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Abstract. We consider the instance checking problem for SHIQ(D)
knowledge bases. In particular, we present a procedure that significantly
reduces the number of ABox individuals that need to be examined for
a given instance checking problem over a consistent SHIQ(D) knowl-
edge base that contains arbitrary occurrences of value restrictions. The
procedure extends earlier work that assumed value restrictions were pre-
dominantly used to establish global domain and range restrictions, and,
consequently, in which other applications of value restrictions had a sig-
nificant risk of requiring an infeasible number of individuals to be exam-
ined for a given problem. Finally, experimental results are given that
validate the effectiveness of the procedure.

1 Introduction

We consider the instance checking problem for knowledge bases based on the
description logic (DL) dialect SHIQ(D). A particular problem is written K |=
C(a), where K and C are a SHIQ(D) knowledge base and concept, respectively,
and where a is an individual occurring in K. The problem is to determine if
membership of a in C must follow from K.

An effective procedure for solving the instance checking problem has become
indispensable in SPARQL query evaluation over RDF data sources under the
OWL 2 direct semantics entailment regime. To see why, consider a simple
SPARQL query of the form

select ?x
from {?x in C},

where C is a SHIQ(D) concept, i.e., an OWL 2 complex class, and where the
data source is a knowledge base K with a SHIQ(D) TBox T , i.e., an OWL 2
ontology. An evaluation of the query corresponds to a potentially large number
of instance checking problems; the evaluation must produce all individuals a
occurring as URIs in K for which K |= C(a). And since T can be non-Horn
and C not necessarily conjunctive (e.g., mentions the OWL 2 class constructor
ObjectUnionOf), an appeal to a procedure to decide if K |= C(a), for some
individuals a, will almost certainly be necessary.
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In this paper, we present a procedure for the instance checking problem
over a consistent SHIQ(D) knowledge base K, that is, the procedure operates
with the assumption that the consistency of K has already been established
and at no time requires any additional check to ensure this.1 Our procedure
is a significant enhancement of the procedure reported in [12] that assumes
value restrictions are only used to establish global domain and range restrictions,
e.g., that correspond to RDFS domain and range restrictions. In this earlier
procedure, other applications of value restrictions are likely to lead to what
we call the large ripple problem, in particular, a need to examine an infeasible
number of individuals for a particular instance checking problem. Notably, this
includes cases in which value restrictions are also used to capture so-called unary
foreign keys in the relational model, a very common variety of constraint for RDF
data sources that derive from legacy relational databases. Such constraints are
given in an ontology by OWL 2 inclusion dependencies of the form C1 � ∀R.C2,
where the Ci are concepts and R is a role corresponding to some RDF property.
Such “foreign key” constraints ensure that, in the particular case of C1-objects,
R-values must be C2-objects.2

As with the procedure reported in [12], our procedure is designed to use off-
the-shelf tableau-based subsumption checking technology for DL dialects that
include the fragment SHOIQ(D). A subsumption checking problem is given by
a knowledge base K and an inclusion dependency of the form C1 � C2 in which
C1 and C2 are arbitrary concepts. The problem is to determine if K implies that
C1-objects are also C2-objects, written K |= C1 � C2.

Our procedure also shares an assumption that such technology incorporates
enhanced binary absorption optimization, a generalization of binary absorption
optimization [7] also presented in [12]. Note that absorption is an indispensable
optimization in tableau methods for subsumption checking. Generally, absorp-
tion enables lazy unfolding of inclusion dependencies that comprise the so-called
TBox of K [6]. Enhanced binary absorption generalizes absorption by also allow-
ing absorbed inclusion dependencies to have the form (A � B) � C, where
A � B is a conjunction of an atomic concept A and either an atomic concept
or a nominal B. As with any absorbed inclusion dependencies, such constraints
are “unfolded” for an individual in a tableau chase only when it becomes known
that it must be both an A-object and a B-object. This considerably enhances
the overall performance of lazy unfolding and of reasoning.

Both earlier work and our procedure operate by reducing an instance check-
ing problem over a SHIQ(D) knowledge base K to a subsumption checking
problem over a SHOIQ(D) TBox TK derived from K. Roughly, this is achieved

1 This can be an important feature in cases for which a consistency check when “load-
ing K” would constitute a significant overhead due to the size and complexity of an
included ontology.

