PC would signal the keyboard that it had a
scancode to send by bringing the clock line low, which would then cause the keyboard
to generate a clock signal that we were able to subsequently capture.

Physical-Layer Detection of Hardware Keyloggers 41

where T denotes the average measured temperature during which the record was
captured and F the mean of the lower portion of the clock signal of the record
(our feature of interest). An average R2 = 0.99 indicates that the line voltage
is a strong function of temperature; the sensor that provided the best fit was
nearest the PS/2 tap point.

5.2 Active and Evasive Keyloggers

In our threat model (Sect. 2.1) we pointed out that active keyloggers that rely
on GPIO ports to capture keystrokes from the keyboard and then replay them
to the PC should be easily detectable as the input/output ports do not capture
the nuances of the keyboards signaling. In this section we argue that even a
specially built keylogger that took pains to accurately measure and reproduce
the keyboard’s signals would be unlikely to remain undetected.

It has been demonstrated [6,9] that, under some circumstances, physical
layer identification systems are vulnerable to an attacker replaying a signal from
a device using an arbitrary waveform generator (AWG) or digital-to-analog con-
verter (DAC). In the experiments carried out in these works, an attacker acquires
a digital copy of a device’s signal using an analog-to-digital converter (ADC)
and then reproduces it using a DAC. As most uCs are equipped with an ADC
and DAC (or can be easily outfitted with them), we could imagine an attacker
attempting to mount a similar attack on our proposed PLD system by creat-
ing an active HKL that samples the keyboard’s signal using the ADC and then
replays it to the PC using the DAC. Leaving aside the exact characteristics of
each converter necessary to carry out the attack (sampling rates and resolution,
chiefly), we point out that the ADC/DAC would still cause loading effects that
would make it detectable.

Firstly, the finite resistance associated with the ADC input would cause a
drop in the line voltage, which would mean that an attacker cannot know the
true value of the keyboard’s output. Secondly, the non-zero output impedance of
the DAC would cause a decrease in the voltage measured by the PC (this can be
seen by the replacement of Vkb and Rkb with Vdac and Rdac in Eq. 1). Now, the
attacker could attempt to compensate for these loading effects by calibrating the
HKL to the system they wish to attach it to. However, this procedure is quite
invasive, and noticeable, as it requires that the attacker obtain the resistances
of the PC and keyboard. The measurements required to deduce these values
require that both the PC and keyboard be powered, as their port impedance
would change in the absence of power. To accomplish this would require that
the attacker sever at least the clock line between the two, which our PLD could
be programmed to notice.

Additionally, we note that measuring and replaying the line state continu-
ously using an ADC/DAC would be more energy intensive than simply measur-
ing and replaying the binary state of the line via GPIOs, leading to a shorter
period of keylogging. Also, a simple active HKL would cut off bi-directional com-
munication between the PC and keyboard as the replay is one-way. It may be
possible to design an HKL that senses the keyboard taking control of the line,

42 R.M. Gerdes and S. Mallick

but this seems nontrivial and could introduce delays in signal propagation that
are detectable.

Finally, it may also be possible to detect/counter a self-powered active HKL
employing a DAC by shorting the keyboard line. The short works as a counter
because a stealthy HKL will have a limited power supply, as it is self-powered, so
drawing the maximum amount of current possible via a short would increase its
power consumption and decrease its operational lifetime. In addition, the DAC
could probably not sustain a significant current draw without damage. Detection
is also possible using a short: as the keyboard draws its power from the PC a
short should result in a spike of current on the VCC line, of a known amount.
The presence of a HKL could be deduced by the absence of such a spike, or a
spike of equivalent magnitude.

5.3 Passive and Evasive Keyloggers

As noted in Sect. 2.3, a HKL can be detected due to differences in fall/rise time
(transient response) or voltage drops. In this work we focused on voltage drops
because transient effects are small for the HKL we considered (time constant
on the order of a nanosecond). An attacker attempting to evade our level-based
detection approach could equip their HKL with a high input impedance com-
parator, based on the LT1793 op-amp [22], for example, at the input stage to
ensure an undetectable voltage drop. With an input impedance of 10 TΩ, such
an op-amp would effectively make Req = Rpc (order of MOhm), which would
result in Vl = V ′

l . A high input impedance comparator would, however, produce
a time constant (τ = ReqCkl, Ckl ∼ pF) on the order of microseconds, which
would distort the clock voltage to a noticeable degree (due to changes in the
rise/fall time of the circuit). This does beg the question: can an attacker select a
Rkl such that the transient response is unchanged and the drop immeasurable?
We would argue no, as follows.

Assume that an attacker can arbitrarily set the resistance of the HKL. It is
the attacker’s prerogative to select an Rkl that produces an equivalent resistance
as small as possible (to minimize the time constant), yet large enough so that
the resulting voltage drop across Req is less than can be resolved by the ADC.
The minimum equivalent resistance to accomplish this is

Req =
Vl − r

Vkb − Vl + r
Rkb (3)

where r is the minimum resolvable voltage drop (see Appendix for derivation).
For the ADC used in the paper r = 150µV, which yields Req = 943 kΩ. Ignoring
the capacitance of the additional resistors needed to effect the target resistance,
the capacitance of a LT1793 op-amp is 1.5 pF, which produces a time constant on
the order of microseconds. Even an r = 1 mV requires Req = 714 kΩ, which still
produces a time constant on the order of a microsecond. Additionally, attaching
the op-amp to the clock line is likely to produce more than 1.5 pF of capacitance.

To validate the above claim we replaced our HKL with a resistor (represent-
ing Req) and 3 pF capacitor and acquired 1000 clock line measurements for each

Physical-Layer Detection of Hardware Keyloggers 43

keyboard; fresh comparison data without the resistor and capacitor was also
collected. The resistor value was selected experimentally for each keyboard such
that the resulting voltage drop could not be detected by our Measurement Com-
puting DAQ. On average, the minimum equivalent resistance for our collection
of keyboards was 6 MΩ; i.e. an attacker able to tune the input resistance of their
HKL to 6 MΩ would ensure that it is undetectable to our level-based approach,
while at the same time minimizing the time constant (and hence rise/fall times)
of the circuit. The 3 pF capacitance was used to represent the capacitance of
the HKL input pin and the connection to the PS/2 line. An estimate of 3 pF
was made as a lower bound based on the assumption that the HKL would be
mounted on a printed circuit board (PCB) to accomodate lower capacitance
surface mount components, which introduces parasitic capacitances due to the
groundplane (0.5 pF cm−2 [30]), traces (0.8 pF cm−1 [30]), and bondwires (0.1
pF to 0.15 pF for 2 mm wire lengths [16]). Our detection approach consisted
of extracting the rise and fall times (calculated according to [15]) of the first
five edges of the portion of the clock relating to the down keypress. Instead
of the EMD, which was found to be unable to distinguish between the HKL
and no HKL cases, the Kullback-Leibler (KL) divergence [21] was employed for
comparing training and test distributions.

Fig. 6. The Kullback-Leibler divergence between a training distribution and a test
distribution built from records without a keylogger attached (blue) and with a keylogger
attached (red) for 23 keyboards (x-axis; records are grouped). EER thresholds shown
in green. Since there is no overlap, aside from keyboard seven, we are able to detect the
HKL. Features consist of the rise times for the first five rising edges of the clock with
N = 100. The spike in the distance for records 61–70 results from a faulty keyboard
(Color figure online).

Given expected rise/fall times on the order of a microsecond, we did not
expect to be able to discern a difference in rise/fall times using a 1 MS/s ADC.
As such, a Tektronix DPO2024 oscilloscope equipped with a Tektronix P6139B
probe (10 MΩ and 8 pF input resistance and capacitance, respectively) was used.
Using a sampling rate of 125 MS/s5 with 25 keystrokes for training/detection
using the rise time resulted in an average ERR of 0.02 %, while 100 keystrokes for

5 We note that while 125 MS/s ADCs are more expensive than the 1 MS/s variety,
they can still be had for less than $15, e.g. the LTI LTC2251 [23].

44 R.M. Gerdes and S. Mallick

Table 2. The equal error rate, and corresponding thresholds, achieved using N records
to build the test distribution (training distribution fixed at 25 records). The left part of
the table gives results for distributions built using the fall times of the first five falling
edges, while the right gives results for distributions built from the rise times of the
first five rising edges. We are able to reliably detect the presence of the HKL, for most
keyboards, after 50 keystrokes by observing the fall times and only 25 keystrokes by
observing the rise times.

N EER (%) T EER (%) T

mean max median mean max min mean max median mean max min

1 4.59 9.98 4.31 −0.74 −0.66 −0.86 3.75 9.69 3.51 −6.04 −2 −12

2 2.73 5 3.16 −0.08 −0.07 −0.19 2.11 4.94 1.93 −2.4 −1.5 −4.5

4 1.12 2.5 1.28 −0.26 −0.05 −0.45 0.7 2.24 0.61 −3.62 −0.5 −7.5

5 1 1.93 1.15 −0.39 −0.03 −0.93 0.54 1.68 0.37 −5.82 −3.5 −9.5

10 0.39 0.99 0.41 −0.275 −0.1 −0.45 0.15 0.81 0.53 −8 −7 −9

20 0.10 0.5 0.04 −1.5 −1 −2.5 0.05 0.42 0.01 −17 −11 −26

25 0.09 0.4 0.06 −1.6 −0.6 −2.6 0.02 0.18 0 −21.5 −14 −29

50 0.02 0.1 0 −2.8 −1.8 −3.8 0.03 0.08 0 −32.5 −30 −35

100 0.01 0.1 0 −6.1 −5.7 −6.5 0.001 0.03 0 −64.5 −62 −67

training/testing yielded an average EER of 0.001 % (Fig. 6). This suggests that
either an increase in the sampling rate of the ADC or the number of keystrokes
used for detection would be sufficient to detect the presence of a HKL designed
to evade a level-based detection approach. We note that for all of the keyboards
considered, using both rise and fall times, the HKL stand-in was eventually
and definitely detected; i.e. the KL divergence for the resistor/capacitor samples
were significantly greater than the largest distance for the non-resistor/capacitor
samples (Table 2).

6 Conclusion and Future Work

Inspired by the observer effect, we hypothesized that a HKL would have a mea-
surable effect on its host system. Specifically, we built a detection methodology
based on the theory that the HKL would cause the voltage of the clock line
to drop. This prediction was substantiated through experiments wherein it was
shown that 25 keystrokes were necessary to identify the presence of a HKL when
the lower level of the clock was used for detection, while the upper level required
only 10 keystrokes and was shown to be more consistent across time. A com-
bined approach based on unanimous voting reduced the detection time to five
keystrokes. It was found that the features used to identify the presence of a HKL
are sensitive to temperature. Furthermore, it was shown experimentally that an
attacker cannot escape detection by modifying the input resistance of the HKL,
if the transient characteristics of the clock line are monitored.

Future work includes the long-term observation of keyboard signals to under-
stand and incorporate the effects of ageing. Adaptive thresholding schemes may
prove useful in this regard. Secondly, to complement detection, investigations of

Physical-Layer Detection of Hardware Keyloggers 45

active countermeasures against HKL should be undertaken, including the per-
manent disabling of HKLs through electrical means. Finally, research should be
undertaken to identify features that are not based on the clock signal level. The
ultimate aim of this work should be to discover features in the keyboard signal-
ing that are sensitive to the presence of a HKL but invariant with respect to the
keyboard resistance/voltage and the PC resistance.

Acknowledgements. The authors would like to thank Li Yin and Heidi Harper of
Utah State University for their assistance in collecting data.

Appendix: Optimal Selection of HKL Input Resistance

The attacker seeks to minimize the difference between the line voltage with and
without the HKL in order to evade the level-based detection approach, while
simultaneously minimizing the time constant associated with the HKL to lessen
the increase of the rise/fall times of the clock signal. The former goal can be
realized by choosing Rkl � Rpc to ensure that Req = Rkl ‖ Rpc = Rpc. This,
however, is achieved at the expense of the latter goal, as the time constant
ReqCkl can only be decreased by selecting Rkl such that Req < Rpc, due to
the fact that the HKL capacitance is fixed. The minimum value of Req, and by
extension the optimal input impedance of the HKL, necessary to evade the level-
based approach while minimizing the time constant of the HKL is calculated as
follows.

Allow r to represent the minimum resolvable voltage drop of the ADC
employed in the detector. Evading the level-based detection approach requires
Vl − V ′

l = r, where r may be expressed in terms of the quantities controllable
and/or known by the attacker as

r = Vl − Req

Rkb + Req
Vkb (4)

Defining

Vm =
Req

Rkb + Req
Vkb (5)

and rearranging terms yields
Vl − r = Vm (6)

Furthermore, manipulation of (5) gives

Req =
Vm

Vkb − Vm
Rkb (7)

By substituting (6) into (7) we arrive at

Req =
Vl − r

Vkb − Vl + r
Rkb (8)

�

46 R.M. Gerdes and S. Mallick

References

1. ABC News: Former Cal State student gets year in prison for rigging campus
election (2013). http://abcnews.go.com/US/cal-state-student-year-prison-rigging-
campus-election/story?id=19682401

2. Analog Devices: AD7265 Differential/Single-Ended Input, Dual 1 MSPS, 12-Bit,
3-Channel SAR ADC (2006), datasheet

3. Chahrvin, S.: Keyloggers–your security nightmare? Comput. Fraud Secur. 2007(7),
10–11 (2007)

4. Chapweske, A.: The ps/2 mouse/keyboard protocol (2003). http://www.computer-
engineering.org/ps2protocol

5. Danev, B.: Physical-layer Identification of Wireless Devices. Ph.D. thesis, ETH
Zurich, Zurich, Switzerland (2011)

6. Danev, B., Luecken, H., Capkun, S., Defrawy, K.E.: Attacks on physical-layer iden-
tification. In: Proceedings of the Third ACM Conference on Wireless Network
Security (WiSec 2010), pp. 89–98. ACM, New York (2010)

7. Danev, B., Zanetti, D., Capkun, S.: On physical-layer identification of wireless
devices. ACM Comput. Surv. (CSUR) 45(1), 6 (2012)

8. Daniels, T.E., Mina, M., Russell, S.F.: A signal fingerprinting paradigm for physical
layer security in conventional and sensor networks. In: Proceedings of the Interna-
tional Conference on Security and Privacy for Emerging Areas in Communnication
Networks (SecureComm), pp. 219–221. IEEE Computer Society (2005)

9. Edman, M., Yener, B.: Active attacks against modulation-based radiometric iden-
tification. Technical report, Rensselaer Polytechnic Institute, Department of Com-
puter Science (2009), technical Report

10. Erbskorn, J.W.: Detection of Intrusions at Layer ONe: The IEEE 802.3 normal
link pulse as a means of host-to-network authentication A preliminary performance
analysis and survey of environmental effects. Master’s thesis, Iowa State University,
Ames, IA (2009)

11. Gerdes, R., Mina, M., Russell, S., Daniels, T.: Physical-layer identification of wired
ethernet devices. IEEE Trans. Inf. Forensics Secur. 7(4), 1339–1353 (2012)

12. Gerdes, R.M.: Physical layer identification: methodology, security, and origin of
variation. Ph.D. thesis, Iowa State University, Ames, IA (2011)

13. Gerdes, R.M., Daniels, T.E., Mina, M., Russell, S.F.: Device identification via ana-
log signal fingerprinting: a matched filter approach. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS). The Internet Society (2006)

14. Greene, M., Parker, M.: Method and system for detecting a keylogger that encrypts
data captured on a computer, 25 July 2006, US Patent App. 11/492,581

15. IEEE: Standard for transitions, pulses, and related waveforms (2011), IEEE Std
181–2011

16. Karim, N., Agrawal, A.: Plastic packages electrical performance: reduced bond wire
diameter. In: NEPCON WEST, pp. 975–980 (1998)

17. KeeLog: Open source DIY hardware keylogger (2012). http://www.keelog.com/
diy.html

18. KeeLog: Keygrabber Module (2013). http://www.keelog.com/
19. KeyCarbon: Keycarbon Raptor (2012). http://www.keycarbon.com/
20. KeyCarbon: Keycarbon PCI (2013). http://www.keycarbon.com/
21. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 52,

79–86 (1951)
22. Linear Technology: LT1793 JFET Input Op Amp (1999), datasheet

http://abcnews.go.com/US/cal-state-student-year-prison-rigging-campus-election/story?id=19682401
http://abcnews.go.com/US/cal-state-student-year-prison-rigging-campus-election/story?id=19682401
http://www.computer-engineering.org/ps2protocol
http://www.computer-engineering.org/ps2protocol
http://www.keelog.com/diy.html
http://www.keelog.com/diy.html
http://www.keelog.com/
http://www.keycarbon.com/
http://www.keycarbon.com/

Physical-Layer Detection of Hardware Keyloggers 47

23. Linear Technology: LTC2251/LTC2250 ADCs (2005), datasheet
24. Mihailowitsch, F.: Detecting hardware keyloggers, November 2010. https://

deepsec.net/docs/Slides/2010/DeepSec 2010 Detecting Hardware Keylogger.pdf.
[DeepSec 2010 Presentation]

25. Nakra, B.C., Chaudhry, K.K.: Instrumentation Measurement and Analysis.
McGraw-Hill Education (India) Pvt Limited (2009)

26. Nilsson, J.W., Riedel, S.: Electric Circuits. Prentice Hall, Upper Saddle River
(2010)

27. Pele, O., Werman, M.: A linear time histogram metric for improved SIFT matching.
In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol.
5304, pp. 495–508. Springer, Heidelberg (2008)

28. Salkind, N.: Encyclopedia of Research Design. SAGE Publications, Thousand Oaks
(2010)

29. Sapra, K., Husain, B., Brooks, R., Smith, M.: Circumventing keyloggers and screen-
dumps. In: 2013 8th International Conference on Malicious and Unwanted Soft-
ware: “The Americas” (MALWARE), pp. 103–108, October 2013

30. Texas Instruments: High Speed Analog Design and Application Seminar: High
Speed PCB Layout Techniques (2004), presentation

31. Texas Instruments: LM35 Temperature Sensors (2013), datasheet
32. Texas Instruments: Tiva TM4C123GH6PM microcontroller (2013), datasheet
33. Texas Instruments: Use conditions for 5-v tolerant gpios on Tiva C series

TM4C123x microcontrollers (2013), application Report
34. The New York Times: Credit card data breach at Barnes & Noble stores

(2012). http://www.nytimes.com/2012/10/24/business/hackers-get-credit-data-
at-barnes-noble.html? r=3&

35. Zaitsev, O.: Skeleton keys: the purpose and applications of keyloggers. Netw. Secur.
2010(10), 12–17 (2010)

https://deepsec.net/docs/Slides/2010/DeepSec_2010_Detecting_Hardware_Keylogger.pdf
https://deepsec.net/docs/Slides/2010/DeepSec_2010_Detecting_Hardware_Keylogger.pdf
http://www.nytimes.com/2012/10/24/business/hackers-get-credit-data-at-barnes-noble.html?_r=3&
http://www.nytimes.com/2012/10/24/business/hackers-get-credit-data-at-barnes-noble.html?_r=3&

Reverse Engineering Intel Last-Level Cache
Complex Addressing Using Performance

Counters

Clémentine Maurice1,2(B), Nicolas Le Scouarnec1, Christoph Neumann1,
Olivier Heen1, and Aurélien Francillon2

1 Technicolor, Rennes, France
2 Eurecom, Sophia Antipolis, France

clementine@cmaurice.fr

Abstract. Cache attacks, which exploit differences in timing to perform
covert or side channels, are now well understood. Recent works leverage
the last level cache to perform cache attacks across cores. This cache is
split in slices, with one slice per core. While predicting the slices used by
an address is simple in older processors, recent processors are using an
undocumented technique called complex addressing. This renders some
attacks more difficult and makes other attacks impossible, because of the
loss of precision in the prediction of cache collisions.

In this paper, we build an automatic and generic method for reverse
engineering Intel’s last-level cache complex addressing, consequently ren-
dering the class of cache attacks highly practical. Our method relies on
CPU hardware performance counters to determine the cache slice an
address is mapped to. We show that our method gives a more precise
description of the complex addressing function than previous work. We
validated our method by reversing the complex addressing functions on
a diverse set of Intel processors. This set encompasses Sandy Bridge, Ivy
Bridge and Haswell micro-architectures, with different number of cores,
for mobile and server ranges of processors. We show the correctness of
our function by building a covert channel. Finally, we discuss how other
attacks benefit from knowing the complex addressing of a cache, such as
sandboxed rowhammer.

Keywords: Complex addressing · Covert channel · Cross-Core · Last
level cache · Reverse engineering · Side channel

1 Introduction

In modern x86 micro-architectures, the cache is an element that is shared by
cores of the same processor. It is thus a piece of hardware of choice for per-
forming attacks. Cache attacks like covert and side channels can be performed
in virtualized environments [16,22,27,33,35–37], breaching the hypervisor isola-
tion at the hardware level. Caches are also exploited in other types of attacks,

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 48–65, 2015.
DOI: 10.1007/978-3-319-26362-5 3

Reverse Engineering Intel Last-Level Cache Complex Addressing 49

such as bypassing kernel ASLR [8], or detecting cryptographic libraries in virtu-
alized environments [17].

Cache attacks are based on difference of timings: the access to a cached
memory line is fast, while the access to a previously evicted cache line is slow.
Cache attacks can operate at all cache levels: level 1 (L1), level 2 (L2) and Last
Level Cache (LLC). Attacks on the L1 or L2 cache restrict the attacker to be
on the same core as the victim. This is a too strong assumption on a multi-
core processor when the attacker and the victim migrate across cores [27,35].
We thus focus on cache attacks on the last level cache, which is shared among
cores in modern processors. Attacks on the last level cache are more powerful
as the attacker and the victim can run on different cores, but they are also
more challenging. To perform these attacks, the attacker has to target specific
sets in the last level cache. He faces two issues: the last level cache is physically
addressed, and modern processors map an address to a slice using the so-called
complex addressing scheme which is undocumented.

A first set of attacks requires shared memory and evicts a specific line
using the clflush instruction [7,16,36,38]. However, a simple countermeasure
to thwart such side channels is to disable memory sharing across VMs, which is
already done by most cloud providers.

Without using any shared memory, an attacker has to find addresses that
map to the same set, and exploit the cache replacement policy to evict lines.
On processors that do not use complex addressing, huge pages are sufficient
to enable side channels by targeting a precise set [14]. On recent processors
that use complex addressing, this difficulty can be bypassed by evicting the
whole LLC [22], but the temporal resolution makes it impossible to perform
side channels. Liu et al. [20] and Oren et al. [24] construct eviction sets by
seeking conflicting addresses, enabling fine-grained covert and side channels. This
works without reverse engineering the complex addressing function, but has to
be performed for each attack.

Hund et al. [8] manually and, as we show, only partially reverse engineered the
complex addressing function to defeat kernel ASLR on a Sandy Bridge processor.
The challenge in reversing the complex addressing function is to retrieve all the
bits. Indeed, previous approaches rely on timing attacks with conflicting cache
sets. As the set bits are fixed, they cannot be retrieved this way. Previous work
was also incomplete because the function differs for processors with different
numbers of cores, as we will show.

Reversing this addressing function also gains momentum [29] in discussions
about the exploitation of the so-called rowhammer vulnerability. Indeed, rowham-
mer can cause random bit flips in DRAM chips by accessing specific memory
locations repeatedly [19]. The exploitation of this vulnerability uses the clflush
instruction [28]. This instruction has been disabled [3] in the Native Client sand-
box [2] due to this security issue. Reversing the addressing function could lead to
new ways to exploit rowhammer without relying on the clflush instruction.

In this paper, we automate reverse engineering of the complex cache address-
ing in order to make these attacks more practical. In contrast to previous work

50 C. Maurice et al.

that reverse engineered the function manually, we develop a fully automatic app-
roach to resolve the complex addressing of last level cache slices. Our technique
relies on performance counters to measure the number of accesses to a slice and
to determine on which slice a memory access is cached. As a result, we obtain
a translation table that allows determining the slice used by a given physical
address (Sect. 3). In the general case, finding a compact function from the map-
ping is NP-hard. Nevertheless, we show an efficient algorithm to find a compact
solution for a majority of processors (which have 2n cores). As a result, we pro-
vide new insights on the behavior of the last level cache, and refine many previous
works (e.g., Hund et al. [8]). In particular, we obtain a more complete and more
precise description than previous work, i.e., taking into account more bits of the
memory address and fixing the partially incorrect functions of prior work. We
evaluate our method on processors of different micro-architectures with various
numbers of cores (Sect. 4). We demonstrate the correctness of our function by
building a prime+probe covert channel (Sect. 5). Finally, we discuss the differ-
ence between our findings and the previous attempts of reverse engineering this
function, as well as other applications (Sect. 6).

Contributions

In summary, this paper presents the following main contributions:

1. We introduce a generic method for mapping physical addresses to last level
cache slices, using hardware performance counters.

2. We provide a compact function for most processor models (with 2n cores).
3. We validate our approach on a wide range of modern processors.
4. We show, and discuss, practical examples of the benefits to cache attacks.

2 Background

In this section, we give details on cache internals for Intel processors post Sandy
Bridge micro-architecture (2011). We then review attacks that exploit cache
interferences to perform covert and side channels. Finally, we provide background
on hardware performance counters.

2.1 Cache Fundamentals

The processor stores recently-used data in a hierarchy of caches to reduce the
memory access time by the processor (see Fig. 1). The first two levels L1 and
L2 are usually small and private to each core. The L3 is also called Last Level
Cache (LLC). It is shared among cores and can store several megabytes. The
LLC is inclusive, which means it is a superset of the lower levels.

Caches are organized in 64-byte long blocks called lines. The caches are n-
way associative, which means that a line is loaded in a specific set depending on
its address, and occupies any of the n lines. When all lines are used in a set, the

Reverse Engineering Intel Last-Level Cache Complex Addressing 51

core 0

L2

core 1

L2

core 2

L2

core 3

L2

L1L1L1L1

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

ring bus

Fig. 1. Cache architecture of a quad-core Intel processor (since Sandy Bridge micro-
architecture). The LLC is divided into slices, and interconnected with each core by a
ring bus.

replacement policy decides the line to be evicted to make room for storing a new
cache line. Efficient replacement policies favor lines that are the least likely to
be reused. Such policies are usually variations of Least Recently Used (LRU).

The first level of cache is indexed by virtual addresses, and the two other
levels are indexed by physical addresses. With caches that implement a direct
addressing scheme, memory addresses can be decomposed in three parts: the
tag, the set and the offset in the line. The lowest log2(line size) bits determine
the offset in the line. The next log2(number of sets) bits determine the set. The
remaining bits form the tag.

The LLC is divided into as many slices as cores, interconnected by a ring bus.
The slices contain sets like the other levels. An undocumented hashing algorithm
determines the slice associated to an address in order to distribute traffic evenly
among the slices and reduce congestion. In contrast to direct addressing, it is
a complex addressing scheme. Potentially all address bits are used to determine
the slice, excluding the lowest log2(line size) bits that determine the offset in
a line. Contrary to the slices, the sets are directly addressed. Figure 2 gives a
schematic description of the addressing of slices and sets.

2.2 Cache Attacks

System memory protection prevents a process from directly reading or writing
in the cache memory of another process. However, cache hits are faster than
cache misses. Thus by monitoring its own activity, i.e., the variation of its own
cache access delays, a process can determine the cache sets accessed by other
processes, and subsequently leak information. This class of cache attacks is called
access-driven attacks.

In a prime+probe attack [23,25,26,30], the attacker fills the cache, then waits
for the victim to evict some cache sets. The attacker reads data again and deter-
mines which sets were evicted. The access to these sets will be slower for the
attacker because they need to be reloaded in the cache.

52 C. Maurice et al.

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

11

30

061763

...

Fig. 2. Complex addressing scheme in the LLC with 64B cache lines, 4 slices and 2048
sets per slice. The slice is given by a hash function that takes as an input all the bits of
the set and the tag. The set is then directly addressed. The dark gray cell corresponds
to one cache line.

The challenge for this type of fine-grained attack is the ability to target a spe-
cific set. This is especially difficult when the targeted cache levels are physically
indexed and use complex addressing.

2.3 Hardware Performance Counters

Hardware performance counters are special-purpose registers that are used to
monitor special hardware-related events. Such events include cache misses or
branch mispredictions, making the counters useful for performance analysis or
fine tuning. Because performance counters require high level of privileges, they
cannot be directly used for an attack.

The registers are organized by performance monitoring units (called PMON).
Each PMON unit has a set of counter registers, paired with control registers.
Performance counters can only be used to measure the global events that happen
at the hardware level, and not for a process in particular. This adds noise and
has to be considered when performing a measurement.

There is one PMON unit, called CBo (or C-Box), per LLC slice. Each CBo
has a separate set of counters, paired to control registers. Among the available
events, LLC LOOKUP counts all accesses to the LLC. A mask on the event filters
the type of the request (data read, write, external snoop, or any) [9,11,12].

Performance counters depend on the processor, but the CBo counters and
the LLC LOOKUP event are present in a wide range of processors, and documented

Reverse Engineering Intel Last-Level Cache Complex Addressing 53

by Intel.1 Some adaptations are needed between different types of processors.
Indeed, for Xeon Sandy Bridge, Xeon Ivy Bridge, Xeon Haswell and Core proces-
sors, the MSR addresses and the bit fields (thus the values assigned to each MSR)
vary, but the method remains similar. Reading and writing MSR registers needs
to be done by the kernel (ring 0) via the privileged instructions rdmsr and wrmsr.

3 Mapping Physical Addresses to Slices Using
Performance Counters

In this section, we present our technique for reverse engineering the complex
addressing function, using the performance counters. Our objective is to build a
table that maps a physical address (for each cache line) to a slice (e.g., Table 1).

Table 1. Mapping table obtained after running Algorithm 1. Each address has been
polled 10000 times.

Physical address CBo 0 CBo 1 CBo 2 CBo 3 Slice

0x3a0071010 11620 1468 1458 143 0

0x3a0071050 626 10702 696 678 1

0x3a0071090 498 567 10559 571 2

0x3a00710d0 517 565 573 10590 3

· · · · · · · · · · · · · · · · · ·

This is performed using Algorithm 1. First, monitoring of the LLC LOOKUP
event is set up by writing to control registers (MSR). Then, one memory address
is repeatedly accessed (Listing 1.1) to generate activity on the corresponding
slice. The counter performance registers are then read for each slice (each CBo).
Next, the virtual address is translated to a physical address by reading the
file /proc/pid/pagemap. Finally, the physical address is associated to the slice
that has the most lookups. Such monitoring sessions are iterated with different
addresses to obtain a set of pairs (physical address, slice) that, eventually, forms
a table.

The number of times the address needs to be polled is determined experi-
mentally to differentiate the lookup of this particular address in a slice from the
noise of other LLC accesses. We empirically found that polling an address 10 000
times is enough to distinguish the correct slice from noise without ambiguity,
and to reproduce the experiment on different configurations. The polling itself
is carefully designed to avoid access to memory locations other than the tested
address (see Listing 1.1). To this end, most of the variables are put in registers,

1 For the Xeon range (servers): processors of the micro-architecture Sandy Bridge
in [9], Ivy Bridge in [11], and Haswell in [12]. For the Core range (mobiles and
workstations), in [10] for the three aforementioned micro-architectures.

54 C. Maurice et al.

Algorithm 1. Constructing the address to slice mapping table.
1: mapping ← new table
2: for each addr do
3: for each slice do
4: write MSRs to set up monitoring LLC LOOKUP event
5: end for
6: polling(addr) // see Listing 1.1

7: for each slice do
8: read MSRs to access LLC LOOKUP event counter
9: end for

10: paddr ← translate address(addr)
11: find slice i that has the most lookups
12: insert (paddr, i) in mapping
13: end for

and the only access to main memory is performed by the clflush instruction
that flushes the line (in all cache hierarchies). The clflush instruction causes a
lookup in the LLC even when the line is not present.

Listing 1.1 Memory polling function.
1: void polling(uintptr_t addr){

2: register int i asm ("eax");

3: register uintptr_t ptr asm ("ebx") = addr;

4: for(i=0; i<NB_LOOP; i++){

5: clflush ((void*)ptr);

6: }

7: }

Table 2 shows the characteristics of the CPUs we tested. Scanning an address
per cache line, i.e., an address every 64 B, takes time, but it is linear with the
memory size. Scanning 1 GB of memory takes a bit less than 45 min. We now
estimate the storage cost of the mapping table. The lowest 6 bits of the address
are used to compute the offset in a line, hence we do not need to store them.
In practice, it is also not possible to address all the higher bits because we are
limited by the memory available in the machine. For a processor with c slices, the
slice is represented with �log2(c)� bits. A configuration of e.g., 256 GB (= 238) of
memory and 8 cores can be represented as a table with an index of 32 (= 38−6)
bits; each entry of the table contains 3 bits identifying the slice and an additional
bit indicating whether the address has been probed or not. The size of the table
is thus 232 × 4 bits = 2 GB.

Note that the attacker does not necessarily need the entire table to perform
an attack. Only the subset of addresses used in an attack is relevant. This subset
can be predefined by the attacker, e.g., by fixing the bits determining the set.
Alternatively, the subset can be determined dynamically during the attack, and
the attacker can query an external server to get the corresponding slice numbers.

Reverse Engineering Intel Last-Level Cache Complex Addressing 55

Table 2. Characteristics of the Intel CPUs used in our experimentations (mobile and
server range).

Name Model µ-arch Cores Mem

config 1 Xeon E5-2609 v2 Ivy Bridge 4 16GB

config 2 Xeon E5-2660 Sandy Bridge 8 64GB

config 3 Xeon E5-2650 Sandy Bridge 8 256GB

config 4 Xeon E5-2630 v3 Haswell 8 128GB

config 5 Core i3-2350M Sandy Bridge 2 4GB

config 6 Core i5-2520M Sandy Bridge 2 4GB

config 7 Core i5-3340M Ivy Bridge 2 8GB

config 8 Core i7-4810MQ Haswell 4 8GB

config 9 Xeon E5-2640 Sandy Bridge 6 64GB

4 Building a Compact Addressing Function

4.1 Problem Statement

We aim at finding a function, as a compact form of the table. The function takes
n bits of a physical address as input parameters. In the remainder, we note bi
the bit i of the address. The function has an output of �log2(c)� bits for c slices.
To simplify the expression and the reasoning, we express the function as several
Boolean functions, one per bit of output. We note oi(b63, . . . , b0) the function
that determines the bit i of the output.

Our problem is an instance of Boolean function minimization: our mapping
can be seen as a truth table, that can consequently be converted to a formula in
Disjunctive Normal Form (DNF). However, the minimization problem is known
as NP-hard, and is thus computationally difficult [4].

Existing work on Boolean function minimization does not seem suitable to
reconstruct the function from this table. Exact minimization algorithms like Kar-
naugh mapping or Quine-McCluskey have an exponential complexity in number
of input bits. In practice those are limited to 8 bits of input, which is not enough
to compute a complete function. The standard tool for dealing with a larger
number of inputs is Espresso, which relies on non-optimal heuristics. However,
it does not seem suited to handle truth tables of hundreds of millions of lines in
a reasonable time.2 It also gives results in DNF, which won’t express the func-
tion compactly if it contains logical gates other than AND or OR. Indeed, we
provided lines for a subset of the address space to Espresso, but the functions
obtained were complex and we did not succeed to generalize them manually.
They were generated from a subset, thus they are only true for that subset and
do not apply to the whole address space.
2 At the time of camera ready, Espresso has been running without providing any

results for more than 2000 h on a table of more than 100.000.000 lines, which only
represents the sixth of the 64GB of memory of the machine.

56 C. Maurice et al.

We thus need hints on the expression of the function to build a compact
addressing function. We did this by a first manual reconstruction, then followed
by a generalization. We have done this work for processors with 2n cores, which
we consider in the remainder of the section.

4.2 Manually Reconstructing the Function for Xeon E5-2609 v2

We now explain how one can manually reverse engineer a complex address-
ing function: this is indeed how we started for a Xeon E5-2609 v2 (config 1 in
Table 2). In Sect. 4.3, we will explain how this can be automated and generalized
to any processor model with 2n cores. The following generalization removes the
need to perform the manual reconstruction for each setup.

We manually examined the table to search patterns and see if we can deduce
relations between the bits and the slices. We performed regular accesses to
addresses which were calculated to fix every bit but the ones we want to observe,
e.g., regular accesses every 26 bytes to observe address bits b11 . . . b6. For bits
b11 . . . b6, we can observe addresses in 4kB pages. For the higher bits (b12 and
above) we need contiguous physical addresses in a bigger range to fix more bits.
This can be done using a custom driver [8], but for implementation convenience
we used 1 GB pages. Across the table, we observed patterns in the slice number,
such as the sequences (0,1,2,3), (1,0,3,2), (2,3,0,1), and (3,2,1,0). These patterns
are associated with the XOR operation of the input bits, this made the manual
reconstruction of the function easier.

We obtained these two binary functions:

o0(b63, . . . , b0) = b6 ⊕ b10 ⊕ b12 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25

⊕b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32 ⊕ b33.

o1(b63, . . . , b0) = b7 ⊕ b11 ⊕ b13 ⊕ b15 ⊕ b17 ⊕ b19 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b23 ⊕ b24

⊕b26 ⊕ b28 ⊕ b29 ⊕ b31 ⊕ b33 ⊕ b34.

We confirmed the correctness of the obtained functions by comparing the
output of the slice calculated with the function against the entire mapping table
obtained with the MSRs.

4.3 Reconstructing the Function Automatically

Our manual reconstruction shows that each output bit oi(b63, . . . , b0) can be
expressed as a series of XORs of the bits of the physical address. Hund et al. [8]
manually reconstructed a mapping function of the same form, albeit a different
one. In the remainder, we thus hypothesize, and subsequently validate the hypoth-
esis, that the function has the same form for all processors that have 2n cores.

The fact that the function only relies on XORs makes its reconstruction a
very constrained problem. For each Boolean function oi(b63, . . . , b0), we can ana-
lyze the implication of the address bits independently from each other, in order

Reverse Engineering Intel Last-Level Cache Complex Addressing 57

to access only a handful of physical addresses. Our algorithm finds two addresses
that only differ by one bit, finds their respective slices using performance coun-
ters, and compares the output. If the output is the same, it means that the bit
is not part of the function. Conversely, if the output differs, it means that the
bit is part of the function. Note that this only works for a XOR function. This
algorithm is linear in number of bits.

To implement the algorithm, we use huge pages of 1 GB on Xeon processors
(resp. 2 MB on Core processors), which is contiguous physical memory naturally
aligned on the huge page size. The offset in a huge page is 30-bit (resp. 21-bit)
long, therefore the lowest 30 bits (resp. 21 bits) in virtual memory will be the
same as in physical memory. We thus calculate offsets in the page that will result
in physical addresses differing by a bit, without converting virtual addresses to
physical addresses. To discover the remaining bits, we allocate several huge pages,
and convert their base virtual address to physical address to find those that differ
by one bit. In order to do this, we allocate as many huge pages as possible.

Table 3. Functions obtained for the Xeon and Core processors with 2, 4 and 8 cores.
Gray cells indicate that a machine with more memory would be needed to determine
the remaining bits.

Address Bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
4 cores

o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

To evaluate the algorithm, we retrieved the function for all models from
config 1 to config 8 of Table 2, results are summarized in Table 3. The functions
are given for the machine that has the most memory, to cover as many bits as
possible. We remark that the functions, for a given number of cores, are identical
among all processors, for all ranges of products and micro-architectures. Using
the above mentioned algorithm, we obtained those functions quickly (from a
few seconds to five minutes in the worst cases). We also remark that we have
in total 3 functions o0, o1 and o2 for all processors, and that the functions used
only depends on the number of cores, regardless of the micro-architecture or the
product range. While in retrospective this seems to be the most straightforward
solution to be adopted by Intel, this was far from evident at the beginning of
our investigations. Now that the functions are known, an attacker can use them
to perform his attacks without any reverse engineering.

58 C. Maurice et al.

5 Using the Function to Build a Covert Channel

To verify empirically the correctness of the function, we build a covert channel.
This covert channel uses similar principles to the one of Maurice et al. [22]. It is
based on the fact that the LLC is inclusive, i.e., when a line is evicted from the
LLC, it is also evicted from the L1 and L2. With this property, a program on
any core can evict a line from the private cache of another core. This property
can then be used by two programs to communicate. The work in [22] bypasses
the complex addressing issue by evicting the whole LLC. However, the LLC
typically stores a few megabytes, and thus the sender needs to access a buffer
that is the size of (or bigger than) the LLC to evict it entirely. Having the
complex addressing function, the sender targets a set in a slice, and thus evicts
a cache line with much fewer accesses. For example, in the case of a 12-way
associative LLC, assuming a pseudo-LRU replacement policy, the sender needs
approximately 12 accesses to evict the whole set.

In this covert channel, the sender creates a set of physical addresses that
map to the same set, using the function and the translation from virtual to
physical addresses. It repeatedly accesses these addresses to send a ‘1’, and does
nothing to send a ‘0’. The receiver has a set of physical addresses that map to
the same LLC set as the sender’s. When the sender sends a ‘1’, it evicts the data
of the receiver from the LLC, and thus from its private L1 cache. The receiver
consequently observes a slow access to its set.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 94350 94400 94450 94500 94550

A
cc

es
s

la
te

nc
y

(c
yc

le
s)

Local time (microseconds)

Fig. 3. Receiving interleaved ‘0’s and ‘1’s to test the raw bitrate of the covert channel.

We conduct an experiment on config 1 to estimate the bitrate of this covert
channel, in which the sender transmits interleaved ‘0’s and ‘1’s. Figure 3 illus-
trates the measurements performed by the receiver. According to the measure-
ments, 29 bits can be transmitted over a period of 130 microseconds, leading to
a bitrate of approximately 223 kbps.

Reverse Engineering Intel Last-Level Cache Complex Addressing 59

6 Discussion

6.1 Dealing with Unknown Physical Addresses

The translation from virtual to physical addresses is unknown to the attacker
in most practical setups, like in virtualized or sandboxed environments. We now
describe a possible extension to the covert channel described in Sect. 5 to avoid
using this address translation.

Similarly to the work of Liu et al. [20] and Irazoqui et al. [14], the sender
and the receiver both use huge pages. The cache index bits are thus the same for
virtual and physical addresses. Using the function only on the bits in the offset
of the huge page, the sender is able to create a set of addresses that map to the
same set, in the same slice. As some bits of the physical address are unknown,
he does not know the precise slice. However, he does know that these addresses
are part of a single set, in a single slice.

The receiver now performs the same operation. The receiver has only the
knowledge of the index set to target, but he does not know in which of the n
slices. He thus creates n sets of addresses, each one being in a different slice.
He then continuously accesses each of these sets. The receiver will only receive
transmitted bits in a single set: from now on, he can target a single set. The
sender and the receiver are effectively accessing the same LLC set in the same
slice.

6.2 Other Applications

Reverse engineering the complex addressing function is orthogonal to performing
cache attacks. Indeed, knowing the correct addressing function can help any fine-
grained attack on the LLC. Cache attacks rely on the attacker evicting data from
a cache level. This can be done by the clflush instruction. However, it requires
shared memory in a covert or side channel scenario, and it is not available in
all environments. We thus focus on building attacks without this instruction.
To perform an attack on the LLC, the attacker needs to create an eviction set,
and to subsequently access the data to evict the lines that are currently cached.
There are two methods to find an eviction set: a dynamic approach based on
a timing attack that does not require the function, and a static approach that
uses the function to compute addresses that belong to an eviction set. Building
a static eviction set has the advantage of being faster than building a dynamic
one. Indeed, the function is already known, whereas the dynamic set has to be
computed for each execution. Moreover, Gruss et al. [6] showed that dynamically
computing a set to achieve an optimal eviction is a slow operation.

Hund et al. [8] defeated KASLR using the static approach. Similarly, Irazoqui
et al. [14] used a static approach on a Nehalem CPU that does not use complex
addressing. Yet, their attack requires understanding the slice selection, and thus
having the complex addressing function for more recent CPUs. Concurrently
to this work, Gruss et al. [6] used the complex addressing function to build
a proof-of-concept of the rowhammer attack without the clflush instruction.

60 C. Maurice et al.

Rowhammer is not a typical cache attack, since it exploits a bug on the DRAM
to flip bits. However, the bug is triggered by frequent accesses to the DRAM,
i.e., non-cached accesses. The original exploits used the clflush instruction,
that is not available in e.g., Javascript. An attack that seeks to avoid using the
clflush instruction thus also needs to compute an eviction set.

6.3 Comparison to Previously Retrieved Functions

We observe that the functions we obtained differ from the ones obtained by
Hund et al. [8], and Seaborn [29]. In particular, Hund et al. found that the
functions only use the tag bits (bits b17 to b31). We argue that their method
does not infer the presence of the bits used to compute the set (bits b6 to b16).
Indeed, as they searched for colliding addresses, they obtained addresses that
belong to the same slice and the same set. As in this case the set is directly
mapped to the bits b6 to b16, addresses that collide have the same values for
these bits. Therefore, if the function that computes the slice uses the bits b6 to
b16, the method of [8] is not able to retrieve them. On the contrary, our method
retrieves the slices regardless of the sets, leading to a complete function.

We also observe that the function we retrieved for 2 cores is the same as
the one retrieved in [29], albeit a more complete one. However, the function we
retrieve for 4 cores does not use the same bits as the one retrieved in [8]. We argue
that we do have access to the ground truth (i.e., the slices accessed), whereas
they rely on indirect measurements. Several correct functions can however be
retrieved, as the slices can be labeled differently from one work to another.

5 10 15 20 25 30 35
0

100

200

300

Number of addresses N

N
u
m

b
er

 o
f
cy

cl
es

 t
o
 a

cc
es

s
th

e
re

fe
re

n
ce

 a
d
d
re

ss

Hund et al. function

Our function

2223

Fig. 4. Median number of cycles to access a reference address, after accessing N
addresses in the same set, which is calculated using [8] and our function. Results on
100 runs, on config 1 (Ivy Bridge with a 20-way associative LLC).

To compare our function against [8], we performed the following experi-
ment. Using the retrieved addressing function, we constructed a set of physical

Reverse Engineering Intel Last-Level Cache Complex Addressing 61

addresses that are supposed to map the same set (thus the same slice). We
accessed N different addresses from this set. We then measured the access time
to the first reference address accessed, to see if it was evicted from the cache.
Figure 4 shows the median number of CPU cycles to access the reference address
for different values of N , for 100 runs. The function that is the most precise
should have a memory access time spike the closest N = 20 (which is the cache
associativity). We observe that both functions have a spike slightly after N = 20.
We note that the spike occurs for a value N > 20 and not exactly N = 20: it
is most likely due to the fact that the replacement policy on Ivy Bridge is not
strictly LRU, but a variant called Quad-Age LRU [18]. In practice, both func-
tions are able to evict a cache line with few accesses. However, our function
seems more precise than the one of [8], leading to fewer accesses to evict a cache
line (N = 23 accesses for our function, N = 24 for [8]), and a sharper transition.
This also confirms the correctness of our function.

7 Related Work

Hardware performance counters are traditionally used for performance monitor-
ing. They have also been used in a few security scenarios. In defensive cases, they
are used to detect an anomalous behavior such as malware detection [5], integrity
checking of programs [21], control flow integrity [34], and binary analysis [32].
Uhsadel et al. [31] used performance counters in offensive cases to profile the
cache and derive a side-channel attack against AES. However, the performance
counters can only be read with high privileges, i.e., in kernel-mode, or being
root in user-mode if a driver is already loaded. Contrary to this attack, we use
performance counters to infer hardware properties offline, and our subsequent
cache attack does not need high privileges.

The Flush+Reload attack [36] relies on shared memory, and more precisely
on shared libraries, to evict lines of cache, using the clflush instruction. In
this attack, the attacker leverages the shared and inclusive LLC to run concur-
rently to the victim on separate cores, including on separate virtual machines.
Flush+Reload has been used to attack implementations of RSA [36], AES [16]
and ECDSA [1]. It has also been used to find a new side channel that revives
a supposedly fixed attack on CBC encryption mode [13], and to detect cryp-
tographic libraries [17]. Gruss et al. [7] presented a generic technique to profile
and exploit cache-based vulnerabilities, using Flush+Reload. Memory sharing
can be easily disabled in virtualized environments (which is already the case
in the cloud environment), effectively rendering impossible the Flush+Reload
attack. On sandboxed environments, like Javascript or Native Client [2], the
ability to perform the Flush+Reload attack is also compromised by the absence
of clflush instruction [3]. Understanding how complex addressing works allows
performing cache attacks in these environments, without the need of shared
memory or clflush.

Simultaneously to our work, Irazoqui et al. [14], Liu et al. [20], and Oren
et al. [24] have extended the Prime+Probe attack to the LLC. They are thus able

62 C. Maurice et al.

to perform side channels on the LLC without any shared memory. They construct
a set of addresses that map to the same set as the line to evict. Irazoqui et al. [14]
have used a Nehalem processor that does not use complex addressing. Therefore
huge pages are sufficient to construct this set of addresses. Liu et al. [20], and
Oren et al. [24] targeted more recent processors that use complex addressing.
They, however, performed their attacks without reverse engineering the complex
addressing function. Thus, even if we share the same motivation, i.e., performing
cache attacks on recent processors without any shared memory, our works are
very different in their approaches. We also note that our work has a broader
application, as it contributes to a better understanding of the undocumented
complex addressing function, possibly leading to other types of attacks.

Other work is directly interested in retrieving the function, and several
attempts have been made to reverse engineer it. Hund et al. [8] performed a
manual reverse engineering for a 4-core Sandy Bridge CPU. Their method uses
colliding addresses, i.e., indirect measurements, to derive the function. They used
this function to bypass kernel ASLR. Very recently, and also simultaneous to our
work, Seaborn [29] continued the work of [8], with a 2-core Sandy Bridge CPU.
The intended goal is to exploit the rowhammer bug with cached accesses, without
the clflush instruction. Gruss et al. [6] subsequently demonstrated a rowham-
mer attack on Javascript, using the complex addressing function. In contrast,
we do not use the same method to retrieve the addressing function as [8,29].
Our method, using performance counters, performs direct measurements, i.e.,
retrieves the exact slice for each access. We thus show that the functions in [8,29]
are partially incorrect, even though they are sufficient to be used in practice. We
also derive a function for all processors with 2n cores, automating the reverse
engineering. Different from these two works, we also have tested our method
on a large variety of processors. Concurrently to our work, Irazoqui et al. [15]
worked on automating this reverse engineering, and evaluated their work on sev-
eral processors. However, their method is similar to Hund et al. [8], and thus
suffers from the same limitations.

8 Conclusions

In this paper, we introduced a novel method to reverse engineer Intel’s undocu-
mented complex addressing, using hardware performance counters. The reversed
functions can be exploited by an attacker to target specific sets in the last level
cache when performing cache attacks. Contrary to previous work, our method is
automatic, and we have evaluated it on a wide range of processors, for different
micro-architectures, numbers of cores, and product ranges. We also obtained a
more complete and more correct description of the complex addressing function
than previous work, i.e., taking into account more bits of the memory address.
In the general case with any number of cores, we automatically built a table
that maps physical addresses to cache slices. This table already enables to per-
form targeted cache attacks but may require an important amount of storage.
In the case of CPUs with 2n cores we provided a compact function that maps

Reverse Engineering Intel Last-Level Cache Complex Addressing 63

addresses to slices, rendering the attacks even more effective. We demonstrated
a covert channel to prove the correctness of our function, and discussed other
applications such as exploiting the rowhammer bug in Javascript.

Our work expands the understanding of these complex and only partially
documented pieces of hardware that are modern processors. We foresee several
directions for future work. First, a compact representation for CPUs with a num-
ber of cores different from 2n would generalize our findings. Second, we believe
that new attacks could be made possible by knowing the complex addressing of
a cache. Finally, we believe that understanding the complex addressing function
enables the development of countermeasures to cache attacks.

Acknowledgments. We would like to thank Mark Seaborn, Mate Soos, Gorka Irazo-
qui, Thomas Eisenbarth and our anonymous reviewers for their valuable comments and
suggestions. We also greatly thank Stefan Mangard and Daniel Gruss for the collabo-
ration on the exploitation of the rowhammer bug in Javascript, for which we applied
the findings of this article after its submission.

References

1. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”:
a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

2. Chrome Developers. Native Client. https://developer.chrome.com/native-client.
Accessed 2 June 2015

3. Chrome Developers. Native Client Revision 13809, September 2014. http://
src.chromium.org/viewvc/native client?revision=13809&view=revision. Accessed
2 June 2015

4. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applica-
tions. Cambridge University Press, New York (2011)

5. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,
S., Stolfo, S.: On the feasibility of online malware detection with performance
counters. ACM SIGARCH Comput. Architect. News 41(3), 559–570 (2013)

6. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. arXiv:1507.06955v1 (2015)

7. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: Proceedings of the 24th USENIX Security Sym-
posium (2015)

8. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy (S&P 2013), pp. 191–205. IEEE, May 2013

9. Intel. Intel R© Xeon R© Processor E5–2600 Product Family Uncore Performance
Monitoring Guide. 327043–001:1–136 (2012)

10. Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual, vol. 3 (3A,
3B & 3C): System Programming Guide. 3(253665) (2014)

11. Intel. Intel R© Xeon R© Processor E5 v2 and E7 v2 Product Families Uncore Perfor-
mance Monitoring Reference Manual. 329468–002:1–200 (2014)

12. Intel. Intel R© Xeon R© Processor E5 v3 Family Uncore Performance Monitoring
Reference Manual. 331051–001:1–232 (2014)

https://developer.chrome.com/native-client
http://src.chromium.org/viewvc/native_client?revision=13809&view=revision
http://src.chromium.org/viewvc/native_client?revision=13809&view=revision
http://arxiv.org/abs/1507.06955v1

64 C. Maurice et al.

13. Irazoqui, G., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In: Proceedings
of the 10th ACM Symposium on Information, Computer and Communications
Security (AsiaCCS 2015), pp. 85–96 (2015)

14. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing–and its application to AES. In: Proceedings
of the 36th IEEE Symposium on Security and Privacy (S&P 2015) (2015)

15. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in Intel processors. In: Proceedings of the 18th EUROMICRO Con-
ference on Digital System Design (2015)

16. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, Cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Heidelberg (2014)

17. Irazoqui, G., IncI, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: crypto
library detection in cloud. Proc. Priv. Enhancing Technol. 1(1), 25–40 (2015)

18. Jahagirdar, S., George, V., Sodhi, I., Wells, R.: Power management of the third
generation Intel Core micro architecture formerly codenamed Ivy Bridge. In:
Hot Chips 2012 (2012). http://hotchips.org/wp-content/uploads/hc archives/
hc24/HC24-1-Microprocessor/HC24.28.117-HotChips IvyBridge Power 04.pdf.
Accessed 16 July 2015

19. Kim, D.-H., Nair, P.J., Qureshi, M.K.: Architectural support for mitigating row
hammering in DRAM memories. IEEE Comput. Archit. Lett. 14(1), 9–12 (2014)

20. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P 2015) (2015)

21. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: Proceedings of the Sixth ACM
Workshop on Scalable Trusted Computing (2011)

22. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol.
9148, pp. 46–64. Springer, Heidelberg (2015)

23. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

24. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: Proceed-
ings of the 22nd ACM Conference on Computer and Communications Security
(CCS 2015) (2015)

25. Osvik, Dag Arne, Shamir, Adi, Tromer, Eran: Cache attacks and countermeasures:
the case of AES. In: Pointcheval, David (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
1–20. Springer, Heidelberg (2006)

26. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan, pp.
1–13 (2005)

27. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security (CCS 2009),
pp. 199–212 (2009)

28. Seaborn, M.: Exploiting the DRAM rowhammer bug to gain kernel
privileges, March 2015. http://googleprojectzero.blogspot.fr/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html. Accessed 2 June 2015

http://hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-1-Microprocessor/HC24.28.117-HotChips_IvyBridge_Power_04.pdf
http://hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-1-Microprocessor/HC24.28.117-HotChips_IvyBridge_Power_04.pdf
http://googleprojectzero.blogspot.fr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.fr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Reverse Engineering Intel Last-Level Cache Complex Addressing 65

29. Seaborn, M.: L3 cache mapping on Sandy Bridge CPUs, April 2015. http://
lackingrhoticity.blogspot.fr/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.
html. Accessed 2 June 2015

30. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptology 23(1), 37–71 (2010)

31. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance coun-
ters. In: Proceedings of the 5th International Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC 2008), pp. 59–67 (2008)

32. Willems, C., Hund, R., Fobian, A., Felsch, D., Holz, T.: Down to the bare metal:
using processor features for binary analysis. In: Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC 2012), pp. 189–198 (2012)

33. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-speed covert channel
attacks in the cloud. In: Proceedings of the 21st USENIX Security Symposium
(2012)

34. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow
integrity using performance counters. In: Proceedings of the 42th International
Conference on Dependable Systems and Networks (DSN 2012), pp. 1–12 (2012)

35. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of L2 cache covert channels in virtualized environments. In: Proceed-
ings of the 3rd ACM Cloud Computing Security Workshop (CCSW 2011), pp.
29–40 (2011)

36. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: Proceedings of the 23th USENIX Security Symposium (2014)

37. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS 2012) (2012)

38. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2014), pp. 990–1003. ACM Press,
New York (2014)

http://lackingrhoticity.blogspot.fr/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
http://lackingrhoticity.blogspot.fr/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
http://lackingrhoticity.blogspot.fr/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html

Hardware-Assisted Fine-Grained Code-Reuse
Attack Detection

Pinghai Yuan1,2(B), Qingkai Zeng1,2, and Xuhua Ding3

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

pinghaiyuan@gmail.com
2 Department of Computer Science and Technology,

Nanjing University, Nanjing, China
zqk@nju.edu.cn

3 School of Information Systems, Singapore Management University,
Singapore, Singapore
xhding@smu.edu.sg

Abstract. Code-reuse attacks have become the primary exploitation
technique for system compromise despite of the recently introduced Data
Execution Prevention technique in modern platforms. Different from
code injection attacks, they result in unintended control-flow transfer
to victim programs without adding malicious code. This paper proposes
a practical scheme named as CFIGuard to detect code-reuse attacks
on user space applications. CFIGuard traces every branch execution by
leveraging hardware features of commodity processors, and then vali-
dates the traces based on fine-grained control flow graphs. We have
implemented a prototype of CFIGuard on Linux and the experiments
show that it only incurs around 2.9 % runtime overhead for a set of typ-
ical server applications.

Keywords: Code-reuse attack · Control flow integrity · Indirect branch
tracing

1 Introduction

There are abundant schemes focusing on software vulnerability mitigation. Data
Execution Prevention (DEP) [4,34], Stack Smashing Protector (SSP) [12] and
coarse-grained Address Space Layout Randomization (ASLR) [33] have been
widely adopted in commodity platforms. For instance, DEP marks a memory
page either non-executable or non-writable such that it can effectively defend
against code injection attacks. However, DEP and the other two mechanisms
fall short of defending against advanced code-reuse attacks, such as Return-
oriented Programming (ROP) [30] and just-in-time ROP [32], which have been
used by hackers in real-life cyberspace attacks.

This situation has prompted active research on fine-grained ASLR [15,18,
25,31,38] and Control Flow Integrity (CFI) [3] mechanisms to counter code-
reuse attacks. ASLR aims to hide the address space layout from the attacker in
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 66–85, 2015.
DOI: 10.1007/978-3-319-26362-5 4

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 67

a bid to hinder effective construction of malicious code. However, its security-
by-obscurity approach cannot withstand sophisticated attacks that infers the
address space layout via various channels. CFI works by checking a program’s
execution flow against predetermined Control-Flow Graphs (CFGs), thus pro-
vides strong protection by detecting control-flow violation. Unfortunately, CFI
has not been widely adopted to protect applications in practice, mainly due to
its large overhead for code preprocessing and runtime checking. Moreover, CFI
lacks of code transparency in the sense that it demands modification either on
the source code [2] or the binary code of the protected application [41,43]. This
hassle also hinders a wide adoption of CFI.

However, existing CFI works still face the security challenge in practice. For
instance, the inter-module transfers that span over two modules can hardly be
restricted without information extracted by a whole program analysis, which
in turn needs a tough engineer work. Furthermore, since many works enforce
context-free CFI with static CFGs, so they cannot prevent a backward-transfer
issued by a ret instruction back to a caller which is valid according to the CFGs
but does not issue current function invocation. Their security guarantees become
worse as many recent works enforce coarse-grained CFI [9,13,16,29]. The deadly
point of most CFI works is that they are crippled and made ineffective once
control-flow has already been diverted due to their imperfect protection.

This paper presents CFIGuard, a fully transparent code-reuse attack detec-
tion engine for user applications. Our approach is to monitor every executed
indirect branch during the lifetime of a process, and to identify abnormal control
transfers diverting from the control flow graph. The core of CFIGuard is a novel
combination of two hardware features widely available on modern x86 processors:
Last Branch Recording (LBR) and Performance Monitor Unit (PMU). We name
the technique as LBR+PMU whereby LBR records the jump-from and jump-to
addresses of every branch instruction execution and PMU sets off a non-maskable
interrupt triggered by a programmable counter. The interrupt handler then val-
idates the records by consulting the corresponding fine-grained CFGs. Relying
mainly on hardware for instruction-level monitoring allows for completely trans-
parent operation, without the hassle of modifying the protected applications.
Applying fine-grained CFGs for attack detection guarantees a strong security
protection. The runtime overhead of LBR + PMU is lowered by filtering out
direct transfer whose executions dominate the total of all branch executions.

We have built a prototype of CFIGuard on Linux. It can selectively protect
any Linux application as long as its CFG is in place. Besides detecting tradi-
tional ROP attacks, CFIGuard can counter stop JOP [7], the recent just-in-time
ROP [32] and blind-ROP [6] attacks. To measure the effectiveness of CFIGuard,
we have conducted a variety of security tests using the RIPE benchmark [39],
including stack/heap overflow vulnerabilities coupled with shell code injection
or ROP attacks. Our evaluation results indicate that CFIGuard can precisely
catch the attacks on the spot. Performance evaluation results show that CFI-
Guard introduces negligible runtime overhead for most applications.

68 P. Yuan et al.

The main contributions of our work are:

– The key observation that control flow hijacking on security breaches can be
precisely captured by using the LBR mechanism coupling with PMU.

– The design of CFIGuard which is the first system to detect code-reuse attacks
and enforce fine-grained CFI protection with hardware support.

– A prototype implementation of CFIGuard on Linux with security and perfor-
mance evaluations to demonstrate its effectiveness and efficiency.

2 Background: Hardware Features

Recent years have seen several proposed schemes utilizing hardware features
on modern x86 processors to mitigate control-flow hijacking attacks. Among
them, CFIMon [40] uses Branch Trace Store (BTS) [19] while kBouncer [26] and
ROPecker [11] rely on LBR [19]. Besides using debug facilities, CFIGuard also
makes use of PMU [19]. Note that on multicore systems, each core has its own
BTS, LBR and PMU facilities. We now briefly explain these three hardware
features.

Branch Trace Store. BTS records all branches execution in the user/kernel
space into a memory buffer. It can be configured to halt the monitored program
when the recording buffer is full and to resume as well. However, since BTS
does not support branch type filtering, all types of jumps, calls and returns are
recorded without distinction. Since validating direct branches on a platform with
DEP protection is an action of gilding the lily, using BTS alone may introduce
unnecessary false positive to security systems such as CFIMon [40].

Last Branch Recording. Like BTS, LBR also records both source and des-
tination addresses of each branch execution. However, LBR stores the traces in
a set of Model-Specific Registers (MSRs) in a round-robin fashion. The current
design of LBR feature does not generate interrupt when the LBR buffer is full.
As a result, the oldest records are flushed away with upcoming ones.

To monitor a user space code execution, kBouncer [26] and ROPecker [11]
have deliberately to hook into system calls or use a sliding window in order to
trigger page faults. Even so, LBR automatically flushes away most of the records
and these approaches can only check a small portion of branch executions. The
advantages of LBR over BTS are that (i) incurs negligible overhead for recording
the branch traces, and (ii) supports a filtering mechanism based on combination
of Code Privilege Level (CPL) and branch instruction types.

Performance Monitoring Unit. PMU is a performance measuring and count-
ing unit provided by most modern x86 processors. PMU can work in interrupt-
based mode, in which a counter called PMC increases for each occurrence of the
monitored event and a non-maskable interrupt is thrown out whenever PMC
overflows. PMU can monitor a wide range of events including cache-missing,
branch mis-predictions, and even the execution of certain types of branches.

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 69

3 Practical Indirect Branch Tracing for Code-Reuse
Attack Detection

The proposed approach uses runtime process monitoring to identify the execution
of code that exhibits code-reuse behavior. A code-reuse attack, such as an ROP
attack, consists of several instruction sequences called gadgets scattering among
code segments of the victim program. A gadget always ends with an indirect
branch instruction that transfers control to the subsequent gadget whose address
is specified in the injected malicious “payload” prepared by the attacker.

In code-reuse attacks, the branch instruction at the end of a gadget is either
an unintended instruction (a.k.a. truncated instruction) or jumps to an unin-
tended target. The former refers to an instruction code beginning at the mid-
dle of a valid instruction generated by the compiler, which is possible because
instructions on x86 platforms are of variable lengths and not aligned. An unin-
tended target is an instruction address where the current branch is not expected
to jump to according to the CFG. By recording both jump-from and jump-to
addresses of every indirect branch execution and then validating each record
with a fine-grained CFG, CFIGuard can detect a code-reuse attack before its
code completes a malicious operation.

In this section, we discuss in detail how CFIGuard combines Last Branch
Recording and Performance Monitoring Unit to record every indirect branch
execution. Then we describe how CFIGuard uses this information to detect code-
reuse attacks.

3.1 Branch Tracing vs Other Approaches

The targets of direct branches are hard-coded in the code segments. With DEP
[4,34] protection, they are free from being tempered with. On the contrary, indi-
rect branches are vulnerable to control-flow hijacking as the memory regions stor-
ing their target addresses, such as the stack and the heap, are always writable.
Therefore, as in previous schemes, our work exclusively focuses on protecting
the execution of indirect call, indirect jump and ret instructions. There are sev-
eral approaches that can be applied to protect their executions with different
protection granularity, transparency level and deployment effort.

Software Hardening Approach. This approach extends the compiler to insert
runtime checks in the executable at compile time [20,35]. They always provide
fine-grained protection on the selected branch types because they can strictly
restrict the dynamically computed target of each branch with the information
extracted from the source code. However, this approach requires recompilation
of the target applications and the dependent libraries. An alternative is to have
binary instrumentation or rewriting. It is advantageous over the compiler based
method as it does not require the source code, but only debug symbols [2] or
relocation information [43]. Nonetheless, this benefit is at the cost of weaker
security assurance as it is challenging to obtain a fine-grained CFG [16] from the
binary.

70 P. Yuan et al.

Runtime Monitoring Approach. kBouncer [26], ROPecker [11] and CFIMon
[40] utilize hardware features provided by mainstream processors to protect
user space code. They record and check the jump-from and jump-to addresses
of each branch execution without instrumenting the binary. Nonetheless, they
apply heuristic rules to identify attacks, an approach which is unreliable as com-
pared with CFG [17]. In addition, due to the limitation of the LBR capability,
kBouncer [26] and ROPecker [11] can only check a small portion of branch exe-
cutions, thus their security protection is inadequate and vulnerable [9,16].

CFIGuard’s Approach. Similar to kBouncer and ROPecker, our system only
monitors the execution of indirect branches at runtime. The difference is that
we can trace every branch execution by coupling LBR with PMU. To compare
with the BTS-based CFIMon [40], CFIGuard achieves a better performance by
filtering out direct branches at the hardware level. Moreover, CFIGuard provides
more reliable protection as it identifies attacks by consulting fine-grained CFGs.

3.2 Using LBR+PMU for Security Enhancement

In our system, PMU counts branch executions while LBR records of them.
LBR + PMU traces all indirect branch executions by turning on LBR’s filter-
ing mechanism and by configuring PMU to monitor indirect branch executions
with a properly initialized PMC to ensure that an interrupt is triggered before
the LBR buffer is full.

LBR + PMU can be configured to generate an interrupt once every N branch
executions by initializing PMC with different values. By setting N to 1, LBR +
PMU would interrupt the monitored program at every indirect branch execution
and thus we can detect the attack at the first place. However, this setting has a
high performance toll. We observe that setting N to the LBR buffer size (16 for
the CPU model we used) can achieve the best performance while recording all
executions of user-level indirect branches.

Filtering Out Direct Branches. Both LBR and PMU support filtering accord-
ing to CPL and branch types. LBR provides a dedicated control register
MSR LBR SELECT for filtering; PMU can set a sub-event mask for this purpose.
Table 1 lists the available filtering flags provided by LBR + PMU. An indirect
branch instruction is filtered out if its corresponding type flag is unset; otherwise,
it is recorded into the LBR buffer. Note that, branch types in this table are inde-
pendent with each other and therefore we can set the combination “CPL USER
+ NEAR IND CALL + NEAR IND JMP + NEAR RET” to record all user
space indirect branch executions.

Managing LBR+ PMU. With a slight modification to the system kernel, we
develop a driver to manage LBR + PMU and export a system call interface to
applications. A user can execute a spawner application to launch a protected
program under the monitoring of LBR + PMU. Once monitored, we tag the
protected program with a new flag field of its Process Control Block (PCB).
When the protected program is switched in/out, we turn on/off LBR + PMU and

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 71

Table 1. Branch filtering flags provided by LBR+PMU.

Flag Meaning Instruction example

CPU USER Branches occurring in ring 3 -

CPU KERNEL Branches occurring in ring 0 -

JCC Conditional branches jz loc 8048418

NEAR REL CALL Near relative calls call sub 80482F0

NEAR IND CALL Near indirect calls call eax

NEAR REL JMP Near relative jumps jmp sub 8048390

NEAR IND JMP Near indirect jumps jmp eax

NEAR RET Near returns ret

restore/save related registers. In other words, the state of LBR + PMU becomes
a part of process context. When enforcing CFI, an effective method to maintain
the context is to erase the LBR buffer and to reset PMC to 0, after security
checking but before switching out. Note that PMC needs to be reinitialized
before exiting the interrupt handler such that PMU can generate an interrupt
again. Consequently, CFIGuard can protect multiple programs in parallel.

4 Identify Control-Flow Violation

The execution of reused-code is identified by examining two types of control-flow
violations: (a) running a programmer unintended indirect branch instruction;
(b) an intended branch jumps to an unintended target. Therefore, we perform
attack detection by consulting the corresponding CFGs.

4.1 Security Checking Scheme

In this work, a branch instruction execution is also referred to as a transfer
defined by an address pair (jump-from, jump-to) which are the source and des-
tination addresses of a branch execution, respectively. At runtime, an indirect
branch could result in different transfers from the same source address but to
different destination addresses. The execution of a transfer is deemed legal if and
only if its source and destination addresses match a specific CFG edge. There
is a special treatment for inter-module transfers, whose destination addresses
are out of current module and thus cannot be depicted by the CFG of current
module. For those transfers, we separately check their jump-from and jump-to
addresses with the exit-point of the source module and the entry-point of the
landing module, respectively. As a result, this strategy gives us the flexibility to
generate constraint data of the current module without any information about
other modules.

Figure 1 illustrates our runtime security enforcement wherein Fig. 1(a) shows
our CFGs along with a few code snippets taken from the application and its

72 P. Yuan et al.

dynamically linked libraries. Besides holding the data about in-module indi-
rect transfers, those CFGs also list the entry-points and exit-points of the cur-
rent module. Entry-points are the addresses where external branches that jump
into the current module, while exit-points are addresses of indirect branches
that jump out of the current module. In those CFGs, we use labels instead
of addresses. In particular, for each instruction location A in the disassembler
output of IDA [1], we associate it with a symbolic label “lab A”.

Figure 1(b) shows the idea of validating a record in the security check by
consulting the CFGs. In this figure, a smile sign means to accept a record if the
record is identified as a legal transfer, while a stop sign means to reject a record
if it is identified as an illegal one. For instances, a record (lab 147c, lab 132e) is
rejected because the CFG of the library shows that there is no branch instruction
starting at lab 147c. This record must be due to an unintended instruction. A
record (lab 83f5, lab 8052) is also rejected because the CFG of application
shows that target address lab 8052 is unintended for the ret instruction at
lab 83f5. The other are accepted because they are compliant to the CFGs.

(a) Pre-extracted CFGs. (b) Security enforcement.

Fig. 1. Our runtime security enforcement.

4.2 Control-Flow Constraint: Call-Site CFG

CFIGuard uses the CFG data structure directly for detecting control-flow vio-
lation without reducing its complexity as in coarse-grained CFI [23,24,43]. As a
benefit, the attack detection logic of CFIGuard is unified and strict. In practice,
we prefer fine-grained CFGs for the purpose to achieve strong security protection.

We construct a dedicated target table for each indirect branch. In addition, a
table is built to store the addresses of intended branch instructions, exit-points
and entry-points. Therefore, the constraint data consists of four components.

1. The first component is a bitmap for jump-from addresses where valid indirect
branch instructions are located. Each byte (uniquely identified by an address)
of the code segment corresponds to a bit in this bitmap. If a byte is the
beginning of an indirect branch instruction, the corresponding bit is set to
1; otherwise it is set to 0. This bitmap can verify the legitimacy of source
addresses of each LBR record.

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 73

2. The second is a hash table stores the connectivity between a jump-from and
its target table. A hash table entry has three fields: the key (i.e., jump-from
addresses), the location of the target table, and an entry index of the collided
element.

3. The third is a series of target tables each of which stores a set of jump-
to addresses of a particular branch. The size of those tables varies across
branches as each branch has a different number of targets. For management,
each target table is prepended with a header that provides rich information. A
header has three fields: the size of current target table, the branch instruction
type, and a permission bit indicating whether an inter-module transfer is
allowed or not. The second and third fields provide information to validate
the legitimacy of the destination address of each LBR record. Note that the
header’s last field also defines whether current branch is an exit-point.

4. The fourth component is the entry-points where control flows into current
module. This part is also implemented using a bitmap. Similar to the bitmap
for jump-from addresses, each bit of this bitmap indicates where valid entry-
points are located.

Therefore, the first three components are involved when CFIGuard validates
intra-module transfer records while all of them are needed when checking exit-
points and entry-points in case of inter-module transfers. On a side note, our con-
straint data only uses the offsets to the code segment base rather than absolute
addresses. Consequently, it is not affected by the base address where the exe-
cutable’s code segment is loaded into the memory. Hence, such a CFG can be
accessed concurrently by multiple threads, and even shared by many programs
at runtime.

4.3 Code-Reuse Attack Detection Triggers

Before describing the runtime detection phase, we first introduce two types of
events that trigger the detection logic: an interrupt issued by LBR + PMU and
invocation of a system call.

Hardware Interrupt. When LBR + PMU generates an interrupt, the CPU
control is passed to the interrupt handler in the kernel and LBR stops recording
branches because it is configured to monitor user space code only. For simplicity,
in our current implementation, the interrupt handler directly invokes the security
check function. Other alternatives include to invoke it in a kernel thread or in a
user-mode process. Each scheme has its own advantages and disadvantages, and
we remark that all of them can benefit from the isolation capability provided by
hardware.

System Calls. By default, we check LBR records in batch mode. This scheme
can allow an attacker to execute an average of N/2 invalid indirect branches
before LBR + PMU issues an interrupt. In other words, the attacker may launch
a malicious system call before the interrupt performs a security validation. To
deal with such attacks, we ensure the security by postponing any system call

74 P. Yuan et al.

execution after LBR buffer inspection. To this end, we hook into the system call
handlers (e.g., sysenter entry and system call routines of the Linux kernel)
to invoke our security check.

Runtime Detection. For each LBR record, we process it in the following steps

– Step 1. Identify whether it is an execution trace of an intra-module transfer by
using the kernel API (e.g., find vma in Linux) to retrieve the Virtual Memory
Area (VMA) manager that covers the current source (or destination) address.
In Linux, each code or data segment of a program has its own VMA whose
meta-data is maintained by a manager. A record is considered as an intra-
module transfer if its source and destination addresses are covered by the
same VMA. Otherwise, it is an inter-module transfer.

– Step 2. Convert the address pair to offsets in order to be compliant to the
format of the aforementioned constraint data. To this end, the source (or
destination) address is subtracted with the base address where the current
code segment is loaded in the memory and maintained by the VMA manger.

– Step 3. Retrieve the CFG of the recorded branch instruction’s source address.
The VMA manager has a new field named cfg info that points to the buffer
storing the CFG. Note that all CFGs are priorly loaded into the kernel space
before running the protected program, and are bound to the cfg info fields
when running kernel routines fork() or exec().

– Step 4. Finally, we perform code-reuse attack detection by checking this record
with CFGs.

5 Implementation of CFIGuard

We have implemented a prototype of CFIGuard on the Linux kernel version
3.13.11. Currently, CFIGuard supports Intel Ivy Bridge architecture and focuses
on preventing user-level attacks only. The prototype runs in two phases: the
offline CFG recovering phase and the online CFI enforcing phase. During the
offline phase, CFIGuard builds a table of target addresses for each branch and
then generates the constraint data for the binaries. During the second phase,
CFIGuard employs LBR + PMU to record every indirect branch execution and
performs attack detection by consulting CFGs.

5.1 Control-Flow Constraint

Extracting Control-Flow Graph. We develop a Python script based on
IDA [1] to collect call-sites from binaries. If the call-site is a direct call, we
can easily get its target. Otherwise, we analyse the source code to collect targets
of an indirect call. We use the method applied in forward-CFI [35] to construct
target tables for indirect calls based on the source code. Specifically, we classify
all functions into different categories based on the types of their return values
and parameters. An indirect function invocation (using a function pointer) can
only target the category that has the same type of the pointer. The target tables
of indirect calls are fed to our Python script.

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 75

With the information about call-sites, we can construct the target tables for
ret instructions. Then we analyze the Procedure Linkage Table (PLT) entries
and switch-case tables to construct the target tables for indirect jump instruc-
tions. Note that, if function pointers in a switch-case jump table are hard-coded
in a read-only segment, they cannot be tampered with because of DEP protec-
tion. Therefore, jump instructions (e.g., jmp jtable[edx*4]) with such a target
set can hardly be exploited by attackers if the compiler implements the jump
table lookups correctly, i.e., jumping out of this table is impossible. We state this
fact of those jump instructions by not listing their jump-to addresses in their
target tables. Instead, we set the size field of the headers of their target tables
with a specific value as an indication. This scheme could accelerate the security
checking and also save memory overhead.

The exit-points include: (a) PLT entries that invoke library functions; (b) ret
instructions at the end of exported functions of the current module; (c) indirect
calls of exported function that invoke external call-back functions. Meanwhile,
the entry-points are composed of instructions next to call-sites that invoke PLT
entries or external library functions.

In case that the source code of the protected program is not available, we can
recover CFG from its binary as in coarse-grained CFI schemes [43,44]. In fact,
the CFGs recovered by those works are accurate enough for CFIGuard because
the CFGs are utilized without reduction.

Storing Control-Flow Graph. The CFGs are stored in the form of bitmaps
and tables described below.

Jump-from address bitmap. This bitmap is implemented as an array of words.
Each word has 32-bits, thus it can track 32 code bytes or 32 addresses with the
lowest bit corresponding to the lowest address.

Connectivity hash table. This hash table stores the connectivity between a jump-
from address and its target table. It is a sparse table with a density around
50 %. Moreover, it is open addressed and represented using arrays, thus have
near-linear search time.

Target tables. The addresses of each table are sorted in an ascending order such
that we can quickly locate a target when validating the jump-to address of a
LBR record.

Bitmap of entry-points. In order to save the memory overhead, the entry-point
bitmap is merged with the jump-from address bitmap. An entry-point must be
an address of an intended instruction, so the merged bitmap does not add extra
bit for validating jump-from addresses.

Moreover, we add a header to manage the constraint data, which contains
metadata including the location of bitmap and hash table, as well as the size
of hash table. Figure 2 illustrates a part of the constraint data of an exemplary
application.

76 P. Yuan et al.

Fig. 2. The constraint data of a demo application

5.2 Hardware Monitor: LBR+PMU

Figure 3 is the diagram of the LBR + PMU monitor. LBR is configured by
IA32 DEBUG MSR and MSR LBR SELECT registers which are used for enabling/
disabling LBR and branch type filtering, respectively. PMU is configured by three
registers. In fact, modern CPUs generally offer several PMU units and we select
the first one denoted as PMU0 in our processor. Register IA32 PERF GLOBAL CTRL
is used to enable PMU0. Meanwhile, Register IA32 PERFEVSEL0 sets the
BR INST EXEC bits for monitoring and sets a sub-event mask for branch type
filtering.

The driver of LBR + PMU exports several interfaces for management: (a) an
interface to enable/disable the monitor; (b) an interface to support branch type
filtering; and (c) an interface to (re-)initialize PMC0.

5.3 Security Check

We implement the security check functionality as two Loadable Kernel Mod-
ules (LKMs) with one for loading the constraint data and the other for policy
enforcement.

LKM for Loading Constraint Data. This module uses kernel buffers to
store constraint data of the application and its dynamically linked libraries. All
pages of these buffers are set with VM RESERVED attribute to ensure that they
are not swapped out at runtime. This configuration makes the constraint data
to be available for the interrupt handler. Moreover, each buffer is exported to
the user as a memory-mapping file under the “/proc” file system, and the files
are protected by the access policies of the Linux system. As a result, a privileged
user can upload constraint data files into the kernel buffers before running a
protected program.

This module also hooks into the exec() kernel routine to bind the constraint
data file to the VMA instance of the corresponding code segment after the

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 77

Fig. 3. The diagram of LBR +PMU

protected program is loaded into the memory. Consequently, the right constraint
data is retrieved from the VMA instance during the security check.

LKM for Security Enforcement. The module inserts hooks in the inter-
rupt handler “intel pmu handle irq()” and the system call table to intercept
LBR + PMU’s interrupts and system calls, respectively. The security check is
bound to a function pointer exported by the Linux kernel, which is initialized
when this module is installed.

5.4 Launching CFIGuard System

Current implementation needs a few manual operations to protect a program
at runtime, but we leave it as our future work to automate the entire process.
We first install the LKM for loading the constraint data and then upload con-
straint data to the exported “/proc” files. Next, we install the LKM for security
enforcement. After that, a user application can be launched with CFIGuard
protection.

6 Evaluation

All evaluation experiments are performed on a PC with an Intel Core i5-3470
processor with 4 cores. Each core has 32 k L1 instruction and L1 data cache and a
256 K L2 data cache. The four cores share a 6 MB L3 cache. The platform has

78 P. Yuan et al.

4 GB 1066 MHz main memory, a 1TB SCSI disk of 7200 rpm, and a 1000 Mbps
NIC. The operating system is Ubuntu 14.04 with kernel version 3.13.11.

6.1 Effectiveness on the RIPE Benchmark

In order to evaluate the effectiveness of our approach, we use the RIPE [39]
testbed. This is a program with many security vulnerabilities and loopholes. Its
test script launches 3940 control flow hijacking attacks by using a variety of
techniques including ROP and return-into-libc.

Around 80 exploits can succeed when all protection mechanisms built in the
platform and the OS are turned on. In contrast none of them succeeds when CFI-
Guard is deployed. Note that RIPE only evaluates the effectiveness of countering
the known attacks. CFIGuard can also defend against other sophisticated control
flow hijacking attacks, such as recent just-in-time ROP [32] and blind-ROP [6].

6.2 Performance Evaluation

In this section, we report our performance evaluation of CFIGuard using several
real-world applications which many attacks target at.

Target Applications. To show that CFIGuard can be efficiently applied to a
variety of applications in practice, we choose different types of server applications
listed in Table 2, including Apache Web Server, Mysql Database and the vsftpd
FTP server.

Table 2. Different types of real-world applications for benchmarking

Application Performance matrix Parameters

Apache Throughput of get 20 clients send 50000 requests

Mysql Runtime overhead 16 clients issue 10000 transactions

vsftpd Throughput 10 clients download/upload a 10Mb file

Contribution of Branch Type Filtering. The filtering of direct branches
dramatically releases the hardware burden on recording and results in low fre-
quency of interrupts and low performance overhead. We utilize Linux’s Perf tool
to count the execution rounds of indirect branches and that of all branches. The
results are shown in Table 2 below. On average, the execution rounds of indirect
branches take only 16.7 % of the total amount. Therefore, the branch filtering
mechanism of LBR + PMU effectively trims the runtime overhead as compared
to monitoring all branches.

Performance Results. We evaluate those server applications with a perfor-
mance matrix shown in Table 2. Figure 4 depicts the performance overhead for
protecting these applications with CFIGuard. From this figure, we can see that
CFIGuard incurs low performance overhead, with only 2.9 % on average, and
a maximum 5.6 % on Apache. Most of the cost (around 83 %) is attributed to

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 79

Table 3. The execution records of indirect branches and their ratio in total.

Server # of branch exec.
(in million)

of ind. branch
exec. (in million)

Percentage
(%)

Remarks

Apache 99.8 19.3 19.3 Get a 8 Kb
file

Mysql 7619.5 1416.1 18.6 Size of
queried table
is 32000

vsftpd-download 307.2 293.3 13.6 Download a
10 Mb file

vsftpd-upload 1926.0 2730 15.2 Upload a
10 Mb file

Fig. 4. Performance overhead of CFIGuard

LBR + PMU monitoring. Our overhead is lower than that of CFIMon [40] which
reports a 6.1 % overhead. The result means that CFIGuard can be applied to
certain real-world server applications in daily use (Table 2).

Figure 5(a) shows the overhead of CFIGuard when web clients get files of
different sizes from an Apache server. The performance overhead is less than 1 %
when the file size is larger than 4 KB, but increases as the file getting smaller
(note that Fig. 4 shows the average cost across different file sizes). This is because
when the file is large, the task is more I/O intensive. For small-size files, the server
consumes more CPU cycles relatively. The throughput of apache-get running
with CFIGurad is 88 % of its native throughput when the file size is 1 KB.
Figure 5(b) shows the runtime of CFIGuard when database clients queries tables
of different sizes hosted by a Mysql server. The time overhead of CFIGuard is
around 3.7 % on average.

6.3 Memory Overhead

Table 4 shows the memory space used by CFIGuard to store the constraint data
for a target application as compared to the application’s own memory cost. The
overhead mainly is attributed to the jump-from address bitmap and the target
tables. Because the instruction set of x86 architecture consists of instructions
with variable length, we have to track every code byte with a bit. As a result,

80 P. Yuan et al.

(a) Performance overhead in Apache. (b) Performance overhead in Mysql.

Fig. 5. Performance overhead of CFIGurad in Apache and Mysql.

Table 4. The memory overhead of CFIGurad

Servers Binary file size (in KB) Constraint file size (in Kb) Overhead (%)

Apache 568 136 24.0

Mysql 10437 2492 23.9

vsftpd 167 54 32.3

the overhead is at least 1/8. The memory overhead introduced by target tables
is mainly for two reasons. Firstly, a small portion of ret instructions have too
many targets (e.g., more than 256). Secondly, although all ret instructions of
the same function have a common target set, each of them has its own target
table according to our design. Note that the constraint data for shared libraries
can be shared by different processes, which significantly saves the system wide
memory cost.

7 Discussion

7.1 Return-into-app Attack

A dynamically linked library such as libc.so may export many functions. The
backward inter-module transfers issued by ret instructions in those functions
can hardly be depicted by a static CFG. Most existing mechanisms provide
no protection or imprecise protection for those transfers to bypass the hassle.
Hence, backward inter-module transfers are generally vulnerable at present. In
the same vein as the return-to-libc attack, we name it the return-into-app
attack as it is prone to redirect those transfers to invalid targets located at the
application. CFIGuard mitigates such attacks by dictating that those transfers
can only target the legitimate entry-points of the landing module. Because a
typical program has far less entry-points than the number of indirect branch
targets, the attack can hardly be launched under the protection of CFIGuard
comparing with other CFI solutions such as MIP [23] and CCFIR [43].

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 81

7.2 Implications on Hardware Enhancement

The LBR buffer size of modern processors are much larger than their prede-
cessors. Using a large LBR buffer can dramatically reduce the amount of inter-
rupts triggered by LBR + PMU. Moreover, we call for integrating LBR and PMU
together as a single facility in the upcoming generation of processors.

8 Related Work

8.1 Code-Reuse Attacks

The idea of code-reuse attack was proposed by Solar Designer [14] in 1997.
Return-into-libc attacks are applied to applications on x86 processors in [22].
In 2007, Shacham et al. [30] proposed ROP (Return-Oriented-Programming).
Unlike return-into-libc, ROP reuses short code snippets (called gadgets) which
is more flexible to construct the malicious payload. Moreover, ROP is shown to be
Turing complete in the sense that the attacker can accomplish any task. Bletsch
et al. [7] proposed Jump-Oriented Programming (JOP) which reuses gadgets
ended with indirect jump instructions to implement malicious functionality.
In 2013, Snow et al. [32] proposed just-in-time ROP to undermine varies fine-
grained ASLR solutions. There are other variants of ROP attacks. For example,
String-Oriented Programming (SOP) [27]) uses a format string bug to exploit
applications that are protected by a combination of weak ASLR, DEP, and
SSP. Bosman et al. [8] proposed Signal-Oriented Programming (SROP) which
employs Linux’s SIGRETURN signal to load data from the stack into a register. If
an attacker controls the data on the stack, he can initialize one or more registers
with his data, then launches ROP or JOP attacks. Bittau et al. [6] proposed
blind-ROP. Although such an attack is launched under a special circumstance,
it demonstrates that a remote server is still vulnerable even when an attacker
does not have any information about the server application.

8.2 Mitigation

Recent years have seen a surge of new techniques to mitigate code-reuse attacks.
The two mainstream approaches are Address Space Layout Randomization
(ASLR [33]) and Control Flow Integrity (CFI [3]). Runtime monitoring is also
proposed as an alternative to ASLR and CFI.

Address Space Layout Randomization. The fundamental rationale of ASLR is
that it is difficult for the adversary to collect available gadgets to construct an
ROP chain when he lacks the knowledge of the address layout of the target code,
which is achieved via randomizing the address space. Many fine-grained ASLR
solutions have been proposed to increase the entropy of randomization [15,18,
25,31,38]. The limitations of ASLR are summarized below. First, many fine-
grained ASLR solutions make the libraries no long sharable [5]. Because of the
changing of code positions, operands of control flow instructions, such as those of

82 P. Yuan et al.

conditional jumps, vary from different randomized instances. As a result, security
is achieved at the cost of the share-ability of libraries. Secondly, ASLR can hardly
stop just-in-time ROP [32]. If a program has memory exposure vulnerabilities,
an attacker may dynamically discover the randomized code layout and construct
the ROP payload accordingly on the fly. Ironically, code inflation caused by fine-
grained ASLR provides more available gadgets at the attacker’s disposal. Lastly,
ASLR does not withstand return-into-libc attack. As return-into-libc is proved
to be Turing complete [36], ASLR offers limited security assurance.

Control Flow Integrity Enforcement. CFI schemes insert security checks before
indirect branch instruction at the compilation phase [20,23,24,35,37] or through
binary rewriting [2,43,44]. We describe several CFI schemes below.

The classic CFI implementation [2] uses function-level unique IDs as the
control-flow constraint and allocates the same ID for an indirect branch instruc-
tion and its allowed targets. It rewrites the protected binary by inserting an ID
before each target and a security check before each indirect branch instruction.
The security check holds an ID and ID-comparing instructions. A control-flow
transfer is allowed only if its jump-to target holds the same ID as that of security
check.

HyperSafe [37] enforces the finest-grained CFI because it statically constructs
a specific target table for each indirect branch instruction. It rewrites the pro-
tected program by replacing an indirect branch instruction with a direct jump
to an external check routine, which at run-time consults the target tables to
validate transfers before launching the original transfers.

CCFIR [43] is a 3-ID implementation according to the classic CFI work.
It classifies the valid targets of all indirect branch instructions into three sets
and stores them in a dedicated code region called springboard. Generally speak-
ing, CCFIR performs security checks as other aligned-chunk CFI works such as
PittSFIeld [21] and NaCli [41], because it detects attacks by checking whether
the target is an aligned entries in the springboard. However, CCFIR allows an
indirect branch to jump to an invalid target address belonging to the assigned
set. Therefore, CCFIR only enforces coarse-grained CFI and can be circumvented
by advanced attacks [16]. Other coarse-grained solutions, including MIP [23] and
bin-CFI [44], also suffer from the same security issue [9,13,16,29].

Forward-CFI [35] focuses on protecting forward indirect transfers, i.e.
indirect call and indirect jump. It is implemented by the compiler’s CFI
enforcement on the intermediate code. Thus it can easily produce security
enhanced binaries after compilation. However, it needs a huge effort to be adopted
in real-world systems as the users have to recompile all involved code. Moreover,
to protect only certain types of indirect transfers is problematic in security. Some
recently proposed schemes also suffer from the same limitation [20,28,42].

Runtime Monitoring. Hardware features provided by modern processors are
used to monitor the code execution in several schemes such as kBouncer [26],
ROPecker [11] and CFIMon [40]. The first two use LBR whereas the last uses
BTS. Due to the limitation of hardware facilities, kBouncer and ROPecker can

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 83

only capture a small portion of indirect branch executions, while CFIMon has
to capture and examine executions of all types of branches. Moreover, all of
them are limited by the accuracy because they require heuristic rules to identify
attacks [9,10,13,16,29].

9 Conclusion

We have described the design and implementation of CFIGuard, a transparent
security system that identifies control-flow integrity violation caused by code-
reuse attacks. By creatively combining Last Branch Recording and Performance
Monitoring Unit, CFIGuard records every execution of indirect branches during
the lifetime of a process and validates the records in a separated security check by
consulting fine-grained CFGs. CFIGuard introduces negligible runtime overhead
on real-world applications. We demonstrate that our prototype implementation
on Linux can effectively detect various advanced attacks, including return-into-
libc and ROP.

In our future work, we plan to extend CFIGuard to protect just-in-time com-
piled code and the operating system kernel, and also to port our implementation
to Windows systems.

Acknowledgments. This work has been partly supported by National NSF of China
under Grant No. 61170070, 61572248, 61431008, 61321491; National Key Technology
R&D Program of China under Grant No. 2012BAK26B01.

References

1. IDA: http://www.hex-rays.com/ida/index.shtml
2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: CCS

2005 (2005)
3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: A theory of secure control flow.

In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 111–124.
Springer, Heidelberg (2005)

4. Andersen, S., Abella, V.: Data Execution Prevention: Changes to Functionality in
Microsoft Windows XP Service Pack 2, Part 3: Memory Protection Technologies
(2004)

5. Backes, M., Nürnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: USENIX 2014 (2014)

6. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: SP 2014 (2014)

7. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: ASIACCS 2011 (2011)

8. Bosman, E., Bos, H.: Framing signals - a return to portable shellcode. In: SP 2014
(2014)

9. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In:
USENIX 2014 (2014)

10. Casteel, K.: A Systematic Analysis of Defenses Against Code Reuse Attacks. Ph.
D. thesis, Massachusetts Institute of Technology (2013)

http://www.hex-rays.com/ida/index.shtml

84 P. Yuan et al.

11. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: ROPecker: a generic and
practical approach for defending against ROP attacks. In: NDSS 2014 (2014)

12. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: USENIX 1998 (1998)

13. Davi, L., Lehmann, D., Sadeghi, A.-R., Monrose, F.: Stitching the gadgets: on
the ineffectiveness of coarse-grained control-flow integrity protection. In: USENIX
2014 (2014)

14. Designer, S.: Getting around non-executable stack (and fix). Bugtraq (1997)
15. Gupta, A., Kerr, S., Kirkpatrick, M.S., Bertino, E.: Marlin: making it harder to

fish for gadgets. In: CCS 2012 (2012)
16. Göktaş, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-

coming control-flow integrity. In: SP 2014 (2014)
17. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size

does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: USENIX 2014 (2014)

18. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.: ILR: where’d my
gadgets go? In: SP 2012 (2012)

19. Intel: Intel 64 and IA-32 Intel Architecture software developer’s manual (2001)
20. Jang, D., Tatlock, Z., Lerner, S.: SAFEDISPATCH: securing C++ virtual calls

from memory corruption attacks. In: NDSS 2014 (2014)
21. Mccamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: USENIX

2006 (2006)
22. Nergal: The advanced return-into-lib (c) exploits: PaX case study. Phrack Maga-

zine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001)
23. Niu, B., Tan, G.: Monitor integrity protection with space efficiency and separate

compilation. In: CCS 2013 (2013)
24. Niu, B., Tan, G.: Modular control-flow integrity. In: PLDI 2014 (2014)
25. Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gadgets: hinder-

ing return-oriented programming using in-place code randomization. In: SP 2012
(2012)

26. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit miti-
gation using indirect branch tracing. In: USENIX 2013 (2013)

27. Payer, M., Gross, T.R.: String oriented programming: when ASLR is not enough.
In: PPREW 2013 (2013)

28. Prakash, A., Hu, X., Yin, H.: vfGuard: strict protection for virtual function calls
in COTS C++ binaries. In: NDSS 2015 (2015)

29. Schuster, F., Tendyck, T., Pewny, J., Maaß, A., Steegmanns, M., Contag, M., Holz,
T.: Evaluating the effectiveness of current anti-ROP defenses. In: Stavrou, A., Bos,
H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 88–108. Springer,
Heidelberg (2014)

30. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: CCS 2007 (2007)

31. Shioji, E., Kawakoya, Y., Iwamura, M., Hariu, T.: Code shredding: byte-granular
randomization of program layout for detecting code-reuse attacks. In: ACSAC 2012
(2012)

32. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: SP 2013 (2013)

33. PaX Team: PaX address space layout randomization (ASLR) (2003)

Hardware-Assisted Fine-Grained Code-Reuse Attack Detection 85

34. PaX Team: PaX non-executable pages design & implementation (2003)
35. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano,

L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
USENIX 2014 (2014)

36. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expres-
siveness of return-into-libc attacks. In: Sommer, R., Balzarotti, D., Maier, G. (eds.)
RAID 2011. LNCS, vol. 6961, pp. 121–141. Springer, Heidelberg (2011)

37. Wang, Z., Jiang, X.: HyperSafe: a lightweight approach to provide lifetime hyper-
visor control-flow integrity. In: SP 2010 (2010)

38. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: CCS 2012 (2012)

39. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: runtime
intrusion prevention evaluator. In: ACSAC 2011 (2011)

40. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow
integrity using performance counters. In: DSN 2012 (2012)

41. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: SP 2009 (2009)

42. Zhang, C., Song, C., Chen, K.Z., Chen, Z., Song, D.: VTint: defending virtual
function tables integrity. In: NDSS 2015 (2015)

43. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
SP 2013 (2013)

44. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: USENIX 2013
(2013)

Networks

Haetae: Scaling the Performance of Network
Intrusion Detection with Many-Core Processors

Jaehyun Nam1(B), Muhammad Jamshed2, Byungkwon Choi2, Dongsu Han2,
and KyoungSoo Park2

1 School of Computing, KAIST, Daejeon, South Korea
2 Department of Electrical Engineering, KAIST,

Daejeon, South Korea
{namjh,ajamshed,cbkbrad,dongsu han,kyoungsoo}@kaist.ac.kr

Abstract. In this paper, we present the design and implementation of
Haetae, a high-performance Suricata-based NIDS on many-core proces-
sors (MCPs). Haetae achieves high performance with three design choices.
First, Haetae extensively exploits high parallelism by launching NIDS
engines that independently analyze the incoming flows at high speed as
much as possible. Second, Haetae fully leverages programmable network
interface cards to offload common packet processing tasks from regular
cores. Also, Haetae minimizes redundant memory access by maintaining
the packet metadata structure as small as possible. Third, Haetae dynam-
ically offloads flows to the host-side CPU when the system experiences a
high load. This dynamic flow offloading utilizes all processing power on
a given system regardless of processor types. Our evaluation shows that
Haetae achieves up to 79.3 Gbps for synthetic traffic or 48.5 Gbps for real
packet traces. Our system outperforms the best-known GPU-based NIDS
by 2.4 times and the best-performing MCP-based system by 1.7 times. In
addition, Haetae is 5.8 times more power efficient than the state-of-the-art
GPU-based NIDS.

Keywords: Many-core processor · Network intrusion detection system ·
Parallelism · Offloading

1 Introduction

High-performance network intrusion detection systems (NIDSes) are gaining
more popularity as network bandwidth is rapidly increasing. As traditional
perimeter defense, NIDSes oversee all the network activity on a given net-
work, and alarm the network administrators if suspicious intrusion attempts
are detected. As the edge network bandwidth of large enterprises and campuses
expands to 10+ Gbps over time, the demand for high-throughput intrusion detec-
tion keeps on increasing. In fact, NIDSes are often deployed at traffic aggrega-
tion points, such as cellular core network gateways or near large ISP’s access
networks, whose aggregate bandwidth easily exceeds a multiple of 10 Gbps.

Many existing NIDSes adopt customized FPGA/ASIC hardware to meet
the high performance requirements [4,13]. While these systems offer monitoring
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 89–110, 2015.
DOI: 10.1007/978-3-319-26362-5 5

90 J. Nam et al.

throughputs of 10+ Gbps, it is often very challenging to configure and adapt such
systems to varying network conditions. For example, moving an FPGA appli-
cation to a new device requires non-trivial modification of the hardware logic
even if we retain the same application semantics [25]. In addition, specialized
hardware often entails high costs and a long development cycle.

On the other hand, commodity computing hardware, such as multi-core
processors [3,15] and many-core GPU devices [2,9], offers high flexibility and low
cost because of its mass production advantage. In addition, recent GPU-based
NIDSes [23,34] enable high performance, comparable to that of hardware-based
approaches. However, adopting GPUs leads to a few undesirable constraints.
First, it is difficult to program GPU to extract the peak performance. Since GPU
operates in a single-instruction-multiple-data (SIMD) fashion, the peak perfor-
mance is obtained only when all computing elements follow the same instruction
stream. Satisfying this constraint is very challenging and often limits the GPU
applicability to relatively simple tasks. Second, large number of GPU cores con-
sume a significant amount of power. Even with recent power optimization, GPUs
still use a significant portion of the overall system power. Finally, discrete GPUs
incur high latency since packets (and their metadata) need to be copied to GPU
memory across the PCIe interface for analysis. These extra PCIe transactions
often exacerbate the lack of CPU-side memory bandwidth, which degrades the
performance of other NIDS tasks.

Recent development of system-on-chip many-core processors [8,16] has brid-
ged the technology gap between hardware- and software-based systems. The
processors typically employ tens to hundreds of processing cores, allowing highly-
flexible general-purpose computation at a low power budget without the SIMD
constraint. For example, EZchip TILE-Gx72 [16], the platform that we employ
in this paper, has 72 processing cores where each core runs at 1 GHz but con-
sumes only 1.3 Watts even at full speed (95 watts in total). With massively
parallel computation capacity, a TILE platform could significantly upgrade the
performance of NIDS.

In this paper, we explore the high-performance NIDS design space on a TILE
platform. Our guiding design principle is to balance the load across many cores
for high parallelism while taking advantage of the underlying hardware to min-
imize the per-packet overhead. Under this principle, we design and implement
Haetae, our high-performance NIDS on TILE-Gx72, with the following design
choices. First, we run a full NIDS engine independently on each core for high
performance scalability. Unlike the existing approach that adopts the pipelining
architecture [24], our system removes all the inter-core dependency and mini-
mizes CPU cycle wastes on inter-core communication. Second, we leverage the
programmable network interface cards (NICs) to offload per-packet metadata
operations from regular processing cores. We also minimize the size of packet
metadata to eliminate redundant memory access. This results in significant sav-
ings in processing cycles. Finally, Haetae dynamically offloads the network flows
to host-side CPU for analysis when the system experiences a high load. We find
that the host offloading greatly improves the performance by exploiting available
computing cycles of different processor types.

Haetae: Scaling the Performance of Network Intrusion Detection 91

We implement Haetae by extending open-source Suricata [14] optimized for
TILE-Gx72 processors. Our evaluation shows that Haetae achieves 79.3 Gbps
for large synthetic packets, a factor of 1.7 improvement over the MCP-based
Suricata. Our system outperforms Kargus [23], the best-known GPU-based
NIDS, by a factor of 2.4 with 2,435 HTTP rules given by Snort 2.9.2.1 [29]
that Kargus used. With real traffic traces, the performance of Haetae reaches
48.5 Gbps, which is 1.9 times higher throughput than that of the state-of-the-art
GPU-based NIDS. In terms of power efficiency, Haetae consumes 5.8 times less
power than the GPU-based NIDS.

While we focus on the development of Haetae on TILE-Gx72 in this paper,
we believe that our design principles can be easily ported to other programmable
NICs and many-core processors as well.

2 Background

In this section, we provide a brief overview of many-core processors using EZchip
TILE-Gx72 as a reference processor. We then describe the operation of a typical
signature-based NIDS.

2.1 Overview of EZchip TILE-Gx

Figure 1 shows the architecture of the EZchip TILE-Gx72 processor with
72 processing cores (called tiles in the TILE architecture). Each tile consists
of a 64-bit, 5-stage very-long-instruction-word (VLIW) pipeline with 64 regis-
ters, 32 KB L1 instruction and data caches, and a 256 KB L2 set-associative
cache. TILE-Gx72 does not provide a local L3 cache, but the collection of all L2
caches serves as a distributed L3 cache, resulting in a shared L3 cache of 18 MB.
Fast L3 cache access is realized by a high-speed mesh network (called iMesh),

MiCA
DDR3 controller DDR3 controller

UART,
USB, JTAG,

I2C,SPI

T
R

IO

PC
Ie

2.
0

Flexible
I/O

MiCA

01/1thgi
E

spb
G

SF
P

m
PI

PE
1

m
PI

PE
2

DDR3 controller DDR3 controller

64-bit Processor

Cache

Register File

3 Execution
pipeline

L1-I Cache
L1-D Cache

I-TLB
D-TLB

L2-D Cache

Terabit
Switch

Fig. 1. Overall architecture of TILE-Gx72 processor

92 J. Nam et al.

which provides lossless routing of data and ensures cache coherency among dif-
ferent tiles. The power efficiency comes from relatively low clock speed (1 to 1.2
GHz), while a large number of tiles provide ample computation cycles.

The TILE-Gx72 processor contains special hardware modules for network
and PCIe interfaces as well. mPIPE is a programmable packet I/O engine that
consists of ten 16-bit general-purpose processors dedicated for packet processing.
mPIPE acts as a programmable NIC by directly interacting with the Ethernet
hardware with a small set of API written in C. mPIPE is capable of performing
packet I/O at line speed (up to 80 Gbps), and its API allows to perform direct
memory access (DMA) transactions of packets into the tile memory, inspect
packet contents, and perform load-balancing. The primary goal of the mPIPE
module is to evenly distribute incoming packets to tiles. Its packet processors
help parse packet headers and balance the traffic load across all tiles: a feature
that closely resembles the receive-side scaling (RSS) algorithm available in mod-
ern NICs. The mPIPE processors can be programmed to check the 5-tuples of
each packet header (i.e., source and destination IP addresses, source and des-
tination ports, and protocol ID) and to consistently redirect the packets of the
same TCP connection to the same tile.

Besides the mPIPE module, the TILE-Gx72 processor also has the TRIO
hardware module, which performs bidirectional PCIe transactions with the host
system over an 8-lane PCIev2 interface. The TRIO module maps its memory
region to the host side after which it handles DMA data transfers and buffer
management tasks between the tile and host memory. TRIO is typically used by
the host system to manage applications running in a TILE platform. Since the
TILE platform does not have direct access to block storage devices, some TILE
applications also use TRIO to access host-side storage using FUSE. In this work,
we extend the stock TRIO module to offload flow analyzing tasks to the host
machine for Haetae.

The TILE processors are commonly employed as PCIe-based co-processors.
TILEncore-Gx72 is a PCIe device that has the TILE-Gx72 processor and eight
10 GbE interfaces [5], and we call it TILE platform (or simply TILE-Gx72) in
this paper.

2.2 Overview of the Suricata NIDS

We use a TILE-optimized version of Suricata v1.4.0 [14] provided by EZchip. We
refer to it as baseline Suricata (or simply Suricata) in this paper. Baseline Suri-
cata uses a stacked multi-threaded model where each thread is affinitized to a
tile, and it runs a mostly independent NIDS engine except for flow table manage-
ment and TRIO-based communication. It follows a semi-pipelining architecture
where a portion of NIDS tasks are split across multiple tiles. The incoming traf-
fic is distributed to the tiles, and each tile has the ownership of its share of the
traffic. In this work, we extend baseline Suricata to support the design choices
we make for high NIDS performance.

Haetae: Scaling the Performance of Network Intrusion Detection 93

Incoming packets to Suricata go through the following five NIDS modules.

1. The receive module reads packets through packet I/O engines. In com-
modity desktop and server machines, such packet I/O engines may include
PF RING [11], PSIO [20], and DPDK [7]. Haetae, on the other hand, uses
EZchip’s mPIPE module for network I/O communication. After receiving a
batch of packets from the mPIPE module, the NIDS allocates memory for
each ingress packet and initializes the corresponding packet data structure.

2. The decode module parses packet headers and fills the relevant packet sub-
structures with protocol-specific metadata. As a last step, it registers the
incoming packets with the corresponding flows.

3. The stream module handles IP defragmentation and TCP segment reassem-
bly. It also monitors IP-fragmented and TCP-segmented evasion attacks as
mentioned in [21].

4. The detect module inspects the packet contents against attack signatures
(also known as rules). This phase performs deep packet inspection by scan-
ning each byte in the packet payloads. It first checks if a packet contains
possible attack strings (e.g., multi-string matching) and if so, more rigorous
regular expression matching is performed to confirm an intrusion attempt.
This two-stage pattern matching allows efficient content scanning by avoid-
ing regular expression matching on the innocent traffic.

5. Finally, the output module logs the detection of possible intrusions based
on the information from the matched signatures.

3 Approach to High Performance

In this section, we identify the performance bottlenecks of baseline Suricata on
the TILE platform and describe our basic approach to addressing them.

3.1 Performance Bottlenecks of Suricata

A typical performance bottleneck of a signature-based NIDS is its pattern match-
ing. However, for TILE-Gx72, we find that parallel execution of pattern matching
may provide enough performance while per-packet overhead related to metadata
processing takes up a large fraction of processing cycles.

To demonstrate this, we measure the performance of a multi-pattern match-
ing (MPM) algorithm (Aho-Corasick algorithm [17], which is the de-facto multi-
string matching scheme adopted by many software-based NIDSes [14,23,29,34]).
Figure 2(a) shows the performance of the MPM algorithm on the TILE platform
without packet I/O and its related NIDS tasks. For the experiment, we feed in
newly-created 1514B TCP packets with random payloads from the memory to
the pattern matching module with 2,435 HTTP rules from the Snort 2.9.2.1 rule-
set. We observe that the performance scales up linearly as the number of cores
grows, peaking at 86.1 Gbps with 70 cores. The pattern matching performance
is reasonable for TILE-Gx72 that has eight 10G network interfaces.

94 J. Nam et al.

1.2

86.1

0.9

45.1

0
10
20
30
40
50
60
70
80
90

100

1 10 20 30 40 50 60 70

)spb
G(tuphguorh

T

Number of cores

Aho-Corasick with internal input

All modules with external input

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

64 256 1024 1514

U
sa

ge
 o

f
co

m
pu

te
 c

yc
le

s

Packet size (Bytes)

Receive Decode Flow mgmt Stream Detect

(a) (b)

Fig. 2. Performance bottleneck analysis of Baseline Suricata: (a) Throughputs of the
Aho-Corasick algorithm over varying numbers of TILE-Gx72 cores, (b) CPU usage
breakdown of Suricata modules over various packet size

However, if we generate packets over the network, the overall performance
drops by more than 40 Gbps. This means that modules other than pattern match-
ing must be optimized for overall performance improvement. To reveal a detailed
use of processing cycles, we measure the fraction of compute cycles spent on each
NIDS module. The results in Fig. 2(b) show that tasks other than pattern match-
ing (i.e., the detect module) take up 28 to 72 % of total processing cycles, depend-
ing on the packet size. The tile usage for the non-pattern matching portion is a
fixed overhead per packet as the fraction gets higher for smaller packets.

Our detailed code-level analysis reveals that these cycles are mostly used to
process packet metadata. They include the operations, such as decoding the pro-
tocol of each packet, managing concurrent flows, and reassembling TCP streams
for each incoming packet. In this work, we focus on improving the performance of
these operations, since the overall NIDS performance often depends on the per-
formance of these operations while leveraging the unique hardware-level features
of TILE-Gx72.

3.2 Our Approach

Our strategy for a high-performance NIDS is two folds. First, we need to par-
allelize pattern matching as much as possible to give the most compute cycles
to the performance-critical operation. This affects the basic architecture of the
NIDS, which will be discussed in more detail in the next section. Second, we
need to reduce the overhead of the per-packet operation as much as possible.
For the latter, we exploit the special hardware provided by the TILE-Gx72 plat-
form. More specifically, our system leverages mPIPE and TRIO for offloading
some of the heavy operations from regular tiles. mPIPE is originally designed to
evenly distribute the incoming packets to tiles by their flows, but we extend it to
perform per-packet metadata operations to reduce the overhead on regular tiles.
The key challenge here is that the offloaded features need to be carefully cho-
sen because the mPIPE processors provide limited compute power and memory

Haetae: Scaling the Performance of Network Intrusion Detection 95

access privilege. TRIO is mostly used to communicate with the host-side CPU
for monitoring the application behavior. We extend the TRIO module to pass
the analyzing workload to the host side when the TILE platform experiences a
high load. That is, we run a host-side NIDS for extra flow analysis. The chal-
lenge here is to make efficient PCIe transfers to pass the flows and to dynamically
determine when to deliver the flows to the host side. We explain the design in
more detail in the next section.

4 Design

In this section, we provide the base design of Haetae, and describe three opti-
mizations: mPIPE computation offloading, lightweight metadata structure, and
dynamic host-side flow analysis.

4.1 Parallel NIDS Engine Architecture

Haetae adopts the multi-threaded parallel architecture where each thread is run-
ning a separate NIDS engine, similar to [23]. Each NIDS engine is pinned to a
tile, and repeats running all NIDS tasks in sequence from receive to output mod-
ules. This is in contrast to the pipelining architecture used by earlier TILE-based
Suricata [24] where each core is dedicated to perform one or a few modules and
the input packets go through multiple cores for analysis. Pipelining is adopted
by earlier versions of open-source Suricata, but it suffers from a few fundamental
limitations. First, it is difficult to determine the number of cores that should be
assigned for each module. Since the computation need of each module varies for
different traffic patterns, it is hard to balance the load across cores. Even when
one module becomes a bottleneck, processing cores allocated for other modules
cannot help alleviate the load of the busy module. This leads to load imbalance
and inefficient usage of computation cycles. Second, pipelining tends to increase
inter-core communication and lock contention, which is costly in a high-speed
NIDS. Since an NIDS is heavily memory-bound, effective cache usage is critical
for good performance. In pipelining, however, packet metadata and payload have
to be accessed by multiple cores, which would increase CPU cache bouncing and
reduce the cache hits. Also, concurrent access to the shared packet metadata
would require expensive locks, which could waste processing cycles.

To support our design, we modify baseline Suricata to eliminate any shared
data structures, such as the flow table. Each thread maintains its own flow table
while it removes all locks needed to access the shared table entry. Incoming
packets are distributed to one of the tiles by their flows, and a thread on each
tile analyzes the forwarded flows without any intervention by other threads. Since
each thread only needs to maintain a small amount of flow ranges, dividing the
huge flow table into multiple pieces for each thread is not a big trade-off. Thus,
this shared-nothing architecture ensures high scalability while it simplifies the
implementation, debugging, and configuration of an NIDS.

96 J. Nam et al.

One potential concern with this design is that each core may not receive the
equal amount of packets or flows from the NICs. However, recent measurements
in a real ISP show that a simple flow-based load balancing scheme like RSS more
or less evenly distributes the flows among the processing cores [35]. According
to the study, the maximum difference in the number of processed flows per each
core on a 16-core server is within 0.2 % of all flows at any given time with real
traffic. This implies that the randomness of IP addresses and port numbers used
in real traffic is sufficient to distribute the packet load evenly among the tiles.

4.2 MPIPE Computation Offloading

With the highly-scalable system architecture in place, we now focus on opti-
mizing per-tile NIDS operations. Specifically, we reduce the packet processing
overhead on a tile by offloading some common computations to the mPIPE pro-
grammable hardware module. When a packet arrives at a network interface,
mPIPE allocates a packet descriptor and a buffer for the packet content. The
packet descriptor has packet metadata such as timestamps, size, pointer to the
packet content as well as some reserved space for custom processing. After packet
reception, the software packet classifier in mPIPE distributes the packet descrip-
tors to one of the tile queues, and the tile accesses the packet content with the
packet descriptor. mPIPE allows the developers to replace the packet classifier
with their custom code to change the default module behavior.

Programming in mPIPE, however, is not straightforward due to a number
of hardware restrictions. First, in the case of mPIPE, it allows only 100 com-
pute cycles per packet to execute the custom code at line rate. Second, the
reserved space in the packet descriptor is limited to 28 bytes, which could be too
small to perform intensive computations. Third, mPIPE embedded processors
are designed mainly for packet classification with a limited instruction set and
programming libraries. They consist of 10 low-powered 16-bit processors, which
do not allow flexible operations such as subroutines, non-scalar data types (e.g.,
structs and pointers), and division (remainder) operations.

Given these constraints, Haetae offloads two common packet processing tasks
of an NIDS: packet protocol decoding and hash computation for flow table
lookup. We choose these two functions for mPIPE offloading since they should
run for every packet but do not maintain any state. Also, they are relatively sim-
ple to implement in mPIPE while they save a large number of compute cycles
on each tile.

Figure 3 shows how the customized mPIPE module executes protocol decod-
ing and flow hash computation. A newly-arriving packet goes through packet
decoding and flow hash functions, saving results to the reserved area of an
mPIPE packet descriptor. Out of 28 bytes of total output space, 12 bytes are
used for holding the packet address information (e.g., source and destination
addresses and port numbers) and 4 bytes are used to save a 32-bit flow hash
result. The remaining 12 bytes are employed as a bit array to encode various
information: whether it is an IPv4 or IPv6 packet, whether it is a TCP or
UDP packet, the length of a TCP header in the case of the TCP packet, etc.

Haetae: Scaling the Performance of Network Intrusion Detection 97

Tiles

mPIPE packet processing processor

Decoding
function

Flow hash
function

Cache coherent
TILE memory

Original path
New path

Packet descriptor

H(p)Bit array

IPv4/6 TCP

IPs / ports

…TCP hdr len

Packet

Load balancer

Hash value…1 1 1 0 0 0 1 0

Fig. 3. Design of the mPIPE engine with decoding and hash computations

Each bit can indicate multiple meanings depending on protocols. After these
functions, a load balancer determines which tile should handle the packet, and
the packet descriptor along with the packet is directly passed onto the L2 cache
of the tile that handles the packet, a feature similar to Intel data direct I/O [6].
As a result, each NIDS thread can proceed with the pre-processed packets and
avoids memory access latencies.

Our micro-benchmarks show that mPIPE offloading improves the perfor-
mance of the decode and flow management modules by 15 to 128 % (in Sect. 6).
Since these are per-packet operations, the cycle savings are more significant with
smaller packets.

4.3 Lightweight Metadata Structure

mPIPE computation offloading confirms that reducing the overhead of per-
packet operation greatly improves the performance of the overall NIDS. The
root cause for performance improvement is reduced memory access and enhanced
cache access efficiency. More efficient cache utilization leads to a smaller number
of memory accesses, which minimizes the wasted cycles due to memory stalls. If
the reduced memory access is a part of per-packet operation, the overall savings
could be significant since a high-speed NIDS has to handle a large number of
packets in a unit time.

To further reduce the overhead of per-packet memory operation, we simplify
the packet metadata structure of baseline Suricata. Suricata’s packet metadata
structure is bloated since it has added support for many network and transport-
layer protocols over time. For example, the current data structure includes packet
I/O information (e.g., PCAP [10], PF RING [11], mPIPE), network-layer meta-
data (e.g., IPv4, IPv6, ICMP, IGMP) and transport-layer metadata (e.g., TCP,
UDP, SCTP). The resulting packet metadata structure is huge (1,920 bytes),
which is not only overkill for small packets but also severely degrades the cache
utilization due to redundant memory access. Also, the initialization cost for
metadata structure (e.g., memset() function calls) would be expensive.

98 J. Nam et al.

To address these concerns, we modify the packet metadata structure. First,
we remove the data fields for unused packet I/O engines. Second, we separate the
data fields for protocols into two groups: those that belong to frequently-used
protocols such as TCP, UDP, and ICMP and the rest that belong to rarely-used
protocols such as SCTP, PPP, and GRE. We move the data fields for the latter
into a separate data structure, and adds a pointer to it to the original structure.
If an arriving packet belongs to one of rarely-used protocols, we dynamically
allocate a structure and populate the data fields for the protocol. With these
optimizations, the packet metadata structure is reduced to 384 bytes, five times
smaller than the original size. Our profiling results find that the overall number
of cache misses is reduced by 54 % due to lightweight metadata structures.

4.4 Flow Offloading to Host-Side CPU

Since TILE-Gx72 is typically attached to a commodity server machine, we could
improve the NIDS performance further if we harness the host-side CPU for
intrusion detection. The TILE-Gx72 platform provides a TRIO module that
allows communication with the host machine. We exploit this hardware feature
to offload extra flows beyond the capacity of the TILE processors to the host-side
CPU.

The net performance increase by host-side flow offloading largely depends on
two factors: (i) how fast the TILE platform transfers the packets to the host
machine over its PCIe interface, and (ii) the pattern matching performance of
the host-side NIDS. In our case, we use a machine containing two Intel E5-2690
CPUs (2.90 GHz, 16 cores in total) that run Kargus with only CPUs [23]. Since
the performance of the Aho-Corasick algorithm in Kargus is about 2 Gbps per
CPU core [23], the host-side NIDS performance would not be an issue given the
8-lane PCIev2 interface (with 32 Gbps maximum bandwidth in theory) employed
by the TILE platform.

We first describe how we optimize the TRIO module to efficiently trans-
fer packets to the host side, and explain which packets should be selected for
offloading. Also, we determine when the packets should be offloaded to the host
machine to maximize the performance of both sides.

Efficient PCIe Communication. Baseline Suricata provides only rudimen-
tary host offloading support mainly used for remote message logging; since the
TILE platform does not have built-in secondary storage, it periodically dis-
patches the batched log messages from its output module to the host-side storage
via its TRIO module. Since log transmission does not require a high bandwidth,
the stock TRIO module in the baseline Suricata code is not optimized for high-
speed data transfer. First, the module does not exploit zero-copy DMA support.
Second, it does not exercise parallel I/O in PCIe transactions, incurring a heavy
contention in the shared ring buffer. Our measurement shows that the stock
TRIO module achieves only 5.7 Gbps of PCIe data transfer throughput at best
out of the theoretical maximum of 32 Gbps.

Haetae: Scaling the Performance of Network Intrusion Detection 99

TRIO queue 1

TRIO module

TRIO queue 2

TRIO queue 16

TILE memory

Ring buffers

Core 1

Core 2

Core 16

Host

R
x

m
od

ul
e

TILE platform

(4)

(3)
(2)

Tiles

Tiles

Tiles
(1)

(1) Batching packets (2) Updating a ring buffer
(3) Notifying the update of the ring buffer
(4) Reading offloaded packets using the raw DMA API

Steps:

Fig. 4. Design of the offloading module with the TRIO engine

We exploit three features in the TRIO module to maximize the PCIe trans-
fer performance for high host-side NIDS throughput. First, we develop a zero-
copying offloading module with the raw-DMA API provided by the TRIO engine.
The raw-DMA API ensures low-latency data transfer between the TILE platform
and the host. It requires physically-contiguous buffers to map the TILE memory
to the host-side address space. For zero-copy data transfer, we pre-allocate shared
packet buffers at initialization of Suricata, which are later used by mPIPE for
packet reception. Packets that need to be offloaded are then transferred via the
TRIO module without additional memory copying, which greatly saves compute
cycles. Second, we reduce the contention to the shared ring buffer by increas-
ing the number of TRIO queues. The baseline version uses a single ring buffer,
which produces severe contention among the tiles. We increase the number to
16, which is the maximum supported by our TILE platform. This allows parallel
queue access both from tiles and CPU cores. Finally, we offload multiple packets
in a batch to amortize the cost incurred due to per-packet PCIe transfer. Our
packet offloading scheme is shown in Fig. 4. We find that these optimizations are
very effective, improving the performance of PCIe transfer by 5 to 28 times over
the stock version.

Dynamic Flow Offloading. We design the TRIO offloading module to fully
benefit from the hardware advantage of the TILE platform. We make the TILE
platform handle as much traffic as possible to minimize the power consumption
and the analyzing latency. To determine when to offload the packets to the host
side, each tile monitors whether it is being under pressure by checking the queue
size in mPIPE. A large build-up in the queue indicates that the incoming load
may be too large for the tile to catch up.

Figure 5 shows the design of the dynamic offloading algorithm in Haetae.
The basic idea is similar to opportunistic packet offloading to GPU in [23], but

100 J. Nam et al.

TILE platform

Queues for
each tile TRIO module

…

T1 T2

Packets processed on the TILE platform Packets offloaded to the host

Queue length

Queue length

Host-side NIDS

Receive module Flow management

Measure q q > T1 or 2

New or offloaded flows

Yes

No

mPIPE

Fig. 5. Dynamic flow offloading

the unit of offloading is a flow in our case, and the task for offloading is the
entire flow analysis instead of only pattern matching. In our algorithm, we use
two thresholds to determine whether a new flow should be offloaded or not.
If the queue length (q) exceeds the first threshold (T1), a small portion (L1)
of new flows are chosen to be offloaded to the host machine. If it successfully
curbs the queue size blowup, Haetae reverts to TILE-only flow analysis and
stops offloading to the host side. However, if the queue size increases beyond the
second threshold (T2), a larger portion (L2, typically, L2 = 1) of new flows is
offloaded to the host machine, which helps drain the queue more quickly. When
the queue length exceeds the second threshold, the system keeps the offloading
rate to L2 until the queue length goes below the first threshold (T1). This two-
level offloading scheme prevents rapid fluctuation of the queue length, which
would stabilize flow processing in either mode.

The unit of offloading should be a flow since the host-side NIDS is indepen-
dent of the TILE-side NIDS. The host-side NIDS should receive all packets in a
flow to analyze the protocol as well as reassembled payload in the same flow. To
support flow-level offloading, we add a bit flag to each flow table entry to mark
if a new packet belongs to a flow being offloaded or not. This extra bookkeeping,
however, slightly reduces the per-tile analyzing performance since it is rather
heavy per-packet operation.

5 Implementation

We implement Haetae by extending a TILE-optimized Suricata version from
EZchip. This version optimizes the Aho-Corasick algorithm with special TILE
memory instructions, and uses a default mPIPE packet classifier to distribute

Haetae: Scaling the Performance of Network Intrusion Detection 101

incoming packets to tiles. To support the design features in Sect. 4, we imple-
ment per-tile NIDS engine, mPIPE computation offloading, lightweight packet
metadata structure, and dynamic host-side flow offloading. This requires a total
of 3,920 lines of code modification of the baseline Suricata code.

For shared-nothing, parallel NIDS engine, we implement a lock-free flow table
per each tile. By assigning a dedicated flow table to each NIDS engine, we
eliminate access locks per flow entry and improve the core scalability. The flow
table is implemented as a hash table with separate chaining, and the table entries
are pre-allocated at initialization. While the baseline version removes idle flow
entries periodically, we adopt lazy deletion of such entries to reduce the overhead
of per-flow timeouts. Idle flow entries are rare, so it suffices to delete them
in chain traversal for other activities only when there is memory pressure. To
maximize the parallelism, we run an NIDS engine on 71 tiles out of 72 tiles. The
remaining tile handles shell commands from the host machine.

Supporting lightweight packet metadata structure is the most invasive update
since the structure is used by all modules. To minimize code modification and to
hide the implementation detail, we provide access functions for each metadata
field. This requires only 360 lines of code modification, but it touches 32 source
code files.

Implementing mPIPE computation offloading is mostly straightforward
except for flow hash calculation. Baseline Suricata uses Jenkin’s hash function [1]
that produces a 32-bit result, but implementing it with a 16-bit mPIPE proces-
sor requires us to emulate 32-bit integer operations with 16-bit and 8-bit native
instructions. Also, we needed to test whether protocol decoding and hash calcu-
lation is within the 100-cycle budget so as not to degrade the packet reception
performance. mPIPE offloading modifies both the existing mPIPE module and
Suricata’s decode and flow management modules, which requires 130 and 100
lines of new code, respectively.

For dynamic host-side flow offloading, we implement 1,700 lines of code on
the tile side and 1,040 lines of code on the host side. First, we modify the receive
module to measure the load of each tile and to keep track of the flows that
are being offloaded to the host. Second, we implement the tile-to-host packet
transfer interface with a raw DMA API provided by TRIO. Finally, we modify
the CPU-only version of Kargus to accept and handle the traffic passed by the
TILE platform.

6 Evaluation

Our evaluation answers three aspects of Haetae:

1. We quantify the performance improvement and overhead of mPIPE and
host-side CPU offloading. Our evaluation shows that the mPIPE offloading
improves the performance of the decode and flow management modules by up
to 128 % and the host-side CPU offloading improves the overall performance
by up to 34 %.

102 J. Nam et al.

2. Using synthetic HTTP workloads, we show the breakdown of performance
improvement for each of our three techniques and compare its overall perfor-
mance with Kargus with GPU and baseline Suricata on the TILE platform.
The result shows that Haetae achieves up to 2.4x improvements, over Kargus
and baseline Suricata.

3. Finally, we evaluate the NIDS performance using real traffic traces obtained
from the core network of one of the nation-wide cellular ISPs in South
Korea. Haetae achieves a throughput of 48.5 Gbps, which is a 92 % and
327 % improvement respectively over Kargus and baseline Suricata.

6.1 Experimental Setup

We install a TILE-Gx72 board on a machine with dual Intel E5-2690 CPUs
(octacore, 2.90 GHz, 20 MB L3 cache) with 32 GB of RAM. We run Haetae
on the TILE platform and CPU-based Kargus on the host side. Each NIDS is
configured with 2,435 HTTP rules from the Snort 2.9.2.1 ruleset. For packet
generator, we employ two machines that individually have dual Intel X5680
CPUs (hexacore, 3.33 GHz, 12 MB L3 cache) and dual-port 10 Gbps Intel NICs
with the 82599 chipset. Our packet generator is based on PSIO [20] that can
transmit packets at line rate (40 Gbps each) regardless of packet size. For real
traffic evaluation, we replay 65 GB of packet traces obtained from one of the
largest cellular ISPs in South Korea [35]. We take the Ethernet overhead (such
as preamble (8B), interframe gap (12B), and checksum (4B)) into consideration
when we calculate a throughput.

6.2 Computation Offloading Overhead

This section quantifies the performance benefit and overhead of mPIPE and
TRIO offloading.

0

10

20

30

40

50

60

70

80

64 128 256 512

tuphguorh
T

(
spb

G
)

Packet size (Bytes)

Baseline w/ decoding and hash computations

Fig. 6. Throughputs of the decoding and flow management modules with mPIPE
offloading. The throughputs are line rate (80 Gbps) for 1024 and 1514B packets.

Haetae: Scaling the Performance of Network Intrusion Detection 103

MPIPE Offloading Overhead. We first verify whether offloaded computa-
tions adversely affect mPIPE’s packet I/O throughput. For this, we disable all
NIDS modules other than the receive module, and compare the packet acquisi-
tion throughputs with and without mPIPE computation offloading. We generate
TCP packets of varying size from 64 to 1514 bytes and measure the through-
put for each packet size. Our result shows that even with mPIPE computation
offloading packet I/O achieves line rates (80 Gbps) regardless of packet size.
This confirms that the offloaded computations are within the cycle budget of
the mPIPE processors, and offloading does not adversely affect the packet I/O
performance.

We then evaluate the performance improvement achieved by mPIPE offload-
ing. Figure 6 compares the performances with and without offloading. To focus
on the performance improvement by packet reception and flow management,
we enable the receive, decode, and flow management modules and disable other
modules (e.g., stream and detect modules) for the experiments.

The mPIPE offloading shows 15 to 128 % improvement over baseline Suricata
depending on the packet size. Because mPIPE offloading alleviates per-packet
overhead, improvement with small packets is more noticeable than with large
packets. In sum, the results show that computation offloading to mPIPE brings
significant performance benefits in the NIDS subtasks.

TRIO Offloading Overhead. We now measure TRIO’s throughput in send-
ing and receiving packets over the PCIe interface. Note this corresponds to the
maximum performance improvement gain achievable using host-side flow offload-
ing. We compare the throughputs of our optimized TRIO module and the exist-
ing one. Figure 7(a) shows the throughputs by varying packet sizes. The original
TRIO module cannot achieve more than 5.7 Gbps of throughput because it first
copies data into its buffer to send data across the PCIe bus. Such additional mem-
ory operations (i.e., memcpy()) significantly decrease the throughputs. Our opti-
mized TRIO is up to 28 times faster. The relative improvement increases as the
packet size increases because the overhead of DMA operation is amortized. The
throughput saturates at 29 Gbps over for packets larger than 512B, which is com-
parable to the theoretical peak throughput of 32 Gbps for an 8-lane PCIe-v2 inter-
face. Note that the raw channel rate of a PCIe-v2 lane is 5 Gbps, and the use of
the 8B/10B encoding scheme limits the peak effective bandwidth to 4 Gbps per
lane. Figure 7 (b) shows end-to-end throughputs of Haetae with the CPU-side flow
offloading by varying packet size. By exploiting both the TILEprocessors and host-
side CPUs, we improve the overall NIDS performance by 18 Gbps, from 61 to 79.3
Gbps, for 1514B packets. While the overall performance is improved, we notice
that the TILE-side performance degrades by 9 Gbps (to 52 Gbps in Fig. 7(b)) when
TRIO offloading is used. This is because extra processing cycles are spent on PCIe
transactions for packet transfers. We also note that the improvement with larger
packets is more significant. This is because the PCIe overhead is relatively high for
small-sized packets and the CPU-side IDS throughput with small packets is much
lower compared to its peak throughput obtained for large packets. Despite the fact,

104 J. Nam et al.

the flow offloading improves the performance by 79 % for 64B packets. Given that
the average packet size in real traffic is much larger than 100B [35], we believe that
the actual performance improvement would be more significant in practice.

0

5

10

15

20

25

30

64 128 256 512 1024 1514

)spb
G(tuphguorht

O/I

Packet size (Bytes)

Original Optimized

0

10

20

30

40

50

60

70

80

64 128 256 512 1024 1514
T

hr
ou

gh
pu

t (
G

bp
s)

Packet size (Bytes)

Tile Host

Fig. 7. TRIO performance benchmarks: (a) TRIO throughputs with and without our
optimizations, (b) Throughputs with flow offloading

6.3 Overall NIDS Performance

Figure 8 shows the performance breakdown of the three key techniques under
synthetic HTTP traffic. The overall performance ranges from 16 to 79 Gbps
depending on the packet size. mPIPE offloading and metadata reduction achieve
33 % (1514B packets) to 88 % (64B packets) improvements and CPU-side flow
offloading achieves 32 % additional improvement on average. Through the results,
we find that reducing the per-packet operations significantly improves the overall
NIDS performance, and we gain noticeable performance benefits by utilizing the
host resources.

Figure 9(a) shows the performances of Haetae compared to other systems
under the synthetic HTTP traffic. We compare with the baseline Suricata, cus-
tomized for Tilera TILE-Gx processors, and Kargus with two NVIDIA GTX580
GPUs. In comparison with baseline Suricata, Haetae shows 1.7x to 2.4x per-
formance improvement. We also see 1.8x to 2.4x improvement over Kargus in
throughput (except for 64B packets). The relatively high performance of Kargus
for 64B packets mainly comes from its batched packet I/O and batched func-
tion calls, which significantly reduces the overhead for small packets. In case of
Haetae, we find that batch processing in mPIPE is ineffective in packet reception
due to different hardware structure.

Here, we compare Haetae with a pipelined NIDS design in [24]. Because the
source code is not available, we resort to indirect comparison by taking the per-
formance number measured using a TILE-Gx36 processor from [24]. Since the
clock speeds of the TILE-Gx36 (1.2 GHz) and TILE-Gx72 (1.0 GHz) processors

Haetae: Scaling the Performance of Network Intrusion Detection 105

0

10

20

30

40

50

60

70

80

64 256 1024 1514

)spb
G(tuphguorh

T

Packet size (Bytes)

No optimization
Lightweight data structures
mPIPE offloading
Host offloading

Fig. 8. Breakdown of performance improvement by each technique

0

10

20

30

40

50

60

70

80

64 256 1024 1514

)spb
G(tuphgu orh

T

Packet size (Bytes)

Kargus
Suricata
Haetae w/o host offloading
Haetae w/ host offloading

0

5

10

15

20

25

30

35

40

100 200 256 512

T
hr

ou
gh

pu
t (

G
bp

s)

Packet size (Bytes)

ANCS13
Haetae w/o host offloading
Haetae w/ host offloading

Fig. 9. Performance comparison with (a) synthetic HTTP workloads, (b) the NIDS
proposed in ANCS ‘13 [24] (36 tiles)

are different, we scale down the performance numbers in the paper. For fair com-
parison, we use only 36 tiles for Haetae but increase the number of rules (7,867
rules), similar to [24]. Figure 9(b) shows the final results. While previous work
achieves 6 to 11.3 Gbps for 100 to 512B packets, Haetae without host offloading
achieves 7.4 to 20.6 Gbps for the same size, which is 1.2 to 1.8x more efficient.
Moreover, Haetae with host offloading achieves 1.7 to 3.2x improvements over
the previous work. The improvements come from two main reasons. First, unlike
pipelining, Haetae’s parallel architecture reduces load imbalance and inefficient
usage of the tiles. We observe that the performance of [24] flattens at 512B
packets, presumably due to the overheads of pipelining. Second, Haetae saves
the computation cycles by applying the mPIPE offloading and the lightweight
metadata structures.

In terms of power consumption, Haetae is much more efficient: Haetae with
host offloading (TILE-Gx72 and two Intel E5-2690 CPUs) shows 0.23 Gbps per
watt while Kargus (two Intel X5680 CPUs and two NVIDIA GTX580 GPUs)
achieves only 0.04 Gbps per watt, spending 5.8x more power than Haetae.

106 J. Nam et al.

6.4 Real Traffic Performance

We evaluate the performance with real traffic traces obtained from a 10 Gbps
LTE backbone link at one of the largest mobile ISPs in South Korea. We remove
unterminated flows from the real traffic traces and shape them to increase the
overall transmission rate (up to 53 Gbps). The real traffic trace files are first
loaded into RAM before packets are replayed. The files take up 65 GB of physical
memory (2M TCP flows, 89M packets). To increase the replay time, we replay
the files 10 times repeatedly. Like the previous measurements, we use the same
ruleset (2,435 HTTP rules) as well.

Table 1 shows the throughputs of Haetae and other NIDSes. With the real
traces, Haetae is able to analyze 4.2x and 1.9x more packets than Baseline
Suricata and Karugs respectively. While Haetae achieves up to 79.3 Gbps with
the synthetic workload, the throughput with the real workload decreases due to
two major reasons. First, the modules related to flows are fully activated. Unlike
the synthetic workload, the real workload has actual flows. The flow management
module needs to keep updating flow states and the stream module also needs to
reassemble flow streams. Thus, these modules consume much more cycles with
the real workload than with the synthetic workload. Second, while the synthetic
workload consists of packets of the same size, the real traffic has various data
and control packets of different sizes. The average packet size of the real traffic
traces is 780 bytes, and the throughput is 16 % lower than that of 512B packets
in the synthetic workload.

Table 1. Performance comparison with the real traffic

IDS Baseline Suricata Kargus Haetae

Throughput 11.6 Gbps 25.2 Gbps 48.5 Gbps

7 Related Work

We briefly discuss related works. We categorize the previous NIDS works into
three groups by their hardware platforms: dedicated-hardware, general-purpose
multi-core CPU, and many-core processors.

NIDS on Dedicated-hardware: Many works have attempted to scale the
performance of pattern matching with dedicated computing hardware, such as
FPGA, ASIC, TCAM, and network processors. Barker et al. implement the
Knuth-Morris-Pratt string matching algorithm on an FPGA [18]. Mitra et al.
develops a compiler that converts Perl-compatible regular expression (PCRE)
rules into VHDL code to accelerate the Snort NIDS [27]. Their VHDL code
running on an FPGA achieves 12.9 Gbps of PCRE matching performance.
Tan et al. implement the Aho-Corasick algorithm on an ASIC [32]. Yu et al.

Haetae: Scaling the Performance of Network Intrusion Detection 107

employ TCAMs for string matching [36] while Meiners et al. optimize regular
expression matching with TCAMs [26]. While these approaches ensure high per-
formance, a long development cycle and a lack of flexibility limit its applicability.

NIDS on Multi-core CPU: Snort [29] is one of the most popular software
NIDSes that run on commodity servers. It is initially single-threaded, but more
recent versions like SnortSP [12] and Para-Snort [19] support multi-threading to
exploit the parallelism of multi-core CPU. Suricata [14] has the similar architec-
ture as Snort and it allows multiple worker threads to perform parallel pattern
matching on multi-core CPU.

Most of multi-threaded NIDSes adopt pipelining as their parallel execution
model: they separate the packet receiving and pattern matching modules to
a different set of threads affinitized to run on different CPU cores so that the
incoming packets have to traverse these threads for analysis. As discussed earlier,
however, pipelining often suffers from load imbalance among the cores as well as
inefficient CPU cache usage.

One reason for the prevalence of pipelining in early versions of multi-threaded
software NIDSes is that popular packet capture libraries like pcap [10] and net-
work cards at that time did not support multiple RX queues. For high perfor-
mance packet acquisition, a CPU core had to be dedicated to packet capture
while other CPU cores were employed for parallel pattern matching. However,
recent development of multi-queue NICs and multi-core packet I/O libraries such
as PF RING [11], PSIO [20], netmap [28] allows even distribution of incoming
packets to multiple CPU cores, which makes it much easier to run an indepen-
dent NIDS engine on each core. Haetae takes the latter approach, benefiting
from the mPIPE packet distribution module while it avoids the inefficiencies
from pipelining.

NIDS on Many-core Processors: Many-core GPUs have recently been
employed for parallel pattern matching. Gnort [33] is the seminal work that accel-
erates multi-string and regular expression pattern matching using GPUs. Smith
et al. confirm the benefit of the SIMD architecture for pattern matching, and
compare the performance of deterministic finite automata (DFA) and extended
finite automata (XFA) [30] on G80 [31]. Huang et al. develop the Wu-Manber
algorithm for GPU, which outperforms the CPU version by two times [22]. More
recently, Snort-based NIDSes like MIDeA [34] and Kargus [23] demonstrate that
the performance of software engines can be significantly improved by hybrid
usage of multi-core CPU and many-core GPU. For example, Kargus accepts
incoming packets at 40 Gbps with PSIO [20], a high-performance packet capture
library that exploits multiple CPU cores. It also offloads the Aho-Corasick and
PCRE pattern matching to two NVIDIA GPUs while it performs function call
batching and NUMA-aware packet processing. With these optimizations, Kargus
achieves an NIDS throughput over 30 Gbps on a single commodity server.

Jiang et al. have proposed a Suricata-based NIDS on a TILE-Gx36 plat-
form with 36 tiles [24]. While their hardware platform is very similar to ours,
their NIDS architecture is completely different from Haetae. Their system adopts
pipelining from Suricata and mostly focuses on optimal partitioning of tiles for

108 J. Nam et al.

tasks. In contrast, Haetae adopts per-tile NIDS engine and focuses on reduc-
ing per-packet operations and offloading flows to host machine. We find that
our design choices provide performance benefits over their system: 20 to 80 %
performance improvement in a similar setting.

8 Conclusion

In this paper, we have presented Haetae, a highly scalable network intrusion
detection system on the Tilera TILE-Gx72 many-core processor. To exploit high
core scalability, Haetae adopts the shared-nothing, parallel execution architec-
ture which simplifies overall NIDS task processing. Also, Haetae offloads heavy
per-packet computations to programmable network cards and reduces the packet
metadata access overhead by carefully re-designing the structure. Finally, Haetae
benefits from dynamic CPU-side flow offloading to exploit all processing power
in a given system. We find that our design choices provide a significant per-
formance improvement over existing state-of-the-art NIDSes with great power
efficiency. We believe that many-core processors serve as a promising platform
for high-performance NIDS and our design principles can be easily adopted to
other programmable NICs and many-core processors as well.

Acknowledgments. We thank anonymous reviewers of RAID 2015 for their insight-
ful comments on our paper. This research was supported in part by SK Telecom
[G01130271, Research on IDS/IPS with many core NICs], and by the ICT R&D pro-
grams of MSIP/IITP, Republic of Korea [14-911-05-001, Development of an NFV-
inspired networked switch and an operating system for multi-middlebox services],
[R0190-15-2012, High Performance Big Data Analytics Platform Performance Acceler-
ation Technologies Development].

References

1. A hash function for hash table lookup. http://www.burtleburtle.net/bob/hash/
doobs.html

2. AMD: OpenCL Zone. http://developer.amd.com/tools-and-sdks/
3. AMD Opteron Processor Solutions. http://products.amd.com/en-gb/opteroncpu

result.aspx
4. Check Point IP Appliances. http://www.checkfirewalls.com/IP-Overview.asp
5. EZchip TILEncore-Gx72 Intelligent Application Adapter. http://tilera.com/

products/?ezchip=588&spage=606
6. Intel Data Direct I/O Technology. http://www.intel.com/content/www/us/en/io/

direct-data-i-o.html
7. Intel DPDK. http://dpdk.org/
8. Kalray MPPA 256 Many-core processors. http://www.kalrayinc.com/kalray/

products/#processors
9. NVIDIA: What is GPU Computing? http://www.nvidia.com/object/what-is-gpu-

computing.html
10. PCAP. http://www.tcpdump.org/pcap.html

http://www.burtleburtle.net/bob/hash/doobs.html
http://www.burtleburtle.net/bob/hash/doobs.html
http://developer.amd.com/tools-and-sdks/
http://products.amd.com/en-gb/opteroncpuresult.aspx
http://products.amd.com/en-gb/opteroncpuresult.aspx
http://www.checkfirewalls.com/IP-Overview.asp
http://tilera.com/products/?ezchip=588&spage=606
http://tilera.com/products/?ezchip=588&spage=606
http://www.intel.com/content/www/us/en/io/direct-data-i-o.html
http://www.intel.com/content/www/us/en/io/direct-data-i-o.html
http://dpdk.org/
http://www.kalrayinc.com/kalray/products/#processors
http://www.kalrayinc.com/kalray/products/#processors
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.tcpdump.org/pcap.html

Haetae: Scaling the Performance of Network Intrusion Detection 109

11. PF RING. http://www.ntop.org/products/pf ring
12. SnortSP (Security Platform). http://blog.snort.org/2014/12/introducing-snort-30.

html
13. Sourcefire 3D Sensors Series. http://www.ipsworks.com/3D-Sensors-Series.asp
14. Suricata Open Source IDS/IPS/NSM engine. http://suricata-ids.org/
15. The Intel Xeon Processor E7 v2 Family. http://www.intel.com/content/www/us/

en/processors/xeon/xeon-processor-e7-family.html
16. TILE-Gx Processor Family. http://tilera.com/products/?ezchip=585&spage=614
17. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.

Commun. ACM 18(6), 333–340 (1975)
18. Baker, Z.K., Prasanna, V.K.: Time and area efficient pattern matching on

FPGAs. In: Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 223–232. ACM (2004)

19. Chen, X., Wu, Y., Xu, L., Xue, Y., Li, J.: Para-snort: A multi-thread snort on
multi-core ia platform. In: Proceedings of the Parallel and Distributed Computing
and Systems (PDCS) (2009)

20. Han, S., Jang, K., Park, K., Moon, S.: Packetshader: a gpu-accelerated software
router, vol. 41, pp. 195–206 (2011)

21. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: Evasion, traffic
normalization, and end-to-end protocol semantics. In: USENIX Security Sympo-
sium, pp. 115–131 (2001)

22. Huang, N.F., Hung, H.W., Lai, S.H., Chu, Y.M., Tsai, W.Y.: A GPU-based
multiple-pattern matching algorithm for network intrusion detection systems. In:
Proceedings of the International Conference on Advanced Information Networking
and Applications - Workshops (AINAW), pp. 62–67. IEEE (2008)

23. Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.: Kar-
gus: a highly-scalable software-based intrusion detection system. In: Proceedings
of the ACM Conference on Computer and Communications Security (CCS), pp.
317–328 (2012)

24. Jiang, H., Zhang, G., Xie, G., Salamatian, K., Mathy, L.: Scalable high-
performance parallel design for network intrusion detection systems on many-core
processors. In: Proceedings of the ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS). IEEE Press (2013)

25. Kuon, I., Tessier, R., Rose, J.: FPGA architecture: Survey and challenges. In:
Foundations and Trends in Electronic Design Automation, vol. 2, pp. 135–253.
Now Publishers Inc. (2008)

26. Meiners, C.R., Patel, J., Norige, E., Torng, E., Liu, A.X.: Fast regular expres-
sion matching using small TCAMs for network intrusion detection and prevention
systems. In: Proceedings of the 19th USENIX conference on Security, pp. 8–8.
USENIX Association (2010)

27. Mitra, A., Najjar, W., Bhuyan, L.: Compiling PCRE to FPGA for accelerating
Snort IDS. In: Proceedings of the ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (ANCS), pp. 127–136. ACM (2007)

28. Rizzo, L.: netmap: a novel framework for fast packet i/o. In: USENIX Annual
Technical Conference. pp. 101–112 (2012)

29. Roesch, M., et al.: Snort - lightweight intrusion detection for networks. In: Pro-
ceedings of the USENIX Systems Administration Conference (LISA) (1999)

30. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the big bang: fast and scalable
deep packet inspection with extended finite automata. ACM SIGCOMM Comput.
Commun. Rev. 38, 207–218 (2008)

http://www.ntop.org/products/pf_ring
http://blog.snort.org/2014/12/introducing-snort-30.html
http://blog.snort.org/2014/12/introducing-snort-30.html
http://www.ipsworks.com/3D-Sensors-Series.asp
http://suricata-ids.org/
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://tilera.com/products/?ezchip=585&spage=614

110 J. Nam et al.

31. Smith, R., Goyal, N., Ormont, J., Sankaralingam, K., Estan, C.: Evaluating gpus
for network packet signature matching. In: Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS) (2009)

32. Tan, L., Sherwood, T.: A high throughput string matching architecture for intru-
sion detection and prevention. In: ACM SIGARCH Computer Architecture News,
vol. 33, pp. 112–122. IEEE Computer Society (2005)

33. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: high performance network intrusion detection using graphics processors. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 116–134. Springer, Heidelberg (2008)

34. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Midea: a multi-parallel intrusion
detection architecture. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pp. 297–308 (2011)

35. Woo, S., Jeong, E., Park, S., Lee, J., Ihm, S., Park, K.: Comparison of caching
strategies in modern cellular backhaul networks. In:Proceeding of the Annual Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys), pp.
319–332. ACM (2013)

36. Yu, F., Katz, R.H., Lakshman, T.V.: Gigabit rate packet pattern-matching using
tcam. In: Proceedings of the IEEE International Conference on Network Proto-
cols(ICNP), pp. 174–183. IEEE (2004)

Demystifying the IP Blackspace

Quentin Jacquemart1(B), Pierre-Antoine Vervier2, Guillaume Urvoy-Keller3,
and Ernst Biersack1

1 Eurecom, Sophia Antipolis, France
quentin.jacquemart@eurecom.fr, erbi@e-biersack.eu

2 Symantec Research Labs, Sophia Antipolis, France
Pierre-Antoine Vervier@symantec.com

3 University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
06900 Sophia Antipolis, France

urvoy@unice.fr

Abstract. A small part of the IPv4 address space has still not been
assigned for use to any organization. However, some of this IP space
is announced through BGP, and is, therefore, globally reachable. These
prefixes which are a subset of the bogon prefixes, constitute what we call
the blackspace.It is generally admitted that the blackspace stands to be
abused by anybody who wishes to carry out borderline and/or illegal
activities without being traced.

The contribution of this paper is twofold. First, we propose a novel
methodology to accurately identify the IP blackspace. Based on data
collected over a period of seven months, we study the routing-level char-
acteristics of these networks and identify some benign reasons why these
networks are announced on the Internet. Second, we focus on the security
threat associated with these networks by looking at their application-
level footprint. We identify live IP addresses and leverage them to fin-
gerprint services running in these networks. Using this data we uncover
a large amount of spam and scam activities. Finally, we present a case
study of confirmed fraudulent routing of IP blackspace.

1 Introduction

The global BGP (Boder Gateway Protocol) routing table now contains over 600 k
distinct IPv4 prefixes. A few of these prefixes should not be globally announced
(such as the private IP space) and are collectively referred to as bogon prefixes.
A subset of bogon prefixes, which we call the blackspace, is composed only of
prefixes that have not been assigned for use to any organization.

These unallocated, yet globally announced and reachable blackspace pre-
fixes traditionally hold a bad reputation. On top of uselessly cluttering up the
global routing table, there have been reports of DDoS (Distributed Denial of
Service) attacks originated from blackspace address blocks [19]. Spammers are
also believed to abuse the blackspace in order to stealthily announce and abuse
routes [8]. By extension, it is admitted that the blackspace stands to be abused
by anybody who wishes to carry out borderline and/or illegal activities without
being traced.
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 111–132, 2015.
DOI: 10.1007/978-3-319-26362-5 6

112 Q. Jacquemart et al.

Because it is unallocated, hijacking a blackspace prefix is more likely to
go unnoticed. Traditional hijacking detection tools, such as Argus [16], focus
on “regular” prefix hijackings, i.e. situations in which the hijacked prefix is
announced by the attacker alongside the owner’s legitimate announcement. In
the case of blackspace prefixes, there is no rightful owner, and thus no legitimate
announcement that can be used to find an anomaly. Consequently, hijacking
blackspace prefixes is out of the detection scope of state-of-the-art monitoring
tools. Hijacking a blackspace prefix is also different from hijacking a dormant
prefix, as analyzed in [22]. Dormant prefixes have been handed out for active use
to organizations, but are globally unannounced; whereas blackspace prefixes are
unallocated, and should not be globally announced.

Therefore, it is recommended to filter out bogons (including the blackspace),
so as to minimize the window of opportunity of potential abusers. Unfortu-
nately, the blackspace constantly varies in size and shape, according to new pre-
fix assignments and prefix returns that are carried out daily by different Internet
actors. Filtering out bogons is therefore inconvenient and tricky. In order to auto-
mate the process as much as possible, Team Cymru provides multiple lists with
different levels of granularity that can be included directly in a BGP router’s
configuration [18].

This paper focuses on the study of blackspace prefixes and aims to clarify
what the blackspace contains. A partly similar study, which encompassed all
bogon prefixes [8], was carried out over 10 years ago. The formal reporting of
malicious events carried out from the blackspace, [19], is even older. Back then,
the IPv4 landscape was much different from today’s, and the results provided
by these works are not applicable anymore in today’s Internet.

We start by detailing the method that we use to isolate the blackspace pre-
fixes from the BGP routing table. We then provide a thorough study of the
blackspace networks on two different levels. First, we look at the information we
extract from the BGP control plane and study the size of the blackspace. We then
study the persistence and change in the blackspace through time. We character-
ize the origin ASes (Autonomous Systems) that actively announce blackspace
by using semantic information (e.g. WHOIS records). Second, we look at the
data plane and focus exclusively on the security threat associated with the
blackspace prefixes. In order to do so, we actively seek live IP addresses and
extract the domain name for these machines. We check the websites running in
the blackspace, analyze their content, and check if their URLs are known to be
malicious. We use an IP blacklist to locate hosts that are associated with adware,
scam, phishing, and other malicious activities. Finally, we check for spamming
activities and show how some spammers skillfully abuse the unallocated IP space
in order to remain anonymous.

This paper is organized in the following way. Section 2 details the method
and the datasets we use in order to locate the blackspace inside the BGP rout-
ing table. Section 3 details our analysis results: Sect. 3.1 studies the size and
variation of the blackspace; Sect. 3.2 details the BGP topology characteristics
of the blackspace prefixes; Sect. 3.3 details the active measurements we do on
blackspace networks, as well as a detailed threat analysis. Section 4 discusses

Demystifying the IP Blackspace 113

the shortcomings of our approach. Section 5 provides a summary of the existing
work and this domain, and how our efforts differ, and improve the current state-
of-the-art. Finally, Sect. 6 summarizes our findings and provides a few ways to
improve our system.

2 Isolating the Blackspace

In this Section, we detail how we isolate the blackspace prefixes within the global
BGP routing table by using a combination of distinct datasets that provide
information about IP assignments. This step is necessary because there is no
information on how the current bogon list [18] is populated. We show later, in
Sect. 5, that our methodology for identifying the IP blackspace is more accurate
and finer grained than previous efforts.

2.1 IP Space Assignation Hierarchy

To better understand our methodology, it is perhaps best to first briefly mention
how the IP address space is divided into multiple blocks by distinct institutions
before being assigned to end users, such as ISPs, corporations, or academic insti-
tutions. First, the IANA (Internet Assigned Numbers Authority) is in charge of
distributing /8 prefixes to RIRs (Regional Internet Registries). There are five
RIRs, each responsible for a different geographical area. In turn, RIRs allocate
IP address space to LIRs (Local Internet Registries), such as ISPs, large corpora-
tions, academic institutions, etc. LIRs enforce their RIR’s policies and distribute
IP address blocks at the local level, i.e. to end users [1,14].

2.2 Definitions

Bogon prefixes have traditionally been loosely defined as any IP prefix in the
BGP routing table that should not be globally reachable. More precisely, fol-
lowing the definitions of [18], a prefix is a bogon if any of the three following
conditions is true: (i) it is a martian prefix, i.e. if it is a prefix that was reserved
for special use by an RFC, such as the private IP address space; (ii) the prefix
belongs to a block that was not assigned to any RIR by the IANA; (iii) the prefix
belongs to a block that was not assigned by a RIR to a LIR, or to an end user.

We define the blackspace prefixes as the set of bogon prefixes that are not
martians and that are announced in BGP. In other words, it is the set of BGP-
announced prefixes that have not been assigned for use – either because it still
belongs to the IANA pool, or because a RIR has not assigned it to an ISP or
an end user. We explicitly remove martian prefixes because they are most likely
the result of a local route leak caused by a misconfiguration [8]. Moreover, since
these prefixes are internally routed in a lot of networks, we are unlikely to reach
martian-originating networks from our own, rendering any standard network
diagnostics utility such as ping or traceroute pointless.

114 Q. Jacquemart et al.

2.3 Internet Routing Registries

The IRRs (Internet Routing Registries) are a set of distributed databases main-
tained by the five RIRs where network operators can provide information regard-
ing their network on a voluntary basis. In particular, the inetnum objects contain
information regarding IP address space assignment [2]. Consequently, the IRR
databases sound like the ideal starting point to isolate the IP blackspace. We
need to access the database of each RIR, and extract the IP ranges mentioned in
inetnum objects. We then have to check the prefixes announced in BGP against
the ones we found in the IRRs, and keep those that do not match.

Unfortunately, things are not quite that simple. Like previously stated, pro-
viding information in the IRR databases is in no way mandatory, and even
though it is considered as a good practice for LIRs to maintain their allocation
information up to date, they are in no way required to do so. Additionally (and
somehow consequently), the IRR databases are manually updated, and thus are
plagued with typical human errors, such as typos. For example, some inetnum
objects end their network on a .225 IP address, where the right value would be
255; some objects explicitly discard their net address, and/or their broadcast
address, etc. Due to these reasons, we cannot expect to have an exact mapping
between the BGP prefixes and the IRR prefixes. As a result, if we cannot match a
BGP prefix to an IRR prefix, we take into consideration inetnum objects that are
within the BGP prefix (i.e. inetnum objects that are more specific than the BGP
prefix). If over 95 % of the address space of the BGP prefix is covered by more
specific IRR prefixes, we consider the BGP prefix has having been assigned, and
that providing a matching IRR entry was overlooked. Our reasoning is that each
customer of LIRs (which may be other ISPs) potentially wishes to update the
IRR database, if only to update the management information of their network,
such as technical and administrative contact details.

2.4 RIR Statistics Files

Every day, each RIR publishes a report – sometimes known as the delegation
report – on the current status of the use they make of resources they have been
allocated, including IP address space [3]. This report breaks down each RIR’s
IP address pool into four distinct states: allocated, assigned, available,
and reserved. The first two states, allocated and assigned, are similar in
the fact that they both have been marked as usable by someone by the RIR,
i.e. these addresses can be announced. The difference is that allocated space
ought to be used by LIRs for suballocation, whereas assigned space should not
– i.e. it should be used directly by the LIR or end user. As the name suggests, the
available state contains addresses that have not been allocated or assigned
to any entity. Finally, the reserved state is somehow an intermediate between
the other states: it has not been allocated (or assigned) to anybody, but is
also not available for such purposes. For example, these addresses might be
reserved for the growth of a LIR, returns that have not been cleared yet, or
experimental space [3]. In this classification, the blackspace is shared between

Demystifying the IP Blackspace 115

reserved and available states: in both cases there should not be any public
BGP announcement for these addresses.

2.5 Blackspace Computation Process

Our BGP dataset is built on the data provided by the RIPE RIS collectors [15].
We daily fetch the routing table of each of the 13 active, geographically diverse
routers, and create a list of all globally reachable routes. In the same time, we
daily extract all inetnum objects from each IRR database, and we compare these
two datasets as described in Sect. 2.3. We then remove from the remaining BGP
prefixes the parts for which there exists an IRR entry. For illustrative purposes,
let’s consider (a real-world case) where a /21 prefix is announced in BGP, and
where only one of the /22 more specific prefixes has an inetnum entry. We
remove the /22 that is in the IRR from the blackspace, leaving only the other
/22 in it. At this point, there is a one-to-n relationship between the prefixes in
the blackspace and the prefixes as announced in BGP: a single BGP-announced
prefix can result in multiple entries in the blackspace once the registered parts
have been removed.

We further filter the results by discarding prefixes that are marked as
assigned or allocated by RIRs in their statistics files. Once more, there are
cases in which the remaining prefixes are in multiple states wrt. the statistics
files states, e.g. the IP space is allocated and reserved. In this situation, we
only keep the part of address space that is either reserved or available.

It is noteworthy that, although using both the IRRs and the statistics files
might appear redundant, there are documented inconsistencies between the two
distinct datasets [10]. Because we aim at investigating the blackspace, it is essen-
tial to use these multiple sources in order to circumvent the limitations inherent
to each dataset and to focus exclusively on real blackspace prefixes so as to avoid
introducing bias in our results.

3 Blackspace Analysis

In this Section, we study the blackspace networks over a period of seven months,
between September 2014 and March 2015. In Sects. 3.1 and 3.2, we consider the
routing-level characteristics of the blackspace networks, and identify some pat-
terns for legitimate blackspace announcements. Then, in Sect. 3.3, we seek to
determine the security threat posed by the blackspace networks by looking at the
application-level services running in these networks, and by checking whether they
were involved in some malicious activities like spamming or scam website hosting.
Finally we provide a case study of a confirmed case of cybercriminals who carried
out nefarious activities such as spamming by abusing available IP space.

3.1 Prevalence and Persistence

In this Section, we focus on a few essential aspects of the blackspace by looking
at the size, temporal characteristics, and variation of the blackspace. In order to

116 Q. Jacquemart et al.

observe those, we computed the blackspace once per day between September 1st,
2014 and March 31, 2015 with the method detailed in Sect. 2. We compute the
blackspace once a day because the IRR databases we use and the RIR statistic
files are updated with this same frequency.

During our observation, the number of globally distinct prefixes from our
collector routers varied between 550k and 600k prefixes. These prefixes route
around 180 equivalent /8 IP addresses, i.e. the equivalent of 180 class A networks,
or 180 × 224 IP addresses. The reason we focus on the number of IP addresses
instead of the number of prefixes is that, because of the methodology explained
in Sect. 2, the relationship between a BGP prefix and a blackspace prefix is a
one-to-many. By taking an aggregated BGP prefix and removing parts of it,
we virtually inflate the number of prefixes in the blackspace, even though this
larger number of prefixes actually represents a smaller IP space, rendering the
prefix count meaningless. Figure 1 plots the daily number of IP addresses in
the blackspace, as seen from a global BGP point of view. It shows that the
blackspace size normally varies between 10−2 and 10−1 eqv. /8. It also shows
that this number is relatively stable, apart from two peaks in October 2014 and
January 2015. We investigated the reasons behind these peaks and attributed
them to the announcement of 192.0.0.0/2 between October 15, 2014 and October
20, 2014; and a series of smaller prefixes between January 24, 2015 and January
29, 2015. We classify these events as routing leaks because they meet the criterias
behind BGP misconfigurations detailed in [11]: a relative short-duration, and
low visibility. Only three collector routers received the a route for 192.0.0.0/2 in
October, and only one received the multiple prefixes in January 2015. Moreover,
in both cases, only a single Autonomous System path (AS path) was seen, and
the origin AS was a private AS number. All in all, Fig. 1 shows that the entirety
of the blackspace could generally be contained in a single prefix, whose CIDR
length would be between a /10 and a /15.

 Sep Oct Nov Dec Jan Feb Mar
10

−2

10
−1

10
0

10
1

10
2

Blackspace population

E
qv

. /
8

Fig. 1. Number of IP addresses in the blackspace, between September 1st, 2014 and
March 31, 2015.

Demystifying the IP Blackspace 117

 Sep Oct Nov Dec Jan Feb Mar
0

20

40

60

80

100
Blackspace population breakdown

P
er

ce
nt

ag
e

of
 b

la
ck

sp
ac

e

Reserved
Available

Fig. 2. Daily proportion of reserved and available address space in the blackspace,
between September 1st, 2014 and March 31, 2015.

1 10 100 209
0

0.2

0.4

0.6

0.8

1

Duration (days)

C
D

F

Duration of blackspace prefixes

All
Without leaks

Fig. 3. Persistence of blackspace prefixes.

As mentioned in Sect. 2, a prefix in the blackspace has no inetnum entry in
the IRR, and has not been allocated for use by a RIR. Figure 2 breaks down
the statuses attributed to these IP addresses. Route leaks excluded, most of the
blackspace is actually due to reserved resources, which are set aside by RIRs
because they cannot be allocated right away.

Figure 3 plots the Cumulative Distribution Function (CDF) of the number
of consecutive days a single prefix was included in the blackspace. The plain
line plots this duration for all blackspace prefixes, including the many transient
ones that were the results of the two route leaks already observed in Fig. 1.
The dashed line plots the same duration, but excludes the prefixes resulting
from these leaks. The difference between these two curves implies that a lot of
distinct prefixes were added to the blackspace due to the leak of routes. Indeed,
the plain CDF shows that most blackspace prefixes are detected during four or
five consecutive days, which is precisely the duration of the two leaks observed
in Fig. 1. On the other hand, the dotted CDF shows that 50 % of blackspace
prefixes that are not the result of these leaks are seen for at least 12 days, and
that around 28 % of them are seen during one day or less. In order to know how

118 Q. Jacquemart et al.

 Sep Oct Nov Dec Jan Feb Mar
0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

in
de

x

Daily variation of blackspace

All
Without leaks

Fig. 4. Day-to-day variation of the blackspace prefixes.

withdrawn inetnum assigned
0

20

40

60

80

100

P
er

ce
nt

ag
e

Post blackspace situation

All
Without leaks

withdrawn inetnum assigned
0

20

40

60

80

100

P
er

ce
nt

ag
e

Post blackspace situation

All
Without leaks

Fig. 5. Situation of the prefix after if left the blackspace.

much the blackspace varies daily, Fig. 4 plots the Jaccard index in-between two
successive days. We compute the Jaccard index between days d and d + 1 as
the ratio of the number of blackspace prefixes that are detected on both days,
divided by the total number of distinct blackspace prefixes detected on day d
and d+1. A Jaccard index value of 1 indicates that the computed blackspaces for
days d and d + 1 are identical. Conversely, a Jaccard index value of 0 indicates
that the computed blackspaces for days d and d + 1 are 100 % different. The
closer to 1 the value is, the more similar the two blackspaces are. Once again,
the variation is quite high when the route leaks start and finish, as shown by
the full line; but there is not a lot of daily variation otherwise (as shown by the
dashed curve).

The duration of a prefix in the blackspace (Fig. 3) as well as the variation
of the blackspace (Fig. 4) imply that some prefixes leave the blackspace. This
is possible if any of the three following conditions are met: (i) the prefix is
withdrawn from BGP; (ii) an inetnum entry is added in the IRR; (iii) the prefix is
marked as allocated or assigned by a RIR. Figure 5 plots the distribution of
each event for prefixes that exited the blackspace during our observation period.
Again, the values are plotted for all entries, and also only for entries that were

Demystifying the IP Blackspace 119

not the result of route leaks. In both situations, the most likely cause is that
the prefix has been withdrawn. The second cause is the creation of an inetnum
entry in an IRR database. If the IRR entry is more specific than the blackspace
prefix, another (more) specific prefix will be included in the blackspace instead.
Consequently, a bit less than 45 % of prefixes leave the blackspace because the
BGP announcement was withdrawn. On the other hand, the other 55 % become
allocated (in one way or another) afterwards; which implies that half of the
prefixes included in the blackspace are, potentially, used in good faith by the
announcers. However, the other half, which globally amounts to a /11 network,
does not end up as a registered network.

3.2 BGP Characterization

In the previous Section, we saw that there are many blackspace prefixes, many
of which are long-lasting. In this Section, we focus on the BGP characteristics
of blackspace prefixes. We first focus on the origin AS of the blackspace prefixes
to shed light on their uses. Where we cannot, we look at the temporal evolution
of the blackspace prefix along with its origin AS in order to better understand
the root cause.

AS numbers are assigned a status by RIRs, just like IP blocks (see Sect. 2):
either allocated, assigned, available or reserved. Figure 6 plots the daily
proportion of each AS status for ASes that originate a blackspace prefix. The plot
has been further broken down by explicitly classifying the private AS numbers
(between 64,512 and 65,535 [12]) separately from the reserved set. As can be
seen by the black/squared line private ASNs are responsible for a large number
of prefixes, but only during the two route leaks. In fact, all leaked prefixes are
originated from a private ASN. Allocated, assigned and reserved ASNs all
roughly account for a third of blackspace prefixes, and available ASNs account
for less than 10 % of those. Just like with IP blocks, reserved and available

ASNs are not allocated, and thus should not be in use. Yet, two thirds of the
blackspace prefixes are originated by these ASes.

 Sep Oct Nov Dec Jan Feb Mar
0

20

40

60

80

100
Status of originating ASes

P
er

ce
nt

ag
e Allocated

Assigned
Available
Reserved
Private

Fig. 6. Daily status of the ASNs originating a blackspace prefix.

120 Q. Jacquemart et al.

Figure 7 plots the percentage of blackspace prefixes for ASes that announce
(at least) one blackspace prefix. The plot is further subdivided by AS status, but
we excluded the private AS numbers, as they were the result of route leaks (see
Fig. 6). Here, both of the allocated and assigned statuses behave similarly,
with more than 90 % of them announcing less than 1 % of blackspace prefixes.
Less than 10 % of allocated (and around 20 % of assigned) ASes originate
more than a quarter of blackspace prefixes. On the other hand, close to 70 % of
reserved and available ASes only announce blackspace prefixes. To put this
into perspective, the (global) average number of announced prefixes by allo-

cated ASes is 229; by assigned ASes is 340; by reserved ASes is four, and
by available ASes is two. In order to find out who operates these networks,
we look at the names of the corporations behind these ASes (using [9]). We get
185 network names for allocated or assigned ASes that originate blackspace
prefixes, for which we located the corporation website using mostly popular
web search engines. We were able to resolve 178 names to mostly telephone or
cable companies and ISPs (of all sizes and shape: tier-1 to tier-3, from dial-
up to business-grade fiber providers, all around the world), hosting and cloud
providers, data centers, IT service companies, and world-wide tech companies.
Other companies operated as advertising, airlines, bank and insurances, con-
structions, courier and parcel delivery services, e-commerce, Internet exchange
points, law firms, medical companies, military contractors, and online news. We
could not resolve seven names. One was established as a company, but the web-
site did not work, one used a name too generic to be found, and for three we
could not locate any further information. The two remaining ASes appear to
have been registered by individuals in Eastern Europe who also own other ASNs
which are known to send spam – but do not originate blackspace prefixes at the
same time.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Ratio of blackspace prefixes

Percentage of blackspace prefixes

C
D

F

Allocated
Assigned
Available
Reserved

Fig. 7. Percentage of blackspace prefixes originated by ASes according to that AS’s
status.

Because the reserved and available ASes are not registered, we were not
able to find registration information for them. Instead, we looked at the BGP

Demystifying the IP Blackspace 121

topology of these prefixes, and investigated on the evolution of the blackspace
prefix through time. For 33 % of the cases where a blackspace prefix is origi-
nated from a reserved AS, the origin AS remains reserved throughout the
whole observation period. The prefixes were marked as reserved. These net-
works are usually single-homed and peer either directly with a tier-1 provider,
or with a tier-3. The other 66 % prefixes show a state transition from, or to,
reserved. In all the cases we observed, this was due to a network owner either
bringing up a new network, or decommissioning an old one. For example, half a
dozen blackspace prefixes were originated from a reserved AS for six months
through a tier-1 AS. On one day, the AS status changed to assigned and the
name matched a well-known airline. The next day, the prefixes were all given
inetnum entries in the IRR. Our interpretation is that the prefixes and ASN
were reserved for the growth of said airline, and that they started using these
resources before the paperwork had been fully processed. In another case, the
prefixes and ASN were allocated, but one day turned to reserved. By look-
ing up the company’s name, we were able to find a letter from ICANN, informing
the company that they had breached their registrar accreditation agreement by
failing to meet technical requirements, and also by failing to pay the accredita-
tion fees. The day following the date of the letter, all of that company’s resource
where changed to reserved. In some cases, there are transitions from allo-

cated, to reserved, and then back to allocated. In this situation, we believe
the situation was similar to the one of the last example, except that they cor-
rected their behaviour to meet the requirements during the grace period. In the
case of available ASes, there were only a handful of situations in which the AS
(and the announced blackspace prefix) ended up as allocated or assigned.
In these situations, it was the result of a new network being connected to the
global Internet.

In conclusion, by looking at the routing-level characteristics, we were able
to identify a set of blackspace prefixes that appear to be benign. Some pre-
fixes appear to be in the blackspace because they have just been allocated, or
because they are being phased out. Moreover, some blackspace networks are
originated by tier-1 ISPs. Consequently, these networks are unlikely to be mali-
ciously announced. All other networks need to be further analyzed in order to
assess their threat level. To carry out this analysis, the next Section will be
focusing on uncovering the application-level services running in the blackspace
and seeking for hosts associated with malicious network activities.

3.3 Data Plane and Application-Level Analysis

A. Introduction. In the previous Sections, we have explored the routing-level
characteristics of blackspace networks. We have identified a small number of
network practices leading to benign blackspace announcements. In order to be
able to assess the security risk that is posed by the remaining set of blackspace
prefixes, we need to know more about their network activities, e.g. which
application-level services are running and whether they are known to be the
source of some malicious network traffic. For this, we first need to find out live

122 Q. Jacquemart et al.

Table 1. Breakdown of application-level activities in the blackspace.

Domain-based reputation (Sect. 3.3.B) Total Domain names 556

Hostnames 1,428

Malicious Domain names 35

Hostnames 222

IP addresses 142

IP prefixes 81

Benign Domain names 5

IP-based reputation (Sect. 3.3.C) Malicious IP addresses 46

IP prefixes 28

Spam (Sect. 3.3.D) Malicious IP addresses 206,404

IP prefixes 58

SpamTracer [22] (Sect. 3.3.E) Malicious IP prefixes 82

IP addresses and domain names, and we will then look at the services that
these machines are running and check them against logs of malicious network
activities. Table 1 summarizes our findings.

In order to discover live IP addresses, we lightly probed each of the blackspace
networks once per day in February and March 2015, except for ten days between
Feb 16 and Feb 26 when our modem broke down. Using zmap [7], we sent a
TCP SYN packet to each IP address included in a blackspace prefix on ports 21
(FTP), 22 (SSH), 25 (SMTP), 80 (HTTP), 137 (NetBios), 179 (BGP), and 443
(HTTPS). We run the scan from a machine located in AS3215 (Orange), and
wait for SYN/ACK replies. Please note that the number of ports that we can scan
is limited by the bandwidth we have been allowed to use for our experiments.
The particular choice of the port number reflects what we believe to be the most
popular services running on the Internet.

Figure 8 plots the number of SYN/ACK received per day and per port from
the blackspace. There is quite a large number of web servers running in the
blackspace. We customarily get replies from between 6 k and 8 k machines on
port 80, and 2.5 k machines on port 443. Next is port 22, with around 1 k daily
SYN/ACKs. There are around 100 FTP servers, and around 50 hits on port
179, suggesting that these IP addresses are border routers. Finally, we only get
a handful of TCP replies on the NetBios port, and no reply at all on port 25.

Figure 9 plots the variation of the live IP addresses in the blackspace, which
indicates the persistence of these IP addresses. As we can see, the variation is
quite high. These results need to be put into perspective of Fig. 4 which showed
that there was a very small variation in the blackspace networks. This suggests
that the hosts inside blackspace networks are not static, but dynamically come
and go. In other words, these networks appear to be actively configured, and not
left in a ‘legacy’ state.

Demystifying the IP Blackspace 123

 Feb Mar
10

0

10
1

10
2

10
3

10
4

C
ou

nt

Daily number of live IPs

21 (FTP)
22 (SSH)
80 (HTTP)
137 (NetBIOS)
179 (BGP)
443 (HTTPS)

Fig. 8. Daily number of SYN/ACK packets received from the blackspace.

 Feb Mar
0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

in
de

x

Daily variation of live IPs

21 (FTP)
22 (SSH)
80 (HTTP)
179 (BGP)
443 (HTTPS)

Fig. 9. Day-to-day variation of live IP addresses in the blackspace.

B. Websites, URLs, and Domain Names. In the previous Section, we
located a set of highly volatile live IP addresses in the blackspace, and we saw
that we found thousands of web servers daily. In this Section, we look at the
contents of these websites and their associated URLs and domain names which
we match with a domain whitelist and blacklist. A simple way to know what’s
going on with these servers is to check the web page they serve. As a result, we
supplement our scan with a simple HTTP client that just fetches the default
page returned by the server, using the simple request GET / HTTP/1.0.

Using the returned HTTP headers, we find that over 90 % of pages inside the
blackspace are served by an Apache server; then come IIS, and Cisco IOS. Other
pages are returned by nginx and lighthttpd, various application platforms, even
including a print server. Because we get thousands of pages per day, we cannot
manually go through all of them. In order to help our analysis, we used an unsu-
pervised machine learning tool that clustered our pages based on the similarity
of their raw content. We get between 60 and 80 clusters. The most important
one contains over 4000 Apache error pages. This implies that, for the most part,
the default page of web servers located in the blackspace is an Apache error

124 Q. Jacquemart et al.

page. Other clusters include default web pages of each HTTP daemon (e.g. your
installation was successful). Websites hosted in the blackspace are usually in
small clusters containing two or three IP addresses, which we checked in order
to conclude that they represent wide variety of websites. A number of login pages
are available, either to enter a configuration interface (e.g. a router/printer con-
figuration login page), but also web applications such as Microsoft applications
(e.g. Outlook Web Access), remote desktops (e.g. Citrix), content management
systems, and other proprietary corporate software. A large airline consistently
served their default web page. We also found some SME businesses, such as
technology firms (e.g. tier-3 ISPs and local shops), a second-hand car dealer, a
law firm, and a private security company. Finally, a small number of clusters
contained online forums. From the content of the topics available on the default
page, their content varied from standard community interest (e.g. online gam-
ing), to obvious copyright infringing file sharing boards. In some rare cases, the
retrieved page contained a lot of obfuscated JavaScript code. We used wepawet
[5,25] to check it out, and it always remained benign.

We further extracted from a passive DNS database we maintain all fully qual-
ified domain names (FQDNs) that resolved to an IP address within a blackspace
IP prefix at the time the prefix was announced in BGP. We found a total 1,428
distinct FQDNs that accounted for 556 distinct domain names. We then checked
these domain names against various blacklists including Spamhaus DBL [17] and
VirusTotal [23]1 to search for scam, phishing or malware hosting activities asso-
ciated with them. We also used the Alexa top 10,000 domain names as a means
to determine whether some truly benign domains ended up being hosted on
blackspace IP address space.

The correlation yielded 35 domains deemed malicious by the queried black-
lists. These malicious domains were observed in no less than 222 different
FQDNs, which appear to have resolved to 142 distinct IP addresses in 81 dis-
tinct blackspace IP address blocks. However, five domain names were also found
in the Alexa top 10,000 ranked websites suggesting they were most probably
benign. All of these were whitelisted, and belonged to well-known web appli-
cations, airlines, and technology companies. The remaining 516 domains could
not be classified as either benign or malicious. From these observations we can
see that while some blackspace announcements seem to be related to legitimate
activities, cybercriminals also appear to leverage such IP address space when
performing nefarious activities.

C. Malicious IP Addresses. In order to locate host-level malicious activities
inside blackspace prefixes, we were able to secure a list of malicious IP addresses
from a IP-based reputation system that we maintain for operational purposes.
These IP addresses were classified as either adware, phishing, scam, and other
kinds of miscellaneous activity.

We looked for IP addresses that were included in blackspace prefixes exclu-
sively on the days during which we detected the prefix in the blackspace. In
1 VirusTotal includes more than 60 different website and domain scanning engines.

Demystifying the IP Blackspace 125

other words, we explicitly discarded any matching IP address and its covering
blackspace prefix where a match occurred outside of the blackspace period, even
if there were matches during the blackspace period. The reasoning behind this
(overly) strict matching is that we are looking for malicious activity that is the
result of an individual abusing the blackspace in order to remain hidden. Thus,
any matching malicious activity outside of the blackspace period could be argued
to be the result of a previous owner of the prefix, and not from the blackspace
itself. With these strict matches, we matched 46 malicious IP addresses in 28
distinct blackspace prefixes. Four of these IPs addresses were involved in scam
activities, and the remaining 42 others in phishing activities.

We then looked into these eight BGP prefixes to see if we could obtain more
information from the announcements. One of the BGP prefixes was reserved

and originated by an AS that was marked as available, through what appears
to be a tier-3 ISP in Thailand. Six of the other BGP prefixes were also all
reserved, and originated by registered ASes. Two of these were country-wide
ISPs, one was a television by satellite broadcaster, and one belonged to a hosting
provider. A European prefix was being announced by the AS of a Japanese
corporation, on which we were unable to find any information.

The remaining BGP prefix is 192.0.0.0/2, which we had previously classi-
fied as a route leak becaused it mached the descriptions in [11]. This prefix was
announced between October 15, 2014 and October 20, 2014. This announce-
ment resulted in an additional 2,970 prefixes in the blackspace (see Fig. 1).
Among these, 22 contain IP addresses marked as malicious, exactly during the
announcement period. More precisely, a single /24, as well as a /19, both contain
11 individual malicious IP addresses, a /22 contains five, a /20 contains two. The
remaining four IP addresses are spread across different blackspace prefixes. It is
important to stress that the matches were done exclusively on the blackspace
period. Actually, none of these prefixes were routable before or after this leak.
The route also had a low visibility: it was only seen by 3 (out of 13) RIPE RIS
collector routers; and there is only one single AS path leading to the origin. The
origin AS was 65000, a private AS number (Fig. 6), and the route was propa-
gated through one cloud services and hosting provider, and then through a tier-3
ISP in the USA. Section 4 further discusses this peculiar situation.

D. Spam Campaigns. In an effort to further characterize the footprints of
blackspace prefixes while they were announced and determine whether they pose
a security threat to the Internet, we extracted spam source IP addresses in these
prefixes that were blacklisted in Spamhaus SBL and DROP (Don’t Route Or
Peer) [17], Uceprotect [21], PSBL [13] and WPBL [24]. Furthermore, we retained
only those IP prefixes where spam activities were exclusively reported while the
prefixes were announced as blackspace to ensure that the observed activities
were not related to the previous or next status of the prefixes. We identified
a total of 206,404 distinct spam sources in 58 IP prefixes. Figure 10 shows the
BGP announcements and blacklisted spam sources related to a sample of 15 out
of 58 blackspace prefixes while they were announced as blackspace.

126 Q. Jacquemart et al.

Fig. 10. BGP announcements and blacklisted spam sources related to IP prefixes while
they were announced as blackspace. For the sake of conciseness, only 15 out of 58
prefixes that were blacklisted are depicted.

Finally, we correlated the list of blackspace IP prefixes with the output of
SpamTracer [22], a system specifically designed to identify network IP address
ranges that are hijacked by spammers to enable them to send spam while remain-
ing hidden. Relying on a combination of BGP and traceroute data collected for
networks seen originating spam and a set of specifically tailored heuristics, the
system identifies those spam networks that exhibit a routing behavior likely
indicating they were hijacked. We found that 82 IP prefixes were reported by
SpamTracer as hijacked spam networks at the same time we identified them
as being part of the blackspace.

E. Case Study. Starting from the 82 particularly suspicious blackspace prefixes
we uncovered a very interesting phenomenon that we describe in-depth here
below. Looking closely at how these 82 network prefixes were announced in
BGP revealed that they were all advertised via one AS: AS59790 “H3S Helge
Sczepanek trading as H3S medien services”. Based on this intriguing observation,
we decided to extract from all identified blackspace IP prefixes every of those

Demystifying the IP Blackspace 127

that were advertised via AS59790. Surprisingly we discovered that no less than
476 IP prefixes in total (82 of them seen originating spam by SpamTracer)
were advertised via AS59790 between October 17, 2014 and January 8, 2015
and that all of them were part of the blackspace at the time of the BGP
announcements. Furthermore, all blackspace prefixes actually correspond to IP
address space allocated by the IANA to AfriNIC (the African RIR) but not yet
allocated or assigned by AfriNIC to any organization. Looking at the AS
paths in the BGP announcements of the 476 networks

{AScollector, . . . , AS174,AS59790} (1)

{AScollector, . . . , AS174,AS59790, AS201509} (2)

reveals that AS59790 was always connected to a single upstream provider AS174
“Cogent Communications (US)”, a cross-continent tier-1 ISP. From the AS paths
we can also see that when AS59790 did not appear as the BGP origin AS (case
1) it was apparently used to provide transit to AS201509 (case 2). AS59790
“H3S Helge Sczepanek trading as H3S medien services (DE)” was assigned

on September 30, 2014 and AS201509 “Sky Capital Investments Ltd. (DE)”
was assigned on October 17, 2014, shortly before they started to be used to
announce the blackspace prefixes. Both ASes were registered in the RIPE region
to what appear to be organizations active in the finance industry in Germany.
However, we were unable to find any information regarding these organizations
through extensive web searches. The description of AS59790 and AS201509 in
the IRR reveals that they are in fact under the control of the same person. We
were unable to establish contact or to get any further information by contacting
RIPE.

In summary,

– AS59790 and AS201509 were used to announce a total of 476 blackspace
prefixes over a period of approximately three weeks;

– these ASes were never used to announced any non-blackspace prefix;
– some of the blackspace prefixes announced were used to send spam, according

to [22].

The evidence presented here above suggests that these ASes were involved in
malicious BGP announcements of IP blackspace. Moreover, a recent article from
Dyn [6] reported on similar evidence about AS59790 being involved in fraudulent
routing announcements of unallocated African IP address space. This case study
thus tends to confirm the assumption that blackspace IP prefixes are purposefully
used to source different types of malicious network traffic, such as spam, likely
in an effort to hinder traceability.

4 Discussion

In this Section, we address the shortcomings and weaknesses of our methodology.

128 Q. Jacquemart et al.

The results presented in Sect. 3 offer a granularity of one day. This can
be explained by the following reasons. First, the data sources that we use to
compute the blackspace – i.e. the IRR databases and the RIR delegated files
– are only updated once per day. Second, because we are actively probing the
blackspace networks, we are effectively limited by the capacity of our Internet
connection. In order to comfortably run this scan in its entirety (i.e. the equiv-
alent /10 blackspace on 7 ports, with the additional web crawling), we need, on
average, 17 h. As a result, we cannot do more than a single scan per day. Third,
and consequently, we use routing table dumps from RIPE RIS instead of BGP
messages. Routing table dumps are generated every 8 h and contain the entirety
of the routes known by the router. The dumps of BGP messages are generated
every 5 min and contain all the BGP messages exchanged between the collector
routers and one of its peers. With those, we would obtain a much better gran-
ularity of data, maybe even include more prefixes in the blackspace. However,
since we were mainly focusing on the accurate detection of blackspace prefixes,
and on the discovery of the network footprints that they have, as well as the
malicious activities they carry out, we think our results are still representative.
Short-lived hijacks occurring in the blackspace would not enable an attacker to
host a scam website, for example.

Our probing is done from a single machine located in AS3215 (Orange). While
this gives us plenty of control over the environment in which our experiment is
deployed, it comes at the price of a few drawbacks. First, we don’t know anything
regarding the BGP-view of the network we are connected in. In other words, we
are using BGP data from RIPE RIS as the source of our control-plane data, and
the Orange network in order to explore the connectivity. Even though Orange
is a tier-1 network, we could not find any direct peering between ‘our’ AS and
a RIPE collector. Actually, AS3215 is routed through AS5511 – better known
as OpenTransit – which contains Orange’s tier-1 infrastructure. This potentially
leads to false negative in our measurements, especially in the case low-visibility
prefixes, such as the route leak of 192.0.0.0/2 in which we detected malicious IP
addresses (Sect. 3.3.C). Would probes sent from our vantage point have reached
the originating network, or would they have been dropped because there would
be no “route to host”? The optimal way to carry out these measurements is from
a machine that runs BGP so as to assess the reachability of the destination.

At the beginning of Sect. 3, we saw two BGP events leading to a sudden and
massive increase of the blackspace size. We classified these events as route leaks
because they were only seen by a handful of RIPE collectors – three collectors
for the leak in October; one collector for the one in January – and because there
was only a single AS path between the collector(s) and the origin. However,
because we also detected malicious activities inside of them, the question of
whether these events were deliberate attacks disguised as route leaks needs to
be raised. Unfortunately, we cannot provide a definite answer. But a recent
report underlined highly localised BGP hijacks, engineered to have a very low
footprint, and to remain invisible from the point of views of route collectors [20].

Demystifying the IP Blackspace 129

5 Related Work

The oldest report of malicious activities carried out from the bogon address space
dates back to 2001 with [19], where the author provided an analysis of the attacks
carried out against an active web site. A large proportion of attacks originated
from bogon addresses: 13 % from within the bogons of classes A, B, and C; 53 %
from classes D (multicast) and E (future use). All in all, by properly filtering
incoming traffic at a border router, 66 % of attacks could easily be mitigated.

As a result, Team Cymru set up the bogon reference project [18], which
precisely defines the different categories of bogon prefixes. We used this as the
basis of our definitions in Sect. 2. Additionally, multiple lists of bogon prefixes
are offered to network owners who wish to filter bogons out of their networks,
which can be retrieved in many convenient ways and formats. These lists vary
according to the desired level of precision. The bogon lists contain the prefixes
still reserved in the IANA pool, as well as prefixes reserved by RFCs for specific
use cases. The full bogon list supplements these prefixes with prefixes that have
been allocated to RIRs by the IANA, but not by RIRs to ISPs or end users.
These lists are dynamic, and network operators that use them should update
their filters accordingly. Unfortunately, the methodology used to populate these
lists is not disclosed. By comparing the full bogon list with our blackspace list, we
were able to identify key differences. First, the full bogon list does not make use
of the IRRs, as evidenced by many prefixes for which an inetnum object could
be found. Second, the full bogon list appears to implement some heuristics based
on the status of the prefixes. For example, we noticed that prefixes whose status
transitioned from either allocated or assigned to reserved were not listed
in the full bogon list. We also noticed that some prefixes that were reserved for
a long time were not listed, although it might be that the transition happened
before our data was gathered. We ignore the motivations behind these heuristics.
However, the comparison of our blackspace list with the full bogon list on the
same day shows that using the IRR databases in addition to the RIR delegation
files improves the accuracy of the list.

In 2004, Feamster et al. [8] provided the first formal study of bogon prefixes
by looking into the prevalence and persistence of bogon announcements, as well
as the origin ASes leaking these prefixes. However, the authors did not explicitly
focus on the blackspace, but rather on the equivalent of the (simple) bogon list.
Consequently, 70 % of the analyzed events actually involve the prefixes reserved
for the private IP space. Only 40 % of the events lasted longer than a day. In our
analysis, this value is of 75 % (Fig. 3). The rest of the study cannot be directly
mapped onto our results, even though the beginning of Sect. 3 provides results
to similar questions. However, with the authors’ methodology, there is a one-to-
one mapping between the BGP routing table and the bogon analysis. With this,
they can focus on the number of bogon prefixes announced by an AS. In our
case, we have a one-to-n relationship between the BGP prefix and the blackspace
prefixes because we divide the BGP announcement in separate parts that may
have been assigned independently. The authors also focus on the effect of bogon
filtering and show that network operators who filter out bogon prefixes usually

130 Q. Jacquemart et al.

do not update their filters in timely fashion, resulting in reachability issues and
potential denial of service. It is also worth noting that the bogon prefixes used
for the study were composed of the 78 /8 prefixes that still belonged to the
IANA pool back then (excluding class E). Today, the IANA pool only consists
of one single /8 prefix, 0.0.0.0/8 (also excluding 240.0.0.0/4). As a result, the IP
address space inside which our studies have been conducted is much different.

6 Conclusion

In this paper, we focused on the IP blackspace, which is composed of the set of
prefixes that are globally announced through BGP but have not been assigned
for use to any entity. We presented a thorough methodology to compute the
blackspace by using a combination of data sources reflecting the current alloca-
tions of the IP space. We saw that the daily blackspace address space is equiv-
alent to a /10 prefix, and that the prefixes that compose it change over time.
We actively studied those networks from the BGP control plane point of view,
and also from the data plane point of view. While we showed that some of the
blackspace is composed of prefixes that are either being phased out of the Inter-
net or being installed, a significant part of it does not result from normal network
operations, such as assignments and decommissions. By cross-checking with var-
ious reliable security data sources, we were able to isolate malicious activities
that only occurred during a period in which the monitored prefixes were inside
the blackspace. Even by using our strict matching rules, and our limited, tar-
geted view of these networks, the amount of malicious activities is significant.
In particular, we showed through a validated case study that cybercriminals do
abuse blackspace prefixes to carry out nefarious activities while also hindering
their traceability.

Consequently, this paper confirms how important it is to precisely filter
blackspace prefixes out of BGP. Because state-of-the-art hijacking detection tools
(such as Argus [16]) do not focus on detecting this particular form of hijack, fil-
tering out routes to the blackspace is the only active counter-measure that can
be used today against blackspace hijacks. However, the shape of the blackspace
is dynamic, and previous studies [4,8] have illustrated that, when a bogon filter
has been setup, it is obsolete because it is not updated, thereby affecting the con-
nectivity towards networks that are being added to the Internet. Moreover, the
current source of bogon filtering [18] does not take into account inetnum entries
from IRR databases, thus including – and preventing access to – networks that
have been assigned to a customer.

This paper also underlines the difficulty of using a ground truth in BGP.
Even though the prefixes that we focused on all have in common the fact that
they should not even be used on the public Internet, we were able to show cases
where their use was the result of legitimate practices. As a result it is still quite
difficult to automate the estimation of the danger resulting from a particular
prefix in the blackspace.

Demystifying the IP Blackspace 131

We plan to improve on our system in the following ways. First, we plan to
define a set of reliable heuristics that would discard benign blackspace announce-
ments and only retain those that are potentially harmful, thus increasing the
quality of filters installed on routers. Second, we would like to supplement our
probing system with a traceroute infrastructure that would enable us to geo-
graphically locate the origin of these networks, and the diversity of their con-
nectivity. This would enable us to see if there are specific parts of the networks
that hijackers prefer to abuse. Third, we need to view the BGP control plane,
as well as the data plane from the same vantage point in order to make sure we
reach low visibility routes. For this, we need a set of geographically diversified
machines that run BGP – each connected to a different set of peers – and from
which we can run our measurement experiments. If this can be achieved, a bonus
point would be to make the system run in real time, by detecting and probing
networks as they come and go in the BGP routing table. Our results currently
focus on the IPv4 address space, inside of which the unallocated space is getting
smaller every day. It would be interesting to do the same measurements with
IPv6, and see how the results compare. As a final remark, note that we are able
to provide interested parties with more detailed results and to discuss future
work that can be undertaken with this dataset and infrastructure.

References

1. APNIC: Understanding address management hierarchy. http://www.apnic.net/
services/manage-resources/address-management-objectives/management-hierarchy

2. APNIC: Using Whois: Quick Beginners Guide. http://www.apnic.net/apnic-info/
whois search/using-whois/guide

3. ARIN: Extended Allocation and Assignment Report for RIRs. https://www.arin.
net/knowledge/statistics/nro extended stats format.pdf

4. Bush, R., Hiebert, J., Maennel, O., Roughan, M., Uhlig, S.: Testing the reachability
of (new) address space. In: Proceedings of the 2007 SIGCOMM Workshop on
Internet Network Management, INM 2007, pp. 236–241 (2007)

5. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: Proceedings of the World Wide Web
Conference (WWW) (2010)

6. Madory, D.: The Vast World of Fraudulent Routing, January 2015. http://research.
dyn.com/2015/01/vast-world-of-fraudulent-routing/. Accessed 5 June 2015

7. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: Proceedings of the 22nd USENIX Security Sym-
posium, August 2013

8. Feamster, N., Jung, J., Balakrishnan, H.: An empirical study of “bogon” route
advertisements. Comput. Commun. Rev. 35(1), 63–70 (2004)

9. Huston, G.: AS names. http://bgp.potaroo.net/cidr/autnums.html
10. Huston, G.: RIR Resource Allocation Data Inconsistencies. http://www.

cidr-report.org/bogons/rir-data.html
11. Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration.

SIGCOMM Comput. Commun. Rev. 32(4), 3–16 (2002)
12. Mitchell, J.: Autonomous System (AS) Reservation for Private Use. RFC 6996,

July 2013

http://www.apnic.net/services/manage-resources/address-management-objectives/management-hierarchy
http://www.apnic.net/services/manage-resources/address-management-objectives/management-hierarchy
http://www.apnic.net/apnic-info/whois_search/using-whois/guide
http://www.apnic.net/apnic-info/whois_search/using-whois/guide
https://www.arin.net/knowledge/statistics/nro_extended_stats_format.pdf
https://www.arin.net/knowledge/statistics/nro_extended_stats_format.pdf
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/
http://bgp.potaroo.net/cidr/autnums.html
http://www.cidr-report.org/bogons/rir-data.html
http://www.cidr-report.org/bogons/rir-data.html

132 Q. Jacquemart et al.

13. Passive Spam Block List. http://psbl.org/
14. RIPE NCC: FAQ: Becoming a member. https://www.ripe.net/lir-services/

member-support/info/faqs/faq-joining
15. RIPE NCC: Routing Information Service. http://www.ripe.net/ris/
16. Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the

internet with argus. In: Proceedings of the 12th ACM SIGCOMM Internet Mea-
surement Conference, IMC 2012, pp. 15–28 (2012)

17. Spamhaus. http://www.spamhaus.org/
18. Team Cymru: The Bogon Reference. http://www.team-cymru.org/bogon-

reference.html
19. Thomas, R.: 60 Days of Basic Naughtiness: Probes and Attacks Endured by

an Active Web Site. http://www.team-cymru.org/documents/60Days.ppt, March
2001

20. Toonk, A.: Recent BGP routing incidents - malicious or not. Presentation at
NANOG 63, February 2015

21. Uceprotect. http://www.uceprotect.net/
22. Vervier, P.A., Thonnard, O., Dacier, M.: Mind your blocks: on the stealthiness of

malicious BGP hijacks. In: NDSS 2015, Network and Distributed System Security
Symposium, February 2015

23. VirusTotal. https://www.virustotal.com/
24. Weighted Private Block List. http://www.wpbl.info/
25. Wepawet. http://wepawet.cs.ucsb.edu

http://psbl.org/
https://www.ripe.net/lir-services/member-support/info/faqs/faq-joining
https://www.ripe.net/lir-services/member-support/info/faqs/faq-joining
http://www.ripe.net/ris/
http://www.spamhaus.org/
http://www.team-cymru.org/bogon-reference.html
http://www.team-cymru.org/bogon-reference.html
http://www.team-cymru.org/documents/60Days.ppt
http://www.uceprotect.net/
https://www.virustotal.com/
http://www.wpbl.info/
http://wepawet.cs.ucsb.edu

Providing Dynamic Control to Passive Network
Security Monitoring

Johanna Amann1(B) and Robin Sommer1,2

1 International Computer Science Institute, Berkeley, USA
2 Lawrence Berkeley National Laboratory, Berkeley, USA

{johanna,robin}@icir.org

Abstract. Passive network intrusion detection systems detect a wide
range of attacks, yet by themselves lack the capability to actively respond
to what they find. Some sites thus provide their IDS with a separate
control channel back to the network, typically by enabling it to dynami-
cally insert ACLs into a gateway router for blocking IP addresses. Such
setups, however, tend to remain narrowly tailored to the site’s specifics,
with little opportunity for reuse elsewhere, as different networks deploy
a wide array of hard- and software and differ in their network topologies.
To overcome the shortcomings of such ad-hoc approaches, we present
a novel network control framework that provides passive network moni-
toring systems with a flexible, unified interface for active response, hid-
ing the complexity of heterogeneous network equipment behind a simple
task-oriented API. Targeting operational deployment in large-scale net-
work environments, we implement the design of our framework on top of
an existing open-source IDS. We provide exemplary backends, including
an interface to OpenFlow hardware, and evaluate our approach in terms
of functionality and performance.

1 Introduction

Network intrusion detection and prevention systems (IDS and IPS, respectively)
detect a wide range of attacks, including port- and address scans for reconnais-
sance, SSH brute-forcing, attempts to exploit specific vulnerabilities (e.g., Heart-
bleed), and also complex multi-step APT-style attacks. An IPS operates inline
within the network’s forwarding path, enabling the system to actively react to an
intrusion by, e.g., blocking the specific connection or more generally any traffic
originating from the same IP address. Operationally, however, inline operation
often remains impractical, as it adds a complex device into the forwarding path
that increases latencies and jitter, and risks causing disruption if malfunctioning.
Furthermore, for the largest of environments—such as the quickly growing set
of 100 G Science DMZs [20]—arguable no IPS (or firewall) can today operate at
their line rates at all [9]. More commonly, network environments thus deploy a
passive IDS instead, operating out-of-band on an independent copy of the net-
work traffic coming from a tap or SPAN port. To still support active response in
that setting, some sites then provide their IDS with a separate control channel
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 133–152, 2015.
DOI: 10.1007/978-3-319-26362-5 7

134 J. Amann and R. Sommer

back to the network, most typically by having it dynamically insert ACLs or null
routes into a gateway router for blocking IP addresses. Such setups, however,
tend to remain narrowly tailored to the site’s network topology and the specific
equipment it deploys, offering little opportunity for reuse elsewhere and posing
challenges for testing, maintenance, and extension.

To overcome the shortcomings of such ad-hoc approaches, we present a novel
network control framework that provides passive network monitoring systems
with a flexible, unified interface for active response, hiding the complexity of
heterogeneous network equipment behind a simple task-oriented API. We struc-
ture our network control framework around four low-level traffic control primi-
tives: dropping, whitelisting, redirection, and modification. From these, we then
compose a set of higher-level tasks that an IDS can chose to deploy, such as
blocking IP addresses, shunting traffic for load shedding, quarantining infected
hosts, and enforcing quality-of-service guarantees. Internally, we map the prim-
itives to rules that the network control framework forwards to a set of pre-
configured backends representing the network’s devices able to carry out the
corresponding actions (e.g., routers, switches, firewalls). When multiple compo-
nents can execute a rule, the network control framework automatically selects
the most appropriate. It also transparently unifies inconsistencies between device
semantics.

Our framework targets operational deployment in large-scale network envi-
ronments with link capacities of 10 G and beyond. We implement the design of
our framework on top of an existing open-source IDS that such environments
commonly deploy. We provide exemplary backends for OpenFlow and acld [1],
as well as a generic backend driving command-line tools (which we demonstrate
with Linux iptables). Using the OpenFlow backend, we evaluate our approach
through case studies involving real-world tasks and traffic. We release our imple-
mentation as open-source software under BSD license [14].

Overall, our work offers a new capability combining the advantages of unob-
trusive passive monitoring with the ability to actively react swiftly and compre-
hensively through a unified architecture that can replace today’s ad-hoc setups.
While our discussion focuses primarily on the security domain, the network con-
trol framework’s potential extends more broadly to traffic engineering applica-
tions well, as our quality-of-service use case demonstrates.

We structure the remainder of this paper as follows: Sect. 2 discusses use cases
for our system. Section 3 presents the design of the network control framework,
and Sect. 4 describes our implementation. Section 5 introduces the backends that
the network control framework currently supports, and Sect. 6 evaluates the
framework. Section 7 discusses the related work before our paper concludes in
Sect. 8.

2 Use Cases

We begin by discussing four high-level IDS use-cases that our network con-
trol framework facilitates. Traditionally, a site would implement each of these

Providing Dynamic Control to Passive Network Security Monitoring 135

separately, typically with homegrown scripts that cater to their network envi-
ronment. The network control framework instead offers a high-level API that
supports these use cases directly, internally breaking them down into lower-level
rules that it then carries out through an appropriate backend.

Dynamic Firewall. The network control framework enables an IDS to dynam-
ically block traffic that it deems hostile. Typical examples include stopping a
connection exhibiting illegitimate activity, and dropping connectivity for hosts
probing the network. In contrast to a traditional firewall, an IDS can derive such
decisions dynamically by analyzing session content and tracking over time the
state of any entities it observes. For example, the Lawrence Berkeley National
Laboratory (LBNL), a research lab with a staff size of about 4,000 and 100 G
connectivity, blocks an average of about 6,000 to 7,000 IPs each day using a
custom setup that interfaces the Bro IDS [17] with their border router through
a separate daemon process, acld [1]. Indiana University, which has more than
100,000 students and multiple 10GE uplinks, blocks an average of 500 to 600
IPs per day, also using a custom setup processing data from Bro and Snort.

Shunting. Flow shunting [7,11] reduces the load on an IDS by asking the net-
work to no longer send it further traffic for high-volume connections that it has
identified as benign. In scientific environments, shunting typically targets large
file transfers: once identified as such, there remains little value in inspecting
their content in depth. Shedding the corresponding load leaves more resources
for inspecting the remaining traffic, which in turn then allows a site to provi-
sion less IDS capacity than the full volume would require. Two sites using this
approach effectively are LBNL and UIUC’s National Center for Supercomputing
Applications (NCSA). Both places currently implement shunting for GridFTP
traffic with custom scripts that exploit the specifics of their network environ-
ments. On a typical day in these environments, shunting reduces the total traffic
volume by about 37 % and 32 %, respectively.

Quarantine. When an IDS identifies a local system as compromised, it can—as
a protective measure—redirect any new connections from that host to an internal
web server that informs the user of the problem. Traditionally, implementing such
a quarantine mechanism constitutes a complex task operationally, as it needs to
interact closely with the local network infrastructure. For example, the Munich
Scientific Network (MSN) deploys a custom NAT system [21] for quarantining
that implements the corresponding logic for local end-user systems by combining
a number of existing software components.

Quality-of-Service. Going beyond the security domain, the network control
framework also facilitates more general traffic engineering applications. By steer-
ing traffic to different switch ports or VLANs, one can route entities over paths
with different properties. For example, a Science DMZ might want to send a
high-volume data transfer onto a different virtual circuit that provides band-
width guarantees [15]. Another use case is bandwidth throttling. For DDOS
mitigation, one can move a local target server to a different ingress path enforc-
ing a rate-limit, thereby relieving pressure for the remaining traffic. Likewise,

136 J. Amann and R. Sommer

a network monitor might decide to throttle individual P2P clients that it finds
exceeding their bandwidth quota.

3 Design

In this work, we introduce a network control framework that enables passive
monitoring applications to transparently exercise control over heterogeneous net-
work components like switches, routers, and firewalls. In this section, we discuss
the design of the network control framework, starting with its overarching objec-
tives in Sect. 3.1.

3.1 Objectives

Our design of the network control framework aims for the following objectives:

Simple, Yet Flexible API. The network control framework’s API needs to
provide sufficient abstraction to make it straight-forward to use, yet remain
flexible to support a variety of use cases. The API should support common
high-level tasks directly (like blocking and shunting), while leaving lower-level
functionality accessible that enables users to compose their own.

Unification of Heterogeneous Network Components. Sites deploy a vari-
ety of network equipment with different capabilities and semantics. The network
control framework needs to unify their differences through an API that abstracts
from device specifics.

Support for Complex Topologies. As networks can have complex structures,
the network control framework needs to support instantiating multiple backends
simultaneously, to then chose the most appropriate for each rule. For example,
actions that block traffic might need to address a different device than reducing
the load on the IDS through shunting. Likewise, one device may support a specific
operation better, or more efficiently, than another (e.g., MAC address filtering
vs. IPv6 filtering; or when dropping traffic, being closer to the source).

Unification of Forwarding and Monitoring Path. The network control
framework provides control over both traffic that the network forwards and traffic
that the IDS receives for processing from its tap or SPAN port. Even though the
effect of manipulating them is quite different—rules on the forwarding path affect
end-users, while the monitoring path only changes what the IDS’ analyzes—
the corresponding operations remain conceptually similar. The network control
framework should thus unify the two behind a single interface.

Low Latency. The network control framework has to apply new rules rapidly.
The main difference between a passive IDS and an inline IPS is the latency with
which active response takes place. While network control framework can funda-
mentally not match an IPS’ instantaneous action, the network control framework
must add as little delay as possible to any latency that the devices impose that
it controls.

Providing Dynamic Control to Passive Network Security Monitoring 137

Backend 1

Backend 2

Backend 3

Backend 4

Network
Control

Framework

Network
Monitoring

Engine

Switch

Switch

Router

Firewall

Network Traffic

High level calls or
low-level primitives

Rules

Success,
Failure,
Timeout

Network Control
Framework Backends Device

communication

IDS

Fig. 1. Basic architecture.

3.2 Architecture

Figure 1 shows the overall architecture of the network control framework, located
inside an IDS as a subcomponent. The IDS deploys its standard detection mech-
anisms (signatures, analysis scripts, etc.) to asses the traffic it sees. Once it
decides to take action (e.g., block a scanner), it directs the network control
framework to carry that out, using either its high-level API if that supports
the use case directly through one of its operations, or lower-level primitives to
compose non-standard functionality. In the former case, the network control
framework internally maps the high-level API call to a sequence of correspond-
ing low-level primitives. In either case, it then forwards the primitives to a set of
backends in the form of rules for them to install. Each backend corresponds to
a device on the network able to carry out actions. When operators register their
devices with the network control framework, they provide the corresponding
backend instance with the information how to communicate with the physical
device (e.g., the IP address of an OpenFlow switch), as well as potentially fur-
ther context information about the device’s capabilities and location (e.g., the IP
space behind a switch). They also assign each backend a priority. For each new
rule, the network control framework then iterates through all available backends,
from highest priority to lowest priority, until one confirms that it successfully
executed the desired action. If no backend accepts the rule, the operation fails. In
the following subsections, we elaborate further on the main parts of this overall
scheme.

3.3 High-Level Operations

The network control framework supports eight predefined high-level operations,
which provide for the most common IDS use cases:

drop connection(connection, timeout) facilitates dynamic firewalling by ter-
minating a connection through blocking its packets on the forwarding path. It
receives the connection’s 5-tuple as a parameter, as well as a timeout indicating
the duration for the block to stay in place.

138 J. Amann and R. Sommer

drop address(host, timeout) operates similar to drop connection(), yet blocks
all traffic to or from a given IP address.

drop address catch release(host, timeout) is a variant of the drop address()
operation that employs catch-and-release (C&R) [8] to reduce the number of
blocks that the network needs to enforce simultaneously. C&R drops an address
initially for only a short period of time (usually much less than the specified
timeout). However, when that block expires, C&R keeps tracking the offending
IP, and any new connection attempt will trigger an immediate reblock, now for a
longer period of time. The process repeats until it reaches the maximum timeout
duration. In practice, C&R significantly reduces the number of simultaneous
blocks that the network has to support, enabling medium- to long-term blocking
while remaining parsimonious with switch &router memory resources.

shunt flow(flow, timeout) drops a unidirectional flow (specified in the form
of its 5-tuple) from the monitoring path for a specified duration. This allows,
e.g., to remove a large file transfer from the IDS’ input stream. As on high-
volume connections the bulk of the data tends to flow in one direction only, this
operation leaves the other side of the session unaffected.

quarantine(Infected, DNS server, Quarantine server, timeout) isolates an
internal host (infected) by blocking all of its traffic except for DNS, which it
reroutes to a Quarantine server running an instrumented DNS server that always
returns the IP address of itself for any hostname lookup. The quarantine server
also runs a web server that can then serve a web page to the host informing end
users of the reason for quarantining them.

redirect(flow, destination port, timeout) redirects a unidirectional flow to a
different output port on a switch. This allows, e.g., to control quality-of-service
properties by steering the traffic to a dedicated port/link.

whitelist(prefix, timeout) whitelists a network prefix so that no other network
control framework operation will affect it. This serves as a safety measure, e.g.,
to avoid blocking critical servers or, more generally, IP space from upstream
service providers like Amazon or Google.

All of these operations returns an opaque handle associated with the changes
they put in place. An additional remove(handle) function uninstalls the opera-
tion even before it timeout expires.

3.4 Low-Level Primitives

After introducing the high-level operations of the network control framework
in Sect. 3.3, this section shows how users can manually create lower-level rules
through a more verbose, but powerful API that directly exposes the primitives
underlying the network control framework.

Generally, a rule describes an action to perform on a traffic subset through
a set of attributes; see Table 1. Each rule consists of three primary compo-
nents: (i) the type of action to perform (e.g., drop); (ii) the entity to apply
the action to (e.g., a specific IP address); and (iii) the target network path to
operate on (forwarding or monitoring). The rule type specifies the action to per-
form on all of the entity’s traffic, with four choices currently supported: drop
(drop all traffic matching entity), whitelist (leave entity unaffected of any other

Providing Dynamic Control to Passive Network Security Monitoring 139

Table 1. Summary of network control framework rules.

rule), redirect (steer entity to a different output port), and modify (change con-
tent of entity’s packets). The network control framework supports five types of
entities: unidirectional flows, bi-directional connections, IP addresses, network
prefixes, and layer-2 MAC addresses. Rules specify flows/connections through
their 5-tuples, with support for wildcards as tuple elements. For IPs, prefixes,
and MACs, a rule always matches any traffic involving that entity, regardless of
direction. In addition to the three mandatory type, entity, and target attributes,
Table 1 shows further options that rules support, including: Priority resolves con-
flicts if multiple rules match the same traffic; Modify augments modify actions
by defining the change to perform; and RedirectTo specifies the target port.
Internally, the network control framework converts all the high-level operations
from Sect. 3.3 into such rules. For example, consider shunt flow. In this case, the
network control framework creates a rule as follows, dropping all traffic for the
specified 5-tuple on the monitoring path:

Rule(Type=Drop, Entity=Flow([5-tuple]), Target=Monitor)

Implementing quarantine is more complex, with four separate rules:

Rule(Type=Drop, Entity=Flow(SrcIp=[Infected]), Target=Forward)

Rule(Type=Redirect, Priority=1,

Entity=Flow(SrcIP=[Infected], DstIp=[DNS server], DstPort=53/udp),

Modify(DestIp=[Quarantine Srv]), Target=Forward)

Rule(Type=Redirect, Priority=1,

Entity=Flow(SrcIp=[Quarantine Srv], SrcPort=53/udp, DstIp=[Infected]),

Modify(SrcIp=[DNS Server]), Target=Forward)

140 J. Amann and R. Sommer

Rule(Type=Whitelist, Priority=1,

Entity=Flow(SrcIp=[Host], DstIp=[QuarantineHost], DstPort=80/tcp),

Target=Forward)

The first rule blocks all traffic from the infected host using the default priority
of 0. The second and third higher priority rules modify (i) DNS requests from
the quarantined host to go to the dedicated quarantine server, and (ii) DNS
server responses to appear as coming from the original server. The fourth rule
permits port 80 requests from the infected host to the quarantine server.

3.5 Adaptability to Networks

The network control framework’s support for multiple backends enables pushing
out a rule to the device most appropriate for putting it into effect. Consider, for
example, an environment with several switches, each responsible for a specific
IP subnet. One can add each of them to the network control framework by
instantiating a corresponding backend, configuring each to only accept rules for
the switch’s IP range. When installing a rule, the network control framework
will iterate through the backends until reaching the appropriate switch, which
will signal that it can handle it. As another example, an environment could
block traffic by deploying a combination of a firewall and a router. The router
could drop individual IP addresses efficiently using its hardware lookup tables,
but might not be able to match on other fields like TCP/UDP ports and would
hence reject corresponding requests. The less efficient firewall would then provide
a fall-back accepting all other rules.

Backend priorities allow to fine-tune the selection of backends further. When
instantiating multiple backends with the same priority, the network control
framework will install a rule through all of them. This supports, e.g., the case of
multiple border routers connecting to different upstream providers: blocking IPs
should take effect on all of their links. Shunting on the monitoring path provides
an example for using different priorities. Generally, shunting should happen as
close to the tap as possible. As a fallback, however, in case the closest switch
does not support the necessary drop rule, one can always have the local IDS
host itself filter out the traffic at the NIC level; that way the packets at least do
not reach the IDS’ processing. To support this scenario, one would instantiate a
high priority backend for the switch, and a low priority backend for kernel-level
filtering on the IDS system.

3.6 Unifying State Management

The network control framework installs control rules dynamically as the IDS
identifies corresponding patterns. Typically, such rules remain valid only for
moderate periods of time, from a few minutes to hours. Afterwards, they need
to expire so that network behavior reverts back to normal and resources on the
devices free up. The network control framework thus supports timeouts as an
intrinsic part of its architecture; all operations and rules include them. Internally,

Providing Dynamic Control to Passive Network Security Monitoring 141

however, handling timeouts requires managing the corresponding state, which
poses a challenge. While some backends can support rule expiration directly
through device mechanisms (e.g., OpenFlow can time out rules), not all have that
capability (e.g., acld). For backends without corresponding support, the network
control framework includes a software implementation as an optional service that
a backend can leverage. If activated, the network control framework tracks the
backend’s active rules with their expiration times, sending it explicit removal
requests at the appropriate time. Even if a device supports rule expiration in
hardware, a backend might still chose to rely on the network control framework’s
implementation instead if the device’s expiration semantics do not align with the
network control framework’s API requirements. In either case, from the user’s
perspective the network control framework reports a notification when a rule
expires, including—if the backend supports it—more detailed information about
traffic it has matched during its lifetime. Generally, hardware switches track such
metrics and the network control framework passes it along.

State management introduces a challenge when either the IDS or a device
restarts, as generally that means the system will loose any rules it has installed.
On the IDS side, one can conceptually solve that rather easily by having the
system retain state persistently across restarts, either through serialization at
termination time or by directly maintaining the information in a on-disk data-
base. Once the system is back up again, it can then timeout any rules that have
expired during the downtime, sending removal commands to their backends. On
the device side, handling restarts proves more challenging. One approach would
be replaying all the rules from IDS memory. That however could impose sig-
nificant load on the device (e.g., imagine reinstalling thousands of IP address
blocks). It would also require actually recognizing that a device has restarted,
a task that turns out difficult to perform for some backends (e.g., OpenFlow
switches do generally not signal restarts explicitly). Therefore, the network con-
trol framework accepts that rebooting a switch means that it will loose all its
rules; the framework will continue operation as if nothing had happened. In
practice the impact of this approach remains low, as due to the dynamic nature
of rules in our use cases, their lifetime tends to remain short anyways. For rules
that target individual flows, chances are the session will have terminated already
when the device is back up. Even for long-lived flows, reverting back to normal
operation occasionally usually proves fine (e.g., when shunting, load will increase
back to the full level briefly). For more general rules, the higher-level analysis can
often compensate for the rare case of a device restart by retriggering the original
action. For example, when dropping with catch-and-release (see Sect. 2), the IDS
will immediately reblock the offender on its next connection attempt. Internally,
if the network control framework manages rule expiration it will eventually still
send removals for rules that no longer exist after a device restart, which however
the backend can ignore.

4 Implementation

We implement the design of the network control framework on top of the open-
source Bro Network Security Monitor [5,17]. Bro provides an apt platform for

142 J. Amann and R. Sommer

active response as its event-based, Turing-complete scripting language facilitates
complex custom policies taking decisions. Furthermore, Bro allows us to imple-
ment the network control framework fully inside this language as well, whereas
other IDS would typically require integration at a lower level.

4.1 User Interface

The network control framework’s user interface consists of a new script-level
Bro framework that provides script writers with an interface closely following
the design we present in Sect. 3, exposing both the high-level operations as well
as the low-level primitives to their custom logic. In the following, we examine
two real-world examples of how a Bro user can leverage the network control
framework to react to network activity the system observes.

First, consider the case of a high-volume supercomputing environment aiming
to shunt all GridFTP [2] data flows, thereby lessening the load on their Bro
setup. In this case, as Bro already includes the capability to identify GridFTP
transfers, one can hook the network control framework’s high-level shunt flow
function, contained in the NetControl namespace to Bro’s corresponding event
by writing a handler like this:

event GridFTP::data_channel_detected(c: connection) {

NetControl::shunt_flow([$src_h=c$id$orig_h, $src_p=c$id$orig_p,

$dst_h=c$id$resp_h, $resp_p=c$id$resp_p], 1hr);

}

Second, assume we want to block the IP addresses of hosts performing a port
or address scan. For that, we hook into Bro’s alarm reporting (“notices”):

event log_notice(n: Notice::Info) {

if (n$note == Address_Scan || n$note == Port_Scan)

NetControl::drop_address(n$src, 10min);

}

Inserting low-level rules likewise closely follows the design from Sect. 3, map-
ping the rule attributes from Table 1 to corresponding Bro data types. For exam-
ple, the following shows the actual implementation of the shunt flow operation
in the Bro scripting language. For the most part, the function just converts Bro’s
data structures into the format that the network control framework expects:

function shunt_flow(f: flow_id, t: interval) : string {

local flow = Flow(

$src_h=addr_to_subnet(f$src_h), $src_p=f$src_p,

$dst_h=addr_to_subnet(f$dst_h), $dst_p=f$dst_p

);

local e: Entity = [$ty=FLOW, $flow=flow];

local r: Rule = [$ty=DROP, $target=MONITOR, $entity=e, $expire=t];

return add_rule(r);

}

Providing Dynamic Control to Passive Network Security Monitoring 143

Since the actual rule operations will execute asynchronously, the network con-
trol framework uses Bro events to signal success or failure, as well for reporting
a rule’s removal along with the corresponding statistics (see Sect. 3.6).

4.2 Adding Backends

As discussed in Sects. 3.2 and 3.5, the network control framework supports multi-
ple backends simultaneously with different priorities. In our Bro implementation,
one adds backends at initialization time through corresponding script code:

local backend = NetControl::create_backend_Foo([...]);

NetControl::activate(backend, 10);

The create plugin Foo function is part of the backend’s implementation and
receives any arguments that it requires, for example the IP address and port of
a switch to connect to. activate then adds the newly minted instance to the
network control framework, specifying its priority as well (10 in this example).

The network control framework deploys a plugin model for implementing
new backends, making it easy to augment it with support for further devices.
Each backend plugin has to implement three functions for (i) instantiating a
backend of that type, (ii) adding rules, and (iii) removing rules. Instantation
returns an instance of a Bro data type describing the backend with its functions
and features (e.g., if the plugin can handle rule expiration itself). Both the add
and removal functions receive the backend instance along with the rule as their
parameters. The add function returns a boolean indicating if the backend could
execute the rule.

5 Backends

In this section we present the different types of backends that our implementation
of the network control framework currently supports through plugins that we
have implemented: OpenFlow in Sect. 5.1, acld in Sect. 5.2, Bro’s built-in packet
filter in Sect. 5.3, and finally a generic command-line interface in Sect. 5.4.

5.1 OpenFlow

OpenFlow [13] is an SDN protocol that allows applications to control the for-
warding plane of a switch (or router) by inserting or removing rules. As switches
with OpenFlow support have become both common and affordable, the protocol
provides an ideal target for the network control framework to support a range
of devices across vendor boundaries. We added OpenFlow support to our imple-
mentation in two steps: (i) we created a separate abstraction inside Bro, an
OpenFlow module, that exposes OpenFlow’s primitives to Bro scripts through
a corresponding API; and (ii) we wrote an OpenFlow backend plugin for the
network control framework that uses the OpenFlow module for interfacing to

144 J. Amann and R. Sommer

OpenFlow devices. We chose to separate the two, as OpenFlow support may
prove useful for applications beyond the network control framework as well.

In a OpenFlow deployment, applications typically do not talk to devices
directly, but instead interface to an OpenFlow controller that serves as the
middle-man. The controller is the component that speaks the actual OpenFlow
protocol with the switch (“southbound”), while exposing an external API (e.g., a
REST interface) to clients (“northbound”). Unfortunately, there is no standard-
ized northbound interface; depending on the choice of a controller, the mecha-
nisms differ. For our case study, we leveraged the Ryu SDN Framework [19].

Ryu enables creating custom controllers in Python, fully supporting versions
OpenFlow 1.0 to 1.3. We leveraged the Ryu API to write an OpenFlow controller
interfacing Ryu to Bro’s communication protocol, using the Broker messaging
library [6]. On the Bro side, the OpenFlow module maps OpenFlow messages
into corresponding Broker messages, essentially creating our own communication
mechanism between the two systems.1 Figure 2 summarizes the full architecture
when using the network control framework with OpenFlow: Messages pass from
the network control framework’s OpenFlow backend into the OpenFlow module,
which in turn sends them over to the controller via Broker. Results travel the
same way in reverse.

As an additional feature, the OpenFlow backend supports callback functions
that can inspect and modify any OpenFlow messages it generates before passing
them on. This allows to, e.g., use fields that OpenFlow supports yet have no
equivalent inside the framework (e.g., input ports, or VLAN priorities).

OpenFlow’s lack of success messages posed a particular implementation chal-
lenge for the backend. Generally, OpenFlow does not acknowledge rules that
were successfully installed; it only reports error cases. With the network control
framework that proves problematic, as its approach to iterate through all back-
ends make it important to confirm an action’s execution. One solution would
be to just assume that a rule was successfully applied after a certain amount of

Ryu OpenFlow
Controller

Network
Control

Framework

NC OpenFlow
Backend

OpenFlow
Module

Decisions

OpenFlow
Protocol

Broker
Protocol

Bro OpenFlow SwitchBlock, Shunt, ...

Fig. 2. OpenFlow architecture.

1 Indeed, our Bro OpenFlow module remains independent of Ryu and could support
other controllers as well if one extended them with a similar receiver component.

Providing Dynamic Control to Passive Network Security Monitoring 145

time has passed with no error message. However, this would require choosing a
conservative timeout and hence significantly delay the success signal back to the
network control framework, contrary to our objective of keeping latencies low.
We instead solved this challenge by using OpenFlow’s barrier messages. When a
switch receives a barrier request, it will answer with a barrier reply, yet only after
it has fully processed all preceeding OpenFlow messages. Hence, once the plugin
receives a barrier reply, it knows that any operations that have not prompted
an explicit error message so far, must have succeeded.

The OpenFlow backend assumes that it can insert rules without conflicting
with other applications talking to the same controller and/or switch. In practice,
one can typically resolve potential conflicts between applications by associating
priorities with the OpenFlow rules, which the backend supports. More generally,
Porras et al. [18] present an enhanced controller that mediates conflicts.

5.2 Acld

Acld [1] is a Unix daemon that acts as a middle-man for blocking IP addresses,
address pairs, ports, and more; interfacing to a range of hard- and software
switches and firewalls, including from Cisco, Juniper, and Force10, as well as
BSD ipfw. Acld is, e.g., used by LBNL.

We created an Acld backend for the network control framework that compiles
rules into acld’s command syntax and then sends them over to the daemon for
execution, using again Bro’s communication library Broker to implement that
communication.2 Since the actions that acld supports are more limited than the
rules that the network control framework can express, the backend checks first if
a rule has an acld equivalent, declining it otherwise. Acld does not support rule
expiry itself. Instead, the network control framework keeps track of all its rules
and removes them automatically after their timeout period.

5.3 IDS Packet Filter

We also provide a backend that targets Bro itself. Bro provides an inter-
nal packet filter that allows excluding traffic from further processing early in
its processing pipeline. Doing so removes the CPU overhead associated with
that traffic, including in particular stream reassembly and protocol analysis.
As Papadogiannakis et al. [16] demonstrate, such early filtering can significantly
improve IDS performance. We implemented a network control framework back-
end plugin that emits rules for this Bro-internal packet filter, enabling the net-
work control framework to execute rules for the monitoring path on the IDS
system itself. Usually, this backend will represent a fall-back option: if another
backend can filter the traffic earlier, that would be the better choice; but if that
capability is not available, filtering late remains better than not all.

2 Currently, Bro talks to an intermediary Python script, which in turn relays com-
mands to acld through TCP. We plan to integrate Broker into acld directly in the
future.

146 J. Amann and R. Sommer

5.4 Generic Command-Line Interface

As a generic backend, we implemented a command-line interface that allows users
to specify shell commands to execute for installing and removing rules, making
it easy to support network components that come with command-line clients.
As an example, we used this to implement network control framework support
for Linux iptables. Our iptables implementation uses Broker again, similar to
the Ryu OpenFlow interface. In this case, we implemented a Broker backend
for the network control framework itself, which passes the low-level network
control framework data structures to a Broker endpoint outside of Bro. We then
implemented a Python script that receives these Broker messages and executes
custom shell commands that the user specifies through a YAML configuration
file. To pass parameters to these commands (e.g., IP addresses), the Python
script replaces a set of predefined macros with the corresponding values from
the network control framework rules. Each shell command executes inside a
separate thread so that even rapid sequences of rules do not lead to delays.3 For
Linux iptables, we use the following command-line for blocking an IP address:

iptables -A INPUT [?address:-s .][?proto:-p .][?conn.orig_h:-s .]

[?conn.orig_p: --sport .][?flow.src_h: -s .][?flow.src_p: --sport .]

[?conn.resp_h:-d .][?conn.resp_p: --dport .][?flow.dst_h: -d .]

[?flow.dst_p: --dport .] -j DROP

Here, the macro syntax tells the Python script to replace each pair of brackets
with either an appropriate command line option if the corresponding network
control framework attribute is defined, or just an empty string if not. The entry
to remove a rule works accordingly.

6 Evaluation

In this section we evaluate functionality and performance of the network control
framework on the basis of the use cases we discuss in Sect. 2. We use the network
control framework’s OpenFlow backend for all experiments and measurements.

6.1 Functionality

We implemented all the use cases we discuss in Sect. 2—dynamic firewalling,
shunting, quarantining, and QoS—in a variety of lab setups in different environ-
ments. For these experiments, we connected the network control framework to
three different OpenFlow-capable hardware switches: an IBM G8052 (firmware
version 7.11.2.0), an HP A5500-24 G-4SFP (Comware version 5.20.99), and an
Pica8 Open vSwitch P-3930 (PicOs 2.5.2). In each case, we validated correct
operation through manually generating corresponding traffic and confirming that
the switches indeed had installed the anticipated OpenFlow rules. We conclude
that our network control framework generally indeed operates as expected.

3 As this could potentially reorder rules, users can optionally disable threading.

Providing Dynamic Control to Passive Network Security Monitoring 147

During our testing, we however noticed a number of differences between the
OpenFlow implementations of the three switches. Most importantly, while all
the switches offer OpenFlow 1.3, they differ in the feature set they support.
For example, the HP A5500 only supports one output target per rule, making it
impossible to duplicate traffic from one input port to two target ports—generally
a desirable capability for network monitoring setups.4 Both the IBM G8052 and
the Pica8 P-3930 support this operation. Neither the IBM nor the HP switch can
modify IP-level information (e.g., IP addresses or ports), preventing the network
control framework’s corresponding modifications from working with them. The
Pica8 switch provides this functionality. Finally, the size of the switches’ flow
tables differ across the three devices—yet with all of them remaining rather
small: the HP switch offers the largest table, yet still only supports two times
3,072 distinct entries.

6.2 Performance

In terms of performance, we examine two scenarios: the latency of blocking
attacks and malicious content as well as the effectiveness of shunting traffic.

Filtering. As our first scenario, we examine the latency of blocking attacks and
malicious content. When adding block rules, the main operational concern is the
speed with which it takes effect; the delay between the decision and implemen-
tation should be as small as possible.

To test this scenario, we examined one hour of connection logs representing
all external port 80 traffic on the Internet uplinks of the University of California
at Berkeley (UCB). The upstream connectivity consists of two 10GE links with
a daytime average rate of about 9 Gb/s total. During that hour, there were
9,392,623 established HTTP connections. To generate a test-load for automatic
blocking, we pretended that every thousandth HTTP connection was carrying
malicious content and thus had to be blocked, turning into an average of 2.6
network control framework operations per second. This level is quite a bit higher
than what even large environments encounter in practice. Consulting with the
operations team at LBNL, their system blocked, e.g., an average of 269 and
308 IPs per hour on May 28th and June 1st respectively. In their most active
hour during those days, they blocked 616 IPs, i.e., 0.17 per second. At Indiana
University, 23,875 blocks executed in total during May 2015, corresponding to
0.009 per second. Our testing workload exceeds these rates significantly, hence
putting more strain on the setup than currently found in operational settings.

By extracting from the connection logs the timestamps and originator IP
addresses of all “malicious” connections, we generated execution traces of net-
work control framework operations matching what a live Bro would have exe-
cuted during that hour of traffic. Replaying these traces through Bro triggers
the actual OpenFlow messages with correct timing in a repeatable way. We

4 While the lack of this feature does not affect the network control framework directly,
it could prevent using it in combination with further static monitoring rules.

148 J. Amann and R. Sommer

performed two measurements with this replay approach: (i) blocking all future
traffic from the offending IP addresses, and (ii) blocking all future traffic from
or to those addresses; the latter requires two OpenFlow rule insertions, doubling
their frequency to an average of 5.2 per second.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
P

1
R

ul
e

IB
M

 1
 R

ul
e

IB
M

 2
 R

ul
es

Pi
ca

8
1

R
ul

e

Pi
ca

8
2

R
ul

es

T
im

e
to

 r
ul

e
in

se
rt

io
n

[s
]

Fig. 3. Box plot of rule insertion
latency with uni- and bi-directional
rules for different OpenFlow hardware
switches.

Fig. 4. TCP connection sizes at
UCB (2015-05-07, 15:00-16:00) (Bytes
axis log-scaled).

Figure 3 shows the delays from the moment Bro decided to insert a rule to
the time when the success notification arrived back for most combinations of the
three switches and the two measurements.5 For all combinations shown, the rules
took less than a second to insert, with the mean values being much lower. For
example, for the IBM G8052, the median latency for bi-directional blocks was
141 ms; 42 ms for uni-directional. The Pica8 P-3039 showed the most impressive
results with median times of 11 ms and 8.5 ms, respectively. For comparison,
LBNL’s operations team currently reports latencies around 300 ms on average
when performing blocks with their home-built solution, i.e., more than an order
of magnitude more than the combination of the network control framework with
a (good) OpenFlow switch.

These results demonstrate that the network control framework supports high-
speed rule execution even at levels substantially exceeding what operational
environments currently require. Our measurements however also show the impact
of hardware choices on blocking efficiency.

As a second evaluation, we determine how much data can typically still go
through during the “gap time”, meaning the period between when an IDS deter-
mines that a connection should be blocked, and the time when the network
5 We excluded the HP A5500 with bi-directional rules due to problematic behavior

when inserting rules that way: The average latency was >10 s, with many rules
timing out and never getting an acknowledgment from the switch.

Providing Dynamic Control to Passive Network Security Monitoring 149

implements that decision. This is the additional latency that passive monitoring
incurs in comparison to an inline IPS, with which blocks take effect instanta-
neously.

For this scenario, we assume a detector that inspects the header of HTTP
requests to determine whether to deem them malicious, issuing blocks at the end
of the header at the latest. We capture a 1 h packet trace of port 80 connections
at the uplink of UCB, taken on 2015-05-01 at 16:00-17:00. Due to the fact that
the traffic volume at UCB is more than a single machine can handle, we record
a representative subset. Specifically, we use 1

28 of all flows, corresponding to a
slice of traffic that the organization’s load-balancer setup sends to one of their
in total 28 backend Bro machines. The resulting trace contains 159,474 HTTP
connections.

We replay the trace file using a custom version of Bro, which we instrumented
to output for each HTTP session (i) the packet timestamp of when the header
was completed; (ii) the remaining duration of that connection from that point
onwards; (iii) and the number of bytes transferred during intervals of I ms after
completion of the header, with values for I chosen to correspond to the latencies
we measured above for installing rules into the OpenFlow switches.

First, we measure how many connections terminate before they can be
blocked using an uni-directional block with the different switches, assuming their
block-time is either within the median or the 75 % percentile.

Table 2 shows the results of this evaluation. The table shows the median and
75 % block-speeds for the different switches. Assuming these values, we evaluate
(i) how many connections terminate before a block can be installed, and (ii) what
the median, mean and maximum amount of bytes are that could be transferred
over the connection before the block was engaged.

These results show that, with the right hardware, the network control frame-
work incurs latencies small enough that it would indeed have been able to stop
most connections before their completion.

Shunting. As a second scenario, we examined the effectiveness of shunting
traffic with the network control framework, using again network traffic from
UCB’s Internet uplink. This time, we examined flow logs of one hour of all TCP
connections during the same peak traffic time as in Sect. 6.2. During that hour,
the link saw 17,238,227 TCP connections, with a maximum volume of 7.5 GB
and a total volume of 2.1 TB.

Table 2. Block times, connections that were not blocked in time, median, mean and
maximum bytes transferred before block was engaged for OpenFlow switches.

Switch Block time Not blocked Med. transferred Mean transferred Max transferred

Pica8 (Med) 8.5ms 4,229 (2.7%) 0 1.6 k 68 k

Pica8 (75P) 11ms 8,273 (5.1%) 12 2.3 k 101 k

IBM (Med) 41ms 27,848 (17.4%) 194 9.5 k 1.1MB

IBM (75P) 89ms 41,965 (26.3%) 526 27 k 4.0MB

HP (Med) 82ms 38,381 (24%) 454 23 k 4.5MB

HP (75P) 93ms 43,128 (27%) 537 28 k 5.0MB

150 J. Amann and R. Sommer

Figure 4 plots the distribution of connection sizes, with the x-axis showing
the number of connections and the y-axis their volume in log-scale.6 We find the
connection sizes highly heavy-tailed, with a small number of connections making
up the bulk of the data. The mean connection size is 123 KB, the median is 2 KB.

Looking at the connections in more detail, there are 106 connections trans-
ferring more than 1 GB of data, making up 12 % of the total traffic; 1999 with
more than 100 MB (36 %); and 24,106 with more than 10 MB (65 %). Assuming
that we instructed the network switch to shunt each connection after reaching
1000, 100 or 10 MB respectively, we would shunt 53 %, 26 % or 6.5 % of the total
TCP data transferred over the network link.

As this evaluation shows, traffic shunting can be effective even outside of
scientific lab environments with their strong emphasis on bulk transfers. The
university network we examine here exhibits a highly diverse traffic mix, with
typical end-user traffic contributing most of the activity. Still, shunting would
provide significant load reduction. Our implementation of the network control
framework makes this easy to setup and control through just a few lines of Bro
script code.

7 Related Work

There is a substantial body of academic work evaluating the interplay of net-
work monitoring and software defined networking in different ways. The original
OpenFlow paper [13] already suggests that applications might want to process
individual packets instead of operating at the flow-level, as the OpenFlow API
exposes it. Xing et al. [25] implement a prototype system using Snort to analyze
packets via an OpenFlow controller. A this incurs significant computational cost,
the authors use their system only up to a few thousand packets per second.

Shirali-Shareza et al. [22] examine the problem of controllers not being suit-
able to access packet-level information from the network. They propose an Open-
Flow sampling extension, which allows the switch to only send a subset of a
flow’s packets to the controller. However, this approach is not suitable for use
with network monitoring systems that rely on seeing the full packet stream for,
e.g., TCP reassembly. Braga et al. [4] implement a lightweight DDOS flooding
attack detector by regularly querying a network of OpenFlow controllers for flow
information. They do not inspect raw packet contents. Van Adrichem et al. [24]
present a system using OpenFlow to calculate the throughput of each data flow
through the network over time by querying OpenFlow switches in variable inter-
vals. Their results are within a few percent of direct traffic observation.

Slightly related to our work, Ballard et al. [3] present a language and sys-
tem for traffic redirection for security monitoring at line rate. They implement
a language to define how traffic should flow through the network as well as the
system that applies the rules in an OpenFlow-capable network. Snortsam [23]
is a plugin for the Snort IDS, allowing automated blocking of IP addresses on

6 The connections reporting a size of 0 were not fully established.

Providing Dynamic Control to Passive Network Security Monitoring 151

a number of different hard- and software firewalls and routers. In comparison
to our approach, Snortsam remains more limited, only allowing the blocking of
source/destination IP addresses or single connections. SciPass [10] is an Open-
Flow controller application designed to help scaling network security to 100 G
networks. It supports using OpenFlow switches for load-balancing to IDS sys-
tems as well as traffic shunting. For the purpose of our paper, an application like
SciPass could become another backend, just like our OpenFlow interface, and
thus complement our design.

Porras et al. [18] present an enhanced OpenFlow controller mediating con-
flicting rules that independent applications might insert; an approach that one
could use in conjunction with the network control framework’s OpenFlow back-
end. Gonzalez et al. [11] introduce shunting as a hardware primitive in the con-
text of an inline FPGA device with a direct interface to an IDS. Campbell
et al. [7] evaluate its effectiveness inside 100 G scientific environments, using a
simulation driven by Bro connection logs. The network control framework facili-
tates transparent operational deployment of this powerful capability. Related to
shunting, Maier et al’s Time Machine [12] leverages the heavy-tailed nature of
traffic for optimizing bulk storage.

8 Conclusion

In this paper we present the design and implementation of a network control
framework, a novel architecture enabling passive network monitoring systems
to actively control network components, such as switches and firewalls. Our
design provides a set of high-level operations for common functionality directly,
while also offering access to lower-level primitives to perform custom tasks. As
one of its key features, the framework supports controlling multiple network
devices simultaneously, installing each rule at the component most appropriate
to carry it out.

We assess the feasibility of our design by implementing the framework on top
of the open-source Bro Network Security Monitor, and assess its functionality
and performance through an OpenFlow backend connecting to three hardware
switches in realistic settings. We find that the network control framework sup-
ports workloads beyond what even large-scale environments currently require.
Going forward, we consider this framework a key abstraction for providing
more dynamic security response capabilities than operators have available today.
We anticipate that, in particular, the largest of today’s network environments—
with links of 100 G, and soon beyond—will benefit from the framework’s capa-
bilities in settings that no inline IPS can support.

Acknowledgments. We would like to thank Aashish Sharma, Keith Lehigh, and Paul
Wefel for their feedback and help.

This work was supported by the National Science Foundation under grant numbers
ACI-1348077 and CNS-1228792. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the NSF.

152 J. Amann and R. Sommer

References

1. ACL blocker notes. http://www-nrg.ee.lbl.gov/leres/acl2.html
2. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Tuecke, S.:

GridFTP: Protocol Extensions for the Grid. Grid ForumGFD-R-P.020 (2003)
3. Ballard, J.R., Rae, I., Akella, A.: Extensible and scalable network monitoring using

OpenSAFE. In: INM/WREN (2010)
4. Braga, R., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using

NOX/OpenFlow. In: LCN (2010)
5. Bro Network Monitoring System. https://www.bro.org
6. Broker: Bro’s Messaging Library. https://github.com/bro/broker
7. Campbell, S., Lee, J.: Prototyping a 100g monitoring system. In: PDP (2012)
8. Presentation slides–Anonymized for submission (2014)
9. ESnet: Science DMZ Security - Firewalls vs. Router ACLs. https://fasterdata.es.

net/science-dmz/science-dmz-security/
10. GlobalNOC: SciPass: IDS Load Balancer & Science DMZ. http://globalnoc.iu.edu/

sdn/scipass.html
11. Gonzalez, J., Paxson, V., Weaver, N.: Shunting: a hardware/software architecture

for flexible, high-performance network intrusion prevention. In: ACM Communi-
cations and Computer Security (CCS) Conference, Washington, D.C (2007)

12. Maier, G., Sommer, R., Dreger, H., Feldmann, A., Paxson, V., Schneider, F.:
Enriching network security analysis with time travel. In: Proceedings of the ACM
SIGCOMM (2008). http://www.icir.org/robin/papers/sigcomm08-tm.pdf

13. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
CCR 38(2), 69–74 (2008)

14. Network Control framework and utility code. http://icir.org/johanna/netcontrol
15. OSCARS: On-Demand Secure Circuits and Advance Reservation System. http://

www.es.net/engineering-services/oscars/
16. Papadogiannakis, A., Polychronakis, M., Markatos, E.P.: Improving the accuracy

of network intrusion detection systems under load using selective packet discarding.
In: EUROSEC (2010)

17. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463 (1999)

18. Porras, P., Cheung, S., Fong, M., Skinner, K., Yegneswaran, V.: Securing the
software-defined network control layer. In: Proceedings of the 2015 Network and
Distributed System Security Symposium (NDSS), February 2015

19. Ryu SDN Framework. http://osrg.github.io/ryu/
20. Science DMZ - A Scalable Network Design Model for Optimizing Science Data

Transfers. https://fasterdata.es.net/science-dmz
21. Security and NAT Gateway for the Munich Scientific Network (MWN). https://

www.lrz.de/services/netzdienste/secomat en/
22. Shirali-Shahreza, S., Ganjali, Y.: FleXam: flexible sampling extension for monitor-

ing and security applications in openflow. In: HotSDN (2013)
23. Snortsam - A Firewall Blocking Agent for Snort. https://www.snortsam.net
24. Van Adrichem, N., Doerr, C., Kuipers, F.: OpenNetMon: network monitoring in

OpenFlow software-defined networks. In: NOMS (2014)
25. Xing, T., Huang, D., Xu, L., Chung, C.J., Khatkar, P.: SnortFlow: a OpenFlow-

based intrusion prevention system in cloud environment. In: GREE (2013)

http://www-nrg.ee.lbl.gov/leres/acl2.html
https://www.bro.org
https://github.com/bro/broker
https://fasterdata.es.net/science-dmz/science-dmz-security/
https://fasterdata.es.net/science-dmz/science-dmz-security/
http://globalnoc.iu.edu/sdn/scipass.html
http://globalnoc.iu.edu/sdn/scipass.html
http://www.icir.org/robin/papers/sigcomm08-tm.pdf
http://icir.org/johanna/netcontrol
http://www.es.net/engineering-services/oscars/
http://www.es.net/engineering-services/oscars/
http://osrg.github.io/ryu/
https://fasterdata.es.net/science-dmz
https://www.lrz.de/services/netzdienste/secomat_en/
https://www.lrz.de/services/netzdienste/secomat_en/
https://www.snortsam.net

Hardening

Probabilistic Inference on Integrity
for Access Behavior Based Malware Detection

Weixuan Mao1, Zhongmin Cai1(B), Don Towsley2, and Xiaohong Guan1

1 MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an, Shaanxi, China
{wxmao,zmcai,xhguan}@sei.xjtu.edu.cn

2 School of Computer Science, University of Massachusetts, Amherst, MA, USA
towsley@cs.umass.edu

Abstract. Integrity protection has proven an effective way of malware
detection and defense. Determining the integrity of subjects (programs)
and objects (files and registries) plays a fundamental role in integrity
protection. However, the large numbers of subjects and objects, and
intricate behaviors place burdens on revealing their integrities either
manually or by a set of rules. In this paper, we propose a probabilis-
tic model of integrity in modern operating system. Our model builds on
two primary security policies, “no read down” and “no write up”, which
make connections between observed access behaviors and the inherent
integrity ordering between pairs of subjects and objects. We employ a
message passing based inference to determine the integrity of subjects
and objects under a probabilistic graphical model. Furthermore, by lever-
aging a statistical classifier, we build an integrity based access behavior
model for malware detection. Extensive experimental results on a real-
world dataset demonstrate that our model is capable of detecting 7,257
malware samples from 27,840 benign processes at 99.88 % true positive
rate under 0.1 % false positive rate. These results indicate the feasibility
of our probabilistic integrity model.

Keywords: Probabilistic graphical model · Integrity protection ·
Malware

1 Introduction

In spite of considerate effort by security researchers and engineers, attackers
continue to craft malicious code (malware). A recent security threat report by
Symantec states that there were more than 317 million new pieces of malware
created in 2014, which is 26 % more than in 2013 [27]. Being faced with ever-
growing and increasingly sophisticated malware, it is important to develop more
effective defenses from essential perspectives of security [28].

Integrity protection has proven an effective way of malware detection and
defense [4,7,23,28]. Determining the integrity of subjects and objects is funda-
mental to integrity protection [26]. The integrity of a subject or an object refers
to the trustworthiness of its contents. Integrity is typically divided into levels,
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 155–176, 2015.
DOI: 10.1007/978-3-319-26362-5 8

156 W. Mao et al.

e.g., trusted and untrusted, high and low, etc. Integrity protection aims at pre-
venting trusted objects from being accessed inappropriately, e.g., it forbids an
untrusted program from writing a trusted file. Prior work manually defines the
number of integrity levels, and assigns integrity levels to subjects and objects
either manually or by rules. For example, previous work usually defines two
integrity levels [4,7,26]. Learning from previous attacks, Sun et al. treat Media
players and games as having low integrity [26], LOMAC treats system files as
having high integrity, and builds on a rule that assigns a subject a low integrity,
if it read an object with low integrity [7]. Windows Vista treats Internet Explorer
as having low integrity, and Vista files as having high integrity [11]. It is feasible
to define integrity levels either manually or by rules, when the number of subjects
and objects is small, and the behaviors of subjects are simple. However, given
hundreds of thousands subjects and objects in a modern operating system, it
is challenging and error-prone to assign integrity levels to all of them manually.
And, given the intricate behaviors of subjects, it is neither flexible nor adaptive
to assign integrity levels to them by rules.

This paper aims to determine integrity levels for all system subjects, i.e., pro-
grams, and system objects, i.e., files and registries, based on access behaviors of
benign programs. Our method builds on two primary security policies, “no read
down” and “no write up”. These two policies, first proposed by Biba [4], have
become the basis of integrity protections in modern operating systems [7,12,26].
These policies make connections between integrity levels and access behaviors.
Our method determines the integrity levels of subjects and objects based on these
connections. Unlike earlier work, it makes no assumption of the total number of
integrity levels and needs no knowledge obtained from previous attacks.

The integrity level of system subjects and objects may change in different exe-
cutions and contexts. We model integrity levels as random variables to capture
their uncertainties. Meanwhile, each observation of access behavior, involving a
pair of system subject and object, implies an ordering of their integrity levels
between them, according to “no read down” and “no write up” security policies.
This ordering of integrity level defines a joint integrity level (joint distribution)
of the subject-object pair. Thus, we build a probabilistic generative model to
capture these connections, and derive the joint distribution of the integrity lev-
els of each pair, based on observations of access behaviors of benign programs.
To obtain the integrity levels of each subject and object, we aggregate the joint
integrity level of each pair to build a pairwise Markov network. We then employ
message passing based inference on this pairwise Markov network, i.e., loopy
belief propagation, to obtain integrity levels of all subjects and objects.

Furthermore, we employ a statistical classifier to build an integrity based
access behavior model for malware detection. We conduct a set of experiments
to evaluate our model by comparing with baseline models, on a data set con-
sisting of 27,840 executions of 534 benign programs and 7,257 executions of
malicious programs. Our encouraging results demonstrate the usefulness of our
access behavior model for malware detection based on determined integrity

Probabilistic Inference on Integrity for Access Behavior 157

levels, and the feasibility of our model on determining integrity levels for system
subjects and objects.

The contributions of this paper are summarized as follows:

– Modeling integrity level of system subjects and objects under two primary
security policies. We propose a probabilistic generative model to capture the
connection between the joint integrity level of each pair of system subjects
and objects, and observations of access behaviors of benign programs, corre-
sponding to “no read down”and “no write up” security policies.

– Probabilistic graphical model on joint integrity levels of all subject-object
pairs. We build a probabilistic graphical model, pairwise Markov network, to
characterize joint integrity levels of all pairs, and leverage a message passing
based inference to further characterize integrity levels of all subjects and
objects.

– An integrity based access behavior model for malware detection. We employ
a statistical classifier, random forest, to build an access behavior model for
malware detection, based on integrity levels of accessed objects of programs.

– Extensive experimental results on a real data set demonstrate the feasibility
and capability of our model. On a data set consisting of 27,840 executions
of 534 benign programs and 7,257 executions of malicious programs, our
experimental results of malware detection exhibit a 99.88 % true positive
rate at 0.1 % false positive rate.

The paper is organized as follows. We first introduce the background and
related work in Sect. 2. We then explain our probabilistic integrity model and
inference, and our model of malware detection in Sect. 3. After demonstrating
our experimental results in Sect. 4, Sect. 5 concludes our work and states future
work.

2 Background and Related Work

2.1 Integrity Protection

Integrity protection has been demonstrated to be an effective way of protecting
modern operating systems [7,12,23,26]. It determines when information flows are
allowed based on the integrity levels of subjects and objects. One of the most
fundamental and well-known integrity protection models is the Biba model [4],
which defines policies as follows.

– A subject is allowed to read an object only if its integrity is lower than or
equal to that of the object (no read down).

– A subject is allowed to write an object only if its integrity is higher than or
equal to that of the object (no write up).

The Biba model provides security policies for integrity protection, and was
initially proposed as a mandatory access control (MAC) model in military, gov-
ernment systems. We refer to “no read down” as NRD, and “no write up” as

158 W. Mao et al.

NWU in the following paper. However, Biba is too restrictive for modern oper-
ating systems [21]. Follow-up research aimed to build a more applicable model
from two perspectives: (1) Determine the integrity level of subjects and objects.
(2) Devise policies for these integrity levels.

Prior work assigns integrity levels to subjects and objects, and devises policies
under integrity levels either manually or by rules [7,23,26]. LOMAC is a Linux
extension of Biba model. It defines two integrity levels, high and low. System
files are assigned high integrity levels and the network is assigned a low integrity
level. LOMAC changes the integrity level of subjects and objects according to
the low water mark principle, i.e., if a subject with high integrity reads an object
with low integrity, the integrity of the subject is assigned to low [7]. This pro-
vides a mechanism of capturing changes of integrity levels of subjects and objects
dynamically. However, its way of determining static integrity levels of subjects
and objects relies on limited rules. Sun et al. devise elaborate rules to assign
integrity levels, either high or low, to subjects and objects, and define policies
based on their experiences on benign and malicious information flow [26]. In
their later work, they apply integrity protection with similar policies into soft-
ware installation, and propose a Secure Software Installer to prevent untrusted
software from modifying files used by trusted software [25]. Their rules require
a large number of examples of both attacks and defenses. Although these rules
may provide an effective protection, it is expensive to devise such rules, and
difficult to make them flexible enough to deal with newly emerging attacks and
benign programs. Hsu et al. provide a framework for recovering from malicious
programs and their effects based on integrity. They focus on the NRD policy,
because they do not aim to prevent malware but only to recover from intru-
sions [12]. Mao et al. leverage graph centrality to measure the importance of
systems subjects and objects, which is treated as a proxy for integrity [20]. How-
ever, there is still a gap between the importance of graph structure and integrity
in operating systems. Beside these efforts by security researchers, one commercial
example is the Mandatory Integrity Control (MIC) in Windows Vista. It labels
the integrity levels of file objects as either Low, Medium, High, or System. As a
default, critical Vista files are labeled System, other objects are labeled Medium,
and Internet Explorer is labeled Low. MIC designs policies to enforce security
with the help of user account control (UAC) [1,11,19]. However, it highly relies
on judgment of users, which makes it unusable for ordinary users [3].

Previous integrity protection model suffer from two shortcomings. Firstly, it
is difficult to determine the integrity levels of all subjects and objects, as there are
hundreds of thousands and intricate behaviors between them. Prior work usually
manually assigns integrity levels to a small subset of subjects and objects based
on their experiences in attacks, and then uses a rule-based approach to determine
others [7,11,25,26]. Unlike prior work, which predefines the number of possible
integrity levels, we make no assumption about the number of integrity levels in
operating systems, but determine it from access behaviors of benign programs.
We aim to determine the integrity level for each subject and object, relying on
knowledge of benign programs, but not malicious programs. Secondly, manda-

Probabilistic Inference on Integrity for Access Behavior 159

tory control policies and manually devised rules cannot accommodate real-world
operation very well without the introduction of numerous exceptions in the face
of crafty attackers and diverse benign programs. We employ a statistical classi-
fier to extract policies for benign and malicious programs with respect to their
access behaviors under our integrity levels.

2.2 Behavior Based Malware Detection

Prior work on behavior based malware detection usually employs heuristic, rule-
based or statistical learning algorithms to construct behavior models or specifica-
tions for programs [2,6,8,16,17]. It successfully trades false positives off against
false negatives. However, it relies on statistical discriminations between benign
and malicious programs only, and neglects the essence of malware from a secu-
rity perspective, i.e., violations of security policies. Our method leverages the
integrity level of objects involved in access behaviors, which pays more attention
to violations of security policies of programs. Under the integrity level derived
from our model, we observe discriminations not only in statistics, but also from
a security perspective in our experimental results.

3 Methodology

3.1 Overview

In this section, we present our method for deriving integrity levels of system
subjects and objects, and malware detection. It consists of two components:
(1) Probabilistic integrity model and inference. (2) Malware detection utilizing
the integrity levels. Figure 1 illustrates the framework of our method in this
paper.

Access Behaviors
of Benign Programs I(s)

<
=
>

I(o) P(I(s), I(o))

o1

···

oi

···

om

s1

···

sn

P(
I(s 1

), I
(o 1

))

P(I(s1), I(o
i))

P(
I(s

n)
, I(

o i)
)

P(I(sn), I(om))

pMN

Integrity Levels
loopy BP

Probabilistic Generative Model

Probabilistic Graphical ModelProbabilistic Integrity Model and Inference

Access Behaviors
of Malicious Programs Feature Vectors Access Behavior

Model
Statistical Classifier

Malware Detection

Fig. 1. Framework of our method for deriving integrity levels and malware detection

Since the integrity levels of system subjects (programs) and objects (files
or registries) may change in different executions and contexts, we represent the

160 W. Mao et al.

integrity levels as random variables to capture their uncertainties in real oper-
ating systems. The first component of our method, probabilistic integrity model
and inference, consists of two steps: (i) Given all observed access behaviors,
we infer the joint integrity level (joint distribution) of each subject-object pair,
under proposed a probabilistic generative model for access behaviors. Depend-
ing on which of the two primary security policies NRD and NWU applies, each
observed access behavior implies an ordering of the integrity levels of a subject-
object pair. The possible orderings include <, =, >. Moreover, the orderings
within a subject-object pair implies its joint integrity level (joint distribution).
(ii) We aggregate the joint distributions of integrity levels for all pairs of subjects
and objects to construct a pairwise Markov network (pMN) that provides a joint
distribution of integrity levels for all subjects and objects. Our goal is to charac-
terize the distribution of the integrity levels of each subject and object from the
pMN. Furthermore, we employ loopy belief propagation (loopy BP), a message
passing approximate inference algorithm, to infer the marginal distributions of
the integrity levels for subjects and objects.

Once we characterize the integrity levels, we extract feature vectors to describe
access behaviors of programs. Resorting to a statistical classifier, we build a model
of malware detection, that accounts for the security meanings of access behaviors.
In this paper, we focus on system subjects and objects, i.e., programs, files and
registries.

3.2 Probabilistic Integrity Model

Probabilistic Integrity and Pairwise Relationship. It is not easy to deter-
mine the exact integrity level of subjects and objects. For example, due to the
varying behaviors and intents, a program may exhibit different integrity levels in
different executions and contexts. Meanwhile, accessed by these programs, the
integrity level of a file or registry may be changed according to security policies,
e.g., low/high water mark principle [7], etc. We capture these uncertainties by
modeling the integrity level of subjects and objects as random variables, and
make two primary assumptions in this paper.

Primary assumptions: (1) We assume the integrity level of each subject or
object i is a random variable I(i) ∈ {L,H}, where L and H indicate low and high
integrity levels. (2) We assume observed access behaviors of benign programs
obey security policies NRD and NWU to ensure a secure operating system.

For each subject-object pair (s, o), we denote their joint integrity level as a
random variable JI(s, o), where P (JI(s, o) = (x, y)) = P (I(s) = x, I(o) = y),
x, y ∈ {L,H}. Meanwhile, given a pair of integrity levels (x, y), we say that
x < y if x = L and y = H. Hence, there are three possible orderings between a
pair of s and o considering their integrity levels, i.e., I(s) < I(o), I(s) = I(o),
I(s) > I(o). Note that, the integrity level of s may be higher than that of o
in one execution, but lower than that of o in another execution. Therefore, we
represent the order between s and o as a random variable EI(s, o) with three
possible values, i.e., EI(s, o) ∈ {I(s) < I(o), I(s) = I(o), I(s) > I(o)}. Thus, we
obtain P (JI |EI) by P (JI |EI) = P (EI |JI)P (JI)

P (EI) ∝ P (EI |JI)P (JI) as follows.

Probabilistic Inference on Integrity for Access Behavior 161

(1) If EI is I(s) < I(o), then,

P (JI = (L,H)|EI) = 1; otherwise, 0. (1)

(2) If EI is I(s) = I(o), then,

P (JI = (L,L)|EI) = P (LL), P (JI = (H,H)|EI) = P (HH); otherwise, 0,
(2)

where P (LL) = P (JI=(L,L))
P (JI=(L,L))+P (JI=(H,H)) , P (HH) = P (JI=(H,H))

P (JI=(L,L))+P (JI=(H,H))

(3) If EI is I(s) > I(o), then,

P (JI = (H,L)|EI) = 1; otherwise, 0. (3)

Probabilistic Generative Model for Access Behavior. An access event is
an observed access behavior. We refer to system call events related to files or
registries as access events. Each access event involves a subject and an object,
and we divide all access events into two types, read and write, according to their
information flows [13].

One execution of a program s consists of a set of access events. In each
execution, there are three possible access behaviors between a subject s and an
object o, i.e., Read-only (r), Write-only (w), Read & Write (r & w) [13]. Thus,
once s accesses o, we represent the access behavior of s on o as a random variable
with three possible values, and s takes one of three possible access behaviors on
o in each execution. We denote the probabilities that s reads-only, writes-only,
and reads & writes o as Pr(s, o), Pw(s, o), and Pr&w(s, o).

Furthermore, for a program s with different executions, we assume the access
behavior of s in one execution is independent of its behavior in other exe-
cutions. We define Acc(s, o) to be the access behavior of s on o among all
executions, consisting of Nr,(s,o), Nw,(s,o) and Nr&w,(s,o), which are the num-
ber of executions that s reads-only, writes-only and reads & writes, and they
obey a multinomial distribution, i.e., Acc(s, o) = (Nr,(s,o), Nw,(s,o), Nr&w,(s,o)) ∼
Multi(N(s,o), Pr(s, o), Pw(s, o), Pr&w(s, o)), where N(s,o) is the total number of
executions of program s that accesses object o.

With our second primary assumption, the relationship between the access
behavior of s on o and their integrity levels can be interpreted as follows: If I(s) <
I(o), then s reads-only o, i.e., Pr(s, o) = 1 and Pw(s, o), Pr&w(s, o) = 0; if I(s) >
I(o), then s writes-only o, i.e., Pw(s, o) = 1 and Pr(s, o), Pr&w(s, o) = 0; if I(s) =
I(o), then s can perform any of behaviors, i.e., 0 < Pr(s, o), Pw(s, o), Pr&w(s, o) <
1. However, as mandatory security policies, there may exist violations of them in
commercial operating systems [21]. Our model allows violations of security poli-
cies by assuming the distribution of access behavior of s on o not only depends on
the order of integrity levels between them, but also on the distribution of access
behavior under violations. We assume the distribution of access behavior under
violations is identical to that under equal integrity, i.e., I(s) = I(o). Thus, the
distribution of all access behaviors is derived by combining that under order of

162 W. Mao et al.

integrity levels and that under violations, which results in a random variable T
representing the prior distribution of the distribution of access behavior. Based
on the above analysis and assumptions, we build a probabilistic generative model,
which is a hierarchical Bayesian model, for the access behavior of programs and
accessed objects with their integrity levels as shown in Fig. 2. Assumptions of
conditional probabilities in the model are presented in Eqs. (4)–(7).

AccTEID

JI

Fig. 2. A generative model for the access behavior with integrity levels

Equation (4) presents a Dirichlet prior D of the integrity ordering to deal
with the lack of a sufficient number of observations in the data set. Equation (5)
indicates the categorical distribution of the integrity ordering, where the proba-
bility of I(s) < I(o), I(s) = I(o), and I(s) > I(o) are d1, d2, and d3 respectively.
Before presenting the multinomial distribution of access behaviors with para-
meters t1, t2, and t3 in Eq. (7), Eq. (6) presents the prior T of this multinomial
distribution conditioning on the integrity ordering, which aims to model access
behaviors by combining both the security policies, i.e., NRD and NWU, and
potential violations in commercial operating systems. Combining with the rela-
tionship between EI and JI as shown in Eqs. (1)–(3), this generative model pro-
vides a way to model the access behavior with joint integrity level of subjects and
objects. Moreover, it offers a way to infer the joint integrity level JI(s, o) given
observations of access behaviors, which is presented in the following subsection.

D = (d1, d2, d3) ∼ Dir(α1, α2, α3), (4)
EI |D ∼ Cat(3, d1, d2, d3), (5)

T = (t1, t2, t3)|EI ∼

⎧
⎪⎨

⎪⎩

Dir(1 + β1, β2, β3), if I(s) < I(o),
Dir(β1, β2, β3), if I(s) = I(o),
Dir(β1, 1 + β2, β3), if I(s) > I(o),

(6)

Acc|T ∼ Multi(N, t1, t2, t3). (7)

Probabilistic Graphical Model on Integrity. Our goal is to characterize the
integrity level of each subject and object by marginal distributions, i.e., P (I(s))
and P (I(o)). To achieve this goal, we need to aggregate the joint integrity levels
of all pairs of subjects and objects, and calculate the marginal integrity distribu-
tion for subjects and objects. We achieve this goal using a probabilistic graphical
model, or more accurately, pairwise Markov network (pMN). Pairwise Markov
networks are the simplest subclass of Markov networks. A pMN is an undirected

Probabilistic Inference on Integrity for Access Behavior 163

probabilistic graphical model G(V,E,Ψ), where V is a set of nodes representing
random variables, E is a set of edges representing relationships between nodes
with factors defined in Ψ, each edge is associated with a factor over a pair of
nodes [14]. In our problem, the pMN is a bipartite graph, where each node rep-
resents the integrity level of a subject or object, a subject is connected with an
object if there exists an observed access event associated with them. There is
no edge between two subjects or two objects. Meanwhile, we encode the joint
integrity level JI for each pair of subject and object into each edge, the factor on
each edge is joint integrity level JI . Figure 3 illustrates an example of a pMN con-
sisting of four pairs of subjects and objects. Since the bipartite graph constructed
from a real data set contains loops, we compute an approximate inference on the
integrity level of each subject and object as shown in the following subsection.

R1P2F2P1F1
JI(P1,F1) JI(P1,F2) JI(P2,F2) JI(P2,R1)

Fig. 3. An example of pairwise Markov network

3.3 Probabilistic Inference

Inference on Joint Integrity Level of Each Pair. Under the generative
model shown in Fig. 2, the Bayes estimator P̂E for the integrity ordering given
access events is

P̂E = P (EI |Acc) =
∑

D,T

P (EI ,D, T |Acc),∝
∑

D,T

P (Acc|T)P (T |EI)P (EI |D)P (D),

=
∑

T

P (Acc|T)P (T |EI)
∑

D

P (EI |D)P (D). (8)

More specifically, the probabilities of all possible orderings are

P̂EI
(<) = P (< |Acc) =

α1

α1 + α2 + α3

(β1 + β2 + β3)(Nr + β1)
β1(N + β1 + β2 + β3)

/Σ, (9)

P̂EI
(=) = P (= |Acc) =

α2

α1 + α2 + α3
/Σ, (10)

P̂EI
(>) = P (> |Acc) =

α3

α1 + α2 + α3

(β1 + β2 + β3)(Nw + β2)
β2(N + β1 + β2 + β3)

/Σ, (11)

where Σ = α1
α1+α2+α3

(β1+β2+β3)(Nr+β1)
β1(N+β1+β2+β3)

+ α2
α1+α2+α3

+ α3
α1+α2+α3

(β1+β2+β3)(Nw+β2)
β2(N+β1+β2+β3)

.
More details of the derivation are presented in Appendix.

Our estimator P̂ (JI(s, o)) for the joint distribution of integrity levels is,

P̂ (JI(s, o)) = P (JI(s, o)|Acc) =
∑

EI(s,o)

P (JI(s, o)|EI(s, o))P (EI(s, o)|Acc).

(12)

164 W. Mao et al.

Inference on Integrity Level of Subject and Object. There exist loops in
our pairwise Markov network. Hence, the estimation of marginal distributions
for such graphs is known to be NP-complete. Loopy belief propagation provides
an approximate and efficient way of inference based on message passing. It has
proven to be a successful at inferring on marginal distributions over loopy graph
in various domains, such as object tracking in computer vision, error-correcting
code, etc [14]. In particular, researchers have applied loopy belief propagation to
solve problems in security area by modeling them as classification problems [18,
29]. We apply this method to our problem to infer the probabilistic integrity
level of each subject and object.

R1P2F2P1F1

mF1P1(I(P1))

mP1F1(I(F1))

mP1F2(I(F2))

mF2P1(I(P1))

mF2P2(I(P2))

mP2F2(I(F2))

mP2R1(I(R1))

mR1P2(I(P2))

Fig. 4. Message passing of loop belief propagation on the pMN shown in Fig. 3

The loopy belief propagation works as follows. Each node sends messages to
its adjacent nodes, as shown in Fig. 4, according to

mij(xj) =
∑

xi∈{low,high}
πi(xi)Ψij(xj |xi)

∏

k∈N(i)\j

mki(xi), (13)

where mij(xj), i ∈ N(j) indicates the message from adjacent nodes of node j,
πi(xi) is the prior of node i. Ψij(xi|xj) is the conditional probability of integrity
level of xi given that of xj , which is derived as follows.

Ψij(xi|xj) ∝ P (xi, xj) = P̂ (JI(xi, xj)) =
∑

EI (xi,xj)

P (J(xi, xj)|EI(xi, xj))P (EI(xi, xj)|Acc).

(14)

Substituting Eqs. (1)–(3), (9)–(11) into Eq. (14), we can easily derive the con-
ditional probability Ψij(xi|xj). The message mij(xj) reveals that how the node
i thinks about the level of node j. In each iteration, the message of all nodes
will be updated. The order of message updating is not important. The iteration
stops when the message of nodes converge, i.e., there is no significant changes of
messages between iterations, or when a sufficient number of iterations is reached.
Then, we compute the marginal distribution of integrity for each node, a.k.a. the
belief of node, as follows.

bi(xi) = Cπi(xi)
∏

k∈N(i)

mki(xi), (15)

where C is a normalization constant to ensure that the integrity probabilities add
up to 1, i.e.,

∑
xi∈{L,H} bi(xi) = 1. Here, bi(L) and bi(H) indicate probabilities

that i has low and high integrity level respectively.

Probabilistic Inference on Integrity for Access Behavior 165

3.4 Malware Detection

There exist violations in commercial modern operating systems under NRD and
NWU security policies [21]. In order to accommodate violations, we employ a
statistical learning technique to extract more adaptive security policies for mal-
ware detection. Before we describe this technique, we first show how to recover
the integrity level of subjects and objects under the probabilistic notation.

Integrity Level. The integrity levels of subjects and objects are recovered by
taking into account the probability that the subject/object has high integrity,
i.e., P (I(i) = H), which is the belief of a subject/object bi(H). We sort subjects
and objects by their beliefs of bi(H) in decreasing order, and assign the integrity
level to all subjects and objects from the highest to the lowest. We treat the
subjects and objects with same beliefs as having the same integrity level. The
ranking positions under the sort are treated as the integrity levels of subjects
and objects.

Malware Detection. For program i, we create a feature vector Xi for it. The
feature vector is similar to [20], but with column normalization. More specifically,
Xi is

Xi =
[
x(file,read)

i ,x(file,write)
i ,x(reg,read)

i ,x(reg,write)
i

]
, (16)

x(k,l)
i =

[
x

(k,l)
i1 , ..., x

(k,l)
ir , ..., x

(k,l)

iL(k)

]
. (17)

Here x
(k,l)
ir is the fraction of objects of type k ∈ {file, registry} accessed under

operation l ∈ {read,write} at integrity level r. x(k,l)
i is the vector of these frac-

tions at all integrity levels. L(k) is the total number of integrity levels of objects
of type k.

Once we create feature vectors for both benign and malicious processes,
we train a statistical classifier to build an access behavior model for malware
detection.

3.5 Time Complexity

The main time complexity of malware detection model consists of two parts:
(1) Integrity determination. (2) Malware classification.

To analyze the time complexity of the first part, we assume the number of
edges is E in our pairwise Markov network, which corresponds to the number
of subject-object pairs. Our model employ loopy belief propagation, which is a
iterative algorithm running in O(4E(s+1)), where s is the number of iterations.
In each iteration, we need to calculate messages on both directions of each edge,
and each direction contains two types of messages, i.e., L and H. That is the
reason of the constant before the number of edges. We observe s � E1. Hence,
1 In fact, we find s is about 7 in our experiments.

166 W. Mao et al.

we can say, our probabilistic integrity model run in the linear time to the number
of edges in our pairwise Markov network, i.e., O(E).

The time complexity of malware classification depends on the statistical clas-
sifier we employ, we analyze it in our experimental results.

4 Experimental Evaluation

4.1 Evaluation Methodology

To evaluate our model, we design a set of experiments to empirically answer three
questions: (1) Do the determined integrity levels support malware detection from
a perspective of security policies? (2) What is the performance of our malware
detection model? (3) What is the running time of our probabilistic integrity
model in experiments?

Experimental Settings. Benign programs: We employ Process Monitor [22]
to collect the access behaviors of programs under eight different users’ normal
usages without interfering with their daily usages, which run on systems run-
ning Microsoft Windows XP SP3. Among eight users, two of them are male
undergraduates who were working on their final year projects, and six others are
graduates consisting of one female student and five male students, whose behav-
iors include writing, programing, web surfing, etc. The data collection takes place
over periods of 7 to 16 days, and we finally obtain access behaviors of 27,840
executions from 534 benign programs.

Malicious programs: We download a collection of 270 K malware samples
from VxHeaven, which is a website providing information about viruses [30]. We
randomly select 9 K samples, run them in our sandbox which is with Windows
XP SP3 on VMWare without network connection, and monitor their behaviors
with Process Monitor. After running each sample for five minutes, we revert the
virtual machine to a clean snapshot so that different samples do not interfere
with each other. Since not all samples exhibit file or registry access activities, we
finally obtain access behaviors of 7,257 malware samples. The families of final
malware samples are listed in Table 1.

Table 1. Number of malware samples in each family

Family Samples Family Samples Family Samples Family Samples

Backdoor 25 Trojan-Banker 75 Trojan-Clicker 37 Trojan-

PSW

216

Trojan-Spy 768 Trojan-

Dropper

128 Trojan-

GameThief

278 Trojan-IM 3

Trojan-

Mailfinder

5 Trojan-

Ransom

2 Trojan.Win32 575 Virus.BAT 1

Virus.JS 3 Virus.MSIL 18 Virus.MSWord 3 Virus.Multi 24

Virus.NSIS 1 Virus.Win32 2527 Virus.WinHLP 5 Worm.BAT 12

Worm.MSIL 4 Worm.Win32 2547

Probabilistic Inference on Integrity for Access Behavior 167

Training and testing sets: Because the executions of benign programs are
collected from eight users, we set up eight experiments. In each experiment, we
select the executions of benign programs from one user as a benign testing set,
and those from seven other users as benign training set. We infer the probabilistic
integrity level of objects from the benign training set. Meanwhile, we randomly
select 80 % malware samples as a malicious training set and the remaining ones
as a malicious testing set. We repeat the experiment 20 times. The results of 20
repetitions are averaged and illustrated in the following subsections.

Hyperparameters: To avoid priors dominating the data in our generative
model as shown in Eqs. (4) and (6), we choose Jeffreys priors, i.e., α1, α2, α3,
β1, β2, and β3 are equal to 0.5, which are non-informative priors and invariant
under transformation [9].

New objects: It is very common to come across new objects which do not
appear in the training set. For example, objects are newly created by processes
in the testing set. We employ a heuristic method to assign probabilistic integrity
level to new objects, which is similar to the approach in [20], but from a prob-
abilistic perspective. More specifically, we assign probabilistic integrity level to
new objects according to the directory it is stored in. The probability that the
new object has high integrity level equals to the probability that its parent
directory has high integrity level, which equals to the highest probability that
the child objects of the parent directory have high integrity level.

Statistical classifier : We employ random forests, implemented in Scikit-
learn [24], as our classifier. Random forests is an ensemble learning method for
classification (and regression) that operate by constructing a multitude of deci-
sion trees at training time. It not only exhibits the same advantage of decision
trees, but also overcomes the main disadvantage of decision trees, namely over-
fitting [5]. Moreover, we observe that the results are comparable in performance
to other classifiers, e.g., k-nearest neighbors, logistic regression, and support vec-
tor machine. We do not demonstrate them in this paper considering page limits.

Baseline. We compare our method to two baseline models for determining
integrity levels. The first baseline model (B1) strictly obeys NRD and NWU,
which forms a lattice constructed from access behaviors of benign programs. The
lattice consists of partial orders of integrity levels between subjects and objects
determined by observed access events under NRD and NWU. The layers in the
hierarchical structure of the lattice indicate integrity levels. Figure 5 illustrates
the lattice constructed from our data set of benign programs. We observe four
layers in this hierarchical structure, which indicates four possible integrity levels
of subjects and objects. The lattice is shown as integrity levels increasing from
bottom to top. We employ B1 because it is a mandatory integrity protection,
which relies solely on NRD and NWU security policies.

The second baseline model (B2) is the importance based malware detec-
tion model introduced in [20]. It assigned importance values to all subjects and
objects by examining their structures in a dependency network, and employed
statistical classifiers to detect malware based on the assigned importance values

168 W. Mao et al.

Fig. 5. The lattice constructed from access events of benign programs in our data set.
GSCC stands for giant strongly connected component, GIN represents in-neighbors of
the GSCC but without any edge from the GSCC, and GOUT represents out-neighbors
of the GSCC but without any edge to the GSCC. Each small node indicates either a
subject (program) or an object (file or registry).

of objects. The reason for choosing B2 is that this paper has similar goal with
that, although there is a gap between importance values and integrity levels.

4.2 Integrity Levels and Security Policies

To explore the appropriateness of the derived integrity levels, we examine the dif-
ferences exhibited between benign and malicious programs from the perspective
of their compliance to security policies NRD and NWU. That is, we investigate
the violations of security policies for benign and malicious processes based on the
derived integrity levels. We define a violation of NRD or NWU when a process
reads an object with low integrity level, and writes an object with high integrity
level.

Let p be a process, Or be the set of reading objects of p, Ow be the set
of writing objects of p, or ∈ Or, ow ∈ Ow. Strictly, according to the NRD and
NWU policies, the integrity levels of p, or and ow should satisfy I(p) ≤ I(or) and
I(p) ≥ I(ow), i.e., I(p) − I(or) ≤ 0 and I(ow) − I(p) ≤ 0. Because of difficulty
in determining I(p), we employ a proxy I(ow) − I(or) ≤ 0, by summing up the
two criteria, to examine violations. A violation happens to the process p when
I(ow) − I(or) > 0. We refer to a violation as a pair of reading and writing
objects where the integrity level of the reading object is lower than that of
the writing object. If the determined integrity levels of objects are correct, few

Probabilistic Inference on Integrity for Access Behavior 169

violations would appear in benign processes, while many violations would appear
in malicious processes.

We examine violations in processes by two simple indicators based on our
proxy for violation: (1) Fraction of violation. In each execution, we count the
fraction of violations among all pairs of reading objects and writing objects,
e.g.,

∑
or,ow

1(I(ow)−I(or)>0)

|Or||Ow| , where 1() is an indicator function, |Or| and |Ow|
are the sizes of set Or and Ow. (2) Largest violation. This refers to the difference
between the lowest integrity level of all reading objects and the highest integrity
level of all writing objects in one execution, e.g., maxor,ow

I(ow) − I(or). These
two simple indicators demonstrate why the integrity levels of objects are useful to
detect malware from a perspective of security policies. Figure 6 exhibits fraction
of violations, while Fig. 7 illustrates largest violations, for benign and malicious
processes w.r.t. integrity levels of access objects determined by baselines and our
model, in terms of box plots. These results are obtained from all testing sets of
eight experiments which are presented in the above subsection. A box plot splits
these results into quartiles. The interquartile range box represents the middle
50 % of the results. The whiskers, extending from either side of the box, represent
the ranges for the bottom 5 % and the top 5 % of the results.

(a) Fraction of violation on file objects (b) Fraction of violation on registry objects

Fig. 6. Fraction of violation under integrity levels from baseline and our models

In Fig. 6(a), as we expected, there are fewer violations in benign processes
than in malicious processes, w.r.t. integrity levels of accessed file objects, under
all three models. Using the Kolmogorov–Smirnov (KS) test, we find significant
differences (p � 10−4) between benign and malicious processes under all three
models in Fig. 6(a). The KS test is a nonparametric test to evaluate whether two
samples come from the same population. These results indicate each model can
be used to determine integrity levels. We also find that our model is more able
to discriminate between benign and malicious processes than the two baseline
models, with respect to integrity levels of accessed file objects. This indicates
that our model does a better job at determining integrity levels for file objects.

170 W. Mao et al.

With respect to the integrity levels of accessed registry objects, we do not
observe obvious difference between benign and malicious processes in Fig. 6(b),
although significant differences (p � 10−4) are found under KS test. There
are two possible reasons: (1) All models fail to determine the integrity levels of
registry objects. (2) Benign processes do not obey NRD and NWU policies when
they access registry objects.

(a) Largest violation on file objects (b) Largest violation on registry objects

Fig. 7. Largest violation under integrity levels from baseline and our models

Moreover, we explore the difference between benign and malicious processes
according to the largest violation. Figure 7(a) illustrates the largest violations of
benign and malicious processes on file objects, while Fig. 7(b) illustrates those
on registry objects. Since the total number of integrity levels in B1 is much less
than those in other two models, we show the largest violation in logarithmic
scale. Similar results are observed in Fig. 7(a) and (b) compared to Fig. 6(a) and
(b). Meanwhile, we find significant differences (p � 10−4) under the KS test in
all cases. As shown in Fig. 7(a), our model achieves the greatest discrimination
between benign and malicious processes according to integrity levels of accessed
file objects. It implies the ability of our model for malware detection even with
camouflages. However, we find similar failures of all three models in distinguish-
ing malicious programs from benign programs, which due to similar possible
reasons as we aforementioned.

We observe obvious differences between benign and malicious processes by
examining either of these two indicators. However, the fraction of violation may
suffer from mimicry or camouflaged attacks, where malicious processes run under
the cover of some benign processes [10,15]. For example, if malware deliberately
read many file objects with the highest integrity levels, then the numerator in the
fraction of violations will be overwhelmed by the denominator in the fraction,
which leads to as small fraction of violations as benign processes. Compared
with the fraction of violation, the indicator of largest violation is much more
robust. However, one potential failure of the largest violation indicator is false

Probabilistic Inference on Integrity for Access Behavior 171

positive. There are benign processes which modify objects with high integrity
level while read objects with low integrity level. Usually, these processes are some
special processes, such as system services. We can include them in a whitelist,
and reduce the false positives of the largest violation indicator.

4.3 Detection Results

Although simple indicators, e.g., fraction of violations, largest violation, etc.,
provide us ways of understanding why a model works, they usually fail to
achieve promising performance on malware detection. As presented in Sect. 3.4,
we employ random forests to extract adaptive security policies under determined
integrity levels and build a model for malware detection. With three models for
determining integrity levels, we evaluate their performance on malware detection
with the ROC curve and the area under ROC curve (AUC). We train models
with the benign and malicious training sets, and evaluate them on the benign
and malicious testing sets, as stated in Sect. 4.1.

Table 2 exhibits average true positive rates (TPRs) of three models at specific
false positive rates (FPRs) among all experiments. We choose these four FPRs,
because they are four representative FPRs to evaluate a method of malware
detection in practice. Meanwhile, we emphasis the most outperformed results of
our models compared with baseline models, i.e., 99.88 % TPF at 0.1 % FPR, on
average. In most cases, our model achieves better performance than two baseline
models.

Table 2. Performance under different models of determining integrity level

Model FPR
True Positive Rate (TPR) Average

TPR

B1

0% 0%
0.1% 70.30%
0.5% 89.24%
1.0% 93.76%

B2

0% 83.11%
0.1% 93.94%
0.5% 99.21%
1.0% 99.80%

Our

0% 87.05%
0.1% 99.98% 99.98% 99.95% 99.89% 99.87% 99.94% 99.61% 99.85% 99.88%
0.5% 99.97%
1.0%

U1 U2 U3 U4 U5 U6 U7 U8
0% 0% 0% 0% 0% 0% 0% 0%

92.09% 83.59% 70.30% 76.08% 53.35% 79.79% 64.10% 43.10%
96.75% 91.75% 92.55% 88.50% 86.18% 90.31% 90.98% 76.89%
98.09% 96.64% 95.18% 92.52% 91.85% 91.54% 94.19% 90.08%

99.52% 82.34% 97.58% 98.22% 88.16% 99.40% 0% 99.73%
100% 90.02% 99.27% 99.85% 92.92% 99.53% 70.21% 99.73%
100% 99.60% 99.86% 100% 99.57% 99.66% 95.32% 99.73%
100% 99.93% 100% 100% 99.86% 99.66% 99.16% 99.86%

99.45% 99.49% 99.51% 97.15% 98.30% 99.71% 4.48% 98.31%

99.99% 100% 99.98% 99.98% 99.97% 99.98% 99.89% 99.93%
100% 100% 99.98% 99.99% 99.99% 99.99% 99.94% 99.97% 99.98%

To further compare the performance of the three models, we conduct a
Wilcoxon rank-sum test to evaluate whether one model significantly outperforms
the other in terms of AUC. The Wilcoxon signed-rank test is a non-parametric
statistical hypothesis test used when comparing two related samples to assess
whether their population mean ranks differ. Table 3 illustrates the test statistic
and its significance between each pair of models. A negative value of the test
statistic indicates that the first model performs worse than the second model
shown at the beginning of the row.

172 W. Mao et al.

Table 3. Results of Wilcoxon rank-sum tests on AUCs of different models

Models U1 U2 U3 U4 U5 U6 U7 U8 All

B1 v.s.

B2

-5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -15.47**

B1 v.s.

Our

-5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -5.41** -15.47**

B2 v.s.

Our

-2.89* -5.41** -0.14 (0.89) -0.81 (0.41) -2.84* -0.77 (0.44) -3.68** -4.25** -5.44**

* Indicates significance under 0.01.

** Indicates significance under 0.0001.

p-value is shown in parenthesis if it is not significant under these two levels.

In Table 3, from column U1 to U8, we perform hypothesis testing on results
of 20 runnings within each experiment. The last column presents the result of
hypothesis testing on results of runnings of all experiments. We observe signifi-
cant improvements of our model compared with baseline models.

Furthermore, Fig. 8 illustrates average ROCs of eight experiments under our
probabilistic integrity level, which provides better understandings of the perfor-
mance.

Fig. 8. Average ROC of eight experi-
ments under our model

Fig. 9. Scatter plot of running time in
seconds against problem size in thou-
sands

4.4 Running Time

The time complexity of the employed classifier, random forests, has been well
studied, which is, mn log n, where m is the number of trees in random forests,
we find m = 10 is optimal in our experiments, n is the number of processes,
a.k.a. data points [5]. Hence, we do not present its running time.

We explore the running time of our probabilistic integrity model, since the
running time of loopy belief propagation in practices varies in different problems.
We vary the problem size, which is the number of subject-object pairs, by ran-
domly selecting different portions of subjects and their involving subject-object

Probabilistic Inference on Integrity for Access Behavior 173

pairs. Figure 9 illustrates a scatter plot of running time in seconds against prob-
lem size in thousands, and its fitting with linear regression. We observe strongly
linear relationship, supported by significant coefficients and R2 = 0.93 in the lin-
ear regression, between the running time and the problem size. This result verifies
the linear time complexity of our probabilistic integrity model, and demonstrates
the feasibility of a runtime malware detection.

5 Conclusion and Future Work

In spite of considerate effort by security researchers and engineers, it has been
demonstrated that attackers move faster than defenders. This paper presents
a probabilistic model on access behaviors of programs, and integrity levels of
programs, files and registries. We employ probabilistic inferences to determine
integrity levels of these system subjects and objects. Combining with a statistical
classifier, we build a integrity based access behavior model for malware detection.
The encouraging experimental results indicate the feasibility and usefulness of
our model. The linear time complexity of our probabilistic integrity model is both
proofed by our theoretical analysis, and verified by our experimental results.

Our model can be extended to subject and objects in other granularities,
which are constrained by similar security policies. Meanwhile, our model can
be adapted to determine levels of other security attributes, e.g., confidentiality,
according to corresponding security policies, e.g., Bell-LaPadula model.

We believe our probabilistic integrity model will be enhanced, when acquiring
knowledge from both benign and malicious programs. Thus, building a model
to combine access behaviors of both benign and malicious programs will be our
future work.

Acknowledgments. We would like to thank our shepherd, Manos Antonakakis, and
the anonymous reviewers for their insightful comments that greatly helped improve
the presentation of this paper. This work is supported by NFSC (61175039, 61221063,
61403301), 863 High Tech Development Plan (2012AA011003), Research Fund for Doc-
toral Program of Higher Education of China (20090201120032), International Research
Collaboration Project of Shaanxi Province (2013KW11) and Fundamental Research
Funds for Central Universities (2012jdhz08). Any opinions, findings, and conclusions
or recommendations expressed in this material are the authors’ and do not necessarily
reflect those of the sponsor.

Appendix- Derivation of Eq. (8)

P (EI |Acc) ∝ ∑
T P (Acc|T)P (T |EI)

∑
D P (EI |D)P (D), where

∑

D

P (EI |D)P (D) =

⎧
⎪⎨

⎪⎩

∑
D d1P (D) = ED(d1) = α1

α1+α2+α3
, if I(s) < I(o),

∑
D d2P (D) = ED(d2) = α2

α1+α2+α3
, if I(s) = I(o),

∑
D d3P (D) = ED(d3) = α3

α1+α2+α3
, if I(s) > I(o).

(18)
And then,

174 W. Mao et al.

(1.) If I(s) < I(o):

P (< |Acc) ∝ α1

α1 + α2 + α3
Δ

∫

T

tNr
1 tNw

2 tNr&w
3

tβ1
1 tβ2−1

2 tβ3−1
3

B(1 + β1, β2, β3)
dT,

=
α1

α1 + α2 + α3
Δ

B(Nr + β1 + 1, Nw + β2, Nr&wβ3)
B(1 + β1, β2, β3)

,

=
α1

α1 + α2 + α3
Δ

β1 + β2 + β3

β1

Nr + β1

N + β1 + β2 + β3
Ω, (19)

where Δ = Γ(N+1)
Γ(Nr+1)Γ(Nw+1)Γ(Nr&w+1) , Ω = B(Nr+β1,Nw+β2,Nr&w+β3)

B(β1,β2,β3)
, and

B(β1, β2, β3) = Γ(β1)Γ(β2)Γ(β3)
Γ(β1+β2+β3)

.
(2.) If I(s) = I(o):

P (= |Acc) ∝ α2

α1 + α2 + α3
Δ

∫

T

t
Nr
1 t

Nw
2 t

Nr&w
3

t
β1−1
1 t

β2−1
2 t

β3−1
3

B(β1, β2, β3)
dT =

α2

α1 + α2 + α3
ΔΩ.

(20)
(3.) If I(s) > I(o):

P (> |Acc) ∝ α3

α1 + α2 + α3
Δ

∫

T

tNr
1 tNw

2 tNr&w
3

tβ1−1
1 tβ2

2 tβ3−1
3

B(β1, β2 + 1, β3)
dT,

=
α3

α1 + α2 + α3
Δ

β1 + β2 + β3

β2

Nw + β2

N + β1 + β2 + β3
Ω.

(21)

Summing up Eqs. (19)–(21), we derive the posterior distribution of EI given Acc,
i.e., P (EI |Acc), as shown in Eqs. (9)–(11).

References

1. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons (2008)

2. Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting malicious
software by monitoring anomalous windows registry accesses. In: Wespi, A., Vigna,
G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, p. 36. Springer, Heidelberg (2002)

3. Bellovin, S.M.: Security and usability: windows vista, July 2007. https://www.cs.
columbia.edu/smb/blog/2007-07/2007-07-13.html

4. Biba, K.J.: Integrity considerations for secure computer systems. ESD-TR 76–372,
MITRE Corp. (1977)

5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
6. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.:

A quantitative study of accuracy in system call-based malware detection. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 122–132. ACM (2012)

7. Fraser, T.: Lomac: low water-mark integrity protection for cots environments. In:
IEEE Symposium on Security and Privacy (S&P), pp. 230–245 (2000)

https://www.cs.columbia.edu/ smb/blog/2007-07/2007-07-13.html
https://www.cs.columbia.edu/ smb/blog/2007-07/2007-07-13.html

Probabilistic Inference on Integrity for Access Behavior 175

8. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-
optimal malware specifications from suspicious behaviors. In: IEEE Symposium on
Security and Privacy (S&P), pp. 45–60 (2010)

9. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis, vol. 2.
Taylor & Francis (2014)

10. Gu, Z., Pei, K., Wang, Q., Si, L., Zhang, X., Xu, D.: LEAPS: detecting cam-
ouflaged attacks with statistical learning guided by program analysis. In: 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE (2015)

11. How the integrity mechanism is implemented in Windows Vista (2014). http://
msdn.microsoft.com/en-us/library/bb625962.aspx,

12. Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the future: a framework
for automatic malware removal and system repair. In: 22nd Annual Computer
Security Applications Conference, ACSAC 2006, pp. 257–268. IEEE (2006)

13. King, S.T., Chen, P.M.: Backtracking intrusions. ACM Trans. Comput. Syst. 23,
51–76 (2005)

14. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

15. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: Proceedings of the 14th conference on
USENIX Security Symposium, vol. 14, pp. 11–11. USENIX Association (2005)

16. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system
call arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol.
2808, pp. 326–343. Springer, Heidelberg (2003)

17. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer:
using system-centric models for malware protection. In: Proceedings of the 17th
ACM conference on Computer and Communications Security (CCS), pp. 399–412.
ACM (2010)

18. Manadhata, P.K., Yadav, S., Rao, P., Horne, W.: Detecting malicious domains via
graph inference. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS,
vol. 8712, pp. 1–18. Springer, Heidelberg (2014)

19. Mandatory Integrity Control (2014). http://msdn.microsoft.com/en-us/library/
windows/desktop/bb648648

20. Mao, W., Cai, Z., Guan, X., Towsley, D.: Centrality metrics of importance in access
behaviors and malware detections. In: Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC 2014). ACM (2014)

21. Mao, Z., Li, N., Chen, H., Jiang, X.: Combining discretionary policy with manda-
tory information flow in operating systems. ACM Trans. Inf. Syst. Secur. (TISSEC)
14(3), 24 (2011)

22. Mark Russinovich, B.C.: Process monitor (2014). http://technet.microsoft.com/
en-us/sysinternals/bb896645

23. Muthukumaran, D., Rueda, S., Talele, N., Vijayakumar, H., Teutsch, J., Jaeger, T.,
Edwards, N.: Transforming commodity security policies to enforce Clark-Wilson
integrity. In: Proceedings of the 28th Annual Computer Security Applications Con-
ference (ACSAC 2012). ACM (2012)

24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

25. Sun, W., Sekar, R., Liang, Z., Venkatakrishnan, V.N.: Expanding malware defense
by securing software installations. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol.
5137, pp. 164–185. Springer, Heidelberg (2008)

http://msdn.microsoft.com/en-us/library/bb625962.aspx
http://msdn.microsoft.com/en-us/library/bb625962.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb648648
http://msdn.microsoft.com/en-us/library/windows/desktop/bb648648
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://technet.microsoft.com/en-us/sysinternals/bb896645

176 W. Mao et al.

26. Sun, W., Sekar, R., Poothia, G., Karandikar, T.: Practical proactive integrity
preservation: a basis for malware defense. In: IEEE Symposium on Security and
Privacy (S&P), pp. 248–262 (2008)

27. Symantec. Internet Security Threat Report, April 2015. https://www4.symantec.
com/mktginfo/whitepaper/ISTR/21347932 GA-internet-security-threat-report-
volume-20-2015-social v2.pdf

28. Sze, W.-K., Sekar, R.: A portable user-level approach for system-wide integrity
protection. In: Proceedings of the 29th Annual Computer Security Applications
Conference (ACSAC 2013), pp. 219–228. ACM (2013)

29. Tamersoy, A., Roundy, K., Chau, D.H.: Guilt by association: large scale malware
detection by mining file-relation graphs. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge Discovery and Data Mining, pp. 1524–1533.
ACM (2014)

30. VXHeaven (2010). http://vx.netlux.org/

https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
http://vx.netlux.org/

Counteracting Data-Only Malware
with Code Pointer Examination

Thomas Kittel(B), Sebastian Vogl, Julian Kirsch, and Claudia Eckert

Technische Universität München, München, Germany
{kittel,vogls,kirschju,eckert}@sec.in.tum.de

Abstract. As new code-based defense technologies emerge, attackers
move to data-only malware, which is capable of infecting a system with-
out introducing any new code. To manipulate the control flow without
code, data-only malware inserts a control data structure into the system,
for example in the form of a ROP chain, which enables it to combine
existing instructions into a new malicious program. Current systems try
to hinder data-only malware by detecting the point in time when the mal-
ware starts executing. However, it has been shown that these approaches
are not only performance consuming, but can also be subverted.

In this work, we introduce a new approach, Code Pointer Exami-
nation (CPE), which aims to detect data-only malware by identifying
and classifying code pointers. Instead of targeting control flow changes,
our approach targets the control structure of data-only malware, which
mainly consists of pointers to the instruction sequences that the malware
reuses. Since the control structure is comparable to the code region of
traditional malware, this results in an effective detection approach that
is difficult to evade. We implemented a prototype for recent Linux ker-
nels that is capable of identifying and classifying all code pointers within
the kernel. As our experiments show, our prototype is able to detect
data-only malware in an efficient manner (less than 1 % overhead).

Keywords: VMI · Introspection · CFI · CPI · CPE · Pointer examina-
tion · OS Integrity · Linux · kernel · Data-only malware

1 Introduction

Malware is without doubt one of the biggest IT security threats of our time. This
is especially true for kernel-level malware, which runs at the highest privilege
level and is thus able to attack and modify any part of the system, including the
operating system (OS) itself. However, even kernel-level malware has a weak-
ness that is well-suited for its detection: in order to execute, the malware has
to load its malicious instructions onto the victim’s system and thereby effec-
tively change its codebase. This makes current kernel-level malware vulnerable
to code integrity-based defense mechanisms, which prevent or detect malicious
changes to the code regions of the system. It is not surprising that validating

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 177–197, 2015.
DOI: 10.1007/978-3-319-26362-5 9

178 T. Kittel et al.

the integrity of the system’s code regions became a key approach to counter-
act malware. In the meantime, commodity OSs employ a multitude of mech-
anisms that protect the system’s codebase (e.g. W⊕X, secure boot, etc.) and
researchers presented sophisticated Code Integrity Validation (CIV) frameworks
that are capable of reliably and efficiently detecting malicious changes to the
code regions of userspace programs [20] as well as modern OS kernels [17].

As code integrity mechanisms become more and more widespread, attackers
are forced to find new ways to infect and control a system. A likely next step
in malware evolution is thereby data-only malware, which solely uses instruc-
tions that already existed before its presence to perform its malicious compu-
tations [14]. To accomplish this, data-only malware employs code reuse tech-
niques such as return-oriented programming (ROP) or jump-oriented program-
ming (JOP) to combine existing instructions into new malicious programs. This
approach enables the malware form to evade all existing code-based defense
approaches and to persistently infect a system without changing its codebase [30].
Despite this capability and the substantial risk associated with it, there only exist
a handful of countermeasures against data-only malware so far, and those can
often be easily circumvented [6,9,13,24].

In this paper, we explore a new approach to the detection of data-only mal-
ware. The key idea behind this approach is to detect data-only malware based
on “malicious” pointers to code regions. For simplicity we refer to them as code
pointers. Similar to traditional malware, data-only malware has to control which
reused instruction sequence should be executed when. To achieve this, data-only
malware makes use of a control structure that contains pointers to the instruc-
tions that should be (re)used. This control structure can essentially be seen as
the “code region” of the data-only program that the malware introduces. By
identifying malicious code pointers in memory, we in essence aim to apply the
idea of code integrity checking to the field of data-only malware by detecting
malicious control data within the system. For this purpose, we introduce the
concept of Code Pointer Examination (CPE).

The idea behind CPE is to identify and examine each possible code pointer
in memory in order to classify it as benign or malicious. This is essentially a
two-step process: In the first step, we iterate through the entire memory of
the monitored machine with a byte by byte granularity in order to identify all
code pointers. In the second step, we classify the identified code pointers based
on heuristics. As our experiments showed, this approach results in an effective
and high-performance (less than 1 % overhead) detection mechanism that can
detect data-only malware and is well-suited for live monitoring as well as forensic
investigations.

Since the OS is the integral part of the security model that is nowadays used
on most systems, we focus our work primarily on the Linux kernel. We chose this
OS, since it is open and well documented, which makes it easier to understand
and reproduce our work. However, the concepts and ideas that we present are
equally applicable to userspace applications and other OSs such as Windows.

Counteracting Data-Only Malware with Code Pointer Examination 179

In summary we make the following contributions:

– We present CPE, a novel approach to identify and classify code pointers in
64-bit systems.

– We highlight data structures that are used for control flow decisions in modern
Linux kernels and thus must be considered for control flow validation.

– We provide a prototype implementation and show that it is both effective
and efficient in detecting control structures of data-only malware.

2 Background

In this section we discuss foundations required for the rest of the paper.

Protection Mechanisms. Intel provides two new protection mechanisms to
make it significantly harder for an attacker to introduce malicious code or data
into the kernel. The first protection mechanism is Supervisor Mode Execution
Protection (SMEP). SMEP ensures that only code that is marked as executable
and supervisor is executed in kernel mode. In particular, if the CPU is trying to
fetch an instruction from a page that is marked as a user page while operating
with a Current Privilege Level (CPL) that is equal to zero, SMEP will generate
a protection fault. SMEP is usually used together with the No-eXecute (NX)
bit, which marks a page as not executable.

The second protection mechanism is Supervisor Mode Access Prevention
(SMAP). This feature can basically be seen as SMEP for data; it raises a fault if
data that is marked as user in the page tables is accessed within the kernel. With
both of these features enabled, the kernel is thus unable to access any userspace
memory. In combination, this significantly reduces the amount of memory that
is usable as gadget space for an attacker.

Runtime Code Validation. A key idea that our work builds upon is runtime
code validation. While code-based defense mechanisms such as W⊕X and secure
boot ensure the integrity of code at load time, runtime code validation guarantees
that all code regions of a system are coherent and valid at any point in time
during its execution [17]. For this purpose, the code of the protected system is
constantly monitored and the legitimacy of all observed changes is verified. As
a result, any modification or extension of the existing codebase can be detected
and prevented. To illustrate this, we briefly describe the runtime code validation
framework presented by Kittel et al. [17], which serves as a foundation for this
work.

Kittel et al. created a runtime code validation framework that is capable of
reliably validating the integrity of all kernel code pages at runtime. To isolate the
monitoring component from the protected system, the proposed system makes
use of virtualization. Once monitoring begins, the validation framework first
iterates through the page tables of the system to obtain a list of all executable
supervisor pages. Since the page tables are the basis for the address translation
conducted by the underlying hardware, this approach effectively enables the

180 T. Kittel et al.

framework to reliably determine which memory regions are marked as executable
and could thus contain instructions.

In the next step, the monitor obtains the list of loaded kernel modules from
the monitored system using virtual machine introspection (VMI). Based on this
information the framework simulates the loading process of each of the modules
as well as the kernel image to obtain a trusted and known-to-be-good state of
the code regions that can later on be compared to the current state of the code
regions. To accomplish this, the framework requires access to a trusted store
that contains all modules as well as the kernel binary that are executing in
the monitored system. This trusted store is implemented by storing all trusted
binary files within the hypervisor.

Once the loading process has been simulated, the trusted code pages con-
tain all load time changes that the kernel applies. However, modern kernels may
also patch code regions at runtime in order to increase compatibility and per-
formance. As a result, the trusted code pages may at this point still differ from
the code pages that are currently used by the monitored system. To identify
whether runtime changes have been applied, each of the trusted code pages is
compared byte by byte with its counterpart in the protected system. If a differ-
ence is observed, the framework attempts to validate the changes by determining
whether the change was conducted by one of runtime patching mechanisms that
the kernel uses. The individual validation steps thereby heavily depend on the
hardware configuration of the monitored system as well as the runtime patch-
ing mechanisms that it uses. The interested reader can find an overview of the
individual runtime patching mechanisms employed by the Linux kernel in [17].

Data-only Malware. Runtime code validation frameworks effectively hinder
an attacker from introducing malicious instructions into a system as this new
code will be detected and prevented from execution. To be able to control a
system under such circumstances, attackers must thus resort to malware forms
that leave the codebase of the attacked system untouched. The only malware
form that is currently known to be capable of such a feat is data-only malware,
which alters the control flow of the infected system based on specially crafted
data structures [14,30].

In particular, data-only malware reuses the instructions that already existed
on the target system before the malware arrived to perform its malicious oper-
ations. This is achieved by applying code reuse techniques, commonly used in
the field of binary exploitation, to the problem of malware creation. Well-known
examples of such techniques are ROP [27], JOP [3] and ret2libc [4].

To control the execution of the system, code reuse techniques leverage a
control data structure that consists of pointers to existing instruction sequences.
In general one cannot reuse arbitrary instruction sequences; instead, each of the
reused sequences must fulfill a particular property. For example, in the case of
ROP, each reused instruction sequence must end with a return instruction. The
property of the return instruction is thereby that it will load the address which
currently resides on top of the stack into the instruction pointer. This enables
us to control the execution of the system as follows: our first reused instruction

Counteracting Data-Only Malware with Code Pointer Examination 181

sequence will point the stack pointer to our control data structure in memory.
Since the control structure now resides on the stack, the execution of the return
instruction at the end of each reused sequence will obtain the address of the next
sequence from the control structure and initiate its execution. Consequently, the
return instruction provides the “transition” between the individual sequences
whose addresses are contained within the control structure.

While code reuse exploits usually only make use of a very small control
data structure that simply allocates a writable and executable memory region
which is then used to execute traditional shellcode, control data structures of
data-only malware are in general quite large. The reason for this is that data-
only malware solely relies on code reuse to function. Each functionality that
the malware provides must be implemented by code reuse. The result are huge
chains that contain hundreds of reused instruction sequences [30]. However, due
to the increasing proliferation of code integrity mechanisms, attackers will likely
transition to this type of malware to attack modern OS kernels.

3 Attacker Model and Assumptions

In this work we assume that the monitored system is protected by a virtualization-
based runtime code integrity validation framework. In addition, we assume that
an attacker has gained full access to the monitored system, which she wants to
leverage to install kernel malware. While the attacker can, in principle, modify any
part of the system, the code validation framework will detect some of the changes
that the attacker may conduct. Most importantly, it will detect any changes to
executable kernel code and will in addition enforce SMEP and SMAP from the
hypervisor-level. As a result, the attacker is forced to use data-only malware to
infect the kernel. In this process, the control structure that is used by the attacker
must reside within kernel’s memory space since SMAP is in place. We also assume
that the kernel’s identity mapping which maps the entire physical memory into
kernel space is marked as usermode in the page tables. A similar approach was pre-
viously proposed by Kemerlis et al. [15], in which pages that are used by userspace
applications are temporarily unmapped from the identity mapping. Finally, we
assume that the data-only malware introduced into the system by the attacker is
persistent, i. e. will permanently reside within the memory of the target system, as
otherwise it could not be triggered by an external event. Notice that this is usually
the case for malware as Petroni and Hicks [22] showed.

4 Related Work

There is a plethora of work that is concerned with verifying the integrity of soft-
ware. The existing research can thereby be roughly divided into two parts. The
first branch of research focuses on the integrity of the system’s code regions.
This led to the development of various frameworks that are capable of vali-
dating the integrity of the codebase of applications as well as the kernel code
sections [12,17,20]. This work builds upon said research by assuming that the

182 T. Kittel et al.

code of the monitored system cannot be modified by an attacker due to fact that
it is protected by such a framework.

The second branch of research, which our work belongs to, focuses on the
integrity of the kernel’s data and especially the kernel’s control data. A pop-
ular approach in this regard is Control Flow Integrity CFI validation, which
aims to dynamically validate the target of each branch instruction [1,16]. This
is accomplished by tracing and monitoring every indirect branch and the cur-
rent stack pointer of the inspected machine, implementing a shadow stack, or
using the performance counters of the monitored system to trace unpredicted
branches [7,21,33,34]. Unfortunately, however, current approaches not only suf-
fer from a significant performance overhead, but also rely on invalid assumptions,
which makes them vulnerable to evasion attacks [6,9,13,26].

Instead of ensuring control flow integrity for the entire kernel, there also
have been approaches that solely focus on the discovery of hooks, which are
often used by rootkits and other malware forms to intercept events within the
system [31,32]. During this process, existing approaches rely on the assumption
that only persistent control data can be abused for hooking. As in the case of CFI,
this assumption is invalid and can be used to circumvent existing mechanisms by
targeting transient control data instead [30]. Thus, neither hook-based detection
nor CFI mechanisms are currently capable of countering data-only malware.

In addition, there has been work aiming to reconstruct the kernel data struc-
tures and their interconnection on the hypervisor level in order to provide data
integrity checking [5,11,19,25]. The basic idea hereby is to parse the entire ker-
nel code to be able to reconstruct the dependencies of different data structures
(points-to analysis) and to construct a map of kernel data structures. However,
current approaches are so far unable to reconstruct the entire graph of kernel
data structures, which allows data-only malware to evade detection by leveraging
techniques such as DKSM [2].

An alternative approach, similar to the one proposed in this work, aims to
scan for pointers to executable code in 32-bit userspace memory [23,28]. Unfor-
tunately, this approach has a high number of false positives on 32-bit systems.
Therefore, each detected code pointer is further analyzed using speculative code
execution.

Finally, Szekeres et al. [29] introduced the concept of Code-Pointer Integrity
(CPI), the requirement to enforce the integrity of code pointers in memory. An
implementation of CPI that is based on memory splitting was then proposed
by Kuznetsov et al. [18]. In their work they introduce a compile time instru-
mentation approach that protects control flow relevant pointers. The basic idea
thereby is to separate control flow relevant pointers into a separated space in
memory and to limit access to that area. Thus they split process memory into a
safe region and a regular region, where the safe region is secured by the kernel
and can only be accessed via memory operations that are autogenerated and
proven at compile time [18]. However, Evans et al. [10] showed that restricting
access to pointers in memory is not enough, since this separation can still be
broken with the help of side channel attacks.

Counteracting Data-Only Malware with Code Pointer Examination 183

5 Approach

In this work we aim to detect the control data structure of persistent data-only
malware. In the process, we want to achieve three main goals:

Isolation. Since the main goal of our framework is to detect rather than to
prevent kernel data-only malware infections, it is crucial that the detection
framework is strongly isolated from the monitored target system. This is
why we will leverage virtualization as a building block for our framework.

Performance. The overhead incurred by our detection framework on the mon-
itored system should be as small as possible. Since we use virtualization as
a foundation for our framework, it is thereby of particular importance that
we keep the number of Virtual Machine (VM) exists as small as possible as
they will heavily impact the performance of the overall approach.

Forensic. Due to the ever increasing number of malware attacks, the investiga-
tion of incidents becomes more and more important in order to understand
the approach of an successful attacker and to avoid future breaches. This is
why another crucial goal of our framework is to support forensic investiga-
tions in addition to live monitoring. In this regard, its particular important
that an human investigator can easily assess and analyze the situation once
an anomaly is detected by our framework.

The key idea behind our approach is to detect persistent data-only malware
based on its control structure. As described in Sect. 2, the control structure is the
most important component of data-only malware that essentially defines which
reused instruction sequence should be executed when. Due to this property it
is comparable to the code section of traditional malware, which makes it highly
suitable as a basis for a detection mechanism.

To detect the control structure in memory, we use a three-step process. In the
first step, we start by checking the integrity of important control flow related
kernel objects. This is done for multiple reasons. First, we can use additional
contextual information about these kernel objects, and second, these objects
contain a lot of code pointers by design. By validating these objects at the
beginning, we can increase the performance of our approach, as the code pointer
within these known objects do not need to be validated in the following steps.
We refer to this step as Kernel Object Validation.

In the second step, we identify all code pointers within the kernel’s memory
space. Based on this information, in the third step we classify the identified code
pointers into benign and malicious code pointers applying multiple heuristics.
The combination of these latter two steps is the Pointer Examination phase.
Figure 1 provides an overview of this process. In the following, we describe these
steps in more detail. For the sake of simplicity, we thereby focus on the Intel
x64 64 bit architecture and the Linux OS. However, most of what we present is
equally applicable to other OSs such as Windows. While this section provides
an overview of our approach, we defer a discussion of the implementation details
to Sect. 6.

184 T. Kittel et al.

Fig. 1. Pointer classification within the proposed framework.

5.1 Control Flow Related Data Structures

We first describe control flow relevant kernel objects that we check using special
semantic knowledge in the first step of our process.

Kernel Dispatcher Tables and Control Flow Registers. The most tra-
ditional control flow related data structures are the system call table and the
interrupt descriptor tables. As control flow related data structures have already
seen a lot of attention, we only mention this type of data structures here for
sake of completeness. Our system checks every entry within these tables and
ensures that it points to the correct function. This can be done by comparing
the entire object to the corresponding version inside a trusted reference binary.
In this step, we also validate the values of all control flow relevant registers such
the model-specific registers MSRs and the Debug registers.

Tracepoints. Tracepoints are another type of data structure that is control flow
relevant. An administrator can use the tracepoints feature to insert arbitrary
hooks into the kernel’s control flow that are executed whenever a certain point
in the kernel’s control flow is hit and the corresponding tracepoint is enabled.
The addresses of the callback functions are stored in a list and are sequentially
called by the kernel once the tracepoint is triggered. Tracepoints impose a big
problem for control flow integrity validation as arbitrary function addresses can
be inserted into all tracepoint locations at runtime. To counter this threat, we
ensure that every hook that is installed with this mechanism calls a valid function
within the Linux kernel.

Control Structures For Kernel Runtime Patching. To manage different
runtime-patching mechanisms, the kernel maintains a variety of data structures.
These data structures in turn contain pointers to kernel code, as they need
to store the locations where kernel code should be patched at runtime. In our
approach we check the integrity of the related data structures.

Kernel Stacks. Another examined type of data structure is the kernel stack of
each thread in the system. We separate each kernel stack into three parts: At the

Counteracting Data-Only Malware with Code Pointer Examination 185

very beginning of the stack, the active part of the stack is located. This part is
empty if the corresponding process is currently executing in userspace. Next to
the active part of the stack, old obsolete stack content is residing. On the very
top of the stack, after all usable space, resides a structure called thread info.
It contains the thread’s management information, for instance a task struct
pointer and the address limit of the stack.

While it is possible to validate the active part of the stack and its manage-
ment structure, an attacker could use the old, currently unused stack space to
hide persistent data-only malware. Therefore, this space is filled with zeros by
our framework when used in live monitoring mode. Otherwise the unused stack
regions are displayed to the forensic analyst for diagnosis and verification.

5.2 Pointer Identification

After we have validated control flow relevant data structures, we identify all other
code pointers in memory in the second step. To identify code pointers, first of
all we need to obtain a list of all executable memory regions within kernel space.
For this purpose, we make use of the page tables used by the hardware. We also
generate a list of all readable pages that do not contain code, as these pages
contain the kernel’s data. Note that using this approach we are also able to
support Address Space Layout Randomization (ASLR).

Equipped with a list of all kernel code and data pages, we identify all kernel
code pointers by iterating through each data page byte by byte and interpreting
each 64-bit value as a potential pointer. If the potential pointer points to a code
region (i.e., the 64-bit value represents an address lying within one of the code
pages), we consider it to be a code pointer. While it seems that this very simple
approach might produce many false positives, we like to stress that we did not
observe any false positives during our experiments with various 64-bit Linux
kernels. In our opinion the primary reason for this is that the 64-bit address
space is much larger than the former 32-bit address space and makes it thus
much more unlikely that non pointer values looking like pointers appear within
memory.

5.3 Pointer Classification

After we have found a pointer, we classify it based on its destination address in
order to decide whether it is malicious or benign. In a legitimate kernel there are
multiple targets which a pointer is allowed to point to. In the following, we list
those valid targets and describe how we are able to determine to which category
the pointer belongs to.

Function Pointers. One important type of kernel code pointers are function
pointers, which are frequently used within the kernel. To determine whether
a code pointer is a function pointer, we make use of symbol information that
is extracted from a trusted reference binary of the monitored kernel. Amongst
these symbols are all functions that the kernel provides. We leverage the symbol

186 T. Kittel et al.

list to verify whether a code pointer points to a function or not. In the former
case, we consider the pointer to be benign. Otherwise, we continue with the
classification process in order to determine whether the code pointer belongs
to one of the other categories discussed below. Note that this implies that our
approach might still be vulnerable to data-only malware that solely makes use
of return-to-function (ret2libc).

Return Addresses. Another important type of code pointers are return
addresses. In contrast to a function pointer, which must point to the beginning
of a function, a return address can point to any instruction within a function
that is preceded by a call instruction. To identify whether a code pointer is a
return address, we leverage multiple heuristics. Note that most of the return
addresses are located on a stack which is already checked during the Kernel
Object Validation phase.

Pointers Related to Runtime Patching. A third type of pointer destinations
are addresses that are stored by the kernel and point to a location where dynamic
code patching is performed. While most of these pointers are contained within spe-
cial objects that are checked in the Kernel Object Validation step as previously
described, there are still some exceptions that must be considered separately.

Unknown Pointer Destinations. Any code pointer pointing into executable
code which can not be classified into one of the above categories is considered
to be malicious.

As we intend to identify kernel level data-only malware with our approach
and we assume that the malware is persistently stored in memory, we propose
to execute CPE in regular intervals.

6 Implementation

After describing the general idea of our approach, we cover the details of our
implementation in this section. The code pointer examination framework pre-
sented in this work is based on our kernel code integrity framework [17]. This
framework provides multiple advantages for our implementation:

First, it keeps track of all kernel and module code sections and ensures their
integrity during runtime. In addition, it keeps track of all functions and symbols
that are available inside the monitored kernel, as it already resembles the Linux
loading process. This ensures that the information about the monitored kernel
is binding by its nature, that is, it reflects the actual state of the monitored
system. In our implementation we can use this database as a ground truth to
classify kernel code pointers.

Secondly, the underlying framework keeps track of all dynamic runtime code
patching that is conducted by the Linux kernel. We use this information to
identify and validate data structures that are related to kernel runtime patching.

Third, our approach is usable for multiple hypervisors, while most of the fea-
tures can also be used to analyze memory dumps in a forensic scenario. Currently
tests have been conducted with both KVM as well as XEN.

Counteracting Data-Only Malware with Code Pointer Examination 187

6.1 Kernel Object Validation

Before we scan the kernel’s memory for pointers, we check the integrity of impor-
tant kernel data structures. This allows to minimize the parts of kernel data that
may contain arbitrary function pointers or other pointers into executable kernel
code. The validation of those structures leverages semantic information about
the kernel that was generated by the underlying code validation framework or
manually collected while analyzing the kernel. In the following, we only list a
couple of examples to illustrate the requirement of this step.

First, we validate various dispatcher tables and the kernel’s read-only data
segments. These locations usually contain a lot of kernel code pointers, whereas
the target of each pointer is well defined. The validation is performed by com-
paring these objects to the trusted reference versions of the binaries that are
loaded by the underlying validation framework.

Next, we validate kernel data structures used for runtime patching. These are
for example: Jump Labels (start jump table), SMP Locks (smp locks),
Mcount Locations (start mcount loc), and Ftrace Events (start ftrace
events). To validate these structures we semantically compare them to the
data extracted from trusted reference binaries by the underlying framework. In
addition to these runtime patching control data structures, there also exist data
structures in the kernel that are used to actually conduct the runtime patch. For
clarification, we discuss one example for legitimate kernel code pointers related
to self-patching: the kernel variables bp int3 handler and bp int3 addr.

To understand why these pointers are required, we explain how runtime
patching takes place in the Linux kernel. If the kernel patches a multibyte instruc-
tion in the kernel, it can not simply change the code in question. The kernel’s
code would be in an inconsistent state for a short period of time, which might
lead to a kernel crash. Thus, the kernel implements a special synchronization
method. It first replaces the first byte of the change with an int3 instruction.
As a result, every CPU trying to execute this instruction will be trapped. Then
the rest of the space is filled with the new content. As a last step, the kernel
replaces the first byte and notifies all waiting CPUs. During this process the
address containing the int3 instruction is saved in the variable bp int3 addr.

This enables the int3 interrupt handler upon invocation to determine whether
the interrupt originates from the patched memory location or not. While the
interrupt handler will simply process the interrupt normally in the latter case, it
will in the former case invoke a specific handler whose address is stored within
the variable bp int3 handler. In the case of a patched jump label, for example,
the handler variable will point to the instruction directly after the patched byte
sequence, which effectively turns the sequence into a NOP sequence during the
patching process. Since both of the bp int3 variables are not reset after patching
is complete, they always point to the last patched location and the last handler
respectively. To solve this issue, our framework checks whether the current value
of the bp int3 addr points to a self patching location and if the handler address
matches the type of patching conducted.

188 T. Kittel et al.

Finally, we iterate through all pages that contain a stack. Each process run-
ning in a system owns its own kernel stack that is used once the application issues
a system call. To gather the addresses of all stacks from the monitored host, we
iterate through the list of running threads (init task.tasks) and extract their
corresponding stacks. In case the process is not currently executing within the
kernel, the current stack pointer is also saved within that structure. Ideally the
process is currently not executing in kernel space in which case its stack must
be empty. Otherwise we must validate the contents of the stack.

In order to validate a stack we use the following approach: For each return
address found on the stack, we save the addresses of two functions. First, we save
the address of the function that the return address is pointing to (retFunc).
In addition, we also extract the address of the target, of the call instruction
preceding the return address (callAddr). This is possible, since in most cases, the
destination of the call is directly encoded in the instruction, or a memory address
is referenced in the instruction that can in turn be read from the introspected
guest system’s memory.

This information is then used to validate the next return address that is found
on the stack. In particular, the callAddr of the next frame needs to match the
retFunc of the previous stack frame, as the previous function must have called
the function, that the return address is pointing to.

Since it is not possible to extract all call targets using the method described
above, we use an additional mechanism to extract all possible targets of indirect
calls: we monitor the execution of the test systems in a secure environment
and activate the processor’s Last Branch Register (LBR) mechanism in order
to extract the call and the target address of every indirect branch instruction
executed by the system’s CPU. Using this mechanism we generated a whitelist
of targets for each call for which the target address is generated during runtime.
This list is then also used by our stack validation component. With this we
were, in our experiments, able to validate most of the kernel stacks within our
test system. While this mechanism is not perfect yet, it certainly reduces the
attack surface further.

The entire problem arises because the stack is currently not designed to
be verifiable even under normal circumstances. However, the kernel developers
currently discuss an enhancement to the code that would make stack validation
more reliable, which could, once implemented, be used to improve our current
approach and would allow removal of the whitelist.1

6.2 Code Pointer Examination

After we have checked important data structures, we scan through the rest of
kernel data memory to find pointers to executable kernel code. This is achieved
using the following steps: We first extract the memory regions of executable
kernel code sections in the monitored virtual machine using the page tables
structure. As a second step, we extract the data pages of the monitored guest
1 https://lkml.org/lkml/2015/5/18/545.

https://lkml.org/lkml/2015/5/18/545

Counteracting Data-Only Malware with Code Pointer Examination 189

system. For this purpose, we obtain all pages that are marked as supervisor and
not executable in the page tables. These pages contain the data memory of the
kernel and therefore all pointers that are accessible from within the Linux kernel.
Note that the information we use for our analysis is binding, since it is derived
from either the hardware or the trusted kernel reference binaries.

Having obtained the code and data pages, we iterate through the extracted
pages in a byte by byte manner. We interpret each eight byte value (indepen-
dently of its alignment) as a pointer and check whether it points into one of the
memory locations that was identified as containing kernel code. If we found a
pointer that points to executable kernel memory we first check if its destination
is contained in the list of valid functions.

In case the pointer does not point to a valid function, we check if the pointer is
a return address. There are currently multiple approaches used in our framework
to identify a return address. First and foremost, a return address must point to an
instruction within a function that is preceded by call instruction. Consequently,
our initial check consists of validating whether the instruction it points to is
actually contained within the function.

For this purpose, we disassemble the function the pointer allegedly points to
from the beginning and verify that the value of the pointer points to a disassem-
bled instruction and not somewhere in between instructions. In such a case, we
additionally ensure a call instruction resides before the instruction the pointer
points to. If any of these conditions fail, we consider the code pointer not to be
a valid return address and continue to the next category.

Most of the return addresses used within the kernel are stored within one
of the kernel stacks. However, there exist a few functions within the kernel that
save the return address of the current function to be able to identify the current
caller of that function. This was first introduced as a debug feature to print
the address of the calling function to the user in case of an error. However, in
the meantime this feature is also used for other purposes such as timers. For
example, the struct hrtimer contains a pointer start site that points to the
instruction after the call instruction that started the timer.

With such a feature in place and used by the kernel it is hard to differenti-
ate between legitimate return addresses and specially crafted control structures
for code reuse techniques. To limit this problem we created a whitelist of all
calls to functions that contain the problematic instruction and only allow return
addresses in the kernel’s data segment if they point to one of the functions in
question.

If the pointer does not point to a valid function or a return address, the
pointer is considered as malicious and a human investigator is notified. At this
point the system also enriches the error message with the name of the function
or symbol the pointer is pointing into.

7 Evaluation

In this section, we evaluate our approach using the prototype implementation
described in Sect. 6. In order to determine whether our framework is able to

190 T. Kittel et al.

achieve the goals set in Sect. 5, we first determine its performance character-
istics, before we evaluate its effectiveness against data-only malware in both
live monitoring as well as forensic applications. We follow this with an in-depth
discussion of the security aspects of our system.

7.1 Experiments

Our host system consisted of an AMD Phenom II X4 945 CPU with 13 GB of
RAM running Linux kernel version 3.16 (Debian Jessie). As guest systems we
used two different VMs running Linux 3.8 as well as Linux 3.16. Each VM had
access to two virtual CPUs and 1 GB of RAM. In these experiments, we used
XEN as the underlying hypervisor.

Performance and False Positives. First of all, we evaluated the performance
of our system as well as its susceptibility to false positives. For this purpose, we
used the Phoronix-Test-Suite to run a set of Benchmarks on our system. In detail,
we ran the pts/kernel test suite. We conducted these benchmark three times on
each test kernel. During the first set of tests, we disabled all external monitoring
to obtain a baseline of the normal system performance. In the second test set, we
enabled the code validation component to be able to differentiate between the
overhead of our framework and the code validation system. Finally, we enabled
both the code validation component as well as our new pointer validation module
in order to identify the additional overhead that our system incurs. During the
tests, the integrity validation component was executed in a loop, if enabled, to
stress the guest system as much as possible. The results of the benchmarks of
each set of experiments as well as the overall performance degradation are shown
in Table 1 for Linux 3.8 and in Table 2 for Linux 3.16.

While evaluating the Linux 3.8 kernel, the kernel contained 80 code pages
and 426 data pages. One complete Code Integrity Validation was completed in
255.8 ms, while in the experiment with Code Integrity Validation and Pointer
Examination enabled, one iteration took 567.58 ms (that is 341.78 ms for CPE).
The Linux 3.16 kernel that was used during our evaluation contained 408 code
pages and 986 data pages. The Code Integrity Validation alone took 639.8 ms
per iteration, while the combined CIV and Pointer Examination took 962.0 ms
per iteration (that is 322.2 ms for CPE). Note that these values are mean values.
This shows that it takes less than 1 ms on average to check the integrity of one
page.

As one can see the performance overhead that our framework incurs is very
small. In fact, the use of the underlying Code Validation Component incurs
a larger overhead than our CPE framework. The performance impact of our
system is for the most benchmarks well under one percent. The main reason for
this is that our framework, in contrast to many other VMI-based approaches,
uses passive monitoring of the guest system whenever applicable. As a result,
the guest system can execute through most of the validation process without
being interrupted by the hypervisor, which drastically reduces the performance
overhead of the monitoring. Only for the FSMark benchmark a performance

Counteracting Data-Only Malware with Code Pointer Examination 191

Table 1. Results of the Phoronix Test Suite for Linux 3.8.

Test (Unit) w/o CIV (%) CIV &CPE (%)

FS-Mark (Files/s) 32.57 30.10 (8.21%) 31.73 (2.65%)

Dbench (MB/s) 69.84 66.53 (4.98%) 71.54 (−2.38%)

Timed MAFFT Alignment (s) 20.63 20.70 (0.34%) 20.63 (0.00%)

Gcrypt Library (ms) 2857 2853 (−0.14%) 2837 (−0.70%)

John The Ripper (Real C/S) 1689 1689 (0.00%) 1688 (0.06%)

H.264 Video Encoding (FPS) 35.38 35.23 (0.43%) 35.31 (0.20%)

GraphicsMagick 1 (Iter/min) 95 95 (0.00%) 95 (0.00%)

GraphicsMagick 2 (Iter/min) 58 58 (0.00%) 58 (0.00%)

Himeno Benchmark (MFLOPS) 593.59 585.73 (1.34%) 586.24 (1.25%)

7-Zip Compression (MIPS) 4715 4702 (0.28%) 4706 (0.19%)

C-Ray - Total Time (s) 130.96 131.00 (0.03%) 130.99 (0.02%)

Parallel BZIP2 Compression (s) 36.35 36.58 (0.63%) 36.47 (0.33%)

Smallpt (s) 445 445 (0.00%) 446 (0.22%)

LZMA Compression (s) 234.50 236.39 (0.81%) 236.12 (0.69%)

dcraw (s) 124.24 124.38 (0.11%) 124.35 (0.09%)

LAME MP3 Encoding (s) 25.20 25.19 (−0.04%) 25.19 (−0.04%)

Ffmpeg (s) 27.00 27.02 (0.07%) 26.82 (−0.67%)

GnuPG (s) 15.34 14.98 (−2.35%) 14.94 (−2.61%)

Open FMM Nero2D (s) 1137.17 1148.95 (1.04%) 1144.94 (0.68%)

OpenSSL (Signs/s) 173.70 173.73 (−0.02%) 173.80 (−0.06%)

PostgreSQL pgbench (Trans/s) 115.11 114.69 (0.37%) 115.21 (−0.09%)

Apache Benchmark (Requests/s) 10585.45 10481.21 (0.99%) 10506.23 (0.75%)

degradation of about 2.65 % is noticed on Linux 3.8. This degradation can not
be seen in the results of the benchmark on Linux 3.16. While using the guest
system with monitoring enabled, we did not observe any noticeable overhead
from within the guest system. This clearly shows that our framework can achieve
the performance goal set in Sect. 5 and is, from a performance point of view, well
suited for real world applications. Sometimes the results even showed that the
tests were better with our pointer examination framework enabled than without
our framework. We argue that this may be due to the fact that the performance
impact of our system is much smaller than the impact of other standard software
within the tested Debian system that also influenced the result.

At the same time we did not observe any false positives during our exper-
iments. That is, when enabled, our system could classify all of the pointers it
encountered during the validation process using the heuristics we described in
Sect. 5. However, note that we can, due to the design of our system, not rule

192 T. Kittel et al.

Table 2. Results of the Phoronix Test Suite for Linux 3.16.

Test (Unit) w/o CIV (%) CIV & CPE (%)

FS-Mark (Files/s) 30.90 31.37 (−1.50%) 31.67 (−2.43%)

Dbench (MB/s) 61.42 60.76 (1.09%) 61.04 (0.62%)

Timed MAFFT Alignment (s) 20.74 20.79 (0.24%) 20.75 (0.05%)

Gcrypt Library (ms) 3747.00 3740 (−0.19%) 3733 (−0.37%)

John The Ripper (Real C/S) 1693.00 1693 (0.00%) 1692 (0.06%)

H.264 Video Encoding (FPS) 34.60 34.32 (0.82%) 34.35 (0.73%)

Himeno Benchmark (MFLOPS) 598.71 582.78 (2.73%) 585.78 (2.21%)

7-Zip Compression (MIPS) 4850.00 4805 (0.94%) 4730 (2.54%)

C-Ray - Total Time (s) 89.80 89.81 (0.01%) 89.80 (0.00%)

Parallel BZIP2 Compression (s) 31.25 31.41 (0.51%) 31.37 (0.38%)

Smallpt (s) 407.00 407 (0.00%) 407 (0.00%)

LZMA Compression (s) 236.62 241.49 (2.06%) 242.17 (2.35%)

dcraw (s) 117.54 117.47 (−0.06%) 117.29 (−0.21%)

LAME MP3 Encoding (s) 23.39 23.41 (0.09%) 23.40 (0.04%)

GnuPG (s) 13.72 13.65 (−0.51%) 13.98 (1.90%)

OpenSSL (Signs/s) 173.63 173.37 (0.15%) 173.57 (0.03%)

Apache Benchmark (Requests/s) 9504.78 9156.01 (3.81%) 9383.66 (1.29%)

out false positives entirely. We perform a more detailed discussion about the
possibility of encountering false positives in Sect. 7.2.