2 Note that unary foreign keys occur in the LUBM benchmark [2] that we appeal to in
our experimental evaluation. And indeed, as confirmed by our experimental results,
such keys lead to large ripple problems.
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by rewriting the TBox of K and by introducing additional inclusion dependen-
cies with nominals to encode the ABox assertions in K. Note that, by relying
on enhanced binary absorption to ensure the additional dependencies encoding
the ABox are absorbed, the overhead of reasoning about SHOIQ(D) ontolo-
gies with arbitrary use of nominals that would otherwise be required is entirely
avoided.

Our procedure is comprised of four steps that are largely inherited from [12].
An input SHIQ(D) knowledge base K is first separated into its component TBox
T and ABox A. A normalized TBox T NR is then obtained from T in order to
isolate inclusion dependencies that mention value restrictions. Two subsequent
SHOIQ(D) TBoxes, T 1

K and T 2
K are then derived from T NR and A. In particular,

the above-mentioned subsumption checking technology uses TBox T 1
K to compute

T 2
K . The same technology is then also used to solve subsequent instance checking

problems over K by encoding them as subsumption checking problems over T 2
K .

Our main result relates to this encoding. In particular, an instance check of the
form K |= C(a) is mapped to a subsumption check of the form

T 2
K |= {a} � DC � C , (1)

where DC is a concept that initializes an appropriate “firing” of binary absorp-
tions in T 2

K . This result refines the so-called donut theorem in [12]. The theorem
is so-named since its proof relies on a way of combining the results of tableau
expansion in reasoning about (1), called a tinbit3, with a particular partial inter-
pretation that must exist for any consistent K, the donut, to obtain an interpre-
tation of K for which a is not a C whenever K |= C(a) does not hold, that is,
which interprets concept {a} � DC � ¬C as non-empty.

The remainder of the paper is organized as follows. Our primary contributions
are in Sect. 3 in which we define the computation of T 1

K and T 2
K (see [12] for the

computation of T NR) and in which we present our main result. The results of an
experimental evaluation of our procedure are given in Sect. 4. The results confirm
that our procedure is effective in addressing performance issues that surface with
TBoxes that rely on the general use of value restrictions. A review of related work
and a summary discussion then follow in Sect. 5. Part of this discussion outlines
refinements of our procedure that can improve its performance or increase the
scope of SHIQ(D) knowledge bases for which the method can be used.

Finally, note that we do not address all problems relating to instance queries
in this paper, an example of which is given as a SPARQL query above. An
instance query is given by a knowledge base K and a concept C, and asks for
the set of all individuals a mentioned in K for which K |= a : C. For example,
there is a growing body of work on exploiting precomputed or cached results
by DL reasoning engines to address this problem [8,9], a topic that we briefly
return to in our summary comments.4 In this paper, we focus on the problem
3 Also inspired by the Canadian word for a “donut hole” pastry called a Timbit.
4 At a minimum, an interface to a cache of all individual names occurring in K would

be required, that is, a cache of the result of evaluating the instance query given by
K and the “top” concept �.



612 J. Wu et al.

of instance checking for cases where general reasoning is necessary, in particular
where precomputed or cached results are unavailable, indeed, an unavoidable
circumstance with (arbitrary) non-atomic concepts and non-Horn ontologies.

2 Preliminaries

We consider instance checking problems over knowledge bases expressed in terms
of the DL dialect SHIQ(D), where D is the simple concrete domain of finite
length strings. However, such problems will be mapped to subsumption check-
ing problems in the more general logic SHOIQ(D) in which nominals can
occur in inclusion dependencies. Although not really necessary, our definition
of SHOIQ(D) introduces a number of non-terminals in a concept grammar
that will help with clarity in the remainder of the paper.