Malware Detection. Having evaluated the performance of our system and
touched upon its susceptibility to false positives, we continued to evaluate the
effectiveness of our framework against data-only malware. For this purpose,
we infected our test VMs with the persistent data-only rootkit presented by
Vogl et al. [30]. We chose this rootkit, since it is, to the best of our knowledge,
the only persistent data-only malware available to date.

While our framework did not detect any malicious code pointers during the
performance experiments, our system immediately identified the various mali-
cious control structures used by the rootkit. In particular, our system identified
the modified sysenter MSR and the modified system call table entries for the
read and the getdents system call during the prevalidation step and thus clas-
sified the system as malicious. As these hooks are also found by other systems,
we then removed these obvious manipulations manually and once more validated
the system state. While the prevalidation step yielded no results in this case,
the pointer validation found all of the malicious code pointers in memory. This
proves that our framework can be very effective against data-only malware even
if the malware avoids the manipulation of key data structures such as the system
call table.

Counteracting Data-Only Malware with Code Pointer Examination 193

Finally, to evaluate the usefulness of our framework in forensic applications,
we conducted an experiment where we randomly installed the rootkit on the
test VMs while we periodically took snapshots of the guest systems. Our system
detected all of the infected snapshots reliably.

7.2 Discussion

In this section, we provide a detailed discussion of the security of our system.

False Positives. Although we did not encounter false positives throughout our
experiments, we cannot rule out false positives entirely, since our system relies on
heuristics to identify code pointers. However, we like to stress that we consider
the likelihood of encountering false positives in our system to be quite small on a
64-bit architecture. To encounter a false positive with our system, we essentially
would need to find a value in kernel space that contains the address of a kernel
code section even though it is not a pointer. Since the virtual address space on a
64-bit system has a size of 1.8 ∗ 1019 bytes and the kernel code section typically
only has a size of 15 megabytes at maximum, the chance of encountering such
a rare case, if all values in memory were uniformly distributed would be merely
8.5∗10−11%. And that is only the case if the kernel is not optimized as the kernel
code section even becomes smaller in this case. However, we admit that this is
only the case if the kernel is mapped to a random location within the address
space and not directly to the beginning or the end of the address space. In other
words, we consider a 64-bit address space to be sufficiently large that the chance
of arbitrary data looking like a pointer by chance are small at best. Consequently,
we assume that false positives are not a big issue in most scenarios. In case of
false positives, one could further analyze the detected pointers using speculative
code execution as proposed by Polychronakis [23]. Note that an attacker could
also introduce benign data into the system that will be identified as code pointers
by our system. We argue that this kind of tampering with our system should
still be identified as malicious.

ret2libc. When searching for malicious pointers in memory, we currently do
not penalize pointers that point to function entry points. As a consequence, our
system is at the moment unable to detect data-only malware that solely makes
use of entire kernel functions to perform its malicious computations. While this
is certainly a weakness of our approach, it is important to note that this is
a very common limitation that almost all existing defense mechanisms against
code reuse attacks face [8,26]. In fact, to the best of our knowledge, the detection
of ret2libc attacks still remains an open research problem.

In addition, while ret2libc is a powerful technique that is very difficult to
detect, we argue that it is actually quite difficult to design pure data-only mal-
ware that solely relies on entire functions to run on a 64-bit architecture. The
main reason for this is that in contrast to 32-bit systems, function arguments in
Linux and Windows are no longer passed on the stack on a 64-bit architecture,
but are provided in registers instead. As a consequence, to create 64-bit ret2libc
data-only malware, an attacker must actually have access to “loader” functions

194 T. Kittel et al.

that allow her to load arbitrary function arguments into the registers that the
calling conventions dictate. Otherwise, without access to loader functions, the
attacker is unable to pass arguments to any of the functions she wants to invoke,
which significantly restricts her capability to perform attacks.

It goes without saying that such loader functions are probably rare if they
exist at all. A possible approach to further reduce the attack surface could thus
be to analyze the kernel code for such loader functions. If they should exist, one
can then monitor the identified functions during execution to detect their use in
ret2libc attacks. We plan to investigate this idea in more depth in future work.

Return Addresses. If an attacker requires gadgets in addition to entire func-
tions to execute her persistent data-only malware (e.g. to load function arguments
into registers), she can only use a gadget that is directly following a call instruc-
tion. The only location that she can place the required control structure to without
being detected is the kernel stack of a process. Should a code pointer that points
inside a function appear anywhere else within the kernel memory, it will be clas-
sified and identified as malicious by our system. In addition, due to the fact that
our system enforces SMAP from the hypervisor, the control structure cannot be
placed in userspace if it should be executable from kernelspace. This only leaves a
kernel stack for kernel data-only malware. But even here the attacker faces various
constraints. First of all, she can only make use of gadgets that appear legitimately
in the code and that are preceded by a call instruction, since all other pointers into
a function would be classified as malicious. Secondly, as the kernel stack where the
control structure resides may also be used by the process it belongs to, the attacker
must ensure that her persistent control structure is not overwritten by accident.
While this is not necessarily an issue for data-only exploits, this is crucial in the case
of persistent data-only malware as the persistent control structure of the malware
must never be changed uncontrollably. Otherwise, if the control structure would
be modified in an unforeseen way, it is very likely that the malware will fail to exe-
cute the next time it is invoked. This is comparable to changing the code region
of traditional malware. This is also why our system zeroes all data that belongs
to a memory page that is part of the kernel stack, but currently resides at a lower
address than the stack pointer points to as a final defense layer. Since this data
should be unused in a legitimate scenario, zeroing it will not affect the normal sys-
tem behavior. However, in the case of persistent data-only malware, this approach
may destroy the persistent control structure of the malware, which will thwart any
future execution. This will be case if the malware is currently executing while our
system performs the validation. Since an attacker cannot predict when validations
occur as our system resides on the hypervisor-level, this makes it difficult for her
to stay unnoticed in the long run.

As a further enhancement one could set the kernel stacks of processes that
are currently not executing to not readable within the page tables. This could for
example be done during the process switch. As a result, the attacker would only
be able to use her control structure when the process on whose kernel stack the
structure resides is currently executing. This raises the bar if the attacker wants to
hook the execution of all processes instead of just one, which is generally the case.

Counteracting Data-Only Malware with Code Pointer Examination 195

Taking all this into account we argue that while our system cannot eliminate
persistent data-only malware entirely, it significantly reduces the attack surface.
In future work, we plan to further enhance our detection by developing novel
techniques to validate the legitimacy of a kernel stack that are also applicable
in forensic scenarios. In addition we plan to investigate the applicability of our
approach to userspace applications or an Android environment.

8 Conclusion

In this paper, we have proposed Code Pointer Examination, an approach that
aims to detect data-only malware by identifying and classifying pointers to exe-
cutable memory. To prove the validity and practicability of our approach, we
employed it to examine all pointers to executable kernel memory in recent Linux
kernels. In the process, we discussed important control flow relevant data struc-
tures and mechanisms within the Linux kernel and highlighted the problems that
must be solved to be able to validate kernel control data reliably. Our experi-
ments show that the prototype, which we implemented based on the discussed
ideas, is effective in detecting data-only malware, while only incurring a very
small performance overhead (less than 1 % in most of the benchmarks). In com-
bination, with code integrity validation, we thus provide the first comprehensive
approach to kernel integrity validation. While our framework still exhibits a
small attack surface, we argue that it considerably raises the bar for attackers
and thus provides a new pillar in the defense against data-only malware.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments. This work was supported by the Bavarian State Ministry of Education, Science
and the Arts as part of the FORSEC research association.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM conference on Computer and Communications Security,
CCS 2005, pp. 340–353. ACM, New York (2005)

2. Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D., Rhee, J., Xu, D.:
DKSM: subverting virtual machine introspection for fun and profit. In: Proceedings
of the 29th IEEE International Symposium on Reliable Distributed Systems (SRDS
2010), New Delhi, October 2010

3. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2011, pp. 30–40.
ACM, New York (2011)

4. C0ntex. Bypassing non-executable-stack during exploitation using return-to-libc
5. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel

objects to enable systematic integrity checking. In: Proceedings of the 16th ACM
conference on Computer and Communications Security (CCS 2009), pp. 555–565.
ACM (2009)

196 T. Kittel et al.

6. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In: 23rd
USENIX Security Symposium (USENIX Security 2014), pp. 385–399. USENIX
Association, San Diego, August 2014

7. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: ROPecker: a generic and
practical approach for defending against ROP attacks. In: 21st Annual Network
and Distributed System Security Symposium, NDSS 2014, February 23–26, 2014,
San Diego (2014)

8. Davi, L., Liebchen, C., Sadeghi, A.-R., Snow, K. Z., Monrose, F.: Isomeron:
Code randomization resilient to (just-in-time) return-oriented programming. In:
Proceeding 22nd Network and Distributed Systems Security symposium (NDSS)
(2015)

9. Davi, L., Sadeghi, A.-R., Lehmann, D., Monrose, F.: Stitching the gadgets: on the
ineffectiveness of coarse-grained control-flow integrity protection. In: 23rd USENIX
Security Symposium (USENIX Security 2014), pp. 401–416. USENIX Association,
San Diego, August 2014

10. Evans, I., Fingeret, S., González, J., Otgonbaatar, U., Tang, T., Shrobe, H.,
Sidiroglou-Douskos, S., Rinard, M., Okhravi, H.: Missing the point (er): on the
effectiveness of code pointer integrity (2015)

11. Feng, Q., Prakash, A., Yin, H., Lin, Z.: MACE: high-coverage and robust memory
analysis for commodity operating systems. In: Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC 2014, pp. 196–205. ACM,
New York (2014)

12. Gilbert, B., Kemmerer, R., Kruegel, C., Vigna, G.: Dymo: tracking dynamic code
identity. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol.
6961, pp. 21–40. Springer, Heidelberg (2011)

13. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: 23rd USENIX Security Symposium (USENIX Security 2014), pp. 417–432.
USENIX Association, San Diego, August 2014

14. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In: Proceedings of 18th USENIX Security Sym-
posium (2009)

15. Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: Ret2dir: rethinking kernel
isolation. In: 23rd USENIX Security Symposium. USENIX Association, August
2014

16. Kemerlis, V.P., Portokalidis, G., Keromytis, A.D.: kGuard: lightweight kernel pro-
tection against return-to-user attacks. In: Proceedings of the 21st USENIX Confer-
ence on Security Symposium, Security 2012. USENIX Association, Berkeley (2012)

17. Kittel, T., Vogl, S., Lengyel, T.K., Pfoh, J., Eckert, C.: Code validation for modern
OS kernels. In: Workshop on Malware Memory Forensics (MMF), December 2014

18. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2014), pp. 147–163. USENIX Association, Broomfield,
October 2014

19. Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X.: SigGraph: Brute force scanning
of kernel data structure instances using graph-based signatures. In: Proceedings of
the Network and Distributed System Security Symposium (NDSS). IEEE (2011)

20. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Usenix Security Symposium, pp.
243–258. USENIX Association, Berkeley (2008)

Counteracting Data-Only Malware with Code Pointer Examination 197

21. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent rop exploit miti-
gation using indirect branch tracing. In: Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 2013), pp. 447–462. USENIX, Washington,
D.C. (2013)

22. Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of the 14th ACM conference on Computer and communi-
cations security, CCS 2007. ACM, New York (2007)

23. Polychronakis, M., Keromytis, A.D.: ROP payload detection using speculative code
execution. In: 6th International Conference on Malicious and Unwanted Software
(MALWARE), pp. 58–65. IEEE (2011)

24. Sadeghi, A.-R., Davi, L., Larsen, P.: Securing legacy software against real-world
code-reuse exploits: utopia, alchemy, or possible future? - keynote -. In: 10th ACM
Symposium on Information, Computer and Communications Security (ASIACCS
2015), April 2015

25. Schneider, C., Pfoh, J., Eckert, C.: Bridging the semantic gap through static code
analysis. In: Proceedings of EuroSec 2012, 5th European Workshop on System
Security. ACM Press, April 2012

26. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-
terfeit object-oriented programming: On the difficulty of preventing code reuse
attacks in C++ applications. In: 36th IEEE Symposium on Security and Privacy,
Oakland, May 2015

27. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM conference on
Computer and Communications Security, CCS 2007, pp. 552–561. ACM, New York
(2007)

28. Stancill, B., Snow, K.Z., Otterness, N., Monrose, F., Davi, L., Sadeghi, A.-R.:
Check my profile: leveraging static analysis for fast and accurate detection of ROP
gadgets. In: 16th Research in Attacks, Intrusions and Defenses (RAID) Symposium,
October 2013

29. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy, SP 2013, pp. 48–62.
IEEE Computer Society, Washington, DC (2013)

30. Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: function
hooks without code. In: Proceedings of the 21th Annual Network & Distributed
System Security Symposium (NDSS), February 2014

31. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM conference on Computer and
Communications Security, CCS 2009, pp. 545–554. ACM, New York (2009)

32. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering persistent kernel Rootkits
through systematic hook discovery. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

33. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control
flow integrity using performance counters. In: Proceedings of the 2012 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), DSN 2012, pp. 1–12. IEEE Computer Society, Washington, DC
(2012)

34. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
IEEE Symposium on Security and Privacy (SP), pp. 559–573. IEEE (2013)

Xede: Practical Exploit Early Detection

Meining Nie1, Purui Su1,2(B), Qi Li3, Zhi Wang4, Lingyun Ying1,
Jinlong Hu5, and Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, CAS, Beijing, People’s Republic of China

purui@iscas.ac.cn
2 State Key Laboratory of Computer Science,

Institute of Software, CAS, Beijing, China
3 Tsinghua University, Beijing, China

4 Florida State University, Tallahassee, USA
5 South China University of Technology, Guangzhou, China

Abstract. Code reuse and code injection attacks have become the
popular techniques for advanced persistent threat (APT) to bypass
exploit-mitigation mechanisms deployed in modern operating systems.
Meanwhile, complex, benign programs such as Microsoft Office employ
many advanced techniques to improve the performance. Code execu-
tion patterns generated by these techniques are surprisingly similar to
exploits. This makes the practical exploit detection very challenging,
especially on the Windows platform. In this paper, we propose a practi-
cal exploit early detection system called Xede to comprehensively detect
code reuse and code injection attacks. Xede can effectively reduce false
positives and false negatives in the exploit detection. We demonstrate
the effectiveness of Xede by experimenting with exploit samples and
deploying Xede on the Internet. Xede can accurately detect all types of
exploits. In particular, it can capture many exploits that cannot be cap-
tured by mainstream anti-virus software and detect exploits that fail to
compromise the systems due to variations in the system configurations.

Keywords: Exploits · Code injection · Code reuse · ROP · Detection

1 Introduction

Advanced persistent threat (APT) is a stealthy, continuous, and targeted attack
against high-value targets, such as enterprises and government agencies. It is
often motivated by major financial or political reasons. There are a stream of
recent infamous attacks that cause vast consumer data breach and other dis-
astrous consequences [4–6]. APT has since become a major security concern to
these organizations. APT often employs zero-day (or recently-disclosed) vulner-
abilities in popular programs, such as Microsoft Office, Internet Explorer, Adobe
Flash, and Adobe Acrobat [37,40], to penetrate the defenses of its target. Tra-
ditional signature-based (black-listing) malware and intrusion detection systems

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 198–221, 2015.
DOI: 10.1007/978-3-319-26362-5 10

Xede: Practical Exploit Early Detection 199

have increasingly become ineffective against APT. Meanwhile, white-listing is
not only inconvenient for end users due to compatibility issues, but also inca-
pable of catching malicious inputs (unless there is a formal definition of all valid
and secure inputs). Instead, an effective defense against APT should focus on
the early detection of exploits. Exploits often violate some code or control-flow
integrity. For example, code injection attacks introduce new (malicious) code
into the system, while return-oriented programming (ROP [39], a typical code
reuse attack) manipulates the control flow to execute its gadgets, short code
snippets that each ends with a return instruction. An exploit detection system
checking these integrities could detect a wide spectrum of exploits.

However, the practical exploit detection is still a challenging problem, espe-
cially for the Windows systems. Remote network exploits against common Win-
dows applications are the most prevailing attack surface [37]. Popular Windows
applications, such as Microsoft Office, often employ the following advanced tech-
niques that are surprisingly similar to exploits. If not carefully vetted, these pro-
grams could be mistakenly classified as malicious files, leading to high false pos-
itives. First, many large Windows functions generate dynamic code to improve
performance or extend the functionality. We analyze 7 common targets in Win-
dows and find that all these applications generate a large quantity of dynamic
codes. An exploit detection system should separate the generated code from the
injected malicious code. Second, some applications may replace or adjust the
return addresses on the stack for obscure reasons. We also saw the example
code that pushes return addresses directly to the stack, instead of through the
call instructions. These irregular behaviors disrupt security mechanisms like the
shadow stack expect the call and return instructions to be matched. Exploit
detection systems need to accommodate these special but common program
tricks to reduce false positives. Third, benign windows applications may have
many short code sequences that resemble gadgets and are wrongfully detected
as such by existing schemes. For instance, we analyzed a large amount of sam-
ples collected from the Internet, and found that most of them contain many
small gadget sequences. In particular, we observed around 5,000 false positives
when simple ROP detection schemes are employed to analyze one PDF file. Fur-
thermore, commodity operating systems have incorporated exploit mitigation
techniques such as data-execution prevention (DEP [17]) and address space lay-
out randomization (ASLR [26]). These techniques significantly raise the bar for
reliable exploits. Many exploits are tied to a specific run-time environment. If the
detector has a different setting other than the target system, the exploits often
trigger exceptions. This can and should be leveraged for the exploit detection.

In this paper, we propose Xede, a practical exploit early detection system to
protect against APT. Xede can be deployed at the gateway to scan the incoming
traffic, such as emails, or deployed as a web service to scan files for exploit detec-
tion. Xede has three major detection engines: exploit exception detector, code
injection detector, and code reuse detector. The first component detects failed
attack attempts by monitoring exceptions. Many exploits rely on the specific
system configurations. Xede uses a variant of software configurations (e.g., OS

200 M. Nie et al.

with different patching levels) to induce the instability of exploits. Our exper-
iments reveal that around 70 % of the malware samples are unstable, causing
run-time exceptions. The second component detects (malicious) injected code
by comparing the executed instructions against a list of benign instructions.
This list is timely updated with the legitimate dynamically generated code to
reduce false positives. Code injection attacks are often combined with code reuse
attacks to bypass the DEP protection. Xede’s third component focuses on the
code reuse detection. It can detect both the more popular return-oriented pro-
gramming (ROP) attacks and jump-oriented programming (JOP) attacks. Sur-
prisingly, our experiments show that around 20% of exploits contain a mix of
return-based and jmp-based gadgets. Xede’s code reuse detector can accommo-
date all the previously-mentioned eccentric program behaviors. With these three
components, Xede can detect many different types of exploits, including zero-day
exploits. We have built a prototype of Xede for the Windows operating systems.
Our evaluation demonstrates that Xede is highly effective in detecting exploits.
For example, we can detect all the malware samples we collected from the Inter-
net. We have also deployed Xede on the Internet as a public service [42] to scan
user-provided suspicious files.

2 Background

In order to exploit a vulnerability of a program, the following three steps need to
be performed. Firstly, attackers need to construct memory layout of the program
to host shellcode and data. Secondly, the attackers hijack the control flow of the
program to injected shellcode directly or by constructing ROP gadgets. Lastly,
the shellcode is executed to exploit the vulnerability. Note that shellcode could
be injected into memory of target processes by either direct code injection, i.e.,
by code injection attacks, or constructing instruction chains through a serious
of ROP gadgets, i.e., ROP attacks. Nowadays it is not easy to directly construct
code injection attacks since the DEP defense mechanism employed in Windows
does not allow direct code injection on writable and executable memory space.
To address this issue, ROP gadgets are used to construct shellcode by leveraging
indirect branch instructions, i.e., ROP gadgets, in target processes. Besides ROP
gadgets that usually end with ret instructions, JOP gadgets ending with indirect
jmp instructions can be used to construct shellcode as well [8]. In this paper, for
simplicity, we collectively call them ROP gadgets.

To launch pure code injection attacks, the attackers can arrange memory
layout to host shellcode by using heap spray or stack overflow. As shown in
Fig. 1, the attackers can use the HeapAlloc function to allocate the shellcode at
the addresses of 0x06060606, 0x0A0A0A0A, and 0x0C0C0C0C, respectively. The
control flow of the program can be hijacked to the shellcode by altering the
function pointer or return address, and the pointer or the address will point to
the location of the injected shellcode. For instance, the function pointer in Fig. 1
is changed to 0x0C0C0C0C that is the location of the injected shellcode. Once
the altered function pointer is invoked, the shellcode will be executed. Unlike

Xede: Practical Exploit Early Detection 201

code injection attacks, ROP attacks identify ROP gadgets and construct the
stack including the addresses of the ROP gadgets. As shown in Fig. 1, gadgets
are located at different locations, e.g., at 0x5e861192 and 0x5e81372a. When
the ESP register points to the address of the first gadget, i.e., 0x0x5e861192,
the control flow of program will be redirected to the gadgets by leveraging a
ret instruction. The gadgets are executed one by one according to the addresses
stored on the stack. Eventually, the WriteProcessMemory function is called to
finish exploit execution.

01003EA7 ret

Stack
Growth

Direction

...

0x5E821192

kernel32!WriteProcessMemory:
7c80220f mov edi,edi

5E8013CE xchg eax,ebx
5E8013CF ret

5E811564 mov ebx, eax
5E811566 jmp [eax]

5E81372A pop ebx
5E81372B ret

5E8156A8 mov [eax], eax
5E8156AA ret

5E821192 pop ecx
5E821193 ret

5E820DE0 add eax, ecx
5E820DE2 ret

0x011012AB

0x5E81372A

0x0012ff20

0x5E8013CE

0x5E8156A8

0x5E820DE0

Stack ROP Gadget

0x5E811564

mov eax, FunArray
call [eax + 0x4]

0x0C0C0C0C

Function Address 1

Function Address 3

0x06060606:
nop
nop
...
shellcode

0x0A0A0A0A:
nop
nop
...
shellcode

0x0C0C0C0C:
nop
nop
...
shellcode

...

...

...

HeapAlloc

Heap

nops:
0C0C0000 nop
0C0C0001 nop
...
0C0C0C0C nop
...
0C7FFFCF nop

shellcode:
0C7FFFD0 mov eax, fs:30h
...
0C7FFFF0 mov eax, 7C80220F
0C7FFFF5 jmp eax;
...

Heap

...

...

(a) C
ode Injection

(b) R
O

P

Step 1. construct
memory layout

Step 2. hijack
control flow

Step 3. execute
shellcode

esp

kernel32!WriteProcessMemory:
7c80220f mov edi,edi

01005B24 FunArray:

Code:

Function Address 4

Function Address 5

Data:

Fig. 1. Exploits examples with different exploitation techniques.

Normally, code injection attacks are easier to construct. However, the data
execution prevention (DEP) mechanism raises the bar for code injection attacks.
Therefore, it is not easy to directly inject executable code into memory with
DEP-enabled systems. ROP attacks are immune to DEP but can be throttled
by the address space layout randomization (ASLR) mechanism. To evade these
prevention mechanisms, attackers adopt hybrid approaches to launch attacks,
i.e., they can construct ROP gadgets to bypass the prevention mechanisms and
leverage code injection attack to execute shellcode.

202 M. Nie et al.

Key Observation. Benign programs contain some attack patterns, e.g.,
dynamic code, mismatching of call and return instructions, and small gadget
sequence, which make exploit detection harder. However, exploits generated by
different attack techniques share a common pattern that they redirect the con-
trol flow to some abnormal places other than the original ones. Specifically, the
control flow is redirected to the pre-constructed shellcode or the first ROP gad-
get. Hence, we could detect different exploits by detecting unexpected jumps
according to different attack features.

3 System Design

In this section, we describe the design of Xede, a practical exploit early detection
system, in detail.

3.1 Overview

Xede is a comprehensive exploit detection platform. It can detect both code
injection and code reuse attacks. Code injection attacks introduce alien code into
the system. Xede accordingly builds a list of benign code and detects branches to
the injected code by comparing branch destinations to that list. Meanwhile, code
reuse attacks like return-oriented programming (ROP) have distinctive control
flow patterns. For example, ROP reuses short snippets of the existing code called
gadgets. Each gadget ends with a return instruction which “returns” to the
next gadget. As such, ROP has a sequence of unbalanced returns. Xede can
thus detect code reuse attacks by looking for these control flow patterns. In
addition, the ubiquitous deployment of exploit mitigation mechanisms, such as
DEP and ASLR, has significantly raised the bar for working exploits. Many
exploits become unreliable as a result of that. This observation is leveraged by
Xede to heuristically detect exploits by monitoring “abnormal” exceptions.

Guest OS

Target Process

...
push ebp
mov ebp, esp
sub esp, 32
...

Virtualizer

instruction execution

Process
Process

call

ret
jmp

Code
Reuse
Attack

...

Shadow
Stack

Detect
Gadgets

Code Reuse Detector

Verify
Code Region

Code Injection Detector

Region List

Module
Loader

DGC
Generator

Sensitive A
PIs

U
sed by R

O
P

Xede

Code
Injection
Attack

Exploit
Related

Exception

Detection
Result

Sam
ple

Gadgets
Counter

ret/jmp/call

Dynamic
Information

Extractor

Instruction
A

nalyzer
A

PI
M

onitor

API
inform-

ation

instruction
information

Exception
Handler

ins addrfetch instruction

instructions

Filter
Exceptions

Exploit Exception Detector

instruction
address

Fig. 2. The architecture of Xede

Xede: Practical Exploit Early Detection 203

Figure 2 shows the architecture of Xede. Xede can be based on a whole-
system emulator like QEMU or a dynamic binary translation based virtualization
platform, such as VirtualBox and VMware workstation. At run-time, the virtu-
alizer feeds the details of executed instruction to Xede. Xede has four major
components. A dynamic information extractor extracts the run-time informa-
tion of the running system, such as the executed instructions, exceptions, and
the loaded modules. That information is passed to the three exploit detection
engines: exploit exception detector, code injection detector, and code reuse detec-
tor. They try to detect exploits with abnormal exceptions, injected instructions,
and characteristic code-reuse control flow patterns, respectively. In the rest of
this section, we will describe each module.

3.2 Dynamic Information Extractor

Xede is based on a system emulator. This allows Xede to monitor every aspect
of the target system. Xede is particularly interested in the details of certain
executed instructions and critical API calls. The emulator passes the executed
instructions and their operands to Xede. If it is a branch instruction, Xede checks
whether the branch target points to a benign code block to detect injected code.
Moreover, Xede uses the virtual machine introspection technology [24] to recon-
struct the high-level API calls. Xede is interested in three types of API functions:
the functions that load a kernel module or a shared library, the functions that
handle exceptions, and the functions that are often misused by code reuse attacks
(e.g., those that change the memory protection). The parameters and return val-
ues of those API calls allow Xede to identify valid code regions, catch abnormal
exceptions, and detect code reuse attacks.

3.3 Exploit Exception Detector

Most commodity operating systems support two exploit mitigation mechanisms:
DEP and ASLR. The former prevents code from being overwritten and data from
being executed. Accordingly, no injected code can be immediately executed. It
must be made executable first. The latter randomizes the layout of a process
to prevent the attacker from locating useful gadgets. Many exploits have severe
compatibility issues. They often trigger exceptions when the target software con-
figurations change. Because of these issues, exploits are significantly harder to
be perfect. On the other hand, popular attack targets, such as Microsoft Office,
Adobe Acrobat and Flash, and Oracle Java virtual machine, all run fairly stable
under normal operations. An exception in these programs may signify an ongoing
attack. Therefore, Xede tries to detect failed exploits by monitoring the excep-
tions caused by these programs. Most existing exploit detection systems focus
solely on detecting successful exploits. Xede instead can detect both successful
and failed exploits.

There are two challenges to this approach: first, a process may cause various
benign exceptions during its execution. For example, the kernel may swap out
a part of the process to relieve the memory pressure. If that part is accessed

204 M. Nie et al.

by the process, an exception will be raised by the hardware. Hence, we must be
able to distinguish these benign exceptions from the ones caused by the attacks.
Second, complex commercial programs like Microsoft Office often try to handle
exceptions if they can to provide a smooth user experience. There are many
different ways to handle an exception. This could confuse the exploit detection
systems. Therefore, we need to have a single unified method to catch exceptions.
There are 23 different exceptions in the Windows operating system roughly in the
following five categories: memory-related, exception-related, debugging-related,
integer-related, and floating-point-related. Exceptions caused by exploits most
likely fall into the first category. For example, they may read or write invalid
data areas or execute illegal instructions. Memory-related exceptions are handled
by the page fault handler in the kernel (i.e. the MmAccessFault function in
Windows), which may further deliver them to the faulting user process.

To address the first challenge, we need to separate benign exceptions from
ones caused by attacks. Programs can cause benign exceptions in the following
two scenarios: first, the kernel uses demand paging to reduce memory consump-
tion. For example, it may load a part of the process address space lazily from
the disk, or swaps some memory pages out to the disk if they have not been used
for a long time. Second, the user process itself might use memory-related excep-
tions to implement lazy memory allocation. For example, some programs use
large data containers with an unknown length. The memory is only allocated
when the data is accessed and an exception is raised. Microsoft Power Point
2007 uses this approach to manage Object Linking and Embedding (OLE) data.
Xede has to exclude both cases from the exploit detection otherwise there will
be lots of false positives. The first case is rather straightforward to exclude. The
page fault handler (MmAccessFault) recognizes that this page fault is caused
by a valid-but-not-present page. It reads the accessed data from the backing
store and returns STATUS SUCCESS to restart the instruction. Exceptions caused
by attacks instead cause MmAccessFault to return STATUS ACCESS VIOLATION.
However, MmAccessFault also returns STATUS ACCESS VIOLATION for the second
case. To solve this problem, we first compare the faulting instruction address
against the list of legitimate code. An alert will be raised by Xede if the instruc-
tion is illegitimate. Otherwise, we record the faulting data address expecting
the program to allocate new memory for it. The next time a new data region is
allocated, we check whether it covers the previous faulting data address. If so,
the exception is considered to be benign.

3.4 Code Injection Detector

Even though modern operating systems like Windows enforce data execution
prevention, code injection is still possible. For example, some (old) programs or
libraries have mixed code and data pages. These pages must be made executable
and writable, violating the DEP principle. If a program can dynamically generate
code, its address space could contain writable and executable pages. Moreover,
the memory protection can also be changed by system calls. Xede accordingly

Xede: Practical Exploit Early Detection 205

has a code inject detector, which builds at run-time a list of legitimate code
regions and checks whether an executed instruction is in the list or not.

Legitimate Code Regions: A process consists of many different executable
modules. For example, the kernel inserts the standard dynamic loader into the
process to start a new one. The loader then loads the main program together
with its linked shared libraries. The program itself can load additional dynamic
libraries at run-time. Moreover, other processes, such as the input method edi-
tor (IME), can inject code into the process. Xede needs to identify all these
executable modules. To this end, Xede hooks the API functions that may load
code into a process. Their run-time parameters and return values provide the
necessary information for Xede to locate the loaded executable (the program or
a shared library) and know the base address of the executable. Xede then parses
the executable to find the offset and size of its code section. The run-time code
location is the base plus the offset. Correspondingly, we also monitor the API
calls that unload an executable and remove the associated code section from the
list of legitimate code regions. This list is also kept up-to-date with dynamically
generated code.

Dynamically Generated Code: Dynamic code generation is a popular
method to improve program performance. For example, modern browsers rely on
just-in-time compiling to speedup JavaScript programs. This makes it possible
to run large complex applications such as Google Maps in the browser. Xede
requires a simple and generic way to recognize dynamically generated code. To
that end, Xede hooks the related API calls to monitor memory allocations and
memory protection changes.

To generate dynamic code, a process can allocate a block of writable-and-
executable memory and then write the code into it, or it can save the code
in the already-allocated writable memory and calls a system API to make the
memory executable. In either case, Xede hooks the memory allocation and mod-
ification APIs. If a block of memory is made executable, we add it to the list
of legitimate code region list. Likewise, if a block of memory loses its execution
permission or is freed, we remove it from the code region list. Note that these
two methods can only allocate execute memory in the page granularity (4KB for
x86-32). Nevertheless, there are some unsafe programs that generate code using
the executable heap. That is, the whole heap is made writable and executable. It
is thus unnecessary for these programs to explicitly allocate executable memory
pages. They could just use the ordinary malloc and free functions to man-
age executable memory. A simple solution would add the whole heap section
to the executable code region. This leads to a high false negative rate for Xede
because code injected in the heap is mistaken as benign code. To identify the
exact regions of the generated code, we observe that well-designed programs use
NtFlushInstructionCache to flush the instruction cache if new code is gen-
erated or the existing code is modified (self-modifying code). Xede thus hooks
this function and adds the memory block specified in its parameters to the
benign code region list (we merge continuous regions to reduce the list size.) On
architectures with relaxed cache consistency mode, the instruction cache must

206 M. Nie et al.

be flushed for the generated/modified code to take effect. This is not strictly
necessary for the x86 architecture which provides transparent instruction cache
flushing. However, we expect most commercial programs (i.e., the poplar targets
of attacks) to follow the correct practice to flush the cache because Windows
does support several different architectures (e.g., ARM).

00620100 mov edi, edi
...
0063C274 push ebp
0063C275 mov ebp, esp

0063C277 sub esp, 32
0063C27A pushad
...
00728AFF call eax

010A8F00 lea eax, [eax]
...
017B38FE pop eax
017B38FF ret

00401000 xor eax, eax
...
00401B34 mov eax, ebx
00401B36 jmp eax

...

...

00401000 xor eax, eax
...
00401B34 mov eax, ebx
00401B36 jmp eax

...

00620100 mov edi, edi
...
0063C274 push ebp
0063C275 mov ebp, esp

0063C277 sub esp, 32
0063C27A pushad
...
00728AFF call eax

010A8F00 lea eax, [eax]
...
017B38FE pop eax
017B38FF ret

...

Region List

insert a new region

Region List

Fig. 3. Merge adjacent code regions

Code Injection Detection: Xede detects the injected code by checking
whether an executed instruction lies in the list of benign code regions. How-
ever, it is prohibitively time-consuming to check this for every single instruction.
Xede instead validates this property when the control flow is changed. In other
words, it only checks that the destination of each branch instruction is within
the code region list. This coincides with the concept of basic blocks. Each basic
block is a linear sequence of instructions with only one entry point and one exit
point. To guarantee correctness, we must ensure that each basic block lies within
a single region. The code region list we built should not have problems in this
regard if the program is correct. Figure 3 shows how this requirement is fulfilled
by merging adjacent blocks of dynamically generated code. In addition, many
basic blocks target another basic block in the same region. Xede thus verifies
whether a branch target is within the current list, and only falls back to the
whole list if that quick check fails.

3.5 Code Reuse Detector

With the wide-spread deployment of DEP and ASLR, code reuse attacks have
become one of the most popular attack vectors. Fine-grained code reuse attacks
include return-oriented programming (ROP) and jump-oriented programming

Xede: Practical Exploit Early Detection 207

(JOP). ROP uses return instructions to chain gadgets, while JOP uses jump
instructions instead. ROP is often used by attackers to bypass DEP. Xede can
detect both ROP and JOP. Xede detects JOP by identifying sequences of gadget-
like instructions. In this paper, we omit the details of the JOP detection, and
focus on the more practical and more popular ROP attacks instead.

In ROP, each gadget ends with a return instruction. When a gadget returns,
it pops the address of the next gadget off the stack and “returns” to it. A
typical ROP attack consists of 17 to 30 gadgets [9]. This introduces a sequence of
erratic return-based control flow transfers. For example, unlike legitimate return
instructions that jump to a valid return site (i.e., an instruction preceded by a
call instruction), gadgets often do not mimic a return site. As such, one way to
detect ROP is to check whether the return target is preceded by a call instruction.
Unfortunately, this method can be easily bypassed by call-preceded gadgets [7].
On the other hand, normal program execution has (mostly) balanced call and
return pairs, but ROP causes mismatch between them (more returns than calls).
This provides a more precise and reliable method to detect ROP. Specifically,
Xede maintains a shadow stack for return addresses. It pushes the return address
to the stack when a call instruction is executed, and pops the return address at
the top of the stack and compares it to the actual return address when a return
instruction is executed. This approach can detect ROP attacks because, when an
ROP attack overwrites the stack with its gadget addresses, these addresses are
not added to the shadow stack. However, it cannot be applied to the Windows
platform due to various erratic behaviors of benign programs. We observe all of
the following cases:

1. The program may replace the return address on stack with a completely
different return address, causing the call-return mismatch.

2. The exception handling, setjmp/longjmp, and call/pop sequences introduces
extra call instructions without the matching return instructions. For exam-
ple, a program must be compiled as position-independent executable (PIE)
to benefit from ASLR. PIE uses the PC-relative addressing mode to access
its code and data. However, the x86-32 architecture does not natively sup-
port this addressing mode. Compilers instead emulate it by calling the next
instruction and immediately popping the return address off the stack.

3. The program may adjust the return address on the stack (for unknown rea-
sons), but usually within a few bytes.

As such, return addresses on the stack might be added, removed, and changed
during the normal program execution. Xede needs to handle all these cases to
reduce false positives.

First, to handle added return addresses, we search the shadow stack top-down
for possible matches. If a match is found, we consider this return benign and
pop the excessive returns above it. Note that this will not conflict with recursive
functions whose return addresses might appear on the stack many times because
normal recursive functions have matched call and return pairs. Second, to han-
dle removed return addresses, we observe that normal program often removes
only a single extra return address from the stack at a time. Therefore, Xede

208 M. Nie et al.

only considers it an ROP attack if there are N consecutive mismatched return
addresses. According to our observation, an exploit can be accurately captured
if the enhanced shadow stack captures three consecutive mismatched return
addresses. Therefore, in our prototype, we use three for N. A normal real-world
ROP attack usually uses 17 to 30 gadgets [9], say, to arrange gadgets and store
parameters. Under some rare conditions, the attacker might be able to launch
an ROP attack with two gadgets, one to make the injected shellcode executable
(e.g., with the VirtualProtect function, assuming the parameters to this func-
tion happen to be placed.) and the other to execute the shellcode. To defeat
ROP attacks with a very short gadget sequence, Xede hooks 52 most common
APIs used by ROP attacks and checks whether these functions are “called” by
a return instruction. If so, Xede considers it an ROP attack and raises an alert.
Third, to handle changed return addresses, we analyze a number of common
executables and find that return addresses mostly change by less than or equal
to 16 bytes. Therefore, if a return address does not match the return address on
the top of the stack, we check whether they are within 16 bytes of each other. If
so, we consider the return address has been changed by the program itself and
do not raise an alert. In addition, to avoid repeating the above time-consuming
heuristics, we add any detected special cases to a white list and quickly check if
a potential mismatch is discovered.

Xede can also detect ROP attacks that use stack pivoting. Stack pivoting
points esp, the top of the stack, to a buffer under the attacker’s control, such
as a maliciously constructed heap area. The fake stack facilitates the attacker to
carry out complex ROP attacks. To detect stack pivoting, we verify whether the
esp register points to a valid stack area when we detect a potential mismatch of
return addresses. We can retrieve the base and length of the stack from the thread
control blocks in the guest operating system, such as the following fields in the
Windows TEB (thread environment block) structure: teb->NtTib->StackBase
and teb->NtTib->StackLimit.

4 Implementation

We have implemented a prototype of Xede based on QEMU, a generic open-
source emulator. QEMU allows us to flexibly instrument instructions/basic
blocks and introspect the guest memory. However, the design of Xede is not tied
to QEMU. It is equally applicable to other hardware emulators (e.g., Bochs) and
binary-translation based virtualization systems (e.g., VMware workstation and
Oracle VirtualBox).

Figure 4 shows the overall architecture of our QEMU-based prototype.
QEMU parses the guest instructions and further translates them into basic
blocks. Basic blocks may further be linked into super blocks (i.e., transla-
tion blocks of QEMU). As previously mentioned, Xede has four major com-
ponents. The dynamic information extractor retrieves the instruction details
and hooks important API calls. As such, each time a new instruction is parsed,
and its information is passed to this module for bookkeeping. The module also

Xede: Practical Exploit Early Detection 209

QEMU

CODE:
4000414d: push ebp
4000414e: mov ebp, esp
40004150: sub esp, 32
...
DATA:
40000000: 74 20 62 65 41 FF

instruction
instrumenting

virtual m
achine introspection

fetch
instructions

struct CPUState {

target_ulong regs[CPU_NB_REGS];
target_ulong eip;
target_ulong eflags;
...
};

Guest Memory Guest Registers

Translation
Block(TB)

Translation Execution

TranslateBlock
instrumenting

TB informationinstruction informatin

Exploit Exception Detector Code Injection Detector Code Reuse Detector

Dynamic
Information
 Extractor

API parameters
and return vaules

code region
information

indirect branches
information

Fig. 4. Xede prototype based on QEMU

during Process Creation

ntdll.dll

target.exe kernel32.exe

ws2_32.dll

user32.dll third_party.dll

U
ser Space

K
ernel Space

LoadLibraryEx,
etc.

NtMapViewOfSectionZwMapViewOfSetcion

MmMapViewOfSection

MiMapViewOfPhysicalSection MiMapViewOfImageSection MiMapViewOfDataSection

map a physical section map a data sectionmap a PE module

Ring3 API:

Ring0 API:

before process exec before reaching OEP dynamic Loaded Modules

input_mothod.dll

SetWindowsHookEx,
etc.

injected by others
Process
Lifttime

Kernel
loaded

Kernel
loaded

Process
preloaded

Dynamic
loaded

3rd party
injected

Fig. 5. Xede introspects Windows libraries

inserts a call back to the entry point of each interested API function (e.g.,
NtFlushInstructionCache) to catch its parameters and return values. The API
call data is used by the second module, exploit exception detector, to detect failed
exploits. To reduce the overhead of address validation, code injection detector
only validates the branch targets to ensure that they jump to legitimate code
regions. As such, it inserts a callback at the end of each basic block (this is
where branch instructions are located.) The last module, code reuse detector,
instruments indirect branch instructions (i.e., indirect calls, indirect jumps, and
returns).

210 M. Nie et al.

Figure 5 shows how our prototype for Windows intercepts the executable
loading events. A process may include executables loaded by the kernel (e.g.,
ntdll.dll and kernel32.exe), the dynamic loader (e.g., user 32.dll and
ws2 32.dll), the process itself, and libraries injected by third-party pro-
grams such as input method editors. These modules are loaded into the
process using different API functions. For example, the kernel uses function
ZwMapViewOfSection to load an executable section, and a user process can load
dynamic libraries using a series of related functions such as LoadLibraryEx. A
third-party library can be injected into the process with SetWindowsHookEx.
However, these functions eventually converge at the MiMapViewofImageSection

function. As such, Xede hooks this function to intercept the executable module
loading events.

Xede leverages the guest kernel states to improve the preciseness of the detec-
tion. For example, it retrieves the valid stack area from the kernel to detect
stack pivoting. This technology is commonly known as virtual machine intro-
spection [20,24], which reconstructs the high-level semantics from the low-level
raw data such as the memory and disk images. Our semantic analyzer is devel-
oped to perform this task.

5 Evaluation

In this section, we evaluate effectiveness of exploit detection with Xede and
the incurred overheads. In particular, we systematically analyze two real exploit
cases detected by Xede. We demonstrate the effectiveness of Xede by detecting
real exploits collected from contagiodump [10], securityfocus [38], and exploit-
db [18]. We deploy our Xede prototype as a service to detect exploits on the
Internet and collect data from two systems. We integrate Xede into the mail
server of a university in China which aims to detect exploits in emails, and
deploy Xede on the Internet as a pubic service [42] that provides exploit detection
services for Internet users. In particular, similar to VirusTotal [43], the public
service is deployed as a web service so that any Internet users can scan their files
by submitting the files to the website. Currently, the service allows anonymous
sample submissions from the Internet for exploit detection.

5.1 Effectiveness Evaluation

Detection with Exploit Samples. We use exploits downloaded from some
websites, e.g., contagiodump [10], securityfocus [38], and exploit-db [18], to eval-
uate the effectiveness of exploit detection. Overall we collect 12501 exploits that
are included in doc/docx/rtf files, xls/xlsx files, ppt/pptx files, and pdf files.
Table 1 shows the results of exploit detection. Xede accurately detects all of these
exploits. Xede detects that more than 75 % exploits are generated by using the
code injection techniques. In particular, among these exploits, 51.47 % exploits
adopt the ROP techniques, which validates that most of exploits combine ROP
and code injection techniques, and around 19.85 % exploits leverage JMP-based

Xede: Practical Exploit Early Detection 211

Table 1. Exploit sample proportion with different exploitation techniques.

Exploit techniques Sample proportion

code injection 75 %

ret-based gadgets 51.47 %

jmp-based gadgets 19.85 %

exploit exception 25 %

gadgets. 25 % exploits are captured because they raise abnormal execution excep-
tions. Furthermore, we do not observe any pure ROP attacks.

Real Deployment Detection. We collected 1,241 samples submitted by the
anonymous Internet users during three months, and collected 10,144 attachments
from our university email system for one month. Specifically, we selected 5,000
active users and randomly sampled their incoming emails with a rate of 3 %, and
analyzed 20 popular types of the samples attached in the emails. This results in
62,500 emails and 10,144 attachments. Note that, we collected the emails before
the email filters. Table 2 shows the breakdown of file types collected in real world
deployment. Xede detects 136 exploits, among which 4 and 132 exploits are from
the emails and the public service, respectively. Most of the exploits are pdf files
and the files generated by MS office suites. They account for 30.9 % and 58.1 %,
respectively. The rest are some swf files, html/htm files, and wps files. We confirm
these exploits by manual analysis. Although we observe the attacks constructed
by these exploits, only 44.12 % of exploits successfully succeed, which means
that these exploits heavily rely on special system environments. Therefore, it is
necessary to capture and detect the exploits that do not succeed to compromise
the systems. Table 3 shows the success rate of different exploits. Xede can detect
all these exploits no matter if they are successfully executed, which shows that
the exploit detection in Xede is independent of the target system configurations.
Note that, in the experiments, we do not differentiate legitimate and malicious
application “crashes” because we do not observe any legitimate “crashes”.

Many exploits detected by Xede cannot be captured by the existing anti-
virus software. We confirm it by using some commercial virus software, i.e.,
Kaspersky 2015, Mcfee AntiVirus Plus, Avira Free Antivirus 2015, and Norton
2015. Overall, all these software cannot correctly detect the exploits. As shown
in Table 4, Kaspersky achieves the lowest false negative that is around 15.44 %.
It only detects 115 exploits out of 136 exploits, and the rest 21 exploits cannot
be detected by any anti-virus software. The results reveal that many exploits can
evade detection with signature matching. It demonstrates that a generic detec-
tion system is essential to detect exploits by identifying malicious operations of
software.

For the 11,249 samples that Xede did not raise an alert, we used the
previously-mentioned anti-virus products to cross-validate whether Xede intro-
duced any false negatives. None of those samples were identified by them as

212 M. Nie et al.

Table 2. Breakdown of sample file types collected in real world deployment.

Sample The number of The number of Total

type email samples submitted samples number

doc/docx/dot 5840 154 5994

pdf 153 241 394

swf 2 49 51

xls/xlsx 778 112 890

html/htm 80 102 182

rtf 110 120 230

ppt/pptx/pps 82 144 226

wps 58 20 78

txt/ini 2611 115 2726

jpg/png/gif 411 180 591

chm 19 4 23

Total Number 10144 1241 11385

Table 3. Success rate of different exploits.

Sample The number of Succeed Failed Success

type detected exploits exploit exploit rate

doc/docx 58 43 15 74.14 %

pdf 42 4 38 9.52 %

swf 8 0 8 0 %

xls/xlsx 11 8 3 72.73 %

htm/html 6 3 3 50 %

rtf 6 1 5 16.67 %

ppt/pptx/pps 4 1 3 25 %

wps 1 0 1 0 %

Table 4. False negatives of commercial anti-virus software.

AV software Version Date of DB update False negative

Kaspersky 15.0.2.361 24/05/2015 21

McAfee 18.0.204 24/05/2015 49

Avira 15.0.10.434 24/05/2015 22

Norton 22.2.0.31 24/05/2015 32

Xede: Practical Exploit Early Detection 213

malicious. Note that false negatives are still possible if both Xede and those
anti-virus products miss the attacks. Moreover, to roughly estimate how many
of these 11,249 samples may be detected by existing approaches [16,30,34] as
malicious (possible false positives), we recorded the suspicious patterns detected
(but eventually dismissed) by Xede in these samples. Particularly, we found that
879 xls samples cause Excel to generate more than 90KB dynamic code each,
and most doc samples each lead to over 4,500 mismatched call and ret instruc-
tions in Microsoft Word. All these cases may be mis-identified as malicious by
existing approaches. Xede did not raise alerts for these cases.

5.2 Case Study

We analyze two different exploit samples that detected by our Xede. One sample
can successfully compromise a system by leveraging the vulnerability reported
by CVE-2012-0158, and the other sample leveraging the vulnerability reported
by CVE-2014-1761 fails to launch the attack due to wrong system configurations.

Case 1: CVE-2012-0158. We analyze an exploit that leverages the vulnera-
bility named with CVE-2012-0158 [14] that is a buffer overflow vulnerability in
the ListView and TreeView ActiveX controls in the MSCOMCTL.OCX library.
The vulnerability is leveraged against a Doc file that combines ROP and code
injection technique. In order to evade Data Execution Prevention (DEP), the
Doc file invokes the system call VirtualAlloc to allocate a block of executable
memory by constructing a ROP chain, and injects the shellcode into the space.
We run the exploit in Windows 7 as guest OS with Office 2003 SP1. In order
to systematically analyze the exploit techniques leveraged by the exploit, we do
not terminate the exploit after it is detected. Instead, we allow Xede to detect
all attacks in the exploit.

ROP Detection. Xede detects 12 anomalous return operations. We find that
the returned address by executing the first return instruction is 0X7c809a81

that is exactly the address of the system call VirtualAlloc. By analyz-
ing the stack information, we obtain the parameters of the system call as
follows. VirtualAlloc(0x001210b0, 0x0001000, 0x00001000, 0x0000040).
After the system call is executed, a block of executable memory is allocated.
We confirm that the memory later will be injected with the shellcode. Moreover,
we detect 45,039 gadget-like sequences of instructions. But, we do not find any
jmp-based gadgets.

Code Injection Detection. During execution of the exploit, Xede records
53 legal code regions and 47 regions that are executable sections generated by
the modules (e.g., DLL and EXE modules). As we discussed in Sect. 3, once
instructions are not executed in a legal region, Xede will treat it as an attack.
Overall, Xede detect 133,643 attacks. In particular, by analyzing the first five
attacks, we find that the instructions are within the memory block allocated
by the VirtualAlloc function. It means that these instructions are the code

214 M. Nie et al.

injected by the attackers. We confirm that the code is shellcode by manual
analysis. We identify several instructions that should not be invoked by Doc
files, e.g., to release PE files or invoke CMD scripts.

Case 2: CVE-2014-1761. Now we analyze another Doc sample that leverages
the vulnerability of CVE-2014-1761 [15] that is executed in Windows XP OS with
Office 2003 SP3. When we open the sample file, the Word application crashes.
We do not find anomalies by monitoring invoked APIs.

Exploit Exception Detection. Xede identifies anomaly address access at
0x909092e4. We confirm the sample is an exploit by running in Windows 7
OS with Office 2010 SP1. The possible reason why the exploit fails is that the
part of shellcode, i.e., 0x9090, is treated as the address and the shellcode cannot
be correctly located. Therefore, the exploit was not correctly executed due to
the mismatched software versions.

Summary. As we observed, most exploits combine different exploitation tech-
niques, i.e., ROP and code injection, which similar to the exploit sample above.
ROP is used to evade the DEP mechanism, and the attacks finally are mounted
by executing injected shellcode. According to the two exploit sample above, we
show that how Xede detects exploits no matter if they can be successfully exe-
cuted.

5.3 Performance Evaluation

In this experiment we evaluate the overheads incurred by Xede and the overheads
during Xede bootstrapping. The experiment is performed in an Ubuntu 12.04
server with 3.07 GHz Intel Xeon X5675 CPU and 32 GB memory. We measure
the overheads incurred by Xede compared with pure QEMU. As shown in Fig. 6,
Xede consumes around 60 % of CPU cycles that consumed by QEMU during the
bootstrapping within the 60 seconds. The possible reason is that exploit exe-
cution incurs many virtual machine introspections during Xede bootstrapping.
Note that, Xede can effectively detect most exploits during this period. After
the bootstrapping, Xede does not introduce extra significant CPU consumption.

We compare the CPU utilization rate and memory overhead by measur-
ing the resource assumption in a Guest OS with 256 MB assigned memory (see
Figs. 7 and 8). We can observe that Xede does not incur many CPU cycles
after bootstrapping. The CPU utilization rate in QEMU with Xede and QEMU
without Xede are around 0.12 % and 0.08 %, respectively. Similarly, Xede does
not introduce significant memory overheads. Therefore, Xede is very lightweight.
Furthermore, we measure the overheads with parallel exploit detection. Figure 9
illustrates the resource consumption with 80 Xede instances. Memory consump-
tion is stable and the consumption rate is within 90 %. CPU utilization rate is
around 6 % except some utilization rate bursts. Thus, Xede is scalable to parallel
exploit detection.

Xede: Practical Exploit Early Detection 215

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550

C
PU

ut
ili

za
tio

n
ra

te
(%

)

Time (s)

Fig. 6. Increased CPU consumption by Xede compared with QEMU.

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550

R
es

ou
rc

e
ut

ili
za

tio
n

ra
te

(%
)

Time (s)

CPU
MEM

Fig. 7. CPU cycles and memory consumed by Xede.

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500 550

R
es

ou
rc

e
ut

ili
za

tio
n

ra
te

(%
)

Time (s)

CPU
MEM

Fig. 8. Increased CPU and memory consumption by Xede compared with QEMU.

216 M. Nie et al.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 10001100

R
es

ou
rc

e
ut

ili
za

tio
n

ra
te

(%
)

Time (s)

CPU
MEM

Fig. 9. CPU and memory consumption with 80 Xede instances.

6 Discussion

Detecting Exploits without ROP and Code Injection. As we observed,
Xede can detect exploits leveraging ROP or/and code injection. However, it may
not be able to detect exploits that hijack control flows without using ROP. For
example, exploits can use the software code to copy shellcode to the legal code
region and leverage legal code to hijack the control flow to the shellcode. It is
very hard to construct such exploits since exploit construction requires strict
conditions, e.g., writable code segment and evading DEP. For instance, we can
compute checksum for different memory region to detect memory rewriting. In
real practice, we do not notice any exploits that really implement this. We can
easily extend Xede to detect such exploits.

Accuracy of ROP Detection. Xede does not count the number of gadgets
where source and destination addresses of jmp are same. It significantly reduces
the miscounted gadgets, and thereby reduces false positives of detecting JOP.
However, it is possible to evade Xede by constructing gadget chains with the
same intermediate gadgets, i.e., gadget 1->gadget x->gadget 2->gadget x->
· · · . In order to perform control flow hijacking from the intermediate gadgets to
different gadgets, a large amount of gadgets are required to build chains between
gadgets, e.g., between gadget 1 and gadget x in the example above. However, it
is really difficult to such gadget chains, and we did not observe any attacks in
real practice. Thus, we do not consider the attacks in this paper.

7 Related Work

Malicious code detection is mainly based on behavior analysis [2,3,19,27,45,
46]. The principle of this technique is to monitor APIs called by the target
process and then check if the process behaves properly via analyzing the API
sequence. The behavior analysis techniques are also widely adopted in current

Xede: Practical Exploit Early Detection 217

anti-virus software, such as FireEye [19] and WildFire [45]. The shortcomings of
the approaches are also obvious. They need to configure corresponding behavior
policies for different types of samples. By analyzing API sequence, it is very
difficult either to describe the comprehensive behaviors of a benign software or to
accurately define the possible behaviors of malicious code [25]. Moreover, exploits
are very sensitive to the system environment. If a victim software version does
not match the expected environment, the exploit will abort and the malicious
behaviors cannot be identified.

Recently more researches are conducted to detect exploits by identifying
shellcode [31,35,44]. Shellcode detection approaches intend to scan the content
of the sample file before the file execution and then to detect whether the file
includes shellcode characteristics. Polychronakis et al. [31] use a set of runtime
heuristics to identify the presence of shellcode in arbitrary data streams. The
heuristics identify machine-level operations that are inescapably performed by
different shellcode types, such as reading from FS:[0x30], writing to FS:[0]. Wang
et al. [44] blindly disassembles each network request to generate a control flow
graph, and then uses novel static taint and initialization analysis algorithms to
determine if self-modifying (including polymorphism) and/or indirect jump code
obfuscation behavior is collected. Such line of approaches shares an important
shortcoming. Content in data files is the same to the actual layout in process
memory. For example, shellcode hiding in a Doc file will be parsed and reorga-
nized by its host process, i.e., winword.exe. Therefore, it is not easy to accurately
identify the presence of shellcode in different data files. Moreover, since shell-
code representation may not be fundamentally different in structure from benign
payloads [28], these approaches inevitably suffers from significant false positive
rates.

Exploit detection by enforcing Control Flow Integrity (CFI) generates a com-
plete control flow graph (CFG) of samples (or, the host process of the sample file
if the sample is a data file) by performing static pre-analysis [1,21,47]. It moni-
tors the execution of the target process, analyzes each instruction executed, and
verifies the legitimacy of each control flow transfer by checking whether the flow
transfer exists in the CFG. Zhang et al. [47] classify the destination addresses of
indirect control flow transfer into several categories, such as code pointer con-
stants, computed code addresses, exception handling addresses, and verify these
destination addresses according to the results of static analysis. Unfortunately,
the CFI approaches cannot be adopted in real systems because of the following
reasons. Firstly, aiming to construct complete CFGs, CFI usually requires source
code of program or debug information of whole program. The information of
proprietary software is not always available. We could build CFG without those
information with some tools, such as IDA [22], but the accuracy and coverage of
CFG cannot be guaranteed. Secondly, the CFI approaches usually cannot verify
the legitimacy of control flow transfer in dynamic code, which widely exists in
modern software. Lastly, they suffers from the problems of inefficiency and high
complexity [21].

218 M. Nie et al.

Taint analysis employs a dynamic tracing technique to detect exploits [11–13,
29,33,41]. It marks input data from tainted sample, and then monitors program
execution to track how the tainted attribute propagates and to check if the
tainted data is used in dangerous ways. However, as far as we know, all existing
taint analysis engines are unable to fully support analysis of the entire Intel
instruction set. Hence, the accuracy of the analysis results cannot be guaranteed.
Moreover, taint analysis needs to parse each instruction executed by the target
processes, and record all addresses of tainted data, The computation complexity
and complexity is not acceptable in real practice [36].

The prevention mechanisms, such as ASLR [26] and DEP [17], are adopted
to protect against malicious code exploits. More exploits leverage the ROP tech-
nique to evade the mechanisms. ROP is hard to detect because it uses the existing
legal instruction sequences to construct shellcode, instead of injecting shellcode.
Last Branch Recording (LBR) [23], a recent technique released with Intel proces-
sors, is used to analyze the executed indirect branch instructions to see if there
exists an excessively long chain of gadget-like instruction sequences. LBR-based
approaches [9,30] rely on hardware for instruction-level monitoring, which intro-
duces small runtime overhead and transparent operations. Unfortunately, these
approaches have some inherent drawbacks. The LBR stack can include only 16
records, and is shared by all running processes and threads. Hence, the stack may
not have enough space to record sufficient data. Moreover, these approaches can-
not observe the actual path of instruction execution between two indirect jumps,
thereby they cannot accurately count the number of instructions. Therefore, the
LBR-based approaches may not be accurate to analyze and detect exploits. Sim-
ilar to Xede, shadow stack and speculative code execution are adopted to detect
ROP. For example, Davi et al. [16] utilized shadow stack to detect ROP. How-
ever, the system is built upon the PIN subsystem and cannot instrument the
kernel code. Polychronakis et al. [32] used speculative code execution to analyze
non-randomized modules and is unable to detect exploits leveraging randomized
modules.

8 Summary

In this paper, we present the design and implementation of Xede, an exploit
detection system. Xede comprehensively detect different types of exploits, e.g.,
generated by pure code injections, pure ROP, and hybrid exploitation techniques.
We have implemented a prototype of Xede with QEMU. The evaluation demon-
strates that Xede can effectively detect different exploits according experiments
with samples and real world deployment on the Internet. In particular, with
real world deployment, Xede detects a large number of exploits that cannot be
captured by mainstream anti-virus software and exploits that raise abnormal
execution exceptions due to mismatched execution environments.

Acknowledgement. We would like to thank our shepherd Christopher Kruegel, and
the anonymous reviewers for their insightful comments. This work is partially sup-
ported by the National Basic Research Program of China (973 Program) (Grant

Xede: Practical Exploit Early Detection 219

No.2012CB315804), and the National Natural Science Foundation of China (Grant
No.91418206).

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
pp. 340–353. ACM (2005)

2. Amnpardaz. http://jevereg.amnpardaz.com/
3. Anubis. https://anubis.iseclab.org/
4. Flame Malware. http://en.wikipedia.org/wiki/Flame malware
5. Sony Pictures Entertainment hack. http://en.wikipedia.org/wiki/Sony Pictures

Entertainment hack
6. Stuxnet. http://en.wikipedia.org/wiki/Stuxnet
7. Carlini, N., Wagner, D.: Rop is still dangerous: breaking modern defenses. In:

USENIX Security Symposium (2014)
8. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,

M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 559–572. ACM
(2010)

9. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: Ropecker: a generic and prac-
tical approach for defending against rop attacks. In: Symposium on Network and
Distributed System Security (NDSS) (2014)

10. contagiodump. http://contagiodump.blogspot.com/
11. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,

P.: Vigilante: end-to-end containment of internet worms. ACM SIGOPS Oper.
Syst. Rev. 39, 133–147 (2005). ACM

12. Crandall, J.R., Chong, F.: Minos: architectural support for software security
through control data integrity. In: International Symposium on Microarchitecture
(2004)

13. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the
12th ACM Conference on Computer and Communications Security, pp. 235–248.
ACM (2005)

14. CVE-2012-0158. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
15. CVE-2014-1761. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1761
16. Davi, L., Sadeghi, A.R., Winandy, M.: Ropdefender: a detection tool to defend

against return-oriented programming attacks. In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, pp. 40–51.
ACM (2011)

17. Data Execution Prevention. http://en.wikipedia.org/wiki/Data Execution
Prevention

18. exploit-db. http://www.exploit-db.com/
19. FireEye. http://www.fireeye.com/
20. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture

for intrusion detection. In: Proceedings of the 10th Network and Distributed Sys-
tem Security Symposium, Febuary 2003

21. Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-
coming control-flow integrity. In: 2014 IEEE Symposium on Security and Privacy
(SP), pp. 575–589. IEEE (2014)

http://jevereg.amnpardaz.com/
https://anubis.iseclab.org/
http://en.wikipedia.org/wiki/Flame_malware
http://en.wikipedia.org/wiki/Sony_Pictures_Entertainment_hack
http://en.wikipedia.org/wiki/Sony_Pictures_Entertainment_hack
http://en.wikipedia.org/wiki/Stuxnet
http://contagiodump.blogspot.com/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1761
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://www.exploit-db.com/
http://www.fireeye.com/

220 M. Nie et al.

22. IDA Pro. https://www.hex-rays.com/products/ida/
23. Intel: Intel 64 and IA-32 Architectures Software Developerś Manual, Febuary 2014
24. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based

“Out-Of-the-Box” semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, October 2007

25. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer:
using system-centric models for malware protection. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 399–412. ACM
(2010)

26. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP
2014 (2014)

27. LastLine. https://www.lastline.com/
28. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-

ings of the 16th ACM Conference on Computer and Communications Security, pp.
524–533. ACM (2009)

29. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software (2005)

30. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent rop exploit mitiga-
tion using indirect branch tracing. In: USENIX Security, pp. 447–462 (2013)

31. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode
detection using runtime heuristics. In: Proceedings of the 26th Annual Computer
Security Applications Conference, pp. 287–296. ACM (2010)

32. Polychronakis, M., Keromytis, A.D.: Rop payload detection using speculative code
execution. In: 2011 6th International Conference on Malicious and Unwanted Soft-
ware (MALWARE), pp. 58–65. IEEE (2011)

33. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks for advertised honeypots with automatic signature generation. ACM
SIGOPS Oper. Syst. Rev. 40, 15–27 (2006). ACM

34. Rabek, J.C., Khazan, R.I., Lewandowski, S.M., Cunningham, R.K.: Detection of
injected, dynamically generated, and obfuscated malicious code. In: Proceedings
of the 2003 ACM Workshop on Rapid malcode, pp. 76–82. ACM (2003)

35. Ratanaworabhan, P., Livshits, V.B., Zorn, B.G.: Nozzle: A defense against heap-
spraying code injection attacks. In: USENIX Security Symposium, pp. 169–186
(2009)

36. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317–331.
IEEE (2010)

37. Secunia: Secunia vulnerability review 2015. Technical report, Secunia (2014).
http://secunia.com/vulnerability-review/

38. securityfocus. http://www.securityfocus.com/
39. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-

out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, October 2007

40. Snow, K.Z., Monrose, F.: Automatic hooking for forensic analysis of document-
based code injection attacks (2012)

41. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via
dynamic information flow tracking. ACM Sigplan Not. 39, 85–96 (2004). ACM

42. TCA Malware Analysis platform. http://www.tcasoft.com/

https://www.hex-rays.com/products/ida/
https://www.lastline.com/
http://secunia.com/vulnerability-review/
http://www.securityfocus.com/
http://www.tcasoft.com/

Xede: Practical Exploit Early Detection 221

43. VirusTotal. https://www.virustotal.com/
44. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Still: exploit code detection via static taint

and initialization analyses. In: 2008 Annual Computer Security Applications Con-
ference, ACSAC 2008, pp. 289–298. IEEE (2008)

45. WildFire. https://www.paloaltonetworks.com/products/technologies/wildfire.
html

46. XecScan. http://scan.xecure-lab.com/
47. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Usenix Security,

pp. 337–352 (2013)

https://www.virustotal.com/
https://www.paloaltonetworks.com/products/technologies/wildfire.html
https://www.paloaltonetworks.com/products/technologies/wildfire.html
http://scan.xecure-lab.com/

Attack Detection I

Preventing Exploits in Microsoft Office
Documents Through Content Randomization

Charles Smutz(B) and Angelos Stavrou

George Mason University, Fairfax, USA
{csmutz,astavrou}@gmu.edu

Abstract. Malware laden documents are a common exploit vector,
often used as attachments to phishing emails. Current approaches seek to
detect the malicious attributes of documents through signature match-
ing, dynamic analysis, or machine learning. We take a different approach:
we perform transformations on documents that render exploits inopera-
ble while maintaining the visual interpretation of the document intact.
Our exploit mitigation techniques are similar in effect to address space
layout randomization and data randomization, but we implement them
through permutations to the document file layout.

We randomize the data block order of Microsoft OLE files in a manner
similar to the inverse of a filesystem defragmention tool. This relocates
malicious payloads in both the original document file and in the memory
of the reader program. Through dynamic analysis, we demonstrate that
our approach indeed subdues in the wild exploits in both Office 2003
and Office 2007 documents while the transformed documents continue
to render benign content properly. We also show that randomizing the
compression used in zip based OOXML files mitigates some attacks. The
strength of these mechanisms lie in the number of content representa-
tion permutations, and the method applies where raw document content
is used in attacks. Content randomization methods can be performed
offline and require only a single document scan while the user-perceived
delay when opening the transformed document is negligible.

1 Introduction

Leveraging documents as a vehicle for exploitation remains a very popular form
of malware propagation that is sometimes more effective than mere drive-by
downloads [2]. Malicious documents are documents that have been modified to
contain malware, but are engineered to pose as benign documents with
useful content. For this reason, they are often called Trojan documents. Malware-
bearing documents typically exploit a vulnerability in the document reader pro-
gram, but they can also be crafted to carry exploits in the form of an embedded
object such as a media file. Another class of malicious documents are used as
a stepping stone and while they do not take advantage of a software flaw, they
rely on the user to execute a macro or even a portable executable. Often social
engineering is used as part of the delivery vector to enhance the likelihood that
victims will execute the malware contained within the document.
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 225–246, 2015.
DOI: 10.1007/978-3-319-26362-5 11

226 C. Smutz and A. Stavrou

For years, client side exploits, including attacks against document readers,
have become more prevalent [6]. Despite efforts at improving software security,
new vulnerabilities in document readers are still present today. For instance,
there were 17 CVEs issued for Microsoft Office in 2013 and 10 in 2014, many of
which were severe vulnerabilities facilitating arbitrary code execution. Document
file types, such as PDF and Microsoft Office documents, are consistently among
the top file types submitted to VirusTotal, implying current widespread concern
over the role of documents as malware carriers. The impetus to stop Trojan
documents is elevated due to their pervasive use in targeted espionage campaigns,
such as those waged against non-governmental organizations (NGOs) [4,8,11].

Numerous approaches have been proposed to detect malicious documents.
Signature matching, dynamic analysis, and machine learning based approaches
are used widely in practice. Despite these many approaches, malware authors
continue to evade detection and exploit computers successfully. Mitigations which
seek to defeat many classes of memory misuse based exploits, such as address
space layout randomization (ASLR) and data execution prevention (DEP), are
implemented in modern operating systems. However, these protections are com-
monly circumvented and exploitation is still possible [23]. Despite extensive
research and significant investments in protective technology, document exploits
continue to remain a viable and popular vector for attack.

Our primary contribution is to demonstrate that modifications to documents
between creation and viewing can hinder misuse of document content, adding
additional exploit protection, while leaving them semantically equivalent with
very little end-user impact. The proposed approach is inspired by operating
system based exploit protections. Instead of seeking to detect the exploits in
documents, we seek to defeat exploits by scrambling the malicious payloads
used in attacks. While address space layout randomization is performed by the
operating system, we induce exploit protections in the reader program through
modifications to the input data. We modify a document at the file format level,
resulting in a transformed document which will render the same as the origi-
nal, but in which malicious content is disarranged and made inoperative. The
transformed document is used in place of the original document. The document
transformation should occur between the document creation and document open.
Network gateways, such as web proxies or mail servers, or network clients such
as web browsers or mail clients are ideal places to utilize our mechanisms. Hence,
deployment of our technique requires no modification to the vulnerable docu-
ment reader or client operating system.

We explore various methods of document content randomization (DCR).
Microsoft Office formats are particularly amenable to document content frag-
ment randomization (DCFR) where we rearrange the layout of blocks in a doc-
ument file, without modifying the extracted data streams. We show that it is
possible to relocate malicious content in both the document file and document
reader memory. We also show that document content encoding randomization
(DCER) breaks exploits in practice by changing the raw representation of the
data in the file without changing the decoded stream. The strength of DCR

Preventing Exploits in Microsoft Office Documents 227

rests in the number of unique content representations that can be created. For
DCFR, this is driven by the number of block order permutations. For DCER,
the number of possible encodings is the limiting factor.

We evaluate these content randomization techniques by testing them against
hundreds of real world maldocs taken from VirusTotal. We test DCR on the three
most prevalent exploits in both .doc and .docx files in our malicious document
corpus. We find that most attacks are mitigated. Furthermore, we measured the
performance of document transformation and found it to be comparable to an
anti-virus scan. Opening a transformed document is at most 3 % slower than
normal. We also validated that the transformed document rendered the same
as the original document. Lastly, we examine the limits of DCR in the face of
possible bypass techniques such as omelette shellcode.

The applicability of DCR is limited to foiling exploits that attempt to access
exploit material in a manner inconsistent with the way the document reader
accesses document data. Potential issues with DCR include breaking intrusion
detection system signatures and cryptographic signatures applied to the raw
document file.

2 Related Work

Detection of malicious documents using byte level analysis has long been studied
and deployed widely despite recognized weaknesses in detecting new or polymor-
phic samples [13,22,24].

Dynamic analysis of documents can provide additional detection power, but
it comes with computational cost, difficulty of implementation, and ambiguity in
discerning malware [27]. Applying machine learning to various features extracted
from documents, such as structural properties, has been shown to be effective but
has also been challenged by mimicry attacks and adversarial learning [14,20,21].
We differ from most document centric defenses. Instead of seeking to detect the
malicious content, we modify documents to foil exploit progression.

Our work builds upon years of research in probabilistic exploit mitigations
typically implemented in the operating system. Address space layout random-
ization (ASLR) [26] is adopted widely. It is effective in defeating many classes
of exploits, but is circumvented through limitations in implementation [19], use
of heap sprays [28], or data leakage. As return oriented programming and sim-
ilar techniques [18] have become popular, mechanisms to relocate or otherwise
mitigate code (gadget) reuse have been proposed [16,29].

ASLR incurs little run time overhead because it relies on virtual memory
techniques where address translation and relocation are already performed. Code
level approaches such as instruction set randomization have also been proposed
but are computationally prohibitive [9]. Data space randomization enciphers
program data with random keys, but this method is not feasible in practice due
to deployment difficulty and computational expense [3]. Instead of implementing
these protection mechanisms in the execution environment, we seek to induce
barriers to malware by modification to the document.

228 C. Smutz and A. Stavrou

3 Microsoft Office File Formats and Exploit Protections

We here describe the commonly used Microsoft Office file formats. The OLE
Compound Document Format was used as the default by Office 97-2003 and is
used in the files whose extension is typically .doc, .ppt, and .xls. Beginning in
Office 2007, the default file format is Office Open XML which use the .docx,
.pptx, and .xslx extensions. We also explain the most important exploit protec-
tion mechanisms provided by Office and Windows, such as ASLR and DEP.

3.1 OLE Compound Document Format

The file format used by Office 97-2003 is called by many names including Com-
pound File Binary Format and OLE Compound Document Format. We refer
to this format as the “OLE” file format throughout this paper, as many of the
libraries and utilities for parsing this format use variations of this name.

The OLE Compound Document format supports the storage of many inde-
pendent data streams and borrows many structures from filesystems, especially
the FAT filesystem. OLE files are used as a container for many file types includ-
ing Office 97-2003 (.doc/.ppt/.xls), Outlook Message (.msg), Windows Installer
(.msi), Windows Thumbnails (Thumbs.db), and ActiveX or OCX controls (.ocx).
All of these file formats use the OLE format as a base container, implementing
their own data structures inside of streams stored by the OLE format. In this
way, the OLE file format can be compared to the zip archive which serves at
the base container for diverse file formats including Java Archives (.jar), Office
Open XML Documents (.docx/.pptx./.xlsx), and Mozilla Extensions (.xpi).

Like a filesystem, the OLE format is comprised of many data blocks or sectors.
The vast majority of OLE files use a 512 byte sector size, but other sizes are
possible. Blocks in the OLE file are allocated and linked using allocation tables.
The individual data streams are logically organized in a hierarchical structure
similar to the file/folder organization of a filesystem. There is a directory entry
for each OLE stream containing the name of the file, the location of the first
sector, and other metadata such as modification times. The OLE format also
supports mini-streams which divide normal size sectors into 64 byte sectors,
using a second, embedded allocation table.

Except for the header, which must be located in the first sector, all of the
contents in an OLE file can be located arbitrarily within the OLE file. Further-
more, there is no requirement for the various data streams to be arranged in
order or in contiguous blocks, although it is the norm.

The OLE format serves as a container for arbitrary data streams. Individual
file formats use this basic container but implement their own format for the
data in the various streams. We do not describe the particular OLE-based file
formats as they vary widely, are often proprietary and poorly documented, and
our study relies on the common container capability of OLE files.

Preventing Exploits in Microsoft Office Documents 229

3.2 Office Open XML File Format

The Office Open XML (OOXML) File Format became the default file format
for Office documents starting in Office 2007. These files use the extensions of
.docx, .pptx, and .xlsx. This format has been codified in international standards
ECMA-376 and ISO/IEC 29500.

The OOXML file format uses a zip file as a container, with individual objects
stored as files in the zip. The majority of the content in an OOXML file is XML
data. The document content is represented as XML with markup that is unique
to the OOXML format, but which is generally similar to other markup such as
HTML. The contents of an OOXML document can be modified by unzipping the
archive, modifying it with a text editor, and zipping the archive. However, the
relatively complex markup requires extensive knowledge to make major changes.

While text and formating can be represented using XML, other content, such
as images, are embedded in the document as separate files in the zip archive.
Some of the binary objects embedded in OOXML files utilize the OLE format.
Example of these files include Office 2003 files, some multimedia files, equations,
ActiveX controls, and executables.

3.3 Microsoft Office Exploit Protections

Macro based viruses have long been an issue in Office documents. All recent
Office versions disable the automatic execution of macros. The OOXML file
format assigns macro based files a separate extension, such as .docm instead of
.docx, making inadvertent execution of macros extremely difficult. The OOXML
format is designed to minimize the amount of binary content and improve the
readability in the text content of documents, making the file format easier to
validate and simplifying the parser.

Data Execution Prevention (DEP) was enabled in Office 2010, which prevents
execution of arbitrary shellcode in the heap and has generally forced the adoption
of ROP code re-use techniques. ASLR was enabled by default in Windows Vista.
Office running on versions of Windows since Vista will have the benefit of ASLR
for operating system libraries, but ASLR was not enabled for all Office provided
libraries until Office 2013. Hence, up until Office 2013, we observe use of ROP
gadgets from Office libraries without the need for an ASLR bypass.

Throughout this paper, we refer to the container format common to Office
2003 and many other files as OLE. We refer specifically to Office 2003 or Office
2007 files by their extension: .doc or .docx respectively. While we refer to these
file formats by the file extension of the document files (.doc/.docx) for brevity,
we also included the presentation (.ppt/.pptx) and spreadsheet (.xls/.xlsx) files
in our study. Our study relies on file format characteristics which are common
across the document, presentation, and spreadsheet file variations.

4 Approach

Inspired by the simplicity and generality of ASLR-like techniques, we seek to
obtain similar exploit mitigation outcomes through transformations to input

230 C. Smutz and A. Stavrou

data. The properties of a document can often directly and predictably influence
various run time attributes of the opening application. The memory of a reader
program is necessarily influenced by the file which it opens. We seek to find
practical ways to make exploitation more difficult by content induced variations
to the document file and reader memory. We call this general approach document
content randomization (DCR).

We study two specific forms of document entropy infusion: document content
fragment randomization (DCFR) and document content encoding randomization
(DCER). DCFR is analogous to ASLR in that the order of data blocks in the
document file is randomized. DCER can be compared to data space randomiza-
tion because we randomize file level encoding. Both of these approaches apply
to data stored in document files, but they can affect memory as files and subfiles
are loaded into memory.

These transformations are envisioned to operate on documents during trans-
fer between the potentially malicious source and the intended victim. They could
be employed in network gateways such as email relays or web proxies where
modification is already supported. In practice, filtering based on blacklists and
anti-virus scanning is already common at these points. The modifications to the
document could also be implemented on the client. For example, the web browser
could employ the mechanisms presented here at download time, similar to other
defenses such as blacklists and anti-virus.

We focus on Office documents, but most of the high level principles discussed
here apply to other file formats. Specifically, we seek to mitigate exploits in two
common document formats: Office 2003 (.doc) and Office 2007 (.docx).

4.1 Content Randomization in .doc Files

The most promising opportunity to apply DCR to .doc files is at the raw doc-
ument file level. Malicious content is often stored in the raw document file and
accessed through the filesystem during exploitation. Typically, file level access
of malicious content occurs later in the exploitation phase and this content is
usually malicious code, whether it be shellcode or a portable executable. Sourc-
ing malicious content from the file is surprisingly common in document based
exploits.

The authors observed obfuscated portable executables embedded in the raw
document file of 96 % of the malicious Office 2003 documents in the Contagio
document corpus [17]. This set of malicious documents, observed in targeted
attacks, includes files that were 0 day attacks when collected. Retrieving addi-
tional malicious content from the raw document file is also common in PDF files
used in targeted email attacks, while web based PDF exploits usually load their
final payload through web download.

File level access most frequently is achieved through standard file access
mechanisms, such as reading the file handle. Because most client object exploits,
including document exploits, are triggered by opening a malicious file, a handle
to the exploit file is usually already available in the reader application. While
the malicious content may be embedded raw into the document file, exploits

Preventing Exploits in Microsoft Office Documents 231

Fig. 1. OLE Fragmentation: The order of blocks in data streams is randomized, frag-
menting the payloads

typically employ signature matching evasion techniques, such as trivial XOR
encryption. The malicious content accessed through the raw document is some-
times accessed by offset, but typically an egg hunt is employed, where the file
is searched for a specific marker. In most .doc files, we observed the shellcode
and portable executables embedded within the bounds of the structure of the
document, but simply appending malicious content to the end of an existing
document is possible and is used sometimes.

We defeat raw file reflection by malware by performing file level content
fragmentation (DCFR). OLE based file formats such as .doc files are especially
accommodating of this technique. Typically, the streams in an OLE file are
sequentially stored. However, re-ordering can occur and is expressly allowed.
To implement this approach we built an OLE file block randomizer. It simply
creates a new OLE file functionally equivalent to the original except that the
layout of the data blocks is randomized. This is accomplished by randomizing the
location of the data blocks, and then adjusting the sector allocation tables and
directory data structures accordingly. This is essentially the inverse of running
a filesystem defragmentation utility. An example of fragmentation of three OLE
data streams is given in Fig. 1. Note that the blocks in the data streams are
typically sequentially arranged. We randomize the order of the data blocks across
all the streams. In the event that any data exists in the raw document file stream
but is not contained in valid OLE sectors, the data is not transfered to the new
randomized document.

Re-ordering data blocks, or DCFR, in an OLE provides a consistently effec-
tive and quantifiable way to prevent access to malicious content in raw document
files without impacting normal use. Since OLE files do not implement any form
of encoding at the container level, DCER is not a practical option.

4.2 Content Randomization in .docx Files

We also studied the use of document content in .docx exploits. We found a
small number of OOXML files where the raw zip container was accessed for a
malicious payload. These attacks simply included the malicious payload, usually

232 C. Smutz and A. Stavrou

Fig. 2. ZIP Encoding Randomization: The order and compression level of data streams
is randomized

an encrypted portable executable, in the zip file without compression. It is then
trivially located in the file through an egg hunt, similar to that done in OLE files.

We devised two simple ways to introduce entropy in the OOXML file. First,
we randomized the order of the files in the zip archive. This defeats access based
on offset. We also re-compressed the zip data streams, randomly selecting one
of four deflate compression levels (superfast, fast, normal, maximum). Figure 2
demonstrates transformation of a simple zip file with three subfiles. Note that the
order of the files in archive and the compression used on each file is randomized.
Office uses superfast compression, the lowest compression level, so our archive
randomization usually results in smaller files. Compression level randomization is
enough to foil simple access to file content, even if an egg hunt is used. Therefore,
content encoding randomization (DCER) applied at the file level is applicable
to some .docx exploits.

However, most .docx exploits gain access to the final malware payload through
a web download or through an egg hunt in memory. We found a common method
of performing scriptless heap sprays in contemporaneous exploits that can be
mitigated by DCFR [1,12]. In this heap spray technique, first observed in CVE-
2013-3906, many ActiveX objects containing primarily heap spray data are read
when the document is opened and loaded into the heap. These objects are loaded
into memory raw, without interpretation or parsing. It is not clear why these
objects are loaded into memory in this manner, while other embedded files do
not receive the same treatment. Dynamic analysis by the authors confirmed
that these embedded ActiveX objects are loaded directly in memory, while most
other data from the document is not loaded into memory wholesale. Even if
these ActiveX controls are not activated, they represent a simple and effective
way to introduce content directly into the memory of the reader program.

Heap sprays are used to defeat ASLR. They ensure that the malicious pay-
load can be located with high certainty through duplication of the malicious
payload across a large memory address range, even if the address of a single
copy can not be predicted. Only one copy of the malicious payload is needed for
successful exploitation. Traditionally, heap sprays contain shellcode. However,
DEP prevents execution from the heap. In the case of exploits targeting systems

Preventing Exploits in Microsoft Office Documents 233

with DEP, the heap is commonly sprayed with ROP gadgets and a stack pivot is
used to move the stack into the sprayed region. These attacks successfully evade
ASLR and DEP. We observed this technique for scriptless heap sprays used for
both traditional shellcode and to implement fake stacks implementing malicious
ROP chains. While these two techniques have been observed, this ability to easily
and predictably influence the reader process’s memory could be used for other
attacks such as object corruption exploits. This general technique is also used
to load single copies of arbitrary content, including portable executables, into
memory which is later egg-hunted and used in exploits.

Since these ActiveX objects use the same OLE container format that Office
2003 documents use, we use the same OLE fragmentation techniques to defeat
these scriptless heap sprays. We randomized the layout of all OLE files embedded
in .docx files, regardless of their role. When these objects are loaded into RAM,
the content is scrambled, but can still be retrieved by a document reader which
implements the OLE decoding routines. These scriptless heap sprays in .docx
files represent an example of how document content directly influences reader
memory.

For .docx files, we perform both file level encoding randomization and frag-
mentation of objects to be loaded into memory.

4.3 Strength of Content Randomization Mechanisms

Like other probabilistic exploit protections, one can calculate the likelihood of
exploit success in the face of brute force attacks against DCR. Methods such
as ASLR obfuscate the location of malicious payloads. Document content ran-
domization does this as well. However, content based malicious payloads are
very frequently located via egg hunts or are duplicated in heap sprays, obvi-
ating randomized relocation. In practice, the primary protection power lies in
randomization of the content representation, whether through fragmentation or
through encoding.

In the simple case, the probability of a payload that has been randomly
fragmented being in proper order is the inverse of the number of possible per-
mutations or 1/n! where n is the number of fragments. In practice, this should
be adjusted to account for other data mixed in with the malicious payload,
repetition of the malicious payloads, and other limitations or constraints. For
example, when OLE DCFR is employed, the number of fragments that influence
the possible permutations is not just the number of fragments in the malicious
payload, but includes all of the sectors that are randomized.

When we perform DCER on .docx files, we randomly select between four
deflate compression levels. This is adequate for all the samples we observed
where DCER has effect because they all involve data streams that are orig-
inally uncompressed. This is, however, a very small number of permutations.
Part of the strength of DCER is also rooted in how difficult the encoding of
the content is to reverse or circumvent. Compression makes generating a specific
post compression malicious payload more difficult through transformations and
restrictions in the encoded output. For example, repeated byte sequences, such

234 C. Smutz and A. Stavrou

as the high order bytes in addresses used in ROP gadgets, are not found in com-
pressed output. Unlike straightforward fragmentation, the constraining power
of encoding is more difficult to quantify. Individual implementations of deflate
are deterministic, but they are also allowed great latitude in how the encoding
occurs. The same data stream can have many byte level representations using
the same encoding method. If an entropy inducing compressor/encoder is used,
the number of encoding induced permutations could be quantified.

The strength of DCR lies in the ability to fragment or encode malicious
payloads in an unpredictable and constraining manner. This strength can be
quantified as proportional to the number of randomized content permutations.
We address possible DCR evasion approaches in Sect. 7.

5 Exploit Protection Evaluation

We evaluated the effectiveness of our content based exploit protections on hun-
dreds of malicious Office documents sourced from VirusTotal. These documents
were downloaded daily from the recent uploads to VirusTotal over the course of
months. Our downloads were limited primarily by our monthly download limit
on VirusTotal. We obtained 64,617 unique .doc files between May 2013 and
March 2015 and 32,383 unique .docx files between November 2013 and March
2015, averaging 98 .doc and 66 .docx files per day. Of these collected docu-
ments, 40720 .doc and 2901 .docx files were labeled by at least one AV engine as
malicious in a scan conducted two weeks following initial submission. Of these
malicious documents, 1085 .doc and 578 .docx files were labeled by the anti-virus
engines as utilizing a known exploit. The majority of the non-exploit malicious
documents were identified by the anti-virus engines as utilizing macros.

As our study advances methods to break exploits using mechanisms not
applicable to pure social engineering attacks, we focused our evaluation solely on
maldocs leveraging a software vulnerability. Furthermore, to be able to better
explain how our mechanisms applied to specific exploits, we utilized only those
maldocs which were labeled by anti-virus engines to use a single exploit. We
were left with 962 .doc and 363 .docx files after inconsistent exploit labels were
removed. Of these documents, we found all exploits for which we were able to
replicate successful exploitation and for which there were at least 20 samples.
This resulted in 3 exploits in .doc files and 3 exploits in .docx files. Surpris-
ingly, the malicious documents were distributed heavily across a small number
of particularly popular exploits. For example, the three top exploits in the .docx
file types comprised 306 of the 363 files, with 225 of these samples in the most
popular exploit. In the event that we had many samples for a given exploit, we
randomly selected a subset achieving a maximum of 100 documents to test and
a maximum of 50 viable maldocs per exploit. In total, there were 343 documents
tested and 217 documents demonstrating successful malware execution across
these 6 sets.

To test for exploitation, we attempted dynamic execution of the Trojan doc-
uments by opening them in a virtual machine. To achieve successful exploitation,

Preventing Exploits in Microsoft Office Documents 235

we utilized various configurations of software including both Windows XP and
Windows 7 and Office 2007 and Office 2010. The ROP based exploits required
specific versions of the libraries from which they reuse code. Since one of the
exploits selected for our testing is in Adobe Flash, we also installed the appro-
priate version of Flash player. We considered the malware execution successful
when malicious code was executed or requested from the network that would
have been executed. Successful exploitation occurred in 217 or 63 % of the mali-
cious documents we tested. We attribute this relatively low malware success rate
to VirusTotal being used by malware authors for testing, sometimes testing unre-
liable or incomplete exploits. For example, in a few of the successful exploits we
observed calc.exe, the malware “hello world”, as the final payload. There were a
small number of apparent false positives by AV as well.

Taking these successful malicious document based exploits, we applied our
document content based mitigations and re-ran the documents. We considered
the exploit blocked by DCR when the final malware payload was blocked. We
observed the differences in malware execution through both host based and net-
work based instrumentation. In a very small number of cases, DCR was not pos-
sible due to the malicious document having defective structure. These failures
were considered blocked as well, but are due to the rudimentary file validation
provided by performing content randomization.

Generally, the malicious documents we observed employ a portable exe-
cutable as the final malicious payload. Most of these executables are extracted
from the raw document file, many are downloaded from an external server, and
a few are extracted from document reader memory. In many of the Trojan docu-
ments, the original document file is overwritten by a benign document, which is
opened and presented to the user. Most of the malware immediately beacons to
a controller node, but a small minority of the malware performed other actions
such as infecting other files on the local system. We observed dropped benign doc-
uments and malware that correlate to recent reports of targeted attacks against
NGOs [4,8] as well as more opportunistic crimeware.

When the document based exploit is blocked by DCR, the document reader
typically crashes. However, sometimes instead of crashing, the reader enters an
infinite loop, presumably performing an egg hunt that is never successful. When
a decoy benign document is provided by the malware, it is either never opened
due to a failure in malware execution or the benign document is scrambled due
to DCR and the attempt to open the document fails because the file is invalid.
When DCR interrupts file-level access, shellcode that is attempting to extract a
portable executable or additional shellcode from the document file is interrupted.
When memory fragmentation is effective, it scrambles either shellcode or ROP
chains, preventing exploitation earlier. Table 1 contains the high level results of
our evaluation.

CVE-2009-3129 is triggered by a malformed spreadsheet that causes a mem-
ory corruption error. All of the successful exploits were .xls spreadsheet files. In
all of these exploits, the pattern of extracting an encrypted portable executable

236 C. Smutz and A. Stavrou

Table 1. DCR Exploit Protection Evaluation

CVE File Type Blocked Total Block Rate Effective Mechanism

2009-3129 .xls 36 36 100 % File Fragmentation

2011-0611 .doc, .xls 29 29 100 % File Fragmentation

2012-0158 .doc, .xls 50 50 100 % File Fragmentation

2012-0158 .pptx, .xlsx 4 10 40 % File Encoding

2013-3906 .docx 42 42 100 % Memory Fragmentation

2014-4114 .ppsx, .docx 2 50 4 % File Validation

All- 163 217 75.1 % -

and benign decoy document is employed. Due to raw access to the document
file, all of these exploits were defeated by file level DCFR.

CVE-2011-0611 is actually a vulnerability in Adobe software products, includ-
ing Flash player, but it is most often observed inside of Office documents. This
exploit triggers a type confusion error through a malformed Flash file embed-
ded in the Office document. We were able to observe successful exploitation in
both .doc and .xls files. Like the other exploits embedded in OLE based file for-
mats, all of the exploits are defeated by file level DCFR because the malicious
executable and decoy document are extracted from the raw document file.

It is interesting to observe that this exploit in Adobe products was utilized
so heavily in Office files. It is likely that part of the reason this exploit was
embedded in Office documents was to leverage the social engineering of email
based attacks.

CVE-2012-0158 is caused by malformed ActiveX controls that corrupt sys-
tem state. While originally reported in RTF documents, our VirusTotal sourced
malware contained a large number of 2012-0158 exploits in the OLE container
as well. We observed successful exploitation in both .doc and .xls files, which
was defeated by file level document fragmentation.

We also observed 2012-0158 in OOXML based files. These .docx based 2012-
0158 were much less common than the .doc version, making this set the smallest
in our evaluation. We observed both .pptx slideshows and .xlsx spreadsheet files
containing viable exploits.

This vulnerability exists in the MSCOMCTL library which handles ActiveX
controls. Until May 2014 (CVE-2014-1809), ASLR was not enabled on this
library on all versions of Office (including Office 2013) and on all version of
Windows (including Windows 7 and Windows 8). Since this library is easily
locatable, it is trivial to re-use code from the same library as is used for the
initial vulnerability. Due to this lack of OS level exploit mitigations and the sim-
plicity of exploitation, DCR, including memory fragmentation, does not block
this exploit. It is noteworthy that since the ActiveX controls used in this exploit
are OLE files, our DCR mechanisms fragmented these objects. However, since

Preventing Exploits in Microsoft Office Documents 237

the access to these objects comes through legitimate means, the layout random-
ization provides no mitigation power.

However, some exploits are foiled because they use anomalous access to
the raw document file. In the case where the raw document is accessed, the
encrypted malicious payload is stored in the zip container without compression.
Our re-compression of the zip streams with a randomly selected compression
level defeats this file level access.

CVE-2013-3906 is a vulnerability in the TIF image format parser that per-
mits memory corruption resulting in possible code execution. This exploit was
manifest in .docx documents. Some of these exploits use ROP chains, while some
use traditional shellcode. The ROP based exploits can evade DEP using a stack
pivot and code re-use. Since ASLR is not enabled on the MSCOMCTL library,
this library is used for gadgets in the ROP based exploits. Hence, the ROP
formulation of the exploit was able to evade both ASLR and DEP as imple-
mented at the time. However, in either the case of traditional shellcode or ROP
chains, the 2013-3906 exploits are defeated through fragmentation of ActiveX
objects used to implement a scriptless heap spray. The majority of the 2013-
3906 samples we observed attempt to load final malware via HTTP requests.
The other exploits load the final malware in memory using the same ActiveX
control loading mechanism, such that these payloads are also fragmented.

The CVE-2014-4114 vulnerability is not caused by a software coding flaw,
but rather policy that allows remote code to be executed. In this vulnerability, an
ActiveX control allows execution of a remote .inf file which then allows execution
of a portable executable. The malware is most typically downloaded via Windows
file sharing (SMB/CIFS). The vast majority of these maldocs were .ppsx files
which are presentations that open automatically as slide shows. There were a
small number of .docx files as well. Since this vulnerability is a policy flaw,
mitigations such as ASLR and DEP do not apply. Similarly, DCR does not apply
even though we fragment the OLE ActiveX controls implementing the exploit.
We only block a small number of these exploits because our file fragmenter
identifies them as improperly formatted.

Overall, we are able to block over 75 % of the exploits in our evaluation set.
If 2014-4114, which is not a traditional memory safety vulnerability, is excluded,
then DCR blocks over 96 % of the exploits in our evaluation set.

6 Performance Evaluation

The core performance characteristics of DCR are the time required to perform
the document transformation and the overhead incurred when opening the doc-
ument. The document content randomization time was evaluated by performing
DCR on a number of documents. The file open overhead was measured by timing
the document reader opening and rendering the document, comparing the times
from the original and randomized documents. We also validated that the view
of the document presented to the user remained invariant by scripting Office to
open the document and print it as a PDF. We compared the resulting PDFs

238 C. Smutz and A. Stavrou

Table 2. DCR Performance

File type Transform speed Render overhead

.doc 68.9 Mbps 0 %

.docx 43.1 Mbps 2.9 %

created from the original and modified documents to ensure equivalence in ren-
dering. The results of the performance evaluation of DCR are summarized in
Table 2.

6.1 .doc DCR Performance

To evaluate the computational expense of performing the document content ran-
domization, we measured the time to perform this operation on a 1000 document,
249 MB, set randomly selected from the Govdocs corpus [7]. The average time
to perform the document fragmentation was 28.9 s using a single thread on a
commodity server. This equates to 68.9 Mbps of throughput in a single thread.
To put this execution time in perspective, we scanned the same corpus with
ClamAV which required an average 28.7 s to complete. Performing this content
fragmentation on a single 248 K sample (close to average document size) yielded
an average 0.028 second execution time. The DCR operations are similar in cost
to that incurred by a common anti-virus engine and result in a delay that should
be acceptable for most situations.

To test the performance impact of DCR on document opening and rendering,
this set of benign documents was converted to PDF using Microsoft Office and
powershell scripting. There were 39 documents that were removed from this set
because they required user input to open or printing was prohibited by Office.
The most common cause of failing to print was invocation of protected view,
which limits printing, apparently because they were created by old versions of
Office (the Govdocs corpus contains some very old documents). Other obsta-
cles to automation included prompting for a password or prompting the user as
a result of automated file repair actions. In addition, following OLE file format
fragmentation, an additional 125 documents opened in protected view which pre-
vented automated printing. These files apparently triggered some file validation
heuristics in Office. The same mechanisms used to break exploits can also be used
for malicious intent, such as evading virus scanners. All content was present, and
it was later discovered that the validation heuristic did not trigger reliably on
independent formulations of the same original document–some transformations
would trigger this protected view and some would not. This protection built into
Office triggers on some particular block layouts but the exact criteria was not
discovered by the authors. If DCR is to be use widely, it would be necessary to
understand and prevent triggering of this heuristic, although documents from
untrusted sources (email or web) are already opened in protected view anyway.

The test data set therefore contained 836 documents totaling 197 MB. It
took about 15 min for the documents to be converted to PDFs which equals just

Preventing Exploits in Microsoft Office Documents 239

over 1 second per document. Performing multiple trials, there was no consistent
difference in speed between the original and the fragmented documents. The
differences in mean open times between the original and fragmented documents
was 1/50th of the 95 % confidence interval. Therefore, the randomized documents
take no longer to open and render. This is expected as there is no additional
work required to reassemble the randomized streams. Any effects resulting from
less efficient read patterns seem to be masked by file caching.

Having converted both the original and fragmented documents to PDF doc-
uments, the resulting PDFs were compared for similarity. Since the PDFs had
unique attributes such as creation times, none of the PDFs generated from ren-
dering the original documents were identical to those generated from the frag-
mented documents. However, they were very similar in all respects. The average
difference in size of the resulting PDFs was 40 bytes, with 513 of the PDF pairs
having the exact same size. The average binary content similarity score of these
derivative document pairs was 87 (out of 100) using the ssdeep utility [10]. Man-
ual review of a small number of samples also confirmed the same content in the
fragmented documents as in the original documents.

6.2 .docx DCR Performance

The performance impact of .docx DCR was similarly evaluated. To measure the
cost of performing our embedded object layout randomization, we compiled a
corpus of benign .docx files from the Internet, using a web search with the sole
criteria of seeking .docx files. The search yielded a wide diversity of sites with
no known relevant bias on the part of the researchers.

This corpus consisted of 341 files weighing in at 76 MB. Executing our utility
required an average 14.3 s from which we derive a single threaded bandwidth of
43.1 Mbps. Scanning the same corpus with ClamAV required 28.0 s, nearly double
the time required for our mechanism. The time to execute on a single 225 KB
document, which was an average size document in this corpus, was 0.034 s.

As with .doc files, we tested the impact on rendering by converting both the
original and randomized documents to PDF using Office. The outcome was a
mean open time of 268.5 s for the original documents and 276.3 s for the DCR
documents. This 2.9 % increase in document render time following document
fragmentation is greater than the 95 % confidence interval for these trials. This
slow down is very likely due to the use of higher levels of compression in the zip
container. By default, Microsoft Office uses deflate compression with the fastest
compression level while our randomized compression levels are spread between
four compression levels. Indeed, the corpus of randomized documents was 8 %
smaller than the original document set.

This performance evaluation excluded one of the 341 documents that crashed
Office post randomization. This document did not appear to be malicious in any
way, but simply contained a large number of ActiveX controls that triggered
a bug in Office following fragmentation. We did not determine the exact cause
of this crash, but did isolate it to the fragmented OLE based ActiveX objects.
Since it caused a crash instead of causing a file validation/parsing error, we do

240 C. Smutz and A. Stavrou

not consider it evidence of a fundamental issue with our approach, but rather a
bug in Office or a special case our randomizer needs to handle.

Beyond the zip container, the vast majority of the documents in this benign
corpus were not modified. Of the 341 documents, only 10 documents had OLE
sub-objects on which fragmentation was performed, including the crash induc-
ing document. Since this number was so small, the user visible representation of
these samples were validated manually. Both the original and the modified docu-
ment were opened and compared. Barring the aforementioned single document,
randomizing the OLE objects embedded in .docx files maintained the integrity
of the original document as presented to the user.

For both .doc and .docx files, the CPU time required to perform document
randomization is reasonable–comparable with that of signature matching based
detectors. The overhead on document open is negligible. We observed an issue
with heuristic detections triggering protected view in about 12 % of .doc files. We
also seemed to trigger of a bug for a single .docx file. Barring these exceptions,
the transformed documents provided the same display to the user as is produced
by the original.

7 Content Randomization Evasion

Document content randomization is effective against many exploits created
without knowledge that it would be used. If it is to remain effective following
wide-scale deployment, it must be resilient to evasion. The strength of malicious
payload fragmentation lies in the number of fragments required for the payload.
For fragmentation to be effective, the size of the malicious payload must be larger
than the fragmentation block size.

The OLE containers used in .docx heap sprays employ a default block size
of 64 bytes which is much smaller than the shellcode required for a meaningful
exploit. In most of the examples we observed, the shellcode was approximately
500 bytes in length. As a comparison, we studied a collection of 32-bit windows
shellcode snippets packaged with the Metasploit Framework. The functionality
of these code blocks ranged from stubs that act as building blocks to complete
malicious payloads. The average size of all of these components is 289 bytes. In
most situations, these shellcode blocks will be extended a small amount with
exploit specific register setup and shellcode encoding. The size of the larger
shellcode components is comparable with the approximately 500 byte shellcode
observed in the .docx scriptless heap sprays. Shellcode that provides functionality
for a full malicious payload is invariably larger than can fit within the 64 byte
default size restriction imposed by content fragmentation.

Current exploits are not resilient to malicious payload fragmentation because
it is not currently widely deployed. However, the documented countermeasure
to limits on payload size is to perform an egg hunt per payload block, which
has been styled omelette shellcode [5]. Omelette shellcode locates and combines
multiple smaller eggs into a larger buffer, reconstructing a malicious payload

Preventing Exploits in Microsoft Office Documents 241

from many small pieces. The omelette approach adds at least one more stage
to the exploit, in exchange for accommodating fragmentation of the malicious
content.

A typical heap spray involves filling a portion of the heap with the same
malicious content repeated many times, with each repetition being a valid entry
point. This approach would be altered for an optimal omelette based exploit.
One would spray the heap with the omelette code solely, then load a single copy
of the additional shellcode eggs into memory outside the target region for the
spray.

When multiple egg hunts are used to defeat malicious payload fragmentation,
then the primary mitigation power is shifted to the size of a block in which the
reassembly code must reside. Each egg containing the partitioned payload could
have an arbitrarily small size with a few bytes overhead for a marker used to
locate the egg and an identifier to facilitate proper re-ordering. The size of the
omelette code is invariably the bottleneck of the technique. If the omelette code
can fit fully within a fragmentation block, then malicious payload fragmentation
will not be effective.

Therefore, for omelette shellcode to operate, it must be loaded in a single
64 byte block or it will be fragmented and re-ordered. Most openly available
examples of omelette shellcode, which are designed specifically to be as compact
as possible, are about 80–90 bytes [25]. Of course, it may be possible to shrink
the size of the omelette functionality in a given exploit and probabilistic attacks
are possible.

However, if the 64 byte block size provides insufficient fragmentation, this
block size could be dropped to a level rendering any sort of egg hunt infeasible.
The size of these blocks in OLE files is tunable. It is also noteworthy that the
cutoff between normal and small block streams can be changed and that the block
size for the normal streams is also tunable. Ergo, this flexibility in size applies
generally to both normal and small OLE streams. Due to the arbitrary tuning
of OLE block sizes, it is not feasible to prevent malicious payload fragmentation
by shrinking the payload size using techniques such as omelette shellcode.

In exploring malicious payload size limitations, we use shellcode because
methods such as omelette shellcode are relatively well documented. The same
general principles apply to other situations such as ROP based exploits. Typ-
ical ROP chains are similar in size to the shellcode, so the fragmentation of
DCFR is equally effective. The ROP chains we saw in the CVE-2013-3906 heap
sprays were about 1000 bytes in length. Therefore small block OLE fragmen-
tation should be able to disrupt ROP chains as well, even if omelette style
techniques are employed. The same arguments should apply to .doc file level
content randomization. To the degree that exploits cannot implement malicious
payload reconstruction mechanisms, then file level content randomization will
remain effective.

Because document content randomization is not used widely, no examples
of malicious documents could be found in the wild that used countermeasures
such as omelette code. However, observations made during the manual validation
performed for current exploits indicate that DCR would still be successful.

242 C. Smutz and A. Stavrou

In our study of Office documents, we saw a relatively small number of exploits
that were defeated by encoding based content randomization. We observed no
attempts to counter this exploit protection, and there is a dearth of studies
that apply to DCER evasion. As such, counterevasion strategies are necessarily
speculative.

One likely DCER evasion approach would be to anticipate the encoding and
adjust the payload accordingly. Some encodings are so simplistic that they could
be defeated by preparing the malicious payload so that it appears as desired
post encoding. For example, if base64 were a possible encoding, it would likely
be possible to prepare a malicious payload that was operable following encoding
despite some restrictions in content [15]. This approach would be more difficult
with encoding mechanisms such as compression which have greater complex-
ity. Even if attackers were able to circumvent the tighter constraints caused by
compression, an arbitrarily large number of compression representations are pos-
sible because of the latitude afforded in compression algorithms such as deflate.
Adding a custom, entropy infusing, compressor to the existing DCR mechanisms
would be operationally feasible.

Assuming there are enough possible encodings to make brute forcing infeasi-
ble, the indirect approach, analogous to omelette shellcode, would be to imple-
ment a decoder. If a very small decoder can be created, then it might be used
to decode a larger payload. Trivial encodings such as hexascii or base64 may
well be possible to implement in a very small decoder. Assuming an encoding
method such as deflate compression is used, it is not likely that a sufficiently
small decoder can be created to make this method worthwhile. We studied the
compiled object size of a few common decompress only deflate implementations
designed specifically for small size, including miniz and zlib’s puff, and found the
smallest to be 5 KB. When compared with other decoders used in exploits, this
is relatively large. It seems that scenarios where using an over 5 KB decoder is
useful for defeating content encoding based would be rare.

When attacked directly, DCFR’s strength is driven by minimum fragment
size which drives the number of fragments and the resulting number of possible
permutations. It is not feasible to drop the size of a malicious payload small
enough to evade the granularity provided by DCFR in OLE files. DCER’s eva-
sion resistance lies in both the constraints imposed by the encoding techniques
employed and the number of possible encodings. It seems that the flexibility
provided by encoding, especially compression, should allow sufficient entropy to
make defeating DCER infeasible.

8 Discussion

Not all exploits are directly impacted by DCR and some vulnerabilities may be
formulated to circumvent DCR. For example, the malicious documents foiled
through OLE file randomization could be modified to load the final malicious
executable through a web download instead of extracting it from inside the doc-
ument file. Similarly, the OOXML documents defeated through memory content

Preventing Exploits in Microsoft Office Documents 243

location randomization could use a scripted heap spray instead of relying on
document content loaded into memory. However, these changes might cause the
exploit to run afoul of additional mitigations such as restrictions on ability to
download executables or restrictions on the execution of macros. Hence, DCR is
enabled by environmental controls such as restrictions on web downloads, Office
based protections such as disabling of scripting, and operating system controls
such as DEP. If these complementary protection mechanisms are not used, DCR
will not be as effective. To the degree that security controls that drive attackers
to use raw file content become more prevalent, DCR should increase in applica-
bility, including in other file formats.

Some forms of DCR are more difficult to circumvent than others because
they operate much earlier in the exploitation process where the attacker has
lower control over the system. For example, DCR that defeats heap sprays is
more resilient than that which disrupts egg hunts that extract the final mali-
cious payload. In our evaluation, the older exploits were interrupted later in the
exploitation process while the newer exploits occur much earlier. It appears that
complimentary mitigations in the operating system (ALSR and DEP) constrain
exploit authors to use document content earlier in the exploits.

DCR is an attractive mitigation technique because it incurs a very low per-
formance impact. Transforming the document requires roughly the same com-
putational resources that are already commonly employed to perform signature
matching on both network servers and client programs. DCR incurs a very small
performance penalty when the transformed document is opened because this
mechanism leverages the file stream reassembly routines already executed by
the document reader.

Just as virtual memory mechanisms enable ASLR with little overhead, the
parsing and reassembly that enables multiple file level representations of the
same logical document allows for efficient DCR. Any situation where data is
referenced indirectly, providing for multiple possible low level representations,
could potentially be used to implement exploit protections similar to DCR. We
focus on content fragmentation because the file formats studied here support a
large degree of layout changes. Content encoding randomization is only effective
in a small number of Office exploits. However, other document and media for-
mats might not support the same level of data fragmentation but may support
arbitrary encoding or compression. The PDF format is a good candidate for file
level DCER to prevent raw file reflection based malware retrieval. There is an
opportunity for studying the limits of DCER, especially in document formats
such as PDF where there are multiple options for encoding, the encodings can
be combined for the same stream, and encoding mechanisms themselves can
be tweaked. For example, instead of using standard compression levels for the
deflate method, one could use probabilistic Huffman coding trees and random-
ized use of LZ77 data deduplication. Operating system based encoding or data
randomization techniques generally have been unsuccessful due to computational
overhead and the difficulty of deploying the technique which requires modifying

244 C. Smutz and A. Stavrou

system libraries as well as applications. However, DCER has the potential to be
computationally feasible because the content encoding already occurs.

DCR is likely to be employed in situations where many multiple repeated
exploitations attempts are not easy, lowering concern of probabilistic attacks.
For example, document based attacks usually require the user to take an action
to view the document. Because of how client applications are used, probabilistic
attacks requiring numerous attempts, similar to those employed against network
daemons to defeat ASLR, are not likely to be possible.

While DCR does not impact the content of the document as interpreted
by the document reader and viewed by the user, it does change the raw docu-
ment file. This could potentially impact some signature matching systems which
operate on raw files instead of interpreting as the document reader does. Also,
cryptographic signatures such as those used in signed emails would not vali-
date correctly on the transformed document. Solutions to these issues have yet
to be elaborated, but potential solutions are promising. For example, signature
matching systems can implement file parsing. Signature validation systems could
operate on an invariant logical representation of the parsed document, instead
of a potentially arbitrary file level representation.

9 Conclusions

We designed and evaluated exploit protections using transformations performed
on documents between production and consumption. Document content frag-
ment and encoding randomization are effective in scrambling exploit critical
content in document files and in document reader process memory. We eval-
uated the ability to mitigate current exploits in Office 2003 (.doc) and Office
2007 (.docx) file formats using hundreds of malicious documents, demonstrating
a memory misuse exploit block rate of over 96 %. The overhead of transform-
ing documents is comparable in run time to a common anti-virus engine and the
added latency of opening a content layout randomized document is negligible for
.doc and about 3 % for .docx files. The transformed documents are functionally
equivalent to the original documents, barring the exploit protections that are
induced. The evasion resistance of content randomization is rooted in the num-
ber of raw content permutations possible. File content randomization should be
applicable to other file formats as complementary controls force attackers to use
direct access to file content to advance their attacks.

Acknowledgments. The authors would like to thank all of the reviewers for their
valuable comments and suggestions. This work is supported by Lockheed Martin Cor-
poration and the National Science Foundation Grant No. CNS 1421747 and II-NEW
1205453. Opinions, findings, conclusions and recommendations expressed in this mater-
ial are those of the authors and do not necessarily reflect the views of Lockheed Martin,
the NSF, or US Government.

Preventing Exploits in Microsoft Office Documents 245

References

1. 5 attackers & counting: Dissecting the “docx.image” exploit kit, December 2013.
http://www.proofpoint.com/threatinsight/posts/dissecting-docx-image-exploit-
kit-cve-exploitation.php

2. Security threat report 2014: Smarter, shadier, stealthier malware. Technical report,
Sophos Labs (2014)

3. Bhatkar, S., Sekar, R.: Data space randomization. In: Zamboni, D. (ed.) DIMVA
2008. LNCS, vol. 5137, pp. 1–22. Springer, Heidelberg (2008)

4. Blond, S.L., Uritesc, A., Gilbert, C., Chua, Z.L., Saxena, P., Kirda, E.: A look at
targeted attacks through the lense of an NGO. In: 23rd USENIX Security Sym-
posium (USENIX Security 2014), pp. 543–558, USENIX Association, San Diego
(2014)

5. Bradshaw, S.: The grey corner: omlette egghunter shellcode, October 2013. http://
www.thegreycorner.com/2013/10/omlette-egghunter-shellcode.html

6. Dhamankar, R., Paller, A., Sachs, M., Skoudis, E., Eschelbeck, G., Sarwate, A.:
Top 20 internet security risks for 2007. http://www.sans.org/press/top20 2007.php

7. Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G.: Bringing science to digital foren-
sics with standardized forensic corpora. Digit. Investig. 6, S2–S11 (2009)

8. Hardy, S., Crete-Nishihata, M., Kleemola, K., Senft, A., Sonne, B., Wiseman,
G., Gill, P., Deibert, R.J.: Targeted threat index: characterizing and quantify-
ing politically-motivated targeted malware. In: Proceedings of the 23rd USENIX
Security Symposium (2014)

9. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, CCS 2003, pp. 272–280. ACM, New York
(2003)

10. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. Digit. Investig. 3(suppl.), 91–97 (2006)

11. Li, F., Lai, A., Ddl, D.: Evidence of advanced persistent threat: a case study of
malware for political espionage. In: 2011 6th International Conference on Malicious
and Unwanted Software (MALWARE), pp. 102–109, October 2011

12. Li, H., Zhu, S., Xie, J.: RTF attack takes advantage of multiple exploits, April 2014.
http://blogs.mcafee.com/mcafee-labs/rtf-attack-takes-advantage-of-multiple-
exploits

13. Li, W.-J., Stolfo, S.J., Stavrou, A., Androulaki, E., Keromytis, A.D.: A study of
malcode-bearing documents. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007.
LNCS, vol. 4579, pp. 231–250. Springer, Heidelberg (2007)

14. Maiorca, D., Corona, I., Giacinto, G.: Looking at the bag is not enough to find
the bomb: an evasion of structural methods for malicious PDF files detection. In:
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS 2013, pp. 119–130. ACM, New York (2013)

15. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-
ings of the 16th ACM Conference on Computer and Communications Security,
CCS 2009, pp. 524–533. ACM, New York (2009)

16. Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: 2012 IEEE
Symposium on Security and Privacy (SP), pp. 601–615, May 2012

17. Parkour, M.: 11,355+ malicious documents - archive for signature testing
and research, April 2011. http://contagiodump.blogspot.com/2010/08/malicious-
documents-archive-for.html

http://www.proofpoint.com/threatinsight/posts/dissecting-docx-image-exploit-kit-cve-exploitation.php
http://www.proofpoint.com/threatinsight/posts/dissecting-docx-image-exploit-kit-cve-exploitation.php
http://www.thegreycorner.com/2013/10/omlette-egghunter-shellcode.html
http://www.thegreycorner.com/2013/10/omlette-egghunter-shellcode.html
http://www.sans.org/press/top20_2007.php
http://blogs.mcafee.com/mcafee-labs/rtf-attack-takes-advantage-of-multiple-exploits
http://blogs.mcafee.com/mcafee-labs/rtf-attack-takes-advantage-of-multiple-exploits
http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-for.html
http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-for.html

246 C. Smutz and A. Stavrou

18. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS 2007, pp. 552–561. ACM, New York
(2007)

19. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, pp. 298–307.
ACM, New York (2004)

20. Smutz, C., Stavrou, A.: Malicious PDF detection using metadata and structural
features. In: Proceedings of the 28th Annual Computer Security Applications Con-
ference, ACSAC 2012, pp. 239–248. ACM, New York (2012)

21. Srndic, N., Laskov, P.: Detection of malicious PDF files based on hierarchical docu-
ment structure. In: Proceedings of the 20th Annual Network & Distributed System
Security Symposium 2013 (2013)

22. Stolfo, S.J., Wang, K., Li, W.-J.: Fileprint analysis for malware detection. In: ACM
CCS WORM (2005)

23. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy (SP), pp. 48–62, May 2013

24. Tabish, S.M., Shafiq, M.Z., Farooq, M.: Malware detection using statistical analy-
sis of byte-level file content. In: Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics, CSI-KDD 2009, pp. 23–31. ACM, New
York (2009)

25. Team, C.: Exploit notes-win32 eggs-to-omelet, August 2010. https://www.corelan.
be/index.php/2010/08/22/exploit-notes-win32-eggs-to-omelet/

26. Team, P.: PaX address space layout randomization (2003). http://pax.grsecurity.
net/docs/aslr.txt

27. Tzermias, Z., Sykiotakis, G., Polychronakis, M., Markatos, E.P.: Combining static
and dynamic analysis for the detection of malicious documents. In: Proceedings of
the Fourth European Workshop on System Security, EUROSEC 2011, pp. 4:1–4:6.
ACM, New York (2011)

28. Wei, T., Wang, T., Duan, L., Luo, J.: Secure dynamic code generation against
spraying. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS 2010, pp. 738–740. ACM, New York (2010)

29. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
2013 IEEE Symposium on Security and Privacy (SP), pp. 559–573, May 2013

https://www.corelan.be/index.php/2010/08/22/exploit-notes-win32-eggs-to-omelet/
https://www.corelan.be/index.php/2010/08/22/exploit-notes-win32-eggs-to-omelet/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

Improving Accuracy of Static Integer Overflow
Detection in Binary

Yang Zhang, Xiaoshan Sun, Yi Deng, Liang Cheng(B), Shuke Zeng, Yu Fu,
and Dengguo Feng

Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{zhangyang,sunxs,dengyi,chengliang,skzeng,fuyu,feng}@tca.iscas.ac.cn

Abstract. Integer overflow presents a major source of security threats
to information systems. However, current solutions are less effective in
detecting integer overflow vulnerabilities: they either produce unaccept-
ably high false positive rates or cannot generate concrete inputs towards
vulnerability exploration. This limits the usability of these solutions in
analyzing real-world applications, especially those in the format of binary
executables.

In this paper, we present a platform, called INDIO, for accurately
detecting integer overflow vulnerabilities in Windows binaries. INDIO
integrates the techniques of pattern-matching (for quick identification
of potential vulnerabilities), vulnerability ranking (for economic elimi-
nation of false positives), and selective symbolic execution (for rigorous
elimination of false positives). As a result, INDIO can detect integer
overflow with low false positive and false negative rates.

We have applied INDIO to several real-world, large-size Windows bina-
ries, and the experimental results confirmed the effectiveness of INDIO (all
known and two previously unknown integer overflows vulnerabilities were
detected). The experiments also demonstrate that the vulnerability rank-
ing technique and other optimization techniques employed in INDIO can
significantly reduce false positives with economic costs.

Keywords: Integer overflow detection · Static program analysis · Binary
analysis · Vulnerability ranking · Weakest precondition · Symbolic exe-
cution

1 Introduction

Integer overflow presents a major class of security vulnerabilities in information
systems, or more generally, software-regulated systems (e.g. embedded systems).
As reported by the Common Vulnerability and Exploit (CVE), integer overflow
has become the second most critical type of coding errors, after buffer overflow,
that causes severe security consequences1.
1 Vulnerability type distributions in cve. CVE (2007), http://cve.mitre.org/docs/

vuln-trends/vuln-trends.pdf.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 247–269, 2015.
DOI: 10.1007/978-3-319-26362-5 12

http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf

248 Y. Zhang et al.

Integer overflow emerges when an arithmetic operation attempts to create a
numeric value that is too large to be correctly represented in the available storage
space. We refer to such arithmetic operations as overflow points. Even though
overflow points do not directly compromise security, they can trigger other types
of vulnerabilities, such as buffer and heap overflow, and in turn cause significant
security consequences.

Both the industry and academia have proposed a variety of solutions in recent
years to detecting and mitigating integer overflow vulnerabilities. These solutions
can be generally categorized as based on either static analysis (e.g. [15,25–27,
29]) or dynamic analysis (e.g. [7,10,16,24,28,31]). Unfortunately, both these two
categories of solutions have their limitations when applied in realistic analyses. In
addition to the high computational cost, static analysis solutions typically suffer
from high false positive rates. That is, in order to ensure zero omission of integer
overflow vulnerabilities, these solutions typically over-estimate the behavior of
the program under analysis, which leads to excessive spurious vulnerabilities
being reported. The analyst might have to spend significant effort in ruling out
false positives before being able to address a genuine vulnerability.

Dynamic analysis based solutions do not have the problem of excessive false
positives. In contrast, whenever they report an integer overflow, it is trusted to be
real and exploitable. However, the effectiveness of these solutions heavily depends
on the set of inputs used to execute the program. It is often challenging to find
inputs within reasonable effort that trigger all vulnerabilities in the program.
Moreover, most of these solutions need to generate new input or modify the
original input at runtime to re-execute the program and explore its state space.
This restricts their applicability in checking GUI-based applications, because the
behavior of GUI-based applications is triggered by events (e.g., mouse-clicking),
whose input scope is hard to fully cover [30]. In fact, most existing dynamic
analysis solutions can only examine programs with specific input formats (such
as media players, network protocol parsers and file processors).

The limitations of existing solutions exacerbate when the program under
analysis is in binary code. The unique characteristics of binary code, including
the blur distinction between data and instructions, the prevailing use of indirect
addressing and jumps, and the lack of type information, make it a challenging
task to reconstruct the syntactic structure and semantics from binary code that,
unfortunately, constitutes the premise for existing solutions to proceed their
analysis with acceptable accuracy.

However, it is inevitable to detect and fix integer overflow at the binary
level, since it is often impractical to do so at the source code level (e.g., due
to the unavailability of source code, incomplete code or missing library files).
To tackle the difficulties of analyzing binary code, and especially to address the
limitations of existing solutions, we propose a static analysis based framework
called INDIO (INtegrated Detection of Integer Overflow) to detect and validate
integer overflow vulnerabilities in Windows binaries.

INDIO decomposes the task of finding integer overflow in binaries into two
steps. Firstly, all suspicious program paths likely to contain integer overflow

Improving Accuracy of Static Integer Overflow Detection in Binary 249

are identified using pattern matching. We refer to these suspicious paths as
vulnerable paths. Priority ranking and weakest precondition (WP) calculation
are then employed to all vulnerable paths to filter out a significant portion of
false positives with economic costs. The second step of detection is based on
selective symbolic execution [9], which checks if the vulnerabilities identified in
the first step are genuine in a simulated runtime environment. Taint analysis and
path pruning are employed prior to symbolic execution to force computationally
expensive analysis be only spent on validating suspicious vulnerabilities that
are likely to be real. A byproduct of selective symbolic execution is that it
generates example program inputs exposing the genuine vulnerabilities. Given
that a vulnerability sometimes is embedded in program paths with hundreds of
instructions, this feature is particularly helpful to analysts to understand and
fix integer overflow vulnerabilities.

We applied INDIO to several real-world windows binaries that have been
widely analyzed by existing solutions. INDIO found one previously unknown
bug and one fixed but unpublished bug in the GUI library comctl32.dll, and
another previously unknown bug in libpng.dll. The two unknown bugs have
both been confirmed by their vendors. Our experimental results also show that
INDIO is capable of detecting integer overflow with low false positive and false
negative rates.

In summary, this paper makes the following contributions:

– We developed an integrated framework, INDIO, to effectively detect integer
overflow in Windows binaries. The framework incorporates pattern match-
ing, inter-procedural data- and control-flow analysis, and symbolic execution
to quickly detect and validate integer overflow vulnerabilities in Windows
binaries. For the genuine vulnerabilities detected, the framework is able to
generate example inputs triggering them, in order to assist the understanding
and fixing of these vulnerabilities.

– We implemented a collection of optimization techniques, including vulnera-
bility priority ranking, WP calculation, taint analysis and path pruning, to
improve the efficiency of integer overflow detection. These techniques enable
INDIO to significantly reduce the number of false positives it reports while
keeps its false negative rate at a very low level.

– We applied INDIO to a set of widely used Windows binaries, in which INDIO
detected two previously unknown integer overflow vulnerabilities.

2 System Overview

INDIO takes x86 binaries (executables and DLLs) as input, and performs a two-
stage analysis to detect integer overflow in these binaries. At the end of analysis,
INDIO outputs the detected integer overflow vulnerabilities, as well as example
inputs to the binaries that expose these vulnerabilities. The detection in INDIO
is semi-automatic, and the only human intervention needed is to decide the
criteria on which suspicious vulnerabilities should pass to the second stage of
analysis.

250 Y. Zhang et al.

Fig. 1. Architecture of INDIO

The architecture of INDIO, as illustrated in Fig. 1, is consisted of two parts:
StaticTaint (Static Identification of Integer Overflow and Taint Analysis), and
VIOSE (Validation of Integer Overflow using Symbolic Execution). StaticTaint
first performs a quick search in the input binary to identify potentially vulnerable
paths by comparing them to known patterns of insecure integer operation and
usage; VIOSE conducts symbolic execution along the vulnerable paths identified
by StaticTaint and monitors their execution to validate whether they present
genuine security threats. If a potential vulnerability is genuine, VIOSE produces
example inputs to the binary that expose this vulnerability.

Next we use comctl32.dll as a running example to explain how INDIO oper-
ates to detect integer overflow. StaticTaint first translates comctl32.dll into the
Intermediate Representation (IR) using its Code Leverage module (Sect. 3.1),
and then searches the IR for code fragments that match vulnerability patterns
defined in the Vulnerability Pattern Library (Sect. 3.2). These code fragments
are identified as candidate vulnerabilities. For example, the arithmetic opera-
tion at 0x5d180c82 in the following code snippet is identified during the search,
because the result of multiplication is passed to the memory allocation function
ReAlloc at 0x5d180c8a as a parameter without any overflow check. For each
candidate vulnerability, StaticTaint records the address of its overflow points
and how the potentially overflowed integer value is used.

.text :5 d180c2c ; int stdcall DSA InsertItem(HDSA hdsa,

.text :5 d180c2c ; int i, const void *pitem)

.text :5 d180c2c hdsa = dword ptr 8

.text :5 d180c2c i = dword ptr 0Ch

.text :5 d180c2c Src = dword ptr 10h

...

.text :5 d180c82 imul eax , [esi+0Ch] ;

.text :5 d180c86 push eax ; uBytes

.text :5 d180c87 push dword ptr [esi +4] ; hMem

.text :5 d180c8a call _ReAlloc@8 ; ReAlloc(x,x)

The pattern matching process in StaticTaint obviously can cause many false
positives, as the trade-off for fast vulnerability identification. To address this,

Improving Accuracy of Static Integer Overflow Detection in Binary 251

its Vulnerability Filter utilizes two light-weight static analyses, namely priority
ranking (Sect. 3.3) and WP calculation (Sect. 3.4) to eliminate as many false
positives as possible:

1. The priority ranking algorithm calculates the possibility of a vulnerability
being exploited, referenced to as priority, based on how overflowed integers
are used by security-sensitive operations (also known as sinks). The higher
priority a candidate vulnerability has, the more likely it presents a genuine
vulnerability. For example, the vulnerability described above has a priority
higher than most of other candidate vulnerabilities in comctl32.dll, because
it uses the overflowed integer to decide the size of memory to be allocated
right after the overflowed integer is computed. One can specify a priority
threshold to filter out all candidate vulnerabilities with priorities lower than
the threshold.

2. The Vulnerability Filter further eliminates the candidate vulnerabilities that
are apparently unexploitable. It accomplishes this by using WP calculation
and value-range analysis to determine whether the program paths from the
program entry point to the sinks corresponding to these vulnerabilities are
feasible. Only vulnerabilities with feasible program paths are passed to VIOSE
for further validation. For the vulnerability in the above example, the path
segments from 0x5d180c2c to 0x5d180c82 and from 0x5d180c82 to 5d180c8a
are confirmed as feasible by the WP calculation and value-range analysis,
respectively. Thus, it is passed to VIOSE.

Unfortunately, the WP calculation is sometimes incapable of dealing with
long or complex program paths: it either cannot terminate within the time limit
or generates intricate preconditions that the SMT solver cannot handle. Thus,
many false positives might still sneak through StaticTaint. To tackle this, VIOSE
validates the candidate vulnerabilities passing through StaticTaint using sym-
bolic execution, which is more accurate than the WP calculation in validating
suspicious program paths [25]. VIOSE also employs two heuristics to improve
the efficiency and scalability of symbolic execution:

1. It incorporates a taint analysis to reduce the number of symbolic variables
to be introduced during symbolic execution. For example, the taint analysis
reports that the first parameter of ReAlloc in the above example has no
impact on the sink at 0x5d180c8a, and hence introduces no symbolic variable
for this parameter.

2. It also integrates a path pruning process that directs symbolic execution to
only considers program paths connecting the program entry point to the
overflow points and then to the corresponding sinks (see Sect. 4.2). In the
above example, all branches that do not lead to 0x5d180c82 and then to
0x5d180c8a are eliminated from symbolic execution after path pruning.

With the assistance of these two heuristics, the symbolic execution engine
in VIOSE validates if the sinks for each candidate vulnerability are reachable
from the entry point of the binary. If so, the engine deems the vulnerability as

252 Y. Zhang et al.

genuine and output example inputs to the binary that trigger the vulnerabil-
ity. For example, for the above example vulnerability, [hdsa + 8]=0x01000000,
[hdsa + 0ch]=0x01005451, [hdsa + 10h]=0x00000010 are generated for the
three parameters of DSA InsertItem, in order to exploit the vulnerability at
0x5d180c8a.

The integration of StaticTaint and VIOSE enables them to compensate the
limitations of each other, so as to achieve a balance between the accuracy and effi-
ciency of vulnerability detection. On one hand, StaticTaint incorporates capabili-
ties to filter out a significant portion of false positives, so that the time-consuming
symbolic execution in VIOSE is applied to validate much fewer vulnerabilities.
On the other hand, VIOSE validates and rules out false positives passing through
StaticTaint with more rigorous analysis.

3 StaticTaint: Identify Vulnerabilities with Pattern
Match

As illustrated in Fig. 1, StaticTaint is consisted of three modules: the Code
Leverage module first translates the binary under analysis into an IR; the Vul-
nerability Identification module then traverses the IR to identify all potential
integer overflow vulnerabilities based on pre-defined vulnerability patterns; the
Vulnerability Filter lastly examines the identified vulnerabilities and elim-
inates false positives. Vulnerabilities passing the Vulnerability Filter are then
forwarded to VIOSE for further validation.

3.1 Code Leverage

StaticTaint first reverse-engineers an input binary into an equivalent assembly
program using IDA Pro2, and then eliminates the side-effect of the assembly
program by transforming it into an IR using the Code Leverage module.

The IR language used in StaticTaint is derived from that proposed in Vine
[22], with augmented support for type information and SSA representation. It
includes the following five types of grammatical terms:

– assignment Assign(var, exp), assigning the value of exp to variable var;
– jump statement Jmp(label), which shifts the program’s execution to the

statement labeled as label;
– conditional jump Cjmp(exp, label1, label2), which directs the program’s

execution to the statement labeled as label1 if exp is evaluated as true, or
to statement labeled as label2 otherwise;

– labeled statement (label, st), where st is any SSA statement and label is
a string label assigned to st; and

– function invocation statement Call(exp) that invokes the function whose
initial address is the value of exp.

2 Hex-Rays Inc., https://www.hex-rays.com/products/ida/index.shtml (May 2015).

https://www.hex-rays.com/products/ida/index.shtml

Improving Accuracy of Static Integer Overflow Detection in Binary 253

Variables in our IR are divided into memory and register variables, where
memory (heap or stack) variables are defined as a combination of functions
associated with these variables and their offsets to the bottom of the stack/heap.
Each variable in our IR has fields to record its storage size and sign. This is in
contrast to Vine, which only records the storage size of variables. The extra
sign field enables to collect and calculate the sign information of variables more
accurately, which is important to the calculation of correct overflow conditions
(see Sect. 3.3) and to the accuracy of subsequent vulnerability validation.

We integrate both control- and data-flow analyses to reconstruct the sign
information from binary code. This starts with collecting useful information
from the reverse-engineered assembly code to initialize the sign of variables. For
example, variables used as array index, memory size and unsigned jumps (such
as JA* and JB*) are unsigned, while those used in conditional jump instructions
(i.e. JG* and JL*) are signed.

3.2 Vulnerability Identification

StaticTaint considers an arithmetic instruction as a (potential) overflow point,
if it involves integer variables and matches with one or several patterns in the
Vulnerability Pattern Library (VPL). A pattern in the VPL defines a dangerous
way of using a possibly overflowed integer that creates security vulnerabilities.
Currently, the VPL used by StaticTaint includes the following patterns:

– Integer usage in security-sensitive operations. Integer overflows become
vulnerabilities only when they are used in security-sensitive operations,
including:
• Memory allocation. If an overflowed integer is used as the size parameter

of memory allocation functions (e.g. malloc series), the actual size of the
memory allocated can be smaller than intended. This may lead to buffer
overflow vulnerabilities.

• Memory Indexing. If an overflowed integer is used as the index of an
array, a pointer or a structure, one can gain access to unintended memory
area, leading to information leakage or memory manipulation.

• Conditional judgment. If an overflowed integer is used in the conditions
of conditional jump statements, the program control flow can be manip-
ulated to circumvent necessary checks, e.g. permission checks and data
integrity checks.

– Lack of overflow checking. Any integer arithmetic operation may cause
integer overflow vulnerabilities if it is not followed by overflow checks.

– Incomplete or wrong input checks. If the the size and signedness of an
integer variable are not properly checked before being used in integer opera-
tions (e.g. addition and multiplication), an overflow may occur.

The above patterns are derived from our studies on publicly announced inte-
ger overflow vulnerabilities (e.g. those in the CVE database) and from the acad-
emic literature (e.g., [10,25]). Of course, the VPL can be continuously updated
to capture our evolving understanding of integer overflow vulnerabilities.

254 Y. Zhang et al.

Technically, the process of identifying all potential overflow points in a binary
based on pattern matching is implemented as an inter-procedural data flow
analysis, which proceeds as follows:

1. Traverse the program for vulnerability identification. For every integer arith-
metic instruction without a subsequent check on its result, the address of this
instruction and the variable storing its result are logged as a possible over-
flow point in the overflow point list. For example, if the instruction Assign(c,
Add(a, b)) at address 0x401000 commits a potential overflow, an entry (c,
0x401000, 0) is added to the list of overflow points, in which “0” indicates
that this instruction is where the integer overflow originates.

2. Broadcast the identification results across the entire program to collect vari-
ables whose values are affected by the potentially overflowed integer val-
ues. Assuming an instruction Assign(d, Div(c, 2)) with address 0x401001
immediately following the overflow point, then an entry (d, 0x401001, 1)
is created and added to the list of overflow points, where “1” indicates one
propagation step away from the overflow point.

3. A second round of traversing is performed on the program to collect the
information of how potentially overflowed integer variables are used. If the
use of such a variable matches with one or more patterns in the VPL, it
is deemed as a potential vulnerability, and an entry (overflow point, usage
information) is added to the overflow point list. Consider the above exam-
ple again. Suppose variable c is used in two places: a conditional jump
instruction Cjmp(c, label1, label2) with address 0x4001005 and a mem-
ory allocation instruction with address 0x401008. Then an entry (0x401000,
(0x401005, BranchCond), (0x401008, MemAlloc)) is added to the over-
flow point list, where BranchCond represents the use of c in a conditional
jump and MemAlloc indicates its use in memory allocation.

3.3 Vulnerability Priority Ranking

The vulnerability priority ranking algorithm in the Vulnerability Filter module
decides which vulnerabilities warrant further analysis, based on the observation
that unintentional overflows are more likely to be exploited than intentional ones.
When overflowed integer values are used in different types of sinks, different
levels of risk might present to the system security. For example, it has been
reported that more than a half of integer overflow vulnerabilities are caused
because memory allocation operations use overflowed integer values to decide
the size of memory to be allocated [31], while vulnerabilities due to overflowed
values being used as the index to dereference memory structures are rare. Thus,
memory allocation operations are more critical to system security than sinks like
memory dereference operations.

We assign different weights to different types of sinks, according the following
rules, to capture their impact to security:

– A high weight is assigned to memory allocation operations.
– A medium weight is assigned to conditional statements.

Improving Accuracy of Static Integer Overflow Detection in Binary 255

– A low weight is assigned to memory dereference operations.
– For an arithmetic operation that potentially causes integer overflow, if the

program has a check over its result immediately after the operation, then a
negative weight is assigned to the check. This is consistent with the experience
that the threat of integer overflow can be reduced if appropriate checks are
instrumented in the program.

It should be noted that, if further knowledge of integer overflow vulnerabil-
ities and their causes becomes available, the weights assigned to different types
of sinks could and should be adjusted accordingly.

Having weights representing different security risks assigned, the Vulnera-
bility Filter is able to calculate the priorities of candidate integer overflow vul-
nerabilities. Formally, suppose a program has n types of sinks, and an integer
overflow vulnerability has its overflowed integer value used in ni sinks of type i,
where i = 1, 2, .., n. its priority, p, is calculated following Eq. 1, where:

1. ωi is the weight assigned to sinks of type i.
2. pcij is the number of propagation steps from the arithmetic operation that

introduces the overflowed integer value (also known as source) to the jth use
of this value in type i sinks. A propagation step is a transformation over the
potentially overflowed integer value, such as applying an Add or Sub operation
to the value. Moreover, pcip ≤ pciq for any 0 ≤ p ≤ q ≤ ni.

3. qi is a constant weakening factor that the analyst assigns to type i sinks. This
factor specifies how the threat of using an overflowed integer in a type i sink
decreases as the distance (i.e., the number of propagation steps) between this
sink and source increases.

p =
n∑

i=1

nj−1∑

j=0

((ωi − pcij × qi)/2j) (1)

Intuitively speaking, Eq. 1 formalizes two rules of evaluating potential integer
overflow vulnerabilities: (1) the deeper a potentially overflowed value is propa-
gated into the program, the less likely its use in sinks commits real vulnerabilities;
and (2) it is more risky to use a potentially overflowed integer value in multiple
types of sinks than to use it in multiple sinks of the same type. Hence, if more
than one type i sinks use the potentially overflowed integer, these extra sinks
only contribute partially to the likelihood of the vulnerability being real (see the
2j divisor in Eq. 1).

Once the priorities of all identified vulnerabilities are calculated, one can
specify a threshold, so that only vulnerabilities with priorities higher than the
threshold are passed to VIOSE for further validation. This feature is particu-
larly useful when the time and resource available for vulnerability validation is
limited. The selection of such a threshold is based on the user’s analysis needs: a
higher threshold helps on to spend most resources on validating the most likely
vulnerabilities, while a lower threshold helps to gain a better false negative rate.

We have applied the vulnerability priority raking algorithm to a number of
Windows binaries, and investigated how the selection of the priority threshold

256 Y. Zhang et al.

Table 1. Overflow condition for arithmetic operations

Overflow point Sign of a and b Overflow condition

Add(a,b) Unsigned a + b < a

Signed (a > 0&b > 0&a+b < a)||(a < 0&b < 0&a+b > a)

Mul (a,b) Unsigned a! = 0&(a ∗ b)/a! = b

Signed a! = 0&(a ∗ b)/a! = b

Sub (a,b) Unsigned a < a − b

Signed (a > 0&b > 0&a < a− b)|(a < 0&b < 0&a− b < a)

impact the false negatives that INIDO finally reported. Experimental results
confirmed that with a simple “training” process (see Sect. 5.1) for the threshold
selection, the algorithm eliminated 78 % false positives generated by pattern
matching without omitting any known vulnerability (see Sect. 5.4).

We acknowledge that Eq. 1 is formalized based on our investigation of known
integer overflow vulnerabilities. Even though our experiments demonstrate its
effectiveness in distinguishing genuine vulnerabilities from false positives, there
is still possibility that it does not accurately capture how integer overflow leads
to security vulnerabilities in realistic binaries. Large-scale studies on realistic
binaries can certainly help us confirm the rules underlying Eq. 1 and optimize
the configuration of its parameters. For example, studies on realistic binaries can
improve our understanding on how the distance from overflow points to sinks
affects the likelihood of an integer overflow leading to a vulnerability. We leave
this to future study.

3.4 Vulnerable Path Calculation

To eliminate the false positives reported by the priority ranking algorithm, we
examines whether the WPs associated with the paths from the program’s entry
point to overflow points are satisfiable. Given an identified vulnerability (i.e.,
an overflow point and the sink(s) using the overflowed integer value), the tactic
validates if it is genuine as follows:

1. The overflow condition c is calculated for the overflowpoint according toTable 1.
This condition, if satisfied, ensures that an overflowed value be assigned to the
corresponding variable;

2. All possible paths connecting the program entry point to the overflow point
are translated into a Guarded Command Language format (denoted as G);

3. The WP s = wp(G, c) is calculated by following the algorithm in [11] for
each of the paths identified in the last step. Thus, if s is satisfied when the
program starts, then c is also satisfied when the program executes along the
corresponding program path.

4. The STP solver is invoked to solve whether or not s can be satisfied. If not,
then the vulnerability is a false positive and hence filtered out.

Improving Accuracy of Static Integer Overflow Detection in Binary 257

In addition to the WP calculation, the Vulnerability Filter also implements
a mechanism to validate the paths from overflow points to the corresponding
sinks, also known as forward vulnerable paths. The validation of forward vul-
nerable paths is based on a simplified value-range analysis [21], in which the
values of variables of interest are abstracted as a range over the integer domain.
In particular, the values of all integer variables involved are initialized as the
entire integer domain and continuously updated during forward execution of
the forward vulnerable paths. When conditional jumps are encountered, checks
are conducted to see if the current value ranges of related variables can satisfy
the branch conditions, so that the execution can eventually lead to the target
sinks. If not, the forward vulnerable paths are infeasible, suggesting that the
corresponding vulnerabilities are false positives.

Both the WP calculation and value-range analysis are conservative and do
not introduce false negatives, when applied to reduce false positives (see Sect. 5.4
for details).

4 VIOSE: Vulnerability Validation with Symbolic
Execution

False positives survived from StaticTaint are further examined and eliminated by
VIOSE with its Symbolic Execution Engine (SEE). As illustrated in Fig. 1, the
SEE in VIOSE maintains a virtual machine as the abstract runtime environment
for executing binaries, and its operation is guided by the Vulnerability Validation
module. In particular, the Vulnerability Validation module instructs the SEE on
which program paths to execute, and monitors the execution results of the SEE.

The complexity of symbolic execution, in terms of symbolic states explored
and constraints generated, increases exponentially as the number of symbolic
variables involved or the size of the program path increases [1]. Thus, we intro-
duce two components in VIOSE, the Variable Selection and Path Selection mod-
ules, to improve the scalability and effectiveness of symbolic execution.

4.1 Symbolic Execution in VIOSE

The SEE in VIOSE is constructed on the top of S2E [9], a platform for explor-
ing and analyzing the behavior of binary code. S2E has a variety of notable
features, making it suitable to be used for our analysis: 1. S2E can automati-
cally switch between concretely and symbolically executing the code of interest,
within an emulated OS runtime environment (i.e., a virtual machine); 2. the
virtual machine in S2E offers a real software stack (libraries, OS kernel, drivers,
etc.), rather than abstract models, to emulate the targeted OS environment,
which makes the analysis built upon it closer to the reality; and 3. S2E can exe-
cute binary code in both user and kernel modes, making it applicable to more
binary programs.

258 Y. Zhang et al.

The SEE in VIOSE extends S2E with two features to improve the efficiency
of symbolic execution:

1. A plug-in is added to S2E, which guides S2E to only execute, symbolically or
concretely, instructions commanded by the Vulnerability Validation module.
In other words, only instructions relevant to integer overflow are executed.

2. A customization is made to the S2E symbolic execution engine, so that:
(a) S2E can introduce symbolic parameters for variables and memory loca-

tions specified by the user. As a result, instructions involving these vari-
ables and memory locations are forced to be executed symbolically.

(b) When an arithmetic instruction with integer variables is encountered, S2E
automatically generates the constraint for the involved integer variables to
overflow. However, such a constraint has already been generated by the Vul-
nerability Filter component of StaticTaint in previous analysis. Thus, the
VIOSEs SEE simply retrieves this constraint instead of re-generating it.

Given an entry point and a sink, S2E explores all program paths connecting
them. For each of such paths, S2E invokes the STP solver to check if the conjunc-
tion of the integer overflow constraint and the path constraints collected along the
path is satisfiable. If STP reports back a solution (i.e. certain evaluation of input
variables enabling the potential overflow), S2E stops analyzing the rest paths for
this pair of (entry point, sink), and reports it as a genuine vulnerability to the
Vulnerability Validation module. If the conjunction is found to be unsatisfiable or
cannot be solved within a pre-defined time limit, S2E continues to analyze the rest
program paths for this pair of (entry point, sink). Only when no solution can be
found for the constraint conjunctions of all program paths connecting the entry
point and the sink, S2E reports the vulnerability as a false positive.

It is worth noting that the S2E platform performs selective symbolic execu-
tion directly on the binary code. Thus, we extend StaticTaint with the feature of
mapping all its vulnerability identification results (on the IR level) back to the
original binary level, so that these results can be re-used to guide the symbolic
execution in S2E. Experiments showed that S2E enables INDIO to achieve 76 %
reduction of false positives (see Sect. 5.4).

4.2 Path Pruning and Taint Analysis

As compared to the WP calculation, symbolic execution is more accurate in
validating the feasibility of program paths [25], and hence can detect false posi-
tives that survive from previous analyses. However, symbolic execution is more
computationally expensive than the WP calculation [18], making it a formidable
task to validate all suspicious vulnerabilities with symbolic execution. Consider-
ing this, VIOSE incorporates the Path Selection module to reduce the number
of program paths that symbolic execution needs to explore; and the Variable
Selection module to help reduce the number of symbolic variables to be intro-
duced. As a result, symbolic execution in VIOSE can scale up to analyze more
complex and larger binaries.

Improving Accuracy of Static Integer Overflow Detection in Binary 259

The Path Selection module implements a heuristic algorithm that we previ-
ously proposed [5] to identify program instructions and paths irrelevant to inte-
ger overflow analysis and remove them from subsequent analysis. The algorithm
is essentially a customized control-flow analysis of the program of interest: if in
the control flow graph an instruction is not on either a path from the program
entry point to an overflow point or on any forward vulnerable paths from the over-
flow point to its sink(s), the instruction is deemed as irrelevant and thus pruned
off. In other words, when symbolic execution is facing more than one branch to
proceed, the Path Selection component instructs symbolic execution to take the
branch leading to the target sinks. Eliminating irrelevant instructions and paths
from symbolic execution can focus the analysis only on the portion of code that
matters to integer overflow and consequently improve the analysis efficiency.

The Variable Selection module, on the other hand, reduces the number of
symbolic variables introduced during symbolic execution. It is an instance of
classic taint analysis, except that it only tracks the tainted program inputs that
are used as the operands of overflow points or can influence such operands. For
these variables tainted by inputs, the Variable Selection module informs the SEE
to introduce symbolic variables. For input variables decided as irrelevant to inte-
ger overflow, the Variable Selection module assigns them with random concrete
values, since their values have no impact to the corresponding vulnerabilities.

Note that typical taint analysis does not consider the information flow caused
by control dependency [18]. Thus, it is possible that variables affecting the con-
trol flow (e.g., those used in the conditions of if statements) might be identified
as “untainted”, and the Variable Selection module will not introduce symbolic
variables for them. This might result in some branches of if statements being
missed by symbolic execution, and thus affect the result of vulnerability vali-
dation. We leave it as future work to enhance our taint analysis to take into
account control dependency.

5 Evaluation

We have evaluated the effectiveness and efficiency of INDIO against a number
of widely-tested Windows applications and libraries. They are listed in Table 2,
among which comctl32.dll and gdi32.dll are both GUI-based libraries and
libpng.dll was deemed as “completely free of undefined integer overflows” [10].
We conducted all experiments on a Lenovo desktop with a 2.6 GHz Intel i7 CPU
and 4G memory, and the threshold of the priority ranking algorithm was set
as 30 (see Sect. 5.1 for explanation). Similar to other static analysis tools, all
vulnerabilities reported by INDIO were manually inspected to decide if they
were false positives or represented real security issues.

5.1 Effectiveness: Detection of Known Vulnerabilities

In the first set of experiments we applied INDIO to 6 different programs, each of
which has a known integer overflow vulnerability. INDIO successfully reported

260 Y. Zhang et al.

Table 2. Statistics of detecting known integer overflow vulnerabilities.

Program name Program version Advisory ID Vuln.
Identif.

Priority
ranking

WP
Calc.

Symbolic
execution

Rank

comctl32 5.82.2900.2180 eEye reported 401 63 16 2 1

gdi32 5.1.2600.2180 CVE-2007-3034 1029 93 10 1 10

libpng 1.5.13 CVE-2011-3026 525 73 14 2 4

png2swf 0.9.1 CVE-2010-1516 2331 201 8 2 5

jpeg2swf 0.9.1 CVE-2010-1516 2459 176 8 2 5

libwav plugin 0.8.6h CVE-2008-2430 22 2 1 1 1

all vulnerabilities contained in these programs. Table 2 summarizes the results,
in which column 3 shows the advisory reports for the known vulnerabilities;
columns 4-7 show the numbers of suspicious vulnerabilities after each of INDIO’s
analysis and optimization modules was applied; and column 8 shows the priorities
computed for the vulnerabilities. It is obvious from Table 2 that our priority
ranking algorithm drastically filters out false positives generated, while keeping
false negatives at a negligible level in the experiments.

In fact, we used the first set of experiments as the “training set” to approach a
reasonable priority threshold for vulnerability ranking. We first applied INDIO to
the training set with threshold = 0 and checked if any known vulnerability listed
in Table 2 was missed. The process was repeated by increasing the threshold by
5 each time. The results, illustrated in Fig. 2, showed that the false negatives
occurred when the threshold was 35. Thus we set the threshold as 30 in the
subsequent experiments.

0

500

1000

1500

2000

2500

0 10 20 30
Threshold of priority ranking

N
um

be
r

of
 s

us
pi

ci
ou

s
vu

ln
er

ab
ili

ty

programs

comctl32

gdi32

jpeg2swf

libpng

libwav

png2swf

Fig. 2. The number of suspicious vulnerabilities reported by the ranking algorithm fell
down as the threshold is rising. When threshold = 35, false negatives occurred.

Improving Accuracy of Static Integer Overflow Detection in Binary 261

5.2 False Positive Reduction

The focus of the second set of experiments was to evaluate the effectiveness
of INDIO in reducing false positives. In these experiments, we compared the
numbers of false positives reported by both INDIO and IntScope [25] for the
same set of 9 binaries. The reason why IntScope was chosen for comparison is
twofold: (1) IntScope is a renowned static analysis tool for Windows binaries;
and (2) to the best of our knowledge, IntScope achieves the lowest false positive
rate among existing static integer overflow detection tools, including [8,25–27].

The comparison results between INDIO and IntScope are summarized in
Fig. 3, which demonstrated that INDIO not only reported all the vulnerabilities
recorded in [25] but also found a previous unknown vulnerability in comctl32.dll.
In terms of false positives, INDIO reported fewer false positives than IntScope
for 3 out of the 9 binaries. For the rest 6 binaries, INDIO reported the same
number of false positives as IntScope.

The reason why INDIO out-performed IntScope, from the false positive rate
perspective, lies in the fact that IntScope only outputs suspicious paths that
might contain integer overflow for a single function in the binary, while ignores
potential vulnerabilities caused by other functions in the same binary. These
suspicious paths need to be further filtered by other auxiliary testing tools to
check their validity. INDIO, on the contrary, reports overflow points for each
vulnerability in the entire binary, instead of targeting at a certain function in it.

22

4
3 3

1 11 11 11
22

7

4
33

0

3

6

9

comctl32 faad2 gdi32 goom hamsterdb mpd mplayer qemu xine

N
um

be
r

of
 r

ep
or

te
d

vu
ln

er
ab

ili
ty

Tools

INDIO

IntScope

Fig. 3. Numbers of (potential) vulnerabilities reported by INDIO and IntScope. Note
that [25] only recorded the number of false positives reported in the functions that
contained genuine vulnerabilities, while INDIO reported all false positives reported for
the 9 binaries.

5.3 New Bug Detection

In the experiments, INDIO succeeded in finding two vulnerabilities in
comctl32.dll and libpng.dll that have not been reported by any tools before.
The vendors of these two binaries both confirmed these two vulnerabilities, and
released corresponding security patches to fix them3. In addition, INDIO also
found a vulnerability that has been fixed by the vendor but never been published.
3 Ref. CVE-2013-3195 and CVE-2013-7353.

262 Y. Zhang et al.

Analysis of comctl32.dll. comctl32.dll is a Windows system library, providing
a set of window control functionalities used by Windows GUI applications. The
following code shows the vulnerability we found in its function DSA InsertItem,
where it uses the product of nItemSize and nNewItems as the size of mem-
ory to be allocated, without any prior overflow check. Both nItemSize and
nNewItems are 32-bit signed integers, whereas the data type of the second para-
meter of ReAlloc 32-bit unsigned integer. This could cause the product to wrap
around to a relatively smaller integer than expected. Malicious attackers can
hence exploit this vulnerability by carefully crafting the nGrow and nMaxCount
fields of parameter hdsa. For brevity, we refer to this vulnerability as Vulnerabil-
ity #1. Notably, the security community has not been able to detect Vulnerability
#1 for more than a decade.

INT DSA_InsertItem (HDSA hdsa , INT nIndex , LPVOID pSrc) {

INT nNewItems , nSize;

...

if (nIndex >= hdsa ->nItemCount) nIndex = hdsa ->

nItemCount;

...

nNewItems = hdsa ->nMaxCount + hdsa ->nGrow;

nSize = hdsa ->nItemSize * nNewItems;

lpTemp = ReAlloc (hdsa ->pData , nSize);

...}

StaticTaint reported 16 suspicious vulnerabilities, among which Vulnerabil-
ity #1 was assigned the highest priority (51). VIOSE further determined 14 of
them as false positives and generated example inputs for the rest two suspicious
vulnerabilities. With the inputs generated by VIOSE, we were able to manu-
ally confirm the genuineness of these two vulnerabilities, including Venerability
#1 and another vulnerability in function DPA GROW. For the latter vulnerability,
Microsoft has released version 5.82.2900.6028 of comctl32.dll to fix it without
making it aware to the public. In contrast, Wang et al. also applied IntScope to
comctl32.dll, but was not able to detect Vulnerability #1. Additionally, we are
not aware any dynamic tools having been used to detect vulnerabilities in this
GUI library.

Analysis of libpng.dll. The vulnerability we are the first to detect in
libpng.dll- 1.5.13 is a typical heap buffer overflow vulnerability caused by inte-
ger overflow. To be more specific, its function png set unknown chunks(in libp-
ng/pngset.c) used two of its parameters, info ptr and num unknowns, to calculate
the size of a memory chunk np without any checks, as illustrated in the following
code segment. These two unsigned parameters in the multiplication can be very
close to the upper limit of unsigned integers. Thus, the size of memory allocated
to np might be smaller than expected when wraparound occurs during the size
calculation. This might result in a segmentation fault when information is copied
to np. For convenience, we refer to this vulnerability as Vulnerability #2.

Improving Accuracy of Static Integer Overflow Detection in Binary 263

void PNGAPI png_set_unknown_chunks(png_structp png_ptr ,

png_infop info_ptr , png_unknown_chunkp unknowns , int

num_unknowns) {

...

np = (png_unknown_chunkp)png_malloc_warn(png_ptr ,

(png_size_t)(info_ptr ->unknown_chunks_num +

num_unknowns)*

png_sizeof(png_unknown_chunk));

...

png_memcpy(np, info_ptr ->unknown_chunks ,

(png_size_t)info_ptr ->unknown_chunks_num

png_sizeof(png_unknown_chunk));

...}

For this binary StaticTaint first identified 14 suspicious vulnerabilities, out
of which Vulnerability #2 was assigned with a priority of 45, lower than 10
other vulnerabilities. VIOSE validated 2 vulnerabilities as genuine, namely Vul-
nerability #2 and vulnerability CVE-2011-3026 listed in Table 2. As evidence of
the genuineness of Vulnerability #2, VIOSE produced an example input, which
assigned the fourth argument of png set unknown chunks as 0xffffffff. After
manual analysis, we confirmed that this input did trigger Vulnerability #2.

Libpng.dll has been widely analyzed by different approaches [10,14,29], but
none of them found Vulnerability #2. For example, IOC, a dynamic integer over-
flow detection tool using source code instrumentation, asserted that libpng is
completely free of undefined integer overflows, after analyzing it against an exist-
ing test suite [10]. The reason why IOC failed to detect Vulnerability #2 might
lie in that the test suite used to execute the binary did not trigger the size of
memory allocated to np to overflow. However, Vulnerability #2 presents a gen-
uine security threat. In fact, according to IOCs integer overflow categorization,
Vulnerability #2 falls into the harmful category of “unintentional implementa-
tion errors”.

5.4 Effectiveness of Optimization

We also evaluated the effectiveness of each optimization technique in INDIO
during detecting known vulnerabilities in Sect. 5.1. To do this, we turned on
one more optimization technique at one time and recorded the numbers of false
positives reported. The experimental results are summarized in Table 2.

Suppose that x and z suspicious vulnerabilities were reported before and
after optimization #n was applied to a binary respectively, and y was the num-
ber of genuine vulnerabilities in the binary. We calculated the reduction ratio of
false positives by optimization #n as 1 − (z − y)/(x − y). As demonstrated in
Table 2, the priority ranking algorithm eliminated in average 78 % of the suspi-
cious vulnerabilities; the WP calculation eliminated about 85 % of the remaining
suspicious vulnerabilities; and lastly the symbolic execution engine was able to
filter out about 76 % of the vulnerabilities.

264 Y. Zhang et al.

5.5 Efficiency

INDIO spent about 1 hour analyzing an average-size binary, the majority of
which was taken by the Vulnerability Filtering module (about 50 % of the cost)
and the Vulnerability Validation module (about 35 %). In comparison, IntScope
spends about 10 min to analyze an average-size executable [25]. However, their
time cost did not take into account the time and effort needed for validating
suspicious vulnerabilities, which typically accounts for a significant portion of
time cost in vulnerability detection (e.g., 35 % time cost in our experiments).

Nevertheless, we have to admit that INDIO spends more time than IntScope
in detecting vulnerabilities. Part of the reason lies in that IntScope only performs
taint analysis and symbolic execution during IR traversing. INDIO, on the other
hand, not only performs priority ranking and the WP calculation to filter false
positives, but also conducts path pruning and taint analysis to improve the effec-
tiveness of VIOSE. This results in about 31 min being spent in these analyses
during the IR traversing stage. Considering the benefits of much fewer false pos-
itives being reported and more accurate analysis results, we deem the relatively
higher time cost by INDIO as an acceptable tradeoff.

It is worth noting that a large part of INDIO’s time cost is incurred by solving
path constraints generated during the WP calculation and symbolic execution.
Our statistics showed that constraint solving took up to 40 % of INDIO’s running
time. This suggests that the time performance of INDIO could be improved if
optimization tactics (e.g., [3,4]) are applied to the constraint solver. We leave
this to future work.

5.6 Discussion

Our experiments on a set of binaries that have been widely analyzed by a variety
of tools provide encouraging evidence on INDIOs capability of detecting known
and unknown integer overflow vulnerabilities. Moreover, as compared to IntScope
which is renown for its low false positive rate, INDIO performed more effectively
in reducing false positives in our experiments. According to our experience, a
static analysis tool with the lower false positive rate is more “user-friendly” to
programmers, and hence is easier to be integrated into the software development
process.

It is worth noting that the SMT solver employed in INDIO might fail to
solve the WP constraints with the constraint’s complexity beyond the solver’s
analytical capability. There are two options to handle such situations: (1) report
all paths containing unsolvable WP conditions as vulnerable paths, in order to
avoid false negatives; or (2) do not report these paths, in order to reduce the
number of false positives. In the current implementation of INDIO, we took
the second option, which may lead to false negatives. However, our experiments
as described in Sects. 5.1 and 5.2 demonstrate that this choice (with a reason-
able timeout for WP calculation) does not result in noticeable increase of false
negatives in realistic analysis.

Improving Accuracy of Static Integer Overflow Detection in Binary 265

The validity of our experiments are threaten by two factors:

1. The experiment subjects selected might not well represent real (Windows)
binaries suffering from integer overflow. In the experiments, we selected a set
of Windows binaries that are widely used in common media or image appli-
cations. Most of them have been thoroughly studied by an array of integer
overflow analysis tools. Thus, they offer us a good basis to compare our tool
with existing analysis techniques. In future study, we plan to evaluate INDIO
against more comprehensive test benches covering typical integer operation
and usage in (Windows) binaries.

2. It is possible that the binaries we studied contain vulnerabilities that have
not been uncovered by any tools, which might affect our evaluation of INDIOs
false negative rates. In fact, INDIO succeeded in finding two new vulnerabil-
ities from the considered binaries, despite the fact that they have been well
checked by a host of tools before [4,10,12–16,20,24,25,29,31]. Nevertheless,
an inaccurate estimation of INDIO’s false negative rate does not compromise
the conclusion we have drawn from the experiments, which is that INDIO is
more effective in detecting integer overflow from binaries with a much lower
false positive rate.

6 Related Work

Static Binary Analysis. A number of tools have been proposed to use static
analysis techniques to detect integer overflow in binaries. For example, Loong
Checker [8] retrieves the summary of functions in binaries using value-set analysis
and data dependency analysis. Based on the retrieved summaries, Loong Checker
applies taint analysis to investigate the use of potentially overflowed integer
values in sinks. IntFinder [6] recovers type information from binaries, and then
uses it to detect suspicious instructions that might cause integer overflow. Taint
analysis is also used in IntFinder to reduce the size of suspicious instructions.
Both LoongChecker and IntFinder suffer from the problem of high false positive
rates, and have to be used together with dynamic analysis to rule out false
positives.

The previous work closest to ours is IntScope [25], which integrates path-
sensitive data-flow analysis and taint analysis to identify vulnerable points of inte-
ger overflow. Similar to our approach, IntScope also spends expensive symbolic
execution-based analysis only on paths on which tainted values are used in sinks.

Unlike these static approaches, INDIO significantly reduces the cost of static
analysis using a vulnerability ranking mechanism. Thus, only a small portion of
vulnerabilities likely to be genuine are examined with expensive static analysis.
INDIO further improves the efficiency and scalability of static analysis using its
built-in heuristics, including taint analysis and path pruning. Moreover, the use
of S2E gives INDIO better accuracy in symbolic execution than IntScope, which
uses abstract memory models to simulate the runtime environment for binaries.

Dynamic Analysis & Symbolic Execution. Fuzz testing (e.g., [12,13]) has
been traditionally used to challenge the reliability of systems with excessive

266 Y. Zhang et al.

malformed test inputs. Recently, fuzz test has evolved to conduct symbolic analy-
sis [12,19,20] or taint analysis [16] on a concrete(seed) input to guide the gener-
ation of sensible test inputs that explore program paths of interest (e.g., tainted
paths). These evolved fuzz testing techniques have the potential of detecting vul-
nerabilities in binaries [12,16,24], because the test inputs they generate might
explore vulnerable program paths and trigger vulnerabilities.

However, in contrast to static analysis based approaches, fuzz testing and its
variants cannot guarantee to generate test inputs that cover all possible paths in
binaries or paths that matter. As a result, vulnerabilities might be omitted by
these approaches. In addition, the effectiveness of dynamic analysis is limited by
the quality of test inputs crafted, which depends on the level of knowledge about
the binaries (in particular, the input protocols of the binaries) acquired. Without
such knowledge, dynamic analysis becomes less effective in exploring program
defects and vulnerabilities. For example, DIODE [20] employs a specific input
format parser to reconstruct test input files. It is unknown whether DIODE or
tools alike can be applied to GUI-based executables such as comctl32.dll, which
are fed by non-file-based inputs.

Dynamic instrumentation tools like DynamoRIO [2] are often used to monitor
dynamic execution of binaries. If the binaries are appropriately instrumented,
these tools can catch the occurrence of integer overflow. However, they can only
be applied to binaries running in user mode, and depend on other techniques to
craft inputs that might trigger integer overflow.

Source Code Analysis. Numerous approaches have been proposed to detect
integer overflow at the source code level. These approaches either use static
analysis to detect integer overflow [26,27], or instrument the source code and
check integer overflow at runtime [10,17,31]. IntPatch [31] uses type analysis
to locate possible overflow sites and applies backward slicing to find the oper-
ations that affect the overflow sites. [27] aims to find multiple vulnerabilities
including integer overflow in source code by exploring the code property graph,
a novel format of source code representation. However, as stated in [10], one rea-
son why it is challenging to detect integer issues in source code is that different
compilers interpret undefined integer operations in different ways, making the
pre-compiling analysis approaches unable to detect integer bugs introduced by
compilers. To address this issue, the IOC tool [10] instruments the source code
with overflow check during compiling and reports overflow sites at runtime. Int-
Flow [17] follows the same idea of IOC while integrates information flow tracking
to reduce the high positive rates troubling IOC.

7 Conclusion

It has been a challenge for static analysis techniques to analyze software pro-
grams with acceptable scalability and false positive rates. To address these chal-
lenges, we have presented a tool called INDIO that relies on static analysis to
detect integer overflow vulnerabilities in Windows binaries, while significantly
reduces the analysis cost and the number of false positives being reported. INDIO

Improving Accuracy of Static Integer Overflow Detection in Binary 267

applies pattern matching to quickly identify potential integer overflow vulner-
abilities and establishes a collection of optimization techniques to filter out a
significant portion of false positives. INDIO is also capable of generating pro-
gram inputs that could trigger the genuine vulnerabilities, a feature particularly
helpful for the user to understand and fix integer overflow vulnerabilities. Our
experiments have confirmed the effectiveness of INDIO in detecting integer over-
flow vulnerabilities with low false positive rates. The experiments also show that
the heuristics employed by INDIO to filter out false positives would not cause
false negatives in practices.

As of future work, we plan to conduct more comprehensive experiments to
evaluate and optimize the vulnerability priority ranking mechanism, making it to
reflect the latest trend of integer overflow vulnerabilities in reality. A guideline
can also be established from such experiments to assist the user in adjusting
the mechanism (e.g. sink weights, threshold) for their own analysis needs. To
mitigate the false negatives caused by the Variable Selection module, we plan to
enhance our taint analysis with techniques such as control-flow propagation [23]
to trace the dependency among variables more accurately.

Acknowledgments. We are grateful to Yi Zhang, and the anonymous reviewers for
their insightful comments and suggestions. This research was supported in part by
National Natural Science Foundations of China (Grant No. 61471344).

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008)

2. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. SIGPLAN Not. 35(5), 1–12 (2000)

3. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008)

4. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP
2012, pp. 380–394. IEEE Computer Society, Washington, DC (2012)

5. Chen, D., Zhang, Y., Cheng, L., Deng, Y., Sun, X.: Heuristic path pruning algo-
rithm based on error handling pattern recognition in detecting vulnerability. In:
2013 IEEE 37th Annual Computer Software and Applications Conference Work-
shops (COMPSACW), pp. 95–100, July 2013

6. Chen, P., Han, H., Wang, Y., Shen, X., Yin, X., Mao, B., Xie, L.: IntFinder: auto-
matically detecting integer bugs in x86 binary program. In: Qing, S., Mitchell, C.J.,
Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 336–345. Springer, Heidelberg
(2009)

7. Chen, P., Wang, Y., Xin, Z., Mao, B., Xie, L.: Brick: a binary tool for run-time
detecting and locating integer-based vulnerability. In: International Conference on
Availability, Reliability and Security, ARES 2009, pp. 208–215 (2009)

268 Y. Zhang et al.

8. Cheng, S., Yang, J., Wang, J., Wang, J., Jiang, F.: Loongchecker: practical
summary-based semi-simulation to detect vulnerability in binary code. In: 2011
IEEE 10th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pp. 150–159, November 2011

9. Chipounov, V., Kuznetsov, V., Candea, G.: S2e: a platform for in-vivo multi-
path analysis of software systems. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pp. 265–278. ACM, New York (2011)

10. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in C/C++.
In: Proceedings of the 34th International Conference on Software Engineering,
ICSE 2012, pp. 760–770. IEEE Press, Zurich (2012)

11. Dijkstra, E.: Go to statement considered harmful. In: Classics in Software Engi-
neering (incoll), pp. 27–33. Yourdon Press, Upper Saddle River (1979)

12. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40 (2012)

13. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows:
a guided fuzzer to find buffer boundary violations. In: Proceedings of the 22nd
USENIX Conference on Security, SEC 2013, pp. 49–64 (2013)

14. Hasabnis, N., Misra, A., Sekar, R.: Light-weight bounds checking. In: Proceedings
of the Tenth International Symposium on Code Generation and Optimization,
CGO 2012, pp. 135–144. ACM, New York (2012)

15. Long, F., Sidiroglou-Douskos, S., Kim, D., Rinard, M.: Sound input filter gen-
eration for integer overflow errors. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp.
439–452. ACM, New York (2014)

16. Molnar, D., Li, X.C., Wagner, D.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: Proceedings of the 18th Conference on USENIX
Security Symposium, pp. 67–82. USENIX Association, Berkeley (2009)

17. Pomonis, M., Petsios, T., Jee, K., Polychronakis, M., Keromytis, A.D.: IntFlow:
improving the accuracy of arithmetic error detection using information flow track-
ing. In: Proceedings of the 30th Annual Computer Security Applications Confer-
ence, ACSAC 2014, pp. 416–425. ACM, New Orleans (2014)

18. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP
2010, pp. 317–331 (2010)

19. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for c. SIG-
SOFT Softw. Eng. Notes 30(5), 263–272 (2005)

20. Sidiroglou-Douskos, S., Lahtinen, E., Rittenhouse, N., Piselli, P., Long, F., Kim,
D., Rinard, M.: Targeted automatic integer overflow discovery using goal-directed
conditional branch enforcement. In: Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2015, pp. 473–486. ACM, New York (2015)

21. Simon, A.: Value-Range Analysis of C Programs: Towards Proving the Absence of
Buffer Overflow Vulnerabilities. Springer, Heidelberg (2010)

22. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: a new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

Improving Accuracy of Static Integer Overflow Detection in Binary 269

23. Stephen,M.,Dawnsong,M.P.:DTA++:dynamic taint analysiswith targetedcontrol-
flow propagation. In: Proceedings of the 18th Annual Network and Distributed Sys-
tem Security Symposium (NDSS), pp. 269–282, February 2011

24. Wang, T., Wei, T., Gu, G., Zou, W.: TaintScope: a checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In: 2010 IEEE Symposium on
Security and Privacy (SP), pp. 497–512, May 2010

25. Wang, T., Wei, T., Lin, Z., Zou, W.: IntScope: automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution. In: Proceedings of
the Network and Distributed System Security Symposium (2009)

26. Wang, X., Chen, H., Jia, Z., Zeldovich, N., Kaashoek, M.F.: Improving integer
security for systems with KINT. In: Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, pp. 163–177 (2012)

27. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulnera-
bilities with code property graphs. In: Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP 2014, pp. 590–604 (2014)

28. Yamaguchi, F., Lindner, F., Rieck, K.: Vulnerability extrapolation: assisted discov-
ery of vulnerabilities using machine learning. In: Proceedings of the 5th USENIX
Conference on Offensive Technologies, WOOT 2011, p. 13 (2011)

29. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: exposing missing
checks in source code for vulnerability discovery. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 499–510 (2013)

30. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: AppIntent: analyzing
sensitive data transmission in android for privacy leakage detection. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
CCS 2013, pp. 1043–1054. ACM, New York (2013)

31. Zhang, C., Wang, T., Wei, T., Chen, Y., Zou, W.: IntPatch: automatically fix
integer-overflow-to-buffer-overflow vulnerability at compile-time. In: Gritzalis, D.,
Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 71–86.
Springer, Heidelberg (2010)

A Formal Framework for Program
Anomaly Detection

Xiaokui Shu(B), Danfeng (Daphne) Yao, and Barbara G. Ryder

Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
{subx,danfeng,ryder}@cs.vt.edu

Abstract. Program anomaly detection analyzes normal program
behaviors and discovers aberrant executions caused by attacks, miscon-
figurations, program bugs, and unusual usage patterns. The merit of
program anomaly detection is its independence from attack signatures,
which enables proactive defense against new and unknown attacks. In
this paper, we formalize the general program anomaly detection prob-
lem and point out two of its key properties. We present a unified frame-
work to present any program anomaly detection method in terms of its
detection capability. We prove the theoretical accuracy limit for pro-
gram anomaly detection with an abstract detection machine. We show
how existing solutions are positioned in our framework and illustrate the
gap between state-of-the-art methods and the theoretical accuracy limit.
We also point out some potential modeling features for future program
anomaly detection evolution.

Keywords: Program anomaly detection · Unified framework ·
Automata theory · Detection accuracy · Theoretical accuracy limit

1 Introduction

Security problems in program executions – caused by program bugs, inappro-
priate program logic, or insecure system designs – were first recognized by the
Air Force, the Advanced Research Projects Agency (ARPA), and IBM in early
1970s. In 1972, Anderson pointed out the threat of subverting or exploiting a
piece of software by a malicious user [2]. This threat was developed to a multi-
tude of real-world attacks in the late 1980s and 1990s including buffer overflow,
return-into-libc, denial of service (DoS), etc.

Defenses have been proposed against categories of attacks from the perspec-
tives of hardware (e.g., NX bit), operating system (e.g., address space layout
randomization), compiler (e.g., canaries) and software architecture (e.g., sand-
box) [56]. Although these defenses create barriers to exploiting a program, they
can be circumvented. For example, new program attacks are developed leveraging
unattended/uninspected execution elements, such as return-oriented program-
ming [51], jump-oriented programming [5,10], and non-control data attacks [11].

Denning proposed an intrusion detection expert system (IDES) in 1987 [15],
which learns how a system should behave (normal profiles) instead of how it
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 270–292, 2015.
DOI: 10.1007/978-3-319-26362-5 13

A Formal Framework for Program Anomaly Detection 271

should not (e.g., an attack). In this paper, we formalize one area of intru-
sion detection, namely program anomaly detection or host-based intrusion detec-
tion [52]. The area focuses on intrusion detection in the context of program
executions. It was pioneered by Forrest et al., whose work was inspired by the
analogy between intrusion detection for programs and the immune mechanism
in biology [22].

Two major program anomaly detection approaches have been established
and advanced: n-gram-based dynamic normal program behavior modeling and
automaton-based normal program behavior analysis. The former was pioneered
by Forrest [23], and the latter was formally introduced by Sekar et al. [50] and
Wagner and Dean [59]. Other notable approaches include probabilistic modeling
methods pioneered by Lee and Stolfo [40] and dynamically built state machine
first proposed by Kosoresow and Hofmeyr [36]. Later work explored more fine-
grained models [4,28,30] and combined static and dynamic analysis [24].

Evaluating the detection capability of program anomaly detection methods
is always challenging [59]. Individual attacks do not cover all anomalous cases
that a program anomaly detection system detects. Control-flow based metrics,
such as average branching factor, are developed for evaluating specific groups of
program anomaly detection methods [59]. However, none of the existing metrics
is general for evaluating an arbitrary program anomaly detection system.

Several surveys summarized program anomaly detection methods from dif-
ferent perspectives and pointed out relations among several methods. Forrest
et al. summarized existing methods from the perspective of system call moni-
toring [21]. Feng et al. formalized automaton based methods in [19]. Chandola
et al. described program anomaly detection as a sequence analysis problem [8].
Chandola et al. provided a survey of machine learning approaches in [9]. The
connection between an n-gram method and its automaton representation is first
stated by Wagner [60]. Sharif et al. proved that any system call sequence based
method can be simulated by a control-flow based method [52].

However, several critical questions about program anomaly detection have
not been answered by existing studies and summaries.

1. How to formalize the detection capability of any detection method?
2. What is the theoretical accuracy limit of program anomaly detection?
3. How far are existing methods from the limit?
4. How can existing methods be improved towards the limit?

We answer all these questions in this paper. We unify any existing or future
program anomaly detection method through its detection capability in a formal
framework. We prove the theoretical accuracy limit of program anomaly detec-
tion methods and illustrate it in our framework. Instead of presenting every pro-
posed method in the literature, we select and explain existing milestone detection
methods that indicate the evolution of program anomaly detection. Our analy-
sis helps understand the most critical steps in the evolution and points out the
unsolved challenges and research problems.

272 X. Shu et al.

The contributions of this paper are summarized as follows.

1. We formalize the general security model for program anomaly detection. We
prove that the detection capability of a method is determined by the expres-
siveness of its corresponding language (Sect. 2).

2. We point out two independent properties of program anomaly detection: pre-
cision and the scope of the norm. We explain the relation between precision
and deterministic/probabilistic detection methods (Sect. 2).

3. We present the theoretical accuracy limit of program anomaly detection with
an abstract machine M̃ . We prove that M̃ can characterize traces as precise
as the executing program (Sect. 3).

4. We develop a hierarchal framework unifying any program anomaly detec-
tion method according to its detection capability. We mark the positions of
existing methods in our framework and point out the gap between the state-
of-the-art methods and the theoretical accuracy limit (Sect. 5).

5. We explain the evolution of program anomaly detection solutions. We envision
future program anomaly detection systems with features such as full path
sensitivity and higher-order relation description (Sect. 6).

6. We compare program anomaly detection with control-flow enforcement. We
point our their similarities in techniques/results and explain their different
perspectives approaching program/process security (Sect. 7).

2 Formal Definitions for Program Anomaly Detection

We formally define the problem of program anomaly detection and present the
security model for detection systems. Then we discuss the two independent prop-
erties of a program anomaly detection method: the detection capability and the
scope of the norm. Last, we give an overview of our unified framework.

2.1 Security Model

Considering both transactional (terminating after a transaction/computation)
and continuous (constantly running) program executions, we define a precise
program trace based on an autonomous portion of a program execution, which
is a consistent and relatively independent execution segment that can be isolated
from the remaining execution, e.g., an routine, an event handling procedure (for
event-driven programs), a complete execution of a program, etc.

Definition 1. A precise program trace T is the sequence of all instructions exe-
cuted in an autonomous execution portion of a program.

T is usually recorded as the sequence of all executed instruction addresses1

and instruction arguments. In real-world executions, addresses of basic blocks
can be used to record T without loss of generality since instructions within a
basic block are executed in a sequence.

We formalize the problem of program anomaly detection in Definition 2.
1 Instruction addresses are unique identifiers of specific instructions.

A Formal Framework for Program Anomaly Detection 273

Definition 2. Program anomaly detection is a decision problem whether a pre-
cise program trace T is accepted by a language L. L presents the set of all normal
precise program traces in either a deterministic means (L = {T | T is normal})
or a probabilistic means (L = {T | P (T) > η}).

In Definition 2, η is a probabilistic threshold for selecting normal traces from
arbitrary traces that consist of instruction addresses. Either parametric and non-
parametric probabilistic methods can construct probabilistic detection models.

In reality, no program anomaly detection system uses T to describe pro-
gram executions due to the significant tracing overhead. Instead, a practical
program trace is commonly used in real-world systems.

Definition 3. A practical program trace T̈ is a subsequence of a precise program
trace T. The subsequence is formed based on alphabet Σ, a selected/traced subset
of all instructions, e.g., system calls.

We list three categories of commonly used practical traces in real-world pro-
gram anomaly detection systems. The traces result in black-box, gray-box, and
white-box detection approaches with an increasing level of modeling granularity.

– Black-box level traces: only the communications between the process and the
operating system kernel, i.e., system calls, are monitored. This level of practi-
cal traces has the smallest size of Σ among the three. It is the coarsest trace
level while obtaining the trace incurs the smallest tracing overhead.

– White-box level traces: all (or a part of) kernel-space and user-space activities
of a process are monitored. An extremely precise white-box level trace T̈ is
exactly a precise trace T where all instructions are monitored. However, real-
world white-box level traces usually define Σ as the set of function calls to
expose the call stack activity.

– Gray-box level traces: a limited white-box level without the complete static
program analysis information [24], e.g., all control-flow graphs. Σ of a gray-
box level trace only contains symbols (function calls, system calls, etc.) that
appear in dynamic traces.

We describe the general security model of a real-world program anomaly
detection system in Definition 4. The security model derives from Definition 2
but measures program executions using T̈ instead of T.

Definition 4. A real-world program anomaly detection system Λ defines a lan-
guage LΛ (a deterministic or probabilistic set of normal practical program traces)
and establishes an attestation procedure GΛ to test whether a practical program
trace T̈ is accepted by LΛ.

A program anomaly detection system Λ usually consist of two phases: training
and detection. Training is the procedure forming LΛ and building GΛ from known
normal traces {T̈ | T̈ is normal}. Detection is the runtime procedure testing
incoming traces against LΛ using GΛ. Traces that cannot be accepted by LΛ in
the detection phase are logged or aggregated for alarm generation.

274 X. Shu et al.

2.2 Detection Capability

The detection capability of a program anomaly detection method Λ is its ability
to detect attacks or anomalous program behaviors. Detection capability of a
detection system Λ is characterized by the precision of Λ. We define precision of Λ
as the ability of Λ to distinguish different precise program traces in Definition 5.
This concept is independent of whether the scope of the norm is deterministically
or probabilistically established (discussed in Sect. 2.3).

Definition 5. Given a program anomaly detection method Λ and any practical
program trace T̈ that Λ accepts, the precision of Λ is the average number of
precise program traces T that share an identical subsequence T̈.

Our definition of program anomaly detection system precision is a gener-
alization of average branching factor (using regular grammar to approximate
the description of precise program traces) [59] and average reachability measure
(using context-free grammar to approximate the description of precise program
traces) [28]. The generation is achieved through the using of T, the most precise
description of a program execution. average in Definition 5 can be replaced by
other aggregation function for customized evaluation.

We formalize the relation between the expressive power of LΛ (defined by
detection method Λ) and the detection capability of Λ in Theorem 1.

Theorem 1. The detection capability of a program anomaly detection method
Λ is determined by the expressive power of the language LΛ corresponding to Λ.

Proof. Consider two detection methods Λ1 (LΛ1) and Λ2 (LΛ2) where Λ1 is more
precise than Λ2, one can always find two precise program traces T1/T2, so that
T1/T2 are expressed by LΛ1 in two different practical traces T̈1Λ1/T̈2Λ1 , but
they can only be expressed by LΛ2 as an identical T̈Λ2 . Because the definition
of the norm is subjective to the need of a detection system, in theory, one can
set T1/T2 to be normal/anomalous, respectively. In summary, Λ1 with a more
expressive LΛ1 can detect the attack T2 via practical trace T̈2Λ1 , but Λ2 cannot.

Theorem 1 enables the comparison between detection capabilities of different
detection systems through their corresponding languages. It lays the foundation
of our unified framework. The more expressive LΛ describes a normal precise
trace T through a practical trace T̈, the less likely an attacker can construct an
attack trace T′ mimicking T without being detected by Λ.

2.3 Scope of the Norm

Not all anomaly detection systems agree on whether a specific program behavior
(a precise program trace T) is normal or not. Even given the set of all practical
program traces Σ∗ with respect to a specific alphabet Σ (e.g., all system calls),
two detection systems Λ1 and Λ2 may disagree on whether a specific T̈ ∈ Σ∗ is
normal or not. Σ∗ denotes the set of all possible strings/traces over Σ.

A Formal Framework for Program Anomaly Detection 275

Definition 6. The scope of the norm SΛ (of a program anomaly detection sys-
tem Λ) is the selection of practical traces to be accepted by LΛ.

While LΛ is the set of all normal practical traces, SΛ emphasizes on the
selection process to build LΛ, but not the expressive power (detection capability)
of LΛ. SΛ does not influence the detection capability of Λ.

For instance, VPStatic [19] (denoted as Λs) utilizes a pushdown automaton
(PDA) to describe practical program traces. Therefore, its precision is deter-
mined by the expressiveness of context-free languages2. SΛs

is all legal con-
trol flows specified in the binary of the program. VtPath [18] (denoted as Λv)
is another PDA approach, but SΛv

is defined based on dynamic traces. Since
dynamic traces commonly forms a subset of all feasible execution paths, there
exists T̈ not in the training set of Λ2. Thus, T̈ will be recognized as anomalous
by Λ2 yet normal by Λ1. Because the precisions of Λ1 and Λ2 are the same, Λ2

can be made to detect T̈ as normal by including T̈ in its training set (changing
SΛv

).
There are two types of scopes of the norm:

– Deterministic scope of the norm is achieved through a deterministic lan-
guage LΛ = {T̈ | T̈ is normal}. Program anomaly detection systems based on
finite state automata (FSA), PDA, etc. belong to this category.

– Probabilistic scope of the norm is achieved through a stochastic language
LΛ = {T̈ | P (T̈) > η}. Different probability threshold η results in different
SΛ and different LΛ/Λ. Program anomaly detection systems based on hidden
Markov model, one-class SVM, etc. belong to this category.

2.4 Overview of Our Unified Framework

We develop a unified framework presenting any program anomaly detection
method Λ. Our framework unifies Λ by the expressive power of LΛ.

We illustrate our unified framework in Fig. 1 showing its hierarchical struc-
ture3. In Fig. 1, L-1 to L-4 indicate four major precision levels with decreasing
detection capabilities according to the expressive power of LΛ. The order of
precision levels marks the potential of approaches within these levels, but not
necessarily the practical detection capability of a specific method4. Our design
is based on both the well-defined levels in Chomsky hierarchy and the existing
milestones in the evolution of program anomaly detection.

L-1: context-sensitive language level (most powerful level)
L-2: context-free language level
L-3: regular language level
L-4: restricted regular language level (least powerful level).

2 Context-sensitive languages correspond to pushdown automata.
3 The hierarchy is reasoned via Chomsky hierarchy [12], which presents the hierarchical

relation among formal grammars/languages.
4 For example, one detection approach Λa in L-2 without argument analysis could be

less capable of detecting attacks than an approach Λb in L-3 with argument analysis.

276 X. Shu et al.

Fig. 1. The hierarchy of our program anomaly detection framework. L-1 to L-4 are
four major precision levels with decreasing detection capabilities.

The restricted regular language corresponding to L-4 does not enforce spe-
cific adjacent elements for any element in a string (program trace). Two optional
properties within L-1, L-2 and L-3 are path sensitivity and flow sensitivity
(Sect. 5.2). We prove the theoretical accuracy limit (the outmost circle in Fig. 1)
in Sect. 3 with an abstract detection machine M̃ . We abstract existing methods
in Sect. 4 and identify their positions in our unified framework in Sect. 5. We
present details of our framework and point out the connection between levels in
our framework and grammars in Chomsky hierarchy in Sect. 5. We describe the
evolution from L-4 methods to L-1 methods in Sect. 6.2.

3 Accuracy Limit of Program Anomaly Detection

We describe an abstract detection machine, M̃ , to differentiate between any two
precise program traces. Thus, M̃ detects any anomalous program traces given a
scope of the norm. A practical program trace T̈ that M̃ consumes is a precise
program trace T. We prove that M̃ has the identical capability of differentiating
between traces (execution paths) as the program itself. Therefore, M̃ is the
accuracy limit of program anomaly detection models.

3.1 The Ultimate Detection Machine

The abstract machine M̃ is a 9-tuple M̃ = (Q,Σ, Γ,A,Ω, δ, s0, Z, F) where the
symbols are described in Table 1. M̃ operates from s0. If an input string/trace
T̈ reaches a final state in F , then T̈ is a normal trace.

M̃ consists of three components: a finite state machine, a stack Π, and
a random-access register Υ . In M̃ , both Π and Υ are of finite sizes. Indirect
addressing, i.e., the value of a register can be dereferenced as an address of
another register, is supported by Υ and A ⊂ Ω. Because a random-access reg-
ister can simulate a stack, Π can be omitted in M̃ without any computation

A Formal Framework for Program Anomaly Detection 277

Table 1. Descriptions of symbols in M̃ . All sets are of finite sizes.

Name Description

Q States Set of states

Σ Input alphabet Set of input symbols

Γ Stack alphabet Set of symbols on the stack

A Register addresses Set of addresses of all registers

Ω Register alphabet Set of symbols stored in registers

δ Transition relation Subset of Q × (Σ ∪ {ε}) × Γ × Ω∗ × Q × Γ ∗ × Ω∗

s0 Initial state State to start, s0 ∈ Q

Z Initial stack symbol Initial symbol on the stack, Z ⊆ Q

F Final states Set of states where T̈ is accepted, F ⊆ Q

ε denotes an empty string.
Ω∗ or Γ ∗ denotes a string over alphabet Ω or Γ , respectively.

power loss. We keep Π in M̃ to mimic the execution of a real-world program.
It helps extend M̃ for multi-threading (Sect. 3.3) and unify M̃ in our framework
(Sect. 5.1).

A transition in M̃ is defined by δ, which is a mapping from (Σ ∪ {ε}) ×
Q × Γ × Ω∗ to Q × Γ ∗ × Ω∗. Given an input symbol σ ∈ Σ ∪ {ε}, the current
state q ∈ Q, the stack symbol γ ∈ Γ (stack top), and all symbols in the register
{ωi | ωi ∈ Ω, 0 ≤ i ≤ |A|}, the rules in δ chooses a new state q′ ∈ Q, pops γ,
pushes zero or more stack symbols γ0γ1γ2 . . . onto the stack, and update {ωi}.

3.2 The Equivalent Abstract Machine of an Executing Program

We state the precision of the abstract detection machine M̃ in Theorem 2 and
interpreter both sufficiency and necessity aspects of the theorem.

Theorem 2. M̃ is as precise as the target program; M̃ can detect any anom-
alous traces if the scope of the norm is specified and M̃ is constructed.

Sufficiency: M̃ has the same computation power as any real-world executing
program so that LM̃ can differentiate any two precise program traces.

Necessity: detection machines that are less powerful than M̃ cannot differen-
tiate any two arbitrary precise program traces of the target program.

Although a Turing machine is commonly used to model a real-world program
in execution, an executing program actually has limited resources (the tape
length, the random access memory size or the address symbol count) different
from a Turing machine. This restricted Turing machine is abstracted as linear
bounded automaton [34]. We prove Theorem 2 by Lemmas 1 and 2.

Lemma 1. A program that is executing on a real-world machine is equivalent
to a linear bounded automaton (LBA).

278 X. Shu et al.

Lemma 2. M̃ is equivalent to a linear bounded automaton.

Proof. We prove that M̃ is equivalent to an abstract machine M̈ and M̈ is
equivalent to an LBA, so M̃ is equivalent to an LBA.

M̈ is an abstract machine similar to M̃ except that Υ (the register) in M̃ is
replaced by two stacks Π0 and Π1. size(Υ) = size(Π0) + size(Π1).

We prove that M̃ and M̈ can simulate each other below.

– One random-access register can simulate one stack with simple access rules
(i.e., last in, first out) enforced. Thus, Υ can be split into two non-overlapping
register sections to simulate Π0 and Π1.

– Π0 and Π1 together can simulate Υ by filling Π0 with initial stack symbol
Z to its maximum height and leaving Π1 empty. All the elements in Π0 are
counterparts of all the units in Υ . The depth of an element in Π0 maps to the
address of a unit in Υ . To access an arbitrary element e in Π0, one pops all
elements higher than e in Π0 and pushes them into Π1 until e is retrieved.
After the access to e, elements in Π1 are popped and pushed back into Π0.

M̈ is equivalent to an LBA: M̈ consists of a finite state machine and three
stacks, Π (same as Π in M̃), Π0,Π1 (the two-stack replacement of Υ in M̃).
M̈ with three stacks is equivalent to an abstract machine with two stacks [48].
Two stacks is equivalent to a finite tape when concatenating them head to head.
Thus, M̈ is equivalent to an abstract machine consisting of a finite state machine
and a finite tape, which is a linear bounded automaton.

In summary, M̃ is equivalent to an LBA and Lemma 2 holds. ��

3.3 Usage and Discussion

Operation of M̃ : M̃ consists of a random-access register Υ and a stack Π.
The design of M̃ follows the abstraction of an executing program. Π simulates
the call stack of a process and Υ simulates the heap. The transition δ in M̃
is determined by the input symbol, symbols in Υ and the top of Π, which is
comparable to a real-world process. Given a precise trace T of a program, M̃
can be operated by emulating all events (instructions) of T through M̃ .

Multi-threading Handling: although M̃ does not model multi-threading pro-
gram executions, it can be easily extended to fulfill the job. The basic idea is
to model each thread using an M̃ . Threads creating, forking and joining can be
handled by copying the finite state machine and stack of an M̃ to a new one or
merging two M̃s. δ needs to be extended according to the shared register access
among different M̃s as well as the joining operation between M̃s.

Challenges to Realize M̃ in Practice: M̃ serves as a theoretical accuracy
limit. It cannot be efficiently realized in the real world because

1. The number of normal precise traces is infinite.
2. The scope of the norm requires a non-polynomial time algorithm to learn.

A Formal Framework for Program Anomaly Detection 279

The first challenge is due to the fact that a trace T̈ of a program can be
of any length, e.g., a continuous (constantly running) program generates traces
in arbitrary lengths until it halts. Most existing approaches do not have the
problem because they only model short segments of traces (e.g., n-grams with a
small n [21], first-order automaton transition verification [19]).

Pure dynamic analysis cannot provide a complete scope of the norm. The sec-
ond challenge emerges when one performs comprehensive static program analysis
to build M̃ . For example, one well-known exponential complexity task is to dis-
cover induction variables and correlate different control-flow branches.

4 Abstractions of Existing Detection Methods

In this section, we analyze existing program anomaly detection models and
abstract them in five categories. We identify their precision (or detection capa-
bility) in our framework in Sect. 5.

Finite State Automaton (FSA) Methods represent the category of pro-
gram anomaly detection methods that explicitly employs an FSA. Kosoresow
and Hofmeyr first utilized a deterministic finite state automaton (DFA) to char-
acterize normal program traces [36] via black-box level traces (building a DFA
for system call traces). Sekar et al. improved the FSA method by adopting a
limited gray-box view [50]. Sekar’s method retrieves program counter informa-
tion for every traced system call. If two system calls and program counters are
the same, the same automaton state is used in the FSA construction procedure.

Abstraction: all FSA methods explicitly build an FSA for modeling normal
program traces. A transition of such an FSA can be described in (1). pi is an
automaton state that is mapped to one or a set of program states. Each program
state can be identified by a system call (black-box level traces) or a combination
of system call and program counter (gray-box level traces). s∗ denotes a string
of one or more system calls.

pi
s∗−→ pi+1 (1)

n-gram Methods represent the category of program anomaly detection meth-
ods those utilize sequence fragments to characterize program behaviors. n-grams
are n-item-long5 substrings6 of a long trace, and they are usually generated by
sliding a window (of length n) on the trace. The assumption underlying n-gram
methods is that short trace fragments are good features differentiating normal
and anomalous long system call traces [23]. A basic n-gram method tests whether
every n-gram is in the known set of normal n-grams [21].

Abstraction: a set of n-gram (of normal program behaviors) is equivalent
to an FSA where each state is an n-gram [60]. A transition of such an FSA can

5 n can be either a fixed value or a variable [45,63].
6 Lookahead pair methods are subsequent variants of n-gram methods [35].

280 X. Shu et al.

be described in (2). The transition is recognized when there exist two normal
n-grams, (s0, s1, . . . , sn−1) and (s1, . . . , sn−1, sn), in any normal program traces.

(s0, s1, . . . , sn−1)
sn−→ (s1, . . . , sn−1, sn) (2)

Since n-gram methods are built on a membership test, various determinis-
tic [45,62] and probabilistic [17,61] means are developed to define the scope of the
norm (the set of normal n-grams) and perform the membership test. And system
call arguments were added to describe system calls in more details [7,55,57].

Pushdown Automaton (PDA) Methods represent the category of program
anomaly detection methods those utilize a PDA or its equivalents to model
program behaviors. DPA methods are more precise than FSA methods because
they can simulate user-space call stack activities [18].

An FSA connects control-flow graphs (CFGs) of all procedures into a
monomorphic graph, which lacks the ability to describe direct or indirect recur-
sive function calls [31,59]. A PDA, in contrast, keeps CFGs isolated and utilizes
a stack to record and verify function calls or returns [18,19,29]. Thus, it can
describe recursions. However, only exposing the stack when system calls occur
is not enough to construct a deterministic DPA [19]. There could be multiple
potential paths transiting from one observed stack state Γi to the next stack
state Γi+1. Giffin et al. fully exposed all stack activities in Dyck model [30] by
embedding loggers for function calls and returns via binary rewriting.

Abstraction: a typical PDA method consumes white-box level traces [19]
or gray-box level traces [43]. The internal (user-space) activities of the running
program between system calls are simulated by the PDA. Denote a system call
as s and a procedure transition as f . We describe the general PDA transition in
(3) where Γi/Γi+1 is the stack before/after the transition, respectively.

pi, Γi
f or s−−−−→ pi+1, Γi+1 (3)

System call arguments can be added to describe calls in more details like
they are used in previous models. In addition, Bhatkar et al. utilized data-flow
analysis to provide complex system call arguments verification, e.g., unary and
binary relations [4]. Giffin et al. extended system call arguments to environment
values, e.g., configurations, and built an environment-sensitive method [28].

Probabilistic Methods differ from deterministic program anomaly detection
approaches that they use stochastic languages to define the scope of the norm
(Sect. 2.3). Stochastic languages are probabilistic counterparts of deterministic
languages (e.g., regular languages). From the automaton perspective, stochastic
languages correspond to automata with probabilistic transition edges.

Abstraction: existing probabilistic program anomaly detection methods are
probabilistic counterparts of FSA, because they either use n-grams or FSA with
probabilistic transitions edges. Typical probabilistic detection methods include
hidden Markov model (HMM) [61,64], classification methods [16,37,41,46], arti-
ficial neural network [27], data mining approaches [40], etc. Gu et al. presented

A Formal Framework for Program Anomaly Detection 281

a supervised statistical learning model, which uses control-flow graphs to help
the training of its probabilistic model [32].

Probabilistic FSA does not maintain call stack structures7, and it constrains
existing probabilistic approaches from modeling recursions precisely. In theory,
FSA and probabilistic FSA only differ in their scopes of the norm; one is deter-
ministic the other is probabilistic. The precision or detection capability of the
two are the same as explained in Sect. 2.3. Different thresholds in parametric
probabilistic models define different scopes of the norm, but they do not directly
impact the precision of a model.

N-variant Methods define the scope of the norm with respect to the current
execution path under detection. They are different from the majority of detection
methods that define the scope of the norm as all possible normal execution paths.

In N-variant methods, a program is executed with n replicas [14]. When one
of them is compromised, others – that are executed with different settings or in
different environments – could remain normal.

The anomaly detection problem in N-variant methods is to tell whether one
of the concurrently running replicas is behaving differently from its peers; N-
variant methods calculate the behavior distance among process replicas. Gao
et al. proposed a deterministic alignment model [25] and probabilistic hidden
Markov model [26] to calculate the distances.

Abstraction: existing N-variant models are FSA or probabilistic FSA equiv-
alents. The precision is limited by their program execution description based on
n-grams. This description forms a deterministic/probabilistic FSA model under-
lying the two existing N-variant methods.

5 Unification Framework

We develop a hierarchical framework to uniformly present any program anomaly
detection method in terms of its detection capability. We identify the detection
capabilities of existing program anomaly detection methods (Sect. 4) and the
theoretical accuracy limit (Sect. 3) in our framework.

5.1 Major Precision Levels of Program Anomaly Detection

We abstract any program anomaly detection method Λ through its equivalent
abstract machine. Λ is unified according to the language LΛ corresponding to
the abstract machine. We summarize four major precision levels defined in our
unified framework in Table 2. We describe them in detail below in the order of
an increasing detection capability.

L-4: Restricted Regular Language Level. The most intuitive program
anomaly detection model, which reasons events individually, e.g., a system call
with or without arguments. No event correlation is recorded or analyzed.

7 Probabilistic PDA has not been explored by the anomaly detection community.

282 X. Shu et al.

Table 2. Precision levels in our framework (from the most to the least accurate).

Precision levels Limitationa Chomsky level

L-1 methods Program execution equivalent Type-1 grammars

L-2 methods First-order reasoning Type-2 grammars

L-3 methods Cannot pair calls and returns Type-3 grammars

L-4 methods Individual event test Type-3 grammarsb

aThe key feature that distinguishes this level from a level of higher pre-
cision.
bThe restricted regular language does not enforce specific adjacent events
for any event in a program trace.

An L-4 method corresponds to a restricted FSA, which accepts a simple type
of regular languages L4 that does not enforce specific adjacent elements for any
element in a string (practical program trace T̈).

L-4 methods are the weakest detection model among the four. It is effective
only when anomalous program executions can be indicated by individual events.
For example, sys open() with argument “/etc/passwd” indicates an anomaly.

A canonical example of L-4 methods is to analyze individual system events in
system logs and summarize the result through machine learning mechanisms [16].

L-3: Regular Language Level. The intermediate program anomaly detection
model, which records and verifies first-order event transitions (i.e., the relation
between a pair of adjacent events in a trace, which is an extra feature over L-4
methods) using type-3 languages (regular grammar).

An L-3 method corresponds to an FSA, which naturally describes first-order
transitions between states. Each state can be defined as one or multiple events,
e.g., a system call, n-grams of system calls. One state can be detailed using its
arguments, call-sites, etc. The formal language L3 used to describe normal traces
in an L-3 method is a type-3 language.

L-3 methods consume black-box traces. The monitoring is efficient because
internal activities are not exposed. However, L-3 methods cannot take advantage
of exposed internal activities of an executing program. For example, procedure
returns cannot be verified by L-3 methods because L3 (regular grammar) cannot
pair arbitrary events in traces; L-3 methods cannot model recursions well.

Canonical L-3 methods include DFA program anomaly detection [36], n-
grams methods [23], statically built FSA [50], and FSA with call arguments [7].

L-2: Context-free Language Level. The advanced program execution model,
which verifies first-order event transitions with full knowledge (aware of any
instructions) of program internal activities in the user space.

An L-2 method corresponds to a PDA, which expands the description of an
FSA state with a stack (last in, first out). Procedure transitions (nested call-
sites) can be stored in the stack so that L-2 methods can verify the return of each
function/library/system call. The formal language L2 used to describe normal
traces in an L-2 method is a type-2 (context-free) language.

A Formal Framework for Program Anomaly Detection 283

Gray-box or white-box traces are required to expose program internal activ-
ities (e.g., procedure transitions) so that the stack can be maintained in L-2
methods. Walking the stack when a system call occurs is an efficient stack expose
technique [18]. However, the stack change between system calls is nondetermin-
istic. A more expensive approach exposes every procedure transition via code
instrumentation [30], so that the stack is deterministic.

Canonical L-2 methods include VPStatic [19], VtPath [18], and Dyck [30].
Moreover, Bhatkar et al. applied argument analysis with data-flow analysis
(referred to by us as DFAD) [4], and Giffin et al. correlated arguments and
environmental variables with system calls (referred to by us as ESD) [28].

L-1: Context-Sensitive Language Level. The most accurate program anom-
aly detection model in theory, which verifies higher-order event transitions with
full knowledge of program internal activities.

L-1 methods correspond to a higher-order PDA, which extends a PDA with
non-adjacent event correlations, e.g., induction variables.

We develop Theorem 3 showing that higher-order PDA and M̃ (Sect. 3) are
equivalent in their computation power. The proof of Theorem2 points out M̃
and linear bounded automaton (LBA) are equivalent. Therefore, these three are
abstract machines representing the most accurate program anomaly detection.

The formal language L1 used to describe normal traces in an L-1 method is
a type-1 (context-sensitive) language.

We formally describe an L-1 method, i.e., M̃ , in Sect. 3. Any other LBA or
M̃ equivalents are also L-1 methods.

Theorem 3. L-1 methods are as precise as the target executing program.

We provide a proof sketch for Theorem3. First, M̃ is as precise as the exe-
cuting program (Theorem 2 in Sect. 3). Next, we give the sketch of the proof
that the abstract machine of L-1 methods, i.e., a higher-order PDA, is equiva-
lent to M̃ : a higher-order PDA characterizes cross-serial dependencies [6], i.e.,
correlations between non-adjacent events. Therefore, it accepts context-sensitive
languages [53], which is type-1 languages accepted by M̃ .

Although the general context-sensitive model (higher-order PDA or M̃)
has not been realized in the literature, Shu et al. demonstrated the construc-
tion of a constrained context-sensitive language model (co-oc in Fig. 1) [54].
The model quantitatively characterizes the co-occurrence relation among non-
adjacent function calls in a long trace. Its abstraction is the context-sensitive
language Bach [49].

Probabilistic Detection Methods and Our Hierarchy are Orthogonal.
The reason is that probabilistic models affect the scope of the norm definition,
but not the precision of the detection (explained in Sect. 2.3). For instance,
a probabilistic FSA method (e.g., HMM [61,64], classification based on n-
grams [16,46]) is an L-3 method. It cannot model recursion well because there
is no stack in the model. The precision of a probabilistic FSA method is the
same as the precision of a deterministic FSA method, except that the scope

284 X. Shu et al.

of the norm is defined probabilistically. A similar analysis holds for N-variant
methods. All existing N-variant methods [25,26] are L-3 methods.

Instruction Arguments are Part of Events in T. However, argument analy-
sis does not increase the precision level of a detection method, e.g., an n-gram
approach with argument reasoning is still an L-3 approach.

Table 3. Terminology of sensitivity in program anomaly detection.

Calling context Flow Path Environment

Sensitive Objects Call sites Instruction Branch Arguments

order dependency configurations

Precision Levela L-4 L-3 L-2 L-2

Descriptionb RL RL CFL CFL
aThe least precise level required to specify the sensitivity.
bThe least powerful formal language required for describing the sensitivity.

RL: regular language. CFL: context-free language.

5.2 Sensitivity in a Nutshell

We describe optional properties (sensitivities) within L-1 to L-3 in our hier-
archical framework with respect to sensitivity terms introduced from program
analysis. We summarize the terminology of sensitivity in Table 3 and explain
them and their relation to our framework.

Calling Context Sensitivity concerns the call-site of a call. In other words,
it distinguishes a system/function call through different callers or call-
sites. Calling-context-sensitive methods8 are more precise than non-calling-
context-sensitive ones because mimicked calls from incorrect call-sites are
detected.

Flow Sensitivity concerns the order of events according to control-flow graphs
(CFG). Only legal control flows according to program binaries can be normal,
e.g., [50]. Flow sensitive methods bring static program analysis to anomaly
detection and rule out illegal control flows from the scope of the norm.

Path Sensitivity concerns the branch dependencies among the binary (in a sin-
gle CFG or cross multiple CFGs). Infeasible paths (impossibly co-occurring
basic blocks or branches) can be detected by a path-sensitive method. Full
path sensitivity requires exponential time to discover. Existing solutions
take some path-sensitive measures, e.g., Giffin et al. correlated less than
20 branches for a program in ESD [28].

8 Calling context sensitivity (or context sensitivity in short) in program analysis should
be distinguished from the term context-sensitive in formal languages. The latter
characterizes cross-serial dependencies in a trace, while the former identifies each
event (e.g., a system call) in a trace more precisely.

A Formal Framework for Program Anomaly Detection 285

Environment Sensitivity correlates execution paths with executing envi-
ronments, e.g., arguments, configurations, environmental variables. Several
types of infeasible paths such as an executed path not specified by the cor-
responding command line argument can be detected by an environment-
sensitive method [28]. Environment sensitivity is a combination of techniques
including data-flow analysis, path-sensitive analysis, etc.

6 Attack/Detection Evolution and Open Problems

In this section, we describe the evolution of program anomaly detection systems
using the precision levels in our framework. New solutions aim to achieve better
precision and eliminate mimicry attacks. We point out future research directions
from both precision and practicality perspectives.

6.1 Inevitable Mimicry Attacks

Mimicry attacks are stealthy program attacks designed to subvert program
anomaly detection systems by mimicking normal behaviors. A mimicry attack
exploits false negatives of a specific detection system Λ. The attacker constructs
a precise trace T′ (achieving the attack goal) that shares the same practical
trace T̈Λ with a normal T to escape the detection.

The first mimicry attack was described by Wagner and Soto [60]. They uti-
lized an FSA (regular grammar) to exploit the limited detection capability of
n-gram methods (L-3 methods). In contrast, L-2 methods, such as [18,19,30],
invalidate this type of mimicry attacks with context-free grammar descrip-
tion of program traces. However, mimicry attacks using context-free grammars,
e.g., [20,38], are developed to subvert these L-2 methods.

As program anomaly detection methods evolve from L-4 to L-1, the space for
mimicry attacks becomes limited. The functionality of mimicry attacks decreases
since the difference between an attack trace and a normal trace attenuates.
However, an attacker can always construct a mimicry attack against any real-
world program anomaly detection system. The reason is that the theoretical
limit of program anomaly detection (L-1 methods) cannot be efficiently reached,
i.e., M̃ described in Sect. 3 requires exponential time to build.

6.2 Evolution from L-4 to L-1

A detection system Λ1 rules out mimicry traces from a less precise
Λ2 to achieve a better detection capability. We describe the upgrade of
detection systems from a lower precision level to a higher precision level. Intu-
itively, L-3 methods improve on L-4 methods as L-3 methods analyze the order
of events. We summarize four features to upgrade an L-3 method (abstracted as
a general FSA) to L-2 and L-1 methods in Fig. 2.

1© expanding a state horizontally (with neighbor states)

286 X. Shu et al.

Fig. 2. Four approaches for improving a basic L-3 method (FSA).

2© describing details of states (call-sites, arguments, etc.)
3© expanding a state vertically (using a stack)
4© revealing relations among non-adjacent states.

The four features are not equally powerful for improving the precision of
an anomaly detection method. 1© and 2© are complementary features, which
do not change the major precision level of a method. 3© introduces a stack and
upgrades an L-3 method to an L-2 method. 4© discovers cross-serial dependencies
and establishes a context-sensitive language [53], which results in an L-1 method.

Most of the existing program anomaly detection methods can be explained
as a basic L-3 method plus one or more of these features. L-3 with 1© yields an
n-gram method [23]. L-3 with 2© was studied in [44]. L-3 with 3© is a basic L-2
method. More than one feature can be added in one program anomaly detection
system. L-3 with 1© and 2© was studied by Sufatrio and Yap [55] and Gaurav
et al. [57]. L-3 with 2© and 3© was studied by Bhatkar et al. [4] and Giffin
et al. [28]. M̃ (described in Sect. 3) provides 3© and 4© as basic features. 2© can
be added to M̃ to describe each state in more details.

6.3 Open Problems

We point out several open problems in program anomaly detection research.

Precision. As illustrated in our framework (Fig. 1), there is a gap between
the theoretical accuracy limit (the best L-1 method) and the state-of-the-art
approaches in L-2 (e.g., ESD [28]) and constrained L-1 level (e.g., co-oc [54]).

L-2 models: existing detection methods have not reached the limit of L-2
because none of them analyze the complete path sensitivity. Future solutions can

A Formal Framework for Program Anomaly Detection 287

explore a more complete set of path sensitivity to push the detection capability
of a method towards the best L-2 method.

L-1 models: higher-order relations among states can then be discovered to
upgrade an L-2 method to L-1. However, heuristics algorithms need to be devel-
oped to avoid exponential modeling complexity. Another choice is to develop
constrained L-1 approaches (e.g., co-oc [54]), which characterize some aspects of
higher-order relations (e.g., co-occurrence but not order).

Probabilistic models: existing probabilistic approaches, i.e., probabilistic FSA
equivalents, are at precision level L-3. Probabilistic PDA and probabilistic LBA
can be explored to establish L-2 and even L-1 level probabilistic models.

Practicality. In contrast to the extensive research in academia, the security
industry has not widely adopted program anomaly detection technologies. No
products are beyond L-3 level with black-box traces [33]. The main challenges
are eliminating tracing overhead and purifying training dataset.

Tracing Overhead Issue: L-2 and L-1 methods require the exposure of user-
space program activities, which could result in over 100 % tracing overhead on
general computing platforms [3]. However, Szekeres et al. found that the industry
usually tolerates at most 5 % overhead for a security solution [56].

Polluted Training Dataset Issue: most existing program anomaly detection
approaches assume the training set contains only normal traces. Unless the scope
of the norm is defined as legal control flows, which can be extracted from the
binary, the assumption is not very practical for a real-world product. A pol-
luted training dataset prevents a precise learning of the scope of the norm for a
detection model, which results in false negatives in detection.

7 Control-Flow Enforcement Techniques

Control-flow enforcements, e.g., Control-Flow Integrity (CFI) [1] and Code-
Pointer Integrity (CPI) [39], enforce control-flow transfers and prevent illegal
function calls/pointers from executing. They evolve from the perspective of
attack countermeasures [56]. They are equivalent to one category of program
anomaly detection that defines the scope of the norm as legal control flows [52].

7.1 Control-Flow Enforcement

Control-flow enforcement techniques range from the protection of return
addresses, the protection of indirect control-flow transfers (CFI), to the protec-
tion of all code pointers (CPI). They aim to protect against control-flow hijacks,
e.g., stack attacks [42]. We list milestones in the development of control-flow
enforcement techniques below (with an increasing protection capability).

Return Address Protection: Stack Guard [13], Stack Shield [58].
Indirect Control-flow Transfer Protection: CFI [1], Modular CFI [47].
All Code Pointer Protection: CPI [39].

288 X. Shu et al.

7.2 Legal Control Flows as the Scope of the Norm

In program anomaly detection, one widely adopted definition of the scope of
the norm SΛ is legal control flows (Sect. 2.3); only basic block transitions that
obey the control flow graphs are recognized as normal. The advantage of such
definition is that the boundary of SΛ is clear and can be retrieved from the
binary. No labeling is needed to train the detection system. This definition of
SΛ leads to a fruitful study of constructing automata models through static
program analysis9, e.g., FSA method proposed by Sekar et al. [50] and PDA
method proposed by Feng et al. [18].

7.3 Comparison of the Two Methods

We discuss the connection and the fundamental difference between control-flow
enforcement and program anomaly detection.

Connection. Modern control-flow enforcement prevents a program from exe-
cuting any illegal control flow. It has the same effect as the category of program
anomaly detection that defines the scope of the norm as legal control flows. From
the functionality perspective, control-flow enforcement even goes one step fur-
ther; it halts illegal control flows. Program anomaly detection should be paired
with prevention techniques to achieve the same functionality.

Difference. A system can either learn from attacks or normal behaviors of
a program to secure the program. Control-flow enforcement evolves from the
former perspective while program anomaly detection evolves from the latter.
The specific type of attacks that control-flow enforcement techniques tackle is
control-flow hijacking. In other words, control-flow enforcement techniques do
not prevent attacks those obey legal control flows, e.g., brute force attacks. Pro-
gram anomaly detection, in contrast, detects attacks, program bugs, anomalous
usage patterns, user group shifts, etc. Various definitions of the scope of the
norm result in a rich family of program anomaly detection models. One family
has the same detection capability as control-flow enforcement.

8 Conclusion

Program anomaly detection is a powerful paradigm discovering program attacks
without the knowledge of attack signatures. In this paper, we provided a general
model for systematically analyzing (i) the detection capability of any model, (ii)
the evolution of existing solutions, (iii) the theoretical accuracy limit, and (iv)
the possible future paths toward the limit.

Our work filled a gap in the literature to unify deterministic and probabilis-
tic models with our formal definition of program anomaly detection. We pre-
sented and proved the theoretical accuracy limit for program anomaly detection.
We developed a unified framework presenting any existing or future program
9 Dynamically assigned transitions cannot be precisely pinpointed from static analysis.

A Formal Framework for Program Anomaly Detection 289

anomaly detection models and orders them through their detection capabilities.
According to our unified framework, most existing detection approaches belong
to the regular and the context-free language levels. More accurate context-
sensitive language models can be explored with pragmatic constraints in the
future. Our framework has the potential to serve as a roadmap and help
researchers approach the ultimate program defense without attack signature
specification.

Acknowledgments. This work has been supported by ONR grant N00014-13-1-0016.
The authors would like to thank Trent Jaeger, Gang Tan, R. Sekar, David Evans
and Dongyan Xu for their feedback on this work. The authors would like to thank
anonymous reviewers for their comments on stochastic languages.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of ACM CCS, pp. 340–353 (2005)

2. Anderson, J.P.: Computer security technology planning study. Technicl report,
DTIC (October (1972)

3. Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K.,
Jaleel, A., Luk, C.K., Lyons, G., Patil, H., Tal, A.: Analyzing parallel programs
with pin. Computer 43(3), 34–41 (2010)

4. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: Proceed-
ings of IEEE S & P, May 2006

5. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: Proceedings of ASIACCS, pp. 30–40 (2011)

6. Bresnan, J., Bresnan, R.M., Peters, S., Zaenen, A.: Cross-serial dependencies in
Dutch. In: Savitch, W.J., Bach, E., Marsh, W., Safran-Naveh, G. (eds.) The Formal
Complexity of Natural Language, vol. 33, pp. 286–319. Springer, Heidelberg (1987)

7. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.:
A quantitative study of accuracy in system call-based malware detection. In: Pro-
ceedings of ISSTA, pp. 122–132 (2012)

8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences:
a survey. IEEE TKDE 24(5), 823–839 (2012)

9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 1–58 (2009)

10. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of ACM CCS,
pp. 559–572 (2010)

11. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: Proceedings of USENIX Security, vol. 14, pp. 12–12 (2005)

12. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory
2(3), 113–124 (1956)

13. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proceedings of USENIX Security, vol. 7,
p. 5 (1998)

290 X. Shu et al.

14. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J.,
Nguyen-Tuong, A., Hiser, J.: N-variant systems: a secretless framework for security
through diversity. In: Proceedings of USENIX Security, vol. 15 (2006)

15. Denning, D.E.: An intrusion-detection model. IEEE TSE 13(2), 222–232 (1987)
16. Endler, D.: Intrusion detection: applying machine learning to solaris audit data.

In: Proceedings of ACSAC, pp. 268–279, December 1998
17. Eskin, E., Lee, W., Stolfo, S.: Modeling system calls for intrusion detection with

dynamic window sizes. In: Proceedings of DARPA Information Survivability Con-
ference and Exposition II, vol.1, pp. 165–175 (2001)

18. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection
using call stack information. In: Proceedings of IEEE Security and Privacy (2003)

19. Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., Miller, B.: Formalizing sensitivity
in static analysis for intrusion detection. In: Proceedings of IEEE Security and
Privacy, pp. 194–208, May 2004

20. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: Proceedings of USENIX Security, pp. 241–256 (2006)

21. Forrest, S., Hofmeyr, S., Somayaji, A.: The evolution of system-call monitoring.
In: Proceedings of ACSAC, pp. 418–430, December 2008

22. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a
computer. In: Proceedings of IEEE Security and Privacy, pp. 202–212, May 1994

23. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings of IEEE Security and Privacy, pp. 120–128 (1996)

24. Gao, D., Reiter, M.K., Song, D.: On gray-box program tracking for anomaly detec-
tion. In: Proceedings of USENIX Security, vol. 13, p. 8 (2004)

25. Gao, D., Reiter, M.K., Song, D.: Behavioral distance for intrusion detection. In:
Proceedings of RAID, pp. 63–81 (2006)

26. Gao, D., Reiter, M.K., Song, D.: Behavioral distance measurement using hidden
Markov models. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 19–40. Springer, Heidelberg (2006)

27. Ghosh, A.K., Schwartzbard, A.: A study in using neural networks for anomaly and
misuse detection. In: Proceedings of USENIX Security, vol. 8, p. 12 (1999)

28. Giffin, J.T., Dagon, D., Jha, S., Lee, W., Miller, B.P.: Environment-sensitive intru-
sion detection. In: Proceedings of RAID, pp. 185–206 (2006)

29. Giffin, J.T., Jha, S., Miller, B.P.: Detecting manipulated remote call streams. In:
Proceedings of USENIX Security, pp. 61–79 (2002)

30. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In:
Proceedings of NDSS (2004)

31. Gopalakrishna, R., Spafford, E.H., Vitek, J.: Efficient intrusion detection using
automaton inlining. In: Proceedings of IEEE Security and Privacy, pp. 18–31, May
2005

32. Gu, Z., Pei, K., Wang, Q., Si, L., Zhang, X., Xu, D.: Leaps: detecting camouflaged
attacks with statistical learning guided by program analysis. In: Processing of DSN,
June 2015

33. Hofmeyr, S.: Primary response technical white paper. http://www.ttivanguard.
com/austinreconn/primaryresponse.pdf. Accessed August 2015

34. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation.
Pearson Education India, New Delhi (1979)

35. Inoue, H., Somayaji, A.: Lookahead pairs and full sequences: a tale of two anomaly
detection methods. In: Proceedings of ASIA, pp. 9–19 (2007)

36. Kosoresow, A., Hofmeyer, S.: Intrusion detection via system call traces. IEEE
Softw. 14(5), 35–42 (1997)

http://www.ttivanguard.com/austinreconn/primaryresponse.pdf
http://www.ttivanguard.com/austinreconn/primaryresponse.pdf

A Formal Framework for Program Anomaly Detection 291

37. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for
intrusion detection. In: Proceedings of ACSAC, pp. 14–23, December 2003

38. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: Proceedings of USENIX Security, vol. 14,
p. 11 (2005)

39. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: Proceedings of USENIX OSDI, pp. 147–163 (2014)

40. Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Proceed-
ings of USENIX Security, vol. 7, p. 6 (1998)

41. Liao, Y., Vemuri, V.: Use of k-nearest neighbor classifier for intrusion detection.
Comput. Secur. 21(5), 439–448 (2002)

42. Liebchen, C., Negro, M., Larsen, P., Davi, L., Sadeghi, A.R., Crane, S., Qunaibit,
M., Franz, M., Conti, M.: Losing control: on the effectiveness of control-flow
integrity under stack attacks. In: Proceedings of ACM CCS (2015)

43. Liu, Z., Bridges, S.M., Vaughn, R.B.: Combining static analysis and dynamic learn-
ing to build accurate intrusion detection models. In: Proceedings of IWIA, pp.
164–177, March 2005

44. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE TDSC 7(4), 381–395 (2010)

45. Marceau, C.: Characterizing the behavior of a program using multiple-length n-
grams. In: Proceedings of NSPW, pp. 101–110 (2000)

46. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.
ACM TISSEC 9(1), 61–93 (2006)

47. Niu, B., Tan, G.: Modular control-flow integrity. SIGPLAN Not. 49(6), 577–587
(2014)

48. Papadimitriou, C.H.: Computational Complexity. John Wiley and Sons Ltd., New
York (2003)

49. Pullum, G.K.: Context-freeness and the computer processing of human languages.
In: Proceedings of ACL, Stroudsburg, PA, USA, pp. 1–6 (1983)

50. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method
for detecting anomalous program behaviors. In: Proceedings of IEEE Security and
Privacy, pp. 144–155 (2001)

51. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of ACM CCS, pp. 552–561 (2007)

52. Sharif, M., Singh, K., Giffin, J.T., Lee, W.: Understanding precision in host based
intrusion detection. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007.
LNCS, vol. 4637, pp. 21–41. Springer, Heidelberg (2007)

53. Shieber, S.M.: Evidence against the context-freeness of natural language. In: Kulas,
J., Fetzer, J.H., Rankin, T.L. (eds.) The Formal Complexity of Natural Language,
vol. 33, pp. 320–334. Springer, Heidelberg (1987)

54. Shu, X., Yao, D., Ramakrishnan, N.: Unearthing stealthy program attacks buried
in extremely long execution paths. In: Proceedings of ACM CCS (2015)

55. Sufatrio, Yap, R.: Improving host-based IDS with argument abstraction to prevent
mimicry attacks. In: Proceedings of RAID, pp. 146–164 (2006)

56. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: Pro-
ceedings of IEEE Security and Privacy, pp. 48–62 (2013)

57. Tandon, G., Chan, P.K.: On the learning of system call attributes for host-based
anomaly detection. IJAIT 15(6), 875–892 (2006)

58. Vendicator: StackShield. http://www.angelfire.com/sk/stackshield/. Accessed
August 2015

http://www.angelfire.com/sk/stackshield/

292 X. Shu et al.

59. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
IEEE Security and Privacy, pp. 156–168 (2001)

60. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of ACM CCS, pp. 255–264 (2002)

61. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
alternative data models. In: Proceedings of IEEE S&P, pp. 133–145 (1999)

62. Wee, K., Moon, B.: Automatic generation of finite state automata for detecting
intrusions using system call sequences. In: Proceedings of MMM-ACNS (2003)

63. Wespi, A., Dacier, M., Debar, H.: Intrusion detection using variable-length audit
trail patterns. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907,
pp. 110–129. Springer, Heidelberg (2000)

64. Xu, K., Yao, D., Ryder, B.G., Tian, K.: Probabilistic program modeling for high-
precision anomaly classification. In: Proceedings of IEEE CSF (2015)

Web and Net

jÄk: Using Dynamic Analysis to Crawl
and Test Modern Web Applications

Giancarlo Pellegrino1(B), Constantin Tschürtz2, Eric Bodden2,
and Christian Rossow1

1 Center for IT-Security, Privacy, and Accountability (CISPA),
Saarland University, Saarbrücken, Germany
{gpellegrino,crossow}@cispa.saarland

2 Secure Software Engineering Group, Technische Universität Darmstadt,
Darmstadt, Germany

constantin.tschuertz@gmail.com, eric.bodden@sit.fraunhofer.de

Abstract. Web application scanners are popular tools to perform black
box testing and are widely used to discover bugs in websites. For them to
work effectively, they either rely on a set of URLs that they can test, or
use their own implementation of a crawler that discovers new parts of a
web application. Traditional crawlers would extract new URLs by pars-
ing HTML documents and applying static regular expressions. While this
approach can extract URLs in classic web applications, it fails to explore
large parts of modern JavaScript-based applications.

In this paper, we present a novel technique to explore web applica-
tions based on the dynamic analysis of the client-side JavaScript program.
We use dynamic analysis to hook JavaScript APIs, which enables us to
detect the registration of events, the use of network communication APIs,
and dynamically-generated URLs or user forms. We then propose to use a
navigation graph to perform further crawling. Based on this new crawl-
ing technique, we present jÄk, a web application scanner. We compare
jÄk against four existing web-application scanners on 13 web applications.
The experiments show that our approach can explore a surface of the web
applications that is 86 % larger than with existing approaches.

1 Introduction

Web application scanners are black box security testing tools that are widely
used to detect software vulnerabilities in web applications. As a very essential
component, the scanners have to explore all parts of the web application under
test. Missing functionality during this exploration step results in parts of the
web application remaining untested—leading to potential misses of critical vul-
nerabilities. To addres this problems, scanners typically expand their initial set
of seed URLs. That is, they crawl a web application to extract as many different
URLs as possible. URLs are then used to send crafted inputs to the web appli-
cation to detect vulnerabilities. Nowadays, crawlers find new URLs by pattern
matching on the HTML content of web sites, e.g., using regular expressions.
While this approach can extract URLs in classic web applications, it fails to
explore large parts of modern web applications.
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 295–316, 2015.
DOI: 10.1007/978-3-319-26362-5 14

296 G. Pellegrino et al.

The advent of JavaScript and client-side communication APIs has increased
the complexity of the client-side of web applications. While in the past the client
side was merely a collection of static HTML resources, in modern web applica-
tions the client side is a full-fledged program written in JavaScript running in
a web browser. In these programs, URLs and forms are no longer only static
objects, but they may also be the result of client-side computations. For exam-
ple, JavaScript functions can be used to generate user login forms, to encode user
inputs using non-standard HTML form encoding (e.g., JSON), and to include
form input values at runtime. Prior work has shown that many URLs in modern
web applications are generated dynamically by JavaScript code [1]. As web scan-
ners tend to perform checks on the HTML code, they will fail to cover large parts
of web applications. As a result, this leaves a significant fraction of the attack
surface of a web application unknown to the underlying vulnerability testing
methodology, resulting in incomplete tests.

However, crawling modern web applications is challenging. The difficulties
mainly originate from new features introduced by JavaScript. JavaScript pro-
grams use an event-driven paradigm, in which program functions are executed
upon events. To trigger the execution of these functions, and thus the generation
of URLs, a web crawler needs to interact with the JavaScript program. Recently,
Mesbah et al. have proposed to combine web-application crawling with dynamic
program analysis to infer the state changes of the user interface [2]. However,
this approach relies on a number of heuristics which do not cover all the interac-
tion points of the client side. As a result, the largest part of the web application
remains unexplored, which ultimately limits the capability to detect vulnerabil-
ities.

In this paper, we address the shortcomings in terms of poor code coverage of
existing crawling techniques. We propose a novel approach that combines clas-
sic web application crawling and dynamic program analysis. To this end, we
dynamically analyze the web applications by hooking JavaScript API function
and performing runtime DOM analysis. Using a prototype implementation called
jÄk, we show that our methodology outperforms existing web application scan-
ners, especially when it comes to JavaScript-based web applications. Whereas
existing tools find only up to 44 % of the URLs, we show that jÄk doubles the
coverage of the WIVET web application [3]. We also tested jÄk against 13 pop-
ular web applications, showing that in eleven cases it has the highest coverage
as compared to existing tools. In summary, we make the following contributions:

– We present a novel dynamic program analysis technique based on JavaScript
API function hooking and runtime DOM analysis;

– We propose a model-based web-application crawling technique which can infer
a navigation graph by interacting with the JavaScript program;

– We implement these ideas in jÄk, a new open-source web application scanner.
We compare jÄk against four existing scanners and show their limitations
when crawling JavaScript client-side programs;

– We assess jÄk and existing tools on 13 case studies. Our results show that
jÄk improves the coverage of web application by about 86 %.

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 297

2 Background

Before turning to our technique, we will briefly describe two JavaScript concepts
that are often used in modern web applications. These two, events and modern
communication APIs, severely increase the complexity of scans.

2.1 Event Handling Registration

Client-side JavaScript programs use an event-driven programming paradigm in
which (i) browsers generate events when something interesting happens and
(ii) the JavaScript program registers functions to handle these events. JavaScript
supports different event categories: device input events (e.g., mouse move), user
interface events (e.g., focus events), state change events (e.g., onPageLoad), API-
specific events (e.g., Ajax response received), and timing events (e.g., timeouts).
Event handlers can be registered via (i) event handler attributes, (ii) event han-
dler property, (iii) the addEventListener function, or (iv) timing events:

Event Handler Attribute — The registration of an event handler can be done
directly in the HTML code of the web application. For example, when the user
clicks on the HTML link, the browser executes the code in the attribute onclick:

1

Event Handler Property — Similarly, event handlers can be registered by setting
the property of an HTML element. Below is an equivalent example of the pre-
vious one. The code first defines a JavaScript function called handler. Then, it
searches for the HTML element with the identifier link. Then, it sets the prop-
erty onclick with the function handler. After that, whenever the user clicks on
the link to contact.php, the browser executes the handler function.

1
2
3 <script type="text/javascript">
4 function handler () { /* do something */ }
5 var link = document.getElementsById("link");
6 link.onclick = handler;
7 </script>

addEventListener Function — Third, programmers can use addEvent
Listener to register events, as shown below. Again, this code searches the
HTML element with ID link. Then, it calls addEventListener() with two
parameters. The first parameter is the name of the event, in our case the string
"click" (for the user click event). The second parameter is the name of the
function, i.e., handler.

1
2
3 <script type="text/javascript">
4 function handler () { /* do something */ }
5 var link = document.getElementsById("link");
6 link.addEventListener("click", handler);
7 </script>

298 G. Pellegrino et al.

Timing Events — Finally, timing events are fired only once after a specified
amount of time, i.e., timeout event, or at regular time intervals, i.e., interval
event. The handler registration for these events is performed via the setTimeout
and the setInterval functions, respectively.

Modern web applications rely heavily on these events to trigger new behavior.
Web application scanners thus have to support event-based code.

2.2 Network Communication APIs

The communication between the web browser and the server side has shifted from
synchronous and message-based, to asynchronous and stream-oriented. Under-
standing and supporting modern network communication APIs is thus essential
for web application scanners. For example, consider Listing 1.1, which shows
the use of the XMLHttpRequest (XHR) API, in which the JavaScript program
sends an asynchronous HTTP POST request to the server side.

Listing 1.1. XMLHttpRequest API Example
1 var server = "http:// foo.com/";
2 var token = "D3EA0F8FA2"
3 var xhr = new XMLHttpRequest ();
4 xhr.open("POST", server);
5 xhr.addEventListener("load", function () {
6 // process HTTP response
7 });
8 xhr.send("token=" + token);

The JavaScript program first initializes two variables: a URL that identi-
fies the endpoint to which the HTTP request is sent, and a token that can
be an anti-CSRF token or an API key to allow the client-side JavaScript pro-
gram to access third-party web service. Then, the JavaScript program instan-
tiates an XMLHttpRequest object for an HTTP POST request and registers
a handler to process the server response. Finally, it sets the POST body as
token=D3EA0F8FA2, and sends the HTTP request to the server.

Classic crawlers statically analyze the HTML and JavaScript code to extract
URLs. This makes it hard for them to extract the correct endpoint. Furthermore,
classic crawlers cannot extract the structure of the HTTP POST request. We find
that four popular crawlers (w3af, skipfish, wget, and crawljax) cannot extract
the POST request structure of this example. Two of these crawlers, w3af and
skipfish, use regular expressions to extract strings that look like URLs, as a result
they may find out URLs when stored in variables such as server, however, they
will miss the POST parameter key. Worse, if the URL would have been generated
dynamically, e.g., “server="http://"+domain+"/";”, then w3af and skipfish
could not detect even the first part. Finally, the two other crawlers, wget and
crawljax, even fail to detect URLs stored in JavaScript variables. Many parts of
modern web applications can only be reached by interpreting such dynamically
generated requests, thus limiting the coverage of existing crawlers (cf. Sect. 5).

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 299

3 Crawling Modern Web Applications

As explained in the previous section, modern web applications can use JavaScript
events to dynamically react to events, and to update the internal and visual state
of the web application in response. Figure 1 gives a graphical representation of
the page flow of an example toy web application. Initially, the user loads the
URL http://foo.com/, which loads the web application’s landing page into the
browser. This page is then loaded into its initial state and displayed to the user.
The user can then interact with the page, for instance submit HTML forms
or click HTML links, which will invoke further pages such as http://foo.com/
bar/, shown to the right. User events or spontaneuous events such as timers can
also, however, change the page’s internal and visual state, as denoted by the
dotted arrows. Those internal states can inflict significant changes to the page’s
DOM, which is why they should be considered by crawlers as well. Most current
crawlers, however, will focus on HTML only, which restricts them virtually to
discovering only those HTML page’s initial states.

Fig. 1. State changes and page flow induced by clicks and events

We propose a new concept based on dynamic analysis for crawling web appli-
cations that overcomes the limitations of existing crawlers. The overall idea is
to combine classic web application crawling with program analysis of the client-
side of a web application. The crawler starts from a seed URL, e.g., the landing
page, and it retrieves the resources of the client-side program, e.g., an HTML
page or JavaScript program. Then, it runs the client-side program in a modified
JavaScript execution environment to analyze its behavior. From the analysis, the
crawler can extract events and URLs which are later used to explore both the
client-side program and the server side. Finally, the crawler repeats the analysis
until when no more new behaviors can be discovered. Section 3.1 presents our
dynamic JavaScript program analyses. Section 3.2 presents the logic to expand
the search via crawling.

http://foo.com/
http://foo.com/bar/
http://foo.com/bar/

300 G. Pellegrino et al.

3.1 Dynamic JavaScript Program Analysis

We deploy dynamic program analysis to monitor the behavior of the JavaScript
program and extract events, dynamically-generated URLs and forms, and end-
points for the communication with the server side.

Dynamic analysis of client-side JavaScript programs can be performed in dif-
ferent ways. One approach is to modify the JavaScript interpreter to inspect and
monitor the execution of the program. In this setting, whenever an instruction of
interest executes, the interpreter executes a hook function instead of or in addi-
tion to the original instruction. However, this approach requires one to modify a
JavaScript engine, most of which are notoriously complex pieces of software. Fur-
thermore, this approach will bind the technique to a specific engine. Another way
to perform dynamic analysis is to insert calls to own JavaScript functions within
the source code of the client-side JavaScript program. This approach requires
one to process and transform the source code of the program. Unfortunately, the
source code of JavaScript programs may not be available as a whole as it may
be streamed to the client side at run-time and one piece at a time.

jÄk follows a third option, namely monitoring the execution of the pro-
gram by hooking functions to APIs inside the JavaScript execution environment.
jÄk first initializes the JavaScript engine. Then it modifies the execution envi-
ronment by running own JavaScript code within the engine. This code installs
function hooks to capture calls to JavaScript API functions and object methods,
and schedules the inspection of the DOM tree. After that, it runs the client-side
JavaScript program.

In the remainder of this section, we detail these techniques. First, we present
the basic techniques for performing function hooking in JavaScript. Then we
describe the use of function hooking to capture the registration of event handlers
and the use of network communication APIs, respectively. Finally we describe
how dynamic traces are collected.

Function Hooking. Function hooking is a family of techniques that allows one
to intercept function calls to inspect the parameters or alter the behavior of the
program. In this section, we present two features of JavaScript that we use to
hook functions: function redefinition and set functions.

Function redefinition is a technique for overwriting JavaScript functions and
object methods. Consider the example in Listing 1.2, which shows the use of
function redefinition that logs any call to the function alert. This is achieved
first by associating a new name to the function alert (Line 2), and then by
redefining the alert function (Line 3). The redefinition still behaves as the
original alert, however, it adds (i.e., hooks) a call to log its use.

While function redefinition can be used to hook arbitrary functions to func-
tion calls, it cannot be used when functions are set as an object property, i.e.,
obj.prop=function(){[...]}. To hook functions in these cases, we use so-
called set functions, which are bound to object properties that are called when-
ever the property is changed. For example, one can hook the function myHook to
the property propr of the object obj as follows:

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 301

Listing 1.2. Function hooking via function redefinition
1 alert("Hello world!"); // show a popup window
2 var orig_alert = alert;
3 function alert(s) {
4 console.log("call to alert" + s); // hook
5 return orig_alert(s);
6 }
7 alert("Hello world!"); // message is also shown in the console

Object.defineProperty(obj,"prop",{set:myHook}).

Event Handlers Registration. We now show the use of function hooking
to capture the registration of event handlers in three of the four registration
models: addEventListener function, event handler property, and timing events.
For the fourth registration model, i.e., event handler attribute, we do not use
function hooking. As in this model handlers are registered as HTML attribute,
we captured them by visiting the HTML DOM tree.

Hooking addEventListener — To capture the registration of a new handler,
jÄk injects its own function whenever the addEventListener function is called.
Listing 1.3 shows an example for the hooking code. The function installHook
installs a hook function hook before the execution of a function f of object obj.
installHook first preserves a reference to the original function (Line 2). Then,
jÄk replaces the original function with its own anonymous function (Line 3
to Line 6). The anonymous function first calls the hook (Line 4) and then the
original function (Line 5). Here, the parameters of hook are this and arguments.
Both parameters are JavaScript keywords. The first one is a reference to the
object instance whereas the latter is a list containing the parameters that will
be passed to the function f. Finally, jÄk can use the installHook function to
install its hook handler myHook for every call to the function addEventListener
of any HTML tag element, as shown below:

1 installHook(Element.prototype , "addEventListener", myHook)

Here Element.prototype is a special object that defines the basic behaviors of
all DOM nodes.

Hooking Event Handler Properties — To capture the registration of event han-
dlers via event properties, one can install a hook function as a set function in the

Listing 1.3. Function Hooking for the addEventListener function
1 function installHook(obj , f, hook) {
2 var orig = obj[f];
3 obj[f] = function () {
4 hook(this , arguments);
5 return orig.apply(this , arguments);
6 }
7 }

302 G. Pellegrino et al.

DOM elements. However, this approach requires further care. First, the registra-
tion of a set function may be overwritten by other set functions installed by the
JavaScript program. As opposed to function redefinition, set functions do not
guarantee that the hook will remain for the entire duration of the analysis. This
can be solved by first redefining the defineProperty function and then moni-
toring its use. Then, if the hook detects a set-function registration, it will create
a new set function which chains jÄk’s set function with the one provided by the
program. Second, we observed that the registration of set functions for event
properties may prevent the JavaScript engine from firing events. This can inter-
fere with the operations of a JavaScript program, e.g., it can break the execution
of self-submitting forms1. While jÄk’s set function will still detect event handler
registrations, after the discovery, the JavaScript engine needs to be reinitialized.

Finally, as opposed to function redefinitions, this technique may not work in
every JavaScript engine. To install set functions, the JavaScript engine needs to
mark the property as configurable. Unfortunately, this is an engine-dependent
feature. For example, the JavaScript engines of Google and Mozilla, i.e., V8 and
SpiderMonkey, support this feature whereas the JavaScript engine of Apple does
not allow it. When function hooking on event properties is not allowed, one can
instead inspect the DOM tree to detect changes in the event properties.

Hooking Timing Event Handlers — To capture the registration of timing event
handlers, it is possible to reuse the installHook function of Listing 1.3 as follows:

1 installHook(window , "setTimeout", myHook)
2 installHook(window , "setInterval", myHook)

where myHook is the hook function.

Network Communication APIs. Next, we describe the use of function hook-
ing to dynamically inspect the use of networking communication APIs. We will
illustrate an example hooking the XMLHttpRequest API, but the general app-
roach can easily be extended to further communication APIs.

As shown in Sect. 2.2, the XHR API is used in three steps. First, an XHR
object is instantiated. Then, the HTTP request method and the URL of the
server side is passed to the XHR object via the open function. Finally, the HTTP
request is sent with the function send. jÄk can use installHook to inject its
hook handler myHook for both open and send as follows:

1 installHook(XMLHttpRequest , "open", myHook);
2 installHook(XMLHttpRequest , "send", myHook);

Other network communication APIs may require the URL of the endpoint
as a parameter to the constructor. For example, WebSocket accepts the URL
only in the constructor function as follows: var ws = new WebSocket(server).
In general, when one would like to hook a function in the constructor, Line 5
of installHook in Listing 1.3 needs to be modified to return an instance of the
object, i.e., return new orig(arguments[0], ...).
1 A self-submitting form is an HTML form that is submitted by firing submit or mouse

click events within the JavaScript program.

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 303

Run-Time DOM Analysis. The DOM tree is a collection of objects each
representing an element of the HTML document. The DOM tree can be visited
to inspect its current state. Each visit can be scheduled via JavaScript events or
it can be executed on-demand. In this paper, we consider three uses of run-time
DOM analysis. First, it is used to extract the registration of handlers as HTML
attributes. Second, it is used to identify changes in the tree while firing events.
Third, it can be used to discover the registration of event handlers when the
JavaScript engine does not allow to hook code as set functions.

Collection of Dynamic Traces. After describing how to install jÄk’s hook
functions, we now turn to the actual behavior of the these functions. In general,
jÄk uses hook functions to collect information from the run-time environment
at the point of their invocation. This information is then sent to the crawler,
which collects them in an execution trace.

For the event handler registration, the hook function depends on the type of
event (see, e.g., Listing 1.4). For example, for DOM events, the hook function
collects the name of the event, the position in the DOM tree of the source and
sends it to the crawler. Instead, for timing events, the hook can collect the
timeout set by the caller. In either case, hook functions send trace entries to the
crawler via a JavaScript object trace, which is mapped to a queue object in the
crawler’s memory. This object acts as a bridge between the JavaScript execution
environment and the crawler’s execution environment.

Listing 1.4. Hook Function for the addEventListener and setTimeout
1 function addEventListenerHook(elem , args) {
2 path = getPath(elem);
3 entry = {
4 "evt_type" : args[0], //1st par of addEventListener
5 "evt_source" : path
6 };
7 trace.push(entry);
8 }

1 function timeoutHook(elem , args) {
2 entry = {
3 "evt_type" : "timeout",
4 "time" : args [1] //1st par of setTimeout
5 };
6 trace.push(entry);
7 }

When collecting trace entries for network communication APIs, one has to
address two issues. First, the APIs typically require multiple steps to set up a
communication channel and to deliver messages to the server side. For example,
the XHR API requires at least three steps (Lines 3–8 in Listing 1.1). These
steps are not necessarily atomic. In fact, a program may open a pool of XHR
connections, and finally call the send function of each object. In this case, a
single hook will result in a trace which contains uncorrelated trace events: at
the beginning a sequence of “open” events with the URL endpoints, and then a
sequence of only “send” events with the body being sent.

304 G. Pellegrino et al.

For these reasons, jÄk defines a hook for each of the API functions and then
uses the API object to store the current state of the API calls. For example,
Listing 1.5 shows the hook function for the API functions open and send. The
hook function xhrOpenHook creates two new object properties in the object xhr
for the HTTP request method and the URL, respectively. Then, the function
xhrSendHook collects the content of the two object properties and the body of
the HTTP requests, and the sends them to the crawler. Such hooks are thread-
safe, and thus even work correctly when JavaScript programs access the network
communication API concurrently (e.g., within Web Workers [4]).

3.2 Crawling

In the previous section, we presented the dynamic analysis technique in isolation.
In this section, we will integrate the dynamic analysis into our web crawler jÄk.
The crawler is model-based, i.e., it creates and maintains a model of the web
application which is used at each step to decide the next part to explore. First,
we describe how we create the model. Then, we discuss the selection criteria for
the next action, and finally the termination conditions.

Navigation Graph. jÄk creates and maintains a navigation graph of the web
application which models both the transitions within a client-side program and
the transitions between web pages. The model is a directed graph similar to
the one shown in Fig. 1, in which nodes are clusters of pages and edges can be
events and URLs. Each page p is modeled as a tuple of three elements p =
〈u,E,L, F 〉 where u the web page URL, E is the JavaScript events, L a set of
URLs (e.g., linked URLs, server-side endpoints), and F a set of HTML forms.
jÄk normalizes all URLs by striping out query string values and sorting the query
string parameter lexicographically. Two pages p′ and p′′ are in the same cluster
if (i) u′ and u′′ are identical and (ii) the two pages are sufficiently similar. The
similarity is calculated as a proportion between the number of common events,
URLs and forms over the total number of events, URLs and forms. Precisely,
the similarity is defined as follow:

Listing 1.5. Hook Functions for XHR API
1 function xhrOpenHook(xhr , args) {
2 xhr.method = args [0]; //1st par of HTMLHttpRequest.open , i.e. , HTTP

method
3 xhr.url = args [1]; //2nd par , i.e. , the URL
4 }
5 function xhrSendHook(xhr , args) {
6 entry = {
7 "evt_type" : "xhr",
8 "url" : xhr.url ,
9 "method" : xhr.method ,

10 "body" : args [0] //1st par of XMLHttpRequest.send
11 };
12 trace.push(entry);
13 }

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 305

s(p′, p′′) =
|E′ ∩ E′′| + |L′ ∩ L′′| + |F ′ ∩ F ′′|
|E′ ∪ E′′| + |L′ ∪ L′′| + |F ′ ∪ F ′′|

Through experimental analysis we determined that a similarity threshold of
0.8 generates the best results for our setting.

Navigating. The dynamic analysis of the JavaScript program generates a run-
time trace containing event handler registrations and dynamically-generated
URLs. It also includes the result of the DOM-tree analysis such as linked URLs
and forms. This information is then sorted into two lists, a list of events and a
list of URLs. These lists represent the frontier of actions that the crawler can
take to further explore the web application.

Each type of action may have a different result. On the one hand, the request
of a new URL certainly causes to retrieve a new page and, if the page contains a
JavaScript program, then it is executed in a new JavaScript environment. This
is not necessarily the case of events. Firing an event may allow the crawler to
explore more behaviors of the JavaScript program, i.e., to generate new URLs.
However, events may also cause to run a new JavaScript program, for instance
by setting window.location to a new URL. However, we can block this behavior
via function hooking. For these reasons, our crawler gives a higher priority to
events with respect to the URLs. When no more events are left in the list, then
we process the list of URLs. When all the lists are empty, then the crawler exits.

Visiting the Client-side Program — Events such as click, focus, double click, and
mouse movements can be fired within the JavaScript execution environment. To
fire an event e, jÄk first identifies the DOM element and then fires the event via
the DOM Event Interface [5] function dispatchEvent. After that, jÄk observes
the result of the execution of the handler via the dynamic analysis. The event
handler can cause a refresh of the page, a new page to be loaded, a message to be
sent to the server side. To avoid any interference with the server side, when firing
events, the hook functions, e.g., for network communication API, will block the
delivery of the message.

After having fired an event, jÄk can distinguish the following cases. If the
event handler results into a network communication API, then jÄk takes the
URL from the trace, and enqueues it in the list of URLs. Similarly, if the event
handler sets a new URL (i.e., window.location=URL), then jÄk enqueues the
URL into the linked-URLs list. If the event handler adds new linked URL and
forms, then they are inserted into the appropriate list. Finally, if the event han-
dler registers new events, then jÄk prepares the special event which comprises
the sequence of events that lead to this point, e.g., ê = 〈e, e′〉 where e is the last
fired event and e′ is the newly discovered event. Then, ê is added to the list of
events. When the crawler schedules this event to be fired, it fires the events in
the given order, i.e., first e and then e′.

306 G. Pellegrino et al.

Requesting New Pages — The crawler should aim to find pages that contain
new content rather than pages with known content. To select the next page, jÄk
assigns a priority to each of the URLs in the frontier based on two factors: (i)
how many times jÄk has seen a similar URL in the past, and (ii) how scattered
over the clusters past URLs are. The priority is thus calculated as the number
of similar past URLs over the number of clusters in which the past URLs have
been inserted in. If a URL in the frontier was never seen in the past, i.e., the
priority is 0, then we force its priority to 2. The crawler processes URLs from
the highest to the lower priority.

Termination. Without any further control on the behavior of the crawler, the
crawler may enter a loop and never terminate its execution. jÄk thus uses two
techniques to terminate its execution. First, it has a hard limit for the search
depth. Second, the crawler terminates if it cannot find new content anymore.
We describe the termination criteria in the following.

Hard Limits — Crawlers can enter loops in two situations. First, loops can
happen across the different web pages of a web applications. This can be caused
when crawling infinite web applications such as calendars or, for example, when
two pages link to each other. The crawler may visit the first page, then schedule
a visit to the second, which again points to the first page. These problems can
be solved with a limit on the maximum search depth of the crawler. When the
crawler reaches a limit on the number of URLs, it terminates the execution.
Second, loops may also occur within single web pages. For example, the handler
of an event can insert a new HTML element into the DOM tree and register the
same handler to the new element. Similarly as seen for URLs, one can limit the
maximum depth of events that can be explored within a web page. When the
limit is reached, the crawler will no longer fire events on the same page.

Convergence-based Termination — In addition to these limits, the crawler ter-
minates when the discovered pages do not bring any new content. The notion
of new content is defined in terms of number of similar pages that the crawler
visited in the past. To achieve this, the crawler uses the navigation graph and
a limit on the number of pages per cluster. If the cluster has reached this limit,
the crawler marks the cluster as full and any subsequent page is discarded.

4 Implementation of jÄk

This section presents our actual implementation of jÄk, our web-application
scanner which implements the crawler and the program analysis presented in
Sect. 3. jÄk is written in Python [6] and based on WebKit browser engine [7] via
the Qt Application Framework bindings [8]. We released jÄk at https://github.
com/ConstantinT/jAEk/.

jÄk comprises four modules: dynamic analysis module, crawler module,
attacker module, and analysis module. The dynamic analysis module imple-
ments the techniques presented in Sect. 3.1. jÄk relies on the default JavaScript

https://github.com/ConstantinT/jAEk/
https://github.com/ConstantinT/jAEk/

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 307

engine of WebKit, i.e., the JavaScriptCore, to perform the dynamic analysis.
Unfortunately, JavaScriptCore sets the event properties as not configurable. As
a result, JavaScriptCore does not allow to use function hooking via set functions.
To solve this, jÄk handles these cases via DOM inspection. However, we verified
that the JavaScript engines of Google and Mozilla, i.e., V8 [9] and SpiderMon-
key [10], allow one to hook set functions. In the future, we plan to replace the
JavaScriptCore engine with V8.

The crawler module implements the crawling logic of Sect. 3.2. Starting from
a seed URL, jÄk retrieves the client-side program and passes it to the dynamic
analysis module. The dynamic analysis module returns traces which are used to
populate the frontiers of URLs and events. Then, jÄk selects the next action
and provides it to the dynamic analysis module. Throughout this process, jÄk
creates and maintains the navigation graph of the web application which is used
to select the next action. The output of the crawler module is a list of forms and
URLs.

Finally, the attacker and analysis modules test the server side against a
number of vulnerabilities. For each URL, the attacker module prepares URLs
carrying the attack payload. Then, it passes the URL to the dynamic analysis
module to request the URL. The response is then executed within the dynamic
analysis module, which returns an execution trace. The analysis module then
analyzes the trace to decide if the test succeeded.

5 Evaluation

We evaluate the effectiveness of jÄk in a comparative analysis including four
existing web crawlers. Our evaluation consists of two parts. Section 5.1 assesses
the capability of the crawlers based on the standard WIVET web applica-
tion, highlighting the need to integrate dynamic analysis to crawlers. Then,
in Sect. 5.2, we evaluate jÄk and the other crawlers against 13 popular web
applications.

For our experiments, we selected five web crawlers: Skipfish 3.10b [11], W3af
1.6.46 [12], Wget 1.6.13 [13], State-aware crawler [14], and Crawljax 3.5.1 [2]. We
selected Skipfish, W3af, and Wget as they were already used in a comparative
analysis against State-aware crawler by prior work (see Doupé et al. [14]). Then,
we added Crawljax as it is a crawler closest to our approach.

In our experiment, we used the default configuration of these tools. When
needed, we configured them to submit user credentials or session cookies. In
addition, we configured the tools to crawl a web application to a maximum
depth of four. Among our tools, only W3af does not support bounded crawling2.

2 W3af implements a mechanism to terminate which is based on the following two
conditions. First, W3af does not crawl twice the same URL and then it does not
crawl “similar” URLs more than five times. Two URLs are similar if they differ only
from the content of URL parameters.

308 G. Pellegrino et al.

5.1 Assessing the Crawlers’ Limitations

First, we use the Web Input Vector Extractor Teaser (WIVET) web applica-
tion [3] to assess the capabilities of existing crawlers and compare these to jÄk.
The WIVET web application is a collection of tests to measure the capability
of crawlers to extract URLs from client-side programs. In each test, WIVET
places unique URLs in a different part of the client-side program including in
the HTML and via JavaScript functions. Then, it waits for the crawler to request
the URLs. WIVET tests can be distinguished in static and dynamic tests. A test
is static if the unique URL is placed in the HTML document without the use
of a client-side script. Otherwise, if the client-side program generates, requests,
or uses URLs, then the test is dynamic. WIVET features 11 static tests and 45
dynamic tests. We focus on the dynamic behavior of client-side programs and
thus limit the evaluation to running the 45 dynamic tests.

Table 1. Number and fraction of dynamic test passed by the different crawlers

Dynamic test categories Total Crawljax W3af Wget Skipfish jÄk

C1 Adobe Flash event 2
C2 URL in tag 5 5 5 0 5 4
C3 JS in URL, new loc. 2
C4 URL in tag, tim. evt. 1 0 1 0 1 1
C5 Form subm., UI evt. 2
C6 New loc., UI evt. 27 0 6 0 6 26
C7 URL in tag, UI evt. 2

0 2 0 0 0

2 1 0 1 2

2 1 0 1 1

0 2 0 1 2
C8 XHR 4 0 2 0 2 4
Total 45 9 20 0 17 40
In % 100 20 44 0 38 89

As URLs can be placed and used by the JavaScript program in different
ways, we manually reviewed WIVET’s dynamic tests and grouped them into
eight classes. We created these classes by enumerating the technique used by
each test. For example, we considered whether a test dynamically places an
URL in an HTML tag, if the URL is for Ajax requests, or whether the action
is in an event handler. Table 1 shows the eight classes and details the results of
each crawler for each class.

As Table 1 shows, all tested crawlers but jÄk fail in more than half of the
tests. In average, these tools passed only 25 % of the tests. With the exception
of Wget, which failed all the dynamic tests, the success rate ranges from 20 % of
Crawljax to 44 % of W3af. jÄk instead passed 89 % of the tests. For the event-
based tests (i.e., C4-7), W3af, Skipfish and Crawljax succeeded in about 16 %
of the tests, whereas for the server communication API tests (i.e., C8) they
succeeded in 25 % of the tests. By comparison, jÄk achieved 96 % and 100 % of
success rate for the classes C4-7 and C8, respectively.

We next discuss the details of these experiments per tool. In total, jÄk passed
40 dynamic tests (89 %). With reference to the classes C4-7, jÄk discovered the

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 309

registration of the events via the hook functions. Then, it fired the events which
resulted in the submission of the URL. In only one case, jÄk could not extract
the URL which is contained in an unattached JavaScript function. As jÄk uses
dynamic analysis, it cannot analyze code that is not executed, and thus it will
not discover URLs in unattached functions. Nevertheless, jÄk could easily be
extended with pattern-matching rules to capture these URLs. In fact, Skipfish
and W3af were the only ones able to discover these URLs. For the class C8,
jÄk discovered the URL of the endpoint via the hook functions and via DOM
tree inspection. In this case, the test requested the URL via the XHR API and
inserted it in the DOM tree.

jÄk failed in other four dynamic tests. First, one test of C2 places a
JavaScript statement javascript: as action form. jÄk correctly extracts the
URLs, however it does not submit to the server side because jÄk does not sub-
mit forms during the crawling phase. Other two tests are in the class C1. This
class contains tests which test the support of ShockWave Flash (SWF) objects.
This feature is not currently supported by jÄk. Then, the last test is in C5. This
test submits user data via a click event handler. jÄk correctly detects the event
registration and it fires the event on the container of the input elements. How-
ever, the handler expects that the event is fired over the submit button element
instead of the container. This causes the handler to access a variable with an
unexpected value. As a result, the handler raises an exception and the execution
is halted. In a web browser, the execution of the handler would have succeeded
as a result of the propagation of the click event from the button to the outer
element, i.e., the container3. The current version of jÄk does not support the
propagation of events, instead it fires an event on the element where the handler
has been detected, in this case the container.

Crawljax succeeded only in 9 out 45 tests (20 %). Most of the failed tests
store URLs either in the location property of the window object (i.e., classes C4
and C6), or as URL of a linked resource (i.e., class C7). The URL is created and
inserted in the DOM tree upon firing an event. While Crawljax can fire events, it
supports only a limited set of target HTML tags to fire events, i.e., buttons and
links. Finally, Crawljax failed in all of the dynamic tests involving Ajax requests
(See C8).

Skipfish and W3af performed better than Crawljax, passing 38 % and 44 %
of the dynamic tests, respectively. These tools extract URLs via HTML docu-
ment parsing and pattern matching via regular expression. When a URL cannot
be extracted from the HTML document, the tools use pattern recognition via
regular expressions. This technique may work well when URLs maintain distin-
guishable characteristics such as the URL scheme, e.g., http://, or the URL
path separator, i.e., the character “/”. However, this approach is not sufficiently
generic and cannot extract URLs that are composed dynamically via string
concatenation. This is the case for the class C6 Table 1 in which W3af and
Skipfish passed only six tests out of 27. In these six tests, the URL is placed

3 This model is the event bubbling and is the default model. Another model is the event
capturing in which the event are propagated from the outermost to the innermost.

310 G. Pellegrino et al.

in a JavaScript variable and it maintains the URL path separator. With the
use of regular expressions, W3af and Skipfish recognized the string as URL and
submitted the server side thus passing the tests. However, in the remaining 21,
URLs are created as the concatenation string variables and a JavaScript arrays.
While regular expressions may be extended to include these specific cases, they
will likely never be as complete as dynamic analysis.

5.2 Assessment Using Web Applications

Finally, we compare jÄk to the other crawlers by crawling popular web
applications.

Table 2. Number of unique event-handler registrations extracted by jÄk, grouped by
event category

Web Apps. DDI DII UI Chg API Errs. Cust. Total
WP 34 220 156 14 0 0 0 424
Gallery 930 7 1,257 23 0 0 303 2,520
phpBB 636 8 729 0 0 0 0 1,373
Joomla 46 144 232 26 0 0 0 448
Tidios w/ WP 14,041 26 3,715 192 111 12 641 18,738
Nibbleblog 12 42 0 7 0 0 0 61
Owncloud 8 826 905 274 53 44 0 134 2,236
Owncloud 4 126 651 234 68 10 0 36 1,125
Piwigo 1,609 1,323 281 44 0 0 40 3,297
Mediawiki 13,538 24,837 18,102 2,174 791 0 5,204 64,646
ModX 6,772 14,626 4,483 19 0 0 0 25,900
MyBB 1.8.1 947 6,034 532 1,502 27 2 442 9,486
MyBB 1.8.4 891 5,339 725 150 28 2 607 7,742

We first evaluated how well the crawlers cover a web application. A measure
for the coverage is the code coverage, i.e., the number of lines of code that
have been exercised by the testing tool. While this measure is adequate for
code-based testing tools, it may not be for web application crawlers. As web
crawlers operate in a black-box setting, it has a limited visibility of the web
application. In addition, web crawlers do not fuzz input fields, but they rather
use a user-provided list of inputs. As a result, it may not exercise all the branches,
thus, leaving unvisited significant portion of the web application. An alternative
measure can be the number of URLs a crawler can extract.

A web crawler is a component which provides a web scanner with the URLs
to be tested. As the goal of a web scanner is the detection of web vulnerabilities,
the second aspect to evaluate is the detection power. The detection power can be
measured in terms of the number of reported vulnerabilities. Unfortunately, such
a metric may not be fair. Prior research has shown that this type of evaluation is
not an easy task. Web scanners do not support the same classes of vulnerabilities

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 311

and they may differentiate the target vulnerabilities. In result, the number of
discovered vulnerabilities cannot be comparable among the different crawlers.
For this reason, in this paper we limited our comparison to a specific class of
vulnerabilities, i.e., reflected XSS. Second, the number of reported vulnerabilities
may contain false positives. A false positive happens when the scanner reports
the existence of a vulnerability but the vulnerability does not acutally exist.
The number of false positives also measures the accuracy of the web scanner
and indicates whether a scanner adequately verifies if the observed behavior
qualifies as a vulnerability.

Case Studies. We performed our assessment using 13 popular web applications.
These applications include three content management systems (i.e., Joomla 3.4.1,
Modx-CMS 2.02.14, and Nibbleblog 4.0.1), a blogging tool with plugins (i.e.,
WordPress 3.7 and 4.0.1, and Tidio 1.1), discussion forum software (i.e., MyBB
1.8.01 and 1.8.04, and phpNN 3.0.12), photo gallery applications (i.e., Gallery
2.7.1 and Piwigo 2.7.1), cloud storage applications (i.e., OwnCloud 4.0.1 and
8.0.3), and wiki web application (i.e., MediaWiki 1.24.2). Among these, the fol-
lowing five web application are already known to be vulnerable to reflected XSS:
Modx-CMS, MyBB 1.8.01, phpBB, Piwigo, and OwnCloud 4. These web applica-
tions vary in size, complexity, and functionality. We set up these web applications
on our own servers. Each web application was installed in a virtual machine. We
reset the state of the virtual machines upon each test.

Results. We divide the evaluation results into two parts. First, we investigate
the diversity of events that jÄk has found and measure the coverage of the
crawlers. Second, we assess how well jÄk performs in detecting XSS vulnerabil-
ities as compared to other scanners.

Coverage — Table 2 shows the number of unique event-handler registrations
extracted by jÄk. The number of events are shown for each web application,
grouped by event category, i.e., device-dependent input events (DDI), device-
independent input events (DII), Change events (Chg), API events, Error events,
and custom errors. These events are extracted via the dynamic analysis of the
client-side JavaScript program of the case studies.

Table 2 shows that web applications can rely on JavaScript events in a mod-
erate way, i.e., Nibbleblog, or more heavily, i.e., Mediawiki. Most of the regis-
tered event handlers are of the device input and UI categories. Just these events
amount to 68 % of all events, whereas UI events amount to 22 %.

Next we show asses whether jÄk outperforms existing crawlers in terms of
coverage. To this end, we measure the number of unique URL structures each
crawler found. The URL structure is a URL without the query string values.
Table 3 shows the results, excluding all URLs for static and external resources.
Numbers in bold mark the tool that extracted the highest number of URL struc-
tures. The symbol ∗ indicates that the results of W3af and Skipfish do not take
into account invalid URLs that have been found via URL forgery (as explained

312 G. Pellegrino et al.

Table 3. Coverage of the web applications in terms of unique URL structures, exclud-
ing linked and static resources, e.g., CSS documents, external JS files, and images. The
symbol ∗ indicates the numbers which do not count URL forgery by W3af and Skipfish.

Web Apps. jÄk Crawljax W3af Wget Skipfish
WP 21 15 17∗ 34 17∗

Gallery 180 7 35 33 24
phpBB 50 11 44 27 27
Joomla 4 5 7∗ 3 5∗

Tidios w/ WP 166 21 251∗ 218 35∗

NibbleBlog 7 6 7∗ 5 7∗

OwnCloud 8 98 2 54∗ 44 14∗

OwnCloud 4 80 – 58 10 61
Piwigo 277 15 58 13 24
Mediawiki 1,258 24 480 265 776∗

ModX 57 2 21 41 34∗

MyBB 1.8.1 152 22 95 131 126
MyBB 1.8.4 152 12 92 135 128
Total 2502 142 1219 959 1278

later). jÄk extracted the highest number of unique URL structures in 10 applica-
tions. In one application, i.e., Nibbleblog, jÄk, W3af, and Skipfish extracted the
same number of URL structures. In the remaining two web applications, W3af
extracted the highest number of web applications. In the case of Joomla, W3af
extracted 3 URL structures more than jÄk, whereas in the case of Tidios, W3af
extracted 251 URLs against 166 of jÄk.

To interpret these results qualitatively, we sought to assess to what extent
the surfaces explored by each tool relate to the one explored by jÄk. A way to
measure this is to analyze the URLs extracted by jÄk and each of the other tools,
and to calculate the complement sets. These two sets will contain the following
URLs. The first set contains URLs that are extracted by jÄk and missed by each
of the other crawlers. The second set contains the URLs that are not discovered
by jÄk but are extracted by the other tool. The number of URLs in each of these
sets is shown in Table 4. When compared with the other tools, on average, jÄk
explored a surface of the web applications which is 86 % larger than the one of
the other tools. Then, the amount of surface which jÄk did not explore range
from 0.5 % of Crawljax to 22 % of Skipfish.

Table 4. Unique URLs discovered only by jÄk (+) and missed by jÄk (-).

Groups Crawljax W3af Wget Skipfish
Surf. discovered only by jÄk +98% +85% +70% +90%
Surf. missed by jÄk -0.5% -18% -20% -22%

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 313

To further understand the potential misses by jÄk, we manually inspected a
random sample of 1030 (15 %) of the URLs that are not discovered by jÄk. We
were able to identify eight classes of URLs, as shown in Table 5. URL forgery
refers to URLs which are not present in the web application but are forged by
the crawler. The vast majority of the URLs that jÄk “missed”, i.e., 75 % of
the URLs, are URLs that were forged by W3af and Skipfish. Forging means
that these tools implement a crawling strategy which attempts to visit hidden
parts of the web application. Starting from a URL, they systematically submit
URLs in which they remove parts of the path. For example, W3af derives from
URLs like http://foo.com/p1/p2/p3, other URLs, i.e., http://foo.com/p1/p2,
http://foo.com/p1/, and http://foo.com/. It is important to notice that these
URLs are not valid URLs of the web application. For this reason, we corrected
the results in Table 3 by deducting the percentage of forged URLs. Next, the
class static resources include style-sheet documents or external JS files with a
different document extension, e.g., .php. This is an error introduced by our URL
analysis which failed in recognizing these documents as static. The third class of
URLs (5.34 %) is the one of unsupported actions such as form submission during
crawling. Then, the fourth class contains URLs that were not extracted because
they belong to a user session different from the one used by jÄk. This may be
solved by using jÄk in parallel with multiple user credentials. The fifth class
contains URLs that are due to bugs both in jÄk and in Skipfish. The sixth class
contains URLs that are generated while crawling. We have two types of these
URLs: URLs with timestamps and URLs generated by, for example, creating
new content in the web application. 1,36 % of the URLs, we could not find the
origin of the URL nor the root cause. Finally, 1,26 % of the URLs are of W3af
that does not implement a depth-bounded crawling and thus might crawl the
applications deeper than other crawlers.

Detection — Finally, we measure how the improved crawling convergence trans-
lates into the detection of XSS vulnerabilities in the 13 web applications. For
these tests, we had to exclude Wget and Crawljax, as they are pure crawlers and
as such cannot discover vulnerabilities.

jÄk discovered XSS vulnerabilities in three of the five web applications, i.e.,
phpBB, Piwigo, and MyBB 1.8.1. However, jÄk could not find known vulnerabil-
ities in OwnCloud 4 and ModX. Manual analysis revealed that the vulnerability
as described in the security note of OwnCloud 4 is not exploitable. For ModX,
jÄk could not discover the URL. The URL is added in the DOM tree by an
event handler. jÄk correctly fires the events, but the code of the handler is not
executed because it verifies that the target is an inner tag. This shortcoming
is the same that cause to fail the test in the C5 class of Table 1. In a regular
browser, due to the implicit rules for the propagation of events, the user will
click on the inner tag and the outer one will be executed. As a future work, we
plan to reproduce the event propagation as implement by regular browsers.

The other tools detected only known vulnerabilities in MyBB, and had issues
with false positives. Both W3af and Skipfish detected the XSS vulnerability in
MyBB 1.8.1. Furthemore, in Mediawiki W3af reported 49 XSS vulnerabilities

http://foo.com/p1/p2/p3
http://foo.com/p1/p2
http://foo.com/p1/
http://foo.com/

314 G. Pellegrino et al.

and Skipfish one vulnerability, respectively. However, in both cases, these were
false positives. Finally, Skipfish reported 13 false positives in Gallery. In our
experiments, jÄk did not report any false positive. This is the result of using
dynamic analysis for the detection of XSS attacks: if an attack is successful, the
test payload is executed and visible in the dynamic trace.

Table 5. Origin of the URLs that were not discovered by jÄk

URL Origin URLs Fraction
URL Forgery 774 75.15%
Static resources 57 5.53%
Unsupp. action 55 5.34%
User session mgmt. 53 5.15%

%65.474sguB
New content 17 1.65%

%63.141nwonknU
Beyond max depth (W3af) 13 1.26%
Total 1030 100,00%

6 Related Work

In this section we review works closely related to our paper. We focus on two
areas: analysis of existing web application scanners, and novel ideas to improve
the current state of the art of scanners.

Bau et al. [15] and Doupé et al. [16] presented two independent and comple-
mentary studies on the detection power of web application scanners. Both works
concluded that while web scanners are effective in the detection of reflected XSS
and SQLi, they still poorly perform in the detection of other classes of more
sophisticated vulnerabilities. According to these works, one of the reason of these
results is the lack of support of client-side technology. Furthermore, Doupé et al.
explored in a limited way the problem of web application coverage focusing on
the capability of scanners to perform multi-step operations. As opposed to these
works, in this paper we mainly focused on the problem of the coverage of web
applications and detailed the shortcomings of four web application scanners.

Recently, there have been new ideas to improve the state of the art of web
application scanner. These works included the support of client-side features and
explored the use of reasoning techniques together with black-box testing. The
most notable of these works are the state-aware-crawler by Doupé et al. [14],
Crawljax by Mesbah et al. [2], AUTHSCAN by Guangdong et al. [17], and
SSOScan by Zhou et al. [18]. State-aware-crawler proposed a model inference
algorithm based on page clustering to improve the detection of higher-order
XSS and SQLi. However, this technique focus mainly on the detection of state-
changing operations and it does not take into account the dynamic features of

jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications 315

client-side programs. Similarly, Crawljax proposed a model inference technique
based on “user-clickable areas” in order to crawl hidden parts of AJAX-based
web applications. However, Crawljax uses static heuristics that do not satisfac-
torily cover the dynamic interaction points between the user and the UI. As
opposed to Crawljax, jÄk does not rely on these heuristics and uses a tech-
nique which can detect the registration of event handlers via function hooking.
Finally, AUTHSCAN and SSOScan are black-box testing tools that focus on the
Web-based Single Sign-On functionalities integrated in web applications. AUTH-
SCAN extends the classical design verification via model checking with the auto-
matic extraction of formal specifications from HTTP conversations. SSOScan is a
vulnerability scanner that targets only Facebook SSO integration in third-party
web applications. Neither of the two tools is a web application scanner, and they
do not support crawling web applications. As opposed to jÄk, the focus of these
tools is on improving the detection power of security testing tools. Nevertheless,
the proposed testing technique may be integrated into jÄk to detect other classes
of vulnerabilities.

A work closely related to our approach is Artemis [19]. Artemis is a JavaScript
web application testing framework which supports the generation and execution
of test cases to increase the client-side code coverage. Starting from an initial
input (e.g., event), Artemis explores the state space of the web application by
probing the program with new inputs. Inputs are generated and selected by
using different strategies in order to maximize, e.g., code branches or number
of read/write access of object properties. At each step, Artemis resets the state
of the client and server side to a known state and continues the exploration.
From the angle of input generation, Artemis and our approach shares common
points. For example, both approaches explore the client side by firing events
and observing state changes. However, Artemis and our approach differ on the
assumption of the availability of the server side. While Artemis assumes complete
control of the state space of the server side, our approach does not make this
assumption and targets the exploration of a live instance of the server side.

7 Conclusion

This paper presented a novel technique to crawl web applications based on the
dynamic analysis of the client-side JavaScript program. The dynamic analysis
hooks functions of JavaScript APIs to detect the registration of events, the use
of network communication APIs, and find dynamically-generated URLs and user
forms. This is then used by a crawler to perform the next action. The crawler
creates and builds a navigation graph which is used to chose the next action. We
presented a tool jÄk, which implements the presented approach. We assessed
jÄk and four other web-application scanners using 13 web applications. Our
experimental results show that jÄk can explore a surface of the web applications
which is about 86 % larger than the other tools.

Acknowledgements. This work was supported by the German Ministry for Educa-
tion and Research (BMBF) through funding for the project 13N13250, EC SPRIDE

316 G. Pellegrino et al.

and ZertApps, by the Hessian LOEWE excellence initiative within CASED, and by
the DFG within the projects RUNSECURE, TESTIFY and INTERFLOW, a project
within the DFG Priority Programme 1496 Reliably Secure Software Systems −RS3.

References

1. Zhou, J., Ding, Y.: An analysis of URLs generated from javascript code. In: 2012
IEEE/ACIS 11th International Conference on Computer and Information Science
(ICIS), vol. 5, pp. 688–693 (2012)

2. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans. Web 6(1),
3:1–3:30 (2012)

3. Urgun, B.: Web Input Vector Extractor Teaser (2015). https://github.com/
bedirhan/wivet

4. Hickson, I.: A vocabulary and associated APIs for HTML and XHTML (2014).
http://dev.w3.org/html5/workers/

5. van Kesteren, A., Gregor, A., Ms2ger, Russell, A., Berjon, R.: W3C DOM4 (2015).
http://www.w3.org/TR/dom/

6. The Python Software Foundation: Python (2015). https://www.python.org/
7. Apple Inc.: The WebKit Open Source Project (2015). https://www.webkit.org/
8. Riverbank Computing Limited: PyQt - The GPL Licensed Python Bindings for

the Qt Application Framework (2015). http://pyqt.sourceforge.net/
9. Google Inc.: V8 JavaScript Engine (2015). https://code.google.com/p/v8/

10. Mozilla Foundation: SpiderMonkey (2015). https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/SpiderMonkey

11. Zalewski, M.: Skipfish (2015). https://code.google.com/p/skipfish/
12. Riancho, A.: w3af: Web Application Attack and Audit Framework (2015). http://

w3af.org/
13. Nikšić, H., Scrivano, G.: GNU Wget (2015). http://www.gnu.org/software/wget/
14. Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the state: a state-aware

black-box vulnerability scanner. In: Proceedings of the 2012 USENIX Security
Symposium (USENIX 2012), Bellevue, WA (2012)

15. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: automated black-
box web application vulnerability testing. In: 2010 IEEE Symposium on Security
and Privacy (SP) (2010)

16. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

17. Guangdong, B., Guozhu, M., Jike, L., Sai, S.V., Prateek, S., Jun, S., Yang, L.,
Jinsong, D.: Authscan: Automatic extraction of web authentication protocols from
implementations. In: 2013 Annual Network and Distributed System Security Sym-
posium (NDSS). The Internet Society (2013)

18. Zhou, Y., Evans, D.: Ssoscan: automated testing of web applications for single
sign-on vulnerabilities. In: 23rd USENIX Security Symposium (USENIX Security
2014), pp. 495–510. USENIX Association, San Diego, CA (2014)

19. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of javascript web applications. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 571–580. ACM, New York,
NY, USA (2011). http://doi.acm.org/10.1145/1985793.1985871

https://github.com/bedirhan/wivet
https://github.com/bedirhan/wivet
http://dev.w3.org/html5/workers/
http://www.w3.org/TR/dom/
https://www.python.org/
https://www.webkit.org/
http://pyqt.sourceforge.net/
https://code.google.com/p/v8/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://code.google.com/p/skipfish/
http://w3af.org/
http://w3af.org/
http://www.gnu.org/software/wget/
http://doi.acm.org/10.1145/1985793.1985871

WYSISNWIV: What You Scan Is Not
What I Visit

Qilang Yang(B), Dimitrios Damopoulos, and Georgios Portokalidis

Stevens Institute of Technology, Hoboken, NJ, USA
{qyang5,ddamopou,gportoka}@stevens.edu

Abstract. A variety of attacks, including remote-code execution
exploits, malware, and phishing, are delivered to users over the web.
Users are lured to malicious websites in various ways, including through
spam delivered over email and instant messages, and by links injected in
search engines and popular benign websites. In response to such attacks,
many initiatives, such as Google’s Safe Browsing, are trying to make the
web a safer place by scanning URLs to automatically detect and black-
list malicious pages. Such blacklists are then used to block dangerous
content, take down domains hosting malware, and warn users that have
clicked on suspicious links. However, they are only useful, when scan-
ners and browsers address the web the same way. This paper presents
a study that exposes differences on how browsers and scanners parse
URLs. These differences leave users vulnerable to malicious web con-
tent, because the same URL leads the browser to one page, while the
scanner follows the URL to scan another page. We experimentally test
all major browsers and URL scanners, as well as various applications
that parse URLs, and discover multiple discrepancies. In particular, we
discover that pairing Firefox with the blacklist produced by Google’s
Safe Browsing, leaves Firefox users exposed to malicious content hosted
under URLs including the backslash character. The problem is a general
one and affects various applications and URL scanners. Even though, the
solution is technically straightforward, it requires that multiple parties
follow the same standard when parsing URLs. Currently, the standard
followed by an application, seems to be unconsciously dictated by the
URL parser implementation it is using, while most browsers have strayed
from the URL RFC.

1 Introduction

The popularity of the web has made it the prime vehicle for delivering malicious
content to users, including browser exploits, malware, phishing, and web attacks,
like cross-site scripting (XSS) [32] and cross-site request forgery (CSRF) [17]
attacks. Such attacks are prevalent; Microsoft alone reported that more than 3.5
million computers visited a website containing a web-based exploit in the first
quarter of 2012 [35]. The prominence of such attacks has lead to the development
of many approaches [20,22,27,30,37] that automatically detect pages containing
malicious content, leading to free and commercial tools [3–6,8–13,26,36] that
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 317–338, 2015.
DOI: 10.1007/978-3-319-26362-5 15

318 Q. Yang et al.

can scan URLs and routinely crawl the web to identify and filter, quarantine,
warn, or take down malicious sites.

Users can reach malicious content by clicking on URLs, which have been
injected by attackers into legitimate sites or the results of search engines and
spread through spam sent over email and messages. Services which scan pages
for malicious content, i.e., URL scanners, follow the same URLs to fetch content
from servers and classify it as malicious or benign. Thus, it is essential that
when a scanner follows a URL, it visits the same page that the user would visit
through his browser or client application.

This paper presents an experimental study on how browsers and URL scan-
ners parse URLs. Our experiments reveal discrepancies on how URLs are parsed,
with browsers and URL scanners frequently following different standards and
introducing their own rules. As a result, including a character like the backslash
in a URL can lead a browser to one web page, while the scanner visits another.
Essentially, attackers can hide their malicious content from the scanner, while
users can still access it. This constitutes a new evasion strategy for attackers
that want to avoid detection from URL scanners. While it may not always be
available to them, as certain scanner-browser pairs will treat URLs the same
way, this evasion strategy is powerful because it is not based on obfuscating
content, but simply requires the inclusion of a character in their URLs.

Looking at Google Safe Browsing, in particular, we show that it transforms
backslashes contained in URLs to forward slashes before it accesses a URL, a
behavior which has been also noted by web developers in the past [2,28]. On
the other hand, Firefox, which uses its malicious-URL database to warn users
that are about to accessing malicious sites, does not. Instead, it encodes the
backslash character using percent-encoding (aka URL-encoding). As such, an
attacker targeting Firefox browsers could essentially hide his exploit from initia-
tives like Google’s Safe Browsing. We have disclosed the issue to both Google
and Firefox, who are working on a solution.

The problem is a general one, as every URL scanner tested has exhibited
a behavior that creates opportunities for attackers. Technically, the solution to
the problem is not a hard one, however, it requires coordination and agreement
among the involved parties (i.e., browser and URL scanner developers). Unfor-
tunately, it is also exacerbated by the fact that various applications parse text
and automatically create links, when they identify URL patterns. We conducted
tests with various applications and libraries, and we discovered that there also
discrepancies on what they consider as acceptable URL patterns, leading to
another instance of the same problem.

In summary, the contributions of this paper are the following:

– We identify a new evasion strategy made possible because browsers and URL
scanners do not parse URLs consistently

– We develop an experimental methodology to reveal discrepancies on how
browsers and scanners transform URLs

– We test all major browsers and URL scanners and show that the problem is
general

WYSISNWIV: What You Scan Is Not What I Visit 319

– We test a variety of popular applications that dynamically create links for
URL-like text and also discover discrepancies

– We examine popular libraries used for parsing URLs and discover that they
follow different RFCs.

2 Background

2.1 URL Encoding and Canonicalization

A uniform resource locator (URL) is a generic way to access a resource over the
Internet and is most commonly used to access a service or page over the web.
A URL is a uniform resource identifier (URI) and it is an Internet standard
with the latest RFC describing it being RFC-3986 [1]. Its syntax is familiar and
follows the format shown below.

scheme:// [user:password@]domain:port
︸ ︷︷ ︸

authority

/path?query#fragment

URLs aim to be generic so that they can be used for a variety of protocols
and by a variety of applications. However, as the web has increased in popularity,
URLs are used by an increasing number of applications and have been extended
with new features (e.g., internationalization), causing some contemporary imple-
mentations to stray from the RFC. The web Hypertext Application Technology
Working Group (WHATWG), in an attempt to provide a more current standard,
has defined the URL Living Standard [45]. Below, we discuss some basic aspects
of URLs and URL parsing.

Delimiter A generic URL consists of a hierarchical sequence of components
referred to as the scheme, authority, path, query, and fragment. Each compo-
nent corresponds to a piece of information that is necessary to locate a unique
resource. Hence, identifying components correctly when parsing a URL is critical
for both browsers and servers. Several delimiters are applied in the URL syntax
to help separate components. These are the colon (:), the at sign (@), the slash
(/), the question mark (?), and the number sign (#).

URL-Encoding or Percent-encoding is a mechanism for encoding information
in a URI to represent a data octet in a component, when the corresponding char-
acter of the octet is outside the allowed character set or is being used for a special
purpose such as the delimiter of, or within, the component. A percent-encoded
character is a character triplet, which consists of the percent character (%) and
two hexadecimal digits representing the octet’s numeric value. For example, %3F
is the percent-encoding of the question mark character (?). In percent-encoding
format, the uppercase hexadecimal digits and the corresponding lowercase digits
are equivalent and exchangeable.

Canonicalization or normalization refers to the process of converting data
from one representation to a “standard” or canonical form. Generally, this is

320 Q. Yang et al.

done to correctly compare data for equivalence, enumerate distinct data values,
improve various algorithms, etc. On URLs, it is mainly done to determine, if
two URLs are equivalent and it can include operations such as removing the
default HTTP port (i.e., 80), converting the domain to lowercase, and resolving
a path that contains a dot or double dot. Occasionally, applications introduce
their own canonicalization rules, such as removing duplicate slashes (// → /),
automatically completing incomplete IP address, deleting extra leading dots in
the authority part, etc.

2.2 URL Scanners

Because of the importance of web browsers and the multitude of attacks targeting
them or being delivered through them, several approaches [3–13,20,26,36] have
developed URL scanners. A URL scanner is a service that analyzes a URL,
enabling the identification of viruses, worms, trojans, phishing and other kinds
of malicious content detected by antivirus engines or website scanners. URL
scanner services are commonly accessed through an online web service, a browser
extension, a third party library, or a public web-based API.

Scanners have two main interfaces. The first, allows users to submit or report
a URL for immediate or later scanning [3,4,8–11,13,20]. The scanner will then
retrieve the content and scan it to determine maliciousness. Some scanners [4,
10] also consult multiple third-party scanners to determine if the content is
malicious. The second interface, enables users to query whether a URL has been
found to be malicious using the scanner’s malicious-URLs database (blacklist).
The database is queried looking for an exact or partial match. Regarding the
ownership of the blacklist, some scanners maintain their own blacklist [5,6,26,
36], while others use third-party blacklists [12]. Finally, scanners can be divided
into two categories: the ones that only check the content of submitted URLs and
the ones that follow links within the submitted page [3,8,11,13,26].

Among many URL scanners, there are two that are widely used in daily
life, though sometimes users may not be aware of them. The first one is Google
Safe Browsing [26], a Google service that helps applications check URLs against
Google’s constantly updated lists of suspected phishing, malware, and unwanted
software pages. It is available through a series of web-based APIs. Google Safe
Browsing as a scanner service is integrated into Chrome and Firefox, and even
Safari uses its database. The second one is Microsoft’s SmartScreen filter [36],
a malware and phishing filter that is integrated in several Microsoft products
including Internet Explorer and Hotmail. Any time a user gets a warning when
visiting a web page in these browsers, it means that the URL is in one of the
two scanners’ blacklist or both.

3 The Problem

Figure 1 depicts the process, where URLs, which have been submitted by users or
obtained by crawling the web, are scanned for malicious content. Links contained

WYSISNWIV: What You Scan Is Not What I Visit 321

Fig. 1. Modern browsers utilize databases of known malicious URLs, populated by
offline URL scanners, to warn and protect users.

within pages are usually also followed and scanned, and when a page is found
to contain malicious content, it is inserted into a database. That database can
be later used by the browser to prevent users from accessing malicious content.
For example, before fetching any page, the browser first checks the URL of that
page in the database. If an entry does not exist, it proceeds to load and display
the page to the user. If, however, an entry for the URL is found in the database,
the browser redirects the user to a page warning him that he is about to visit a
page containing malicious content. Even though the user can ignore the warning,
research has shown that such warnings are effective in protecting users [14,23].

This process through which the user is protected from visiting malicious
pages can be undermined when scanners and browsers do not parse URLs con-
sistently. There may be many reasons that two programs do not parse a URL
the same way. It may be consciously, because their developers chose to support
a different standard, or because one of them has adopted additional standards
and guidelines. It can also be because of program bugs that cause inconsistent
behavior when parsing certain, otherwise legitimate, URLs. Independently of
the reason, if the database utilized by a browser was produced by a scanner
that treats certain URLs differently than the browser, the user is left exposed
to malicious content, which would be otherwise detected and filtered.

The mechanics of such an attack are shown in Fig. 2. An attacker aware
of discrepancies in URL parsing can place his malicious content under a URL
that brings them about, e.g., BADURL. When the scanner processes a page
containing this URL, the sought after behavior is triggered causing the scanner
to transform the URL to BADURL′ before accessing it and scanning it. The
attacker is essentially able to hide his malicious page from the scanner, so it can
never be entered in the database, later used by the browser. It is interesting to
note that even if the attacker for some reason placed malicious content under
BADURL′, causing it to be logged in the database, the browser would actually
check BADURL instead, which would not match any of the logged entries. The
problem is symmetric, in the sense that if the browser is the entity transforming

322 Q. Yang et al.

Fig. 2. A scanner parsing URLs differently from a browser allows hiding malicious
content from the first, using a carefully crafted URL, while the latter follow it to
malicious content.

the URL before accessing it, then the attacker can still hide malicious content by
placing it under BADURL′ while putting innocuous content under BADURL.

This problem, which we name What You Scan Is Not What I Visit (WYSIS-
NWIV), is not limited to browsers, but it can affect any application that creates
links for displayed URLs. For example, instant messengers and various web appli-
cations, like web mail, do create links for URLs identified in text. Concurrently,
there are various products that filter malicious URLs based on databases created
by public and proprietary scanners [5,24,38,42]. Each application-scanner pair,
where the two do not process URLs the same way, can leave the user exposed
to malicious content.

4 Experimental Methodology

To detect discrepancies on how URLs are parsed, we design experiments that will
drive browsers and URL scanners with various test inputs. This section describes
how we generate the test inputs and the experiments run with browsers and URL
scanners.

4.1 Generating Test Inputs

To generate the URL inputs used for testing, we follow a structured approach
building on domain knowledge. In particular, we manually examine the follow-
ing sources to identify high-level patterns of inputs, based on which we gener-
ate inputs for testing. The three following resources are used to identify high-
level patterns for testing: (i) the RFC 3986 document, (ii) the code base of

WYSISNWIV: What You Scan Is Not What I Visit 323

the Chromium and Mozilla Firefox web browsers, and (iii) the unit tests that
come with these browsers. The RFC 3986 specification broadly defines what is
allowed, what may be allowed, but also what must be disallowed when a URL
is constructed. However, it allows browsers to implement their own policies for
“maybe allowed” characters. Thus, based on the study of the URL specification
and two open-source web browsers, it would be possible to have discrepancies in
some special cases, such as when encountering control characters, special Uni-
code characters, the backslash character, and encoded delimiters included in the
URL path. Furthermore, unit tests provide key examples that web browsers and
services should be able to successfully parse for compatibility reasons. Table 1
lists all the test inputs constructed based on the above sources.

Table 1. Inputs used for testing browsers and scanners.

Description of transformation Generated Tests
Convert the scheme and host to
lower case

Equivalence of HTTP://WWW.EXAMPLE.ORG/PATH and
http://www.example.org/path

Decode percent-encoded octets
of unreserved characters

URL with sampled character from range %41-%5A (‘A’-‘Z’)
and %61-%7A (‘a’-‘z’)

Remove default port Equivalence of http://www.example.org:80/path and
http://www.example.org/path

Add trailing ‘/’ Equivalence of http://www.example.org/path/ and
http://www.example.org/path

Removing dot-segments (‘.’) Equivalence of http://www.example.org/path/././index.html
and http://www.example.org/path/index.html (Number of ‘.’
in the range of 1-5)

Removing the end fragment
‘#frag’

Equivalence of http://www.example.org/path/index.html#frag
and http://www.example.org/path/index.html

Replacing IP with domain name Equivalence of http://www.example.org/path and
http://10.0.0.1/path

Limiting protocols Equivalence of https://www.example.org/path and
http://example.org/path

Removing duplicate slashes Equivalence of https://www.example.org/path//index.html and
http://example.org/path/index.html

Unicode character handling Multiple URLs with characters sampled from \x00-\xffffff
Printable characters that need to
be percent-encoded

Double quote character http://www.example.org/path”path

Backslash character (‘\’) https://www.example.org/path\index.html
Non–ASCII characters that neeed
to be percent-encoded

Multiple URLs with character sampled from range %C0 -
%FF

Control characters URLs including characters \a, \b, \e, \n, \t, \0, \v, \f, \r
Encoded delimiters URLs including percent-encoded delimiters ‘#’, ‘?’, and ‘/’ in

the path
Leading dots http://...www.example.org (Number of ‘.’ in the range of 1-5)
Whitespace/Tab http://www.example.org/pa th and

http://www.example.org/path%a0path

324 Q. Yang et al.

4.2 The Experiments

Our first experiment aims to discover differences on how browsers parse and
transform URLs, before submitting a request to the server. We developed a
browser driver, as a bash script, which launches a browser and requests a URL
from the set of test inputs. The browser then performs canonicalization and
transformations on the URL and establishes a connection to our server, where
it sends the request including the transformed URL. The server was developed
using Python on top of the werkzeug library and accepts every URL request,
logs it, and responds with a default web page. After the page is loaded at the
browser, we also extract the URL that was requested from the browser’s history
database. The URLs requested, received by the server, and stored in the history
database are compared to identify discrepancies. To facilitate comparison, we use
a unique path prefix on each request that allows us to compare the appropriate
URLs.

The second experiment means to evaluate how online URL scanners deal with
URLs reported as being malicious, and for scanners that also follow links within
the reported pages, discover how they treat the URLs contained within those
pages. The latter test serves to establish how a scanner’s internal algorithms
parse and transform URLs, which reveals how it operates when or if it is used
to crawl the web for malicious content. For the first part of this experiment, we
manually submit URLs pointing to malicious content to the scanners using the
interface provided, most commonly an HTML form. For the latter, we submit
URLs pointing to benign pages, which do not directly contain malicious content,
but do include URLs pointing to malicious content. All URLs point to our own
server that logs information like the remote IP address, other information like
the user-agent included in the request, and the timestamp of the request. We
also use unique paths in each case to differentiate between scanners.

In the our final experiment, we focus on browsers and URL scanners that work
in synergy, such as Chrome and Firefox using Google’s Safe Browsing malicious-
URLs database. In this test, we submit both benign and malicious websites
located in different URL paths, using characters and patterns discovered in the
previous experiment to “hide” malicious content from the scanner. The aim is to
confirm that we can construct URLs that will point the scanner to safe content,
while a browser following the URL will visit malicious content instead.

5 Results

5.1 Browsers

We tested four browser families on three desktop operating systems (OS). We
tested Firefox v35.0.1, Chrome v40.0.2214.115, and Opera v27.0.1689.69 on
Ubuntu v14.04 LTS, Mac OS X v10.10.2, and Windows 7 SP1. We also tested
Safari v8.0.3 on Mac OS X, and Safari v5.1.7 and Internet Explorer (IE) 8.0.
7601.17514 on Windows 7. Our results show that Firefox URL-encodes back-
slashes to (\ → %5C), while every other browser canonicalizes the URL replac-
ing backlashes with forward slashes (\ → /). We also tested three mobile OS:

WYSISNWIV: What You Scan Is Not What I Visit 325

Android v4.4.2 with Firefox v38.0.5, Chrome v43.0.2357.78, and Opera Mini
v29.1, iOS 8 with Chrome v43.0.2357.51, Safari v8.3, and Opera Mini, and Win-
dows Mobile 8.1 with IE and Opera Mini. Once again, Firefox URL-encodes
backslashes. Interestingly, Opera Mini on iOS leaves the backslash character
unchanged, while every other browser replaces them with slashes. These mod-
ifications occur both when a user types a URL in the address bar and when
clicking on a link. As a result, browsers doing canonicalization can never access
pages hosted on URLs containing a backslash as a legitimate character.

Table 2. The URL scanners considered during testing. All, except Wepawet, scan for
both Phishing and malware sites. Some of the scanners, such as VirusTotal, also use
third-party databases and scanners.

URL scanners Available actions Uses third-party

database/scannerScan URL Query URLs DB Report URL

Wepawet �
Google safe browsing � �
Virustotal � �
Sucuri sitecheck �
Gred �
Online link scan � �
urlQuery �
PhishTank � �
Scumware � �
WebInspector �
Zscaler Zulu �
SmartScreen filter � �
ScanURL � �
Stopbadware � � �

5.2 URL Scanners

Table 2 lists all the URL scanners we considered in our experiments. We selected
several state-of-the-art URL scanners, including products of academic research
and freely-accessible production systems. For example, Wepawet [20] is a prod-
uct of academic research, while VirusTotal [10], Sucuri SiteCheck [8], gred [3],
Online Link Scan [4], urlQuery [9], ScanURL [12], PhishTank [5], Scumware [6],
WebInspector [11], and Zscaler Zulu URL Risk Analyzer [13] are mature prod-
ucts. We focused our experiments on Google Safe Browsing [26] and Microsoft’s
SmartScreen Filter [36], as the first is being used by Chrome, Firefox, and Safari,
and the latter from IE, for protecting users from malicious URLs. Most scanners

326 Q. Yang et al.

permit us to submit URLs (e.g., through a web form) for scanning, returning a
report on their state (e.g., whether it is malicious). Others, offer a way to check
whether a URL is contained in their database of malicious URL, while, finally,
some allow us to report URLs, which will be later checked.

From the scanners listed in Table 2, we tested all that allowed us to submit
a URL for scanning or report URLs. We also tested ScanURL, which, after
submitting a URL query, provides feedback on the actual URL being searched
in the database, granting us this way an indication on the transformations it
performs on URLs. There was no way to test stopbadware or SmartScreen Filter.
The first did not provide a way to expose how it handles URLs, while the latter
is integrated into IE, where the user can use the graphical interface to manually
check and report URLs. Because both the URL submission process and filtering
is handled by the browser, we cannot test for discrepancies in a meaningful way.

Table 3. The tested URL scanners handle certain characters differently from browsers.
Pairs of browsers and scanners that have such discrepancies leave users exposed when
the particular scanner is used to filter URLs, as the scanner does not process the same
page the browser will visit (e.g., the pairs Chrome/Firefox and Google Safe Browsing).

Scanners Transformations
Manual submission Injection in submitted page

\ %3F (?) %23 (#) \ %3F (?) %23 (#)
Wepawet %5C‡ %3F %23 N/A
VirusTotal %5C‡ ?� #� N/A
gred deleted� %3F , %253F %23, %2523 error� %3F %23

Online Link Scan \\� %3F %23 N/A
urlQuery %5C‡ %3F %23 N/A
ScanURL deleted� %3F %23 N/A
PhishTank \\� %3F %23 N/A
Scumware deleted� %3F %23 N/A
WebInspector /† %3F %23 %5C‡ %3F %23

Zscaler Zulu /† %3F %23 /† %3F %23

Google Safe Browsing varies�• ?� %23 /† %3F %23

Sucuri SiteCheck deleted� error� error� error� error� %23

�Affects pairing with all browsers.
†Affects pairing with browsers that URL encode backslash.
‡Affect pairing with browsers that transform backslash to forward slash.
• Handling of the backslash depends on the character following it.

From all the tested URL patterns, we discovered three transformations that
can cause problems when a scanner’s database is coupled with a browser to filter
malicious URLs (e.g., like Chrome and Firefox using the Google Safe Browsing
database). The patterns are: the backslash character (\), and the URL encoded
characters ? (%3F) and # (%23). Interestingly, the handling of the backslash

WYSISNWIV: What You Scan Is Not What I Visit 327

character is not well defined in RFC-3986, while ? and # are delimiters in the
URL format. The results are summarized in Table 3 and further discussed below.

URL-encoded Delimiters. The characters ? and # are delimiters for URLs
and need to be URL-encoded or percent-encoded, if they are present in other
parts of the URL, where they are allowed. This way the characters are escaped.
Our results show that certain scanners unescape these characters, unintentionally
transforming the URL, like in the example illustrated below with ? (%3F):

http://www.example.org/path%3Fdistorted → http://www.example.org/path?distorted

The underlined part is actually the path requested from the server at www.
example.org in each case. As indicated by Table 3, Google Safe Browsing and
VirusTotal do such a transformation and, as a result, check a different path, than
the one the browser visits. Even worse, Sucuri SiteCheck does not accept %3F at
all, treating URLs including it as invalid. Similarly, for %23, the encoded version
of #, Sucuri SiteCheck does also not accept it, while VirusTotal unescapes it.
Interestingly, when gred encounters either of the two percent-encoded delimiters,
it checks two links: the original link, treating the encoded character as an encoded
character, and a link where the percent character (%) is itself escaped to %25.
gred seems to be very careful in handling form input in this case, accounting
for both eventualities, even though no browser seems to treat the % character
that way.

Table 4. Examples of URL transformations caused by handling backslash (\) differently.

Original URL http://www.example.org/path\distorted

’\’ is
URL-encoded http://www.example.org/path%5Cdistorted
canonicalized http://www.example.org/path/distorted
dropped http://www.example.org/pathdistorted
backslash escaped http://www.example.org/path\\distorted

Backslash Handling. Backslash (\) is the character handled in the most incon-
sistent way among different scanners. We have identified four different trans-
formations that the backslash character is submitted to in our tests: it can
be URL-encoded to %5C, canonicalized to (i.e., replaced by) a forward slash
(/), simply dropped from the URL, or escaped using another backslash (\\).
Examples of these URL transformations are listed in Table 4. Three scanners,
Wepawet, Virustotal, and urlQuery escape it by percent-encoding it to %5C.
This behavior is akin to the encoding done by Firefox, and as a result pairing
any of these scanners with any browser, aside Firefox, would enable an attacker
to hide malicious content from the scanner. The reverse happens with Zscaler
Zulu that replaces the character with a forward slash, which makes it a bad fit

www.example.org
www.example.org

328 Q. Yang et al.

for using with Firefox. ScanURL and Scumware will always completely drop the
backslash URL, while Online Link Scan and PhishTank will escape the character
using another backslash. In both these cases, using the scanner would expose the
user to attacks through such URLs regardless from the browser he is using.

Intra-scanner Backslash Handling Discrepancies. Certain scanners like
WebInspector, gred, Google Safe Browsing, and Sucuri SiteCheck, handle the
backslash differently depending on how they obtain the URL they are scanning.
For example, gred and Sucuri SiteCheck drop it, when we manually submit a
URL, while when the URL is in a link within the submitted page, obtained
after parsing the submitted page and following the links within, they do not
accept it and consider the URL invalid. We establish this by injecting various
links within the submitted page and observing that only the ones containing a
backslash are not accessed by the scanner. On the other hand, WebInspector
canonicalizes backslashes on manual submission, while links injected in pages
are URL-encoded. Finally, Google Safe Browsing treats the percent-encoded ‘?’
differently based on how the URL is obtained, while backslashes in manually
submitted URLs are processed in a more elaborate way, than when in URLs in
pages, where they are transformed to forward slashes. We further discuss Google
Safe Browsing below, due to its importance.

Table 5. Examples of how Google Safe Browsing transforms the backslash character
when manually reporting URLs.

LRUdetisiVLRUdetropeR#
1 http://www.example.org/path\ndistorted

→

http://www.example.org/pathdistorted
2 http://www.example.org/path\adistorted http://www.example.org/path%07distorted
3 http://www.example.org/path\0distorted http://www.example.org/path
4 http://www.example.org/path\x50distorted http://www.example.org/pathQdistorted
5 http://www.example.org/path\x96distorted http://www.example.org/path%96distorted
6 http://www.example.org/path\x0110distorted http://www.example.org/path
7 http://www.example.org/path\Qdistorted http://www.example.org/path

Google Safe Browsing. The backslash character is treated in many different
ways by Google Safe Browsing, when a URL is manually reported, which we list
below:

1. A backslash specifies a control character, when it is followed by one of the
following characters: t, n, a, b, 0, and e. Depending on the control character,
the URL is transformed in three different ways:
‘\t’ ‘\n’ The control character is deleted and the strings before and after

it are joined together, as in example 1 in Table 5.
‘\a’, ‘\b’ The control character is converted to the corresponding URL-

encoded character (%07 and %08 respectively), as in example 2 in Table 5.
‘\0’, ‘\e’ The control character and all trailing characters in the URL are

deleted, as in example 3 in Table 5.

WYSISNWIV: What You Scan Is Not What I Visit 329

2. A backslash escapes a unicode character when it is followed by the character
‘x’ (\x). In this case, the characters trailing ‘x’ are retrieved and interpreted
as a Unicode character code in hexadecimal. The following sub-cases are pos-
sible:
Character does not require encoding The ASCII representation of the

character replaces it, as in example 4 in Table 5.
Character requires percent-encoding The percent-encoded form of the

character replaces it, as in example 5 in Table 5.
Invalid character If the Unicode character is not allowed in the URL, for

example, because it requires two percent-encoded bytes like in the case
of \0110 → %C4%90, it is dropped along with all trailing characters, as
in example 6 in Table 5.

3. When a backslash is followed by any other character, it is treated as an invalid
character and it is dropped along with all trailing characters, as in example
7 in Table 5.

5.3 Backslash in Other Applications

Applications, such as instant messengers (IMs), web email, and email clients,
dynamically create links when they identify text that resembles a URL. If the
information exchanged by such an application is intercepted to scan for poten-
tially malicious URLs [24,38,42], any transformation applied by the application,
introduces another point that could be exploited by an attacker (e.g., to bypass
URL scanners when performing a spear phishing campaign). We tested var-
ious applications with URLs including the backslash character and report our
results in Table 6. We focused our efforts on popular operating systems and plat-
forms, such as Mac and Windows on desktops/laptops and iOS and Android on
smartphones. Email clients were tested on both Windows and Mac platforms, if
available (e.g., eM client and Claws Mail do not have a Mac version). IMs with
the exception of Skype and QQ were tested on mobile platforms, since there is
a broader variety and are more commonly used on these platforms. Skype and
QQ were also tested on Windows and Mac. We do not list Skype’s case on iOS,
since it does not create links for the tested URLs, essentially failing to recognize
URLs with ambiguous characters. Web mail cases and popular sites were tested
on both Windows and Mac using Internet Explorer, Chrome, and Firefox.

Most of the tested applications handle backslashes more strictly than browsers
and stop processing when a backslash is encountered [45], essentially cropping
the URL. However, since no scanner performs such a transformation, stricter is
not safer in this case. The remainder of the tested applications either canonical-
ize URLs, transforming backslashes to forward slashes, preserve them, or URL-
encode them. An interesting finding is that most of the applications on Android
cropped the URL before the first backslash and most of the applications on iOS
platform encoded the backslash. Through further investigation, we found that
there is a build-in library for finding URLs in plain text, namely android.util.
Patterns.WEB URL, which terminates URL pattern matching when it encounters

330 Q. Yang et al.

Table 6. How various other applications transform the backslash character.

a backslash. On iOS, the build-in library dataDetectorWithTypes:NSText
CheckingTypeLink encodes the backslash automatically while searching for URLs.
Email clients exhibit more divergence on handling URLs, which indicates that
developers create their own URL parser or utilize different libraries to parse URLs.
Our results indicate that the standard followed by applications may be uncon-
sciously dictated by the platform and libraries used, some times causing the same
application to handle URLs differently based on its platform version.

5.4 Backslash Handling by Different Libraries

Based on the findings presented in the previous section, we further investigate
how platforms and libraries handle the backslash character in URLs. We chose
some of the most commonly used languages, as reported by IEEE Spectrum [19],
and widely used libraries for URL processing used when developing in these

WYSISNWIV: What You Scan Is Not What I Visit 331

languages. The results are presented in Table 7. We observe that different libraries
indeed diverge by essentially adhering to different URL RFCs. In libcurl ’s spec-
ifications both RFC 2396 and RFC 3986 are listed, and the library preserves
the character. The cpp-netlib library obeys RFC 3987, while libraries part of
python 2.6 do not refer to a particular RFC and, interestingly, they handle
the character differently. Oracle’s Java platform follows the RFC 2396 specifica-
tion, but when using the URI class, the backslash character is not accepted. The
google-http-java-client library follows RFC 3986. Finally, Ruby’s library net/http
uses RFC 2396. These results indicate that applications may implicitly adopt and
RFC for handling URLs based on the libraries used and the platform a developer
develops for.

Table 7. How various libraries handle the backslash character. We provide URLs from
standard input, parse them using the corresponding libraries, and print the parsed
URL to standard output.

Library Transformations of backslash (\) in URLs.

Deleted Encoded Canonicalized Preserved Error

Libcurl v7.44.0 (C) �
cpp-netlib 0.11.1 (C++) �
Python v2.6.8 – httplib �
Python v2.6.8 – urllib �
Java v1.8.0 31 – java.net (URI class) �
Java v1.8.0 31 – java.net (URL class) �
Google-http-java-client v1.20.0 (Java) �
C# v4.6.00079 – System.Net �
Ruby v2.2.2p95 – net/http �

6 Discussion

6.1 The Problematic Backslash Character

Web developers have noticed the differences in how different browsers handle
the backslash character before us. In a stackoverflow post a developer reports
that the handling of backslashes from Chrome prevents him from using it legiti-
mately [2]. The response from another user is enlightening: ‘The unified solution
to deal with backslash in a URL is to use %5C. RFC 2396 did not allow that
character in URLs at all (so any behavior regarding that character was just error-
recovery behavior). RFC 3986 does allow it, but is not widely implemented, not
least because it’s not exactly compatible with existing URL processors.’. More
recently, a Google+ user and web developer also identified the discrepancy and
pointed that it could lead to another type of vulnerability [28]. In particular,
changing the URL can affect the verification of the message origin when using
postMessage(). They had to update their web application to account for back-
slash transformations. It is clear that it is unclear which standard each browser

332 Q. Yang et al.

and URL scanner adheres to. Moreover, attempts to auto-correct user typos, such
as typing a backslash instead of a slash, have been widely adopted by graphical
programs, such as browsers. On the other hand, only a few URL scanners seem
to be aware of such schemes.

6.2 Impact and Responsible Disclosure

Our results show that there is a clear gap on the use of Google Safe Browsing
from Firefox. That is, because an attacker can create URLs including back-
slashes, which can be followed by Firefox but transformed by Google before
checking them for malware. We disclosed the problem to both Google’s Safe
Browsing team and Mozilla. They have acknowledged it and are working towards
a solution. At the moment of writing, the solution is not clear cut due to multi-
party involvement. Firefox could adopt canonicalization as the rest of the main
stream browsers. Until that happens Google may be looking out for backslashes
in encountered URLs. A member of the Google Safe Browsing team has con-
firmed that such URLs (not the ones submitted by us) are present in their
malicious-URLs database, despite our inability to get such URLs scanned. This
confirms that even within Google backslash handling is not uniform. Based on
our results with various scanners and applications, we suspect that other solu-
tions based on different URL scanners to filter or block malicious URLs are
suffering from the same issue.

6.3 Remediation

Adhering Strictly to a Single Standard. The obvious solution to the prob-
lem would be that every URL parser implementation adheres to the same stan-
dard and be bug-free. Unfortunately, experience has showed that this is probably
not a realistic solution. Just recently a bug in how Skype for Windows parses
URLs caused it to crash when it parsed the string “http://:” [39]. Browser devel-
opers have been devising ways for years to auto-correct common errors made by
web developers and display pages that would not be parsed by a strict HTML
parser. HTTP, the protocol running the web, is also frequently incorrectly imple-
mented, as a quick search for “incorrect HTTP handling” reveals.

Using Multiple URL Scanners. Our results show that for all tested scanners
and browsers, there is no single scanner that could be adopted by any browser
and have no discrepancies that leave room for attacks. However, combining mul-
tiple scanners could solve the problem, as they would cover different links. As
these scanners may already be exchanging data, we designed a test to evalu-
ate whether they already do. More specifically, we checked whether Google Safe
Browsing utilizes other scanners’ databases. For this test, we created unique
URLs that point to a malicious executable file and submit them to each scanner
through the appropriate interface. After five days, we check whether the link is
stored inside the corresponding scanner’s database. We could do this for Virus-
Total, Scumware, WebInspector, and Zscaler Zulu that offer a database query

WYSISNWIV: What You Scan Is Not What I Visit 333

interface. Then we access these links through Chrome to check whether they are
blocked. Unfortunately, none of them was, indicating that the scanners do not
share data.

Broader Scanning and URL Collection. The most viable solution seems to
be that when URLs are found to contain characters or patterns, which may be
interpreted differently by a client that the scanner checks all possible variations.
If such patterns are not broadly used by benign websites, then the additional
overhead imposed on the scanner will be relatively small. Our results show that
the gred URL scanner already does something like this for %3F (?) and %23
(#). Another option is that scanners take the URLs actually sent by the browser
to web servers as-is and use them for scanning. However, this option may violate
a user’s privacy, as the URL may contain private information and exposes the
sites the user visits.

7 Related Work

Identifying malicious web sites before the user visits them to block them, take
them down, etc. has been a popular area of research. A score of techniques are
used to identify malicious content, using both dynamic and static analysis tech-
niques. While not being exhaustive, we attempt to discuss some of the most
prominent works here. Note that the security problem highlighted in this paper
does not relate to the techniques and methods used to detect malicious content,
such as malware, exploits, and phishing sites. Instead, it has to do with they
way users and security systems obtain and parse URLs. That is, security issues
arise because an attacker can use a URL to hide his malicious content from a
security system, while the client, usually a browser, reaches malicious content
through the same URL. Some of the works described below do involve the URL
in the classification of web pages used to detect malicious content. It is possi-
ble that these approaches could be extended to include heuristics that identify
problematic URL patterns as potentially malicious, however, the effectiveness of
such measures also depends on how frequently such patterns are encountered on
benign sites.

Cova et al. [20] present JSand, a dynamic analysis system that visits web sites
using an instrumented browser, collecting run-time events as the browser exe-
cutes the website. Anomaly detection methods are applied on features extracted
from the events to classify websites and identify malicious ones. JSand is part of
the Wepawet scanner, which we tested in this work, and utilizes Mozilla’s Rhino
interpreter. This is probably the reason it processes backslashes in a Firefox-like
manner. Prophiler [18] later improves JSand by accelerating the process of scan-
ning web pages by allowing for benign pages to be quickly identified and filtered
out. Features extracted from page content, the URL, and information about the
host of the page are used to quickly identify benign pages. EvilSeed [29] follows
the reverse direction and begins from known malicious websites, which it uses
as seeds to search the web more efficiently for malicious content. This is accom-
plished by extracting terms that characterize the known-to-be malicious sites

334 Q. Yang et al.

and using them to query search engines, hence, obtaining results more likely to
be malicious or compromised.

In 2007, Google researchers introduced a system for identifying all malicious
pages on the web that attempt to exploit the browser and lead to drive-by down-
loads [41]. Based on the fact that Google already crawls a big part of the web,
the researchers begun an effort to extract a subset of suspicious pages that can be
more thoroughly scanned. Simple heuristics are used to greatly reduce the num-
ber of pages that need to be checked. In a later paper, Provos et al. [40] present
results showing the prevalence of drive-by download attacks, using features such as
out-of-place inline frames, obfuscated JavaScript, and links to known malware dis-
tribution sites to detect them. Their findings estimate that 1.3 % of search queries
made to Google returned at least one URL labeled as malicious.

Dynamic analysis techniques that scan the web to identify malicious pages,
frequently employ client honeypots. That is, a modified collection of programs
that act as a user operating a browser to access a web site. Moshchuk et al. [44]
developed Strider HoneyMonkeys, a set of programs that launch browsers with
different patch levels, concurrently accessing the same URL, to detect exploits.
The approach is based on detecting the effects of a compromise, like the creation
of new files, alteration of configuration files, etc.

Some recent works that aim to improve the detection of malicious websites
include JStill [47], which performs function invocation-based analysis to extract
features from JavaScript code to statically identify malicious, obfuscated code.
Kapravelos et al. [30] also focused on detecting JavaScript that incorporates tech-
niques to evade analysis. Another approach, Delta [16], relies on static analysis
of the changes between two versions of the same web site to detect malicious
content.

Some other works have focused on aspects of the URL itself to detect mali-
cious sites. ARROW [48] looks at the redirection chains formed by malware
distribution networks during a drive-by download attack. Garera et al. [25] clas-
sify phishing URLs using features that include red-flag keywords in the URL,
as well as feature based on Google’s page rank algorithm. Statistical features
and lexical and host-based features of URLs have been also used in the past to
identify malicious URLs with the help of machine learning [33,34,46]. Malicious
URLs are frequently hidden by using JavaScript to dynamically generate them
on-the-fly. Wang et al. [43] employ dynamic analysis to be extracted such hidden
URLs.

Besides the URL scanners mentioned in this paper, there exist another type
of scanner called Web Application Scanners. The Web Application Scanner is
a kind of scanner that is fed with a URL or a set of URLs, retrieves the pages
that URLs pointed to, follows the links inside until identifying all the reachable
pages in the application (under a specific domain), analyze the pages with crafted
inputs if necessary, and figure out whether this site is vulnerable to some web-
specific vulnerabilities (e.g., Cross-Site Scripting, SQL injection, Code Injection,
Broken Access Controls). Doupé et al. [21] presents an thorough evaluation of
eleven this kind of web application scanners by constructing a vulnerable web

WYSISNWIV: What You Scan Is Not What I Visit 335

site and feeding this website to scanners. Khoury et al. [31] evaluate three scan-
ners against stored SQL injection. Bau et al. [15] analyze eight web application
scanners and evaluate their effectiveness against vulnerabilities. For this kind
of scanners, they are out of the scope of this paper. In our paper, we assume
that the web site is controlled by the attacker and the attacker can planted any
malicious content into any link belongs to this site while the web application
scanners are targeting the benign sites that may potentially be exploited. The
web application scanners usually are not capable of detecting malicious content
and phishing pages as well.

8 Conclusions

The procedure of developing a common URL parser framework or enforcing a
standardization model can be a hard and challenging task for both application
and service vendors, due to expeditious changes in the technology field, and
variations and gaps among multiple web services.

In this work, we experimentally test all major browsers and URL scanners, as
well as various applications that parse URLs. We expose multiple discrepancies
on how they actually parse URLs. These differences leave users vulnerable to
malicious web content because the same URL leads the browser to one page,
while the scanner follows the same URL to scan another page.

As far as we are aware of, this is the first time browsers and URL scanners
have been cross-evaluated in this way. The current work can be used as a refer-
ence to anyone interested in better understanding the facets of this fast evolving
area. It is also expected to foster research efforts to the development of fully-
fledged solutions that put emphasis mostly to the technological, but also to the
standardization aspect.

Acknowledgements. We want to express our thanks to the anonymous reviewers for
their valuable comments. We would also like to acknowledge Paul Spicer’s contribution,
who initially investigated the problem.

References

1. Uniform resource identifier (URI): Generic syntax, January 2005. https://www.
ietf.org/rfc/rfc3986.txt

2. Different behaviours of treating (backslash) in the url by FireFox and
Chrome. stackoverflow, May 2012. http://stackoverflow.com/questions/10438008/
different-behaviours-of-treating-backslash-in-the-url-by-firefox-and-chrome

3. gred, March 2015. http://check.gred.jp/
4. Online link scan - scan links for harmful threats! (2015). http://onlinelinkscan.

com/
5. PhishTank — join the fight against phishing (2015). http://www.phishtank.com/
6. scumware.org - just another free alternative for security and malware researchers

(2015). http://www.scumware.org/

https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt
http://stackoverflow.com/questions/10438008/different-behaviours-of-treating-backslash-in-the-url-by-firefox-and-chrome
http://stackoverflow.com/questions/10438008/different-behaviours-of-treating-backslash-in-the-url-by-firefox-and-chrome
http://check.gred.jp/
http://onlinelinkscan.com/
http://onlinelinkscan.com/
http://www.phishtank.com/
http://www.scumware.org/

336 Q. Yang et al.

7. Stopbadware — a nonprofit organization that makes the web safer through the
prevention, mitigation, and remediation of badware websites, May 2015. https://
www.stopbadware.org/

8. Sucuri sitecheck - free website malware scanner, March 2015. https://sitecheck.
sucuri.net/

9. urlquery.net - free url scanner, March 2015. http://urlquery.net/
10. VirusTotal - free online virus, malware and URL scanner (2015). https://www.

virustotal.com/en/
11. Web inspector - inspect, detect, protect (2015). http://app.webinspector.com/
12. Website/url/link scanner safety check for phishing, malware, viruses - scanurl.net,

March 2015. http://scanurl.net/
13. Zscaler zulu url risk analyzer - zulu, March 2015. http://zulu.zscaler.com/
14. Akhawe, D., Felt, A.P.: Alice in warningland: a large-scale field study of browser

security warning effectiveness. In: Proceedings of the 22th USENIX Security Sym-
posium, pp. 257–272 (2013)

15. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: automated black-
box web application vulnerability testing. In: 2010 IEEE Symposium on Security
and Privacy (SP), pp. 332–345, May 2010

16. Borgolte, K., Kruegel, C., Vigna, G.: Delta: automatic identification of unknown
web-based infection campaigns. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 109–120 (2013)

17. Burns, J.: Cross site request forgery: an introduction to a common web application
weakness. White paper, Information Security Partners, LLC (2007)

18. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: Proceedings of the International Con-
ference on World Wide Web (WWW), pp. 197–206 (2011)

19. Cass, S.: The 2015 top ten programming languages. http://spectrum.ieee.org/
computing/software/the-2015-top-ten-programming-languages

20. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious javaScript code. In: Proceedings of the International Con-
ference on World Wide Web (WWW), pp. 281–290 (2010)

21. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

22. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-
by downloads: mitigating heap-spraying code injection attacks. In: Flegel, U.,
Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

23. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: an empirical study of
the effectiveness of Web browser phishing warnings. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI), pp. 1065–1074 (2008)

24. FireEye: email security - detect and block spear phishing and other email-
based attacks, May 2015. https://www.fireeye.com/products/ex-email-security-
products.html

25. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: Proceedings of the 2007 ACM Workshop on
Recurring Malcode (WORM), pp. 1–8 (2007)

26. Google: safe browsing API - google developers (2015). https://developers.google.
com/safe-browsing/

https://www.stopbadware.org/
https://www.stopbadware.org/
https://sitecheck.sucuri.net/
https://sitecheck.sucuri.net/
http://urlquery.net/
https://www.virustotal.com/en/
https://www.virustotal.com/en/
http://app.webinspector.com/
http://scanurl.net/
http://zulu.zscaler.com/
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
https://www.fireeye.com/products/ex-email-security-products.html
https://www.fireeye.com/products/ex-email-security-products.html
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/

WYSISNWIV: What You Scan Is Not What I Visit 337

27. Ikinci, A., Holz, T., Freiling, F.: Monkey-spider: detecting malicious websites
with low-interaction honeyclients. In: Proceedings of Sicherheit, Schutz und
Zuverlässigkeit (2008)

28. Imperial-Legrand, A.: Vulnerability writeups. Google+, March 2014. https://plus.
google.com/+AlexisImperialLegrandGoogle/posts/EQXTzsBVS7L

29. Invernizzi, L., Benvenuti, S., Cova, M., Comparetti, P.M., Kruegel, C., Vigna, G.:
EvilSeed: a guided approach to finding malicious web pages. In: Proceedings of the
2012 IEEE Symposium on Security and Privacy, pp. 428–442 (2012)

30. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver: an
automated approach to the detection of evasive web-based malware. In: Proceed-
ings of the USENIX Security Symposium, pp. 637–652 (2013)

31. Khoury, N., Zavarsky, P., Lindskog, D., Ruhl, R.: An analysis of black-box web
application security scanners against stored SQL injection. In: 2011 IEEE Third
International Conference on Privacy, Security, Risk and Trust (PASSAT) and
2011 IEEE Third Inernational Conference on Social Computing (SocialCom),
pp. 1095–1101, October 2011

32. Kirda, E.: Cross site scripting attacks. In: van Tilborg, H., Jajodia, S. (eds.) Ency-
clopedia of Cryptography and Security, pp. 275–277. Springer, US (2011)

33. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining (KDD), pp. 1245–1254 (2009)

34. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious URLs: an
application of large-scale online learning. In: Proceedings of the International Con-
ference on Machine Learning (ICML), pp. 681–688 (2009)

35. Microsoft: Microsoft security intelligence report, volume 13. Technical report,
Microsoft Corporation (2012)

36. Microsoft: smartscreen filter (2015). http://windows.microsoft.com/en-us/
internet-explorer/products/ie-9/features/smartscreen-filter

37. Moshchuk, A., Bragin, T., Deville, D., Gribble, S.D., Levy, H.M.: Spyproxy:
execution-based detection of malicious web content. In: Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, SS 2007, pp. 3:1–
3:16, USENIX Association, Berkeley, CA, USA (2007). http://dl.acm.org/citation.
cfm?id=1362903.1362906

38. proofpoint: targeted attack protection, May 2015. https://www.proofpoint.com/
us/solutions/products/targeted-attack-protection

39. Protalinski, E.: These 8 characters crash Skype, and once they’re in your chat his-
tory, the app can’t start (update: fixed). VentureBeat, May 2012. http://venture
beat.com/2015/06/02/these-8-characters-crash-skype-and-once-theyre-in-your-
chat-history-the-app-cant-start/

40. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iFRAMEs point
to us. In: Proceedings of the USENIX Security Symposium, pp. 1–15 (2008)

41. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the Workshop on
Hot Topics in Understanding Botnets (HOTBOTS) (2007)

42. Symantec: Symantec Web Security.cloud (2015). http://www.symantec.com/
web-security-cloud/

43. Wang, Q., Zhou, J., Chen, Y., Zhang, Y., Zhao, J.: Extracting URLs from
JavaScript via program analysis. In: Proceedings of the Joint Meeting on Founda-
tions of Software Engineering (FSE), pp. 627–630 (2013)

https://plus.google.com/+AlexisImperialLegrandGoogle/posts/EQXTzsBVS7L
https://plus.google.com/+AlexisImperialLegrandGoogle/posts/EQXTzsBVS7L
http://windows.microsoft.com/en-us/internet-explorer/products/ie-9/features/smartscreen-filter
http://windows.microsoft.com/en-us/internet-explorer/products/ie-9/features/smartscreen-filter
http://dl.acm.org/citation.cfm?id=1362903.1362906
http://dl.acm.org/citation.cfm?id=1362903.1362906
https://www.proofpoint.com/us/solutions/products/targeted-attack-protection
https://www.proofpoint.com/us/solutions/products/targeted-attack-protection
http://venturebeat.com/2015/06/02/these-8-characters-crash-skype-and-once-theyre-in-your-chat-history-the-app-cant-start/
http://venturebeat.com/2015/06/02/these-8-characters-crash-skype-and-once-theyre-in-your-chat-history-the-app-cant-start/
http://venturebeat.com/2015/06/02/these-8-characters-crash-skype-and-once-theyre-in-your-chat-history-the-app-cant-start/
http://www.symantec.com/web-security-cloud/
http://www.symantec.com/web-security-cloud/

338 Q. Yang et al.

44. Wang, Y.M., Beck, D., Jiang, X., Verbowski, C., Chen, S., King, S.: Automated
web patrol with strider HoneyMonkeys: finding web sites that exploit browser
vulnerabilities. In: Proceedings of NDSS, February 2006

45. WHATWG: URL living standard, May 2015. https://url.spec.whatwg.org/
46. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-

ing pages. In: Proceedings of NDSS, February 2010
47. Xu, W., Zhang, F., Zhu, S.: JStill: mostly static detection of obfuscated malicious

javascript code. In: Proceedings of the ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 117–128 (2013)

48. Zhang, J., Seifert, C., Stokes, J.W., Lee, W.: ARROW: generating signatures to
detect drive-by downloads. In: Proceedings of the International Conference on
World Wide Web (WWW), pp. 187–196 (2011)

https://url.spec.whatwg.org/

SDN Rootkits: Subverting Network Operating
Systems of Software-Defined Networks

Christian Röpke(B) and Thorsten Holz

Horst Görtz Institute for IT-Security (HGI), Ruhr-University Bochum,
Bochum, Germany

{christian.roepke,thorsten.holz}@rub.de

Abstract. The new paradigm of Software-Defined Networking (SDN)
enables exciting new functionality for building networks. Its core com-
ponent is the so called SDN controller (also termed network operating
system). An SDN controller is logically centralized and crucially impor-
tant, thus, exploiting it can significantly harm SDN-based networks. As
recent work considers only flaws and rudimentary malicious logic inside
SDN applications, we focus on rootkit techniques which enable attackers
to subvert network operating systems. We present two prototype imple-
mentations: a SDN rootkit for the industry’s leading open source con-
troller OpenDaylight as well as a version with basic rootkit functions for
the commercial and non-OpenDaylight-based HP controller. Our SDN
rootkit is capable of actively hiding itself and malicious network program-
ming as well as providing remote access. Since OpenDaylight intends
to establish a reference framework for network operating systems (both
open source and commercial), our work demonstrates potential threats
for a wide range of network operating systems.

1 Introduction

Over the last few years, the new paradigm of Software-Defined Networking
(SDN) has attracted a lot of attention from both industry and academia [6,16,
22]. Industry is already adopting SDN technologies and sells SDN-ready prod-
ucts (e.g., OpenFlow-enabled switches and SDN control software), tests feasi-
bility in enterprise networks [11,13], and introduces new ecosystems for SDN-
based networks [10]. In academia, a new research area has evolved including
security-related topics such as using SDN to enhance network security [1,31]
and developing countermeasures against SDN-specific attacks [12,33]. Broadly
speaking, SDN physically decouples the control plane, on which network control
programs decide where traffic is sent to, from the data plane, on which packet
forwarding hardware forwards traffic to the selected destination. Furthermore,
SDN promotes open interfaces to both network devices and physically decou-
pled network operating systems. Considering the computer market growth after
introducing processor chips with open interfaces, SDN enables rapid innovation
for the network market [21]. In such a network, the logically centralized network
operating system is responsible to program network devices, thus, managing the
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 339–356, 2015.
DOI: 10.1007/978-3-319-26362-5 16

340 C. Röpke and T. Holz

entire programmable network. The SDN architecture promises hereby to be more
dynamic, manageable and cost-effective compared to traditional networks. Con-
cerning security, SDN-based networks benefit from automatism and standard
protocols to provide a more adequate and faster reaction on security incidents.

Several security mechanisms for SDN-based networks and especially for
network operating systems have been proposed recently. For example, Kreutz
et al. [15] present security and dependability techniques to secure software-defined
networks on a more generic level. FortNOX [29] is based on a security ker-
nel and detects as well as resolves attempts to circumvent existing security flow
rules. AvantGuard [33] implements countermeasures to mitigate denial-of-service
attacks against SDN controllers launched by network clients. Additionally, Hong
et al. [12] and Dhawan et al. [5] introduce methods to counter SDN-specific
attacks which are similar to traditional ARP cache poisoning. With respect
to malicious SDN applications, few papers [30,32] study flaws and rudimentary
malicious logic and apply sandbox techniques to restrict access to critical oper-
ations such as establishing network connections or executing shell commands.

In this paper, we go one step further and investigate rootkit techniques pri-
marily specialized for network operating systems. Compared to previous work,
we analyze how attackers can subvert network operating systems via sophisti-
cated malicious SDN applications based on the design principles of rootkits. As
a result, we present new challenges and two proof-of-concept implementations
for the popular and greatly industry-supported open source OpenDaylight con-
troller as well as for a closed source one. In particular, our SDN rootkit subverts
the targeted network operating systems and provides adversely network pro-
gramming from a remote host, while all carried out manipulations are actively
hidden. In addition, we test our SDN rootkit against several available security
mechanisms to prove the existence of this threat.

To summarize our work, we provide the following main contributions:

– We investigate sophisticated attacks against modern network operating sys-
tems and present new challenges regarding SDN rootkits. Moreover, we develop
a new technique for introducing remote access in a SDN-specific fashion.

– We present proof-of-concept implementations of SDN rootkits. In particular,
we provide a fully functional version for the industry’s leading open source
OpenDaylight controller as well as a version with basic functionality for the
HP controller. To the best of our knowledge, these are the first prototype
implementations of SDN rootkits.

– We test our SDN rootkits against several detection and protection mecha-
nisms and find that current security mechanisms cannot adequately stop SDN
rootkits.

2 Background

Before we introduce the concept of SDN rootkits, we first provide background
information necessary to understand the SDN-specific aspects of our work.

SDN Rootkits: Subverting Network Operating Systems 341

2.1 Software-Defined Networking

The Open Networking Foundation (ONF) [23] is a user-driven organization
which is greatly supported by industry. Among others, the ONF publishes SDN
standards and defines the SDN architecture [25] by the following layers: (i)
infrastructure layer, (ii) control layer, and (iii) application layer (see Fig. 1).
The infrastructure layer consists of programmable network devices which merely
forward network packets. On top, SDN control software (also known as SDN
controller or network operating system) operates on the control layer and pro-
grams the network devices via an open control data plane interface (also known
as southbound interface). Probably the most widely used southbound protocol is
OpenFlow [19] which facilitates both programming switches via flow tables and
requesting their current state. Note that malicious network programming will
take place in such flow tables. On the control layer, so called network services
run inside the control software and provide access to SDN resources while hiding
implementation details from the application layer. On the application layer, so
called business applications operate on a global network view, leveraging net-
work services via an open interface (also known as northbound interface). As we
will see later, attackers may operate on each of these layers.

To provide an analogy to operating systems like Linux, one can consider
that SDN controllers provide interfaces and abstractions for software developers
just like an OS. Thus, SDN controllers are also denoted as network operating
system [8,32]. Correspondingly, both types of SDN applications (namely, network
services and business applications) can be considered as kernel applications and
user applications, respectively. In this work, we use the terms NOS and SDN
controller interchangeably.