Definition 1 (Description Logic SHOIQ(D)). SHOIQ(D) is a DL dialect
based on disjoint infinite sets of atomic concepts NC, atomic roles NR, con-
crete features NF and nominals NI. Let S ∈ NR ∪ {R− | R ∈ NR} S−−,
we define S− = R if S = R− and S− = R− otherwise. A role inclusion has
the form S1 � S2. Let �∗ be the transitive-reflexive closure of � over the set
{S1 � S2} ∪ {S−

1 � S−
2 | S1 � S2}. A role S is transitive, denoted Trans(S),

iff Trans(R) or Trans(R−) for some R where R �∗ S and S �∗ R. A role S is
called complex if Trans(S′) for some S′ �∗ S.

Let A ∈ NC, a ∈ NI, f, g ∈ NF, S a general role, and n be a non-negative
integer. A SHOIQ(D) concept C is defined as follows:

C ::= Cd | C1 � C2 | C1 � C2 | {a} | ¬{a} | ∃≤nS.C1 | ∃≥nS.C1

Cd ::= Cb | f < g | f = k

Cb ::= L | 	
L ::= A | ¬A

where k is a finite string. To avoid undecidability [5], a complex role S may occur
only in concept descriptions of the form ∃≤0S.C1 or of the form ∃≥1S.C1.

An interpretation I is a pair I = (
I � DI , (·)I), where 
I is a non-empty
set, DI is a disjoint concrete domain of finite strings, and (·)I is a function that
maps each feature f to a total function (f)I : 
 → D, the “=” symbol to the
equality relation over D, the “<” symbol to the binary relation for an alphabetic
ordering of D, a finite string k to itself, NC to subsets of 
I , NR to subsets of

I × 
I , and NI to singleton subsets of 
I , with the interpretation of inverse
roles being (R−)I = {(o2, o1) | (o1, o2) ∈ RI}. The interpretation is extended to
compound concepts in the standard way.

A TBox T is a finite set of constraints C of the form C1 � C2, S1 � S2 or
Trans(S). An ABox A is a finite set of assertions of the form A(a), (f = k)(a) and
S(a, b). Let K = (T ,A) be an SHOIQ(D) knowledge base. An interpretation I
is a model of K, written I |= K, iff (C1)I ⊆ (C2)I holds for each C1 � C2 ∈ T ,
(S1)I ⊆ (S2)I holds for each S1 � S2 ∈ T , {(o1, o2), (o2, o3)} ⊆ (S)I imply-
ing (o1, o3) ∈ (S)I holds for Trans(S) ∈ T , (a)I ∈ (A)I for A(a) ∈ A,
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((a)I , (b)I) ∈ (S)I for S(a, b) ∈ A, (f)I((a)I) < (g)I((a)I) for (f < g)(a) ∈ A,
and (f)I((a)I) = k for (f = k)(a) ∈ A. A concept C is satisfiable with respect to
a knowledge base K iff there is an I such that I |= K and such that (C)I �= ∅. ��

Note that assertions of the form S(a, b) and (f = k)(a) correspond, respec-
tively, to so-called object property assertions and data property assertions in
RDF. By a slight abuse of grammar in the following, we allow simpler shorthand
for more general concrete domain concepts Cd of the form (t1 op t2), where t1
and t2 refer to either a concrete feature or a finite string, and op ∈ {<,=}.
Also note that we write ∀S.C and ∃S.C as shorthand for the respective concepts
∃≤0S.¬C and ∃≥1S.C.

Regarding value restrictions, we focus on their use in inclusion dependencies
of the form

Cb � ∃≤nS.Cb.

In particular, we shall be concerned with cases where n = 0 and where each Cb is
a literal L, and refer to such dependencies as local universal restrictions. Indeed,
the cases where Cb is not a literal correspond to domain and range restrictions
of the form 	 � ∀S.Cb, a variety of dependency that has already been addressed
in earlier work [12].

Recall that the first step of our procedure for instance checking separates a
given SHIQ(D) knowledge base K into its component TBox T and ABox A, and
that the second step requires T to be mapped to a normal form in which local
value restrictions have been extracted. The normal form is defined as follows:

Definition 2 (Normalized SHIQ(D) Terminologies). A SHIQ(D) con-
straint C is normalized if it has one of the forms Cb � ∃≤nS.Cb, CL � CR,
S1 � S2, or Trans(S), where CL and CR are defined by the following grammar:

CL ::= Cd | CL � CL | CL � CL | ∃≤nS.CL

CR ::= Cd | CR � CR | CR � CR | ∃≥nS.CR

A SHIQ(D) terminology T is normalized if each constraint C occurring in T
is normalized. ��

It is a straightforward process to obtain an equisatisfiable normalized terminol-
ogy from any SHIQ(D) terminology T [12].

3 Absorption for ABoxes and TBoxes with Local
Universal Restrictions

We now show how local universal restrictions of the form L1 � ∀S.L2 occurring
in a SHIQ(D) knowledge base K with ABox A and normalized TBox T NR can
be leveraged to further optimize ABox absorption.
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As prescribed in [12], the following pair of axioms are introduced for each
role assertion S(a, b) occurring in A, which then qualify for binary absorption:

{a} � GS � ∃S.({b} � G), and (2)

{b} � GS− � ∃S−.({a} � G). (3)

Note that GS , GS− and G are atomic concepts functioning as guards that can
control lazy unfolding. Also note that both (2) and (3) are needed to account
for the bi-directional significance of S(a, b).

A tableau algorithm might “fire” either (2) and (3) during lazy unfolding,
and therefore create a new individual, either b or a, and labeled with the guard
G. Unconditionally adding this label is problematic since this is likely to cause
the firing of other absorptions derived from A, thus leading to the large ripple
problem mentioned in our introductory comments in which an infeasible number
of individuals are “examined” for a particular instance checking problem. We now
show how, under some circumstances, one can exploit local universal restrictions
to eliminate guards for nominals on the right-hand side of such axioms, possibly
replacing the above with the respective pair

{a} � GS � ∃S.{b}, and (4)

{b} � GS− � ∃S−.{a}, (5)

and thereby avoiding subsequent unfolding that might otherwise ensue if the
right-hand-side G guards were not removed.

With the assumption of knowledge base consistency, the conditions that
enable guard elimination for a role assertion S(a, b), e.g., enable replacing (2)
with (4), can be informally stated as the following pair of conditions:

(C1) S is not used in at-most restrictions other than local universal restrictions,
and

(C2) for each local universal restriction L1 � ∀S.L2 mentioning S, it must hold
that K |= L2(b).

Recall that our instance checking procedure has four steps. The first two steps
are outlined in the preceding section and result in mapping a given SHIQ(D)
knowledge base K to an ABox A and a normalized TBox T NR. The remaining
two steps of this procedure require computing T 1

K and then using off-the-shelf
subsumption checking technology (with enhanced binary absorption optimiza-
tion) to compute T 2

K . Details now follow in which the definition of T 1
K is derived

from the corresponding computation in [12] from which we have extracted and
refined the definitions of T T and T A to properly account for the syntactic guard
elimination as outlined above.

Definition 3 (Computing T 1
K). T 1

K is given by

T NR ∪ T T ∪ T A ∪ T ∀
→ ∪ T ∀

→d ∪ T ∀
← ∪ T ∀

←d,

with component terminologies other than T NR defined as follows:
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T T = {L1 � GS , L2 � GS− | L1 � ∃≤nS.L2 ∈ T NR}
∪ {(t1 op t2) � Gf | f in t1 or in t2, (t1 op t2) in T NR}
∪ {GS2 � GS1 ,GS−

2
� GS−

1
| S1 � S2}

∪ {	 � GS � GS− | S occurs in T NR and S is complex}
T A = {{a} � G � A | A(a) ∈ A}

∪ {{a} � Gf � (f op k) | (f op k)(a) ∈ A}
∪ {{a} � G � ∃S.	, {b} � G � ∃S−.	 | S(a, b) ∈ A}