Fig. 1. SDN architecture Fig. 2. NOS components

342 C. Röpke and T. Holz

2.2 Network Operating System Alias SDN Controller

Network operating systems are logically centralized and responsible for control-
ling the entire SDN, thus, playing a major role. As illustrated in Fig. 2, the
main tasks are providing (i) a global network view, (ii) network statistics, (iii)
a northbound interface as well as a (iv) southbound interface, and (v) program-
ming network devices as required for network operation. A typical SDN scenario
would be reactive network programming: assuming that a switch cannot process
a network packet due to a missing flow table entry, the switch delegates the
forwarding decision to the NOS. The NOS considers the delegated information
as well as the current network state and determines an adequate forwarding
decision which is sent back to the requesting switch, typically, via a flow rule.
Subsequently, such packets are forwarded by the switch according to the previ-
ously added flow rule. As we will see in Sects. 3 and 4, the services providing
these functions are the main objectives a SDN rootkit wants to manipulate.

Furthermore, many SDN controllers (e.g., the ones released by HP and Cisco)
support the installation of SDN applications during runtime whereas others, such
as Floodlight [7], are inflexible regarding this. According to Cisco [4], runtime
flexibility is important for implementing business needs. Similarly, HP explicitly
supports runtime flexibility and started the first SDN App Store which hosts
SDN applications (even from third-parties) which are supposed to be installed
during runtime. However, runtime flexibility also makes it easier for attackers to
compromise a NOS, e.g., via malicious SDN applications.

2.3 Motivating Examples

Since there are only a few SDN-based networks nowadays (mostly for research
purposes), malicious SDN applications have not been reported yet. However, we
believe that malicious SDN applications will become a common threat in the
future. To motivate this, we demonstrate how easy an attacker can abuse a real
world NOS to install a malicious SDN application. For that purpose, we pene-
trate the HP controller [9] which pays special attention to protect itself against
the installation of SDN applications which cannot present a valid signature (often
the case for malicious applications).

In the following, we discuss multiple possibilities by which an attacker can
easily install a malicious SDN application while bypassing existent protection
mechanisms of the HP controller. Thereby, we assume that the attacker has only
unprivileged user rights. In this case, an attacker can, for instance, ignore the con-
troller’s web interface which verifies a SDN application’s signature and simply
modify the HP controller’s configuration file virgo/configuration/osgi.console.
properties to enable the OSGi console for local access (telnet.enabled=true).
After triggering the HP controller process to restart (kill -HUP <virgo pid>), a
connection to the OSGi console of the SDN controller can be established via tel-
net localhost 2401 which allows an attacker to install arbitrary SDN applications.
Surprisingly, in this case a SDN application must not present a valid signature to
get installed or started. An attacker can also copy a malicious SDN application

SDN Rootkits: Subverting Network Operating Systems 343

into the controller’s plugin directory and modify the controller’s configuration
file virgo/configuration/config.ini. Adding an entry here tells the controller to
start the previously copied SDN application during startup. After triggering the
controller to restart, a configured malicious SDN application can be installed
and started, again, without presenting a valid signature.

Since a controller restart may generate unwanted attention, an attacker can
also simply copy an arbitrary SDN application to the controller’s directory
virgo/pickup. Since the HP controller uses this directory for hot deployment,
any SDN application is automatically installed and started after a few seconds.
Surprisingly, malicious SDN applications presenting no valid signature can be
also installed this way.

In addition to such flaws, an attacker can also exploit software vulnerabili-
ties which are likely to happen even for NOSs. For example, an attacker could
exploit a vulnerability in code verification functions [26,27] or shutdown the
entire security system of a NOS, e.g., by exploiting CVE-2012-4681 or CVE-
2013-0422. Although we assume that security experts operate a NOS, we want
to stress that NOSs may present other vulnerabilities in the future which could
be exploited to install malicious SDN applications while bypassing existent pro-
tection mechanisms.

2.4 Attacker Model

Similar to attacker models of traditional rootkits, we assume that attackers are
able to install a malicious SDN application on a NOS. This may be possible
through a compromised SDN App Store or via exploiting design flaws or suit-
able vulnerabilities of a NOS. While the two former attack scenarios are rather
obvious, we want to give a SDN-specific example for the latter case.

Consider that attackers can already write empty files to the controller’s file
system (CVE-2014-8149) and exploit a vulnerability triggered while parsing net-
work packets which are delegated by a SDN switch (CVE-2015-1166). Assuming
additionally that future vulnerabilities might be more critical and that attackers
can combine them, a SDN-specific attack scenario would look as follows: A net-
work client (e.g., infected while browsing through the Internet) sends specially
crafted packets to a SDN switch which delegates these packets to the NOS due
to a missing flow rule. Then, during packet parsing a vulnerability is triggered
in the way it allows to write an arbitrary file to the NOS’s file system, e.g., to
its hot deployment directory. In case of the HP controller, this alone would lead
to the installation of our SDN rootkit.

3 SDN Rootkits

Traditional rootkits (e.g., for Windows or Linux) mainly aim at hiding their
artifacts in order to remain undetected as long as possible. A mature technique
to achieve that is the hooking of selected control data inside an OS (e.g., the
system call table) in order to transfer the control flow to the rootkit. While this

344 C. Röpke and T. Holz

has remained almost unchanged over the last years, a new technique has been
presented recently [34]. It is no longer based on aforementioned control data but
uses non-control data for the control transfer. In future networks, however, we
face new challenges and require suitable techniques which consider the specifics
of SDN-based networks.

3.1 Challenges

In the following, we present SDN rootkit challenges necessary to understand that
we can later on provide adequate countermeasures.

Hiding SDN Rootkits from a NOS. Hiding rootkit artifacts from a NOS
works similar to hiding them from a commodity OS. Since NOSs are often
designed as service-oriented systems, e.g., based on OSGi, the type of artifacts
to hide as well as the data structures holding such artifacts differ with respect
to traditional rootkits. For example, a SDN rootkit necessarily consumes ser-
vices in order to perform malicious actions, but it wants to hide itself from the
same services to remain undetected. At the same time, however, the service must
know its consumers to notify them about new events (which is typically needed
by SDN rootkits). Thus, the challenge is to hide rootkit artifacts (e.g., from a
service) while it remains capable of performing malicious actions (e.g., based on
service notifications).

Hiding aMaliciousNetwork State from theNOS. New and specific to SDN
is hiding malicious network programming. This includes adding of malicious flow
rules as well as pretending the existence of previously removed (security) flow rules.
To make malicious network programming effective, corresponding flow rules must
be present (or not) at least in the SDN-enabled switches. Hence, the challenge is to
manipulate the NOS’s view on the network state despite the fact that it has direct
access to the switch’s internals as this is part of the SDN paradigm.

Hiding Unwanted Remote Access Communications. Remote access to
malicious functions is highly desirable by attackers. Reasonably, such communi-
cations should not differ much from normal communication. In SDN-based net-
works, it is normal to exchange messages between the NOS and the associated
switches. However, it is not part of the SDN architecture to provide a connection
between network clients (residing in the user network) and the NOS (residing
in the management network). Thus, the challenge is to establish a connection
which by design should not be possible and which on top does not significantly
differ from normal control traffic.

Resolving Non-Existent Rule Conflicts. While hiding malicious flow rules,
network operators may want to add similar but legitimate flow rules. For exam-
ple, assume a legitimate flow rule which matches on the same packet header

SDN Rootkits: Subverting Network Operating Systems 345

fields as a malicious one but contains different actions. Adding this legitimate
flow rule would cause a rule conflict which must not occur in order to keep mali-
cious behavior hidden. Hence, the challenge is to control the NOS’s rule conflict
mechanism and to handle possible rule conflicts.

Faking Non-Existent Network Statistics. Assuming that an attacker has
already removed a flow rule (e.g., a security rule which blocks traffic from a
certain IP address) the flow rule’s existence must be pretended. Otherwise, the
corresponding security application or a network operator can discover the mis-
configuration, thus, revealing the manipulated network state. The challenge is
to fake reasonable statistics for the removed flow rules.

3.2 A New Technique for Remote Access

A novel and specific aspect of SDN is establishing a connection between the
attacker’s host and the SDN rootkit for remote access purposes. Note that such
connections are neither part of the SDN architecture nor desirable in any way.
However, in the following we present a new technique how this can be achieved for
the probably most widely used southbound protocol, i.e., OpenFlow. In Open-
Flow, so called packet-in messages are sent by OpenFlow-enabled switches in
order to delegate forwarding decisions of occurring network packets to the NOS.
In response, the NOS determines an adequate decision by taking both packet
information and the current network state into account. It then sends this deci-
sion back to the requesting switch via a so called packet-out message, typically
resulting in adding a new flow rule. As illustrated in Fig. 3, attackers can misuse
that standard behavior in order to establish a remote access communication.

On the one hand, attackers could send specially crafted packets for which a
switch cannot determine a forwarding decision, thus, it delegates such packets

Fig. 3. Remote access via packet-in and packet-out messages

346 C. Röpke and T. Holz

to the NOS. On the other hand, an attacker can install hidden flow rules on each
switch which exactly match on the attacker’s packets, thus, causing delegation
of such packets to the NOS. Inside the NOS, the packet-in message including the
attacker’s packet (or only the packet’s headers) is passed to a registered set of
packet-in message handlers. Depending on the NOS, such messages are passed to
aforementioned handlers in a sequential fashion allowing each handler to pass the
message to the next handler if it cannot provide an adequate forwarding decision.
To avoid that other handlers generate responses to the attacker’s packets (or even
drop the corresponding packet-in message), the SDN rootkit must either ensure
that it is the first handler which is called for processing a new packet-in request
or that the previous handlers keep passing the packet until the SDN rootkit’s
packet-in handler is reached.

If the attacker’s packets reach the rootkit’s handler, it can simply parse the
commands (e.g., encoded in the packet’s header or the payload) and execute
the corresponding malicious actions. Some commands such as adding a new
malicious flow rule may not necessarily require feedback whereas others like
download the network topology do. For the latter commands, the SDN rootkit’s
packet-in handler can create packet-out messages including previously collected
information (such as the network topology) which are sent back to the switch.
According to the given packet-out settings, the switch forwards the network
packet towards the attacker’s host. Since such control communications between
the NOS and associated switches are normal, attackers can establish a remote
access connection which likely remains stealthy.

4 Prototype Implementation

Based on the concept introduced in the last section, we now provide two proto-
type implementations, one for the industry’s leading open source OpenDaylight
controller, and another one for the HP controller. OpenDaylight is the founda-
tion for several enterprise NOSs of large companies such as Cisco, IBM, Brocade
and Extreme Networks whereas the HP controller is considered as representative
for commercial network operating systems. More specifically, we use OpenDay-
light’s Helium base release (SR1) and the HP controller of version 2.3.5. The
current implementation of our SDN rootkit supports the following functions:
hiding the rootkit’s artifacts, hiding malicious network programming (including
rule conflict resolution and faking statistics) as well as providing remote access.

4.1 Rootkit Hiding

For OpenDaylight, there are two main interfaces to display information about
NOS internals such as a list of installed SDN applications or running NOS ser-
vices: a console and a web interface. Since we consider our rootkit to be installed
as a normal SDN application, we focus on hiding artifacts which occur inside
the NOS during the installation process. It mainly includes the creation of a
unique object for each SDN application which is added to the protected list of

SDN Rootkits: Subverting Network Operating Systems 347

installed SDN applications. This object is further on used, for example, to regis-
ter a new NOS service or to consume an already registered service to implement
its functionality. Accordingly, this unique object is added to a protected list of
registered services and to a protected list of consumers of an already registered
NOS service, respectively. As these lists are protected, they are not supposed to
be modified by SDN applications.

However, we utilize Java reflection and manipulate each of these protected
lists to remove the objects which are added during the installation. This works
fine for the first two lists, i.e., the lists of installed SDN applications and the
one of registered NOS services. But if we remove the rootkit’s object from the
consumer list of a NOS service, the SDN rootkit remains unable to react on
service events. Therefore, we additionally replace the OpenDaylight’s service
registry which is responsible for notifying the associated consumers of a NOS
service. This is currently implemented by replacing the service’s object by an
object of our own registry service. As a result, the SDN rootkit can consume
NOS services while it remains hidden from the NOS.

Since other SDN controllers such as the HP SDN controller are built upon
the same execution environment as OpenDaylight, the presented artifact hiding
works on many other NOS as well. In particular, we implement this basic rootkit
functionality also for the HP controller.

4.2 Malicious Network Programming

To implement malicious network programming, we basically manipulate the
OpenDaylight’s view on the network. This view is either cached in protected
flow rule databases or based on information which is directly received from
the network through a so called read service and a so called flow program-
mer service. The most interesting databases are: StaticFlows, originalSwView
and installedSwView. StaticFlows contains static and pro-actively installed flow
rules which can be managed via OpenDaylight’s web interface. For example,
we use this to add security flow rules, e.g., to drop network packets coming
from a certain host. The databases originalSwView and installedSwView con-
tain the software view of the network. While the former one manages the flow
rules which are requested to be installed, the latter one contains the flow rules
which are actually installed on the switches. The latter two databases are typ-
ically used for reactive programming, for example, by the OpenDaylight’s load
balancing service.

In addition, OpenDaylight provides direct access to the programmable net-
work through a read service (which allows to read information stored on a net-
work switch) and a flow programmer service (which enables adding and removing
flow rules on such network devices). Figure 4 illustrates how an OpenDaylight
service such as the statistic manager can directly access switch information such
as current flow statistics (dashed line). Thereby, it uses the NOS’s read service
and sends OpenFlow messages towards the programmable switches in order to
request flow rule statistics such as the byte count or the packet count of a cer-
tain flow rule. Figure 5 depicts how OpenDaylight’s Forwarding Rules Manager

348 C. Röpke and T. Holz

Open Flow Switch

…

Service Abstraction Layer

OpenFlow
Plugin

Read Service

Consistency
Monitor

Statistics Mgr

Web

Flow
Table

Flow
Table

MalRS

1

2

3

Rootkit add / del

Fig. 4. Read service manipulation

OpenFlow Switch

…

Service Abstraction Layer

OpenFlow
Plugin

Flow Progr.
Service

Web

FRM2

Simple
Forwarding

Load
Balancer

Flow Progr.
Northbound

Flow
Table

Flow
Table

MalFPS

1

3

frm.installFlowEntry

conflict check in caches
if no conflict
 fps.addFlow

if conflict:
 ret success
else
 of.addFlow

4 switch.send(FlowMod)

Rootkit add / del

Fig. 5. Flow progr. manipulation

(FRM) uses the flow programmer service in order to add and remove a certain
flow rule to/from programmable switches (dashed line).

Currently, we implement hiding of malicious flow rules as well as pretending
the existence of previously removed security flow rules by invoking the forwarding
rules manager’s internal functions addEntryInHw and removeEntryInHw. Inside
the FRM, these functions are called after no rule conflicts were detected and
after the flow rule caches got updated. However, we facilitate Java reflection and
bypass cache updates in order to directly add and remove flow rules to/from
the network. Furthermore, we manipulate the view on the network’s statistics
by replacing the OpenDaylight read service by our own one. As illustrated in
Fig. 4, we disconnect the statistics manager (and other read service consumers)
and replace it by our own version. Then, we connect our malicious read service
to the OpenFlow plugin and thereby control the readable view on the network
(dotted line). This is used, for example, to skip statistics of malicious flow rules
and to add fake statistics of removed flow rules.

With respect to faking removed flow rules, we also need to consider that a
flow rule removal triggers a flow remove event which must be handled to reduce
attention. Currently, we wait a few moments after removing a security flow rule
and allow the FRM to handle such events. Meaning that the FRM removes the
corresponding entries from the affected flow rule caches. Then, we manipulate
these flow rule caches and insert fake entries as the corresponding entries would
have never been removed.

Concerning flow rule conflicts, we must also control OpenDaylight’s rule con-
flict mechanism. Currently, we replace OpenDaylight’s flow programmer service
by our own one which enables to check for rule conflicts before OpenDaylight’s
FRM can do it. In case a network operator adds a new flow rule which is in
conflict with a malicious one, our replacement resolves the conflict as follows.
First, the malicious flow rule is temporarily stored and removed from the net-
work. Then the new security flow rule is added normally such that the network

SDN Rootkits: Subverting Network Operating Systems 349

operator can test its effectiveness, e.g., by sending ping requests. Finally, the
malicious flow programmer service waits a certain amount of time, replaces the
security flow rule by a fake entry, and restores the previously removed malicious
flow rule.

4.3 Remote Access

We realize remote access capabilities to our SDN rootkit functions by implement-
ing the previously introduced technique which is based on OpenFlow’s packet-
in and packet-out messages. OpenDaylight provides a sequential processing of
packet-in events. Meaning that in case of such an event, the corresponding mes-
sage including the network packet is passed to the packet-in handler which was
registered first. This handler can decide to mark that message as being handled
or it can pass it to the next handler, i.e., the packet-in handler which was regis-
tered second. This continues until either a packet-in handler marks a packet-in
message as being handled or all packet-in handlers are called.

In case of OpenDaylight, all default packet-in handlers pass each packet-
in message to the next packet-in handler. Therefore, we currently implement
remote access capabilities by means of an OpenDaylight packet-in handler which
is normally registered but actively hidden by previous rootkit functionality.
Commands like addMalFlow, removeSecFlow and listTopology are currently
encoded by the TCP source port and parameters like the flow name, matching
fields or actions are encoded within the URL of a HTTP GET request. While
the former two commands do not require any feedback, the latter command
requires to send back the collected information. Beside receiving packet-in mes-
sages, each OpenDaylight packet-in handler is also allowed to create and send
packet-out messages. We use this to send back confidential information towards
the attacker’s host.

If installed on a NOS, such a SDN rootkit can be utilized in order to con-
trol entire networks. For example, an attacker could remotely send the com-
mand listTopology. After identifying internal servers which are not supposed
to be accessed by external hosts, the attacker could send another command such
as addMalFlow. Assuming correct network re-programming, at this point the
attacker can access internal servers from remote, e.g., to perform further priv-
ilege escalation. Network re-programming could also be used to copy internal
traffic, thus, forwarding that copy to the attacker. Since SDN is supposed to
allow generic network programming, utilizing SDN rootkit functions is a power-
ful attack.

5 Evaluation

We evaluate our proof-of-concept implementations by performing several tests
which aim at revealing rootkit artifacts while performing malicious network pro-
gramming from a remote host. Therefore, we use standard system tools available
for OSGi-based SDN controllers, rule conflict checks included in OpenDaylight,

350 C. Röpke and T. Holz

and a state-of-the-art policy checker called NetPlumber [13]. In our evaluation,
we use OpenDaylight (Helium release, SR1) and the HP controller (version 2.3.5)
as NOSs as well as the popular SDN evaluation tool called Mininet [17] which
is able to emulate even large networks of OpenFlow-enabled switches.

5.1 Evaluation Setup

Figure 6 illustrates our evaluation environment. Beside a NOS, we run several
security mechanisms, i.e., a firewall application, a consistency monitor and (as
previously mentioned) a real time policy checker.

We use OpenDaylight’s web interface to manually add firewalling flow rules
particularly in order to deny the attacker’s host h1 to communicate with host h2.
A consistency monitor frequently tests the consistency between the real network
state and the state stored in the internal flow rule caches. As policy checker, we
use NetPlumber which sits between the NOS and the switches. It checks at real
time if adding a new flow rule or removing an existing flow rule would violate
a certain security policy, and blocks programming attempts in case of detected
violations.

Fig. 6. Evaluation setup

5.2 Testing Artifact Hiding

We test artifact hiding capabilities on both network operating systems. For that
purpose, we use several standard system tools provided by the NOS’s execution
environment which are supposed to reveal the artifacts of unwanted SDN kernel
applications such as our SDN rootkit. In particular, we perform the commands
bundles and ss which list installed kernel applications. Additionally, we use
the services command to display details about all registered services and the t
command to display information about running threads. Furthermore, we run the
services and status commands to list the kernel applications which consume

SDN Rootkits: Subverting Network Operating Systems 351

a registered service. After the installation of our SDN rootkit, however, none of
these standard tools show a rootkit artifact on the tested systems.

5.3 Testing Malicious Network Programming

First, we test if the malicious flow rule, which is needed for enabling the remote
access to our SDN rootkit, is not only installed on already connected switches,
but also on switches which are possibly added during runtime. This malicious
flow rule matches on the attacker’s remote control packets and, thus, delegates
the packets to the SDN controller and forwards them towards the rootkit’s
packet-in handler. We test this by adding a new switch via the Mininet con-
sole followed by performing remote access commands by a host which is only
connected to that new switch.

Next, we remotely remove the pre-installed security flow rule which drops
network traffic from the attacker’s host h1 to the internal host h2. This is followed
by automatically adding a corresponding fake entry including fake statistics. We
verify the manipulated view on the network state by checking OpenDaylight’s
web console as well as the consistency monitor results which show the same flow
rule as it was present before the manipulation. Additionally, we perform a ping
test inside of Mininet which is launched by the attacker’s host and verify host
reachability in spite of a visible security flow rule.

Then, we remotely add a hidden malicious flow rule enabling the attacker
to communicate with a server. As result, the attacker’s host h1 becomes able to
connect to the server host h3 whereas the corresponding flow rule does neither
appear in OpenDaylight’s flow rule caches, in its web console nor is it visible to
our consistency monitor.

Finally, we simulate adding a new security flow rule (drop traffic between
hosts h1 and h3) which would normally trigger a rule conflict because a similar
malicious flow rule exists. Since the SDN rootkit is capable of managing this,
no rule conflict alert is raised. To the contrary, we can successfully check the
effectiveness of this new security flow rule by performing a ping test between
host h1 and host h3. After some time, however, our SDN rootkit replaces this
security flow rule by a fake entry and re-activates the previously disabled mali-
cious flow rule. During this period of time, a network operator could recognize
the corresponding rootkit thread which waits a few moments until it performs
the aforementioned flow rule replacement and re-activation. Note that at this
point another efficiency test would reveal the manipulation.

5.4 Bypassing Policy Checkers

Current policy checkers such as VeriFlow [14] and NetPlumber reasonable sit
between the NOS and the associated switch network. Their main task is to
block the adding of a new flow rule or the removal of an existing flow rule which
would result in a policy violation. Therefore, VeriFlow was implemented inside

352 C. Röpke and T. Holz

the SDN controller (due to performance reasons) whereas NetPlumber only sim-
ulated network state changes via loading flow rules from local files. Since Net-
Plumber’s implementation is independent from a certain SDN controller (except
its agent which is needed to trigger the policy checker), we use this system in
our evaluation to perform additional policy checks.

To allow OpenDaylight to run such policy checks before adding or removing
flow rules, we implement the NetPlumber agent within OpenDaylight. Reason-
ably we add policy checks after running OpenDaylight’s internal rule conflict
tests. Thus, our NetPlumber agent is able to intercept the flow rule programming
process of OpenDaylight and consults the NetPlumber policy checker before a
new rule is added to the network.

In case of our SDN rootkit, however, these policy checks can be bypassed.
In particular, the SDN rootkit directly calls the internal functions addEntry-
InHw and removeEntryInHw. Thus, it avoids using the functions addEntry and
removeEntry where OpenDaylight’s rule conflict checks as well as the policy
checks are implemented. Consequently, malicious flow rules can be added even
if a policy violation would be detected normally.

5.5 Bypassing Sandbox Systems

As proposed recently [30,32], sandbox systems help in case SDN applications
present flaws or rudimentary malicious logic. In our work, we test if such a
system is also able to provide adequate protection against our SDN rootkit.
Therefore, we re-implement the latter sandbox system for the OpenDaylight
controller as well as for the HP controller. If activated in detection mode, we
observe a flood of permission entries including java.lang.RuntimePermission
accessDeclaredMembers and java.lang.reflect.ReflectPermission suppressAccess-
Checks. Our SDN rookit depends on these permissions and uses corresponding
sensitive operations to apply Java reflection. Since legitimate SDN controller
components also use Java reflection, correct identification of the calling compo-
nent is important.

As we implement the SDN rootkit in a separate file, identifying it as potential
source for the compromise attack is possible. In protection mode, such permis-
sions can be denied from our SDN rootkit file which results in protecting the
SDN controllers from being compromised. However, sandbox configuration can
be difficult in practice and misconfiguration is likely to happen (as we will dis-
cuss later). Thus, SDN rootkits could use the allowed set of critical operations
for a compromise attack. Moreover, if injected into the file of a privileged SDN
service (such as a SDN controller core service), a SDN rootkit could utilize these
privileges to compromise the NOS. Another option is to simply disable sand-
boxing as a whole (see CVE-2012-4681 and CVE-2013-0422), thus, performing
malicious actions without restrictions.

SDN Rootkits: Subverting Network Operating Systems 353

6 Discussion

Our evaluation shows that the examined SDN controllers do not provide ade-
quate protection against the SDN rootkit. Policy checkers and sandbox systems,
however, might be able to tackle the problem if integrated and configured cor-
rectly.

With respect to policy checkers (and other external monitoring systems), it
is necessary to integrate these entirely independent from the SDN controller.
For example, if the agent of the examined policy checker would physically sit
between the SDN controller and the associated switches, manipulation of the
SDN controller’s network view would not be enough to bypass the policy check-
ing. However, the remaining question is whether an attacker, who is able to
install a SDN rootkit, is also able to compromise such an external monitoring
system.

Concerning sandbox systems, correct configuration is mandatory, otherwise
a SDN rootkit may simply use mistakenly granted permissions to run malicious
actions. In case of the re-implemented sandbox system, special knowledge of the
Java programming language is needed to understand the security implications
of occurring sensitive operations. This is similar in case of Rosemary [32] since
operators must decide on the system call level if a specific action is allowed,
which also requires special knowledge to understand the security implications.
Although we assume experts operating SDN controllers, we should consider that
network operators might not have such knowledge. In particular, since 50 %
to 80 % of network outages occur due to human error [20], misconfiguration is
likely to happen in practice. A possible solution could be provided by high-level
permissions such as read topology, add flow rule or register for packet-in message
handling. Such a design was proposed by Wen et al. [35] and is about to be
implemented for the ONOS controller [24]. While such high-level permissions
could ease correct sandbox configuration in practice, operators must still guess
if such permissions are used in a benign or malicious way.

For future work, we suggest systems similar to current breach detection sys-
tems, thus, preventing malicious behavior inside the network operating system.
In addition, analysis systems (e.g., NICE [3]) are desirable for current SDN con-
trollers, especially for the Java/OSGi-based ones, since the SDN controllers of
many large companies are build upon Java and OSGi. Such an analysis system
could be integrated, for instance, in the process of adding SDN applications to
a SDN App Store.

7 Related Work

Theproblemofmalicious SDNapplicationswas first addressed byPorras et al. [29].
They provide a security kernel for the NOX controller with the focus on detecting
and resolving dynamic flow rule tunneling. An enhanced version [28] provides addi-
tional security features such as role-based authorization, an OpenFlow-specific

354 C. Röpke and T. Holz

permission model and inline flow-rule conflict resolution. While these efforts con-
centrate on the data plane protection provided on control layer, our SDN rootkit is
able to bypass control layer security and, therefore, to compromise the data plane.

Shin et al. [32] and Röpke et al. [30] provide sandbox techniques to protect
the control layer against SDN applications which either present flaws or rudi-
mentary malicious logic. Each of the counteracting sandbox mechanism is based
on low-level permissions (i.e., on system call level and on sensitive Java function
level) and, therefore, requires special knowledge of the regarding operating sys-
tems or the Java programming language. As network operators may have little
knowledge regarding these system-level aspects, the possibility of misconfigura-
tion in practice evokes the question of sophisticated attacks through malicious
SDN applications.

High-level permission models have been discussed earlier in the literature [35]
whereas implementation of similar models in SDN controllers is targeted recently
[24,28]. We believe that these do not entirely solve the problem of sophisticated
malicious SDN applications, since operators must still guess whether a critical
operation is used in a benign or malicious way, independent of the level’s degree.

Finally, we believe that an analysis of SDN applications combined with policy
checking at runtime can potentially reveal sophisticated malicious SDN applica-
tions. However, current policy checkers [13,14] focus rather on finding network
invariants than on detecting SDN rootkits. Similarly, the analyis system NICE [3]
concentrates on finding bugs in OpenFlow applications but not on revealing SDN
malware. Approaches for precise analysis of Java reflections [2,18] could assist
for preliminary analysis.

8 Conclusion

Software-defined networking is an emerging technology which crucially depends
on secure network operating systems. Commercial network operating systems are
often built upon Java and OSGi, for instance, in case of either large enterprises
such as Cisco and HP or open source versions such as the industry’s leading open
source OpenDaylight controller and the carrier-grade ONOS controller. Tak-
ing this into consideration, we investigate sophisticated malware attacks against
such modern NOS. In particular, we identify new challenges regarding SDN
rootkits and develop a new technique for providing remote access by leverag-
ing traditional rootkit techniques and combining these with the SDN specific
features. Additionally, we demonstrate via our prototype implementations that
modern NOS are vulnerable to sophisticated SDN malware. Even in the presence
of available security mechanisms, we are able to subvert and compromise this
Achilles’ heel of SDN-based networks. Hence, sophisticated SDN malware should
be included in the threat model of NOS instead of only considering rudimentary
malicious logic.

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) under support code 01BP12300A; EUREKA-
Project SASER.

SDN Rootkits: Subverting Network Operating Systems 355

References

1. Ali, S.T., Sivaraman, V., Radford, A., Jha, S.: A Survey of Securing Networks using
Software Defined Networking. To appear in IEEE Transactions on Reliability

2. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
aiding static analysis in the presence of reflection and custom class loaders. In:
International Conference on Software Engineering, ICSE (2011)

3. Canini, M., Venzano, D., Peresini, P., Kostic, D., Rexford, J.: A NICE way to test
openflow applications. In: USENIX Symposium on Networked Systems Design and
Implementation (2012)

4. Cisco. Extensible Network Controller. www.cisco.com/c/en/us/products/
collateral/cloud-systems-management/extensible-network-controller-xnc/data
sheet c78-729453.html

5. Dhawan, M., Poddar, R., Mahajan, K., Mann, V.: SPHINX: detecting security
attacks in software-defined networks. In: Symposium on Network and Distributed
System Security (2015)

6. Feamster, N., Rexford, J., Zegura, E.: The Road to SDN. In: ACM Queue: Tomor-
row’s Computing Today (2013)

7. Floodlight. www.floodlight.openflowhub.org
8. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.:

NOX: towards an operating system for networks. In: ACM SIGCOMM Computer
Communication Review (2008)

9. Hewlett-Packard. HP VAN SDN Controller. www.hp.com
10. Hewlett-Packard: HP Open Ecosystem Breaks Down Barriers to Software-Defined

Networking (2013). www.hp.com
11. Hölzle, U.: OpenFlow @ Google. Open Networking Summit (2012)
12. Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning network visibility in software-defined

networks: new attacks and countermeasures. In: Symposium on Network and Dis-
tributed System Security (2015)

13. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: USENIX Symposium
on Networked Systems Design and Implementation (2013)

14. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.: VeriFlow: verifying network-wide
invariants in real time. In: USENIX Symposium on Networked Systems Design and
Implementation (2013)

15. Kreutz, D., Ramos, F., Verissimo, P.: Towards secure and dependable software-
defined networks. In: ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (2013)

16. Kreutz, D., Ramos, F.M., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., Uhlig,
S.: Software-defined networking: a comprehensive survey. In: Proceedings of the
IEEE (2015)

17. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping
for software-defined networks. In: ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (2010)

18. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

19. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S.,Turner, J.: OpenFlow: enabling innovation in campus networks. In:
ACM SIGCOMM Computer Communication Review (2008)

www.cisco.com/c/en/us/products/collateral/cloud-systems-management/extensible-network-controller-xnc/data_sheet_c78-729453.html
www.cisco.com/c/en/us/products/collateral/cloud-systems-management/extensible-network-controller-xnc/data_sheet_c78-729453.html
www.cisco.com/c/en/us/products/collateral/cloud-systems-management/extensible-network-controller-xnc/data_sheet_c78-729453.html
www.floodlight.openflowhub.org
www.hp.com
www.hp.com

356 C. Röpke and T. Holz

20. Networks, J.: Whats behind network downtime? (2008). www-935.ibm.com/
services/au/gts/pdf/200249.pdf

21. McKeown, N.: How SDN will shape networking. Open Networking Summit (2011)
22. Nunes, B.A.A., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T.: A sur-

vey of software-defined networking: past, present, and future of programmable
networks. In: IEEE Communications Surveys & Tutorials (2014)

23. ONF. Open Networking Foundation. www.opennetworking.org
24. ONOS. Open Network Operating System. http://onosproject.org/
25. Open Networking Foundation: Software-Defined Networking: The New Norm for

Networks. White paper, Open Networking Foundation (2012)
26. Oracle. Sun Alert 1000560.1. www.oracle.com (last update in 2008)
27. Oracle. Sun Alert 1000148.1. www.oracle.com, (last update in 2010)
28. Porras, P., Cheung, S., Fong, M., Skinner, K., Yegneswaran, V.: Securing the

software-defined network control layer. In: Symposium on Network and Distrib-
uted System Security (2015)

29. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security
enforcement kernel for openflow networks. In: ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (2012)

30. Röpke, C., Holz, T.: Retaining control over sdn network services. In: International
Conference on Networked Systems (2015)

31. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.: FRESCO:
modular composable security services for software-defined networks. In: Sympo-
sium on Network and Distributed System Security (2013)

32. Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras, P., Yegneswaran, V., Noh, J.,
Kang, B.B.: Rosemary: a robust, secure, and high-performance network operating
system. In: ACM SIGSAC Conference on Computer and Communications Security
(2014)

33. Shin, S., Yegneswaran, V., Porras, P., Gu, G.: AVANT-GUARD: scalable and vig-
ilant switch flow management in software-defined networks. In: ACM Conference
on Computer and Communications Security (2013)

34. Vogl, S., Gawlik, R., Garmany, B., Kittel, T., Pfoh, J., Eckert, C., Holz, T.:
Dynamic hooks: hiding control flow changes within non-control data. In: USENIX
Security Symposium (2014)

35. Wen, X., Chen, Y., Hu, C., Shi, C., Wang, Y.: Towards a secure controller plat-
form for OpenFlow applications. In: ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (2013)

www-935.ibm.com/services/au/gts/pdf/200249.pdf
www-935.ibm.com/services/au/gts/pdf/200249.pdf
www.opennetworking.org
http://onosproject.org/
www.oracle.com
www.oracle.com

Android

AppSpear: Bytecode Decrypting and DEX
Reassembling for Packed Android Malware

Wenbo Yang1(B), Yuanyuan Zhang1, Juanru Li1, Junliang Shu1, Bodong Li1,
Wenjun Hu2,3, and Dawu Gu1

1 Computer Science and Engineering Department,
Shanghai Jiao Tong University, Shanghai, China

wbyang@securitygossip.com
2 Xi’an Jiaotong University, Xi’an, Shaanxi, China

3 Palo Alto Networks, Singapore, Singapore

Abstract. As the techniques for Android malware detection are progress-
ing, malware also fights back through deploying advanced code encryption
with the help of Android packers. An effective Android malware detec-
tion therefore must take the unpacking issue into consideration to prove
the accuracy. Unfortunately, this issue is not easily addressed. Android
packers often adopt multiple complex anti-analysis defenses and are evolv-
ing frequently. Current unpacking approaches are either based on manual
efforts, which are slow and tedious, or based on coarse-grained memory
dumping, which are susceptible to a variety of anti-monitoring defenses.

This paper conducts a systematic study on existing Android mal-
ware which is packed. A thorough investigation on 37,688 Android mal-
ware samples is conducted to take statistics of how widespread are those
samples protected by Android packers. The anti-analysis techniques of
related commercial Android packers are also summarized. Then, we pro-
pose AppSpear, a generic and fine-grained system for automatically mal-
ware unpacking. Its core technique is a bytecode decrypting and Dalvik
executable (DEX) reassembling method, which is able to recover any
protected bytecode effectively without the knowledge of the packer. App-
Spear directly instruments the Dalvik VM to collect the decrypted byte-
code information from the Dalvik Data Struct (DDS), and performs
the unpacking by conducting a refined reassembling process to create
a new DEX file. The unpacked app is then available for being analyzed
by common program analysis tools or malware detection systems. Our
experimental evaluation shows that AppSpear could sanitize mainstream
Android packers and help detect more malicious behaviors. To the best
of our knowledge, AppSpear is the first automatic and generic unpacking
system for current commercial Android packers.

Keywords: Code protection · Android malware · DEX reassembling

This work is partially supported by the National Key Technology Research and
Development Program of China under Grants No. 2012BAH46B02, the National
Science and Technology Major Projects of China under Grant No. 2012ZX03002011,
and the Technology Project of Shanghai Science and Technology Commission under
Grants No. 13511504000 and No. 15511103002.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 359–381, 2015.
DOI: 10.1007/978-3-319-26362-5 17

360 W. Yang et al.

1 Introduction

As Android malware emerges rapidly, more and more malware detection tech-
niques leverage in-depth program analysis to help understand program and
detect malicious behaviors automatically. A range of static and dynamic analy-
sis approaches (e.g., using machine learning techniques to detect malware, using
code similarity comparison to classify malware families) have been proposed for
detecting malicious Android apps and the progress is significant [7,11,30]. To
thwart program analysis based automated malware detection, malware authors
gradually adopt code protection techniques [8,26]. Although these techniques
are initially designed to counter reverse engineering and effectively resist many
program tampering attempts, they are becoming a common measure of malware
detection circumvention. Among various code protection techniques, the most
popular one is the code packing technique, which transforms the original app to
an encrypted or obscured form (a.k.a “packed app”). According to the report [3]
released by AVL antivirus team, among over 1 million Android malware samples
they detected, the number of code packed malware is about 20,000. Unfortu-
nately, current program analysis techniques and tools do not consider the code
packing issue and could not perform effective analysis task on packed code, and
thus are not able to detect those kinds of packed malware statically and auto-
matically. In addition, anti-debugging code stubs are frequently injected into a
packed app to interfere dynamic analysis based sandbox detection system. In a
word, code packing is becoming a main obstacle for the state-of-the-art auto-
mated Android malicious code analysis.

To response, this paper conducts a systematic study of packed Android mal-
ware, and our work examines the feasibility of universal and automated unpack-
ing for Android applications. The goals and contributions of this paper are
twofold: First, we conduct a thorough investigation on large-scale Android mal-
ware samples to take statistics of how widespread those malware samples are
protected by Android packers. We start the investigation from studying 10 pop-
ular commercial Android packers used by malware authors frequently, which
cover the majority of existing Android packing techniques, and summarizing the
anti-analysis techniques of those commercial Android packers. We then conduct
the investigation among 37,688 Android malware samples, which contain 490
code packed malware. The dataset is accumulated from an online Android app
analysis system–SandDroid [5] lasting for more than three years in collecting
related packed malware samples. To the best of our knowledge, this is the first
in-depth investigation on code packed Android malware. Second, to address the
challenge of analyzing code packed malware, we propose AppSpear, a generic
and fine-grained unpacking system for automatically bytecode decrypting and
Dalvik executable (DEX) reassembling. As our investigation demonstrates, com-
mercial Android packers are evolving rapidly. Packers’ ongoing evolution leads to
an endless arms race between packers and unpackers, and it requires a non-trivial
amount of efforts for security analysts to tackle this problem. Since the amount
of packer and malware increases at a significant speed, manual unpacking is
not feasible for large-scale packed malware analysis. To avoid decrypting packed

AppSpear: Bytecode Decrypting and DEX Reassembling 361

code through manually comprehending different packing algorithms, AppSpear
directly instruments the execution to extract all runtime Dalvik Data Structs
(DDS) in memory and reassembles them into a normal DEX file. The purpose
of AppSpear is to automatically rebuild the code packed app into its normal
form so that this rebuilt app is able to be analyzed by program analysis tools. A
bytecode decrypting and DEX reassembling process for code packed malware is
executed to automatically reverse code protection techniques of Android packers.

Previous unpacking approaches [17,25,28] mainly focus on dumping the loaded
DEX data in memory directly to recover the original DEX file. To thwart such
memory dump based unpacking, new advanced packers would reload the DEX
data into inconsecutive memory regions and modify relevant pointers that point to
the data, which leads to a malformed dumped data. Moreover, some information
in DEX is crucial to static analysis tools but is irrelevant to dynamic execution
(e.g., metadata in DEX file Header). Packers could wipe or modify this kind of
information in memory, which makes it difficult to locate a DEX file in memory.
Hence, AppSpear adopts a more comprehensive runtime information reassembling
approach rather than the simple memory dumping approach. It rebuilds a packed
malware through three main steps: First, AppSpear leverages Dalvik VM intro-
spection to circumvent anti-debugging measures of the packer and transparently
monitors the execution of the packed app. During the monitoring, it records exe-
cution traces and runtime Dalvik Data Structs (DDS) in memory as raw materials
for the next step. Second, AppSpear makes use of a proposed DEX reassembling
technique to reassemble the collected materials into a normal DEX that is suitable
for static analysis. Third, AppSpear makes use of an APK rebuilding technique to
re-generate an APK file with inserted anti-analysis code resected.

To validate AppSpear, we first employ all code protection techniques of seven
currently available online Android app packing services to pack our test app, and
then use AppSpear to unpack the packed samples. AppSpear is able to decrypt
every sample and output the reassembled app that corresponds to the original
test app well. Further, among the 490 packed malicious apps in all collected 37,688
samples, we select 31 representative samples that are able to execute and use App-
Spear to unpack them. All of those samples can be decrypted and reassembled by
AppSpear, and the rebuilt apps expose obvious malicious behaviors that could not
be detected by static app analysis tools (e.g., AndroGuard) before.

This paper makes the following contributions:

– We perform a thorough investigation on both existing mainstream Android
packers and code packed Android malware in the wild. We further summarize
typical anti-analysis defenses of Android packers.

– We propose a bytecode decrypting and DEX reassembling technique to rebuild
protected apps. Our APK rebuilding process transforms a code packed mal-
ware to an unpacked one, which is a feasible form for commodity program
analysis.

– We design an automated and generic unpacking system, AppSpear. AppSpear
can deal with most mainstream Android packers and the unpacked apps can

362 W. Yang et al.

be validated by state-of-the-art analysis tools, which are not able to handle
the packed form beforehand.

We detail on the investigation of existing Android packers and code packed
malware in Sect. 2 and on our proposed unpacking technique in Sect. 3. The
experimental evaluation is reported in Sect. 4. Before concluding in Sect. 7 we
discuss related work and possible limitations in Sects. 5 and 6.

2 Code Packed Android Malware

The purpose of our investigation includes: (a) to find out the ratio of code packed
malware in the wild, and (b) to understand the anti-analysis defenses used by
those packers. We conduct a large-scale investigation on 37,668 malware samples
collected from the SandDroid online Android app analysis system from 2012 to
May 2015. Then we analyze and summarize the anti-analysis techniques used by
popular commercial Android packers.

2.1 Investigation

To judge whether a malware sample is packed, and which packer it used to
protect itself, we adopt a signature based identification strategy to detect code
packed malware. We observe that each commercial Android packer brings its
unique native .so library, which can be used as the signature of that packer.
We first investigate 10 popular commercial Android packers (Bangcle, Ijiami,
Qihoo360, etc.) and build a signature database. Then, we collect 37,668 mal-
ware samples from 2012 to May 2015 using SandDroid, which detects malware
according to the feedback results of 12 main virus scan engines from VirusTotal
(F-Secure, Symantec, AntiVir, ESET-NOD32, Kaspersky, BitDefender, McAfee,
Fortinet, Ad-Aware, AVG, Baidu-International, Qihoo-360). An app is regarded
as malware if more than three virus scan engines detect it.

As Table 1(a) shows, the amount of packed malware increases significantly
since 2014. The distribution of packer type used by malicious apps is showed in

Table 1. Summary of packed android malware

(a) Annual statistics

Year Malware collected Packed Ratio

2012 16157 6 0.04%

2013 15443 89 0.58%

2014 5819 376 6.46%

2015 249 19 7.63%

(b) Distribution of packers

Packer Number of Samples

APKProtect 37

Bangcle 402

NetQin 10

Naga 1

Qihoo360 23

Ijiami 27

AppSpear: Bytecode Decrypting and DEX Reassembling 363

Table 1(b). Among those samples, Bangcle becomes the most welcome packer,
which corresponds to its market share in Android code protection field.

Although most commercial Android packing service providers have stated
that every submitted app is first checked by various antivirus products, we still
find malware samples protected by those packers. We believe that no packing
service provider could prove the accuracy of malware detection. Malicious app
may not be detected at the time it was submitted due to the updating latency of
the used antivirus products. In this situation, packing services may help produce
code packed Android malware in the wild.

2.2 Anti-Analysis Defenses

Android packers often use a variety of defenses to hinder analysis. To compre-
hend how Android packers obstruct program analysis, we manually analyze 10
commercial Android packers that provide public online packing services. Our
analysis indicates that anti-analysis defenses employed by those packers can be
classified into three categories. The first category of anti-analysis defenses involve
functions that check the static and dynamic integrity of the app (i.e., whether
the app is patched or injected with debugging routines). These measures can be
easily circumvented if analysts know the tricks beforehand. The second category
of anti-analysis measures involve source code level obfuscation, which requires
the source code to employ the protection. The third category, which is most
complex, involves bytecode hiding.

2.2.1 Integrity Checking
Packers generally check the integrity of their packed apps to decide whether the
apps are tampered. They check both the integrity of the static code and the
dynamic process. For static code integrity checking, packers often calculate the
checksum of the code part to determine whether the code is modified. Specifically,
for Android app the certificate of the APK is validated by many packers. For
dynamic process integrity checking, packers often calculate the checksum of DEX
data loaded in memory at runtime. Moreover, they also detect the existence of
debuggers or emulators. Besides the traditional anti-debugging tricks used in
desktop Linux system (e.g., to fork subprocesses and PTRACE one other, to
check /proc/self/status or /proc/self/wchan), some packers hook the write and
read syscalls to thwart memory dump based DEX data acquiring. They check
whether the code region is accessed or manipulated. If so, such operations will
be abandoned.

2.2.2 Source Code Obfuscation
Many developers would obfuscate their source code before their apps are released.
Because most Android apps are written in Java, classic Java code obfuscation
techniques can be directly employed on Android app. Those techniques mainly
include:

364 W. Yang et al.

– Identifier mangling: renaming class names, method names and variable
names as meaningless strings or even non-alphabet unicode.

– String obfuscation: replacing static-stored strings with dynamic generated
ones.

– Reflection: hiding method invoking using Java reflection mechanism.
– Junk code injection: injecting useless code to change original control flow.
– Goto injection: using goto to make control flow hard to understand.
– Instruction replacing: using a set of instructions to replace one instruction

while keeping the semantic of the replaced instruction.
– JNI control flow transition: using JNI invoking to hide the real control

flow.

Source code obfuscation requires the involving of developers during the devel-
opment stage. The main problem for source code obfuscation is that it does not
provide enough protection strength to counter bytecode level program analysis.
Most source code obfuscation techniques only increase the comprehension com-
plexity for manual reverse engineering. Malicious code, which mainly needs to
hinder automated program analysis based detection, requires more sophisticated
protection.

2.2.3 Bytecode Hiding
When published, the Java source code of an Android app is first compiled with
standard Java compiler into Java bytecode files (.class files), and these files
are then transformed into a DEX file with the dx tool provided by Google.
Information of bytecode is thus contained in this DEX file. To prevent the analyst
from acquiring bytecode information from the app, packers modify the original
executables to thwart state-of-the-art analysis tools. Typical measures include
metadata modification and DEX encryption.

In Android app, many metadata could be modified without affecting the nor-
mal execution, but the modification significantly affects certain analysis tools.
Packers would sabotage program analysis through modifying some crucial meta-
data of the APK file to create malformed executables, and leverage this as an effec-
tive defense to counter analysis. Typical metadata modification measures include:

– Manifest cheating [21]: modifying the binary form of the Manifest.xml
directly and injecting name attribute into <application> with unknown id.
Android system will ignore this attribute because the id is unknown. But when
typical analysis tools (e.g., Apktool) repackage it, this name will be included
and is not able to be correctly parsed. Packers can utilize the difference to
prevent itself from repackaging.

– Fake encryption [1]: setting the encryption flag in ZIP file header though
the file is actually not encrypted. Old version of Android(<=4.2) ignored this
flag but decompression modules of APK static analysis tools often check it,
which leads to an error.

– Method hiding [6]: modifying the method idx diff and code offset of certain
encoded method in DEX file and pointing to another method. It would make
the method invisible to most APK static analysis tools.

AppSpear: Bytecode Decrypting and DEX Reassembling 365

– Illegal opcodes [23]: injecting illegal opcodes or corrupted object in DEX
file to break static analysis tools.

– Anti decompilation [23]: adding some non-existing classes to break decom-
piler and prevent them from converting Dalvik bytecode to JAVA.

– Magic number tampering: erasing or modifying the magic number of DEX
files. It increases the difficulty of locating the DEX file in memory.

Notice that metadata modification measures are actually tricky defenses that
do not really hide the bytecode information. Therefore, it is feasible to circum-
vent these defenses to acquire bytecode with refined static analysis. In addition,
with the verification of DEX format becoming stricter, these tricky defenses are
not available anymore.

To thoroughly hide bytecode and thwart static analysis, packers employ DEX
encryption techniques. Similar to classic code packers on commodity desktop com-
puter platforms, a DEX encryption scheme generally relies on a decrypting stub
responsible for decrypting encrypted bytecode at runtime. Packers would place
the decrypting stub in native code part of a protected app as an initializer. The
encrypted bytecode is first decrypted by the decrypting stub in packer’s native
code, and then the Dalvik VM will load and execute the decrypted bytecode.

There are generally two types of code releasing strategies for DEX encryp-
tion schemes. The first strategy performs a full-code releasing, which decrypts
the entire encrypted DEX file before the control flow reaches to it, and does
not modify the released DEX file after the transition from unpacking routine
to bytecode. The second strategy performs an incremental code releasing, which
selectively decrypts only the portion of code that is actually executed, and may
encrypt it again after the execution. This strategy is used as a mechanism to
prevent memory dump based unpacking. Traditionally, one specific packer gen-
erally adopts only one code release strategy (e.g., full-code releasing adopted by
Bangcle and APKProtect). Latest packers, however, start to adopt both kinds of
encryption schemes to strength their protections. For instance, the Baidu packer
will first release a decrypted DEX, which does not contain the original bytecode
however. It contains a second decrypting stub responsible for decrypting original
bytecode of a method once it is invoked. That is, the packer employs a two-layer
encryption based code protection.

The decrypting stub of DEX encryption schemes could be implemented in
either Java or native code. DEX file level encryption schemes in Java usually
leverage the DexClassloader method or the openDexFile interface to fulfil a
dynamic code loading based DEX releasing. The decrypting stub executes before
the DEX file is loaded and releases the decrypted DEX file for the Dalvik VM.
However, this kind of code releasing is easily monitored if analysts could hook
certain interfaces of Android system services. Thus many schemes prefer the
native code, which is more difficult to be analyzed, to fulfil a specific Dalvik
bytecode hiding via DEX file encryption. Those schemes tend to encrypt the
code at the method level and use native code to directly manipulate memory
instead of invoking certain system APIs.

366 W. Yang et al.

3 AppSpear

3.1 Overview

The target of AppSpear is to fulfil an automated unpacking process against
most common Android packers. The involved issues of this process include anti-
analysis defense circumvention, DEX decrypting, and executable rebuilding. The
most difficult part of this process is how to overcome the deployed DEX hiding
techniques. Generally, most Android packers leverage the hybrid code execution
style of Android app and implement bytecode decrypting stubs in native code,
which are also heavily-packed and obfuscated, thus, difficult to be analyzed and
comprehended. Current effective unpacking approaches require a manual reverse
engineering to recover the decryption algorithm, and then develop corresponding
tools to decrypt the packed bytecode. This process is time-consuming and is
easily countered by the packer if it changes its encryption algorithm. To address
this challenge, AppSpear adopts a universal Android code unpacking method
that does not need to know the detail of the code encryption algorithm. The
core intuition of our work is to make use of runtime Dalvik Data Structs (DDS)
in memory to reassemble a normal DEX file. When an Android app is installed
and executed, its APK file is first decompressed and the belonging DEX file
is parsed into different structs of the Dalvik VM instance. The DEX file is a
highly structured bytecode data file. Dalvik VM parses the DEX file to initialize
the DexFile struct and then initializes a series of DDS in memory. These DDS
are essential elements of app execution and thus are not allowed to be hidden
or arbitrary tampered, otherwise the app will crash. Many packers intentionally
modify the mapped DEX data in memory after the DDS initialization to prevent
a memory dump based unpacking, but those DDS must be kept accurate to
guarantee the stability of the execution. Hence, AppSpear collects those runtime
DDS in memory to reassemble the decrypted DEX file.

The feasibility of our work is based on two observations: (1) the packer’s func-
tionality is implemented in an independent part of the app (e.g., as a dynamic
library), and is responsible for initializing the app by releasing the original DEX
bytecode before it is loaded by the Dalvik VM. For most Android packer, there
exists a clear boundary between these two parts and a transition process from the
packer’s code to the original code. This is because the hybrid execution model of
Android app restricts the arbitrary control flow transition between DEX execu-
tion and native code execution. Generally an app would fulfil the transition only
through certain system services. Thus we can detect this boundary by monitoring
certain JNI interfaces and determining when to start the DDS collection. (2) No
matter how complex the packer encrypts the original data, it seldom modifies the
semantic of the original bytecode. After the DEX loading process, it is expected
to observe accurate content of the bytecode of the original app from the DDS.

Figure 1 illustrates the overview of AppSpear’s unpacking process. In detail,
AppSpear employs the unpacking through three main steps: First, to circumvent
various anti-analysis measures of Android packers. AppSpear introspects the
Dalvik VM to transparently monitor the execution of any packed app. Second,

AppSpear: Bytecode Decrypting and DEX Reassembling 367

Packed
Apk

DDS
Collection

DDSyDDSx ...

Dex
Reassembing

Unpacked
Apk

Other Files
(xml/res/lib) Dex File

Apk Rebuilding

Execute

Modified Dalvik VM

Fig. 1. An overview of AppSpear’s unpacking process

AppSpear collects DDS in memory and performs a reassembling process on the
collected DDS with some modified methods fixed to re-generate a DEX file,
Finally, AppSpear resects anti-analysis code and further synthesizes the DEX
file with the manifest file and other resource files from the original packed APK
as an unpacked APK. After those three steps, this unpacked app is expected to
be analyzed by most regular Android app analyzing tools.

3.2 Transparent Monitoring

Android packers generally adopt complex anti-analysis measures to detect debug-
gers, emulators and static analysis tools. To effectively circumvent these anti-
analysis measures, AppSpear adopts a transparent Dalvik VM instrumentation
based bytecode monitoring and retrieving. AppSpear monitors the execution of
the app at the Dalvik VM layer, thus is transparent to any bytecode level detec-
tion. It is also a very transparent code monitoring to native code level detection
because our monitoring is a compilation time instrumentation code injection
rather than runtime instrumentation code injection. A runtime instrumentation
code injection heavily relies on system provided interfaces (e.g., ptrace) to per-
form the monitoring, and is easily detected by packers. Compared with them,
AppSpear integrates its monitoring code with the Dalvik VM’s interpreter and
is thus very difficult to be aware of.

AppSpear performs a fine-grained bytecode level instrumentation. We mod-
ify the fast interpreter of Dalvik VM to insert an instrumenting stub in each
instruction’s interpreting handler. Our implementation inserts a function call
stub at the very beginning of every opcode’s interpretation code. This brings

368 W. Yang et al.

a flexible monitoring that guarantees AppSpear could start unpacking at an
arbitrary point of the execution.

To evade typical emulator detecting of packers, AppSpear is deployed on a
standard Android device, Google’s Nexus phone, instead of an emulator. This
guarantees a very trustworthy analyzing environment: if the malware or the
packer refuses to execute on this device, then it is not compatible with most
other Android devices. The deployment of AppSpear is simple. It only modifies
the Dalvik VM’s library (/system/lib/libdvm.so) in system, and is compatible
to many mainstream Android devices.

Fig. 2. DEX reassembling

3.3 Dex Reassembling

DEX reassembling of AppSpear is a reverse process of the DEX loading procedure.
A Dalvik Data Struct (DDS) is a crucial data structure for the execution of the
Dalvik VM. A basic fact for Android app’s execution is that the runtime DDS in
memory contain the actual execution code and data information of an app. App-
Spear leverages this to employ the DEX reassembling process. Dalvik VM main-
tains 18 DDS parsed from a DEX file during runtime. Those DDS can be classified
into two types in our definition: The first type is the index DDS (IDDS) including
Header, StringId, TypeId, ProtoId, FieldId, MethodId, ClassDef and MapList. The
main functionality of IDDS is to index the real offset of the second type of DDS:
CDDS, which refers to the content DDS (CDDS) including TypeList, ClassData,
Code, StringData, DebugInfo, EncodedArray and four items related to Annotation.
This type of DDS mainly store raw data of bytecode content information. Since
Annotation relevant DDS are seldom related to program’s functionality and thus

AppSpear: Bytecode Decrypting and DEX Reassembling 369

are less important for program analysis, AppSpear currently ignores these parts
of items in the process of reassembling. We leave it for future work.

As Fig. 2 shows, in normal DEX loading process, DEX is mapped in consec-
utive memory. IDDS in initialized DexFile struct point to CDDS in the mapped
data space. However, packers may modify raw DEX file or data in memory to
produce some malformed data structures and lead to an inaccurate analysis. For
instance, packers may modify some metadata in DEX file header and set incor-
rect offset value of certain CDDS. Some packers even re-map different CDDS to
new separated memory space and modify the offset value in IDDS to point to
the new addresses. Therefore, AppSpear needs to collect DDS in memory and
rewrite a new DEX file other than just dumping the mapped DEX in memory
to complete the whole unpacking process.

Then we describe the two phases in detail: DDS collection and DEX rewriting.

Fig. 3. DDS collection

370 W. Yang et al.

3.3.1 DDS Collection
AppSpear collects necessary DDS information to help rebuild a normal decrypted
DEX file. However, after the DEX loading process a set of information in the
original DEX file is either lost or intentionally modified by packer. The main
difficulty involves how to precisely acquire the data content of DDS. AppSpear
evades these obstructions by reusing the Dalvik VM’s parsing methods (e.g.,
dexGetXXX methods in DexFile.h [4]), which always provide accurate results.

To collect DDS, AppSpear first introspects the Dalvik VM instance to access
the DexFile struct through Method->clazz->pDvmDex->pDexFile when instruc-
tions are being interpreted. Figure 3 depicts the DDS collection process. AppS-
pear starts the DDS collection from locating the DexFile struct and then access-
ing certain IDDS including pStringIds, pTypeIds, pProtoIds, pFieldIds, pMetho-
dIds, pClassDefs in DexFile struct. These IDDS are fixed size structs thus their
contents are directly read. Notice that the DexHeader struct also contains point-
ers of CDDS, but AppSpear avoids accessing them directly because of the poten-
tial modification of packers. Specifically, AppSpear traverses all attributes of
IDDS to collect accurate offset of CDDS including StringData, TypeList, Class-
Data, EncodedArray, Code, etc. After determining the offset, AppSpear further
accesses the size attribute of each DDS to determine the length.

3.3.2 DEX Rewriting
After acquiring the size and offset of DDS in memory, the next step is to deter-
mine how to place each DDS into a re-created DEX file. According to the order
of map item type codes defined in DexFile.h, AppSpear re-orders the collected
DDS and writes them back to the DEX file in order.

During the rewriting an important issue for AppSpear is the offset adjust-
ment. A DDS in memory maintains many pointers that point to other DDS and
the contents of these pointers are reloaded values that represent the offset at
runtime. When this DDS is written back into DEX file, AppSpear should adjust
this offset value to a new one that represents the actual offset in DEX file. App-
Spear checks every pointer of DDS to adjust this offset value when performing
DEX rewriting. Because the entire MapList struct stores offset and size of other
DDS, AppSpear re-calculates all metadata in MapList during rewriting process.
In addition, in case that the packer’s modification of certain value, AppSpear
directly uses known knowledge to fill them in DEX file (e.g., size of header, magic
number of header) instead of reading them from raw DDS in memory.

What’s more, during the DEX rewriting, AppSpear should also consider the
type difference between DEX file and DDS. First, in DEX file the data is 4-byte
aligned. Thus during the rewriting, AppSpear fills the gap with null byte if the
size of the DDS is not 4-byte aligned. Second, in DEX file the size attribute
of ClassData is generally encoded in ULEB128, but its corresponding attribute
in DDS is directly stored in a 32-bit variable. The rewriting should transform
this 32-bit value with ULEB128 encoding. Finally, in ClassData struct the id
of method and field is the actual value, but when rewriting they should be

AppSpear: Bytecode Decrypting and DEX Reassembling 371

adjusted into a relative offset to the first id in each ClassData. AppSpear would
automatically calculate these differences to generate a rewritten DEX file.

3.3.3 Multiple Unpacking
AppSpear needs to collect DDS at certain point of execution (denoted as unpack-
ing point) to guarantee the effectiveness of DEX reassembling. The instruction-
level instrumentation of AppSpear proves that it could choose arbitrary point to
perform collecting, which is significant for fighting against self-modified packers.

The default unpacking point of AppSpear is determined by an APK’s mani-
fest file. We choose the main activity as default unpacking point because packers
are not allowed to modify the original four components in Android although they
can add new <application> to the manifests file. Once the Dalvik VM’s inter-
pretation meets the main activity, AppSpear starts the collection.

A particular difficult point is that an app may load multiple encrypted Dalvik
executables at runtime. As a result, our unpacking should also employ DDS
collection at each point when a new DEX file is loaded. AppSpear introspects
the execution of Dalvik VM and monitors the context. When certain context
(e.g., DexClassloader is invoked by the app or a new DexFile struct is met) is
encountered, a DDS collection procedure is triggered. In this way, AppSpear
guarantees that any runtime loaded DEX file could also be captured.

One issue for our dynamic analysis based unpacking is that if an encrypted
method is not executed during runtime, it would not be able to be decrypted and
reassembled into the re-generated app. To handle this, AppSpear traces executed
instructions for multiple times, trying to trigger the hidden methods as much
as possible. After the tracing phase, AppSpear performs an offline comparison
between methods in DEX file and methods in traces. If one method in DEX
file does not correspond to that in traces, it will be repaired using the accurate
result in traces. Although dynamic analysis will meet the incompleteness issue,
AppSpear tries to approach a practically acceptable result. Moreover, if a mali-
cious method is not executed in our device, it is not expected to be triggered in
real world devices.

3.4 APK Rebuilding

Many Android app analysis tools require a complete APK file instead of a sole
DEX file to perform analysis. Moreover, in our reassembled DEX file there still
exists a small amount of anti-analysis code injected by packers to obstruct analy-
sis. AppSpear performs a last step APK rebuilding to solve these issues.

3.4.1 Anti-analysis Code Resecting
Packers usually leverage bugs of some analysis tools to inject code stubs that
obstruct the normal analysis. AppSpear resects those code stubs to help analysis.
Because those code stubs are very specific and aim at certain analysis tools, they
usually have obvious features and are easily detected. AppSpear maintains an

372 W. Yang et al.

empirical database of this kind of code and automatically resects any code stubs
in database when encountering.

3.4.2 APK Repackaging
AppSpear combines the reassembled DEX file with materials from the existing
packed app including manifests.xml and resource files to repackage the app. The
manifests file of an app declares the permissions and the entry points of the app.
The declared permissions are directly used in our repackaged app while the entry
points should be adjusted. Some packers may modify the main entry point to
their decrypting stubs so that they could perform DEX decryption before the
interpretation of the Dalvik VM. AppSpear would fix this entry point hijacking
with the original entry point of the DEX file.

4 Experimental Evaluation

To evaluate the effectiveness of AppSpear, we test malware samples packed by 10
mainstream commercial Android packers, which cover the latest and most com-
plex Android packing techniques. To illustrate and evaluate the effectiveness of
our approach on malware detection, 31 packed malware are manually chosen
from the collected 490 packed samples of SandDroid to test AppSpear. These 31
samples can run without crashes or exceptions before unpacking and are all of
different package names. In other words, we avoid to choose the packed malware
from the same original app. The chosen packed malware set covers 6 packers
(Bangcle, Ijiami, Qihoo360, Naga, NetQin, and APKProtect). Notice that latest
online Android packing services claim that they do not provide malicious code
packing service and there exist no such packed samples detected, we also want
to ensure if their countermeasures do take effect and there are no such poten-
tial packed malicious apps. So we develop a home brewed malicious app that
requires many permissions and collects sensitive data. The test app contains all
four main components (Activity, Service, Broadcast Receiver, Content Provider)
and an Application class. We submit this test app to 7 online packing services
of Bangcle (a.k.a Secneo), Ijiami, Qihoo360, Baidu, Alibaba, LIAPP and Dex-
Protector, (NetQin and APKProtect which appear in malware are not available
since the first quarter of 2015) and actually get different packed versions. In a
word, we believe that all those 10 packers (7 in existing malware samples and 3
extra online packing services) could help protect malicious apps.

We execute the packed samples on our devices implemented with AppSpear.
In our experimental evaluation, AppSpear is deployed on two devices, Galaxy
Nexus and Nexus 4 respectively, and the versions of Android operating system
are 4.3 and 4.4.2. We build a modified Dalvik VM (in the form of libdvm.so)
based on the AOSP source code and replace the default Dalvik VM with our
AppSpear integrated one. Notice that our deployment leverages a third-party
Recovery subsystem (e.g., CWM Recovery) to fulfil the system lib replacement
and does not require a privilege escalated Android (a.k.a rooted Android), which
may fail to pass the integrity checking of some packers.

AppSpear: Bytecode Decrypting and DEX Reassembling 373

In our experiment, AppSpear successfully circumvents all anti-debugging and
integrity checking measures of these packers, and all of the packed samples on
our devices execute stably without occurring exceptions or crashes. Using the
default setting, AppSpear conducts the unpacking as soon as the Main Activity
class invokes the onCreate method. Almost all of the samples are unpacked
automatically and the corresponding unpacked APK files are generated. As a
contrast, existing methodology such as memory dumping either fails and breaks
on the halfway due to the various anti-analysis techniques or gets the broken
DEX files that cannot be parsed correctly by other analysis tools and need
further fix.

4.1 Accuracy of DEX Reassembling

We first evaluate the accuracy and feasibility of the newly generated DEX files.
We choose 5 popular static tools to validate the reassemled DEX files. They are
DEXTemplate for 010Editor, Baksmali, Enjarify, IDA Pro and AndroGuard.
The reason why we choose these five tools is that they are all widely-used and
can parse a DEX file to extract information from it. They have their own parsing
engines and have no dependency with each other. We consider the failure of DEX
parsing as the following conditions:

DEXTemplate for 010Editor is a DEX file parsing template. It will raise errors
if the format of a DEX file is invalid. Baksmali is a widely-used disassembler
for DEX files. When disassembling invalid DEX files, it will throw exceptions.
IDA Pro also supports DEX file disassembling. If it prompts windows indicating
parsing error or can not identify the files as DEX when opening the reassembled
DEX files, then we regard this condition as DEX parsing failure. Enjarify, which
is provided by Google, is a tool for translating Dalvik bytecode to equivalent
Java bytecode, aiming to replace dex2jar. When the translation process of a DEX
file ends, Enjarify will give the result such as how many classes are translated
successfully and how many fail. As long as one class in the whole DEX file fails
to be translated, we regard it as an parsing failure. The DEX parsing engine
of Androguard is implemented by Python and remains active in open source
community. We regard the DEX parsing failure of AndroGuard occurs once it
raises errors or exceptions while it is being used to do further static analysis
(such as sensitive API extraction in DEX).

The testing set consists of 7 home brewed samples submitted to online packers
and 31 malware samples from the collected 490 packed samples, which covers 10
different packers altogether.

The result in Table 2 shows that DEXTemplate for 010Editor, IDA Pro and
AndroGuard successfully parse all reassembled DEX files. However, Baksmali

Table 2. Success rate of parsing reassembled DEX

DEXTemplate Baksmali Enjarify IDA Pro AndroGuard

38/38 37/38 34/38 38/38 38/38

374 W. Yang et al.

fails to parse only one sample and raises exceptions. The reason is that some
illegal instructions, which cause the parsing failure, are intentionally inserted into
9 of 350 classes in that sample. But the exceptions in those 9 classes do not affect
the parsing of other 341 classes. Four samples fail when Enjarify tries to translate
them to JAR file. Among the 4 samples, 1 % classes on average in each sample
appear the parsing errors. After manually checking the reason, we find that these
failure result from the limitations presented by Enjarify itself on its homepage.
The result proves that the success rate of parsing the reassembled DEX files
is high and those few failure cases are mainly caused by the implementation
problem of the static tools themselves.

4.2 Unpacking Code Packed Malware

Since AppSpear’s target is to rebuild a packed malware into its normal form so
that program analysis tools or automated malware detection systems are able
to analyze its real behaviors, we implement an in-depth static sensitive behavior
analysis tool based on AndroGuard to further evaluate the unpacking results.
The tool extracts the sensitive permissions of an APK and counts the number
of sensitive behaviors (our tool simply regard the sensitive API calls as sensitive
program behaviors) related to those permissions (referring to the map of API and
permissions in AndroGuard [2]) before and after unpacking. Since packers do not
change the permissions declared in the manifest file, the number of permissions
used by samples remains still.

AppSpear conducts the unpacking work on 31 packed malware and the details
of our unpacking and analysis results are shown in Table 3. The third column
of Table 3 indicates the number of sensitive permissions extracted by our static
analysis tool. The fourth column and fifth column indicate the number of sen-
sitive behaviors our static analysis tool counts before and after the AppSpear’s
unpacking respectively. As Table 3 shows, before the unpacking packers can hide
almost all sensitive behaviors of malware which can evade the detection of static
analysis tools. After the unpacking of AppSpear, the number of detected sensi-
tive behaviors in unpacked malware increases significantly. This proves that an
effective unpacking process is crucial to current malware detection.

Several noticeable observations are also revealed by our experiment: First,
the samples packed by APKProtect generally possess higher number of sensitive
behaviors compared with other samples. After a manual analysis, we find that
the packed code of APKProtect is not entirely encrypted. Instead, the DEX file
is only partially encrypted by APKProtect. As a result, some sensitive behav-
iors are not hidden by the packer before the execution and our static tool can
detect them. However, after the unpacking of AppSpear, more hidden sensitive
behaviors appear. Second, a malware sample packed by Bangcle packer (MD5
sum: 0FA57B3D98C24EABB32C47CA3C47D38A) presents an unusually high num-
ber of sensitive behaviors before unpacking. After manually checking the packed
sample, we find that it consists of several third-party libraries which contain
those sensitive behaviors. Because the packer only packs the main DEX file of
the malware, the 102 sensitive behaviors refers to those in third-party libraries.

AppSpear: Bytecode Decrypting and DEX Reassembling 375

Table 3. Sensitive behaviors before and after AppSpear’s unpacking

Packer Name Malware Sample Permissions Packed Unpacked

Qihoo360 CE8668B81420CF6843DA4D2EB846C314 6 5 52

9EC616C1BC4470EE03C4E299C3A616D6 16 5 76

878CF954DAE814D83BFFC5374E8BF423 12 5 60

Bangcle 6D3D891FC3459CA2A9911D8438966B20 8 0 84

3FF42BF94C39A9E4B2F0EA50747670B4 6 0 30

3F6487D723F60B4C80AC7EAB7F22BBCC 13 0 332

03CA02466849847A26A926D6605927D0 15 0 174

1D44FA56473B5EC27E75C734062102CA 8 0 13

020D37EE843411AB749CADF17FC43006 15 0 108

5F5D6F391148A4E3ACDFF3C57B8EA6EA 10 0 100

2E06E5A5350EF54342D1328DF216D261 7 0 213

1AF5B2D290902EE0124239F4315F4B40 9 0 91

4DA607EDB8D7689B604C775670E5DA6F 6 0 81

5B5674C8BA87CBC163328B27EFF24392 11 0 230

07D9EB10587722E26BA93CB47D598641 7 0 65

3AC41F02613FE1436564AD1C30226416 16 2 6

9A10E7A615589B0E949F9FF9CBDFE50E 12 0 176

4E478E2BE20EAC9C0B939FA6ADA60CE5 6 0 30

0FA57B3D98C24EABB32C47CA3C47D38A 6 102 89

4B9762D0B4F00E6F1A42D4AA6E984301 21 4 109

NetQin 2C3EB7833619F35A54C91166BAAE5FCD 11 5 11

C63AE255C1F3A22DAC47E8BFB400615B 5 5 6

2A7CADAB7FC61508C70B146B496BDA12 17 5 41

Naga 91815F6F381DB7CA793885873AFFA782 7 0 25

Ijiami FFB08850111C1D8B061792953588CB88 21 0 109

A1B22DE648076B8B9515F77326D9DB13 19 0 80

APKProtect A58DB782081C0A41BE7556FD662F9F09 23 21 30

67EC17C3B482AC5C1E896A2BB2C64353 5 4 13

3094CF944D45E48201A8E8EC4C742CD0 2 1 14

FC272EA7F6A5FE21ED4EADAD8EF34155 9 43 45

7BB4FB90B8C37311DC6C35AAA15F58C6 2 1 1

After the unpacking of AppSpear, another 89 sensitive behaviors in the unpacked
DEX file are detected by our tool, which indicate the real malicious behaviors
of this malware sample.

376 W. Yang et al.

4.3 Home Brewed Samples

Considering the fact that some newly-born packers do not appear in the above
malware samples and also even some packers appear, they improve their code
packing strength all along, we submit our home brewed sample to 7 latest online
packing services to further evaluate the effectiveness of AppSpear. Different from
the malware in wild, we have the original DEX file of our home brewed sample
before packing, so we can manually verify those unpacked apps by comparing
their decrypted and reassembled DEX file with the original one. The content of
DEX file in each unpacked app contains the exact components and classes of the
original app, which demonstrates the effectiveness of our approach.

To thoroughly understand the detailed advanced packing techniques and
prove that AppSpear does defeat the anti-analyses defenses used by those pack-
ers, we conduct an in-depth study on verifying the results manually. We find
that due to its design principle, AppSpear unpacks the protected app in a uni-
fied way without considering certain anti-analyses defenses. For instance, some
packers hook system calls (e.g., write()) in their own process space to prevent
the DEX data from being dumped. If the source address of write() is located
in the memory scope of the mapped raw DEX data, the content will be modi-
fied by the hooking function. AppSpear evades memory dump measures through
reassembling and generating a new DEX file instead of reading the raw DEX
data, and the unpacking results are accurate. In addition, we manually check
each packer’s DEX hiding schemes to validate the correctness of our unpack-
ing strategy. We find that the DEX hiding schemes of Qihoo360, LIAPP and
Bangcle adopt a full-code unpacking style. Even the encryption algorithms of
their DEX hiding schemes are unknown to AppSpear, our DEX reassembling
approach easily collects relevant DDS and recovers exactly the same DEX as the
original one.

Ijiami. This packer modifies the DEX header to erase the magic number of
the DEX file. The measure is used to thwart memory dump based unpacking
method, because it is difficult to automatically locate the target DEX data
through the memory space of the process without the help of the magic number.
Since AppSpear focuses on the DexFile struct rather than the raw DEX data in
memory, it is not affected by this counter-measure. What’s more, Ijiami modifies
the attribute of headerSize in DEX header to a larger value, which crashes some
static analysis tools when parsing the unpacked DEX. However, AppSpear has
already considered this modification and always uses the correct value to rewrite
the reassembled DEX file in the DEX rewriting process.

Alibaba. This packer also applies modifications to the original DEX file. The
reassembled DEX file from the sample packed by Alibaba packer contains more
classes than that in the original DEX file. Some of these injected classes will
cause the failure of some static analysis tools such as dex2jar. AppSpear con-
siders these classes as anti-analysis code and resects them directly. The DEX
hiding scheme also re-maps the DexCode of every DexMethod, and modifies the
codeOff attribute in DexCode struct to a negative value, AppSpear ignores those

AppSpear: Bytecode Decrypting and DEX Reassembling 377

modifications and directly acquires data of every DDS to reassemble a new DEX
file, thus the reassembled DEX file is accurate.

Baidu. This packer adopts an incremental packing style. It erases the DEX
header and inserts native methods as wrapper of some specific ’target’ meth-
ods (e.g., onCreate of MainActivity). The code of these methods are patched
as NOP until they are executed. When executed, the wrapping native method
before the patched method will be first executed to recover the actual bytecode.
After the invoking, the bytecode is immediately erased by the wrapping native
method after the patched method. AppSpear deals with this situation by adopt-
ing instruction level tracing and gets the real bytecode of the target method,
and repairs those patched methods using the traced information.

Dexprotector. This packer splits the original DEX file to several DEX files and
packs them. AppSpear can monitor dynamic DEX file loading in one process and
recover multiple packed DEX files. Besides the packing part of the packer, the
recovered DEX files also indicate that Dexprotector applies heavy code obfusca-
tion to the original DEX file. AppSpear focuses on hidden code unpacking instead
of code de-obfuscation. Source code obfuscation may increase the comprehending
complexity for reverse engineering, but it seldom affects the malware detection
because the obfuscation is not able to hide privilege API invoking, which directly
exposes the malicious intention. Although AppSpear is not able to de-obfuscate
this DEX file (de-obfuscation is out of our work’s scope), the multiple unpacked
DEX files still contain all bytecode information of the original app and are ade-
quate to a later program analysis or malware detection.

5 Discussion

AppSpear is based on dynamic analysis, which means it would suffer from the
code coverage issue. If a method is not invoked during runtime, packers would not
decrypt the bytecode of this method, then AppSpear can not recover this part
of code. Fortunately, AppSpear is deployed on real devices and tries to trigger
the hidden methods as much as possible, which can mitigate this shortcoming.
From the other side, it is less meaningful for packers to hide a malicious method
that is seldom invoked during runtime. From the results of our experiment, we
find out that most hidden methods locate on entry point classes or can be easily
triggered.

Malware can employ various anti-analysis techniques for emulator or VM
evasion [18]. It is feasible that packers can use similar ways to detect AppS-
pear and then hide the decrypting procedure to defeat our unpacking approach.
They can utilize some code features or fingerprint of AppSpear to avoid being
analyzed by AppSpear. To thwart such evasion, AppSpear can also use similar
anti-detection measures as emulator evading detection proposed in [14].

Besides commercial Android packers, there also exist some home brew packers
and some malware may use them to protect the code. Although the methodology
of our proposed approach is universal on monitoring and unpacking most kinds

378 W. Yang et al.

of DEX encryption schemes, due to the lack of sample for testing, we can not
guarantee that AppSpear could handle those home brew packers perfectly. We
leave this as future work. Particularly, some advanced packers transform byte-
code into obfuscated native code executables on Android. AppSpear can not
de-obfuscate native code obfuscation. Packers may even pack the native code in
original APKs even though this kind of code packing technique is still not preva-
lent on Android. This is one of the limitations of our work and it is possible to
be addressed in future with advanced de-obfuscation strategy.

6 Related Work

The topic of code packing have been thoroughly studied in the literature, and
several solutions have been proposed for code unpacking [13]. Pedrero et al. [26]
present a very comprehensive study on commodity runtime code packers. Their
work studied the runtime complexity of packers and evaluated on both off-the-
shelf packers and custom packed binaries on desktop computer systems. On the
commodity desktop system, a series of automatic unpacking approaches and
tools have been proposed. Polyunpack [20] performs automatic unpacking by
emulating the execution of the program and monitoring all memory writes and
instruction fetches, and considers all instructions fetched from previously written
memory locations to be successfully unpacked. Omniunpack [16] is a real-time
unpacker that performs unpacking by looking for written-then-execute pattern.
Renovo [15] also uses the written-then-execute pattern to perform the unpack-
ing. It instruments the execution of the binary in an emulator and traces the
execution at instruction-level. Pandoras Bochs [9] is also an emulator based
automatic malware unpacking tool, which uses the full system emulator bochs
as its engine. Eureka [22] uses coarse-grained NTDLL system call monitoring
for automated malware unpacking, is only available for Windows packers. These
unpacking approaches and tools mainly concern about packers of desktop plat-
forms. Compared with classic Windows and Linux code packers, Android packers
are more complex because they involve both native code and Dalvik bytecode,
which means a packer should consider both aspects and keep the balance between
protection strength and stability. Meanwhile, the analysis tools (e.g., emulators
or code instrumentation tools) on Android platform are less powerful. To the
best of our knowledge, our work is the first one to study Android packers sys-
tematically, and can handle every available commercial packer.

Before our work, there was a range of summarization work that introduces the
feature and anti-analysis technique of certain Android packers. Strazzere intro-
duced anti static analysis and anti dynamic analysis code protection techniques
in [23,24] separately. Detecting emulator is also an important anti-analysis mea-
sure of many packers and is thoroughly discussed in [27]. However, only a few
work discuss the bytecode encryption issue in a generic perspective. As far as we
know, current bytecode decryption techniques or tools either directly copy DEX
data in memory, which is not feasible for unpacking state-of-the-art Android
packers, or rely on encryption algorithm reverse engineering, which involves sub-
stantial manual efforts. The main shortcoming of many unpacking approaches

AppSpear: Bytecode Decrypting and DEX Reassembling 379

is that they heavily rely on the specific memory dump based methodology. For
instance, Park [17] leverages wait-for-debug feature of Android platform to cir-
cumvent anti-debugging and then performs a memory dump based unpacking.
Yu [28] and Strazzere [25] make some assumptions of the packer’s features and
leverage these features to locate bytecode, which are already unavailable due to
the evolution of the packer. DexHunter [29] mainly focuses on how to locate and
dump the DEX in memory. Our proposed DEX reassembling technique settles
this deficiency and leads to a more universal unpacking.

The ART runtime has been introduced since Android 4.4.2 to support a
more efficient app execution. Although AppSpear is based on the Dalvik VM of
Android and focuses on DEX reassembling, which means it is not compatible
for those Android versions without Dalvik VM, all apps can also be executed on
Dalvik VM even though new ART runtime is supported because of the backward
compatibility requirement, So our approach is still effective for a expected long
period.

Android malware detection is an active research area and many methods [7,
10,12,19,30] have been proposed to address the large-scale malware analysis
issue. However, seldom work considers the code packing issue. Our work is a
solution to enhance current malware analysis. The unpacked APK from App-
Spear can help program analysis tools, especially those static analysis tools,
perform a more accurate malware detection.

7 Conclusion

This paper describes a systematic study of code packed Android malware. Com-
mercial Android packers are analyzed and relevant anti-analysis techniques are
summarized. An investigation of 37,688 Android malware samples is then con-
ducted and 490 code packed apps are analyzed with the help of our proposed
AppSpear, an automated code unpacking system. AppSpear employs a novel
bytecode decrypting and DEX reassembling approach to replace traditional man-
ual analysis and memory dump based unpacking. Experiments demonstrate that
our proposed AppSpear system is able to unpack most malware samples pro-
tected by popular commercial Android packers, and it is expected to become an
essential supplementary process of current Android malware detection.

Acknowledgments. We would like to thank our shepherd, Elias Athanasopoulos, and
the anonymous reviewers for their insightful comments that greatly helped improve the
manuscript of this paper.

References

1. An APK Fake Encryption Sample. https://github.com/blueboxsecurity/
DalvikBytecodeTampering

2. API permissions.py in AndroGuard. https://github.com/androguard/
androguard/blob/master/androguard/core/bytecodes/api permissions.py

https://github.com/blueboxsecurity/DalvikBytecodeTampering
https://github.com/blueboxsecurity/DalvikBytecodeTampering
https://github.com/androguard/androguard/blob/master/androguard/core/bytecodes/api_permissions.py
https://github.com/androguard/androguard/blob/master/androguard/core/bytecodes/api_permissions.py

380 W. Yang et al.

3. AVL Malware Report (2014). http://blog.avlyun.com/2015/02/2137/
malware-report/

4. libdex/DexFile.h - platform/dalvik - Git at Google. https://android.googlesource.
com/platform/dalvik/+/android-4.4.2 r2/libdex/DexFile.h

5. SandDroid - An automatic Android application analysis system. http://sanddroid.
xjtu.edu.cn/

6. Apvrille, A.: Playing Hide and Seek with Dalvik Executables. Hacktivity (2013)
7. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., CERT Siemens:

Drebin: Effective and explainable detection of android malware in your pocket.
In: Proceedings of Network and Distributed System Security Symposium (NDSS),
21st (2014)

8. Bilge, L., Lanzi, A., Balzarotti, D.: Thwarting real-time dynamic unpacking. In:
Proceedings of European Workshop on System Security, 4th (2011)

9. Böhne, L.: Pandoras bochs: Automatic unpacking of malware. PhD thesis, Univer-
sity of Mannheim (2008)

10. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices (2011)

11. Crussell, J., Gibler, C., Chen, H.: AnDarwin: scalable detection of semantically sim-
ilar android applications. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 182–199. Springer, Heidelberg (2013)

12. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services (2012)

13. Guo, F., Ferrie, P., Chiueh, T.: A study of the packer problem and its solutions.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 98–115. Springer, Heidelberg (2008)

14. Hu, W.: Guess Where I am: Detection and Prevention of Emulator Evading on
Android. HITCON (2014)

15. Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: Proceedings of the 5th ACM Workshop on Recurring Malcode
(2007)

16. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast, generic, and safe
unpacking of malware. In: Proceedings of the 23rd Computer Security Applications
Conference (2007)

17. Park, Y.: We can still crack you! general unpacking method for android packer
(not root). In: Black Hat Asia (2015)

18. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the 7th European Workshop on System Security (EuroSec) (2014)

19. Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E.: Harvesting runtime data in
android applications for identifying malware and enhancing code analysis. Techni-
cal report (2015)

20. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automating
the hidden-code extraction of unpack-executing malware. In: Proceedings of the
22nd Computer Security Applications Conference (2006)

21. Schulz, P., Matenaar, F.: Android reverse engineering and defenses. http://bluebox.
com/wp-content/uploads/2013/05/AndroidREnDefenses201305.pdf

22. Sharif, M., Yegneswaran, V., Saidi, H., Porras, P.A., Lee, W.: Eureka: a framework
for enabling static malware analysis. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 481–500. Springer, Heidelberg (2008)

http://blog.avlyun.com/2015/02/2137/malware-report/
http://blog.avlyun.com/2015/02/2137/malware-report/
https://android.googlesource.com/platform/dalvik/+/android-4.4.2_r2/libdex/DexFile.h
https://android.googlesource.com/platform/dalvik/+/android-4.4.2_r2/libdex/DexFile.h
http://sanddroid.xjtu.edu.cn/
http://sanddroid.xjtu.edu.cn/
http://bluebox.com/wp-content/uploads/2013/05/AndroidREnDefenses201305.pdf
http://bluebox.com/wp-content/uploads/2013/05/AndroidREnDefenses201305.pdf

AppSpear: Bytecode Decrypting and DEX Reassembling 381

23. Strazzere, T.: Dex Education: Practicing Safe Dex. Black Hat, USA (2012)
24. Strazzere, T.: Dex education 201: anti-emulation. HITCON (2013)
25. Strazzere, T., Sawyer, J.: ANDROID HACKER PROTECTION LEVEL 0. DEF

CON 22 (2014)
26. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: SoK: deep packer

inspection: a longitudinal study of the complexity of run-time packers. In: Pro-
ceedings of IEEE Symposium on Security and Privacy 36th (2015)

27. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In Proceedings of ACM symposium on Information, computer and communications
security, 9th (2014)

28. Yu, R.: Android packers: facing the challenges, building solutions. In: Proceedings
of the 24th Virus Bulletin International Conference (2014)

29. Zhang, Y., Luo, X., Yin, H.: Dexhunter: toward extracting hidden code from packed
android applications. In: Proceedings ESORICS (2015)

30. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, get off of my market: detecting
malicious apps in official and alternative android markets. In: Proceedings of the
19th Network and Distributed System Security Symposium (NDSS) (2012)

HELDROID: Dissecting and Detecting Mobile
Ransomware

Nicoló Andronio, Stefano Zanero, and Federico Maggi(B)

DEIB, Politecnico di Milano, Milano, Italy
nicolo.andronio@mail.polimi.it,

{stefano.zanero,federico.maggi}@polimi.it

Abstract. In ransomware attacks, the actual target is the human, as
opposed to the classic attacks that abuse the infected devices (e.g., botnet
renting, information stealing). Mobile devices are by no means immune
to ransomware attacks. However, there is little research work on this mat-
ter and only traditional protections are available. Even state-of-the-art
mobile malware detection approaches are ineffective against ransomware
apps because of the subtle attack scheme. As a consequence, the ample
attack surface formed by the billion mobile devices is left unprotected.

First, in this work we summarize the results of our analysis of the exist-
ing mobile ransomware families, describing their common characteristics.
Second, we present HelDroid, a fast, efficient and fully automated app-
roach that recognizes known and unknown scareware and ransomware
samples from goodware. Our approach is based on detecting the “build-
ing blocks” that are typically needed to implement a mobile ransomware
application. Specifically, HelDroid detects, in a generic way, if an app
is attempting to lock or encrypt the device without the user’s consent,
and if ransom requests are displayed on the screen. Our technique works
without requiring that a sample of a certain family is available before-
hand.

We implemented HelDroid and tested it on real-world Android ran-
somware samples. On a large dataset comprising hundreds of thousands
of APKs including goodware, malware, scareware, and ransomware, Hel-

Droid exhibited nearly zero false positives and the capability of recog-
nizing unknown ransomware samples.

1 Introduction

Theorized back in 1996 [1], ransomware attacks have now become a reality.
A typical ransomware encrypts the files on the victim’s device and asks for a
ransom to release them. The miscreants implement various extortion tactics (as
explained in Sect. 2), which are both simple and extremely effective. In the “best”
case, the device is locked but data is actually left in place in untouched; in the
worst case, personal data is effectively encrypted. Therefore, even if the malware
is somehow removed, in absence of a fresh backup, the victims have no other
choice than paying the requested ransom to (hope to) regain access to their data.
McAfee Labs [2] and the FBI [3] recently concluded that the ransomware trend
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 382–404, 2015.
DOI: 10.1007/978-3-319-26362-5 18

HELDROID: Dissecting and Detecting Mobile Ransomware 383

is on the rise and will be among the top 5 most dangerous threats in the near
future.

In parallel, mobile malware is expanding quickly and steadily: McAfee Labs
recently reported a 100 % growth in Q42014 since Q42013 [2, p.28], VirusTotal
receives hundred of thousands of Android samples every week1, making them the
fourth most submitted file type. Unfortunately, mobile devices are not immune
by ransomware. A remarkable wave infected over 900,000 mobile devices in a
single month alone [4]. Moreover, Kaspersky Labs [5] tracked a another notable
mobile campaign, revealing a well-structured distribution network with more
than 90 hosts serving the malicious APKs, more than 400 URLs serving the
exploits, one controller host, and two traffic-driving networks. Alarmingly, the
cyber criminals are one step ahead of the defenders, already targeting mobile
users. Given the wide attack surface offered by mobile devices along with the
massive amount of sensitive data that users store on them (e.g., pictures, digital
wallets, contacts), we call for the need of mobile-specific ransomware counter-
measures. Our goal in this paper is to make a first step in this direction.

Current Solutions. To the best of our knowledge, current mitigations are com-
mercial cleanup utilities implementing a classic signature-based approach. For
example, SurfRight’s HitmanPro.Kickstart [6] is a bootable USB image that uses
a live-forensics approach to look for artifacts of known ransomware. Other tools
such as Avast’s Ransomware Removal [7] (for Android) release the ransomed files
by exploiting the näıve design of certain families (i.e., SimpLocker) to recover
the encryption key, which fortunately is not generated on a per-infection basis.
The research community knows very well that such approaches lack of generality.
Also, they are evidently limited to known samples, easy to evade, and ineffective
against new variants. From the users’ perspective, signature-based approaches
must be constantly updated with new definitions, and are rarely effective early.

Research Gap. To our knowledge, no research so far have tackled this emerg-
ing threat. Even state-of-the-art research approaches (e.g., [8]), which demon-
strated nearly-perfect detection and precision on non-ransomware Android
malware, recognized only 48.47 % of our ransomware dataset (see Sect. 8). The
reason is because ransomware schemes are essentially mimicry attacks, where the
overall maliciousness is visible only as a combination of legitimate actions. For
instance, file encryption or screen locking alone are benign, while the combina-
tion of unsolicited encryption and screen locking is certainly malicious. Thus, it
is not surprising that generic malware-detection approaches exhibit a low recall.

Proposed Approach. After manually analyzing a number of samples of
Android ransomware variants from all the existing families, our key insight is
to recognize specific, distinctive features of the ransomware tactics with respect
to all other malware families — and, obviously, to goodware. Specifically, our
1 https://www.virustotal.com/en/statistics/.

https://www.virustotal.com/en/statistics/

384 N. Andronio et al.

approach is to determine whether a mobile application attempts to threaten the
user, to lock the device, to encrypt data — or a combination of these actions.

We implemented HelDroid to analyze Android applications both statically
and dynamically. In particular, HelDroid uses static taint analysis and light-
weight emulation to find flows of function calls that indicate device-locking or
file-encryption behaviors. Our approach to detecting threatening behavior —
a core aspect of ransomware — is a learning-based, natural language process-
ing (NLP) technique that recognizes menacing phrases. Although most of our
analysis is static, the threatening-text detector does execute the sample in case
no threatening text is found in the static files. This allows to support off-band
text (e.g., fetched from a remote server).

Overall, HelDroid is specific to the ransomware schemes, but it does not rely
on any family in particular. Moreover, the detection features are parametric and
thus adaptable to future families. For instance, the taint-analysis module relies
on a single configuration file that lists interesting sources and sinks. Similarly,
the threatening-text detector supports several languages and new ones can be
added with little, automatic training.

Evaluation Results. We tested HelDroid on hundreds of thousands of sam-
ples including goodware, generic malware, and ransomware. HelDroid correctly
detected all the ransomware samples, and did not confused corner-case, benign
apps that resembled some of the typical ransomware features (e.g., screen locking,
adult apps repackaged with disarmed ransomware payload). Overall, HelDroid

outperformed the state-of-the-art approach for Android malware detection (see
Sect. 8). HelDroid performed well also against unknown ransomware samples,
missing only minority of cases where the language was not supported out of the
box. This was easily fixed with 30 min of work (i.e., find a textbook in Spanish
and re-train the NLP classifier). The detection heuristics of HelDroid exhib-
ited only a dozen of false positives over hundreds of thousands non-ransomware
apps.

Prototype Release. We provide access to HelDroid through an API (on top
of which we implemented a simple Android client), and release our dataset for
research purposes: http://ransom.mobi.

Original Contributions. In summary:
– We are the first at looking at the ransomware phenomenon against mobile

devices. We provide a retrospective view of the past two years and distill the
characteristics that distinguish mobile ransomware from goodware (and from
other malware).

– We propose three generic indicators of compromise for detecting Android ran-
somware activity by recognizing its distinguishing features. The novel aspects
of our approach include a text classifier based on NLP features, a lightweight
Smali emulation technique to detect locking strategies, and the application of
taint tracking for detecting file-encrypting flows.

http://ransom.mobi

HELDROID: Dissecting and Detecting Mobile Ransomware 385

– We implement (and evaluate) our approaches for the Android platform and
open them to the community as a JSON-based API service over HTTP. This
is the first public research prototype of its kind.

2 Background and Motivation

Fascinatingly, the idea of abusing cryptography to create extortion-based attacks
was first theorized and demonstrated back in 1996 [1]. The authors defined the
concept of cryptovirus as a “[malware] that uses public key [...] to encrypt data
[...] that resides on the host system, in such a way that [...] can only be recovered
by the author of virus”.

Based on this definition, ransomware can be seen as an advanced, coercive
cryptovirus. Coercion techniques, also seen in various scareware families, include
threatening the victim of indictments (e.g., for the detention of pornographic con-
tent, child pornography), violation of copyright laws, or similar illegal behavior.
In pure scareware, the cyber crooks exploit the fear and do not necessarily lock
the device or encrypt any data. In pure ransomware, before or after the threat-
ening phase the malware actually locks the device and/or encrypts sensitive con-
tent until the ransom is paid, usually through money transfer (e.g., MoneyPak,
MoneyGram) or crypto currencies. Although digital currency was not used in
practice back in 1996, curiously, Young and Yung [1] foresaw that “information
extortion attacks could translate in the loss of U.S. dollars if electronic money
is implemented.” Notably, CryptoLocker’s main payment mechanism is, in fact,
Bitcoin [9,10].

2.1 Motivation

Noticing the rapid succession of new families of mobile ransomware, as summa-
rized in Table 1, we downloaded and manually reverse engineered a few samples
for each family, noticing three, common characteristics. From this manual analy-
sis we hypothesize that these independent characteristics are representative of
the typical mobile ransomware scheme and can be combined in various ways to
categorize a sample as scareware, ransomware, or none of the previous.

Device Locking. All families doing device locking use one among these three
techniques. The main one consists in asking for device-administration rights and
then locking the device. Another technique is to superimpose a full-screen alert
dialog or activity. The third technique consists in trapping key-pressure events
(e.g., home or back button), such that the victim cannot switch away from the
“lock” screen.

Data Encryption. Some samples do not actually have any encryption capa-
bility, even if they claim so; alternatively, they may include encryption routines
that are however never called. To our knowledge, only the SimpLocker family

386 N. Andronio et al.

Table 1. Timeline of known Android ransomware or scareware families (we exclude
minor variants an aliases). E = Encrypt, L = Lock, T = Threaten.

First Seen Name Extort E L T Target and notes

May 2014 Koler (Reveton) [5] $300 ✗ ✓ ✓ Police-themed screen lock; local-
ized in 30 countries; spreads via
SMS

Jun 2014 Simplocker [12] $12.5a ✓ ✓ ✓ All files on SD card; uses hard-
coded, non-unique key

Jun 2014 Svpeng [13] $200 ✗ ✓ ✓ Police-themed screen lock

Aug 2014 ScarePackage [14] $100 ✗ ✓ ✓ Can take pictures and scan the
device for banking apps or finan-
cial details

Early 2015 New Simplocker [11] $200 ✓ ✓ ✓ Per-device keys; advanced C&C
aCorresponding to, approximately, 260 UAH.

currently implements file encryption. In the first version, the encryption key was
hardcoded, whereas the second version [11] generates a per-device key. Neverthe-
less, samples of this family never call any decryption routine, arguably leaving
data permanently unavailable even after payment (unless unlocking is performed
through a separate app).

Threatening Text. All current families display threatening messages of some
sort. We noticed that families localized in English rely on MoneyPak for pay-
ments, whereas families localized in Russian accept credit cards as well.

2.2 Goals and Challenges

Having considered the threat posed by ransomware, the potential attack surface
comprising billions of Internet-connected devices and the limitations of current
countermeasures, our high-level goal is to overcome the downsides of signature-
based approaches, and recognize both known and novel ransomware variants
robustly by generalizing the insights described in Sect. 2.1.

Achieving our goal is challenging. Recognizing variants requires a robust model
of their characterizing features that has both generalization and detection capa-
bilities, in order to catch both new and known ransomware implementations,
possibly in an adaptive way. For example, the task of modeling and recognizing
threatening text must account for localization, creating a model that can be
quickly re-adapted to new languages before new ransomware campaigns start
spreading. Similar observations apply to other characterizing features.

2.3 Scope and Assumptions

Although ransomware detection is by no means tied exclusively to the mobile
world, in this work we focus on Android ransomware. Mobile ransomware is

HELDROID: Dissecting and Detecting Mobile Ransomware 387

Sentence
extraction

Static flow
extraction

Static code
analysis

Generic threatening
sentences for training

Threatening
Text Detector

Locking
Detector

Encryption
Detector

?

Ransomware

Scareware

Goodware or
other malware

Samples

Dynamic
analysis

no threat found

statically allocated strings

Smali instructions

tainted flows
encrypt and/or lock +

threatening text

threatening text

none

Fig. 1. Android samples are statically analyzed for extracting “artifacts” that typical of
ransomware tactics (encryption, locking, threatening). If no threatening text is found,
off-band text is analyzed by collecting strings allocated by the sample while running
in an instrumented sandbox.

indeed evolving quickly, with 5 families in less than one year (May 2014–Jan
2015), and self-replicating capabilities since the first release.

We focus on challenges that are unique to the ransomware-detection problem
(i.e., detecting locking strategies, encryption operations and threatening mes-
sages). In this work, we set aside: related problems already tackled by current or
past research such as (anti-)evasion techniques, or other aspects that are typical
of malicious software in general). In Sect. 7 we discuss the impact of our choices.

3 HELDROID’s Approach

In this section we describe how, at a conceptual level, HelDroid analyzes each
Android APK file to decide whether it is a ransomware sample.

As summarized in Fig. 1, we employ three, independent detectors, which can
be executed in parallel. Each detector looks for a specific indicator of compro-
mise typical of a ransomware malware. The Threatening Text Detector uses
text classification to detect coercion attempts (Sect. 3.1). If the result of this
classifier is positive, but the others are not, we label the sample as “scareware”.
This means that the application limits itself to displaying some threatening text
to convince the victim in doing some action. If also the Encryption Detector
(Sect. 3.2) and/or the Locking Detector (Sect. 3.3) are triggered, this means
that the application is actively performing either action on the infected device. In
this case, we label the sample as “ransomware”. We designed deterministic deci-
sion criteria based on static analysis to detect encryption or locking operations.
Note that if the Threatening Text Detector is not triggered, the sample is
discarded and cannot be considered as ransomware or scareware. Although these
three detectors could be combined in other ways (e.g., by including weighting),
in this work we consider the presence of threatening text as mandatory for a
ransomware author to reach her goal. This aspect is discussed thoroughly in
Sect. 7.

388 N. Andronio et al.

3.1 Threatening Text Detector

The goal of this analysis is to recognize menacing phrases in statically and
dynamically allocated strings (i.e., sequences of printable characters).

Text Extraction. HelDroid first extracts and analyzes static strings by pars-
ing the disassembled code and resource files (e.g., assets, configuration files). If
HelDroid detects no threatening text, then it analyzes dynamically allocated
strings: It runs the sample in a sandbox, captures a network traffic dump (i.e.,
PCAP), decodes application-layer protocols (e.g., HTTP) and extracts strings
from the resulting data. The sandbox that we employ also extracts strings allo-
cated dynamically (e.g., as a result of a decryption), but none of the current
samples used these measures.

Text Classification. To estimate whether a string contains threatening sen-
tences, we use a natural language processing (NLP) supervised classifier. We
train it on generic threatening phrases, similar to (and including) those that
typically appear in ransomware or scareware samples. More precisely, we train
the classifier using phrases labeled by us as threat, law, copyright, porn, and
money, which typically appear in scareware or ransomware campaigns. Note
that no ransomware samples are actually needed to train our classifier: All we
need are the sentences. As opposed to being able to isolate a sample, knowing
the sentences early is easy (e.g., by taking a screenshot or by leveraging reports
given by the first victims).

This phase is further detailed in Sect. 4.1. Its output is a ternary decision:
“ransomware” threatening text (i.e., accusing the user and asking for payment),
“scareware” text (i.e., accusing the user), or “none”.

Localization. Our NLP classifier supports localization transparently: It tells
whether a given sentence is “threatening” in any of the languages on which it
has been trained on. In the unlucky case where localized training phrases are
unavailable for training, in Sect. 6.2 we show, as a proof of concept, that these
can be easily obtained by running automatic translators on existing sentences
found in known ransomware or scareware.

Other Sources of Text. From a technical point of view, the text can be
displayed via other means than strings (e.g., images). However, we focus on
the core problem, which is that of deciding whether a text contains threatening
phrases. As discussed in Sect. 7, extracting text from images and videos is easily
performed with off-the-shelf OCR software. Recall that, among the goals of the
attacker, the ransom-requesting message must be readable and understandable
by the victim: It is thus against his or her goals to try to evade OCRs, making
the text difficult to read as a side effect.

HELDROID: Dissecting and Detecting Mobile Ransomware 389

3.2 Encryption Detector

We check whether the (disassembled) code of the sample under analysis contains
traces of unsolicited file-encryption operations.

Unsolicited file-encryption operations are usually implemented by reading the
storage (e.g., external storage), looping over the files, invoking encryption rou-
tines on each of them, and deleting the original files. Therefore, we are interested
in finding execution flows that originate from file-reading operations and termi-
nate into encryption routines. To this end, we rely on a fast, static taint-analysis
technique to track flows originating from functions that access the storage (e.g.,
getExternalStorageDirectory()), ending into functions that write encrypted
content and delete the original files (e.g., CipherOutputStream, delete()). We
are well aware that a malware author can embed cryptographic primitives rather
than using the Android API. Fortunately, recent research [15,16] has already
tackled this problem.

Details aside, the output of this phase is a binary decision on whether there
are significant traces of unsolicited file-encryption operations or not.

3.3 Locking Detector

We check if the application under analysis is able to lock the device (i.e., to
prevent navigation among activities). This can be achieved in many ways in
Android, including the use of the native screen locking functionality, dimming,
immortal dialogs, and so forth. Focusing on the most common techniques that we
encountered in real-world Android ransomware we designed a series of heuristics
based on lightweight emulation, which can be extended to include other locking
techniques in the future.

The most common technique to enact device locking consists in inhibiting nav-
igation among activities through the Home and Back buttons. This is achieved
by handling the events that originate when the user clicks on such buttons on
the phone and preventing their propagation. The net result is that the ran-
somware application effectively forces the device to display an arbitrary activity.
Another technique consists in asking the user to let the application become a
device administrator, thus allowing it to lock the device. This functionality is
part of Android and is normally used for benign purposes (e.g., remote device
administration in enterprise scenarios).

To detect if any of these locking technique is executed, we implemented a
static code-analysis technique, described in Sect. 4.3. Essentially, we track each
Dalvik instruction, including method calls, and check whether there exists an
execution path that matches a given heuristic. We created one heuristic per
locking strategy. For example, we verify whether the event handler associated
to the Home button returns always true, which means that the event handling
cannot propagate further, resulting in a locked screen.

Details aside, the output of this phase is a binary decision on whether there
are significant traces of device-locking implementations or not.

The overall final output of HelDroid, obtained by aggregating the outputs
of the three detectors, is a ternary decision: ransomware, scareware, or none.

390 N. Andronio et al.

4 System Details

This section describes the details of HelDroid. The technical implementation
details are glanced in Sect. 5.

4.1 Threatening Text Detector Details

We use a supervised-classification approach that works on the text features
extracted as follows:

1. Language Detection: a simple frequency analysis determines the language
of the text (see Sect. 5.1 for the implementation details).

2. Sentences Splitting: we use a language-specific segmenter that splits the
text into sentences.

3. Stop-word Removal: we remove all stop words (e.g., “to”, “the”, “an”,
“and”).

4. Stemming: we reduce words to their stems (e.g., “fishing,” “fished,” and
“fisher” become “fish”).

5. Stem Vectors: We map each sentence to a set of stem vectors, which are
binary vectors that encode which stems are in the sentence.

In training mode, each stem vector t is stored in a training set T . At runtime,
the stem vectors obtained from the app under analysis are used to query the
classifier, which answers “ransomware,” “scareware,” or “other,” based on the
following scoring algorithm.

Scoring. As suggested in the text-classification literature [17], scoring is based
on the cosine similarity s(x, t) ∈ [0, 1] between the query stem vector x and
every t ∈ T . Since we operate in a boolean space, it can be reduced to s(x̂, t̂) =

|x̂∩t̂|√
|x̂|·

√
|t̂|

, where x̂ and t̂ are the stem sets (i.e., the set data structures that

contain strings denoting each stem), which is computed in O(min(|x̂|, |t̂|)).
To score the entire text x, the classifier categorizes its sentences ∀c ∈ x by

maximizing the cosine similarity s(c, t) ∀t ∈ T . We denote the score of the
best-scoring sentence c� as m(c�). The best score is calculated within each cate-
gory. We actually computes two scores, m(c�)money for the best-scoring sentences
about “money,” and m(c�)accusation for other “accusation” sentences (i.e., threat,
law, copyright, porn).

Decision. We label the text as “scareware” if maccusation exceeds a threshold,
and “ransomware” if also mmoney exceeds. The threshold is set adaptively based
on the minimum required score for a sentence to be considered relevant for our
analysis. The idea is that short sentences should have a higher threshold, since
it is easier to match a greater percentile of a short sentence; instead, longer
sentences should have a lower threshold, for the same reason.

Setting thresholds is typically a problematic, yet difficult-to-avoid part of any
heuristic-based detection approach. Setting one single threshold is easier, but

HELDROID: Dissecting and Detecting Mobile Ransomware 391

makes the decision more sensitive to changes (i.e., one single unit above the
threshold could signify a false detection). Therefore, we set bounds rather than
single threshold values, which we believe leave more room for customization. By
no means we claim that such bounds are good for future ransomware samples.
As any heuristic-based system, they must be adjusted to keep up with the evolu-
tion of the threat under consideration. However, by setting them on the known
ransomware samples of our dataset, our experiments show that HelDroid can
detect also never-seen-before samples. More details are in Sect. 5.2.

4.2 Encryption Detector Details

Using a static taint-tracking technique, we detect file encryption operations as
flows from Environment.getExternalStorageDirectory() (1 source) to the
CipherOutputStream constructor, Cipher.doFinal methods, or its overloads
(8 sinks). Clearly, tracked flows can involve other, intermediate function calls
(e.g., copy data from filesystem to memory, then pass the reference to the buffer
to an encryption function, and finally write on the filesystem).

An explanatory example taken from a real-world ransomware sample2 follows:
The underlined lines mark the tracked flow. More sources and sinks can be
flexibly added by simple configuration changes, although our results show that
the aforementioned ones are enough for current families.

Listing 1.1. Flow source of an encryption operation
.class public final Lcom/free/xxx/player/d;

#...

.method public constructor <init>(Landroid/content/Context;)V ...

getExternalStorageDirectory is invoked to get the SD card root

invoke-static {},Landroid/os/Environment;->getExternalStorageDirectory()Ljava/io/File;
move-result-object v0
invoke-virtual {v0}, Ljava/io/File;->toString()Ljava/lang/String;
move-result-object v0
new-instance v1, Ljava/io/File;
invoke-direct {v1, v0}, Ljava/io/File;-><init>(Ljava/lang/String;)V

This invocation saves all files with given extensions in a list
and then calls the next method

invoke-direct {p0, v1}, Lcom/free/xxx/player/d;->a(Ljava/io/File;)V
return-void

.end method

.method public final a()V
...

A new object for encryption is instantiated with key
12345678901234567890

new-instance v2, Lcom/free/xxx/player/a;
const-string v0, "12345678901234567890"
invoke-direct {v2, v0}, Lcom/free/xxx/player/a;-><init>(Ljava/lang/String;)V ...

If files were not encrypted, encrypt them now

const-string v3, "FILES_WERE_ENCRYPTED"
invoke-interface {v2, v3, v0}, Landroid/content/SharedPreferences;->getBoolean(Ljava/lang/String;Z)Z
move-result v2
if-nez v2, :cond_1
invoke-static {}, Landroid/os/Environment;->getExternalStorageState()Ljava/lang/String;
move-result-object v2
const-string v3, "mounted"

...

Inside a loop, invoke the encryption routine a on file v0, and
delete it afterward

invoke-virtual {v2, v0, v4}, Lcom/free/xxx/player/a;->a(Ljava/lang/String;Ljava/lang/String;)V

new-instance v4, Ljava/io/File;
invoke-direct {v4, v0}, Ljava/io/File;-><init>(Ljava/lang/String;)V
invoke-virtual {v4}, Ljava/io/File;->delete()Z

...
.end method

.end class

2 MD5: c83242bfd0e098d9d03c381aee1b4788.

392 N. Andronio et al.

Listing 1.2. Flow sink of an encryption operation.

.class public final Lcom/free/xxx/player/a;

...

.method public final a(Ljava/lang/String;Ljava/lang/String;)V
.locals 6

A CipherOutputStream is initialized and used to encrypt the file
passed as argument, which derives from an invocation to

new-instance v0, Ljava/io/FileInputStream;
invoke-direct {v0, p1}, Ljava/io/FileInputStream;-><init>(Ljava/lang/String;)V
new-instance v1, Ljava/io/FileOutputStream;

invoke-direct {v1, p2}, Ljava/io/FileOutputStream;-><init>(Ljava/lang/String;)V
iget-object v2, p0, Lcom/free/xxx/player/a;->a:Ljavax/crypto/Cipher;

const/4 v3, 0x1
iget-object v4, p0, Lcom/free/xxx/player/a;->b:Ljavax/crypto/spec/SecretKeySpec;

iget-object v5, p0, Lcom/free/xxx/player/a;->c:Ljava/security/spec/AlgorithmParameterSpec;

invoke-virtual {v2, v3, v4, v5}, Ljavax/crypto/Cipher;>init(ILjava/security/Key;Ljava/security/spec/AlgorithmParameterSpec;)V

new-instance v2, Ljavax/crypto/CipherOutputStream;
iget-object v3, p0, Lcom/free/xxx/player/a;->a:Ljavax/crypto/Cipher;
invoke-direct {v2, v1, v3}, Ljavax/crypto/CipherOutputStream;-><init>(Ljava/io/OutputStream;Ljavax/crypto/Cipher;)V

...
.end method

.end class

If any of these flows are found, HelDroid marks the sample accordingly.

4.3 Locking Detector Details

As a proof of concept, we implement a detection heuristic for each of the three
most common screen-locking techniques found in Android ransomware.
– Require administration privileges and call DevicePolicyManager.

lockNow(), which forces the device to act as if the lock screen timeout expired.
– Immortal Activity. Fill the screen with an activity and inhibit naviga-

tion through back and home buttons by overriding the calls to onKeyUp and
onKeyDown. Optionally, the activity cover the software-implemented naviga-
tion buttons if the application declares the SYSTEM_ALERT_WINDOW permission.

– Immortal Dialog. Show an alert dialog that is impossible to close and set a
flag in the window parameters.

Detecting whether an app calls the lockNow method is easy. We start from
searching for the specific permission bit (BIND_DEVICE_ADMIN) in the manifest.
If found, we parse the Smali assembler code of the application until we find a
call to the lockNow method.

For the immortal activity technique we are interested in the handling of the
onKeyDown and onKeyUp methods, which are called when a key is pressed or
released. They accept as first argument a parameter p1 containing the numeric
code of target key; their return value determines whether the event is considered
handled or not (i.e., whether to pass the same event to other underlying View
components). An example3 follows.

3 MD5 b31ce7e8e63fb9eb78b8ac934ad5a2ec.

HELDROID: Dissecting and Detecting Mobile Ransomware 393

Listing 1.3. Locking operation example.

.method public onKeyDown(ILandroid/view/KeyEvent;)Z
.locals 1

p1 = integer with the key code associated to the pressed key.

const/4 v0, 0x4 # 4 = back button
if-ne p1, v0, :cond_0
iget-object v0, p0, Lcom/android/x5a807058/ZActivity;->q:Lcom/android/zics/ZModuleInterface;

if-nez v0, :cond_0
iget-object v0, p0, Lcom/android/x5a807058/ZActivity;->a:Lcom/android/x5a807058/ae;

we track function calls as well invoke-virtual {v0},

Lcom/android/x5a807058/ae;->c()Z :cond_0

const/4 v0, 0x1 # True = event handled -> do not forward
return v0

.end method

We first locate the onKeyDown and onKeyUp methods and parse their Smali
code. Then we proceed by performing a lightweight Smali emulation. Essentially,
we parse each statement and “execute” it according to its semantic. The goal is
to verify the existence of an execution path in which the return value is true.
We examine those if statements that compare p1 with constant integer values.
Our emulation technique tracks function calls as well.

Similarly, we detect immortal dialogs by checking if FLAG_SHOW_WHEN_LOCKED
is set when calling Landroid/view/Window;->setFlags in an any AlertDialog
method, usually in the constructor, and that the same dialog is marked as
uncancelable via setCancelable(false).

The immortal activity and dialog techniques can be implemented with a Win-
dow instead of an Activity or Dialog object, but we consider this extension
exercise for the reader.

5 Implementation and Technical Details

This section describes the relevant technical details of HelDroid.

5.1 Natural Language Processing

We implement the Threatening Text Detector on top of OpenNLP, a generic,
extensible, multi-language NLP library. The sentence splitter and the stem-
mer [18] are language specific: Adding new languages simply requires training on
an arbitrary set of texts provided by the user. For example, we added Russian
by training it on a transcript of the XXVI Congress of the CPSU and Challenges
of Social Psychology4 and a Wikipedia article about law5. In addition, Sect. 6.2
we show how to add new languages to the threatening text classifier.

Our stop-words lists come from the Stop-words Project6. The language iden-
tification is performed with the Cybozu open-source library [19], released and
maintained since 2010.

4 http://www.voppsy.ru/issues/1981/816/816005.htm.
5 https://ru.wikipedia.org/wiki/.
6 https://code.google.com/p/stop-words/.

http://www.voppsy.ru/issues/1981/816/816005.htm
https://ru.wikipedia.org/wiki/
https://code.google.com/p/stop-words/

394 N. Andronio et al.

5.2 Text Classification Thresholding

To determine whether the score m of a sentence with respect to the accusation
or money categories we proceed as follows. More formally, we want to determine
whether maccusation or mmoney exceed a threshold. In doing this, we account for
the contribution of all sentences (and not only the best scoring ones).

For example, consider the sentences: “To unlock the device you need” (m =
0.775), m = “to pay 1,000 rubles” (m = 0.632), and “Within 24 h we’ll unlock
your phone” (m = 0.612). The maximum score is 0.775, but since there are other
relevant sentences this value should be increased to take them into account. To
this end, we increase the score m as follows:

m̂ = m + (1 − m) ·
(

1 − e
−

n∑
i=1

(s(ci)−t(ci))

)

where s(c)− t(c) is capped to zero, n is the number of sentences in that category
set, ci the i-th sentence in the stem vector c, and t : c �→ [0, 1] is an adaptive
threshold function.

Let us pretend for a moment that t(c) is not adaptive, but set to 0.6. Then
the sum of s(c) − t(c) is 0.032 + 0.012 = 0.044. As you can see, m̂ is not very
different from m because the scores of second and third sentence are just slightly
above their detection threshold.

Instead, the idea behind t(c) is that short sentences should have a higher
threshold, since it is easier to match a greater percentile of a short sentence;
instead, longer sentences should have a lower threshold, for the dual reason:

t(c) = τmax − γ(c) · (τmax − τmin), γ(c) =

∑
ci∈c

ci−σmin

σmax−σmin

with γ(c) capped in [0, 1]. The summation yields the number of 1 s in the stem
vector of sentence c. σmin and σmax are constants that represent the minimum
and maximum number of stems that we want to consider: sentences containing
less stems than σmin will have the highest threshold, while sentences containing
more stems than σmax will have the lowest threshold. Highest and lowest thresh-
old values are represented by τmin and τmax, which form a threshold bound.

These parameters can be set by first calculating the score of all the sentences
in the training set. Then, the values are set such that the classifier distinguishes
the ransomware in the training set from generic malware or goodware in the
training set. Following this simple, empirical procedure, we obtained: τmin =
0.35, τmax = 0.63, σmin = 3, and σmax = 6.

5.3 Dynamic Analysis

If no threatening text is found in statically allocated strings, we attempt a last-
resort analysis. In an emulator, we install, run and let the sample run for 5’.
After launching the app, our emulator follows an approach similar to the one
adopted by TraceDroid [20]: It generates events that simulate user interaction,

HELDROID: Dissecting and Detecting Mobile Ransomware 395

rebooting, in/out SMS or calls, etc. Aiming for comprehensive and precise user-
activity simulation and anti evasion is out from our scope. From our experience,
if the C&C server is active, in a few seconds the sniffer captures the data required
to extract the threatening text, which is displayed almost immediately.

From the decoded application-layer traffic (e.g., HTTP), HelDroid parses
printable strings. In addition to parsing plaintext protocols from network dumps,
every modern sandbox (including the one that we are using) allows to extract
strings passed as arguments to functions, which are another source of threat-
ening text. Although we do not implement OCR-text extraction in our current
version of HelDroid, we run a quick pilot study on the screenshots collected
by TraceDroid. Using the default configuration of tesseract we were able to
extract all the sentences displayed on the screenshots.

5.4 Static Code Analysis

We extract part of the features for the Threatening Text Detector by parsing
the manifest and other configuration files found in the APK once uncompressed
with akptool7. We compute the remaining ones by enumerating count, type or
size of files contained in the same application package.

However, the most interesting data requires an analysis of the app’s Dalvik
code in its Smali8 text representation generated by apktool. For the Lock-
ing Detector, instead of using SAAF [21], which we found unstable in multi-
threaded scenarios, we wrote a simple emulator that “runs” Smali code, tailored
for our needs. To keep it fast, we implemented the minimum subset of instruc-
tions required by our detector.

For the Encryption Detector we need precise flows information across the
entire Smali instruction set. For this, we leveraged FlowDroid [22], a very robust,
context-, flow-, field-, object-sensitive and lifecycle-aware static taint-analysis
tool with great recall and precision. Source and sink APIs are configurable.

6 Experimental Validation

We tested HelDroid, running on server-grade hardware, against real-world
datasets to verify if it detected known and new ransomware variants and samples.
In summary, as discussed further in Sect. 8, it outperformed the state-of-the-art
research tool for Android malware detection.

6.1 Datasets

We used a diverse set of datasets (Table 2), available at http://ransom.mobi.

7 https://code.google.com/p/android-apktool/.
8 https://code.google.com/p/smali/.

http://ransom.mobi
https://code.google.com/p/android-apktool/
https://code.google.com/p/smali/

396 N. Andronio et al.

Table 2. Summary of our datasets. VT 5+ indicates that samples that are marked
according to VirusTotal’s positive results. VT top 400 are on Dec 24th, 2014.

Name Size Labelling Apriori content Use

AR 172,174 VT 5+ 55.3 % malware + 44.7 % goodware FP eval.

AT 12,842 VT 5+ 68.2 % malware + 31.8 % goodware FP eval.

MG 1,260 Implicit 100 % malware FP eval.

R1 207 VT 5+ 100 % ransomware + scareware NLP training

R2 443 VT 5+ 100 % ransomware + scareware Detection

M1 400 VT top 400 100 % malware FP eval.

Goodware and Generic Malware. We obtained access to the AndRadar
(AR) [23] dataset, containing apps from independent markets (Blackmart,
Opera, Camangi, PandaApp, Slideme, and GetJar) between Feb 2011 and Oct
2013. Moreover, we used the public AndroTotal (AT) API [24] to fetch the apps
submitted in Jun 2014–Dec 2014. Also, we used the MalGenome (MG) [25]
dataset, which contains malware appeared in Aug 2010–Oct 2011.

We labeled each sample using VirusTotal, flagging as malware those with
5+/56 positives. The AR and AT datasets do not contain any ransomware
samples. The MG dataset contains only malware (not ransomware).

Last, the Malware 1 (M1) dataset contains the top 400 malicious Android
applications as of Dec 2014, excluding those already present in the rest of our
datasets and any known ransomware.

Known Ransomware (sentences for Text-Classifier Training). We need
a small portion of sentences obtained from true ransomware samples. During the
early stages of a malware campaign, samples are not always readily available for
analysis or training. Interestingly, our text-classifier can be trained regardless
of the availability of the sample: All it needs is the threatening text, which is
usually easy to obtain (e.g., from early reports from victims).

We built the Ransomware 1 (R1) dataset through the VirusTotal Intelli-
gence API by searching for positive (5+) Android samples labeled or tagged as
ransomware, koler, locker, fbilocker, scarepackage, and similar, in Sep–Nov 2014.
We manually verified that at least 5 distinct AV programs agreed on the same
labels in R1 (allowing slight lexical variations). In this way, we excluded outliers
caused by naming inconsistencies, and could be reasonably safe that the resulting
207 samples were true ransomware. The training is performed only once, offline,
but can be repeated over time as needed. We manually labeled sentences (e.g.,
threat, porn, copyright) from the R1 dataset, totaling 51 English sentences and
31 Russian sentences.

UnknownRansomware. Similarly, we built theRansomware 2 (R2) dataset
for samples appeared in Dec 2014–Jan 2015. This dataset is to evaluateHelDroid

on an arbitrary, never-seen-before, dataset comprising ransomware—andpossibly

HELDROID: Dissecting and Detecting Mobile Ransomware 397

other categories of malware. Aposteriori, we discovered that this datasets contains
interesting corner-case apps that resemble some of the typical ransomware features
(e.g., screen locking, adult apps repackaged with disarmed ransomware payload),
making this a particularly challenging test case.

6.2 Experiment 1: Detection Capability

HelDroid detected all of the 207 ransomware samples in R1: 194 with static
text extraction, and the remaining 13 by extracting the text in live-captured web
responses from the C&C server. However, this was expected, since we used R1
for training. Thus, this experiment showed only the correctness of the approach.

We tested the true predictive capabilities of HelDroid on R2, which is dis-
joint from R1. Among the 443 total samples in R2, 375 were correctly detected
as ransomware or scareware, and 49 were correctly flagged as neither. Precisely,
the following ones were actually true negatives:

– 14 Badoink + 15 PornDroid clones (see below);
– 6 lock-screen applications to modify the system’s look &feel;
– 14 benign, adware, spyware, or other non-ransomware threats.

Badoink and PornDroid are benign applications sometimes used as hosts of ran-
somware payload. HelDroid correctly only flagged the locking behavior. We
installed and used such samples on a real device and verified that they were not
performing any malicious operation apart from locking the device screen (behav-
ior that was correctly detected). An analysis of network traffic revealed that the
remote endpoint of all web requests issued during execution was unreachable,
resulting in the application being unable to display the threatening web page.

The last 19 samples are known to AV companies as ransomware, but:

– 11 samples use languages on which HelDroid was not trained (see below).
– 4 samples contain no static or dynamically generated text, thus they were

disarmed, bogus or simply incorrectly flagged by the commercial AVs.
– 4 failed downloading their threatening text because the C&C server was down.

Strictly speaking, these samples can be safely considered as being disarmed.
Manual analysis revealed that these samples belong to an unknown family
(probably based on repackaged PornDroid versions).

False Negative Analysis. We focused on the samples that were not detected
because of the missing language models. As a proof of concept we trained
HelDroid on Spanish, by translating known threatening text from English to
Spanish using Google Translator, adding known non-threatening Spanish text,
and running the training procedure. The whole process took less than 30 min.
After this, all previously undetected samples localized in Spanish were success-
fully flagged as ransomware.

398 N. Andronio et al.

Total size of smali classes (B)
0B -621KB 621KB -2MB 2MB -5MB 5MB -10MB 10MB -61MB

Lo
ck

 d
et

ec
tio

n
tim

e
(s

)

0

2

4

6

8

10

12

14

Total size of smali classes (B)
0B -621KB 621KB -2MB 2MB -5MB 5MB -10MB 10MB -61MB

T
ex

t d
et

ec
tio

n
tim

e
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 2. Lock-detection (left) and text-classification (right) time as function of Smali
class size (whiskers at the 9th and 91st percentiles).

6.3 Experiment 2: False Positive Evaluation

A false positive is a generic malware or a goodware sample flagged as ran-
somware. We first evaluated HelDroid on M1 (generic malware, no ran-
somware). No sample in M1 was flagged by HelDroid as ransomware.

We extended this experiment to the other datasets containing goodware and
generic malware (i.e., AR, AT, MG). In the AR dataset, which contained
both malware and goodware, HelDroid correctly reported zero ransomware
samples, whereas in the AT dataset only 2 and 7 samples out of 12,842 were
incorrectly flagged as ransomware and scareware, respectively. Manual investiga-
tion revealed that the 2 false ransomware samples were actually a benign sample
and a generic trojan, respectively. Actually, both samples had a locking behav-
ior that was correctly caught by HelDroid. The reason why these were flagged
as ransomware is because they contained text localized in all major languages
(most of which were different than those currently implemented in HelDroid),
which brought the text classifier in a corner case. The 7 false scareware com-
prised 6 benign apps and 1 Leadbolt adware sample. In all cases, the source
of error was an significant amount of text containing threatening-, porn-, law-
or copyright-related keywords. Last, in the MG dataset, none of the malware
samples was incorrectly flagged as ransomware or scareware.

However, we can conclude that the rate of false positives is minuscule compared
to the size of the datasets. Moreover, the majority of false positives are actually
known goodware, which can be pre-filtered easily with whitelisting.

6.4 Experiment 3: Detection Speed

We measured the speed of each detector component on 50 distinct random splits
of AR with 1,000 samples each. Figure 2(a) and (b) show that text classifica-
tion is extremely fast in all cases, while locking strategies detection is the main
bottleneck, yet under 4 s on average. The encryption-detection module always
took milliseconds.

HELDROID: Dissecting and Detecting Mobile Ransomware 399

If HelDroid must invoke the external sandbox to extract dynamically gener-
ated text, this takes up to 5 min in our implementation, but this is unavoidable
for dynamic analysis. As we showed, however, this happens for a very limited
number of samples.

7 Limitations and Future Work

Our results show that HelDroid has raised the bar for ransomware authors.
However, there are limitations, which we describe in this section, that we hope
will stimulate further research.

Portability. Although we focus on the mobile case, ransomware is a general
problem. Porting the HelDroid approach to the non-mobile world is non-trivial
but feasible. The Threatening Text Detector would be straightforward to
port, as it only assumes the availability of text. For example, it could be applied
as it is for filtering scareware emails. The toughest parts to port are those that
assume the use of a well-defined API (e.g., for encryption or locking opera-
tions). Indeed, a malware author could evade our system by using native code
or embedding cryptographic primitives, making porting much more complex.
However, the progress on static program analysis (e.g., [26,27]) and reverse engi-
neering (e.g., [28]) of native binary code have produced advanced analysis tools
that would ease porting HelDroid to other settings, including the detection
of cryptographic primitives in binary code [15,16]. The principles behind our
detection modules do not change; only their implementation does.

One last discussion point regards the inspection site. For mobile applications,
which are typically vetted prior or upon installation (e.g., by the distributing
marketplace, on the device using call-home services such as Google App Ver-
ify), HelDroid works “as is.” For non-mobile applications that do not follow
this distribution model, HelDroid should be integrated into the operating sys-
tem, in a trusted domain (e.g., kernel, driver). In this application scenario it is
crucial that the system is allowed to block the currently executing code to pre-
vent the malicious actions to continue. In HelDroid’s terms, this means that
the encryption and locking indicators of compromise should have high priority,
to avoid cases in which the malware first silently encrypts every file and then
displays the threatening text (when it is already too late).

Internationalization. As we proved in Experiment 1 by quickly adding
Spanish support, we designed HelDroid such that supporting other languages is
a trivial task. Languages such as Chinese or Japanese, however, would be trickier
than others to implement, due to significant differences in stemming and phrase
structure. Fortunately, research prototypes such as Stanford’s CoreNLP [29] that
support (for instance) Chinese NLP makes this extension feasible with just some
engineering work.

400 N. Andronio et al.

Evasion. In addition to the use of native machine code, which we already
mentioned above, a simple yet näıve evasion to the static-analysis part of our
approach (Encryption Detector and Locking Detector) consists of a benign
APK that dynamically loads the code carrying out the actual attacks [30]. First,
we note that this technique can be counter evaded by intercepting the loaded
payload and analyzing it in a second round, as previous research have demon-
strated [31]. Second, we note that this evasion mechanism is common to any
static-based approach, and thus is not specific to HelDroid.

A more interesting discussion regards the threatening text. Text can be dis-
played via other means than strings (e.g., images, videos, audio), delivered out
of band (e.g, e-mail) or obfuscated. A first mitigation, that we partially address,
consists in using a sandbox that dumps dynamically allocated text, thus coping
with obfuscated strings as well as encrypted application protocols (e.g., HTTPS).
For example, Andrubis tracks decryption routines and allow the analyst to access
the decrypted content.

Regarding image- or video-rendered text, state-of-the-art optical character
recognition (OCR) techniques could be used. Although evasion techniques —
such as those used in CAPTCHAs — can be mounted against OCR, the goal of
the attacker is to make the text clear and easy to read for the victim, setting a
limit to them; also, previous research demonstrated the fallacy of even the most
extreme text-distortion techniques adopted by CAPTCHAs [32]. Regarding out-
of-band text, our current implementation of HelDroid does not cope with it,
although applying our text classifier to incoming email messages is trivial. In
general, this strategy may be in contrast with the attacker’s goal, that is to
ensure that the victim receives the ransom-requesting message. Displaying this
message synchronously is an advantage for the attacker, whereas out-of-band
communication alone is ill suited to the task. For example, the victim may not
read email or junk-mail filters could block such messages.

An even more interesting evasion technique is a mimicry attack on our text
classifier, which we think is possible. In a nutshell, the attacker must be able
to write a text containing a disproportionally large number of unknown words,
unusual punctuation or many grammar errors. Unusual punctuation and gram-
mar errors could be mitigated with some lexical pre-processing an advanced cor-
rector. Interestingly, the most recent families (e.g., CBT-Locker) show that the
attackers tend to write “perfect” messages, arguably prepared by native speak-
ers, in order to sound more legitimate. After all, careful wording of threatening
messages is essential to all social engineering-based attacks.

Future Work. In addition to addressing the aforementioned limitations, future
research could focus on designing ransomware-resistant OSs. For example, in the
case of Android, calls to encryption routines should be explicitly authorized by
the users on a per-file basis. This is not trivial from a usability viewpoint, espe-
cially for long sequences of calls. Moreover, many applications may use encryp-
tion for benign purposes, making this goal even more challenging.

HELDROID: Dissecting and Detecting Mobile Ransomware 401

8 Related Work

Malware Detection. There exist several malware detection approaches,
including static [8,33], dynamic [34], and hybrid [25] techniques. DREBIN [8]
and MAST [33] are particularly related to our work. DREBIN aims at detecting
malware statically, with a 94 % accuracy and 1 % false positives: It gathers fea-
tures such as permissions, intents, used APIs, network addresses, etc., embeds
them in a vector space and trains a support vector machine to recognize malware.
MAST relies on multiple correspondence analysis and statically ranks applica-
tions by suspiciousness. Thanks to this ranking, it detects 95 % of malware at
the cost of analyzing 13 % of goodware.

Unfortunately, generic approaches to malware detection seem unsuitable
for ransomware. We tested DREBIN on our R2 dataset of ransomware.
Although DREBIN outperformed AVs, HelDroid outperformed DREBIN
(which detected only 48.47 % of the ransomware samples). Even the authors of
DREBIN, which we have contacted, in their paper state that their approach is
vulnerable to mimicry attacks. Ransomware is a type of mimicry attack, because
it composes benign actions (i.e., encryption, text rendering) toward a malicious
goal.

Ransomware Detection. To the best of our knowledge, our paper is the first
research work on mobile ransomware. The work by Kharraz et al. [35], pub-
lished after the submission of HelDroid, is the first to present a thorough
study on Windows ransomware. After analyzing 1,359 belonging to 15 distinct
ransomware families, they present a series of indicators of compromise that char-
acterize ransomware activity at the filesystem layer. This approach, in addition
to being focused entirely on the Windows operating system, is complementary
to ours. Indeed, we look at how ransomware behaves at the application level,
whereas [35] focuses on the low level behavior.

Previous work focused on the malicious use of cryptography for implement-
ing ransomware attacks [1,36]. However, no approaches exist for the explicit
detection of this class of malware.

9 Conclusions

A single mobile ransomware family has already affected nearly one million of
users [4] in one month. Judging by the most recent families [11] and their rapid
evolution pace, this threat will arguably become more and more dangerous, and
difficult to deal with. Before HelDroid, the only available tools were signa-
ture based, with all of the disadvantages this entails. Instead, we showed that
our approach, after being trained on recent ransomware samples, is able to effi-
ciently detect new variants and families. Even with mixed datasets including
benign, malicious, scareware, and ransomware apps, HelDroid correctly recog-
nized 99 % never-seen-before samples (375 + 11 + 4 over 394, in a dataset con-
taining also 49 corner-case apps). Interestingly, the remainder 4 were incorrectly

402 N. Andronio et al.

flagged by commercial AVs as ransomware. Thus, it is a first, significant step
toward designing proactive detectors that provide an effective line of defense.
HelDroid could be integrated in mobile AVs, which would submit files to

our JSON API, as recently proposed in [37]. Alternatively, HelDroid shall
be deployed in one or more of the many checkpoints offered by modern app-
distribution ecosystems. For instance, HelDroid could be part o the app-vetting
processes performed by the online marketplaces, or upon installation (e.g., the
Google App Verify service scans apps right before proceeding with installation).

Acknowledgments. We are thankful to the anonymous reviewers and our shepherd,
Patrick Traynor, for the insightful comments, Steven Arzt, who helped us improving
FlowDroid to track flows across threads, and Daniel Arp from the DREBIN project.
This work has been supported by the MIUR FACE Project No. RBFR13AJFT.

References

1. Young, A., Yung, M.: Cryptovirology: extortion-based security threats and coun-
termeasures. In: Proceedings of the IEEE Symposium on Security and Privacy, pp.
129–140, May 1996

2. McAfee Labs: Threats report, November 2014. McAfee Labs, November 2014
3. Ransomware on the rise, January 2015. http://www.fbi.gov/news/stories/2015/

january/ransomware-on-the-rise
4. Perlroth, N.: Android phones hit by ‘Ransomware’, August 2014. http://bits.blogs.

nytimes.com/2014/08/22/android-phones-hit-byransomware/
5. Lab. Koler - the police ransomware for android, June 2014. http://securelist.com/

blog/research/65189/behind-the-android-oskoler-distribution-network/
6. SurfRight. HitmanPro.kickstart, March 2014. http://www.surfright.nl/en/

kickstart
7. Avast Software. Avast ransomware removal, June 2014. https://play.google.com/

store/apps/details?id=com.avast.android.malwareremoval
8. Arp, D., et al.: Drebin: effective and explainable detection of android malware in

your pocket. In: Network and Distributed System Security (NDSS) Symposium,
San Diego, California (2014)

9. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the
bitcoin network. In: Financial Cryptography and Data Security, Barbados, 3 March
2014

10. Jarvis, K.: CryptoLocker ransomware, December 2013. http://www.secureworks.
com/cyber-threat-intelligence/threats/cryptolockerransomware/

11. Chrysaidos, N.: Mobile crypto-ransomware simplocker now on steroids,
February 2015. https://blog.avast.com/2015/02/10/mobile-cryptoransomware-
simplocker-now-on-steroids/

12. Hamada, J.: Simplocker: first confirmed file-encrypting ransomware for android,
June 2014. http://www.symantec.com/connect/blogs/simplocker-first-confirmed-
file-encrypting-ransomware-android

13. Unuchek, R.: Latest version of svpeng targets users in US, June 2014. http://
securelist.com/blog/incidents/63746/latest-version-ofsvpeng-targets-users-in-us/

14. Kelly, M.: US targeted by coercive mobile ransomware impersonating the FBI, July
2014. https://blog.lookout.com/blog/2014/07/16/scarepakage/

http://www.fbi.gov/news/stories/2015/january/ransomware-on-the-rise
http://www.fbi.gov/news/stories/2015/january/ransomware-on-the-rise
http://bits.blogs.nytimes.com/2014/08/22/android-phones-hit-byransomware/
http://bits.blogs.nytimes.com/2014/08/22/android-phones-hit-byransomware/
http://securelist.com/blog/research/65189/behind-the-android-oskoler-distribution-network/
http://securelist.com/blog/research/65189/behind-the-android-oskoler-distribution-network/
http://www.surfright.nl/en/kickstart
http://www.surfright.nl/en/kickstart
https://play.google.com/store/apps/details?id=com.avast.android.malwareremoval
https://play.google.com/store/apps/details?id=com.avast.android.malwareremoval
http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolockerransomware/
http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolockerransomware/
https://blog.avast.com/2015/02/10/mobile-cryptoransomware-simplocker-now-on-steroids/
https://blog.avast.com/2015/02/10/mobile-cryptoransomware-simplocker-now-on-steroids/
http://www.symantec.com/connect/blogs/simplocker-first-confirmed-file-encrypting-ransomware-android
http://www.symantec.com/connect/blogs/simplocker-first-confirmed-file-encrypting-ransomware-android
http://securelist.com/blog/incidents/63746/latest-version-ofsvpeng-targets-users-in-us/
http://securelist.com/blog/incidents/63746/latest-version-ofsvpeng-targets-users-in-us/
https://blog.lookout.com/blog/2014/07/16/scarepakage/

HELDROID: Dissecting and Detecting Mobile Ransomware 403

15. Gröbert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: Recent Advances in Intrusion Detection, pp. 41–60
(2011)

16. Lestringant, P., Guihéry, F., Fouque, P.-A.: Automated identification of crypto-
graphic primitives in binary code with data flow graph isomorphism. In: Proceed-
ings of the 10th ACM Symposium on Information, Computer and Communications
Security, pp. 203–214, New York, NY, USA (2015)

17. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Aggarwal,
C.C., Zhai, C. (eds.) Mining Text Data, pp. 163–222. Springer, US (2012)

18. The snowball language. http://snowball.tartarus.org/
19. Shuyo, N.: Language detection library for java (2010). http://code.google.com/p/

language-detection/
20. van der Veen, V., Bos, H., Rossow, C.: Dynamic analysis of android malware. VU

University Amsterdam, August 2013. http://tracedroid.few.vu.nl/
21. Hoffmann, J., et al.: Slicing droids: program slicing for smali code. In: Proceedings

of the 28th Annual ACM Symposium on Applied Computing, pp. 1844–1851, New
York, NY, USA (2013)

22. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 259–269,
New York, NY, USA (2014)

23. Lindorfer, M., Volanis, S., Sisto, A., Neugschwandtner, M., Athanasopoulos, E.,
Maggi, F., Platzer, C., Zanero, S., Ioannidis, S.: AndRadar: fast discovery of
android applications in alternative markets. In: Dietrich, S. (ed.) DIMVA 2014.
LNCS, vol. 8550, pp. 51–71. Springer, Heidelberg (2014)

24. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: a flexible, scalable toolbox and service
for testing mobile malware detectors. In: Proceedings of the Third ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, pp. 49–54, New York,
NY, USA (2013)

25. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: Proceedings of the 33rd IEEE Symposium on Security and Privacy, San Fran-
cisco, CA, May 2012. http://www.malgenomeproject.org/

26. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: a new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

27. Schwartz, E.J., et al.: Native x86 decompilation using semantics-preserving struc-
tural analysis and iterative control-flow structuring. In: USENIX security (2013)

28. Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse
engineering data structures. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS), San Diego, CA (2011)

29. Manning, C.D., et al.: The stanford Core NLP natural language processing toolkit.
In: Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 55–60 (2014). http://www.aclweb.org/
anthology/P/P14/P14-5010

30. Poeplau, S., et al.: Execute this! analyzing unsafe and malicious dynamic code
loading in android applications. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS), pp. 23–26 (2014)

31. Zhou, W., et al.: Fast, scalable detection of “piggybacked” mobile applications. In:
Proceedings of the Third ACM Conference on Data and Application Security and
Privacy, pp. 185–196, New York, NY, USA (2013)

http://snowball.tartarus.org/
http://code.google.com/p/language-detection/
http://code.google.com/p/language-detection/
http://tracedroid.few.vu.nl/
http://www.malgenomeproject.org/
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

404 N. Andronio et al.

32. Bursztein, E., Martin, M., Mitchell, J.: Text-based CAPTCHA strengths and weak-
nesses. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, pp. 125–138, New York, NY, USA (2011)

33. Chakradeo, S., et al.: MAST: triage for market-scale mobile malware analysis. In:
Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pp. 13–24, New York, NY, USA (2013)

34. Shabtai, A., et al.: Andromaly: a behavioral malware detection framework for
android devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012)

35. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the gor-
dian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano,
V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3–24. Springer, Heidelberg
(2015)

36. Young, A.: Cryptoviral extortion using microsoft’s crypto API. Int. J. Inf. Secur.
5(2), 67–76 (2006)

37. Jarabek, C., Barrera, D., Aycock, J.: ThinAV: truly lightweight mobile cloud-based
anti-malware. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 209–218, New York, NY, USA (2012)

Continuous Authentication on Mobile Devices
Using Power Consumption, Touch Gestures

and Physical Movement of Users

Rahul Murmuria(B), Angelos Stavrou, Daniel Barbará, and Dan Fleck

Kryptowire LLC, Fairfax, VA 22030, USA
{rahul,angelos,dbarbara,dfleck}@kryptowire.com

http://www.kryptowire.com

Abstract. Handheld devices today do not continuously verify the iden-
tity of the user while sensitive activities are performed. This enables
attackers, who can either compromise the initial password or grab the
device after login, full access to sensitive data and applications on the
device. To mitigate this risk, we propose continuous user monitoring
using a machine learning based approach comprising of an ensemble of
three distinct modalities: power consumption, touch gestures, and physi-
cal movement. Users perform different activities on different applications:
we consider application context when we model user behavior. We employ
anomaly detection algorithms for each modality and place a bound on
the fraction of anomalous events that can be considered “normal” for any
given user. We evaluated our system using data collected from 73 volun-
teer participants. We were able to verify that our system is functional in
real-time while the end-user was utilizing popular mobile applications.

Keywords: Security · Anomaly detection · Noise-aware data mining ·
Continuous authentication · Behavioral models

1 Introduction

The amount of sensitive data stored on or processed by handheld devices has
been on the rise. This is primarily due to a wealth of services that were made
available over the last few years including access to emails, social media, bank-
ing, personal calendars, navigation and documents. Most commercially available
devices employ the use of authentication techniques only at the “entry-point”.
They require the user to explicitly authenticate before every handheld device
interaction but not necessarily when sensitive operations are performed. Thus,
although users might be required to use their password often, sensitive data can
be misused when an attacker gains physical access to a device immediately after
authentication is completed.

There is a plethora of recent work that indicates that password authentication
is not appropriate for mobile devices. For instance, Aviv et al. [1] demonstrated
the feasibility of smudge attacks using residue oils on touch screen devices. Using
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 405–424, 2015.
DOI: 10.1007/978-3-319-26362-5 19

406 R. Murmuria et al.

this technique, the attackers could extract sensitive information about recent
user input, which may include the legitimate user’s successful authentication
attempt. While intentional misuse of data is a concern, Muslukhov et al. [2]
showed that users are also concerned about sharing mobile phones with guest
users. Moreover, Karlson et al. [3] conducted interviews of smartphone users and
concluded that the entry-point authentication model is too coarse-grained and
the type of data that can be considered sensitive varies significantly depending
upon the owner’s relationship to the guest user. For example, the information
that is considered sensitive in the presence of colleagues is different in nature
from what is considered sensitive among business clients or competitors. How-
ever, protecting every piece of data with additional security mechanisms poses
a usability hindrance.

In order to address the shortcomings of the entry-point authentication model,
one of the approaches proposed in literature is called continuous authentica-
tion [4]. This is a process of verifying the identity of the user repeatedly while
the handheld device is in use. Generally, continuous authentication methods
assume that the process of authentication is unobtrusive. This is necessary as it
is impractical to require users to explicitly authenticate themselves at recurring
intervals.

In this paper, we propose a technique to authenticate users on handheld
devices based on a diverse set of behavioral biometric modalities comprised of
power consumption, touch gestures, and physical movement. We are one of the
first research groups to propose the use of power measurements as a poten-
tial form of authentication for modern (Android) mobile devices. In addition
to power behavior, we have implemented touch screen gestures and physical
movement as modalities (both are independent behavioral traits in accordance
with the survey paper on behavioral biometrics by Yampolskiy et al. [9]). These
modalities use measurements from the touch input driver, and from a combina-
tion of accelerometer and gyroscope measurements respectively. In this paper,
we show that the fusion of these three modalities can be used to corroborate the
presence of a legitimate user while capturing long-term characteristics (power
modality), short-term physical movement which includes hand vibrations (move-
ment modality), as well as direct device interaction (touch modality).

The proposed approach includes a decision support process (see Fig. 1) where
we build models based only on a set of measurements (system readings) for the
legitimate user. To detect unauthorized access, we rely on those user-tailored
models to provide us with evidence of deviation from the generated user enve-
lope. The decision support process institutes a “test” that requires that no more
than n readings within a window of events or time be anomalous, before the
user’s capabilities are diminished on the device. This threshold can be adjusted
to obtain the desired False Reject Rate (FRR) and False Acceptance Rate (FAR),
a trade-off that we explored in this paper. We show that every user is prone to
infrequent anomalous behavior that is dispersed throughout the user’s interac-
tion with the mobile device and the rate at which these anomalies are expected
varies for each user. As a result, the number of n readings that are allowed to be

Continuous Authentication on Mobile Devices Using Power Consumption 407

Fig. 1. General workflow

anomalous is part of a user’s profile and we show that by using individualized
thresholds, we improved performance of our authentication system.

We also show that authentication accuracy is affected by application context;
any user’s behavior differs from application to application. When a user is playing
a game, the digital footprint that the user leaves behind in terms of power
consumption, touch screen gestures or physical movement is expected to be
significantly different from when the user is sending text messages. We present
the performance of our system on two popular mobile applications – Google
Chrome and Facebook – and show that by ignoring the application context,
there is a clear degradation in identification accuracy.

The rest of this paper is organized as follows. Section 2 is a brief review of
research publications that are related to the work done in this paper. Section 3
discusses the implementation details of our data collection architecture. Section 4
provides the experimental design and protocol used while collecting data from
volunteers. Section 5 describes how the data was prepared for analysis. Section 6
identifies the algorithms employed for the task of continuous authentication of
users in mobile devices. Section 7 presents a performance evaluation of the algo-
rithms on the data collected. In Sects. 9 and 10, we suggest further research
directions and conclude this paper.

2 Related Work

Riva et al. [6] presented an architecture that grants users access to any content on
the device only when the authentication system evaluates the device operator’s
level of authenticity to be higher than what is required to access that content.
Their system utilized face and voice recognition, location familiarity, and deter-
mining possession by sensing nearby electronic objects as signals to establish
the legitimate user’s level of authenticity. They motivated their work with a
user study that explored models where there are at-least 3 levels of security:
public, private, and confidential. With this framework, they tested nine users,

408 R. Murmuria et al.

and were able to reduce the number of explicit authentications by 42 %. While
the use of environmental signals in the authentication system help in reacting
to device theft, it does not solve the problem of data misuse while in familiar
surroundings.

Shi et al. [5] presented an approach that built on the concept that most users
are habitual in nature and are prone to performing similar tasks at a certain time
of the day. The researchers collected a wide range of behavioral information such
as location, communication, and usage of applications, in order to create a user
profile. Their method is based on identification of positive events and boost-
ing the authentication score when a “good” or habitual event is observed. The
passage of time is treated as a negative event in that scores gradually degrade.
One of the main caveats with this work is that it is trying to model what good
geographic locations, phone calls, text messages, and website urls are. The data
collected is highly intrusive in terms of privacy. They further model all good
events as ones that are expected to be performed at a certain time of day, which
is an assumption of habit that is not proven in the literature. However, if this
works well, it can also be incorporated as another voter in our approach.

Kwapisz et al. [10] published a system to identify and authenticate users
based on accelerometer data. They used a dataset of 36 users, labeled according
to activities such as walking, jogging, and climbing stairs. These labels were used
as context and the authors presented analysis with and without these labels. For
feature extraction, the authors divided the 3 axes readings of the accelerome-
ter into windows of 10 s, and for each window they extracted features such as
mean, standard deviation, resultant, and binned distribution. For identification,
the authors performed a 36-class classification, whereas for the task of authenti-
cation, the authors reduced the problem to a 2-class problem. They achieved a
classification accuracy of 72.2 % for 10 s windows. While they concluded based
on their results that it is not critical to know what activity the user is perform-
ing, their dataset was generated by users repeating a limited set of pre-defined
activities. In contrast, instead of using real-world activities as context which
requires manual labeling of the data, we consider the applications being used by
the users as context which can be automated. We were able to show that user
behavior is indeed subject to application context.

Frank et al. [7] performed a study where they collected touch screen behavior
of 41 users and designed a proof-of-concept classification framework to examine
the applicability of screen touches as a behavioral biometric. For their data col-
lection, they designed a custom application that allowed users to swipe vertically
and horizontally. Using this dataset as baseline, they matched users based on
how they perform the same task in testing phase. For analyzing this data, they
separated each type of stroke and matched 30 different features (such as mid-
stroke area covered, 20 % pairwise velocity, and mid-stroke pressure) extracted
for each stroke. Their study resulted in mis-classification error rates in the range
of 0 % to 4 %. Although the researchers were able to demonstrate good perfor-
mance while matching gestures in a controlled environment, they limited their
analysis to vertical and horizontal swipes on their own application. The analysis

Continuous Authentication on Mobile Devices Using Power Consumption 409

depended on the concept that users are performing repetitive pre-defined tasks.
In the real world, different users can perform a large variety of tasks that cannot
be modelled individually. This technique clearly has a problem of scale that was
not addressed in the paper.

Both Kwapisz et al. and Frank et al. created a two-class problem where the
adversarial class had data points from other users. Contrastingly for traditional
computing devices, Killourhy et al. [11] and Shen et al. [12] published a compar-
ison of various anomaly-detection algorithms for keystroke dynamics and mouse
dynamics respectively, limiting the discussion to 1-class verification due to lack
of availability of imposter data in the real-world. In truth, the number of classes
representing adversaries is unbounded. Modeling adversaries into a fixed number
of classes leads to overfitting and lack of generalization, which results in poor
performance of the deployed system.

Bo et al. [8] attempted to create a model to specifically identify transitions
or change of hands between the device owner and a guest who may or may not
be a known entity. The researchers model a user by leveraging her/his touch
screen interactions as well as device feedback in form of vibrations into one
single model. Though the device initially has only the owner’s behavior data,
and a one-class SVM model is trained to provide a judgment whether a new
action belongs to the owner or not, the researchers quickly evolve this into a
two-class SVM model by collecting guest user’s data into a second class. They
assign a confidence to this judgment, and the conclusion confidence increases
with a continuous sequence of consistent judgments. When a change of user is
detected, the sequence of consistent judgment is dissolved. While the authors
demonstrate 100 % identification accuracy within a sequence of 5 to 10 obser-
vations, the analysis fails to show tolerance with anomalies, or in other words,
the inherent noise. There is no detailed discussion about finding a new guest
user verses anomalies committed by the device owner. Further, their model also
does not consider different user behavior in different usage scenarios, such as the
application context considered in our work.

Although we know of no other biometric systems based on power consump-
tion as an identifier, there is widespread research in the area of power model
generation on electronic devices. Zhang et al. [13] presented an automated power
model construction technique that uses built-in battery voltage sensors and
knowledge of battery discharge behavior to monitor power consumption of each
application on an electronic device. They achieved an absolute average error rate
of less than 10 %. Murmuria et al. [14] demonstrated that the power consump-
tion by individual device drivers on a smartphone varies by state of operation
of that particular device driver. Shye et al. [15] presented a power estimation
model by leveraging real user behavior. They presented evidence that system
power consumption patterns are highly correlated with user behavior patterns,
but stopped short of trying to profile users on this basis.

410 R. Murmuria et al.

3 Data Collection Architecture

The various hardware components available on a smartphone include: touch-
screen, accelerometer, gyroscope, voltage sensor, current sensor, and battery.
Each of the components has device drivers, which report sensory statistics to
the kernel. The nature and frequency of this data depends on the individual
hardware component. Some components require registering event listeners with
the Android API, whereas other components require polling the system for data.

For the application context, the name of the application in focus was recorded
using the Activity Manager API while users interacted with the mobile device.
This is used to determine the context of the model.

For the power modality, in order to determine the power consumption result-
ing from the activities performed by the user, we used the built-in voltage and
current sensors available as part of the battery driver on smartphones. The power
drained from battery is proportional to load. While the batteries decay nonlin-
early (reflected directly in the voltage readings), the current readings offset this
effect in order to deliver the required power. Therefore, in order to model power
consumption, it is sufficient to capture voltage and current. The sensors report
the voltage and current to the operating system’s kernel in units micro-volts
(µV) and micro-Ampere (µA) respectively. While the voltage reading depends
on the battery charge and changes gradually between 4.35 V to 3.2 V, the current
reading directly depends on the amount drawn by the Android Operating Sys-
tem depending upon what activities are being performed. As a result, while we
poll the voltage every 5 s, the current reading is polled every 1 s and we take an
average of the recorded values every 5 s. Using these readings, we can calculate
the average power consumption every 5 s.

For the movement modality, readings were recorded using the SensorEvent
API, which is a part of the standard Android SDK. Depending upon which
hardware sensors are present on the Android device, the API has the capability
to report values from the following sensors: accelerometer, gyroscope, magnetic
field, light, pressure, and proximity. For our analysis, we gathered movement
readings from both accelerometer and gyroscope sensors. The accelerometer sen-
sor measures acceleration in SI units (m/s2) along the device’s local [X, Y, Z]
axes and the gyroscope sensor measures rate of rotation in SI units (rad/s)
around the device’s local axes.

For the touch modality, the user-level touchscreen gestures of key-press, pinch
and zoom, swipe, and other gestures are all reported as multiple events to
an input driver. The touch event interface exists as a character device under
/dev/input and can be read by any program that has permissions to read it. For
security reasons, this input driver is a protected interface. Only vendor programs
are given this permission on any unmodified commercially available Android
device. The device driver reports the following information: [X, Y] coordinates,
number of fingers touching the screen, pressure of each finger, and touch area of
each finger. We capture the events along with precise timing information directly
from these low-level event streams and reconstruct it back to user-level gestures.

Continuous Authentication on Mobile Devices Using Power Consumption 411

Fig. 2. Smartphone sensor data collection framework

Data Collection Tool. Figure 2 shows the smartphone sensor data collection
architecture. There are 4 services running in our data collection application:
PowerLogger, TouchLogger, GyroLogger, and ActivityLogger.

– Service 1 (PowerLogger): It collects the Voltage, Current and Battery Charge
from the battery driver (via sys filesystem).

– Service 2 (TouchLogger): This service reads the input events driver to collect
system-wide touchscreen events. The touch driver is protected by a system
user group “input”.

– Service 3 (GyroLogger): This uses the Android API to collect both gyroscope
and accelerometer sensor data using a SensorEventListener.

– Service 4 (ActivityLogger): This service uses an Android API to record the
user activity on the device. Specifically, we record the top running application,
incoming and outgoing calls, and screen-off and screen-on events.

All these services are active during both training and testing, and the overall
system power consumption is guided by user’s behavior plus a constant from
these services. Therefore, our measurement tool does not adversely impact the
power profile we generate for a user. We took measures to make our services
robust, such that we keep this constant noise in the power consumption readings
small, regardless.

4 Experimental Design

When performing a study with volunteer participants, the results obtained
depend strongly on the quality of the data collected. It is vital to understand
any sources that can cause potential variance in the data for a specific user and
to retain data in a uniform format using uniform devices. While our profile gen-
eration algorithms do not require such precautions, this step is needed in order
to compare the datasets and evaluate the performance fairly.

To achieve uniformity of measurements, we used the same device (Google
Nexus 5 Model:LG-D820) for all users who volunteered for this study. Further,

412 R. Murmuria et al.

all data collections were performed on Android version 4.4.4 (Build number
KTU84P). Studying the effects of collecting data across different smartphone
models or software versions was not attempted. We also did not use any tablet
devices.

In total, 73 users volunteered for this experiment. The experiments were
designed to collect data from each volunteer participant for two 45 min sessions.
We assumed that a user’s behavior varies while using different applications on
the smartphone. All volunteer participants were allowed to use Chrome and Face-
book, which are standard applications available on Android phones. They were
not restricted in terms of what tasks they can perform using those applications.
The application currently in use was recorded and user profiles were generated
keeping separate data for each context.

We did not want environmental interference within our data and therefore,
the user was restricted to remain within a room. Each user was asked to use the
two pre-chosen applications for 20 min each with a break of 5 min for instructions.
This session was repeated on two different days in order to capture the user’s
behavior effectively. This would total up to 80 min of actual smartphone usage
data for each user. All tasks were performed while sitting down. Although no user
walked or performed any other physical activity, the smartphones were subject
to significant movement due to typical usage of the device.

Our experimental setup does not emulate real-world use of the chosen appli-
cations. However, related research on mobile authentication techniques relies
solely on evaluating touch or movement patterns on custom designed applica-
tions or in much more restricted environments where users are asked to perform
specific actions repeatedly (swiping or moving in a direction). One of the contri-
butions of our work is the verification of the idea that the application itself plays
a significant role and alters the user behavioral patterns. Our results indicate
that previous results on active authentication are not applicable in real-world
scenarios.

As part of our experimental protocol, we instructed the volunteers to login to
Facebook first. No touch or other sensory data was collected during this first step.
All other activities the volunteers performed on the smartphones did not involve
entering a password of any nature. Each user was assigned a pseudonym with
the convention Sxx, where the xx is a digit between 1 and 100. The real names of
the users were not retained. We also did not record any user-generated content
outside of the sensory data. No web traffic or URLs were recorded. No attempt
was made to capture the content that a user saw on the screen. We recorded
data from all the sensors concerned into files for each modality. These files were
stored in the external storage directory of each smartphone. Upon completion of
a user’s session, we extracted that data out from the smartphone into our data
store where we analyzed the data.

All our volunteer participants were aged between lower 20s and upper 40s,
covering a variety of ethnicities and nationalities. Some of our participants
were not regular smartphone users. We did not attempt to discriminate who
volunteered, beyond requiring them to have an active Facebook account. Our

Continuous Authentication on Mobile Devices Using Power Consumption 413

research required behavioral data of human subjects and necessary approvals
were acquired from the Institutional Review Board (IRB).

5 Data Preparation

5.1 Feature Engineering

After collecting the raw data, we performed feature extraction on the data from
each modality. Currently, there are no universally accepted set of features that
represent individual events for each of the modalities. For the purposes of this
research, we selected our feature set based on our own experience with the data.

For the power modality, the activities performed by the user were repre-
sented in milliwatts (mW) using the voltage and current readings. These power
consumption readings were used in our algorithm as a time-series.

For the movement modality, the recorded events were divided into small win-
dows of time where we can measure properties related to the group of events.
Let the size of this window of time be w units, then we employed the use of a
sliding window technique that moved w/2 units in direction of increasing time
for each subsequent record in our prepared movement dataset. As a result, every
event in the raw data contributed to 2 windows in the movement dataset. We
made this choice because it is difficult to determine the start and end of any
particular movement gesture, and using non-overlapping windows would result
in loss of precision. For the purposes of our analysis, the data associated within
each window frame can be referred to as one movement gesture. Each movement
gesture was encoded as a sequence of events; each event is a vector of sensory
signals as described in Sect. 3. Fourteen features were extracted from each move-
ment gesture. These features include mean and standard deviation along each
axes and resultant magnitude of all axes, for both accelerometer and gyroscope
readings.

For the touch modality, the recorded events were aggregated into touch ges-
tures. Each gesture is a sequence of touch events that begins with touch down
of the finger and ends with lifting the finger. Five features were extracted from
each touch gesture. These include: duration, end-to-end distance, end-to-end
direction, average pressure, and average touch area.

5.2 Data Cleaning and User Selection

Since each of the features we collected for touch and movement modalities had
different units, we standardized the dataset using the mean and standard devi-
ation of each feature over the entire dataset of all users.

After extracting features, the data was divided according to application con-
text. The ActivityLogger in our data collection tool inserted place-markers in
the data whenever the user switched from one application to another. As part of
pre-processing the data, only those events were extracted, that were generated
while using the application for which the user profiles are being created. As a

414 R. Murmuria et al.

result, multiple datasets were created, one for every combination of the users,
applications, and modalities.

We then analyzed if a similar amount of data was collected for every user.
As we mentioned in Sect. 4, every user was given a fixed amount of time to use
the device. Users who generated very small datasets did not perform enough
actions on the device for us to model. Further, users who generated too much
data expectantly did not follow a normal use-case and would not match them-
selves under different circumstances. Therefore, any user who generated data
of abnormally large or small sizes was discarded. In order to compute this, we
first merged the data collected for each of the 73 users over the two days of
experiments. The number of records was tabulated for each of the 6 datasets
(2 applications and 3 modalities) for every user, and the means and standard
deviations were computed. We then removed those users who had any dataset
with sizes more than or less than 2 standard deviations from the corresponding
mean. With this method, 59 users were selected who had comparable sizes of
data. In order to prepare the baseline, 60 % of each user’s dataset was used. The
algorithms we used to train a model using this data are described in Sect. 6. As
a result, users’ profiles were created. The remaining 40 % of datasets for each
user were used to test this model.

6 Analysis to Compute Authentication

We view the authentication task as one of determining whether the current
stream of measurements of a given kind follows the same distribution as those
obtained in a baseline session for a given user. As such, we employ algorithms
that are capable of detecting outliers with respect to the baseline distribution
and place a bound on how many outliers we can allow if we assume the test
data follows the same distribution of the baseline. Exceeding this bound is an
indication of the user being an impostor.

We separate the analysis techniques in two groups. The first, utilized for
multivariate data (e.g., the data collected from touch and movement modalities),
is an adaptation of an outlier detection algorithm first published by Barbara
et al. [16] and described in Sect. 6.1. The second, utilized for univariate time-
series data (e.g., power measurements) is based on a technique reported by Keogh
et al. [17] and is explained in Sect. 6.2.

6.1 Strangeness-Based Outlier Detection

Strangeness-based Outlier Detection (StrOUD) algorithm, utilizing a machine
learning technique called transduction, was devised by Barbara et al. [16] to
detect outliers in datasets. Transduction is a machine learning technique based
in the process of reasoning from specific (baseline) cases to specific (testing)
cases. This is in contrast to induction which reasons from specific cases to rules
that can be applied to test other cases. The method was invented by Vapnik
et al. [18], motivated by his view that induction requires solving a more general

Continuous Authentication on Mobile Devices Using Power Consumption 415

Fig. 3. Strangeness-based outlier detection

problem, while transduction requires solving a more specific problem, which is
easier, and, in many cases, more accurate.

Transduction is carried out by placing a point in a known sample distribution
of data and using hypothesis testing to determine whether it is a good fit or not.
To that end, a measure of uniqueness, or strangeness is used for every point in
the distribution, including the one we are trying to fit. Strangeness is defined
by a function that measures the uniqueness of that point. Vapnik et al. utilized
transduction in the context of classification, or supervised learning, to properly
place new points in their rightful class. The technique is called Transductive
Classification Machines or TCM. The transduction methodology does not build
general models. The ‘models’ are captured in the distribution of uniqueness
values for each class.

Statistical hypothesis testing which aims to prove or disprove one of the
following hypotheses: the null hypothesis that says the test point is a good fit in
the distribution (and in the case of TCMs, whether the point belongs to the class
represented by that distribution), and the alternative hypothesis that says the
point is not a good fit. The test is performed by computing a p-value (measure
of randomness) as the fraction of the points in the sample distribution whose
strangeness is greater or equal to that of the test point. If this p-value is less than
the complement of the confidence level desired for the diagnosis, the alternative
hypothesis is accepted.

StrOUD borrows the idea of TCM with an important change: nature of the
strangeness function utilized. The goal in StrOUD is to find anomalies (not to
classify points), so, the strangeness function should be a measure of how anom-
alous a point is within a distribution. Given a sample distribution, or baseline
of observations, the strangeness of the jth point xj can be computed as the sum
of the distances to the k nearest points in the baseline data. Figure 3 presents
an illustration of two sets of data (yellow and blue) in feature space. Strange-
ness calculation has been demonstrated in the figure for a point each from the
training set and the testing set. Equation 1 shows the definition of strangeness
utilized by Barbara et al. [16].

416 R. Murmuria et al.

sj =
∑

i∈ k

d(xj , xi). (1)

Calculating all the strangeness measures for points in the baseline and sorting
them in ascending order returns a sample distribution of strangeness (shown in
the Fig. 3 with the width of the bars representing the strangeness values of each
point). For a given new point, its strangeness needs to be computed and its place
on that distribution measured, as the fraction of points (including itself) that
have strangeness equal or greater than its own. As stated before, that fraction
is a measurement of randomness in the form of a p-value, which serves as the
basis for hypothesis testing.