T ∀
→ = {{a} � GS � ∃S.{b} | S(a, b) ∈ A, Trans(S) �∈ T ,

and for each L1 � ∃≤nS.L2 ∈ T NR,

n = 0 and {L1(a),NNF(¬L2)(b)} ∩ A �= ∅}
T ∀

→d = {{a} � GS � ∃S.({b} � G) | S(a, b) ∈ A,

and for some L1 � ∃≤nS.L2 ∈ T NR,

n > 0 or {L1(a),NNF(¬L2)(b)} ∩ A = ∅}
T ∀

← = {{b} � GS− � ∃S−.{a} | S(a, b) ∈ A, Trans(S) �∈ T ,

and for each L1 � ∃≤nS.L2 ∈ T NR,

n = 0 and {NNF(¬L1)(a), L2(b)} ∩ A �= ∅}
T ∀

←d = {{b} � GS− � ∃S−.({a} � G) | S(a, b) ∈ A,

and for some L1 � ∃≤nS.L2 ∈ T NR,

n > 0 or {NNF(¬L1)(a), L2(b)} ∩ A = ∅} ��

Intuitively, for any role assertion S(a, b), the corresponding axioms in the
form of (2) are checked syntactically for guard elimination, which are placed into
T ∀

→ if guards cannot be eliminated and into T ∀
→d otherwise. Similarly, “backward”

axioms in the form of (3) are either in T ∀
← or T ∀

←d, depending on if the right-hand
side guards can be eliminated.

The syntactic check conditions presented above for ensuring (C1) and (C2)
are subtle. For example, T ∀

→ requires the condition {L1(a),NNF(¬L2)(b)}∩A �=
∅, where the presence of L1(a) in A guarantees K |= ¬L2(b) because of the
axiom L1 � ∃≤0S.L2 and the consistency assumption of K. Hence, adding L1(a)
to the conditions of T ∀

→ renders syntactic checking over A more efficient.
Observe that computing T 1

K entails simple syntactic lookups in A for concept
assertions of the form L1(a) or L2(b). If the lookups succeed, S(a, b) is consistent
with all local universal restrictions of the form L1 � ∀S.L2. Although such lookups
are not complete, an absorbed T 1

K can be useful in conducting further subsumption
checks to find additional cases where role assertions are consistent with the local
universal restrictions, indeed, to decide conditions (C1) and (C2) above.
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Definition 4 (Computing T 2
K). T 2

K is given by (T 1
K\T sub)∪T add, where T sub

and T add are defined as follows:

T sub = {{a} � GS � ∃S.({b} � G) | Trans(S) �∈ T NR,

{a} � GS � ∃S.({b} � G) ∈ T ∀
→d, and

for each L1 � ∃≤nS.L2 ∈ T NR : n = 0 and

(T 1
K |= {a} � G � L1 or T 1

K |= {b} � G � ¬L2) }
∪ {{b} � GS− � ∃S−.({a} � G) | Trans(S−) �∈ T NR,

{b} � GS− � ∃S−.({a} � G) ∈ T ∀
←d, and

for each L1 � ∃≤nS.L2 ∈ T NR : n = 0 and

(T 1
K |= {a} � G� � ¬L1 or T 1

K |= {b} � G � L2) }
T add = {{a} � GS � ∃S.{b} | {a} � GS � ∃S.({b} � G) ∈ T sub} ��

To illustrate the overall process of computing T 2
K , consider a knowledge base

U with component TBox Ut and ABox Ua respectively defined as follows:

{Dept � ∀headOf −.Prof,Chair � Prof }, and {p : Chair, headOf −(d, p)}.

From Definition 2, (Ut)NR = Ut, and Sect. 3 then defines the following.

T Ut = {Dept � GheadOf − ,¬Prof � GheadOf }
T Ua = {{p} � G � Chair, {d} � G � ∃headOf −.	, {p} � G � ∃headOf .	}
T ∀

→ = T ∀
← = ∅

T ∀
→d = {{d} � GheadOf − � ∃headOf −.({p} � G)}

T ∀
←d = {{p} � GheadOf � ∃headOf .({d} � G)}

T 1
U = Ut ∪ T Ut ∪ T Ua ∪ T ∀

→d ∪ T ∀
←d

Computing T 2
U requires a subsumption check over T 1

U to determine if Dept �
∀headOf −.Prof is consistent with the role assertion headOf −(d, p). In particular,
since

T 1
U |= {p} � G � Prof,

we obtain the following:

T sub = {{d} � GheadOf − � ∃headOf −.({p} � G)}
T add = {{d} � GheadOf − � ∃headOf −.{p}}
T 2
U = (T 2