6.2 The Discord Algorithm

The power measurements are viewed as a time-series and for this modality an
algorithm designed by Keogh et al. [17] that allows the discovery of discords on
that kind of data was employed. A discord in a time series is a subsequence of the
series whose distance to the closest subsequence (of the same size) is maximal. A
discord is a particularly desirable indicator of anomaly, because it only requires
a very intuitive parameter for its discovery: the size of the subsequence.

The discord idea is used with the power modality in two phases. In the first,
the goal is to obtain a distribution of measures that represent the uniqueness of
a time series, as a baseline distribution. To that end, the power baseline data
collected for a user is divided in two parts. The first, of size m is used as a basis
to find discords in chunks of the second part. In the Fig. 4, this step has been
illustrated by using the training set time-series partitioned using the vertical
line. Given a fixed size of the subsequence δ, we compare a subsequence from
the second part with all subsequences in the first part, and the distance to its
closest neighbor is returned. Doing this over the entire second part of the dataset
results in a distribution of distances that can be sorted in ascending order (shown

Fig. 4. Discord-based outlier detection

Continuous Authentication on Mobile Devices Using Power Consumption 417

on the right side in the figure). This distribution is viewed as playing the role of
the strangeness distribution.

When analyzing test data, after receiving δ observations, the algorithm com-
putes the distance of that set of δ observations to the first part of the baseline
time series (of size m). Doing so, the algorithm obtains a new distance to the
test data’s closest neighbor and proceeds to transduce that distance into the
strangeness distribution, to analyze whether that subsequence is an anomaly or
not. This is repeated for every new observation in the test data (always consid-
ering a window of size δ that spans the current observation).

6.3 User Diagnosis

After calculating the sorted distribution of strangeness any future incoming point
is diagnosed using this distribution, which represents a user’s profile. In an exper-
imental setting, many datasets were tested against each user’s baseline; some of
these datasets came from the same user and some of them from users other than
the one that generated the baseline. Such setting produces a matrix where each
column and row represents one user. Every entry represents the probability of
committing an anomaly for the corresponding pair of baseline/test user data
set. This matrix is called the confusion matrix. The smaller the score, the better
the testing data matched the baseline. Examples for this matrix are shown in
Tables 3, 4, and 5 under Sect. 7.

The mere presence of an anomaly does not conclude presence of an imposter.
The fraction of anomalies in the test dataset is an indication of whether the set
belongs to the original distribution or not. Setting a threshold on the maximum
probability that can be observed and still consider the data as coming from the
same distribution of the baseline gives a way to diagnose a user as an impostor
or not.

From this point onward, there are two ways to proceed while choosing thresh-
olds. The first is to select a general threshold and diagnose as reject every matrix
entry whose value is bigger than the threshold. If the reject occurs in a case for
which the row and column are from the same user, it is a false reject (the model
is saying the user is not who they say they are, while the truth says otherwise).
If the reject occurs elsewhere, it is a true reject (the model is correctly saying
this user is different than that of the baseline). After computing the rates at
which these two events occur, False Reject Rate (FRR) and False Accept Rate
(FAR) can be calculated as shown in Eq. 2.

FAR = 1 − True Reject/Total Reject Cases
FRR = False Reject/Total Accept Cases.

(2)

Varying the threshold for fraction of anomalies allows computing pairs of
values for FRR and FAR for each threshold, and plotting the Receiving Oper-
ating Characteristic (ROC) curve. If a single column from the matrix is used
to calculate the FRR and FAR, the ROC curve represents performance of the

418 R. Murmuria et al.

corresponding user’s model. This requires having more than one test set that
comes from the same user represented in the column (otherwise the computa-
tion of FRR is trivialized). If the entire matrix is used, the ROC curve represents
overall performance of all the models for every user.

The second alternative is to utilize an individual threshold for each user.
These thresholds are calculated using the fraction of anomalies of each user
(which represent the rate of anomalies that are “normal” to every user). In
this case, from the confusion matrix, the overall FRR and FAR are computed by
varying threshold values per column (i.e., per user) and the ROC is reported with
each FRR/FAR pair resulting from a vector of threshold values. Experiments
show that selecting individual thresholds result in much improved ROC plots,
and thus, better models.

Each modality produces its own confusion matrix. To calculate the overall
result, we used two schemes to calculate the ensemble: majority scheme and
non-imposter consensus. The majority scheme requires at least 2 out of the 3
modalities to vote for having found an imposter. The non-imposter consensus
requires 3 out of the 3 modalities to vote for having found the same user and
any other vote results in a declaration of imposter.

7 Results

We measured our system’s performance in terms of the commonly used met-
rics: False Acceptance Rate (FAR), False Rejection Rate (FRR) and Receiver
Operating Characteristic (ROC) curve. We defined these terms in Sect. 6.3 in
the context of our analysis. Additionally, we make use of another metric called
Equal Error Rate (EER), which is the rate at which the FAR and FRR are
equal. EER is a widely used metric to determine the overall performance of an
authentication system regardless of the choice of parameters.

The parameters we selected for the two algorithms discussed in Sect. 6 are
shown in Table 1. The value of k in the StrOUD algorithm was selected to be 3.
Other selections in the neighborhood of 3 did not result in a significant difference
in the overall performance. The δ in the power consumption data was selected to
be 12, which corresponds to time-series window of 1 min. Other window sizes of
30 s and 5 min performed poorly compared to the 1 min window. The parameter
m splits the power data in two chunks during baseline generation phase of the
discord algorithm. A split of 60-40 was considered appropriate, but other combi-
nations can be explored in future. The confidence level determines how strictly
the user diagnosis phase marks records as imposter. Different values between
85 % and 99 % were tested, and the best performing level was chosen.

Table 1. Parameters selected for our algorithms

Parameter k δ m conf

Value 3 12 60 % 90 %

Continuous Authentication on Mobile Devices Using Power Consumption 419

(a) Using Chrome App (b) Using Facebook App

Fig. 5. ROC from ensemble model on all users

Our analysis of the experimental results demonstrate that our approach using
the ensemble of modalities allow us to identify imposters with an Equal Error Rate
between 6.1 % and 6.9 % for training times that vary between 20 and 60 min. The
first response time to authenticate is as low as 2 s for the gyroscope modality, 1 ges-
ture for the touch screen modality and 60 s for the power modality. Subsequently,
each user action will produce a new authentication score in real-time.

We discussed our use of common thresholds and individualized thresh-
olds in Sect. 6.3. Further, the voting schemes we used to create the ensembles
is described in Sect. 6. Figure 5a shows the detection performance results for
Chrome and Fig. 5b for Facebook. It is clear from the ensemble plots that for
both voting schemes, the individual thresholds for each user gives a significant
improvement to the predictions. Further, our voting scheme of Non-imposter
consensus is consistently outperforming the majority scheme. By requiring the
modalities to agree by consensus when a legitimate user is present, we placed a
higher cost on acceptance and thereby improved the overall performance.

We examined the distribution of False Accept Rates (FAR) by ‘clamping’
the False Reject Rates (FRR) to 0.01 (i.e., 1 %). The results are tabulated in
Table 2. The results follow intuition that we have very few users that can cause
an FAR value to be higher than the average. We believe that this can be rectified
with use of additional biometric modalities complementary to the three we have
developed.

If used separately, each modality cannot generate models that offer good
performance in terms of accuracy and classification results because each modality
is a weak classifier. Put it simply, users can happen to closely resemble one of the

Table 2. Distribution of FAR of users at ≤1 % FRR

Range 0–2.5 % 2.5 %–7.5 % 7.5 %–12.5 % 12.5 %–50 %

Users (Chrome) 38 10 4 7

Users (Facebook) 45 7 0 7

420 R. Murmuria et al.

(a) Movement modality (gyro./accel.) (b) Touch modality

(c) Power modality

Fig. 6. ROC for Chrome App captured on all users

modalities but it is extremely rare that they do so at the same time for all three
modalities given our experimental results. As a result, because the modalities
have non-overlapping weaknesses, together in an ensemble they form a strong
identifier. We use ROC curves produced from the data of Chrome application
as an example, to demonstrate that (see Fig. 6). The performance ranges in
EER from 27.3 % to 32.3 % even with individual thresholds. Figure 5a is the
corresponding ensemble plot that shows EER of 16.9 % for common thresholds
and EER of 6.9 % with individual thresholds which are significant improvements.
Modality plots for the Facebook application showed comparable performance and
have been omitted here.

Results also depend on the Application context. See Tables 3, 4 and 5 that
show the performance of the power modality for 5 randomly selected users. These
confusion matrices have been created using the technique discussed in Sect. 6.3.
The light gray color represents the rate of anomaly considered “normal” to the
legitimate user. Using our per-user thresholds method, if any cell in the column
happens to have a fraction of anomaly less than the value in the diagonal (colored
light gray), then these would represent False Accepts, and we have colored them
dark gray. It is clear from observation, that the number of dark gray boxes greatly

Continuous Authentication on Mobile Devices Using Power Consumption 421

Table 3. Randomly selected 5 users
from Chrome App for power modality

Baseline Users
% A B C D E

T
es

t
U

se
rs A 3.6 15.6 19.2 10.7 28.5

B 30.1 12.2 14.8 8.5 32.5
C 17.1 4.2 2.5 5.0 35.8
D 42.1 2.7 21.0 12.1 47.8
E 19.8 8.5 8.9 0.8 6.7

Table 4. Randomly selected 5 users
from Facebook App for power modality

Baseline Users
% A B C D E

T
es

t
U

se
rs A 20.4 40.8 25.1 30.6 5.7

B 3.6 5.4 52.3 11.6 1.8
C 13.5 71.2 7.5 90.7 2.8
D 2.2 24.8 71.1 7.4 5.5
E 11.9 61.4 21.5 64.0 18.2

Table 5. Randomly selected 5 users
from mixture of both apps for power
modality

Baseline Users
% A B C D E

T
es

t
U

se
rs A 10.8 11.3 11.3 5.4 16.3

B 8.8 18.3 17.1 2.7 13.3
C 7.8 3.3 15.8 2.0 15.3
D 10.6 3.2 17.0 41.6 22.3
E 3.9 4.5 4.7 0.5 16.0

increases in Table 5. User’s behavior is not similar across Chrome and Facebook
applications and thus the identification accuracy is dramatically reduced when
we mix the datasets. In Fig. 7, we present the ROC curves for overall performance
of the system on the combined data of Chrome and Facebook with the context
removed. It can be observed that the overall performance has deteriorated.

8 Lessons Learned

It is not uncommon to encounter very noisy data when mining in the real-world.
The same is the case with the behavioral biometrics dataset collected for this
research. Despite moderately controlling the environment during data collection,
the rate of anomalies due to noise is high, in comparison to misclassification error.
Most research work in continuous authentication resort to one of two techniques:
(1) Data cleansing by removing chunks of data whose class predictions contradict
the ground truth during training, and (2) Assume the data to be clean, and
consider the contradictions as misclassification error during testing. In truth,
the nature of the data is changing so constantly that it is required to not only
assume but explicitly model the noise. This research, therefore, considered the
rate of anomalies generated by a user while testing against his own baseline
to be a virtue of his own user profile. As seen in Tables 3 and 4, the rate of
anomalies considered “normal” for different users cover a wide range of values.
This indicates the assumption could be true, resulting in the need to build models
that are error-aware.

422 R. Murmuria et al.

Fig. 7. ROC from ensemble model without application context

This research also showed that authentication accuracy is affected by applica-
tion context; any user’s behavior differs from application to application. The per-
formance of the authentication engine therefore depends not only on which mobile
application is being used (application context), but also on whether the mobile
application can be modeled well or not. Different categories of applications can be
identified, as described below, that will show high false accepts and false rejects
depending upon how users are meant to interact with the application.

1. Randomized UI
Mobile Applications that have completely randomized UI will have high false
rejects. Some examples include Game applications that appear randomized
on all of the modalities used in this research.

2. Static UI
On the other hand, apps that have completely static UI can have very high
false accepts. Some examples include Camera, Flashlight, Sound Recorder
and Navigation. While these apps appear static from the point of view of
the chosen biometric modalities, some of them can be incorporated into the
system by introducing modalities such as voice recognition.

3. Mixed UI
In general, apps that have a mix of UI inputs yield the best results for
authentication. Chrome and Facebook were tested in this research, but other
apps in this category include email and word processors.

Since different applications need different levels of security, it can be argued
that some apps that need higher data security can employ the use of a rich set
of user interactions in order to benefit from an overall improved authentication
performance from their users.

9 Future Work

As discussed in Sect. 4, we presented results using a dataset that was generated
while controlling environmental interference. One direct progression of this work

Continuous Authentication on Mobile Devices Using Power Consumption 423

is to study the impact on performance when allowing volunteers to perform their
daily routine tasks. Such a test would warrant the need for much longer data col-
lection sessions where the volunteer uses the mobile device over multiple days. In
addition, we believe that further investigation of the scalability of the individu-
alized parameters when we increase the number of users, apps, and modalities is
warranted. The current testing was done to determine the efficacy of identifying
users through their device interactions. Future work will assess the usability of
the approach now that the efficacy has been established.

10 Conclusion

We have introduced a novel system that performs authentication on Android
mobile devices by leveraging user behavior captured though three distinct modal-
ities – power consumption, touch gestures, and physical movement (using both
accelerometer and gyroscope). To the best of our knowledge, we are one of the
first research groups to propose the use of mobile power measurements and lever-
age the application context in the authentication process. We further demon-
strated that by using individualized thresholds for rate of anomalies expected
from every user, we were able to improve performance significantly. To that end,
we implemented a full set of algorithms and applications for the measurement,
evaluation, and deployment of the framework to Nexus 5 Android phone and
demonstrated our capability to perform continuous authentication in real time.
By leveraging data collected from 73 volunteer participants, we evaluated our
system while the end-user was utilizing two popular applications – Chrome and
Facebook. We were able to achieve good performance with an equal error rate
between 6.1 % and 6.9 % for 59 selected users who had generated sufficient data
for evaluation. Given that the approach in this paper solves the problem of noise
and context in very deployable ways, it is more viable as a real-world solution
than other competing approaches in literature.

References

1. Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on
smartphone touch screens. In: Proceedings of the 4th USENIX Conference on
Offensive Technologies, pp. 1–7. USENIX Association (2010)

2. Muslukhov, I., Boshmaf, Y., Kuo, C., Lester, J., Beznosov, K.: Know your enemy:
the risk of unauthorized access in smartphones by insiders. In: Proceedings of
the 15th International Conference on Human-Computer Interaction with Mobile
Devices and Services, pp. 271–280. ACM (2013)

3. Karlson, A.K., Brush, A.J., Schechter, S.: Can i borrow your phone?: understanding
concerns when sharing mobile phones. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1647–1650. ACM (2009)

4. Clarke, N.L., Furnell, S.M.: Advanced user authentication for mobile devices. Com-
put. Secur. 26, 109–119 (2007)

5. Shi, E., Niu, Y., Jakobsson, M., Chow, R.: Implicit authentication through learning
user behavior. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 99–113. Springer, Heidelberg (2011)

424 R. Murmuria et al.

6. Riva, O., Qin, C., Strauss, K., Lymberopoulos, D.: Progressive authentication:
deciding when to authenticate on mobile phones. In: Proceedings of the 21st
USENIX Security Symposium (2012)

7. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics Secur. 8, 136–148 (2013)

8. Bo, C., Zhang, L., Jung, T., Han, J., Li, X.-Y., Wang, Y.: Continuous user identifi-
cation via touch and movement behavioral biometrics. In: 2014 IEEE International
Conference on Performance Computing and Communications (IPCCC), pp. 1–8.
IEEE (2014)

9. Yampolskiy, R.V., Govindaraju, V.: Behavioural biometrics: a survey and classifi-
cation. Int. J. Biometrics 1, 81–113 (2008)

10. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Cell phone-based biometric identification.
In: 2010 Fourth IEEE International Conference on Biometrics: Theory Applications
and Systems (BTAS), pp. 1–7. IEEE (2010)

11. Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for key-
stroke dynamics. In: 2009 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, pp. 125–134. IEEE (2009)

12. Shen, C., Cai, Z., Maxion, R.A., Xiang, G., Guan, X.: Comparing classification
algorithm for mouse dynamics based user identification. In: 2012 IEEE Fifth Inter-
national Conference on Biometrics: Theory, Applications and Systems (BTAS), pp.
61–66 (2012)

13. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accu-
rate online power estimation and automatic battery behavior based power model
generation for smartphones. In: Proceedings of the Eighth IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pp.
105–114. ACM (2010)

14. Murmuria, R., Medsger, J., Stavrou, A., Voas, J.M.: Mobile application and device
power usage measurements. In: 2012 IEEE Sixth International Conference on Soft-
ware Security and Reliability (SERE), pp. 147–156 (2012)

15. Shye, A., Scholbrock, B., Memik, G.: Into the wild: studying real user activity
patterns to guide power optimizations for mobile architectures. In: Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pp.
168–178. ACM (2009)

16. Barbará, D., Domeniconi, C., Rogers, J.P.: Detecting outliers using transduction
and statistical testing. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 55–64. ACM (2006)

17. Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time
series subsequence. In: Fifth IEEE International Conference on Data Mining. IEEE
(2005)

18. Vovk, V., Gammerman, A., Saunders, C.: Machine-learning applications of algo-
rithmic randomness. In: Proceedings of the Sixteenth International Conference on
Machine Learning (ICML 1999), pp. 444–453 (1999)

Privacy

Privacy Risk Assessment on Online Photos

Haitao Xu1,2(B), Haining Wang1, and Angelos Stavrou3

1 University of Delaware, Newark, DE 19716, USA
{hxu,hnw}@udel.edu

2 College of William and Mary, Williamsburg, VA 23187, USA
3 George Mason University, Fairfax, VA 22030, USA

astavrou@gmu.edu

Abstract. With the rising popularity of cameras and people’s increas-
ing desire to share photos, an overwhelming number of photos have been
posted all over the Web. A digital photo usually contains much infor-
mation in its metadata. Once published online, a photo could disclose
much more information beyond what is visually depicted in the photo and
what the owner expects to share. The metadata contained in digital pho-
tos could pose significant privacy threats to their owners. Our work aims
to raise public awareness of privacy risks resulting from sharing photos
online and subsequent photo handling conducted by contemporary media
sites. To this end, we investigated the prevalence of metadata informa-
tion among digital photos and assessed the potential privacy risks arising
from the metadata information. We also studied the policies adopted by
online media sites on handling the metadata information embedded in
the photos they host. We examined nearly 100,000 photos collected from
over 600 top-ranked websites in seven categories and found that the photo
handling policy adopted by a site largely varies depending on the cat-
egory of the site. We demonstrated that some trivial looking metadata
information suffices to mount real-world attacks against photo owners.

1 Introduction

With the proliferation of cameras, especially smartphone cameras, it is now very
convenient for people to take photos whenever and wherever possible. Further-
more, the prevalence of online social networks and photo-sharing sites greatly
facilitates people to share their digital photos with friends online. Every day,
around 1.6 million photos are shared on Flickr [1], one of the largest online
photo sharing sites. In their rush to share digital photos online, well-intentioned
Internet users unwittingly expose much hidden metadata information contained
in the digital photos. The metadata information such as camera serial number
may seem relatively innocent and trivial but could pose privacy threats to pho-
tographers1 and the people depicted in the photo. Unfortunately, one study [14]
shows that up to 40 % of high-degree participants do not even know the term

1 By photographer we mean the person who took the photo rather than who works as
a professional photographer.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 427–447, 2015.
DOI: 10.1007/978-3-319-26362-5 20

428 H. Xu et al.

metadata. The situation becomes worse concerning the fact that a photo could
linger on the Web for many years.

During the spread of a digital photo, online social network (OSN) services
and other media sites usually serve as the sink. Online media sites often compress
and resize the photos they host for space saving. For instance, Instagram uses a
resolution of 640*640 pixels for all its photos and automatically resizes any larger
photos. Media sites may even remove the metadata information in their hosted
photos. However, users usually do not know what online services will do with
their uploaded photos [14]. Thus, it is important to raise public awareness of the
potential privacy risks posed by metadata leakage and increase their knowledge
of how online media sites handle the photos they upload.

Based on the life cycle and the propagation process, we create a taxonomy to
classify digital photos into three different stages: “fresh,” “intact,” and “wild.”
“Fresh” photos are just freshly taken with a camera. “Intact” photos have been
uploaded online but remain intact from the hosting sites. “Wild” photos may
have been post-processed multiple times by the hosting sites. In this paper, we
perform a data-driven assessment of privacy risks on contemporary digital pho-
tos. Specifically, we examine digital photos at the three stages in terms of meta-
data information contained and potential privacy risks, and we further explore
the photo handling policies adopted by online media sites.

To obtain a representative dataset for our study, we collected nearly 200,000
photos in total in various ways including soliciting freshly taken photos through
crowdsourcing, downloading original sized, intact photos from a major photo
sharing site, and crawling “wild” photos from Google Images and over 600 top
ranked websites. We examined the metadata information embedded in these
photos and found that metadata was prevalent among photos at each of the
three stages. We paid special attention to the metadata fields that may give
rise to great privacy concerns. We found that about 10 % of “fresh” photos
were tagged with GPS coordinates while 27 %–37 % of “intact” photos and only
about 1 % of “wild” photos contained GPS information. We also measured the
percentages of photos containing other sensitive metadata information including
a photographer’s name and modification history.

To understand how a photo is processed after being shared online, we also
investigated online sites’ policies on handling photos based on 97,664 photos
crawled from 679 unique top sites in seven categories—“social networking,”
“news,” “weblog,” “college,” “government,” “shopping,” and “classified”2 sites.
We found that photo handling policies adopted by online sites vary with different
categories. The “college” and “government” sites hardly resize the photos they
host or remove the embedded metadata information. However, the sites in the
other categories are more likely to resize the photos and remove the metadata
information.

In addition to the sensitive metadata information embedded in a photo, we
demonstrated that some other trivial looking metadata information could be
exploited to launch re-identification attacks against photo owners. For 62.6 % of

2 “Classified” refers to the classified advertisements sites such as Craigslist.

Privacy Risk Assessment on Online Photos 429

Table 1. List of metadata information typically included in a digital photo.

Category Information Fields

When Date Time Create time, modify time

Where Location GPS coordinates, city/state/country

How Device Info. Camera make, model, serial number, light
source, exposure mode, flash, aperture
settings, ISO setting, shutter speed, focal
length, color information

Who People Artist’s name

What Description Title, headline, caption, by-line, keywords,
copyright, special instructions

Modification Modification History Create tool, xmp toolkit, history action,
history when, history software agent,
history parameters

unique photographers, we were able to uncover their both online and real-world
identities with just one photo they ever took and posted online.

The remainder of the paper is organized as follows. We provide background
knowledge in Sect. 2. We describe data collection methods for “fresh” photos
and characterize them in Sect. 3. We examine “intact” photos in Sect. 4. We
characterize “wild” photos and investigate online sites’ photo handling policies
in Sect. 5. We demonstrate the re-identification attack in Sect. 6. We discuss the
limitation of this work and propose our future work in Sect. 7. We survey the
related work in Sect. 8 and conclude the paper in Sect. 9.

2 Background

In this section, we first give an overview of the metadata information typically
contained in a digital photo, then discuss the potential privacy concerns, and
finally illustrate the three stages we define for digital photos.

2.1 Metadata Information in a Photo

There are three most commonly used metadata standards for photos: EXIF,
XMP, and IPTC. They often coexist in a photo and constitute the main part
of the photo metadata. Table 1 lists the metadata fields typically included in a
photo grouped by category.

A digital photo typically contains ample metadata information. When a shot
is taken, the camera automatically embeds into the photo all the information it
knows about the camera itself and the photo. In addition, users can add their
own descriptive information with image processing software. Specifically, typical
metadata information can be summarized as follows: (1) when – when the photo
is created and modified if applicable, (2) where – the exact location (GPS coordi-
nates and altitude) at which the photo is captured if a GPS receiver is equipped

430 H. Xu et al.

and enabled, or coarse-grained location information such as city/state/country,
(3) how – the camera device used, its make, model, serial number, light circum-
stances (sunny or cloudy, flash on or off), exposure (auto or manual), and all
other parameters used, (4) who – the photographer and the people depicted in
the photo if manually added during post processing, (5) what – title, headline,
caption, keywords, copyright restriction, and other detailed descriptions added
for logging, organization or copyright protection, and (6) modification – if the
photo is modified, on what date and time, by what software on what computer,
and the specific actions done to the photo.

2.2 Potential Privacy Concerns Arising from Photo Metadata

Most metadata fields may look innocent and trivial. However, some could raise
serious privacy concerns. We highlight several sensitive metadata fields below.

Geolocation. Contemporary cameras and smartphones are typically equipped
with GPS functions. When taking photos with these GPS-enabled devices, geolo-
cation information is automatically saved into the metadata. For a photo posted
online, anybody able to access it could check the metadata information and may
get the geolocation where the photo was taken. This definitely violates the pri-
vacy of the photographer and the people depicted. For instance, the time and
location embedded in an online photo indicated that a public figure had been at
an embarrassing location and not where he claimed to have been [5]. Moreover, a
geo-located photo obviously taken at home and depicting high-value goods may
give burglars incentives. In addition, young parents usually like to post many
photos of their kids online, which may raise great concerns because the photos
tagged with GPS coordinates could disclose the exact locations of where their
kids live, play, or study.

Photographer’s/Owner’s Information. Some photos explicitly contain in
the metadata the photographers’ information, among which the name informa-
tion is most commonly seen. No matter whether such information is embedded
with or without the photographers’ awareness, disclosing such information may
cause identity leakage, especially given the availability of geolocation information
in the metadata.

Modification History. When post processing a digital photo, an image process-
ing software like Adobe Photoshop and Apple iPhoto often automatically embeds
into the photo the detailed modification information, represented by three meta-
data fields: History When, History Software, and History Parameters. Table 2
presents an example of the embedded modification information in a photo. For
the convenience of illustration, we add the photo’s shot time in the table. It
clearly shows that the photo has been processed twice in less than one month
since it was taken on July 16, 2014. And two versions of Adobe Photoshop on
one or two Macintosh computers were ever used for format conversion and save
actions.

A photographer may not want to disclose such modification information,
especially when such information may undermine what the photographer tries

Privacy Risk Assessment on Online Photos 431

Table 2. An example of modification information contained in a photo’s metadata.

Create date History when History software History parameters

2014:07:16 15:13:56 2014:07:19 01:30:03,

2014:08:08 21:17:25

Adobe Photoshop

Lightroom 5.4

(Macintosh),

Adobe Photoshop

Lightroom 5.6

(Macintosh)

Converted from

image/x-nikon-nef to

image/dng, saved to new

location, converted from

image/dng to image/jpeg,

saved to new location

to convey through the photo. For instance, the contained modification informa-
tion may cast doubt on the legitimacy of a photo used as digital photographic
evidence in court. In addition, celebrities may not like the public to know the
photos they were depicted in are actually photoshopped.

2.3 Three Stages of Digital Photos

Based on their propagation process, contemporary digital photos fall into three
stages: “fresh,” “intact,” and “wild.” In the “fresh” stage, a photo is freshly
taken, free from any post-processing manipulations and still stored in the local
camera device. All the metadata information contained in a “fresh” photo is
automatically embedded by the camera device, instead of being subsequently
introduced by a post processing. In the “intact” stage, a photo has been uploaded
online, but remains intact and has not yet been compressed or resized by the
hosting media site. For a photo in the “wild” stage, it may have undergone
resizing, cropping, and other editing actions conducted by the hosting site, which
could change the hidden metadata too. By characterizing digital photos in these
three different stages, we aim to depict the status of contemporary digital photos.

3 Fresh Photos

The photos in the “fresh” stage are just freshly created. We examine the meta-
data information, especially sensitive information, embedded in those freshly
taken photos. In this section, we first describe the method used for collecting
“fresh” photos and then characterize the collected photos.

3.1 Data Collection

The collection of “fresh” photos is not easy due to their inherent characteristics.
We found that it is an effective way to solicit “fresh” photos through crowdsourc-
ing. We posted tasks on a crowdsourcing platform. In each task, the required
actions for a worker to take are two-fold: (1) pick up her smartphone, take a
photo, and then send the photo to us directly via the instrumented email client
application, and (2) take a short survey asking for her demographics informa-
tion. In addition, to guarantee the unique origin of each photo, each worker is
allowed to take our task only once.

432 H. Xu et al.

Table 3. Demographic statistics of worker participants

Gender Percent Country Percent Age Percent Education Percent MobileOS Percent

Male 71.7% India 14.4% <=17 2.3% Graduate 17.7% Android 72.8%

Female 28.3% USA 13.7% 18–24 45.8% Bachelor 47.0% iOS 18.2%

NA NA Serbia 7.8% 25–34 36.3% High Sch. 33.3% WindowsP 5.2%

NA NA Nepal 5.3% 35–44 10.8% Middle Sch. 1.7% Blackberry 1.8%

NA NA Macedonia 4.4% >=45 4.7% Elementary 0.4% Other 2.0%

For each received photo, we employed various methods to check if it is freshly
taken with a smartphone rather than a photo randomly grabbed from the Inter-
net. In addition, according to our tests, sending a photo via email does not
affect its embedded metadata. Thus, our task requirements guarantee that the
collected photos are freshly created and intact from any post-processing manip-
ulation. The data collection lasts for two months and we collected 782 photos
in total. We filtered out 170 photos that are either post-processed or created
by other tools. We use the set of the remaining 612 photos for our study. We
address potential ethical concerns on our data collection in Appendix A.

3.2 Characterizing “Fresh” Photos

Demographics. The 612 photos were collected from 612 unique workers from
76 countries. Table 3 lists the demographic statistics of the worker participants:
(1) 71.7 % of workers were male and the rest were female, (2) 45.5 % of workers
were from the top five countries, including India, United States, Serbia, Nepal,
and Macedonia, (3) 82.1 % of workers were between the ages of 18–34 and 10.8 %
between 35–44, (4) 47 % of workers received the bachelor’s degree, 33.3 % with
high school degree, and 17.7 % with graduate degree, and (5) 72.8 % of photos
were taken with Android phones and 18.2 % with iOS phones.

(Sensitive) Metadata Prevalence. Although Table 1 lists quite a few meta-
data fields typically embedded in a photo, a specific photo often has a large
portion of its metadata information missing. According to our measurement
results, we found that two metadata fields, camera make and model, are the
most fundamental metadata information. That is, if they are missing in a photo,
most other metadata fields are missing too. Thus, we decide whether a photo
contains metadata information based on these two fields. A photo is regarded as
containing metadata if either of the two fields has a non-empty value.

With the help of a third-party library [2], we examined the prevalence of
metadata information among 612 “fresh” photos. We also examined if “fresh”
photos contain any sensitive metadata fields, including geolocation, owner’s
information, and modification history, as mentioned in Sect. 2. Figure 1 shows
the percentages of photos containing metadata and sensitive metadata fields.
As high as 86.4 % of “fresh” photos contain metadata, which demonstrates the
prevalence of metadata information among freshly taken digital photos. As of
the sensitive metadata fields, 15 % of fresh photos are tagged with geolocation
information. The results show that although nearly all smartphones are now

Privacy Risk Assessment on Online Photos 433

0%

18%

36%

54%

72%

90%

Metadata Geolocation Owner_Info

0.2%0.0%

15.0%

86.4%

Fig. 1. Percentage of “fresh” photos con-
taining metadata information.

0%

8%

16%

24%

32%

40%

Android iOS Windows Blackberry

10.0%

34.5%33.7%

9.2%

Fig. 2. Percentage of “fresh” photos
tagged with GPS for smartphone OS.

GPS-equipped, only some of them are GPS-enabled. The percentage is expected
to be even lower if more people are aware that smartphones may automatically
embed geolocation into photos and then choose to turn the GPS functionality
off. None or hardly any of “fresh” photos contain photographers’ information or
modification history in their metadata. We speculate that it is due to (1) our
strict task requirements and (2) the possibility that these two kinds of sensitive
metadata fields may not be automatically embedded at the time of a photo shot.

Impact of Smartphone OS on Geolocation Metadata. It is interesting to
examine which kind of smartphone OSes are more likely to automatically embed
the sensitive geolocation information into photos. Figure 2 shows that about one
third of iOS and Windows phones automatically embed geolocation into photos
while only about 10 % of Android and Blackberry phones do this.

4 Intact Photos

In the “intact” stage, photos have been posted online while retaining intact
metadata information. From this perspective, “intact photos” could reflect the
status of metadata in digital photos at the time of being shared online. In this
section, we describe our data collection method for “intact” photos and examine
the embedded metadata information in them.

4.1 Data Collection

To collect such photos, we crawled photos from Flickr, a large photo-sharing
website, using its API with the download option of “original size,” which guar-
antees that the photos remain original and intact from the site. More specifically,
we collected two sets of “intact” photos from Flickr. The first set denoted by
Flickr p contains 18,404 photos exclusively taken with smartphones. Those pho-
tos were crawled from the Flickr group “Smartphone Photography” where all
photos were taken with smartphones. The other set denoted by Flickr 6 contains
43,704 photos uploaded within six months from July 1, 2014 to December 31,

434 H. Xu et al.

0%

20%

40%

60%

80%

100%

50.2%

12.3%

88.1%

65.6%

27.2%

37.1%

94.1%

76.4%

Fig. 3. Percentage of “intact” photos containing metadata information. In each of four
pairs of columns, the left black column represents Flick p while the right gray Flick 6.

2014. Our further examination shows that 94.3 % of the photos in Flickr 6 were
taken with digital cameras.

4.2 Metadata Information Embedded

Similarly, we examined the percentage of “intact” photos containing metadata
information, especially sensitive metadata fields. Figure 3 shows the percentages
of “intact” photos containing metadata and sensitive metadata fields.

It shows that intact photos in Flickr p and Flickr 6 have quite high per-
centages containing metadata information, 76.4 % and 94.1 %, respectively. The
results indicate that most digital photos taken with either digital cameras or
smartphones contain metadata when being uploaded online. In addition, 37.1 %
Flickr p and 27.2 % Flickr 6 photos contain GPS information. Considering 15 %
of “fresh” photos tagged with geolocation, we speculate that some photo owners
may embed GPS information into photos during post processing to better show
their photographic works on Flickr. Moreover, up to 65.6 % and 88.1 % Flickr p
and Flickr 6 photos contain the photographer information, which could pose
a great risk of identity leakage to photo owners. Additionally, about a half of
Flickr 6 photos contain modification information. Most photos in the set are
taken with professional digital cameras and photo owners often show intense
interest in refining their works with image processing software. By contrast, a
much lower percentage of Flickr p photos taken with smartphones are modified.

5 Wild Photos

In the “wild” stage, most online photos have lingered on the Internet for a while
and may have experienced multiple modifications by the hosting sites. In this
section, we attempt to figure out the metadata information remaining in the
“wild” photos and explore how the top media sites handle the photos hosted
on them.

Privacy Risk Assessment on Online Photos 435

5.1 Data Collection

We employed two methods to collect “wild” photos. The first method is to
randomly collect photos by Google Images Search. In the custom search control
panel, we set the image type as photo, file type as JPG/JPEG files, image size as
larger than 400*300, and the date range from January 1, 2012 until January 1,
2015. Nearly all digital photos are in JPEG format. The specified image size can
filter out most of graphs, drawings, and other non-photo images. In addition,
we only focus on the photos posted online in the past three years. We totally
collected 38,140 photos in this way and denoted them by GoogleImage.

Secondly, to investigate top media sites’ policies on handling photos, we
need to obtain a representative set of media sites. Alexa categorizes millions
of sites and defines a list of site categories [4], from which we selected seven
categories, which are “social networking,” “weblog,” “news,” “college,” “gov-
ernment,” “classified,” and “shopping”. The reason why we chose them is that
presumably the sites in these categories usually host large amounts of photos.
Alexa provides for each category a list of the top 500 sites. We selected the top
100 sites for each category and thus we had 700 unique top ranked sites in total
as our subject representative of online media sites.

Not every photo appearing on a site is hosted by the site. A photo is consid-
ered being hosted on a site only if its image URL has the same domain as the
site URL. Only the photos hosted on a site are eligible to be used for studying
the site’s polices. During our photo collection from each site, we only crawled the
photos hosted on that site. Specifically, for each of the 700 sites, we attempted to
crawl 1,000 photos that appeared online after January 1, 2012. Those photos are
expected to reflect the photo policy used by the hosting site under an assumption
that the site has not made significant changes to its photo handling policy in the
recent years. Due to unexpected factors including network connection failure and
access permission denied, we were able to crawl 97,664 photos from 679 unique
sites. To ensure the representativeness of these photos, we filtered out the sites
from which less than 10 photos were collected. Finally, we had 97,403 photos
for 611 unique sites as our dataset for the study, about 160 photos per site on
average. This set of photos are denoted as TopSitesPhoto.

Figure 4 depicts the number of photos crawled from each site. It shows that
about 80 % of sites have over 60 photos crawled, about 35 % of sites have over
120 photos crawled, and about 20 % have over 300 photos crawled. We crawled
a maximum number of 1,026 photos for one site3.

5.2 Metadata Information Embedded

Figure 5 shows the percentages of “wild” photos containing metadata, especially
those sensitive metadata fields. It shows that the percentages of “wild” photos
containing metadata information in the sets GoogleImage and TopSitesPhoto are
41.5 % and 40.4 %, respectively, which are much smaller than that of “intact”

3 We crawled the site twice and collected over 1,000 photos.

436 H. Xu et al.

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of photos for each site

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

84
0

90
0

96
0

1,
02

0
1,

08
0

1,
14

0
1,

20
0

Fig. 4. CDF of number of photos crawled from each site.

photos (up to 94.1 %). In addition, very few “wild” photos are tagged with GPS
coordinates. In GoogleImage and TopSitesPhoto, the percentages are 0.6 % and
1.8 %, respectively, smaller than those of “fresh” and “intact” photos. Moreover,
only 13.2 % of GoogleImage photos and 8.7 % of TopSitesPhoto photos contain
photographers’ identification information. About 25.4 % of GoogleImage photos
and 14.1 % of TopSitesPhoto photos contain modification history information.
These results imply that compared to “fresh” and “intact” photos, a considerable
proportion of “wild” photos have their embedded metadata stripped away.

5.3 Inferring Online Sites’ Photo Handling Policies

Based on TopSitesPhoto, we have built a set of photos for each of the 611 unique
sites. We attempt to infer a site’s photo handling policy by characterizing the
photos collected from the site. Specifically, we aim to answer two questions about
a site’s photo handling policy. One is whether the site resizes the photos it hosts,

0%

10%

20%

30%

40%

50%

14.1%

25.4%

8.7%

13.2%

1.8%0.6%

40.4%41.5%

Fig. 5. Percentage of “wild” photos containing metadata information. In each of four
pairs of columns, the left black column represents GoogleImage while the right gray
TopSitesPhoto.

Privacy Risk Assessment on Online Photos 437

and the other is whether the site removes the metadata information embedded
in those photos.

Whether a Site Resizes its Hosted Photos? After upload, a photo is typ-
ically compressed and resized by the hosting site in several sizes. For instance,
Instagram uses an image size of 640 pixels in width and 640 pixels in height for
nearly all its hosted photos. More commonly, an online site confines a photo’s
longest side length to a small set of values. Flickr resizes its photos in the fol-
lowing sizes: 100 pixels (on the longest side), 240 pixels, 800 pixels, 1600 pixels
and so on [10]. Therefore, if the majority of photos hosted by a site have their
longest side (width or height) lengths falling into a small set of numbers, then
we speculate that the site does resize the photos it hosts.

For each photo in our dataset, we retrieved its longest side length from its
file information. About 2 % of photos had no image size information available
and were ruled out. Suppose “DDDD” is the longest side length value that is
observed most frequently on a site. We calculated the proportion of the photos on
the site with their longest side length of the value “DDDD”. We then leveraged
the proportion number to decide whether the site resizes its photos or not. If
over 50 % of photos on the site have the longest side length of “DDDD”, the
site is considered to resize its photos. The argument is based on our observation
that among more than 40,000 photos downloaded from Flickr with “original
size” option, only 3.47 % have their longest side length of 1,600 pixels, while this
length value occurs much more frequently for the photos that have been resized.

Figure 6 shows what percentage of sites that are regarded to resize the pho-
tos on their sites across the 7 categories. It is not surprising to see that only
3.0 % of “College” sites and 10.5 % “Government” sites have resized their pho-
tos, since colleges and governments usually have sufficient hosting resources to
store high-resolution photos. About 36.7 % of “News” sites are estimated to
resize the photos they host. A close examination reveals that news sites often
resize their photos to many different sizes, which thereby lowers the percentage
of photos with a unique longest side length size. In reality, there are probably

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Soc
ial

 N
.

W
eb

log
New

s

Coll
eg

e

Gov
er

nm
en

t

Sho
pp

ing

Ave
ra

ge

33.7%

51.5%

66.7%

10.5%

3.0%

36.7%

57.6%
52.5%

Fig. 6. Percentage of sites estimated to resize their photos across the seven categories.

438 H. Xu et al.

much more news sites that resize their photos. In each of the other four cate-
gories, “Social networking,” “Weblog,” “Classified,” and “Shopping,” over 50 %
of sites have resized the photos they host. The sites in those categories often con-
tain large amounts of photos and resizing photos is an effective means to save
valuable storage space. Irrespective of categories, at least one third of all sites
in our dataset are regarded to resize the photos they host. Note that our results
represent a lower bound of the percentage of sites that resize their photos.

Whether a Site Strips Out the Metadata Information Embedded in
the Photos it Hosts? There is another issue people may be concerned about
when they upload photos online. As mentioned before, we use two fields in the
metadata—camera make and model—to determine if the metadata information
exists or not. For each site in our dataset, we calculated the percentage of its
photos containing metadata information. Note that a photo may have its meta-
data information erased by its owner before posted online. Thus, our estimated
percentage of online sites that strip out the metadata information of the photos
they host represents an upper bound.

Figure 7 shows the CDF of the percentage of photos containing metadata
information on each of the 611 sites in the seven categories. About 16 % of sites
have no photos containing metadata information. It is highly probable that those
sites remove the metadata information from all hosted photos. About 45 % of
total sites have at least half of their hosted photos containing metadata infor-
mation. We determine that a site adopts a policy of removing photo metadata
information if no photos hosted by the site contain metadata information; oth-
erwise, the site is considered to preserve the metadata information of photos it
hosts.

Figure 8 shows the percentage of sites in each category which are estimated
to preserve the metadata information of photos they host. Again we found that
the two categories “College” and “Government” present quite different statistical
characteristics in preserving the photo metadata than the rest five categories.
Specifically, 98 % of college sites and 93.7 % of government sites are estimated to

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of photos containing metadata on a site

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. CDF of the percentage of photos containing metadata information on each site.

Privacy Risk Assessment on Online Photos 439

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Soc
ial

 N
.

W
eb

log
New

s

Coll
eg

e

Gov
er

nm
en

t

Sho
pp

ing

Ave
ra

ge

68.4%

54.5%

40.0%

93.7%
98.0%

58.2%

42.4%
49.2%

Fig. 8. Percentage of sites estimated to preserve the photo metadata information across
the seven categories.

preserve the photo metadata information. Combined with the above estimation
results on a site’s photo resizing policy, we draw the conclusion that college and
government sites seldom resize the photos they host or remove the embedded
photo metadata information. In each of the other five categories, the proportions
of the sites that preserve the photo metadata information are between 40 % and
60 %, much lower than those of college and government sites. On average, up to
68.4 % of the top sites in the seven categories preserve the photo metadata
information, which suggests that a number of online photos may still have their
metadata information open to public access for years.

6 Re-identification Attack

Except the sensitive metadata fields including geolocation, owner’s information,
and modification history, other metadata fields may appear relatively innocent.
However, in this section, we demonstrate the feasibility of exploiting a trivial
looking metadata field for re-identification attack.

Even without the photographer information explicitly included, a photogra-
pher can still be identified based on even only one photo she ever took. This
can happen through a new attack vector—the camera serial number field in the
photo metadata. A camera serial number can uniquely identify a camera most
of the time.4 All photos taken with a same digital camera are supposed to have
the same serial number if provided.5 In theory, a single photo with a camera
serial number embedded could be used to trace other online photos taken with
the same camera. Those photos together facilitate identifying the photographer.

We figured out that a public online database stolencamerafinder [3] could be
leveraged to search for online photos tagged with a given camera serial number,
although the online service was established to help find stolen cameras. For each
4 A serial number is unique within a camera brand. Combined with camera make and

model, a serial number can uniquely identify a camera.
5 Smartphones typically do not store their serial numbers in their photos.

440 H. Xu et al.

given serial number, stolencamerafinder returns a list of online photos taken with
the same camera, and for each photo provides the page URL where the photo is
posted and the image URL linking to the photo.

Next, we do experiments to prove it quite easy to identify a photo owner
with only one photo she ever shared online in the case that the photo has a
camera serial number embedded. About 12 % of the “wild” photos in the two
sets GoogleImage and TopSitesPhoto were found to contain the serial number
information. We randomly selected 2,000 unique serial numbers from them, then
manually searched each serial number in the stolencamerafinder, and finally got
back search results for 1,037 serial numbers in total. Note that not every camera
serial number could get search results back. For those 1,037 serial numbers, by
following the image URLs returned, we collected 38,140 photos that were posted
on 4,712 unique websites. The photos collected for a specific serial number only
represent a subset of all photos available online and tagged with the same serial
number, due to the impossibility of finding all online photos with a given serial
number.

Figure 9 shows the cumulative distribution function (CDF) of the number of
photos that a single serial number links to. About 30 % of serial numbers link to
over 25 photos and about 10 % link to over 100 photos. The average number of
photos linked to a same serial number is 36.8, the median is 10, and the maximum
is 923. With the considerable number of photos tagged with a same camera
serial number, together with the page URLs where the photos are posted, and
the photos already existing in the photo sets GoogleImage and TopSitesPhoto,
we were able to set up a knowledge base for each serial number (tentatively
a digital camera). The rich information available can evidently disclose much
more privacy information about the camera owner than a single serial number
itself. This demonstrates the potential of a camera serial number as an attractive
attack vector for mounting privacy attacks.

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

serial number

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Fig. 9. CDF of the number of photos returned by stolencamerafinder for a given serial
number.

Privacy Risk Assessment on Online Photos 441

Table 4. List of the information typically contained in an account profile in each of
the five OSNs. Note that the listed information represents the maximum amount of
information available with public permissions of an OSN account.

OSN Account profile information

Flickr Name, Occupation, Living City, Hometown, Gender, Personal Website(s),
Email, Joined Time, Biography, Age, Religion

500px Name, Biography, Living City, Contact, other OSN accounts

Google+ Name, Gender, Living City, Colleges Attended, Current Employer, Work
Experience

Twitter Name, Occupation, Living City, Telephone, Email, Personal Webpage(s),
Joined Time, Photos and Videos, Tweets, Followings, Followers and
Favorites

Facebook Name, Living City, Gender, Education, Telephone, other OSN accounts,
Life Events

Identifying a Photographer. The page URL and the page where a photo
is posted can provide important clues to reveal a photographer’s online iden-
tity. For instance, the URL https://plus.google.com/XYZ/photos suggests that
the photographer should have a Google+ [8] account with the ID of “XYZ”.
Following the URL allows us to retrieve more information about the photog-
rapher, such as her real name, college attended, current employer, and photos
posted on her account page. We have observed a great many such URL strings
in our dataset with photographers’ online social networks (OSNs) account IDs
embedded. The involved OSNs include but not limited to Flickr, Facebook [6],
Twitter [7], Google+, and 500px [9]. A photographer may have her multiple OSN
accounts disclosed in this way. Table 4 lists the information typically contained in
an account profile of the five social networks mentioned above. It shows that an
account profile typically contains demographics and other sensitive information
including age, gender, education, occupation, living city, other OSN accounts,
and much more. Once one OSN account is identified, the true identity of the
user in the real world can be readily disclosed.

Figure 10 shows the percentage of serial numbers from which we are able to
identify the corresponding camera owners’ IDs in one or more OSNs by scruti-
nizing the page URLs where the photos were posted. Among the 1,037 unique
serial numbers in our dataset, 51.4 % (533) of the serial numbers have the cam-
era owners’ OSN accounts identified, and 9.0 % (93) have account IDs in two or
more OSNs identified. And for one serial number we even identified the camera
owner’s four account IDs in four OSNs respectively.

As mentioned before, we were able to retrieve about 37 online photos on
average for a given serial number. Those photos tagged with the same serial
number may contain metadata information that could help identify the photog-
rapher. We closely examined the metadata information embedded in the related
photos for each of the remaining 504 serial numbers without any OSN accounts

https://plus.google.com/XYZ/photos

442 H. Xu et al.

0%

15%

30%

45%

60%

9%

51.4%

Fig. 10. Percentage of camera serial numbers (SNs) with camera owners’ OSN accounts
identified.

identified in the previous step. Among them, we successfully identified the pho-
tographers for 116 serial numbers. Compared to the photographers with their
OSN accounts identified, the available information on those 116 photographers
are restricted to the photo metadata embedded, mainly including their names,
the processing softwares, and OSes used. However, more information could be
collected online once a person’s name is identified. Overall, 62.6 % (649) of serial
numbers have had their photographers identified.

7 Discussion

One goal of this work is to track the propagation of the sensitive metadata
information embedded in the digital photos at different stages. One ideal way is
to monitor the process of creation, modification, and elimination of the metadata
information contained in a same set of photos that sequentially experience three
stages—“fresh,” “intact,” and “wild.” However, it is very hard to obtain such
an ideal photo set in large-scale. Instead, we employed different data collection
methods and obtained three kinds of photo sets to represent the digital photos
at the corresponding three stages.

We collected 612 valid “fresh” photos through crowdsourcing in a period of
two months. Each photo collected was taken by a unique participant with a
unique device, and participants from 76 countries contributed to this dataset. In
addition, those photos were solicited directly from smartphones and no photos
taken with digital cameras were collected in order to avoid data contamination.
Therefore, although the dataset size of “fresh” photos is not comparable to those
of “intact” and “wild” photos, its representativeness is high enough for this study.

To infer online media sites’ policies on handling metadata information in
the photos they host, we adopt a passive approach, that is, by examining the
metadata information of the photos collected from the sites. Actually, we once
considered to take an active approach to detect media sites’ policies, by sub-
mitting (uploading) different types of photos to the sites, then re-downloading
them, and comparing metadata fields. However, we had to abandon this app-
roach because most of the 611 sites in the seven categories have specific user
groups and are not open to public registration, not to mention photo uploading.

Privacy Risk Assessment on Online Photos 443

Table 5. Main functions of the browser extension prototype

Sensitive metadata Potential threats Website’s policy

Geolocation Location disclosure, house robbery Metadata removing

Photographer’s name Identity disclosure Photo resizing

Modification history Undermining photo’s authenticity NA

Camera serial number Re-identification attack NA

Although it is known that a camera serial number can uniquely identify a
camera to some extent, we are not aware of any previous research work reveal-
ing potential threats arising from this attribute in an empirical and systematic
manner. We demonstrated the feasibility of re-identification attack by exploiting
camera serial number. We were able to identify over 60 % of photo owners based
on their camera serial numbers available in a public online database.

When a user shares a digital photo online, two questions about privacy
issues are readily raised. One is whether sensitive hidden metadata informa-
tion is embedded in the photo. The other concerning question is what the media
site will do with the photo. According to our experiment results, a considerable
proportion of digital photos contain sensitive metadata information, and many
sites resize the photos they host or remove the embedded photo metadata infor-
mation. In our future work, we will develop a browser extension to give users
direct answers to these two questions.

The major functions that the tool should have are illustrated in Table 5.
Specifically, once the sensitive metadata information in a photo being uploaded
is detected, the browser extension should issue an alarm by popping up a window
on the screen and provide customized alert information, including the sensitive
metadata information embedded, the corresponding privacy risks, and the cur-
rent visiting site’s policy on photo handling. Note that the browser extension
should display the alert information only when the privacy-related metadata
information is detected, and thus it should not often interfere with normal photo
upload workflows. Although there are already browser extensions for photo meta-
data visualization, we will focus on informing users of the sensitive metadata
contained and customized privacy risks. Moreover, we will ensure users’ right to
know the actions that the hosting media sites will perform on their photos.

8 Related Work

Several previous works conduct user studies to understand users’ privacy deci-
sions during the photo sharing process and their privacy concerns on others’
photo-sharing activities. Clark et al. [11] revealed the problem of unintended
photo storage without users’ awareness, which is mainly caused by the automatic
features of cloud-based photo backup services. Ahern et al. [12] found that mobile
users’ decisions to post photos privately or publicly were determined more by
identity or impression concerns than security concerns. Besmer et al. [13] made

444 H. Xu et al.

similar findings. They studied users’ perception of being tagged in undesired
photos uploaded by others. They found that a user’s privacy concerns on that
domain were mainly related to identity and impression management within her
existing social circles. Henne et al. [14] showed in their survey results that among
the information potentially disclosed by the tagged photos, personal references
and location data raised most privacy concerns.

More related to our work, several researchers examined the privacy threat
posed by the textual metadata information contained in online photos. Friedland
and Sommer [15] focused on the privacy threats posed by the geolocation
information available online. They showed that the geolocation data could be
exploited to mount privacy attacks using three scenarios on Craigslist, Twitter,
and YouTube, respectively. Pesce et al. [17] demonstrated that photo tagging on
Facebook could be exploited to enhance prediction of users’ information like gen-
der, city, and country. Another work from Mahmood and Desmedt [16] discussed
possible privacy violations from Google+’s policy that any users who access a
photo can see its metadata online. While the above three works addressed the
privacy issues with photos, we investigated the privacy issues with online photos
on a much larger scale. We assessed the privacy risks arising from leakage of
all possible sensitive metadata information rather than just geolocation data.
Moreover, our study is not restricted to one media site. Instead, we collect our
photo dataset from hundreds of top-ranked websites and through crowdsourcing
platforms. Those photos cover various stages, i.e., “fresh,” “intact,” and “wild.”
In addition, we introduce a new attack vector and show its unexpected power in
conducting a re-identification attack. We also performed a large-scale measure-
ment of photo handling policies adopted by various categories of media sites.

Another large body of previous work has attempted to enhance people’s pri-
vacy when sharing photos online. Besmer et al. [22] designed a privacy enhance-
ment tool to improve the photo tagging process on Facebook. The tool allows
tagged users to negotiate online with the photo uploaders about the permission
settings on the photo. Fang and LeFevre [18] built a machine learning model for
OSN users to configure privacy settings automatically with a limited number of
rules provided. Zerr et al. [23] developed privacy classification models for users
to search for private photos about themselves posted by others at an early stage.
Henne et al. [21] proposed a watchdog service that allows users to keep track of
potentially harmful photos uploaded by others at the expense of sharing their
location data with the service. Ra et al. [19] presented a selective encryption
algorithm that enables a photo to hide its “secret” part from the host photo-
sharing site and the unauthorized viewers and only expose its “public” part. Ilia
et al. [20] refined the access control mechanism currently used by OSNs on photo
sharing. The new mechanism allows the depicted users in a photo to decide the
exposure of their own face, and could present photos with the restricted faces
blurred out to a visitor. Complementary to those works attempting to enhance
privacy on the web server side, this study assesses the privacy risks arising from
sensitive photo metadata and provides some guidelines for developing client-side
privacy leakage prevention tools, which should be able to alert online users of

Privacy Risk Assessment on Online Photos 445

potential privacy risks posed by uploading photos and also inform them of the
photo handling policies adopted by the currently visiting website.

To the best of our knowledge, we have conducted the first large-scale empiri-
cal measurement study of the status of contemporary digital photos at the three
different stages. In addition to examining the sensitive metadata information
embedded, we inferred the photo handling policies used by hundreds of top-
ranked sites, and proposed to exploit the camera identification number as an
attack vector for re-identification attack. We are not aware of any previous work
studying these topics.

9 Conclusion

In this paper, we performed a data-driven assessment of privacy risks on con-
temporary digital photos. We first collected from the Web nearly 200,000 digital
photos at three different stages as our dataset. Then for photos at each stage,
we measured the prevalence of metadata and assessed the privacy risks posed
by metadata leakage. We found that metadata is quite prevalent among digital
photos at each stage. In particular, 15 % of “fresh” photos, about 30 % “intact”
photos, and about 1 % “wild” photos were tagged with GPS coordinates. The
percentage of “wild” photos containing other sensitive metadata information is
also much lower than that of “intact” photos. A possible reason is that online
sites often remove the metadata information of the photos they host. Our spec-
ulation was confirmed by our investigation of photo handling policies based on
nearly 100,000 photos crawled from 679 top sites in seven categories. We fur-
ther found that photo policies used by a site vary with the category that the
site belongs to. Finally, we proposed to use the camera serial number as a new
attack vector towards privacy inference and demonstrated its power in deriving
both online and real-world identities of a photographer with just one photo she
ever took. In our future work, we will build a browser extension prototype to
prevent users’ photo privacy leakage and increase their knowledge of the online
services’ policies on photo handling.

Acknowledgement. We would like to thank our shepherd Chris Kanich and the
anonymous reviewers for their insightful and detailed comments. This work was par-
tially supported by ARO grant W911NF-15-1-0287 and ONR grant N00014-13-1-0088.
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the funding agencies.

A Ethical Consideration

In our study, we leveraged several methods to collect photos, including: (1) solic-
iting “fresh” photos from crowdsourcing workers, (2) crawling photos from Flickr
using its API, (3) random Google Image Search, and (4) crawling top websites
for limited amounts of photos. Note that our crowdsourcing study has been vet-
ted and approved by the Institutional Review Board (IRB) at our institution.

446 H. Xu et al.

During our photo collection, we did not receive any concerns or get warnings
from those involved sites and did not interfere with their normal operations.
In addition, with the collected photos, we anonymized the metadata informa-
tion embedded before using them for study. We strictly abide by the copyright
licenses if present.

References

1. Number of photos uploaded to Flickr. https://www.flickr.com/photos/
franckmichel/6855169886/

2. ExifTool library. http://www.sno.phy.queensu.ca/∼phil/exiftool/
3. Site stolencamerafinder: Find your camera. http://www.stolencamerafinder.com/
4. Alexa top sites by category. http://www.alexa.com/topsites/category/Top
5. McAfee’s location is leaked with photo metadata. http://www.wired.co.uk/news/

archive/2012-12/04/vice-give-away-mcafee-location
6. Facebook: https://www.facebook.com/
7. Twitter: https://twitter.com/
8. Google+: https://plus.google.com/
9. 500px: https://500px.com/

10. Flickr file size limits. https://www.flickr.com/help/photos/
11. Clark, J.W., Snyder, P., McCoy, D., Kanich, C.: I saw images I didn’t even know

I had: understanding user perceptions of cloud storage privacy. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI) (2015)

12. Ahern, S., Eckles, D., Good, N., King, S., Naaman, M., Nair, R.: Over-exposed?
Privacy patterns and considerations in online and mobile photo sharing. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI) (2007)

13. Besmer, A., Lipford, H.R.: Poster: privacy perceptions of photo sharing in facebook.
In: Proceedings of the 4th Symposium on Usable Privacy and Security (SOUPS)
(2008)

14. Henne, B., Smith, M.: Awareness about photos on the web and how privacy-
privacy-tradeoffs could help. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC
2013. LNCS, vol. 7862, pp. 131–148. Springer, Heidelberg (2013)

15. Friedland, G., Sommer, R.: Cybercasing the joint: on the privacy implications of
geo-tagging. In: Proceedings of the 5th USENIX Conference on Hot Topics in
Security (HotSec) (2010)

16. Mahmood, S., Desmedt, Y.: Poster: preliminary analysis of Google+’s privacy.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS) (2011)

17. Pesce, J.P., Casas, D.L., Rauber, G., Almeida, V.: Privacy attacks in social media
using photo tagging networks: a case study with Facebook. In: Proceedings of the
1st Workshop on Privacy and Security in Online Social Media (PSOSM) (2012)

18. Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings
of the 19th International Conference on World Wide Web (WWW) (2010)

19. Ra, M., Govindan, R., Ortega, A.: P3: toward privacy-preserving photo sharing.
In: Proceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2013)

20. Ilia, P., Polakis, I., Athanasopoulos, E., Maggi, F., Ioannidis, S.: Face/Off: pre-
venting privacy leakage from photos in social networks. In: Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS) (2015)

https://www.flickr.com/photos/franckmichel/6855169886/
https://www.flickr.com/photos/franckmichel/6855169886/
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.stolencamerafinder.com/
http://www.alexa.com/topsites/category/Top
http://www.wired.co.uk/news/archive/2012-12/04/vice-give-away-mcafee-location
http://www.wired.co.uk/news/archive/2012-12/04/vice-give-away-mcafee-location
https://www.facebook.com/
https://twitter.com/
https://plus.google.com/
https://500px.com/
https://www.flickr.com/help/photos/

Privacy Risk Assessment on Online Photos 447

21. Henne, B., Szongott, C., Smith, M.: SnapMe if you can: privacy threats of other
peoples’ geo-tagged media and what we can do about it. In: Proceedings of the
6th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec) (2013)

22. Besmer, A., Lipford, H.R.: Moving beyond untagging: photo privacy in a tagged
world. In: Proceedings of the 28th SIGCHI Conference on Human Factors in Com-
puting Systems (CHI) (2010)

23. Zerr, S., Siersdorfer, S., Hare, J., Demidova, E.: Privacy-aware image classification
and search. In: Proceedings of the 35th International ACM Conference on Research
and Development in Information Retrieval (SIGIR) (2012)

Privacy is Not an Option:
Attacking the IPv6 Privacy Extension

Johanna Ullrich(B) and Edgar Weippl

SBA Research, Vienna, Austria
{jullrich,eweippl}@sba-research.org

Abstract. The IPv6 privacy extension introduces temporary addresses
to protect against address-based correlation, i.e., the attribution of differ-
ent transactions to the same origin using addresses, and is considered as
state-of-the-art mechanism for privacy protection in IPv6. In this paper,
we scrutinize the extension’s capability for protection by analyzing its
algorithm for temporary address generation in detail. We develop an
attack that is based on two insights and shows that the notion of protec-
tion is false: First, randomization is scarce and future identifiers can be
predicted once the algorithm’s internal state is known. Second, a victim’s
temporary addresses form a side channel and allow an adversary to syn-
chronize to this internal state. Finally, we highlight mitigation strategies,
and recommend a revision of the extension’s specification.

1 Introduction

Snowden’s revelations on the National Security Agency’s surveillance program
startled the global public due to its sheer extent and sophistication. Practically
everbody’s Internet communication is collected. The gained data is filtered, ana-
lyzed, measured and finally stored for the purpose of compounding a precise
picture of Internet users [1,2]. But other actors are also after massive amounts
of user data: Western democracies, e.g., in the European Union or Australia,
often introduce telecommunication data retention. Commercial enterprises spy
on their customers on a massive scale to increase monetary revenue [3,4], and
criminals may do so as well.

The power of such an approach lies in its capability of making sense from large
amounts of data that seem unrelated to each other by combing countless pieces
of information [5]. This means that a person’s different activities on the Internet
can be correlated to each other, and this condensed information typically exceeds
what people believe can be found out about their lives. Addresses play a sensitive
role in this: On the one hand, an address has to accurately identify the receiver
so that traffic reaches its intended destination. On the other hand, address-based
correlation enables the attribution of different transactions to the same origin
and allows to gain insights into others’ Internet behavior. General protection
strategies against correlation like an attribute’s removal or its encryption seem
inadequate for addresses as intermediate nodes require access for appropriate
data delivery.
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 448–468, 2015.
DOI: 10.1007/978-3-319-26362-5 21

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 449

Addressing, in turn, is heavily dependent on the protocol, and IPv6 intro-
duced new aspects in the matter of address-based correlation. Initially, all
addresses of an interface were defined to include a globally unique identifier
and thus allowed simplest address correlation over an interface’s full lifetime [6].
In response, temporary addresses that change by default every 24 h were intro-
duced. This mechanism is known as the privacy extension [7], and is considered
as state-of-the-art privacy protection in IPv6 [8]. It is implemented in major
desktop and mobile operating systems.

In this paper, we scrutinize the IPv6 privacy extension’s capability of protect-
ing against address-based correlation, and therefore focus on the algorithm for
temporary address generation. We find that once the algorithm’s state is known
by an adversary, she is able to accurately predict a victim’s future addresses.
Beyond that, we develop a way that allows an adversary to synchronize to the
victim’s state by exploiting observed temporary addresses as a side channel,
and appraise the attacker’s effort to perform our attack with currently available
technology. Our results yield 3.3 years of hashing but advances in technology
are going to decrease this time period. We highlight mitigation strategies; how-
ever, our most important contribution may be the impetus for a revision of the
extension’s specification.

The remainder of the paper is structured as follows: Sect. 2 provides details
on addressing in IPv6 and the privacy extension. Section 3 summarizes related
work focusing on privacy implications of competing IPv6 addressing standards
as well as known vulnerabilities of the privacy extension. Section 4 describes the
assumed attack scenario and is followed by a security analysis of the extension’s
address generation algorithm that identifies four weaknesses in Sect. 5. Based on
these insights, the development of our attack is described in Sect. 6. Its feasibility
is discussed in Sect. 7, which is followed by an investigation of current operating
systems’ vulnerability in Sect. 8. Strategies for mitigation are presented in Sect. 9,
and Sect. 10 concludes the paper.

2 Background

This section provides background on IPv6 addressing in general: the address struc-
ture, address assignment and their implications for address-based correlation. In
a second step, we focus on the IPv6 privacy extension and describe its principal
idea as well as its algorithm for temporary interface identifier generation.

IPv6 Addressing: IPv6 addresses have a length of 128 bit and are portioned
into two distinct parts of equal size as depicted in Fig. 1. The first 64 bits form
the network prefix, and are dependent on a host’s location in the network. The
remaining 64 bits form the interface identifier (IID) that enables a subscriber’s
identification on the link. Address configuration for clients is done via stateless
address autoconfiguration [9] and does not require human intervention: Routers
advertise the network prefix on the network, and hosts form their global IPv6
addresses by combining the announced prefix with a self-generated interface
identifier.

450 J. Ullrich and E. Weippl

Fig. 1. IPv6 addresses using interface identifiers in modified EUI-64 format

The interface identifier was initially intended to follow the modified EUI-
64 format [6] that infers an interface identifier from the 48 bit media access
control (MAC) address, see also Fig. 1. The MAC address consists of a 24 bit
organizationally unique identifier, and a network interface card (NIC)-specific
part of equal size. A fixed pattern of two bytes is inserted between these parts
and a universal/local bit is set to one in order to form the identifier.

The MAC address is globally unique and typically remains stable over a
host’s lifetime1. Consequently, the interface identifier that is included in every
IPv6 address is globally unique and stable as well. All addresses of a certain host
have the same second half, while their network prefix changes according to the
visited location. An adversary is thus able to attribute various transactions to
the same origin based on the identifier and trace a host’s Internet behavior even
beyond a certain sub-network. The adversary is further able to retrace a host’s
movement in the network as the included network prefixes allow localization.

The IPv6 Privacy Extension: The privacy extension is presented as a solu-
tion that impedes correlation “when different addresses used in different transac-
tions actually correspond to the same node” [7]. Its basic principle are interface
identifiers that change at a regular interval of typically 24 h. Hosts form tempo-
rary IPv6 addresses from the announced prefix in combination with the current
interface identifier, and change the IPv6 address with every newly generated
identifier. An expired address is considered deprecated and not used for new
connections, but still serves already active transactions.

A host’s successive interface identifiers have to be chosen in a way that
appears random to outsiders and hinders them in attributing different identi-
fiers to the same origin. Thus the IPv6 privacy extension defines an algorithm
for a pseudo-random generation of these temporary identifiers as described in
the following and depicted in Fig. 2:

1. A 64 bit history value is concatenated with the interface identifier in the
modified EUI-64 format.

2. An MD5 digest is calculated over the concatenation of the previous step to
gain a digest of 128 bit length.

1 Technically speaking the MAC remains stable over the NIC’s lifetime, but we suppose
that personal computers, laptops, tablets and mobiles keep their NIC over their whole
lifetime.

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 451

Fig. 2. Interface identifier generation according to the privacy extension

3. The digest’s leftmost 64 bits are extracted and bit 6 is set to zero in order to
form the temporary interface identifier.

4. The digest’s rightmost 64 bits form the next iteration’s history value and are
stored.

5. In case the generated interface identifier is found to be used by other local
devices or reserved, the process is restarted to gain another identifier.

The very first history value is initialized with a random value the first time a
system boots. This algorithm is defined for systems with present stable storage,
which is necessary to keep the history value across system restarts. Devices like
stationary PCs, laptops, tablets and smart phones are typically considered to
have such storage. However, in its absence, it is allowed to randomly re-initialize
the history value after every system restart.

Temporary IPv6 addresses are assigned in addition to stable addresses in
modified EUI-64 format, and do not replace them in order to prevent negative
impacts on addressing. Temporary addresses are used in outgoing connections
to stay private, while stable addresses make it possible to stay reachable for
incoming requests.

3 Related Work

Our research has a two-pronged foundation: First, we discuss various IPv6
address structures with respect to privacy, and highlight the IPv6 privacy exten-
sion’s outstanding positions due to its capability to protect against geographical
as well as temporal address-based correlation. This further emphasizes why the
extension’s secure standardization and implementation is an important aspect
of IPv6 privacy. Second, we summarize previously discovered vulnerabilities of
the privacy extension, and illustrate their minor importance in comparison to
the new attack that we present in this paper.

3.1 IPv6 Address Formats and Address Correlation

There are ways to form IPv6 interface identifiers for stateless address autoconfig-
uration beyond the modified EUI-64 format and the privacy extension: (1) man-
ually configured stable identifiers, (2) semantically opaque identifiers [10] and

452 J. Ullrich and E. Weippl

(3) cryptographically generated addresses (CGAs) [11]. CGAs, however, require
authenticated messages as defined by Secure Neighbor Discovery (SeND) [12]
instead of plain Neighbor Discovery [13].

We discussed these alternatives with respect to an adversary’s capability for
address correlation, and consider two distinct aspects of address correlation:

– Temporal correlation refers to address-based correlation over multiple sessions
of a stationary host.

– Geographical correlation refers to address-based correlation over multiple ses-
sions of a mobile node.

The difference is the network prefix: A stationary host stays in the same
sub-network and includes the same network prefix in all its addresses. A mobile
node wanders and changes the network prefix when moving.

Addresses using the modified EUI-64 format include the globally unique MAC
address, and all of a host’s addresses are equivalent in their second part. This fact
allows the correlation of multiple sessions of a stationary or mobile node, i.e., this
type of address is vulnerable to both forms of address correlation and, beyond
that, also for active host tracking [14,15]. Apart from global uniqueness, the
same is valid for (manually configured) interface identifiers that remain static.

Semantically opaque interface identifiers are generated by hashing the net-
work prefix and a secret key among other parameters. As the hash calculation
includes the address prefix, the interface identifier changes from subnet to subnet
and prevents geographical correlation. The identifier, however, remains stable in
a certain network, even when returning from another network, and allows tem-
poral correlation over long periods of time. Due to their recent standardization
their availability in current operating systems is limited.

Cryptographically generated addresses are generated by hashing the public
key and other parameters and are bound to certain hosts. Ownership is veri-
fied by signing messages that originate from this address with the corresponding
private key. The network prefix is included as a parameter into hashing, and a
node’s CGA changes from network to network, preventing geographical corre-
lation of traffic. However, their generation comes at high computational costs,
and prevents address changes as a means of protection against temporal corre-
lation in practise [16]. An approach to overcome the limitation with respect to
frequent address change has been proposed [17]. However, CGAs and SeND lack
acceptance and are neither widely implemented nor deployed.

The discussion is summarized in Table 1, and is accompanied by the capa-
bilities’ native availability in the current client operating systems Mac OS X
Yosemite, Ubuntu 14.10 (Utopic Unicorn) and Windows 8.1, see Table 2. The
results emphasizes the unique position of the privacy extension: First, it is
the only mechanism using stateless address autoconfiguration that is currently
deployed at a larger scale that is intended to protect against traffic correlation.
Second, it is the only mechanism that considers protection against temporal as
well as geographical address correlation.

In this paper, we develop an attack that overcomes the belief that the privacy
extension provides adequate protection against address correlation. The attack

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 453

Table 1. IPv6 address formats with respect to their capability of protecting against
different forms of address correlation

M
o
d
ifi

ed
E
U

I-
64

S
ta

b
le

(M
an

u
al

)

S
em

.
O

p
aq

u
e

Id
.

C
G

A

P
ri
va

cy
E
x
te

n
si
on

Temporal Correlation - - - - �
Geographical Correlation - - � � �

Table 2. IPv6 address formats with respect to their native availability in current client
operating systems

Mac OS X Yosemite � � - - �
Ubuntu 14.10 � � - - �
Windows 8.1 � � - - �

leaves a gap that cannot be filled by another address mechanism, and highlights
the importance of revisiting the extension’s current definition.

3.2 Known Vulnerabilities of the Privacy Extension

Drawbacks of the IPv6 privacy extension were discussed before, and follow two
principal directions. First, its design does not impede active tracking, e.g., by
using ping. Temporary addresses are assigned in addition to stable ones, and an
adversary can still actively probe multiple subnets for a certain interface identi-
fier in order to trace a host’s movement. The respective specification, however,
explicitly states its intention to protect solely against passive eavesdroppers, and
not against active adversaries [7].

Second, shortcomings in the extension’s protection against address correla-
tion are known. A node does not have to change its interface identifier when
moving to a new network prefix. Thus, tracking a host’s movement remains fea-
sible within an identifier’s lifetime of typically 24 h [14,18]. For mitigation, the
inclusion of the network prefix into the interface identifier calculation was pro-
posed [18]. The respective specification also allows the change of an identifier
in such a situation [7]. Our attack supports the second direction, and highlights
that adversaries are able to perform address correlation even when the privacy
extension is used. In comparison to known attacks, our attack cannot be fully
mitigated within the specification’s limitations.

454 J. Ullrich and E. Weippl

4 Attack Scenario

Our attack scenario is depicted in Fig. 3 and assumes full IPv6 deployment. We
assume three stakeholders named Alice, Bob and Eve. Alice loves coffee, and
regularly visits coffee shops. Then, she brings her laptop with her, and uses the
offered Internet access to read mails or to chat. Bob and Eve each run a coffee
shop, and provide Internet access to their guests. They deployed stateless address
autoconfiguration, and their routers advertise the respective IPv6 network prefix
so that customers are able to configure their global IPv6 addresses by connecting
the prefix with their self-generated interface identifiers. Bob’s router advertises
the prefix PBob, Eve’s router advertises PEve. Eve further runs a webserver to
advertise current offers. She records her coffee shop’s local traffic, and logs visits
to her webserver.

Fig. 3. Attack scenario

Alice visits Eve’s coffee shop for T successive days2, and connects her laptop
to the coffee shop’s local network. Eve’s router advertises PEve, and Alice’s
laptop configures a stable IPv6 address from this prefix and the stable interface
identifier. Alice has enabled the IPv6 privacy extension, and thus temporary
addresses are created in addition to the stable address by combining the prefix
with the interface identifier of the day. Alice’s temporary addresses are <PEve :
IID1>,<PEve : IID2>, ..., <PEve : IIDT> for day 1, 2, ..., T .

After T days, Alice stops going to Eve’s coffee shop. On an arbitrary day
t (t > T), Alice visits Eve’s competitor Bob. She connects her laptop to Bob’s
local network. Bob’s router announces the prefix PBob, and Alice’s laptop forms
a stable identifier from this prefix. In addition, the privacy extension generates
a temporary address <PBob : IIDt>. On this day, Alice visits Eve’s website to
check current offers and causes a respective log entry.

Eve is interested tracing her customers’ activities, and wants to find out
whether (1) Alice is still interested in her offers and visits the webserver, and
whether (2) Alice is drinking coffee at a competitor.
2 Although the T days do not necessarily have to be successive, we claim so here for

better readability. In case days are missing, e.g., due to weekends, one simply has to
consider these gaps when calculating the current state.

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 455

We refer to this scenario in the remainder of the paper for illustration of our
attack. This scenario was developed due to its representativeness for day-to-day
life, but we are sure that there are plenty of alternative scenarios. The precon-
ditions for an adversary are moderate: She has to gain a victim’s MAC address
and T successive interface identifiers that have been generated by the privacy
extension. The MAC address is gained from local traffic as in the presented sce-
nario, or inferred from the stable IPv6 address in case the latter is in modified
EUI-64 format. Interface identifiers are included in the temporary addresses, and
are inferred from there.

5 Security Analysis

In this section, we perform a manual security analysis of the privacy exten-
sion’s algorithm for temporary interface identifier generation as defined in [7]
and presented in Sect. 2. Our analysis revealed four striking characteristics that
facilitate the prediction of future interface identifiers. While some of them might
seem minor in isolation, their combination forms a reasonable attack vector as
described in Sect. 6. In this section, we consider each characteristic separately:
First, we describe the characteristic and highlight the specification’s argumen-
tation in its favor. Next, we infer implications on security. Figure 4 contrasts the
algorithm for temporary address generation with the discussed characteristics;
the depicted numbers are consistent with the following paragraphs.

Fig. 4. The privacy extension’s characteristics impacting its quality of protection

(1) Concatenation of Successive Hashes: Interface identifiers are based on
MD5 digests that are chained with each other because an iteration’s result is
partly included into the next hash calculation. The RFC states that “In theory,
generating successive randomized interface identifiers using a history scheme [...]

456 J. Ullrich and E. Weippl

has no advantages over generating them at random,” [7] but claims an advantage
in case two hosts have the same flawed random number generators. Performing
duplicate address detection would make both hosts recognize their identical iden-
tifiers and trigger the generation of new identifiers. However, the flawed random
number generators would again provide identical numbers, leading to identical
identifiers. The presented algorithm is said to avoid this as the inclusion of the
(globally unique) interface identifier in modified EUI-64 format leads to different
temporary interface identifiers in the next iteration.

It remains unclear why the inclusion of a globally unique identifier, e.g.,
in modified EUI-64 format, requires working with a history scheme, i.e., the
concatenation of successive hashes. We believe that inclusion of a globally unique
interface identifier and a random value into MD5 digest calculation is sufficient. It
seems unlikely that sequences of equivalent random numbers result in successive
collision in case a globally unique identifier is included into calculation.

The concatenation does not only appear dispensable with respect to the dis-
cussed aspect, but also negatively impacts the algorithm’s quality of protection.
Successive interface identifiers are dependent on each other, and today’s state
influences future identifiers. An adversary might exploit this to predict a victim’s
future identifiers.

(2) Cryptographic Hash Function: The privacy extension aims to create
random-appearing interface identifiers, but states that pseudo-randomness suf-
fices “so long as the specific sequence cannot be determined by an outsider exam-
ining information that is readily available or easily determinable” [7]. For the
algorithm, MD5 with its adequate properties with respect to randomization has
been “chosen for convenience” [7].

MD5 is considered broken, but a general dissolution would be an overshooting
reaction: MD5 turned out to be prone to collisions that can be found within sec-
onds on commodity hardware [19]. Pre-image attacks are still of high complexity
and remain practically infeasible. The privacy extension uses MD5 for random-
ization, and neither relies on collision resistance nor pre-image resistance. Taking
these considerations into account, the extension’s choice of MD5 is justifiable.

MD5 is, however, a comparably fast hash function and the more hashes per sec-
ond, the more feasible brute-force search becomes. This especially holds in com-
bination with a limited input range. In 2012, a cluster of four servers hosting 25
off-the-shelf graphics processing units (GPU) achieved 180 Gigahashes per second
[20], and time is usually in favor of the adversary as technology moves forward.

(3) Scarce Randomization: The RFC claims that “To make it difficult to
make educated guesses as to whether two different interface identifiers belong to
the same node, the algorithm for generating alternate identifiers must include
input that has an unpredictable component from the perspective of the outside
entities that are collecting information” [7].

Our analysis, however, identifies only scarce unpredictability in the algorithm
for temporary address generation. Every iteration includes 128 bits into MD5
digest calculation:

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 457

– 64 bit of the former iteration’s result, i.e., the remainder of the MD5 hash
that was not used for the temporary interface identifier, and

– the 64 bit interface identifier in modified EUI-64 format. This identifier is not
kept secret. An adversary might infer it from the stable IPv6 address that is
assigned in addition to temporary addresses or from the MAC address. 17 bit
of this identifier are fixed and thus the same for all nodes anyway.

In conclusion, there is no entropy added per iteration and this fact makes
prediction of future identifiers easier as there are less possibilities. The only
unpredictable component of the presented algorithm is the very first history
value of 64 bit that should “be generated using techniques that help ensure the
initial value is hard to guess” [7].

(4) Partial Disclosure of Digest: A temporary interface identifier is gen-
erated by taking “the leftmost 64-bits of the MD5 digest and set bit 6 [...] to
zero” [7]. The gained interface identifier forms a temporary IPv6 address when
combined with the current network prefix. The address is present in packets’
address fields and accessible by others.

As a consequence, an eavesdropper gains 63 bit (one bit is overwritten with
zero as mentioned above) of the calculated MD5 digest. This eavesdropped part
does not present the algorithm’s internal state, i.e., the history value, but both
are part of the same MD5 digest. In conclusion, 63 bit of every iteration’s MD5
digest is readily available to outsiders without any further processing effort and
form a side channel of the algorithm’s internal state. The algorithm leaks infor-
mation but does not add entropy in an iteration.

6 Attack Design

We will now explain the steps of our attack in detail. We will include the char-
acteristics that have been found in the security analysis of Sect. 5. In a first step,
we will analyse the predictability of future addresses if the current state (history
value) is known. As this turns out to be promising, we investigate methods to
gain the current state. Finally, we summarize our full attack.

Predictability of Future Identifiers: For rather unambiguous prediction of
future temporary identifiers, two requirements have to be met. First, future
identifiers have to be dependent on the current state of the algorithm. Second,
the calculation of the next identifier should include little randomness. The less
random input, the better predictability.

We know from the previous section that both conditions apply to the IPv6
privacy extension: Interface identifiers are based on concatenated hashes. A part
of the digest is used for the identifier, the other is called the history value and
used as an input for the next calculation. An iteration’s input is twofold – the
mentioned history value and the interface identifier in modified EUI-64 format
that is inferred from the MAC address. This means that there are no unpre-
dictable components that are included. In conclusion, an adversary that is aware

458 J. Ullrich and E. Weippl

of the victim’s history value and its MAC address is able to calculate the next
temporary interface identifier according to the following recipe:

1. Infer the interface identifier in modified EUI-64 format from the victim’s MAC
address. This requires the insertion of a fixed pattern of two byte, and setting
bit 6 as described in Sect. 2.

2. Concatenate the victim’s current history value with the interface identifier in
modified EUI-64 format generated in step 1.

3. Calculate the MD5 digest of the concatenation of step 2.
4. Extract the first 64 bits from the calculated digest and unset bit 6 to form

the next temporary interface identifier.
5. Extract the remaining 64 bits from the digest and form the next history value.

This way an adversary is not only able to compute the next interface identi-
fier, but all future identifiers by repeating the described steps. As a consequence,
it seems worth developing methods to gain the algorithm’s internal state.

Synchronization to the Current State: The internal state could be leaked,
e.g., by means of malware, but this approach would imply an active adversary
that does not simply eavesdrop. In the following paragraphs, we show that eaves-
dropping over a number of consecutive days is sufficient to gain the internal state:
As described in Sect. 5, a temporary interface identifier that is included into an
IPv6 address inherently discloses 63 bit of an iteration’s MD5 digest. While the
disclosed part is not the internal state, it is nevertheless related to the latter as
both are clips of the same MD5 digest. The disclosed interface identifier can be
considered a side channel of the internal state.

Fig. 5. Synchronization to current state

Figure 5 depicts a situation like our attack scenario from Sect. 4. The victim’s
very first history value is randomly initialized at day 0 and determines the history
value and the temporary interface identifier of day 1; the history value of day
1 in turn determines history value and temporary interface identifier of day 2

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 459

and so on. The randomly assigned history value at day 0 determines one of 264

deterministic sequences that the victim’s interface identifiers follow.
An adversary might probe all possible values for this history value at day 0,

and compare the first half of the MD5 digest with the interface identifier of day
1. If they are equal this value might represent an appropriate candidate. As it
is only possible to compare 63 bit of the MD5 digest, it is likely that numerous
candidates remain. The adversary thus extracts the second half of the digest
as a candidate for the history value at day 1, includes it in another iteration
containing an MD5 calculation, compares the result with the interface identifier
at day 2 and further shrinks the candidate set until a single candidate remains.
Then, the adversary has identified the internal state.

It is, however, unlikely that an adversary observes the very first tempo-
rary addresses that a victim generates after its installation; an adversary rather
observes an arbitrary sequence of T successive addresses starting at day t0+1 as
indicated in Fig. 5. Due to the algorithm’s structure, the adversary then assumes
the history value at day t0 to be randomly initialized without loss of generality.
The adversary does not have to know the number of temporary addresses that
the victim has generated before being recorded. For this reason, we added an
relative time line for the attack in the figure for readability.

Composite Attack: Based on the attack scenario of Sect. 4, the gained insights
of the previous paragraphs and Fig. 5, we summarize Eve’s steps towards pre-
dicting Alice’s future identifiers.

On Alice’s first visit at Eve’s coffee shop on day 1, Eve has to perform the
following steps:

– Data Extraction from Traffic Records: Eve records the local traffic in her coffee
shop, and is thus able to read Alice’s MAC address from Ethernet headers as
well as her temporary IPv6 address. From this temporary IPv6 address, Alice
extracts the last 64 bits that are the interface identifier for the first day IID1.

– Generation of Modified EUI-64 Interface Identifier: Eve infers Alice’s inter-
face identifier in modified EUI-64 Format from the MAC address by inserting
a fixed pattern of two bytes and setting bit 6 as described in Sect. 2. Alterna-
tively, she might read the identifier in modified EUI-64 format directly from
Alice’s stable IPv6 address.

– Reduction of Candidate Set: Eve probes all possible values for the assumed
initial history value at day 0, concatenates the value with the stable identifier
in modified EUI-64 format, and calculates the MD5 digest. If the first part
of the MD5 digest equals Alice’s current temporary address3, the remainder
of the digest forms a candidate for the next iteration’s history value and is
added to the candidate set of the first day C1. In this step, Eve reduces the
initial candidate set C0 of 264 alternative sequences to a smaller set C1 that
is stored for the next day.

3 The comparison is done on 63 different bits (0–5 and 7–63); bit 6 is always set to
zero in temporary addresses, see Sect. 2.

460 J. Ullrich and E. Weippl

On every further visit of Alice at Eve’s on subsequent days t with 1 < t ≤ T ,
Eve performs:

– Data Extraction from Traffic Records: Eve extracts today’s temporary inter-
face identifier IIDt from Alice by reading the traffic records.

– Further Reduction of Candidate Set: Eve probes all values for the history
value that are present in yesterday’s candidate set Ct−1, concatenates the
values with the stable identifier in modified EUI-64 format, and calculates
the MD5 digest. If the first part of the MD5 digest equals Alice’s current
temporary address IIDt, the remainder of the digest forms a candidate for
the next iteration’s history value and is added to the candidate set Ct. In this
step, Eve further reduces the number of alternative sequences to a smaller set
that is again stored for the next day.

This is performed whenever a new temporary address is available until a sin-
gle candidate remains. This single candidate represents the algorithm’s internal
state, the history value, and allows to predict future addresses from now on.

On every further day t with t > T , Eve is able to anticipate Alice’s temporary
interface identifier for this day:

– Anticipation of Current Temporary Address: Eve concatenates the history
value of day T with the stable identifier in modified EUI-64 format and cal-
culates the MD5 digest. She extracts the history value, and repeats the cal-
culation with the new history value. In total, (t− T) MD5 digest calculation
are performed.

– Assemblage of the Interface Identifier: Eve forms Alice’s interface identifier
IIDt from the first part of the last MD5 digest by setting bit 6 to zero.

With this knowledge, Eve is able to search her web server’s logs for the
calculated temporary identifier and attributes certain visits to Alice. At the
same time, the prefix that the temporary identifier is concatenated with to form
an IPv6 address provides information on the sub-network that Alice resided at
the time of the page visit. If this is equivalent to Bob’s assigned prefix, Eve is
able to infer that Alice drank coffee at Bob’s coffee shop.

7 Feasibility

In the previous sections, we identified weaknesses of the IPv6 privacy extension
and developed an attack exploiting these characteristics. The question on the
attack’s practicability with respect to today’s technology remains, and is dis-
cussed in this section. Three aspects have to be considered: (1) the minimum
number of observed interface identifiers, i.e., the number of days that Alice has to
visit Eve’s coffee shop, (2) the expenditure of time for brute-forcing, and (3) the
storage capacity to save the candidate set for the next day. Finally, a modified
version of our attack for limited storage capabilities is presented.

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 461

Number of Address Observations: Alice has to visit Eve’s coffee shop so often
that Eve gains enough temporary identifiers for synchronization to the internal
state. We assume that Alice generates one temporary address per day as recom-
mended by the RFC [7], and an iteration of the attack corresponds to a day.

On the first day, Eve probes 264 potential values for the history value and
compares their MD5 digest to the observed interface identifier of Alice. The
unequal ones are excluded, and the appropriate ones form the candidate set C1

of potential values for the next day. The size of the candidate set is dependent
on the ratio of candidates that Eve is able to reject per day. With p being this
ratio, the size of the candidate set Ct for day t is calculated as follows

|Ct| = 264 · (1 − p)t (1)

Eve has to repeat the explained step until a single candidate remains, i.e.,
|Ct| = 1, and the minimum number of days Tmin is calculated as follows

Tmin = ceil
log(264)
log(p − 1)

(2)

The more candidates can be excluded per iteration, the less successive inter-
face identifiers have to be known by Eve. If Eve is able to reduce the candidate
set by only 50 % every day, the minimum number of days is 64. A reduction by
99 %, 99.99 %, 99.9999 % shortens this to 10, 5, 4 days.

Time Expenditure for Brute-Forcing: Every iteration requires brute-forcing
the current candidate set Ct, and means an MD5 digest calculation for every
candidate. Assuming a hash rate r indicating the number of calculated hashes
per second, the total time TBrute for brute-forcing is calculated as follows

TBrute =
1
r

Tmin∑

i=0

|Ci| =
264

r

Tmin∑

i=0

(1 − p)i (3)

Assuming 1 − p < 14, the equation is bounded as follows and allows an
estimation of the total time expenditure for MD5 brute-forcing

TBrute <
264

r

∞∑

i=0

(1 − p)i =
264

r
· 1
p

(4)

A hash rate of 180 G/s with MD5 is feasible [20]. The more candidates can
be excluded, the less time is required. If Eve is able to reduce the candidate set
on average by only 50 % every day, the time for brute-forcing remains 6.5 years,
a reduction by 99 % shortens this to 3.3 years. Time expenditure appears high
at the first sight, but time plays for the adversary, and advances in technology
are likely to decrease this effort. It is likely that faster hashing is already feasible

4 p is the portion of candidates that can be excluded per iteration.

462 J. Ullrich and E. Weippl

today as the given hash rate was measured at a cluster of 25 consumer GPUs back
in the year 2012 and GPUs have recently experienced extensive advancement.

Storage of Candidate Set: Appropriate candidates for the history value have
to be stored for the next iteration. The history value size is 8 byte, and the
storage demand St is dependent on the size of the candidate set.

St = |Ct| · 8 byte = 264 · (1 − p)t · 8 byte (5)

The following calculation considers the first iteration due to its worst case
character5: If Eve is able to reduce the candidate set on average by only 50 %
every day, the storage demand for the first iteration is 74 Exabyte, a reduc-
tion of 99 %, 99.99 %, 99.9999 % reduces the storage demand to 1.5 Exabyte,
15 Petabyte, 148 Terabyte.

This storage demand, however, can be circumvented by a modification of the
attack. In our initial design of Sect. 6, Eve synchronized to Alice’s state simulta-
neously to her coffee shop visits, but Eve might alternatively perform the attack
retroactively. Therefore, she stores Alice’s successive interface identifiers for Tmin

days before starting the attack. Instead of storing an appropriate candidate after
the first iteration, she performs the second, third, etc. iteration with this candi-
date as long as it appears appropriate. Otherwise, it is rejected. This way the
storage demand is reduced to a few bytes for execution of the algorithm for
temporary interface identifier generation.

8 Implementation in Operating Systems

In this section, we assess current operating systems that support the IPv6 pri-
vacy extension with respect to their individual vulnerability. We tested Mac OS
X Yosemite, Ubuntu 14.10 (Utopic Unicorn) and Windows 8.1 Enterprise as rep-
resentatives of the three major ecosystems on clients. In doing so, we faced the
challenge that we cannot access the respective sources of all operating systems,
and had to rely on the externally observable pattern of successively generated
interface identifiers. A machine running an operating systems that implemented
the privacy extension as described in the respective RFC has to generate the same
sequence of successive interface identifiers whenever originating from a defined
initial state. The sequence appears unchanged when faced with some external
factors, while changing in dependence of other factors. The specific influencing
factors are discussed later in this section.

For checking the stated premise, we created a setup of two virtual machines
running in VMWare Workstation 11 and Fusion Pro 7. The machines were vir-
tually connected for networking. One ran the tested operating system; we refer
to this machine as the testee. To save time, we decreased the preferred lifetime
on all operating systems and forced the generation of a new temporary address
at an interval of twelve minutes. We finally created a snapshot of the testee that

5 The candidate set C0 does not have to be stored as it contains all 264 possible values.

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 463

made it possible to return it to the initial state after every test. The testee gen-
erated temporary addresses after a router’s announcement of a network prefix.
The second virtual machine thus ran Ubuntu 14.10 simulating this router; to
send ICMPv6 Router Advertisements the tool fake router6 from the thc-ipv6
toolkit [21] was used. We recorded the temporary addresses of the testee by
means of local scripts.

Using the above premise, we tested the operating systems for five criteria.
First, repeating the test without any changes multiple times has to result in the
same sequence of successive interface identifiers due to the algorithm’s deter-
minism. If this holds, the sequence is checked for their dependence on various
influencing factors. The algorithm has to be invariant to time, the announced
prefix as well as system restarts and provide the same sequence of identifiers,
while it has to be variant to a change of the MAC address. These conditions are
inferred from the algorithm’s definition in the respective RFC: Neither the point
in time of address generation is included into the calculation nor the identifier’s
lifetime. Thus, a later repetition of the experiment or a change in the interval
may not have an impact on the identifiers. The same holds for the announced net-
work prefix. The algorithm has to be invariant to system restarts as the current
state has to be stored in stable storage; all the tested operating systems require
the availability of such a storage. In contrast, the MAC address is included into
the calculation, and its change should result in different identifiers. These are
necessary criteria, and are not sufficient criteria. The results of our tests are
shown in Table 3.

Table 3. Temporary address characteristics wrt to different operating systems

Ubuntu 14.10 does not generate deterministic sequences, and its temporary
interface identifiers appear to be assigned by a random number generator without
following the defined algorithm. A review of the source code6 supports this. Mac
OS X Yosemite showed the same behavior.
6 Kernel 3.16.0, /net/ipv6/addrconf.c, line 1898.

464 J. Ullrich and E. Weippl

Windows 8.1 provides the same sequence whenever originating from the same
state, and further fulfills the conditions of time and prefix invariance as well as
MAC variance. Restarting the machine or the interface, however, influences the
sequence. Thus, we assume that Windows 8.1 implements the privacy extension’s
version for systems without presence of stable storage. In such a case, the first
history value after a restart is randomly assigned. This assumption coincides
with the fact that we could not find any appropriate history value in the Win-
dows Registry analysing Registry diffs. Further signs supporting our assumption
are the collaboration of Microsoft in the definition of the RFC, as well as the
algorithm’s description in older TechNet Library articles [22].

The gained insights lead to the following conclusion: While Ubuntu 14.10 and
Mac OS X Yosemite seem to be immune to our attack, Windows 8.1 appears to
be vulnerable – admittedly to a decreased extent as reinitialization of the history
value is performed with every restart. However, systems that are continuously
running for longer periods or using sleep mode remain vulnerable; and sleep
mode is widely used for laptops. For interest, the operating systems’ protection
to our attack is gained by disobeying the privacy extension’s standard. Ubuntu
and Mac OS seem to totally ignore the proposed generation algorithm, while
Windows 8.1 appears to implement the alternative for systems without stable
storage albeit it assumes such storage according to its system requirements.

9 Mitigation

In this section, we recommend changes to the address generation mechanism
for mitigation of our attack. We propose two kinds of strategy: The first aims
at impeding synchronization to the algorithm’s current state, while the other
removes the predictability of future identifiers in general.

Restraint of Synchronization: Our attack is based on the fact that an adver-
sary is able to learn a victim’s state by observating them over multiple days, and
one might hamper an adversary’s synchronization to the algorithm’s internal
state for mitigation. These strategies do not offer protection in case the state is
leaked. The following explanations are supported by Fig. 6; the numbers in the
figure match those provided in the following paragraphs.

(1) An increased history value would imply improved randomization and
increase the size of the initial candidate set C0, see Eq. 1. As a consequence, the
adversary has to observe more successive identifiers according to Eq. 2, and time
expenditure for brute-forcing increases, see Eqs. 3 and 4. The algorithm’s current
design, however, does not allow an isolated increase of the history value. The
MD5 digest’s first half forms the temporary interface identifier and its second
the current history value. Beyond, there are no bits available that could serve as
additional bits for an increased history value. Thus, this strategy would require
the replacement of MD5 by another hash function.

(2) MD5 is considered insecure, and its replacement by a state-of-the-art hash
function seems tempting. MD5 is vulnerable to collision attacks, and insecure

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 465

Fig. 6. Mitigation strategies for generation of temporary IIDs

for applications that rely on collision resistance, e.g., as necessary for certificates
[23]. The IPv6 privacy extension, however, exploits a hash function’s randomiza-
tion, and replacing MD5 with the currently used SHA-265 would only modestly
increase brute-force effort [24].

Removal of Identifiers’ Predictability: Another precondition of our attack
is the dependency of future identifiers on the current state and predictable inputs
only. The following mitigation approaches tackle this issue by removing the pre-
dictability of future identifiers in different ways.

(3) Including a random value in every iteration makes the digest dependent
on more inputs, and adds unpredictability with every new interface identifier.
This is the major difference to an increased history value as mentioned above
that solely increases randomization at the algorithm’s initialization. Even if the
current state is leaked, it is impossible to accurately predict future interface
identifiers. Moreover, this measure does not require a dissolution of MD5.

(4) A removal of the concatenation would result in successive addresses that
are not related to each other; instead, the history value could be randomly ini-
tialized for every new address. A similar but more limited approach is defined by
the privacy extension’s standard, but only for devices without stable storage [7].
As such systems are not able to store the history value across system restarts,
they are allowed to randomly initialize the first history value after a reboot.
Their vulnerability is thus dependent on their typical restart intervals in com-
parison to the temporary addresses’ lifetime. Nevertheless, it seems curious that
an alternative algorithm for specific devices is more secure than the standard
algorithm.

Alternatively, temporary interface identifiers could be randomly assigned
without such a complex algorithm. A host’s vulnerability to address correla-
tion is then dependent on the quality of its random number generator. We see
advantages in this approach because high-quality random number generators
are necessary in modern operating systems on personal computers, laptops and
mobiles anyway. The privacy extension would benefit from this quality and fur-
ther be updated automatically with every improvement of the number generator.
For systems without an appropriate random number generator, an alternative
would have to be available. This practice is opposed to today’s standard that

466 J. Ullrich and E. Weippl

defines a rather complex algorithm “to avoid the particular scenario where two
nodes generate the same randomized interface identifier, both detect the situation
via DAD, but then proceed to generate identical randomized interface identifiers
via the same (flawed) random number generation algorithm” [7] and lowers secu-
rity for all systems that implement the privacy extension.

Finally, we considered the question which mitigation strategies are in accor-
dance with the current specification, and have drawn the following conclusions:
(1) It is allowed to use another hash function instead of MD5. The brute-force
effort would, however, increase only modestly, and a replacement brings only
limited protection. (2) The history value is allowed to be randomly re-initialized
after every system restart, but this behavior is restricted to systems without sta-
ble storage. However, a variety of systems that implement the privacy extension
like personal computers, laptops, tablets or mobiles do not lack stable storage,
and have to follow the standard variety of the algorithm. (3) The privacy exten-
sion is considered more secure the shorter the temporary addresses’ lifetime. This
inherent belief has to be revised with respect to the presented attack because
more addresses are provided to the adversary within the same time interval,
making synchronization to the current state easier.

10 Conclusions

The IPv6 privacy extension aims to protect privacy by regularly changing the
address, and defines an algorithm for the generation of interface identifiers
that are combined with the advertised network prefix to form temporary IPv6
addresses. In this paper, we presented an attack that questions the extension’s
capability of protection: An adversary is able to predict future temporary inter-
face identifiers once the internal state is known, and is further able to synchronize
to this internal state by observing the victim’s previous interface identifiers. In
consequence, an adversary knows interface identifiers belonging to the same host;
in turn, she is able to perform address-based correlation of different transactions
and infer (private) details about people’s Internet behavior. Moreover, an adver-
sary might even retrace a host’s movement in the network based on the network
prefixes that are included in the respective addresses.

The presented attack is worthwhile as it does not solely identify a privacy
vulnerability but questions a whole measure for privacy protection. The privacy
extension was developed with the intention to impede address-based correlation,
and our attack shows that it does not meet its goal. Nevertheless, we believe that
the general idea of temporary addresses is valuable, and recommend a revision
of the algorithm for interface identifier generation. We want to highlight the fact
that merely replacing MD5 does not solve the problem, as the vulnerability arises
from the concatenation of successive interface identifiers, scarce randomization
and information leakage via a side channel. MD5 just makes the attack easier
due to its fast nature. Proper mitigation within the current definition appears
impractical, and we want to stress the importance of strategies beyond today’s
specification.

Privacy is Not an Option: Attacking the IPv6 Privacy Extension 467

Operating systems appeared less vulnerable than originally assumed. This
does not, however, oppose a revision, as their robustness is gained by silently
disobeying the standard and should not be held as a virtue. The standard in
its current form can tempt developers to implement a vulnerable version of the
privacy extension, and should be adapted soon. This utmost concern is further
emphasized by the fact that the privacy extension is the only widely deployed
IPv6 mechanism using stateless address autoconfiguration that is intended to
protect against temporal as well as geographical address correlation.

Acknowledgments. The authors thank Peter Wurzinger, Dimitris E. Simos, Georg
Merzdovnik and Adrian Dabrowski for many fruitful discussions. This research was
funded by P 842485 and COMET K1, both FFG - Austrian Research Promotion
Agency.

References

1. Landau, S.: Making sense from snowden: what’s significant in the NSA surveillance
relevations. IEEE Secur. Priv. Mag. 4, 54–63 (2013)

2. Landau, S.: Making sense from snowden, part II: what’s significant in the NSA
surveillance relevations. IEEE Secur. Priv. Mag. 1, 62–64 (2014)

3. Leber, J.: Amazon Woos Advertisers with What It Knows about Con-
sumers, January 2013. http://www.technologyreview.com/news/509471/
amazon-woos-advertisers-with-what-it-knows-about-consumers/

4. Blue, V.: Facebook turns user tracking ‘bug’ into data mining ‘feature’
for advertisers, June 2014. http://www.technologyreview.com/news/509471/
amazon-woos-advertisers-with-what-it-knows-about-consumers/

5. Cooper, A., Tschofenig, H., Aboba, B., Peterson, J., Morris, J., Hansen, M., Smith,
R.: Privacy Considerations for Internet Protocols, RFC 6973, July 2013

6. Hinden, R., Deering, S.: IP Version 6 Addressing Architecture, RFC 4291, February
2006

7. Narten, T., Draves, R., Krishnan, S.: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6, RFC 4941, September 2007

8. Ullrich, J., Krombholz, K., Hobel, H., Dabrowski, A., Weippl, E.: IPv6
security: attacks and countermeasures in a nutshell. In: USENIX Workshop
on Offensive Technologies (WOOT). USENIX Association, San Diego, CA,
August 2014. https://www.usenix.org/conference/woot14/workshop-program/
presentation/ullrich

9. Thomson, S., Narten, T., Jinmei, T.: IPv6 Stateless Address Autoconfiguration,
RFC 4862, September 2007

10. Gont, F.: A Method for Generating Semantically Opaque Interface Identifiers with
IPv6 Stateless Address Autoconfiguration (SLAAC), RFC 7217, April 2014

11. Aura, T.: Cryptographically Generated Addresses (CGA), RFC 3972, March 2005
12. Arkko, J., Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery (SEND),

RFC 3971, March 2005
13. Narten, T., Nordmark, E., Simpson, W., Soliman, H.: Neighbor Discovery for IP

version 6 (IPv6), RFC 4861, September 2007
14. Dunlop, M., Groat, S., Marchany, R., Tront, J.: IPv6: now you see me, now you

don’t’. In: International Conference on Networks (ICN), pp. 18–23 (2011)

http://www.technologyreview.com/news/509471/amazon-woos-advertisers-with-what-it-knows-about-consumers/
http://www.technologyreview.com/news/509471/amazon-woos-advertisers-with-what-it-knows-about-consumers/
http://www.technologyreview.com/news/509471/amazon-woos-advertisers-with-what-it-knows-about-consumers/
http://www.technologyreview.com/news/509471/amazon-woos-advertisers-with-what-it-knows-about-consumers/
https://www.usenix.org/conference/woot14/workshop-program/presentation/ullrich
https://www.usenix.org/conference/woot14/workshop-program/presentation/ullrich

468 J. Ullrich and E. Weippl

15. Groat, S., Dunlop, M., Marchany, R., Tront, J.: IPv6: nowhere to run, nowhere to
hide. In: Hawaii International Conference on System Sciences (HICSS) (2011)

16. Alsadeh, A., Rafiee, H., Meinel, C.: Cryptographically generated addresses (CGAs):
possible attacks and proposed mitigation approaches. In: IEEE International Con-
ference on Computer and Information Technology (CIT) (2012)

17. AlSadeh, A., Rafiee, H., Meinel, C.: IPv6 stateless address autoconfiguration: bal-
ancing between security, privacy and usability. In: Garcia-Alfaro, J., Cuppens, F.,
Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp.
149–161. Springer, Heidelberg (2013)

18. Barrera, D., Wurster, G., Van Oorschot, P.C.: Back to the future: revisiting IPv6
privacy extensions. USENIX Mag. 36(1), 16–26 (2011). LOGIN

19. Turner, S., Chen, L.: Updated Security Consideration for the MD5 Message-Digest
and the HMAC-MD5 Algorithms, RFC 6151, March 2011

20. Gosney, J.M.: Password cracking HPC. In: Passwords Security Conference (2012)
21. Heuse, M.: Thc-ipv6 toolkit v2.7, April 2015. https://www.thc.org/thc-ipv6/
22. TechNet: IPv6 Addressing (Tech Ref), April 2011. https://technet.microsoft.com/

en-us/library/dd392266(v=ws.10).aspx
23. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,

de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009)

24. eBASH (ECRYPT Benchmarking of All Submitted Hashes), March 2015. http://
bench.cr.yp.to/results-hash.html

https://www.thc.org/thc-ipv6/
https://technet.microsoft.com/en-us/library/dd392266(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dd392266(v=ws.10).aspx
http://bench.cr.yp.to/results-hash.html
http://bench.cr.yp.to/results-hash.html

Evaluating Solutions

Evaluation of Intrusion Detection Systems in
Virtualized Environments Using Attack Injection

Aleksandar Milenkoski1(B), Bryan D. Payne2, Nuno Antunes3, Marco Vieira3,
Samuel Kounev1, Alberto Avritzer4, and Matthias Luft5

1 University of Würzburg, Würzburg, Germany
{milenkoski,skounev}@acm.org

2 Netflix Inc., Los Gatos, CA, USA
bdpayne@acm.org

3 University of Coimbra, Coimbra, Portugal
{nmsa,mvieira}@dei.uc.pt

4 Siemens Corporation, Corporate Technology, Princeton, NJ, USA
alberto.avritzer@siemens.com

5 Enno Rey Netzwerke GmbH, Heidelberg, Germany
mluft@ernw.de

Abstract. The evaluation of intrusion detection systems (IDSes) is an
active research area with many open challenges, one of which is the gener-
ation of representative workloads that contain attacks. In this paper, we
propose a novel approach for the rigorous evaluation of IDSes in virtual-
ized environments, with a focus on IDSes designed to detect attacks lever-
aging or targeting the hypervisor via its hypercall interface. We present
hInjector, a tool for generating IDS evaluation workloads by injecting
such attacks during regular operation of a virtualized environment. We
demonstrate the application of our approach and show its practical use-
fulness by evaluating a representative IDS designed to operate in virtual-
ized environments. The virtualized environment of the industry-standard
benchmark SPECvirt sc2013 is used as a testbed, whose drivers generate
workloads representative of workloads seen in production environments.
This work enables for the first time the injection of attacks in virtualized
environments for the purpose of generating representative IDS evaluation
workloads.

Keywords: Intrusion detection systems · Virtualization · Evaluation ·
Attack injection

1 Introduction

Virtualization has been receiving increasing interest as a way to reduce costs
through server consolidation and to enhance the flexibility of physical infrastruc-
tures. It allows the creation of virtual instances of physical devices, such as net-
work and processing units. In a virtualized system, governed by a hypervisor,
resources are shared among virtual machines (VMs).
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 471–492, 2015.
DOI: 10.1007/978-3-319-26362-5 22

472 A. Milenkoski et al.

Although virtualization provides many benefits, it introduces new security
challenges; that is, the introduction of a hypervisor introduces new threats.
Hypervisors expose several attack surfaces such as device drivers, VM exit
events, or hypercalls. Hypercalls are software traps from a kernel of a partially or
fully paravirtualized VM to the hypervisor. They enable the execution of severe
attacks. For instance, triggering a vulnerability of a hypercall handler (i.e., a
hypercall vulnerability) may lead to crash of the hypervisor or to altering the
hypervisor’s memory (see, for example, [1,2]).

The research and industry communities have developed security mechanisms
that can detect hypercall attacks. These include intrusion detection systems
(IDSes), such as Xenini [3] and the de-facto standard host-based IDS OSSEC
(Open Source SECurity),1 as well as access control systems, such as XSM-
FLASK (Xen Security Modules - FLux Advanced Security Kernel), which is dis-
tributed with the Xen hypervisor, and McAfee’s VM protection system.2 Under
hypercall attack, we understand any malicious hypercall activity, for example,
triggering a hypercall vulnerability or covert channel operations [4].

The rigorous evaluation of IDSes designed to detect hypercall attacks is cru-
cial for preventing breaches in virtualized environments. For instance, one may
compare multiple IDSes in terms of their attack detection accuracy in order to
identify the optimal IDS. Workloads that contain hypercall attacks are a key
requirement for evaluating the attack detection accuracy of IDSes designed to
detect hypercall attacks. However, the generation of such workloads is challeng-
ing since publicly available scripts that demonstrate hypercall attacks are very
rare [5,6]. An approach towards addressing this issue is attack injection, which
enables the generation of representative IDS evaluation workloads. Attack injec-
tion is controlled execution of attacks during regular operation of the environ-
ment where an IDS under test is deployed. The injection of attacks is performed
with respect to attack models constructed by analysing realistic attacks. Attack
models are systematized activities of attackers targeting a given attack surface.

In this paper, we propose an approach for evaluating IDSes using attack
injection. As part of the proposed approach, we present hInjector, a tool for
injecting hypercall attacks. We designed hInjector to achieve the challenging
goal of satisfying the key criteria for the rigorous, representative, and practically
feasible evaluation of an IDS using attack injection: injection of realistic attacks,
injection during regular system operation, and non-disruptive attack injection
(e.g., prevention of potential crashes due to injected attacks). The approach we
propose may be conceptually applied not only for evaluating IDSes designed to
detect hypercall attacks, but also attacks involving the execution of operations
that are functionally similar to hypercalls. Such operations are, for example, the
ioctl (input/output control) calls that the KVM hypervisor supports.

Our approach uses live IDS testing, since existing IDSes designed to detect
hypercall attacks perform on-line monitoring. Further, it enables the evaluation

1 http://www.ossec.net/; OSSEC can be configured to analyze in real-time log files
that contain information on executed hypercalls.

2 http://www.google.com/patents/US8381284.

http://www.ossec.net/
http://www.google.com/patents/US8381284

Evaluation of Intrusion Detection Systems in Virtualized Environments 473

of IDSes that do and do not require training (i.e., it involves IDS training, which
is needed for evaluating IDSes that require training). We demonstrate the appli-
cation and practical usefulness of the approach by evaluating Xenini [3], a rep-
resentative IDS designed to detect hypercall attacks. We inject realistic attacks
triggering publicly disclosed hypercall vulnerabilities and specifically crafted eva-
sive attacks. We extensively evaluate Xenini considering multiple configurations
of the IDS. Such an extensive evaluation would not have been possible before
due to the previously mentioned issues.

This paper is organized as follows: in Sect. 2, we provide the essential back-
ground and discuss related work; in Sect. 3, we present an approach for evaluating
IDSes; in Sect. 4, we introduce the hInjector tool; in Sect. 5, we demonstrate the
application of the proposed approach; in Sect. 6, we discuss future work and
conclude this paper.

2 Background and Related Work

Paravirtualization and Hypercalls. Paravirtualization, an alternative to full
(native) virtualization, is a virtualization mode that enables the performance-
efficient virtualization of VM components based on collaboration between VMs
and the hypervisor. VM components that may be paravirtualized include disk
and network devices, interrupts and timers, emulated platform components (e.g.,
motherboards and device buses), privileged instructions, and pagetables.

With recent advances in hardware design, paravirtualizing privileged instruc-
tions and pagetables often does not provide performance benefits over full virtu-
alization. However, paravirtualizing the other VM components mentioned above
is beneficial. As a result, multiple virtualization modes have emerged, many of
which involve paravirtualizing VM components of fully virtualized VMs. Hyper-
calls are operations that VMs use for working with paravirtualized components.
They are software traps from a kernel of a VM to the underlying hypervisor.

The Hypercall Attack Surface. The hypercall interface is an attack surface
that can be used for executing attacks targeting the hypervisor or breaking the
boundaries set by it. This may result in unauthorized information flow between
VMs or executing malicious code with hypervisor privilege (see [1,2]).

In a previous work [5], we have analyzed 35 publicly disclosed hypercall
vulnerabilities and identified patterns of activities for triggering the considered
vulnerabilities. We categorized the identified patterns into the following attack
models: setup phase (optional) — execution of one or multiple regular hypercalls
(i.e., hypercalls with regular parameter value(s) that may be executed during
regular system operation) setting up the virtualized environment as necessary
for triggering a given hypercall vulnerability; attack phase — execution of a single
regular hypercall, or a hypercall with specifically crafted parameter value(s); or,
execution of a series of regular hypercalls in a given order. In this work, we use
these models for injecting hypercall attacks.

Intrusion Detection. Given the high severity of hypercall attacks, the research
and industry communities have developed IDSes that can detect such attacks.

474 A. Milenkoski et al.

Examples are Collabra [7], Xenini [3], C2(Covert Channel) Detector [4], Wiz-
ard [8], MAC/HAT (Mandatory Access Control/Hypercall Access Table) [6],
RandHyp [9], and OSSEC. Most of these IDSes have the following characteris-
tics in common:

– monitoring method and attack detection technique — they perform on-line
(i.e., real-time) monitoring of VMs’ hypercall activities and use a variety
of anomaly-based attack detection techniques, which require training using
benign (i.e., regular) hypercall activities;

– architecture — they have a module integrated into the hypervisor, intercepting
invoked hypercalls and sending information relevant for intrusion detection to
an analysis module deployed in a designated VM.

Current IDSes designed to detect hypercall attacks analyze the following prop-
erties of VMs’ hypercall activities, which we refer to as detection-relevant prop-
erties: (i) hypercall identification numbers (IDs) and values of parameters of
individual, or sequences of, hypercalls, and (ii) hypercall call sites (i.e., memory
addresses from where hypercalls have been executed).

IDS Evaluation and Attack Injection. The accurate and rigorous evaluation
of IDSes is crucial for preventing security breaches. IDS evaluation workloads
that contain realistic attacks are a key requirement for such an evaluation. In
Sect. 1, we stated that IDSes designed to detect hypercall attacks currently can-
not be evaluated in a rigorous manner due to the lack of publicly available
attack scripts that demonstrate hypercall attacks. Attack injection is a method
addressing this issue, which is in the focus of this work.

To the best of our knowledge, we are the first to focus on evaluating IDSes
designed to operate in virtualized environments, such as IDSes designed to detect
hypercall attacks. Further, we are the first to consider the injection of hypercall
attacks and of attacks targeting hypervisors in general. Pham et al. [10] and Le et
al. [11] focus on injecting generic software faults directly into hypervisors. This is
not suitable for evaluating IDSes — IDSes do not monitor states of hypervisors
since they are not relevant for detecting attacks in a proactive manner.

Fonseca et al. [12] present an approach for evaluating network-based IDSes,
which involves injection of attacks. They built Vulnerability Injector, a mecha-
nism that injects vulnerabilities in the source code of web applications, and an
Attack Injector, a mechanism that generates attacks triggering injected vulner-
abilities. There are fundamental differences between our work and the work of
Fonseca et al. [12], which is focussing on attack injection at application level.
This includes the characteristics of the IDSes in focus, the required attack mod-
els, and the criteria for designing procedures and tools for injecting attacks.

3 Approach

Figure 1a shows our approach, which has two phases: planning and testing. The
planning phase consists of: (i) specification of an IDS monitoring landscape

Evaluation of Intrusion Detection Systems in Virtualized Environments 475

Specification of an IDS
monitoring landscape

Characterization of benign
hypercall activities

Specification of
attack injection scenarios

Planning Initialization of the IDS
monitoring landscape

IDS training
Testing

Initialization of the IDS
monitoring landscape

Attack injection
Calculation of metric

values

(a)

IDS monitoring component

Hypervisor

Fully/para-virtualized
hardware

VM 1

User

Kernel

Tasks

Fully/para-virtualized
hardware

VM 2

User

Kernel

Tasks

Fully/para-virtualized
hardware

VM n

User

Kernel

Tasks

Hypercalls

System calls System calls System calls

(b)

Fig. 1. (a) Approach for evaluating IDSes; (b) IDS monitoring landscape

(i.e., specifying a virtualized environment where the IDS under test is to be
deployed), (ii) characterization of benign hypercall activities (i.e., making rele-
vant observations about the benign hypercall activities), and (iii) specification
of attack injection scenarios (Sect. 3.1). The testing phase consists of: (i) IDS
training, (ii) attack injection, and (iii) calculation of metric values (Sect. 3.2).
The activities of the testing phase are performed based on observations made in
the planning phase. IDS training needs to be performed only when evaluating
an IDS that requires training (i.e., an anomaly-based IDS).

3.1 Planning

Specification of an IDS Monitoring Landscape. A typical IDS designed to
detect hypercall attacks monitors the hypercall activity of one or multiple VMs
at the same time. VM characteristics influence the hypercall activity:

– virtualization mode influences which hypercalls can be executed,
– workloads influence which system calls can be executed, many of which map

to hypercalls, and
– system architecture and hardware influence the VM’s interface, and the type

and frequency of hypercalls needed (e.g., page table update operations, which
take place when page swapping occurs due to insufficient memory).

The aggregate of these characteristics across all VMs on a hypervisor is the
monitoring landscape of an IDS designed to detect hypercall attacks. Figure 1b
depicts an IDS monitoring landscape. The first activity of the planning phase of
our approach is to specify an IDS monitoring landscape by defining the charac-
teristics above for the test system. By defining workloads, we mean specifying
drivers generating workloads in an automated and repeatable manner. By defin-
ing hardware, we mean allocating an amount of hardware resources to VMs that
is fixed over time (i.e., disabling CPU or memory ballooning). We discuss more
on the importance of specifying an IDS monitoring landscape in Sect. 3.2.

Characterization of Benign Hypercall Activities. Characterization of a
VM’s benign hypercall activity is crucial for answering two major questions: How
long should the IDS under test be trained? and What injected attacks should be

476 A. Milenkoski et al.

used for the purpose of rigorous IDS testing? It consists of two parts: (i) esti-
mation of benign hypercall activity steady-state and (ii) calculating relevant
statistics. These activities are best performed when hypercall activities are cap-
tured in traces for processing off-line.

Estimation of benign hypercall activity steady-state: Steady-state of the
benign hypercall activity of a VM can be understood with respect to the sum of
first-time occurring variations of a detection-relevant property at a given point
in time. We define St at time t where St is an increasing function such that
limt→∞ St = const. The estimation of steady-state is crucial for determining an
optimal length of the period during which an IDS under test should be trained
in the testing phase (i.e., for avoiding IDS under-training).

In order to estimate steady-state, an IDS evaluator should first initialize the
IDS monitoring landscape; that is, bring the VMs in the landscape to the state
after their creation and start workloads in the VMs. Then the steady-state of
the benign hypercall activities of a VM may be estimated by setting a target for
the slope of a growth curve depicting St until a given time tmax. The slope of
such a curve, when observed over a given period, indicates the rate of first-time
occurring variations of the detection-relevant property in the period. Letting σ
be a target for the slope of a growth curve over a period ts = ts2 − ts1, we have
0 <= Sts2−Sts1

ts
<= σ. This process may be repeated multiple times for different

values of tmax to experimentally determine σ for each VM.3 Attacks should be
injected from a VM until time tmax, but only after the VM’s hypercall activity
has reached steady-state.

The IDS under test should operate in learning mode when steady-state is
estimated. This helps to create operating conditions of the overall virtualized
environment, which are (almost) equivalent to those when the IDS will be trained
in the testing phase. Note that an IDS may have an impact on the time needed for
hypercall activities to reach steady-state due to incurred monitoring overhead.

Calculating relevant statistics: Two key statistics need to be calculated: (i)
the average rate of occurrence of the detection-relevant property — this statistic
should be calculated using data collected between ts1 and tmax, and (ii) the
number of occurrences of each variation of the detection-relevant property — this
statistic should be calculated using data collected while the system is progressing
towards a steady state. These statistics help calculate metric values in the testing
phase and create realistic attack injection scenarios as discussed next.

Specification of Attack Injection Scenarios. Two characteristics distinguish
each attack injection scenario: attack content and attack injection time.

Attack content is the detection-relevant property of a hypercall attack in the
context of a given IDS evaluation study (e.g., a specific sequence of hypercalls).
Specification of attack content enables the injection of attacks that conform to
representative attack models (see Sect. 2). In addition, it enables the injection
of evasive attacks, for example, attacks that closely resemble common regular

3 This raises the question whether hypercall activities are repeatable. We discuss this
topic in Sect. 3.2.

Evaluation of Intrusion Detection Systems in Virtualized Environments 477

activities — these attacks may be highly effective “mimicry” attacks. Crafting
“mimicry” attacks is done based on knowledge on what, and how frequently,
detection-relevant properties occur during regular operation of the IDS mon-
itoring landscape (i.e., during IDS training); this is the statistic ‘number of
occurrences of each variation of the detection-relevant property’.

Attack injection time is the point(s) in time when a hypercall attack con-
sisting of one or more hypercalls is injected. This allows for the specification of
arbitrary temporal distributions of attack injection actions. It also allows for the
specification of the following relevant temporal properties of malicious activities:

– Base rate: Base rate is the prior probability of an intrusion (attack). The error
occurring when the attack detection accuracy of an IDS is assessed without
taking the base rate into account is known as the base rate fallacy [13]. The
specification of attack injection times provides a close estimation of the actual
base rate in the testing phase. As we demonstrate in Sect. 5, base rate can
be estimated by considering the number of injected attacks and the number
of variations of the detection-relevant property that have occurred during
attack injection. The latter is estimated based on the statistic ‘average rate
of occurrence of the detection-relevant property’.

– IDS evasive properties: Specification of the attack injection time enables the
injection of “smoke screen” evasive attacks. In the context of this work, the
“smoke screen” technique consists of delaying the invocation of the hypercalls
comprising an attack such that a given amount of benign hypercall activity
occurs between each hypercall invocation. This is an important test since some
IDSes have been shown to be vulnerable to such attacks (e.g., Xenini; see [14]).

3.2 Testing

IDS Training. IDS training is the first activity of the testing phase. We require
reinitialization of the IDS monitoring landscape between the planning and test-
ing phases (see Fig. 1a). The rationale behind this is practical: many parame-
ters of the existing IDSes designed to detect hypercall attacks (e.g., length of
IDS training period, attack detection threshold) require a priori configuration.
These parameters are tuned based on observations made in the planning phase
(see Sect. 3.1). This raises concerns related to the non-determinism of hypercall
activities, a topic that we discuss in paragraph ‘on repeatability concerns’.

Attack Injection. For this critical step, we developed a new tool called hInjec-
tor. Section 4 introduces this tool and describes how it is used.

Calculation of Metric Values. After attack injection is performed, values of
relevant metrics can be calculated (e.g., true and false positive rate). This also
raises concerns related to the non-determinism of hypercall activities, which we
discuss next.

On Repeatability Concerns. Observations and decisions made in the plan-
ning phase might be irrelevant if hypercall activities are highly non-deterministic

478 A. Milenkoski et al.

and therefore not repeatable. For example, the benign hypercall activities occur-
ring in the testing phase may not reach steady-state at a point in time close to
the estimated one in the planning phase.

In addition, metric values reported as end-results of an evaluation study,
where workloads that are not fully deterministic are used, have to be statistically
accurate. This is crucial for credible evaluation. Principles of statistical theory
impose metric values to be repeatedly calculated and their means to be reported
as end-results. Therefore, we require repeated execution of the testing phase
(see Fig. 1a). However, this may be time-consuming if the number of needed
repetitions is high due to high non-determinism of hypercall activities.

Specifying an IDS monitoring landscape as we define it (see Sect. 3.1) alle-
viates the above concerns; that is, it helps to reduce the non-determinism of
hypercall activities by removing major sources of non-determinism, such as non-
repeatable workloads. This is in line with Burtsev [15], who observes that, given
repeatability of execution of VMs’ user tasks is preserved, VMs always invoke
the same hypercalls. We acknowledge that achieving complete repeatability of
hypercall activities by specifying VM characteristics is infeasible. This is mainly
due to the complexity of the architectures and operating principles of kernels.

In Sect. 5, we empirically show that, provided an IDS monitoring landscape is
specified, a VM’s hypercall activities exhibit repeatability to an extent sufficient
to conclude that: (i) the decisions and observations made in the planning phase
are of practical relevance when it comes to IDS testing, and (ii) the number of
measurement repetitions needed to calculate statistically accurate metric values
is small. This is in favor of the practical feasibility of our approach, which involves
repeated initialization of an IDS monitoring landscape.

4 hInjector

hInjector is a tool for injecting hypercall attacks. It realizes the attack injection
scenarios specified in the planning phase (see Sect. 3.1). The current implementa-
tion of hInjector is for the Xen hypervisor, but the techniques are not Xen-specific
and can be ported to other hypervisors.

hInjector supports the injection of attacks crafted with respect to the attack
models that we developed (see Sect. 2). We extend these attack models with a
model involving different hypercall call sites. Hypercall call sites are one of the
detection-relevant properties that existing IDSes designed to detect hypercall
attacks analyze. We consider that hypercalls can be executed from regular or
irregular call sites. The latter is typically a hacker’s loadable kernel module
(LKM) used to mount hypercall attacks.

Our design criteria for hInjector are injection of realistic attacks, injection
during regular system operation, and non-disruptive attack injection. These cri-
teria are crucial for the representative, rigorous, and practically feasible IDS
evaluation. We discuss more in Sect. 4.2.

Availability. hInjector is publicly available at https://github.com/hinj/hInj.

https://github.com/hinj/hInj

Evaluation of Intrusion Detection Systems in Virtualized Environments 479

MVM Hypervisor

User

Kernel

Hardware

Injector

LKM

Logs

Filter

Memory

Hypercall
handler

6

 2
 4

vCPU

 3
 5

 3

 5

 1

shared_info

IDS
(in SVM)

monitors

Fig. 2. The architecture of hInjector

4.1 hInjector Architecture

Figure 2 depicts the architecture of hInjector. It shows the primary components:
Injector, LKM, Filter, Configuration, and Logs. We refer to the VM from where
hypercall attacks are injected as the malicious VM (MVM). We also depict a
typical IDS designed to detect hypercall attacks, with components in the hyper-
visor and a secured VM (SVM), co-located with MVM (see Sect. 2). The IDS
monitors the MVM’s hypercall activity by monitoring virtual CPU registers and
the virtual memory of MVM using its hypervisor component.

The Injector component, deployed in the MVM’s kernel, intercepts at a given
rate hypercalls invoked by the kernel and modifies hypercall parameter values
on-the-fly (i) making them specifically crafted for triggering a vulnerability, or
(ii) replacing them with random, irregular values that an IDS may label as
anomalous. The Injector injects hypercalls invoked from a regular call site (i.e.,
from the kernel address space). We discuss more on Injector in Sect. 4.3.

The LKM component, a module in MVM’s kernel, invokes hypercalls with
regular or specifically crafted parameter value(s), including a series of hypercalls
in a given order. The LKM injects hypercalls invoked from an irregular call site
(i.e., from a loadable kernel module).

The Filter component, deployed in the hypervisor’s hypercall handlers, iden-
tifies hypercalls injected by the Injector or the LKM, blocks the execution of the
respective hypercall handlers, and returns valid error codes. The Filter identi-
fies injected hypercalls based on information stored by the Injector/LKM in the
shared info structure, a memory region shared between a VM and the hypervi-
sor. To this end, we extended shared info with a string field named hid (hypercall
identification), which contains identification information on injected hypercalls.
We discuss more about the Filter when we discuss the design criterion ‘non-
disruptive attack injection’ in Sect. 4.2.

The Configuration component is a set of user files in XML containing config-
uration parameters for managing the operation of the Injector and the LKM. It
allows specifying, for example, parameter values for a given hypercall (relevant
to the Injector and the LKM), ordering of a series of hypercalls (relevant to the
LKM), and temporal distribution of injection actions.

480 A. Milenkoski et al.

The Logs are user files containing records about invoked hypercalls that
are part of attacks; that is, hypercall IDs and parameter values, as well as
timestamps. The logged data serves as reference data (i.e., as “ground truth”)
used for distinguishing false positives from injected attacks and calculating IDS
attack detection accuracy metrics, such as true and false positive rate.

We now present an example of the implemented hypercall attack injection pro-
cedure. Figure 2 depicts the steps to inject a hypercall attack by the LKM: (1)
the LKM crafts a parameter value of a given hypercall as specified in the config-
uration; (2) the LKM stores the ID of the hypercall, the number of the crafted
parameter, and the parameter value in hid; (3) the LKM passes the hypercall to
MVM’s vCPU, which then passes control to hypervisor; (4) the Filter, using the
data stored in hid, identifies the injected hypercall when the respective hypercall
handler is executed; (5) the Filter updates hid indicating that it has intercepted
the injected hypercall, then returns a valid error code to block execution of the
handler; (6) after the error code arrives at MVM’s kernel, the LKM first verifies
whether hid has been updated by the Filter and then logs the ID and parameter
values of the injected hypercall.

4.2 hInjector Design Criteria

Injection of Realistic Attacks. The injection of realistic attacks is crucial for
the representative IDS evaluation. In order to inject realistic hypercall attacks,
hInjector requires representative hypercall attack models. hInjector supports the
injection of attacks crafted with respect to arbitrary attack models, for example,
the models that we developed [5] (see Sect. 2).

We developed proof-of-concept code for triggering the hypercall vulnerabili-
ties that we analyzed [5].4 The proof-of-concept code enables granularization of
the attack models. For example, we can specify specific parameter values or the
order of a series of hypercalls that trigger a hypercall vulnerability. This enables
the injection of realistic hypercall attacks, crafted to trigger publicly disclosed
hypercall vulnerabilities. In Fig. 3a, we show how we triggered the vulnerabil-
ity CVE-2012-3495 of the Xen hypervisor in a testbed environment. In Fig. 3b,
we present the configuration of hInjector for injecting an attack triggering CVE-
2012-3495. Configuration files for injecting attacks that trigger publicly disclosed
hypercall vulnerabilities are distributed with hInjector.

Injection During Regular System Operation. Benign activities, mixed with
attacks, are needed to subject an IDS under test to realistic attack scenarios.
hInjector is designed to inject hypercall attacks during regular operation of guest
VMs. Thus, provided that during an IDS evaluation experiment representative
user tasks run in the VMs in the IDS monitoring landscape, the presence of
representative benign hypercall activities is guaranteed.

4 We developed proof-of-concept code based on reverse-engineering the released
patches fixing the considered vulnerabilities.

Evaluation of Intrusion Detection Systems in Virtualized Environments 481

Fig. 3. (a) Triggering CVE-2012-3495 [the hypercall physdev op is executed 18 times:
the value of its first parameter is 23 (PHYSDEVOP get free pirq); the value of the field
type of its second parameter (struct physdev get free pirq) is 1]; (b) Configuration of
hInjector for injecting an attack triggering CVE-2012-3495

Non-disruptive Attack Injection. The state of the hypervisor or the VM(s)
from where attacks are injected may be altered by the attacks injected by hIn-
jector. This may cause crashes obstructing the execution of the IDS evaluation
process. Filter prevents crashes by blocking the execution of the hypervisor’s
handlers that handle the injected hypercalls. This preserves the states of the
hypervisor and of the VM(s) from where attacks are injected, and, in addition,
it ensures that injected attacks do not impact the operation of the IDS under
test, which normally has components in the hypervisor and in a VM (see Sect. 2).
After blocking the execution of hypervisor’s handlers, Filter returns valid error
codes. This allows the control flow of the kernel of the VM from where hypercall
attacks are injected to properly handle failed hypercalls that have been executed
by it and have been modified by the Injector on-the-fly.

4.3 Injector: Performance Overhead

The rate at which the kernel invokes hypercalls is high (i.e., in some cases more
than 30000 hypercalls per second, see Sect. 5). Therefore, Injector, which manip-
ulates hypercalls on-the-fly, can easily incur intolerable system performance over-
head. We made the following observation when developing Injector: manipulating
orders of series of hypercalls is very performance-expensive; therefore, Injector
can manipulate only hypercall parameter values. Further, we measured the over-
head incurred by Injector on the execution rate of hypercalls, relative to this rate
when Injector is inactive, when replacing regular hypercall parameter values with
random, irregular values. In Fig. 4, we depict this overhead, which we measured
as follows. We deployed Injector in the kernel of a Debian 8.0 operating system
running on top of Xen 4.4.5. We invoked the mmuext op hypercall 40000 times
using a loadable kernel module. We measured the time, in microseconds (μs),
needed for the invoked hypercalls to complete their operation (‘Execution time’
in Fig. 4) in scenarios where: (i) Injector is inactive (‘Base’ in Fig. 4), and (ii)
Injector manipulates the value of the second parameter of mmuext op at the

482 A. Milenkoski et al.

rate of 1:50 (i.e., Injector manipulates parameter value once in 50 invocations of
mmuext op), 1:100, 1:500, 1:1000, and 1:10000. We repeated the measurements
30 times and averaged the results.

Based on the results from the above experiment, we conclude that a user
should constrain the rate at which Injector manipulates hypercall parameter
values to a value such that the incurred overhead is not higher than 2 %. This is
important since we observed that overheads higher than 2 % often cause notice-
able system slowdowns or crashes. We showed that Injector normally incurs
overheads higher than 2 % when it manipulates hypercall parameter values
approximately once in less than 500 hypercall invocations (see Fig. 4). Note
that overheads incurred by Injector for hypercalls other than mmuext op do
not significantly differ from those depicted in Fig. 4 since the implementation of
Injector is the same for all hypercalls.

E
xe

cu
ti

on
ti

m
e

(µ
s)

800

1600

2400

Base

[10 %]

1:50

[4.953%]

1:100

[1.606%]

1:500

[0.395 %]

1:1000

[0.257 %]

1:10000

Fig. 4. Overhead incurred by Injector [measurements of the incurred overhead are
depicted in square brackets]

5 Case Study

We now demonstrate the application of our approach by evaluating Xenini [3]
following the steps presented in Sect. 3. Xenini is a representative anomaly-based
IDS. It uses the popular Stide [16] method. Xenini slides a window of size k over
a sequence of n hypercalls and identifies mismatches (anomalies) by comparing
each k-length sequence with regular patterns learned during IDS training. Xenini
records the number of mismatches as a percentage of the total possible number
of pairwise mismatches for a sequence of n hypercalls (i.e., (k − 1)(n − k/2)).
We call this percentage anomaly score. When the anomaly score exceeds a given
threshold th ∈ [0; 1], Xenini fires an alert. For the purpose of this study, we con-
figured Xenini such that its detection-relevant property is sequences of hypercall
IDs of length 4 (i.e., k = 4; n = 10).

It is important to emphasize that we focus on demonstrating the feasibility
of attack injection in virtualized environments for IDS testing purposes and not
on discussing the behavior of Xenini in detail or comparing it with other IDSes.
We specify arbitrary attack injection scenarios and evaluate Xenini with the sole
purpose of demonstrating all steps and functionalities of the proposed approach.
We refer the reader to Sect. 5.3 for an overview of further application scenarios.

Evaluation of Intrusion Detection Systems in Virtualized Environments 483

5.1 Case Study: Planning

Specification of an IDS Monitoring Landscape. We use the SPECvirt
sc2013 benchmark to specify an IDS monitoring landscape.5 SPECvirt sc2013 is
an industry-standard virtualization benchmark developed by SPEC (Standard
Performance Evaluation Corporation). Its complex architecture matches a typ-
ical server consolidation scenario in a datacenter — it consists of 6 co-located
front- and back-end server VMs (i.e., web, network file, mail, batch, application,
and database server VM) and 4 workload drivers that act as clients generating
workloads for the front-end servers. The workload drivers are heavily modified
versions of the drivers of the SPECweb 2005, SPECimap, SPECjAppServer2004,
and SPECbatch (i.e., SPEC CPU 2006) benchmarks. They generate workloads
representative of workloads seen in production virtualized environments.

In Fig. 5, we depict the deployment of SPECvirt sc2013 as an IDS monitoring
landscape. The workload drivers generate workloads that map to hypercalls. We
used Xen 4.4.1 as hypervisor and we virtualized the VMs using full paravirtu-
alization.6 To each server VM, we allocated 8 virtual CPUs pinned to separate
physical CPU cores of 2 GHz, 3 GB of main memory, and 100 GB of hard disk
memory. In Fig. 5, we depict the operating systems and architectures of the
server VMs, and the server software we deployed in the VMs.7

SPECweb 2005
workload driver

SPECimap
workload driver

SPECjAppServer2004
workload driver

SPECbatch
workload driver

Application server VM
[front-end]

J2EE Application
server

GlassFish 4.0

OS
Linux 3.17.2 x86_64

[back-end]

sshfs 2.5

OS
Linux 3.17.2 x86_64

Web server VM
[front-end]

Web server
Apache 2.4.7

OS
Linux 3.17.2 x86_64

Mail server VM
[front-end]

IMAP mail server
Dovecot 2.2.9

OS
Linux 3.17.2 x86_64

Batch server VM
[front-end]

OS
Linux 3.17.2 x86_64

Database server VM
[back-end]

Database server
PostgreSQL 9.3.5

OS
Linux 3.17.2 x86_64

Batch server
SPECbatch server

Hypervisor
Xen 4.4.1

Clients

Servers

Fig. 5. SPECvirt sc2013 as an IDS monitoring landscape [IMAP stands for Internet
Message Access Protocol; J2EE stands for Java 2 Enterprise Edition]

Characterization of Benign Hypercall Activities. We now estimate steady-
states of the benign hypercall activities of the server VMs and calculate the rel-
evant statistics (see Sect. 3.1). We initialized the IDS monitoring landscape and
deployed Xenini before the characterization. We used xentrace, the tracing facility
of the Xen hypervisor, to capture hypercall activities in trace files.
5 http://www.spec.org/virt sc2013/.
6 We did not use any other virtualization mode because of a technical limitation; that

is, the xentrace tool, which we use to capture benign hypercall activities in files for
processing off-line, currently supports only full paravirtualization. However, support
for other virtualization modes is currently being implemented.

7 An overview of the software and hardware requirements for deploying and running
SPECvirt sc2013 is available at https://www.spec.org/virt sc2013/docs/SPECvirt
UserGuide.html.

http://www.spec.org/virt_sc2013/
https://www.spec.org/virt_sc2013/docs/SPECvirt_UserGuide.html
https://www.spec.org/virt_sc2013/docs/SPECvirt_UserGuide.html

484 A. Milenkoski et al.

Table 1. Benign workload characterization

Run 1 Run 2

Server VM ts (sec.) r (occ./sec.) ts (sec.) r (occ./sec.)

Web 5350 19644.5 5357 19627.3

Network file 5343 10204.9 5360 10231.3

Mail 5391 3141.5 5382 3148.7

Batch 5315 633.4 5330 623.8

Application 5367 31415.9 5377 31437.5

Database 5285 27294.9 5273 27292.3

Figure 6 a–f show growth curves depicting St until time tmax = 5500 s for each
server VM (see the curves entitled ‘Run 1’). We set the target σ to 15 over a time
period of 100 s for the slope of each growth curve. In Table 1, column ‘Run 1’,
we present ts (in seconds – sec.), which is the time at which the VMs’ hypercall
activities reach steady-state. We also present r (in number of occurrences per
second – occ./sec.), which is the average rate of occurrence of the detection-
relevant property. We also calculated the statistic ‘number of occurrences of each
variation of the detection-relevant property’ (not presented in Table 1), which
we use to craft “mimicry” attacks (see Sect. 5.2).

We now empirically show that, provided an IDS monitoring landscape is spec-
ified, VMs’ hypercall activities exhibit repeatability in terms of the characteristics

0
10

00
20

00

0 1000 2000 3000 4000 5000

St

Time (sec.)

Run 1 Run 2

(a)

0
50

0
10

00
15

00

0 1000 2000 3000 4000 5000

St

Time (sec.)

Run 1 Run 2

(b)

0
10

00
20

00

0 1000 2000 3000 4000 5000

St

Time (sec.)

Run 1 Run 2

(c)

0
20

0
40

0
60

0

0 1000 2000 3000 4000 5000

St

Time (sec.)

Run 1 Run 2

(d)

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

St

Time (sec.)

Run 1 Run 2

(e)

0
10

00
20

00

0 1000 2000 3000 4000 5000

St

Time (sec.)

Run 1 Run 2

(f)

Fig. 6. Growth curves: (a) web (b) network file (c) mail (d) batch (e) application
(f) database server VM.

Evaluation of Intrusion Detection Systems in Virtualized Environments 485

of interest to an extent sufficient for accurate IDS testing (see Sect. 3.2). We per-
formed the above characterization campaign twice and compared the results. In
Fig. 6 a–f, we depict the obtained growth curves (see the curves entitled ‘Run 1’
and ‘Run 2’). These curves are very similar, which indicates that the character-
istics of the VMs’ hypercall activities of interest are also similar. In Table 1, we
present ts and r for each server VM (see column ‘Run 1’ and ‘Run 2’). We observe
a maximum difference of only 17 sec. for ts and 26.4 occ./sec. for r. We repeated
this process over 30 times and calculated maximum standard deviation of only
8.036 for ts and 15.95 for r. These small deviations indicate that benign hypercall
activities exhibit non-repeatability to such a small extent that it has no significant
impact on metric values, which we repeatedly calculate for statistical accuracy (see
Sect. 3.2).

Specification of Attack Injection Scenarios. We now specify attack injec-
tion scenarios that we will realize in separate testing phases. We focus on inject-
ing attacks triggering publicly disclosed hypercall vulnerabilities. However, the
injection of any malicious hypercall activity using hInjector is possible (e.g.,
covert channel operations as described in [4]), in which case an IDS evaluation
study would be performed following the same process we demonstrate here.

Scenario#1 :Wewill first evaluate the attack coverage ofXeniniwhen config-
ured such that th = 0.3. We will evaluate Xenini’s ability to detect attacks trigger-
ing the vulnerabilities CVE-2012-5525, CVE-2012-3495, CVE-2012-5513, CVE-
2012-5510, CVE-2013-4494, and CVE-2013-1964. We thus demonstrate injecting
realistic attacks that conform to the attack models that we constructed [5]. We
will inject attacks from the web and mail server VM using the LKM component of
hInjector.

Attack contents: In Fig. 7 (a)–(e), we depict the contents of the considered
attacks (the content of the attack triggering CVE-2012-3495 is depicted in
Fig. 3a; we will inject this attack from the web server VM). The semantics of
these figures is the same as that of Fig. 3a — we depict the hypercalls executed as
part of an attack and relevant hypercall parameters; that is, integer parameters
defining the semantics of the executed hypercalls (e.g., XENMEM exchange),
and, where applicable, parameters with values specifically crafted for triggering
a vulnerability, which are marked in bold.

Attack injection times: After the hypercall activities of both the web and mail
server VM have reached a steady state, we will inject the considered attacks, with
10 s of separation between each attack, and, where applicable, with no delays
between the invocation of the hypercalls comprising an attack.

Scenario #2 : We will investigate the accuracy of Xenini at detecting the
attacks considered in Scenario #1, however, modified such that they have IDS
evasive characteristics (i.e., they are “mimicry” and “smoke-screen” attacks). We
will inject from the database server VM, using the LKM component of hInjector,
both the unmodified attacks that consist of multiple hypercalls (i.e., we exclude
the attack triggering CVE-2012-5525) and their modified counterparts as part
of three separate testing phases. Therefore, we will observe how successful the
modified attacks are at evading Xenini.

486 A. Milenkoski et al.

Web server VM Hypervisor

HYPERVISOR_mmuext_op

op.cmd = MMUEXT_CLEAR_PAGE;
.arg1.mfn=0x0EEEEE;

(a)

Web server VM Hypervisor

HYPERVISOR_update_va_mapping

.out.extent_start = 0xFFFF808000000000;

HYPERVISOR_memory_op
(XENMEM_exchange, &exchange);

x32

(b)

Mail server VM Hypervisor

HYPERVISOR_grant_table_op
(GNTTABOP_set_version, &gsv

x57

.version=1 / .version=2;

HYPERVISOR_grant_table_op
(GNTTABOP_set_version, &gsv

.version=1;

(c)

Mail server VM Hypervisor

HYPERVISOR_grant_table_op
(GNTTABOP_setup

HYPERVISOR_grant_table_op
(GNTTABOP_transfer

(at vCPU #1)

(at vCPU #2)

(d)

Mail server VM Hypervisor

HYPERVISOR_grant_table_op
(GNTTABOP_copy

Web server VM

HYPERVISOR_grant_table_op
(GNTTABOP_setup_table

(e)

Fig. 7. Injecting attacks that trigger: (a) CVE-2012-5525; (b) CVE-2012-5513; (c)
CVE-2012-5510; (d) CVE-2013-4494 [invoking hypercalls from two virtual CPUs
(vCPUs)]; (e) CVE-2013-1964 [this vulnerability can also be triggered by invoking
hypercalls from one VM]

Attack contents: The contents of the unmodified attacks and the “smoke-
screen” attacks we will inject are depicted in Figs. 3a and 7 (b)–(e). To craft
“mimicry” attacks, we place each individual hypercall that is part of an attack
in the middle of a sequence of 20 injected hypercalls (i.e., at position 10). We
built this sequence by starting with the most common detection-relevant prop-
erty we observed in the planning phase — iret, iret, iret, iret. We then added
16 hypercalls such that sliding a window of size 4 over the sequence provides
common detection-relevant properties seen during IDS training (i.e., while the
hypercall activity of the database server VM has been progressing towards a
steady state); we were able to perform this because we calculated the statistic
‘number of occurrences of each variation of the detection-relevant property’ (see
Sect. 3.1). Therefore, we obscure attack patterns making them similar to regular
patterns. For example, in Fig. 8a, we depict the content of the “mimicry” attack
triggering CVE-2013-1964.

Fig. 8. Injecting IDS evasive attacks triggering CVE-2013-1964: (a) “mimicry” attack;
(b) “smoke screen” attack [the hypercalls triggering CVE-2013-1964 are marked in bold]

Evaluation of Intrusion Detection Systems in Virtualized Environments 487

Attack injection times: We craft “smoke screen” attacks by specifying attack
injection times (see Sect. 3.1). We will inject a “smoke screen” attack by delay-
ing for 0.5 s the invocation of the hypercalls comprising the attack. Since the
average rate of occurrence of the detection-relevant property for the database
server VM is 27294.9 occ./sec. (see Table 1, column ‘Run 1’), we obscure attack
patterns by making Xenini analyze approximately 13647 benign occurences of
the detection-relevant property before encountering a hypercall that is part of an
attack. For example, in Fig. 8b, we depict the “smoke screen” attack triggering
CVE-2013-1964.

After the hypercall activities of the database server VM have reached a steady
state, we begin three separate attack injection campaigns: unmodified attacks,
“mimicry” attacks, and “smoke screen” attacks. Each campaign injects 6 attacks,
with 10 s of separation between each attack.

5.2 Case Study: Testing

We now test Xenini with respect to the scenarios presented in Sect. 5.1.

Scenario #1

IDS Training. We deployed and configured Xenini and hInjector. We initalized
the IDS monitoring landscape and we trained Xenini until time ts = 5391 s. This
is the time period needed for the hypercall activities of both the web and mail
server VM to reach steady-state (see Table 1, column ‘Run 1’).

Attack Injection and Calculation of Metric Values. We injected the con-
sidered attacks over a period of tmax − ts = 109 s and then calculated metric
values, that is, true and false positive rate. These are calculated as ratios between
the number of true, or of false, alerts issued by Xenini, and the total number
of injected attacks, or of benign variations of the detection-relevant property
occuring during attack injection, respectively. We estimate the latter based on
the statistic ‘average rate of occurrence of the detection-relevant property’. We
repeated the testing phase only 3 times in order to calculate statistically accurate
metric values with a relative precision of 2 % and 95 % confidence level.8

Performing repeated measurements is important for calculating a statistically
accurate value of the false positive rate. This is because the number of issued
false alerts and the total number of benign variations of the detection-relevant
property occuring during attack injection vary between measurements due to
the non-determinism of benign hypercall activities. We observed that the true
positive rate normally does not vary, since the number and properties of injected
attacks (i.e., the attacks’ contents and attack injection times) are fixed.

8 In addition, we repeated the testing phase over 30 times observing that the obtained
metric values negligibly differ from those we present here. This is primarily because
of the high repeatability of hypercall activities and it indicates that only a small
number of repetitions is needed to calculate statistically accurate metric values.

488 A. Milenkoski et al.

In Table 2, we present Xenini’s attack detection score. It can be concluded
that Xenini exhibited a true positive rate of 0.5 when configured such that
th = 0.3. We now consider multiple IDS operating points (i.e., IDS configura-
tions which yield given values of the false and true positive rate). In Fig. 9, we
depict a ROC (Receiver Operating Characteristic) curve, which plots operating
points for different values of th. We executed separate testing phases to quantify
the false and true positive rate exhibited by Xenini for each value of th. We quan-
tified these rates by comparing the output of Xenini with the “ground truth”
information recorded by hInjector. We considered the total number of true and
false alerts issued by Xenini (i.e., 6 and 6), injected attacks, and occurences of
the detection-relevant property during attack injection, originating from both
the web and mail server VM. The results depicted in Fig. 9 match the expected
behavior of Xenini (i.e., the lesser the value of th, the more sensitive the IDS,
which results in higher true and false positive rates; see [3]). This shows the
practical usefulness of our approach.

Table 2. Detection score of Xenini [�: detected/x: not detected, th = 0.3]

Targeted vulnerability (CVE ID) Detected

CVE-2012-3495 �
CVE-2012-5525 x

CVE-2012-5513 �
CVE-2012-5510 �
CVE-2013-4494 x

CVE-2013-1964 x

0 1 2 3 4
·10−6

0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
ti

ve
ra

te

[0.3 × 10−2]

[0.23 × 10−2]

[0.078 × 10−2]

[0.079 × 10−2]

Fig. 9. Attack detection accuracy of Xenini [th= 0.1: (2.42 × 10−6; 0.83) • th= 0.2:
(1.61× 10−6; 0.83) • th= 0.3/th= 0.4: (0.4× 10−6, 0.5) • th=0.5: (0, 0.33) • � marks
the optimal operating point]

Evaluation of Intrusion Detection Systems in Virtualized Environments 489

We now calculate values of the ‘expected cost’ metric (Cexp) developed
by Gaffney and Ulvila [17], which expresses the impact of the base rate (see
Sect. 3.1). This metric combines ROC curve analysis with cost estimation by
associating an estimated cost with each IDS operating point. The measure of
cost is relevant in scenarios where a response that may be costly is taken when
an IDS issues an alert. Gaffney and Ulvila introduce a cost ratio C = Cβ/Cα,
where Cα is the cost of an alert when an intrusion has not occured, and Cβ is
the cost of not detecting an intrusion when it has occurred. To calculate values
of Cexp, we set C to 10 (i.e., the cost of not responding to an attack is 10 times
higher than the cost of responding to a false alert; see [17]).

We estimate the base rate as follows. We have injected 6 attacks consisting of
115 hypercalls over 109 s. Further, the average rate of occurence of the detection
relevant property originating from the web and mail server VM during attack
injection is estimated at 19644.5+3141.5 = 22786 occ./sec. (see Table 1, column
‘Run 1’). Therefore, the base rate is 115

(22786×109+3)=0.5 × 10−4.
We calculated the actual base rate by calculating the actual average rate of

occurence of the detection relevant property during attack injection. We observed
that the difference between the actual and estimated base rate is negligible and
has no impact on values of Cexp. This is primarily because the difference between
the actual and estimated value of the average rate of occurence of the detection
relevant property is small. Further, the ratio between the number of injected
attacks and the number of occurences of the detection-relevant property during
attack injection is very low due to the typical high value of the latter. This
indicates the practical relevance of the planning phase.

In Fig. 9, we depict in square brackets values of Cexp associated with each
IDS operating point. The ‘expected cost’ metric enables the identification of an
optimal IDS operating point. An IDS operating point is considered optimal if it
has the lowest Cexp associated with it compared to the other operating points.
We mark in Fig. 9 the optimal operating point of Xenini.

Scenario #2

IDS Training. We deployed and configured Xenini and hInjector. We initalized
the IDS monitoring landscape and, since we will inject attacks from the database
server VM, we trained Xenini over a period of 5285 s.

Attack Injection and Calculation of Metric Values. We injected the
unmodified, the “mimicry”, and the “smoke screen” attacks as part of three
separate testing phases. In Table 3, we present the anomaly scores reported by
Xenini for the injected attacks. We thus quantify the success of the “mimicry”
and “smoke screen” attacks at evading Xenini. Their evasive capabilities are
especially evident in the case of the attacks triggering CVE-2012-3495 and CVE-
2012-5510. That is, these attacks, when unmodified, can be very easily detected
by Xenini (see the high anomaly scores of 1.0 in Table 3). However, when trans-
formed into “mimicry” attacks, the detection of these attacks is significantly
challenging (see the low anomaly scores of 0.17 and 0.14 in Table 3).

490 A. Milenkoski et al.

Table 3. Anomaly scores for the injected non-evasive and evasive attacks

Targeted vulnerability (CVE ID) Anomaly scores

Unmodified “Mimicry” “Smoke screen”

CVE-2012-3495 1.0 0.17 0.25

CVE-2012-5513 0.32 0.107 0.28

CVE-2012-5510 1.0 0.14 0.31

CVE-2013-4494 0.21 0.14 0.14

CVE-2013-1964 0.25 0.14 0.14

The results presented in Table 3 match the expected behavior of Xenini when
subjected to evasive attacks (i.e., Xenini reports lower anomaly scores for the
evasive attacks than for the unmodified attacks; see [14]). This shows the prac-
tical usefulness of our approach and the relevance of the observations made in
the planning phase, which we used to craft evasive attacks.

5.3 Further Application Scenarios

Besides evaluating typical anomaly-based IDSes, such as Xenini, our approach,
or hInjector in particular, can be used for:

– evaluating hypercall access control (AC) systems — an example of
such a system is XSM-FLASK. By evaluating AC systems, we mean verifying
AC policies for correctness. This is performed by first executing hypercalls
whose execution in hypervisor context should be prohibited and then verify-
ing whether their execution has indeed been prohibited. hInjector can greatly
simplify this process since it allows for executing arbitrary hypercall activi-
ties and recording relevant information (e.g., information on whether invoked
hypercalls have been executed in hypervisor context, see Sect. 4.1);

– evaluating whitelisting IDSes — by whitelisting IDS, we mean IDS that
fires an alarm when it observes an activity that has not been whitelisted, either
by an user or by the IDS itself while being trained. For example, OSSEC can
be configured to whitelist the hypercall activities it observes during training —
our approach involves both rigorous IDS training and execution of arbitrary
hypercall activities (see Sect. 3); RandHyp [9] and MAC/HAT [6] detect and
block the execution of hypercall invocations that originate from untrusted
locations (e.g., a loadable kernel module) — hInjector supports the injection
of hypercall attacks both from the kernel and a kernel module (see Sect. 4.1).

6 Conclusion and Future Work

We presented an approach for the live evaluation of IDSes in virtualized environ-
ments using attack injection. We presented hInjector, a tool for generating IDS

Evaluation of Intrusion Detection Systems in Virtualized Environments 491

evaluation workloads that contain virtualization-specific attacks (i.e., attacks
leveraging or targeting the hypervisor via its hypercall interface — hypercall
attacks). Such workloads are currently not available, which significantly hinders
IDS evaluation efforts. We designed hInjector with respect to three main cri-
teria: injection of realistic attacks, injection during regular system operation,
and non-disruptive attack injection. These criteria are crucial for the represen-
tative, rigorous, and practically feasible evaluation of IDSes. We demonstrated
the application of our approach and showed its practical usefulness by evaluating
a representative IDS designed to detect hypercall attacks. We used hInjector to
inject attacks that trigger real vulnerabilities as well as IDS evasive attacks.

Our work can be continued in several directions:

– We plan to explore the integration of VM replay mechanisms (e.g.,
XenTT [15]) in our approach. This may help to further alleviate concerns
related to the repeatability of VMs’ hypercall activities;

– We intend to establish a continuous effort on analyzing publicly disclosed
hypercall vulnerabilities in order to regularly update hInjector’s attack library
(see Sect. 4.2). This is an important contribution since the lack of up-to-date
workloads is a major issue in the field of IDS evaluation;

– We plan to extensively evaluate a variety of security mechanisms (see Sect. 5.3)
and work on applying our approach for injecting attacks involving operations
that are functionally similar to hypercalls, such as KVM ioctl calls.

We stress that robust IDS evaluation techniques are essential not only to
evaluate specific IDSes, but also as a driver of innovation in the field of intrusion
detection by enabling the identification of issues and the improvement of existing
intrusion detection techniques and systems.

Acknowledgments. This research has been supported by the Research Group of the
Standard Performance Evaluation Corporation (SPEC; http://www.spec.org, http://
research.spec.org).

References

1. Rutkowska, J., Wojtczuk, R.: Xen Owning Trilogy: Part Two. http://
invisiblethingslab.com/resources/bh08/part2.pdf

2. Wilhelm, F., Luft, M., Rey, E.: Compromise-as-a-Service. https://www.ernw.de/
download/ERNW HITBAMS14 HyperV fwilhelm mluft erey.pdf

3. Maiero, C., Miculan, M.: Unobservable intrusion detection based on call traces in
paravirtualized systems. In: Proceedings of the International Conference on Secu-
rity and Cryptography (2011)

4. Wu, J.Z., Ding, L., Wu, Y., Min-Allah, N., Khan, S.U., Wang, Y.: C2Detector: a
covert channel detection framework in cloud computing. Secur. Commun. Netw.
7(3), 544–557 (2014)

5. Milenkoski, A., Payne, B.D., Antunes, N., Vieira, M., Kounev, S.: Experience
report: an analysis of hypercall handler vulnerabilities. In: Proceedings of the 25th
IEEE International Symposium on Software Reliability Engineering. IEEE (2014)

http://www.spec.org
http://research.spec.org
http://research.spec.org
http://invisiblethingslab.com/resources/bh08/part2.pdf
http://invisiblethingslab.com/resources/bh08/part2.pdf
https://www.ernw.de/download/ERNW_HITBAMS14_HyperV_fwilhelm_mluft_erey.pdf
https://www.ernw.de/download/ERNW_HITBAMS14_HyperV_fwilhelm_mluft_erey.pdf

492 A. Milenkoski et al.

6. Le, C.H.: Protecting Xen Hypercalls. Master’s thesis, UBC (2009)
7. Bharadwaja, S., Sun, W., Niamat, M., Shen, F.: A Xen hypervisor based collabora-

tive intrusion detection system. In: Proceedings of the 8th International Conference
on Information Technology, pp. 695–700. IEEE (2011)

8. Srivastava, A., Singh, K., Giffin, J.: Secure observation of kernel behavior (2008).
http://hdl.handle.net/1853/25464

9. Wang, F., Chen, P., Mao, B., Xie, L.: RandHyp: preventing attacks via Xen hyper-
call interface. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP
AICT, vol. 376, pp. 138–149. Springer, Heidelberg (2012)

10. Pham, C., Chen, D., Kalbarczyk, Z., Iyer, R.: CloudVal: a framework for validation
of virtualization environment in cloud infrastructure. In: Proceedings of DSN 2011,
pp. 189–196 (2011)

11. Le, M., Gallagher, A., Tamir, Y.: Challenges and opportunities with fault injection
in virtualized systems. In: VPACT (2008)

12. Fonseca, J., Vieira, M., Madeira, H.: Evaluation of web security mechanisms using
vulnerability and attack injection. IEEE Trans. Dependable Secure Comput. 11(5),
440–453 (2014)

13. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion
detection. ACM Trans. Inf. Syst. Secur. 3(3), 186–205 (2000)

14. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, pp. 255–264 (2002)

15. Burtsev, A.: Deterministic systems analysis. Ph.D. thesis, University of Utah
(2013)

16. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for Unix
processes. In: IEEE Symposium on Security and Privacy, pp. 120–128, May 1996

17. Gaffney, J.E., Ulvila, J.W.: Evaluation of intrusion detectors: a decision theory
approach. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pp. 50–61 (2001)

http://hdl.handle.net/1853/25464

Security Analysis
of PHP Bytecode Protection Mechanisms

Dario Weißer, Johannes Dahse(B), and Thorsten Holz

Horst Görtz Institute for IT-Security (HGI), Ruhr-University Bochum,
Bochum, Germany

{dario.weisser,johannes.dahse,thorsten.holz}@rub.de

Abstract. PHP is the most popular scripting language for web appli-
cations. Because no native solution to compile or protect PHP scripts
exists, PHP applications are usually shipped as plain source code which
is easily understood or copied by an adversary. In order to prevent such
attacks, commercial products such as ionCube, Zend Guard, and Source
Guardian promise a source code protection.

In this paper, we analyze the inner working and security of these
tools and propose a method to recover the source code by leveraging sta-
tic and dynamic analysis techniques. We introduce a generic approach
for decompilation of obfuscated bytecode and show that it is possible to
automatically recover the original source code of protected software. As a
result, we discovered previously unknown vulnerabilities and backdoors
in 1 million lines of recovered source code of 10 protected applications.

Keywords: Security · Reverse engineering · Obfuscation · PHP ·
Bytecode

1 Introduction

Protecting intellectual property (IP) in software systems, such as algorithms,
cryptographic keys, serial numbers, or copyright banners, is a challenging prob-
lem: an adversary can study the program with static or dynamic analysis meth-
ods [7,13,19] and attempt to deduce the sensitive information. To impede such
an analysis, many different types of obfuscation techniques for binary executa-
bles were developed (e.g., [3,11,15,21]). Although the semantics of the pro-
gram can be reconstructed with different (automated) reverse engineering meth-
ods [4,16,20,29], obfuscation provides at least some protection of the source code
and hampers an adversary to a certain extent.

IP protection is more challenging in the web context: PHP, the most popu-
lar server-side scripting language on the web, is an interpreted language. This
implies that an interpreter transforms the PHP source code on demand into
bytecode that is then executed. As such, an adversary who can obtain access
to the source code (e.g., via software bugs or a legitimate trial version) can
directly study or modify the code and reveal sensitive information. To rem-
edy such attacks, different tools are available that offer code protection: com-
mercial products like ionCube, Zend Guard, and Source Guardian promise to
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 493–514, 2015.
DOI: 10.1007/978-3-319-26362-5 23

494 D. Weißer et al.

“prevent unlicensed use and reverse engineering and to safeguard intellectual
property” [30].

All these tools follow the same methodology: They pre-compile PHP source
code into obfuscated bytecode that can then be shipped without the original
source code. On the server side, these tools require a PHP extension that allows
to run the bytecode. Popular PHP software such as NagiosFusion, WHMCS,
and xt:Commerce ship certain files protected with such tools to safeguard their
IP. As a result, an adversary can at most access the pre-compiled bytecode and
cannot directly access the source code. Unfortunately, it is not documented how
these products work internally and what security guarantees they provide.

In this paper, we address this gap. We study the three most popular commer-
cial PHP code protection products in detail and analyze their security properties.
We find that all share the same limitation that enables an adversary to recon-
struct the semantics of the original code. More specifically, we introduce methods
to recover the code by statically and dynamically analyzing the interpretation of
the bytecode. Since the interpreter needs to transform the encrypted/obfuscated
bytecode back to machine code, we can recover the semantic information during
this phase. We found that all tools can be circumvented by an adversary and we
are able to successfully reconstruct the PHP source code. In this paper, we first
present our findings from manually reverse engineering the different PHP code
protection tools. Based on these findings, we introduce our method to break
the encryption and obfuscation layers using dynamic analysis techniques, and
show how to build a generic decompiler. Note that our techniques can be used
against all PHP bytecode protectors that rely on bytecode interpretation and
our method is not limited to the three analyzed products.

To evaluate our decompiler, we studied several popular protected software
programs. We uncovered critical vulnerabilities and backdoors in some of these
protected programs that would have remained invisible without decompilation
since the identified flaws were hidden in obfuscated/encrypted bytecode. Fur-
thermore, we detected critical security vulnerabilities in the products themselves
that weaken the encrypted application’s server security. In conclusion, our results
indicate that PHP source code protection tools are not as strong as claimed by
the vendors and such tools might even lead to an increased attack surface.

In summary, we make the following contributions in this paper:

– We analyze and document in detail the inner working of the three most pop-
ular PHP bytecode protectors.

– We propose a method to generically circumvent such protectors based on
the insight that we can recover the semantics of the original code during
the interpretation phase. We present an automated approach to reconstruct
protected PHP source code and implemented a prototype of a decompiler.

– We evaluate our prototype with 10 protected, real-world applications and show
that it is possible to reconstruct the original source code from the protected
bytecode.

Last but not least, we would like to raise awareness about the usage of PHP
bytecode protectors and their effectiveness on protecting sensitive data. We hope

Security Analysis of PHP Bytecode Protection Mechanisms 495

that our research can guide future work on protecting interpreted languages and
that it offers new insights into the limitations of obfuscation techniques.

2 Background

In order to analyze PHP source code protectors, we first take a look at several
PHP internals. We provide a brief introduction to PHP’s interpreter, virtual
machine, and instructions. Then, we outline the general concept of PHP source
code protectors and introduce the three most popular tools on the market.

2.1 PHP Interpreter

PHP is a platform independent scripting language that is parsed by the PHP
interpreter. The PHP interpreter is written in C and can be compiled cross-
platform. Unlike low-level languages such as C, no manual compilation into an
executable file is performed for PHP code. Instead, an application’s code is
compiled to PHP bytecode on every execution by the Zend engine. The Zend
Engine [25] is a core part of PHP and is responsible for the code interpretation.