U\T sub) ∪ T add = Ut ∪ T Ut ∪ T Ua ∪ T ∀
←d ∪ T add

Thus, the final terminology T 2
U consists of the following axioms, all of which

will be absorbed with extended binary absorption:
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(unary absorptions) (binary absorptions)
Dept � ∀headOf −.Prof {p} � G � Chair

Chair � Prof {d} � G � ∃headOf −.	
Dept � GheadOf − {p} � G � ∃headOf .	
¬Prof � GheadOf

† {p} � GheadOf � ∃headOf .({d} � G)

{d} � GheadOf − � ∃headOf −.{p}

Our main result now follows in which we show that an instance checking problem
K |= C(a), where K is a SHIQ(D) knowledge base, reduces to a subsumption
checking problem over either the SHOIQ(D) TBox T 1

K or T 2
K . In preparation,

we define a derivation concept for C:

Definition 5 (Derivative Concept). The derivative concept DC for a
SHIQ(D) concept C is defined as follows:

DC =

⎧
⎪⎪⎨

⎪⎪⎩

	 if C = Cb;
�Gfi if C = (t1 op t2), fi in t1 or t2;
DC1 � DC2 if C = C1 � C2 or C = C1 � C2;
GS � ∀S.(DC1 � G) if C = ∃≥nS.C1 or C = ∃≤nS.C1.

Definition 6 and Lemma 1 that follow are reproduced from [12].

Definition 6 Let K = (T ,A) be a SHIQ(D) knowledge base and TK = T i
K for

any i ∈ {2, 3}. Let a : C be an instance check over K, and {a} � D � C, be
a subsumption check over TK, where D = G � DC . Let I0 be an interpretation
that satisfies TK such that ({a})I0 ⊆ (D)I0 but ({a})I0 ∩ (C)I0 = ∅; also, let
I1 be an interpretation that satisfies K in which all at-least restrictions are
fulfilled by ABox individuals and, if necessary, anonymous objects. Without loss
of generality, we assume both I0 and I1 are tree-shaped outside of the converted
ABox. Define an interpretation J as follows: let a0 be any ABox individual and
Γ I0 be the set of objects o ∈ 
I0 such that either o ∈ ({a0})I0 and ({a0})I0 ⊆
(G)I0 or o is an anonymous object in 
I0 rooted by such an object. Similarly let
Γ I1 be the set of objects o ∈ 
I1 such that either o ∈ ({a0})I1 and ({a0})I0 ∩
(G)I0 = ∅ or o is an anonymous object in 
I1 rooted by such an object. We set

1. 
J = Γ I0 ∪ Γ I1 ;
2. (a0)J ∈ ({a0})I0 for (a0)J ∈ Γ I0 and (a0)J = (a0)I1 for (a0)J ∈ Γ I1 ;
3. o ∈ AJ if o ∈ AI0 and o ∈ Γ I0 or if o ∈ AI1 and o ∈ Γ I1 for an atomic

concept A
4. (f)J (o) op (g)J (o) if (f)I0(o) op (g)I0(o) and o ∈ Γ I0 or if

(f)I1(o) op (g)I1(o) and o ∈ Γ I1 (and similarly for f op k);
5. (o1, o2) ∈ (S)J if

(a) (o1, o2) ∈ SI0 and o1, o2 ∈ Γ I0 , or (o1, o2) ∈ SI1 and o1, o2 ∈ Γ I1 ; or
(b) o1 ∈ ({a0})I0 ∩ (G)I0 , o2 ∈ ({b0})I1 and S(a0, b0) ∈ A (or vice versa);

or
(c) (o1, o2) ∈ (S1)J and S1 �∗ S; or
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(d) (o1, o′) ∈ (S)J , (o′, o2) ∈ (S)J and Trans(S). ��

Lemma 1. For {o1, o2} ⊆ 
J , if (o1, o2) ∈ (S)J and Trans(S) ∈ T , then
either {o1, o2} ⊆ Γ I0 or {o1, o2} ⊆ Γ I1 , where I0, Γ I0 , I1, Γ I1 and J are given
in Definition 6. ��

Theorem 1. For any consistent SHIQ(D) knowledge base K, concept C, indi-
vidual a, and 1 ≤ i ≤ 2:

K |= a : C iff T i
K |= {a} � G � DC � C.