During the compilation process, a PHP file’s code is split into tokens by a
tokenizer. The process is initiated by PHP’s core function zend compile file().
After tokenizing the code, the compiler uses the tokens to compile them into
bytecode. Similarly, the core function zend compile string() compiles a string
and is used, for example, to run code within eval(). As we will see in Sect. 4,
PHP core functions play an important role for the dynamic analysis of bytecode
protectors. An overview of the PHP interpreter’s structure is given in Fig. 1.

After the engine parsed and compiled the PHP code into bytecode, its instruc-
tions (opcodes) are executed by PHP’s virtual machine (VM) that comes with
the Zend Engine. It has a virtual CPU and its own set of instructions. These
instructions are more high level than regular machine code and are not executed
by the CPU directly. Instead, the virtual machine provides a handler for each
instruction that parses the VM command and runs native CPU code.

The execution process is initiated by passing the opcode array to the function
zend execute(). It iterates over the opcodes and executes one after another.

Fig. 1. The PHP interpreter with its core, extensions, and the Zend Engine.

496 D. Weißer et al.

Calls to user-defined functions are handled recursively and return to the call
site’s opcode. The function terminates when a return opcode in the main opcode
array is found. In the next section, we look at opcodes in detail.

2.2 PHP Bytecode

The register-based bytecode of PHP consists of opcodes, constants, variables,
and meta information. PHP has around 150 different opcodes that cover all
existing language constructs [26]. Basically, each opcode has an opcode number
that is used to find the corresponding opcode handler in a lookup table, two
parameter operands, and a result operand to store return values. The parameter
operands of an opcode store the values that are processed in the operation. These
operands can have five different types and there is a variety of use cases. For
example, an operand can be a constant or a variable. Temporary variables are
used for auxiliary calculations or results that are not assigned to a variable.

Since there are different operand types, there are multiple instances of opcode
handlers as there are 25 possible operand combinations for each instruction. For
example, the handler function for adding two variables is different to the one for
adding two constants. The overall number of handler functions is less than 150∗25
because some combinations are redundant or invalid. The index to retrieve the
handler address from the handler table is calculated using the following formula:

index = opcode number ∗ 25 + op1 type ∗ 5 + op2 type (1)

Every operand combination for each opcode is stored within this table and links
to the appropriate handler that performs the operation. Invalid combinations
terminate the PHP process with a corresponding error message.

Next to the opcodes, the bytecode contains structures. These hold constant
values, such as numbers or strings, and variable names which are referenced
in operands with a key. Furthermore, meta information, such as line numbers
and doc comments, is available as well as a reserved variable that allows exten-
sions to store additional information. The bytecode of user-defined functions and
methods is stored similarly in opcode arrays. Here, the name and argument infor-
mation is stored additionally. A global function table links to the corresponding
opcode array by function name. Classes have their own method table that links
to the methods. When a method or function call is initiated, PHP uses these
tables to find the appropriate opcode array and executes it.

In the following, we take a look at a code sample and its bytecode after compi-
lation. The following three lines of PHP code perform a mathematical operation,
concatenate the result with a static string, and print the result RAID2015.

$year = 2000 + 15;
echo "RAID" . $year;

The disassembly of the compiled code is shown in Table 1. We have already
mapped the opcode numbers to the corresponding handler names as well as vari-
able names to operands. The compilation process converted the script into four

Security Analysis of PHP Bytecode Protection Mechanisms 497

Table 1. Exemplary bytecode.

Opcode Operand 1 Operand 2 Result

1 ADD 2000 15 TMP:1

2 ASSIGN $year TMP:1

3 CONCAT ’RAID’ $year TMP:2

4 ECHO TMP:2

operations. First, the ADD opcode handler adds the two constants 2000 and 15
and stores the result in the temporary variable TMP:1. Second, the ASSIGN opcode
handler assigns the temporary variable TMP:1 to the variable $year. Third, the
CONCAT opcode handler concatenates the string ’RAID’ with the variable $year
and stores the result in the temporary variable TMP:2. Fourth, the ECHO opcode
handler prints the value of the temporary variable TMP:2.

2.3 PHP Bytecode Encoder

The general idea to create a closed-source PHP application is to compile a PHP
script once and to dump all opcode arrays. This data can then be directly
deployed to PHP’s executor without another compilation of the source code.
Because PHP has no native solution for this, a custom PHP extension can be
implemented that dumps the bytecode into a file before it is executed (encoder).
A second extension (loader) then parses the dumpfile and deploys the bytecode
to the PHP engine. The process is depicted in Fig. 1 with a dashed arrow. As a
drawback, PHP version specific extensions have to be provided if the bytecode
format changes with different PHP releases.

However, as we have seen in Sect. 2.2, PHP bytecode is still readable, thus,
additional protection mechanisms are reasonable. For example, it is possible to
add several encryption layers around the bytecode. Furthermore, the execution
of the encrypted bytecode can be limited to a specific user license or hardware
environment by the loader extension. While such mechanisms can increase the
security (or obscurity), the performance of an application might suffer. In the
following, we introduce the three most popular commercial PHP bytecode pro-
tection tools. For all three, the loader extension is available for free, while the
encoder extension is commercial. All three products promise bytecode protection
by offering encryption, environment restriction, prevention of file tampering, as
well as symbol name obfuscation (except for SourceGuardian).

ionCube is probably the most popular and most used software that obfus-
cates PHP scripts since 2003. The vendor describes its product as “the ideal
and only serious no-compromise solution for protecting PHP” [9]. A single-user
license for the latest version 8.3 costs $ 199.

Zend Guard has been developed by Zend Technologies in order to pro-
tect scripts from software pirates. The currently available version 7.0 costs $ 600
annually and is the most expensive solution. The vendor’s online shop claims

498 D. Weißer et al.

“to prevent unlicensed use and reverse engineering and to safeguard your intel-
lectual property through encryption and obfuscation” [30]. However, during our
analysis, no encryption process was identified.

SourceGuardian exists since 2002 [14] and was merged with phpShield in
2006. Both products are similar with the difference that SourceGuardian includes
environment restriction features. Encoded files can be compatible with different
versions of PHP at once. The product is advertised as “the most advanced PHP
Encoder on the market” [22]. The latest version 10.1.3 is available for $ 159.

3 Static Analysis of Loader Extensions

In order to reveal the inner working of the introduced tools, we reverse engi-
neered the corresponding loader extensions. In approximately four weeks, we
analyzed the encoders for PHP version 5.4 which was the only common sup-
ported PHP version for the encoders at the time of our analysis. As a result, we
were able to identify protection mechanisms, algorithms, and security vulnera-
bilities. Although new versions of the encoders were released in the meantime,
no significant changes in the inner working were introduced to the best of our
knowledge. In this section, we first provide a brief overview of the encoder sim-
ilarities and then go into product-specific details. Due to space limitation and
ethical considerations (see Sect. 8), we focus on our key findings.

3.1 Overview

Although all analyzed encoders use different methods for data encoding and
encryption, the overall structure of a protected file and its binary data is simi-
lar. We depicted the general workflow in Fig. 2. First, each protected file identifies
itself as encoded (1). Then, native PHP code provides a fallback routine in case
no loader extension was found (2b). It informs the user about the missing exten-
sion and terminates the execution. If the loader is available, the binary data is
parsed (2a) that hides the PHP bytecode in a proprietary binary format. A first
unencrypted header is extracted that specifies the PHP and encoder version.
The following second header is encoded or encrypted and stores more detailed

Fig. 2. Workflow of a loader extension: it parses the binary data of a protected file and
extracts the PHP bytecode that is then executed.

Security Analysis of PHP Bytecode Protection Mechanisms 499

Table 2. Overview of the loader extensions’ internals.

File format ionCube Zend Guard SourceGuardian

<?php <?php <?php

identifier @Zend; @"SourceGuardian";

fallback length //004ff (hex) 4147; (octal)

fallback code try to load extension try to load extension

print message print message print message

data ?> ?> sg load(‘binary data’)

binary data binary data ?>

fallback check Adler32 n/a 32 bit BSD

data encoding custom Base64/raw n/a Base64

header 1 ionCube Zend Guard SourceGuardian

header info version, PRNG seed version version, protection flags

header 2 ionCube Zend Guard SourceGuardian

encryption XOR with PRNG n/a Blowfish CBC mode

encoding custom GZIP Lempel Ziv (lzo1x)

checksum MD4, custom Adler32 n/a 32 bit BSD

header info license info license info license info

restriction rules restriction rules restriction rules

fallback checksum license checksum fallback checksum

bytecode ionCube Zend Guard SourceGuardian

encryption XOR with PRNG n/a Blowfish CBC mode

encoding GZIP custom GZIP Lempel Ziv (lzo1x)

checksum custom Adler32 n/a 32 bit BSD

obfuscation forged opcode nr forged opcode nr n/a

license file XOR, Blowfish DSA signature Blowfish encryption

information regarding license information, expiry time and environment restric-
tions. Some of these information can be outsourced to an external license file. In
this case, the second header also stores information regarding this file’s protec-
tion. Finally, the PHP bytecode follows in a proprietary format (3). If the license
is not expired and the runtime environment matches the restriction rules, the
PHP bytecode is executed by passing it to the PHP VM (4). In the following, we
introduce product specific details. We reverse engineered each loader extension’s
process of extracting the bytecode from the binary data step by step. Surpris-
ingly, very little obfuscation is used within the extensions itself. This would at
least hinder the reverse engineering process and require more effort, but not
prevent it. An overview of the identified core features is given in Table 2.

500 D. Weißer et al.

3.2 IonCube

The ionCube loader is compiled with multiple optimizations and without debug
symbols. All internal function names are obfuscated. Internal strings, such as
error messages, are XOR’ed with a static 16 bytes key, while a prefixed character
in the string denotes the offset for the XOR operation to start. Other protection
mechanisms against reverse engineering are not present.

The loader hooks zend compile file() and tests for the string <?php // at
the beginning of an executed PHP file. The then following hexadecimal number
denotes the size of the native PHP fallback code. If the ionCube extension is
loaded, the fallback code is skipped and the loader begins to parse the binary
data at the end of the file.

IonCube ships the binary data either raw or encoded with a custom base64
encoding (default). The base64 character set is slightly modified so that numbers
occur first in the set. Once the data is decoded, a binary stream is used to parse
it. The first four byte specify the ionCube version used for encoding. Because
ionCube’s format changed over time, different parsing routines are used. For
example, 0x4FF571B7 is the identifier for version 8.3. The version identifier is
followed by three integers: the file size, header size, and a header key. This key
is used to decrypt the header size and file size, using the following calculation:

header_size = header_key ^ ((header_size ^ 0x184FF593) - 0xC21672E)

file_size = (file_size ^ header_key ^ 0x23958cde) - 12321

While the file size is used for debugging, the header size indicates the
length of the second header. The second header is XOR’ed with a pseudo ran-
dom byte stream. For this purpose, a SuperKISS -like PRNG is seeded with the
header key from the first header. The last 16 bytes of the encrypted second
header represent the MD4 checksum of the decrypted second header’s data. An
Adler32 checksum follows that is used to verify the integrity of the first and
second header, as well as its MD4 checksum. Within the modified Adler32 algo-
rithm, the sum of all bytes is initialized to 17 instead of 1. The MD4 checksum
is unscrambled first using the following pseudo algorithm.

md4_sum = substr(header, -16);
for(i=0; i<16; i++) {

md4_sum[i] = ((md4_sum[i] >> 5) | (md4_sum[i] << 3));
}

Here, every byte of the checksum is rotated by 5 bits. Then, the PRNG is
initialized and pseudo-random bytes and parts of the MD4 checksum are used
as decryption key. The following pseudo algorithm is used to decrypt the second
header byte-wise.

prng = new ion_prng(header_key);
for(i=0; i < header_size - 16; i++) {

raw_header[i] ^= md4_sum[i & 15] ^ (prng->next() & 0xFF);
}

Security Analysis of PHP Bytecode Protection Mechanisms 501

At the end, the integrity of the header’s data is verified by calculating and
comparing its MD4 checksum. The second header contains the configuration val-
ues of the ionCube protection. For example, a version number allows the loader
to determine if the file’s PHP version matches the system’s PHP version and to
find the corresponding decoding routine. A checksum of the native fallback code
allows to validate its integrity. Furthermore, licensing information and environ-
ment restriction rules are found. For optional name obfuscation, a salt is found
that is used to hash names of variables, functions, and classes with MD4. If the
restriction rules are outsourced to a license file, the file path and decryption key
is provided.

After the second header and its checksum, two integers and the encrypted
PHP data follow. The first integer seeds a PRNG in order to generate a byte
sequence that is the XOR key for the encrypted PHP data. After successful
decryption, the data is decompressed using GZIP. At this point, the opcode
numbers within the bytecode are still encrypted. A new PRNG is seeded with
the second integer. In combination with a static value from the second header,
a new byte sequence is generated in order to decrypt the opcode numbers and
to perform a runtime obfuscation. We explain this process in Sect. 4.2 in detail.

In contrast to Zend Guard and SourceGuardian, ionCube does not send the
bytecode to PHP’s native execution function in order to run the code. Instead,
slightly modified parts of the native PHP interpreter are compiled into the loader
extension and are used as a proprietary VM with further obfuscation.

3.3 Zend Guard

Zend Guard’s loader extension is not protected against reverse engineering,
except for the obfuscation of its verbose error messages. These are XOR’ed using
the four bytes \xF8\x43\x69\x2E. Moreover, Zend Guard leaks its compile infor-
mation which helps to exclude library code from reverse engineering, while the
latest loader version even includes debug symbols.

In order to detected encoded files, Zend Guard replaces PHP VM’s function
zend compile file(). If the string <?php @Zend; is not found at the beginning
of the file, it will be passed back to the original compile function. Otherwise, the
file is processed by Zend Guard. It reads the octal number in the second line
and skips the amount of bytes of the fallback routine in order to reach the raw
binary data at the end of the file.

To retrieve the data, a parser iterates over the byte stream. The data blocks
are stored using a simple binary format which basically consists of four different
data types: bytes, bools, numbers, and strings. When a single byte or bool is
requested from the stream, the parser reads one character. Numeric values consist
of a single byte which defines the length of the number followed by the actual
integer (e. g., [\x05][2015\x00]). Strings extend the integer type with a byte
sequence and its length (e. g., [\x02][5\x00][RAID\x00]). Both, numbers and
strings, are terminated with a null byte.

The binary data consists of two parts: a minimalistic header followed by com-
pressed data. There are four values stored within the first header. The first value

502 D. Weißer et al.

indicates the version of Zend Guard and the second value identifies the PHP ver-
sion the script was compiled for. Then, two numeric values specify the size of the
compressed and the uncompressed data. The then following data is compressed
using GZIP and a custom compression dictionary. This dictionary lists words
that occur frequently in PHP code in order to improve the compression rate. It
is required to decompress the data and stored within the Zend Guard loader.
The decompressed data contains a second header and the PHP bytecode.

In the second header, license information, such as the license owner’s name,
and configuration flags, such as if the license is attached as a file, is stored.
It also provides an expiration timestamp. If the current time is ahead of the
timestamp, or if the license is invalid, Zend Guard denies executing the file. The
license is validated by calculating an Adler32 checksum of the owner’s name and
comparing it to a checksum in the header. For this purpose, a slightly modified
Adler32 algorithm is used that lacks the modulo operation.

Once the second header is completely decoded and verified, the compiled
PHP data is parsed. For this purpose, Zend Guard uses the previously intro-
duced stream format to parse the data. Opcodes, literals, and variables are the
main part of this structure but also meta information, such as line numbers or
comments, is available if it was not explicitly disabled during encoding. More-
over, Zend Guard scrambles the opcode numbers. For recovery, a substitution
table is created using constant values from two arrays and the license owner
checksum from the second header. With the help of the substitution table and
the current opcode index, the original opcode number can be calculated.

Furthermore, Zend Guard is able to obfuscate function and variable names.
Here, the lowercased name is XOR’ed with the MD5 hash of the name, such
that the original name is lost. However, the name can be brute-forced with a
dictionary. Also, the key space is reduced because the original name is lowercased
first and the obfuscated name has the same length as the original one.

3.4 SourceGuardian

The process of reverse engineering SourceGuardian is comforted by available
debug symbols within its loader extension. Almost all function and symbol names
are intact and ease the understanding of internal processes. A PHP file’s pro-
tection is indicated in the first line with the identifier @"SourceGuardian" (or
@"phpSHIELD" for older versions). Instead of hooking the zend compile file()
function, SourceGuardian adds a new native function sg load() to the PHP
core which parses a proprietary binary format.

<?php @"SourceGuardian";
if(!function_exists(’sg_load’)){ // fallback code
} return sg_load(’12345678CHECKSUM/BASE64/BASE64/BASE64/BASE64=’);

The argument of sg load() is a concatenation of 16 hexadecimal charac-
ters and base64 encoded binary data. First, a checksum is calculated over the
characters ranging from the opening PHP tag <?php to the 8th character of

Security Analysis of PHP Bytecode Protection Mechanisms 503

the sg load() argument. This checksum is then compared to the next eight
characters of the argument in order to verify the fallback code’s integrity. The
checksum algorithm appears to be a 32bit version of the BSD checksum.

The base64 encoded binary data is decoded and reveals a binary format
with four data types. The type char is used to represent single characters, small
numbers, and boolean values. Integers are stored using four bytes in little endian
format (type int) and strings can either be zero terminated (type zstr) or have
a prefixed length (type lstr).

At the beginning, a first header is parsed that contains a version number and
protection settings, in case the file is locked to a specific IP address or hostname.
The first byte of a data block in the first header decides upon the purpose of the
upcoming bytes, until a 0xFF byte is found. For example, the value 0x2 indicates
that execution is restricted to a hostname and the value 0x4 indicates that the
length of the second header follows.

Once the offset of the encrypted second header is obtained from the first
header, it is decrypted using the block cipher Blowfish in CBC mode. For this
purpose, SourceGuardian’s loader comes with multiple static keys that belong to
three different groups. Depending on the file version, it iterates over the appro-
priate group’s keys until the decryption succeeds (checksum matches). Multiple
keys exist because of backwards compatibility and the phpShield aggregation:

NTdkNGQ1ZGQxNWY0ZjZhMjc5OGVmNjhiOGMzMjQ5YWY= // public key
MmU1NDRkMGYyNDc1Y2Y0MjU5OTlmZDExNDYwMzcwZDk= // public key
NzkxNThhZDhkOThjYTk3ZDE5NzY4OTRkYzZkYzM3MzU= // license file key
ODI0YzI2YmMyODQ2MWE4MDY3YjgzODQ2YjNjZWJiMzY= // phpShield pub key
YTJmNjc2MDQ3MWU5YzAxMjkxNTkxZGEzMzk2ZWI1ZTE= // phpShield pub key

In case the execution of the protected file is restricted to a server’s IP address
or hostname, this value is appended to the decryption key of the second header
and body. Hence, the loader will not be able to decrypt the binary block in
other environments and the execution fails. By default, an attacker can perform
decryption by using the static keys. We believe that the additional key data (IP
or hostname) does not add any further security because the origin of a stolen
source code file is most likely known to the attacker or can be brute-forced.

Each successfully decrypted block contains three integers and the actual data.
The first integer is a checksum calculated over the plain data. The second inte-
ger contains the length of the unencrypted data and the third integer is the size
of the data after decompression. The checksums are calculated with the previ-
ously mentioned 32bit BSD checksum. If the first integer matches the calculated
checksum, the decryption was successful.

At this point the data is decrypted, but still compressed with the Lempel
Ziv algorithm. SourceGuardian uses the lzo1x implementation and lzss for files
encoded with an older version of SourceGuardian. The second header and the
PHP data blocks are compressed and encrypted using this technique.

Similar to the first header, a parser iterates over the data and retrieves the
values of the second header. It contains information about the environment

504 D. Weißer et al.

restrictions, such as the license owner, license number, file creation, and file expi-
ration date. After the second header, the PHP data follows. SourceGuardian is
able to store multiple versions of it for compatibility with different PHP versions.
One data block is used for each version. Each block consists of two integers that
note the compatible PHP version and the size of the encrypted data, as well
as the actual PHP data. If a compatible data block for the currently running
PHP version is found, the block is decrypted. No further obfuscation, such as
of variable names, is performed and the deobfuscated opcode array is passed to
zend execute().

3.5 Security Vulnerabilities in Loader Extensions

Protecting a PHP application can prevent intellectual property theft and mod-
ification when shipped to a customer. At the same time, however, it prohibits
that the customer can review the code before it is deployed and run on his
server. In order to mitigate risks, PHP mechanisms such as safe mode and
disable functions can be activated that can forbid OS interaction, such as
executing system commands, when running unknown protected PHP code.

During the process of reverse engineering, we detected memory corruption
vulnerabilities in each of the loader extension. By crafting a malicious PHP file,
it is possible to corrupt the loader’s parser and to inject shellcode. While these
vulnerabilities are not remotely exploitable, they allow a protected application to
bypass PHP’s security mechanisms and to execute arbitrary system commands
with user privileges of the web server. We informed ionCube, Zend Guard, and
SourceGuardian about these issues.

Furthermore, we detected an undocumented feature in SourceGuardian which
allows to leak the license information. By sending the HTTP GET parameter
sginfo to a protected application, it responds with the encoder version,

registration date, license owner, and date of encoding.

4 Generic Deobfuscation via Dynamic Analysis

We now introduce two dynamic approaches to analyze protected PHP applica-
tions. Our goal is to retrieve information about the original code by circum-
venting deployed encryption or obfuscation layers at runtime. We tested both
approaches against ionCube, Zend Guard, and SourceGuardian and found all
tools to be vulnerable against both attacks.

4.1 Debugging

A straight-forward approach to analyze protected PHP code is to include it
into the context of own code that uses PHP’s built-in debug functions to leak
information about the current runtime environment. For example, the functions
get defined vars(), get defined functions(), get declared classes(),
and get class methods(), as well as PHP’s built-in ReflectionClass allow to

Security Analysis of PHP Bytecode Protection Mechanisms 505

retrieve a list of all variables, user-defined functions, classes, and methods. Once
obtained, variables can be dumped and functions can be called as a blackbox
with different input in order to obtain further information. All three tested tools
have an option to prevent the inclusion of compiled code within an untrusted
context to prevent this analysis, but this is disabled by default.

4.2 Hooking

A more sophisticated approach is to hook [10] internal PHP functions in order to
retrieve the complete bytecode before it is executed. As explained in Sect. 3, Zend
Guard and ionCube replaces the zend compile file() function. It returns the
decoded and decrypted bytecode of a given file. We can use these functions as a
black box in order to retrieve the deobfuscated opcode arrays without knowledge
of the loaders’ inner working. Bytecode from SourceGuardian files cannot be
obtained this way because it does not replace zend compile file().

However, every product passes the deobfuscated opcode arrays as an argu-
ment to zend execute() (see Fig. 1, dashed arrow). By hooking this function,
we can interrupt the execution and obtain the main opcode array. Opcode
arrays of methods and functions can be located with the help of PHP’s internal
compiler globals structure. This way, the raw PHP bytecode of applications
protected with SourceGuardian can be retrieved directly. For ionCube and Zend
Guard, further obfuscation has to be removed (see Sects. 3.2 and 3.3).

ionCube. To avoid opcode dumping, ionCube implements a runtime obfusca-
tion that XOR’s single opcodes before execution and XOR’s them again after-
wards. This ensures that only one opcode is deobfuscated at a time. Furthermore,
ionCube contains a copy of the native PHP engine and bytecode is processed
within the loader instead of the PHP VM. Consequently, the last step in Fig. 2
is omitted and ionCube’s internal zend execute() function needs to be hooked
for dynamic analysis.

The executed instructions are obfuscated with two techniques. First, the
opcode number, the handler address, and the operands of all opcodes are
encrypted with XOR. Second, numeric operands of assignments are obfuscated
by mathematical operations with constants. The reserved variable of the opcode
array references to an ionCube structure which contains the keys for opcode
decryption (see Sect. 3.2) and assignment deobfuscation. Each opcode is XOR’ed
with a different key which is referenced by the opcode index. Then, the opcode
is executed and obfuscated again using the same XOR operation. By retrieving
all keys from the ionCube structure, we are able to deobfuscate all opcodes.

Zend Guard. When a PHP file is parsed, the opcode number is used by
the PHP interpreter to resolve the handler’s address. As noted in Sect. 3.3,
Zend Guard removes the opcode number before passing the bytecode to
zend execute(). In order to recover the opcode number again, we can search the

506 D. Weißer et al.

present handler address in the opcode lookup table. This is achieved by calculat-
ing the index of all existent opcodes (see Formula 1 in Sect. 2.2) and comparing
it to the index of the current address.

5 Decompiler for Obfuscated PHP Bytecode

Using the insights introduced in Sect. 3 and the techniques presented in Sect. 4.2,
we implemented a decompiler. For this purpose, we set up a PHP environment
with the three loader extensions as well as a custom PHP extension. The decom-
pilation is performed in three steps. First, we hook PHP’s executor in order to
access the bytecode. Second, we remove all remaining obfuscation and dump the
bytecode to a file. Third, the dumped bytecode is decompiled into PHP syntax.
It is also possible to statically recover the PHP bytecode from the protected PHP
file without execution by using the insights presented in Sect. 3. However, the
implementation of a version-specific parser for each loader extension is required,
while the dynamic approach can be applied generically.

5.1 Hooking

Our PHP extension hooks the zend execute() function by replacing it with our
own implementation. Then, we execute each file of a protected PHP application
in our PHP environment. As explained in Sect. 3, the corresponding loader exten-
sion now hooks zend compile file() and extracts the PHP bytecode from the
proprietary binary format. When the bytecode is passed to zend execute(),
our extension terminates the execution. Because SourceGuardian does not hook
zend compile file() and implements the native PHP function sg load(), we
here intercept only the second invocation of zend execute(). This way, we allow
the initial execution of sg load() that performs the initial decryption and deob-
fuscation of the bytecode, before it is passed to zend execute() again.

5.2 Dumping

For ionCube and Zend Guard, we perform further bytecode deobfuscation as
described in Sect. 4.2. Then, the bytecode is free of any encoder-specific modifi-
cations. Each opcode array contains several data structures which are referred
by the operands (see also Sect. 2.2). Operands of type VAR and CV refer to vari-
ables with a name which is stored within the vars structure. Constants are used
by operands of type CONST and can be found within the literals structure.
Opcodes themselves are stored in the opcodes structure. If the opcode array
represents a function, the parameters are available in the structure arg info.
We begin dumping the main opcode array and continue with user defined func-
tions. Classes are stored in an own structure that basically contain information
about member variables and the method table. After dumping the bytecode into
a file, it can be deployed to our decompiler for further processing.

Security Analysis of PHP Bytecode Protection Mechanisms 507

5.3 Decompilation

Next, each instruction is inspected and transformed into the corresponding
source code representation. The opcodes can be grouped into one of three dif-
ferent types of instructions:

1. Expressions are instructions which produce temporary values that are used
as operands by other instructions, for example, a mathematical operation.

2. Statements are instructions that cannot be used as an expression and do
not have a return value, for example an echo or break statement.

3. Jumps are special cases of statements. They defer the execution by a jump
and represent a loop or conditional code.

In general, the best way of decompiling bytecode back into source code is to cre-
ate a graph by connecting separated basic blocks such that each part of the code
can be converted separately [1,2,12]. However, this approach is out of scope for
this paper. For our proof of concept, we follow a simpler approach: our decompiler
is based on a pattern recognition approach that finds jump and loop structures.
Empirically we found that this approach is already sufficient to recover most
PHP source code.

Our approach consists of two steps. First, we iterate over all opcodes in
order to reconstruct expressions and statements. During this process, ternary
operators and arrays are rebuilt and coherent conditions are merged. Afterwards,
we remain with PHP source code and jump instructions. Finally, we try to find
patterns of commonly used jump and loop structures in order to reassemble the
control flow.

The code in Table 3 provides an example of PHP bytecode. Here, we first
buffer the PHP syntax of the ADD expression stored in TMP:1 (op1+op2). Next, the
first line of code is recovered by resolving the operand TMP:1 in the assignment of
variable $test. Further, we construct the greater-than constraint created from
the variable $test and the constant value 500 (op1>op2). Then, the operand
TMP:2 can be resolved in line 4. In the next line, we create the echo statement.
We ignore the JMP for now and finish with the transformation of the return

Table 3. Exemplary bytecode with decompiled syntax.

Opcode Operand1 Operand2 Result Code

1 ADD 222 333 TMP:1

2 ASSIGN $test TMP:1 $test = 222 + 333;

3 IS GREATER $test 500 TMP:2

4 JMPZ TMP:2 JMP:7 if ($test>500) {
5 ECHO $test echo $test;

6 JMP JMP:7 }
7 RETURN 1 return 1;

508 D. Weißer et al.

statement. When all expressions and statements are processed, we begin with
finding patterns by processing the jump operands. In our example, we recognize
the JMPZ in line 4 that jumps to the same location as the following JMP in line 6
as an if construct.

Similarly, we can recognize more complex if/else constructs. As shown
previously, a single if block without an else branch is identified by a conditional
jump instruction that skips upcoming statements in case the condition fails.
Unoptimized bytecode has a JMP instruction inside the if block that jumps
to the next instruction after the if block. In this particular case, the second
jump is unnecessary for execution but helps to recognize the pattern. If this JMP
instruction would skip upcoming statements instead, these statements would be
assigned to an elseif/else block.

In PHP bytecode, for loops have an unique pattern. The overall layout
comprises a loop constraint, a JMPZNZ, an iteration expression, a JMP, followed
by the loop body and a final JMP. The JMPZNZ operation has two jump locations
stored in its operands. The first jump is taken in case of a zero value, and the
second one otherwise. The second location points behind the loop body. The
interpreter jumps to this location when the condition of the JMPZNZ instruction
does not match. The bytecode at the first location represents the start of the loop
body. The JMP instruction at the body’s end jumps back to the loop’s constraint.

Similarly, while loops can be detected. Here, a constraint is followed by a
JMPZ instruction that points behind the loop’s body. Then, the loop’s body fol-
lows which ends with a JMP instruction that points back to the loop’s constraint.

More convenient is the recognition of foreach loops. Here, the rare opcode
FE RESET is used to reset an array’s pointer and then a FE FETCH opcode follows
to fetch the current array’s element. Then, the loop body follows that ends with
a JMP instruction. The initial FE opcodes both have a jump location stored in
their second operand. This location points behind the last JMP instruction in the
loop’s body and it is accessed when the loop is finished. The JMP instruction
itself points back to the FE FETCH opcode.

In order to resolve nested constructs, our algorithm uses an inside out app-
roach in several iterations. We mark sustained patterns as resolved and repeat
our pattern matching algorithm until no new patterns are detected. This way,
in a nested construct, the most inner pattern is resolved first, followed by the
identification of the outer pattern in the next iteration.

Our pattern matching approach works very well on unoptimized bytecode
since PHP adds redundant opcodes that ease the recognition process. Unfortu-
nately, these patterns can change when bytecode optimization is enabled. Here,
redundant operations are removed, structures are compressed, and targets of
jump operations are pre-resolved. This makes it significantly harder to find and
decompile structures. To overcome such limitations, a more elaborated decom-
piler design could be implemented in the future [2].

Parts of our approach for reconstructing expressions and statements into
source code could be adopted for other register-based virtual machines. While
simple opcodes, such as for addition or concatenation, can be compared to other

Security Analysis of PHP Bytecode Protection Mechanisms 509

languages, complex opcodes, such as for the access of arrays, are very PHP
specific. For stack-based bytecode, as used in Java, Python, or Perl, the operands
have to be resolved from the stack first. Our pattern matching approach for the
evaluation of code structures bases on artifacts found in PHP bytecode and thus
is not directly applicable to other languages.

6 Evaluation

We evaluate our decompiler in two steps. First, we try to quantify our decom-
pilation results by encoding a set of known source code and comparing the
decompiled code to the original version. Then, we test our decompiler against
10 protected real-world applications and try to recover unknown source code.

6.1 Source Code Reconstruction

Measuring the quality of decompiled PHP code is hard and, to the best of our
knowledge, no code similarity algorithm for PHP exists. While the code’s seman-
tic remains after decompilation, the syntax changes due to PHP’s native and the
encoders’ additional bytecode optimization. Due to limitations of our proof of
concept implementation (see Sect. 5.3), our prototype does not always produce
syntactically correct code and a comparison of successful unit tests of a decom-
piled application is not applicable. Hence, we developed a basic metric based on
PHP tokens [23]. We categorized all tokens into one of seven groups:

1. DATA: tokens of literals, constants, and variables (T VARIABLE)
2. EQUAL: tokens of assignment operators, such as T PLUS EQUAL
3. COMP: tokens of comparison operators, such as T EQUAL and T ISSET
4. CAST: tokens of type casts, such as T INT CAST and T STRING CAST
5. INCL: tokens of include statements, such as T INCLUDE and T REQUIRE
6. PROC: tokens of procedural code, such as T FUNCTION and T NEW
7. FLOW: tokens of jump and loop statements, such as T IF and T WHILE

Tokens that do not fall into one of these categories were ignored. We also ignored
encapsulated variables and constants, comments, whitespaces, logical operators,
and inline HTML. Next, we compiled the three most popular PHP projects
Wordpress, Drupal, and Joomla with the most complex encoder ionCube with
default optimization level. Then, we used our prototype for decompiling the
protected code again. We used PHP’s built-in tokenizer [24] to collect the number
of tokens in all PHP files of the original and the recovered source code and
calculated the individual success rate for each token. In Table 4, we list the
average similarity of each token category that was weighted by token popularity
in each group. We observed a very similar amount for tokens that are not part
of optimization. As expected, the number of tokens for optimized instructions
or loops (FLOW) vary more significantly. Based on our results, we estimate a
successful reconstruction rate of about 96 %.

510 D. Weißer et al.

Table 4. Average token similarity (in %) for three compiled/decompiled applications.

Software Version EQUAL DATA COMP CAST INCL FLOW PROC

Wordpress 4.2.2 95.83 95.13 98.52 99.77 99.85 84.17 96.83

Joomla 3.4.1 96.45 95.33 99.76 99.53 99.77 82.33 97.36

Drupal 7.37 98.81 92.81 98.64 98.45 98.78 89.00 98.34

6.2 Protected Real-World Applications

In order to inspect protected code in real-world applications, we selected 10 pop-
ular encoded PHP applications. Our corpus is presented in Table 5. The number
of evaluated software per encoder was chosen by the encoder’s popularity. In
total, we were able to recover more than 1 million lines of actual code (RELOC)
in 3 942 protected PHP files. Bytecode optimization was enabled for some of
the applications which led to errors when decoding optimized structures. These
errors are very specific to the optimized code and cannot be generalized. Here,
our prototype implementation requires improvement for a more precise recon-
struction. However, errors in code nesting, such as the misplacement of curly
braces, does not hinder to fully understand the recovered source code and to
retrieve sensitive information, such as cryptographic keys, or to detect security
vulnerabilities. In the following, we present our findings. Note that due to the
large corpus, only a fraction of code could be analyzed.

License Systems. In all 10 analyzed applications, the protection is primarily
used to hide a license system. It can limit the application’s use to a specific
time (7), number of users (5), domain or MAC address (4), software version (3),

Table 5. Corpus of selected real-world applications that apply an encoder.

Software Version Category Encoder Files RELOC

Total Protected

WHMCS 5.3.13 hosting ionCube 946 688 157 651

HelpSpot 3.2.12 helpdesk ionCube 493 163 41 033

xt:Commerce 4.1 webshop ionCube 4 090 118 35 864

PHP-Cart 4.11.4 webshop ionCube 271 3 2 762

Precurio 4 intranet ionCube 2 985 5 579

XT-CMS 1.8.1 CMS SourceGuardian 320 87 21 653

Mailboarder 4.1.5 email SourceGuardian 110 110 16 365

NagiosFusion 2014R1.0 monitoring SourceGuardian 294 15 3 337

Scriptcase 8.0.047 development Zend Guard 3 751 2 676 726 552

gSales rev1092 billing Zend Guard 206 77 34 012

Security Analysis of PHP Bytecode Protection Mechanisms 511

or restrict software features of a demo version (5). By decompiling the protected
sources, we can reveal the keys and algorithms used. For example, we could
recover the static secret in PHP-Cart (MD5 salt), HelpSpot (RC4), gSales (SHA1
salt) and Mailborder (AES 128bit) that is used to validate or decrypt the license
data. In NagiosFusion, we discovered a custom decoding algorithm that is used
to infer the installation’s restrictions from the license key. The decompilation of
these sensitive sources does not only allow to fake a valid runtime environment
and license, but also to remove these checks completely.

Vulnerabilities. Furthermore, we detected critical security vulnerabilities in
the decompiled source codes which could be confirmed against the original
protected applications. For example, we detected multiple path traversal vul-
nerabilities in HelpSpot and scriptcase which allow to remotely retrieve any
file from the server, and multiple SQL injection vulnerabilities in HelpSpot,
xt:Commerce, and gSales which allow to extract sensitive data from the data-
base. We believe that these vulnerabilities remained previously undetected for
the reason of unavailable source code. It is controversial whether this is more
helpful for the vendor or the attackers [18,28]. Arguably, some vulnerabilities
could be also detected without the source code. However, some vulnerabilties
are hard to exploit in a blackbox scenario, for example, a detected second-order
file inclusion vulnerability [5] in Mailborder or PHP object injection vulnerabil-
ities [6] in xt:Commerce, PHP-Cart, and HelpSpot. Clearly, a vendor should not
rely on source code protectors to assume security issues remain undetected. We
reported all identified issues responsibly to the corresponding vendor.

Pingbacks and Backdoors. Next to vulnerabilities, we looked for suspicious
functionalities of the protected applications. We found rather harmless pingback
features, for example in xt:Commerce, that send information about the instal-
lation environment and license to a SOAP-based web service. While this can be
used to check for updates, it is also a good way to observe active installations.
More severe is that xt:Commerce also sends the user’s PayPal API credentials
in plaintext to its server via HTTP. Precurio collects information about the
application’s server and owner and sends it via CURL request to the Precurio
website, in case the ionCube license does not match to the server or is expired.

However, we also detected an odd vulnerability in Precurio. The following
three lines of code determine if the request path is a file and in that case output
its content. Thus, by requesting for example the URL /index.php/index.php
from the server, the PHP source code of the index file is leaked.

$filename = $root . ’/public/’ . $_SERVER[’PATH_INFO’];
if (is_file($filename))

echo file_get_contents($filename);

Moreover, the code allows to retrieve any file from Precurio’s web direc-
tory, including user files and the license file. Additionally, we found that the

512 D. Weißer et al.

ErrorController in Precurio implements a downloadAction. Thus, the URL
/error/download allows the Precurio team, as well as any other remote user,
to download the log file of the Precurio installation which leaks detailed stack
traces and exceptions. We informed Precurio about both issues.

7 Related Work

Obfuscation of software systems is used in practice to increase the costs of reverse
engineering, for example in the context of digital rights management systems [27]
or IP protection. As a result, many different types of obfuscation techniques
were developed in the past years and most of them focus on binary executables
(e.g., [3,11,15,21]). So called executable packers implement different obfuscation
and encryption strategies to protect a given binary. Note that obfuscation is
also commonly used by adversaries to hamper analysis of malicious software
samples. To counter such tactics, several methods for automated deobfuscation
were developed [4,16,20,29], and we observe an ongoing arms race.

Similar obfuscation strategies are used to protect PHP source code and com-
mercial tools are available to implement such strategies. To the best of our
knowledge, there is no academic work on PHP obfuscation. Our work is most
closely related to a talk by Esser [8], who provided an overview of PHP source
code encryption and ideas on how source code could be recovered. Saher pre-
sented in a talk some reverse engineering details for ionCube [17]. We reverse
engineered the three most popular PHP code protection products and provide
detailed information about their internals, together with a decompiler approach.

Static and dynamic code analysis techniques can detect security vulnerabil-
ities and are an important research topic. We complement this field by demon-
strating how to access protected PHP code such that an analysis can be per-
formed. In other areas, obfuscation/protection mechanisms have been broken by
reverse engineering and binary instrumentation techniques (e.g., [27]) and we
show that such attacks are also viable against PHP obfuscation tools.

8 Conclusion

In this paper, we evaluated and documented the level of protection provided
by current IP protection tools available for PHP source code. We studied
the internals of the three most popular encoder and demonstrated an attack
against a shared weakness by a proof-of-concept implementation. As a result,
we showed that our decompiler is able to recover 96 % of the protected PHP
code which would enable an attacker to crack license systems and identify previ-
ously unknown vulnerabilities and backdoors. Therefore, we argue that currently
available encoder products are no appropriate solutions for intellectual property
protection and more elaborated obfuscation approaches are necessary to better
protect PHP source code.

Ethical Considerations: We would like to clarify that our work was not moti-
vated by the intention to perform illegal activities, such as copyright violation or

Security Analysis of PHP Bytecode Protection Mechanisms 513

server compromise, nor to ease these activities for others. For this reason, we do
not publish our decompilation tool and we reported all detected vulnerabilities
responsibly to the vendors. Moreover, we presented only key insights of the ana-
lyzed products and specific details are intentionally left out, while presented keys
and constants are likely subject of change. Thus, we feel that an attacker is still
left with a high reverse engineering effort in order to reproduce our attacks for
the latest encoders. Rather, we hope that our research helps in building better
encoders that do not suffer from our attacks and to advance the state-of-the-art.

References

1. Brumley, D., Lee, J., Schwartz, E.J., Woo, M.: A native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In:
USENIX Security Symposium (2013)

2. Cifuentes, C.: Reverse compilation techniques. Ph.D. thesis, Queensland University
of Technology (1994)

3. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical report, University of Auckland, New Zealand (1997)

4. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: ACM Conference on Computer and Com-
munications Security (CCS), pp. 275–284 (2011)

5. Dahse, J., Holz, T.: Static detection of second-order vulnerabilities in web appli-
cations. In: USENIX Security Symposium (2014)

6. Dahse, J., Krein, N., Holz, T.: Code reuse attacks in PHP: automated POP
chain generation. In: ACM Conference on Computer and Communications Security
(CCS) (2014)

7. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware analysis techniques and tools. ACM Comput. Surv. 44(2), 1–42 (2008)

8. Esser, S.: Vulnerability Discovery in Closed Source/Bytecode Encrypted PHP
Applications. Power of Community (2008)

9. ionCube Ltd. ionCube PHP Encoder. https://www.ioncube.com/php encoder.
php?page=features, May 2015

10. Ivanov, I.: API Hooking Revealed. The Code Project (2002)
11. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to sta-

tic disassembly. In: ACM Conference on Computer and Communications Security
(CCS) (2003)

12. Miecznikowski, J., Hendren, L.: Decompiling Java bytecode: problems, traps and
pitfalls. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 111–127.
Springer, Heidelberg (2002)

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

14. phpSHIELD. About phpSHIELD. PHP Encoder by SourceGuardian. https://
www.phpshield.com/about.html, May 2015

15. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
USENIX Security Symposium (2007)

16. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: PolyUnpack: automating
the hidden-code extraction of unpack-executing malware. In: Annual Computer
Security Applications Conference (ACSAC) (2006)

https://www.ioncube.com/php_encoder.php?page=features
https://www.ioncube.com/php_encoder.php?page=features
https://www.phpshield.com/about.html
https://www.phpshield.com/about.html

514 D. Weißer et al.

17. Saher, M.: Stealing from thieves: breaking IonCube VM to RE exploit kits. Black-
Hat Abu Dhabi (2012)

18. Schryen, G., Kadura, R.: Open source vs. closed source software: towards measuring
security. In: ACM Symposium on Applied Computing (SAC) (2009)

19. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE Symposium on Security and Privacy (S&P) (2010)

20. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: IEEE Symposium on Security and Privacy (S&P) (2009)

21. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: Symposium on Network and Distributed System
Security (NDSS) (2008)

22. SourceGuardian Ltd. PHP Encoder Features. https://www.sourceguardian.com/
protect php features.html, May 2015

23. The PHP Group. List of Parser Tokens. http://php.net/tokens, May 2015
24. The PHP Group. Tokenizer. http://php.net/tokenizer, May 2015
25. The PHP Group. Zend API: Hacking the Core of PHP. http://php.net/manual/

en/internals2.ze1.zendapi.php, May 2015
26. The PHP Group. Zend Engine 2 Opcodes. http://php.net/manual/internals2.

opcodes.php, May 2015
27. Wang, R., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Steal this movie: automati-

cally bypassing DRM protection in streaming media services. In: USENIX Security
Symposium (2013)

28. Witten, B., Landwehr, C., Caloyannides, M.: Does open source improve system
security? IEEE Softw. 18(5), 57–61 (2001)

29. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: IEEE Symposium on Security and
Privacy (S&P) (2015)

30. Zend Technologies Ltd. PHP Obfuscator, PHP Encoder & PHP Encryptionfrom
Zend Guard. http://www.zend.com/products/guard, May 2015

https://www.sourceguardian.com/protect_php_features.html
https://www.sourceguardian.com/protect_php_features.html
http://php.net/tokens
http://php.net/tokenizer
http://php.net/manual/en/internals2.ze1.zendapi.php
http://php.net/manual/en/internals2.ze1.zendapi.php
http://php.net/manual/internals2.opcodes.php
http://php.net/manual/internals2.opcodes.php
http://www.zend.com/products/guard

Radmin: Early Detection of Application-Level
Resource Exhaustion and Starvation Attacks

Mohamed Elsabagh(B), Daniel Barbará, Dan Fleck, and Angelos Stavrou

George Mason University, Fairfax, USA
{melsabag,dbarbara,dfleck,astavrou}@gmu.edu

Abstract. Software systems are often engineered and tested for func-
tionality under normal rather than worst-case conditions. This makes the
systems vulnerable to denial of service attacks, where attackers engineer
conditions that result in overconsumption of resources or starvation and
stalling of execution. While the security community is well familiar with
volumetric resource exhaustion attacks at the network and transport lay-
ers, application-specific attacks pose a challenging threat. In this paper,
we present Radmin, a novel system for early detection of application-
level resource exhaustion and starvation attacks. Radmin works directly
on compiled binaries. It learns and executes multiple probabilistic finite
automata from benign runs of target programs. Radmin confines the
resource usage of target programs to the learned automata, and detects
resource usage anomalies at their early stages. We demonstrate the effec-
tiveness of Radmin by testing it over a variety of resource exhaustion and
starvation weaknesses on commodity off-the-shelf software.

Keywords: Resource exhaustion · Starvation · Early detection · Prob-
abilistic finite automata

1 Introduction

Availability of services plays a major – if not the greatest – role in the sur-
vivability and success of businesses. Recent surveys [2,5] have shown that IT
managers and customers alike tend to prefer systems that are more often in
an operable state, than systems that may offer higher levels of security at the
expense of more failures. This means that any disruption to the availability of
a service is directly translated into loss of productivity and profit. Businesses
invest in deploying redundant hardware and replicas to increase the availability
of the services they offer. However, as software designers often overlook Saltzer-
Schroeder’s “conservative design” principle [32], systems are often engineered
and tested for functionality under normal rather than worst-case conditions.
As a result, worst-case scenarios are often engineered by the attackers to over-
consume needed resources (resource exhaustion), or to starve target processes of
resources (resource starvation), effectively resulting in partial or complete denial
of service (DoS) to legitimate users.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 515–537, 2015.
DOI: 10.1007/978-3-319-26362-5 24

516 M. Elsabagh et al.

A system is exposed to resource exhaustion and starvation if it fails to prop-
erly restrict the amount of resources used or influenced by an actor [3]. This
includes, but is not limited to, infrastructure resources, such as bandwidth and
connection pools, and computational resources such as memory and cpu time.
The attacks can operate at the network and transport layers [37], or at the appli-
cation layer such as algorithmic and starvation attacks [17,18]. The asymmet-
ric nature of communication protocols, design and coding mistakes, and inher-
ently expensive tasks all contribute to the susceptibility of programs to resource
exhaustion and starvation attacks. Attacks targeting the network and trans-
port layers have attracted considerable research attention [21,23,31]. Meanwhile,
attacks have become more sophisticated and attackers have moved to higher lay-
ers of the protocol stack. Since 2010, resource exhaustion attacks that target the
application layer have become more prevalent [1,17] than attacks at the network
layer and transport layer.

In this paper, we present Radmin, a system for automatic early detection
of application-level resource exhaustion and starvation attacks. By application-
level attacks we refer to the classes of DoS attacks that utilize small, specially
crafted, malicious inputs that cause uncontrolled resource consumption in victim
applications. To this end, Radmin traces the resource consumption of a target
program in both the user and kernel spaces (see Sect. 3), builds and executes
multiple state machines that model the consumption of the target program.

The key observation is that attacks result in abnormal sequences of tran-
sitions between the different resource consumption levels of a program, when
compared to normal conditions. By modeling the resource consumption levels
as multiple realizations of a random variable, one can estimate a conditional
distribution of the current consumption level given the history (context) of mea-
surements. Consequently, the statistical properties of the resulting stochastic
process can be used to detect anomalous sequences.1

Radmin operates in two phases: offline and online. In the offline phase, the
monitored programs are executed on benign inputs, and Radmin builds mul-
tiple Probabilistic Finite Automata (PFA) models that capture the temporal
and spatial information in the measurements. The PFA model is a finite state
machine model with a probabilistic transition function (see Sect. 4). Both the
time of holding a resource, and the amount used of that resource are mapped
to states in the PFA, while changes in the states over the time are mapped to
transitions.

In the online phase, Radmin executes the PFAs as shadow resource consump-
tion state machines, where it uses the transition probabilities from the PFAs to
detect anomalous consumption. Additionally, Radmin uses a heartbeat signal to
time out transitions of the PFAs. Together with the transition probabilities, this
enables Radmin to detect both exhaustion and starvation attacks.

Radmin aims at detecting attacks as early as possible, i.e., before resources are
wasted either due to exhaustion or starvation. Radmin does not use any
1 Unless stated otherwise, we use “measurements” and “sequences” interchangeably

in the rest of this paper.

Radmin: Early Detection of Application-Level Resource Exhaustion 517

static resource consumption thresholds. Instead, the PFAs capture the transitions
between the different consumption levels of different program states, and statis-
tics of the PFAs are used to detect anomalies. The PFAs allow Radmin to implic-
itly map different program states, i.e., program behavior at some execution point
given some input, to dynamic upper and lower resource consumption bounds.

We quantified the earliness of detection as the ratio of resources that Radmin
can save, to the maximum amounts of resources that were consumed in benign con-
ditions (see Sect. 5). This corresponds to the tightest static threshold that tradi-
tional defenses can set, without causing false alarms. Radmin has an advantage
over all existing defenses that use static thresholds (see Sect. 7), since exhaustion
and starvation attacks can evade those defenses. Exhaustion attacks can consume
the highest amounts of resources possible, just below the static threshold [1,17].
Additionally, starvation attacks, by design, do not aim at directly consuming
resources such as attacks that trigger deadlocks or livelocks [17].

To summarize, this study makes the following contributions:

– Radmin. A novel system that can detect both resource exhaustion and starva-
tion attacks in their early stages. Radmin employs a novel detection algorithm
that uses PFAs and a heartbeat signal to detect both exhaustion and starva-
tion attacks. Radmin takes both temporal and spatial resource consumption
information into account and adds minimal overhead.

– Working Prototype2. We implement a prototype that uses kernel event
tracing and user space instrumentation to efficiently and accurately monitor
resource consumption of target processes.

– Evaluation. We demonstrate the effectiveness of Radmin using a wide range
of synthetic attacks against a number of common Linux programs. We show
that Radmin can efficiently detect both types of anomalies, in their early
stages, with low overhead and high accuracy.

The rest of the paper is organized as follows. Section 2 discusses the assump-
tions and threat model. Section 3 presents the technical details of Radmin and its
implementation. Section 4 describes the models used in Radmin and the detec-
tion algorithm. Section 5 evaluates Radmin. Section 6 provides a discussion of
different aspects of Radmin and possible improvements. We discuss related work
in Sect. 7, and conclude in Sect. 8.

2 Assumptions and Threat Model

Radmin’s main goal is early detection of application-level resource exhaustion
and starvation, which may result in full or partial depletion of available resources
(CPU time, memory, file descriptors, threads and processes) or in starvation
and stalling. We assume that actors can be local or remote, with no privilege to
overwrite system binaries or modify the kernel.

We consider the following types of exhaustion and starvation attacks. First,
attacks that result in a sudden surprisingly high or low consumption of resources
2 Source code available under GPLv3 at: https://github.com/melsabagh/radmin.

https://github.com/melsabagh/radmin

518 M. Elsabagh et al.

(e.g., an attacker controlled value that is passed to a malloc call). Second, attacks
that result in atypical resource consumption sequences such as algorithmic and
protocol-specific attacks that aim at maximizing (flattening) the amounts of
consumed resources. Third, attacks that result in stalling of execution, including
triggering livelocks or prolonged locking of resources.

Although, in our experiments, we considered only programs running on x86
Linux systems and following the Executable and Linkable Format (ELF), the
proposed approach places no restrictions on the microarchitecture, the binary
format, or the runtime environment.

3 System Architecture

The major components of Radmin are a kernel space tracing module (Ker-
nel Tracer), a user space tracing library (User Tracer), and a daemon process
(Guard) where the bulk of processing takes place. The tracing modules monitor
and control a target program by binding checkpoints to events of interest, in
the execution context of the target. Checkpoints are functions in the tracing
modules that are called when an event of interest is triggered. Each checkpoint
communicates measurements and control information to the Guard. We refer to
a code site at which an event was triggered as a checkpoint site. Figure 1 shows
the system architecture of Radmin.

Radmin takes a target program binary as input, and operates in two phases:
offline and online. In the offline phase, Radmin instruments the target binary by
injecting calls to the User Tracer into the binary, and writes the instrumented
binary to disk. The instrumented program is then executed over benign inputs,
while Radmin monitors its execution in both the user and kernel spaces, using
the User Tracer and the Kernel Tracer modules, respectively. During that stage,
the Guard receives the measurements from the tracers and learns multiple PFAs

Fig. 1. Architecture of Radmin. The User Tracer, and Kernel Tracer, monitor and
collect measurements from a target program by binding checkpoints to events of interest
in both the user and kernel spaces. They send the measurements to the Guard, where
the bulk of processing takes places.

Radmin: Early Detection of Application-Level Resource Exhaustion 519

Table 1. Checkpoint sites monitored by the tracing modules. Checkpoint sites used
by the Kernel Tracer are given in the SystemTap probes notation.

Checkpoint Site User/Kernel Resource Type

vm.brk, vm.mmap, vm.munmap Kernel Memory

kernel.do sys open, syscall.close Kernel File descriptors

Recursive sites User Stack

Sites that manipulate the stack pointer

scheduler.ctxswitch, perf.sw.cpu clock Kernel CPU

Heartbeat every 500 ms Both

scheduler.wakeup new, kprocess.exec complete Kernel Child tasks

kprocess.exit

that capture the resource consumption behavior of the target program. Finally,
in the online phase, the Guard executes the PFAs along with the target program,
and raises an alarm if a deviation of the normal behavior is detected (see Sect. 4).

Each measurement is a vector of 〈consumed kernel time, consumed user time,
consumed resource amount〉 associated with a resource type and a task3 ID. Here,
“consumed resource amount” accounts for the total amount of a resource that
would be in consumption if the allocation or deallocation request is granted. We
tracked parent-child task relationships by recording both the parent and current
task IDs, in addition to the process ID. The measurement vectors accurately
capture the resource consumption behavior of a process, as they map out both
the sequences of resource consumption changes and the time for each change,
which effectively captures both the temporal and spacial information in the
resource consumption behavior of the process.

We developed the user space components in C/C++, using the Dyninst [4]
library for static binary rewriting. The kernel tracer was developed using Sys-
temTap [8]. A number of coordination scripts and a command line interface were
also developed in Shell Script.

A summary of the checkpoint sites and the associated resource types is shown
in Table 1, which we discuss in the following sections.

3.1 Kernel Tracer

The Kernel Tracer binds checkpoints to various kernel events by binding probes
to the corresponding kernel tracepoints. Kernel tracepoints provide hooks to var-
ious points in the kernel code by calling functions (probes) that are provided at
runtime by kernel modules [20]. Binding to the centralized, well-defined, kernel
tracepoints associated with resource (de)allocation is more robust than attempt-
ing to enumerate and trace, from user space, all possible ways a program can
3 Unless stated otherwise, we use “task” to indistinguishably refer to child processes

and threads spawned by a monitored program.

520 M. Elsabagh et al.

(de)allocate resources through library calls. Additionally, kernel tracing gives
maximum visibility into the target process, allows for low-penalty monitoring
and control of the target.

The Kernel Tracer keeps track of task creation by binding to the kernel
scheduler wakeup tracepoint (scheduler.wakeup new), which is triggered when
a task is being scheduled for the first time. It monitors task destruction by
binding to the task exit tracepoint (kprocess.exit). The tracer also monitors
processes overlaid by the exec call family by binding to the exec completion
tracepoint (kprocess.exec complete).

For memory monitoring, the Kernel Tracer install probes for the tracepoints
that are triggered upon the allocation of contiguous memory (vm.brk), memory
regions (vm.mmap), and the release of memory to the kernel (vm.munmap). For file
monitoring, probes are installed for tracepoints that are triggeredwhenfile descrip-
tors are allocated (kernel.do sys open) or released (syscall.close). For CPU
monitoring, the Kernel Tracer keeps track of the consumed clock ticks by bind-
ing to the scheduler tracepoints that trigger when monitored tasks context switch
(scheduler.ctxswitch), and when the kernel clock ticks (perf.sw.cpu clock)
inside the context of a monitored task. The reason for monitoring only those two
events is to minimize the overhead of profiling the CPU time.

It is important to note that even though memory is monitored from the kernel
module, user space processes can exhaust their stack space without interfacing
with the kernel. Therefore, we decided to include additional checkpoints for
monitoring the stack in user space.

3.2 User Tracer

The User Tracer consists of a user space library, where calls to that library
are injected in the target binary at assembly sites of interest. The User Tracer is
injected as follows. First, Radmin statically parses the input binary and extracts
a Control Flow Graph (CFG) using the Dyninst ParseAPI library. It then ana-
lyzes the CFG to identify assembly sites that dynamically operate on the stack
such as recursive calls (direct and indirect) and variable length arrays. Radmin
injects calls to the tracer library at the marked sites in the binary, and saves the
modified binary to disk.

To calculate the stack size consumed by recursive call sites, we first
experimented with two options: (a) parse the process memory maps from
/proc/pid/smaps, and (b) unwinding the stack. Both options proved unreliable.
The obtained values from smaps were too coarse to reflect actual stack consump-
tion. Unwinding the stack was very expensive, and required special arrangements
at compilation time, such as the usage of frame pointers, that were not feasible
to attain since we are directly working with compiled programs. Instead, Rad-
min implements a workaround by tagging (marking) the stack inside the caller
function site, at a point directly before the recursive call, then calculating the
distance from the entry point of the recursive callee function site to the tag. The
tag is injected only in non-recursive caller function sites, which avoids mistakenly
overwriting the tag due to indirect recursion.

Radmin: Early Detection of Application-Level Resource Exhaustion 521

Additionally, the User Tracer spawns a heartbeat thread that periodically
consumes 1 clock tick then switches out. Consequently, the heartbeat tick is
captured by the Kernel Tracer whenever the heartbeat thread is scheduled out.
It delivers a clock signal from the monitored process to the Guard, which we use
to detect starvation attacks by testing if the transitions between the PFA states
have timed out (see Sect. 4).

3.3 Radmin Guard

Figure 2 shows the underlying architecture of the Guard. In the offline phase,
the Guard learns a codebook over a finite alphabet Σ, and encodes the incoming
measurements over Σ. Encoding the measurements serves two purposes: (1) it
discretizes the continuous measurements, making them useful for estimating the
conditional probabilities using the PFAs; and (2) it reduces the dimensionality
(lossy compression) of the measurements by mapping them to a finite alphabet
of a much smaller size. The Guard then builds multiple PFAs over the encoded
sequences, one for each monitored resource type. In the online phase, the Guard
encodes the incoming stream of measurements, executes the PFAs (per task, per
resource type), runs the detection algorithm, and raises an alarm if an anomaly is
detected. In our experiments, we only terminated the violating process. However,
more advanced recovery can be used such as resource throttling or execution
rollback [35].

Fig. 2. Overview of Radmin Guard.

In the following section, we discuss in more depth how the Guard encodes
the measurements, learns and executes the PFAs, and detects attacks.

4 Learning and Detection

4.1 Encoding

Radmin learns each codebook, used by the encoder, by running a k-means quan-
tizer over the raw vectors of measurements, where k = |Σ| is the number of
desired codewords. In our implementation, we used k-means++ [10,13], which

522 M. Elsabagh et al.

is guaranteed to find a codebook (clusters) that is O(lg k)-competitive with
the optimal k-means solution [13]. To build the codebook, each measurement
(consumed kernel and user time, and resource value) is treated as a point in
a three-dimensional space. k-means++ starts by selecting one center point at
random, from among all measurement points. Then, the distance d(x) between
each measurement point x and the nearest center point is computed. Next, one
more center point is chosen with probability proportional to d2(x). This seed-
ing process repeats until k centers are chosen. After which, standard k-means
clustering is performed resulting in k point clusters, the centers of which are
the codewords. We refer the interested reader to [13] for a detailed discussion of
k-means++.

Each codebook Σ (one codebook per resource type) stores an indexed list
of codewords. Each codeword σ is represented by three-dimensional centers μσ

and spreads sσ, where each dimension corresponds to one dimension of the raw
measurement vector. The number |Σ| of codewords is determined such that each
dimension gets at least 1 degree of freedom (level), constrained by a total of 64
degrees of freedom per codeword, i.e., |Σ| ∈ [3 . . . 64]. This setup allows at most
4 degrees of freedom per dimension (43 total), in case that all dimensions have
the same amount of variance. Finally, encoding is done by mapping a given mea-
surement vector to the index of its nearest codeword. If a measurement vector
falls outside the coverage of all codewords, an empty codeword ∅ is returned.

4.2 Learning the PFAs

Radmin builds multiple PFAs for each resource type, and uses them to predict
the probability of new sequences of measurements given the history of measure-
ments. A PFA is a 5-tuple (Σ,Q, π, τ, γ), where:

– Σ is a finite alphabet (the codebook) of symbols processed by the PFA.
– Q is a finite set of PFA states.
– π : Q → [0, 1] is the probability distribution vector over the start states.
– τ : Q×Σ → Q is the state transition function.
– γ : Q × Σ → [0, 1] is the emitted probability function (predictive distribution)

when making a transition.

The subclass of PFA used in Radmin is constructed from their equivalent
Probabilistic Suffix Tree (PST) model [30], which is a bounded variable-order
Markov model where the history length varies based on the context (statistical
information) of the subsequences of measurements, and the tree does not grow
beyond a given depth L. In other words, the PST captures all statistically signifi-
cant paths between resource consumption levels (encoded measurements), where
the path length is at most L. In the construction of the PST, a subsequence of
encoded measurements s ∈ Σ∗ is added to the PST only if :

1. s has a significant prediction probability, i.e., there is some symbol σ ∈ Σ
such that P (σ|s) ≥ γmin, where γmin is the minimum prediction probability
of the model.

Radmin: Early Detection of Application-Level Resource Exhaustion 523

2. And, s makes a contribution, i.e., the prediction probability is significantly
different from the probability of observing σ after the parent node of s, i.e.,

P (σ|s)
P (σ|Parent(s)) ≥ rmin or ≤ 1

rmin
, where rmin is the minimum difference ratio.

The PFA model provides tight time and space guarantees since it has a
bounded order, and only the current state and the transition symbol determine
the next state. Those are desirable properties for Radmin since (1) we construct
the PFAs without prior knowledge of the dependencies order (the length of sta-
tistical history in the measurements produced by target programs); and (2) we
want to minimize the execution overhead of Radmin by maintaining a minimal
amount of state-keeping information for the PFAs, and calculating the predic-
tion probability for each measurement as fast as possible. For a sequence of n
measurements, the PFA model allows us to compute the prediction probability
in O(n) time and O(1) space. Due to space constraints, we refer the reader to
[14,19,30] for detailed discussions of various construction algorithms.

In the subclass of PFA used in Radmin, each state q ∈ Q has a unique ID
corresponding to the subsequence captured by that state, and the PFA has a
single start state q◦, where π(q◦) = 1. Given a PFA M and a string of encoded
measurements s = s1 . . . sl, we walk M (for each si ∈ s) where each transi-
tion qi+1 = τ(qi, si) emits the transition probability γ(qi, si). The prediction
probability of s by M is given by:

P (s) =
l∏

i=1

γ
(
qi−1, si

)
. (1)

For example, given the PFA in Fig. 3, the prediction probability of the sequence
of encoded measurements “abca” is given by:

P (abca) = γ(φ, a) × γ(a, b) × γ(ab, c) × γ(c, a)
= 3/8 × 2/3 × 1 × 1/2
= 1/8.

Learning the PFAs, for a target program, requires running the target program
over benign inputs. The following are some possible ways to handle this:

– Dry runs and collected benign traffic. Radmin can be trained through
dry runs over benign inputs. This is typical in internal acceptance and pre-
release testing. Radmin can also be trained using traffic that has already been
processed by applications and shown to be benign. This is arguably the easiest
approach to train Radmin if it is deployed to protect a web-server.

– Functionality tests. Radmin can be trained using positive functionality
tests. Testing is integral to the software development lifecycle, and Radmin
can integrate with the test harness at development time. The main disadvan-
tage is the additional effort needed for integration and debugging.

– Endusers. Radmin can be trained by endusers. Even though this causes an
increased risk of learning bad behavior, the resulting PFAs can be compared

524 M. Elsabagh et al.

Fig. 3. Example of a PFA over the alphabet Σ = {a, b, c}. φ is the start state. Every
edge is labeled by the transition symbol and transition probability. Transition symbols
correspond to encoded measurements. Note, transition probabilities were rounded, and
low probability transitions were removed for simplicity.

or averaged based on the type and privileges given to each class of users.
The PFAs can be averaged, for example, based on the distance between their
transition functions. Additionally, the learning algorithm can be modified such
that the PFA learns new behavior if the new behavior is statistically similar
to old behavior, by using statistics over the frequency of minimum probability
transitions.

Once trained, Radmin can continue learning or be locked down, based on
the system policy. For example, system administrators may desire to limit guest
users to what Radmin already knows, while PFAs for sudoers can still adjust
and add to what they learned. The PFAs can also be locked after some time of
no change, which can be an effective strategy for preventing future attacks from
compromised users.

4.3 Anomaly Detection

In the online phase, the Guard operates by encoding the received sequences
over Σ, and executing the corresponding PFAs as shadow automata, where each
sequence results in a transition in one or more PFA. In addition to the measure-
ments, the Guard uses the received heartbeat signal to timeout the transitions
of the PFAs.

Algorithm 1 outlines the detection algorithm. Radmin raises an alarm if any
of the following conditions is satisfied:

1. A foreign symbol is detected (lines 2–4). In this case, the program is requesting
some resource amount that is not within the spread of any of the codewords
in the codebook. This typically indicates an overshoot or undershoot signal.
A very common example is DoS attacks that use data poisoning to pass a
huge value to a malloc call, resulting in immediate crashing.

Radmin: Early Detection of Application-Level Resource Exhaustion 525

Algorithm 1. AcceptMeasurement
input : Measurement vector v, heartbeat signal t,

PFA M , Current state qi ∈ M , Current path probability p
output: Accept or Reject

1 c ← Encode(v);

2 if c = ∅ then
3 Reject � Foreign value
4 end

5 if p · γ(qi, c) < γmin(M) then
6 Reject � Low probability transition or path
7 end

8 timedout ← 1;
9 foreach outgoing edge ei from qi do

10 if ¬ Timedout(ei, t) then
11 timedout ← timedout ∧ 0;
12 end

13 end
14 if timedout = 1 then
15 Reject � All transitions timed out
16 end

17 Accept � take the transition

– γmin(M) is the minimum prediction probability of M .
– Timedout(ei, t) tests if the time signal t lies outside the spread of the time dimen-

sions of the codeword corresponding to transition ei.

2. The program is requesting a transition that has a very low probability (lines
5–7). This case captures scenarios where attackers craft input that consumes
(or locks) resources at program states that differ from benign runs. A common
example is attacks that aim at maximizing the amounts of resources consumed
by the program.

3. One or more PFAs time out (lines 8–16). In this case, the program has not
transitioned to any of the next states within an acceptable time, with respect
to one or more resource types. This, for example, could indicate the presence
of a livelock.

The algorithm takes O(|Σ|) time in the worst case, since the number of
outgoing edges from any state is at most |Σ|.

5 Empirical Evaluation

We conducted a series of experiments to evaluate the effectiveness of Radmin.
The first set of experiments evaluate the effectiveness of Radmin in detecting
attacks that trigger uncontrolled resource consumption. The first experiment

526 M. Elsabagh et al.

uses a web server and a browser, with sufficient input coverage. We then con-
ducted a second experiment using common Linux programs, and only using the
functionality tests that shipped with them as a representation of normal inputs.
Finally, we conducted a third experiment to evaluate the effectiveness of Radmin
in detecting starvation, using starvation and livelock cases that are common in
the literature.

We refer to test cases that trigger abnormal behavior by positive (malicious),
and those that do not by negative (benign). Each positive test case can either
be correctly detected or missed, giving a true positive (TP) or a false negative
(FN), respectively. Each negative test case can either be detected as such or
incorrectly detected as an attack, giving a true negative (TN) or a false positive
(FP), respectively.

5.1 Procedure and Metrics

For every target program, we proceeded as follows. We executed two thirds of the
negative test cases to collect benign measurements and build the PFAs. Then,
we executed the remaining one third to measure the false positive rate. Finally,
we executed all positive test cases to measure the detection rate and earliness of
the detection.

We trained the PFAs, and optimized their hyperparameters, using 5-fold
cross-validation (CV) over the training sequences (measurements from the two-
thirds of negative test cases used in training). For each resource type, we build
a PFA and select its hyperparameters from a cross product of all possible values
(see Appendix A). Training sequences were divided into five roughly equal seg-
ments. Each fold in the CV used the sequences in one such segment for testing,
and a concatenation of the rest for training. CV testing is performed by calcu-
lating the average log-loss of the prediction probability of sequences, given by
− 1

T

∑T
i=1 lg P (si), where P (si) is the prediction probability of test sequence si

and T is the total number of test sequences. This is done for each fold, resulting
in five average log-loss values per hyperparameters vector. Finally, the hyper-
parameter vector with the best median log-loss over the five folds is used for
building the PFA over the entire training sequences.

We used the following metrics in our evaluation: False Positive Rate (FPR),
True Positive Rate (TPR), and Earliness (Erl.). Earliness is calculated as the
percentage of the amount of resources that Radmin saved under an attack, to
the maximum resources used by negative runs. We use Erl. to quantify how quick
Radmin detected the attacks. For example, if a program consumed a maximum of
40 MB under benign conditions, and an attack consumed 30 MB before Radmin
detected it, the earliness of detecting the attack would be 40−30

40 = 25%. Erl.
reaches its best value at 100 and its worst at 0.

For resource exhaustion detection, we used synthetic attacks (which we dis-
cuss in the following section). In the case of starvation and livelocks, we used
a number of common cases that appeared in prior livelock detection studies
[6,7,22,27]. Note, since the attacks aimed at exhausting system resources, they
were always detected once consumed resources more than the maximum of

Radmin: Early Detection of Application-Level Resource Exhaustion 527

benign runs. Therefore, Radmin always achieved a TPR of 1. The same applies
to starvation and livelock test cases.

5.2 Synthetic Exhaustion Attacks

One approach to evaluate Radmin against resource exhaustion attacks would
be to test it with several known attacks. While such an approach is common in
the literature, it suffers from two major drawbacks. First, it is very challenging
to identify real exhaustion attacks that exploit different weaknesses, different
resource types, and exercise different code paths for each target program. That
means the produced results could be biased, because the number of attacks would
have little to no correlation with the variety of attacks that can be detected.
Second, evaluating a defense system against only known attacks limits the scope
of the evaluation and the results to only the known attacks. As we have seen in
the past [15,25,29], this may establish a false sense of security against attacks
that are possible in practice but have not yet been seen in the wild. Therefore,
we decided against using the only few known attacks, and instead opted for
generating synthetic attacks that resemble, and even surpass in sophistication
and variety, the attacks seen in the wild. Our ultimate goal is to stress the system
and find out its limits on a much richer set of attack entries.

To achieve that, we assume that the attacker has successfully identified some
exhaustion vulnerability in the target program, and has crafted malicious input
that successfully triggers the vulnerability. The nature of the exploit by which
the vulnerability is triggered is not pertinent to our evaluation, since we are only
concerned about the scope of the exploit (in our case, resource exhaustion) rather
than its cause. Therefore, the malicious input that caused the exhaustion can be
substituted by attack code that executes to the same effect at some vulnerable
code site in the context of the process. Therefore, we generated synthetic attack
datasets by separately collecting measurements for exhaustion attack samples,
and injecting those measurements in the trace of negative (benign) measure-
ments. The attack measurements are injected once per trace file at a randomly
selected location. To account for differences in the total amount of the attacked
resource at the injection point, we adjust the injected measurements by adding
(summing) the last benign measurement vector of the same resource type to
each attack vector in the rest of the trace. Being able to inject the attacks at
any point in the trace allows us to accurately capture attacks seen in the wild,
and even cover more sophisticated cases, including exhaustion attacks at very
early or very late stages in the execution of the process. For example, exhaustion
may be possible through attacker controlled environment variables that are used
by dynamic libraries during process creation or termination.

The attack snippets were designed to enable the attacks to execute stealthily
(by slowly harvesting resources) and avoid early detection. This is a worst-case
scenario that is much more conservative than current attacks seen in the wild.
For attacks that targeted memory, file descriptors, and tasks, we allocated 10
memory pages, 1 file descriptor, and 1 task per each iteration of the attack,
respectively. For stack attacks, we used uncontrolled recursion where each stack

528 M. Elsabagh et al.

frame is approximately 512 bytes. CPU attacks were infinite loops that compute
sqrt and pow operations, where each iteration consumed 4 clock ticks on average.
In general, the attacks covered the following CWE classes4: 400, 401, 404, 674,
770, 771, 772, 773, 774, 775, and 834. Note that the choice of the parameters
does not bias our results because they do not, by themselves, alter the outcome
of the attack or the pattern at which it occurs.

5.3 Resource Exhaustion Results

Experiment 1. The first experiment replayed a dataset of ∼60 K unique benign
URLs of incoming HTTP GET requests to our school servers. We used the w3m
browser on the xterm terminal, and the host domains were mirrored and served
using apache. On xterm, w3m renders tables, frames, colors, links, and images.
Radmin monitored both apache and w3m. In the case of apache, the monitoring
was performed per each request handler.

Table 2 shows the results for this experiment. Radmin achieved a FPR of only
11 out of 10,000 requests in the case of w3m. For apache, the number further
decreases to only 4 out of 10,000 requests. In the case of apache, Radmin saved
more than 85% of the file descriptors (the maximum of negative runs was 10
file descriptors). The memory saving for apache is only 5%, which is due to
the highly centralized distribution of memory consumption of apache during
negative runs (1.19 GB mean, 1.22 GB median, 1.28 GB mode). In the case of
w3m, the maximum saving achieved was 87% for CPU time (maximum of benign
runs was 56 ticks). Overall, the results show that Radmin can effectively save
resources with very high accuracy.

Table 2. Detection performance for Experiment 1.

Prog TP FP TN FPR %Erl. (mean ± std.)

CPU File Task Mem

apache-2.4.7 6064 5 12167 0.0004 40 ± 23 85 ± 19 12 ± 10 05 ± 03

w3m-0.5.3 14245 20 18684 0.0011 87 ± 08 49 ± 40 25 ± 23 51 ± 27

Experiment 2. The second experiment used 10 common Linux programs. The
functionality test packages that shipped with the programs were used to train
Radmin. The major difference between this experiment and Experiment 1 is the
lack of input coverage. In Experiment 1, we had sufficient input to build a profile
of benign behavior with high confidence. In Experiment 2, the functionality tests
were few, and some of the consumption subsequences were not significant to be
learned by the model (see Sects. 4.2 and 5.1), resulting in a higher FPR.

4 For details and code samples, please refer to the CWE project at http://cwe.mitre.
org.

http://cwe.mitre.org
http://cwe.mitre.org

Radmin: Early Detection of Application-Level Resource Exhaustion 529

Table 3. Detection performance for Experiment 2.

Prog TP FP TN FPR %Erl. (mean ± std.)

CPU File Task Mem

cmp-3.3 9 0 14 0 98 ± 01 62 ± 32 - 54 ± 39

cpio-2.11 24 0 17 0 99 ± 01 49 ± 35 - 99 ± 03

diff-3.3 56 0 109 0 90 ± 01 65 ± 32 - 55 ± 41

gawk-4.0.1 223 2 389 0.0051 81 ± 03 50 ± 29 76 ± 15 28 ± 21

gzip-1.6 109 2 201 0.0099 77 ± 28 53 ± 35 - 39 ± 48

openssl-1.0.1f 380 0 594 0 94 ± 01 77 ± 25 - 28 ± 38

rhash-1.3.1 22 1 35 0.0278 47 ± 40 62 ± 33 - 57 ± 33

sed-4.2.2 108 6 194 0.0300 70 ± 30 62 ± 33 - 80 ± 16

tar-1.27.1 480 3 980 0.0031 98 ± 02 82 ± 24 25 ± 24 70 ± 19

wget-1.5 55 0 79 0 95 ± 01 79 ± 21 - 50 ± 32

The selected programs cover critical infrastructure services that are often uti-
lized by desktop and web applications — namely, compression, text processing
(pattern matching and comparison), hashing, encryption, and remote downloads.
Attacks on compression programs can involve highly-recursive compressed files
(zip bombs), where decompressing the files would result in uncontrolled con-
sumption of CPU time and file descriptors. Attacks on text processing appli-
cations typically use specially crafted regular expressions or data blocks that
result in CPU and memory exhaustion. Hashing and encryption are notorious
for CPU and memory exhaustion through specially crafted or erroneous mes-
sages. Download managers often suffer from exhaustion of file descriptors and
CPU time.

Table 3 shows the results of this experiment. As expected, the FPR is higher
than Experiment 1. Nevertheless, Radmin achieved a low FPR in most of the
cases. For earliness, Radmin achieved high savings for all resources, saving more
than 90% of CPU time in most cases. This is mainly due to the high skewness
of the CPU time (in clock ticks) distribution of those programs (e.g., 374 mean,
120 median, and 1987 mode for tar). Overall, the results demonstrate the effec-
tiveness of our approach, and the feasibility of using functionality tests to train
Radmin.

We emphasize that the FPR of Radmin is inverse proportional to input cov-
erage. As higher input coverage is achieved, the PFA models used in Radmin
become more complete and the FPR decreases. We discuss this in Sect. 6.1, along
with ways to further increase the earliness of detection.

5.4 Starvation and Livelock Results

In this experiment, we used a number of common resource starvation samples
[6,7,22,27]. Simplified snippets of the test cases are provided in Appendix B.

530 M. Elsabagh et al.

The test cases spanned the two major resource starvation causes: (1) starvation
due to prolonged holding of resources by other processes, and (2) livelocks due
to busy-wait locking.

The first test case, filelock, is a multi-process program that manages exclu-
sive access to resources by holding a lock on an external file. In this case, starvation
can happen when a process holds the lock for a prolonged time, preventing other
processes from making progress. In the second test case, twolocks, two threads
try to acquire two locks, in reversed order, and release any acquired locks if the two
locks were not both acquired. This is a fundamental livelock case due to unordered
busy-wait locking of resources. Finally, the third test case is a rare bug in sqlite,
when two or more threads fail, at the same time, to acquire a lock.

In this experiment, we ran each test case a 1000 times, and timed out each run
after 20 s. Runs that finished before the 20 s deadline were considered negative
samples, and runs that did not finish by the deadline were considered positive.
Table 4 shows the results for this experiment.

Radmin detected the positive samples with high earliness. For filelock,
Radmin saved 59% of the maximum (8 ticks) of negative filelock runs. In the
case of twolocks, Radmin saved more than 93% of 12 ticks. For sqlite, Radmin
saved 76% of 19 clock ticks. Additionally, Radmin achieved 0 FPs and 0 FNs,
indicating that none of the negative samples spent time in a PFA state more
than the spread of the codewords corresponding to all outgoing transitions from
that state. This means that the negative runs showed a set of similar timing
behaviors that were fully learned by the model. Due to the external factors
involved, such as internal parameters of the kernel scheduler, further studies are
needed in order to reach a conclusive understanding of such behavior. Overall,
the results show the promise of our approach, even in starvation situations that
involved multiple processes and threads.

Table 4. Starvation detection performance.

Prog TP FN FP TN TPR FPR %Erl. (mean ± std.)†

filelock 570 0 0 143 1 0 59 ± 26

twolocks 705 0 0 98 1 0 93 ± 04

sqlite 460 0 0 180 1 0 76 ± 13

5.5 Overhead

We report the overhead incurred by Radmin, in the online phase, for the pro-
grams used in our experiments as well as for the UnixBench [9] benchmark. We
chose UnixBench because it tests various aspects of the system performance and
uses well-understood and consistent benchmarks. Note, Radmin generated no
false positives for UnixBench. All experiments were executed on machines run-
ning Ubuntu Server 14.04, quad-core 2.83 GHz (base) Intel Xeon X3363 processor
and 8 GB of memory. The overhead is summarized in Fig. 4. Radmin incurred

Radmin: Early Detection of Application-Level Resource Exhaustion 531

less than 16% overhead, with mean overhead (geometric) of 3.1%. The runtime
overhead is more pronounced in CPU bound programs that were more frequently
interrupted by the heartbeat thread. Overall, since Radmin avoids sampling, uses
static rewriting, and selectively traces a particular set of events, the overhead
incurred is significantly less than generic dynamic instrumentation and profiling
tools (more than 200% runtime increase [36,39]).

Fig. 4. Runtime overhead incurred by Radmin, in the online phase, for theprograms
used in Experiments 1 and 2 (left), and the UnixBench benchmark (right).

6 Discussion and Limitations

6.1 Higher Accuracy and Earliness

The PFA model used in Radmin learns only the subsequences that have signif-
icant prediction probability (see Sect. 4.2), which means that some benign but
rare subsequences may not be learned by the PFA. Such subsequences would be
erroneously flagged as attacks (false positives), since they traverse low proba-
bility paths in the PFA. Although it is straightforward to force the inclusion of
such subsequences in the PFA by adjusting the transition probabilities of their
corresponding paths, we decided against doing so in order to give a clear and
realistic view of the efficacy of the system. However, Radmin has the nice prop-
erty that the FPR is inverse proportional to input coverage, i.e., as benign input
coverage increases, the number of benign rare subsequences decreases and the
PFAs become eventually complete.

Leveraging more information about the target process can allow Radmin
to achieve higher earliness. For example, we can associate input values and
attributes with paths in the PFAs. The challenges here are reaching a reliable
model for representing and matching various input vectors, such as command
line arguments, file IO, environment variables, and succinctly associating the
input with paths in the PFAs. Given such a model, we can traverse the PFAs
without actually executing the program. That would give the near -optimum
earliness, since traversing the PFAs is much cheaper than running the target

532 M. Elsabagh et al.

program itself. Also, one can synthesize static input filters from the PFAs. We
plan to explore these ideas in more details in our future work.

6.2 Behavior Confinement

Radmin can be used to confine the behavior of processes to users rather than
only detecting anomalous usage. Depending on how each user uses a program,
Radmin will learn different behavior that is specific to the user. This can help
defend unknown attacks by detecting anomalous, but valid, consumption of
resources. Radmin can be easily extended to seal off paths of infrequent or
undesired resource usage in protected programs by adjusting the conditional
distributions in the PFAs. Similarly, Radmin can be used to construct a profile
of specific behavioral aspects of target programs, such as sequences of executed
events or files accessed. It can also confine the behavior of protocols, which is
currently in our future work.

6.3 Attacker Knowledge of Radmin

Attackers could potentially attempt to employ Radmin to learn the PFAs for a
target program, then craft input that maximizes the consumption of the program
by steering the execution to paths of high resource consumption. We argue that
such an attack is not a resource exhaustion attack per se. The reason is that if
the PFA contains a path of high resource consumption, that means some typical
benign input to the program does exercise that path, and the subsequences of
the path are statistically significant. Therefore, the consumed resources cannot
amount to an exhaustion, otherwise the input should have not been accepted (as
benign) by the program in the first place. In this case, rate limiting techniques
can be employed to throttle the rate of requests (whether benign or not) that
exercise such paths. Nevertheless, Radmin still limits the potential of the attacks
to cause actual resource exhaustion damage, by confining them to only high
probability paths in the PFAs. In other words, the attacker has to identify a
PFA path that exhibits high resource consumption, but such path might not be
present in many of the programs.

6.4 Accuracy of Recursive Sites Identification

Dyninst ParseAPI uses recursive traversal parsing to construct the CFG, and
employs heuristics to identify functions that are reached only through indirect
flows. The resulting CFG may be incomplete, which might cause the User Tracer
to miss some recursive code sites if the recursion is chained using indirect calls
that ParseAPI could not resolve. While we argue that such construct is rare in
practice, it can be addressed by dynamically tracing indirect calls using a shadow
call stack, at the expense of increased runtime overhead. We plan on exploring
this option as part of our future work.

Radmin: Early Detection of Application-Level Resource Exhaustion 533

6.5 Exhaustion Through Separate Runs

The current monitoring approach monitors consumption that lives only within
individual processes. This does not allow detection of attacks that span multiple
runs of some target program. For example, if a program creates a new file every
time it runs, excessively running the program can exhaust the storage space.
Extending Radmin to monitor consumption of system resources across separate
runs is straightforward.

7 Related Work

Modern operating systems offer a number of threshold-based facilities to limit the
resource consumption of processes (e.g., setrlimit, ulimit, AppArmor). Those
facilities, while widely available, fall short of detecting or mitigating resource
exhaustion and starvation attacks, for two reasons. First, the limits are set irre-
spective of the actual consumption of different program segments for different
inputs or users. This enables attackers to exhaust resources by crafting input that
consumes the highest possible resources, for prolonged times [17,18,26]. Second,
the facilities cannot detect starvation attacks, since only an upper bound is used
in detection.

Antunes et al. [12] proposed a system for testing server programs for exhaus-
tion vulnerabilities. The system depended on a user supplied specifications of the
server protocol, and automatically generated (fuzzed) test cases and launched
them against the server. In [23], Groza et al. formalized DoS attacks using a set of
protocol cost-based rules. Aiello et al. [11] formalized a set of specifications that
a protocol has to meet to be resilient to DoS attacks. While the idea is promis-
ing, the specifications need explicit cost calculation of required computational
resources, which is often not feasible in practice [37].

Chang et al. [16] proposed a static analysis system was for identifying source
code sites that may result in uncontrolled CPU time and stack consumption. The
authors used taint and control-dependency analysis to automatically identify
high complexity control structures in the source code, whose execution can be
influenced by untrusted input. Similar approaches that required manual source
code annotation were also developed [24,38]. Radmin substantially differs from
those systems in that it a dynamic solution, does not require access to the source
code or any side information, and it covers different types of resources rather
than only CPU and stack consumption.

In [33,34], Sekar et al. introduced approaches for detecting abnormal program
behavior by building automata from system calls and executing the automata at
runtime, flagging invalid transitions as anomalies. Mazeroff et al. [28] described
methods for inferring and using probabilistic models for detecting anomalous
sequences of system calls. They built a baseline model of sequences of system calls
executed by benign programs, a test model of a target program, and compared
the distance between the two models to detect anomalies. While approaches
based on system call monitoring are easy to deploy, they are prone to mimicry
attacks [25,29]. Additionally, they either completely ignore call arguments, which

534 M. Elsabagh et al.

makes them inapplicable for exhaustion detection; or they model the arguments
using point estimates, which is insufficient for early exhaustion detection.

Radmin is fundamentally different from all these systems in that it captures
both program code and input dependencies of resource consumption, by model-
ing both the temporal and spatial information in resource consumption behavior
of the program. Radmin detects both exhaustion and starvation attacks, and
does not use static thresholds. By leveraging temporal information, Radmin also
detects when target programs are starving of resources. Additionally, Radmin
monitors the target programs by hooking into the kernel tracing facilities, which
allows for maximum visibility into the target process and allows for low-penalty
monitoring.

8 Conclusion

The paper presented Radmin, a system for early detection of resource exhaus-
tion and starvation attacks. Unlike existing solutions, Radmin does not use static
limits and utilizes both temporal and spatial resource usage information. Rad-
min reduces the monitoring overhead by hooking into kernel tracepoints. The
Radmin user space library keeps track of stack usage used by target processes,
and provides a heartbeat signal that enables Radmin to detect starvation. We
showed that Radmin can detect resource exhaustion and starvation attacks with
high earliness and accuracy, and low overhead. The implementation of Radmin
was discussed along with its limitations and possible areas for improvements.

Acknowledgements. We thank Konstantinos Kolias, the anonymous reviewers, and
our shepherd Andrei Sabelfeld for their insightful comments and suggestions. We thank
Sharath Hiremagalore for technical assistance. This work is supported by the National
Science Foundation Grant No. CNS 1421747 and II-NEW 1205453. Opinions, findings,
conclusions, and recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF or the US Government.

A PST Hyperparameters Grid

See Table 5.

Table 5. Hyperparameter values used in training the PSTs.

Param Possible values Chosen (median)

γmin {10−5, 10−7, 10−11, 10−13} 10−11

rmin {1.05} 1.05

L {30, 40, 50, 60} 40

Radmin: Early Detection of Application-Level Resource Exhaustion 535

B Starvation and Livelock Snippets

Listing 1.1. filelock
1 void filelock() {
2 fork()
3 ...
4 system("lockfile lockfile.lock");
5 ...
6 // do some work
7 ...
8 system("rm -f lockfile.lock");
9 }

Listing 1.2. sqlite-lock
1 void execute(char ∗s) {
2 ...
3 while (sqlite3 step(stmt) == SQLITE BUSY)
4 sleep(1);
5 sqlite3 finalize(stmt);
6 }
7

8 void thread2() {
9 open db();

10 execute("UPDATE foo SET ...");
11 ...
12 }
13

14 void thread1() {
15 open db();
16 ...
17 sqlite3 prepare v2("SELECT id FROM foo", ...);
18 sqlite3 step(stmt);
19 ...
20 start thread(thread2, ...);
21 ...
22 // livelock if interrupted thread2
23 execute("INSERT INTO foo VALUES(100)");
24 ...
25 }

Listing 1.3. twolocks
1 void thread1() {
2 while (true) {
3 ...
4 lock lock x(resource x);
5 ...
6 try lock lock y(resource y);
7 if (!lock y) continue;
8 ...
9 }

10 }
11

12 void thread2() {
13 while (true) {
14 ...
15 lock lock y(resource y);
16 ...
17 try lock lock x(resource x);
18 if (!lock x) continue;
19 ...
20 }
21 }

References

1. Myths of DDoS attacks. http://blog.radware.com/security/2012/02/4-massive-
myths-of-ddos/

2. Availability overrides security concerns. http://www.hrfuture.net/performance-
and-productivity/availability-over-rides-cloud-security-concerns.php?Itemid=169

3. CWE-400: Uncontrolled resource consumption. http://cwe.mitre.org/data/
definitions/400.html

4. Dyninst API. http://www.dyninst.org/dyninst
5. Mobile users favor productivity over security. http://www.infoworld.com/article/

2686762/security/mobile-users-favor-productivity-over-security-as-they-should.
html

6. Pthread livelock. http://www.paulbridger.com/livelock/
7. Sqlite livelock. http://www.mail-archive.com/sqlite-users@sqlite.org/msg54618.

html
8. Systemtap. https://sourceware.org/systemtap/

http://blog.radware.com/security/2012/02/4-massive-myths-of-ddos/
http://blog.radware.com/security/2012/02/4-massive-myths-of-ddos/
http://www.hrfuture.net/performance-and-productivity/availability-over-rides-cloud-security-concerns.php?Itemid=169
http://www.hrfuture.net/performance-and-productivity/availability-over-rides-cloud-security-concerns.php?Itemid=169
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html
http://www.dyninst.org/dyninst
http://www.infoworld.com/article/2686762/security/mobile-users-favor-productivity-over-security-as-they-should.html
http://www.infoworld.com/article/2686762/security/mobile-users-favor-productivity-over-security-as-they-should.html
http://www.infoworld.com/article/2686762/security/mobile-users-favor-productivity-over-security-as-they-should.html
http://www.paulbridger.com/livelock/
http://www.mail-archive.com/sqlite-users@sqlite.org/msg54618.html
http://www.mail-archive.com/sqlite-users@sqlite.org/msg54618.html
https://sourceware.org/systemtap/

536 M. Elsabagh et al.

9. Unixbench. https://github.com/kdlucas/byte-unixbench
10. Vectorized implementation of k-means++. https://github.com/michaelchughes/

KMeansRex
11. Aiello, W., Bellovin, S.M., Blaze, M., Ioannidis, J., Reingold, O., Canetti, R.,

Keromytis, A.D.: Efficient, DoS-resistant, Secure Key Exchange for Internet Pro-
tocols. In: Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, pp. 48–58. CCS 2002. ACM, New York (2002)

12. Antunes, J., Neves, N.F., Veŕıssimo, P.J.: Detection and prediction of resource-
exhaustion vulnerabilities. In: ISSRE 2008, 19th International Symposium on Soft-
ware Reliability Engineering, 2008, pp. 87–96. IEEE (2008)

13. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In:
Proceedings of the Eighteenth annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

14. Bejerano, G., Yona, G.: Variations on probabilistic suffix trees: statistical modeling
and prediction of protein families. Bioinformatics 17(1), 23–43 (2001)

15. Carlini, N., Wagner, D.: Rop is still dangerous: Breaking modern defenses. In:
USENIX Security Symposium (2014)

16. Chang, R.M., Jiang, G., Ivancic, F., Sankaranarayanan, S., Shmatikov, V.: Inputs
of coma: Static detection of denial-of-service vulnerabilities. In: Proceedings of the
22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson,
New York, USA, July 8–10, 2009, pp. 186–199. IEEE Computer Society (2009)

17. Chee, W.O., Brennan, T.: Layer-7 DDoS (2010)
18. Crosby, S., Wallach, D.: Algorithmic DoS. In: Encyclopedia of Cryptography and

Security, pp. 32–33. Springer (2011)
19. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The power of selective memory: self-

bounded learning of prediction suffix trees. In: Advances in Neural Information
Processing Systems, pp. 345–352 (2004)

20. Desnoyers, M.: Using the linux kernel tracepoints. https://www.kernel.org/doc/
Documentation/trace/tracepoints.txt

21. Fu, S.: Performance metric selection for autonomic anomaly detection on cloud
computing systems. In: Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE, pp. 1–5. IEEE (2011)

22. Ganai, M.K.: Dynamic livelock analysis of multi-threaded programs. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 3–18. Springer, Heidelberg
(2013)

23. Groza, B., Minea, M.: Formal modelling and automatic detection of resource
exhaustion attacks. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, pp. 326–333. ACM (2011)

24. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

25. Kayacik, H.G., et al.: Mimicry attacks demystified: What can attackers do to evade
detection? In: Sixth Annual Conference on Privacy, Security and Trust, PST 2008,
pp. 213–223. IEEE (2008)

26. Kostadinov, D.: Layer-7 DDoS attacks: detection and mitigation - infosec
institute (2013). http://resources.infosecinstitute.com/layer-7-ddos-attacks-
detection-mitigation/

27. Lin, Y., Kulkarni, S.S.: Automatic repair for multi-threaded programs with dead-
lock/livelock using maximum satisfiability. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, pp. 237–247. ACM (2014)

https://github.com/kdlucas/byte-unixbench
https://github.com/michaelchughes/KMeansRex
https://github.com/michaelchughes/KMeansRex
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://resources.infosecinstitute.com/layer-7-ddos-attacks-detection-mitigation/
http://resources.infosecinstitute.com/layer-7-ddos-attacks-detection-mitigation/

Radmin: Early Detection of Application-Level Resource Exhaustion 537

28. Mazeroff, G., Gregor, J., Thomason, M., Ford, R.: Probabilistic suffix models for
API sequence analysis of Windows XP applications. Pattern Recogn. 41(1), 90–101
(2008)

29. Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack against powerful
system-call monitors. In: Proceedings of the 2008 ACM symposium on Information,
computer and communications security, pp. 156–167. ACM (2008)

30. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)

31. Rutar, N., Hollingsworth, J.: Data centric techniques for mapping performance
measurements. In: 2011 IEEE International Symposium on Parallel and Distrib-
uted Processing Workshops and Phd Forum (IPDPSW), pp. 1274–1281, May 2011

32. Saltzer, J., Schroeder, M.: The protection of information in computer systems.
Proc. IEEE 63(9), 1278–1308 (1975)

33. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method
for detecting anomalous program behaviors. In: Proceedings 2001 IEEE Sympo-
sium on Security and Privacy, 2001, S&P 2001, pp. 144–155. IEEE (2001)

34. Sekar, R., Venkatakrishnan, V., Basu, S., Bhatkar, S., DuVarney, D.C.: Model-
carrying code: a practical approach for safe execution of untrusted applications.
ACM SIGOPS Operating Syst. Rev. 37(5), 15–28 (2003)

35. Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., Keromytis, A.D.:
Assure: automatic software self-healing using rescue points. ACM SIGARCH Com-
put. Archit. News 37(1), 37–48 (2009)

36. Uh, G.R., Cohn, R., Yadavalli, B., Peri, R., Ayyagari, R.: Analyzing dynamic
binary instrumentation overhead. In: Workshop on Binary Instrumentation and
Application (2007)

37. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutorials
15(4), 2046–2069 (2013)

38. Zheng, L., Myers, A.C.: End-to-end availability policies and noninterference. In:
18th IEEE Workshop Computer Security Foundations, CSFW-18 2005, pp. 272–
286. IEEE (2005)

39. Zinke, J.: System call tracing overhead. In: The International Linux System Tech-
nology Conference (Linux Kongress) (2009)

Towards Automatic Inference of Kernel Object
Semantics from Binary Code

Junyuan Zeng and Zhiqiang Lin(B)

The University of Texas at Dallas, 800 W. Campbell Rd,
Richardson, TX 75080, USA

{junyuan.zeng,zhiqiang.lin}@utdallas.edu

Abstract. This paper presents Argos, the first system that can auto-
matically uncover the semantics of kernel objects directly from a kernel
binary. Based on the principle of data use reveals data semantics, it
starts from the execution of system calls (i.e., the user level application
interface) and exported kernel APIs (i.e., the kernel module development
interface), and automatically tracks how an instruction accesses the ker-
nel object and assigns a bit-vector for each observed kernel object. This
bit-vector encodes which system call accesses the object and how the
object is accessed (e.g., read, write, create, destroy), from which we derive
the meaning of the kernel object based on a set of rules developed accord-
ing to the general understanding of OS kernels. The experimental results
with Linux kernels show that Argos is able to recognize the semantics of
kernel objects of our interest, and can even directly pinpoint the impor-
tant kernel data structures such as the process descriptor and memory
descriptor across different kernels. We have applied Argos to recognize
internal kernel functions by using the kernel objects we inferred, and we
demonstrate that with Argos we can build a more precise kernel event
tracking system by hooking these internal functions.

1 Introduction

Uncovering the semantics (i.e., the meanings) of kernel objects is important
to a wide range of security applications, such as virtual machine introspection
(VMI) [11], memory forensics (e.g., [13,24]), and kernel internal function infer-
ence. For example, knowing the meaning of the task struct kernel object in
the Linux kernel can allow VMI tools to detect hidden processes by tracking the
creation and deletion of this data structure. In addition, knowing the seman-
tics of task struct enables security analysts to understand the set of functions
(e.g., the functions that are responsible for the creation, deletion, and traversal
of task struct) that operate on this particular data structure.

However, uncovering the semantics of kernel objects is challenging for a cou-
ple of reasons. First, an OS kernel tends to have a large number of objects
(up to tens of thousands of dynamically created ones with hundreds of different
semantic types). It is difficult to associate the meanings to each kernel object
when given such a large number. Second, semantics are often related to meaning,
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 538–561, 2015.
DOI: 10.1007/978-3-319-26362-5 25

Towards Automatic Inference of Kernel Object Semantics from Binary Code 539

which is very vague even to human beings. It is consequently difficult to precisely
define semantics that can be reasoned by a machine. In light of these challenges,
current practice is to merely rely on human beings to manually inspect kernel
source code, kernel symbols, or kernel APIs to derive and annotate the semantics
of the kernel objects.

To advance the state-of-the-art, this paper presents Argos, the first system
for Automatic Reverse enG ineering of kernel Object Semantics. To have a wider
applicability and practicality, Argos works directly on the kernel binary code
without looking at any kernel source code or debugging symbols. Similar to
many other data structure (or network protocol) reverse engineering systems
(e.g., [4,5,7,17,18,23]), it is based on the principle of data uses tell data types.
Specifically, it uses a dynamic binary code analysis approach with the kernel
binary code and the test suites as input, and outputs the semantics for each
observed kernel object based on how the object is used.

There are two key insights behind Argos. One is that different kernel objects
are usually accessed in different kernel execution contexts (otherwise, they should
be classified into the same type of object). Consequently, we can use different
kernel execution contexts to classify each object. The other is that we can further
derive the semantics by using well-accepted public knowledge, such as the user
level system call (syscall for brevity henceforth) interface, which is used when
developing user level applications; the kernel level exported API interface, which
is used when developing kernel modules; and the different memory operations
such as memory read and write, which we can use to track and associate the
execution context with each kernel object.

To address the challenge of precisely defining the kernel object semantics,
we introduce a bit vector to each kernel object. This bit vector encodes which
syscalls accessed the object (one syscall per bit), and using what kind of access
(e.g., create, read, write, and destroy). In total, given an N number of syscalls
for a given OS kernel, our bit vector has 4N bits in length for each distinctive
kernel object. This 4N bit vector captures all the involved syscalls during the
lifetime of a particular kernel object, which can be understood as a piece of
information contributed by the accessing syscalls. Consequently, the meaning
for each object is represented by the syscalls that accessed it and the different
ways that it was accessed. Such information can uniquely represent each kernel
object and its meaning.

Since syscalls are usually compatible across different kernels for the same OS
family, this would allow Argos to directly reason about the kernel objects for a
large set of OSes. More importantly, it would also allow Argos to interpret the
meaning of kernel objects in a unified way. For instance, there could be differ-
ent names for certain kernel objects even though they have the same semantic
type. By using the same encoding across different OSes, we can uniformly iden-
tify the common important data structures such as process descriptor, memory
descriptor, file descriptor, etc., regardless of their symbol names.

There will be many valuable applications enabled by Argos. One use case,
as we will demonstrate in this paper, is that we can use the uncovered object

540 J. Zeng and Z. Lin

semantics to infer the internal kernel functions. The knowledge of the internal
kernel functions is extremely useful for kernel malware defense. Other appli-
cations include kernel data structure reverse engineering, virtual machine intro-
spection, and memory forensics. In particular, Argos will complement the exist-
ing data structure reverse engineering work that previously only focused on
recovering the syntactic information (i.e., the layout and shape) of data struc-
tures by adding the semantic information.

In summary, we make the following contributions in this paper:

– We present Argos, the first system that is able to automatically uncover the
semantics of kernel objects from kernel binary code.

– We introduce a bit-vector representation to encode the kernel object seman-
tics. Such representation separates the semantic encoding and semantic pre-
sentation, and makes Argos work for a variety of syscall compatible OSes.

– We have built a proof-of-concept prototype of Argos. Our evaluation results
show that our system can directly recognize a number of important kernel
data structures with correct semantics, even across different kernels.

– We show a new application by applying Argos to discover the internal kernel
functions, and demonstrate that a better kernel event tracking system can be
built by hooking these internal kernel functions.

2 System Overview

While the principle of “data uses tell data types” is simple, we still face several
challenges when applying it for the reverse engineering of kernel object semantics.
In this section, we walk through these challenges and give an overview of our
system.

Challenges. Since Argos aims to uncover kernel object semantics, we have to
first define what the semantics are and how a machine can represent and reason
about them. Unfortunately, this is challenging not just because the semantics
themselves are vague but also because it is hard to encode.

Second, where should we start from? Given kernel binary code, we can
inspect all of its instructions (using static analysis) or the execution traces (using
dynamic analysis). While static analysis is complete, it is often an over approx-
imation and may lead to imprecise results. Dynamic analysis is the opposite.
Therefore, we have to make a balance and select an appropriate approach.

Third, there are various ways and heuristics to perform the reverse engi-
neering, e.g., blackbox approaches by feeding different inputs and observing the
output differences, or whitebox approaches by comparing the instruction level
differences (e.g., [14]). It is unclear which approach we should use, and we have
to select an appropriate one for our problem.

Insights. To address these challenges, we propose the following key ideas to
reverse engineer the kernel object semantics:

Towards Automatic Inference of Kernel Object Semantics from Binary Code 541

– Starting from Well-Known Public Knowledge. Similar to many other
reverse engineering systems, Argos must start from a well-known knowledge
base to infer unknown knowledge. For a given OS kernel, there are two pieces
of well-known public knowledge: (1) the syscall specification that is used by
application programmers when developing user level programs, and (2) the
public exported kernel API specification that is used by kernel module pro-
grammers when developing kernel drivers. Therefore, in addition to the kernel
test cases, Argos will take syscall and kernel API specifications as input to
infer the kernel object semantics.

– Using Execution Context Differencing. In general, different kernel
objects are usually accessed in different execution contexts (otherwise, they
should be classified as the same object). Consequently, we can use different exe-
cution contexts to classify each object, and we call this approach execution con-
text differencing.

– Encoding the Semantics with a Bit-Vector. To keep a record of the dif-
ferent accesses by different syscalls, we use a bit-vector associated with each
distinctive object. This bit-vector captures which syscall, under what kind
of context, accessed the object. Through this approach, we can separate the
semantic encoding and presentation.

Fig. 1. An Overview of Argos.

Overview. To make Argos work with a variety of OS kernels, we design it atop
a virtual machine monitor (VMM), through which we observe and trace each
kernel instruction execution. As shown in Fig. 1, there are four key components

542 J. Zeng and Z. Lin

inside Argos: object tracking , syscall context identification, bit-vector genera-
tion, and bit-vector interpretation. They work as follows: starting from kernel
object creation, object tracking tracks the dynamically created kernel objects
and indexes them based on the calling context during object creation; whenever
there is an access, which is defined as a 4-tuple (create, read, write, destroy),
syscall context identification resolves the current context and tracks which syscall
is accessing the object and under what kind of context. This information will be
recorded by bit-vector generation during the lifetime for each observed object.
Finally, we use bit-vector interpretation to interpret the final semantics based on
the encoded bit vector.

Scope and Assumptions. We focus on the reverse engineering of the object
semantics of the OS kernels that are executed atop the 32-bit x86 architecture.
To validate our experimental results with the ground truth, we use open source
Linux kernels as the testing software. Note that even though the source code of
Linux kernel is open, it is actually non-trivial to retrieve the semantic informa-
tion for each kernel object. Currently, we use a manual approach to reconstruct
the semantic knowledge based on our best understanding of Linux kernels, and
compare with the results generated by Argos.

While we can integrate other techniques (e.g., REWARDS [18] and Howard
[23]) to recover the kernel object syntax (i.e., the fields and layout information),
we treat each kernel object as a whole in this paper and focus on the uncovering of
the kernel object semantics, an important step to enable many other applications.

In addition, we assume the users of our tool will provide a syscall specifica-
tion that includes each syscall number and syscall name, as well as an exported
kernel API specification that includes the instruction addresses of kernel object
allocation functions (e.g., kmalloc) such that Argos can hook and track ker-
nel object creation and deletion. Meanwhile, since Argos needs to watch each
instruction execution, we build our tool atop PEMU [26], which is a dynamic
binary code instrumentation framework based on QEMU [2]. Also, we do not
attempt to uncover the semantics for all kernel data, but rather focus on dynam-
ically accessed kernel objects.

3 Design and Implementation

In this section, we present the detailed design and implementation of each com-
ponent of Argos. Based on the flow of how Argos works, we first describe
how we track each kernel object in Sect. 3.1; then describe how we resolve the
corresponding syscall execution context when an object is accessed in Sect. 3.2;
next, we present the bit-vector generation component in Sect. 3.3, followed by
the bit-vector interpretation component in Sect. 3.4.

3.1 Object Tracking

Since the key idea ofArgos is based on the object use to infer the object semantics
and kernel objects are usually dynamically allocated, we have to (1) track object

Towards Automatic Inference of Kernel Object Semantics from Binary Code 543

allocation/deallocation, (2) track the size of each object, and (3) index each object
such that when given a dynamic access of the kernel object, we are able to know
to which object the address belongs. In the following, we describe how we achieve
these goals.

(1). Tracking the Object Allocation and Deallocation. A widely used
approach to track a kernel object is to hook its creation and deletion APIs.
These APIs are usually publicly accessible for kernel developers (even in closed
source OSes such as Microsoft Windows). In our implementation, we just hook
the kernel object allocation and deallocation functions such as kmem cache
alloc/kmem cache free, kmalloc/kfree, vmalloc/vfree at the VMM layer
for the Linux kernel. To support efficient look up, we use a red-black (RB) tree
indexed by their starting address and size to track the allocated object.

(2). Tracking the Object Size. Unlike at user level, we can intercept the
argument to malloc-family functions to identify the object size (while this is
still true for kmalloc), but there is no size argument to many other kernel
object allocation functions (e.g., kmem cache alloc). The reason is that the ker-
nel memory allocator (e.g., the slab or slub allocator) usually caches similar size
type objects and organizes them into clusters. For example, when allocating a
kernel object (e.g., task struct), kernel developers will just pass a flag argu-
ment and a pointer argument that points to kmem cache structure, which is the
descriptor of the cluster that contains the objects with similar size. This descrip-
tor is created by the kernel API kmem cache create and the size of the object is
passed to this descriptor’s creation function. Then one may wonder why the size
argument passed to kmem cache create cannot be used as the object size. This
is because this size is actually an over approximation and the size of the real ker-
nel object can be smaller than the one specified in the descriptor. Meanwhile, the
pointer argument of kmem cache alloc can point to the kmem cache that has
entirely different types of objects. For instance, our trace with the slab allocator
in Linux 2.6.32 shows that the kernel objects of the file and vfs mount data
structures are stored in the same kmem cache even though they have different
types and different sizes.

Therefore, we have to look for new techniques to recognize the kernel object
size. Since we use dynamic analysis, we can in fact track the allocated object size
at run time based on the object use. While this is still an approximate approach,
it is at least sound and we will not make any mistakes when determining to which
object a given virtual address belongs. Specifically, to access any dynamically
created object, there must be a base address. Right after executing a kernel
object allocation function, a base address is returned, which we shall refer to as v.
Any further access to the field of the object must start from v, or the propagation
of v. As such, we can infer the object size by monitoring the instruction execution
and checking whether there is any memory address that is derived from the
virtual address v as well as its propagation.

544 J. Zeng and Z. Lin

Fig. 2. An Example Illustrating How to Track the
Object Size. Note that Taint (eax) = Taint (p) =
Taint (q) = Taint (*r) = Ti, and Taint (r) = Tj .

Without loss of generality,
as shown in Fig. 2(a), when an
object Oi is created, we will
have its starting (i.e., base)
address v (suppose it is stored in
eax). To access the fields of Oi,
there must be a data arithmetic
operation of the base pointer
(or its derivations), and we can
therefore infer the size based
on the offset of the access. For
instance, as shown in Fig. 2(a),
assume the kernel uses eax+m
to access a field p of Oi, then we can get the size of Oi as m+4 from this partic-
ular operation. Then, assume the kernel inserts Oi to some other data structures
(e.g., a linked list); it must compute a dereferenced address of Oi such that tra-
versing other objects can reach Oi. Assume this address is q, which is computed
from p+n, then we can infer the Size(Oi) as (m+n+4) according to the execu-
tion of these accesses. Next, assume we assign the address of q to r (Fig. 2(b)).
Then all future dereferences will use ∗r as a base address to access Oi (instead
of v, the starting address), and we can similarly derive the size based on the
pointer arithmetic. Note that when dereferencing a kernel object, the kernel can
start from its middle instead of the starting address, which is very common in
both the Windows and Linux kernels.

Therefore, in order to resolve the size, we have to know that eax, p, q,
and ∗r actually all reference the same allocated object (i.e., they belong to
the same closure). If we assign a unique taint tag for each Oi using Ti, namely
Taint(eax) = Taint(v) = Ti, then we can propagate Ti to p, q, ∗r based on the
pointer data movement and arithmetic operations. Thus, this eventually leads
to a dynamic taint analysis [19] approach to decide whether eax, p, q, and ∗r
belong to the same Ti. Since taint analysis is a well established approach, we
omit its details for brevity in this paper. Basically, in our taint analysis, we cap-
ture how a memory access address is computed from the base address v and its
propagations (e.g., eax), from which we resolve the object size. This size is the
one being observed at run time.

Meanwhile, kernel objects usually point to each other. Looking at the point-to
graph can facilitate the inference of the important kernel data structures based on
their relations. Since we have assigned a unique taint tag Ti for each kernel object,
we can now track the dependence between kernel objects by looking at their taint
tags during memory write operations. Specifically, whenever there is a memory
write, wewill check the taint tags of both its source anddestination operand. If they
belong to our tracked objects, we will connect these two objects using their point-to
relation and store this information in their static object types. The particular offset
for the two objects of the point-to relation will also be resolved. This information,
namely object Oi at offset k points to Oj at offset l, will be recorded.

Towards Automatic Inference of Kernel Object Semantics from Binary Code 545

(3). Indexing the Dynamic Kernel Objects with Static Representa-
tion. Since kernel data structure semantics are static attributes, they should
be applied to all of the same type of a kernel object. However, when we use
dynamic analysis, what we observe is instances of kernel objects. Therefore, we
need to translate these dynamic instances into static representations such that
our bit-vector can just associate with the static representation instead of the
dynamic object instances.

In general, there are two basic approaches when converting dynamic object
instances into static forms: (1) using the concatenation of all the call-site addresses
from the top callers to the callee, or (2) using the program counter of the instruc-
tion that calls a kernel object allocation function. The first approach can capture
all the distinctive object allocations, but it may over classify the object types since
the same type can be allocated in different program calling contexts. While the
second approach mitigates this problem, it cannot handle the case where an allo-
cation function is wrapped. Therefore, the solution is always domain-specific and
somewhere in-between of these two approaches.

In our design, we adopt the second approach because we observe that a
single kernel object can often be allocated in different calling contexts (e.g.,
we observe that the task struct in Linux can be allocated in syscalls such as
vfork, clone, etc.). If we assign the call-site chain as the static type, we could
over classify the kernel object (having an N-to-one mapping). Also, our analysis
with a ground-truth labeled Linux kernel 2.6.32 shows that when we use the call
site PC of the allocation function (denoted as PCkmalloc) to assign the static
type, 80.3 % of the kernel objects have a one-to-one mapping. In contrast, when
we tried the call-site chain approach, we found 97.5 % of the objects had N-to-
one mapping. Therefore, eventually, in our current design, we decided to take
the second approach.

Summary. In short, our object tracking component will track the lifetime of
the dynamically allocated object using an RB-tree, which we call an RBtype

tree. It is used to store < v, s, Ti, PCkmalloc >, which is indexed by v, where
v is the starting address, s is the current resolved size (subject to be updated
during run-time), Ti is the taint tag for Oi, and PCkmalloc is the static type of
the allocated object. The reason to use the RBtype-tree is to speed up locating
the static type (encoded by PCkmalloc) when given a virtual address, and we
maintain an RBtype-tree to track these dynamically allocated objects. The basic
algorithm is to check whether a given virtual address α falls into [v, v + s] of our
RB-tree node; if so, we return its PCkmalloc as the type. Also, we maintain a
hash table (HT) that uses PCkmalloc as the index key. This HT will be used to
store the bit-vectors of the kernel objects based on their assigned static types as
well as the point-to relations between objects.

3.2 Syscall Context Identification

To associate the execution context with each dynamically accessed kernel object,
we must resolve the execution context when an instruction is accessing our

546 J. Zeng and Z. Lin

monitored object. The execution context in this paper is defined as the informa-
tion that captures how and when a piece of data gets accessed. More specifically,
as our starting point of the known knowledge is the syscall, we need to first
resolve which syscall is currently accessing a given piece of data. Also, since
we need to capture the different data accesses in order to identify the internal
functions (e.g., the internal function that creates the process descriptor struc-
ture), we have to further classify the data access into different categories such
as whether it is a read access or a write access.

Precisely Identifying the Syscall Execution Context. When a given kernel
object is accessed, we need to first determine which syscall is accessing it. Since
an execution context must involve a stack (to track the return addresses for
instance), we can use each kernel stack to differentiate each execution context.
Whenever there is a kernel stack change, there must be an execution context
change.

Then how many kernel stacks are inside an OS kernel at any given moment?
This depends on how many user level processes and kernel level threads are
running. In particular, each user level process (including user level threads) will
have a corresponding kernel stack. This kernel stack is used to store the local
variables and return addresses when a particular syscall is executed inside the
kernel. Besides the kernel stack for user level processes to execute syscalls, there
are also kernel threads that are responsible for handling background tasks such as
asynchronous event daemons (e.g., ksoftirqd) or worker threads (e.g., pdflush,
which flushes dirty pages from the page cache). The difference between kernel
threads and user level processes is that kernel threads do not have any user level
process context and will not use the syscall interface to request kernel services
(instead they can directly access all kernel functions and data structures).

Therefore, by tracking each syscall entry and exit (e.g., sysenter/sysexit,
int 0x80/iret) and stack change (e.g., mov stack pointer, %esp), we can
identify the syscall execution context, as demonstrated in our earlier work VMST
[10]. Note that the execution of the top half of an interrupt handler may use the
current process’ or kernel thread’s kernel stack, and we have to exclude this
interrupt handler’s execution context. Fortunately, the starting of the interrupt
handler’s execution can be observed by our VMM, and these handlers always
exit via iret. As such, we can precisely identify the interrupt execution contexts
and exclude them from the syscall context.

To resolve to which syscall the current execution context belongs, we will
track the syscall number based on the eax value when the syscall traps to the
kernel for this particular process. The corresponding process is indexed by the
base address of each kernel stack (not the CR3 approach as suggested by Ant-
farm [15] because threads can share the same CR3). We use the 19 most signif-
icant bits (MSB) of the kernel esp, i.e., the base address of the stack pointer
(note that the size of Linux kernel stack is 8192 = 213 bytes), to uniquely identify
a process. The base address of the stack pointer is computed by monitoring the

Towards Automatic Inference of Kernel Object Semantics from Binary Code 547

memory write to the kernel esp. We also use an RB-tree, which we call RBsys

tree, to dynamically keep the MSB19(esp) and the syscall number from eax for
this process such that we can quickly return the syscall number when given a
kernel esp.

Tracking Syscall Arguments of Interest. The majority of syscalls are
designed for a single semantic goal such as to return a pid (getpid) or to close
a file descriptor. However, there are syscalls that have rich semantics—namely
having different behaviors according to their arguments. One such a syscall is
sys socketcall, which is a common kernel entry point for the socket syscall.
Its detailed argument decides which particular socket function to be executed
(e.g., socket, bind, listen, setsockopt, etc.). Therefore, we have to parse its
arguments and associate the arguments to the syscall context such that we can
infer the exercised kernel object semantics under this syscall.

Besides sys socketcall, in which we have to track its arguments, we find
two other syscalls (sys clone and sys unshare) that also have strong argu-
ment controlled behavior. In particular, sys clone can associate certain impor-
tant kernel objects with the new child process when certain flags are set (e.g.,
CLONE FS flag will make the caller and the child process share the same file
system information), and sys unshare can reverse the effect of sys clone by
disassociating parts of the process execution context (e.g., when CLONE FS
is set, it will unshare file system attributes such that the calling process no
longer shares its root directory, current directory, or umask attributes with any
other processes). Therefore, we will track these three syscalls, and associate their
arguments with the exercised kernel objects, because these arguments specify the
distinctive kernel behavior of the corresponding syscall.

3.3 Bit-Vector Generation

Having tracked all dynamically allocated objects that are executed under each
specific syscall execution context, we will then attach this context using a bit-
vector to the object type we resolved in object tracking . The length of our bit-
vector is 4*N bits, where N is the number of syscalls provided by the guest OS
kernel. Meanwhile, for each syscall, we will track and assign the following bits
in the bit-vector to 1 or 0 based on:

– C-bit: whether this syscall created the object;
– R-bit: whether this syscall read the object;
– W -bit: whether this syscall wrote the object;
– D-bit: whether this syscall destroyed the object.

These bits together form an entropy of how a syscall uses the object, from which
we can derive the meanings.

548 J. Zeng and Z. Lin

Since our bit-vector generation is the
core component in our system and it con-
nects the object tracking and syscall context
identification components, in the following
we present a detailed algorithm to illustrate
how it exactly works. At a high level, we use
an online algorithm to resolve the object’s
static type, syscall context, and different
ways of access, and generate the bit vec-
tor, which is stored in a hash table indexed
by the object’s static type (i.e., PCkmalloc).
As presented in Algorithm 1, each kernel
instruction execution is monitored in order
to resolve and generate our bit vector.

In particular, before beginning our
analysis, we will first create a hash table
(HT) at line 2 that stores the bit vector of
the accessed kernel object. Then we iter-
ate through each kernel instruction (line
3–43). We first check whether the current
instruction involves pointer data arithmetic
(line 5–6), if so, we will track the depen-
dences of the involved pointers and infer
their sizes. Next, we check if the instruc-
tion is sysenter/int0x80 (line 8–10). If
so, we update the syscall context track-
ing data structure RBsys-tree that stores
the syscall number for the current process,
which is determined by variable Ex. This
Ex is a global variable, which keeps the
MSB19(esp) and gets updated when kernel
stack switches (line 13–15). The node of the
RBsys-tree will be deleted when the process exits (line 11–12).

Next, when the kernel execution is to create an object (line 16–23), we then
insert the created instance into the RBtype-tree that keeps the type and size
information about the object (line 19). We also insert the static type assigned
for this object (namely PCkmalloc) into the HT if this type has not been inserted
before (line 20). In addition, we update the bit vector with a C-bit for this
particular object if the object is created under the syscall execution context (line
21–23), neither in top-half nor bottom-half. Similarly, we remove the dynamic
instance from the RBtype-tree, and update the D-bit in the corresponding HT
entry if the necessary, when the object is deallocated (line 24–29). Then, if the
instruction is accessing the memory address that belongs to our tracked kernel
object (line 30) and is under a syscall execution context (line 31–42), we update
the corresponding R-bit and W -bit based on the access (line 38, 40). We also

Towards Automatic Inference of Kernel Object Semantics from Binary Code 549

track the object point-to relation if there is a memory write that involves two
monitored kernel objects (line 42). All the involved data structures are presented
in Fig. 3.

3.4 Bit-Vector Interpretation

Fig. 3. The Data Structures Used in
Argos.

Having generated the bit-vector for each
observed object type, Argos is then
ready to finally output the meanings (i.e.,
semantics) of the observed objects. Since
our bit-vector has 4*N bits in length, it
contains a very large amount of informa-
tion, sufficiently distinguishing each dif-
ferent semantic type. In particular, our
bit-vector captures how a syscall accessed
the object during the life time of the
object. Such an access denotes the connec-
tion between the object and the syscall.
At a high level, we can view the bit-vector
as representing (1) which of the syscalls have contributed to the meaning of
the object, (2) how these syscalls contributed (recorded in our R,W,C,D-bits).
Given such rich information, there could be many different approaches to derive
the semantics and interpret the meanings.

One possible approach is to simply transform the bit-vector to a large integer
value (using a deterministic algorithm), and map the integer value to a kernel
object acquired from the ground truth. If there is always a one-to-one mapping,
then this approach would work. For instance, from the general OS kernel knowl-
edge, we know that a process descriptor (i.e., task struct in Linux), is usually
the root of the kernel data structure when accessing all other objects inside OS
kernel for a particular process. Many of the syscalls would have accessed this
object. Therefore, a process descriptor would have a larger value than many
other data structures when translating these bits into integers. Based on such
values, we could possibly determine the semantic types.

In our current Argos design, we present another simple approach: instead
of checking all bit-vectors (normalizing them to an integer value), we check
certain syscalls for the object of our interest from the bit-vector, by using the
manually derived rules based on general syscall and kernel knowledge. Again,
taking task struct as an example, we know that this data structure must be
created by a fork-family syscall, and destroyed by a exit group syscall. When
there is a getpid syscall executed, it must first fetch this data structure, from
which to traverse other data structures to reach the pid field. Therefore, we can
develop data structure specific rules to derive the semantics by checking the bit-
vectors. We have developed a number of such rules to recognize the important
kernel data structures as presented in Sect. 4.

550 J. Zeng and Z. Lin

4 Evaluation

In this section, we present how we evaluate Argos to uncover the object seman-
tics. We first describe how we set up the experiment in Sect. 4.1, and then present
our detailed results in Sect. 4.2.

4.1 Experiment Setup

Since we focus on the reverse engineering of the kernel object semantics, we
have to compare our result with the ground truth. To this end, we took two
recently released Linux kernels: Linux-2.6.32 and Linux-3.2.58, running in
debian-6.0 and debian-7, respectively, as the guest OS for Argos to test. Each
guest OS is configured with 2G physical memory. The main reason to use the
open source Linux kernel is because we can have the ground truth. Therefore,
in our object tracking, we also keep the truth type when the object is created
in our object tracking. The truth type is acquired through a manual analysis of
the corresponding kernel source code. The host OS is ubuntu-12.04 with kernel
3.5.0-51-generic. The evaluation was performed on a machine with an Intel
Core i-7 CPU and 8 GB physical memory.

An end user needs to provide three pieces of information to Argos as input:
a syscall specification, a kernel API specification, and the test cases.

– Syscall Specification. Basically, it just needs the syscall number and the
corresponding syscall name. In addition, it also requires an understand-
ing of the arguments and corresponding semantic behavior of three syscalls
(sys socketcall, sys clone and sys unshare), which are used to derive the
semantics of the objects accessed in these syscalls.

– Kernel API Specification. To track the dynamic object creation and dele-
tion, we need the Kernel API specification of the kmalloc family of functions.
Similar to the syscall specification, we just need the name of each function, its
starting virtual address, and its arguments such that we can intercept these
function executions.

– Test Cases. Argos is a dynamic analysis based system. We need to drive
the kernel execution through running the test cases. Ideally, we would like to
use existing test cases. To this end, we collected several user level benchmarks
including ltp-20140115 and lmbench-2alpha8. We also used all the test cases
from the Linux-test-project [1].

4.2 Detailed Result

In total, it took Argos 14 hours1 each to run all the test programs (the most
time consuming part is the LTP test cases) for the testing guest OS, with a peak
memory overhead of 4.5G at the host level for the 2G guest OS. Specifically, we
1 Note that Argos is an automated offline system. Performance is not a big issue as

long as we produce the result in a reasonable amount of time.

Towards Automatic Inference of Kernel Object Semantics from Binary Code 551

observed 105 static types for Linux-2.6.32, and 125 for Linux-3.2.58. Due
to space limitations, we cannot present the detailed representation of the bit-
vectors for all these objects, and instead we just present the statistics of their
bit vectors.

Table 1. Syscall Classification

Syscall Type Short Name #Syscalls

Linux-2.6.32 Linux-3.2.58

Process P 90 92

File F 152 156

Memory M 19 21

Time T 13 13

Signal G 25 25

Security S 3 3

Network N 2 4

IPC I 7 7

Module D 4 4

Other O 3 3

Total - 317 328

We first categorized the
syscalls into groups based
on the different type of
resources (e.g., processes,
files, memory, etc.) that the
syscalls aim to manage. The
classification result is pre-
sented in Table 1. We can
notice that these two ker-
nels do not have the exact
same number of syscalls,
and Linux-3.2.58 intro-
duces 11 additional syscalls
to Linux-2.6.32. Conse-
quently, the length of their
bit-vectors are different. We
present a number of bit-

vector statistics in the last 10 columns of Table 3. The statistics of these bit
vectors show the distributions of the sycalls that have read and write access of
each corresponding object. For instance, for the pid data structure presented
in the first row, its P=25 means there are 25 process related syscalls that have
accessed this object.

Table 2. The Inference Rules We Developed to Recognize The Semantics of Important
Kernel Data Structures.

Rule Num Detailed Rules Data Structure

I sys clone[C] ∩ sys getpid[R] task struct, pid

II ((sys clone[C] - sys vfork[C]) ∩ sys brk[RW]) ∩
sys munmap[D]

vm area struct

III ((sys clone[C] - sys vfork[C]) ∩ sys brk[RW]) -
sys munmap[D]

mm struct

IV sys open[C] ∩ sys lseek[W] ∩ sys dup[R] file

V sys clone[C] - sys clone[C](CLONE FS) fs struct

VI sys clone[C] - sys clone[C](CLONE FILES) files struct

VII sys mount[C] ∩ sys umount[D] vfs mount

VIII sys socketcall[C](SYS SOCKET) ∩ sock

sys socketcall[W] (SYS SETSOCKOPT)

IX sys clone[C] - sys clone[C](CLONE SIGHAND) sighand struct

X sys capget[R] ∩ sys capset[W] credential

552 J. Zeng and Z. Lin

Next, we present how we would discover the semantics of each kernel object.
As discussed in Sect. 3.4, there could be several different ways of identifying
the kernel objects and their semantics. In the following, we demonstrate a gen-
eral way of identifying the kernel objects that are of security interest (such as
process descriptor, memory descriptor, etc.) by manually developing rules based
on the semantics of the syscalls (which is generally known to the public) and
also using execution context differencing. In total we developed 10 rules, which
are presented in Table 2.

We tested our rules against both Linux-2.6.32 and Linux-3.2.58, for which
we have the manually obtained ground truth. We show that we can successfully
pinpoint 11 kernel objects (presented in the 3rd-column with the ground truth
shown in the 4th-column in Table 3) and their meanings. By using the rules we
derived, there is not even a need to train for each kernel and we just use them to
scan the bit-vector. In the following, we describe how we derived these rules, and
how we applied them in finding the semantics of kernel objects of our interest.

Table 3. The Inference of the Selected Kernel Data Structures and The Statistics of
Their Bit-Vector.

Rule Num Kernel Version Static Type Symbol Name Traced Size Statistics of the R/W Bit Vector

P F M T G S N I D O

I 2.6.32 c10414e8 pid 44 25 16 4 0 3 0 1 3 1 0

c102db48 task struct 1072 47 48 5 0 12 0 1 1 2 0

3.2.58 c104bb18 pid 64 28 24 3 0 3 0 1 3 1 0

c10371e3 task struct 1072 73 109 13 6 19 1 2 7 2 0

II 2.6.32 c102d8af vm area struct 88 4 17 12 0 3 0 0 1 1 0

3.2.58 c1036f6a vm area struct 88 3 5 12 0 0 0 1 1 1 0

III 2.6.32 c102d762 mm struct 420 15 6 5 0 0 0 0 1 1 0

3.2.58 c1036dc8 mm struct 448 15 9 6 0 0 0 1 1 1 0

IV 2.6.32 c10b23ae file 128 41 93 12 0 10 0 1 7 2 0

3.2.58 c10ceea4 file 160 35 97 12 0 11 0 1 7 2 0

V 2.6.32 c10cac66 fs struct 32 4 50 0 0 0 0 1 1 1 0

3.2.58 c10eaad7 fs struct 64 4 51 0 0 0 0 1 1 1 0

VI 2.6.32 c10c185c files struct 224 11 73 3 0 4 0 1 6 1 0

3.2.58 c10df2cd files struct 256 39 84 5 0 6 0 1 6 1 0

VII 2.6.32 c10c3a4c vfs mount 128 1 17 0 0 0 0 0 0 1 0

3.2.58 c10dfd37 vfs mount 160 3 4 0 0 0 0 0 0 1 0

VIII 2.6.32 c11cd7c8 sock 1216 19 55 8 0 9 1 6 6 2 0

3.2.58 c11cd7c8 sock 1248 28 74 7 0 9 1 1 6 2 0

IX 2.6.32 c102dfd8 sighand struct 1288 15 5 0 0 12 0 1 1 1 0

3.2.58 c10376a7 sighand struct 1312 15 7 0 0 12 0 1 1 1 0

X 2.6.32 c1047938 cred 128 51 72 8 3 3 1 2 4 2 0

3.2.58 c1052611 cred 128 53 75 7 3 2 1 2 4 2 0

Process Related. The most important process related data structure is the
process descriptor (i.e., task struct in Linux), which keeps a lot of information
regarding the resources a process is using, and how to reach these resources.
Surprisingly, by looking at the bit-vectors of all the kernel objects, it is actually
quite simple to identify the process descriptor.

Towards Automatic Inference of Kernel Object Semantics from Binary Code 553

Fig. 4. The reverse engineered data structure type graph with task struct as the
root of Linux Kernel 2.6.32. Each node represents a reverse engineered data structure
(the symbol name is just for better readability), and each edge represents the point-to
relation between the data structures. There can be multiple point-to edges between
two nodes at different offsets. They are merged for better readability.

Specifically, since task struct must be created by process creation related
syscalls (e.g., sys clone, sys vfork), we can in fact scan the C-bit of the objects
and check the ones that are created under these syscalls (e.g.,sys clone[C]);
task struct must exist in this set. However, during the process creation, it will
also create many other data structures such as the memory descriptor for this
process. Consequently, we have to exclude these data structures. Our insight is
that we can perform a set intersection (basically execution context differencing)
to identify the desired object. Back to the process descriptor example, from a
general understanding of the syscall semantics, we know that sys getpid must
access the task struct in order to get the pid. As such, we can then check the
sys getpid[R] bit.

Therefore, through the intersection of sys clone[C] ∩ sys getpid[R] (as
illustrated in the first rule of Table 2), we can get two objects with static types of
c10414e8 and c102db48. Then the next question is how to get the task struct.
In fact, we can look at the relation between the data structure (i.e., the type
graph we extracted). As illustrated in Fig. 4, we can see clearly that c10414e82

is reached from c102db48. Therefore, we can conclude that c102db48 is the
task struct based on general OS kernel knowledge, and c10414e8 is the pid
descriptor. This rule also applies to Linux-3.2.58, and we can correctly recog-
nize its task struct and pid descriptor without any training.
2 Note that we show the symbol name instead of the address in Fig. 4 just for the

readability of the type graph.

554 J. Zeng and Z. Lin

Memory Related. There are two important data structures that describe the
memory usage for a particular process. One is the memory descriptor (mm struct
in Linux) that contains all the information related to the process address space,
such as the base address of the page table and the starting address of process
code and data. Also, since memory is often divided into regions to store different
types of process data (e.g., memory mapped files, stacks, heaps, etc.), the kernel
uses the other important data structure called virtual memory area descriptor
(vm area struct) to describe a single memory area over a contiguous interval
in a given address space. Certainly, vm area struct can be reached from the
mm struct.

To recognize these two data structures, we again use general OS and syscall
knowledge. In particular, we know that all the child threads share the same
virtual space. Therefore, mm struct and some vm area struct should not be
created when a new thread is forked. We can then scan the C-bit of the object bit-
vector of sys clone, which is used to create the process, and sys vfork, which
is used to create threads. Then we can find a set of objects. Then, from general
knowledge we know sys brk (which changes program data segment size) will
access mm struct and some vm area struct. Meanwhile, sys munmap, which
aims to delete a memory region, will certainly delete vm area struct (then we
look at its D-bit). As such, we have developed Rule-II and Rule-III presented
in Table 2 to successfully identify vm area struct and mm struct, respectively.
Meanwhile, as illustrated in Fig. 4, we can also observe the type graph to infer
the vm area struct because it has to be reached from mm struct when we only
look at these two data structures, which are in {(sys clone[C] - sys vfork[C])
∩ sys brk[RW]}.

File Related. There are several important file related data structures of our
interest. Specifically, we are interested in the (1) file descriptor (file structure
in Linux) that describes a file’s properties, such as its opening mode, the posi-
tion of the current file cursor, etc., (2) file system descriptor (fs struct) that
describes the file system related information including such as the root path
of the file system, and the current working directory, (3) files struct that
describes the opening file table (e.g., the file descriptor array), (4) vfs mount
that describes the mounted file systems, and (5) sock structure that describes
a network communication point in the OS kernel. In the following, we discuss
how we recognize these data structures.

– File Descriptor. From general OS knowledge, we know that a file descriptor
is created by the open syscall. However, open will create many other objects
as well (e.g., we found 43 different types of objects by scanning sys open[C]
bits). Fortunately, we also know that lseek will definitely modify file (i.e.,
sys lseek[W] will be set). Meanwhile, sys dup will also absolutely read and
write to the file structure. Therefore, we developed our Rule-IV by using
sys open[C] ∩ sys lseek[W] ∩ sys dup[R] to directly pinpoint the file
structure.

Towards Automatic Inference of Kernel Object Semantics from Binary Code 555

– File System Data Structure. From the syscall specification, we know that when
a child process is created, it will inherit many important kernel objects from its
parent process. File system structure is definitely one of them. Also, sys clone
will provide flags to allow programmers to control whether to inherit or not.
Recall in Sect. 3.2, we have tracked the flag of sys clone, and we can there-
fore trivially identify the fs struct. In particular, flag CLONE FS will let
the child process clone from its parent FS (it means no new fs struct will
be created). By performing sys clone [C] - sys clone[C](CLONE FS), we
directly pinpoint fs struct.

– Open File Table Structure. Each process has its own opened file set. This is
maintained by its files struct in the Linux kernel. Similar to fs struct
identification, we check the flag CLONE FILES of sys clone to identify this
structure, as presented in the Rule-VI in Table 2.

– Mounting Point Descriptor. When a file system is mounted, the OS uses a
mounting point descriptor to track the mounted file system. There are two
syscalls (sys mount and sys umount) involved in the mouting and unmouting
operation. Basically, sys mount creates a mouting structure and sys umount
removes it. To identify vfs mount is actually quite simple, and we just perform
a sys mount [C] ∩ sys umount[D], which directly produces the desired data
structure.

– Socket. By associating the argument with the syscall context for
sys socket call, we can easily identify the socket data structure
in the OS kernel. For instance, we can check the created object in
sys socketcall[C](SYS SOCKET), and check the updated object in
sys socketcall[W][SYS SETSOCKOPT]. An intersection of these two sets
will directly identify the socket data structure.

Signal Related. Among the signal related data structures, the signal handler
is of our interest since it can be subverted. To identify this data structure, it is
also quite simple, especially if we check the flags of sys clone. In particular,
there is a CLONE SIGHAND flag, and if it is set, the calling process and the
child process will share the same table of signal handlers. Thus, sys clone[C]
- sys clone[C](CLONE SIGHAND) directly identifies the signal handler data
structure. There are also other ways to identify this data structure. For instance,
sys alarm will set an alarm clock for delivery of a signal, which will modify the
signal handler. By looking at sys alarm[W] as well as the type graph, we can
also easily tell the sighand struct.

Credential Related. Each process in a modern OS has certain credentials,
such as its uid, gid, euid, and capabilities used for access control. The Linux
kernel uses a cred data structure to store this information. To identify this
data structure, we found that sys capget and sys capset will set and get the
cred field of a process. Both syscalls will read and write the credential objects

556 J. Zeng and Z. Lin

and we can use set intersection to find this data structure (i.e., sys capget[R]
∩ sys capset[W]). Also, this data structure is reachable from task struct as
well.

5 Applications

Uncovering the semantics of kernel objects will be useful in many applications.
For example, it allows us to understand what the created objects are in an OS
kernel when performing introspection, and we can also use data structure knowl-
edge to recognize the internal kernel functions. In the following, we demonstrate
how we can use Argos to identify the internal kernel functions, especially the
object creation and deletion functions, which is important to both kernel rootkit
offense and defense.

Recently, kernel malware has been increasingly using internal functions to
perform malicious actions. This is no surprise since kernel malware can call
any internal kernel function because they share the same address space. For
instance, prior studies have shown that instead of calling NtCreateProcess,
kernel malware will directly call PspCreateProcess. Therefore, hooking these
internal functions is very important to detect malware attacks. Note that
PspCreateProcess is for the Windows kernel; the corresponding one in Linux
is actually copy process [9]. Then can we automatically identify these internal
functions, such as copy process?

Fortunately, it is quite straightforward to identify some of the internal
functions given the semantics of the identified kernel data structure. Take
task struct as an example: once we have understood a dynamically allocated
object is a task struct, we can check which function calls the object alloca-
tion for task struct, and the caller is usually the one that is responsible for
the object creation. Interestingly, while this is a simple heuristic, we tested with
the two kernels and found it works well. Therefore, for this experiment, we also
instrumented the kernel execution and tracked the call-stacks such that we can
identify the parent function of our interest.

Based on the above heuristic, we have applied Argos to recognize the cre-
ation and deletion functions for the objects we identified in Table 3. This result
is presented in Table 4. Again, there is no false positive while using this very
simple caller-callee heuristic, and we correctly identified these functions when
compared with the ground truth result in the kernel source code. For readabil-
ity, we present the corresponding symbols of these functions, in addition to the
PCs that denote their starting addresses.

For proof-of-concept, we then developed a virtual machine introspection [11]
tool atop QEMU to track and interpret the kernel object creation and deletion
events related to the object we reverse engineered by hooking the internal ker-
nel functions listed in Table 4. Without any surprise, our tool can successfully
track the corresponding events for all process creations, including even a hidden
process that is created with the internal function by a rootkit we developed.

Towards Automatic Inference of Kernel Object Semantics from Binary Code 557

Table 4. Internal Kernel Function Recognization for the Testing Linux Kernels.

Type Version Creation Function Deletion Function

PC Symbol PC Symbol

pid 2.6.32 c10414d0 alloc pid c10413de put pid

3.2.58 c104bb02 alloc pid c104b969 put pid

task struct 2.6.32 c102daaf copy process c102da55 free task

3.2.58 c103719d copy process c10368a7 free task

vm area struct 2.6.32 c102d730 dup mm c109d387 remove vma

3.2.58 c1036d97 dup mm c10b13d7 remove vma

mm struct 2.6.32 c102d730 dup mm c102d3dc mmdrop

3.2.58 c1036d97 dup mm c1036a58 mmdrop

file 2.6.32 c10b230d get empty filp c10b2030 file free rcu

3.2.58 c10cee78 get empty filp c10ceba0 file free rcu

fs struct 2.6.32 c10cac50 copy fs struct c10cae5b free fs struct

3.2.58 c10eaac4 copy fs struct c10eaa55 free fs struct

files struct 2.6.32 c10c1839 dup fd c1030a32 put files struct

3.2.58 c10df2ab dup fd c103b16d put files struct

vfs mount 2.6.32 c10c3a35 alloc vfsmnt c10c30ba free vfsmnt

3.2.58 c10dfd23 alloc vfsmnt c10dfe36 free vfsmnt

sighand struct 2.6.32 c102daaf copy process c102d148 cleanup sighand

3.2.58 c103719d copy process c103717b cleanup sighand

sock 2.6.32 c11cd7a5 sk prot alloc c11cc884 sk free

3.2.58 c12146e5 sk prot alloc c1214d46 sk free

cred 2.6.32 c1047923 prepare creds c1047d00 put cred rcu

3.2.58 c10525fe prepare creds c105239b put cred rcu

6 Limitations and Future Work

While we have demonstrated we can infer the kernel object semantics from the
object use, there are still a number of avenues to improve our techniques. In the
following, we discuss each of the limitations of our system and shed light on our
future work.

First and foremost, we need to develop more rules or other approaches to
derive the kernel object semantics based on the bit-vectors. Currently, we just
illustrated we can recognize some of the kernel data structures through syscall
execution context diffing and general OS knowledge. As discussed earlier in
Sect. 3.4, there could be many other alternatives, such as assigning different
weights to the bit of interest and then converting the bit-vector into a numeric
value, from which semantics could be mapped. Meanwhile, there might also be
an interesting solution of only tracking a certain number of syscalls instead all
of them. We leave the validation of these alternative approaches to one of our
future works.

558 J. Zeng and Z. Lin

Second, currently Argos only aims to reveal the semantics of the kernel data
structures; it does not make any effort to reveal the syntax (especially the layout
of each data structure) or meaning for each field of each data structure. Since
there are several existing efforts (e.g., [16,18,23,27]) focusing on user level data
structure reverse engineering, especially on field layout and syntax, we plan to
integrate these techniques into Argos to give it more capabilities.

Third, Argos will have false negatives because of the nature of dynamic
analysis. In addition, it will not be able to track an object if its allocation
functions are inlined since it uses the dynamic hooking mechanism to intercept
kmalloc family functions. To identify these inlined kernel object allocation and
deallocation functions would require a static analysis of the kernel binary code,
and we leave it to another of our future works. Also, our current design uses
PCkmalloc to type the kernel object, but there are still a number of kernel objects
(e.g., 20 % in Linux 2.6.32) with an N-to-one mapping. We plan to address this
issue in our future work as well.

Forth, there might be some execution contexts that are asynchronized. Conse-
quently, we might miss the exact syscall context for the objects that are accessed
in the asynchronized code. We have encountered a few cases in Linux (e.g., kernel
worker threads, which are processed usually in the bottom-half of the interrupt
context), and our current solution is to ignore tracking the context for these
objects. Thus, an immediate future effort is to propose techniques that can also
resolve the execution context of asynchronized execution code.

Finally, while we have demonstrated our techniques working for the Linux
kernel, we would like to validate the generality of Argos with other kernels. We
plan to extend our analysis to FreeBSD, since it is also open source and we can
compare our result with its ground truth. Eventually, we would like to test our
system with closed source OSes such as Microsoft Windows.

7 Related Work

Our work is closely related to data structure reverse engineering. More broadly,
it is also related to virtual machine introspection and memory forensics. In this
section, we compare Argos with the most closely related work—data structure
reverse engineering.

Being an important component of a program, data structures play a signif-
icant role in many aspects of modern computing, such as software design and
implementation, program analysis, program understanding [20], and computer
security. However, once a program has been compiled, the definition of the data
structure is gone. In the past decade, a considerate amount of research has been
carried out to recover data structure knowledge from binary code, and they
are all based on the same principle of “from data use infer the data types”. In
general, these existing approaches can be classified into two categories: static
analysis based and dynamic analysis based.

Static Analysis. An early attempt of using static analysis to recover data struc-
ture is aggregate structure identification (ASI) [21]. Basically, it leverages the

Towards Automatic Inference of Kernel Object Semantics from Binary Code 559

program’s access patterns and the type information from well-known functions
to recover the structural information about the data structures. While it focused
on Cobol programs, its concepts can be applied to program binary code. By sta-
tically walking through the binary code, value set analysis (VSA) [3,22] tracks
the possible values of data objects, from which it can build the point-to relation
among addresses (which can help with shape analysis), and also reason about the
integer values an object can hold at each program point. Most recently, TIE [16]
infers both the primitive types and aggregate types of the program’s variables
from its binary code using the instruction type sinks and a constraint solving
approach.

Dynamic Analysis. Guo et al. [12] propose an algorithm for inferring the
variables’ abstract types by partitioning them into equivalence classes through
a data flow based analysis. However, this approach requires the program to be
compiled with debugging symbols. A number of protocol reverse engineering
efforts have been developed (e.g., [5,7,17,25]) to infer the format of network
protocol messages—essentially the data structure type information of network
packets—from program execution. The key idea of these approaches is to monitor
the execution of network programs and use the instruction access patterns (i.e.,
the data use) to infer the data structure layout and size.

Rather than focusing on the data structure of network packets,
REWARDS [18] shows an algorithm that can resolve the program’s internal
data structures through type recovery and type unification. Howard [23] recov-
ers data structures and arrays using pointer stride analysis. PointerScope [27]
infers pointer and non-pointer types using a constrained type unification [8].
Also, Laika [6] uses a machine learning approach to identify data structures in
a memory snapshot and cluster those of the same type, with the applications of
using data structures as program signatures.

Compared to all these existing works, Argos is the first system that focuses
on the semantic reverse engineering of data structures. Also, nearly all of the
existing work focused on the reverse engineering of user level data structures, and
Argos makes the first step towards reverse engineering of kernel data structures.

8 Conclusion

We have presented Argos, the first system that can automatically uncover the
semantics of kernel objects from kernel execution traces. Similar to many other
data structure reverse engineering systems, it is based on the very simple prin-
ciple of data-use implying data-semantics. Specifically, starting from the system
call and the exported kernel APIs, Argos automatically tracks the instruction
execution and assigns a bit vector for each observed kernel object. The bit vector
encodes which syscall accesses this object and how the object is accessed (e.g.,
whether the object is created, accessed, updated, or destroyed under the execu-
tion of this syscall), and from this we derive the meaning of the kernel object.
The experimental results with Linux kernels show that Argos can effectively

560 J. Zeng and Z. Lin

recognize the semantics for a number of kernel objects that are of security inter-
est. We have applied Argos to recognize the internal kernel functions, and we
show that with Argos we can build a more precise kernel event tracking system
by hooking these internal functions.

Acknowledgement. We thank our shepherd William Robertson and other anony-
mous reviewers for their insightful comments. This research was partially supported
by an AFOSR grant FA9550-14-1-0119, and an NSF grant 1453011. Any opinions,
findings, conclusions, or recommendations expressed are those of the authors and not
necessarily of the AFOSR and NSF.

References

1. Linux test project. https://github.com/linux-test-project
2. QEMU: an open source processor emulator. http://www.qemu.org/
3. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:

Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

4. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proceedings of
the 16th ACM Conference on Computer and and Communications Security (CCS
2009), pp. 621–634, Chicago, Illinois, USA (2009)

5. Caballero, J., Song, D.: Polyglot: automatic extraction of protocol format using
dynamic binary analysis. In: Proceedings of the 14th ACM Conference on Com-
puter and and Communications Security (CCS 2007), pp. 317–329, Alexandria,
Virginia, USA (2007)

6. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for data structures. In:
Proceeding of 8th Symposium on Operating System Design and Implementation
(OSDI 2008), pp. 231–244, San Diego, CA, December 2008

7. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic
reverse engineering of input formats. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS 2008), pp. 391–402, Alexandria,
Virginia, USA, October 2008

8. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 207–212, January 1982

9. Deng, Z., Zhang, X., Xu, D.: Spider: stealthy binary program instrumentation and
debugging via hardware virtualization. In: Proceedings of the 29th Annual Com-
puter Security Applications Conference, ACSAC 2013, pp. 289–298, New Orleans,
Louisiana (2013)

10. Fu, Y., Lin, Z.: Space traveling across VM: automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In: Proceedings
of 33rd IEEE Symposium on Security and Privacy, May 2012

11. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings Network and Distributed Systems Security
Symposium (NDSS 2003), pp. 38–53, February 2003

12. Guo, P.J., Perkins, J.H., McCamant, S., Ernst, M.D.: Dynamic inference of abstract
types. In: ISSTA, pp. 255–265, July 2006

https://github.com/linux-test-project
http://www.qemu.org/

Towards Automatic Inference of Kernel Object Semantics from Binary Code 561

13. Hay, B., Nance, K.: Forensics examination of volatile system data using virtual
introspection. SIGOPS Oper. Syst. Rev. 42, 74–82 (2008)

14. Johnson, N., Caballero, J., Chen, K., McCamant, S., Poosankam, P., Reynaud, D.,
Song, D.: Differential slicing: identifying causal execution differences for security
applications. In: Proceedings of 32nd IEEE Symposium on Security and Privacy,
pp. 347–362, May 2011

15. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking
processes in a virtual machine environment. In: Proceedings of the Annual Confer-
ence on USENIX 2006 Annual Technical Conference. USENIX Association, Boston
(2006)

16. Lee, J., Avgerinos, T., Brumley, D.: Tie: principled reverse engineering of types
in binary programs. In: Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS 2011), San Diego, CA, February 2011

17. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engi-
neering through context-aware monitored execution. In: Proceedings of the 15th
Annual Network and Distributed System Security Symposium (NDSS 2008),
San Diego, CA, February 2008

18. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from
binary execution. In: Proceedings of the 17th Annual Network and Distributed
System Security Symposium (NDSS 2010), San Diego, CA, February 2010

19. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
14th Annual Network and Distributed System Security Symposium (NDSS 2005),
San Diego, CA, February 2005

20. O’Callahan, R., Jackson, D.: Lackwit: a program understanding tool based on
type inference. In Proceedings of the 19th International Conference on Software
Engineering, ICSE 1997, pp. 338–348, Boston, Massachusetts, USA (1997)

21. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its appli-
cation to program analysis. In: Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages (POPL 1999), San Antonio,
Texas, pp. 119–132. ACM (1999)

22. Reps, T., Balakrishnan, G.: Improved memory-access analysis for x86 executables.
In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 16–35. Springer, Heidelberg
(2008)

23. Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse
engineering data structures. In: Proceedings of the 18th Annual Network and Dis-
tributed System Security Symposium (NDSS 2011), San Diego, CA, February 2011

24. Walters, A.: The volatility framework: volatile memory artifact extraction utility
framework. https://www.volatilesystems.com/default/volatility

25. Wondracek, G., Milani, P., Kruegel, C., Kirda, E.: Automatic network protocol
analysis. In: Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS 2008), San Diego, CA, February 2008

26. Zeng, J., Fu, Y., Lin, Z.: Pemu: a pin highly compatible out-of-VM dynamic binary
instrumentation framework. In: Proceedings of the 11th Annual International Con-
ference on Virtual Execution Environments, pp. 147–160, Istanbul, Turkey, March
2015

27. Zhang, M., Prakash, A., Li, X., Liang, Z., Yin, H.: Identifying and analyzing pointer
misuses for sophisticated memory-corruption exploit diagnosis. In: Proceedings of
the 19th Annual Network and Distributed System Security Symposium (NDSS
2012), San Diego, CA, February 2012

https://www.volatilesystems.com/default/volatility

Attack Detection II

BOTWATCHER

Transparent and Generic Botnet Tracking

Thomas Barabosch1(B), Adrian Dombeck1, Khaled Yakdan1,2,
and Elmar Gerhards-Padilla1

1 Fraunhofer FKIE, Bonn, Germany
{thomas.barabosch,adrian.dombeck,

elmar.gerhards-padilla}@fkie.fraunhofer.de
2 University of Bonn, Bonn, Germany

yakdan@cs.uni-bonn.de

Abstract. Botnets are one of the most serious threats to Internet secu-
rity today. Modern botnets have complex infrastructures consisting of
multiple components, which can be dynamically installed, updated, and
removed at any time during the botnet operation. Tracking botnets is
essential for understanding the current threat landscape. However, state-
of-the-art analysis approaches have several limitations. Many malware
analysis systems like sandboxes have a very limited analysis time-out,
and thus only allow limited insights into the long-time behavior of a
botnet. In contrast, customized tracking systems are botnet-specific and
need to be adopted to each malware family, which requires tedious man-
ual reverse engineering.

In this paper, we present BotWatcher, a novel approach for trans-
parent and generic botnet tracking. To this end, we leverage dynamic
analysis and memory forensics techniques to execute the initial malware
sample and later installed modules in a controlled environment and reg-
ularly obtain insights into the state of the analysis system. The key idea
behind BotWatcher is that by reasoning about the evolution of system
state over time, we can reconstruct a high-level overview of the botnet
lifecycle, i.e., the sequence of botnet actions that caused this evolution.
Our approach is generic since it relies neither on previous knowledge of
the botnet nor on OS-specific features. Transparency is achieved by per-
forming outside-OS monitoring and not installing any analysis tools in
the analysis environment. We implemented BotWatcher for Microsoft
Windows and Mac OS X (both 32- and 64-bit architectures), and applied
it to monitor four botnets targeting Microsoft Windows. To the best of
our knowledge, we are the first to present a generic, transparent, and
fully automated botnet tracking system.

Keywords: Botnet tracking · Memory forensics · Malware analysis

1 Introduction

Botnets are a major threat to today’s Internet security. They are used for a
wide range of malicious purposes, e.g., launching of denial-of-service attacks on
c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 565–587, 2015.
DOI: 10.1007/978-3-319-26362-5 26

566 T. Barabosch et al.

networked computers, committing click-fraud, sending spam, and distributing
malware. Recent studies estimated that some botnets contain in the order of a
million infected systems [25], illustrating the magnitude of the botnet threat.
Modern botnets are increasingly complex and comprise several modules that
can be installed, removed, and updated on the infected system at run time.
This complex and modular structure helps to achieve a high resilience against
takedown attempts by security researchers and law enforcement [25]. Also, it
hampers the time-critical and difficult task of timely botnet analysis.

Tracking botnets is essential for understanding the current threat landscape.
It provides valuable information about the botnet lifecycle, i.e., the botnet
infrastructure, its malicious actions, and the distributed malware. Understand-
ing the botnet lifecycle is an important building block for developing effective
countermeasures and performing successful takedowns. Previous work presented
customized tracking systems for specific botnets [15,17]. These solutions are
highly manual and require knowledge of the inner workings of the tracked botnet.
For this reason, they cannot cope with the dynamic nature of modern botnets,
which may install new and previously unknown components at any time. More-
over, these solutions must be adopted to each malware family, and thus do not
scale well when analyzing unknown botnets, i.e., botnets whose infrastructure
and lifecycle are not yet known. Existing malware analysis systems like sand-
boxes have a very limited analysis time-out (often five minutes or less). For this
reason, they can only provide limited insights into the long-time behaviour of
a botnet. Moreover, evasive malware leverages the fact that dynamic analysis
systems monitor execution for a limited amount of time, and employ several
timing attacks to delay execution of suspicious functionality and evade sandbox
analysis [21]. While modern sandboxes can detect several evasion techniques
and patch them to elicit the malicious behavior, they cannot influence timing
attacks on the server side. A C&C server may delay the delivery of actual botnet
components several hours or days when a new bot joins the botnet, which will
be missed by analysis sandboxes. Rossow et al. [26] presented an approach for
generic and long-term botnet monitoring. They used this system to characterize
several Windows-based malware downloaders concerning their communication
architectures, carrier protocols and encryption schemes. However, this approach
is based on a kernel rootkit and does not follow the transparency goal.

In this paper, we present BotWatcher, a novel approach for generic and
transparent tracking of botnets. The main intuition behind our approach is that
program execution and interaction with the operating system (OS) affect the
system state. By observing the evolution of this state over time, we can recon-
struct a high-level overview about the series of high-level actions that caused this
evolution. To this end, BotWatcher executes an initial malware sample in a
controlled analysis environment (virtual machine) and continuously takes snap-
shots of the system state. We then compare subsequent system states to extract
low-level events that caused the state change (e.g., connection establishment or
thread termination). By reasoning about the evolution of these low-level events
over time, BotWatcher infers the corresponding high-level behaviour such as

BotWatcher: Transparent and Generic Botnet Tracking 567

malware downloads and DDoS attacks. For example, the sequence of establishing
a network connection, downloading a file from the Internet, and starting a new
process is inferred as a MalwareDownload event. As transparency is a key
requirement to avoid detection from malware, we do not introduce any malware
analysis tools in the analysis environment and perform outside-OS monitoring,
i.e., monitoring the analysis environment from the outside. BotWatcher is
a generic approach. First, no previous knowledge about the botnet is required
and thus it can be used to analyze unknown botnets. Second, BotWatcher

represents the system state using a set of concepts that are shared among most
modern operating systems, e.g., threads, processes, and files. Therefore, it can
be applied to a wide range of operating systems. We extract system state infor-
mation from two sources: the main memory of the analysis environment and the
network traffic. To this end, we leverage memory forensic techniques to extract
state-related information from the main memory. This serves as abstraction layer
and enables us to implement our analyses in an OS-independent way.

In summary, we make the following contributions:

– We present a novel approach – called BotWatcher – for transparent and
generic botnet tracking. Our approach reconstructs the series of botnet actions
by reasoning about the evolution of the system state. To this end, we leverage
dynamic analysis and memory forensics techniques to periodically record the
state of the analysis system.

– We present a set of inference rules to reconstruct high-level malware behaviors
based on the observed differences between two consequent system states.

– We evaluated a prototype of BotWatcher on Microsoft Windows and Mac
OS X (both 32- and 64-bit architectures). We demonstrate the applicability
and efficacy of BotWatcher by using it to track four current botnets from
the families Upatre, Gamarue, Emotet and Necurs. Our experiments reveal a
trend in modern botnets to move evasion techniques to the server side, which
renders client-side anti-evasion techniques employed by analysis sandboxes
ineffective.

2 BotWatcher

In this section, we introduce our design goals and then describe our approach
BotWatcher in detail.

2.1 Objectives

The focal point of this paper is on generic and transparent botnet tracking.
In our context, we aim to gain insights into the behaviour of the botnet under
investigation and identify its life-cycle. We define the life-cycle of a botnet as the
sequence of its actions over time, such as participating in DDoS attacks, sending
spam, and installing new malware, etc.

The main goal of our work is to design a botnet tracking system that fulfils
two key requirements: First, the tracking method must be generic. That is, it

568 T. Barabosch et al.

must not assume any previous knowledge about the botnet under investigation.
This is essential for having a scalable solution that can automatically track new
and previously unknown botnets. Due to the diversification of operating systems,
a second important aspect of this requirement is that the tracking logic should
be applicable to many operating systems. This implies that it should not rely
on OS-specific features.

The second requirement is that the tracking method must be transparent.
That is, it must be impossible (or very difficult) for a malware to detect that it
is running in an analysis environment. Otherwise, a malware can easily refrain
from executing its malicious payload. This requires that (1) no analysis tools
are installed in the analysis environment; and (2) the tracking approach should
operate on a more privileged level than the observed malware.

We strive to fill the gap and address the shortcomings of current approaches.
Customized tracking approaches are too specific and cannot be easily adapted
to track new botnets. Traditional malware analysis systems only observe the
malware during a very short period of time. We argue that a trade-off between
both approaches is possible to have a botnet tracking system that fulfills the
above mentioned requirements.

Fig. 1. Architecture of BotWatcher. BotWatcher executes an initial sample in a
controlled environment and then periodically takes a snapshot of the system state of

the analysis environment . By comparing subsequent state snapshots, we identify
the set of execution events that represent the state transition Eex (e.g., process cre-

ation) . By reasoning about the evolution of these events, BotWatcher infers the

corresponding high-level behaviour Bh (e.g. MalwareDownload) . Finally, the

analyst is notified .

2.2 General Overview

A high-level overview of BotWatcher is given in Fig. 1. First, we execute an
initial malware sample in a controlled analysis environment (virtual machine [5])

BotWatcher: Transparent and Generic Botnet Tracking 569

with Internet connectivity. The initial malware is typically a dropper that serves
as an entry point to the botnet. Second, BotWatcher takes a snapshot of the
system state at regular intervals (Sect. 2.3). This system state includes infor-
mation such as the list of running processes or active network connections.
Third, we compare the current and last snapshots to infer the set of events
that caused the state transition (Sect. 2.4). We denote these events by execution
events, which include starting a new process and closing a network connection.
Finally, BotWatcher reasons about the execution events to infer more complex
and interesting events related to the botnet life-cycle (Sect. 2.5). For example,
the sequence opening a network connection, downloading a file, and then starting
a new process is inferred as a MalwareDownload event.

To address the genericity requirement, BotWatcher represents the system
state as a set of concepts that are shared by most modern operating systems
such as processes, threads, and files. We leverage memory forensic techniques
to extract this information from the main memory of the analysis environment.
Additionally, we extract relevant information from the network traffic passing
through the analysis environment. This serves as abstraction layer that allows
to build subsequent analysis steps independently from the target operating sys-
tem. Moreover, the reliance on such generic features enables BotWatcher to
monitor new and unknown botnets since no previous knowledge is needed.

Extracting system state information from the main memory and network
activity of the virtual analysis environment helps to fulfill the transparency
requirement since it allows to perform outside-OS monitoring. Moreover, we
do not introduce any analysis tools into the virtual analysis environment. This
makes it difficult for malware to detect that it is being analyzed by fingerprinting
the execution environment. A key motivation for developing our system is that
it is very difficult for malware to hide the artifacts left in memory as a result
of its execution. They are therefore reliable and robust sources of information
about the behavior of the malware.

2.3 Phase I: Feature Extraction

The first phase of BotWatcher is to record the system state of the analysis
environment at regular intervals. We define the system state at given point in
time t, denoted by S (t), as the set of execution features that exist in the system
at that time. Execution features represent system properties that are created,
changed, and removed as a result of program execution, e.g., running processes,
ongoing network connections, or opened files.

A key property of BotWatcher is that it performs outside-OS monitoring.
That is, it does not extract any information from inside the analysis environment.
It rather observes the analysis environment from the outside so as to remain
transparent to the running malware. To this end, we use two reliable sources
of information to extract execution features; the main memory of the analysis
environment and the network traffic it sends or receives. This approach has two
advantages: first, no modifications are introduced into the analysis environment,
making it extremely difficult for the malware to detect that it is running in

570 T. Barabosch et al.

an analysis system. Second, memory and network traffic are reliable sources of
information that provide host-based and network-based views into the system
state.

The main memory is the primary source of information used byBotWatcher.
Operating systems maintain several data structures in memory to manage many
aspects of their operation. This provides a wealth of information about the system
state at any given point in time such as the list of running processes, open files,
kernel modules etc. Program execution and interaction with the operating system
result in several changes to the contents of the main memory. In our case, we use
the intuition that by monitoring these changes, we can reconstruct the sequence
of actions that caused them. To extract execution features from the main mem-
ory, BotWatcher uses Volatility [8]. Volatility is a mature framework that sup-
ports investigating memory images of operating systems and helps to bridge the
semantic gap encountered in a raw memory dump. BotWatcher creates mem-
ory dumps of the virtual analysis environment periodically. We conducted sev-
eral experiments and found that a period Td of three minutes is sufficient for our
purpose.

Note that we do not take traditional VM snapshots to extract the system
state. This would stall the VM for several seconds, making BotWatcher easy
to detect. Alternatively, we leverage the hypervisor features to efficiently create
memory dumps. In our implementation, we use the command line tool VBox-
Manage debugvm dumpvmcore in order to dump the memory of a VM. This
first copies the VM’s memory into another memory location and then writes
the copied data to hard disk. To ensure a consistent and atomic read of the
VM’s memory, the VM is only paused during the first step. The amount of time
depends on the memory throughput of the hypervisor. Current memory modules
have a very high throughput of more than 10 GB [16]. The copying of memory
leads to a short time frame in which the VM is unresponsive. Since many normal
operations cause a similar effect, e.g., waiting for an interrupt of some hardware
device, this should be hard to detect by malware. Though, we plan to evaluate
this in the future (see Sect. 7).

Network traffic is the second source of information that we use to gain insights
into the role a bot plays in the botnet infrastructure. Bots use the network
to communicate with their C&C server or other peers as well as to perform
malicious actions such as sending spam or participating in DDoS attacks. Bot-

Watcher captures network traffic that passes by the virtual network interface
of the analysis environment and extracts features like IP addresses, transport
protocols, port numbers. We use the network security monitor Bro [6] for ana-
lyzing the network traffic. Network-related features collected in the time interval
[tk, tk + Td], where tk is time of the last period, are attributed to the point in
time tk + Td.

2.4 Phase II: Execution Events Extraction

After having extracted the system state S (tk) of the analysis machine, we iden-
tify the state transition relative to the previous state S (tk−1). More specifically,

BotWatcher: Transparent and Generic Botnet Tracking 571

we identify the set of newly created execution features since that last snapshot
F+ = S (tk) \ S (tk−1). Similarly, we identify the set of terminated execution
features since the last snapshot F− = S (tk−1) \ S (tk). The fact that a feature
is created or terminated at a given point in time is denoted as execution event.
Each execution event is assigned a timestamp and characteristic meta data to
fully describe it. For example, for process creation events, we record the cor-
responding process identifier. Table 1 shows the execution events extracted by
BotWatcher. In the following, we discuss the extracted events in detail and
explain our motivation behind tracking them.