Proof (sketch). Case i = 1 is implicitly included in case i = 2, so, it is sufficient
to prove the latter. For i = 2, consider Definition 6. We claim that ({a})J ∩
(C)J = ∅ (trivially) and J |= K. To show J |= K, note that the edges from
case (4a) satisfy all dependencies in K as the remainder of the interpretation J
is copied from I0 or I1. Thus, we only need to consider those S edges of the
form covered by case (4b) (and the extended cases (4c) and (4d)): the edges that
cross between the two interpretations, i.e., when o1 ∈ ({a0})I0 , o2 ∈ ({b0})I1

and S(a0, b0) ∈ A. Now consider an inclusion dependency expressing an at-
most restriction L1 � ∃≤nS.L2 ∈ T . There are two possibilities: in one case,
we can conclude o1 �∈ (L1)I0 as otherwise o1 ∈ (GS)I0 by the definition of
TT and thus o2 ∈ (G)I0 by the rules for construction of T 2

K , which contradicts
our assumption that ({b0})I0 ∩ (G)I0 = ∅, hence the inclusion dependency is
consistent with the role assertion vacuously; in the other case, we cannot derive
a contradiction because G was removed by our optimization shown in Sect. 3,
then it must be the case that the role assertion S(a, b) is consistent with the
axiom L1 � ∃≤0S.L2 ∈ T , i.e., L1 � ∀S.¬L2. Lemma 1 stipulates that in case
(4d) either {o1, o2, o

′} ⊆ Γ I0 or {o1, o2, o
′} ⊆ Γ I1 hold; hence any universal

restriction of the form L1 � ∀S.L2 (recall that concepts of the form ∃≤nS.L2

are disallowed for complex S) must be satisfied by (o1, o2) because it is already
satisfied by (o1, o2) in I0 (I1, respectively). Edges from case (4c) are trivial
extension to all of the above. Hence all axioms in K are satisfied by J .

The other direction follows by observing that if K∪{a : ¬C} is satisfiable then
the satisfying interpretation I can be extended to (G)I = (Gf )I = (GS)I = 
I

for all individuals a0, concrete features f , and roles S, and ({a0})I = {aI
0 }. This

extended interpretation then satisfies T 2
K and ({a})I ⊆ (D)I ∩ (¬C)I . ��

Returning to our example above to illustrate, consider the instance checking
problem

U |= p : Prof.

By Theorem 1, this can be decided by the subsumption checking problem

T 2
U |= {p} � G � DProf � Prof

with the assumption that U is consistent.
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4 Experimental Evaluation

Earlier work has already established the efficacy of ABox absorption for instance
checking problems, particularly so in cases where there are a large number of
concept assertions of the form (f = k)(a)5. Indeed, [12] presents an extensive
comparison of the utility of ABox absorption implemented in a tableau based
DL reasoner called CARE Assertion Retrieval Engine (https://code.google.com/
p/care-engine/) with other state-of-the-art reasoners. CARE has an underly-
ing SHI(D) DL reasoner that implements ABox absorption, optimized double
blocking [5], and dependency-directed backtracking [4]. Note that the set of finite
strings is the only concrete domain supported by the reasoner.

The comparison was based on a benchmark consisting of a selection of
instance queries over a digital camera knowledge base. Indeed, ABox absorp-
tion enabled CARE to outperform other reasoners on a number of these queries,
despite provisioning ensuring that CARE itself had no access to any precom-
puted or cached results.

Our objectives with the experiments presented below are focused on evaluat-
ing the performance of the our new procedure with the performance of the earlier
procedure in [12] used as the baseline. Thus, the empirical evaluation also uses
the above-mentioned CARE system. Note that all reported times are the average
of five independent runs on the 2.6 GHz AMD Opteron 6282 SE processor of a
Ubuntu 12.04 Linux server, with up to 4 GB of heap.

We conducted several experiments on the LUBM benchmark [2] using one
university (LUBM0) which has about 17 k individuals and 49 k role asser-
tions.6 Twelve queries out of the LUBM test queries7 were used (Q2 and Q9

were excluded since they are not expressible as instance queries). Since the
experiments focus on instance checking, the selection conditions for each of
the twelve queries were reified, e.g., Q4 was rewritten as the instance query
Professor � ∃worksFor.A′, for some fresh atomic concept A′, and a new con-
cept assertion, http://www.Department0.University0.edu: A′, was added to the
original ABox.