Table 1. Execution events

Event Description

P [pid, τ, ts] Process event of type τ ∈ {τcreate, τterminate} that represents the
creation or termination of a process with identifier pid at time
ts

T [tid, pid, τ, ts] Thread event of type τ ∈ {τcreate, τterminate} that represents the
creation or termination of a thread with identifier tid from
process pid at time ts

M [as, ae, pid, ts] Memory event represents the allocation of a memory block with
a start address as and an end address ae in the address space
of process pid at time ts

F [f, ts] File event that represents opening and closing a file f at time ts

C [k, v, ts] Configuration event that represents storing a configuration
information k with value v at time ts

K [τ, ts] Kernel event of type τ ∈ {τmodule, τtimer, τcallback} at time ts
that represents starting a new kernel module m

N [s, pid, τ, ts] Network event of type τ ∈ {τTCP, τUDP} that corresponds to
the socket s owned by process pid at time ts

Processes. Malware often installs new modules on the infected system. This
can be a new version of the malware sent by its C&C server or a new malware
to install [15]. BotWatcher extracts a list of running processes from every
memory dump to keep track of active programs. In order to remain stealthy,
rootkits often manipulate OS-internal data structures to hide processes. For
example, Windows maintains a double-linked list of EPROCESS structures. A
rootkit can hide a specific process by unlinking the corresponding entry in this
list. For this reason, BotWatcher uses several sources of information in order
to detect all running processes including the hidden ones.

Threads. Modern malware often employs code injections, a technique to execute
code in the context of a remote process without having to create a new process.
This helps malware to operate covertly and gain higher privileges [13]. A common
way to achieve that is to copy code into the address space of a benign process

572 T. Barabosch et al.

space and then start a new thread to execute its malicious code in the context
of the benign process. For this reason, BotWatcher monitors all threads on
the analysis system.

Memory. Malware needs to have its code in main memory in order to be exe-
cuted. We assume that this code resides in its own memory region (leaving
methods like return oriented programming aside). The allocation of new mem-
ory blocks is therefore a valuable source of information. For example, it is usually
the first step of a code injection. For this reason, BotWatcher keeps track of
allocated memory blocks and their assigned access rights for each process.

Files. Malware interacts with files on a system for several purposes, e.g., infor-
mation stealing, installing new modules, ransomware. BotWatcher monitors
file handles and detects that files are opened or closed.

Configurations. Malware alters system configurations for several reasons such
as achieving persistence to survive system reboots, disabling firewalls and other
security tools, and manipulating network routes. In order to capture interest-
ing modifications of system configurations, BotWatcher keeps track of those
configurations as a set of key and value pairs.

Kernel events. Today’s malware uses rootkit components in order to operate
stealthy in the infected system. For example, these components can hide malware
modules that operate in user space. Malware typically registers its rootkit com-
ponent as a new kernel module that can modify sensitive kernel data structures
such as the system call table. For this reason, BotWatcher observes kernel
modules and kernel data structure modifications.

Network traffic. Bots use the network to communicate with their botmaster
and participate in malicious activities such as sending spam and taking part
in DDoS attacks. Network communication provides valuable information about
the bot’s behavior and the role it plays in the botnet. BotWatcher monitors
network traffic of both stateful (TCP) and stateless (UDP) transport protocols.
Also, meta information from application-level protocols such as HTTP, FTP,
and DNS is extracted.

An important aspect is to be able to distinguish between the source of activi-
ties observed in the analysis environment. This is particularly important to avoid
mixing behaviors in case malware starts to download/drop other malware. For
this reason, we extract the process and thread identifiers for several execution
events, which enables us to attribute observed activities to the corresponding
process and thread. However, for some events, Volatility does not extract the
process/thread identifiers. In these cases, we cannot attribute this event to a
specific malicious process.

2.5 Phase III: Events Correlation

The final phase of BotWatcher monitors the evolution of execution events over
time and infers the corresponding high-level complex malware-related actions.

BotWatcher: Transparent and Generic Botnet Tracking 573

For example, the sequence of starting a network connection, downloading a file,
and starting a new process is inferred as a malware download event. Those high-
level events represent characteristic stages of the botnet life-cycle.

Inference rules. At the core of BotWatcher’s correlation logic are inference
rules represented by the form:

P1 P2 . . . Pn

C

The top of the inference rule bar contains the premises P1, P2, . . . , Pn. If all
premises are satisfied, then we can conclude the statement below the bar C.
Inference rules provide a formal and compact notation for single step inference
and implicitly specify an inference algorithm by recursively applying rules on
premises until a fixed point is reached. BotWatcher uses an extensible set
of rules that cover a wide spectrum of malware-related actions. A subset of the
inference rules is shown in Fig. 2. Due to space constraints, we cannot present the
complete set of our inference rules. For this reason, we provide a supplemental
document on our website [12]. In the following, we explain some of the high-level
behaviors that can be inferred by BotWatcher.

Fig. 2. Exemplary inference rules. Premises are execution events and as conclusion
malicious behavior is inferred.

CodeInjection. We infer code injection attacks when the allocation of a mem-
ory page in a running process is followed by starting a thread whose starting
address is located inside this page (rule (1) in Fig. 2).

MalwareDownload. We use three rules to infer MalwareDownload events.
First, a binary is downloaded and later executed resulting in creating a new
process (rule (3) in Fig. 2). The second rule detects hot patches, i.e., dynamically
updating a program at runtime without the need for restart. To this end, the
rule checks for a download of a binary, followed by the manipulation of a memory
page that hosts malicious code. The third rule detects the execution of a binary

574 T. Barabosch et al.

within another process space. This is inferred when a binary is downloaded and
then a code injection event is detected.

Spamming. Botnets often send spam emails to distribute new malware and
infect new systems. BotWatcher detects sending spam when an outgoing net-
work connection to a mail server is established (rule (4) in Fig. 2). An example
is establishing a connection to port 25 (SMTP). This allows to extract spam
templates from the network traffic.

Persistence. Once malware gains access to a system, often its goal it to operate
there for a long time. This behavior is known as persistence and enables the
malware to survive reboots of the infected machine. We detect two persistence
mechanisms; first copying a file to a system folder, and second modifying the
system configurations to ensure automatic start of the malware at system start
(rule (5) in Fig. 2).

CCInfrastructure. Any network activity that cannot be classified otherwise is
inferred as communication between the bot and the botnet infrastructure. Bot-

Watcher follows the same intuition of the honeypot paradigm. This means that
it assumes that any observable behavior is caused by a malicious process and
tries to attribute them to malware actions. Although our experiments showed
satisfactory results, it is conceivable that the C&C inference rule is overly sim-
plified.

Rootkit. The installation of rootkit components is detected by one of the fol-
lowing two methods. First, the appearance of a new module in the list of loaded
kernel modules is inferred as rootkit event. The second method is through ker-
nel callbacks. Certain kernel callbacks are associated with kernel rootkits and
include notifications about the creation of new threads and processes or the
loading of new user-mode modules. For example, ZeroAccess registers a driver-
supplied callback that is subsequently notified whenever an image is loaded for
execution.
MassiveFileAccess. This event is inferred when a large amount of files is
opened by the malware (n > 1000). The intuition behind detecting this type of
events is that it characteristic for several malicious activities; first, ransomware
may encrypt certain types of files using public-key cryptography, with the pri-
vate key stored only on the malware’s control servers. The malware then offers
to decrypt the data if a payment is made by a stated deadline, and threatens to
delete the private key if the deadline passes. A second scenario is when malware
tries to replicate itself by infecting other executable files in the system. These
activities share the property that a large amount of files is opened, which is
detected by BotWatcher.

Finding the optimal value of such thresholds is quite difficult: a too high
value results in several events being missed. On the other hand, a too low value
results in benign file activities being mistakenly marked as malicious. The values
presented in this paper were sufficient for our experiments. However, these values
are not hard coded and the inference rules are configurable. This is done to
avoid making it easy to evade detection of events whose inference rules rely on

BotWatcher: Transparent and Generic Botnet Tracking 575

such thresholds. Moreover, we store the extracted execution events so that the
inference analysis can be repeated offline if one decided to insert new rules or
modify existing ones.

DGA. Modern botnets employ domain generation algorithms (DGA) to peri-
odically generate domain names that can be used as rendezvous points with
their C&C servers. This helps the botnet to achieve resilience against takedown
attempts and evasion against protection systems that rely upon blacklists. When
using a DGA, the bot often generates a large number of domain names and
attempts to randomly contact one from the generated domains until it succeeds.
BotWatcher detects the use of DGAs by leveraging the fact that using DGAs
often results in a high failure rate of DNS responses [14].

2.6 Containment

We run each new executable under containment using netfilter/iptables [7]. We
confine each piece of malware in its execution by a custom, manually created
containment policy that allows us to decide per-flow whether to allow traffic to
interact with the outside, drop it, rewrite it, or reroute it. In our scenario, the
malware family and behavior is completely unknown when we run a sample.
Thus, we create a containment policy that allows us to run our samples safely,
and to extract relevant features from their network traffic.

The main challenge is that blocking network connections or redirecting them
to internal servers would interfere with the inner workings of the botnet and
cause interesting behaviors to go missed. This contradicts with our goal to mon-
itor botnets and identify their lifecycle. On the other hand, running unknown
malware completely unsupervised may result in our analysis system participat-
ing in malicious actions. We opt for a trade-off between tracking quality and
execution containment. Our containment policy blocks SMTP to avoid prevent
sending spam. Reverse shells and SOCKS connections are also blocked. Future
work includes improving our containment strategy and employ more sophisti-
cated approaches like [22].

3 Evaluation

This section describes the experiments we have performed to demonstrate that
our approach is effective for botnet tracking. We first describe our experiment
setup, and then present the results of using BotWatcher to monitor four
current botnets. Finally, we also apply BotWatcher to another OS in order
to show its genericity. The detailed results of our experiments including the
concrete output generated by BotWatcher can be found in a supplementary
document [12].

3.1 Setup of the Analysis Environment

We conducted our experiments using a PC with a 3.4 GHz Intel Core i7-2600
CPU and 16 GB of main memory. This PC ran Ubuntu 14.04 x86-64. We used

576 T. Barabosch et al.

VirtualBox [5] to create three virtual analysis environments running Windows
XP SP3 (32-bits, used in Case Study 1 and 4), Windows 8.1 (32-bits, used in
Case Study 2 and 3), and Mac OS X 10.9.5 Mavericks (64-bits, used in Case
Study 5). The virtual machine was connected to its own private virtual network,
which was connected via network address translation to the Internet.

3.2 Case Study 1: Upatre

Upatre is a Trojan downloader that operates at least since August 2013 [10].
It is spread either via drive-by-downloads or spam. We executed Upatre1 on
2015-01-15 at 12:06 PM and tracked the botnet until 2015-01-22 at 12:15 PM.

Fig. 3. Upatre case study

Results. Figure 3 shows the inferred behavior of the botnet. Initially, Upatre
contacted its C&C server and downloaded an additional binary that was later
executed. This binary injected itself into the already running process svchost.
exe. Our manual analysis reveals that the new binary is a banking Trojan called
Dyzap (also known as Dyre) [3]. BotWatcher detected several malware down-
loads within the first 24 h. Later manual analysis revealed the following: five of
these downloads are updates of Dyzap. Some of these updates that occurred
in the first six hours were especially interesting; first, the rootkit Pushdo (also
known as Cutwail) was downloaded and executed. BotWatcher observed then
how Pushdo created a registry entry under a key that is often used for surviv-
ing system reboots. The second interesting malware update was Pushdo down-
loading the credential stealer Kegotip. We determined this in a later analysis.
BotWatcher detected that Kegotip was injected into a newly created process
named svchost.exe. Kegotip enumerates all files on the hard disk and checks
for online credentials like FTP credentials [1]. After having started, Kegotip
began opening and closing a large amount of files, which BotWatcher inferred
as MassiveFileAccess behavior. Pushdo began 24 h later resolving many dif-
ferent domain names which failed to resolve. BotWatcher inferred that the
malware is executing a domain generation algorithm.
1 MD5 sum Upatre: D4A999B1314CFE152774F709BB4EC94B.

BotWatcher: Transparent and Generic Botnet Tracking 577

Fig. 4. Example for BotWatcher’s inference rules. BotWatcher infers a malware
update (download of Kegotip by Pushdo) in the third dump. Also, a massive file access
(enumerating local files to look for credentials) is inferred in the seventh dump.

Figure 4 illustrates how BotWatcher inferred the MalwareDownload

event corresponding to the download of Kegotip as well as the enumeration of
local files that it performed subsequently. The figure shows selected events for
eleven consecutive memory dumps. The area of plotted dots is proportional to
the number of corresponding events observed in a given dump. At the third
dump, BotWatcher inferred the sequence of opening a connection, closing the
same connection, and starting a new process as a MalwareDownload event.
Also, the fact that many files were opened and closed in the seventh dump is
inferred as a massive file access event and that corresponds to the enumeration
of local files performed by Kegotip.

In total, BotWatcher observed four different malware families (Upatre,
Dyzap, Pushdo, Kegotip) that form part of this botnet. In the course of the case
study BotWatcher collected eighteen malware downloads.

Discussion. In this case study, BotWatcher illuminated the different com-
ponents of an Upatre-based botnet. BotWatcher was able to extract several
artifacts like executable files. Further investigations can be based on these arti-
facts. We would like to stress that a quick dynamic analysis would have only
given a shallow overview of this complex, multi-component botnet. In contrary,
BotWatcher monitors such botnets for a long time and is capable of detecting
various behaviors and dynamically loaded components that would otherwise be
missed.

578 T. Barabosch et al.

Fig. 5. Emotet case study.

3.3 Case Study 2: Emotet

Emotet is a modular botnet with a high degree of automation [2]. It is also
known as Feodo, Geodo, Cridex, or Dridex. In addition to a small loader module,
it has several modules for different purposes. This includes a banking module,
an address book grabber, and a spamming module. The address book grabber
collects new email addresses for the spamming module, which in turn sends
emails with the loader module attached. The banking module ensures a steady
cash flow [2]. We executed Emotet2 on 2015-05-19 at 3:56 PM and tracked the
botnet until 2015-05-22 at 4:19 PM.

Results. Immediately after execution, Emotet persisted in the system and after
thirty minutes it downloaded another binary (cr mss3.exe). As it can be seen
in Fig. 5, BotWatcher observed that the bot continuously tried to contact sev-
eral mail servers. By manually reverse engineering the binary, we could confirm
that it is in fact a spamming module of Emotet. While the spamming contin-
ued, further binaries were downloaded; after three hours BotWatcher detected
the download and execution of another binary that performed a code injection.
Directly after that, BotWatcher observed massive access of files performed
by the process targeted by code injection. Our manual analysis shows that the
downloaded binary is an information stealer malware. The spamming stopped
after eight hours. After some period of inactivity, BotWatcher observed several
downloads of binaries combined with spamming activity that lasted for roughly
two thirds of a day. BotWatcher collected 48 binaries in total during this case
study. All these binaries injected code in other processes, which was correctly
detected by BotWatcher. 37 of these 48 binaries have unique MD5 hashes and
correspond only to a couple of modules that were rehashed periodically.

Discussion. Emotet showed a very high degree of automation during the case
study. BotWatcher observed periods of spamming, information exfiltration
2 MD5 sum Emotet: 06B92478CB19FDE2665038CBDD0B1420.

BotWatcher: Transparent and Generic Botnet Tracking 579

and execution of further binaries. The insights provided by BotWatcher into
the botnet life-cycle and the collected binaries during the previous stages of
the botnet tracking facilitated our manual investigation of the various modules
involved. This allowed us to deduce key aspects of the botnet operation. First,
spamming occurs in periods that last several hours. Second, the botnet’s modules
are frequenly rehashed in order to evade AV products. Third, this rehashing
occurs more often during spamming periods.

3.4 Case Study 3: Gamarue

Gamarue is a malware downloader that is also known as Andromeda, which is
often distributed via spam. For this case study, we took a Gamarue sample from
a spam email related to a hotel booking confirmation. We executed this sample3

on 2015-04-27 at 2:55 PM and tracked the botnet until 2015-05-06 at 7:08 AM.

Results. Initially, BotWatcher detected that Gamarue created a new process
– the system process msiexec.exe – and injected code into it. Then, Gamarue
terminated its dropper process. For the next three days BotWatcher detected
continuous HTTP-based C&C-server communication carried out by msiexec.
exe. On 2015-04-30 at 7:00 PM, BotWatcher observed a download performed
by msiexec.exe that is followed by the creation of a new process. Subsequently,
BotWatcher detected that this process created an autostart registry key in
order to persist in the system. Furthermore, BotWatcher noticed that another
system process – svchost.exe – was started and that code was injected into it.
This system process then contacted a C&C-server for further instructions. A
manual inspection of the downloaded executable revealed that Gamarue down-
loaded the bootkit Rovnix. For the rest of this case study, both samples stayed
active and continuously contacted their C&C-server.

Discussion. The C&C-server of Gamarue delayed the delivery of Rovnix for
around three days. There might be two possible explanations for this behav-
ior. First, the operators of this botnet were very cautious. In this scenario, it
took three days until the C&C-server trusted our bot and decided to send fur-
ther modules to the infected system. Second, the C&C-server had no commands
during this period of time and therefore let the bot wait.

The downloaded malware – Rovnix – is also used as infrastructure building
malware. Unfortunately, we could not observe further downloads within the last
four days of this case study. This case study shows that static analysis and
short-time dynamic analysis cannot cope with these kinds of operators. It shows
also the importance of tracking botnets for longer than the average sandbox
execution time in order to get a full overview about a botnet’s activities.
3 MD5 sum Gamarue: 28E01A0E29155E5B993DFF915ACEA976.

580 T. Barabosch et al.

Case Study 4: Necurs. Necurs is a complex botnet that performs several
malicious actions like sending spam and distributing additional malware [4]. In
order to remain stealthy and avoid detection from security tools, it is equipped
with a rootkit component to hide its userland components. We executed Necurs4

on 2015-01-23 at 8:59 AM and tracked the botnet until 2015-01-26 at 7:32 AM.

Fig. 6. Necurs case study.

Results. Figure 6 shows the behavior of the botnet as inferred by BotWatcher.
Necurs started by installing a kernel module and searching through all files on
the hard disk. Subsequently, it did not show any interesting activity for 24 h.
After that, the bot contacted the C&C server and initiated a download of an
additional module. BotWatcher detected this as malware update behavior.
After 30 h, the analysis environment’s hostname was resolved and a connec-
tivity test conducted. Further manual analysis revealed that Necurs checked if
its host IP has been already blacklisted on blocking lists. Afterwards, Bot-

Watcher detected continuous C&C communication with two IP addresses. A
manual analysis showed that the first IP address was contacted to report back to
its C&C server. The second IP was contacted in order to request new spam tem-
plates. While continuously contacting its C&C serverand spam template server,
it also contacted various mail servers for sending spam. The latter behavior was
identified by BotWatcher as spamming behavior. This behavior lasted for two
days.

Discussion. BotWatcher detected all significant behaviors such as malware
installation and update, rootkit installation and spamming. The detection of
these events pointed us directly to interesting spots so that we could further
analyze the detected behavior manually. This case study shows that execution
stalling on the client-side in combination with delaying on the server-side are an
effective combination for evading short-term dynamic analyses.
4 MD5 sum Necurs: C39FBB4B968C882705F3DACAEF3F51C5.

BotWatcher: Transparent and Generic Botnet Tracking 581

3.5 Observing Mac OS X: OSX/VidInstaller

Malware also targets new platforms like Mac OS X due to an ongoing diversifica-
tion of operating systems. However, there are only a few Mac OS X-based botnets
at the moment. Unfortunately, we could not find a live botnet for this platform
during our experiments. C&C infrastructures of botnets like WireLurker were
already sinkholed or taken down. We decided to run BotWatcher with an
adware in order to show BotWatcher’s capacity to monitor other platforms
besides of Microsoft Windows. We chose the adware OSX/VidInstaller. This
adware might download and install further software. It comes disguised as a
codec, font or key generator. We executed OSX/VidInstaller5 on 2015-06-03 at
8:57 AM and observed it until 2015-06-03 at 1:13 PM. The guest system was
Mac OS X Mavericks (64 bits).

Observation and Discussion. After the execution of OSX/VidInstaller, Bot-

Watcher detected a new process. This process asked the user to agree to its
installation. We simulated a user and accepted this request. Subsequently, Bot-

Watcher observed several HTTP-requests to shady-looking domains. Also the
browser Safari was started presenting the user a webpage advertising a program
called MacKeeper. Once again we simulated a user and installed this program.
BotWatcher detected the creation of two MacKeeper-related processes. For
the remaining time no further activities occurred.

Foremost, we showed that our approach is also capable of analysing other
platforms that are increasingly targeted by cyber criminals. This platform agnos-
ticism is valuable to malware researchers. With the former primary malware
target Microsoft Windows in continuous decline, malware authors target other
popular platforms such as Mac OS X and Android.

4 Time-Based Evasion Techniques

Malware employs several techniques in order to evade dynamic analysis. A promi-
nent example is execution stalling to delay the execution of the actual malicious
payload. This technique exploits the fact that sandboxes analyze the malware
for a very limited period of time. Modern analysis approaches can circumvent
client-side execution stalling to elicit the malicious behavior (e.g. Hasten [21]).
However, command and control servers can also delay delivering modules or
commands to their bots. Given the fact that analysis tools cannot manipulate
the code on the server side, this is a powerful technique to stall the execution in
order to hinder dynamic analysis. Moreover, this serves as mechanism to estab-
lish a trust relationship with the recently joined bots. For a botmaster, it is
utterly important that a bot can be trusted so as to prevent being infiltrated
by malware analysts. Our experiments show that modern botnets move some
of these stalling techniques to the server side. This way they can achieve more
5 MD5 sum OSX/VidInstaller: 4ddf5d89249c58c5f0f9b38300b49b91.

582 T. Barabosch et al.

resilience against current anti-evasion approaches. We strongly believe that this
kind of evasion can only be circumvented by tracking over an extended period
of time as performed by BotWatcher.

Table 2. Resilience to time-based evasion techniques.

Our experiments show that there are three types of time-based evasion tech-
niques. These are listed in Table 2. The classic technique is performed by the
malware on the client side. This includes calling an API function to sleep or by
performing time-consuming computations before actually executing the mali-
cious payload (e.g. Sect. 3.2 Dyzap). The second technique is to delay the exe-
cution on the server side (e.g. Sect. 3.2 Gamarue). A combination of these can
also be used (e.g. Sect. 3.4 Necurs). Classical sandboxes cannot cope with these
techniques. The research community proposed several techniques to overcome
time-based evasion techniques on the client side [21]. However, they remain inef-
fective against server-based techniques. Since we perform monitoring over an
extended period of time, we are less likely to be affected by client-side and
server-side time-based evasion technique.

5 Limitations

This section discusses limitations of BotWatcher. These limitations are mem-
ory dump frequency and analysis environment detection.

5.1 Memory Dump Frequency

BotWatcher does not monitor every change of the virtual analysis environ-
ment’s memory. Execution events that start and terminate between two consec-
utive memory dumps might go missed by BotWatcher. However, the corre-
sponding artifacts usually stay for a longer period of time in memory. Therefore,
BotWatcher finds these data structures and can still detect the corresponding
short-living execution events.

5.2 Analysis Environment Detection

BotWatcher analyzes malware in a non invasive fashion. However, the malware
is run in a virtual analysis environment. Like any dynamic analysis system,

BotWatcher: Transparent and Generic Botnet Tracking 583

BotWatcher can be detected by malware [11]. As a result the malware might
refuse to work properly. However, this is increasingly unlikely since today several
productive systems run in virtual machines. We also try to minimize the chance
that malware detects our analysis environment by hardening it. For example,
we assign real vendor names to virtual hardware devices instead of the default
names that are used to fingerprint virtual machines.

An alternative approach would be using bare-metal machines instead of vir-
tual machines [20]. When deploying BotWatcher on bare-metal machines addi-
tional challenges have to be faced. BotWatcher’s analysis steps are based on
memory dumps and network traffic. We could implement the interception of net-
work traffic at networking switches (e.g. mirror port). However, the creation of
memory dumps would be a little bit more demanding. A possible way would be
direct memory access (DMA). DMA allows hardware devices such as network
cards or hard disks to directly read and write the main memory [29]. For exam-
ple, a specially crafted PCI device would be needed. With it, we could create
continuously memory dumps. Unfortunately, it would not be possible to read out
all the system’s memory at once with DMA. This means that we would have to
soften the notion of an exact memory dump at point in time t since the creation
of a memory dump would last up to several seconds. However, Volatility can also
work with these memory dumps. Please note that the remaining analysis steps
of BotWatcher remain unchanged in the bare-metal case.

6 Related Work

This section discusses related work in the fields of botnet tracking and automated
dynamic malware analysis.

6.1 Botnet Tracking

Freiling et al. [17] are the first to describe the tracking of botnets in a detailed
and scientific manner. Caballero et al. [15] performed a measurement study of
Pay-per-Install services. They infiltrated several of these services by implement-
ing milkers. A milker is a hand-crafted replica of a malware downloader that
only downloads the malicious payload but does not execute it. Several publica-
tions and projects focus on tracking one single malware component of one botnet
instance. Plohmann et al. [24] tracked the Miner botnet for four months. The
public project ZeuS Tracker tracks Zeus botnet instances [9]. Rossow et. al [25]
propose several attack methods for P2P botnets. Their paper features also the
tracking of several P2P botnets like ZeusP2P over six weeks. BotWatcher is
different from these works. Our approach focuses on generic tracking of multi-
component botnets in an automated fashion. We provide a global overview
of these botnets without assuming any previous knowledge about the tracked
botnet.

Rossow et al. performed a large-scale and long-term analysis for malware
downloaders [26]. They analyzed 32 Windows-based malware downloader over

584 T. Barabosch et al.

two years. They used the Sandnet [27] to execute and dynamically analyze down-
loaders’ communication architectures, carrier protocols and encryption schemes.
While this work presents a generic long-term botnet monitoring system, it does
not follow the transparency goal. For example, the system is based on kernel-
based Windows system driver that records the file images whenever new processes
are forked or system drivers are loaded.

6.2 Botnet Infiltration and Takeover

We aim to generically and transparently analyze unknown botnets. Orthogo-
nal related work monitors previously-known botnets. These approaches leverage
knowledge about the functionality and structure of botnets to gain detailed
information about several aspects of the botnet operation. For example, Kanich
et al. infiltrated the Storm botnet by impersonating proxy peers in the overlay
network [19]. They used this approach to analyze two spam campaigns. Stone-
Gross et al. took over the Torpig botnet C&C infrastructure and performed a
live analysis [28]. This enabled the authors to provide estimates on the botnet
size and statistics about the stolen data. Rossow et al. presented several generic
attacks against P2P botnets and used them to evaluate the resilience of eleven
active P2P botnets [25]. Using these attacks, the authors provide estimation of
botnet sizes. The approaches provide more detailed and accurate insights than
BotWatcher. However, they rely on previous knowledge and are difficult to adapt
to new and previously-unknown botnets.

6.3 Automated Dynamic Malware Analysis

Willems et al. [30] present CWSandbox, one of the first dynamic malware sys-
tem for collecting behavioral information. To achieve this, CWSandbox injects a
library into every process space and hooks several APIs. The sandbox is intended
for quick behavior-analysis of a large number of samples. Lengyel et al. [23]
present DRAKVUF, a system that uses active virtual machine introspection by
injecting breakpoints into the monitored guest. Each malware sample is run for
sixty seconds and behavior information is extracted. Even though they claim
their system to be transparent, the injected breakpoints can be easily found by
self-hashing [18]. Their system is also vulnerable to time-based evasion tech-
niques. Kirat et al. [20] propose BareCloud, a dynamic analysis system based
on bare metal machines. This system does not introduce in-guest monitoring
components and it is therefore transparent. Although BareCloud focuses on the
detection of evasive malware and not on botnet tracking, it can be extended to
support our techniques. By periodically providing memory dumps and network
traffic, our techniques can be directly applied on top of bare-metal systems like
BareCloud. A bare-metal solution of BotWatcher might be built on top of
BareCloud (see Sect. 5.2).

BotWatcher is different from these systems. Our approach does not focus
on quickly processing as much malware samples as possible, but rather it focuses

BotWatcher: Transparent and Generic Botnet Tracking 585

on investigating the life-cycle of complex botnets. These botnets consists of sev-
eral components that can be dynamically downloaded at any point during the
botnet operation.

7 Conclusion and Future Work

BotWatcher is a novel approach for transparent and generic botnet tracking.
It works in a non-invasive way and offers a host-based (memory dumps) as well
as network-based (network traffic) view of the botnet life-cycle. To this end,
BotWatcher analyses the evolution of the analysis environment’s state and
reconstructs the actions that caused this evolution. Our monitoring approach is
less likely to be affected by time-based evasion techniques – on the client and
the server side – since BotWatcher tracks botnets for a longer period of time
than typical sandboxes.

We implemented BotWatcher for Microsoft Windows and Mac OS X for
both 32- and 64-bits. Our experiments show that BotWatcher provided valu-
able insights into the behavior of the observed botnets. These insights would
allow security researchers and law enforcement to better understand the modus
operandi of the botnets in order to take further actions.

Future work includes extending the set of inference rules and long-term inves-
tigations of botnets. It will also focus on porting BotWatcher to further plat-
forms like Android in order to cope with future threats. We also intend to extend
the source of information from which we extract the system state to include the
hard disk. Furthermore, we will evaluate the current way of creating memory
dumps and other possible solutions in order to minimize the time during which
the VM is unresponsive.

Acknowledgments. We would like to thank our shepherd Christian Rossow for his
assistance to improve the quality of this paper. We also want to express our gratitude
toward the reviewers for their helpful feedback, valuable comments and suggestions.

References

1. Blue Coat Labs, CryptoLocker, Kegotip, Medfos Malware Triple-Threat,
26 September 2015. http://bluecoat.com/security-blog/2013-10-11/cryptolocker-
kegotip-medfos-malware-triple-threat

2. Kaspersky Lab ZAO, The Banking Trojan Emotet: Detailed Analysis, 26
September 2015. http://securelist.com/analysis/publications/69560/the-banking-
trojan-emotet-detailed-analysis

3. Microsoft Malware Protection Center, MSRT January 2015 - Dyzap, 26 September
2015. http://blogs.technet.com/b/mmpc/archive/2015/01/13/msrt-january-2015-
dyzap.aspx

4. Microsoft Malware Protection Center, Unexpected reboot: Necurs, 26 September
2015. http://blogs.technet.com/b/mmpc/archive/2012/12/07/unexpected-reboot-
necurs.aspx

http://bluecoat.com/security-blog/2013-10-11/cryptolocker-kegotip-medfos-malware-triple-threat
http://bluecoat.com/security-blog/2013-10-11/cryptolocker-kegotip-medfos-malware-triple-threat
http://securelist.com/analysis/publications/69560/the-banking-trojan-emotet-detailed-analysis
http://securelist.com/analysis/publications/69560/the-banking-trojan-emotet-detailed-analysis
http://blogs.technet.com/b/mmpc/archive/2015/01/13/msrt-january-2015-dyzap.aspx
http://blogs.technet.com/b/mmpc/archive/2015/01/13/msrt-january-2015-dyzap.aspx
http://blogs.technet.com/b/mmpc/archive/2012/12/07/unexpected-reboot-necurs.aspx
http://blogs.technet.com/b/mmpc/archive/2012/12/07/unexpected-reboot-necurs.aspx

586 T. Barabosch et al.

5. Oracle VirtualBox, 26 September 2015. www.virtualbox.org
6. The Bro Network Security Monitor, 26 September 2015. www.bro.org
7. The netfilter project (1999). www.netfilter.org
8. The Volatility Foundation, 26 September 2015. www.volatilityfoundation.org
9. ZeuS Tracker, 26 September 2015. www.zeustracker.abuse.ch

10. Zscaler Research, Evolution of Upatre Trojan Downloader, 26 September 2015.
www.research.zscaler.com/2014/11/evolution-of-upatre-trojan-downloader.html

11. Balzarotti, D., Cova, M., Karlberger, C., Kirda, E., Kruegel, C., Vigna, G.: Efficient
detection of split personalities in malware. In: Network and Distributed System
Security Symposium (NDSS) (2010)

12. Barabosch, T.: Complementary material used in Botwatcher: Transparent and
Generic Botnet Tracking, 26 September 2015. http://net.cs.uni-bonn.de/wg/cs/
staff/thomas-barabosch/

13. Barabosch, T., Eschweiler, S., Gerhards-Padilla, E.: Bee master: detecting host-
based code injection attacks. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550,
pp. 235–254. Springer, Heidelberg (2014)

14. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: finding malicious
domains using passive DNS analysis. In: Network and Distributed System Security
Symposium (NDSS) (2011)

15. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: USENIX Security Symposium (2011)

16. Denneman, F.: Memory Deep Dive - Optimizing for Performance, 26 September
2015. http://frankdenneman.nl/2015/02/20/memory-deep-dive/

17. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: di Vimercati, S.C.,
Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335.
Springer, Heidelberg (2005)

18. Horne, B., Matheson, L.R., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Sander, T. (ed.) DRM 2001. LNCS, vol.
2320, pp. 141–159. Springer, Heidelberg (2002)

19. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V.,
Savage, S.: Spamalytics: an empirical analysis of spam marketing conversion. In:
Proceedings of the 15th ACM Conference on Computer and Communications Secu-
rity (CCS) (2008)

20. Kirat, D., Vigna, G., Kruegel, C.: BareCloud: bare-metal analysis-based evasive
malware detection. In: USENIX Security Symposium (2014)

21. Kolbitsch, C., Kirda, E., Kruegel, C.: The power of procrastination: detection and
mitigation of execution-stalling malicious code. In: ACM Conference on Computer
and Communications Security (CCS) (2011)

22. Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxson, V.: GQ: practical con-
tainment for measuring modern malware systems. In: ACM SIGCOMM Internet
Measurement Conference (IMC) (2011)

23. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scal-
ability, fidelity and stealth in the DRAKVUF dynamic malware analysis system.
In: Annual Computer Security Applications Conference (ACSAC) (2014)

24. Plohmann, D., Gerhards-Padilla, E.: Case study of the Miner Botnet. In: Interna-
tional Conference on Cyber Conflict (CYCON) (2012)

25. Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich,
C.J., Bos, H.: P2PWNED: modeling and evaluating the resilience of peer-to-peer
botnets. In: IEEE Symposium on Security and Privacy (S&P) (2013)

www.virtualbox.org
www.bro.org
www.netfilter.org
www.volatilityfoundation.org
www.zeustracker.abuse.ch
www.research.zscaler.com/2014/11/evolution-of-upatre-trojan-downloader.html
http://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/
http://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/
http://frankdenneman.nl/2015/02/20/memory-deep-dive/

BotWatcher: Transparent and Generic Botnet Tracking 587

26. Rossow, C., Dietrich, C., Bos, H.: Large-scale analysis of malware downloaders. In:
Flegel, U., Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp.
42–61. Springer, Heidelberg (2013)

27. Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C.,
Pohlmann, N.: Sandnet: network traffic analysis of malicious software. In: Proceed-
ings of Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS) (2011)

28. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your Botnet is My Botnet: analysis of a Botnet takeover.
In: Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS) (2009)

29. Weis, S.: Protecting data in use from firmware and physical attacks. In: BlackHat
(2014)

30. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. In: IEEE Symposium on Security and Privacy (S&P) (2007)

Elite: Automatic Orchestration of Elastic
Detection Services to Secure Cloud Hosting

Yangyi Chen1(B), Vincent Bindschaedler2, XiaoFeng Wang1, Stefan Berger3,
and Dimitrios Pendarakis3

1 Indiana University Bloomington, Bloomington, USA
{yangchen,xw7}@indiana.edu

2 University of Illinois Urbana-Champaign, Champaign, USA
bindsch2@illinois.edu

3 IBM Thomas J. Watson Research Center, Yorktown Heights, USA
{stefanb,dimitris}@us.ibm.com

Abstract. Intrusion detection on today’s cloud is challenging: a user’s
application is automatically deployed through new cloud orchestration
tools (e.g., OpenStack Heat, Amazon CloudFormation, etc.), and its com-
puting resources (i.e., virtual machine instances) come and go dynami-
cally during its runtime, depending on its workloads and configurations.
Under such a dynamic environment, a centralized detection service needs
to keep track of the state of the whole deployment (a cloud stack), size up
and down its own computing power and dynamically allocate its existing
resources and configure new resources to catch up with what happens
in the application. Particularly in the case of anomaly detection, new
application instances created at runtime are expected to be protected
instantly, without going through conventional profile learning, which dis-
rupts the operations of the application.

To address those challenges, we developed Elite, a new elastic com-
puting framework, to support high-performance detection services on
the cloud. Our techniques are designed to be fully integrated into today’s
cloud orchestration mechanisms, allowing an o rdinary cloud user to requ
est a detection service and specify its parameters conveniently, through
the cloud-formation file she submits for deploying her application. Such a
detection service is supported by a high-performance stream-processing
engine, and optimized for concurrent analysis of a large amount of data
streamed from application instances and automatic adaptation to dif-
ferent computing scales. It is linked to the cloud orchestration engine
through a communication mechanism, which provides the runtime infor-
mation of the application (e.g., the types of new instances created) nec-
essary for the service to dynamically configure its resources. To avoid
profile learning, we further studied a set of techniques that enable reuse
of normal behavior profiles across different instances within one user’s
cloud stack, and across different users (in a privacy-preserving way).
We evaluated our implementation of Elite on popular web applications
deployed over 60 instances. Our study shows that Elite efficiently shares
profiles without losing their accuracy and effectively handles dynamic,
intensive workloads incurred by these applications.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 588–614, 2015.
DOI: 10.1007/978-3-319-26362-5 27

Elite: Automatic Orchestration of Elastic Detection Services 589

1 Introduction

Cloud computing has emerged as the mainstay of cost-effective, high-
performance platforms for hosting personal and organizational information
assets and computing tasks. This thriving computing paradigm, however, also
comes with security perils. Recent years have seen a rising trend of security
breaches in the cloud. Examples include the high-impact attacks on Amazon
AWS [1] and Dropbox [2]. Countering those threats requires effective security
protection, which today mainly relies upon the virtual-machine (VM) instances
with assorted protection mechanisms (firewalls, intrusion detection systems, mal-
ware scanners, etc.) pre-installed. Prominent examples include McAfee, Trend-
Micro and Alert Logic [3–5], all of which provide such instances with embedded
security agents to their customers for running their cloud applications.

A fundamental issue for this solution is that each instance has to allocate
resources for accommodating a complete security system, even when it cannot
make full use of the system most of the time. This goes against the resource-
sharing, on-demand service design of the cloud. As a result, the same secu-
rity functionalities are duplicated across all the instances when running a cloud
application, even for those temporarily rented to handle the burst of workloads.
Resources are squandered in this way when some instances do not have enough
workloads to merit the cost of operating the whole set of security mechanisms
(e.g., loading a large number of signatures into memory for malware scanning).
This inevitably interferes with the operations of the user application running
within the same instance. Further, security systems hosted in different instances
work independently, which fails to leverage cross-instance information to better
protect the cloud.

All these problems can be addressed by a centralized detection framework
that concurrently serves different application instances, for example, through
inspecting audit trails from those instances to detect cloud-wide malicious activ-
ities. Deployment of such a service, however, faces significant challenges in a
dynamic cloud environment, where different instances are generated and their
connections with assorted computing resources (storages, other instances) are
established during runtime. Management of this environment is complicated
enough to justify the use of an orchestration mechanism, such as OpenStack
Heat [6] and Amazon CloudFormation [7], which automatically creates different
types of cloud instances in response to changes to an application’s workload,
links them to each other and other cloud resources, and further configures the
software stack (a set of software packages for performing a task) within indi-
vidual instances according to the cloud user’s specifications (called template).
Clearly, to protect those instances, the detection service needs to work closely
with the orchestration process.

Challenges. To better understand the challenges for the detection service to
work in the cloud environment, let us look at a simple system with three auto-
scaling groups, whose resource level, such as the number of instances, goes up or
down automatically according to conditions set by the cloud user. These groups

590 Y. Chen et al.

are assigned to host load balancers, web servers, and database servers respec-
tively. Effective protection of all their instances needs a high-performance detec-
tion engine capable of auto-scaling. More specifically, during runtime, some of
the groups may expand, adding in more instances to help manage extra work-
load. This puts the detection service protecting them under pressure, which may
also need to scale up its capability to handle new tasks so that it can timely
respond to malicious events. This process is actually much more complicated
than it appears to be, involving re-arrangement of tasks, for example, connect-
ing a new detector instance to a set of application instances, and configuring
the detector properly according to the contexts of those instances, e.g., whether
they are load balancers, web servers or database servers.

Further, in the case of anomaly detection, where the intrusion detection sys-
tem (IDS) is supposed to catch an application instance’s deviation from its nor-
mal behavior, the detector needs to instantly create a normal behavior profile for
every instance generated in an auto-scaling process, based upon its context infor-
mation such as its software stack and configurations. Note that this needs to be
done in the most efficient way possible: given the large scale of the computation
the cloud undertakes and timely responses it needs to make to workload changes,
we cannot directly adopt conventional approaches, such as profile learning, which
could take a long time to build up an instance’s behavior model. Those issues
can only be addressed by new techniques that incorporate the detection service
into the orchestration mechanism, making the service work seamlessly within
the cloud work-flow and tuning it to meet the high performance demands from
the cloud. However, except for some attempts to directly deploy secure instances
(just like ordinary instances) through CloudFormation, as TrendMicro [4] does,
so far, little has been done to understand how to automatically arrange, coordi-
nate and manage centralized security services and their resources through cloud
orchestration.

Our Approach. To this end, we developed a new elastic intrusion detection
framework, called Elite, as an extension of the cloud orchestration mechanism.
Elite is designed to support parallel detection systems, automatically schedul-
ing them on-demand, provisioning their resources and allocating their tasks.
A cloud user can conveniently require detection services through her template
when she specifies the infrastructure for her cloud application using the file.
Based upon the template, an orchestration mechanism enhanced with Elite auto-
matically creates detector instances, configures them based upon their context
information, connects them to cloud resources and scales their number up and
down according to the application’s workload. Also as part of the framework,
those instances accommodate a high-performance distributed stream-processing
engine to support different detection techniques.

Elite also includes a novel technique that quickly builds up a normal profile for
each newly-created application instance, through adjusting the profiles of other
instances within the same auto-scaling group. The idea here is that since those
instances accommodate an identical software stack with identical configurations,
and are tasked to process the same datasets, their behaviors should be very

Elite: Automatic Orchestration of Elastic Detection Services 591

similar (but not identical). More specifically, our approach first generalizes the
profiles from multiple instances within the same group into a profile template,
and then specializes it using the parameters (e.g., temporary file names) of a
new instance automatically identified. In this way, instances acquired by the
cloud application during its runtime are automatically profiled and protected.
We further developed a technique that enables profile reuse across different auto-
scaling groups, particularly when a cloud user wants to take advantage of existing
profiles (from other users) associated with a similar software configuration to
avoid training her detector instance from scratch. This profile sharing needs to
be done in a privacy-preserving manner, given the sensitivity of individual users’
system configurations. Our approach is built upon a simple security protocol that
helps one user retrieve the profile from another party when their configurations
are close enough, without exposing their sensitive information to each other and
the cloud.

We implemented Elite on Openstack’s Heat orchestration engine and utilized
Apache Storm, a high-performance stream processing system, to build detection
services. Our implementation was evaluated using a cloud application capable of
scaling up to 60 instances. During our experiments, Elite ran anomaly detection
and the profiles it automatically created were found to work effectively, without
any negative impact on the effectiveness of the underlying detection technique.
Also, our stress test shows that Elite introduced negligible overheads and was
well adapted to dynamic workloads.

Contributions. The contributions of the paper are summarized below:

– New framework for elastic detection services. We designed a new framework to
support high-performance auto-scaling detection services. This framework has
been fully integrated into the existing cloud orchestration mechanism, which
enables a user to conveniently specify the parameters for detector instances
together with other cloud resources she requests for her application. The cloud
then acts on such specifications to automatically structure and restructure
the infrastructure of the detection service and scale its capability in accor-
dance with the application’s workload. Our framework also utilizes a high-
performance stream processing engine to accommodate different detection
techniques.

– Profile reuse techniques. We developed a suite of new techniques to reuse
normal behavior profiles within one auto-scaling groups and across different
groups. Our approach leverages the similarity among different cloud instances’
software configurations to generate accurate profiles for the instances dynam-
ically created during runtime. Also, sharing of profiles between different users
is supported by a security mechanism that preserves the privacy of the parties
involved.

– Implementation and evaluation. We implemented our design on OpenStack
and evaluated it using 60 cloud instances. Our study shows that our framework
and techniques work effectively in practice, incurring negligible overheads.

592 Y. Chen et al.

Fig. 1. Cloud orchestration example

2 Background

In this section, we provide background information for our research, includ-
ing brief introductions to cloud orchestration techniques, IDS systems and the
stream processing engine that supports our high-performance detection service.

Cloud Orchestration. The orchestration mechanism, also known as orches-
trator, is a critical cloud service that automates arrangement, coordination and
management of the cloud resources for a complicated application the user deploys
on the cloud. To use the service, the user is supposed to describe the infrastruc-
ture of the application in a text file (a template) and submit it to the orchestra-
tor. Within the template are the specifications of types of cloud instances, their
software stacks and their relationships with other resources, for example, how
an Amazon EC2 instance is connected to an Amazon RDS database instance.
For each instance, one can utilize the configuration management tools integrated
with the template to define how its software should be configured. Also various
services provided by the orchestrator, such as auto-scaling, can also be requested
as a resource within the template. Figure 1 shows a simplified template file and
the application infrastructure it defines.

Using the template, the orchestrator automatically manages the whole life-
cycle of the user’s application, acquiring new resources from the cloud, con-
figuring them, re-arranging tasks for different instances when new workloads
come up and deleting resources when a job is done. The whole infrastructure
can be conveniently adjusted by the user through updating her template. Such
functionalities are supported by mainstream orchestration products, including
Openstack Heat [6] and Amazon CloudFormation [7]. Also well-specified tem-
plates are extensively reused and customized by cloud users to quickly deploy
their applications.

In our research, we incorporate a high-performance parallel IDS service into
the orchestration mechanism as a cloud resource, which can be conveniently
specified in a template. To provide the service with context information necessary
for its operations, we further modified the orchestrator, adding a new channel for
it to communicate with the IDS resource. Also, we constructed a template with
necessary configurations to enable auto-scaling and configuration of detector

Elite: Automatic Orchestration of Elastic Detection Services 593

instances, which can be customized by a cloud user to integrate the service into
her application infrastructure.

Intrusion Detection. Intrusion detection techniques have served as the back-
bone of organizational security protection for decades. An IDS detects mali-
cious activities either through identifying a set of signatures (signature-based
detection) or through monitoring a system’s deviations from its normal behav-
ior profile (anomaly detection). Examples for the former include network intru-
sion detectors like snort, which screens network traffic flows for the patterns of
known threats (e.g., propagation of Internet worms), and host-based scanners
that inspect the code of suspicious programs or their behaviors (e.g., system
calls) [8–11] to catch malware. Anomaly detection, on the other hand, typi-
cally looks at a legitimate program’s operations to find out whether it is doing
something that it normally does not do, based on its behavior profile. Such a
profile can be system-call sequences [12–14], or just a white list of system calls
(with parameters) the program is supposed to make when it is not compro-
mised, as many host-based detectors (e.g., systrace [15]) do. In our research, we
implemented a simple signature-based detector and a white-list based anomaly
detector for inspecting audit trails submitted by application instances. Note that
our framework is also capable of supporting more complicated techniques, like
call-sequence based anomaly detection.

Such conventional detection techniques, particularly those host-based, are
not designed to serve a large number of cloud instances and process a large
amount of data at a high speed. To move them into a cloud service, we need to
incorporate them into a parallel, high-performance computing platform. What
was adopted in our design is a stream processing engine, as elaborated below.

Stream Processing. A stream processing engine is a distributed computing
system for analyzing unbounded streams of data in real time. This capability
is crucial to the mission of the cloud detection service, which receives a large
amount of data streamed from different instances. Examples of such systems
include IBM InfoSphere Streams [16], Apache Storm [17] etc. In our research,
we built our distributed detection service on top of Storm.

Storm is an open-source system known for its fast speed and ease of use [18].
A typical Storm system is deployed as a cluster, which includes a Nimbus node,
a Zookeeper [19] node and a set of Supervisor nodes. The Nimbus node is the
master of the whole cluster, in charge of managing the interaction topology of
the cluster as well as task allocation and tracking. Zookeeper helps coordinate
Nimbus and Supervisors, which run a group of worker processes to do the real
job. Among the workers, a set of sprout processes receive streaming data from
other cloud instances and route it to bolts, which perform the user’s computation
task on the data (e.g., filtering, aggregating, database access, etc.). The inter-
connections among sprouts and bolts form a topology managed by the Nimbus
and predefined by the Storm user.

Over the Storm platform, we specified a topology and implemented detection
algorithms into bolts, together with a mechanism for interacting with the Heat

594 Y. Chen et al.

engine for getting context information of newly-created instances. The details of
this parallel detection service are explicated in Sect. 3.2.

3 Design and Implementation

In this section, we present the design of Elite, which is meant to achieve the
following goals:

– High performance. The detection service should work in parallel, concurrently
processing a large number of streams, and also auto-scaling, dynamically
extending and shrinking its computing resources in response to changes to
its workload.

– Context information support. The framework should be able to effectively com-
municate with the detection service a cloud application’s state information.
Particularly when new resources are added into the application’s infrastruc-
ture, the detection service needs their context information to determine how
to protect the resources.

– Ease of use. Through our framework, we expect that a cloud user can directly
require the detection service and set its parameters, including the amount of
computing resources she is willing to rent for the service and detection algo-
rithms, without going through a complicated process of configuring individual
instances that host the service.

This design was implemented over the open-source OpenStack Heat orches-
tration system and the Apache Storm engine. Here we first describe Elite at a
high level and then elaborate on its technical details.

3.1 Overview

Architecture. The architecture of Elite is illustrated in Fig. 2. This detection
framework has been built around the cloud orchestration system. It includes
an extension to the cloud formation language used to describe an application’s
infrastructure for automatic configuration of our detection service, a commu-
nication mechanism built into the orchestration system for collecting the con-
texts of the application’s runtime and dispatching such information to the detec-
tor instances, and a set of VM images for different types of parallel detection
mechanisms (signature-based or anomaly detection) implemented over a stream-
processing engine.

How it Works. Consider a cloud user who requests a detection service from
the cloud to protect her application. All she needs to do is to state the detection
image (associated with different detection techniques) and auto-scaling condi-
tions (e.g., creating a new instance when the processing time of the detection
service goes above a threshold) within the template she submits to the cloud
for running her application. The specifications are then parsed by the orchestra-
tion system, which runs a template we built to automatically configure the whole

Elite: Automatic Orchestration of Elastic Detection Services 595

Fig. 2. System architecture

detection infrastructure, setting parameters for individual detector instances and
connecting them to application instances. During the application’s runtime, the
auditing daemons(which can be pre-configured and incorporated into the appli-
cation image) within its instances stream audit trails to the detectors. Also,
the orchestrator continuously updates the detectors the state of the application,
particularly context information of any auto-scaling groups or new instances
dynamically generated. In the case of anomaly detection, the orchestrator can
run a few “training” instances that generate input traffic to application instances
for building up their normal behavior profiles and bootstrapping a whole auto-
scaling group. When this happens, the detector needs to be informed that the
system operates in a “training mode1”.

All the detector instances are created from a selected detection image. They
work concurrently on a large number of streams from application instances.
Those detectors can go through all the audit trails to look for attack signatures
or any deviations from the application’s normal behaviors. When it comes to
anomaly detection, the detectors also need to find out whether the system runs
in a training mode, in which they automatically build up profiles for different
instances (e.g., a list of system calls and their parameters) and further gener-
alize them into a profile template within each auto-scaling group. During the
normal operation of the application, such profile templates are specialized auto-
matically to provide instant protection for every new instance. Also, profiles are
reused across different auto-scaling groups and even different users to shorten or
even remove the whole training stage. Such reuse needs to happen in a privacy-
preserving way, given the sensitivity of the user’s system configurations. This is
achieved in our system through a simple security mechanism.

1 How long the detector needs to stay in “training mode” depends on many factors
such as the nature of the service provided by the application instances, the quality
of training inputs, and to what extent the cloud user can tolerate the false positives.
Precise tuning of the training time and the trade-offs involved is not the focus of
this paper.

596 Y. Chen et al.

Adversary Model. What we built is a high-performance, auto-scaling cloud
platform for supporting IDS. Depending on specific IDS techniques running on
top of Elite, we need to make different assumptions about the adversary’s capa-
bilities. Specifically, for a normal host-based IDS, the sensor for collecting audit
trails runs as an OS daemon. In this case, we have to assume that the OS kernel
is sound. On the other hand, if the sensor is deployed at the level of virtual
machine monitor, the detection system operating within Elite can catch kernel-
level attacks. Also, we consider that the orchestrator has not been compromised
and the cloud is honest but curious when it comes to cloud users’ data privacy. In
practice, commercial cloud providers tend to refrain from inspecting the content
of their customers’ instances for liability concerns. All we want to avoid here is
to expose more data than the customer is willing to share to the cloud.

3.2 Detection Service Orchestration

As described before, Elite supports a convenient set-up of a high-performance
detection service and automatic orchestration of the service in response to the
states of the user’s cloud application. Here we elaborate the techniques behind
this elastic, scalable detection platform, including the extension made to the
template language, a stream-based IDS platform and a high-performance detec-
tion system built on top of it, and the mechanism for coordinating the cloud
orchestrator and our detector instances.

Detection Service Specification. To integrate our detection service into the
cloud orchestrator, we extended the template language to allow the user to con-
veniently set up the detection service. Specifically, our extension includes a new
group of cloud resources “AWS::IDS::ENGINE NAME”, which describes a special
auto-scaling group for detectors, whose type (ENGINE NAME) is specified by the
user. Each detector type is associated with a pre-built VM image that hosts a
parallel, stream-based detection algorithm. As an example, we implemented in
our research a concurrent anomaly detector running Systrace-like profile based
detection [15]. The detector was constructed in a way that it can easily incorpo-
rate other detection mechanisms and also support attack path analysis, which
we discuss later.

Using this new statement, the user can request the detection service from the
cloud and further describes auto-scaling conditions for the service. For exam-
ple, the user can specify a fixed auto-scaling ratio or let the detection service
auto-scale based on conditions like message processing delay or CPU usage
of the detector instances. After Heat parses the statement and its related set-
tings, it automatically creates detector instances from the image the user chooses
and builds an auto-scaling group to accommodate the instances. Within each
instance, Heat further invokes a script we built to configure the IDS engine with
a set of default parameters. For example, NumFileBolts defines how many bolts
the user wants Storm Engine to start for processing file-related system calls. The
user can also change the default value of those parameters when submitting the
template for stack creation through Heat API. We further developed configura-
tion scripts to run inside each instance generated by the user’s application to

Elite: Automatic Orchestration of Elastic Detection Services 597

set up an auditing daemon that streams out the instance’s audit trails during
its runtime.

Stream-Based IDS Platform. At the receiving end of the audit-trail streams
are the detector instances. In our research, those instances were all built on
top of the Storm stream-processing engine. As described before, a Storm cluster
includes two types of worker nodes, sprouts and bolts, which connect to each
other to form a network structure as part of the system’s configuration. For
simplicity, our implementation just utilizes one sprout node to receive streams
from application instances and dispatch them to different bolt nodes. The latter
can be added at the system’s runtime to handle extra workload brought in by the
application during its auto-scaling process. When this happens, each new bolt
is dynamically connected to the sprout. A direct use of this stream-based IDS
platform is just to let the stream from each application instance be taken care of
by one bolt. For this purpose, the bolt was built to gather context information
from a database maintained by Heat and upload data such as intrusion signatures
or normal behavior patterns of the application from Storm’s internal database
to its memory, which we elaborate later. With such supports, a classic signature-
based or anomaly IDS can directly run within the bolt to process the audit trails
from application instances.

A problem for this design is the lack of cooperations among bolts. Such
cooperations can potentially improve the performance and flexibility of the whole
detection service. In our research, we implemented a simple Systrace-like system-
call inspection system, which is designed to concurrently process audit trails
from hundreds of application instances, each containing a large number of calls.
Those calls are checked one by one against the behavior profile of each instance,
including the names and parameter patterns of the calls considered to be normal
for the instance. Those profiles are maintained within the detector database.
A small set of them are created offline when the whole template stack (the cloud
application and the detection service) runs in a training mode. Most of them,
however, are generated online through profile reuse within an auto-scaling group
or across different groups, which we describe in Sect. 3.3.

The operations of an application often generate a huge amount of auditing
data. For example, opening Firefox and using it to perform a Google search can
produce as many as 36936 system calls. To avoid the performance overheads on
both the application instance and the detector, our system-call inspector only
focuses on several categories of calls considered to be inevitable for an intrusion
to succeed. More specifically, what are currently inspected in our detector include
those for operating on file systems (e.g., open), networking (e.g., connect) and
generating a remote shell (e.g., execve)2. For the Firefox example, this means
the inspector needs to check only 44 (instead of 36936) system calls. We fur-
ther designed the detection service in a way that a group of bolts were tuned
to processing a single category of calls only. This allows the bolts to work more

2 Those calls need to happen on almost all intrusion vectors (as evidenced by our
false negative evaluation in Sect. 4.2). Also our design can be easily extended to
accommodate other types of calls.

598 Y. Chen et al.

efficiently on the data, helps better balance the workload across different bolts
and most importantly makes it possible to integrate other detection mechanisms
into the system. Specifically, bolts working on the same category only need to
maintain the profiles of the system calls in that category across all auto-scaling
groups, instead of complete profiles of those groups in the case that one bolt
is assigned with the whole stream from a random application instance within
the template stack. Also, depending on the number of calls observed in each
category, the system can dynamically increase or decrease the number of bolts
associated with the category to better allocate the resources of the detection ser-
vice. Further, this treatment automatically organizes the outputs of our detector
into categories: all file operations are assigned to one set of bolts and network
activities are given to the other set, etc. As a result, we can conveniently let
those bolts stream their outputs to another set of bolts that run other detection
mechanisms. Particularly, in our implementation, we added a group of bolts that
run Snort on the content produced by network calls, which are transmitted from
the workers associated with the network category.

Our implementation serving this purpose is illustrated in Fig. 3. We built
two layers of bolts. On the first layer are dispatchers that parse streams, extract
system calls, group them into vectors with various lengths depending on the cat-
egory of the calls. A simplified form of such a vector is (mac, ID, program, name,
parameters), which describes the MAC address of the instance from which the
call was initiated, its identifier within the cloud (including the number of its
stack and the name of its auto-scaling group), the program that made the call,
the name of the system function called and its parameters. Note that the iden-
tifier ID is left blank by the dispatchers, which cannot directly observe them.
Based upon name (the call type it is associated with), the vectors are regrouped.
Those within the same category (file operations, networking, etc.) are streamed
to the same group of worker bolts on the second layer. The worker bolts maintain
the profiles of different instances within their memory, which only include the
functions in the category and their parameters. During its runtime, each worker
uses a vector’s mac to locate the profile for a specific instance and checks whether
other elements of the vector, such as program, name and parameters, are in com-
pliance with it. These workers also retrieve the identifier for each MAC address
from the orchestrator, which is used for profile sharing. Behind those bolts, our
implementation can accommodate other layers of bolts in the user’s request, for
the purpose of signature-based detection and attack graph reconstruction.

Automated Orchestration and Scaling. Although the detection service is
configured by Heat and automatically scales through Heat, the communication
between them is quite limited during runtime. Particularly, the service does not
know what happens in the user’s cloud application, for example, when a new
instance is created and which auto-scaling group the instance belongs to. With-
out such information, it is almost impossible for the service to properly configure
new detector instances in response to the dynamics within the application. To
address this issue, we built into Heat a mechanism to facilitate its communication

Elite: Automatic Orchestration of Elastic Detection Services 599

Fig. 3. Detector Storm topology Fig. 4. Automated Orchestration and
Scaling

with the detection service at runtime, through its OpenStack Heat database and
Storm’s internal database. Figure 4 illustrates how the mechanism works.

Specifically, we modified Heat’s database, adding in three tables (ids stack,
ids autoscaling and ids instance) for a user’s stack, auto-scaling groups and
application instances respectively. Among them, ids stack is for profile reuse
across different stacks, ids autoscaling maintains all the auto-scaling groups
within the same stack and ids instance keeps all instances within the same
group. Those tables are utilized by Heat when building up the whole stack
and dynamically adjusting its infrastructure, adding or removing instances from
different auto-scaling groups. In this way, the orchestrator keeps record of the
provenance for each instance, i.e., the stack and auto-scaling group it belongs to.
Such information is saved to the role attribute of the instance. In our implemen-
tation, we instrumented Heat engine functions EngineService.create stack,
resources.AutoScalingGroup. handle create, StackResource.create with
template and resources.instance.check create complete to operate on
those tables and track the provenance of each instance.

Through the instance table, the Heat orchestrator can mark the status of a
stack as “training” or “enforcement”. This mark is then passed to the detector
that queries the Heat database for instance information. Such a query needs to
go through proper authentication, which in our research is based upon the cloud
user’s credential, as the database is shared among different users. With the state
information from the orchestrator, the detection service will decide whether to
learn a behavior profile (which is kept within Storm’s internal database) of an
instance or go ahead to detect its suspicious behaviors using the existing profile
or malicious activities by looking for known signatures. When the application
adds in new instances within its auto-scaling group, the detection service will
notice that new MAC addresses show up, whose profiles and other information
are not present in the internal database. In this case, the service will query
the instance table in the Heat database for a newly observed MAC address to
get the role of its instance. This attribute, as elaborated before, contains the
provenance of the instance, which enables the detector to figure out how to reuse
existing profiles for protecting the instance in an anomaly detection.

600 Y. Chen et al.

3.3 Context-Aware Profile Configuration

Challenges in Anomaly Detection on the Cloud. As mentioned before,
the high-performance IDS platform within Elite can support different kinds of
detection techniques. For signature-based detection, all we need to do is just
running the existing mechanism within the bolts tasked to process the whole
streams of individual application instances. When it comes to anomaly detection,
however, we have to consider the complexity introduced by profile learning.
Specifically, there should be an off-line learning stage during which training
traffic is used to drive the operations of the user’s application. The audit trails
produced thereby are analyzed by the detection service for constructing different
instances’ profiles. More challenging here is profiling a newly created instance
during the application’s runtime, which needs to happen in real-time. Although it
is conceivable that the new instance will behave in a similar way as others within
the same auto-scaling group, subtle differences can still exist in their profiles. The
problem we faced in our research is how to automatically construct an accurate
profile without going through the learning stage, both for the instances within
an existing auto-scaling group and for those in a newly created stack. Following
we elaborate a set of techniques that facilitate reuse of profiles within one group
and cross users.

Profile Generation and Reuse. Profile learning is fully supported by Elite.
Once a user selects an anomaly detection image when building her template,
the Elite components within Heat automatically set the application’s execu-
tion mode to “training” as soon as the stack is deployed. Through Heat, our
implementation creates a set of instances, based upon the user’s specification,
to run scripts3 that generate training traffic for the whole stack. For example,
these instances can produce HTTP traffic to a web application running on top of
Apache servers deployed in application instances. In the meantime, the detection
service learns from individual instances’ audit trails invariants in their behaviors
and save such profiles to the detector’s database. Also, all the profiles from dif-
ferent instances within the same auto-scaling group are generalized into a profile
template. During the system’s runtime, whenever a new instance is created for a
group, its template signature is then specialized according to the unique feature
of the new instance to provide it immediate protection.

For the Storm-based system call inspector implemented in our research, its
learning phase involves 2 to 5 instances per auto-scaling group. Each of these
instances is monitored by a set of concurrently running detector instances. As
discussed before, those detectors extract from the application instance’s audit
trail system-call vectors and classify them into different categories according to
the types of the calls (e.g., all those related to file operations). The recipients
of the vector stream within one category, the worker bolts, further group all the
vectors using their MAC addresses, program names, specific system call names
and others, and removes duplicated ones. For example, all the system calls open

3 An example here is JMeter Script Recorder, which can be provided by the cloud and
customized by the user.

Elite: Automatic Orchestration of Elastic Detection Services 601

from a given mac and a specific program are placed inside one group and for each
vector within the group, others with the exactly same parameters are dropped.
The worker bolts further attempt to generalize call parameters across the vectors
within the group. Particularly, for each outgoing network call, they contact the
Heat orchestrator to find out whether the call is made to another auto-scaling
group: for example, a web server instance accesses an instance within the auto-
scaling group of database servers. Note that such connections are typical for a
cloud application, which actually describe the topology of its whole stack. What
our approach does here is to replace the IP address within the parameters for
such a network call (e.g., connect) with the identifier (e.g. 102-DBServerGroup,
where 102 is the number of the stack and the rest part is the group name) of the
target auto-scaling group. This step is necessary for reducing the false positives of
the profile generated by the bolts, which comprises all those generalized vectors
for a specific MAC address and is stored under the identifer of the application
instance or its auto-scaling group.

The detection service further compares the profiles from multiple instances
within the same auto-scaling group to generate a profile template. Specifi-
cally, the vectors that appear across all profiles are directly moved to the
template. For other vectors, our approach inspects them one by one, across
the profiles, looking for the invariants in the parameters of the same sys-
tem call (from the same program) and the strings that match a set of
predetermined patterns (e.g., the instance’s identifier). For example, con-
sider the call open(/var/lib/cloud/i-0000010a/config) in one profile and
open (/var/lib/cloud/i-0000010b/config) in another. The vector (mac, ID,
program, open, /var/lib/cloud/(instance id)/config) will be added to the
template. Note that mac is left blank here, which needs to be filled with the
MAC address of a new instance and the content “(instance id)” matches the
instance’s ID and is therefore annotated for the specialization purpose.

During the system’s runtime, whenever a new instance within the same
auto-scaling group is created, the detection service specializes the profile tem-
plate to generate one for the instance. The idea here is to replace wildcards
with the concrete value observed from the new instance’s operation, once the
call name, related parameter invariants and other elements (e.g., program)
are matched. In the above example, as soon as the service finds that the
new instance makes a call open(/var/lib/cloud/i-0000010c/config), the
aforementioned vector is immediately specialized into (mac, ID, program, open,
/var/lib/cloud/i-0000010c/config) and added into the instance’s profile.
Note that in the case that no invariant can be found in the parameters of the
same calls across all instances, the whole parameter part of the vector within a
profile template is replaced with a wildcard “*”. This notifies the detection ser-
vice that for a new instance, if it makes the call within the vector, any parameter
of the call will be acceptable.

Reuse Across Users. The above profile-sharing technique makes it possible
to run anomaly detection on an auto-scaling cloud application. What is also
desired here is to shorten or even completely remove the learning phase that

602 Y. Chen et al.

bootstraps the detection mechanism. To this end, we investigated the technique
that supports profile reuse across auto-scaling groups, even across different cloud
users.

A key observation is that whenever two application instances run an iden-
tical software stack (e.g., OS/web server/web application) with identical con-
figurations, their behavior profiles should be very similar. Indeed, in Sect. 4.2,
we present our study on popular stacks, which shows that they produced the
same set of system calls with very similar parameters. Further, even in the pres-
ence of small discrepancies in the configurations, as long as critical components
remain unchanged (such as plug-in settings for Joomla!), the profiles from those
instances often still come close to each other. In these cases, we can reuse the
profile template from one auto-scaling group on the other one to avoid the off-line
learning stage4, and instead adjust the template and the profiles derived from
it during the new group’s runtime whenever false positives show up. Also, given
that people tend to make minor customizations on popular software stacks with
default settings, there are lot of chances to reuse profiles even across different
cloud users.

What stands in the way of such a reuse, however, is privacy concerns. Specif-
ically, cloud users may not be willing to expose all her software settings to the
cloud, which may reveal potential security weaknesses in her system [20]. In this
case, the template file one submits to the orchestrator may only describe part of
her software stack and some configurations can happen within each application
instance using the scripts provided by the user. Note that even though the cloud
service provider can figure out such information by inspecting the content of the
user’s VM instances, they are reluctant to do so and afraid of legal liabilities.
In our research, we designed a simple mechanism that facilitates the reuse of
profiles across users without leaking out configuration information to either the
cloud or the parties who adopt different settings, and also the identities of the
parties involved.

Fig. 5. Privacy-preserving profile-sharing

4 False positives incurred by such profile sharing can be further adjusted during the
system’s online operation.

Elite: Automatic Orchestration of Elastic Detection Services 603

Figure 5 illustrates the way the mechanism works. As soon as a user submits
her template file to the orchestrator to deploy a stack with the detection service,
the Elite component within Heat searches the table ids stack for other template
files that contain auto-scaling groups or instances with identical software stacks
and configurations. For each of such template files discovered, which may not
document the full configurations made by its owner, the cloud contacts the owner
to further compare her configurations with those of the new user in a privacy-
preserving way. Specifically, both users, without knowing each other, exchange a
secret key through the cloud using the classic Diffie-Hellman (DH) key exchange
protocol. The DH protocol is designed to establish a secret between strangers
over an insecure channel, as long as the party eavesdropping on the channel (the
cloud) is considered to be honest but curious, never inserting its own messages
into the channel to play a man-in-the-middle. Using the exchanged secret, these
two users can compute keyed hash values for the value part of each key-value pair
within their system configuration files for an instance and submit them to the
cloud for a comparison. If the cloud finds that their configurations are identical
or very similar, one party can anonymously share her profile template for the
instance to the other through the cloud. Specifically, the party first searches for
the occurrences of instance IDs within the profiles, and removes them but sets
indicators there to let the recipient fill in his own IDs. Then, she continues to
sanitize other content of her profile template, replacing confidential information
with the indicators for the types of data that should be in place. This template is
then encrypted using the shared secret key and delivered to the recipient through
the cloud. This way, profiles are reused anonymously, without disclosing sensitive
information to the cloud and the party with different settings.

For example, Alice joins a community organized by the cloud, in which every
user is committed to sharing her profiles to others when needed in a privacy-
preserving way, and also benefits from other profiles in accelerating her deploy-
ment of cloud applications. In this case, Alice wants to create a website using
a WordPress CloudFormation template [21]. After the template is submitted,
the cloud orchestrator first compares it with other templates in its database:
if another user, say Bob, has utilized a very similar template file before, Alice
might be able to reuse his profile. To further assess the possibility of reuse, Alice
and Bob need to compare the configurations for their software such as Apache
HTTP server and WordPress. Because their configurations may contain sen-
sitive data like passwords (WordPress involving MySQL password), Alice and
Bob cannot do this in plaintext. Instead, they exchange a secret key K using the
DH protocol through the cloud, and then encrypt their software configurations.
Specifically, for each key-value pair within their configuration files, the value part
is encrypted using K. The ciphertext here is sent to the cloud, which compares
them to find out how similar these two configurations are. If they are identical
except for some minor keys (e.g., WordPress Database Table prefix), Alice and
Bob are instructed by the cloud that the profile can be reused. Then Bob sani-
tizes his profile automatically by removing the content of private items, including
secrets such as passwords, unique identifiers like instance IDs, host names and

604 Y. Chen et al.

IP addresses, and other information like installation path, but annotates each
item with its content type (e.g., password, host name, etc.). The profile is then
encrypted under K and handed over to Alice through the cloud. The recipi-
ent here, Alice, fills in the blanks (sanitized items) with her information before
running the profile to protect her website.

As we can see from the example, at the end of this procedure, Alice and
Bob do not know each others’ identities. They do not have exact information
about the overlap of their configuration files, not to mention the parts that differ
from each other. The cloud knows the identity of both parties but has no idea
about the values of their configuration settings (other than how similar the two
configurations are).

4 Evaluation

To understand how Elite performs in practice, we tested our prototype against
real-world security threats and heavy computing tasks. What we want to find
out includes the impacts of our profile reuse approach on the effectiveness of
the detectors running on top of Elite, and the performance of the framework
in protecting the cloud application with a dynamic,intensive workload. In this
section, we report the results of the study.

4.1 Settings

Our evaluation study was conducted under the following system settings:

The Cloud and Orchestrator. The cloud used in our study includes 22 work-
stations, each equipped with a 4-core 3.10 GHz Intel i5-2400, 8 GB memory and
an 80 GB local disk. On those workstations, we deployed an OpenStack (Ice-
house) cluster with 1 controller node and 21 compute nodes. The Heat orches-
tration service within OpenStack was modified to accommodate the Elite com-
ponents we implemented. The instance used in our experiments was typically
configured with 1 core, 2 GB memory and 10 GB storage and ran Fedora 17 with
heat-cfntools [22] to support cloud orchestration.

Cloud Applications. Multiple applications were run on top of this cloud
infrastructure to evaluate the effectiveness and performance of our techniques.
Specifically, three popular content-management systems, WordPress, Drupal
and Joomla!, were used to understand the effectiveness of profile reuse (see
Table 1). Also serving this purpose were two prominent penetration testing plat-
forms: Kali Linux and Metasploitable2. WordPress was further utilized in
our performance evaluation.

The Detection Service. The detection service was built within a Storm 0.9.1
engine, with a default configuration, in which a single sprout node was connected
to multiple bolts. Each detector node was hosted within a typical VM instance
(1 core, 2 GB memory and 10 GB disk). The whole service was set to be able to
automatically scale in the presence of dynamic workloads.

Elite: Automatic Orchestration of Elastic Detection Services 605

Table 1. Workloads for false positive evaluation.

Stack Application Automatic (1000 Users) Manual

WordPress Create User, User Login,
Browse Blog,
Post/Comment Blog,
Reply Comment

Change Theme, Activate Widgets,
Change User Role, Add/Edit
Media in Library

Joomla! User Registration, User
Login,
Create/Browse/Edit
Article

Enable/Activate User, Add Menu,
Enable/Disable Plug-ins,
Edit/Publish/Unpublish
Modules

Drupal User Registration, User
Login, Browse/Add
Article, Add Comments

Unblock User,
Install/Enable/Disable Theme,
Add Role, View Reports,
Enable/Disable Module, Change
Site Config/Structure

4.2 Effectiveness

For anomaly detection in general and our prototype service in particular, the
most important issue we want to understand is the effectiveness of profile reuse
through Elite. To this end, we measured in our study the false positive and nega-
tive rates of the profile derived from a profile template, as described in Sect. 3.3,
under different web traffic and real-world exploits. The results show that our
approach does not undermine the accuracy of a detection system, and instead,
makes it convenient to use in a cloud environment through swiftly deploying
profiles for new instances acquired by a cloud application.
False Positive. We ran WordPress, Drupal and Joomla! on Apache 2.2.23
under the Elite-enhanced orchestrator to find out whether the new profile auto-
matically reused causes more false alarms than the one constructed through
profile learning. In the experiments, all those web services were configured using
sample templates provided by the AWS CloudFormation website [23].

Once deployed under Elite, the cloud stack running these applications first
operated in learning mode. To generate a workload as realistic as possible for
the study, we leveraged one of the most wildly used load testing tool, JMeter,
to simulate 1000 users who produced random requests to explore common func-
tionalities of those web applications (e.g., browsing blogs). To complement those
requests, we further performed administrative operations manually on a set of
application instances. The complete list of the activities can be found in Table 1.

The learning stage ended up creating profile templates for the auto-scaling
groups hosting those applications, which are used to generate new profiles for new
instances added to the groups. Direct testing on the new instances is complicated,
since the traffic is automatically distributed to all the instances within an auto-
scaling group, including existing ones. What we did in our research is to create
a new stack using the same template file for the old one and apply the profile
templates (from the old cloud orchestration stack) to their corresponding groups

606 Y. Chen et al.

Table 2. False Positive Results

Stack Application Profile Auditing Events False Positives

File Exe Net

WordPress 4313 245 45 ˜271120 11

Joomla! 7427 306 41 ˜577040 8

Drupal 4945 334 40 ˜190400 9

on the new stack, which were specialized automatically during the operation of
the new stack5. This new stack was directly set to the enforcement mode, in
the presence of requests (which were different from those used in learning stage)
from JMeter, for a false-positive measurement.

Table 2 shows the experiment results. The false positive rates for all these
three web applications were found to be exceedingly low, around 10 over hun-
dreds of thousands of auditing events. Most importantly, comparing the profile
learnt (on the old stack) and the one derived (on the new stack), the false
positives observed are identical: all caused by network-related system calls. For
example, one false alarm from WordPress came from the connection of httpd to
a different IP address than the one observed during the learning phase, which
all belong to WordPress.org.

Interestingly, we found that all the MYSQL database server instances across
the stacks for WordPress, Drupal and Joomla! had very similar profiles, allowing
the profile template from one stack to be automatically specialized to protect
the instance in the corresponding auto-scaling group within another stack. This
also happened to the load balancers across these stacks. All these instances
(database servers or load balancers) were installed with identical software stacks
and configured in the same way across the stacks. However, they are working
on completely different types of data, serving different web applications. Our
findings show that it is realistic to share profiles between the instances within
different stacks and belonging to different users, as long as they all have the
same software stacks and configurations.

Note that such profile sharing cannot be achieved by directly applying a
profile learnt from one instance to another, even when both instances belong
to the same auto-scaling group. We actually found the presence of significant
differences within some vectors in different instances’ profiles, which were auto-
matically identified and specialized. An example is the open call made to a
random file under the directory /var/lib/mysql/, as illustrated in Fig. 6. This
file name is within the profile learnt but varies across different instances. Our
approach automatically identified its invariant patterns (highlighted in Fig. 6),
which were used to specialize the profile. Should such a profile be directly reused
without specialization, much more false alarms would be produced.

5 In addition to the contents with wildcards, those profile templates were also special-
ized according to the ID of the stack.

Elite: Automatic Orchestration of Elastic Detection Services 607

Fig. 6. An example of profile generalization/specialization.

False Negative. To study whether profile reuse could cause the detector to miss
the attacks it should be able to catch, we utilized two well-known penetration
testing platforms: Kali Linux and Metasploitable2. Kali Linux is a Linux
distribution built for advanced and versatile penetration testing. It integrates
more than 300 tools, including the Metasploit framework, a tool for developing
and executing security exploits. Metasploitable2 is an intentionally vulnerable
Linux VM image (based on Ubuntu 8). It contains a collection of outdated
vulnerable and improperly configured software and services for testing security
tools.

In our experiments, we deployed Metasploitable2 over a cloud stack and
again, ran the stack first in learning mode. During this process, a script was
used to generate requests, causing the application instance (hosting Metas-
ploitable2) to perform different operations. For example, for Samba (SMB) and
FTP, the script made connections to their service daemons, listed files, and
uploaded/downloaded a set of files. For Apache 2, the script ran two crawlers (a
python crawler and a wget based crawler) to crawl its web content. To gener-

Table 3. False Negative Results.(‘rev’ is a shortcut for ‘reverse’)

Exploit Payload Detection

Baseline Elite

Samba usermap script cmd/unix/reverse Yes Yes

cmd/unix/rev netcat Yes Yes

Samba Symlink Traversal - No No

vsftpd 2.3.4 Backdoor - Yes Yes

UnrealIRCd 3.2.8.1 Backdoor cmd/unix/reverse Yes Yes

PHP-CGI Arg Injection generic/shell rev tcp Yes Yes

dRuby Code Exec cmd/unix/reverse Yes Yes

cmd/unix/rev netcat Yes Yes

Java RMI Server Code Exec java/shell/rev tcp Yes Yes

linux/x86/shell rev tcp Yes Yes

DistCCd Command Exec cmd/unix/reverse Yes Yes

Detection Rates 11/12 11/12

608 Y. Chen et al.

Table 4. Metasploitable2 Selected Vulnerabilities.

Target Description CVE / OSVDB

Samba Usermap script – Command Injection CVE-2007-2447

Samba Symlink Directory Traversal OSVDB-62145

vsftpd 2.3.4 Backdoor – Command Execution CVE-2011-2523

UnrealIRCd 3.2.8.1 Backdoor – Command Execution CVE-2010-2075

PHP-CGI Argument Injection CVE-2012-1823

dRuby [24] DRB Remote Code Execution -

Java RMI Server [25] Java Remote Code Execution -

DistCCd Command Execution CVE-2004-2687

ate a realistic workload for DistCCd, a distributed compilation tool, the script
requested a Metasploitable2 instance to compile the source code of sqlite3 [26].

The profile templates created in learning stage were then specialized for
the instances within a new Heat stack generated from the same orchestration
template file. Again, this new stack operated in enforcement mode and ran
Metasploitable2 in the presence of exploit attempts made from Kali. Table 4
lists 12 exploits tested in our study, including 8 attacks with different payloads,
which will cause a compromised system to behave differently (e.g., spawning a
shell). All of them led to successful attacks. Using the original profile (“Base-
line” in Table 3), which is the one built up during the learning stage, the detector
caught 11 of these exploits, all except Samba symlink traversal. After replacing
the original profile with the derived one (specialized from a shared profile tem-
plate), we observed that Elite detected the exactly same set of exploits (11 out
of 12). Note that the Samba symlink traversal exploit [27,28], which provides
access to the victim’s file system, was missed in both cases, due to the incomplete
set of system calls monitored in our prototype. We emphasize that this problem
is caused by the underlying detection mechanism, not by the reuse of profiles.
The results actually strongly indicate that our profile-reuse approach will not
affect the accuracy of a detector.

4.3 Performance

We further studied the performance of the Elite-enhanced orchestration in terms
of its consumption of computing resources and its impacts on the cloud user’s
experience. Specifically, we measured the overheads incurred by our implemen-
tation when collecting audit trails from individual application instances and
streaming them out to the detection service. Then we evaluated how our elastic
detectors help control the time for processing audit trails and the amount of
resources required for this purpose.

Overheads. The only overheads brought in by Elite to individual applica-
tion instances come from 3 audit-related processes for generating, dispatching
and streaming out auditing events. These processes are auditd, audispd and

Elite: Automatic Orchestration of Elastic Detection Services 609

Table 5. Overheads of Audit Processes.

Process Peak Memory (KB) Peak %CPU

Virtual (VSZ) Physical (RSS) %MEM

auditd 91768 524 0.03 1

audispd 80692 556 0.03 1

audisp-remote 6876 492 0.02 0.33

audisp-remote. To measure this cost, we set up an instance with WordPress
installed and ran JMeter to simulate 100 concurrent users, automatically gener-
ating workloads as described in Table 1. We can see that the CPU and memory
usages of the processes are very low from Table 5.

The communication cost for running Elite was mainly caused by streaming
out the audit trails to detectors. For example, on one WordPress instance, during
the process of installing WordPress and handling 100 concurrent users’ requests
for around 30 min, audit dispatcher needs to stream out ˜10 MB of auditing
events. Given the average bandwidth between instances in our OpenStack setup
is ˜2.5 MB/s and bandwidths provided by public clouds are even higher [29],
so this level of bandwidth consumption is rather low for a cloud application
and does not affect its normal operation. For the Heat orchestrator, the per-
formance impact of our approach is unobservable, due to a large workload it
already undertakes to build up the whole stack and coordinate its operations.

Elastic Detection. To understand the important support Elite provides to
the intrusion detection on the cloud, we compared the performance of detection
with and without the elastic service offered by Elite. Here we measured the per-
formance in terms of the average delay in processing an auditing event (called
Average Message Complete Latency or AMCL). This latency describes the aver-
age duration from the moment a detector receives an auditing event to the
time when this event is fully analyzed. To get AMCL, we set up two stacks using
the standard WordPress CloudFormation template (with and without Elite) and
gradually increased their runtime workloads. For the stack with elastic detection,
we utilized a simple yet conservative policy that set the auto-scaling ratio to 1:5,
e.g., there were 12 detector instances when the number of application instances
grew to 60. Note that our design can also support other auto-scaling policies
based on CloudWatch’s alarm mechanism, for example those based upon CPU
usages. As we can see from Fig. 7, in the absence of the elastic detection service,
the AMCL became prohibitively large when the number of application instances
went up to 30 (which were all served by a single detector instance). This basi-
cally means that system administrator can only find out an attack event more
than 10 min after it actually happens on an application instance. We tried twice
to scale the stack to 60 application instances without elastic detection, unfor-
tunately Storm IDS engine inside the single detector crushed simply because
it just can’t handle events from so many application instances. By comparison,
Elite automatically added in more resources for detection when large workloads

610 Y. Chen et al.

Fig. 7. Average message complete latency with and without elite.

Table 6. Performance of privacy-preserving configuration matching. The elapsed time
is reported in seconds.

DH Key Exchange Derivation Key-Value Pairs Matching

DH Generation DH Shared Key 82 Pairs 1000 Pairs

0.05 1.36 0.41 1.46

came in, which results in a relatively stable AMCL: even in the presence of 60
application instances, the latency observed in our study is still below 30 s.

Reuse Across Users. We built a prototype implementation of our privacy-
preserving profile sharing subsystem with the goal of evaluating the performance
of two key components: DH key exchange and privacy-preserving configuration
matching. The results are shown in Table 6. As we can see from the table, the
whole operation is very efficient, which is always done within 2 s.

5 Discussion

Our evaluation study shows that Elite works effectively against dynamic and
intensive workloads from the popular applications it protects, without under-
mining the accuracy of detection. On the other hand, our current design and
implementation are still preliminary. Much needs to be done to further improve
its capabilities, which we discuss as follows.

Platform. Our design extends the cloud-formation language to allow the user
to request a detection service to be set up according to a set of parameters.
What can be done next is to further enrich the language for configuration of a
complicated security service, including not only a single type of intrusion detec-
tors and their combination but also other protection mechanisms, like integrity
checker and a forensic analysis mechanism. Also, to support those new security

Elite: Automatic Orchestration of Elastic Detection Services 611

components, changes need to be made to the orchestration engine to provide the
components stack-wide information, particularly interactions between different
instances.

Protection Service. The prototype we implemented just includes a parallel
detection service. Follow-up research could build other aforementioned protec-
tion mechanisms on top of the stream processing engine. Also in addition to
serving individual users, the security service offered by the cloud can leverage
its global view to help detect malicious code or activities and prevent them from
propagating to other cloud users. Such a service becomes increasingly important
under the current trend in moving organizational infrastructures to commercial
clouds.

Profile Reuse. As a very preliminary step toward leveraging stack-wide or
even cloud-wide information for security protection, we developed a suite of
techniques for sharing normal behavior profiles across auto-scaling groups and
different users. However, the effectiveness of those techniques need to be further
evaluated against different types of detection systems. Also likely the design
itself needs to be adjusted to make profile-reuse work on those systems.

Instance Migration. Due to regular infrastructure maintenance, cloud
providers may need to migrate instances across physical machines. A concern
is that such migration could interrupt the executions of detector and application
instances. However, with new technologies like live migration [30] being adopted
by cloud providers today, such an infrastructure maintenance can be transparent
to instances and therefore will not affect Elite’s normal operations.

6 Related Work

Traditional Intrusion Detection. Intrusion detection has been studied for
decades. Numerous approaches have been proposed for signature-based and
anomaly detection. Techniques are developed for host-based [31,32] and network-
based IDS [33], using various machine learning [34] and data mining [35,36] algo-
rithms. Moving those conventional techniques to the cloud faces great challenges,
due to the dynamics in the cloud environment. Elite is designed to address those
challenges, offering a high-performance platform to support those detection tech-
niques on the cloud.

Cloud-Based Intrusion Detection and Prevention. Cloud-based IDS can
leverage the information collected outside VM instances. For example, detec-
tion systems [37,38] were built to run on the hypervisor to support no-intrusive
inspections of events that happen inside VM instances. Such detectors can also
be accommodated by the Elite platform, which can operate a centralized service
to analyze all the events of individual instances gathered at hypervisor level.

Most related to our work is CIDS [39], which constructs a peer-to-peer (P2P)
network on top of application instances with embedded detectors. Through this
P2P infrastructure, detectors collaborate with each other, sharing resources and

612 Y. Chen et al.

balancing their workloads. Also, a few conceptual designs of centralized detectors
have been reviewed in [40,41]. Virtual middleboxes framework like Stratos [42]
has also been proposed for hosting IDS in an elastic way. However, to our knowl-
edge, no effort has ever been made to integrate a centralized detection service
into the cloud orchestration mechanism, which is crucial for protecting a highly
dynamic, auto-scaling computing system.

System Call Based Host Protection. The anomaly detector implemented
in our prototype is a parallelized version of system-call-policy based protec-
tion. Examples for this type of detection techniques include Systrace [15], Blue-
Box [43], SELinux [44], AppArmor [45] and TOMOYO Linux [46]. An extension
of these approaches, which largely enforce security policies at individual calls,
is call-sequence based anomaly detection [12,47]. Such techniques can also be
conveniently supported by our elastic detection platform to protect cloud appli-
cations in a large scale.

7 Conclusion

The dynamics of the cloud-computing environment makes it extremely chal-
lenging to protect a cloud user’s application. A detection service designed for
the cloud is expected to continuously monitor the state of the application,
dynamically adapt its computing scale to workloads and reallocate its existing
resources and configure new resources at runtime. This requirement can only
be met through close interactions with cloud orchestrators. In this paper, we
describe Elite, the first elastic detection platform designed for this purpose. Elite
is developed to enhance existing cloud orchestrators, enabling the user to conve-
niently request a detection service and specify its parameters through her cloud-
formation template. Such a detection service is built upon a high-performance
stream-processing engine, capable of concurrently analyzing a large number of
audit streams and automatically adjusting its computing scale. The service is
further supported by the Elite components within the orchestrator, which timely
updates the application’s state information. To avoid learning a new instance’s
behavior profile for anomaly detection, which is unrealistic during the appli-
cation’s runtime, we studied a set of new techniques to facilitate profile reuse
within an auto-scaling group, and also across users in a privacy-preserving way.
Our evaluation shows that such profile sharing does not undermine the accu-
racy of detection, and also the whole system effectively handles heavy workloads
produced by popular web applications.

Acknowledgments. The project is supported in part by National Science Foundation
CNS-1117106, 1223477, 1223495, 1223967, 1330491, and 1408944. Yangyi Chen was also
supported in part by IBM internship program. The views and conclusions contained
herein are those of the authors only and do not necessarily reflect those of the NSF or
IBM.

Elite: Automatic Orchestration of Elastic Detection Services 613

References

1. Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N., Lo Iacono,
L.: All your clouds are belong to us: Security analysis of cloud management inter-
faces. In: CCSW (2011)

2. Mulazzani, M., Schrittwieser, S., Leithner, M., Huber, M., Weippl, E.: Dark clouds
on the horizon: using cloud storage as attack vector and online slack space. In:
USENIX Security (2011)

3. McAfee SaaS Endpoint Protection Suite. http://www.mcafee.com/us/products/
saas-endpoint-protection-suite.aspx

4. Trend Micro Deep Security as a Service. http://www.trendmicro.com/us/business/
saas/deep-security-as-a-service/index.html

5. Alerg Logic Public Cloud Security. https://www.alertlogic.com/products-services/
public-cloud-security/

6. Heat - OpenStack. https://wiki.openstack.org/wiki/Heat
7. AWS CloudFormation. https://aws.amazon.com/cloudformation/
8. Sung, A.H., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of vicious executa-

bles (save). In: ACSAC, Washington, DC, USA (2004)
9. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-based

spyware detection. In: USENIX Security, Berkeley, CA, USA (2006)
10. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effec-

tive and efficient malware detection at the end host. In: USENIX Security (2009)
11. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-

wide information flow for malware detection and analysis. In: CCS, New York, USA
(2007)

12. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. J. Comput. Secur. 6, 151–180 (1998)

13. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: IEEE S&P (1996)

14. Michael, C.C., Ghosh, A.: Simple, state-based approaches to program-based anom-
aly detection. ACM Trans. Inf. Syst. Secur. 5, 203–237 (2002).
http://doi.acm.org/10.1145/545186.545187

15. Provos, N.: Improving host security with system call policies. In: USENIX Security
(2002)

16. IBM InfoSphere Streams.
http://www-03.ibm.com/software/products/en/infosphere-streams

17. Storm - The Apache Software Foundation! http://storm.incubator.apache.org/
18. Apache Storm - A system for processing streaming data in real time. http://

hortonworks.com/hadoop/storm/
19. Apache ZooKeeper. http://zookeeper.apache.org/
20. Google Hacking Database. http://www.exploit-db.com/google-dorks/
21. AWS CloudFormation Sample Template WordPressMultiAZ. https://s3-us-west-2.

amazonaws.com/cloudformation-templates-us-west-2/WordPress Multi AZ.
template

22. Heat API Instance Tools. https://launchpad.net/heat-cfntools
23. AWS CloudFormation Templates.

https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
24. Distributed Ruby Send instance eval/syscall Code Execution. https://www.rapid7.

com/db/modules/exploit/linux/misc/drb remote codeexec

http://www.mcafee.com/us/products/saas-endpoint-protection-suite.aspx
http://www.mcafee.com/us/products/saas-endpoint-protection-suite.aspx
http://www.trendmicro.com/us/business/saas/deep-security-as-a-service/index.html
http://www.trendmicro.com/us/business/saas/deep-security-as-a-service/index.html
https://www.alertlogic.com/products-services/public-cloud-security/
https://www.alertlogic.com/products-services/public-cloud-security/
https://wiki.openstack.org/wiki/Heat
https://aws.amazon.com/cloudformation/
http://doi.acm.org/10.1145/545186.545187
http://www-03.ibm.com/software/products/en/infosphere-streams
http://storm.incubator.apache.org/
http://hortonworks.com/hadoop/storm/
http://hortonworks.com/hadoop/storm/
http://zookeeper.apache.org/
http://www.exploit-db.com/google-dorks/
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/WordPress_Multi_AZ.template
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/WordPress_Multi_AZ.template
https://s3-us-west-2.amazonaws.com/cloudformation-templates-us-west-2/WordPress_Multi_AZ.template
https://launchpad.net/heat-cfntools
https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://www.rapid7.com/db/modules/exploit/linux/misc/drb_remote_codeexec
https://www.rapid7.com/db/modules/exploit/linux/misc/drb_remote_codeexec

614 Y. Chen et al.

25. Java RMI Server Insecure Default Configuration Java Code Execution. https://
www.rapid7.com/db/modules/exploit/multi/misc/java rmi server

26. SQLite Home Page. http://www.sqlite.org/
27. Samba Guest Account Symlink Traversal Arbitrary File Access. http://www.

osvdb.org/62145
28. Samba Symlink Directory Traversal. https://www.rapid7.com/db/modules/

auxiliary/admin/smb/samba symlink traversal
29. Need for speed: Testing the networking performance of the top 4 cloud providers.

http://gigaom.com/2014/04/12/need-for-speed-testing-the-networking-
performance-of-the-top-4-cloud-providers/

30. Google Compute Engine: Transparent maintenance. https://developers.google.
com/compute/docs/zones#maintenance

31. Kim, G.H., Spafford, E.H.: The design and implementation of tripwire: a file system
integrity checker. In: CCS, New York, USA (1994)

32. Vigna, G., Kruegel, C.: Host-based intrusion detection (2005)
33. Roesch, M.: Snort - lightweight intrusion detection for networks. In: USENIX Sys-

tem Administration, Berkeley, CA, USA (1999)
34. Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., Lin, W.-Y.: Intrusion detection by machine

learning: a review. Expert Syst. Appl. 36, 11994–12000 (2009)
35. Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion

detection models. In: S&P (1999)
36. Lee, W., Stolfo, S.J., Mok, K.W.: Adaptive intrusion detection: a data mining

approach. Artif. Intell. Rev. 14, 533–567 (2000)
37. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual

machine monitor-based lightweight intrusion detection. ACM SIGOPS 45, 38–53
(2011)

38. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: NDSS (2003)

39. Kholidy, H.A., Baiardi, F.: CIDS: a framework for intrusion detection in cloud
systems. In: ITNG (2012)

40. Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey
of intrusion detection techniques in cloud. JNCA 36, 42–57 (2013)

41. Patel, A., Taghavi, M., Bakhtiyari, K., Celestino Jr., J.: Review: an intrusion detec-
tion and prevention system in cloud computing: a systematic review. JNCA 36,
25–41 (2013)

42. Gember, A., Krishnamurthy, A., John, S.S., Grandl, R., Gao, X., Anand, A.:
Stratos: a network-aware orchestration layer for virtual middleboxes in clouds.
arXiv (2013)

43. Chari, S.N., Cheng, P.-C.: Bluebox: A policy-driven, host-based intrusion detection
system. ACM TISSEC 6, 173–200 (2003)

44. Smalley, S., Vance, C., Salamon, W.: Implementing selinux as a linux security
module. NAI Labs Rep. 1, 43 (2001)

45. SUSE AppArmor. https://www.suse.com/support/security/apparmor/
46. Harada, T., Horie, T., Tanaka, K.: Task oriented management obviates your onus

on linux. In: Linux Conference (2004)
47. Forrest, S., Hofmeyr, S., Somayaji, A.: The evolution of system-call monitoring.

In: ACSAC (2008)

https://www.rapid7.com/db/modules/exploit/multi/misc/java_rmi_server
https://www.rapid7.com/db/modules/exploit/multi/misc/java_rmi_server
http://www.sqlite.org/
http://www.osvdb.org/62145
http://www.osvdb.org/62145
https://www.rapid7.com/db/modules/auxiliary/admin/smb/samba_symlink_traversal
https://www.rapid7.com/db/modules/auxiliary/admin/smb/samba_symlink_traversal
http://gigaom.com/2014/04/12/need-for-speed-testing-the-networking-performance-of-the-top-4-cloud-providers/
http://gigaom.com/2014/04/12/need-for-speed-testing-the-networking-performance-of-the-top-4-cloud-providers/
https://developers.google.com/compute/docs/zones#maintenance
https://developers.google.com/compute/docs/zones#maintenance
https://www.suse.com/support/security/apparmor/

AmpPot: Monitoring and Defending Against
Amplification DDoS Attacks

Lukas Krämer1, Johannes Krupp1, Daisuke Makita2,3, Tomomi Nishizoe2,
Takashi Koide2, Katsunari Yoshioka2, and Christian Rossow1(B)

1 CISPA, Saarland University, Saarbrücken, Germany
crossow@mmci.uni-saarland.de

2 Yokohama National University, Yokohama, Japan
3 National Institute of Information and Communications Technology, Koganei, Japan

Abstract. The recent amplification DDoS attacks have swamped vic-
tims with huge loads of undesired traffic, sometimes even exceeding hun-
dreds of Gbps attack bandwidth. We analyze these amplification attacks
in more detail. First, we inspect the reconnaissance step, i.e., how both
researchers and attackers scan for amplifiers that are open for abuse.
Second, we design AmpPot, a novel honeypot that tracks amplifica-
tion attacks. We deploy 21 honeypots to reveal previously-undocumented
insights about the attacks. We find that the vast majority of attacks are
short-lived and most victims are attacked only once. Furthermore, 96 %
of the attacks stem from single sources, which is also confirmed by our
detailed analysis of four popular Linux-based DDoS botnets.

1 Introduction

Distributed denial-of-service (DDoS) attacks have threatened critical Internet
infrastructures for many years [1–3]. Recently, in particular amplification DDoS
attacks [4] have gained increasing popularity. In such amplification attacks, an
attacker abuses so called amplifiers (or reflectors) to exhaust the bandwidth
of a victim. Instead of directing the attack traffic to the victim directly, the
adversary sends requests to reflectors and spoofs the source IP address, so that
the reflectors’ responses are directed to the victim. An attacker may abuse any
public server that is vulnerable to reflection attacks, such as open DNS resolvers
or NTP servers. Worse, these protocols are known to amplify the bandwidth
significantly, easily allowing an attacker to launch Gbps-scale attacks with a
much smaller uplink. In fact, amplification attacks have caused the largest DDoS
attack volume ever observed, e.g., against Spamhaus in 03/2013 (≈ 300 Gpbs)
and OVH in 02/2014 (≈ 400 Gbps).

The rise of amplification attacks raises many research questions. How fre-
quent are such attacks, and whom do they target? Are individual sources spoof-
ing traffic to trigger attack traffic, or do distributed botnets cause the DDoS
attacks? Which software do adversaries use to launch the attacks, and how do
they identify amplifiers? Can network-based filtering methods be used to detect

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 615–636, 2015.
DOI: 10.1007/978-3-319-26362-5 28

616 L. Krämer et al.

amplification attacks? All these questions help to improve our understanding of
the threat, to learn attack motivations, and to devise effective countermeasures.

In this paper, we will close this gap by studying in-the-wild activities of
attackers preparing and launching amplification DDoS attacks. We first leverage
a /16 IPv4 darknet to identify scans for amplifiers, revealing that over 5,000
hosts scanned for DDoS-related services. We observe the scans over time, and
monitor a sudden increase of scans caused by whitehats in early 2014. Further
analyses reveal that scans are widely distributed, and large parts of the scans
rely on Zmap [5] for their reconnaissance.

We then perform a longitudinal study of amplification attacks. To this end,
we introduce AmpPot, a novel open-source honeypot specifically designed to
monitor amplification attacks. AmpPot can mimic services that are known to
be vulnerable to amplification attacks, such as DNS and NTP. To make them
attractive to attackers, our honeypots send back legitimate responses. Attackers,
in turn, will abuse these honeypots as amplifiers, which allows us to observe
ongoing attacks, their victims, and the DDoS techniques. To prevent damage
caused by our honeypots, we limit the response rate. This way, while attackers
can still find these rate-limited honeypots, the honeypots stop replying in the
face of attacks.

We deployed 21 globally-distributed AmpPot instances, which observed
more than 1.5 million attacks between Feb. and May 2015. Analyzing the attacks
more closely, we find that more than 96 % of the attacks stem from single sources,
such as booter services. We show that most attacks are relatively short-lived, and
victims are rarely attacked multiple times—giving interesting insights into the
motivation behind the attacks. We conclude that amplification DDoS attacks
are a global problem, with most victims being located in the US (32 %) and
China (14 %).

To foster attack mitigation, we further devise reactive countermeasures
against amplification attacks. First, we provide a live feed of amplification
attacks. Second, we derive and present a list of domains that are abused in
DNS-based amplification attacks. Finally, to study the root cause of amplifica-
tion attacks, we analyze the new trend of Linux-based DDoS botnets. We inspect
over 200 DDoS malware samples and classify most of them into four families.
We manually reverse-engineer these samples to analyze their attack techniques,
revealing amplification capabilities in all families. In an attempt to map attacks
to DDoS botnets, we fingerprint the traffic of these families and link it to the
attacks observed at the honeypots. This analysis reveals little overlap, showing
that DDoS botnets are not the main source of amplification attacks.

To summarize, the contributions of this paper are as follows:

1. We design AmpPot, a novel honeypot to capture amplification DDoS attacks.
We evaluate various response modes and, based on our collected attacks,
devise best practices for deploying such honeypots.

2. We leverage a /16 darknet and the data collected by 21 AmpPot instances
to shed light on the current state of in-the-wild amplification attacks. We use
these results to derive honeypot-assisted defense mechanisms.

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 617

3. We analyze the recent threat of Linux-based DDoS bots. We show that these
bots offer amplification DDoS capabilities, but using traffic fingerprinting, we
also reveal that their overall share in the amplification attacks is negligible.

2 AmpPot

This section starts with background information on amplification DDoS attacks.
We then describe AmpPot, our novel honeypot that monitors amplification
DDoS attacks.

2.1 Background

Amplification DDoS attacks aim to congest the network bandwidth of attack
targets [4]. Attackers use two main techniques to launch amplification attacks.
First, they abuse UDP-based Internet services that reflect traffic. For example,
attackers may abuse open DNS resolvers to trigger responses to DNS lookups. By
choosing particular DNS queries, attackers can even ensure that the responses
are much larger than the requests—therefore triggering traffic amplification. Sec-
ond, attackers spoof the source IP address of the traffic so that the responses
flood a victim, instead of going back to the attacker. Such attacks inherently
require amplifiers, i.e., hosts offering services that are vulnerable to amplifica-
tion DDoS. Rossow documented 14 UDP-based protocols that can be abused for
DDoS attacks, such as DNS, NTP or SNMP [4]. For many of these protocols,
adversaries simply use Internet-wide scans to identify millions of amplifiers. Once
discovered, attackers will abuse a subset of the discovered amplifiers as part of
their attacks.

2.2 Honeypot Design

In the following, we will describe AmpPot, which acts as fake amplifier. Based on
the above observations, we can use this honeypot to (i) monitor reconnaissance
steps performed by potential attackers, and (ii) monitor amplification attacks.
AmpPot mimics services having amplification attack vectors by listening on
UDP ports that are likely to be abused. In particular, AmpPot supports all
protocols that are said to be vulnerable [4]: QOTD (17), CharGen (19), DNS
(53), NTP (123), NetBIOS (137), SNMP (161) and SSDP (1900), plus MSSQL
(1434) and SIP (5060/5061). To serve these protocols, AmpPot listens on the
according ports for incoming UDP packets.

Modes: Whenever AmpPot receives a request, it will respond. We use three
“modes” that influence the type of response we send back:

– Emulated: In this mode, we use protocol-specific parsers. If a request is valid,
we reply with a response, which is randomly chosen from a pre-generated set of
protocol-specific responses. For a few protocols such as DNS, which requires

618 L. Krämer et al.

dynamically-generated responses that are specific to the request (e.g., the
queried domain name), we recursively resolve the requested resource before
responding.

– Proxied: The proxy mode turns AmpPot into a proxy that forwards
requests to internal servers that actually operate the vulnerable protocol. The
responses, in turn, are sent back to the client. While this mode requires con-
figuring servers (such as a DNS resolver, or NTP time server), it has the
advantage that no emulation is needed.

– Agnostic: Finally, when run in the agnostic mode, AmpPot responds regard-
less of the validity of the request. In fact, even the response is invalid: AmpPot
replies with a large response that contains random bytes (either 100x the size
of the requests, or with the maximum MTU). This mode assumes that the
attacker does not really care about the validity of the responses, but instead
just aims to find hosts that send back large replies.

Section 4 will compare these three modes in terms of their effectiveness.

Responses: AmpPot is most attractive for attackers if its responses result in
amplification. To be attractive, we carefully designed protocol-specific responses
(emulated mode) or configured servers that send back attractive payloads (proxy
mode). For example, for DNS we resolve the request that the client sent, and
respond with the entire response, in particular also following the EDNS exten-
sions to support large payloads. Furthermore, we trigger responses that are both
vulnerable to NTP’s monlist request and many other amplifying responses (e.g.,
version info). We gained this knowledge by (a) inspecting known vulnerability
reports, (b) passively observing requests targeting a darknet (see Sect. 3), and
(c) scanning the Internet to find typical large responses. Except for the agnostic
mode, we made sure that popular client software for each protocol can success-
fully parse the responses.

Rate Limiting: By mimicking services that have amplification vulnerabilities,
AmpPot runs a risk of becoming involved in actual DDoS attacks. On the other
hand, in order to attract attackers, the honeypots need to respond as if they
were vulnerable. We have thus added a rate-limiting mechanism to AmpPot
that helps to distinguish between scans (to which we would like to reply) and
attacks (in which we do not want to participate). In particular, we block a
client IP address (and its corresponding /24 network), if the client sends more
than 10 requests per minute. Once a network is blocked, no requests from this
network range will be answered. After an hour, we re-evaluate the blacklist
and remove a network from the blacklist when it has ceased sending requests.
In our later deployment of the honeypots, we received only four emails from
attack victims, which we responsibly answered. After our clarification, none of
the victims claimed that we caused damage.

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 619

Data Collection: One of the core components of AmpPot is data collection.
We collect data in two ways: raw requests and filtered data. Raw requests are
simply recorded as .pcap files. However, as the raw data becomes large and dif-
ficult to handle quickly, we also record a filtered dataset. For this, each honeypot
records the first 100 requests per source IP address and stores them in a sqlite
database. The relational database eases analysis and data sharing.

Tool Sharing: AmpPot is implemented in Python and follows a modular design.
We will share AmpPot with trusted parties and make it accessible to fellow
researchers, assuming that we can use the derived data as input for the attack
portal. Please contact Christian Rossow to obtain access to the source code.

2.3 Honeypot Deployment

We deployed 21 AmpPot instances to collect attack information. Table 1 sum-
marizes our farm: eleven emulated, seven proxying and three agnostic honeypots.
The emulated honeypots are scattered across countries, whereas the other hon-
eypots are all located at Japanese ISPs.

In an attempt to make the honeypots popular, we tried to host the honeypots
at ISPs providing static IP addresses. In a few cases, the honeypots have semi-
dynamic IP addresses. That is, the addresses change every 3–10 weeks on average,
as indicated by the braces in the IP Addr. column. Most honeypots were deployed
in 2014 and have been continuously operated since then.

The honeypots support a variety of protocols. The proxy honeypots sup-
port CharGen, QOTD, DNS, NTP, SNMP and SSDP. In a continuous effort to
support more protocols, we gradually added SNMP and SSDP after an initial
deployment with the remaining subset of four protocols only. P02 support DNS
only. The emulated honeypots support three additional protocols (NetBIOS,
MSSQL, SIP). Finally, two of the agnostic honeypots listen on all UDP ports
with varying response strategy settings. Agnostic F denotes that the honeypot
always replied with 1472 bytes UDP payload. In contrast, Agnostic M multiplies
the length of the request payload by 100 to create a response that is relative in
length to the request. Either way, the responses contained random UDP payload
that is not valid for the scanned protocol. Section 4 will analyze the effects of
the varying settings of the agnostic honeypots.

3 Amplification Reconnaissance

Before analyzing the amplification attacks in more detail, we first want to under-
stand how amplifiers are found. To launch effective amplification DDoS attacks,
attackers have to actively search for amplifiers on the Internet. For many ser-
vices, the easiest way to find amplifiers is an Internet-wide scan. Identifying
scanners is also important in the later step of analyzing traffic at our honeypots
(Sect. 4), to avoid falsely flagging scans as attacks. Therefore, in this section, we
analyze scans performed for amplification reconnaissance. To grasp the trends

620 L. Krämer et al.

Table 1. Overview of honeypot deployments.

HP Type Location Deployed IP Addr. Services

E01 Emulated Australia 2014-11-14 Static 9

E02 Emulated Brazil 2014-11-14 Static 9

E03 Emulated US West 2014-11-14 Static 9

E04 Emulated Ireland 2014-11-14 Static 9

E05 Emulated Japan 2014-11-14 Static 9

E06 Emulated US West 2014-11-14 Static 9

E07 Emulated US West 2014-11-14 Static 9

E08 Emulated US East 2014-11-14 Static 9

E09 Emulated Greece 2014-12-10 Static 9

E10 Emulated Iceland 2014-12-10 Static 9

E11 Emulated Netherlands 2014-12-10 Static 9

P01 Proxy Japan 2012-10-07 Dyn. (27d) 6

P02 Proxy Japan 2013-05-13 Dyn. (22d) 1

P03 Proxy Japan 2014-05-13 Dyn. (71d) 6

P04 Proxy Japan 2014-05-13 Dyn. (33d) 6

P05 Proxy Japan 2014-05-10 Static 6

P06 Proxy Japan 2014-05-10 Static 6

P07 Proxy Japan 2014-05-10 Static 6

A01 Agnostic F Japan 2014-10-14 Dyn. (51d) 7

A02 Agnostic F Japan 2014-10-24 Static any

A03 Agnostic M Japan 2014-11-23 Static any

and characteristics of the reconnaissance activities, we analyze a darknet, i.e.,
traffic observed at unused IPv4 addresses. By definition, a darknet has no hosts
in its network, meaning that all traffic can be regarded as backscatter commu-
nication or scan traffic. In this paper, we analyze traffic of a /16 darknet (i.e.,
65,536 successive unused IPs) that is operated by NICTER [6].

Past 10Years’ Scans: To grasp the overall trend of the reconnaissance, we
investigated the hosts that scanned the DDoS-related protocols listed in [4] for
the past 10 years. To this end, we first had to drop traffic that is not related to
scans. In a best-effort approach, we only consider traffic from hosts that scanned
at least 64 addresses of the darknet on the same port in a day. We defined these
hosts as scanners.

Figure 1 shows the number of scanners from Sept. 2006 to Mar. 2015. The
graph plots a 30-day moving average to smooth daily fluctuations. Before 2012,
the number of scanners is small, with the notable exception of NetBIOS scans.
In 2012, scanning for DNS became more popular, peaking at 55 hosts per day. In

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 621

Fig. 1. Number of scanners per protocol and day.

2014, the number of scanners for all protocols increased dramatically, possibly
an effect of the public release of amplification vulnerabilities in Feb. 2014 [4]. As
we will show in the following paragraph, most of the new scanners come from
security organizations (such as ShadowServer.org, Team Cymru, and Mauch’s
OpenNTPProject and the like). The popularity of NetBIOS constantly decreased
although the negative trend similarly stopped in 2014. We speculate that most
NetBIOS scanners are actually not related to amplification attacks, but are name
lookups done by regular Windows-based systems that are directly connected to
the Internet (i.e., not NATed). The obvious spike of NTP scanners at the end of
2014 is caused by a heavily-distributed scan by a single security company.

Attribution of Scanners: Next, we aim to measure (a) which scanning tool
was used and (b) which organization performed the scans.

Both whitehats and adversaries can use off-the-shelf scanning tools, e.g.,
open-source scanners such as ZMap [5] and Masscan [7], to find amplifiers on
the Internet. To measure the use of these scanners, we estimate the incoming
packets generated by these scanners based on traffic fingerprints. In ZMap, the
identification field of the IP header is hardcoded to 54321, which we use as
ZMap’s fingerprint.

In Masscan, the ID in the IP header is derived by XORing the destination
address, the destination port of the UDP header and the ID field of the appli-
cation header (such as the DNS message ID).

Figure 2 shows the percentage of probes identified by these fingerprints from
Jan. 2014 to Mar. 2015. While Masscan is not frequently seen, Zmap’s popularity
increased since Apr. 2014 and holds a share of up to 60 % of all scan probes.

Furthermore, we examined the scanning sources using Reverse DNS and
WHOIS information. We found that about 70 % of the scanning hosts using
Zmap are hosted by universities and security organizations. We cannot deter-
mine the motivation and origin of the other scanning hosts, and found sources
spread among many countries globally.

Scanners’ Characteristics: Next, we aim to understand the scanning behav-
iors in more detail. We conduct statistical analyses to analyze the reconnaissance

www.ShadowServer.org

622 L. Krämer et al.

(a) Zmap (b) Masscan

Fig. 2. Percentage of ZMap and Masscan probes

activities, focusing on the top 4 services that are abused for amplification most
frequently: CharGen, DNS, NTP and SSDP. Using the methodology defined
above, we identified 5,269 scanners in the 27 month period from Jan. 2013 to
Mar. 2015. We then analyzed the scanning activities in detail:

– Scan Coverage: We analyze how complete the scans are (i.e., the percentage
of the darknet that is covered by a scanner). Figure 3a illustrates the CDF of
the scan coverage per protocol. The coverage by the scanners, regardless of
the protocol, is surprisingly low. About 64 % of the scanners probed less than
10 % of the darknet and only 10 % of the scanners cover more than the 90 %
of the darknet. Therefore, we checked the low-coverage scanners and found
that some scanners conducted distributed scanning. For instance, a security
company conducted scans using about 240 hosts in the same /24 network.
Each scanner scanned only for about 260 hosts of our darknet, but as a whole
the scanners covered 97 % of our darknet.

– Scan Probes: We count how many packets the scanners send per destination
IP address. Figure 3b shows the CDF of the number of probes per IP address,
scanner and day. About the 94 % of the scanners send less than two packets
per IP address on average. Surprisingly, 5.7 % of the scanners send multiple
(i.e., two or more than two) identical packets for the same service, presumably
to mitigate packet loss. Identifying such scanners is also important to clean
up our dataset of potentials attacks (cf. Sect. 4).

– Scan Ports: Finally, we analyzed how many services each scanner searches
for. We found that 90 % of the scanners search for a single protocol only (i.e.,
one port); just a few scanners send probes for multiple services. The most
popular service was DNS (36 %), followed by the equally-popular other three
protocols (each 20 %–22 %).

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 623

(a) Scan Coverage (b) Probe Packets per IP Address

Fig. 3. CDFs of scan coverage (left) and probe packets per IP address (right).

4 Amplification Attacks

After shedding light on the reconnaissance part, we will now turn to the actual
amplification attacks. We define an attack, then give an overview of attacks, and
finally analyze the attacks in more detail.

Attack Definition: When considering traffic at the honeypots, we have to sep-
arate actual attacks from random packets such as scans or backscatter before
further analyses. To do so, we filter on those sources that sent at least 100
consecutive requests to our honeypots, whereas consecutive means that there
was no gap of an hour or more between two packets. This conservative thresh-
old discards most scanners, while it clearly also captures all powerful attacks.
We chose this threshold given the lack of ground truth of labeled data on
attacks/backscatter/scanners. We further discard all hosts that have been iden-
tified as scanners to obtain a dataset that consists purely of attacks.

We aggregate attacks based on the source IP address (i.e., the attack vic-
tim) and destination port (i.e., the protocol being abused). We group attacks
seen by multiple honeypots into one combined attack, as long as the source IP
address and the abused protocol match. If an attack pauses for an hour, and
then resumes, we separate the traffic into two attacks.

Attack Overview: Figure 4 summarizes the attacks our honeypots monitored
over the period from Jan. 2015 to May 2015. In these five months, we monitored
1,535,322 amplification attacks.

The graph shows that some protocols are clearly more popular than others.
In fact, QOTD, MSSQL, NetBIOS and SNMP attacks sum up to less than

0.3 % of all attacks. Most popular are NTP (37.0 %), DNS (28.5 %), SSDP
(27.3 %) and CharGen (7.0 %), with a combined share of over 99 %. The graph
also shows that attacks are relatively constant over time.

624 L. Krämer et al.

Fig. 4. Number of attacks per protocol and day.

Honeypot Convergence: We next assess the completeness of our data by
measuring whether the observed attacks converge. In other words, did we deploy
sufficiently many honeypots to detect all attacks? For this, we measure how many
previously-unknown attacks an additional honeypot observes. We focus only
on those six protocols that all honeypots (with the exception of P02) support.
Figure 5 shows the convergence graph, ordered by honeypot mode and honeypot
name. The lower dark part of the bars indicates the percentage of attacks that a
honeypot observed and were not yet been observed by the prior honeypots (i.e.,
the ratio of new attacks). For example, consider the eleven emulated honeypots.
While the first honeypots (E01–E07) contributed many new attacks, the ratio of
new attacks converges to small percentages at the later honeypots (E08–E11).
This shows that—per mode—we had enough honeypots to cover most attacks
out there.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 P01 P02 P03 P04 P05 P06 P07 A01 A02 A03

A
T

T
A

C
K

S
 (

%
)

HONEYPOT

Fig. 5. Ratio of new (dark gray) vs. known (light gray) attacks per honeypot.

Comparing the data across the honeypot modes reveals further interesting
insights. First, the proxied honeypots (P01–P07) contributed many new attacks,
showing that the protocol emulation was good, but not complete. Similarly,
the agnostic honeypots discovered new attacks that the other honeypots had
not seen, most of which abused protocols that neither of the other honeypots

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 625

supported. For example, the agnostic honeypots attracted 9600 attacks abus-
ing TeamSpeak servers, which offer about 5-fold amplification. In addition, we
observed 9700 attacks abusing Quake game servers. We noted a few attacks
against other protocols (including Sun RPC, ASF-RMCP, UT game servers,
and more), but none of them was abused frequently.

Finally, we aim to answer the question of which honeypot mode was most
effective. To this end, we drew convergence graphs with swapped orders of the
honeypot modes (figures omitted for brevity), one with proxied honeypots first,
and one with agnostic honeypots first. The share of attacks that are missed by the
agnostic honeypots is significant, meaning that not all attackers blindly accept
any large response. While this shows that agnostic honeypots alone are not suf-
ficient for complete analysis, they are still helpful to capture new attacks—not
only those abusing previously unseen protocols. We speculate that some attack-
ers may favor the agnostic responses, as they are sometimes even larger than
proxied or emulated responses. A good rule of thumb is to run agnostic hon-
eypots in parallel to others. Similarly, the proxied honeypots missed attacks,
particularly for unsupported protocols. But even for supported protocols, the
proxied honeypots missed a significant proportion of attacks that the emulated
honeypots did see—possibly as the number of proxied honeypots with static
IP addresses was too low to converge towards a complete set of attacks. Sum-
marizing, we cannot conclude that proxied honeypots are ultimately the best
choice.

Deployment to Abuse: Next, we analyze the time span between deploying a
honeypot and the time it gets abused. In fact, all honeypots were already abused
within 24 h after deployment. However, the number of initial attacks was quite
low, and we saw an increasing number of attacks as days passed after deployment.
On average, the attacks observed at the honeypots reach a steady level after five
days. While this may seem short, note that amplifiers in general are ephemeral
in nature, and attackers constantly need to refresh their set of amplifiers. With
the exception of NTP, Kührer et al. have shown that 42 %–53 % of the amplifiers
vanish after one week due to IP address churn [8].

Attack Sources: Due to IP address spoofing, it is not straightforward to
attribute the attack traffic back to its true origin. Instead, the honeypots reveal
the attack victim (i.e., based on the source IP address). However, we still aim to
address an important question: Are amplification DDoS attacks caused by single
sources (such as booter services), or do multiple hosts cause an attack (such as
DDoS botnets)?

We aim to approach the analysis by leveraging the Time-To-Live (TTL) field
in the IP header. Generally, the TTL field is decremented by every hop that
forwards an IP packet. For the following analysis, we leverage the fact that our
honeypots would observe varying TTL values for an attack if multiple attack
sources are used. In contrast, if there is a single source, we would see a fixed (or
at most a few) TTL values, assuming that the route from attacker to amplifier

626 L. Krämer et al.

does not frequently change, and assuming that the initial TTL value is not
randomized.

Therefore, we measured for which attacks the majority of honeypots saw
at most two distinct TTL values. We use this small conservative thresh-
old and a majority vote to counter potential route changes for individual
(attacker, honeypot) pairs. Using this method, we find that 96.3 % of the attacks
stem from a single source. This is an important observation, indicating that
booter services cause more attacks than DDoS botnets.

For the other 3.7 %, we cannot tell with certainty if they stem from DDoS
botnets. Unfortunately, an attacker may fool us by randomizing the initial TTL
value. In other words, even if we see multiple TTL values, this could be caused
by a single source. Still, our analysis gives a lower bound, showing that the vast
majority of attacks are not distributed.

Attack Duration and Repetition: Our honeypots also reveal how long a
victim is being attacked. For these analyses, we were interested in the victim,
rather than the protocol used to attack the victim. Therefore, we have grouped
the attacks by source IP address, and regarded attacks abusing multiple protocols
towards the same victim as a single combined attack.

Figure 6a shows the cumulative distribution of attack durations, i.e., the time
between the first and the last packet monitored in an attack on a particular
victim. Similar to the observations of DDoS botnets [9], amplification attacks
also seem to be short-lived: 62 % of the attacks are shorter than 15 min, and 90 %
of the attacks last at most one hour. Only 1.4 % of the attacks last longer than
4 h. This shows that attackers quickly move on to attack other victims. This is
also in line with observations done on booter services [10], indicating that many
clients run attacks in parallel.

This is also confirmed by the high number of concurrent attacks: on average,
we monitored 125.7 simultaneous attacks abusing our honeypots.

(a) Attack duration (b) Number of attacks per victim

Fig. 6. CDFs of attack duration (left) and attacks per victim IP (right).

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 627

We further investigated how often a victim (i.e., an IP address) was attacked,
as shown in Fig. 6b. 79 % of the victims were attacked only once; a further 11 %
were attacked twice. 0.81 % of the victims were attacked more than 10 times.
This may be counter-intuitive, especially as anecdotes claim that extortion is
the main motivation for DDoS attacks. However, the vast majority of attacks
are one-off operations, showing that in many cases the extortion—if any—is a
non-persistent threat.

These observations may be biased due to our fine-grained definition of a vic-
tim, so we have repeated the measurements with a looser definition of an attack
victim. Instead of measuring the attacks per IP address, we measured the attacks
per victim network, aggregating per /16 (i.e., class B) network. Figure 6 includes
this comparison (dashed lines). Interestingly, while the number of attacks per
network significantly increases, the attack duration does not. Following basic
intuition, entire networks indeed attract more attacks than single IP addresses.
However, the individual attacks are likely not linked to each other, as otherwise
one would expect to see ongoing and consecutive attacks targeting the same
network.

Instead, the time span between two attacks (i.e., the time between two attacks
during which there was no attack) is 9.6 days on average.

(a) Attacks by RIR (b) Attacks by countries

Fig. 7. Geolocation of victims and their share of the overall attacks.

Victim Analysis: In an attempt to understand the motivation of the attacks,
we inspected the targets of the amplification attacks. To this end, we resolved
GeoIP data for all attacked IP addresses, queried their reverse DNS record,
and mapped the IP addresses to autonomous systems (ASes). Figures 7a and
b show the distribution of countries and Regional Internet Registry (RIR) of
the victims, respectively. Victims that belong to ARIN and RIPE each attract
37 % of the attacks and APNIC attracts another 21 %. Providers in Central- and
South America (LACNIC) or Africa (AfriNIC) face relatively few attacks.

When looking at countries, the US stands out, hosting one-third of the vic-
tims. There are also many victims in China (14 %) and France (8.6 %), whereas
all other victims form a long-tail distribution of 192 affected countries. Of those,

628 L. Krämer et al.

28 countries faced over 1000 attacks, showing the wide geographical distribu-
tion and global threat of amplification attacks. In addition, the destination port
may reveal what type of service is attacked. 35 % of the attacks target UDP
port 80, possibly to pass misconfigured firewalls that allow port 80 in general
(i.e., not only TCP). However, in a few cases, the attacks are actually directed
at UDP-based services. In descending order, 2.6 % of the attacks target Xbox
Live, 2.0 % DNS servers, 0.9 % Minecraft game servers and 0.6 % each Steam
game servers and TeamSpeak VoIP servers. The majority of attacks is scattered
in a long-tail distribution over other ports. The less popular services include
MSSQL servers, NTP servers, MMORPG servers, and further VoIP systems. All
remaining requests seem to randomize the source port.

Request Entropy: In an attempt to understand the attack techniques, we next
inspected how much variety we see in the request payloads. That is, we measure
how many different request payloads (i.e., excluding UDP and IP headers) we
observe per protocol. The less adversaries vary their requests, the easier it will
be to filter their requests (see Sect. 5).

Figure 8 shows a CDF of the request variety among all honeypots and attacks.
The request variety is quite low for most protocols. For CharGen and QOTD,
99.66 % and 99.34 % of the requests are one byte long, with a low variety in
that byte. But requests for protocols with more complex request structures and
types (such as NTP) also did not show high variety and typically only varied in
their length (not in type or content). In fact, for five of the protocols (CharGen,
QOTD, NTP, MSSQL and SSDP), the two most popular request payloads per
protocol caused more than 98 % of the attacks.

Fig. 8. CDF of the number of UDP payloads over all attacks.

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 629

DNS is at the other end of the scale, attributed to the fact that adversaries
(a) change the DNS headers (such as the DNS message ID), and (b) change the
domain name being queried. Similarly, the SNMP requests varied, as the attack-
ers (a) varied the Object Identifiers (OIDs) and transaction IDs, and (b) also
varied the request type (getBulkRequest and GetRequest being most promi-
nent). But NetBIOS (randomized 2-byte-wide transaction ID) and SIP (random
session ID) requests have also shown a higher variety. In any of these protocols,
detecting the traffic towards the amplifiers is not as trivial as incorporating the
most popular request payloads into network-based filters. However, one can still
define payload signatures over static, non-randomized packet headers.

Finally, we also measure the request entropy within individual attacks. Fol-
lowing the observation from above, most attacks based on protocols with low
request variety were caused by only a single request payload. However, even for
DNS, which offers a high request variety, most attacks use very few different
payloads. For example, 45.3 % of the DNS-based attacks used a single request
payload, and more than 80 % of the DNS attacks had at most 3 request pay-
loads. Interestingly, though, NetBIOS, SNMP and SIP still have a high request
entropy (less than 30 % of the attacks have only a single payload). This shows
that one cannot conclude that the request payloads are static within individual
attacks.

5 Honeypot-Assisted Defenses

Honeypots are powerful as early-warning systems. In this section, we describe
how we can leverage our honeypots to create valuable inputs for both proactive
and reactive DDoS defenses.

5.1 Real-Time Attack Monitoring

We have published a live feed of attacks based on the data obtained by our
honeypots. We use a web portal1 to share information about incidents (such
as attack start and end times) with registered service providers and trusted
individuals. Providers can use the attack information to inform their customers
or to filter attack traffic based on IP and port information. We chose to require
registration only to prevent attackers misusing the data (e.g., to fingerprint or
to evade our honeypots).

To test the usefulness of the honeypot data to detect DDoS attacks, we have
cooperated with a large Japanese ISP. We compared the honeypot-based DDoS
detection with a flow-based detection system that ISP had already deployed [11].
To this end, our honeypots generated an alert as soon as a potential victim (i.e.,
a single IP address) sent more than ten packets in a ten-second interval (i.e.,

1 Note that we intentionally do not publish the address of the web portal, as the portal
contains potentially sensitive information. If you are interested in obtaining access,
please request an account from Christian Rossow via email.

630 L. Krämer et al.

more than 1 pps on average). In contrast, the ISP’s detection mechanism raises
an alert based on a threshold of packets per destination for DDoS-related ports.

We compared both systems in the time span from August 1st to Novem-
ber 30th, 2014. Our honeypots detected 75 potential attacks towards the ISP’s
networks. Of these, the ISP detected 56 alerts.

43 of the 56 alerts (77 %) were detected first by our honeypot, and then by the
ISP, with an average delay of 39 s. The honeypots detected 13 attacks later than
the ISP, indicating that in these the attackers rotated the set of amplifiers. We
hypothesize that deploying more honeypots would further improve the reaction
times.

5.2 DNS Abuse Domain List

DNS stands out when it comes to amplification attacks. Most other protocols
can be filtered, as they have little benign use on the Internet (e.g., CharGen,
QOTD, or even typical LAN protocols such as NetBIOS and SSDP). In addition,
unlike for management protocols like SNMP, DNS communication may involve
different and distant endpoints (e.g., authoritative name servers). Finally, bad
DNS filters would cause malfunctions for Internet users.

In any case, as we have seen in Sect. 4, DNS remains one of the typical attack
protocols. Thus, to support better filtering, we derive a list of domains that have
been abused for amplification attacks. Table 2 lists the 10 most popular attack
domains since Feb. 2015, in descending order of the number of requests recorded
at the honeypots. In the following, we will draw four observations from the table.

Table 2. DNS domains, ordered by the number of requests seen at the honeypot.

FQDN Type First Seen Last Seen Days Victims

067.cz ANY 2015-02-21 2015-05-31 47 15804

mg1.pw ANY 2015-04-12 2015-05-31 49 71357

isc.org ANY 2015-02-01 2015-05-31 106 12228

psg.com ANY 2015-04-05 2015-05-28 51 25986

vizit.spb.ru ANY 2015-03-23 2015-05-31 45 99543

mg1.pw A 2015-04-12 2015-05-31 36 1606

pidarastik.ru ANY 2015-02-11 2015-05-31 80 14431

dhs.gov ANY 2015-02-24 2015-05-03 64 41857

r3a.es ANY 2015-03-25 2015-04-16 23 23943

ironmen-style.ru ANY 2015-04-22 2015-05-29 15 120595

First, in some cases it is not possible to use this list as a blacklist to filter
bad traffic, as benign domains are also in the dataset (e.g., isc.org or dhs.gov).
This is largely due to domains that deploy RRSIG or DNSKEY resource records,

www.isc.org
www.dhs.gov

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 631

which are required for DNSSEC. For example, an ANY request for isc.org results
in an approximately 1500-byte response, containing two DNSKEY and four RRSIG
records—both of which are required for DNSSEC. The problem of potential
false positives may be resolved by combining the request type (e.g., ANY) with
the requested domain. However, without evaluating this further, our suggestion
is not to blindly use the abuse list as input for filters.

Second, attackers register domains only for the purpose of DDoS attacks. For
example, according to web archives, mg1.pw never hosted real content. Further-
more, Passive DNS analysis (using dnsdb.info) shows that the domain was first
ever used only 30 h before we noticed its abuse.

Third, each domain keeps being abused for a long time: The average time
for abuse in the top 10 domains is 8 weeks (i.e., the time span from the first to
the last attack). Even when considering all attack domains, the time span is still
7.5 weeks. We presume that attackers keep abusing the same domain to limit the
overhead for registering new domains and setting up authoritative name servers.

Defenders can use these insights on domains that are popular in amplification
attacks, for example, to aid existing detection mechanisms (see Sect. 5). Similarly,
collecting evidence on attacks via honeypots can help law enforcement to take
down purely malicious domains.

6 DDoS Bot Analysis

We now turn our analysis to explore a potential source of amplification attacks:
DDoS botnets. Botnets span multiple hosts that are instructed by the botmaster
and have already been known to launch DDoS attacks in general [9,12]. The TTL
analyses in Sect. 4 have already indicated that the majority of attacks stem from
a single source. In this section, we seek to test this hypothesis by analyzing DDoS
botnets in more detail.

Recently, adversaries have started to compromise insecure or vulnerable
embedded devices, leading to a sudden increase in Linux-based DDoS bots.
Embedded devices that are directly connected to the Internet (e.g., home routers)
are an attractive platform to launch amplification attacks, as they are not fil-
tered by firewalls or NAT gateways. Therefore, we will study these botnets in
particular detail.

Analysis Methodology: We analyzed a set of Linux-based bots that are known
to provide DDoS services. We obtained these binaries using Telnet- and SSH-
based honeypots and via keyword searches on VirusTotal. Our dataset of Linux-
based DDoS bots consists of 247 binaries that we collected between Jan. 2014 and
May 2015. Our particular interest is to understand the DDoS attack functionality
of the bots. To this end, we dynamically analyzed the samples in a sandbox and
traced the C&C communication. Furthermore, using static analysis, we classified
our samples into families, assigning names to the families based on characteristic
strings.

www.isc.org
www.mg1.pw
www.dnsdb.info

632 L. Krämer et al.

Table 3. Attack capabilites

IptabLes XorDoS BackdoorA/M BillGates

DNS Amplification � � � �
• Fixed query type A A ANY

• EDNS payload size 4096 4096 8192

• DNSSEC OK �
• Random domain � �
SYN � � � �
SYN+ACK �
SYN with payload �
ICMP PING �
Auth NS � �
Generic TCP �
Generic UDP �
HTTP GET � �
TCP connections � �

Analyzed Families: Our analysis has revealed four popular Linux-enabled and
DDoS-capable bot families. While Windows-based DDoS bots are well-explored,
to the best of our knowledge, we are the first to inspect Linux-based malware of
this type. An overview of the attack capabilities of each family is given in Table 3.
The two families IptabLes and XorDoS have only limited attack capabilites,
whereas BackdoorA/M and BillGates offer a wide range of different attacks.

All four families abuse DNS for amplification attacks. Interestingly, Ipta-
bLes and XorDoS support only A lookups, which were less prominent in the
attack domains (cf. Sect. 5). Three out of four families use EDNS to expand
the maximum UDP-based response size to at least 4096 bytes, and BillGates
bots specifically also ask for DNSSEC records. None of the families supports
any amplification protocols other than DNS. However, BillGates also features
generic UDP and TCP attacks, where headers, flags and the payload are taken
as input via a C&C command. BillGates could thus be used for amplification
attacks with any protocol.

For completeness, note that all bots also support non-amplification attacks.
These span ICMP and TCP SYN floods, HTTP GET floods or TCP connection
exhaustion. Two bots also support DNS-based “random domain” attacks, in
which the bots randomize the FQDN of the lookup request. These requests
are not abusing amplification, but presumably aim to flood authoritative name
servers instead.

Attack Fingerprints: Seeing the potential for amplification attacks, we won-
dered how large the impact of these botnets is in the attacks we are observing

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 633

with AmpPot. We derived attack fingerprints for the botnets by identifying
artifacts in their attack traffic. Much to our surprise, this was possible for all
families, as the malware authors re-used randomly generated values for various
header fields. IptabLes sets the UDP source port to a value that is derived from
the IP packet ID. BillGates uses the same value for DNS message ID and IP
packet ID, and randomizes the TTL to five initial values. Similarly, XorDos
equalizes both DNS message ID and IP packet ID, and also derives the source
port from these values. Finally, BackdoorA/M uses a specific source port range
and randomly draws an initial TTL value from four distinct groups.

We then searched for DNS-based amplification attacks that satisfy these
filters at our honeypots. The above-mentioned filters were simple enough so that
we could use SQL queries to search for matching packets in our attack database.
For each attack, we computed the ratio of the number of packets that matched
the filters compared to all packets belonging to this attack. While we found
individual packets to match, presumably caused by accidental value pairs that
just happen to match our filters, the ratio of “attributed” packets per attack
never exceeded 1 %. This indicates that these DDoS bots are not frequently
used in amplification attacks, although they remain a lingering threat.

7 Discussion

This section raises a few aspects left over for discussions about the implementa-
tion and deployment of AmpPot.

Ethics: With AmpPot, we provide valuable insights into amplification attacks
that otherwise could not be observed on such large scale. Unfortunately, we
face a dilemma, as these insights can only be revealed if AmpPot participates
in the attacks to some extent. To minimize the harm by AmpPot, we have
included a rate limiting mechanism. Still, this leaves a small number of attack
packets. Content-based classifiers to distinguish between scan and attack traffic
are unfeasible, as attackers typically use the same kind of requests for both
activities.

Seeing this risk, we considered to clearly mark AmpPot’s responses as such,
e.g., by embedding an info text explaining the traffic. However, first, this would
enable attackers to trivially detect AmpPot deployments. Second, attack victims
usually do not inspect the payload of each and every attack packet, but rely on
flow-based information instead. Looking at the flows, however, would hide any
note that we add to the responses.

Summarizing, we concluded that an effective rate-limiting module is the most
reliable and practical option to prevent abuse of the honeypots. Each Amp-
Pot deployment can configure the rate-limiting thresholds on their own, possi-
bly resorting to an overly conservative threshold (e.g., only a single request is
answered per IP address and hour).

634 L. Krämer et al.

Rate Limiting: In our experiments, we chose an arbitrary rate-limiting thresh-
old that seemed reasonable to us. However, choosing the threshold may have con-
sequences on the number of scanners that discover AmpPot. In future work, we
plan to evaluate varying rate-limiting thresholds and their effects on the attacks
that are observed subsequently.

Furthermore, our current rate-limiting implementation treats all protocols
equal. This may be unsuitable for protocols that have comparatively chatty
responses, such as the monlist reply in the NTP protocol implementation,
which consists of dozens of response packets. An alternative might be to include
dynamic thresholds for rate-limiting, which vary depending on the response size
and aggressiveness of the requests.

Honeypot Detection: Although we have not witnessed concrete attempts of
doing so, an attacker can identify AmpPot instances to exclude them from any
attacks she launches. AmpPot offers services on many UDP ports, and as such
can be identified relatively easily. However, detection becomes more tricky if the
honeypot is configured to listen on a single UDP port only. Still, an attacker
may inspect artifacts, such as the response payloads, or observations of dropped
requests due to rate-limiting. We leave it open to future work to explore how we
could increase the stealthiness of AmpPot.

8 Related Work

This section summarizes related work, which we group by topic.

DDoS: Works on reflective DDoS attacks date back to early observations by
Paxson in 2001 [3]. But while theoretically known, amplification attacks have not
played a big role until recently. Instead, research analyzing the DDoS threats
focused on analyzing DDoS attacks in general. Büscher and Holz monitored
the C&C servers of DDoS botnets to analyze the attacks and their targets and
documented TCP- and HTTP-based attacks [12]. Similarly, Welzel et al. tracked
commands of two DDoS botnet families and monitored whether victims of DDoS
botnets were actually affected by the attacks [9]. Thus, DDoS botnets are a well-
explored area, although none of the existing analyses inspected Linux-based bots.

With the recent increase of amplification attacks, which we believe is an
orthogonal problem to DDoS botnets, researchers started to explore the new
threat. Rossow provided an overview of 14 protocols that are vulnerable to
amplification attacks [4]. As a follow-up, Kührer et al. have shed light on the
amplifiers landscape, revealing their fingerprints and observing their lifetime [8].
These works inspect concrete amplification vulnerabilities in protocols, propose
defense mechanisms and survey amplifiers, while giving only anecdotal evidence
on actual attacks.

Others devoted their research to particular amplification protocols. Czyz
et al. explored NTP in great detail, exploring all amplification vulnerabilities and

AmpPot: Monitoring and Defending Against Amplification DDoS Attacks 635

inspecting attack victims based on artifacts in the NTP monlist feature [13].
Van Rijswijk-Deij et al. analyzed how DNS (and in particular DNSSEC) can be
abused for amplification attacks [14], observations many of which confirm the
trend of DNS attacks we observe. Our work adds to this in that we give insights
on how the protocols actually are abused in DDoS attacks.

Closest to our work, researchers inspected booters, which are services that
offer DDoS attacks on a pay-per-use basis. Karami and McCoy were the first
to monitor such booter services, studying the adversarial DDoS-As-a-Service
concept [15]. They observed booters launching amplification attacks, however,
but did not reveal more details. Similarly, Santanna et al. analyze the databases
and payment of 15 booters [10]. In contrast to using honeypots, analyzing booter
services is a forensic challenge, and requires gaining access to the booter systems
(or obtaining an image thereof). Our dataset is more complete in that we monitor
attacks regardless of the specifics of particular booter services. Thus, the scale
of our recorded dataset exceeds other observations by orders of magnitude.

Honeypots: Honeypots have been used in many other contexts [16], such as
for collecting malware [17], creating automated network signatures [18], or find-
ing malicious websites [19]. To the best of our knowledge, AmpPot is the first
honeypot to track amplification DDoS attacks. The idea of using vulnerable ser-
vices to observe DDoS attacks was already known [4], whereas—due to the short
deployment time of these “baits”—the dataset under analysis spanned only eight
attacks. We revise this result by longitudinal, broad deployment of 21 honeypots,
revealing that honeypots actually are useful to gain attack intelligence.

Scan Analysis: Durumeric et al. have also analyzed a darknet to explore scan-
ning behaviors [20]. They inspected scans for NTP, and we extend their analyses
by considering all amplification-related ports.

9 Conclusion

Amplification attacks continue to be a dangerous threat to millions of users.
We have shown that one can passively monitor attacks, and insights into these
attacks can help to derive helpful countermeasures. However, our research has
also identified new research directions, such as trying to understand the attack-
ers’ motives and actual origins. We have shown that DDoS botnets are likely
not the main source for amplification attacks, shifting focus to other potential
attack sources such as booter services. AmpPot assists in analyzing the ampli-
fication threats in more detail, and the web portal can help operational security
operators to become informed about or to defend against attacks.

References

1. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. ACM SIGCOMM Comput. Commun. Rev. 34, 39–53 (2004)

636 L. Krämer et al.

2. Specht, S.M., Lee, R.B.: Distributed denial of service: taxonomies of attacks, tools,
and countermeasures. In: Proceedings of the International Conference on Parallel
and Distributed Computing (and Communications) Systems (ISCA PDCS), San
Francisco, CA (2004)

3. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
ACM SIGCOMM Comput. Commun. Rev. 31(3), 38–47 (2001)

4. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
Proceedings of the 2014 Network and Distributed System Security (NDSS) Sym-
posium (2014)

5. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: Proceedings of the 22nd USENIX Security Sym-
posium, Washington, D.C., USA (2013)

6. NICTER (http://www.nicter.jp/)
7. Graham, R.D.: MASSCAN: mass IP port scanner (2014). https://github.com/

robertdavidgraham/masscan
8. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? Reducing the

impact of amplification DDoS attacks. In: Proceedings of the 23rd USENIX Secu-
rity Symposium (2014)

9. Welzel, A., Rossow, C., Bos, H.: On measuring the impact of DDoS botnets. In:
Proceedings of the 7th European Workshop on Systems Security (EuroSec) (2014)

10. Santanna, J., Durban, R., Sperotto, A., Pras, A.: Inside booters: an analysis on
operational databases. In: 14th IFIP/IEEE International Symposium on Integrated
Network Management (IM) (2015)

11. Urakawa, J., Sawaya, Y., Yamada, A., Kubota, A., Makita, D., Yoshioka, K.,
Matsumoto, T.: An early scale estimation of DRDoS attack monitoring honeypot
traffic. In: Proceedings of the 32nd Symposium on Cryptography and Information
Security (2015)

12. Büscher, A., Holz, T.: Tracking DDoS attacks: insights into the business of dis-
rupting the web. In: Proceedings of the 5th USENIX LEET, San Jose, CA, USA
(2012)

13. Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., Karir, M.:
Taming the 800 pound gorilla: the rise and decline of NTP DDoS attacks. In:
Proceedings of the 2014 Conference on Internet Measurement Conference, pp. 435–
448. ACM (2014)

14. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and its potential for DDoS
attacks - a comprehensive measurement study. In: Proceedings of the Internet
Measurement Conference 2014, Vancouver, BC, Canada. ACM Press (2014)

15. Karami, M., McCoy, D.: Understanding the emerging threat of DDoS-as-a-service.
In: Presented as part of the 6th USENIX Workshop on Large-Scale Exploits and
Emergent Threats (2013)

16. Provos, N., Holz, T.: Virtual Honeypots: From Botnet Tracking to Intrusion Detec-
tion. Pearson Education, New Delhi (2007)

17. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes
platform: an efficient approach to collect malware. In: Zamboni, D., Kruegel, C.
(eds.) RAID 2006. LNCS, vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

18. Kreibich, C., Crowcroft, J.: Honeycomb: creating intrusion detection signatures
using honeypots. ACM SIGCOMM Comput. Commun. Rev. 34, 51–56 (2004)

19. Nazario, J.: PhoneyC: A virtual client honeypot. In: Proceedings of USENIX Work-
shop on Large-scale Exploits and Emergent Threats (LEET) (2009)

20. Durumeric, Z., Bailey, M., Halderman, J.A.: An internet-wide view of internet-wide
scanning. In: USENIX Security Symposium (2014)

http://www.nicter.jp/
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan

Author Index

Abu-Ghazaleh, Nael 3
Amann, Johanna 133
Andronio, Nicoló 382
Antunes, Nuno 471
Avritzer, Alberto 471

Barabosch, Thomas 565
Barbará, Daniel 405, 515
Berger, Stefan 588
Biersack, Ernst 111
Bindschaedler, Vincent 588
Bodden, Eric 295

Cai, Zhongmin 155
Chen, Yangyi 588
Cheng, Liang 247
Choi, Byungkwon 89

Dahse, Johannes 493
Damopoulos, Dimitrios 317
Deng, Yi 247
Ding, Xuhua 66
Dombeck, Adrian 565
Donovick, Caleb 3

Eckert, Claudia 177
Elsabagh, Mohamed 515

Feng, Dengguo 198, 247
Fleck, Dan 405, 515
Francillon, Aurélien 48
Fu, Yu 247

Gerdes, Ryan M. 26
Gerhards-Padilla, Elmar 565
Gu, Dawu 359
Guan, Xiaohong 155

Han, Dongsu 89
Heen, Olivier 48
Holz, Thorsten 339, 493

Hu, Jinlong 198
Hu, Wenjun 359

Jacquemart, Quentin 111
Jamshed, Muhammad 89

Khasawneh, Khaled N. 3
Kirsch, Julian 177
Kittel, Thomas 177
Koide, Takashi 615
Kounev, Samuel 471
Krämer, Lukas 615
Krupp, Johannes 615

Le Scouarnec, Nicolas 48
Li, Bodong 359
Li, Juanru 359
Li, Qi 198
Lin, Zhiqiang 538
Luft, Matthias 471

Maggi, Federico 382
Makita, Daisuke 615
Mallick, Saptarshi 26
Mao, Weixuan 155
Maurice, Clémentine 48
Milenkoski, Aleksandar 471
Murmuria, Rahul 405

Nam, Jaehyun 89
Neumann, Christoph 48
Nie, Meining 198
Nishizoe, Tomomi 615

Ozsoy, Meltem 3

Park, KyoungSoo 89
Payne, Bryan D. 471
Pellegrino, Giancarlo 295
Pendarakis, Dimitrios 588
Ponomarev, Dmitry 3
Portokalidis, Georgios 317

Röpke, Christian 339
Rossow, Christian 295, 615
Ryder, Barbara G. 270

Shu, Junliang 359
Shu, Xiaokui 270
Smutz, Charles 225
Sommer, Robin 133
Stavrou, Angelos 225, 405, 427, 515
Su, Purui 198
Sun, Xiaoshan 247

Towsley, Don 155
Tschürtz, Constantin 295

Ullrich, Johanna 448
Urvoy-Keller, Guillaume 111

Vervier, Pierre-Antoine 111
Vieira, Marco 471
Vogl, Sebastian 177

Wang, Haining 427
Wang, XiaoFeng 588
Wang, Zhi 198
Weißer, Dario 493
Weippl, Edgar 448

Xu, Haitao 427

Yakdan, Khaled 565
Yang, Qilang 317
Yang, Wenbo 359
Yao, Danfeng (Daphne) 270
Ying, Lingyun 198
Yoshioka, Katsunari 615
Yuan, Pinghai 66

Zanero, Stefano 382
Zeng, Junyuan 538
Zeng, Qingkai 66
Zeng, Shuke 247
Zhang, Yang 247
Zhang, Yuanyuan 359

638 Author Index

	Foreword
	Organization
	Contents
	Hardware
	Ensemble Learning for Low-Level Hardware-Supported Malware Detection
	1 Introduction
	2 Approach and Evaluation Methodology
	2.1 Programs Used for This Study
	2.2 Feature Selection

	3 Characterizing Performance of Specialized Detectors
	3.1 Specialized Detectors: Is There an Opportunity?

	4 Malware Detection Using Ensemble Learning
	4.1 Decision Functions
	4.2 Ensemble Detectors
	4.3 Offline Detection Effectiveness
	4.4 Online Detection Effectiveness

	5 Two-Level Framework Performance
	5.1 Assumptions and Basic Models
	5.2 Metrics to Assess Relative Performance of TLD
	5.3 Evaluating Two Level Detection Overhead

	6 Hardware Implementation
	7 Related Work
	8 Concluding Remarks
	References

	Physical-Layer Detection of Hardware Keyloggers
	1 Introduction
	1.1 Related Work
	1.2 Paper Structure

	2 Theory of Detection
	2.1 Threat Model and Assumptions
	2.2 Overview of PS/2 Protocol
	2.3 First-Order HKL Model

	3 Physical-Layer Detection of Keyloggers
	3.1 Proposed Architecture
	3.2 Feature Extraction
	3.3 Feature Comparison

	4 Experimental Setup and Results
	4.1 Keylogger Design
	4.2 Data Collection
	4.3 Discussion

	5 Feature Stability and Countermeasures
	5.1 Stability of Features
	5.2 Active and Evasive Keyloggers
	5.3 Passive and Evasive Keyloggers

	6 Conclusion and Future Work
	References

	Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters
	1 Introduction
	2 Background
	2.1 Cache Fundamentals
	2.2 Cache Attacks
	2.3 Hardware Performance Counters

	3 Mapping Physical Addresses to Slices Using Performance Counters
	4 Building a Compact Addressing Function
	4.1 Problem Statement
	4.2 Manually Reconstructing the Function for Xeon E5-2609 v2
	4.3 Reconstructing the Function Automatically

	5 Using the Function to Build a Covert Channel
	6 Discussion
	6.1 Dealing with Unknown Physical Addresses
	6.2 Other Applications
	6.3 Comparison to Previously Retrieved Functions

	7 Related Work
	8 Conclusions
	References

	Hardware-Assisted Fine-Grained Code-Reuse Attack Detection
	1 Introduction
	2 Background: Hardware Features
	3 Practical Indirect Branch Tracing for Code-Reuse Attack Detection
	3.1 Branch Tracing vs Other Approaches
	3.2 Using LBR+PMU for Security Enhancement

	4 Identify Control-Flow Violation
	4.1 Security Checking Scheme
	4.2 Control-Flow Constraint: Call-Site CFG
	4.3 Code-Reuse Attack Detection Triggers

	5 Implementation of CFIGuard
	5.1 Control-Flow Constraint
	5.2 Hardware Monitor: LBR+PMU
	5.3 Security Check
	5.4 Launching CFIGuard System

	6 Evaluation
	6.1 Effectiveness on the RIPE Benchmark
	6.2 Performance Evaluation
	6.3 Memory Overhead

	7 Discussion
	7.1 Return-into-app Attack
	7.2 Implications on Hardware Enhancement

	8 Related Work
	8.1 Code-Reuse Attacks
	8.2 Mitigation

	9 Conclusion
	References

	Networks
	Haetae: Scaling the Performance of Network Intrusion Detection with Many-Core Processors
	1 Introduction
	2 Background
	2.1 Overview of EZchip TILE-Gx
	2.2 Overview of the Suricata NIDS

	3 Approach to High Performance
	3.1 Performance Bottlenecks of Suricata
	3.2 Our Approach

	4 Design
	4.1 Parallel NIDS Engine Architecture
	4.2 MPIPE Computation Offloading
	4.3 Lightweight Metadata Structure
	4.4 Flow Offloading to Host-Side CPU

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Computation Offloading Overhead
	6.3 Overall NIDS Performance
	6.4 Real Traffic Performance

	7 Related Work
	8 Conclusion
	References

	Demystifying the IP Blackspace
	1 Introduction
	2 Isolating the Blackspace
	2.1 IP Space Assignation Hierarchy
	2.2 Definitions
	2.3 Internet Routing Registries
	2.4 RIR Statistics Files
	2.5 Blackspace Computation Process

	3 Blackspace Analysis
	3.1 Prevalence and Persistence
	3.2 BGP Characterization
	3.3 Data Plane and Application-Level Analysis

	4 Discussion
	5 Related Work
	6 Conclusion
	References

	Providing Dynamic Control to Passive Network Security Monitoring
	1 Introduction
	2 Use Cases
	3 Design
	3.1 Objectives
	3.2 Architecture
	3.3 High-Level Operations
	3.4 Low-Level Primitives
	3.5 Adaptability to Networks
	3.6 Unifying State Management

	4 Implementation
	4.1 User Interface
	4.2 Adding Backends

	5 Backends
	5.1 OpenFlow
	5.2 Acld
	5.3 IDS Packet Filter
	5.4 Generic Command-Line Interface

	6 Evaluation
	6.1 Functionality
	6.2 Performance

	7 Related Work
	8 Conclusion
	References

	Hardening
	Probabilistic Inference on Integrity for Access Behavior Based Malware Detection
	1 Introduction
	2 Background and Related Work
	2.1 Integrity Protection
	2.2 Behavior Based Malware Detection

	3 Methodology
	3.1 Overview
	3.2 Probabilistic Integrity Model
	3.3 Probabilistic Inference
	3.4 Malware Detection
	3.5 Time Complexity

	4 Experimental Evaluation
	4.1 Evaluation Methodology
	4.2 Integrity Levels and Security Policies
	4.3 Detection Results
	4.4 Running Time

	5 Conclusion and Future Work
	References

	Counteracting Data-Only Malware with Code Pointer Examination
	1 Introduction
	2 Background
	3 Attacker Model and Assumptions
	4 Related Work
	5 Approach
	5.1 Control Flow Related Data Structures
	5.2 Pointer Identification
	5.3 Pointer Classification

	6 Implementation
	6.1 Kernel Object Validation
	6.2 Code Pointer Examination

	7 Evaluation
	7.1 Experiments
	7.2 Discussion

	8 Conclusion
	References

	Xede: Practical Exploit Early Detection
	1 Introduction
	2 Background
	3 System Design
	3.1 Overview
	3.2 Dynamic Information Extractor
	3.3 Exploit Exception Detector
	3.4 Code Injection Detector
	3.5 Code Reuse Detector

	4 Implementation
	5 Evaluation
	5.1 Effectiveness Evaluation
	5.2 Case Study
	5.3 Performance Evaluation

	6 Discussion
	7 Related Work
	8 Summary
	References

	Attack Detection I
	Preventing Exploits in Microsoft Office Documents Through Content Randomization
	1 Introduction
	2 Related Work
	3 Microsoft Office File Formats and Exploit Protections
	3.1 OLE Compound Document Format
	3.2 Office Open XML File Format
	3.3 Microsoft Office Exploit Protections

	4 Approach
	4.1 Content Randomization in .doc Files
	4.2 Content Randomization in .docx Files
	4.3 Strength of Content Randomization Mechanisms

	5 Exploit Protection Evaluation
	6 Performance Evaluation
	6.1 .doc DCR Performance
	6.2 .docx DCR Performance

	7 Content Randomization Evasion
	8 Discussion
	9 Conclusions
	References

	Improving Accuracy of Static Integer Overflow Detection in Binary
	1 Introduction
	2 System Overview
	3 StaticTaint: Identify Vulnerabilities with Pattern Match
	3.1 Code Leverage
	3.2 Vulnerability Identification
	3.3 Vulnerability Priority Ranking
	3.4 Vulnerable Path Calculation

	4 VIOSE: Vulnerability Validation with Symbolic Execution
	4.1 Symbolic Execution in VIOSE
	4.2 Path Pruning and Taint Analysis

	5 Evaluation
	5.1 Effectiveness: Detection of Known Vulnerabilities
	5.2 False Positive Reduction
	5.3 New Bug Detection
	5.4 Effectiveness of Optimization
	5.5 Efficiency
	5.6 Discussion

	6 Related Work
	7 Conclusion
	References

	A Formal Framework for Program Anomaly Detection
	1 Introduction
	2 Formal Definitions for Program Anomaly Detection
	2.1 Security Model
	2.2 Detection Capability
	2.3 Scope of the Norm
	2.4 Overview of Our Unified Framework

	3 Accuracy Limit of Program Anomaly Detection
	3.1 The Ultimate Detection Machine
	3.2 The Equivalent Abstract Machine of an Executing Program
	3.3 Usage and Discussion

	4 Abstractions of Existing Detection Methods
	5 Unification Framework
	5.1 Major Precision Levels of Program Anomaly Detection
	5.2 Sensitivity in a Nutshell

	6 Attack/Detection Evolution and Open Problems
	6.1 Inevitable Mimicry Attacks
	6.2 Evolution from L-4 to L-1
	6.3 Open Problems

	7 Control-Flow Enforcement Techniques
	7.1 Control-Flow Enforcement
	7.2 Legal Control Flows as the Scope of the Norm
	7.3 Comparison of the Two Methods

	8 Conclusion
	References

	Web and Net
	jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications
	1 Introduction
	2 Background
	2.1 Event Handling Registration
	2.2 Network Communication APIs

	3 Crawling Modern Web Applications
	3.1 Dynamic JavaScript Program Analysis
	3.2 Crawling

	4 Implementation of jÄk
	5 Evaluation
	5.1 Assessing the Crawlers' Limitations
	5.2 Assessment Using Web Applications

	6 Related Work
	7 Conclusion
	References

	WYSISNWIV: What You Scan Is Not What I Visit
	1 Introduction
	2 Background
	2.1 URL Encoding and Canonicalization
	2.2 URL Scanners

	3 The Problem
	4 Experimental Methodology
	4.1 Generating Test Inputs
	4.2 The Experiments

	5 Results
	5.1 Browsers
	5.2 URL Scanners
	5.3 Backslash in Other Applications
	5.4 Backslash Handling by Different Libraries

	6 Discussion
	6.1 The Problematic Backslash Character
	6.2 Impact and Responsible Disclosure
	6.3 Remediation

	7 Related Work
	8 Conclusions
	References

	SDN Rootkits: Subverting Network Operating Systems of Software-Defined Networks
	1 Introduction
	2 Background
	2.1 Software-Defined Networking
	2.2 Network Operating System Alias SDN Controller
	2.3 Motivating Examples
	2.4 Attacker Model

	3 SDN Rootkits
	3.1 Challenges
	3.2 A New Technique for Remote Access

	4 Prototype Implementation
	4.1 Rootkit Hiding
	4.2 Malicious Network Programming
	4.3 Remote Access

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Testing Artifact Hiding
	5.3 Testing Malicious Network Programming
	5.4 Bypassing Policy Checkers
	5.5 Bypassing Sandbox Systems

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Android
	AppSpear: Bytecode Decrypting and DEX Reassembling for Packed Android Malware
	1 Introduction
	2 Code Packed Android Malware
	2.1 Investigation
	2.2 Anti-Analysis Defenses

	3 AppSpear
	3.1 Overview
	3.2 Transparent Monitoring
	3.3 Dex Reassembling
	3.4 APK Rebuilding

	4 Experimental Evaluation
	4.1 Accuracy of DEX Reassembling
	4.2 Unpacking Code Packed Malware
	4.3 Home Brewed Samples

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	HELDROID: Dissecting and Detecting Mobile Ransomware
	1 Introduction
	2 Background and Motivation
	2.1 Motivation
	2.2 Goals and Challenges
	2.3 Scope and Assumptions

	3 HELDROID's Approach
	3.1 Threatening Text Detector
	3.2 Encryption Detector
	3.3 Locking Detector

	4 System Details
	4.1 Threatening Text Detector Details
	4.2 Encryption Detector Details
	4.3 Locking Detector Details

	5 Implementation and Technical Details
	5.1 Natural Language Processing
	5.2 Text Classification Thresholding
	5.3 Dynamic Analysis
	5.4 Static Code Analysis

	6 Experimental Validation
	6.1 Datasets
	6.2 Experiment 1: Detection Capability
	6.3 Experiment 2: False Positive Evaluation
	6.4 Experiment 3: Detection Speed

	7 Limitations and Future Work
	8 Related Work
	9 Conclusions
	References

	Continuous Authentication on Mobile Devices Using Power Consumption, Touch Gestures and Physical Movement of Users
	1 Introduction
	2 Related Work
	3 Data Collection Architecture
	4 Experimental Design
	5 Data Preparation
	5.1 Feature Engineering
	5.2 Data Cleaning and User Selection

	6 Analysis to Compute Authentication
	6.1 Strangeness-Based Outlier Detection
	6.2 The Discord Algorithm
	6.3 User Diagnosis

	7 Results
	8 Lessons Learned
	9 Future Work
	10 Conclusion
	References

	Privacy
	Privacy Risk Assessment on Online Photos
	1 Introduction
	2 Background
	2.1 Metadata Information in a Photo
	2.2 Potential Privacy Concerns Arising from Photo Metadata
	2.3 Three Stages of Digital Photos

	3 Fresh Photos
	3.1 Data Collection
	3.2 Characterizing ``Fresh'' Photos

	4 Intact Photos
	4.1 Data Collection
	4.2 Metadata Information Embedded

	5 Wild Photos
	5.1 Data Collection
	5.2 Metadata Information Embedded
	5.3 Inferring Online Sites' Photo Handling Policies

	6 Re-identification Attack
	7 Discussion
	8 Related Work
	9 Conclusion
	A Ethical Consideration
	References

	Privacy is Not an Option: Attacking the IPv6 Privacy Extension
	1 Introduction
	2 Background
	3 Related Work
	3.1 IPv6 Address Formats and Address Correlation
	3.2 Known Vulnerabilities of the Privacy Extension

	4 Attack Scenario
	5 Security Analysis
	6 Attack Design
	7 Feasibility
	8 Implementation in Operating Systems
	9 Mitigation
	10 Conclusions
	References

	Evaluating Solutions
	Evaluation of Intrusion Detection Systems in Virtualized Environments Using Attack Injection
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 Planning
	3.2 Testing

	4 hInjector
	4.1 hInjector Architecture
	4.2 hInjector Design Criteria
	4.3 Injector: Performance Overhead

	5 Case Study
	5.1 Case Study: Planning
	5.2 Case Study: Testing
	5.3 Further Application Scenarios

	6 Conclusion and Future Work
	References

	Security Analysis of PHP Bytecode Protection Mechanisms
	1 Introduction
	2 Background
	2.1 PHP Interpreter
	2.2 PHP Bytecode
	2.3 PHP Bytecode Encoder

	3 Static Analysis of Loader Extensions
	3.1 Overview
	3.2 IonCube
	3.3 Zend Guard
	3.4 SourceGuardian
	3.5 Security Vulnerabilities in Loader Extensions

	4 Generic Deobfuscation via Dynamic Analysis
	4.1 Debugging
	4.2 Hooking

	5 Decompiler for Obfuscated PHP Bytecode
	5.1 Hooking
	5.2 Dumping
	5.3 Decompilation

	6 Evaluation
	6.1 Source Code Reconstruction
	6.2 Protected Real-World Applications

	7 Related Work
	8 Conclusion
	References

	Radmin: Early Detection of Application-Level Resource Exhaustion and Starvation Attacks
	1 Introduction
	2 Assumptions and Threat Model
	3 System Architecture
	3.1 Kernel Tracer
	3.2 User Tracer
	3.3 Radmin Guard

	4 Learning and Detection
	4.1 Encoding
	4.2 Learning the PFAs
	4.3 Anomaly Detection

	5 Empirical Evaluation
	5.1 Procedure and Metrics
	5.2 Synthetic Exhaustion Attacks
	5.3 Resource Exhaustion Results
	5.4 Starvation and Livelock Results
	5.5 Overhead

	6 Discussion and Limitations
	6.1 Higher Accuracy and Earliness
	6.2 Behavior Confinement
	6.3 Attacker Knowledge of Radmin
	6.4 Accuracy of Recursive Sites Identification
	6.5 Exhaustion Through Separate Runs

	7 Related Work
	8 Conclusion
	A PST Hyperparameters Grid
	B Starvation and Livelock Snippets
	References

	Towards Automatic Inference of Kernel Object Semantics from Binary Code
	1 Introduction
	2 System Overview
	3 Design and Implementation
	3.1 Object Tracking
	3.2 Syscall Context Identification
	3.3 Bit-Vector Generation
	3.4 Bit-Vector Interpretation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Detailed Result

	5 Applications
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

	Attack Detection II
	BOTWATCHER
	1 Introduction
	2 BotWatcher
	2.1 Objectives
	2.2 General Overview
	2.3 Phase I: Feature Extraction
	2.4 Phase II: Execution Events Extraction
	2.5 Phase III: Events Correlation
	2.6 Containment

	3 Evaluation
	3.1 Setup of the Analysis Environment
	3.2 Case Study 1: Upatre
	3.3 Case Study 2: Emotet
	3.4 Case Study 3: Gamarue
	3.5 Observing Mac OS X: OSX/VidInstaller

	4 Time-Based Evasion Techniques
	5 Limitations
	5.1 Memory Dump Frequency
	5.2 Analysis Environment Detection

	6 Related Work
	6.1 Botnet Tracking
	6.2 Botnet Infiltration and Takeover
	6.3 Automated Dynamic Malware Analysis

	7 Conclusion and Future Work
	References

	Elite: Automatic Orchestration of Elastic Detection Services to Secure Cloud Hosting
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Overview
	3.2 Detection Service Orchestration
	3.3 Context-Aware Profile Configuration

	4 Evaluation
	4.1 Settings
	4.2 Effectiveness
	4.3 Performance

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	AmpPot: Monitoring and Defending Against Amplification DDoS Attacks
	1 Introduction
	2 AmpPot
	2.1 Background
	2.2 Honeypot Design
	2.3 Honeypot Deployment

	3 Amplification Reconnaissance
	4 Amplification Attacks
	5 Honeypot-Assisted Defenses
	5.1 Real-Time Attack Monitoring
	5.2 DNS Abuse Domain List

	6 DDoS Bot Analysis
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Author Index