The run-time results are listed in Fig. 1 in which the execution time in sec-
onds of CARE with the new method, called OPT (the right striped bars), is
compared with the execution time of CARE with the earlier version lacking the
optimizations outlined in previous sections, called BASE (the left blue bars).
The figure also reports the relative improvement of OPT with respect to BASE
as a percentage. For LUBM0, preprocessing costs 5 and 16 s for the BASE and
OPT methods, respectively.

5 Recall that these are called data property assertions in RDF.
6 We chose to report on experiments using the LUBM benchmark for this study

because of its wider appeal, e.g., its adoption of a set of predefined queries, and
because its TBox includes foreign key constraints that are not global domain and
range restrictions, a property missing with the digital camera case studied in [12].
Additional experiments can be found in [11].

7 http://swat.cse.lehigh.edu/projects/lubm/.

https://code.google.com/p/care-engine/
https://code.google.com/p/care-engine/
http://www.Department0.University0.edu
http://swat.cse.lehigh.edu/projects/lubm/
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Fig. 1. Performance gains.

With OPT, about 23 % of the role assertions were optimized for LUBM’s
six typing constraints. Observe that, for LUBM0 instance queries, there is a
dramatic improvement ranging from 43 % to 91 % by OPT. The results suggest
that LUBM0 is quite sensitive to typing constraints in comparison to knowledge
bases with global domain and range restrictions only.

We have also observed that, for these knowledge bases, T 1
K constructed using

syntactic lookups in the ABox to approximate concept membership of individuals
yields empty T ∀

→ and T ∀
←, resulting in inferior performance. Only T 2

K , constructed
using semantic concept membership tests, yields the desired improvements. Note,
however, that T 1

K is essential to compute T 2
K , i.e., allows more efficient class mem-

bership checks. Indeed, additional (auxiliary) experiments have shown that side-
stepping either of the steps dramatically decreases the overall performance of the
system.

5 Related Work and Summary

Instance queries are an important reasoning service over DL knowledge bases,
and have been the subject of substantial work in the DL community. Although it
is always possible to evaluate an instance query C(x) by performing a sequence
of instance checks K |= a : C for each individual a occurring in K, reasoning
engines usually try to reduce the number of such checks by using precomputed
results or by “bulk processing” of a range of instance checks. An example of the
latter is so-called binary retrieval [3], which is used to determine non-answers
via a single (possibly large) satisfiability check.
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Another approach to avoid checking individuals sequentially is through sum-
marization and refinement [1], in which query evaluation is performed over a
summary of the original ABox that is significantly smaller in size, and iterative
refinement based on inconsistency justification is used to purge spurious answers.

There have been several approaches to exploiting precomputed results
obtained at an earlier time: when a knowledge base is “loaded”, or as a con-
sequence of an explicit request [9]. Examples include the pseudo-model merging
technique [3], presented earlier in [4] as a way to quickly falsify a subsumption
check. In particular, a pseudo-model captures the deterministic consequences of
concept membership for individuals. Note that model merging techniques are
generally sound but incomplete. Methods on how precomputed information can
be used to improve the efficiency of evaluating instance queries have also been
developed [8,9]. Observe that the aforementioned optimizations concern how to
reduce the number of instance checking tasks, not how to improve the instance
checking problem itself.

An approach to instance checking that has much in common with our own
method was introduced in [10]. In this case, an ABox is partitioned into small
islands such that an instance checking problem is routed to the island “owned”
by an individual. In contrast, our method simply reduces the problem of efficient
instance checking to absorption.

Earlier work shows how instance checking can be improved by introducing
guards that in turn prune any unnecessary consideration of individuals and the
(possibly large) number of facts about individuals [13,14]. To recap, the method
introduced in this earlier work assumes that knowledge bases are consistent and
relies on a refinement of binary absorption to achieve efficiency. Our main result
shows how the method can be refined by an additional process that effectively
disables the introduction of “trigger” guards in binary absorptions, which in turn
reduces the need for further lazy unfolding.
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